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Foreword

Over close to two decades of research, wireless sensor networks have transformed
from a bold vision to ever-expanding reality. While the original driving force,
hardware miniaturization and integrated sensing, computing and communication,
remains critical, the variety of sensor network applications that such technologies
have enabled are likely beyond earlier imaginations. With more and more expe-
rience from case studies and real-world deployments, the field is simultaneously
maturing and evolving, addressing new challenges in both theory and practice.
Through this process, sensor network research has become a truly interdisciplinary
field, cutting across areas such as embedded systems, operating systems, signal
processing, communication theory, networking, and computational geometry,
among many others.

This two-volume book is therefore a very timely re-examination of this field.
This second volume, entitled ‘‘The Art of Wireless Sensor Networks: Advanced
Topics and Applications’’, presents a collection of recent advances in both theory
and application of wireless sensor networks. Specifically, it starts with a stochastic
modeling framework aimed at better understanding and evaluating key QoS
metrics of a wireless sensor network, such as packet delivery delay, energy con-
sumption, and lifetime. This is followed by a collection of chapters that discuss the
state-of-the-art in various theoretical aspects and enabling technologies critical to
sensor networking. These chapters build on an increasing volume of literature but
also introduce new concepts. They are thus not only wonderful references but also
good sources of new ideas. These include advanced topics in sensing coverage
(barrier, spatial and temporal), indoor tracking, real-time estimation, and target
counting. It also includes a set of chapters dedicated to 3D sensor networks and
research challenges that arise in coverage, connectivity, localization, topology
control, and routing. The Part III of this volume consists of chapters that discuss
emerging applications that are beginning to have significant scientific and societal
impact. These include underground sensing, underwater sensing, multimedia
sensing, and body area sensing (its analysis as well as its use in activity and gesture
recognition). This part ends with a few interesting chapters on social sensing: the
sensing of, for, and within social/human networks.

With a field so diverse as evidenced by this collection of chapters, it has been an
enormous effort, but a decidedly worthwhile one, to put together these two vol-
umes. Much of the credit goes to the editor of the book, Dr. Habib M. Ammari.

ix



These two volumes present a glimpse into many exciting and vibrant research
directions within the field of wireless sensor networks, and should find an inter-
ested audience in both practitioners and theoreticians, and in novices and experts
alike.

March 10, 2013 Prof. Mingyan Liu
University of Michigan

Ann Arbor
MI, USA

x Foreword
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Part I
Introduction and Stochastic Modeling



Chapter 1
Introduction

Habib M. Ammari

“I have tried to write this set of books in such a way that it will
fill several needs. In the first place, these books are reference
works that summarize the knowledge that has been acquired in
several important fields. In the second place, they can be used as
textbooks for self-study or for college courses in the computer
and information sciences”

Donald E. Knuth, The Art of Computer Programming:
Fundamental Algorithms (1997)

1 The Art of Wireless Sensor Networks

Nowadays, the design and development of wireless sensor networks for various
real-world applications, such as environmentalmonitoring, healthmonitoring, indus-
trial process automation, battlefields surveillance, and seismmonitoring, has become
possible owing to the rapid advances in both of wireless communications and sensor
technology. This type of network is cost-effective and appealing to a wide range of
mission-critical situations. These two reasons helped them gain significant popular-
ity compared to other types of networks. A wireless sensor network is a collection
of low-powered, physically tiny devices, called sensor nodes, which are capable
of sensing the physical environment, collecting and processing sensed data, and
communicating with each other in order to accomplish certain common tasks. Fur-
thermore, wireless sensor networks possess a central gathering point, called the sink
(or base station), where all the collected data can be stored. The major challenge in
the design and development of wireless sensor networks is mainly due to the severe

H. M. Ammari (B)

WiSeMAN Research Lab, University of Michigan-Dearborn, Dearborn, MI, USA
e-mail: hammari@umd.umich.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 3
Signals and Communication Technology, DOI: 10.1007/978-3-642-40066-7_1,
© Springer-Verlag Berlin Heidelberg 2014



4 H. M. Ammari

constraints that are imposed on the sensing, storage, processing, and communication
features of the sensor nodes. More precisely, the sensor nodes suffer from severely
constrained power supplies, which shorten their lifetime and make them unreliable.
It is worth noting that the sensor nodes may become faulty due to improper hardware
functioning and/or low battery power (or energy). The latter is very crucial to be
considered in the design and implementation of this type of network for their correct
operation and longevity.

Since their inception in the late 1990s, wireless sensor networks have witnessed
significant growth and tremendous development in both academia and industry.
A large number of researchers, including computer scientists and engineers, have
been interested in solving challenging problems that span all the layers of the protocol
stack of sensor networking systems. Several venues, such as journals, conferences,
and workshops, have been launched to cover innovative research and practice in this
promising and rapidly advancing field. Because of these trends, I thought it would
be beneficial to provide our sensor networks community with a comprehensive ref-
erence on as much of the findings as possible on a variety of topics in wireless sensor
networks. As this area of research is in continuous progress, it does not seem to be
a reasonable solution to keep delaying the publication of such reference any more.

This book series, titled “The Art of Wireless Sensor Networks,” has two volumes
that have been designed in a way to address challenging problems in traditional
as well as new emerging areas of research in sensor networking. Moreover, all the
book chapters in both volumes have been written as surveys of the state-of-the-art
and state-of-the-practice of their corresponding topics. Our main goal is to help the
readers understand the basic concepts of wireless sensor networks, and also be aware
and knowledgeable of most of the underlying research topics although some of them
are still in their infancy and not muchwork has been done to solve those new research
problems. These two volumes are titled:

• The Art of Wireless Sensor Networks: Fundamentals
• The Art of Wireless Sensor Networks: Advanced Topics and Applications

This book relates to the second volume and focuses on the advanced topics and
applications of wireless sensor networks. Based on my fruitful discussion with the
contributing authors whom I invited, and, particularly, Drs. Wendi Heinzelman,
Kay Römer, and Mohamed Younis, our rationale is that the second volume has all
application-specific and non-conventional sensor networks, emerging techniques,
and advanced topics that are not as matured as what is covered in the first volume.
Thus, the second volume deals with three-dimensional, underground, underwater,
body-mounted, and societal networks. Following Donald E. Knuth’s above-quoted
elegant strategy to focus on several important fields (The Art of Computer Pro-
gramming: Fundamental Algorithms, 1997), all the book chapters in this volume
include up-to-date research work spanning various topics, such as stochastic mod-
eling, barrier and spatiotemporal coverage, tracking, estimation, counting, coverage
and localization in three-dimensional sensor networks, topology control and routing
in three-dimensional sensor networks, underground and underwater sensor networks,
multimedia and body sensor networks, and social sensing.Most of thesemajor topics
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can be covered in an advanced course on wireless sensor networks. This book will
be an excellent source of information for graduate students majoring in computer
science, computer engineering, electrical engineering, or any related discipline. Fur-
thermore, computer scientists, researchers, and practitioners in both academia and
industry will find this book useful and interesting.

I would like to mention that I borrowed the title of this two-volume book series,
“The Art of Wireless Sensor Networks,” fromDr. Donald E. Knuth, computer scientist
and Professor Emeritus at StanfordUniversity, who is the author of the seminalmulti-
volume set of books, titled “The Art of Computer Programming.” In fact, most of the
problems being addressed in the area of wireless sensor networks are challenging
and mathematical in nature. And, solving those problems requires an ‘art’ to find
elegant yet efficient solutions in terms of time, space, and, especially, energy, which
is a crucial resource in the design and implementation of algorithms and protocols
for wireless sensor networking systems. I hope the readers will see the ‘art’ in this
book and enjoy reading it as much as I enjoyed editing it.

2 Book Organization

This book has eight parts, each of which includes 2–3 chapters. Next, we briefly
summarize the purpose of each part with a short description of its chapters.

In Part 1, titled “Introduction and Stochastic Modeling,” Chap.2 provides a com-
prehensive cross-layer probabilistic analysis framework in order to investigate the
probabilistic evaluation of quality of service performance provided by wireless sen-
sor networks. The latter is evaluated in two levels, namely node level and network
level.

In Part 2, titled “Barrier and Spatiotemporal Coverage,” Chap.3 presents a com-
prehensive survey on barrier coverage of wireless sensor networks. It focuses on the
critical conditions and construction of barrier coverage in 2-dimensional wireless
sensor networks, barrier coverage under a line-based sensor deployment scheme, as
well as the effect of sensor mobility on barrier coverage, and barrier coverage in
three-dimensional underwater sensor networks. Chapter4 explores the fundamental
limits of spatiotemporal coverage based on stochastic data fusion models in order
to capture the stochastic nature of sensing. It derives the scaling laws between spa-
tiotemporal coverage, network density, and signal-to-noise ratio. Also, it shows that
data fusion can significantly improve spatiotemporal coverage by exploiting the col-
laboration among sensors when several physical properties of the target signal are
known.

In Part 3, titled “Tracking, Estimation, and Counting,” Chap.5 describes various
methods using sophisticated computations in pursuit of high localization accuracy
with low hardware investment and moderate set-up cost. Also, it shows a profile-
based approach to infer the positions of mobile wireless devices in complex indoor
environments, a two-tier statistical positioning scheme that helps improve efficiency
by adding movement detection, and joint cluster-head placement optimization for

http://dx.doi.org/10.1007/978-3-642-40066-7_2
http://dx.doi.org/10.1007/978-3-642-40066-7_3
http://dx.doi.org/10.1007/978-3-642-40066-7_4
http://dx.doi.org/10.1007/978-3-642-40066-7_5
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localization and movement detection. Chapter6 discusses methods and protocols for
controlling the behavior of nodes in order to allowmaximal use of the sharedmedium
for real-time estimation. It shows how transmission control protocols can be applied
in awireless network ofmobile sensors to achieve high accuracy given the limitations
of the medium. Chapter7 reviews four existing classes of counting methods, namely
binary counting, numeric counting, energy counting, and compressive counting. It
describes methods for each class and discusses their advantages and disadvantages.
Moreover, it compares those methods to illustrate the impact of different sensor
network settings on the target counting accuracy.

In Part 4, titled “Coverage and Localization in Three-Dimensional Wireless Sen-
sor Networks,” Chap.8 surveys existing methods on coverage and connectivity in
three-dimensional wireless sensor networks. It provides a study of different place-
ment strategies, fundamental characteristics, modeling schemes, analytical methods,
and limiting factors, as well as the practical constraints imposed on coverage and
connectivity in three-dimensional wireless sensor networks. Chapter9 focuses on
localization in three-dimensional wireless sensor networks. It describes generic, air-
borne, terrestrial, and submerged localization schemes along with their strengths and
weaknesses.

In Part 5, titled “Topology Control and Routing in Three-Dimensional Wire-
less Sensor Networks,” Chap.10 presents most recent work on three-dimensional
topology control. Chapter11 reviews several classes of routing techniques in three-
dimensional wireless sensor networks.

In Part 6, titled “Underground and Underwater Sensor Networks,” Chap.12 dis-
cusses the challenges facing the design of underground sensor networks, the per-
ceived limitations, and recent technological advances in this field. It shows that
the design of underground sensor networks must be tailored to the application. As
an illustrative example, a proposed study concludes that the design of an under-
ground sensor network for detecting oil pipeline leakage is totally different from that
of an underground sensor network for agricultural draught or landslide monitoring.
Chapter13 presents a solution to optimize communications in autonomous underwa-
ter vehicles by delaying packet transmissions while waiting for a favorable network
topology.

In Part 7, titled “Multimedia and Body Sensor Networks,” Chap.14 examines the
challenges in the implementation of wireless multimedia sensor network, and how
to develop one with the same performance as a traditional scalar wireless sensor
network. Also, it shows how to exploit compressed sensing to reduce the energy
consumption due to encoding and transmitting high quality video in a severely
resource constrained environment. Chapter 15 considers one application of body sen-
sor networks, which involves processing of wearable accelerometer data for recog-
nizing ambulatory or simple activities and activity gestures. Also, it discusses various
aspects that are associated with a real-time activity recognition system.

In Part 8, titled “Social Sensing,” Chap.16 describes new research challenges
that need to be addressed in social sensing frameworks, which should allow mas-
sive information dissemination. Chapter17 reviews existing work on behavior-aware
routing. Also, it presents a framework showing all the steps involved in the design

http://dx.doi.org/10.1007/978-3-642-40066-7_6
http://dx.doi.org/10.1007/978-3-642-40066-7_7
http://dx.doi.org/10.1007/978-3-642-40066-7_8
http://dx.doi.org/10.1007/978-3-642-40066-7_9
http://dx.doi.org/10.1007/978-3-642-40066-7_10
http://dx.doi.org/10.1007/978-3-642-40066-7_11
http://dx.doi.org/10.1007/978-3-642-40066-7_12
http://dx.doi.org/10.1007/978-3-642-40066-7_13
http://dx.doi.org/10.1007/978-3-642-40066-7_14
http://dx.doi.org/10.1007/978-3-642-40066-7_15
http://dx.doi.org/10.1007/978-3-642-40066-7_16
http://dx.doi.org/10.1007/978-3-642-40066-7_17
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of social behavior-aware routing. Chapter18 gives an overview of cultural appli-
cations of wireless sensing systems from four perspectives, namely the Internet of
things, smart grid, participatory sensing, and event-based point of view. Moreover,
it discusses the challenges and unique requirements of these applications.

3 Acknowledgments

This book of this complete two-volume series, titled “The Art of Wireless Sensor
Networks,” is a tribute to the finework of the foremost leading authorities and scholars
in their fields of research in the area of sensor networking. Frankly, it is not fair that
I am the only one whose name appears on the book cover. And, it is a great pleasure
and an honor for me to cordially recognize all of those who contributed a lot to
this book and generously supported me throughout this project in order to make this
two-volume series a reality.Without them, it would not be possible at all to finish this
book and make it available to all the researchers and practitioners, who are interested
in the advanced topics and applications of wireless sensor networks.

First and foremost, I am sincerely and permanently grateful to Allah—the Most
Gracious, the Most Merciful—for everything He has been providing me with. Par-
ticularly, I would very much love to thank Him for giving me the golden opportunity
to work with such group of outstanding scientists and researchers to put together this
book, and for helping me publish it within 2years. I am very pleased to dedicate this
modest book to Him and very much hope that He would kindly accept it and put His
Blessing in it. His Saying “And of knowledge, you (mankind) have been given
only a little” has an endless, pleasant echo in my heart and always reminds me that
our knowledge is much less than a drop in the ocean.

It is worthmentioning that all the contributing authorswere invited to contribute to
this book, and that no Call for Book Chapters had ever been sent through any mailing
list. All of those authors whom I invited were chosen very selectively to cover most
of the advanced topics and applications of wireless sensor networks. They have been
contributing to the growth and development of the field of wireless sensor networks.
This book would never have been written without their great contributions, support,
and cooperation. Therefore,my cordial recognition is due tomycolleagues—the ones
whom I invited to contribute with their book chapters to this book—whose names are
listed in the alphabetical order: Drs. Tarek F. Abdelzaher, Jeffrey A. Burke, Xiuzhen
Cheng, Ahmed Helmy, Benyuan Liu, Mingyan Liu, Tommaso Melodia, Sethura-
man Panchanathan, Yannis Paschalidis, Dario Pompili, Raja Sengupta, Mehmet Can
Vuran, Yu Wang, and Guoliang Xing. I am really honored to have led and worked
with such an amazing crew of scientists. I learned a lot from them throughout this
project, and it was an incredible experience for me in finishing this book.

Every book chapter has undergone two rounds of reviews. Moreover, in each
round, every book chapter received 3–5 reviews by experts in the scope of the chapter.
Our ultimate goal is to provide the readers with a high-quality reference on the
advanced topics and applications of wireless sensor networks. Precisely, all book
chapters were carefully reviewed in both rounds by all the contributing authors.

http://dx.doi.org/10.1007/978-3-642-40066-7_18
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I would like to express my sincere gratitude to all the contributing authors for their
constructive feedback to improve the organization and content of all book chapters.
My special thanks go to Dr. Stephan Olariu for his generous offer to review all book
chapters of both books of this two-volume series. Also, my original plan was to
publish only one book, titled “The Art of Wireless Sensor Networks”. But, I ended
up with 40 book chapters. Therefore, I suggested to all the above-mentioned invited
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Chapter 2
Stochastic Modeling of Delay, Energy
Consumption, and Lifetime

Yunbo Wang, Mehmet C. Vuran and Steve Goddard

Abstract Emerging applications of wireless sensor networks (WSNs) require
real-time quality of service (QoS) guarantees to be provided by the network. Due
to the non-deterministic impacts of the wireless channel and queuing state, prob-
abilistic analysis of QoS is essential. For most WSNs applications, the end-to-end
delay for packet delivery and the energy consumption are the most important QoS
metrics. In this chapter, a comprehensive cross-layer probabilistic analysis frame-
work is presented to investigate the probabilistic evaluation of QoS performance
provided by WSNs. In particular, the QoS performance is evaluated in two levels. In
the node level, using a Discrete-Time Markov queueing model, the distribution of
single-hop delay and single-node energy consumption and lifetime are analyzed. In
the network level, based on the node level analysis, the distributions of end-to-end
delay, the network lifetime, and the event detection delay are then analyzed. Fluid
models are utilized in the network level analysis. The framework also considers a
realistic channel environments. Compared to the first-order QoS statistics, such as
the mean and the variance, the distribution of QoS metrics reveals the relationship
between the performance and reliability with QoS-based operations in WSNs. Using
the framework, effective network development can be performed.
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1 Introduction

Wireless sensor networks (WSNs) have been utilized in many applications as both
a connectivity infrastructure and a distributed data generation network due to their
ubiquitous and flexible nature [4]. Increasingly, a large number of WSN applications
are investigated with various quality requirements for different network services
specific to low-cost hardware, and unpredictable environment conditions [3, 12].
These requirements necessitate a comprehensive analysis of the Quality of Service
(QoS) provided by the network.

QoS issues and techniques have been intensively investigated for ATM networks
[14, 45], IP networks [5, 44, 45], and traditional wireless networks [11, 47]. In
these studies, the evaluation of QoS is mainly focused on the communication quality
characterized by communication delay, jitter, bandwidth, and loss rate. Traditional
metrics, however, cannot fully characterize the QoS in WSNs [12], because of the
distinct characteristics of WSN applications.

WSNs are utilized for a different set of applications from those with traditional
networks [4]. These applications emphasize different characteristics of the network
and require different services to be provided by the network. Thus, the metrics to
evaluate the quality of these services are also different from traditional QoS metrics.
For example, for most WSN applications, sensor nodes are powered by batteries with
limited capacity, and replacing the batteries is difficult. Thus, the network lifetime
under battery constraints is a QoS measure that is more important than in traditional
network analysis. Other examples of such QoS measures include the delay for event
detection, and sensing rate of individual sensors.

Due to limited resource availability, QoS analysis must be performed in a cross-
layer manner. In traditional network analysis, with adequate resources assumed,
the maintainability and modularity are emphasized at the expense of additionally
consumed resources such as storage, computing power, and energy supply. Hence,
the QoS is separately provided by different network layers. In contrast, with limited
resources, WSNs are usually designed to exploit cross-layer operations and meet QoS
requirements more efficiently [46]. For example, cross-layer integration can lead to
significant energy conservation [65, 66]. Moreover, requirements on different QoS
metrics can contradict with each other, and a tradeoff must be made to provide optimal
services. For example, lower delay and longer lifetime are usually contradicting
design goals. Lower delay usually requires a high duty cycle, whereas longer lifetime
usually favors low duty cycle. Therefore, a QoS analysis framework that captures the
tradeoffs for the protocols and operations in the entire software stack is desirable.

1.1 Why Stochastic Models?

In this chapter, we discuss stochastic analysis of QoS provision in WSNs. Stochastic
models are necessary for WSNs due to three main factors that result in random
operation characteristics.
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• Environmental Conditions: WSNs encounter environment conditions that are unre-
liable and random in nature. Many applications in harsh environments such as wild
fields and battlegrounds further impose possible physical damage to the nodes [4].
Any degradation in the performance of one of the nodes would result in unpredicted
fluctuations in network performance.

• Low-cost Hardware: Sensor nodes are usually manufactured en masse with low-
cost hardware. Thus, it is expected that the nodes may randomly cease to work,
resulting in a random network topology.

• Wireless Channel: The wireless communication among nodes are also prone to
random noises due to low-profile radio transceivers and limited communication
power as well as wireless channel impurities such as multi-path fading and shad-
owing.

All these random factors result in a large variance in QoS metrics, and cannot
be thoroughly evaluated using traditional approaches, such as mean delay analysis
[1, 7, 28], or worst-case analysis [9, 22].

As wireless sensor network (WSN) technology has matured, more demanding
applications have emerged. These applications require quality of service (QoS)
guarantees with respect to end-to-end delay, energy consumption, lifetime, and
throughput, with high confidence. One example is a smart space application, where
resource-constrained wireless sensors and actuators provide situational awareness
and assistance to disabled or elderly people. Therein, a random and a rare event,
such as a person falling, should be detected within a bounded delay, while still main-
taining acceptable throughput and energy consumption levels.

Designing such systems, however, is challenging due to their stochastic character-
istics. The common practice of optimizing QoS metrics based on first-order statistics
(e.g., mean) is convenient but may be insufficient—especially when the cumulative
distribution function (cdf ) of the QoS metric is not based on a Gaussian distribution.
In the case of packet delay, for example, this technique results in good average-case
performance, but some packets may experience delays 20 times longer than the aver-
age [69, 71]. The problem becomes significantly harder when one considers multiple
QoS metrics simultaneously.

We envision that the utilization of these stochastic analysis techniques will trans-
form the network design approaches from utility-based solutions to stochastic design
principles. In other words, the developed tools are expected to provide the necessary
knobs that can be tuned to satisfy system requirements and the principles on how to
tune them.

1.2 Chapter Overview

The remainder of the chapter is organized as follows: In Sect. 2, an overview of the
anycast protocol used for illustration of the models is provided. Then, in Sect. 3,
stochastic analysis of delay in WSNs is discussed. Following the model described in
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this section, the event detection delay distribution is analyzed in Sect. 4. Finally, the
stochastic distribution of energy consumption and lifetime in WSNs is presented in
Sect. 5. As a whole, this chapter provides a comprehensive tool set for the stochastic
analysis of QoS provision in WSNs and presents validations of these analysis tools
through simulations and testbed experiments.

2 Anycast Protocol

To illustrate the practical applicability of the analysis tools, anycast protocol is used
as a case study throughout the chapter. Other protocols can easily be used following
the techniques illustrated for the anycast protocol. The derivations for other protocols
(e.g., TDMA, geographical routing, etc.) are left to the reader.

Recent protocol developed for WSNs employ duty cycle operations to save com-
munication energy [8, 57]. To combat the delay incurred due to this duty cycle
operation, opportunistic routing techniques, particularly anycast protocols, are uti-
lized along with a high node density to exploit node deployment redundancy [33,
35, 41, 55, 66]. The anycast technique is a cross-layer approach that exploits both
temporal and spatial efficiency.

With the anycast technique, if a node has packets to send, it first broadcasts a
series of beacon messages. Then, one of the responding neighbors is chosen as the
next-hop node according to predefined rules (e.g., the first node that responds, or
the closest node to the destination). Finally, the sender forwards the data packet to
the chosen neighbor. There are several variations of this basic anycast technique
in WSNs. In this chapter, we consider the following representative protocol as an
example to illustrate the stochastic analysis techniques.

The anycast protocol operation is illustrated in Fig. 1. Sensor nodes report their
readings to the sink through multi-hop routes in the network. The nodes (excluding
the sink) turn off their radio periodically to save energy. When a node x has a packet
to send it starts to repeatedly transmit Request-to-Send (RTS) beacon packets. These
packets are sent using a channel sensing mechanism before the beacon transmission.
As shown in Fig. 1, when any other node x1 in the transmission range is awake and
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Fig. 1 The transmission process and routing path for a packet with the anycast protocol
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hears the packet, it checks for the following criteria: (1) node x1 is closer to the sink
than x , (2) the signal-to-noise ratio (SNR) of the received RTS packet, ψ , is greater
than some predefined threshold ψth, and (3) if the node does not have any packets to
send. If all criteria are met, node x1 sends a Clear-to-Send (CTS) packet. The same
conditions may be satisfied at other nodes (e.g., node x2), which send their CTS as
well. Then, node x chooses the first node that sends a CTS packet as the next-hop
node and transmits the data packet to it. Successful data packet transmissions are
acknowledged by the receiver, otherwise the sender retransmits the data packet until
successful.

3 Single-Hop and End-to-End Delay Distribution

As WSNs are increasingly used in critical applications, delay becomes one of the
most important metrics in their design. Complex and cross-layer interactions in multi-
hop WSNs require a complete stochastic characterization of the delay. Because of
the randomness in wireless communication and the low power nature of the commu-
nication links in WSNs, average delay or worst-case delay provides limited insight
into the operations of WSNs. Probabilistic analysis of delay has been performed for
broadcast networks [6, 51, 58, 59, 61] considering several medium access control
(MAC) protocols. Indeed, the cumulative distribution function (cdf ) of the delay for
a given deadline can be used as a probabilistic metric for reliability and timeliness.
In addition to single-hop delay, additional delay due to multi-hop communication,
queuing delay, and wireless channel errors have to be captured as they are imperative
to completely characterize the delay distribution in WSNs.

In this section, we discuss the stochastic analysis of delay in WSNs. The resulting
delay distribution is an important metric to evaluate the communication services pro-
vided by the network, since it measures the probability that the network meets a given
deadline. The developed framework highlights the relationship between network
parameters and the delay distribution in multi-hop WSNs. Using this framework,
real-time scheduling, deployment, admission control, and communication solutions
can be developed to provide probabilistic QoS guarantees.

3.1 Background

Historically, the problem of probabilistic end-to-end delay has attracted a large inter-
est. The concept of Network Calculus [15] can be extended to support probabilistic
delay bounds in [9, 22, 34, 60]. Network calculus and its probabilistic extensions
are based on a min-plus algebra to provide traffic curves and service curves, which
are deterministic (or statistical) bounds of traffic rate and service time, respectively.
Accordingly, the worst case performance bounds can be analyzed. This approach
has limited applications in WSNs due to the randomness in wireless communication,
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large variance in the end-to-end delay, the fact that most applications tolerate packet
loss for a lower delay of higher priority packets since the efficiency of the system is
improved. Accordingly, probabilistic delay characteristics are of interest in addition
to the worst case bounds.

Real-time theory and queueing theory are combined to provide stochastic models
for unreliable networks [38, 75] for networks with heavy traffic rates. The approach
in this section is similar to the real-time queueing theory [38] in that a stochastic
queuing model for the analysis is used. However, we do not focus on the real-time
scheduling problem [38, 40, 75] but instead characterize delay for the development
of communication solutions.

Recently, the delay distribution of medium access control (MAC) protocols has
been analyzed for IEEE 802.11b DCF protocol [6, 59, 61], IEEE 802.15.4 proto-
col [56, 58], and TDMA protocols [51], where a broadcast network is considered.
Saturated traffic cases are also investigated extensively [6, 59, 61]. In addition, dis-
tribution of link layer retransmissions [31], end-to-end delay in a linear network with
infitie queues [72], and delay in data aggregation networks [25] are recently mod-
eled. These theoretical approaches are also complemented with empirical approaches
that use on-the-fly measurements estimate probabilistic characteristics of end-to-end
delay [21, 26, 54].

The remainder of this section is an extension to this state-of-the art to capture
multi-hop communication effects, hidden node problems, and the low traffic rate of
WSNs. In the following, we first provide a problem definition and then, discuss the
probabilistic end-to-end delay analysis model.

3.2 Problem Definition and System Model

Let us assume a network deployment, where each node is indexed by its location x.
We are interested in the following two problems:

(1) What is the probability distribution function (pdf ) of single-hop delay, fsh(x, y)(t),
between two nodes x and y for a new arriving packet?

(2) Given the single-hop delay distribution, what is the pdf of the end-to-end delay,
fe2e(x,s)(t), between a node x and a sink located at s?

In the following, we provide an overview of solutions for the two problems above
and the detailed descriptions are deferred to Sects. 3.3 and 3.4.

3.2.1 Single-Hop Delay Distribution

In this setting, we can model each node according to a queuing model, which is
characterized by its inter-arrival distribution and service process. More specifically,
the traffic inter-arrival can be modeled according to a Geometric distribution [68].
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The Geometric distribution is selected as experiment results with different types of
traffic (event-based and periodic) indicate that it is a valid model for WSN traffic
[68]. Furthermore, a Discrete Time Markov Process (DTMP) is used to model the
service behavior. In such a model, the service time is Phase-Type (PH) distributed
by definition [52]. Considering a single processor at each node and a queue capacity
of M , the resulting model is a discrete time Geom/PH/1/M queueing model.

The communication system at each node is modeled as a discrete-time recurrent
Markov chain, {Xn}. As shown in Fig. 2a, this discrete time Markov chain (DTMC)
has a layered structure. Each layer i contains the part of the chain where there are
i packets in the queue. The communication behaviors of each node are represented by
transitions among states in {Xn}. Then, a second DTMC, {Yn}, which is the absorbing
variant of {Xn}, is used to obtain the single-hop delay distribution. The steady-state
parameters found in {Xn} are used in {Yn} to derive the associated distributions. The
detailed explanation of these DTMCs is provided in Sect. 3.3.

3.2.2 End-to-End Delay Distribution

With each hop modeled as a Geom/PH/1/M queue, the entire network can be consid-
ered as a queueing network. Nodes are interrelated according to the traffic constraints.
More specifically, the successfully transmitted traffic rate from one node should equal
the sum of the incoming relay traffic rate at each of the next-hop neighbors of the node.

The topology of the queueing network depends on the routing protocol used. In this
discussion, we focus on the class of routing protocols wherein each node maintains
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a probabilistic routing table for its neighbors, e.g., anycast routing protocols [2]. By
first calculating the relay traffic and the single hop delay distribution for each pair of
nodes, the end-to-end delay can be obtained using an iterative procedure as explained
in Sect. 3.4.

3.3 Single-Hop Delay Distribution

For single-hop delay distribution, we are interested in capturing the delay in transmit-
ting a packet from one node to another. This delay includes the queueing delay at the
transmitting node and the communication delay due to transmission time, medium
access, and wireless channel errors and retransmissions. The communication system
at each node can be modeled by a DTMC {Xn} and its absorbing variant {Yn}. The first
DTMC, {Xn}, captures the equilibrium behavior of the system. The second DTMC,
{Yn}, is then used to analyze the transient communication behavior after a specific
packet arrives. The single-hop delay of the packet transmission is then represented
as the absorption time of {Yn}. In the following, we will discuss the construction of
{Xn} and {Yn} and show how the single-hop delay distribution is derived.

3.3.1 Steady-State Analysis

The DTMC, {Xn}, as shown in Fig. 2a, is two dimensional, where the horizontal
dimension captures the transmission attempts and the vertical dimension captures
the queue state. Accordingly, {Xn} is composed of M + 1 layers, where each layer
m (0 ≤ m ≤ M) represents the number of packets in the queue and M is the
queue capacity. The first layer, the quiescent layer, {In}, (m = 0) represents the
quiescent process, during which the node does not have any packet to send, and
waits for new packets. The communication layers, {Cn}m (m > 0), represent the
communication process in which packets are transmitted. One or more transmission
attempts are conducted, until either the packet is successfully transmitted, or the
maximum number of transmission attempts, Ntx, is exceeded. In the latter case, the
packet is dropped.

A layer m in {Xn} is denoted by {Cn}m , and is composed of Ntx blocks. The bth
block in layer m is denoted by {Zn}m,b.1 As shown in Fig. 2c, each block models
a single transmission attempt. The structure of {Zn} depends on the MAC protocol
used. Packets are dropped if they arrive at a full queue or if all Ntx transmission
attempts fail. Consequently, the vth state in layer m and transmission attempt b is
denoted by Sm,b,v .

In a typical network operation, each node is exposed to two types of incoming
traffic: locally generated and relay traffic. While the locally generated traffic can
arrive at any time and depends on the application, the relay traffic can only arrive

1 In the following, we drop the indices m and b, where appropriate, to simplify the notation.
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when the node is listening. Therefore, the total traffic rate depends on the state of the
process. Let us denote the locally generated traffic rate and the relay traffic rate for a
node by λlc and λre, respectively. Then, in the states where the node is listening, the
total traffic rate is λlc +λre. When the radio is in sleep, the total traffic rate is only λlc.

The quiescent and the communication layers, {In} and {Cn}, are parameterized
by the following notations:

• P I and PC : the transition probability matrices among the states in {In} and {Cn},
respectively.

• α I and αC : the initial probability vector for {In} and {Cn}, respectively.
• ts

I and ts
C : the probability vector from each state in {In} and {Cn} to complete the

quiescent process and the communication process successfully, respectively.
• t f

C : the probability vector from each state in {Cn} to complete the communication
process unsuccessfully.

• λI and λC : the packet arrival probability vector for each state in {In} and {Cn},
respectively. Each element in the vectors equals to the probability of a new packet
arrival in a time unit when the process is in the corresponding state.

The Markov chain block for each transmission attempt, {Zn}, is characterized by
the following:

• P Z , the transition probability matrix among the states in {Zn},
• αZ , the initial probability vector for {Zn}, and
• ts

Z and t f
Z , the probability vector from each state in {Zn} to complete the trans-

mission attempt successfully or unsuccessfully, respectively.

The states and the transitions related to {Zn} depend on the MAC protocol employed.
For now, let us assume that these matrices are known and leave the discussion on
how to obtain them to the case study in Sect. 3.5. Then, the transition probability
matrix among the states in a single layer {Cn} in {Xn} is

PC =

⎡
⎢⎢⎢⎣

P Z t f
ZαZ 0
. . .

. . .

P Z t f
ZαZ

0 P Z

⎤
⎥⎥⎥⎦ , (1)

where the number of P Z blocks in PC is equal to Ntx, i.e., the maximum number of
attempts for each packet transmission. Similarly, the initial probability vector, αC ,
and the probability vectors, ts

C and t f
C to complete a layer in success and failure are

αC = [
αZ 0 · · · 0

]
(2)

ts
C = [

ts
Z ts

Z · · · ts
Z

]T (3)

t f
C = [

0 0 · · · t f
Z

]T
(4)

respectively.
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The transition probability matrix, QX , of the entire Markov chain {Xn} can then
be found according to transitions between different states at each layer [68, 71] as
follows:

QX =

⎛
⎜⎜⎜⎜⎜⎝

layer 0 1 2 · · · M

0 As0 Au0 0
1 Ad0 As Au

2 Ad
. . .

. . .

· · · . . . As Au
M 0 Ad As + Au

⎞
⎟⎟⎟⎟⎟⎠

, (5)

where each nonzero block corresponds to the transition probability among all layers.
The duration of the time unit Tu is chosen to be small enough such that the probability
of having two or more transitions in a single time unit is negligible. Therefore, it is
only possible for {Xn} to have intra-layer transitions and inter-layer transitions to
adjacent layers.

The first row and column of blocks in QX corresponds to the transition prob-
abilities from and to the quiescent layer, respectively. Then, the equilibrium state
probability vector, π , for {Xn} is calculated by solving π QX = π and

⎭
i π i = 1.

We will illustrate this process with a basic example next.

Example 1. Let us now consider an example protocol, where a node conducts a duty
cycle operation every 2 s. It first sleeps for 1 s and then listens to the channel for
another 1 s. If a packet is received during the listening period with a probability λre,
or if a local packet is generated in any period with a probability of λlc, the node
attempts to transmit the packet. The transmission attempt takes 1 s with a failure
rate p, and the node persistently attempts to transmit the packet until successful.
While transmitting, the node cannot receive any packets, but can still generate pack-
ets. The queue length is M = 2.

For this protocol, a time unit of 1 s can be chosen since all time periods are 1 s.
Then, the quiescent process can be modeled by two states, and the communication
process can be modeled by one state, as shown in Fig. 3. The quiescent process,

Fig. 3 The structure of {Xn}
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{In}, contains a sleeping state (SL) and a listening state (LI), whereas the com-
munication process, {Cn}, contains a single transmission state (TX). Accordingly,
P I , PC ,α I ,αC , ts

I , ts
C , t f

C ,λI and λC are found as:

P I =
[

0 1
0 0

]
, PC = p,

α I = [
1 0

]
, αC = 1,

ts
I = [

0 1
]T

, ts
C = 1 − p, t f

C = 0,

λI = [
λlc λlc + λre

]
, λC = λlc, (6)

where t f
C = 0 because the communication persistently attempts to transmit until

successful, thus it can never fail. Therefore, the blocks in QX (see (5)) are expressed
as

Au = λlc p, Au0 = [λlc λlc + λre]T

As = λlc(1 − p) + (1 − λlc)p, As0 =
[

0 1 − λlc
1 − λlc − λre 0

]

Ad = (1 − λlc)(1 − p), Ad0 = [(1 − λlc)(1 − p) 0] (7)

3.3.2 Transient Analysis

Given the steady state characteristics of the system, we can now find the distribution
of single-hop delay for a packet by an absorbing DTMC. Consider a particular packet
that enters the system at time t = t0. The single-hop delay of the packet is the time
spent until it is transmitted or dropped in the system. To derive the delay distribution,
we use an absorbing variant of {Xn} that is denoted as {Yn} an shown in Fig. 2b.
In {Yn}, the quiescent layer of {Xn} is replaced by two absorbing states Ssucc and
Sfail, corresponding to the two cases where the packet is successfully transmitted and
dropped, respectively. In addition, all new packet arrivals are ignored since they do
not interfere with the service time of the packet concerned in a first in first out (FIFO)
queue. Thus, the state transitions occur only inside a layer or from layer m + 1 to m.
The steps to obtain {Yn} from {Xn} is as follows.

Before the packet arrives, the system is in one of the states according to the
equilibrium state probability vector, π . After the new packet arrives, if the queue is
full, the packet is immediately dropped. The probability of queue full is

pqf = π M Au1, (8)

where π M is the sub-vector in π corresponding to the M th layer. Otherwise, the
packet is inserted into the queue. The probability vector that the node is in a specific
state after the new packet arrives is π ′ = π Qup

Y , where Qup
Y is the transition probabil-
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ity matrix of {Yn} conditioned on the fact that the new packet arrives. Qup
Y is derived

from QX in (5) by replacing λI and λC with vectors of all 1’s and replacing As + Au
with As. Note that Au in the bottom-right block accounts for the transition that will
cause a packet to drop because of a full queue. Then, π ′ is the initial probability
vector for {Yn}.

Accordingly, the transition probability matrix for {Yn} is

QY =
⎡
⎣

1 0 0
0 1 0
ts
Y t f

Y PY

⎤
⎦ , (9)

where the transition probabilities from and to the absorbing states Ssucc and Sfail
are listed in the first two rows and columns, respectively. The transition probability
matrix among the transient states, i.e., all states except Ssucc and Sfail, is given by

PY =

⎡
⎢⎢⎢⎣

PC 0
tCαC PC

. . .
. . .

0 tCαC PC

⎤
⎥⎥⎥⎦ . (10)

This is obtained from (5) by removing the first row and first column of blocks, and
replacing λI and λC with vectors of all 0’s for each remaining block. The transition
probability vectors from each of the transient states to the absorbing states are

ts
Y = [

ts
C 0 0 · · · ]T

, t f
Y = [

t f
C 0 0 · · · ]T

, (11)

respectively, where ts
C and t f

C are given in (3) and (4), respectively. Finally, since a
transition in {Yn} takes a time unit Tu, the following important results are directly
obtained:

Theorem 1. The probability mass function (pmf) of the number of time units, K ,
a packet should wait before being transmitted and dropped are

f s
K (k) = αY Pk−1

Y ts
Y , f f

K (k) = αY Pk−1
Y t f

Y , (12)

respectively, where αY = (π ′
1,π

′
2, · · · ,π ′

M ), i.e., π ′ without the elements corre-
sponding to the quiescent layer, and Pk−1

Y represents the (k − 1)th power of PY .

Proof. The theorem follows from [50, Ch. 9.5].

The pmf of the number of time units a packet should wait, regardless of being
transmitted and dropped, is obtained by adding f s

K (k) and f f
K (k). Thus, the following

corollary is directly obtained.
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Corollary 1. The pmf of single-hop delay, measured by the number of time units of
Tu, is given by

fK (k) = αY Pk−1
Y tY . (13)

Using this model, the probability that the packet is eventually delivered in success
can also be found, and is given by the following corollary:

Corollary 2. The delivery rate of a new arriving packet is

pdeli =
+∞∑
k=1

f s
K (k) = αY (I − PY )−1 ts

Y . (14)

Accordingly, the first two moments of the single-hop delay can also be derived.
These moments are widely used as the performance metrics in WSN applications.

Corollary 3. The mean and variance of single-hop delay for a new arriving packet
are

μK = αY (I − PY )−2 ts
Y

pdeli
, (15)

σ 2
K = αY (2(I − PY )−3 − (I − PY )−2)ts

Y

pdeli
− μ2

K , (16)

respectively.

The derivations are straightforward since

μK = E[K ] =
⎭+∞

k=1 k · f s
K (k)⎭+∞

k=1 f s
K (k)

, (17)

σ 2
K = E[K 2] − (E[K ])2 =

⎭+∞
k=1 k2 · f s

K (k)⎭+∞
k=1 f s

K (k)
− μ2

K , (18)

where E[] represents expectation.
Based on the single-hop delay distribution, we will next derive the end-to-end

delay distribution in WSNs.

3.4 End-to-End Delay Distribution

In a multi-hop WSN, the delay is generally calculated as the time it takes for a
packet generated in the network to reach the sink. This delay, accordingly, depends
on the route taken by the packet. Thus, the topology of the network and the routing
protocol defines the end-to-end delay performance. Next, we discuss the case of
random deployments.
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Fig. 4 The feasible region,
Fx , and the infeasible region,
Bx , of node x

x

rx

rx

x

sFxBx

For the random deployment, the nodes are assumed to be located in the network
according to a Poisson point process with density ρ. For these types of networks,
geographic routing protocols [2] are often used due to their scalability and adaptabil-
ity to the random geographic locations of the nodes. In such protocols, instead of the
routing probability pfw

i, j between any pair of nodes i and j , the routing probability

between any pair of locations x and y, pfw
x, y is of interest.

A common scenario is considered, where the nodes in the network generate the
same amount of local traffic to a sink. Moreover, each node x forwards packets to
the neighboring nodes within its feasible region Fx , i.e., the region in which nodes
are closer to the sink, but are still in the transmission range. Assume that the sink is
located at the center of a circular plane with a radius R. In this scenario, the end-to-
end delay analysis can take advantage of the symmetry of the topology as explained
next.

The entire circular plane is discretized into concentric rings indexed by their
distance to the sink, r . Each node senses the physical events, and generates packets
with traffic rate λlc. By symmetry, the relay traffic λre,r is the same for all nodes in
the same ring r . We assume a polar coordinates system with the sink located at the
origin.

As shown in Fig. 4, for a node x located at x = (rx, θx), the relay traffic arrives
from any node y in the infeasible regionBx = Cx \Fx , i.e., the region in which nodes
are farther to the sink but are still in the transmission range. To derive the relay traffic
rate for x and other nodes in ring rx , consider the small area (rx : rx +Θr, θ : θ+Θθ)

around node x located at (rx, θ). Similar to the deterministic deployment, the relay
traffic rate λre,rx is given by

λre,rx = λ̄re,rx /π
listen
rx

,

λ̄re,rx =
∫
Bx

ρ(λ̄f
y + λlc)pfw

y,x pdeli, y,xd y

ρΘrΘθrx
, (19)

where ρ is the network density of the Poisson node distribution, pfw
y,x and pdeli, y,x

are similarly defined as pfw
m,i and pdeli,m,i , except that the nodes are indexed by their

locations.
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Finally, pfw
y,x in (19) is the routing protocol-specific probability that the node at y

transmit packets to a node at x. A case study for the anycast protocol will be provided
in Sect. 3.5 to show how this probability is obtained.

Thus, according to (19), the traffic rate of node x at each state can be determined.
Accordingly, the input traffic rate vectors λI and λC of node x can be found according
to Sect. 3.3. Then, the equilibrium state probability for the DTMC {Xn}, πrx is
obtained. Note that in (19), the traffic rate for nodes in ring rx depends on the traffic
rate and delivery rate for nodes in their infeasible region. Therefore, the single-hop
delay distribution is obtained first for nodes in the outmost ring, and then the inner
rings in the decreasing order of the ring radius.

By symmetry, the end-to-end delay distribution to the sink is the same for all
nodes with a same distance rx to the sink, and is obtained by

fe2e(rx)(t) =
∫
Fx

pfw
x, y fsh(rx) ∗ fe2e(r y)(t)d y. (20)

The end-to-end delay distribution is found in the ascending order of the distance to
the sink.

Next, the anycast protocol is used as a case study to illustrate the end-to-end delay
analysis in a randomly deployed network.

3.5 Case Study: Anycast Protocol

Most WSN communication protocols employ a duty cycle mechanism to save energy.
Here, we consider an anycast protocol, which aims to find next hops on the fly to
forward packets to the sink. Accordingly, we show how the single-hop and the end-
to-end delay analysis in Sects. 3.3 and 3.4 can be applied to protocols with duty cycle
operations for a randomly deployed network.

We first show the DTMC {Xn} for the protocol. Then, the protocol-specific para-
meters for the generic analysis in Sect. 3.3, including the relay traffic rate at each
state, and the transition probabilities for {Xn} are derived. The single-hop delay dis-
tribution for each pair of nodes is obtained after these parameters are known. Finally,
the end-to-end delay distribution from each node to the sink is provided.

3.5.1 Markov Process Overview

The structures of {In} and {Cn} in DTMC {Xn} for this protocol are shown in Fig. 5.
The quiescent layer {In} consists of a chain of sleeping states and a chain of listening
states of duration Tu. One may think that a single sleeping state and a single listening
state are enough to model the duty cycle operation, similar to the example. However,
because of the memoryless nature of Markov process, arbitrary values of duty cycle
must be captured with a specific number of states representing the active period and
sleeping period.
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begin success

Sleeping Active

(a)

pnr (r, 1)begin pnr (r, 2) pnr (r, 3) pnr (r, L  )b

1-pnr (r, 1) 1-pnr (r, 2) 1-pnr (r, 3) 1-pnr (r, L  )b

fail

success

(b)

Fig. 5 The Markov chain structure of (a) the quiescent process, {In}, and (b) the communication
process, {Cn}, for the anycast protocol

When there is no communication, the Markov process transitions through sleeping
states and listening states periodically, representing the duty cycle operation. In
the listening states, the node listens to the channel. Thus, both locally generated
packets and relay packets can arrive. In the sleeping states, the node turns off its
transceiver and only local packets can arrive. The number of states in {In} is Lc =
Tsl/Tu + Ta/Tu = Tp/Tu, where Tu is the time unit, and Tp is the duration of a
duty-cycle period. The values of Tsl and Ta depend on the protocol parameters. A
large Tu can reduce the number of states in the DTMC, thus, reducing complexity of
the model, but at the cost of reducing the granularity and accuracy of the result.

When a packet arrives, the node terminates the quiescent process and begins
the first layer of communication process {Cn}. In each {Cn} layer, the node keeps
transmitting beacon packets. The number of states in {Cn} is Lb = Tb/Tu, where Tb
is the beacon time-out.

If a node receives RTS responses from other nodes, it starts transmitting the data
packet to the first responding node. Retransmissions are conducted in case of a trans-
mission failure. Since only neighbor nodes that receive the beacon packets with a
high SNR will response, a high quality wireless channel is guaranteed. Moreover,
in most WSN applications, the traffic rate is low, and the chance of packet collision
with other nodes is small. Therefore, data packets transmitted successfully in limited
number of (re)transmission attempts, which takes negligible time compared to the
sleeping cycle Tp (usually longer than 10 s). Thus, {Cn} only contains transmission
states. In cases where retransmissions take longer durations, {Cn} can be extended
with additional states. When the first RTS packet is received, the transmission termi-
nates in a success. When the beacon transmission times out, the packet is dropped,
and the transmission terminates in a failure. In either way, the node enters the lower
layer. Note that the beacon timeout Tb is usually chosen equal to the cycle Tp. This
is to ensure that each neighbor node can receive the beacon messages within their
duty cycle period. The entire beacon communication process before packet delivery
or timeout is regarded as a single transmission attempt. Thus, each communication
layer {Cn} contains only one block of {Zn}.
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3.5.2 Steady State and Transient Analyses

The transition probability matrices in {In} and {Cn}, are obtained according to the
Markov structure in Fig. 5. In either {In} or {Cn}, there is only one initial state
(denoted by “begin”) with probability of 1. States with outgoing transitions denoted
by “success” or “fail” have a probability to complete the current process in a suc-
cess or failure, respectively. The transition probabilities among states are shown in
Fig. 5. Note that transitions with a probability of 1 are not labeled. The transition
probabilities pnr(r, v), (1 ≤ v ≤ Lb), and the traffic rate λI , λC are explained in the
following.

In the j th time unit in {Cn}, a node located at x in ring r has a probability of
pnr(r, v) of not receiving any CTS response, and enters the next state. If in all Lb
states, the node receives no CTS response, the transmission fails and the packet is
dropped. On the other hand, if in any of the states, a CTS response is received, the
node transmits the packet and the transmission succeeds. The probability pnr(r, v) is
the conditional probability that given the transmissions in the previous v − 1 states
fails, the transmissions in the v-th state still fails. For simplicity, the hidden terminals
are ignored. Therefore,

pnr(r, 1) = pnr(r, 1 ∼ 1)

pnr(r, v) = pnr(r, 1 ∼ v)/pnr(r, 1 ∼ v − 1), 2 ≤ v ≤ Lb (21)

where pnr(r, 1 ∼ v) is the probability that during all first v states in {Cn}, beacon
transmission fails, since no CTS packet is received in these states. Accordingly,

pnr(r, 1 ∼ v) =
∏

y=(ry ,θy)∈F(x)

(
1 − pex(ry)pol(ry, v)pSNR(x, y)

)
, (22)

where each of the small areas at y is located within the transmission range of x,
C(x), and is closer to the sink than x (this range is called the feasible region of x,
F(x), as shown in Fig. 6a); ry is the distance from the small area to the sink; pex(ry)

is the probability that there exists a node in each area, and is given by

pex(r) = ρΘrΘθr, (23)

where ρ is the node density. Moreover, pol(ry, v) in (22) is the probability that the
active period of a node located ry away from the sink overlaps with the first j beacon
transmission time units of the node at x; and pSNR(x, y) is the probability that a
packet, transmitted from a node at x to a node at y, has an SNR higher than some
predefined threshold ψth. It is obtained by (10) in [76].

Next, let us derive the probability that the active period of a node at y overlaps with
the first v beacon transmission time units of a node at x, pol(ry, v). If node x receives
no response in each of the small areas, at least one of the following statements is true:
(1) a node does not exist in the area, (2) at least one node exists but they are sleeping
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Fig. 6 The feasible region and infeasible region around node x, divided into small areas (a) Node
y is in the feasible region of x (b) Node y is in the infeasible region of x, and node z is in the feasible
region of y

during any of the first v slots, and (3) at least one node exists and is awake, but the
SNR of the beacon packet they receive is lower than the predefined threshold ψth.
Node y is awake during any of the first v slots means that the first beacon transmission
time unit of node x either coincides with any of the awake time units of node y or
coincides with the last v − 1 sleeping units of node y. Thus, pol(ry, v) is given by

pol(ry, v) =
Lw∑

k=1

πWk (ry) +

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Lsl∑
k=Lsl−v+1

π s(ry), 1 ≤ v < Lsl

Lsl∑
k=1

π s(ry), v ≥ Lsl

(24)

where Lsl is the number of sleeping time units in {In}, πWk (ry) and π s(ry) are the
equilibrium probability that node y is in the kth awake state or sleeping state in {Xn},
respectively. Lc and Lw are the number of total and awake states in {In}, respectively.

Therefore, pnr(r, 1 ∼ v) in (22) is determined using (23) and (24), and pnr(r, v)

in (21) is obtained using (22).
Now, we focus on the traffic rates at each state, λI and λC . In sleeping states and

listening states, the traffic arrival rate is λlc and λre(r) + λlc, respectively. In beacon
transmission states, since nodes are assumed not to respond to any relay packets, the
traffic rate is λlc.

If we consider the small area (r : r +Θr, θ : θ +Θθ), the forwarded traffic arrives
from any node y = (ry, θy) in the infeasible region B(x) = C(x) \ F(x), as shown
in Fig. 6b. Therefore λre(r) is given by

λre(r) =
⎭

y∈B(x) pex(ry)λo(ry)pfw( y, x)

pex(r)πli(r)
, (25)
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where λo(ry) is the output traffic transmitted from y. πli(r) is the probability that
node x is in any listening state, and is the sum of the probabilities corresponding to
all listening states in π(r). Moreover, λo(ry) is calculated by

λo(ry) = λ(ry)(π(ry))
T(1 − pqfull(ry) − pdrop(ry)), (26)

where pfw( y, x) is the probability that a node y forwards a packet to node x, among
all possible forward targets, and λ(ry) is the traffic rate vector for all states in {Xn}
for y. The probability that the packet is dropped due to beacon transmission timeout,
pdrop(ry), is easily obtained as pdrop(ry) = pnr(r, 1 ∼ Lb) (see (22)). The probability
that the queue is full when the packet arrives, pqfull(ry), is obtained by pqfull(ry) =
π M (ry)Au1, where π M (ry) is the probability vector corresponding to the layer M
in π(ry). In (25), pfw( y, x) is proportional to the probability that node x is available
when y transmits a beacon, and is normalized on the total probability of availability
for all possible nodes. The probability of availability is given by

pavail( y, x) = pex(r)pwake(r)pSNR( y, x), (27)

where pwake(r) = ⎭Lw
j=1 πW j (r) is the probability that node x is awake, and πW j (r)

is the equilibrium probability that node x is in the j th active state in {Xn}. Then,
pfw( y, x) in (25) is calculated as

pfw( y, x) = pavail( y, x)⎭
z∈F( y) pavail( y, z)

, (28)

where node z, with the polar coordinates (rz, β), can be in any small area in F( y).
Thus, according to (25), the traffic rate of node x at each state is determined.

Accordingly, {In} and {Cn} are characterized by:

• The (v, v′)th element in P I and PC is the transition probability from state v to v′
shown in Fig. 5.

• The element in α I and αC is 1 for states denoted by a “begin” arrow. Other elements
are 0’s.

• The element in ts
I , ts

C , and t f
C is set according to the probability attached to the

arrows denoted by “success” and “fail”, respectively.
• The elements in λI that correspond to the sleeping states, and the elements in λC

are set to λlc. Other elements in λI are set to λlc + λre(r).

Then, the equilibrium state probability vector, π(r), for the DTMC {Xn} is
obtained for each node x. Consequently, the single-hop delay distribution and end-
to-end delay distribution for each ring are obtained according to (13) and (20),
respectively.

Next, we focus on empirical experiments to evaluate the analysis model for anycast
protocols.
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3.6 Experiments

The discussed analytical model can be used to effectively study the distribution
of end-to-end delay distribution. It is essential to evaluate the analysis model using
empirical studies and define the limitations of the model. In the following, we provide
some insight into the model through experiments. The end-to-end delay distribution
model is evaluated using MATLAB to determine the single-hop and multi-hop delay
distributions [68, 71]. Moreover, empirical experiments and TOSSIM-based simula-
tions are discussed. The default radio and timing parameters of the experiments are
listed in Table 1, and the parameters for the channel model are listed in Table 2.

We first show that the analytical results of the end-to-end delay distribution are val-
idated by the simulation and the testbed experiments. The anycast protocol described
in Sect. 3.5 is implemented in TinyOS 2.0. The evaluation testbed consists of 25
Crossbow TelosB motes. The nodes are randomly placed in a circular area of radius
R = 4.5 m, where the density is roughly ρ = 0.39. Each node generates the same
amount of local traffic to be sent to the sink according to a Bernoulli process with
average rate λlc = 0.001 in each time unit Tu = 0.01 s, which equals to 0.1 packet per
second. The default duty cycle is x = 0.5. The simulation is performed on the same
topology. Both the simulations and the testbed experiments have been run for 2.5 h
and the end-to-end delay distribution for a node at distance r = 4.3 m is recorded,
respectively. Other parameters are shown in Table 3.

When compared with the simulations and experiments, as shown in Fig. 7a, it is
observed that the analytical results agree well with both results with an the error of
less than 10 %. With this accuracy, we can focus on simulations to analyze networks
larger than 25 nodes.

Table 1 List of radio and timing parameters for TinyOS CSMA/CA protocol

Group Notation Description Default value

Radio lp Data packet size 40 bytes
Rb Channel bit rate 250 kbps
Pt Transmit power −15 dBm

Timing Tu Time unit 320µs
T max

ibo Maximum initial backoff 9.77 ms
T max

cbo Maximum congestion backoff 2.44 ms

Table 2 List of channel-related constants and parameters

Group Notation Description Default value

Channel Pn Noise floor −105 dBm
P L(D0) Pass loss at reference distance 52.1 dB
D0 Reference distance 1 m
η Pass loss exponent 3.3
σ s Standard deviation of log-normal fading/shadowing 5.5
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Table 3 List of parameters for the anycast protocol

Group Notation Description Default Value

Radio lp Data packet size 40 bytes
Rb Channel bit rate 250 kbps
Pt Transmit power −15 dBm
lm Beacon and CTS message size 22 bytes

Timing Tp Duty cycle period 1 s
Ta Active period 0.5 s
Tb Beacon transmission timeout 1 s
Tto Beacon transmission interval 12 ms
Tu Time unit 0.01 s
T max

ibo Maximum initial backoff 9.77 ms
T max

cbo Maximum congestion backoff 2.44 ms
Protocol rth Threshold radius 2.7 m

ψth Threshold SNR 10 dBm

Now, we look at a larger network setting, where the network radius is set to 50 m
and the transmission power is increased to −10 dBm. Accordingly, the threshold
distance is changed to rth = 10 m. Moreover, the network density is ρ = 0.1.
Durations Tp, Ta, and Tb are 10, 5 and 10 s, respectively, and the traffic rate is 0.01
pkt/sec. Other parameters are left unchanged. 20 different topologies are randomly
generated according to a Poisson distribution with the same density. Each topology
is simulated for an hour. The end-to-end delay distribution from all nodes with a
distance of 50 m to the sink is shown in Fig. 7b, along with the analytical results.
It can be observed that the analytical result is also within an error of 10 % of the
simulation result.

For any network setup in the experiments, the calculation for the end-to-end
delay distribution during any given duration takes less than 2 min. On the other hand,
the TOSSIM-based simulations determine the delay distribution in the same order
of actual time. For example, for a simulated duration of 2 h, the simulation takes
roughly 30 min. Thus, the analytical approach provides insights significantly faster.

4 Event Detection Delay Distribution

So far, we have focused on the distribution of delay of one packet as it traverses in
a multi-hope network. In typical event monitoring applications, however, numerous
sensor nodes are deployed in the space, and operate collaboratively to monitor, report,
and react to various physical events. In most WSN data monitoring applications,
events of interest are detected by sensor nodes, and the user is interested in these
events that can be detected by multiple packets being reported to a sink via multi-hop
communication. The event detection delay consists of discovery delay for individual
nodes to sense and detect the event, and the delivery delay for the network to relay
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Fig. 7 a The analysis, simula-
tion, and experiment results of
end-to-end delay distribution
with the Anycast protocol for a
node with distance r = 4.3 m
to the sink. b The analysis
and simulation results for a
distance r = 50 m to the sink
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reports to the sink. When a given number, n, of packets are received by the sink, the
event is considered to be detected. Analyzing the event detection delay is a crucial
task for real-time WSN applications, which require predictable event detection delay
guarantees to be provided by the network.

In this section, we discuss the distribution of event detection delay in WSNs
[70]. A spatio-temporal fluid model is presented to derive the distribution of event
detection delay. Accordingly, the mean event detection delay and soft-delay bounds
for event detection can be modeled. We also show that motivated by the fact that
queue build up in low-rate traffic is negligible, a lower-complexity model can be
developed. This model extends the delay analysis for single packets, and derives the
event detection delay by first obtaining the end-to-end delay for each packet.
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4.1 Background

Event detection delay is associated with flows of packets in the network. Historically,
characterizing timing performance for traffic flows has been investigated in different
contexts. Several models have been developed to analyze probabilistic bounds on
the delay of traffic flows. As an example, the concept of Network Calculus [15] is
extended to derive probabilistic bounds for delay through worst case analysis [9, 22].
However, due to the randomness in and the low power nature of the communication
links in WSNs, these worst case bounds cannot capture the stochastic characteristics
of end-to-end delay. The communication capacity bounds for wireless networks
are investigated [20, 23, 29, 43, 73] with saturated traffic flows. In WSNs, the
wireless channel utilization is often well below the transmission capacity as nodes
are constantly forced into a sleeping state to preserve energy.

In IP network analysis, fluid-based models have been widely exploited [36, 42],
and these models have recently been utilized in the analysis of WSNs [19]. Moti-
vated by the fact that the individual packet behavior is less significant when a flow
is concerned, the traffic is considered as a continuous flow instead of individual
packets in these models. Accordingly, the complexity of the model can be greatly
reduced. Furthermore, spatial fluid-based models have also been utilized recently to
model stationary properties [13, 64], such as traffic rate and energy consumption
for large-scale WSNs. These models greatly reduce the complexity of the (other-
wise intractable) problem in either temporal or spatial domains. The discussion that
follows builds on top these building blocks for the analysis of event detection delay.

So far, event detection delay in WSNs is analyzed in two main contexts: (1) the
event discovery delay, i.e., the delay until the event is detected by an individual
node [10, 17], or (2) the delivery delay in a broadcast network [27]. These models,
unfortunately, cannot be easily employed for large-scale and multi-hop WSNs, where
the models are intractable.

4.2 Problem Definition and System Model

Let us again assume a network deployment, where nodes are randomly located
according to a Poisson point process and the node density is ρ. A sink node is
deployed at location s = (xs, ys), as shown in Fig. 8. At time t = t0, a physical

Fig. 8 The network including
the sink and the event genera-
tion area

xe

re

s
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event occurs at location xe = (xe, ye), which is called the event center, and lasts
for duration Te. As shown in Fig. 8, all sensor nodes within the detection range, re,
can discover the event. Each sensor node periodically measures the physical world
every te seconds using its attached sensors. During the event duration [t0, t0 + Te),
whenever the value of the measurement satisfies a predefined rule, e.g., temperature
higher than a given threshold, a report packet of size L is generated and is forwarded
to the sink using an anycast protocol. Due to inherent noise in the sensor readings,
n (n ≥ 1) readings from multiple sensor nodes are required at the sink to successfully
detect the event occurrence. Accordingly, we define the following:

Definition 1 An event is n-detected if n report packets for that event are received
by the sink.

The delay characteristics of event detection can then be modeled based on the
following definitions:

Definition 2 The n-delay of an event is the delay between when the physical event
occurs and when the event is n-detected.

Definition 3 The (p, n)-delay bound of an event is delay within which the event is
n-detected with probability p.

To evaluate the delay characteristics of event detection in WSNs, given network
and protocol parameters, n and p, we are interested in the following problems:

• What is the n-delay distribution of an event?
• What is the average n-delay of an event?
• What is the (p, n)-delay bound of an event?

In Sects. 4.3 and 4.4, we discuss spatio-temporal fluid models to address these
questions.

4.3 Transient Analysis

Instead of capturing each individual node, the network can be represented by a
continuous fluid entity distributed in the entire network area. Similarly, instead of
individual packets, the traffic can be considered as a continuous packet fluid. By
utilizing a spatio-temporal fluid model, the complexity of the problem in both spatial
and temporal domains can then be reduced, and the problem becomes tractable.
Testbed and simulation evaluations (Sect. 4.5) reveal that this approximation still
preserves the accurately of the model.

Consider a location in the network area denoted by x = (x, y). We consider the
nodes as a fluid entity over the entire space. Then, in an infinitesimal area around
location x with size dx,2 the amount of nodes is ρdx, where ρ is the node density.

2 With a slight abuse of denotation, this infinitesimal area is henceforth denoted by dx.
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We also denote the feasible region of x as Fx , and the infeasible region of x as Bx .
To describe the fluid traffic in the spatial fluid network, we begin by introducing the
following traffic concepts:

Definition 4 The generated, incoming, and outgoing traffic rate density for an infin-
itesimal area dx is respectively defined as the average number of packets generated,
received, and transmitted by the nodes within the area, if any, in an infinitesimal
duration dt , divided by the duration dt , and the size of the area dx.

In other words, the traffic rate densities define the speed at which packets are gener-
ated, received, and transmitted in unit space, respectively. In the transient analysis,
their values change over time, and thus, are functions of t . The generated, incoming,
and outgoing traffic rate density are denoted by gx(t), λx(t), and ωx(t), respectively.
Note that by assuming a fluid model, the amount of nodes in an infinitesimal area dx,
and the amount of packets sent in an infinitesimal duration dt , are not necessarily an
integer number.

Definition 5 The buffered traffic density for an infinitesimal area dx is defined as
the average number of packets buffered in the queue by the nodes within the area
divided by the size of the area dx.

The buffered traffic density is also a function of t , and is denoted by qx(t).
In the following, we derive the set of equations that describe the fluid traffic

characteristics of the network after t = t0. Without loss of generality, let t0 = 0. For
each node, the generated traffic rate density is given by

gx(t) =
{ ρ

te
, |x − xe| < re, and 0 ≤ t < Te,

0, otherwise,
(29)

where ρ is the density, te is the reporting interval, and |x − xe| denotes the Euclidean
distance between x and xe. During an infinitesimal duration dt , the amount of arriving
traffic, along with the traffic already stored in the queue is

ax(t) = qx(t) + (λx(t) + gx(t)) · dt (30)

which is the available traffic that needs to be transmitted.
For each infinitesimal area d y in the feasible forwarding region Fx of x, the

amount of nodes with good channel quality is

cx, y = ρ · px, y(ψth), (31)

where px, y(ψth) is the probability that the CTS message sent from a node at y has a
higher SNR than a given threshold ψth when received by the node at x ((10) in [76]).
Thus, the total amount of nodes in Fx with good channel quality is
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cFx =
∫
Fx

cx, yd y. (32)

Note that between any pair of nodes, at most one packet can be transmitted in a cycle
Tp. Thus the maximum amount of traffic transmitted during a cycle Tp from dx to
anywhere in Fx is

αmax
x = ρdx · cFx . (33)

Since the traffic is considered as a fluid and a packet takes one cycle to be transmitted
between a pair of nodes, in dt , the maximum amount of traffic sent from dx is
αmax

x ·dt/Tp. In the case where each node in dx has less than 1 available packet in its
queue, i.e., ax(t) < 1 ·ρ, it still takes an entire cycle to transmit them. In this case the
actual transmitted traffic during dt is ax(t)

1·ρ · αmax
x · dt

Tp
. Accordingly, the transmitted

traffic rate density at x is

ωx(t) = min

[
1,

ax(t)

1 · ρ

]
αmax

x
dt

Tp
· 1

dxdt
= min [ax(t), ρ]

cFx

Tp
, (34)

where ax(t) is the available traffic density given by (30).
The outgoing traffic in each infinitesimal area is equally distributed to every node

with good channel quality in its feasible region. Thus, the incoming traffic rate
density, λx(t), that is received from each infinitesimal area in the backward region,
Bx , is given by

λx(t) =
∫
Bx

ω y(t) · c y,x

cF y

d y. (35)

Within duration dt , the change in buffered traffic density is

dqx(t) =
(

gx(t) + λx(t) − ωx(t)
)

dt, (36)

and the buffered traffic density at time t + dt changes to

qx(t + dt) = qx(t) + dqx(t) (37)

Thus, (34), (35), (36) and (37) describe the traffic dynamics of the network after
t = t0. Given the initial value of qx(t0), the traffic rates in the network can be
evaluated for any time instance t > t0. Accordingly, the total incoming traffic rate
at the sink, which models the total number of packets received by the sink, can be
obtained.

Within the transmission range of the sink, the outgoing traffic rate density in (34)
becomes

ωx(t) = ax(t), (38)
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since the sink is always awake and the traffic can all be transmitted to the sink directly.
Moreover, for these nodes, in (35), the backward region Bx excludes the areas within
the transmission range of the sink. Then, at the sink, the incoming traffic rate is
calculated as

Λ(t) =
∫

x:|x−s|≤rth

ωx(t)dx, (39)

where rth is the distance threshold around the sink within which all nodes directly
send packets to the sink.

To calculate the incoming traffic rate at the sink, the entire network area can
be discretized into small areas, where the time is also divided into small time steps.
Initially, the buffered traffic density for every infinitesimal area in the network at time
t = 0 is q0

x . λx(t) and ωx(t) are set as 0. Then, ωx(t) and λx(t) are calculated using
(34) and (35), respectively. Then, qx(t) is updated for the next time step according
to (36). This process is repeated for each time step, and Λ(t) as a function of t is
obtained.

To obtain the n-delay distribution from Λ(t), we consider the traffic arrival process
to be a Poisson process with variable rate according to Λ(t). This model is also
observed in empirical evaluations. Consequently, the n-delay distribution, fn(t), of
the non-homogeneous Poisson process is given by [24, Ch. 2.4]:

fn(t) = [Λ̂(t)](n−1)Λ(t)e−Λ̂(t)

(n − 1)! , (40)

where Λ̂(t) is the integral of Λ(t) over duration (0, t].
Accordingly, we have the following theorem:

Theorem 2. For a WSN system described in Sect.4.2, the average n-delay and the
(p, n)-delay bound of an event are

μ(n) =
∫ ∞

0
t fn(t)dt, (41)

j (p, n) = f −1
n (p), (42)

respectively, where fn(t) is given by (40).

Proof. Since fn(t) in (40) is the pdf of the n-delay, (41) and (42) are directly
obtained according to the definition of the pdf.

4.4 Simplified Delay Model

The spatio-temporal fluid model decreases the complexity of the solution signifi-
cantly. To further reduce the complexity, the low traffic in WSNs can be put to use.
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In this simplified model, the network area is divided into small rings. Thus, the spatial
calculation complexity is also reduced from 2D to 1D.

For a low traffic rate WSN, the queueing effect can be neglected. Moreover,
the channel aware anycast operation allows one to assume that the channel error is
negligible within a transmission range of R. For a node located at x, after it receives
a packet (locally generated or forwarded), in the duration t , the probability that there
is no node in its feasible forwarding region Fx waking up is

pnf
x (t) ≈

∏
y=(l,θ)∈Fx

[
1 − ρd y pwake(t)

]
=

[
1 − ρd y pwake(t)

] AFx
d y

= exp
(
−AFx ρpwake(t)

)
, (43)

where the product is over Fx , divided according to the polar coordinates originated
at x, ρ is the network density, AFx is the size of Fx , and pwake(t) is the probability
that a node in each region wakes up during the period t . Since the wake period of
each node is unsynchronized with each other, pwake(t) is irrelevant to the location.
Moreover, since each node wakes up at uniformly distributed times, we have

pwake(t) =
⎧⎨
⎩

t

Tp
, 0 ≤ t ≤ Tp

1, t > Tp

. (44)

Therefore, the probability that at least one node in Fx wakes up during t is

pfwake
x (t) = 1 − pnf

x (t) =
{

1 − e−AFx ρt/Tp , 0 ≤ t ≤ Tp

1 − e−AFx ρ, t > Tp
. (45)

This is exactly the cdf of the single hop delay. Therefore, the pdf of single hop delay
for a node at x is

fsh(x)(t) = d pfwake
x (t)/dt =

⎧⎨
⎩

AFx ρ

Tp
e−AFx ρt/Tp , 0 ≤ t ≤ Tp

0, t > Tp

. (46)

The end-to-end delay distribution from location x to the sink can be found as
the convolution of single-hop delay distributions in the path as explained in Sect. 3.
Thus, the pdf of end-to-end delay from x to the sink is

fe2e(x)(t) =
∫

y∈Fx

fe2e(x′) ∗ fsh(x)(t)ρd y, (47)

where y is the location (l, θ). Since the queueing effect is neglected, the nodes with
the same distance to the sink have the same end-to-end delay to the sink. Therefore,
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the end-to-end delay distribution is calculated only once for all nodes with the same
distance to the sink. This fact results in a significant reduction on the calculation
time.

Suppose the packet generation function for a node at x is gx(t), then the packet
reception rate from x by the sink is

λx(t) = gx ∗ fe2e(x)(t). (48)

Then, the packet reception rate at the sink is the sum of traffic generated from each
location in the event detection region. Thus,

Λ(t) =
∫

x∈E
gx ∗ fe2e(x)(t)dx, (49)

where E is the region within the detection range, re, of the event location, xe, i.e.,
E = {x : |x − xe| ≤ re}.

Finally, the distribution of event detection delay is obtained by using (49) in (40),
and the average n-delay and the (p, n)-delay bound of an event are obtained by
Theorem 2.

4.5 Experiments

Now, we evaluate the accuracy of the both models using testbed experiments and
simulations. The average n-delay and the (p, n)-delay bound of an event in the
experiments and simulations are used to compare against the framework. The spatio-
temporal fluid model in the framework is implemented using C++ and the simplified
model is implemented using MATLAB.

Again, using testbed experiments, we can evaluate the effectiveness of the models
in small-scale deployments. Using a similar setup as in Sect. 3, experiments are
performed. In addition, we also discuss simulation results using TOSSIM [39] with
the same parameters.

The results are shown in Fig. 9a along with the results given by the two analyt-
ical models in (39) and (49). As can be seen in Fig. 9a, both testbed experiments
and simulations validate the models. The (p, n)-delay bound for p = 0.75 is also
calculated for different n’s. The results are shown in Fig. 9b. For the majority of
the cases, testbed and simulation results are within 5 % of the model. Moreover, the
results also confirm the accuracy of TOSSIM simulations, which are used in further
evaluations of the two models in larger-scale networks. The results show that the
model is accurate for low traffic high density WSN cases.
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Fig. 9 The event delay
results of testbed experiment,
simulation, and models (a)
The reception rate at the sink
(b) The (p;n)-delay bound of
the event delay for p = 0:75
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4.5.1 Comparison Between the Models

The spatio-temporal model and the simplified fluid model provides different advan-
tages and disadvantages for network modeling. Both models yield the results in a
significantly less time than simulations. For a typical network of 400 nodes, the sim-
ulation takes more than one day to complete, while the complete fluid model takes
around 10 min to calculate, and the simplified only takes less than 1 min. It is shown
in Fig. 9 that both models yield accurate results. The only cases where the result is
less accurate is when the density is low, or when the traffic rate is high, which are
not common configurations for WSNs.

Compared to the spatio-temporal model, the simplified model decreases the com-
plexity at the cost of accuracy. The simplified model requires O(

√
A) time, where A
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is the area of the network. On the other hand, since the spatio-temporal fluid model
calculates the traffic rates for each location in the entire 2D network, it requires O(A)

time. On the other hand, the simplified model is less accurate when the nodes with
the same distance to the sink do not have the same end-to-end delay. An example is a
non-regular network where nodes density varies over the space. The complete fluid
model, however, can be extended to provide accurate result in such networks when
the density ρ in (29)–(34) by ρ(x), a density function of corresponding location x.

5 Network Lifetime Distribution

Now we turn our attention to energy consumption and lifetime in WSNs. Due to
similar reasons, energy consumption also has a stochastic characteristic and its dis-
tribution characteristics should be analyzed. It is important to predict and guarantee
the lifetime of a network before it is deployed for practical reasons.

We start by modeling the distribution of energy consumption at the node level
and extend this analysis to the network level. Accordingly, lifetime of a node and the
whole network is modeled using stochastic measures. The analysis in this section is
based on the models presented in Sect. 3, since the analysis of both delay and energy
consumption utilize the Discrete-Time Markov model at the node level. Moreover,
we show that for large enough time durations, energy consumption converges to a
Normal distribution. This result greatly reduces the computation cost for the analysis.
We again use the anycast protocol as a case study to illustrate the use of the model
and discuss validations with experiments and simulations.

5.1 Background

Historically, energy consumption and lifetime has mainly been analyzed in the aver-
age sense. Average energy efficiency is evaluated for specific protocols [8, 57, 74],
and average energy consumption models are developed [16, 48]. The effects of rout-
ing strategies on energy consumption have also been investigated recently using a
realistic radio model is adopted to analyze the tradeoff between single-hop long-
distance transmissions and multi-hop short-distance transmissions [30]. The same
problem is also investigated using an energy model focused on circuit level hardware
[67]. Stochastic characteristics of energy consumption, however, cannot be captured
by these models.

Lifetime of WSNs has also been investigated predominantly using average mea-
sures [18, 32, 37]. The probabilistic lifetime analysis of a cluster-based network for
a TDMA MAC protocol [53] is a first step towards higher order statistics and here we
provide a stochastic energy consumption and network lifetime model for multi-hop
WSNs.
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5.2 Problem Definition and System Model

In WSNs, energy is consumed by each node for various activities including sensing,
data processing, and communication. We assume that each node is equipped with K
sensors, and each sensor k ∈ {1, . . . , K } is used to sense the physical environment
every Ts,k seconds (subscript “s” refers to “sensing”) with an energy consumption
of εs,k . Based on the application requirements, a packet is generated locally if the
sensed information satisfies event definitions. For each received and locally generated
packet, the node processes the data with an energy consumption of εp. Moreover,
the energy consumption for the communication, εc, is a variable dependent on the
network parameters and the protocols running on each node.

For a given random network topology, we are interested in the following problems:

1. Given a period of time T , what is the energy consumption distribution, FE(x,T )(e),
of a node at x?

2. Given the energy consumption distribution, what is the lifetime distribution,
FL(x,C(x))(t), of a node at x?

3. Given the energy consumption distribution for each node x in the network, what
is the distribution of the network lifetime, FN L(t)?

Next let us provide an overview of the solutions for the above problems. The
details of the models are then elaborated in Sects. 5.3 and 5.4.

5.2.1 Single Node Energy Consumption Distribution

The randomness in energy consumption and the associated lifetime is due to the
randomness because of the wireless channel errors and queueing operation. Accord-
ingly, for a node at x, the r.v. for energy consumption during a given time period, T ,
is expressed as:

E(x, T ) = Es(x, T ) + Ecp(x, T ), (50)

where Es(x, T ) is the r.v. of energy consumption for sensing, and Ecp(x, T ) is the r.v.
of energy consumption for communication and processing. These two terms capture
the randomness due to protocol operation.Accordingly, the pdf of the total energy
consumption of a node at x is

fE(x,T )(e) = fEs(x,T ) ∗ fEcp(x,T ), (51)

where the pdf of the corresponding r.vs. in (50) are convolved.
(1) Energy Consumption for Sensing: During any given time duration T starting

at t0, i.e., the period [t0, t0 + T ), for some sensor k with periodic sensing interval
Ts,k and energy consumption per sensing εs,k , denote the first sensing activity for
sensor k after t0 occurs at tk1. The number of sensing activities during T is then
nk(T ) = �(t0 + T − tk1)/Ts,k�. Since t0 is independent of sensing activities, tk1 − t0
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is a r.v. uniformly distributed in range [0, Ts,k). Therefore, the pmf of nk(T ) is given
by

fnk (T )(n) =
⎧⎨
⎩

Ns,k − n + 1, n = ⌊
Ns,k

⌋ + 1
n + 1 − Ns,k, n = ⌊

Ns,k
⌋

0, otherwise
, (52)

where Ns,k = T

Ts,k
. The pdf of energy consumption for all K sensors during T is

obtained as

fEs(T )(e) =
K∑

k=1

∑
n

n · δ(e − fnk (T )(n))

=
K∑

k=1

[ (
Ns,k − ⌊

Ns,k
⌋) · δ

(
e − (⌊

Ns,k
⌋ + 1

)
εs,k

)

+ (⌊
Ns,k

⌋ + 1 − Ns,k
) · δ

(
e − ⌊

Ns,k
⌋

εs,k
) ]

. (53)

(2) Energy Consumption for Communication and Processing: Next, we briefly
introduce the model for the analysis of the energy consumption for communication
and processing, Ecp(T ), and leave the details of the model to Sect. 5.3.

The energy consumed by communication and data processing at each node in the
network is modeled by a discrete-time queueing system with time unit Tu, which is
characterized by its traffic inter-arrival distribution and service process. More specif-
ically, in each time unit, the traffic inter-arrival is modeled according to a Bernoulli
process, and a variant of the Discrete Time Markov Process (DTMP) discussed in
Sect. 3.3 is used to model the service behavior.

Similar to the DTMP model in Sect. 3.3, the DTMP for the energy consumption
analysis is represented by a Discrete-Time Markov Chain (DTMC) {Xn}. Contrary
to the delay analysis, each state v in {Xn} is also associated with an amount of energy,
εv , consumed for the corresponding activity during Tu. The communication and data
processing behaviors of each node are represented by transitions among states in
{Xn}. We defer the detailed explanation of this DTMC to Sect. 5.3. Based on this
DTMC, the pdf of the single-node energy consumption for communication and data
processing, Ecp(T ), is found for any given duration T .

5.2.2 Node Lifetime and Network Lifetime Distributions

For a battery-powered sensor node, its lifetime distribution depends on the energy
consumption distribution during any given period T , and the total capacity of its
battery C . The network lifetime distribution depends on the lifetime distribution for
each node, and how the network lifetime is defined. In the following, we focus on
the lifetime defined as follows.
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Definition 6 The network lifetime is defined as the duration before the battery deple-
tion of the first node.

5.3 Single Node Energy Consumption Distribution

The energy consumed by communication and data processing for a node is repre-
sented by the energy costs associated with transitions among states in Markov chain
{Xn}. In the following, based on the discussion in Sect. 3.3, the construction of states
and transitions in {Xn} is discussed.

5.3.1 Structure of Markov Chain {Xn}

According to the MAC protocol employed, the structures of {Cn}m and {In} are
parameterized by the following variables: P I , PC , α I , αC , ts

I , ts
C , t f

C , λI , and λC .
The definitions of these variables are given in Sect. 3. Accordingly, the transition
probability matrix, QX , of the entire Markov chain {Xn} can be found based on (5).
Then, the equilibrium state probability vector, π , for {Xn} is calculated by solving
π QX = π .

5.3.2 Energy Consumption for Communication and Processing

Now, based on the DTMC, we derive the distribution of energy consumption for
communication and processing. Suppose at the beginning of a time unit Tu, the
node is in state v of {Xn}, and during the time unit, the energy consumption of
the node for communication and data processing is εv . The value of εv is obtained
from measurement, or is calculated according to the specifications of the hardware
platform. The cdf and the pdf of Ecp(Tu), the energy consumption during the time
unit, are Gv(e) = u(e − εv) and gv(e) = δ(e − εv), respectively, where u(·) is the
unit step function and δ(·) is the delta function.3 We denote

H (1)

v,v′(e) = Gv(e)qv,v′ = Pr{Ecp(Tu) ≤ e ∩ v
1→ v′}, (54)

h(1)

v,v′(e) = gv(e)qv,v′ = dH (1)

v,v′(e)/de, (55)

where v
1→ v′ represents the event that {Xn} transitions from state v to v′ in one

time unit, and qv,v′ is the (v, v′)th element of the transition probability matrix, QX ,
in (5).

3 Although a discrete time Markov process is used for the model, the energy consumption is
continuous. Thus the pdf, as opposed to the pmf, is used to characterize the distribution.
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For a given period T , the number of time units of Tu is T̂ ∼ T/Tu (since Tu is
usually chosen to be very small, T is approximated as an integer multiple of Tu).
After T̂ time units (T̂ > 1), the cdf of energy consumption is found to be

H (T̂ )

v,v′(e) = Pr{Ecp(T ) ≤ e ∩ v
T̂→ v′} =

∫ e

0
h(T̂ )

v,v′(ε)dε

=
∫ e

0

∑
v′′∈S

(h(1)

v,v′′ ∗ h(T̂ −1)

v′′,v′ )(ε)dε (56)

where S is the set of all states in {Xn}. Therefore, if the matrix of h(T̂ )

v,v′(e) is denoted

by h(T̂ )(e), then h(T̂ )(e) is the T̂ -fold convolution of h(1)(e).
The energy consumption distribution during T depends on the initial state of the

system at the beginning of this period, which is usually randomly chosen. Thus,
the initial state probability vector is represented by the equilibrium state probability
vector π . After T̂ time units, the pdf and the cdf of the energy consumption are

fEcp(T )(e) = πh(T̂ )(e)1,

FEcp(T )(e) =
∫ e

0
fEcp(T )(ε)dε, (57)

respectively, where 1 is the appropriately dimensioned column vector containing
all 1’s.

5.3.3 Asymptotic Energy Consumption Distribution

When the given duration T is large, the calculation of energy consumption distribu-
tion may require extensive computing power, especially for (57). On the other hand,
if a QBD process is modeled by a DTMC, and each state in the DTMC is associated
with a cost, then the sum of the total cost during a given period T asymptotically
approaches the Normal distribution as T → ∞ [49]. This is the same case for the
energy consumption distribution model, which can be approximated by a Normal
distribution, whose mean and the variance are given by

lim
T →∞ μcp(T ) = T̂ μcp,u = T̂ πε, (58)

lim
T →∞ σ 2

cp(T ) = T̂ σ 2
cp,u = T̂

⎛
⎝∑

v∈S
(εv − πε)2πv + 2βε

⎞
⎠, (59)

respectively, where T̂ = T/Tu is the number of time units in T , μcp,u, and σ 2
cp,u

are the mean and variance of Ecp during each time unit Tu. Moreover, π is the
equilibrium state probability vector of {Xn}, S is the set of states in {Xn}, and πv
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is the equilibrium state probability for state v. Finally, ε is the vector of εv for each
state v in {Xn}, and β is an intermediate vector variable which is obtained by solving
the following set of equations [49]:

β( QX − I) = −γ QX , (60)

β1 = 0, (61)

where γ is a row vector whose v-th element is (εv − πε)πv .
Then, the asymptotic distribution for Es(T ), the energy consumption by sensing,

is also derived. For each sensor k, when T → ∞,
⌊

T
Ts,k

⌋
≈ T

Ts,k
≈

⌊
T

Ts,k

⌋
+ 1. Thus,

(53) becomes

fEs(T )(e) ≈ δ

(
e −

K∑
k=1

εk T

Ts,k

)
. (62)

In other words, the energy consumption is approximately linear to T with a constant
coefficient equal to

⎭K
k=1 εk/Ts,k .

Therefore, the following results are obtained:

Theorem 3. When T → ∞, the energy consumption of a node during T asymptot-
ically approaches the Normal distribution, with the mean and variance linear to T
and given by

μ(T ) = T̂

(
μcp,u +

K∑
k=1

εk Tu

Ts,k

)
, (63)

σ 2(T ) = T̂ σ 2
cp,u + cT 2, (64)

where T̂ = T/Tu is the number of time units in T .

Proof. The proof is trivial by combining (58), (62).

5.4 Lifetime Distribution Analysis

Using the pdf of energy consumption fE(T )(e) in (57) for any given period T , the
lifetime distribution of a node, and further, the entire network, can be found as
follows.

5.4.1 Single-Node Lifetime Distribution

The distribution of the lifetime for a given node, L(C), is a function of its total battery
capacity C . Initially, the node has a battery residual of C . After duration T , the pdf
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of remaining energy in the battery is fC−E(T )(e). The probability that the node has
a shorter lifetime than duration T is the probability that the remaining energy after
T is lower than 0. Thus, the cdf of the node lifetime is

FL(C)(T ) = Pr{L(C) ≤ T } = Pr{C − E(T ) ≤ 0}. (65)

As explained in Sect. 5.3.3, when T is large, E(T ) ∼ N (μ(T ), σ 2(T )), where
μ(T ) and σ 2(T ) are given by Theorem 3. Thus, the cdf of single-node lifetime is
approximated as

FL(C)(t) ≈ Q

(
μ(t) − C√

σ 2(t)

)
. (66)

5.4.2 Network Lifetime Distribution

Since every node needs to be alive during the network lifetime, the network lifetime
(N L) distribution is obtained for a WSN with random deployment as:

FN L(t) ≈ 1 −
∏

x∈A
(1 − pex(x) Pr{L(x, C(x)) ≤ t}), (67)

where L(x, C(x)) is the lifetime for a node located at x, if any, with battery capacity
C(x). Using the approximation in (66) for the single-node lifetime distribution, the
network lifetime distribution is approximated by

FN L(t) ≈ 1 −
∏

x∈A

(
1 − pex(x)Q

(
C(x) − μ(x, t)√

σ 2(x, t)

))
, (68)

where μ(x, t), σ 2(x, t) are given by Theorem 3 for the node located at x. Moreover,
A is the network area. To calculate the product, areaA is discretized into small areas
of size Θx, and pex(x) is the probability that there exist a node in the small area
around x, and is a function of the network density ρ. It is obtained by pex(x) = ρΘx.

5.5 Case Study: Anycast Protocol

Using the anycast protocol, now we illustrate how the analysis model can be used
for communication protocols. For the energy and lifetime analysis with anycast
protocol, we assume that nodes are deployed in a circular plane of radius R, have a
homogeneous battery capacity C , and generate a homogeneous amount of local traffic
to a sink located at the center of the plane. Because of the symmetry, node-specific
variables are the same for each narrow ring with radius r , and are indexed by r . In
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the following analysis, when there is no ambiguity, the subscript r in ring-specific
variables is omitted.

5.5.1 Energy Consumption in Each State

During the protocol operation„ a node conducts one of the following communication
tasks: transmission, listening, receiving, and sleeping. Listening and receiving are
considered the same since most popular architectures, such as Mica2 [62] and TelosB
[63], consume similar power for these tasks. We also ignore the energy consumed for
the data packet transmission. This is a valid simplification because majority of the
energy is consumed for idle listening and beacon transmissions. As a result, there are
three types of states in {Xn}: Beacon transmission, Sleeping, and Listening. Nodes
consume a specific amount of energy εv in each state v.

In practice, since battery voltage drops over time, battery capacity is often mea-
sured with normalized voltage. Therefore, energy is represented in the units of A·s.
In sleeping and listening states, the energy consumed during a time unit, Tu, are
εsl = IslTu, and εli = IliTu, respectively, where Isl and Ili are the measured current
drawn from the battery in the sleep and listening modes, respectively.

The power consumption when the node is transmitting beacon packets, εb, depends
on the beacon transmission process shown in Fig. 10. The node transmits beacons
only in a portion of time, and the portion, ωb, should be obtained first to determine
εb. For a node within ring r , ωb is expressed as

ωb(r) = Ttx(
T max

ibo
2 + T max

cbo pbusy(r)

2(1−pbusy(r))2 + Ttx + Tto

) , (69)

where pbusy(r) is the probability of sensing the channel busy, and is derived as
follows.

First, the region within the transmission range of location x, C(x), is divided into
small areas according to the polar coordinates centered at the sink. Thus, in the small
area (r : r + Θr, θ : θ + Θθ), denote pex(r) as the probability that there exists a
node in this area, and φb(r) as the probability that at any time a node in this area, if
it exists, is transmitting a beacon packet. Then pbusy(r) is given by

Fig. 10 The process of trans-
mitting beacon packets Initial

CS Transmission

Congestion

Timeout

pbusy (r)

1 − pbusy (r)

Backoff

Backoff
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pbusy(r) = 1 −
∏

y=(r ′,θ ′)∈C(x)

(
1 − pex(r

′)φb(r
′)
)
, (70)

where pex(r) is given by
pex(r) = ρΘrΘθr, (71)

where ρ is the node density. The probability that a node in this area is transmitting
a beacon packet, φb(r), is given by φb(r) = πb(r)ωb(r), where πb(r) is the total
probability that the node is in one of the beacon transmission states in the DTMC
{Xn}, and is given by adding the probabilities in the equilibrium state probability
vector, π(r), corresponding to the beacon transmission states. Therefore, according
to (70), for nodes located at x in ring r , the portion of time in which they transmit
beacon messages, ωb(r), depends on its values for other nodes in its neighborhood,
C(x). An iterative procedure is used for all r ’s to calculate ωb(r) at the end of
Sect. 5.5.

Then, εb(r) is obtained by

εb(r) =
(

Ili(1 − ωb(r)) + Itxωb(r)
)

Tu, (72)

where Ili and Itx is the measured current when the node is listening and transmitting,
respectively.

Finally, for this case study, we assume that the data processing time is far shorter
than a time unit Tu.

Since data processing is conducted when packets are generated or received, a
fixed amount of energy, εp, is added to the energy consumption in the first state of
each {Cn}.

5.5.2 Communication and Data Processing Energy Consumption

The other parameters in {Xn}, i.e., transition probability matrices and traffic rates
in {In} and {Cn}, are obtained according to the discussion in Sect 3.5. Then, the
equilibrium state probability vector, π(r), for the DTMC {Xn} is obtained for each
node x. It should be noted that while we solve ωb(r), it is assumed that ωb(r ′) for
all nodes y in range are known. This dependency is solved in an iterative manner.
First, initial guesses of ωb(r) for all rings are set to all 0’s in our evaluation. Then,
updated values of ωb(r) are calculated. The iteration terminates when the difference
between two consecutive iterations is negligible for each ring. Then, the energy
consumption during a beacon time unit, εb(r), is obtained according to (72). Finally,
the communication and data processing energy consumption distribution for any
single node is calculated according to (57).
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5.5.3 Total Energy Consumption and Lifetime Distribution

Finally, additional energy consumed by sensing activities are considered. The distri-
bution of total energy consumption of the node is then obtained.

With the energy consumption distribution for nodes in each ring known, the life-
time distribution for nodes in each ring, L(r, C), is directly obtained by (66). Then,
the distribution of the network lifetime, and its Normal distribution approximation
are obtained.

5.6 Experiments

We analyze the accuracy of the models by comparisons to testbed experiments and
simulations. Similar parameters are used for the experiments as before.

5.6.1 Validation of the Single-node Energy Analysis

We first analyze the energy consumption distribution in (57). The energy consumption
distributions during T = 60 s for two nodes with distances of 2.6 and 3.5 m to the sink
are measured. The cdf s of the measured energy consumption are shown in Fig. 11
with the analytical model results. It can be observed that the error of the analytical
cdf is less than 5 % compared to the empirical measurements for each node. It is
also observable that the cdf s for the node at r = 3.5 m exhibit a steep increase at
the energy level of 0.6 A·s. This is because there is a high probability that the node
consumes exactly 0.6 A·s energy, which corresponds to the case where nodes are
performing their normal duty cycle operations. The same network topology is also
simulated using TOSSIM, which also agree with the results.

Fig. 11 cdf of the energy
consumption during 1 min.
Testbed experiments, simula-
tion, and analytical results are
shown
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5.6.2 Validation of the Normal Distribution Approximation

The asymptotic Normal distribution approximation of energy consumption for large
T is validated using simulations [70]. Each topology is simulated for 10 days, and
100 different topologies are generated. In addition, additional energy consumptions
for sensing and data processing are added to simulate a fully operational WSN
application. The cdf of energy consumption for node at r = 27 m for T = 2 and
30 min are shown in Fig. 12a and b. The cdf of the asymptotic Normal distributions
in Theorem 3 are also shown.

It can be observed in Fig. 12a and b that as the duration increases, the energy
consumption distribution converges to the asymptotic Normal distribution.

Fig. 12 cdf of the energy
consumption during longer
periods. As the dura-
tion increases, the energy
consumption approaches the
asymptotic normal distrib-
ution (a) T = 2 min (b)T =
30 min
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6 Conclusion

In this chapter, the stochastic analysis of end-to-end communication delay, event
detection delay, energy consumption, and lifetime in WSNs is discussed. A Markov
process based on the birth-death problem is used to model the transmission process in
a multi-hop network. Accordingly, the effects of wireless channel errors and queuing
delays on communication delay, energy consumption, and lifetime can be captured.
The model is validated by extensive testbed experiments through several network
configurations and parameters. The results show that the MArkov-based approach
accurately models the distribution of the end-to-end delay and captures the hetero-
geneous effects of multi-hop WSNs.

An analytical model is also described to model the event detection in WSNs. In
the framework, a spatio-temporal fluid model is utilized to obtain the distribution of
the event detection delay. The average delay and soft delay bounds are then obtained.
To reduce the calculation complexity, a simplified model is also derived, motivated
by the fact that the queue build up in WSNs is negligible. Testbed experiments and
simulations are used to validate the accuracy of both approaches.

Finally, the probabilistic analysis of the energy consumption is provided. Energy
consumption for communication, data processing, and sensing are all captured by
the analytical framework. The energy consumption distribution for each node is
derived. It is shown that, when the time duration is long, the energy consump-
tion converges to a Normal distribution, and the mean and variance of such dis-
tribution are also provided. With the help of energy consumption distribution,
the lifetime distributions for each node and the entire network are derived. The
described model is validated by both testbed experiments and simulations. The
results show that the distribution of the energy consumption can be accurately
modeled.
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Chapter 3
Barrier Coverage: Foundations and Design
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Abstract The coverage of a wireless sensor network (WSN) characterizes the
quality of surveillance that the WSN can provide. A deep understanding of the
coverage is of great importance for the deployment, design, and planning of wire-
less sensor networks. Barrier coverage measures the capability of a wireless sensor
network to detect intruders that attempt to cross the deployed region. The goal is to
prevent intruders from sneaking through the network undetected. It is a critical issue
for many military and homeland security applications. In this chapter we provide
a comprehensive survey on the barrier coverage of wireless sensor networks. The
main topics include the critical conditions and construction of barrier coverage in
a 2-dimensional WSN, the barrier coverage under a line-based sensor deployment
scheme, the effect of sensor mobility on barrier coverage, and the barrier coverage
for a 3-dimensional underwater sensor network. For each topic we discuss the chal-
lenges, fundamental limits, and the solution for the construction of sensor barriers.
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1 Introduction

A wireless sensor network is typically used to monitor its deployed region. The
coverage of the network is a very important performance metric, characterizing the
quality of surveillance that the WSN can provide, for example, how well a region
of interest is monitored by sensors; how effective a sensor network is in detecting
intruders, etc. Without desired coverage, a sensor network cannot fulfill its mission.
A good coverage provides necessary basis for high-level functions such as intrusion
detection, target localization, classification, and tracking.

Coverage requirements varywith different application scenarios. In some applica-
tions, the goal is to efficiently deploy sensors so as to cover a set of designated target
points, and the problem is often referred to point coverage. Area coverage concerns
the fraction of area covered by one or more sensors in the deployed region. The goal
is to efficiently cover the whole area of the deployed region. Barrier coverage char-
acterizes the capability of a wireless sensor network to detect intruders that attempt
to cross the deployed region. The goal is to prevent intruders from sneaking through
the network undetected. Sweeping coverage represents the dynamic coverage of a
mobile sensor network as mobile sensors move around the field to cover initially
uncovered areas and detect intruders.

Barrier coverage of wireless sensor networks provides sensor barriers guarding
boundaries of critical infrastructures or assets, such as country borders, coastal lines,
and boundaries of battlefields. It is a critical issue for many military and homeland
security applications. Due to its unique requirement, barrier coverage exhibits differ-
ent characteristics and calls for different design considerations than other coverage
measures. A sensor barrier is formed by a connected sensor cluster across the entire
deployed region, acting as a “trip wire” to detect any crossing intruders. This is
illustrated in Fig. 1.

Fig. 1 Weak barrier
coverage guarantees to
detect intruders on congruent
crossing paths. Strong barrier
coverage guarantees to detect
intruders for arbitrary crossing
paths. A sensor barrier acts as
a “trip wire” to detect crossing
intruders
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Providing barrier coverage in a wireless sensor network faces a number of chal-
lenges. The barrier coverage of a wireless sensor network depends on many factors,
for example, sensor deployment strategies, sensing characteristics, sensor collabora-
tion scheme, nodemobility, etc. It is important to obtain a fundamental understanding
of how these factors affect the barrier coverage. Furthermore, the design of barrier
construction and sensor mobility schemes is a challenging task due to the sheer scale
of the network and the non-local nature of the barrier coverage problem.

In this chapter, we provide a survey of recent research activities and results in the
area of sensor barrier coverage. In particular, we will focus on the following research
thrusts:

• Critical conditions and barrier construction. In some applications sensors may
be manually deployed so barrier coverage can be achieved using a minimum num-
ber of sensors by aligning them in straight lines crossing the network region. In
other applications, sensors may have to be deployed randomly. It is important to
establish the theoretical foundation for the deployment, design, and performance
in connection to barrier coverage.
Wewill first present the critical condition for barrier coverage in a two-dimensional
rectangular region where sensors are placed uniformly at random [1]. In partic-
ular, the existence and strength of the barrier coverage depends on the width-to
-length ratio of the rectangle area. If the width of the rectangular area is asymp-
totically smaller than the logarithm of the length, the probability that there exist
crossing paths that are not covered by sensors approaches 1 and the network
has no barrier coverage. On the other hand, if the width is asymptotically larger
than the logarithm of the length, the barrier coverage starts to appear when the
node density reaches a certain value. There exist multiple disjoint sensor barriers
across the entire length of the region such that intruders cannot cross undetected.
The analytical characterizations of the barrier coverage can be used to determine
the number of barriers for a given network deployment, and the minimum number
of sensors needed to satisfy a given barrier coverage requirement.
Building upon the theoretical foundations established for the barrier coverage
problem, we will present an efficient distributed algorithm to construct disjoint
barriers in a long rectangle area [1]. Specifically, the original network is divided
into small segments interleaved by thin vertical strips. Each segment and vertical
strip independently computes the barriers in its own area. We construct horizontal
barriers in each segment connected by vertical barriers in neighboring vertical
strips. Continuous barrier coverage for the whole region is thus guaranteed. By
dividing the network into small segments and letting each segment conduct com-
munication and computation independently, our algorithm can significantly reduce
delay, communication overhead, and computation costs compared to the early cen-
tralized approach. Moreover, since each segment computes the barriers between
vertical barriers at the two ends, a larger number of local barriers will be obtained,
resulting in strengthened local barrier coverage for each segment.

• Sensor Deployment.The choice of sensor deployment strategies has direct impact
on barrier coverage. While manually placing sensors side by side along straight
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lines across the region yields the most efficient barrier coverage, it is infeasible to
be implemented in many application scenarios such as hostile environments and
hard-to-reach areas. Awidely used random sensor deploymentmodel assumes that
sensors are distributed in a vast region uniformly at random and is approximated
by a Poisson point process. For this model, it has been shown that certain condi-
tions have to be met and the deployment can be inefficient for achieving barrier
coverage [1]. Moreover, while the model may be appropriate for some deployment
strategies, the uniform distribution of sensors does not capture the sensor location
distribution under many other deployment strategies.
When deploying sensors to monitor boundaries of battlefields or country borders
with complex terrains, a viable approach is to drop sensors from aircrafts along
predetermined routes [2, 3]. When dispersed from an aircraft, sensors will be
scattered and centered around the deployed line with some random offsets due to
mechanical inaccuracy, wind, terrain characteristics, and other factors. The line-
based sensor deployment strategy is of particular interest to military and homeland
security applications.
We will first present the assumptions and the corresponding analytical results for
the probability of barrier coverage under the line-based sensor deployment strat-
egy. We will then validate the analysis results via simulations, and compare the
barrier coverage under line-based sensor deployment strategy with those under
two-dimensional and one-dimensional uniformly random sensor deployment
models [4].

• Sensor Mobility. In a sensor network, barrier gaps may occur at deployment if
sensors are deployed randomly, or in an already formed barrier if some sensors
used to form the barrier run out of power or start malfunctioning, resulting in
a degraded barrier coverage. Recent technology advances have made it possible
to deploy mobile sensors in practical applications [5, 6]. Sensor mobility can be
exploited to improve the barrier coverage in a wireless sensor network. After the
initial deployment, mobile sensors can move to connect with other sensors so as to
form new barriers. However, simply moving sensors to form a large local cluster
does not necessarily yield a global barrier. This global nature of barrier coverage
makes it a challenging task to devise effective sensor mobility schemes. Moreover,
a good sensor mobility scheme should efficiently improve barrier coverage under
the constraints of the number of mobile sensors and their moving range.
We will first explore the fundamental limits of sensor mobility on barrier cover-
age and present a sensor mobility scheme that constructs the maximum number
of barriers with minimum sensor moving distance [7]. We will then present an
efficient algorithm to compute the existence of barrier coverage with sensors of
limitedmobility, and examine the effects of the number of mobile sensors and their
moving ranges on the barrier coverage improvement. Finally, we will present a
two-phase algorithm that first find barrier gaps and then relocate mobile sensors to
fill the gaps and formnewbarriers,while at the same time, the energy consumptions
among the mobile sensors are balanced to prolong the network lifetime [8].

• Underwater Sensor Barriers. Anti-submarine warfare(ASW) is a critical chal-
lenge for maintaining a fleet presence in hostile areas. Technology advancement
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has allowed submarines to evade standard sonar detection. A viable alternative is
to place magnetic or acoustic sensors in close proximity to possible underwater
pathways of submarines. This approach may require deploying large-scale under-
water sensor networks to form 3-dimensional barriers.
We will present new results on sensor barriers for 3-dimensional sensor net-
works [9]. We will first show that when sensor locations follow a Poisson Point
Process then sensor barriers in a large 3-dimensional fixed emplacement sensor
field are unlikely to exist. We use the notion of 3-dimensional stealth distance to
measure how far a submarine can travel in a sensor networkwithout being detected.
We will then devise an energy-conserving scheme to construct 3-dimensional bar-
riers using mobile sensors. We focus on developing an energy efficient matching
of mobile sensors to cover grid points using distributed auction algorithms. Specif-
ically, we try to minimize the maximum travel distance between any sensor and
its assigned grid point. Through simulation we show in comparison to the optimal
solution, the distributed auction-based approach offers reduced computation time
and similar maximum travel distance. This provides a promising new approach to
constructing barriers in 3-dimensional sensor networks.

The remainder of this chapter is organized as follows. Section2 provides a review
of the research on barrier coverage of wireless sensor networks. In Sect. 3, we present
the critical conditions for the barrier coverage and algorithms for efficient barrier con-
struction. Section4 presents the barrier coverage under line-based sensor deployment
strategy. Section5 investigates the fundamental limits and efficient mobility schemes
of exploiting sensor mobility to improve barrier coverage. Section6 presents the bar-
rier coverage construction in underwater sensor networks. Finally, Sect. 7 summaries
this chapter.

2 Related Work

The coverage, deployment, and target tracking problems in wireless sensor networks
have been extensively studied in the past decade, e.g., [10–16], to name just a few.
The joint coverage and connectivity has also been investigated recently [17–19].

The notion of barrier coverage was first introduced in the context of robotics
sensors [20]. The goal of barrier coverage is to detect intruders that attempt to cross
from one side of a region to the opposite side. A number of different barrier coverage
measures and the related issues have been studied.

In [21], Liu and Towsley studied the barrier coverage of two-dimensional plane
and two-dimensional strip sensor networks using percolation theory results. The
barrier coverage of a two-dimensional plane network is related to the existence of a
giant sensor cluster that percolates the network. For a two-dimensional trip network
of finite width, it is proved that there always exist crossing paths along which an
intruder can cross the strip undetected. Furthermore, the probability that an intruder
is detected when crossing a strip is characterized. In [1], the critical conditions of the
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existence and strength of the barrier coverage are established. Moreover, efficient
algorithm has been devised to construct sensor barriers with low communication
and computation overhead. Most of the studies on barrier coverage assume that the
sensor locations follow a Poisson point process where sensors are distributed in a
large area uniformly at random. Saipulla et al. considered an application scenario
where sensors are dropped along certain lines with random offsets, and established
analytical results for the barrier coverage probability in [4].

In a mobile sensor network, sensor mobility can be exploited for autonomous bar-
rier coverage construction and improvement. Saipulla et al. studied how to relocate
sensors with limitedmobility to improve barrier coverage after the initial deployment
[7]. They derived the fundamental limits of sensor mobility on barrier coverage, and
devised algorithms that can check the existence of barrier coverage under sensor
mobility and construct the maximum number of barriers with minimum sensor mov-
ing distance. In [22], Shen et al. proposed a virtual force-based heuristic algorithm
to relocate mobile sensors to form barriers. To address the deployment cost problem,
He et al. designed a periodic monitoring scheduling algorithm in which each point
along the barrier line is monitored periodically by mobile sensors [23], and proposed
a coordinated sensor patrolling algorithm to further improve the barrier coverage. In
[24], Kong et al. studied the mobile barrier coverage surrounding dynamic objects.

In [25], Kumar et al. introduced a notion of weak barrier coverage and derived the
critical conditions to achieveweak barrier coverage in a randomly deployment sensor
network. While strong barrier coverage guarantees the detection of intruders no
matter what crossing paths they take, the weak barrier coverage guarantees to detect
intruders moving along congruent paths. Figure1 illustrates the difference between
the two different barrier coverage measures. In the top figure, the network has weak
barrier coverage for all orthogonal crossing paths (dashed paths). However, there is an
uncovered path (solid path) through the region. The bottom figure shows an example
of strong barrier coverage where no intruders can cross the region undetected, no
matter how they choose their crossing paths. The barrier is highlighted using shaded
sensing areas. In the remainder of the chapter we will focus on the strong barrier
coverage and refer to it as barrier coverage for conciseness.

Many other aspects of barrier coverage have also been investigated. In [26, 27],
Yang and Qiao studied the effects of sensor collaboration and multi-round deploy-
ment on barrier coverage. Barrier coverage of camera-based sensor network have
been studied in [28, 29]. In [30], Chen et al. introduced the notion of local barrier
coverage and devised a localized algorithm that guarantees the detection of intruders
whose trajectory is confined to a slice of the belt region of deployment. It does not
protect the network against intruders that can move beyond the range of the thin
slices. In [31], the measurement and the quality of barrier coverage in wireless sen-
sor networks are investigated. The effect of directional sensors on barrier coverage
is considered in [32], where an integer linear programming formulation is used to
provide optimal solutions, and centralized algorithms and a distributed algorithm are
proposed to solve the problem.
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3 Critical Conditions and Barrier Construction

3.1 Network Model

Sensors are assumed to be deployed in a two-dimensional strip area of size
A2-dim strip = [0, n] × [0, w(n)]. A two-dimensional rectangular area is also
referred to as a strip. The width w(n) can be adjusted to obtain different width
to length ratios. More realistic network scenarios may be approximated by a combi-
nation of different strip shapes.We consider the static sensor network scenario where
sensors do not move after the initial deployment. We assume that sensor nodes are
randomly distributed according to a Poisson point process of density ψ. Thus, the
expected number of nodes in the network is ψnw(n).

The widely used Boolean sensing model is adopted where each sensor has a
certain sensing range, r.A sensor can only sense the environment and detect intruders
within its sensing area. A location is said to be covered by a sensor if it lies within
the sensor’s sensing area. The space is thus partitioned into two regions, the covered
region, which is the region covered by at least one sensor, and the vacant region,
which is the complement of the covered region. In practice, sensing areas are never
perfect disks. However, the disk model can provide lower and upper bounds for
realistic irregular sensing areas [18].

Two sensors at locations Xi and Xj are connected if the sensing areas of the two
sensors overlap, or equivalently, if |Xi − X j | ≤ 2r , where |Xi − Xj | is the distance
between the two sensors. A sensor barrier is defined to be a connected component
of sensors that intersect both of the left and right boundaries of the strip. An intruder
cannot go through a sensor barrier without being detected, since it will need to go
through the sensing area of sensors and thus will be detected.

A crossing path is a path that connects one side of the region to the opposite
side, where the ingress point and the egress point reside on two opposite sides of the
region. For a two-dimensional strip, we assume that the intruders attempt to cross
the width of the strip.

The strength of the barrier coverage of a sensor network can be measured by the
number of times that an intruder is detected when traversing along a crossing path. A
path is said to be k-covered if it intercepts at least k distinct sensors. An event is said
to occur with high probability (w.h.p.) if its probability approaches 1 as n → ∞.

Definition 1 A sensor network is said to be k-barrier covered if

P(any crossing path is k-covered) = 1w.h.p. (1)
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3.2 Critical Conditions

The critical conditions for the existence and strength of barrier coverage is presented
as follows:

Theorem 1 Consider a sensor network deployed on a two-dimensional rectangular
area A2-dim strip = [0, n] × [0, w(n)], where sensors are distributed according to
a Poisson point process with density ψ.

• If w(n) = λ(log n), the network is barrier covered w.h.p. when the sensor density
reaches a certain value. There exists a positive constant σ such that w.h.p. there
exist σw(n) disjoint horizontal sensor barriers crossing the strip.

• If w(n) = o(log n), the network has no barrier coverage w.h.p. regardless what
the sensor density is in the underlying sensor network. That is, w.h.p. there exist
crossing paths that an intruder can cross the strip without being detected.

It follows from Theorem 1 that the existence and strength of the barrier coverage
depends on the width-to-length ratio of the strip region. The critical condition for
barrier coverage to exist is when the width of the strip becomes asymptotically larger
than the logarithm of the length, i.e., w(n) = λ(log n). The number of horizontally
connected sensor clusters (barriers) is proportional to the width of the strip by a
constant factor. On the other hand, when the width is asymptotically smaller than the
logarithm of the width, there is no barrier coverage, i.e., there exist crossing paths
that an intruder can cross the strip without being detected.

If w(n) = λ(log n), the network area can be divided into horizontal rectangles
Rn of size n × ρr log n

r , for some ρ > 0. It will become clear later from the proof
of Theorem 1 that there exist σρ log n

r disjoint barriers in each rectangle and hence

σw(n)/r disjoint barriers in the whole strip, where σ = 1− 2(ρ log 6+ 2)
ψr2

. This result
can be used to answer a number of sensor deployment questions:

• How many barriers are present in the underlying sensor network?
• How does the number of barriers grow if more sensors can be added?
• What is the minimum number of sensors needed to achieve a given strong barrier
coverage?

Proof of Theorem 1 We first convert the barrier coverage problem to a bond perco-
lation model and use the results presented in [33] to complete the proof. Barrier cov-
erage of a strip sensor network is directly related to the number of disjoint connected
sensor clusters that cross the width of the strip horizontally. Two sensors are con-
nected if their sensing areas overlap. Each of such sensor clusters acts as “trip wire”
that can detect any crossing intruders. As in [33], we construct a bond percolation
model to obtain the number of disjoint sensor clusters crossing the length of the strip.

We divide the area into squares of equal size, where the length of each side
d = r/

∗
2, as depicted in Fig. 2. By adjusting sensor density ψ, we can adjust the

probability that a square contains at least one sensor:
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Fig. 2 Construction of the bond percolation model

p = P(a square contains at least one sensor)

= 1 − e−ψd2 = 1 − e−c2 ,

where c2 = ψd2 = ψr2/2.
A square is said to be open if it is occupied by at least one sensor, and closed

otherwise. Since the side length of each square is r/
∗
2, the whole square will be

covered by a sensor if it is open. Obviously, if two adjacent squares are both occupied
by sensors, the sensing areas of the sensor would overlap and no intruder can cross
between the two squares without being detected.

The above construction can now be mapped to a discrete bond percolation model
as follows. Horizontal edges are added across half of the squares while vertical edges
are added across others, as shown in the right-hand side of Fig. 2. This construction
results in a grid of horizontal and vertical edges. A path consists of a sequence of
consecutive edges. A path is said to be open or closed if it contains only open or
closed edges respectively. Since the squares along an open path are all completely
covered by sensor, a crossing open path from left to right of the strip acts as a barrier
(or trip wire) that can detect any crossing intruders. The strength of the strong barrier
coverage of a strip sensor network thus depends on the number of disjoint open paths.

If w(n) = λ(log n), we can divide the network area into horizontal rectangles Rn

of size n × ρr log n
r , for some ρ > 0. There are w(n)

ρr log n
r
such rectangles. Let m = n

r ,

each rectangle Rn is of lattice size m × ρ logm in the bond percolation model, as
illustrated in Fig. 3. The following lemma gives the number of disjoint open paths
that cross each rectangle. The proof is similar to the proof of Theorem 3 in [33],
which will be omitted here.

Lemma 1 For any ρ > 0, if ψ > 2(log 6 + 2/ρ)/r2, there exists a strictly positive
constant σ(c, ρ) such that w.h.p. there exist σρ logm = σρ log n

r disjoint sensor
clusters that cross each Rectangle Rn from left to right.

For each rectangle Rn of width ρr log n
r , there exist σρ log n

r disjoint sensor
clusters that cross the rectangle. So the total number of such disjoint sensor clusters
is σw(n)/r , which is linearly proportional to the width of the strip.
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Fig. 3 The strip network is divided into w(n)

ρr log n
r
horizontal rectangles of lattice size m × ρ logm

where m = n
r . A left to right crossing of Rectangle Rn is shown

If w(n) = o(log n), a simple adaptation of Theorem 11.55 in [34], page 304,
establishes that the probability that there is a path connecting the left and right sides
of the strip is zero as n → ∞, and therefore excludes the existence of the sensor
clusters that cross the strip. There exist crossing paths that do not intercept any sensor
such that intruders can cross the strip without being detected. �

The above barrier coverage results are based on the extended network model
where node density is kept constant while the network size increases to infinity. In
the previous study of critical condition for weak barrier coverage [25], the results are
based on a network model of dimension s × (1/s) where the area of the network is
kept constant while s → ∞. To better link our results to those of [25], our network
model can be rescaled to yield the critical conditions for barrier coverage of the
s × 1/s network model. The result is presented in the following corollary.

Corollary 1 Consider a two-dimensional strip sensor network of size s ×1/s where
sensors are randomly distributed according to a Poisson point process of density ψ

and each sensor covers a disk of radius r . There exists θ > 0, if ψ = θs2 log2 s and
the radius r = 1/(s log s), the strip is barrier covered as s → ∞. The number of
barriers is of order log s.

Proof Based on Lemma 1, denoting m = n/r , if ψ > 2(log 6 + 2/ρ)/r2 for some
ρ > 0, there exist a total number of σρ logm barriers in a rectangle region Rn of
size n × ρr logm.

To establish the barrier coverage result in the network model Rs of size s × 1/s,
we let the length to width ratios of the rectangle Rn and Rs to be asymptotically the
same, i.e., n/ log n = s2. Therefore, the two network models have the same length
to width radio by transformation s = ∗

n/ log n, or conversely, n = s2 log s.
Now we need to rescale the sensor density and sensing radius in Rn to Rs . In Rn ,

the rectangle has length n and constant sensor density and radius. In Rs , the length
is s = ∗

n/ log n. Both the length and width of rectangle Rn are scaled by a factor
of s/n = s/(s2 log s) = 1/(s log s) in Rs . Therefore, the sensor density should be
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scaled by a factor of s2 log2 s and the sensing radius should be rescaled by a factor
of 1/(s log s). The number of barriers is on the order of log s. �

3.3 Barrier Construction

Typical wireless sensors are powered by batteries and thus are energy stringent. It
is therefore important to schedule sensors so that at any given moment there are
just enough active sensors to cover the barrier. Other sensors will be set to the sleep
mode to save energy for future use. This way, the operation lifetime of the network
can be prolonged. Different from the sensor scheduling for area coverage, scheduling
sensors for barrier coverage requires that sensors on the same barrier be synchronized
towake up or to sleep simultaneously. Otherwise the barrier will contain holes, which
defeats the objective of the barrier coverage. Hence, it is important to find sets of
sensors so that each of which forms a disjoint barrier. These sets of sensors can then
take turn to form a barrier. Moreover, we want to find a scheduling to provide barrier
coverage with low communication overhead and computation cost.

In [25], the authors show that whether a sensor network is strongly k-barrier
covered cannot be determined using local algorithms. They convert the k-barrier
coverage testing problem to the k-connectivity testing problem and refer to [35]
for the best known global algorithms, which incur a time complexity of O(k2|V |)
for a graph of |V | nodes. To use the algorithm, each sensor node must broadcast
its neighbor information to the whole network to construct the connectivity graph
of the network. For a connected graph G(V, E) of a sensor network, the message
complexity (communication overhead) is O(|V ||E |) if the location of each node is
broadcast to all of the other nodes, and the end-to-end delay of each message is
proportional to the length of the strip. The communication overhead and delay can
be formidably high for a large sensor network.

To reduce delay, communication overhead, and computation costs for finding
disjoint barriers in a large sensor network, we cover the region to be protected by
strips and divides each strip into small segments interleaved by thin vertical strips, as
illustrated in Fig. 4. Each segment computes “horizontal” barriers and each vertical
strip computes both “horizontal” and “vertical barrier” (of course these barriers do
not have to be on straight lines). Horizontal barriers in strip segments are connected
by vertical barriers in vertical strips to provide continuous barrier coverage across
the whole network.

We first present an algorithm to find all disjoint barriers in a strip segment. Each
node broadcasts its location and sensing range to all the sensor nodes in the segment.
Alternately, each segment can select a node as the delegate for the entire segment
and each node sends its location and sensing range to the delegate node. The location
of a sensor node can be obtained by on-board GPS device or computed using a node
localization scheme. After receiving the location information from other nodes in the
segment, each node (or the delegate node) constructs a flow networkG(V ∼{s, d}, E)

by making each sensor node a vertex in V with a vertex capacity of 1. For any two
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Fig. 4 The original strip is divided into small segments interleaved by thin vertical strips. Each
vertical strip finds its horizontal and vertical barriers. Each segment finds the local horizontal
barriers intersecting the vertical barriers on both ends. These local horizontal barriers are connected
by vertical barriers so continuous barrier coverage across the whole strip is ensured. Each dot
represents the location of a sensor. For conciseness, sensing areas of sensors are not shown in this
figure

Fig. 5 Construction of flow networks. Sensors whose sensing areas intersect with the left and
right boundaries are connected to s and d, respectively. Each edge and vertex is of capacity 1. The
maximum flow from s to d gives the number of disjoint barriers. Sensors on the same flow path
form a barrier

vertices u and v in V , if their sensing areas overlap, connect them with an edge
capacity of 1. We add two nodes s and d. For each node u ∈ V , if its sensing area
intersects with the left boundary of the segment, connect s to u with an edge capacity
of 1; if its sensing area intersects with the right boundary of the segment, connect u to
d with an edge capacity of 1. Figure5 illustrates the construction of a flow network.
The vertex capacity is used to ensure that each sensor node can only be used at most
once in a barrier when finding a maximum flow from s to d. This flow network can
be transformed to a traditional flow network by replacing each node u ∈ V with
two nodes u≥, u≥≥ and between them a new edge (u≥, u≥≥) of capacity 1, where u≥ has
all the incoming edges of u, and u≥≥ has all the outgoing edges of u. We then use
a standard algorithm (e.g., Edmond-Karp or the relabel-to-front algorithms [36]) to
find a maximum flow from s to d and all the paths used in the maximum flow. Based
on the above construction, nodes of the same path form a barrier that connects the
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left and right boundaries of the segment, and the maximum flow is the number of
available disjoint sensor barriers.

The complexity of the relabel-to-front algorithm is O(|V |3). Since the number of
sensor nodes deployed in a strip segment is much smaller than the number of sensor
nodes deployed in the entire sensor field, the computational complexity would be
much more manageable by sensor nodes. This algorithm can be easily modified
to find all vertical barriers in a vertical strip by connecting s to all sensors whose
sensing areas intersect with the top boundary and connecting d to all sensors whose
sensing areas intersect with the bottom boundary. We refer to this algorithm as
ComputeBarriers.

Wenowdescribe the divide-and-conquer approach to constructingdisjoint barriers
in a large strip sensor network.

Divide-and-Conquer Algorithm to Construct Barrier Coverage

1. Divide the given (curly) strip into small segments interleaved by thin vertical
strips. The length of each vertical strip is w(n), the width of the original strip.
The width of each vertical strip is chosen to be of the order logw(n) such that
there exist Θ(logw(n)) disjoint barriers crossing the vertical strip according to
Theorem 1.

2. In each vertical strip, sensor nodes use ComputeBarriers to find all of the dis-
joint vertical barriers and the horizontal barriers that connect the vertical barriers
together. This computation is carried out in each vertical strip independently.

3. For each strip segment, use ComputeBarriers to find disjoint horizontal barriers
intersecting the vertical barriers on both ends of the segment. This computation
is carried out in each strip segment independently in parallel.

In the above barrier construction process, each segment and vertical strip inde-
pendently computes the horizontal barriers. These horizontal barriers are connected
by vertical barriers in the neighboring vertical strips to provide global barrier cover-
age. This ensures that there is no gap between the horizontal barriers; so continuous
barrier coverage across the whole strip is provided.

The ComputeBarriers algorithm finds all barriers in each strip segment and each
vertical strip. If only k disjoint barriers are required, we can activate k horizontal
barriers in each segment and in each vertical strip and rotate the active-duty barriers
among all available barriers. Also, the vertical strips can be moved in a sliding
window fashion to avoid the overuse of the same vertical barriers. The barrier rotation
process and sliding vertical barrier scheme will balance the power consumption
among sensors and hence extend the network lifetime.

Compared to the centralized approach that computes barriers for the whole strip,
the above divide-and-conquer approach has the following advantages:

• Lower communication overhead and computation costs. By dividing the large
network area into small segments, the message delay, communication overhead,
and computation cost can be significantly reduced. The location and sensing area
information of a sensor node only need to be broadcast within the strip segment
(or within the thin vertical strip) where the node is located, resulting in a smaller
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delay and communication overhead compared to the whole network broadcasting.
For a connected graph G(V, E), the communication overhead (for location infor-
mation broadcast) and computation complexity of the ComputeBarriers algorithm
is O(|V ||E |), and O(|V |3), respectively. If the original strip is divided into ns seg-
ments interleaved by thin vertical strips, each segment contains less than |V |/ns

nodes and O(|V |/ns) links. The communication overhead is O(|V |2/n2
s ), a n2

s
factor reduction from the centralized approach. The computation complexity is
O(|V |3/n3

s ), a n3
s factor reduction from the centralized approach.

• Improved robustness of the barrier coverage. In a centralized approach which con-
structs global horizontal barriers for the whole strip, a horizontal sensor barrier
could be broken if some nodes on the barrier fail, or become compromised or
displaced by adversaries. In our divide-and-conquer approach, the original strip
is divided into segments by interleaving vertical barriers. In case of node failure,
these vertical barriers act as “firewalls” that prevent intruders from moving from
its current segment to adjacent segments. This limits the barrier damages within
the local segment and hence improving the robustness of the barrier coverage. A
scenario of improved robustness with vertical barriers is illustrated in Fig. 6. The
overhead of this approach is to compute the vertical barriers and use those nodes
during operation.

• Strengthened local barrier coverage. By dividing the original strip into small
segments and computing barriers in each segment, a larger number of local
horizontal barriers will be found in each segment than for the whole strip.
These local barriers are not necessarily part of the global barriers for the whole
strip, whose number remains unchanged. Since adjacent segments are blocked
by interleaving vertical barriers, a larger number of local barriers results in a
strengthened local barrier coverage for each segment. Simulation results con-
firms that there is significant improvement of local barrier coverage in each
segment over global barrier coverage.

Fig. 6 Improved robustness
for barrier coverage. Vertical
barriers serve as “firewalls”
that prevent intruders from
moving from one segment to
adjacent segments, resulting in
improved robustness in case of
barrier failures. Shaded nodes
indicate activated sensors. Red
(lightly shaded) nodes indicate
failed sensors. Non-shaded
nodes indicate non-activated
sensors
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3.4 Simulation Results

In the simulation, sensor nodes are distributed into the network of size l×w according
to a two-dimensional Poisson point process of densityψ. Themeannumber of nodes is
m = ψlw. Each sensor has a sensing range of r . By varying the network parameters,
ψ, l, w, r , we can obtain a wide range of network scenarios. In each simulation,
ComputeBarriers algorithm is used to find the number of disjoint barriers in the
network. For every network scenario, the simulation is repeated 500 times to compute
the mean values. The corresponding standard deviations are relatively small and not
plotted.

In the experiments, we set the length of the region to be l = 10,000m and the
sensor’s sensing range to be r = 10m. The width of the strip is varied from 50 to
1,000m. This is repeated for different node densities ψ = 0.005, 0.0075, and 0.01
nodes per unit area.

Figure7 shows the number of disjoint horizontal barriers as a function of the strip
width. It can be observed that for each of the node densities, there exists a critical
width. The horizontal barriers only start to emerge when the strip width is larger
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Fig. 7 Critical conditions for barrier coverage. Horizontal barriers start to appear only when the
width is large enough. The number of barriers increase linearly with the width. For a given width,
the network is barrier covered when the density is large enough
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than the critical value. The larger the node density, the smaller the critical width
beyond which horizontal barriers start to appear. As the width increases, the number
of disjoint horizontal barriers at each node density increases linearly. Also, it can
also be observed that for a given width, the network is barrier covered only when
the density is large enough. These observations are consistent with the results in
Theorem 1.

In the divide-and-conquer barrier construction algorithm, the whole strip region
is divided into small segments interleaved by thin vertical strips. We first compute
the vertical barriers in the vertical strips and then compute the horizontal barriers in
each segment connected by the vertical barriers in the neighboring vertical strips.
Compared to the original strip region, each segment has a larger width-to-length ratio
with the same node density. Based on the results in Sect. 3.2, a larger number of local
barriers will be found in each segment than the global barriers for the original strip.
This will result in a strengthened barrier coverage for each segment.

In the simulation, we consider network scenarios of size 10,000m×250m and
node density ψ = 0.005, 0.0075, and 0.01. The original strip is divided into ten
segments interleaved by vertical strips. The length of each vertical strip is varied
from 20 to 350m. The length of each segment is set accordingly. We measure the
improvement of barrier strength in each segment over the centralized approach by
the barrier improvement ratio, defined to be the number of horizontal barriers in
each segment divided by the number of global barriers for the whole strip.

Figure8 shows how barrier improvement ratio changes with the width of the
vertical strip. It can be observed that the number of barriers immediately increases
as soon as the vertical strips are activated in our divide-and-conquer approach. The
barrier improvement ratio continues to increase as the width of the thin vertical strip
increases, and quickly levels off after some point. This is because as the width of
the vertical strips increases, there will be more vertical barriers in each vertical strip,
and thus a larger number of local barriers in each segment will be connected by these
vertical barriers. However, after a certain point, most of the local barriers are already
connected by vertical barriers. As a result, the barrier improvement ratio levels off.
For node density ψ = 0.01, the average number of global barriers for the whole
strip in the centralized approach is 9.6. In our divide-and-conquer approach, with
a vertical strip width of 100m, the average number of horizontal barriers in each
segment reaches 42.7, a more than four-fold increase over the centralized approach.
The barrier improvement ratio is even more significant for smaller node densities,
for example, the improvement ratio is close to 20 for node density ψ = 0.005. This
is because there are fewer global barriers for smaller node densities, allowing more
room for improvement in each segment.

Compared to the centralized approach, the overhead of the divide-and-conquer
approach is the employment of vertical barriers. Figure9 shows the average number of
vertical barriers for the above network scenarios: network of size 10,000m×250mat
node density ψ = 0.005, 0.0075, and 0.01. The number of vertical barriers increases
linearly with the width of each vertical strip. But we do not need to make the strip
width too large and employ a large number of vertical barriers. Based on the obser-
vations for Fig. 8, the barrier improvement ratio quickly levels off after the width of
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Fig. 8 Barrier improvement ratio. Each segment has more local barriers than the global barriers for
the whole strip region. These local barriers in each segment are connected by neighboring vertical
barriers to provide global barrier coverage

each vertical strip reaches a certain point. This provides a guideline to choose the
width of the vertical strips. The proper width for a given network scenario can be
obtained by simulation before the application of our algorithm. For example, the bar-
rier improvement ratio saturates after the width of the vertical strips reaches 150m,
at which point the number of vertical barriers is less than 10 for all three densities.

4 Lined-Based Sensor Deployment

The choice of sensor deployment strategies has direct impact on barrier coverage.
While manually placing sensors side by side along straight lines across the region
yields the most efficient barrier coverage, it is infeasible to be implemented in many
application scenarios such as hostile environments and hard-to-reach areas. Awidely
used random sensor deployment model assumes that sensors are distributed in a vast
region uniformly at random and is approximated by a Poisson point process. For this
model, it has been shown that certain conditions have to be met and the deployment
can be inefficient for achieving barrier coverage [1]. Moreover, while the model
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Fig. 9 Number of vertical barriers in each vertical strip

may be appropriate for some deployment strategies, the uniform distribution of sen-
sors does not capture the sensor location distribution under many other deployment
strategies.

When deploying sensors to monitor boundaries of battlefields or country borders
with complex terrains, a viable approach is to drop a large number of sensors from
aircraft along predetermined routes [2, 3]. When dispersed from an aircraft, sensors
will be scattered and centered around the deployed line with some random offsets
because of mechanical inaccuracy, wind, terrain characteristics, and other environ-
mental factors. The line-based sensor deployment strategy is of particular interest
to military and homeland security applications. We assume that the random offset
of each sensor from its target landing point follows a normal distribution. For con-
venience, we refer to this type of distribution as line-based normal random offset
distribution, or LNRO for short hereafter.

In this section we first present the assumptions and the corresponding analytical
results for the probability of barrier coverage under LNRO. We then validate the
analysis results via simulations, and compare the barrier coverage under LNROwith
those under two-dimensional and one-dimensional Poisson point process models.
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4.1 Line-Based Sensor Deployment Model

The sensors are deployed in a two-dimensional rectangular area of length l and width
h (see Fig. 10). Each node is assumed to know its own location (x, y), which may
be achieved by using an on-board GPS unit or other localization mechanisms.

We assume sensors are to be evenly deployed along the horizontal line y = 0. Let
n be the number of sensors to be distributed along a given line. Let π = l/(n + 1).
The horizontal coordinates of the i th target landing point is given by

xi = il

n + 1
= iπ, 1 ≤ i ≤ n.

Because of mechanical inaccuracy, wind, terrain constraints, and other environ-
mental factors, the actual landing point of each sensor will deviate from its target by
a random offset. Denote by βx

i and β
y
i the offset of sensor si in the horizontal and

vertical directions, respectively. On the j th dropping line, the actual landing point
of sensor si is thus (xi + βx

i , β
y
i ).

To simplify the analysis and provide insight, we assume that the random offsets
are independently and identically distributed (i.i.d.) with a normal distribution of
zero mean and variance η 2, i.e.,

βx
i , β

y
i ≈ N (0, η 2).

Note that the following analysis can be easily generalized to the case where βx
i and

β
y
i does not share the same standard deviation η .

Fig. 10 Sensors are deployed
along a straight line in a
rectangular area of l × h
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4.2 Assumptions and Results

For the sake of obtaining analytical results to provide insights, the following assump-
tions are made:

1. Nodes are deployed so that the distance between adjacent targeted positions is
within the sensing range of the two sensors. This means that ω > ρπ , for some
factor ρ > 1 that will be specified later. Intuitively, we want to avoid the case
where ω is too close to l/(n + 1), for otherwise only small perturbation could
create breaches in the barrier. We expect this assumption to be reasonable for
many application scenarios as typical barrier coverage applications use sensors
with large sensing ranges. For example, forMSP410CAwireless security system
by XBow [37], the magnetic field sensors and infrared sensors have a sensing
range of about 60 and 80 feet, respectively.

2. η √ π . This assumption means that we still exert some control over the position
of the nodes. The perturbation of the node position stays relatively small with
respect to the gap between two nodes. We will see in the evaluation that our
analysis stays valid with a standard deviation η equal to 20% of the targeted gap
between two sensors π .

Based on the above assumptions, the main results are given as follows:

Theorem 2 When assumption (1) and (2) are satisfied, the probability that bar-
rier coverage exists for a single line covered by n sensors with coordinates (iπ +
N (0, η 2), N (0, η 2)), 1 ≤ i ≤ n, and sensing range r = ω/2 is given by

P(BarrierCoverage) �
[
1 − Q1

(
π∗
2η

,
ω∗
2η

)](n+1)

, (2)

where

Q1(s, t) = e− s2+t2
2

∞∑
k=0

( s

t

)k
Ik(st) (3)

and Ik is the kth order modified Bessel function of the first kind.

The proof of the theorem is provided in the appendix. In the next subsection it will
be shown that, through a large number of numerical experiments, the lower bound
given in inequality (2) is tight.

4.3 Probability of Barrier Coverage: Analysis Versus Simulation

Figure11 plots the probability of barrier coverage of LNRO with standard deviation
η for the random offset. In the simulation, the length l is varied from 1,000 to
1,800m.Nine nodes of sensing range r = 100mare deployed along the line. Thus the
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Fig. 11 Probability of barrier coverage for various area lengths with 9 nodes and ω = 200. From
left to right, η = 30, 25, 20, 15, 10

connectivity radius is ω = 200m, and the distance between adjacent target positions,
π , varies between 100 and 180m, satisfying Assumption (1). We vary the standard
deviation η between 10 and 30, which meets the requirement of Assumption (2).
The curves from left to right correspond to the reversed order of the chosen standard
deviations, i.e., η = 30, 25, 20, 15, and 10.

It can be observed that there is a goodmatch between the simulation and analytical
results. The match improves as the variance decreases. One can also verify that the
analysis is indeed a lower bound as long as Assumption (1) is satisfied, i.e., as long as
ω stays larger than ρπ , where ρ is in the range of 1.05 for η = 10–1.33 for η = 30.

The good match between the analysis and the simulation is insensitive to the
number of nodes, as can be observed from Fig. 12, where the number of nodes has
been increased to 99, and ω reduced to 40m. The corresponding π varies between 11
and 30. Recall that Assumption (2) requires that the standard deviation be a relatively
small fraction of π. For the leftmost pair of curves in Fig. 12, π varies between 11
and 22, and the standard deviation is η = 8. This breaks Assumption (2), and
indeed, the match is poor between the analysis and the simulation. However, when
we decrease η to 5 and 3, simulation and analysis starts to track each other very well
again.
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4.4 Comparison with Two-Dimensional Poisson Model

Most previous studies on barrier coverage consider the scenario where nodes are
distributed according to a Poisson process or a uniform distribution in the area to be
covered. We now compare our results with the barrier coverage probability under a
Poisson process.

In the case of uniform distribution, each sensor has the equal likelihood to be
located at any point in the rectangle. Thus, the sensors are spread out rather evenly
in the area. It has been proved in [1] that in the asymptotic case, barriers exist if and
only if the width of the rectangle is larger than the logarithm of the length and at the
same time the sensor density ψ is greater than some critical value.

In the line-based deployment strategy with normally distributed random offsets,
sensors are concentrated along the deployment line. The node density in the vertical
direction forms a “bell” curve whose shape is determined by the variance of the
normal distribution. Figure13 illustrates the deployment layouts of the uniform dis-
tribution and line-based normal distribution, and the corresponding sensor densities
in the vertical direction.

Compared to the uniform distribution, sensors are concentrated along deployment
lines in the line-based deployment strategy, providing a better chance for barriers to
be formed. To compare the barrier coverage of LNRO with that of the Poisson point
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responding sensor densities along y-axis are plotted alongsidewith the sensor deployment scenarios.
a Uniform distribution, ψ = 0.02; b LNRO, η = 10

process, we note that 99.7% of the sensors fall within the distance of 3η from the
deployment line in LNRO, and so we choose the width of the rectangle for the
uniform distribution to be 6η for comparison.

For the Poisson point process deployment, the probability that the nodes provides
barrier coverage is given by [38]. The main results are described as follows. Define
a strip of width h and length l. Nodes are distributed according to a Poisson process
with density ψ and have a connectivity radius ω. To make the comparison between
the LNRO distribution and the Poisson point process fair, we set h to be equal to a
multiple of η .

Define the break density to be Ih,ω,ψ. With the proper definition, breaks in the
coverage can be shown to follow a Poisson distribution aswell, and thus the density of
this Poisson process is Ih,ω,ψ. The probability that the strip provides barrier coverage
is thus equal to the probability that there is no break, which is equal to:

P(Barrier Coverage) = e−l Ih,ω,ψ (4)

Ih,ω,ψ can be approximated by:

Ih,ω,ψ = ∗
ψIh

∗
ψ,ω

∗
ψ where

Ia,b = e−αab−σb and

αa = a − 1.12794a− 1
3 − 0.20a− 5

3
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Fig. 14 Probability of barrier
coverage for various area
lengths with 99 nodes, ω =
100, h = 10 for the Poisson
deployment and η = 10 for
the LNRO deployment
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One requirement to study the barrier coverage with a Poisson process is to assume
that ψ > ψc, where ψc is the critical density for percolation. In other words, ψ should
be in the supercritical regime. For a network of size l × h, we have ψ = n

hl . If we
set h = 6η , with η = 10, then ψ = 0.00015. The critical density, when ω = 200,
is ψc = 0.0772. (The critical density depends on the connectivity radius in such
manners that the average number of neighbors is equal to 4.5118 for the Gilbert
model [39]). One would need to narrow down the strip to a width h = η/86 to
achieve super-criticality of the Poisson process. And indeed, either using Eq. (5)
or simulating the deployment according to a Poisson process with ψ = 0.00015,
h = 6η , η = 10, n = 9 and l = 1000 shows that barrier coverage is achieved with
a negligible probability.

Even in the supercritical regime, the probability of barrier coverage is very small
for the Poisson process compared to that of the LNRO deployment. Figure14 com-
pares the LNRO and Poisson process in an area of length varying between 1,500 and
5,000m. The LNROdeployment, with 99 nodes, ω = 100 and a standard deviation of
η = 10 ensures barrier coverage with probability close to one, both in the analytical
model and the simulation, across the whole range of l. The Poisson process, in a
strip of size l × η (note that the LNRO deployment is 97% contained within a strip
of size l × 6η , thus in a much wider strip), has on average 99 nodes with ω = 100.
The parameters are chosen so that ψ is firmly supercritical (in the Gilbert model)
for all values of l. Figure14 shows both simulation and analysis from Eq. (5) for the
Poisson deployment, with a much lower probability of barrier coverage, despite the
favorable parameters.
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4.5 Comparison with One-Dimensional Poisson Model

In LNRO, sensors are concentrated along the deployment line with random offsets.
Thus, it is also interesting to compare the barrier coverage of LNRO with that of a
strict line deployment where all sensors fall on the same line (η y = 0).

Figure15 compares the probability of barrier coverage of LNRO with that of a
line distribution according to a uniform line distribution. For a given line segment
of length l, the corresponding probability density function (pdf) of a node location
in the strict line deployment is P(x) = 1/ l, when x ∈ [0, l], and 0 otherwise. In
the simulation, we set ω = 100, η = 20, n = 50, and l from 1000 to 5000. It
can be observed that the barrier coverage of LNRO consistently outperforms that of
single line uniform case. Reducing the variance in the y-dimension (ηy) in LNRO
will further increase the barrier coverage probability of LNRO, resulting in better
performance over the single line uniform distribution. Simulations show a relatively
similar probability of barrier coverage for a Poisson point process and for a uniform
distribution with the same average number of nodes.

For the uniform distribution along a single line, a similar analysis to that of
Theorem 2 shows that, under the Assumptions (1) and (2), the barrier coverage
probability for the Poisson point process case is given by

P(Barrier Coverage) =
(
1 − e− nω

l

)n
. (6)

We also consider a strict line deployment with Normal perturbation along the
line. In this case we have ηy = 0, and xi = iπ + N (0, ηx ). Similar analysis as for
Theorem 2 shows that

P(Barrier Coverage) =
(

P(N (n/ l,
∗
2η) < ω)

)n

Fig. 15 Probability of bar-
rier coverage for various
area lengths with 50 nodes,
ω = 100, for a uniform sensor
distribution on a line, and
for a two-dimensional LNRO
deployment with η = 20
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Fig. 16 Probability of bar-
rier coverage for various
area lengths with 50 nodes,
ω = 100, for a distribution
of sensors on a line with
Poisson distribution, for a
regular distribution with a
Normal (0,10) perturbation
along the x-axis, and for
a two-dimensional LNRO
deployment with η = 10
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(7)

Figure16 plots the numerical results of Eqs. (6) and (7) with the corresponding
simulation results. For reference, the LNRO case is also included. It can be observed
that for both cases the analysis matches the simulation results very well. Also, the
barrier coverage of LNRO and the line deployment with Normal perturbation are
close to each other, both outperforming the line deploymentwith Poisson distribution.

5 Mobility Improves Barrier Coverage

Recently, there has been increasing interest in deploying mobile sensor networks,
which can be extremely valuable in hostile environments such as battlefields and
hazardous areas. Numerous mobile sensor platforms have been developed, including
Packbot [40], Robomote [5], and Khepera [6], etc. As technologies advance, these
mobile sensor platforms will become increasingly available and may be deployed on
a large scale in practical applications in the future.

Most of the previous studies on the barrier coverage of wireless sensor networks
consider constructing barriers with stationary sensors [1, 4, 21, 25, 26, 31]. While
there has been much effort investigating how to move sensors to improve area cov-
erage of a wireless sensor network [41–45], the impact of sensor mobility on barrier
coverage has not been adequately explored. In this section, we describe the recent
results on exploiting sensor mobility to improve the barrier coverage.

In [1], it has been shown that barrier coverage is difficult to achieve when sensors
are randomly deployed. This is because a large fraction of sensors will not contribute
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Fig. 17 Mobile sensors relocate themselves to improve the barrier coverage of the network. Sensors
are deployed in rectangular region of Λ × w. Sensors’ sensing range is r , and mobile sensors’
maximum moving range is R

to barrier coverage. In a mobile sensor network, after the initial deployment, mobile
sensors can move to desired locations and connect with other un-utilized sensors to
form new barriers, as illustrated in Fig. 17. Therefore, it is important to effectively
exploit sensor mobility so as to improve barrier coverage. Otherwise, a sensor net-
work deployment may not achieve its coverage goal and the sensors will be wasted.

While the potential improvement is promising, it is challenging to compute the
desired location for each mobile sensor to move to, as well as to explore the per-
formance potentials of sensor mobility, due to the non-local nature of the barrier
coverage. For example, in Fig. 17, a barrier will be formed only when both mobile
nodes are relocated to the desired locations as indicated. Moreover, another chal-
lenge of constructing barriers with mobile sensors is that existing mobile sensor
platforms are often powered by small batteries which significantly limit the range of
their movement. For instance, the on-board batteries of Robomote nodes only last for
about 20min in full motion. Given a typical speed of 15cm/s, the range of movement
is only about 180m [5].

Given a network scenario (initial sensor deployment, number of mobile sensors,
and their moving ranges), it is desirable to form themaximum number of disjoint bar-
riers so as to provides effective and robust defense against intruders. The final barrier
coverage is dictated by the sensor mobility scheme that determines the location that
each mobile sensor should move to. A desirable sensor mobility scheme should take
advantage of the existing network topology and efficiently improve barrier coverage
under the limited mobility constraint.

Moving sensors to join a large local cluster may not create new barriers, as the
clustermay not continue to cross thewhole region. The creation of a new barrier often
require multiple sensors to be relocated to certain locations respectively. However, a
sensor cannotmove to an arbitrary locationdue to its limitedmoving range.Moreover,
while a mobile sensor may move to any location within its moving range, it can only
contribute to at most one disjoint barrier.
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The following problems are of particular interest: Where should each mobile sen-
sor move to maximize the number of barriers that can be formed? How does the
improvement depend on the number of available mobile sensors and their moving
range? What are the fundamental limits of the barrier coverage using mobile sensors
andwhat is the correspondingmobility requirement?Answers to these questions pro-
vide important insights into the design and performance of wireless sensor networks
for barrier coverage.

5.1 Network Model

Two classes of sensor location distribution models have been considered in the pre-
vious studies: the uniform distribution model where sensors are deployed in a region
uniformly at random, and the line-based model where sensors are deployed along
certain lines [4]. Both models are valid and applicable for different application sce-
narios. For example, when sensors are dropped by an aircraft along its flying route,
the sensor distribution follows the line-based model. If sensors are launched from
artillery ordinance to an area uniformly at random, it may be approximated by the
uniform distribution model. In this section we consider the impact of sensor mobility
on the barrier coverage under both sensor location distribution models.

In the initial deployment, a combination of n stationary and m mobile sensors are
distributed uniformly at random in a large two-dimensional rectangle area of size
Λ×w. Due to the application requirement of barrier coverage, the deployment region
is often a thin strip area, for example, boundaries of a battlefield and perimeters of a
critical infrastructure. The length of the rectangle is usually significantly larger than
its width, i.e., Λ � w. In the asymptotic case, Λ(n), w(n) → ∞ as n, m → ∞, the
initial sensor locations follow a Poisson point process. The densities of the stationary
and mobile sensors are n

Λ(n)w(n)
and m

Λ(n)w(n)
, respectively.

After the initial deployment,mobile sensors can relocate themselves.Due to power
constraint, we assume each mobile sensor has a maximum moving range of R. As
shown in Fig. 17, amobile sensor, initially located at (x0, y0) canmove to any location
within a circle of radius R, i.e., any point (x, y) with (x − x0)2 + (y − y0)2 ≤ R2.

A challenge to using sensor mobility to improve barrier coverage is the non-
locality nature of the problem. As shown in Fig. 18, based on the location information
of nearby sensors, the mobile sensor (solid dots) on the right-hand side can choose to
fill one of the two “gaps.” However, without the global network topology information
and coordinating with the other mobile sensor, it cannot make an informed decision
to form a global barrier.
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Fig. 18 Example for the non-locality of mobile barrier coverage problem

5.2 Minimum Required Moving Range

The section first investigates the fundamental limit of the barrier coverage that a
mobile sensor network can provide, as well as the requirement on the sensor mobility
to reach the limit. An efficient sensor movement scheme is then devised to provide
maximum barrier coverage while minimizing the maximummoving distance among
all sensors. Last, simulations are used to evaluate the performance of the sensor
movement scheme.

Sensormovements are often powered by batteries (or local fuel reserve on robots),
and normally individual sensors do not share power. Minimizing the total distance
traveled by all sensors will minimize total energy cost but will not necessarily lead
to balanced power consumption among sensors. On the other hand, minimizing the
maximum of distance traveled by any sensor will balance the power consumption
among sensors, thus prolonging the network lifetime. For network planning, it is
important to find out the minimum required moving range of mobile sensors, as it
decides the battery capacity needed to achieve barrier coverage in a mobile sensor
network.

5.2.1 Analytical Results

Theorem 3 When m mobile sensors are deployed in a rectangle area of size Λ × w,
the maximum number of horizontal barriers that can be formed is

nb = �2mr

Λ
∩ (8)

To achieve this limit, the expected minimum of the maximum moving distance among
all mobile sensors is
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dm = Θ(
∗

Λr + w) w.h.p. (9)

Proof Each sensor covers a disk area of radius r . In a rectangle area of size Λ × w,
a horizontal barrier requires at least Λ/2r sensors to be placed along a line side by
side. Therefore, the maximum number of barriers that can be formed is

nb = � m

Λ/2r
∩ = �2mr

Λ
∩

Consider the following two-phase sensor movement scheme to form k (k ≤ nb)

horizontal barriers. These k barriers may be evenly spaced out within the rectangle
region, or be located at arbitrary vertical locations according to application require-
ments.

1. First Phase (vertical movement): sensors move vertically to evenly populate
k(k ≤ nb) horizontal lines. After movement, each line will have m/k sensors.
The maximum moving distance along the vertical direction is Θ(w).

2. Second Phase (horizontal movement): sensorsmovehorizontally to their assigned
grid points positions (defined below as Y ) along the lines.

In the second phase, sensors on each line are initially distributed uniformly at
random. To form a barrier, they will need to be relocated to grid points of coordinates
(2i + 1)r , 0 ≤ i ≤ Λ/2r − 1. Once every grid point is occupied by a sensor, there is
no gap on the line and a barrier is created.

The sensor relocation can be considered as a minimax grid matching problem
[46], where mobile sensors need to be perfectly matched to the grid points with the
coordinates specified above.

Denote the initial sensor locations by

X = {x1, . . . , xΛ/2r },

and the grid points on the line by

Y = {yi = (2i + 1)r}Λ/2r−1
i=0 .

Let L(X, Y ) denote the minimum length such that there exists a perfect matching
of the points in X to the grid points in Y for which the distance between every pair
of matched points is at most L(X, Y ). In other words, L(X, Y ) is the minimum over
all perfect matchings of the maximum distance between any pair of matched points,
minimax matching length, and is thus called the minimax matching length.

From [46], for 1-dimensional case where n points are matched to the grid points
within [0,1], the expected value of the minimax matching length is Θ(1/

∗
n), i.e.,

there are positive constants c and C such that

c ≤ n1/2E[L(X, Y )] ≤ C.
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Applying proper scaling in our model where a number of Λ/2r points are matched
to grid points within segment [0, Λ], we have

E[L(X, Y )] = Θ(
∗

Λr).

Combining the twomoving phases, the expectedminimaxmoving distance among
all sensors is

dm = Θ(
∗

Λr + w) =
{∗

lr ifw = O(
∗

lr)

w ifw = ε(
∗

lr)

�

Discussions of results:

• In practice, sensors do not need tomove in this two-phase (vertical then horizontal)
fashion. They can directly move to the final locations in a straight line with a
shortened distance. Nevertheless, the two-phase scheme can be used to compute
the final location for each sensor. Based on the results, each sensor then moves to
its final location in a straight line of distance

d = Θ
(√

lr + w2
)

=
{∗

lr ifw = O(
∗

lr)

w ifw = ε(
∗

lr)

The asymptotic behavior of the minimax moving distance remains the same as
the two-phase sensor mobility scheme. Therefore, the two-phase sensor mobil-
ity scheme is order optimal in achieving the maximum barrier coverage while
minimizing the maximum moving distance among sensors.

• Depending on the relative magnitude of w and
∗

lr , the minimax moving distance
among all sensors is dominated by movement in different directions. Specifically,
whenw = O(

∗
lr), the horizontal movement dominates the total moving distance.

Otherwise, when w = ε(
∗

lr), the total moving distance is dominated by the
vertical movement.

• If the goal is tominimize the totalmoving distance of all sensors, a similarmatching
problem, the transportation problem, can be considered. Denote T (X, Y ) as the
minimum sum of the distance between matched pairs of points in X and Y . It
is easily shown that cn1/2 ≤ E[T (X, Y )] ≤ Cn1/2, giving the same asymptotic
results as in the minimax grid matching problem [46].

5.2.2 Sensor Movement Scheme

We now present a sensor movement scheme that matches each mobile node to a grid
point and minimizes the maximum moving distance among all sensors.

As shown in Fig. 19, each mobile sensor first move vertically to its projection on
a pre-defined line in the first phase. In the second phase, given the set of mobile
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Fig. 19 The two-phase sensor
movement scheme. Sensors
first move vertically to a
pre-specified line of defense.
They are then assigned to the
different grid points, move
horizontally to their final
locations, and form a barrier

sensors S, the grid points Y , and sensor’s moving range d, the following algorithm
computes if every grid point can be occupied by a mobile sensor under the sensor
mobility constraint.
Max- Flow(X, Y, d)

1. Construct a bipartite graph G(V, E) (V = X ∼ Y ) as follows. Each vertex in X
represents a mobile sensor, and each vertex in Y represents a grid point along the
line. E = {(u, v), (v, u)|u ∈ X, v ∈ Y , and dist (u, v) < d}.

2. From G(V, E), construct a flow graph G→(V →, E→) and assign capacity to each
edge as follows: ∀ u ∈ V, add u to V →; ∀ (u, v) ∈ E , add (u, v) to E→. Set
capacity(u, v) = 1 if u ∈ X and v ∈ Y , otherwise, set capacity(u, v) = 0.
Add a virtual source node S to V → , and ∀ u ∈ S, add an edge (S, u) to E→, set
capacity(S, u) = 1; add a virtual sink node D to V →, and ∀ u ∈ Y of G(V, E),
add an edge (u, D) to E→, set capacity(u, D) = 1.

3. Use amaximum flow algorithm (e.g., Ford-Fulkerson [36]) to compute and return
the maximum flow from S to D in G→.

The Max-Flow algorithm above terminates in O(V E2) time. When the algo-
rithm terminates, if the returned maximum flow from S to D equals the number of
grid points, each grid point will be assigned a sensor and a barrier can be formed.
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Otherwise, if the returned maximum flow is smaller than the number of grid points,
there are not enough sensors to occupy all the grid points, i.e., some grid points will
not be occupied by sensors.

Although all sensors are assumed to be mobile in this case to explore the limit
of the barrier coverage that a mobile sensor network can provide, the Max-Flow
algorithm can handle the scenariowhere there are both stationary andmobile sensors.
A stationary sensor is equivalent to a mobile node with a zero moving range.

A binary search is then used to find the minimax moving distance among all
sensors.

Minimax- Moving- Distance (X, Y )

1 last_success ← Λ; last_fail ← 0; d ← Λ

2 while (last_success - last_fail ≥ δ)
3 do f ← Max- Flow(X, Y , d)
4 if (f = sizeof(Y ))
5 then last_success ← d
6 else last_fail ← d
7 d ← (last_fail + last_success)/2
8 return d

The above binary search-based Minimax-Moving-Distance algorithm terminates
inΘ(log Λ) iterations.When it terminates, itwill return theminimummovingdistance
that allows every grid point to be occupied by a sensor. The δ in line 2 of Minimax-
Moving- Distance is a termination threshold, representing the precision of the d
obtained from this algorithm. In each iteration, MAX-FLOW is executed once, so
the total running time of the sensor mobility scheme is O(log Λ V E2).

To validate the analytical result, consider the scenario where m mobile nodes are
randomly deployed in a rectangular area of length 2mr and width w. As discussed
earlier, the maximum moving distance of the vertical movement is Θ(w). Here we
focus on the minimax moving distance of the horizontal movement.

To demonstrate the performance of the above sensor mobility scheme, a greedy
approach is use as a reference point. The greedy approach tries to assign the closest
available mobile sensor to each grid point. Each time we randomly select a grid point
that has not assigned a sensor, and assign the closest available mobile sensor to the
grid point. This process is repeated until all the grid points are occupied.

Figure20 compares the minimax moving distance of our scheme with that of the
greedy algorithm. As the length of the field increases, the minimax moving distance
of the greedy algorithm grows linearly, while in our proposed scheme the growth is
sub-linear, resulting in a widening gap between the two approaches.

According to Theorem 3, the minimax moving distance (dm) in our scheme is
proportional to the square root of the length (Λ), i.e., dm = Θ(Λ0.5). This is confirmed
by the regression results, as shown in Fig. 20. For example, the simulation results for
the case r = 20 can be well fitted by dm = aΛb + c, where a = 5.8934, b = 0.4919,
and c = −27.4322. The 95% confidence interval of b is [0.4749, 0.5090] (Fig. 21).



92 A. Saipulla et al.

0 1000 2000 3000 4000 5000
0

100

200

300

400

500

600

length of the field

m
in

im
ax

 m
ov

in
g 

di
st

an
ce

 (
d m

)

Greedy, r = 20
Greedy, r = 10
Flow, r = 20
Fit, r = 20
Flow, r = 10
Fit, r = 10

Fig. 20 Minimax moving distance to achieve barrier coverage
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Fig. 21 Minimax moving distance with redundant mobile sensors

5.3 Find and Mend Barrier Gaps

Barrier gaps may occur at deployment if sensors are randomly deployed or in an
already formed barrier if some sensors used to form the barrier startmalfunctioning or
run out of power. In this sectionwe study how to usemobile sensors to improve barrier
coverage and investigate its design issues and performance tradeoffs. In particular,
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Fig. 22 Illustration of Find- Gaps algorithm

we would like to find barrier gaps and relocate sensors to fill the gaps and form new
barriers. This task faces a number of challenges because of the unique features of
barrier coverage and the resource constraints of wireless sensor networks.

First, barrier coverage is a global property, requiring a chain of sensors with
overlapping sensing ranges across the entire length of the network. Using mobile
sensors to connect local sensor clusters do not necessarily result in the formation of
a global barrier. It may require that multiple mobile sensors be relocated to certain
desired locations at the same time.

Second, each mobile sensor has a limited moving range due to its energy con-
straints. Its movement is confinedwithin its moving range and it may not be relocated
to arbitrary locations in the network. Moreover, it is highly desirable to balance the
energy consumption among mobile sensors to prolong the network lifetime.

We present a two-phase algorithm that can efficiently relocated mobile sensors
to form new barriers while balancing the energy consumption among the mobile
sensors. In the first phase, the algorithm scans the network from left to right to look
for barrier gaps. In the second phase, the algorithm computes which mobile sensors
should be relocated towhat locations such that themaximummoving distance among
all sensors is minimized. This will have the effect of balancing energy consumption.
Our approach takes advantage of the underlying line-based sensor deployment and
its performance in terms of barrier coverage.
Find Barrier Gaps. Starting from the left boundary, the algorithm greedily looks
for a connected cluster of static sensors that extends farthest to the right direction. It
then finds the sensor node (marked as q) that is located to the right of the cluster and
closest to the rightmost node of the cluster (marked as p). The space between these
two sensors ismarked as a barrier gap, denotedby (p, q). Theprocess is repeated from
sensor q until it reaches the right boundary of the area. This is illustrated in Fig. 22.

Recall that the sensing range of each sensor is denoted by r , and use P to store
all the barrier gaps found in the process. The details of the algorithm are described
as follows:
Find- Gaps(N, r)

1. Initialize P = ∅.
2. Construct a connectivity graph G(V, E) (V = N ∼ s ∼ t) as follows, where

each vertex in N represents a static sensor, and s and t are two virtual nodes
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representing left and right boundary of the area. E = {(u, v), (v, u)|u ∈ N , v ∈
N , and dist (u, v) <= 2r} ∼ {(u, s), (s, u)|u ∈ N , and dist(u, left-boundary) <= r}∼
{(u, t), (t, u)|u ∈ N , and dist(u, right-boundary) <= r}.

3. Starting at s, perform a depth-first search for t in G. If successful, the algorithm
terminates, and returns P . Otherwise, mark the rightmost node appeared in the
search as p, and mark node that is to the right of and closest to x as q. Mark the
space between p and q as a barrier gap, and add the gap (p, q) to P .

4. Remove all nodes to the left of q and their associated edges, and set s to q. Repeat
from step 3.

After the algorithm terminates, P contains a set of gaps by filling which a new
barrier will be formed.
Mend Barrier Gaps with Mobile Sensors. For each gap obtained in the first phase,
we relocatemobile sensors tofill the gap andminimize themaximummovingdistance
among all sensors to balance the energy consumption. When all gaps are mended, a
new sensing barrier will be formed.

Consider a gap between node p and node q. The minimum number of sensors
needed to fill the gap is g = � dist (p,q) − 2r

2r �. Divide the segment (p, q) evenly with
g grid points. These grid points represent a set of locations where if each of them is
occupied by a mobile sensor, the whole network will be barrier covered. Note that
due to energy constraints, each mobile sensor has a certain moving range, and can
only move to a location within the range.

Given the set of mobile sensors M , the set of grid points G obtained for all gaps,
and the moving range d of mobile sensors, we use a bipartite matching algorithm
to compute if every grid point can be occupied by a mobile sensor under the sensor
mobility constraint. Should a solution exist, the algorithm also gives the matching
between the mobile sensors and the grid points, i.e., an assignment of mobile sensors
the grid points. The algorithm is described as follows:

Mend- Gaps(M, G, d)

1. Construct a bipartite graph G ≥(V, E) (V = M ∼G) as follows, where each vertex
in M represents a mobile sensor and each vertex in G represents a grid point in
a gap. E = {(u, v), (v, u)|u ∈ M, v ∈ G, and dist (u, v) < d}.

2. From G ≥(V, E), construct a flow graph G→(V →, E→) and assign capacity to each
edge as follows: ∀ u ∈ V, add u to V →; ∀ (u, v) ∈ E , add (u, v) to E→. Set
capacity(u, v) = 1 for u ∈ M and v ∈ G ≥. Add a virtual source node S to V →,
and ∀ u ∈ M , add an edge (S, u) to E→, set capacity(S, u) = 1; add a virtual sink
node D to V →, and ∀ u ∈ G of G ≥(V, E), add an edge (u, D) to E→, set capacity(u,
D) = 1.

3. Use amaximum flow algorithm (e.g., Ford-Fulkerson [36]) to compute and return
the maximum flow from S to D in G→.

The moving range constraint of mobile sensors is accounted for in the algorithm
by connecting each mobile sensor only to those grid points within its moving range.
When the algorithm terminates, if the returned maximum flow from S to D equals
the total number of grid points, each grid point will be assigned a mobile sensor.
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Fig. 23 Illustration of
Mend- Gaps algorithm

(a)

(b)

(c)

A new barrier will be formed after the selected mobile sensors move to their assigned
grid points. Otherwise, if the returned maximum flow is smaller than the number of
grid point, some grid points will not be occupied by sensors, and the gap will not
be mended under the mobility constraint. It is straightforward to check that the time
complexity of Find- Gaps is O(V + E), and the time complexity of Mend- Gaps
is O(V E2).

The main steps of theMend- Gaps algorithm are illustrated in Fig. 23. In part (a),
the gap between node p and q is divided evenly by four grid points. Suppose there
are five mobile sensors available. We add an edge between a mobile sensor and a grid
point if the grid point is within the moving range of the sensor, resulting in a bipartite
graph. In part (b), we create a virtual source node S connecting to all mobile nodes,
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a virtual sink node D connecting to all grid nodes, and assign unit capacity to each
edge. We then use a maximum flow algorithm to compute and return the maximum
flow. Based on the results, we relocate appropriate mobile sensors to each grid point
to fill the gap, as shown in part (c).

Finally, a binary search-based algorithm can be used to find the minimax moving
distance among all sensors that is required to find a bipartite match between mobile
sensors and grid points in the gaps.

Minimax- Moving- Distance (M, G)

1 last_success ← Λ; last_fail ← 0; dmin ← Λ

2 while (last_success - last_fail ≥ ε)
3 do f ← Mend- Gaps(M, G, dmin)
4 if (f = sizeof(G))
5 then last_success ← dmin

6 else last_fail ← dmin

7 dmin ← (last_fail + last_success)/2
8 return dmin

The above binary search-based Minimax- Moving- Distance algorithm termi-
nates in Θ(logΛ) iterations. When it terminates, it will return the minimum moving
distance guaranteeing that every grid point is occupied by a sensor. The δ in line 2 of
Minimax- Moving- Distance is a termination threshold. It represents the precision
of the d obtained from this algorithm.

The performance of the above algorithms are evaluated via simulation. Sensors
are deployed along the horizontal central line in a rectangle of size 1000 × 300.
The sensors are deployed on evenly spaced grid points along the line with normally
distributed random offsets, as described in Sect. 4.1. All sensors have a sensing range
of 10 and three different random offset variances η = 10, 30, and 50 are considered.
Each data point in this section is an average of 1,000 repeated experiments.

Figure24 plots the barrier coverage probability as a function of the number of
mobile nodes, where the number of stationary sensors ns = 100 and the number
of mobile sensors nm varies from 0 to 100. We focus on the performance of the
algorithms without considering the effect of limited moving range of mobile sensors.
In other words, we assume that each mobile sensor can be moved to any location in
the network. We will later examine the minimum required moving range to achieve
barrier coverage.

The barrier coverage probability is zero initially. As more mobile sensors are
added to the deployment, the barrier coverage probability starts to increase quickly
after a certain point. When the number of mobile sensors is not large enough to fill all
the barrier gaps, no new barriers can be formed and the barrier coverage probability
remains unchanged. After a certain point, there is a positive probability that the
mobile sensors can fill all the gaps to form a barrier, and the probability increases as
more mobile sensors are added. When there are enough mobile sensors such that all
the gaps can be filled almost surely, the barrier coverage probability reaches one.



3 Barrier Coverage: Foundations and Design 97

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of mobile nodes

ba
rr

ie
r 

co
ve

ra
ge

 p
ro

ba
bi

lit
y

σ = 10
σ = 30
σ = 50

Fig. 24 Barrier coverage probability as a function of the number of mobile sensors

For different deployments with different random offset variances, the larger the
variance, i.e., sensors are scattered farther from their target landing points, the more
barrier gaps there are and hence more mobile sensors are needed to fill the gaps in
order to form a barrier. If the variance η = 10, then approximately 45mobile sensors
are needed to form a barrier. For η = 30 and 50, achieving barrier coverage would
require approximately 75 and 83 mobile sensors, respectively.

The minimum moving range required for mobile sensors to achieve barrier cov-
erage is shown in Fig. 25. As the number of mobile sensors increases, the moving
range required to achieve barrier coverage decreases. This demonstrates a tradeoff
between the number of mobile sensors and the moving ranges required to achieve
barrier coverage. If there are sufficient mobile sensors, mobile sensors may only need
to move a small distance to form a barrier. Otherwise, mobile sensors may have to
move a larger distance to compensate for the shortage of mobile sensors.

6 Underwater 3-Dimensional Barrier Coverage

Anti-submarinewarfare (ASW) is a critical challenge formaintaining a fleet presence
in hostile areas. International submarine sales on today’s markets are not covered by
any nonproliferation treaty, making it possible for nation states, organizations, or
even individuals with sufficient resources to purchase submarines. Some of these
submarines are capable of launching cruise missiles to deliver conventional, nuclear,
chemical, or biological payloads [47]. Drug traffickers have, also, used submarines
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Fig. 25 Minimum required moving range to achieve barrier coverage

to smuggle illegal drugs into the US. The Washington Post reported that a total of
thirteen submersible vessels of this kind were captured in 2007 [48], while many
more were believed to have evaded US coastal patrols.

To make things worse, recent technology advances have made it possible for
submarines to evade standard sonar detection [49]. In particular, submarine hulls can
be fitted with rubber anti-SONAR protection tiles to thwart active SONAR detection.
These rubber tiles, also, dampen intra-submarine noise to thwart passive acoustic
detection at a distance.

Thus, finding alternative ways to detect submarines becomes an important and
timely problem. Using magnetic or acoustic sensors in close proximity to the possi-
ble underwater pathways of submarines is a viable new approach. Recent advances
in micro electro-mechanical systems and communication hardware have made this
approach more reliable and relatively inexpensive with a decreased power consump-
tion. Large-scale deployments of underwater wireless sensor networks are expected
to become a reality in the near future. These deploymentsmayoccur by dispersal from
an aircraft or artillery ordinance. Sensors with different buoyancy may submerge to
different depths. A sensor node may be equipped with a small ballast tank to control
its weight and obtain different buoyancy. Such deployment strategies can deploy
many sensors over a vast space quickly, but limit the control of sensor placement.

We want to form a barrier in a sensor network to detect moving objects. In
2-dimensional (2D) terrestrial strip sensor networks, a barrier is a chain of connected
sensors from one end of the strip to the other end. No moving objects, regardless
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of which paths they choose to pass through, can cross the chain undetected. In 3-
dimensional (3D) underwater sensor networks, however, forming a barrier is much
more subtle. For example, even if an unbroken chain of overlapping sensor zones
between two opposing sides exists in a cuboid, intruders may still be able to pass
under or over such a chain without being detected. Thus, an overlapping sensor chain
no longer constitutes a barrier in a 3D space. Instead, a barrier in a 3D space should
be a set of sensors with overlapping sensing zones of adjacent sensors that covers an
entire (curly) surface that cuts across the space.

The goal of our research is to construct a 3D barrier that is scalable for large scale
coastline protection in a timely fashion. As underwater movement is very power
intensive our solution should minimize the maximal travel distance required of any
sensor comprising our barrier. This will maximize the residual energy and thus allow
for a longer coverage period.

We present the first set of results for constructing a barrier to detect intruding
submarines in a 3D sensor network where sensor nodes are distributed uniformly
at random modeled by a Poisson Point Process. We show that a barrier in such a
3D sensor network for a finite density of sensors is unlikely to exist. This suggests
the necessity to deploy sensors with at least limited mobility. In order to form an
underwater water barrier we plan on moving sensors to set of predefined fixed grid
points based on the sensor’s detection radius. Such a deployment create a vertical
barrier with no holes.

We assign and ultimately move sensors to grid positions based on grid-matching
using the Hungarian method, a classic centralized approach. Through simulation we
develop a rough lower bound on the maximum travel distance any one sensor needs
to travel. This also gives us an upper bound on the computation time. No approximate
solution should take longer than an optimal solution.

To reduce the computation cost we consider using a centralized approximate
solution based on auction theory. We compare the performance characteristics of
the auction-based approach to the optimal approach. We show that for our applica-
tion auction algorithms provide desirable tradeoffs between computation time and
maximum travel distance.

6.1 Network Model

We consider a sensor network consisting of sensors deployed in a large-scale 3D
rectangular cuboid. For the initial configuration, we assume that the locations of these
sensors are uniformly and independently distributed in the cuboid. Such a random
initial deployment is desirable in scenarios where prior knowledge of the region of
interest is not available. This may be the result of certain deployment strategies.
Under this assumption, the sensor locations can be modeled by a stationary 3D
Poisson Point Process. We assume that each sensor can sense the environment and
detect intruders in the 3D sphere of radius r.
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Fig. 26 Barrier coverage in
3D sensor networks

In a 2D sensor network on a strip area, the barrier is directly related to the percola-
tion of the network model [1, 21]. These connected sensor clusters act as “trip wires”
to detect any crossing intruders as shown in Fig. 1. In a 3D sensor network, however,
a sensor cluster connecting the opposite surfaces of the cuboid no longer constitutes
a barrier that can detect crossing intruders. There could be “holes” where an intruder
can cross the cuboid undetected. Percolation of sensors no longer provides barrier
coverage and intruders can evade detection via the uncovered space. Figure26 illus-
trates this effect, where the figure at the right-hand side shows the projection of the
3D cuboid in the direction of the arrow.

We consider a 3D cuboid of size l × w × d, where l, w, and d denote the length,
width, and depth of the cuboid, respectively. A crossing path is a path that connects
one surface of the cuboid to the opposite surface, where the ingress point and the
egress point reside on two opposite surfaces of the cuboid. A crossing path is said
to be covered if it intercepts at least one sensor. Intruders moving along covered
crossing paths will be detected. A network provides a barrier if any crossing path
attempted by an intruder results in its being detected. A 3D sensor network is said
to be barrier covered in a specific direction if any crossing path intersecting the two
surfaces perpendicular to the direction goes through the sensing zone of at least one
sensor. Without loss of generality, we assume that intruders attempt to penetrate the
cuboid in the direction of depth. Clearly, to form a 3D barrier requires a continuous
surface that is fully covered by sensors.

6.2 Analytical Results of 3-Dimensional Barriers

The following theorem characterizes the existence of 3D space barriers.

Theorem 4 In a 3D cuboid of size l ×w×d where sensors are distributed according
to a Poisson Point Process of density ψ, no barrier exists in the cuboid in the direction
of depth for finite sensor density ψ and depth d as l, w → ∞.

Proof Projecting the 3D cuboid in the direction of the cuboid depth results in a 2D
surface of size l ×w. After the projection, a “barrier tunnel” in the original 3D cuboid
where an intruder can pass through may not be present in the projected 2D surface.
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Therefore, the barrier coverage of the 3D cuboid is bounded above by the barrier
coverage of its projected 2D surface. If an intruder can penetrate the projected 2D
surface undetected then there exists for sure an uncovered crossing path in the 3D
cuboid.

In the asymptotic case, when l, w → ∞, the sensors on the projected 2D surface
follow the Poisson point process distribution of density ψd, with each point occupied
by a disk of radius r . The fraction of the area that is covered in the projected 2D
surface, fa , is obtained by [21, Theorem 1]. That is,

fa = 1 − e−ψdφr2 < 1 if ψ, d < ∞.

Therefore, there is uncovered area in the projected 2D surface for finite sensor
density and cuboid depth. An uncovered area in the project 2D surface corresponds
to a “barrier tunnel” in the original 3D space where an intruder can pass through
undetected. As a result, there is no barrier in the original 3D cuboid in the direction
of depth. �

6.3 Stealth Distance in 3D Sensor Networks

In a wireless sensor network, as it moves across the network, an intruder will be
detected whenever its path intersects with the sensing sphere of a sensor. It is inter-
esting to investigate the distance an intruder travels before first being detected by
sensors. This distance, referred to as the stealth distance and defined below,measures
the intrusion detection performance of the sensor network (Fig. 27).

l

w

d

Fig. 27 Stealth distance of intruder in 3D sensor networks
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Definition 2 Consider a 3D sensor network where sensors of sensing range r are
distributed according to a Poisson point process of density ψ. Assuming that an
intruder is initially undetected and moves in a random direction along a straight
line. The stealth distance of the intruder, X, is defined as the distance it travels
before it is first detected by any sensor.

The notion of stealth distance was introduced in [50], and the authors derived
an approximation of the expected stealth distance for 2D sensor networks. In the
following theorem, we characterize the distribution of the stealth distance in a 3D
sensor network. The distribution of the stealth distance in a 2D sensor network can
be obtained similarly.

Theorem 5 In a 3D sensor network where sensors are distributed according to a
Poisson point process of density ψ, the stealth distance of an intruder, X, follows an
exponential distribution with parameter ψφr2, i.e.,

P(X < x) = 1 − e−ψφr2x . (10)

The full details of this proof can be found in [9]. It follows from Theorem 5 that
the expected stealth distance of a randomly located intruder is

E[X ] = 1

ψφr2
,

which is inversely proportional to the sensor density (ψ) and the projected area of
the sensing sphere (φr2). Therefore, in order to shorten the stealth distance of an
intruder, one can add more sensors, or use sensors with larger sensing range. To
guarantee that the expected stealth distance of an intruder be smaller than a specific
threshold l0, we should have

1

ψφr2
< l0.

The above relationship between the stealth distance and the deployment parame-
ters (sensor density and sensing range) provides important guidelines to the planning
of sensor networks for intrusion detection.

6.4 Barrier Construction

The first step in constructing our 3D barrier is the development of some basic intu-
itions about the nature of the problem. Our first question is “What is the time com-
plexity needed to construct the optimal assignment for varying sizes of sensor fields?”
The optimal solution will give an upper bound on the time complexity allowed to
construct approximate solutions. Our second question is “What is the maximum
travel distance required of any sensor in the optimal solution and how does it change
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Fig. 28 Phase one: an air drop of sensors along a path resulting in scattered placement along that
path

Fig. 29 Phase two: sensors S1 − S3 derive the same utility U , from being assigned to G1 or G3.
All receive a minute utility (.1U ), from being assigned to G2. S0 does not have the energy to move
to any grid point other than S0. An auction occurs to assign S1 − S3 to G1 − G3

for varying sizes of sensor fields?” This allows us to understand the movement dis-
tance requirements that must be placed on sensors during deployments. It also allows
us to compare approximate solutions to the optimal solution. This section analyzes
the optimal solution and offers an alternative approximate solution that preserves the
maximal travel distancewhile offering a considerable time complexity improvement.

The results in the previous subsection show that barriers in a 3D network are
unlikely to exist with Poisson distributed stationary emplacement sensors. To over-
come this obstacle, we propose to usemobile sensors to form a barrier. To accomplish
this task, we require that sensors have the following features: (1) X, Y, Z positional
control: be able to move across the surface of the ocean and also to different depths;
Localization: be able to identify their own X, Y, Z position to some degree of cer-
tainty. Note that sensors may be able to localize their own positions, after their
deployment, using a set of anchor nodes. Each of the anchor nodes is equipped with
an underwater acoustic modem that submerges in the water, and a GPS that stays
on the water surface. The GPS provides the location information of the node. An
underwater sensor may communicate with a set of anchor nodes through their under-
water acoustic modems and use the propagation delays of acoustic signals and the
locations of the anchor nodes to calculate its location.

We propose a three-phased approach for constructing a 3D barrier, which mini-
mizes the maximum energy used by any sensor:

1. Find an optimal vertical plane at which the sensors will form a grid-based barrier
as shown in Fig. 28.

2. For each sensor, identify its best grid-based assignment as shown in Fig. 29.
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3. Move sensors from their initial dropped position directly to their final assigned
grid positions.

Finding the optimal barrier location. Suppose as in Fig. 28 an airplane drops a set
of mobile sensors such that plane X is parallel to the coast line to be protected. The
sensors must move to some plane X , such that X minimizes the energy expended by
any one sensor. For this calculation, we are assuming that the sensors will only be
moving in one direction to approach the X location.

Suppose X represents the optimal line for each of the m sensors to approach.
Let d(xi , x) be |x − xi | the distance traveled by any sensor si in the direction of
X . We are attempting to minimize the maximal distance traveled by any sensor. To
accomplish this let x = (max xi − min xi )/2, then the maximum distance any one
sensor travels is minimized. In Fig. 28, all the sensors will move to the line X = 5.
It is straightforward to show that X must be somewhere inside the set x-coordinates
of the sensors. As any two sensors move to meet one another, the total distance
they travel is the distance between them. Thus, the sensors on either edge move the
farthest, and half the distance between them minimizes the maximum distance any
one sensor moves.
Optimal assignment of sensors to grid points. Assigning n sensors to n grid posi-
tions is related to the Assignment Problem, where we would seek a one-to-one
matching between sensors and grid positions. The cost of each possible matching is
the energy required to move the sensor to a grid point. A classic optimal solution
is the Hungarian Method and can be computed in O(n3), where n is the number of
sensors [51]. It produces a one-to-one assignment which minimizes the total energy
expended.

However, in our context, we are looking to minimize the maximal amount of
energy drain any one sensor incurs moving to a grid position. This will maximize the
network lifetime. Let k be the maximal travel distance we allow any sensor to travel
for moving to cover a grid position. We seek to find the smallest value of k such that
each sensor expends at most k, yet all sensors can move to cover a grid position.

We can apply the Hungarian Method to compute k. Assume we have a function
HungarianK (S, G, k) → Assignment, k≥. This function takes a list of sensor
positions S, a list of grid positions G which are to be covered, a maximal value k,
and computes a feasible assignment. If all the edges in the intermediate result do
not exceed k then the assignment is returned otherwise the empty-set is returned. In
addition k≥ represents the largest edge found in the assignment.

With this new function a centralized solution can be accomplished at a central
node as follows. Sensors transmit positional information to a central node. The central
node creates a sorted list of edge weights. Each sensor can be paired with every grid
position resulting in a list of edge weights whose number is n2. A binary search
is conducted on the edge list and the midpoints of the edge weight list are fed as
the parameter k to HungarianK . The detailed algorithm description can be found
in [9]. The running time for a solution will be O(n3 log n), where O(n3) is for each
running of Hungarian Method and O(log n) for the binary search.
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Auction-based assignment of sensors to grid points. The classicHungarianmethod
provides a centralized optimal solution to our assignment problem. To reduce compu-
tation cost, we present a centralized approximate solution to the problem of assigning
sensors to grid positions using auction algorithms [52]. Auction algorithms offer a
reduced computational expense to the Hungarian method, while delivering close
approximations to the optimal solution.

Auction algorithms arrive at an approximately optimal solution based on a set of
agents bidding for the same resource, where each sensor labeled as i is bidding to be
assigned to a particular grid position labeled as j . Each sensor associates a utility,
which in our case is inversely proportional to a sensor’s distance to a grid point. Let
ui j denote the utility of assigning sensor i to grid point j . Closer grid points have a
higher utility to a sensor. Thus a sensor is willing to pay an increased price to compete
for a grid point that maximizes its utility. The global known price for grid point j is
denoted by p j . The value ui j − p j derives the benefit a sensor i achieves by being
assigned to grid point j . Therefore, if the price at a particular grid point increases
then a sensor will opt for a grid point with a lower utility and a higher benefit if it
exists.

The algorithm starts by constructing an arbitrary assignment of sensors to grid
positions. If each sensor derives the maximum benefit from its current assignment
then the algorithm terminates. Otherwise, a sensor i seeks to be associated with ji ,
which maximizes its benefit as shown in Eq. (11).

Once the optimal candidate is identified, i raises p j by the amount of I ncrease,
which is the difference between the best benefit and the next best benefit. Now sensor
i is associated with ji and whoever ji was associated with is associated with j . As
ji has the optimal benefit, Best Ben ≥ Next Best Ben, therefore I ncrease ≥ 0.

ui ji − p ji = max
j=1,...,n

(ui ji − p ji ) (11)

p ji = p ji + I ncrease (12)

I ncrease = Best Ben − Next Best Ben (13)

Best Ben = max
j

(ui j − p ji ) (14)

Next Best Ben = max
j �= ji

(ui j − p ji ) (15)

It could turn out that Best Ben = Next Best Ben, i.e., a sensor derives the same
benefit from being assigned to either of two separate grid positions. In that case, the
bid increment would be zero. This could lead to repeated exchanges among a small
group of sensors without increasing the price. This would result and an infinite loop
and the system would fail to converge. To force convergence, we require that any bid
must increase the price. To accomplish this in the algorithm, we replace Eq. (13) with
Eq. (17) with a positive value ε. Further, we say that the system is in ε-equilibrium
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Table 1 An example of a situation where a naive auction can lead to bids with no price increase

Round Prices Mappings Bidder Pref. Inc.

1. (0,0,0) S1 : G1, S2 : G2, S3 : G3 2 1 0
2. (0,0,0) S1 : G2, S2 : G1, S3 : G3 1 1 0
3. (0,0,0) S1 : G1, S2 : G2, S3 : G3 2 1 0

if each sensor is no more than ε off the maximum benefit possible. We accomplish
this by substituting Eq. (11) with Eq. (16).

ui ji − p ji >= max
j=1,...n

(ui ji − p ji ) − ε (16)

I ncrease = Best Ben − Next Best Ben + ε (17)

We present an example to show how infinite loops might occur during the bidding
process in phase two based on Eqs. (11) and (13). Suppose that the sensors have
limited movement so that S0 can only bid for position G0. Suppose that S1 − S3
are equidistant from G1 and G3. Then the sensors derive the same utility, denoted
by U , from being assigned to G1 or G3. Suppose they can move all the way to G2,
but it would drain their energy reserves almost completely. Thus, G2 offers a small
nonzero utility to the sensors, which we denote by (0.1 × U ). Finally, suppose the
initial mapping is S0 → G0, S1 → G1, S2 → G2, S3 → G3. To keep this example
as simple as possible we remove S0 and G0 from our example. This configuration is
depicted in Fig. 29. The resulting infinite loop is presented in Table1. The top two
benefits are identical for all the sensors and the initial price for all grid points is zero.
Therefore, sensors S1, S2, and S3 will wind up endlessly swapping assignments.

If we substitute in Eqs. (16) and (17) we see the prices associated with being
assigned to a grid point increasing. This is depicted in Table2. During each round
of bidding the price for either G1 or G3 is increased by at least ε. Let mε be the
first price that exceeds the utility U . When such a price is reached for either grid
point, the benefit (U − mε) < 0. At this point, the small utility (0.1 × U ), offered
by G2 to any sensor and its zero price will cause a sensor to prefer to be assigned
to G2. Once a sensor chooses G2, we will have a feasible assignment and the algo-
rithm can terminate. As demonstrated, if a feasible assignment exists then this algo-
rithm is guaranteed to terminate in a finite number of steps (see [52] for details).
Once completed, sensors move from their initial positions to their assigned grid
positions.
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Table 2 Example of increasing bids for a grid position

Round Prices Mappings Bidder Pref. Inc.

1. (0,0,0) S1 : G1, S2 : G2, S3 : G3 2 1 ε

2. (ε,0,0) S1 : G2, S2 : G1, S3 : G3 1 3 2ε
3. (ε,0,2ε) S1 : G3, S2 : G2, S3 : G2 2 1 2ε
4. (3ε,0,2ε) S1 : G2, S2 : G1, S3 : G2 1 2 2ε
. . . . . . . . . . . . . . . . . .

Eventually the price will exceed the utility afforded by an assignment and a sensor bid for grid
position G2, allowing the algorithm to terminate

6.5 Performance Evaluation

We use simulations to evaluate how the approximate solution performs under our
assumed deployment strategy and give some comparisons to the optimal solution.
The average ocean depth is 3,790m [53]. Specialized submarines such as the Trieste
can dive to 11,015m in the water [54]. Other mainstream submarines such as the
Komsomolets series have dived to 1,300m [55]. Our simulations propose a sensor
network that would be able to detect submarines up to 3,790m.

Recent studies have stated that commercial motes with magnetometers can detect
submarines at distances of several hundred meters. For our simulation, we chose a
fixed detection range of 460m and if sensors are deployed every 640m in a grid
pattern there will be no uncovered space. A column of six sensors with the first being
deployed at a depth of 320m allows coverage of 3840m. We allow for our sensors
to sink from between 320 and 3,520m. The resulting cube’s depth is 3,200m. We
allow sensors to drift away from the drop position with a radius up to 160m in any
direction, so a cube’s width is 320m. Finally, each sensor column is 640m apart. We
assume that the aircraft uniformly drops sensors from the first column to the final
column. The length of a cube ranges from 1,920 to 55,680m. Our simulations were
run on an Intel Xeon™ 3.20GHz CPU. The operating system was Red Hat Fedora
Core 8. All software was written in Python.
Performance of the Centralized Optimal Solution. First, we compare the running
time of the traditional Hungarian Method and our variant HungarianK for dif-
ferent sized cubes. The former computes the minimum total weight solution and the
latter computes the minimum maximum edge weight.

Figure30 depicts our results. The x-axis represents the number of sensor columns
being tested, which each sensor column being comprised of six sensors. The y-axis
represents the total computation time required to achieve a result. This graphic shows
that the computation time for computing HungarianK is within O(n3 log n).

Figure31 depicts the maximum movement any one sensor must travel to get to
its optimal assignment. The y-axis represents the maximum distance any one sensor
must travel. As the network size increases, the Hungarian Method requires more
movement from sensors. Figures30 and 31 show that there is a tradeoff between
the computation time/energy and the total movement distance. This is an important
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Fig. 30 Comparison of running time between the Hungarian and our HungarianK variant
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Fig. 31 Comparing the Hungarian Method with our HungarianK variant to determine maxi-
mum moving distance

consideration in energy constrained environments where movement consumes far
more energy than computation.
Performance of the Centralized Approximate Solution. To seed the initial assign-
ment during each run, we associated each sensor to an arbitrary grid position for all
but the last experiment. This mapping was chosen to allow for an unbiased estimate
of how quickly the systemwould converge. After some initial analysis, we chose five
different values of ε to show how the system behaved. The values chosen were 0.5,
1.0, 2.0, 5.0, and 10.0. Each experiment computed a result using a single value of ε.
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In the last experiment we started the search for a solution with ε = 10.0. Once a
feasible solution was determined, the solution was used as an initial assignment to
find a solution with ε = 5.0. Any of previous assignments who satisfy the reduced
maximal travel distance imposed can be used as part of the solution.

Those re-used assignments may not be optimal, however as they are acceptable
we can use them as a partial solution. This reduces the remaining assignments to be
computed and therefore reduces the overall time complexity. This search strategy
can be considered as a simulated annealing process [56]. We continued to reduce
the ε value until ε = 0.5. Our simulations show how varying values of ε impact
the optimal match between sensors and grid positions. We discuss different tradeoffs
arising from varying the values of ε. The annealed-search-based auction is denoted
in the figures by the lines ε = V ar .

In Fig. 32, the x-axis represents the number of columns in the network with 6
sensors per column. The y-axis represents the average maximum number of bids any
sensor makes to be associated with the grid position of its choosing. We can see that
smaller values of ε result in a far higher number of bids. The annealed search results
in generating numbers of bids similar to the smallest value of ε. For simplicity, this
simulation assumes that all sensors communicate in a synchronous fashion with no
communications loss.

In Fig. 33, the x-axis is the same and the y-axis represents the total number of bids
placed in the average case of the bidding process. As the network size increases, the
total number of bids for smaller values of ε increase very quickly. If small values of
ε are chosen in a real-world deployment, the large volume of messages required to
be transmitted and received would have a significant impact on battery lifetime. This
would result in a tradeoff of sensor lifetime versus coverage.

In Fig. 34, the x-axis is the same and the y-axis represents the maximum number
of meters any sensor must travel. The smaller the value of ε, the shorter the travel
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distance for any sensor. In this case, the annealed search outperforms all others. On
average, theHungarianmethod requires 1.34 times the distance of the annealed search
and the modified Hungarian method with binary search, denoted by HungarianK, is
0.75 times better than the annealed search.

In Fig. 35, the x-axis is the same and the y-axis represents the computation time
of the approximate solution. For the annealed search, we see that the computation
is more expensive when the number of sensor columns is smaller. As the number
of sensor columns increase, the annealed search offers a noticeablecomputational
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Fig. 35 Network size versus computation time for the different values of ε

improvement over smaller values of ε. In general, the computation of the Hungarian
method is comparable to when ε = 0.5. The HungarianK function grows O(log n)

faster making it difficult to simultaneously display all curves in a single graph.

7 Summary

In this chapter we provide a comprehensive survey on the barrier coverage of wireless
sensor networks. In particular, we discuss how the barrier coverage of a wireless
sensor network depends on the various factors, including the network environments,
sensor deployment strategies, and sensormobility. For the various network scenarios,
we present the challenges of providing barrier coverage under the specific network
settings, establish the fundamental performance limits, and propose effective and
efficient solutions to the construction of sensor barriers. The results should provide
important insights into the deployment, design, and performance for wireless sensor
network applications for barrier coverage. The analytical techniques and algorithms
presented will also shed light on the future research on this topic.
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Appendix

Proof of Theorem 2

Proof Consider the relative positions of nodes si and si+1. Define zx = sx
i+1 − sx

i
and zy = sy

i+1 − sy
i . Then zx = π + βx

i+1 − βx
i and zy = β

y
i+1 − β

y
i . Since the βs are

Normally distributed with variance η 2, then βx
i+1−βx

i and β
y
i+1−β

y
i are both Normal

random variable with variance 2η 2, i.e., zx ≈ N (π, 2η 2) and zy ≈ N (0, 2η 2).
The distance between si and si+1 is equal to:

di
�= |si+1 − si | =

√
(zx )2 + (zy)2 (A.1)

This implies that di follows a Ricean distribution. Since the distribution is iden-
tical for all i , we drop the index and denote the distance between two consecutive
nodes as d.

In particular, the probability that d < ω is given by (see for instance [57], Chap. 2):

P(d < ω) = 1 − Q1(
π∗
2η

,
ω∗
2η

) (A.2)

where Q1 is the Marcum’s Q-function of the first order, defined by:

Q1(
π∗
2η

,
ω∗
2η

) = e−(π 2+ω2)/4η 2
∞∑

k=0

(
π

ω

)k

Ik

(
πω

2η 2

)
(A.3)

and Ik is the kth order modified Bessel function of the first kind.
Thus, two sensors si and si+1 provide barrier coveragewith probability P(d < ω).

If each pair of sensors si and si+1 is within ω of each other and within ω of the
boundary, then the sensor deployment provides barrier coverage over the all width
of the area. For all 1 ≤ i ≤ n − 1, denote by Wi the event that di < ω. Denote by
W b

0 the event that s1 is within distance ω of the boundary x = 0, and W b
n that sn is

within distance ω of the boundary x = l. Since this is not the only configuration that
provides barrier coverage, we have

P(Barrier Coverage) ≥ P

(
W b

0

⋂
W b

n

⋂
(

n−1⋂
i=1

Wi )

)
. (A.4)

Assumption (1) allows us to consider W b
0 , W b

n and Wi , 1 ≤ i ≤ n − 1, as inde-
pendent events and approximate P(W b

0

⋂
W b

n
⋂

(
⋂n−1

i=1 Wi )) with P(W b
0 )P(W b

n )

(P(d < ω))(n−1). Indeed, if assumption (1) was violated, and ω was almost equal
to π , then a perturbation which brings node si close to si−1 would also create a gap
between si and si+1. Wi happening thus implies that Wi+1 would not happen, and that
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both events are conditioned on each other, not independent. However, by choosing
the right parameter ρ , the approximation by independent events is appropriate, as we
confirm in the evaluation section.

We can also easily verify that P(W b
0 ) > P(d < ω) and symmetrically, P(W b

n ) >

P(d < ω), so that P(Barrier Coverage) ≥ P(d < ω)n+1.
Assumption (2) ensures that the gapbetween P(BarrierCoverage) and P(

⋂n
i=0 Wi )

stays limited, and that the most likely configuration to provide coverage is indeed
by having each si and si+1 within ω of each other. Other configurations are possible,
and a gap between si and si+1 could be filled by having a third sensor out of position
in the sequential ordering along the x-axis. However, assumption (2) ensures that
such other configurations have a low likelihood. Simulation will show that, under
assumption (2) the lower bound is actually tight.

Note that we do not put an explicit dependency of π on n, but as n → ∞, the
probability of barrier coverage goes to 1 as π → 0, all other parameters being
constant. �
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Chapter 4
Spatiotemporal Coverage in Fusion-Based
Sensor Networks

Rui Tan and Guoliang Xing

Abstract Wireless sensor networks (WSNs) have been increasingly available for
critical applications such as security surveillance and environmental monitoring. As
a fundamental performance measure of WSNs, coverage characterizes how well a
sensing field is monitored by a network. Two facets of coverage, i.e., spatial cover-
age and temporal coverage, quantify the percentage of area that is well monitored
by the network and the timeliness of the network in detecting targets appearing in
the sensing field, respectively. Although advanced collaborative signal processing
algorithms have been adopted by many existing WSNs, most previous analytical
studies on spatiotemporal coverage of WSNs are conducted based on overly simplis-
tic sensing models (e.g., the disc model) that do not capture the stochastic nature of
sensing. In this chapter, we attempt to bridge this gap by exploring the fundamental
limits of spatiotemporal coverage based on stochastic data fusion models that fuse
noisy measurements of multiple sensors. We derive the scaling laws between spa-
tiotemporal coverage, network density, and signal-to-noise ratio (SNR). We show
that data fusion can significantly improve spatiotemporal coverage by exploiting the
collaboration among sensors when several physical properties of the target signal
are known. In particular, for signal path loss exponent of k (typically between 2.0
and 5.0), we prove that ρ f /ρd = O(δ2/k), where ρ f and ρd are the densities of
uniformly deployed sensors that achieve full spatial coverage or minimum detection
delay under the fusion and disc models, respectively, and δ is SNR. Our results help
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understand the limitations of the previous analytical results based on the disc model
and provide key insights into the design of WSNs that adopt data fusion algorithms.
Our analyses are verified through extensive simulations based on both synthetic data
sets and data traces collected in a real deployment for vehicle detection.

1 Introduction

Recent years have witnessed the deployments of wireless sensor networks (WSNs)
for many critical applications such as security surveillance [20], environmental mon-
itoring [30], and target detection/tracking [26]. Many of these applications involve a
large number of sensors distributed in a vast geographical area. As a result, the cost
of deploying these networks into the physical environment is high. A key challenge
is thus to predict and understand the expected sensing performance of these WSNs.
A fundamental performance measure of WSNs is coverage that characterizes how
well a sensing field is monitored by a network. The coverage of a network has two
facets, i.e., spatial coverage and temporal coverage. The spatial coverage quantifies
the percentage of area that is well monitored by the network. The temporal coverage
quantifies the timeliness of the network in detecting targets appearing in the sens-
ing field. Many recent studies are focused on analyzing the spatiotemporal coverage
performance of large-scale WSNs [4, 23, 29, 38, 46, 50, 52].

Despite the significant progress, a key challenge faced by the research on spa-
tiotemporal coverage is the obvious discrepancy between the advanced information
processing schemes adopted by existing sensor networks and the overly simplistic
sensing models widely assumed in the previous analytical studies. On the one hand,
many WSN applications are designed based on collaborative signal processing algo-
rithms that improve the sensing performance of a network by jointly processing the
noisy measurements of multiple sensors. In practice, various stochastic data fusion
schemes have been employed by sensor network systems for event monitoring, detec-
tion, localization, and classification [10, 13, 14, 20, 25, 26, 34, 39]. On the other
hand, collaborative signal processing algorithms such as data fusion often have com-
plex complications to the network-level sensing performance such as coverage. As
a result, most analytical studies. on spatiotemporal coverage are conducted based
on overly simplistic sensing models [3, 4, 18, 22, 23, 28, 29, 38, 46, 47, 52]. In
particular, the sensing region of a sensor is often modeled as a disc with radius r
centered at the position of the sensor, where r is referred to as the sensing range.
A sensor deterministically detects the targets (events) within its sensing range. In
Sect. 2, we will briefly survey the studies that are based on this disc model. Although
such a model allows a geometric treatment to the coverage problem, it fails to capture
the stochastic nature of sensing.

To illustrate the inaccuracy of the disc sensing model, we plot the sensing per-
formance of an acoustic sensor in Fig. 1 using the data traces collected from a real
vehicle detection experiment [14]. In the experiment, the sensor detects moving vehi-
cles by comparing its signal energy measurement against a threshold (denoted by t).
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Fig. 1 Sensing performance of an acoustic sensor in detecting vehicle. a Detection probability
versus the distance from the vehicle. b False alarm rate versus detection threshold

Figure 1a plots the probability that the sensor detects a vehicle (denoted by PD) ver-
sus the distance from the vehicle. No clear cut-off boundary between successful and
unsuccessful sensing of the target can be seen in Fig. 1a. Similar result is observed
for the relationship between the sensor’s false alarm rate (denoted by PF ) and the
detection threshold shown in Fig. 1b. Note that PF is the probability of making a
positive decision when no vehicle is present.

In this work, we develop an analytical framework to explore the fundamental limits
of spatiotemporal coverage of large-scale WSNs based on stochastic data fusion
models. To characterize the inherent stochastic nature of sensing, we propose new
measures for quantifying spatiotemporal coverage. Specifically, the spatial coverage
is defined as the fraction of area in which the target can be detected with a false alarm
rate of at most α and a detection probability of at least β. Similarly, to quantify the
fundamental trade-off between detection delay and false alarm rate, we propose a
new metric called α-delay that is defined as the delay of detecting a target subject to
the false alarm rate bound α. The temporal coverage is then defined as the reciprocal
of α-delay. Compared with the classical definitions of spatial and temporal coverage,
these new definitions explicitly capture the performance requirements imposed by
sensing applications. For instance, the full spatial coverage of a region with α = 5 %
and β = 90 % ensures that the probability of detecting any event occurring in the
region is no lower than 90 % and no more than 5 % of the network reports are false
alarms. Moreover, in the asymptotic case where α-delay is minimized, any target
can be detected almost surely once after its appearance, while the false alarm rate is
no greater than α.

The main focus of this paper is to investigate the fundamental scaling laws between
spatiotemporal coverage, network density, and SNR. To the best of our knowledge,
this work is the first to study the spatiotemporal coverage performance of large-scale
WSNs based on collaborative sensing models. Our results not only help understand
the limitations of the existing analytical results based on the disc model but also
provide key insights into designing and analyzing the large-scale WSNs that adopt
stochastic fusion algorithms. The main contributions of this work are as follows:
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• We derive the spatiotemporal coverage of random networks under both data fusion
and probabilistic disc models. The existing analytical results based on the classical
disc model can be naturally extended to the context of stochastic event detection.
With these results, we can compute the minimum network density before the
deployment or turn on the fewest sensors of an existing network to achieve a
desired level of spatiotemporal coverage.

• We study the fundamental scaling laws of spatiotemporal coverage. Let ρd and
ρ f denote the minimum network densities for achieving full spatial coverage
or minimum detection delay under the disc and fusion models, respectively. For
randomly deployed networks, we prove that ρ f = O( 2r2

R2 ·ρd) where r is the radius
of sensing disc and R is the fusion range within which the measurements of all
sensors are fused. As fusion range can be much greater than sensing range, ρ f is
much smaller than ρd . This result shows that data fusion can effectively reduce
the network density compared with the disc model. Furthermore, the existing
analytical results based on the disc model significantly overestimate the network
density required for achieving coverage.

• We study the impact of SNR on the network density when full spatial coverage
or minimum detection delay is required. For randomly deployed networks, we
prove that

ρ f
ρd

= O(δ2/k), where δ is SNR and k is the signal’s path loss exponent
that typically ranges from 2.0 to 5.0. This result suggests that data fusion is more
effective in reducing the density of low-SNR network deployments, while the disc
model is suitable only when the SNR is sufficiently high.

• To verify our analyses, we conduct extensive simulations based on both synthetic
data sets and real data traces collected from 20 sensors. The simulation results
validate our analytical results under a variety of realistic settings.

This chapter is organized as follows. Section 2 reviews the related literature on
spatiotemporal coverage and detection delay. Section 3 introduces background and
Sect. 4 derives the spatiotemporal coverage of WSNs. Sections 5.1 and 5.2 study
the impact of data fusion on spatial and temporal coverage, respectively. Section 6
discusses the implications of results and several open issues. Section 7 presents the
results of performance evaluation. Section 8 concludes this chapter.

2 Related Work

2.1 Coverage

As one of the most fundamental issues in WSNs, the coverage problem has
attracted significant research attention. Previous works fall into two categories,
namely theoretical analysis of coverage performance and coverage maintenance algo-
rithms/protocols. These two categories are reviewed briefly as follows,
respectively. As this chapter falls into the category of the theoretical analysis of
coverage performance, our review will be mainly focused on this category.
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2.1.1 Analysis of Coverage

Theoretical studies of the coverage of large-scale WSNs have been conducted in [4,
18, 22, 23, 28, 29, 38, 46, 52]. Most works [22, 23, 28, 38, 46, 52] focus on deriving
the asymptotic coverage of WSNs. The k-coverage is a coverage model widely used
in these studies. Specifically, a network provides k-coverage if any physical point is
within the sensing range of at least k sensors.

Kumar et al. [23] consider duty-cycled WSNs that are deployed on a
≤

n × ≤
n

grids, random uniform and Poisson with density n. Each sensor independently sleeps
in each time slot with probability of p. They prove that the critical value of the function
npπr2/ log(np) is 1 for the event of k-coverage, where r is the sensor’s sensing range.
In other words, when the network size n increases, to ensure k-coverage, r has an

asymptotic lower bound of
⎡

log np
np .

Wan et al. [46] assume that the sensors are deployed as either a Poisson point
process or a uniform point process in a square or disk region. They study two asymp-
totic scaling laws: (i) how the probability of k-coverage changes with the sensing
range and the number of sensors, when the region to be covered is a unit square or
disk; and (ii) how the probability of k-coverage changes with the area of the region
to be covered and the number of sensors, when the sensors have unit sensing range.
The upper and lower bounds for the probability of k-coverage are derived. Moreover,
the asymptotic conditions for the k-coverage with high probability are also derived.

Shakkottai et al. [38] consider that n sensors are deployed at the grid points
of a unit square area. They prove the necessary and sufficient conditions for the
1-coverage and network connectivity, i.e., p · r has an order of log n

n , where p is the
probability that a sensor is active. They also derive the order of the number of hop
counts from any active node to another, which is

≤
n/ log n. This study assumes that

the sensing range and communication range are the same, which is a limitation of
this study.

Zhang et al. [52] consider a Poisson sensor deployment with density λ in a square
region with side length l, where each sensor covers a unit disk. They derive the
necessary and sufficient condition of λ for k-coverage when l increases, i.e., λ =
log l2 + (k + 1) log log l2 + c(l) where c(l) → +∞ as l → ∞. Based on this result,
they prove that the upper bound of the network lifetime is kT where T is the lifetime
of a single sensor, if λ = log l2 + (k + 1) log log l2 + c(l) where c(l) → −∞ as
l → ∞.

The above studies [23, 38, 46, 52] focus on the full k-coverage over all region,
i.e., every physical point is covered by at least k sensors. In [22], Kumar et al. study
the k-barrier coverage problem: when an intruder crosses a belt area deployed with
sensors, it can be detected with high probability by at least k sensors. Different from
the full k-coverage, k-barrier coverage does not require that each physical point in
the monitored region is covered by k sensors. If sensors are stealthy, the k-barrier
coverage is defined as weak k-barrier coverage; otherwise, it is defined as strong
k-barrier coverage. The critical conditions for weak and strong k-barrier coverage
are derived by Kumar et al. in [22] and Liu et al. in [28], respectively. The critical
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conditions can be used to compute the minimum number of sensors to provide barrier
coverage with high probability.

Ammari et al. [2] study the critical phase transitions for coverage and connectivity
based on percolation theory. Specifically, the sensing-coverage phase transition is
the abrupt change from small fragmented covered areas to a single large covered
area, when more sensors are continuously added to a WSN. Similarly, the network-
connectivity phase transition is the abrupt change from an originally disconnected
WSN to a connected WSN as more sensors are added. The covered area fractions
for both transitions are derived at critical percolation.

Liu et al. [29] study the coverage performance of WSNs using other three coverage
metrics, i.e., area coverage, node coverage, and detectability. The area coverage is
defined as the fraction of the geographical area covered by one or more sensors.
The node coverage is defined as the fraction of sensors that can be removed without
reducing the area coverage. Detectability is defined as the probability that a WSN can
detect an object moving along a line segment in the WSN. Liu et al. derive the closed-
form formulas of these three coverage metrics for random infinite plane deployments
and random strip deployments under the disc sensing model and a general sensing
model that considers signal decay, respectively.

The temporal coverage, i.e., the latency of detecting a target, is another important
facet of the coverage performance of WSNs. Cao et al. [5] derive the average latencies
of detecting static or mobile target when sensors are deployed randomly and follow a
random sleep scheduling scheme. Dousse et al. [12] address a similar problem where
only the sensors with a connected path to the sink are considered. In [24], Lazos et
al. map the problem of detecting mobile targets using randomly deployed sensors to
a line-set intersection problem. Their analysis shows that the detection probability
and the detection delay depends on the length of the perimeters of the sensing areas
of sensors and not their shapes.

Most of the above theoretical results on coverage for both static and mobile sen-
sors/targets are surveyed and compared in [4]. However, all the above theoretical
studies are based on the deterministic disc model. In this chapter, we compare our
results obtained under a data fusion model against the results from [4, 29].

2.1.2 Coverage Maintenance Algorithms

Early work [27, 31, 32] quantifies spatiotemporal coverage by the length of target’s
path where the accumulative observations of sensors are maximum or minimum
[27, 31, 32]. However, these works focus on devising algorithms for finding the
target’s paths with certain level of coverage. Several algorithms and protocols [7, 50,
51] are designed to maintain spatiotemporal coverage using the minimum number of
sensors. However, the effectiveness of these schemes largely relies on the assump-
tion that sensors have circular sensing regions and deterministic sensing capability.
Several recent studies [1, 21, 37, 48, 53] on the coverage problem have adopted prob-
abilistic sensing models. The numerical results in [48] show that the coverage of a
network can be expanded by the cooperation of sensors through data fusion. How-
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ever, these studies do not quantify the improvement of coverage due to data fusion
techniques. Different from our focus on analyzing the fundamental limits of coverage
in WSNs, all of these studies aim to devise algorithms and protocols for coverage
maintenance.

2.2 Data Fusion

There is a vast amount of literature on stochastic signal detection based on multi-
sensor data fusion. Early works [6, 44] focus on small-scale powerful sensor networks
(e.g., several radars). Recent studies on data fusion have considered the specific prop-
erties of WSNs such as sensors’ spatial distribution [13, 14, 34] and limited sens-
ing/communication capability [10]. However, these studies focus on analyzing the
optimal fusion strategies that maximize the system performance of a given network.
In contrast, this chapter explores the fundamental limits of spatiotemporal coverage
of WSNs that are designed based on existing data fusion strategies. Recently, irregular
sampling theory has been applied for reconstructing physical fields in WSNs [35, 36].
Different from these works that focus on developing sampling schemes to improve
the quality of signal reconstruction, we aim to analyze sensors’ spatial density for
achieving the required level of coverage.

Many sensor network systems have incorporated various data fusion schemes
to improve the system performance. In the surveillance system based on MICA2
motes [20], the system false alarm rate is reduced by fusing the detection decisions
made by multiple sensors. In the DARPA SensIT project [14], advanced data fusion
techniques have been employed in a number of algorithms and protocols designed
for target detection [10, 26], localization [25, 39], and classification [13, 14]. Despite
the wide adoption of data fusion in practice, the performance analysis of large-scale
fusion-based WSNs has received little attention.

3 Preliminaries and Problem Definition

This section first introduces the preliminaries in Sect. 3.1, and then formally defines
the spatiotemporal coverage of wireless sensor networks in Sect. 3.2.

3.1 Preliminaries

In this section, we describe the technical preliminaries of this chapter, which include
sensor measurement, network and data fusion models.
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3.1.1 Sensor Measurement Model

We assume that sensors perform detection by measuring the energy of signals emitted
by the target.1 The energy of most physical signals (e.g., acoustic and electromagnetic
signals) attenuates with the distance from the signal source. Suppose sensor i is di

meters away from the target that emits a signal of energy S0. The attenuated signal
energy si at the position of sensor i is given by si = S0 · w(di ), where w(·) is a
decreasing function satisfying w(0) = 1, w(∞) = 0, and w(x) = λ(x−k). The
w(·) is referred to as the signal decay function. Depending on the environment, e.g.,
atmosphere conditions, the signal’s path loss exponent k typically ranges from 2.0 to
5.0 [19, 25]. We note that the theoretical results derived in this chapter do not depend
on the closed-form formula of w(·). We adopt the following signal decay function
in the simulations conducted in this chapter:

w(x) = 1

1 + xk
. (1)

The sensor measurements are contaminated by additive random noises from sensor
hardware or environment. Depending on the hypothesis that the target is absent (H0)
or present (H1), the measurement of sensor i , denoted by yi , is given by

H0 : yi = ni , H1 : yi = si + ni ,

where ni is the energy of noise experienced by sensor i . We assume that the noise ni

at each sensor i follows the normal distribution, i.e., ni ∗ N (μ,σ2), where μ and σ2

are the mean and variance of ni , respectively. We assume that the noises, {ni |∼i}, are
spatially independent across sensors. Therefore, the noises at sensors are independent
and identically distributed (i.i.d.) Gaussian noises. In the presence of target, the
measurement of sensor i follows the normal distribution, i.e., yi |H1 ∗ N (si +
μ,σ2). Due to the independence of noises, the sensors’ measurements, {yi |∼i, H1},
are spatially independent but not identically distributed as sensors receive different
signal energies from the target. We define the PSNR as δ = S0/σ which quantifies
the noise level. The symbols used in this chapter are summarized in Table 1.

The above signal decay and additive i.i.d. Gaussian noise models have been widely
adopted in the literature of multi-sensor signal detection [1, 6, 10, 25, 29, 32, 34,
39, 44, 48] and also have been empirically verified [19, 25]. In practice, the para-
meters of these models (i.e., S0, w(·), μ, and σ2) can be estimated using the training
data collected by the existing WSN or several in situ sensors before the large-scale
deployment. The normal distribution might be an approximation to the real noise
distribution in practice. As discussed in Sect. 6.2, the assumption of i.i.d. Gaussian
noises can be relaxed to any i.i.d. noises.

1 Several types of sensors (e.g., acoustic sensor) only sample signal intensity at a given sampling
rate. The signal energy can be obtained by preprocessing the time series of a given interval, which
has been commonly adopted to avoid the transmission of raw data [10, 13, 14, 25, 39].
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Table 1 Summary of notationa

Symbola Definition

O(·) Asymptotic upper bound notation
λ(·) Asymptotic tight bound notation
Q(x) CCDF of standard normal distribution
S0 Original signal energy emitted by the target
μ, σ2 Mean and variance of noise energy
δ PSNR, δ = S0/σ

k Path loss exponent
w(·) Signal decay function, w(x) = λ(x−k)

si Attenuated signal energy
ni Noise energy, ni ∗ N (μ,σ2)

yi Signal energy measurement, yi = si + ni

Y Fusion statistic at cluster head / base station
PF / PD False alarm rate / detection probability
α / β Upper / lower bound of PF / PD

H0 / H1 Hypothesis that the target is absent / present
ρ Network density
F(p) The set of sensors within fusion range of point p
N (p) The number of sensors in F(p)

ε Upper bound of target localization error
t Local detection threshold
T Detection threshold at cluster head
TD Detection period
R Fusion range under data fusion model
r Disc radius under disc sensing model
c Spatial coverage of a network
τ Average detection delay of a network
v Movement speed of target
a The symbols with subscript i refer to the notation of sensor i

3.1.2 Network Model

We consider a network deployed in a vast two-dimensional geographical region.
The positions of sensors are uniformly and independently distributed in the region.
Such a deployment scenario can be modeled as a stationary two-dimensional Poisson
point process. Let ρ denote the density of the underlying Poisson point process. The
number of sensors located in a region A, N (A), follows the Poisson distribution
with mean of ρ||A||, i.e., N (A) ∗ Poi(ρ||A||), where ||A|| represents the area of the
region A. We note that the uniform sensor distribution has been widely adopted in
the performance analysis of large-scale WSNs [4, 23, 29, 38, 46]. Therefore, this
assumption allows us to compare our results with previous analytical results.

When we analyze the temporal coverage performance of a network, we consider
the following sensor sampling scheme and target mobility model. We assume that a
sensor executes detection task every TD seconds. TD is referred to as the detection
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timeTD TD

sampling interval

Fig. 2 Temporal view of a single sensor’s operation. The sensor outputs an energy measurement
after each sampling interval

period. In each detection period, a sensor gathers the signal energy during the sam-
pling interval for the detection made in the current detection period. We assume that
the sampling interval is much shorter than the detection period. The temporal view
of a single sensor’s operation is illustrated in Fig. 2. We note that such an intermittent
measurement scheme is consistent with several wireless sensor systems for target
detection and tracking [13, 14, 20]. For instance, a sensor may wake up every 5
seconds and sample acoustic energy for 0.05 s, where TD is 5 s and the sampling
interval is 0.05 s [14]. We assume that the target may appear at any location in the
deployment region and move freely. Moreover, the target is blind to the network,
i.e., the target does not know the sensors’ positions, and hence it cannot choose a
movement scheme to reduce the probability of being detected. The sensors synchro-
nously detect the target, and we refer to the target detection in one detection period
as the unit detection. The process of detecting a target consists of a series of unit
detections. As the sampling interval is much shorter than the detection period, we
ignore the target’s movement during the sampling interval.

3.1.3 Data Fusion Model

Data fusion can improve the performance of detection systems by jointly consider-
ing the noisy measurements of multiple sensors. There exist two basic data fusion
schemes, namely decision fusion and value fusion. In decision fusion, each sensor
makes a local decision based on its measurements and sends its decision to the cluster
head, which makes a system decision according to the local decisions. In value fusion,
each sensor sends its measurements to the cluster head, which makes the detection
decision based on the received measurements. In this chapter, we focus on value
fusion, as it usually has better detection performance than decision fusion [44]. Most
of the results in this chapter can be extended to address the decision fusion model.
The details of the extensions can be found in [41, 42]. The optimal value fusion rule
is to compare a weighted sum of sensors’ measurements, i.e.,

⎢
i

si
σ · yi , to a thresh-

old [41]. However, as sensor measurements contain both noise and signal energy,
the weight si

σ , i.e., the SNR received by sensor i , is unknown. A practical solution
is to adopt equal constant weights for all sensors’ measurements [10, 34, 48]. Since
the measurements from different sensors are treated equally, the sensors far away
from the target should be excluded from data fusion as their measurements suffer
low SNRs. Therefore, we adopt a fusion scheme as follows.
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When the network detects whether a target is present at a physical point p, the sen-
sors within a distance of R meters from p form a cluster and fuse their measurements
to detect whether a target is present at p. R is referred to as the fusion range and F(p)

denotes the set of sensors within the fusion range of p. The number of sensors in
F(p) is represented by N (p). A cluster head is elected to make the detection decision
by comparing the sum of measurements reported by member sensors in F(p) against
a detection threshold T . Let Y denote the fusion statistic, i.e., Y = ⎢

i∈F(p) yi . If
Y ≥ T , the cluster head decides H1; otherwise, it decides H0.

We assume that the cluster head makes a detection based on snapshot measure-
ments from member sensors in each unit detection without using temporal samples to
refine the detection decision. Such a snapshot scheme is widely adopted in previous
works on target surveillance [10, 25, 34, 39, 48]. Fusion range R is an important
design parameter of our data fusion model. As SNR received by sensor decays with
distance from the target, fusion range lower-bounds the quality of information that is
fused at the cluster head. The above data fusion model is consistent with the fusion
schemes adopted in [10, 34, 48]. If more efficient fusion models are employed, the
scaling laws proved in this chapter still hold as discussed in Sect. 6.2. When the
network is requested to detect whether a target is present at a specified position, a
cluster forms around the specified position. When the target position is not specified,
we assume that the target position can be obtained through a localization algorithm.
For instance, the target position can be estimated as the geometric center of a number
of sensors with the largest measurements. Such a simple localization algorithm is
employed in the simulations conducted in this chapter. The localized position may
not be the exact target position and the distance between them is referred to as local-
ization error. We assume that the localization error is upper-bounded by a constant
ε. The localization error is accounted for in the following analyses. However, we
show that it has no impact on the asymptotic results derived in this chapter. When
the target is absent and the network is requested to make a detection, a cluster will
still be formed and most likely yield a negative detection decision.

The above data fusion model can be used for target detection as follows. The
detection can be triggered by user queries or executed periodically. In a detection
process, each sensor makes a snapshot measurement and a cluster is formed by
the sensors within the fusion range from the possible target to make a detection
decision. The cluster formation may be initiated by the sensor that has the largest
measurement. Such a scheme can be implemented by several dynamic clustering
algorithms [8]. Figure 3 illustrates the intrusion detection under the data fusion model.
The fusion range R can be used as an input parameter of the clustering algorithm. The
communication topology of the cluster can be a multi-hop tree rooted at the cluster
head. As the fusion statistic Y is an aggregation of sensors’ measurements, it can be
computed efficiently along the routing path to the cluster head. In this chapter, we are
interested in the fundamental performance limits of spatial and temporal coverage
under the fusion model and the design of clustering and data aggregation algorithms
is beyond the scope of this chapter.
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R

Fig. 3 Target detection under data fusion model. The void circles represent randomly deployed
sensors; the solid circles represent the target in different sampling intervals, and a unit detection is
performed in each sampling interval; the dashed discs represent the fusion ranges

3.2 Definitions and Problem Statement

3.2.1 Definition of Spatiotemporal Coverage

The detection of a target is inherently stochastic due to the noise in sensor measure-
ments. The detection performance is usually characterized by two metrics, namely,
the false alarm rate (denoted by PF ) and detection probability (denoted by PD). PF is
the probability of making a positive decision when no target is present, and PD is the
probability that a present target is correctly detected. In stochastic detection, positive
detection decisions may be false alarms caused by the noise in sensor measurements.
In particular, although the detection probability can be improved by setting lower
detection thresholds, the fidelity of detection results may be unacceptable because
of high false alarm rates. Therefore, PF together with PD characterize the sensing
quality provided by the network. For a physical point p, we denote the probability
of successfully detecting a target located at p as PD(p). Note that PF is the prob-
ability of making positive decision when no target is present, and hence is location
independent. We first introduce a concept called (α,β)-covered.

Definition 1 ((α,β)-covered). Given two constants α ∈ (0, 0.5) and β ∈ (0.5, 1), a
physical point p is (α,β)-covered if the false alarm rate PF and detection probability
PD(p) satisfy

PF ≈ α, PD(p) ≥ β.

We now formally define spatial coverage that quantifies the fraction of the sur-
veillance region where PF and PD are bounded by α and β, respectively.

Definition 2 (Spatial coverage). The spatial coverage of a region is defined as the
fraction of points in the region that are (α,β)-covered.

There also exists a fundamental trade-off between the delay of detection and
false alarm rate. Although detection delay can be reduced by making sensors more
sensitive (e.g., setting lower detection threshold), the fidelity of detection results may
be unacceptable due to high false alarm rates. Therefore, studying detection delay
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alone without the consideration of false alarm is meaningless. We now introduce
a new concept called α-delay that quantifies the delay of detection under bounded
false alarm rate.

Definition 3 (α-delay). α-delay is the average number of detection periods before a
target is first detected subject to that the false alarm rate of the network is no greater
than α, i.e., PF ≈ α, where α ∈ (0, 1).

We now formally define temporal coverage that quantifies the timeliness of the
network in detecting targets under bounded false alarm rate.

Definition 4 (Temporal coverage). Temporal coverage is the reciprocal of α-delay.
In addition, we define the following terminologies. The full spatial coverage of

a region refers to the case where the spatial coverage of the region approaches one,
i.e., the false alarm rate is below α and the probability of detecting a target present
at any location is above β. The instant detection refers to the case where the α-delay
or temporal coverage approaches one, i.e., any target can be detected almost surely
in the first detection period after its appearance while the system false alarm rate
is below α. In practice, mission-critical surveillance applications [14, 16, 17, 20]
require that the target can be detected with a high detection probability while the
network maintains a low false alarm rate. Therefore, we can set α and β accordingly
to meet these requirements.

We now illustrate the spatial coverage by an example, where PSNR δ = 1000
(i.e., 30 dB), α = 5 %, β = 95 %, and R = 50 m. Figure 4a and b illustrate the spatial
coverage under the disc and fusion models, respectively. In Fig. 4b, when a target
(represented by the triangle) is present, the sensors within the fusion range from it
fuse their measurements to make a detection. The gray area is (α,β)-covered, where
grayscale represents the value of PD at each point. As shown in Fig. 4a, the covered
region under the disc model is simply the union of all sensing discs. As a result,
when a high level of spatial coverage is required, a large number of extra sensors
must be deployed to eliminate small uncovered areas surrounded by sensing discs.
In contrast, data fusion can effectively expand the covered region by exploiting the
collaboration among neighboring sensors.

Fig. 4 Spatial coverage.
a Spatial coverage under the
disc model. Sensing range r =
17 m, which is computed by
(4). b Spatial coverage under
the fusion model. Grayscale
represents the value of PD

(a) (b)
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3.2.2 Problem Statement

In the rest of this chapter, we consider the following problems:

1. Although a number of analytical results on spatiotemporal coverage [3–5, 12, 23,
24, 29, 38, 46, 50–52] have been obtained under the classical disc model, are they
still applicable under the probabilistic definition spatiotemporal coverage which
explicitly captures the stochastic nature of sensing? To answer this question, we
propose a probabilistic disc model such that the existing results can be naturally
extended to the context of stochastic detection (Sect. 4.1).

2. How to quantify the spatiotemporal coverage when sensors can collaborate
through data fusion? Answering this question enables us to evaluate the spatiotem-
poral coverage performance of a network. Moreover, it allows us to deploy the
fewest sensors for achieving a given level of spatiotemporal coverage (Sect. 4.2).

3. What are the scaling laws between spatiotemporal coverage, network density, and
SNR under both the disc and fusion models? The results will provide important
insights into understanding the limitation of analytical results based on the disc
model as well as the impact of data fusion on the detection performance of large-
scale WSNs (Sect. 5).

4 Spatiotemporal Coverage of Wireless Sensor Networks

In this section, we derive the spatiotemporal coverage of large-scale WSNs under
the disc model and the data fusion model, in Sects. 4.1 and 4.2, respectively.

4.1 Spatiotemporal Coverage under Probabilistic Disc Model

As the classical disc model deterministically treats the detection performance of
sensors, existing results based on this model [3–5, 12, 23, 24, 29, 38, 46, 50–52]
cannot be readily applied to analyze the performance or guide the design of real-world
WSNs. In this section, we extend the classical disc model based on the stochastic
detection theory [44] to capture several realistic sensing characteristics and study
the spatiotemporal coverage under the extended model. The extended results will be
used as the baselines to study the impact of data fusion on the sensing performance
of WSNs.

4.1.1 Probabilistic Disc Model

In the probabilistic disc model, we choose the sensing range r such that (1) the
probability of detecting any target within the sensing range is no lower than β, and
(2) the false alarm rate is no greater than α. As we ignore the detection probability
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outside the sensing range of a sensor, the detection capability of sensor under this
model is lower than in reality. However, this model preserves the boundary of sensing
region defined in the classical disc model. Hence, the existing results based on the
classical disc model [3–5, 12, 23, 24, 29, 38, 46, 50–52] can be naturally extended
to the context of stochastic detection.

We now discuss how to choose the sensing range r under the probabilistic disc
model. The optimal Bayesian detection rule for a single sensor i is to compare its
measurement yi to a detection threshold t [44]. If yi exceeds t , sensor i decides H1;
otherwise, it decides H0. Hence, the false alarm rate PF and detection probability
PD of sensor i are given by

PF = P(yi ≥ t |H0) = Q

⎣
t − μ

σ

⎤
, (2)

PD = P(yi ≥ t |H1) = Q

⎣
t − μ − si

σ

⎤
, (3)

where P(·) is the probability notation and Q(·) is the complementary cumulative
distribution function (CCDF) of the standard normal distribution, i.e., Q(x) =

1≤
2π

⎥∞
x e−t2/2d t . As PD is non-decreasing function of PF [44], it is maximized

when PF is set to be the upper bound α. Hence the optimal detection threshold can
be solved from (2) as topt = μ + σQ−1(α), where Q−1(·) is the inverse function of
Q(·). By replacing t = topt and si = S0 · w(r) in (3), we have

r = w−1
⎣

Q−1(α) − Q−1(β)

δ

⎤
, (4)

where w−1(·) is the inverse function of w(·). If the target is more than r meters
from the sensor, the detection performance requirements, i.e., α and β, cannot be
satisfied by setting any detection threshold. Note that a similar definition of sensing
range is proposed in [48] for stochastic detection. From (4), the sensing range of a
sensor varies with the user requirements (i.e., α and β) and PSNR δ. For instance,
the sensing range r is 3.8 m if α = 5 %, β = 95 %, δ = 50 (i.e., 17 dB) and w(·)
is given by (1) with k = 2. Note that the PSNR of 17 dB is set according to the
measurements from the vehicle detection experiments based on MICA2 [16] and
ExScal [17] motes. As w(·) is a decreasing function, w−1(·) is also a decreasing
function. Therefore, r increases with the PSNR δ according to (4). This conforms to
the intuition that a sensor can detect a farther target if the noise level is lower (i.e., a
greater δ).

4.1.2 Spatial Coverage Under Probabilistic Disc Model

We now extend the spatial coverage of random networks [4, 29] derived under
the classical disc model to probabilistic disc model. Under both the classical and
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probabilistic disc models, a location is regarded as being covered if it is within at
least one sensor’s sensing range. Accordingly, the area of the union of all sensors’
sensing ranges is regarded as being covered by the network. The coverage of random
networks under the classical disc model has been extensively studied based on the
stochastic geometry theory [4, 29]. The results [4, 29] can be stated as the following
lemma:

Lemma 1 Let c denote the spatial coverage under the disc model, we have

c = 1 − e−ρπr2
, (5)

where ρ is the network density.

If the sensing range r is chosen by (4), Eq. (5) computes the spatial coverage of a
random network under the probabilistic disc model. This result will be used as the
basis for studying the impact of data fusion on spatial coverage in Sect. 5.1.

4.1.3 Temporal Coverage Under Probabilistic Disc Model

Before deriving the temporal coverage under probabilistic disc model, we first intro-
duce the target detection under the model. The network periodically detects the target
as described in Sect. 3.1.2. In each unit detection, if the target is within at least one
sensor’s sensing range, the target is detected with a probability no lower than β. We
let β be sufficiently close to 1 (e.g., β = 0.99) such that the target is detected almost
surely if it is within any sensor’s sensing range. Such a setting enables the sensors to
exhibit similar deterministic property as under the classical disc model. We refer to
the circular region with radius of r centered at the target as the target disc. Hence,
the target is detected if there is at least one sensor within the target disc. In this
section, we assume that there is no overlap between any two target discs such that
the unit detections are independent from each other. Such independence among unit
detections can significantly simplify the analysis. In Sect. 5.2.2, we will extend the
analysis to the case where target discs may overlap. We now discuss the condition
for no overlap between any two target discs. Suppose the target moves at a constant
speed of v, the no-overlap condition can be satisfied if vTD > 2r . For instance, if
the sensing range r is 3.8 m as mentioned in Sect. 4.1.1 and the target speed v is
5 m/s (i.e., 18 km/h) [14], the target discs will no overlap as long as the detection
period TD is greater than 2 s. We have the following lemma. The proof can be found
in Appendix 1.

Lemma 2 Let τ denote the α-delay under the probabilistic disc model. If there is
no overlap between any two target discs,

τ = 1

1 − e−ρπr2 .
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We can see from Lemma 2 that the α-delay decreases with network density ρ and
sensing range r . Note that r is given by (4) under the probabilistic disc model. With
the α-delay, we can calculate the temporal coverage of the network.

4.2 Spatiotemporal Coverage Under Data Fusion Model

Although the probabilistic disc model discussed in Sect. 4.1 captures the stochastic
nature of sensing, it does not exploit the collaboration among sensors. In this section,
we first derive the spatiotemporal coverage of random networks under the fusion
model and illustrate the analytical results using numerical examples.

4.2.1 Spatial Coverage Under Data Fusion Model

We have the following lemma regarding the spatial coverage of random networks.
The proof can be found in Appendix 2.

Lemma 3 The spatial coverage of a uniformly deployed network under the data
fusion model, denoted by c, is

c = P

⎦⎢
i∈F(p) si≤
N (p)

≥ σ
(

Q−1(α) − Q−1(β)
)⎛

, (6)

where p is an arbitrary physical point in the network.

As p is an arbitrary point in the network, N (p) is a Poisson random variable, i.e.,
N (p) ∗ Poi(ρπR2). Moreover, {si |i ∈ F(p)} are also random variables. However,
we have no closed-form formula for computing (6) due to the difficulty of deriving the

cumulative distribution function (CDF) of
⎢

i∈F(p) si≤
N (p)

. We now give an approximation
to (6) in the following lemma. The proof can be found in Appendix 3.

Lemma 4 Let μs and σ2
s denote the mean and variance of si |i ∈ F(p) for arbitrary

point p, respectively. The spatial coverage of a uniformly deployed network under
the data fusion model can be approximated by

c √ Q

⎦
γ(R) − ρπR2
⎜

ρπR2

⎛
, (7)

where γ(R) =
⎣

Q−1(α)σ−Q−1(β)
≤

σ2
s +σ2

μs

⎤2

.

We note that the formulas of μs and σ2
s are given by (20) and (21), respectively. As

central limit theorem (CLT) is applied in the derivation of (7) (see Appendix 3), this
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approximation is accurate when N (p) ≥ 20 [33]. This condition can be easily met
in many applications. For example, it is shown in [16] that the detection probability
is only about 40 % when four MICA2 motes are deployed in a 10 × 10 m2 region.
Suppose R = 20 m and the network density is the same as in [16], N (p) will be about
50. With the approximate formula, we can evaluate the coverage performance of an
existing network or compute the minimum network density to achieve the desired
level of coverage under the fusion model. Our simulation results in Sect. 7 show that
(7) can provide accurate prediction of coverage under the fusion model. We note that
the localization error has little impact on the accuracy of the approximate formula
when R � ε. Recent sensor network localization protocols can achieve a precision
within 0.5 m in large-scale outdoor deployments [43].

We now derive the lower bound of spatial coverage under the fusion model, which
will be used in the derivations of scaling laws in Sect. 5.1. We denote FPoi(·|λ) as
the CDF of the Poisson distribution Poi(λ), which is formally given by FPoi(x |λ) =⎢�x∩

k=0
e−λλk

k! . We have the following lemma. The proof can be found in Appendix 4.

Lemma 5 The lower bound of spatial coverage of a uniformly deployed network
under the data fusion model, denoted by cL , is given by

cL = 1 − FPoi(σ (R)|ρπR2), (8)

where

σ (R) =
⎣

Q−1(α) − Q−1(β)

δ

⎤2

· 1

w2(R + ε)
. (9)

When ρπR2 is large enough,

cL = Q

⎦
σ (R) − ρπR2
⎜

ρπR2

⎛
. (10)

We now provide several numerical results to help understand the spatial coverage
performance of random networks under the data fusion model. We adopt the signal
decay function given by (1) with k = 2. Figure 5 plots the approximate coverage
computed by (7). We can see from Fig. 5 that the coverage initially increases with
fusion range R, but decreases to zero eventually. Intuitively, as the fusion range
increases, more sensors contribute to the data fusion resulting in better sensing qual-
ity. However, as R becomes very large, the aggregate noise starts to cancel out the
benefit because the target signal decreases quickly with the distance from the target.
In other words, the measurements of sensors far away from the target contain low
quality information and hence fusing them leads to lower detection performance.
An important question is thus how to choose the optimal fusion range (denoted by
Ropt) that maximizes the coverage. First, the Ropt can be obtained through numer-
ical experiments. Figure 6 plots the optimal fusion ranges under different network
densities, which are obtained by numerically maximizing the coverage. Second, it
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Fig. 5 Spatial coverage
versus fusion range (δ = 4,
α = 5 %, β = 95 %)
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is possible to obtain the analytical Ropt by solving dc
dR = 0. For instance, when the

signal decay function w(·) is given by (1) with k = 2, Ropt satisfies
Ropt

ln Ropt
= λ(

≤
ρ)

and hence Ropt increases with network density ρ.

4.2.2 Temporal Coverage Under Data Fusion Model

As discussed in Sect. 3.1.2, sensors perform a unit detection in each detection period
and hence the process of detecting a target consists of a series of unit detections.
Denote F j as the set of sensors within the fusion range in the j th unit detection.
Suppose there are N j sensors in F j . When no target is present, we have Y |H0 =⎢

i∈F j
ni ∗ N (N jμ, N jσ

2), which has been proved in Lemma 3. Therefore, the
false alarm rate of the j th unit detection, denoted by PF j , is given by PF j = P(Y ≥
η|H0) = Q

⎣
T − N j μ≤

N j σ

⎤
, where T is the detection threshold. As PD is a non-decreasing

function of PF [44], it is maximized when PF is set to be the upper bound α.
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Let PF j = α, the optimal detection threshold can be derived as Topt = N jμ +⎜
N jσQ−1(α). When the target is present, the sum of energy measurements in the

j th unit detection approximately follows a normal distribution Y |H1 = ⎢
i∈F j

si +⎢
i∈F j

ni ∗ N (N jμs + N jμ, N jσ
2
s + N jσ

2), which has been proved in Lemma 4.
The detection probability in the j th unit detection, denoted by PDj , is given by

PDj = P(Y ≥ T |H1) √ Q

⎣
T − N j μs − N j μ≤

N j ·
≤

σ2
s +σ2

⎤
. By replacing T with the optimal

detection threshold Topt, we have

PDj √ Q

⎦
σ⎜

σ2
s +σ2

· Q−1(α) − μs⎜
σ2

s +σ2
·⎜N j

⎛
. (11)

Based on the above performance modeling of each unit detection, we now derive
the α-delay under the data fusion model. In this section, we assume that there is no
overlap between any two fusion ranges (as shown in Fig. 3). As a result, the sensor sets
{F j | j ≥ 1} are independent from each other. Such independence can significantly
simplify the analysis. In Sect. 5.2.2, we extend the analysis to the case where fusion
ranges may overlap. We now discuss the condition for no overlap between any two
fusion ranges. Suppose the target moves at a constant speed of v, the no-overlap
condition can be satisfied if vTD > 2R. For instance, if the fusion range R is set to
be 10 m and the target speed v is 5 m/s (i.e., 18 km/h) [14], the fusion ranges will not
overlap as long as the detection period TD is greater than 4 s.

From (11), PDj is a function of N j . When the sensor sets {F j | j ≥ 1} are indepen-
dent, {PDj | j ≥ 1} are i.i.d. as the numbers of sensors involved in each unit detection
(i.e., {N j | j ≥ 1}) are i.i.d. due to the Poisson process. We denote E[PD] as the
mean of PDj for any j , i.e., E[PD] = E[PDj ], ∼ j . Intuitively, the intrusion detection
can be viewed as a series of infinite Bernoulli trials and the success probability of
each Bernoulli trial is E[PD]. Accordingly, the number of unit detections before (and
including) the first successful unit detection follows the geometric distribution with
a mean of 1/E[PD]. Hence the α-delay is given by the following lemma. The proof
can be found in Appendix 5.

Lemma 6 Let τ denote the α-delay of fusion-based detection. If there is no overlap
between any two fusion ranges, τ = 1/E[PD], where E[PD] is the average detection
probability in any unit detection.

We now discuss how to compute E[PD] in Lemma 6. As PDj is a function of N j

and N j follows the Poisson distribution, i.e., N j ∗ Poi(ρπR2), E[PD] is given by

E[PD] =
∞⎝

N j =0

PDj · fPoi(N j |ρπR2), (12)

where fPoi(k|λ) is the probability density function (PDF) of the Poisson distribution
Poi(λ). Specifically, fPoi(k|λ) = λke−λ/k!. Note that PDj in (12) is computed



4 Spatiotemporal Coverage in Fusion-Based Sensor Networks 137

Fig. 7 Mean detection
probability versus network
density (R = 25 m)
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using (11). Figures 7 and 8 plot E[PD] versus network density ρ and fusion range
R, respectively. From Fig. 7, we can see that E[PD] increases with ρ. Moreover, for
a certain ρ, E[PD] increases with the PSNR. From Fig. 8, we can see that E[PD] is
a concave function of fusion range R and there exists an optimal R that maximizes
E[PD]. When the fusion range initially increases, more sensors contribute to the data
fusion resulting in better sensing quality. However, when the fusion range becomes
very large, the aggregate noise starts to cancel out the benefit because the target signal
decreases rapidly with the distance from the target. In other words, the measurements
of sensors far away from the target contain low-quality information and hence fusing
them lowers detection performance. In practice, we can choose the optimal fusion
range according to numerical results.

5 Impact of Data Fusion on Spatiotemporal Coverage

In this section, we study the impact of data fusion on spatial coverage and temporal
coverage in Sects. 5.1 and 5.2, respectively.
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5.1 Impact of Data Fusion on Spatial Coverage

Many mission-critical applications require a high level of spatial coverage over the
surveillance region. As an asymptotic case, full spatial coverage is required, i.e.,
any target/event present in the region can be detected with a probability of at least
β while the false alarm rate is below α. For random networks, a higher level of
coverage always requires more sensors. Therefore, the network density for achieving
full spatial coverage is an important cost metric for mission-critical applications.

Under the disc model, the sensing regions of randomly deployed sensors inevitably
overlap with each other when a high level coverage is required. According to (5), we
have dρ = 1

πr2 · 1
1−c · dc. If c is close to 1, a large number of extra sensors (i.e., dρ)

are required to eliminate a small uncovered area (i.e., dc). Moreover, the situation
gets worse when c increases. In this section, we are interested in how much network
density can be reduced by adopting data fusion. Specifically, we study the asymptotic
relationships between the network densities for achieving full spatial coverage under
the probabilistic disc and data fusion models. The results provide important insights
into understanding the limitation of the disc model and the impact of data fusion on
spatial coverage of random networks.

5.1.1 Full Spatial Coverage Using Fixed Fusion Range

We first study the relationship between the network densities for achieving full spatial
coverage under the disc and fusion models when fusion range R is a constant. We
have the following theorem. The proof can be found in Appendix 6.

Theorem 1 For uniformly deployed networks, let ρd and ρ f denote the minimum
network densities required to achieve the spatial coverage of c under the disc and
fusion models, respectively. If the fusion range R is fixed, we have

ρ f = O
⎣

2r2

R2 · ρd

⎤
, c → 1−. (13)

Theorem 1 shows that in order to achieve full spatial coverage, ρ f is smaller
than ρd if R >

≤
2r . According to (4), sensing range r is a constant independent of

network density. On the other hand, fusion range R is a design parameter of the fusion
model, which is mainly constrained by the communication overhead. In practice, the
condition R >

≤
2r can be easily satisfied. For instance, the acoustic sensor on

MICA2 motes has a sensing range of 3–5 m if a high performance (e.g., α = 5 and
β = 95 %) is required [16]. On the other hand, the fusion range can be set to be much
larger. For example, Fig. 6 shows that Ropt ranges from 5 to 100 m when network
density increases from 1.5 × 10−3 to 0.1. Therefore, according to Theorem 1, the
fusion model with the optimal fusion range can significantly reduce network density
for achieving a high level of coverage.
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5.1.2 Full Spatial Coverage Using Optimal Fusion Range

As discussed in Sect. 4.2.1, we can obtain the optimal fusion range via numerical
experiment or analysis. Data fusion with the optimal fusion range allows the maxi-
mum number of informative sensors to contribute to the detection. The scaling law
obtained with optimal fusion range will help us understand the maximum perfor-
mance gain by adopting the data fusion model. The following theorem shows that
ρ f further reduces to O(ρ

1−1/k
d ) as long as the fusion range is optimal. The proof

can be found in Appendix 7.

Theorem 2 For uniformly deployed networks, let ρd and ρ f denote the minimum
network densities required to achieve the spatial coverage of c under the disc and
fusion models, respectively. If the optimal fusion range Ropt is adopted, we have

ρ f = O
(
ρ

1−1/k
d

)
, c → 1−. (14)

Theorem 2 shows that if the optimal fusion range is adopted, the fusion model can
significantly reduce the network density for achieving high coverage. In particular,
from Theorem 2, the density ratio

ρ f
ρd

= O(ρ
−1/k
d ) = 0 when c → 1−, which

means ρ f is insignificant compared with ρd for achieving high coverage. Theorem 2
is applicable to the scenarios where the physical signal follows the power law decay
with path loss exponent k, which are widely assumed and verified in practice. We note
that the path loss exponent k typically ranges from 2.0 to 5.0 [19, 25]. In particular,
the propagation of acoustic signals in free space follows the inverse-square law, i.e.,
k = 2, and therefore ρ f = O(

≤
ρd).

5.1.3 Impact of Signal-to-Noise Ratio

In this section, we study the impact of PSNR on the results derived in the previous
sections. PSNR is an important system parameter which is determined by the property
of target, noise level, and sensitivity of sensors. We have the following theorem.

Theorem 3 For uniformly deployed networks, if the fusion range R is fixed, we have

ρ f

ρd
= O(δ2/k), c → 1−. (15)

Proof As w(x) = λ(x−k), w−1(x) = λ(x−1/k). According to (4), the sensing
range r = λ(δ1/k). As lim

c→1−
ρ f
ρd

≈ 2r2

R2 = λ(δ2/k), we have (15). �

Theorem 3 suggests that for a fixed R, the relative cost between the fusion and
disc models is affected by the PSNR δ. Specifically, the fusion model requires fewer
sensors to achieve full spatial coverage than the disc model if the PSNR is low.
On the other hand, the disc model suffices only if the PSNR is sufficiently high.
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Intuitively, sensor collaboration is more advantageous when the PSNR is low to
moderate. However, when the PSNR is sufficiently high, the detection performance
of a single sensor is satisfactory and the collaboration among multiple sensors may
be unnecessary.

5.2 Impact of Data Fusion on Temporal Coverage

Many mission-critical real-time applications require detection delay to be as small as
possible [20, 45]. As an asymptotic case, the α-delay approaches one, i.e., any target
can be detected almost surely in the first detection period after its appearance, which
is referred to as the instant detection. As a smaller detection delay always requires
more sensors, the network density for achieving instant detection is an important cost
metric for mission-critical real-time sensor networks. In this section, we investigate
the required network density for achieving instant detection under both the disc and
fusion models. According to Lemma 2 and 6, the network density under both models
approaches infinity2 when the α-delay reduces to one. However, the speed that the
network density increases is different. In this section, we study the ratio of network
densities for instant detection under the two models, which characterize the relative
cost of the two models when detection delay is minimized. The result provides
important insights into understanding the limitation of the disc model and the impact
of data fusion on the performance of real-time WSNs for intrusion detection. In the
rest of this section, we first discuss the case that the target discs and fusion ranges
under the disc and fusion models do not overlap in Sect. 5.2.1, and then generalize
the results in Sect. 5.2.2.

5.2.1 Network Density for Achieving Instant Detection

We have the following lemma. The proof can be found in Appendix 8.

Lemma 7 Let ρ f and ρd denote the network densities for achieving α-delay of τ
under the fusion and disc models, respectively. If there is no overlap between target
discs and fusion ranges under the two models, respectively, there exists ξ ∈ (0, 1)

such that
2

γ2 R2 · r2 ≈ lim
τ→1+

ρ f

ρd
≈ 2

ξγ2 R2 · r2, (16)

where γ = − μs≤
σ2

s +σ2
.

2 Numerically, the network density ρ will not be very large when the α-delay approaches one. For
instance, according to Lemma 2, suppose the sensing range r is 5 m, the α-delay under the disc
model is 1 + 10−5 when ρ = 0.15.
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Note that ξ is a function of γ (given by (30)). According to Lemma 7, limτ→1+ ρ f /

ρd is largely affected by the sensing range of a single sensor. According to (4), the
sensing range r is determined by the requirements on false alarm rate and detec-
tion probability (i.e., α and β), as well as the PSNR δ. Moreover, as discussed in
Sect. 4.1.3, β is a constant close to one. Accordingly, we only analyze the impacts of
α and δ on the network density for achieving instant detection. We have the following
theorem. The proof can be found in Appendix 9.

Theorem 4 If there is no overlap between target discs and fusion ranges under the
disc and fusion models, respectively, for given path loss exponent k, the ratio of
network densities for instant detection under the two models has an asymptotic tight
bound of

ρ f

ρd
= λ

⎦⎣
δ

Q−1(α)

⎤2/k
⎛

, τ → 1+. (17)

Theorem 4 suggests that, for a certain path loss exponent k, the relative cost
for instant detection between the fusion and disc models depends on the required
false alarm rate α and PSNR δ. First, when α → 0, Q−1(α) → ∞ and hence
limτ→1+ρ f /ρd → 0. It suggests that data fusion can significantly reduce network
density when a small false alarm rate is required. Second, limτ→1+ρ f /ρd increases
with δ, which suggests that the advantage of data fusion diminishes as the PSNR
increases. Moreover, the path loss exponent k determines the order of density ratio
with regard to the PSNR. Intuitively, sensor collaboration is more advantageous
when the PSNR is low. However, when the PSNR is sufficiently high, the detection
performance of a single sensor is satisfactory and the collaboration among multiple
sensors may be unnecessary.

5.2.2 Extension to General Target Speed and Detection Period

In previous sections, we assume that there is no overlap between any two target
discs and fusion ranges under the disc and fusion models, respectively. However,
fusion ranges may overlap if the target speed is low or the detection period TD is
short, as illustrated in Fig. 9. In this section, we will generalize the previous analyses
without the no-overlap limitation. When there is no overlap, the unit detections are
independent from each other. As a result, the index of first successful unit detection
(i.e., J ) follows the geometric distribution and the α-delay can be computed as the
mean of the geometric distribution. In contrast, when target discs or fusion ranges can
overlap, the detection results in different unit detections are statistically correlated
due to the possible common sensors shared by different unit detections. Hence,
J does not follows the geometric distribution anymore. Therefore, the correlation
among unit detections substantially complicates the analysis of α-delay. As a result,
it is difficult to obtain the closed-form formula of α-delay. Instead, we aim to find the
bound of α-delay in this section. The lower bound of α-delay under the disc model
is given by the following lemma. The proof can be found in Appendix 10.
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R

Fig. 9 The overlap case under the data fusion model. The void circles represent sensors; the solid
circles represent the target in different sampling intervals; the dashed discs represent the fusion
ranges

Lemma 8 Let τ denote the α-delay under the probabilistic disc model. We have

τ ≥ 1

1 − e−ρπr2 .

Compared with the results in Lemmas 2 and 8, we can see that the α-delay is
minimized for the no-overlap case. Intuitively, the area covered by the union of
target discs is maximized in the no-overlap case, which yields the maximum overall
detection probability for a given number of detection periods and in turn leads to the
minimum detection delay.

The upper bound of α-delay under the data fusion model is given by the following
lemma. The proof can be found in Appendix 11.

Lemma 9 Let τ denote the α-delay of fusion-based detection. We have τ ≈
E[1/PD], where PD is the detection probability in any unit detection.

As 1/PD is a convex function of PD , according to Jensen’s inequality,E[1/PD] ≥
1/E[PD], where 1/E[PD] is the α-delay when there is no overlap between any two
fusion ranges. We now discuss how to compute E[1/PD] in Lemma 9. As PDj is
a function of N j which follows the Poisson distribution, i.e., N j ∗ Poi(ρπR2),
E[1/PD] can be numerically computed by averaging 1

PDj
over the distribution of N j .

With the lower and upper bounds of α-delay under the disc and fusion mod-
els, respectively, we can derive the asymptotic bound of ratio of network densities
required by the two models to achieve instant detection. As it is more challenging to
handle the expression E[1/PD] in Lemma 9 than E[PD] in Lemma 6, we will employ
substantially different technique to analyze the density ratio. We have the following
theorem. The proof can be found in Appendix 12.

Theorem 5 Let ρ f and ρd denote the network densities for achieving α-delay of τ
under the value fusion and disc models, respectively. For given path loss exponent k,
the ratio of network densities for instant detection has an asymptotic upper bound of
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lim
τ→1+

ρ f

ρd
= O

⎦⎣
δ

Q−1(α)

⎤2/k
⎛

. (18)

Different from the result in Theorem 4 which is the asymptotic tight bound of the
density ratio, Theorem 5 gives the asymptotic upper bound. In Sect. 7.2.3, we will
compare the density ratios under the overlap and no-overlap cases through simu-
lations. Moreover, as target speed is an important factor of the overlap/no-overlap
condition, we also evaluate the impact of target speed on the density ratio.

6 Implications of Results and Discussions

In this section, we first summarize the implications of the theoretical results derived in
previous sections, which provide important insights into understanding the applica-
bility of the disc model and the data fusion model in various application scenarios.
We then discuss several issues that have not been addressed.

6.1 Implications of Results

6.1.1 Data Fusion Reduces Network Density

According to Theorem 2, when the coverage of random networks approaches one, ρd

increases significantly faster than ρ f , especially for a small path loss exponent. For
instance, when k = 2 (which typically holds for acoustic signals), ρ f = O(

≤
ρd ).

This result implies that the existing analytical results based on the disc model (e.g., [4,
23, 29, 46, 52]) significantly overestimate the network density required for achieving
full spatial coverage of random networks. Data fusion can reduce network density
for achieving instant detection as well. According to Theorem 4, when the detection
delay is minimized (i.e., τ → 1+), ρ f /ρd → 0 when α → 0. Therefore, if a
small α is required, ρ f < ρd for instant detection, i.e., the fusion model requires
lower network density than the disc model. In other words, data fusion is effective in
reducing detection delay and false alarms. For instance, Fig. 10 plots the lower and
upper bounds of the density ratio when the α-delay is minimized, which is given by
Lemma 7. We set the PSNR δ to be 50 (i.e., 17 dB) according to the measurements
in the vehicle detection experiments based on MICA2 [16] and ExScal [17] motes.
The fusion range R is optimized to be 37 m. From the figure, we can see that if
α < 0.2, the fusion model outperforms the disc model. In practice, most mission-
critical surveillance systems require a small α. For example, in the vehicle detection
system [20] and the acoustic shooter localization system [45], the false alarm rates
are tuned to be near zero. Therefore, data fusion can significantly reduces the network
density for these mission-critical surveillance systems.
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Fig. 10 Density ratio versus required false alarm rate (k = 2, δ = 50, R = 37 m)

6.1.2 Disc Model Suffices for High-SNR Detection

On the other hand, Theorem 3 shows that the disc model may lead to similar or
even lower network density than the fusion model for achieving full spatial coverage
if PSNR is sufficiently high. Similarly, according to Theorem 4, limτ→1+ ρ f /ρd

increases with δ for fixed α. Therefore, if the PSNR is high enough such that
limτ→1+ ρ f /ρd > 1, the disc model is superior to the fusion model in achieving
instant detection. For instance, Fig. 11 plots the upper bound of density ratio ver-
sus SNR under various path loss exponents when α-delay is minimized, which is
given by Lemma 7. From the figure, we can see linear and concave relationships
between the density ratio and PSNR when k is 2.0 and 4.0, respectively, which are
consistent with Lemma 6. Moreover, if the PSNR is sufficiently high (e.g., 22 dB),
the disc model outperforms the fusion model. However, the noise experienced by
a sensor comes from various sources, e.g., the random disturbances in the environ-
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ment and the electronic noise in the sensor’s circuit. Thus, the PSNR depends on
the characteristics of targets, the environment, and the sensor device. In the vehicle
detection experiments based on low-power motes, e.g., MICA2 [16] and ExScal [17],
the PSNRs are usually low to moderate (≈17 dB). In such a case, data fusion can
effectively reduce the network density required to achieve a high level of coverage
or a short detection delay.

6.1.3 Design of Data Fusion Algorithms

Our results provide several important guidelines on the design of data fusion algo-
rithms for large-scale WSNs. First, data fusion is very effective in reducing network
density for achieving a high level of coverage or a short detection delay. In particular,
Theorems 3–5 suggest that the performance gain of data fusion increases when the
PSNR is lower. Therefore, data fusion should be employed for low-SNR deploy-
ments when a high level of coverage or a short detection delay is required. Second,
Theorems 1, 2, and Lemma 7 suggest that fusion range plays an important role in
the achievable performance of data fusion. Particularly, as discussed in Sect. 4.2.1,
the optimal fusion range that maximizes the spatial coverage of random networks
increases with network density and can be numerically computed. However, a larger
fusion range may lead to longer transmission distances and more sensors that take
part in data fusion. Investigating the optimal fusion range under joint constraints of
coverage, detection delay and communication is left for the future work.

6.2 Discussions

We now discuss several issues that have not been addressed.

6.2.1 Noise Models

In the proofs of Lemma 3, 5 and 5 the fusion statistic Y has a component
⎢

i∈F(p) ni .
According to the CLT, this component approximately follows the normal distribu-
tion if {ni } are i.i.d.. Therefore, the assumption of i.i.d. Gaussian noises made in
Section 3.1.1 can be relaxed to i.i.d. noises that follow any distribution, when the
number of sensors taking part in data fusion is large enough. In practice, the accu-
racy of this approximation is satisfactory when N (p) ≥ 20 [33]. In particular, the
distribution of noise will not affect the asymptotic scaling laws in Sects. 5.1 and 5.2,
as N (p) is large in the asymptotic scenarios where c → 1−.
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6.2.2 Signal Decay Laws

The main objective of this chapter is to explore the fundamental limits of coverage
and detection delay based on data fusion model in target surveillance applications,
in which sensors measure the signals emitted by the target. The proofs of all lemmas
and Theorem 1 are not dependent on the form of the signal decay function w(·).
Therefore, these results hold under arbitrary bounded decreasing function w(·).
However, Theorems 2–5 are only applicable for the applications where the target
signal follows the power law decay, i.e., w(x) = λ(x−k). We acknowledge that most
mechanical and electromagnetic waves follow the power law decay in propagation.
In particular, in open space, inverse-square law (i.e., k = 2) [11] applies to various
physical signals such as sound, light, and radiation. We note that if a sensor is lifted
above the ground, its received signal energy can be affected by the height. However,
as Theorems 2–5 only depend the asymptotic power law decay, they still hold if the
height only introduces constant gain coefficient to the decay model. In the future
work, we will investigate if the height can lead to an asymptotic decay model that
is different from the power law decay. Moreover, we will extend our analyses to
address other decay laws such as exponential decay in diffusion processes [40].

6.2.3 Data Fusion Models

Theorems 1, 2, 3, and 5 give the upper bounds of network density under the fusion
model presented in Sect. 3.1.3. If more efficient fusion models are employed, the
coverage performance as well as detection delay will be further improved. Therefore,
more efficient fusion model can reduce the network density for achieving a certain
level of coverage or detection delay. As a result, the upper bounds of network density
derived in this chapter still hold. Exploring the impact of efficiency of fusion models
on network density is left for future work.

7 Evaluation

In this section, we conduct extensive simulations based on real data traces as well
as synthetic data to evaluate the spatiotemporal coverage in non-asymptotic and
asymptotic cases, respectively.
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7.1 Trace-Driven Simulations

7.1.1 Methodology and Settings

We first conduct simulations using the data traces collected in in the DARPA SensIT
vehicle detection experiment [14]. In the experiments, 75 WINS NG 2.0 nodes are
deployed to detect amphibious assault vehicles (AAVs) driving through the surveil-
lance region. We refer to [14] for detailed setup of the experiments. The dataset used
in our simulations includes the ground truth data and the acoustic time series recorded
by 20 nodes at a frequency of 4960 Hz when a vehicle drives through. The ground
truth data include the positions of sensors and the trajectory of the AAV recorded by
a global positioning system (GPS) device.

Sensors’ sensing ranges under the probabilistic disc model are determined indi-
vidually to meet the detection performance requirements (α = 5%, β = 95%). The
resulted sensing ranges are from 22.5 to 59.2 m with the average of 43.2 m. Such
a significant variation is due to several issues including poor calibration and com-
plex terrain. In our simulation, we deploy random or regular networks with size of
1000×1000 m2. Each sensor in the simulation is associated with a real sensor chosen
at random. For each deployment, we evaluate the spatial coverage and α-delay under
both the disc and fusion models, respectively.

For evaluating spatial coverage, we divide the region into 1000 × 1000 grids.
Under the disc model, the coverage is estimated as the ratio of grid points that are
covered by discs. Under the fusion model, the coverage is estimated as the ratio of
(α,β)-covered grid points. Specifically, for a target that appears at a grid point, each
sensor makes a measurement which is set to be the signal energy gathered by the
associated real sensor at a similar distance to vehicle in the data trace. A cluster is
formed around the sensor with the highest reading, which fuses sensor measurements
for detection.

For evaluating α-delay, the target initially appears at the origin, and moves along
the X -axis at a speed of 10 m/s. The detection period TD is set to be 60 s. Under the
disc model, once the target enters the sensing range of a sensor, the sensor makes a
detection decision by comparing its measurement against the detection threshold t
derived in Sect. 4.1.1. Under the fusion model, sensors fuse their measurements to
detect the target as discussed in Sect. 3.1.3. The α-delay is computed as the average
number of detection periods before the target is first detected in each run.

7.1.2 Simulation Results

Figure 12 plots the the numbers of uniformly deployed sensors under the disc and
fusion models as well as the corresponding density ratio versus the achieved spatial
coverage. We can see that the disc model suffices if a moderate level of coverage is
required. However, the fusion model is more effective for achieving high coverage.
In particular, the fusion model with a fusion range of 200 m saves more than 50%
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Fig. 12 The number of deployed sensors in random networks versus achieved spatial coverage

sensors when the coverage is greater than 0.75. We note that the average number
of sensors taking part in data fusion is within 30 and hence will not introduce high
communication overhead. According to Theorem 1, the limit of ρd

ρ f
is R2

2r2 when the
coverage approaches one. We will evaluate the coverage performance in asymptotic
case through simulations based on synthetic data in Sect. 7.2. Figure 13 plots the
network density versus the achieved α-delay under various settings. We can see
that the fusion model is more effective than the disc model for achieving short α-
delay. In particular, the fusion model with a fusion range of 100 m saves more than
50 % sensors when the α-delay is less than 2. We note that the average number of
sensors taking part in data fusion is within 20 and hence will not introduce high
communication overhead.
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7.2 Simulations Based on Synthetic Data

7.2.1 Numerical Settings

In addition to trace-driven simulations, we also conduct extensive simulations based
on synthetic data. These simulations allow us to evaluate the theoretical results in a
wide range of settings. We adopt the signal decay function in (1) with k = 2. Both
the mean and variance of the Gaussian noise generator, μ and σ2, are set to be 1. We
set the target’s source energy, i.e., S0, to be 4, 50, and 5, 000, so that the SNRs in the
simulations are consistent with several real experiments [9, 14, 16, 17].

For evaluating coverage, as proved in Lemma 3, it suffices to measure the proba-
bility that a point is covered for evaluating the coverage of a random network. Hence,
we let the target appear at a fixed point p and deploy random networks with size of
4R × 4R centered at p. For each deployment, PD(p) is estimated as the fraction
of succesful detections. The spatial coverage is estimated as the fraction of deploy-
ments whose PD(p) is greater than β. We also evaluate the impact of localization
error by integrating a simple localization algorithm. Specifically, for each detection,
if a sensor’s reading exceeds S0 ·w(R)+μ, it will take part in the target localization.
The target is localized as the geometric center of the sensors participating in the
localization. For a regular network, it suffices to measure the fraction of covered area
in a grid for evaluating the coverage of the whole network. In our simulations, we
find the minimum network density with which 10×10 points in the grid are covered.

For evaluating detection delay, the target initially appears at the origin, and moves
along the X -axis at a speed of 2R per detection period. We evaluate the impact of
constant target localization error as follows. Suppose the real target position is at
P(x, y) when sensors take measurements, while the target position localized by the
network is at P →(x + ε cos θ, y + ε sin θ), where ε is a specified constant and θ is
picked uniformly from [0, 2π). Sensors within the fusion range centered at P → fuse
their measurements and make the detection decision. We also evaluate the impact
of the overlap/no-overlap condition by comparing the simulation results under the
overlap and no-overlap cases. For the overlap case, the target moves R

2 and r
2 in each

detection period under the fusion and disc models, respectively; for the no-overlap
case, it moves 2R and 2r , respectively.

7.2.2 Spatial Coverage

We first present the simulation results if sensors are randomly deployed. The first set
of simulations evaluate the accuracy of the approximate formula given in Lemma 4.
Figure 14 plots the analytical and measured coverage versus network density. The
curves labelled with SIM-LOC and SIM represent the measured results with and
without accounting for localization error, respectively. We can see that the simulation
result matches well the analytical result given by (7). A network density of 0.8 is
enough to provide high coverage under the fusion model, where the SNR is very



150 R. Tan and G. Xing

Fig. 14 Spatial coverage
of random networks versus
network density (δ = 4,
R = 5 m)
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low (δ = 4). When there is localization error, a maximum deviation of about 0.2
from the analytical result can be seen from Fig. 14. The coverage decreases in the
presence of localization error as sensors received weaker signals when the target
cannot be accurately localized. However, the impact of localization error diminishes
when c → 1−.

The second set of simulations evaluate the impact of SNR on the asymptotic
network densities. Figure 15 plots the network density ratio ρd

ρ f
versus the achieved

coverage under various PSNRs, where ρd is computed by (5) and ρ f is obtained
in simulations, respectively. The x-axis is plotted in log10 scale. We can see that
the density ratio increases with the coverage, i.e., the fusion model becomes more
effective for achieving higher coverage. Moreover, the density ratio decreases with
the PSNR, which conforms to the result of Theorem 3. For instance, to achieve a
high coverage of 0.99, the density ratio ρd

ρ f
is about 8 when δ = 4. The density ratio

decreases to about 2 when δ = 50. This result shows that data fusion is effective
in the scenarios with low SNRs. When δ = 5, 000, the disc model suffices. These
results are consistent with the analysis in Sect. 5.1.3.

The third set of simulations evaluate the asymptotic relationship between ρd and
ρ f when the fusion range is optimized. In Fig. 16, the X - and Y -axis of each data
point represent the required network densities for achieving the same coverage that
approaches to one under the disc and fusion models, respectively. Note that the
Y -axis is plotted in square root scale. The optimal fusion range Ropt plotted in
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Fig. 16
≤
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Fig. 16 is computed for each given ρ f by numerically maximizing (7). We can see
from Fig. 16 that the relationship between

≤
ρd and ρ f is convex and therefore

conforms to the theoretical result ρ f = O(
≤

ρd) according to Theorem 2. Moreover,
Ropt increases with ρ f , which is also consistent with the analysis in Sect. 4.2.1.

7.2.3 Temporal Coverage

We first evaluate the analytical result on the α-delay of fusion-based detection.
Figure 17 plots the α-delay versus the network density. The curve labeled with “ana-
lytical” plots the α-delay computed according to Lemma 6 and Eq. (12). The data
points labeled with “SIM(ε)” represent the simulation results with a constant localiza-
tion error ε. From the figure, we can see that the α-delay decreases with the network
density. The simulation result without localization error (i.e., ε = 0) confirms the
analytical result when the network density is greater than 0.01. When ρ is smaller
than 0.01, the simulation result starts to deviate from the analytical result. This is
due to the approximation made in the derivation of PD in Sect. 4.2.2. However, we
can see that the maximum error between the analytical and simulation results falls
within one detection period. Figure 17 also shows that the impact of localization
error is small. The simulation result has a considerable deviation from the analytical
result only when the localization error is equal to the fusion range (25 m). In such
a case, the target falls completely outside of the fusion range. Moreover, the impact
of localization error diminishes as the network density increases. This result demon-
strates the robustness of our analysis with respect to localization error, especially in
achieving instant detection.

The second set of simulations evaluate the impact of overlap/no-overlap condi-
tion on the α-delay under the disc and fusion models, respectively. Figure 18a plots
the α-delay versus the network density under the value fusion model. The curves
labeled with “analytical (no-overlap)” and “upper bound” plot the α-delay under
the no-overlap case (given by Lemma 6) and its upper bound (given by Lemma 9),
respectively. We can see that the two analytical results are very close. The other two
curves plot the simulation results for the overlap and no-overlap cases, respectively.
The simulation results closely match the analytical results when the network density
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is greater than 0.02. When ρ is smaller than 0.01, the deviation between the analyti-
cal and simulation results is due to the approximation made in the derivation of PD .
Moreover, we can see from Fig. 18a that the overlap/no-overlap condition has little
impact on the α-delay under the fusion model. Figure 18b plots the α-delay under
the disc model. Note that the lower bound given by Lemma 8 is also the analytical
result of α-delay under the no-overlap case given by Lemma 2. We can see that the
simulation results confirm the analytical results under the disc model. Moreover, the
α-delay significantly increases under the overlap case. Hence, the overlap/no-overlap
condition has significant impact on the α-delay under the disc model.

We now evaluate the impact of false alarm rate and SNR on the density ratio.
Figure 19a plots the ratio of network densities required by the data fusion and disc
models to achieve the same α-delay given various false alarm rates. We can see
from Fig. 19a that the disc model requires more than twice sensors when the α-delay
approaches to one. Both for the value and decision fusion models, the density ratio
decreases if a lower α is required, which is consistent with Theorems 4 and 5. More-
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over, from the two figures, we can see that the density ratio under the overlap case
is smaller than that under the no-overlap case. This is consistent with our observa-
tion in the previous set of simulations, i.e., the overlap condition has little impact
on the fusion model while leads to significant increase of α-delay under the disc
model. Figure 19b plots the ratio of network densities required by the data fusion and
disc models given various SNRs. From Fig. 19b, we can see that the density ratio
increases with SNR, which is consistent with Theorems 4 and 5. For instance, if the
SNR is 13 dB, the density ratio ρ f /ρd is about 0.5 when the α-delay reduces to one.
However, if the SNR increases to 20 dB, ρ f /ρd is greater than 1.2 and hence the disc
model requires fewer sensors than the fusion model.

As target speed is an important factor of the overlap/no-overlap condition, we
finally evaluate its impact on the density ratio. Figure 20 shows the density ratio
versus the target speed. We can see that the density ratio significantly increases when
the target speed increases from r

20 to 2r . This is due to the significant impact of
overlap condition on the disc model, as observed in Fig. 18. Hence, the data fusion
models are more robust than the disc model in detecting slowly moving targets.
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8 Conclusion

Spatiotemporal coverage is an important performance requirement of many critical
sensor network applications. In this paper, we explore the fundamental limits of
spatiotemporal coverage based on stochastic data fusion models that jointly process
noisy measurements of sensors. The scaling laws between spatiotemporal coverage,
network density, and SNR are derived. Data fusion is shown to significantly improve
spatiotemporal coverage by exploiting the collaboration among sensors. Our results
help understand the limitations of the existing analytical results based on the disc
model and provide key insights into the design and analysis of WSNs that adopt
data fusion algorithms. Our analyses are verified through simulations based on both
synthetic data sets and data traces collected in a real deployment for vehicle detection.

Appendix 1: Proof of Lemma 2

Proof As shown in [29], when the sensors are deployed according to the Poisson
process, the probability that there is at least one sensor in a target disc is p =
1 − e−ρπr2

. Suppose the target is detected in the J th (J ≥ 1) detection period. As
there is no overlap between any two target discs, the unit detections are independent
from each other. Therefore, J follows the geometric distribution with a success
probability of p in each Bernoulli trial (i.e., each unit detection). Moreover, according
to the definition of r in (4), the false alarm rate in each unit detection is no greater than
α. According to Definition 3, the α-delay is given by τ = E[J ] = 1

p = 1
1 − e−ρπr2 .

Appendix 2: Proof of Lemma 3

Proof We first discuss the necessary and sufficient condition that p is (α,β)-
covered. When no target is present, all sensors measure i.i.d. noises and hence
Y |H0 = ⎢

i∈F(p) ni ∗ N (μN (p),σ2 N (p)). Therefore, the false alarm rate is

PF = P(Y ≥ T |H0) = Q
(

T −μN (p)

σ
≤

N (p)

)
, where T is the detection threshold. As

PD is a non-decreasing function of PF [44], it is maximized when PF is set to
be the upper bound α. Such a scheme is referred to as the constant false alarm
rate detector [44]. Let PF = α, the optimal detection threshold can be derived as
Topt = μN (p) + σQ−1(α)

≤
N (p). When the target is present, we have

Y |H1 =
⎝

i∈F(p)

si + ni ∗ N (μN (p) +
⎝

i∈F(p)

si ,σ
2 N (p)).

Therefore, the detection probability at p is given by
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PD(p) = P(Y ≥T |H1)= Q

⎦
T −μN (p)−⎢i∈F(p) si

σ
≤

N (p)

⎛
.

By replacing T with Topt and solving PD(p) ≥ β, we have the necessary and
sufficient condition that p is (α,β)-covered:

⎢
i∈F(p) si≤
N (p)

≥ σ
(

Q−1(α) − Q−1(β)
)

. (19)

As the random network is stationary, the fraction of covered area equals the prob-
ability that an arbitrary point is covered by the network [29]. Therefore, the spatial
coverage of the network is given by (6). �

Appendix 3: Proof of Lemma 4

Proof We first prove that the {si |i ∈ F(p)} are i.i.d. for given p and derive the
formulas for μs and σ2

s . As sensors are deployed uniformly and independently, {di |i ∈
F(p)} are i.i.d. for given p, where di is the distance between sensor i and point p.
To simplify our discussion, we now temporarily assume that there is no localization
error, i.e., ε = 0. Therefore, {si |i ∈ F(p)} are i.i.d. for given p, as si is a function of di .
Suppose the coordinates of point p and sensor i are (x p, yp) and (xi , yi ), respectively.
The posterior PDF of (xi , yi ) is f (xi , yi ) = 1

πR2 where (xi −x p)
2+(yi −yp)

2 ≈ R2.

Hence, the posterior CDF of di is given by F(di ) = ⎥ 2π
0 dθ

⎥ di
0

1
πR2 ·xdx = d2

i
R2 where

di ∈ [0, R]. Therefore, we have

μs =
⎞ R

0
si dF(di ) = 2S0

R2 ·
⎞ R

0
xw(x)dx, (20)

σ2
s =

⎞ R

0
s2

i dF(di ) − μ2
s = 2S2

0

R2

⎞ R

0
xw2(x)dx − μ2

s . (21)

By letting μ0 = 2
R2

⎥ R
0 xw(x)dx and σ2

0 = 2
R2

⎥ R
0 xw2(x)dx − μ2

0, we have μs =
S0μ0 and σ2

s = S2
0σ2

0.
A straightforward approximation is to replace

⎢
i∈F(p) si in (6) with its mean

μs N (p). However, doing so ignores the distribution of
⎢

i∈F(p) si . As N (p) fol-
lows the Poisson distribution,

⎢
i∈F(p) si follows the compound Poisson distrib-

ution, which has no closed-form PDF and CDF. We approximate the compound
Poisson distribution using the normal distribution. The intuition behind this approx-
imation is the CLT by assuming N (p) is a constant. Therefore,

⎢
i∈F(p) si ∗

N (μs N (p),σ2
s N (p)). When the target is present, Y |H1 = ⎢

i∈F(p) si +⎢i∈F(p) ni .
As the sum of two independent Gaussians is also Gaussian, Y |H1 follows the nor-
mal distribution, i.e., Y |H1 ∗ N (μs N (p) + μN (p),σ2

s N (p) + σ2 N (p)). There-
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fore, the detection probability at point p is given by PD(p) = P(Y ≥ T |H1) √
Q

⎣
T −μs N (p) −μN (p)≤

σ2
s +σ2·≤N (p)

⎤
. By replacing T with the optimal detection threshold Topt

(derived in the proof of Lemma 3) and solving PD(p) ≥ β, the condition that p
is (α,β)-covered is given by N (p) ≥ γ(R). The approximate formula of spatial
coverage is then given by

c √ P(N (p) ≥ γ(R)) = 1 − FPoi(γ(R)|ρπR2), (22)

where FPoi(·|λ) is the CDF of the Poisson distribution Poi(λ). When ρπR2 is large
enough, the Poisson distribution Poi(ρπR2) can be excellently approximated by the
normal distribution N (ρπR2, ρπR2). Therefore, Eq. (22) can be further approxi-
mated by (7). �

Appendix 4: Proof of Lemma 5

Proof For any point p,
⎢

i∈F(p) si ≥ S0 · w(R + ε) · N (p), as si ≥ S0 · w(R + ε)

for any sensor i in F(p). If S0·w(R + ε)·N (p)≤
N (p)

≥ σ
⎟
Q−1(α) − Q−1(β)

⎠
, Eq. (19) must

hold. Therefore, by solving N (p), the sufficient condition that p is (α,β)-covered
is N (p) ≥ σ (R). Moreover, as N (p) ∗ Poi(ρπR2), we have

c = P(point p is (α,β) − covered) ≥ P(N ≥ σ (R)) = 1 − FPoi(σ (R)|ρπR2).

Therefore, the lower bound of c is given by (8). When ρπR2 is large enough, the nor-
mal distribution N (ρπR2, ρπR2) excellently approximates the Poisson distribution
Poi(ρπR2). Therefore, Eq. (8) can be approximated by (10). �

Appendix 5: Proof of Lemma 6

Proof Denote A j as the event that the target is not detected in the j th unit detection.
Thus, the probability of A j is P(A j ) = 1− PDj . Suppose the target is detected in the
J th unit detection. Although the intrusion detection is a series of infinite Bernoulli
trials, J does not follow the geometric distribution because the success probability
of each Bernoulli trial (i.e., PDj ) is a random variable rather than a constant. The
mean of J is given by
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E[J ] = 1 · P( Ā1) +
∞⎝
j=2

j · P
⎭


j−1⋂
k=1

Ak

⋂
Ā j


 (23)

= 1 − P(A1) +
∞⎝
j=2

j ·
⎭
P

⎭


j−1⋂
k=1

Ak


− P

⎭


j⋂
k=1

Ak






= 1 +
∞⎝
j=1

P

⎭


j⋂
k=1

Ak


 (24)

= 1 +
∞⎝
j=1

j∏
k=1

P(Ak) (25)

= 1 +
∞⎝
j=1

j∏
k=1

(1 − PDk). (26)

Note that the
⋂ j−1

k=1 Ak
⋂

Ā j in (23) represents the event that the target is not detected
from the first to the ( j−1)th unit detection but detected in the j th unit detection. As the
measurements in different sampling intervals are mutually independent, {A j | j ≥ 1}
are mutually independent. Hence, Eq. (25) follows. We now explain the physical
meaning ofE[J ]. For a given randomly deployed network, if the target always appears
at a fixed location and travels a fixed trajectory, according to (11), {PDj | j ≥ 1} are
fixed values as {N j | j ≥ 1} are fixed. As each unit detection is probabilistic, the E[J ]
is the average delay of detecting the target with fixed trajectory. For the target that
appears at random location and travels arbitrary trajectory, {PDj | j ≥ 1} are random
variables as {N j | j ≥ 1} are random variables. Therefore, the average delay for
detecting the target with arbitrary trajectory, i.e., α-delay, is given by τ = E[E[J ]],
where E[E[J ]] is the average of E[J ] taken over all possible target trajectories.
If fusion ranges do not overlap, {N j | j ≥ 1} are i.i.d. random variables. Hence,
{PDj | j ≥ 1} are also i.i.d. random variables. Therefore,

τ = E[E[J ]] = 1 +
∞⎝
j=1

j∏
k=1

E[1 − PDk]

= 1 +
∞⎝
j=1

(1 − E[PD]) j = 1

E[PD] . �
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Appendix 6: Proof of Theorem 1

Proof As ρ f is large to provide a high level of spatial coverage under the fusion
model, the lower bound of spatial coverage, cL , is given by (10) according to
Lemma 5. We define h1(ρ f ) = ρ(R)≤

πR
· 1≤

ρ f
, h2(ρ f ) = ≤

πR · ≤
ρ f and hence

cL = Q(h1(ρ f ) − h2(ρ f )). When ρ f → ∞, h2(ρ f ) dominates h1(ρ f ) as

lim
ρ f →∞

h1(ρ f )

h2(ρ f )
= 0. Hence, c ≥ cL = Q(−h2(ρ f )) = Q(−≤

πR · ≤
ρ f ) when

ρ f → ∞. Define x = Q−1(c). We have ρ f ≈ 1
πR2 x2 when c → 1−.

Under the disc model, by replacing c = Q(x) = 1 − θ(x) in (5) and solving
ρd , we have ρd = − 1

πr2 ln θ(x), where θ(x) is the CDF of the standard normal
distribution. Hence, we have

lim
c→1−

ρ f

ρd
≈ lim

x→−∞

1
πR2 x2

− 1
πr2 ln θ(x)

= − r2

R2 lim
x→−∞

x2

ln θ(x)
.

As lim
x→−∞

x2

ln θ(x)
= −2 [49], we have lim

c→1−
ρ f
ρd

≈ 2r2

R2 . Therefore, the asymptotic

upper bound of ρ f is given by (13). �

Appendix 7: Proof of Theorem 2

Proof We choose R by
ξ

π
· σ (R)

R2 = ρ f , (27)

where ξ is a constant and ξ > 1. It is easy to verify that the chosen R is order-optimal
for the lower bound of coverage (i.e., cL ). Moreover, it is easy to verify that both the
chosen R and σ (R) increase with ρ f . By replacing ρ f in (10) with (27), cL is given

by cL = Q
((

1≤
ξ

− ≤
ξ
)

· ≤
σ (R)

)
= 1 − θ(ηz), where η = 1≤

ξ
−≤

ξ is a constant

and z = ≤
ρ(R). Hence we have c ≥ cL = 1 − θ(ηz). According to (5), the network

density under the disc model satisfies ρd = − 1
πr2 ln(1 − c) ≥ − 1

πr2 ln θ(ηz). Hence,

the ratio ρb
f /ρd , where b is a positive constant, satisfies

lim
c→1−

ρb
f

ρd
≈ lim

R→∞

(
ξ
π

)b · σ b(R)

R2b

− 1
πr2 ln θ(ηz)

= − ξbr2

πb−1 · lim
z→∞

z2

ln θ(ηz)
· lim

R→∞
σ b−1(R)

R2b

= 2ξbr2

πb−1η2 · lim
R→∞

σ b−1(R)

R2b
.
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Note that lim
z→∞

z2

ln θ(ηz) = − 2
η2 [49] in the above derivation. As w(x) = λ(x−k)

and ε is constant, σ (R) = λ(1/w2(R + ε)) = λ((R + ε)2k) = λ(R2k) and

hence σ b−1(R) = λ(R2kb−2k). Therefore, lim
R→∞

σ b−1(R)

R2b = lim
R→∞ R2kb−2k−2b. If

b ≈ k
k−1 , lim

R→∞
σ b−1(R)

R2b is a constant and hence lim
c→1−

ρb
f

ρd
is upper-bounded by a

constant. Hence, we have (14). We note that although the chosen R is not optimal
for c, the upper bound given by (14) still holds if R is optimal for c. �

Appendix 8: Proof of Lemma 7

Proof We abuse the symbols a bit to use N instead of N j and PD instead of PDj

as we are not interested in the index of unit detection. As ρ → ∞, N → ∞ almost
surely. In (11), the second item − μs≤

σ2
s +σ2

· ≤N dominates when ρ → ∞, since the

first item σ≤
σ2

s +σ2
· Q−1(α) is a constant. Therefore, it’s safe to use PD = Q(γ

≤
N )

to approximate (11), where γ = − μs≤
σ2

s +σ2
. From Lemma 2 and 6, if the same

α-delay of τ is achieved under the two models, we have

E[PD] = 1 − e−ρdπr2
. (28)

We first prove the lower bound in (16). It is easy to verify that PD = Q(γ
≤

N ) is a con-
cave function. According to Jensen’s inequality, we have E[PD] ≈ Q(γ

≤
E[N ]) =

Q(γ
⎡

ρ f πR2). From (28), we have 1−e−ρdπr2 = E[PD] ≈ Q(γ
⎡

ρ f πR2). Accord-

ingly, ρd ≈ − 1
πr2 ln θ(γ

≤
πR · ≤ρ f ), where θ(x) = 1 − Q(x). Hence, the density

ratio satisfies

lim
τ→1+

ρ f

ρd
≥ −πr2 · lim

ρ f →∞
ρ f

ln θ(γ
≤

πR · ≤
ρ f )

= 2

γ2 R2 · r2.

In the above derivation, we use the equality lim
x→∞

x
ln θ(η

≤
x)

= − 2
η2 , which has been

proved in [49].
We now prove the upper bound in (16). As PD > 0, according to Markov’s

inequality, for any given number c, we have

E[PD] ≥ c · P(PD ≥ c). (29)

We define ξ and c as follows:

ξ = γ2 + 2 −⎜
γ4 + 4γ2

2
, c = Q(γ

⎡
ξρ f πR2). (30)
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It’s easy to verify that ξ ∈ (0, 1). Therefore,

P(PD ≥ c) = P

⎣
Q(γ

≤
N ) ≥ Q(γ

⎡
ξρ f πR2)

⎤
= P(N ≥ ξρ f πR2).

As N ∗ Poi(ρ f πR2) and the Poisson distribution approaches the normal distribution
N (ρ f πR2, ρ f πR2) when ρ f → ∞, we have

P(PD ≥ c) = Q

⎭
ξρ f πR2 − ρ f πR2

⎡
ρ f πR2


 = Q

⎣
(ξ − 1)

⎡
ρ f πR2

⎤
.

By replacing c and P(PD ≥ c) in (29), we have

E[PD] ≥ Q

⎣
γ
⎡

ξρ f πR2

⎤
· Q

⎣
(ξ − 1)

⎡
ρ f πR2

⎤
.

It is easy to verify that γ
≤

ξ = ξ − 1. Thus the above inequality reduces to E[PD] ≥
Q2(h

≤
ρ f ), where h = γ

≤
ξπR. From (28), we have 1 − e−ρdπr2 = E[PD] ≥

Q2(h
≤

ρ f ). Accordingly,ρd ≥ − 1
πr2 ·(ln(1+Q(h

≤
ρ f )) + ln θ(h

≤
ρ f )). Hence,we

have

lim
τ→1+

ρ f

ρd
≈ −πr2 lim

ρ f →∞
ρ f

ln(1 + Q(h
≤

ρ f )) + ln θ(h
≤

ρ f )

= −πr2 lim
ρ f →∞

ρ f

ln θ(h
≤

ρ f )
= 2

ξγ2 R2 · r2. (31)

Note that h = γ
≤

ξπR < 0 and ln(1 + Q(h
≤

ρ f )) = ln 2 when ρ f → ∞. We also
use the aforementioned equality lim

x→∞
x

ln θ(η
≤

x)
= − 2

η2 [49] to derive (31). �

Appendix 9: Proof of Theorem 4

Proof In Lemma 7, γ depends on the PSNR δ, i.e.,

γ = − μs⎜
σ2

s + σ2
= − S0μ0⎡

S2
0σ2

0 + σ2
= − μ0⎡

σ2
0 + 1

δ2

,

where μ0 and σ2
0 (both defined in the proof of Lemma 4) are constants. Moreover,

ξ is a function of γ (given by (30)). Accordingly, γ and ξ are both constants when
δ is fixed or approaches infinity. Hence, according to Lemma 7, the tight bound of
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the density ratio is limτ→1+ ρ f /ρd = λ(r2). As w−1(x) = λ(x−1/k), according to

(4), r2 = λ

⎣(
δ

Q−1(α)

)2/k
⎤

for fixed β. Therefore, we have (17). �

Appendix 10: Proof of Lemma 8

Proof Let A j denote the event that the target is not detected in the j th unit detec-
tion and C j denote the corresponding target disc. Suppose the target is detected in

the J th unit detection. Recall (24), we have E[J ] = 1 + ⎢∞
j=1 P

(⋂ j
k=1 Ak

)
=

1 +⎢∞
j=1

∏ j
k=1 P

(
Ak

∣∣∣⋂k−1
l=1 Al

)
. The above derivation follows the definition of

conditional probability. Let C denote the common area between the kth target disc
and the union of all the previous target discs, i.e., C = Ck ∀ (

⎧k−1
l=1 Cl). Therefore,

C ≥ 0 and

P

⎦
Ak

∣∣∣∣∣
k−1⋂
l=1

Al

⎛
= P (there is no sensor in (Ck − C))

= e−ρ(πr2−C) ≥ e−ρπr2
.

Hence, τ = E[J ] ≥ 1 +⎢∞
j=1

(
e−ρπr2

) j = 1
1 − e−ρπr2 . �

Appendix 11: Proof of Lemma 9

Proof We first introduce the generalized Hölder’s inequality [15]. For random vari-

ables Xi , i = 1, . . . , n, we have E
⎪∏n

i=1 |Xi |
⎨ ≈ ∏n

i=1

⎟
E
⎪|Xi |pi

⎨⎠1/pi where

pi > 1 and
⎢n

i=1 p−1
i = 1. If Xi , i = 1, . . . , n, are identically distributed, by

setting pi = n, we have

E

⎩
n∏

i=1

|Xi |
]

≈ E
⎪|X |n⎨ , (32)

where X can be any Xi . In our problem, {N j | j ≥ 1} are identically distributed
random variables due to the Poisson process. As PDj is a function of N j (given by
(11)), {PDj | j ≥ 1} are also identically distributed random variables. Recall (26), by
applying the inequality (32) , the α-delay of fusion-based detection can be derived
as
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τ = E[E[J ]] = 1 +
∞⎝
j=1

E




j∏
k=1

(1 − PDk)




≈ 1 +
∞⎝
j=1

E[(1 − PD) j ] = E

[
1

PD

]
. �

Appendix 12: Proof of Theorem 5

Proof According to Lemma 8 and Lemma 9, we have

1/(1 − e−ρdπr2
) ≈ τ ≈ E [1/PD] . (33)

We first find an upper bound of E [1/PD]. As discussed in the proof of Lemma 7,
it is safe to use PD = Q(γ

≤
N ) to approximate (11), where γ = − μs≤

σ2
s +σ2

. As

N ∗ Poi(ρ f πR2) and the Poisson distribution approaches to the normal distribution
N (ρ f πR2, ρ f πR2) when ρ f → ∞, for any given constant ξ ∈ (0, 1), we have

P(N ≥ ξρ f πR2) = Q

⎣
ξρ f πR2−ρ f πR2≤

ρ f πR2

⎤
= Q

(
(ξ−1)

⎡
ρ f πR2

)
. When ρ f → ∞,

P(N ≥ ξρ f πR2) → 1, i.e., N ≥ ξρ f πR2 with high probability. Moreover, as

1/PD = 1/Q(γN ) is a decreasing function of N , E[1/PD] ≈ 1/Q(γ
⎡

ξρ f πR2)

with high probability. Furthermore, according to (33), we have 1/(1 − e−ρdπr2
) ≈

1/Q(γ
⎡

ξρ f πR2) probability when ρ f → ∞. After manipulation, we have ρd ≥
− 1

πr2 ln
⎟
θ(γ

≤
ξπR

≤
ρ f )

⎠
, where θ(x) = 1 − Q(x). Hence, we have

lim
τ→1+

ρ f

ρd
≈ −πr2 lim

ρ f →∞
ρ f

ln
⎟
θ(γ

≤
ξπR

≤
ρ f )

⎠ = 2

γ2ξR2 · r2. (34)

In the above derivation, we use the equality lim
x→∞

x
ln θ(ϑ

≤
x)

= − 2
ϑ2 that has been

proved in [49]. Hence, the upper bound of the density ratio is limτ→1+ ρ f /ρd =
O(r2). As r2 = λ

⎣(
δ

Q−1(α)

)2/k
⎤

, we have (18). �
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Part III
Tracking, Estimation, and Counting



Chapter 5
Probabilistic Indoor Tracking of Mobile
Wireless Nodes Relative to Landmarks

Ioannis Ch. Paschalidis, Keyong Li, Dong Guo and Yingwei Lin

Abstract The profile-based approach is known to be advantageous when it comes
to inferring positions of mobile wireless devices in complex indoor environments.
The past decade has seen a significant body of work that explores different imple-
mentations of this approach, with varying degrees of success. Here, we cast the
profile-based approach in a probabilistic framework. Launching from the theoret-
ical basis that this framework provides, we provide a suite of carefully designed
methods that make use of sophisticated computations in pursuit of high localization
accuracy with low hardware investment and moderate set-up cost. More specifically,
we use full distributional information on signal measurements at a set of discrete
locations, termed landmarks. Positioning of a mobile node is done relative to the
resulting landmark graph and the node can be found near a landmark or in the area
between two landmarks. Key elements of our approach include profiling the signal
measurement distributions over the coverage area using a special interpolation tech-
nique; a two-tier statistical positioning scheme that improves efficiency by adding
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movement detection; and joint clusterhead placement optimization for both local-
ization and movement detection. The proposed system is practical and has been
implemented using standard wireless sensor network hardware. Experimentally, our
system achieved an accuracy equivalent to less than 5 m with a 95 % success probabil-
ity and less than 3 m with an 87 % success probability. This performance is superior
to well-known contemporary systems that use similar low-cost hardware.

1 Introduction

Demand for reliable indoor positioning of mobile wireless devices is rapidly emerg-
ing. Using such a functionality, businesses can better manage their equipment and
personnel; museums can provide automatically guided tours and enhance visitor
experiences; hospitals can track their patients, personnel, and valuable mobile equip-
ment; rescue workers can navigate through a disaster cite more easily; malls can guide
shoppers to specific stores they seek; large warehouses can track their fleet of fork-
lifts [1]; and security agencies can strengthen the protection of critical assets such as
nuclear and biochemical materials.

In contrast to indoor positioning, technologies for outdoor positioning are rel-
atively mature. These include the GPS technology that is widely used today, but
also technologies using the cellular network (see [2, 3]). Translating, however, these
successes to indoor environments is far from straightforward. First, the GPS tech-
nology is hardly operational indoors due to heavy signal attenuation by the building
structures. Moreover, the cellular-based technologies for outdoor use cannot produce
satisfactory positioning accuracy when confronted with the rich effects of the indoor
environment on the signals. The indoor environment can be very complex, and also
dynamic due to, for example, people moving and doors opening and closing. The
triangulation or trilateration techniques, on which GPS or cellular technologies are
based, can be inaccurate and ineffective under such conditions.

The main objective of this chapter is to describe a new probabilistic approach
to indoor localization of mobile wireless devices. As we will see, the technique is
quite general and can handle any type of information from wireless signals that is
correlated with location; from very basic information related to signal strength and
available with almost any hardware, to more sophisticated information such as angle
and time of arrival. The approach we propose is built on rigorous decision theory
and that rigor allows us to provide performance guarantees and tackle associated
problems such as tracking and optimal system deployment.

1.1 Related Work

Given the interest in indoor positioning, a wide range of indoor positioning solutions
have been proposed, with varying degrees of success. Want et al. [4] implemented an



5 Probabilistic Indoor Tracking of Mobile Wireless Nodes Relative to Landmarks 171

infrared-based positioning system (Active Badge) for low-accuracy applications.
Priyantha et al. [5] proposed an ultrasound-based system (Cricket) that achieved high
accuracy, but the system requires the installation of a dense network of ultrasound
beacons. Acoustic signals are also used by the system proposed in [6] but without
the need of infrastructure nodes. In the wireless positioning camp, many types of
signal measurements can be useful, ranging from the most basic—Received Sig-
nal Strength Indication (RSSI)—to more sophisticated ones including signal phase,
time-of-arrival (TOA), angle-of-arrival (AOA), and multipath components (MPC)
[7, 8].

Among the RSSI-based approaches, the methods in [9–12] compare mean RSSI
measurements to a pre-computed signal-strength map. In particular, [9] tested two
methods. The first one uses a map of mean signal strength that is profiled offline, while
the second assumes a signal propagation model taking into account how many walls
are in the path. The former was shown to be superior, achieving an accuracy of 75 %
error <5 m and 50 % <3 m. This system and others succeeded in demonstrating
the feasibility of meaningful positioning services using wireless sensor networks
and injected enthusiasm into the field. Their performance, though, leaves room for
improvement. Many other works followed. Castro et al. [13] improved upon [9]
by taking the probabilistic nature of the problem into account through the use of
Bayesian network techniques. Another probabilistic method appeared in [14] where
both probabilities of RSSI measurements and a hidden Markov model of device
movements are being estimated. Lorincz et al. [10] proposed a method based on mean
RSSI profiling, but used power-level diversity to achieve an accuracy of 80 % < 3 m.
However, further improvement of the performance within this framework (e.g., by
increasing the density of “reference signatures”) seems unlikely. Another related idea
that combines information from GPS at some locations to reduce the need of profiling
was proposed in [15] and achieved accuracies between 2 and 7 m. Yet another class of
systems such as in [16, 17] use stochastic triangulation techniques but rely on a path
loss model, thus, introducing a modeling error. In addition to the evidence provided
by [9], our earlier related work based on signal strength profiling [18, 19] has also
been shown to reduce the mean error distance (by a factor of about 3.5) compared to
stochastic triangulation. References to many other systems can be found in [20] and
[21].

1.2 Key Contributions

Despite the extensive literature, several fundamental questions remain. On one
hand, there have been some efforts to understand the theoretical limit of wireless-
signal-based device positioning. For example, [22] obtained a Cramer-Rao bound
of wireless-based positioning, but the result was built upon the presumption that
positioning is done using distance and angle of arrival measurements, and that these
measurements follow Gaussian distributions. A wider range of techniques were con-
sidered by [23], but similar assumptions (especially the Gaussian assumption) were
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put in place. Such assumptions might be overly simplistic in the the indoor posi-
tioning context. On the other hand, most positioning systems proposed to date have
shunned away from sophisticated decision rules for the fear of implementation dif-
ficulties on mobile devices. To a certain extent, our work suggests that by careful
algorithm design that enables distributed processing, it is possible to implement com-
plex decision rules to achieve robust and accurate positioning using existing low-cost
hardware.

Due to the rather diverse applications of indoor positioning and the rapid evolu-
tion of the hardware capabilities found in wireless devices, the positioning problem
should not be considered in just a single context. Instead, it is meaningful to explore
a spectrum of techniques that reflect different constraints and trade-offs of hard-
ware investment, computational complexity, set-up cost, and positioning accuracy.
In particular, the present work strives to achieve high accuracy with low hardware
investment and moderate set-up cost, at the cost of fairly sophisticated computations.
More specifically, our approach does not require advanced signal measurements such
as angle and time of arrival (AOA and TOA), and the amount of computation needed
is kept under a threshold such that contemporary hardware suffices. One can argue
that we treat computational power as a constraint and seek to minimize set-up cost
and maximize accuracy.

Even though our primary motivating application is to locate/track nodes of a
wireless sensor network, other settings can be served by the exact same techniques
we develop. In particular, the nodes can correspond to a wireless phone with Wi-Fi
access, or some other Wi-Fi device that we want to locate. Many of the practical
applications we outlined earlier can easily be implemented in a smartphone “app,”
thus, locating and tracking the phone in an indoor environment becomes important.

Our contribution goes beyond a successful positioning/tracking system with
attractive experimental results. The approach differs from what has been considered
in the literature and is based on a set of formal techniques that result in analytical
performance guarantees. As we will see, positioning is done relative to a landmark
graph. The nodes of this graph are a chosen set of landmarks, or places of interest; and
the edge defined between any two nodes corresponds to the contiguous geographical
area between the landmarks. Which points in the coverage area are defined to be the
landmarks depends on the specifics of the application. What is important is that the
device’s position is resolved either to a node of the landmark graph, if the device is
in its vicinity, or to an edge if the device is in the area between two landmarks. The
following topics are then covered:

A. We construct appropriate probabilistic descriptors associated with a device’s
position from a limited amount of RSSI measurements. This process is com-
monly known as profiling. The descriptors that we construct go beyond mean
values and variances to record the shapes of the measurement distributions. We
also associate a parametrized family of probability density functions (pdfs) to
each location, which introduces some analytical challenges, but proved to pro-
duce more robust performance. Our experimental results show that such infor-
mation is of significant value to performance.
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By “a limited amount” of measurements, we mainly mean that one can directly
measure the RSSI distributions only for a finite number of positions during the
profiling phase. Without much loss of generality, we assume that these positions
coincide with the landmarks. In order to construct the probabilistic descriptors
of a device’s position, we adopt a pdf interpolation technique which originated in
statistical physics simulations [24]. To the best of our knowledge, this approach
is novel for localization problems. Practices that are equivalent to some form
of interpolation are not foreign (e.g., [14]), but these have been carried out
rather implicitly without formal design and evaluation. Thus, the present chapter
makes a contribution in introducing a formal technique to the field, which is also
validated by experimental data.
Earlier versions of probabilistic-descriptors have been explored in
[18, 19, 25]. However, the descriptors in [25] are single pdfs rather than pdf
families. Although [18] used pdf-family descriptors, the way that they were
constructed lacks formalism. A related question to the profiling discussion is:
“In what length-scale is pdf interpolation meaningful for RSSI signatures?”
Clearly, we would like to minimize measurements but interpolating the pdfs of
two very distant locations would not make sense. This question is investigated
experimentally, and interestingly, the answer confirms the intuition expressed in
earlier work.

B. We develop a two-tier device tracking system that relies on RSSI measurements
made by a set of clusterheads positioned at some of the landmarks. Clusterheads
are simply static nodes positioned at these landmarks with the exact same capa-
bilities as other devices, potentially though with line power to accommodate
their heavier use. The motivation for a two-tier system is that we would like
to exploit the fact that most mobile agents in indoor environments are on the
move only occasionally. Fortunately, we found it possible to detect whether a
mobile node has moved from its previously known position based on observa-
tions from a single clusterhead. We call this tier movement detection (the lower
tier). When movement of a device has been detected, the upper tier is invoked,
which detects the new position of the device using multiple clusterheads. We
call this tier localization, as it is how localization is commonly construed. The
decisions of both tiers are formulated as composite hypothesis testing problems.
We develop the requisite theory and characterize the probability of detection
error. Movement detection has a lower run-time cost, and in many applications
the device being tracked can remain at one location for a long period of time.
The two-tier design thus results in significant savings. We also consider and
address the problem of optimally placing clusterheads in order to minimize the
probability of making incorrect decisions. Similar results have been largely lack-
ing in the literature except for [18, 19, 25], which considered a single tier. The
present chapter extends the optimization to jointly considering localization and
movement detection, and establishes that this is computationally feasible.

C. We present a working system that demonstrates the practicality of our approach.
Our system achieved an accuracy equivalent to 95 % <5 m and 87 % <3 m,
which should be considered of high-quality compared with well-known
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contemporary systems. We also examine the accuracy of our formal pdf interpo-
lation and find that interpolations with two end points 9 m apart may replace
empirically measured pdfs with very good precision. This is significant for
improving the efficiency of profiling and reinforces the findings in [10].

Notation: We use bold lower case letters for vectors, and bold upper case letters
for matrices. Our discussions will involve both probability density functions (pdfs)
and probability mass functions (pmfs). With a slight abuse of terminology, we will
use the term pdf throughout.

Organization: The remainder of this chapter is organized as follows. Section 2
formulates the problem and identifies the key components of our approach, namely:

• profiling,
• sensor placement,
• localization, and
• movement detection.

Profiling is handled in Sect. 3 and the key technique presented is that of interpo-
lating pdfs. The main theoretical underpinnings of our system and the associated
algorithms are presented in Sect. 4. More specifically, Sect. 4.1 reviews some basic
facts from information theory which are important in the mathematical development
of our algorithms. Section 4.2 describes how (binary) localization and movement
detection decisions can be taken by a single clusterhead. Section 4.4 describes how
multiple clusterheads can collaborate (in a distributed fashion) to arrive at an accu-
rate localization decision. Section 4.3 presents our approach to optimal clusterhead
placement. Section 5 contains all our experimental results and Sect. 6 gathers some
concluding remarks.

2 Tracking Problem Formulation

An overview of the tracking problem formulation is shown in Fig. 1.
Consider the problem of tracking a wireless sensor network node in a contiguous

space X , which typically corresponds to some indoor environment, e.g., a hospital
building, a convention center, or a warehouse. As a way of discretizing this space, we
consider a given set of landmarks and construct what we call a landmark graph as
follows. The node set of this undirected graph is the set of landmarks V = {Vi |i =
1, . . . , M}. A landmark can be a room, a reception area, a cubical, a storage area or
an intersection of aisles. We draw an edge between landmarks that are neighbors (in
some geographic sense); i.e., the edge set is E = {Ei j |i = 1, . . . , M, j > i, Vj ≤
Ni }, where Ni is the set of neighboring landmarks to Vi . In reality, such an edge
may represent a section of a corridor or pathway. There are many different ways
to formally define a neighborhood and this is left to the user; one approach could
be to set a radius and consider all landmarks within that radius of a node to be its
neighbors. With a slight abuse of notation, we sometimes also write: (1) j ≤ Ni if
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Fig. 1 Overall tracking
problem formulation

Vj ≤ Ni , and (2) (i, j) ≤ E when Ei j ≤ E . In what follows, a location refers to
either a node or an edge. The set of all locations will be denoted by L = {Ll |l =
1 . . . , N }, where N = M + |E |.

The next step is profiling, i.e., to associate to various locations appropriate prob-
abilistic descriptors of some features of the wireless signal. Here we use the RSSI,
which is measured between all pairs of landmarks. (Additional RF features may also
be used if available.) Let Y (k) ≤ {ρ1, . . . , ρR} be the RSSI received at landmark k,
which takes values from an R-dimensional discrete set. We then have a collection of
empirical distributions:

q(k)
i (y) = Freq(Y (k) = y|Vi ), y = ρ1, . . . , ρR, i, k = 1, . . . , M, (1)

where k is the index of the receiving landmark and i is the index of the transmitting
landmark. In (1), Freq(Y (k) = y|Vi ) simply denotes the fraction of measurements
for which Y (k) = y. Using these empirical distributions, we build the probabilistic
descriptors of all locations using methods introduced in the sections that follow. As
the result of profiling, we obtain pdfs of RSSI that characterize the signals transmitted
from each location and received at each landmark. In fact, for improved robustness
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we associate with each node and edge of the landmark graph a family of pdfs para-
metrized by vectors θi and θi j , respectively. These are the location descriptors, or
profiles:

p(k)i (·|θi ), i = 1, . . . , M, k = 1, . . . , M;
p(k)i j (·|θi j ), (i, j) ≤ E , k = 1, . . . , M.

(2)

We may also list the pdf families in terms of the locations, using the notation

pY (k)|θl
(·), l = 1, . . . , N , k = 1, . . . , M. (3)

The former notation will be used when we discuss profiling, while the latter will be
used while introducing the decision rules for positioning.

While the wireless signal transmissions are profiled for every pair of landmarks,
for the actual operation that follows we do not suggest placing a device at every
landmark to listen to the signals transmitted by the mobile nodes; that would be
wasteful. Instead, devices for that purpose, which we call “clusterheads,” shall be
placed only at the “best” K ≤ M landmarks where the RSSI measurements carry the
greatest amount of location information. The clusterhead placement decisions are
naturally based on the results of profiling, and we will cast this problem as a Mixed
Integer Linear Programming (MILP) problem.

Finally, movement detection and localization are done by “comparing” the clus-
terheads’ RSSI measurements with the location profiles. Formulated as hypothesis
testing problems, these decisions are made in statistically meaningful ways.

3 Profiling

This section focuses on how to generate the location profiles, i.e., (2) and (3), using
the empirical RSSI distributions, i.e., (1). The key technique is the interpolation of
RSSI distributions, or more generally, pdfs.

3.1 Interpolation of Pdfs

A naive way of interpolating pdfs is to calculate a simple weighted average. However,
one may quickly find that the naive way can produce unnatural results. For example,
given two Gaussian pdfs with different means, their naive interpolation always has
two peaks.

A more sophisticated approach has appeared in a work on statistical physics
simulation [24], which we adopt with several generalizations. Given K pdfs,
p1(x), p2(x), . . . , pK (x), let μ1,μ2, . . . ,μK and δ2

1,δ
2
2, . . . ,δ

2
K be their means

and variances, respectively. Let ρ ≤ R
K have elements α1, α2, . . . , αK ≤ [0, 1]
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satisfying
⎡K

i=1 αi = 1. These are the weights that we assign to the K source pdfs.
We are now seeking an interpolated pdf pρ(x), whose mean and variance are

μρ =
K⎢

i=1

αiμi and δ2
ρ =

K⎢
i=1

αiδi
2. (4)

Let
βi (x) = δi

δρ
(x − μρ) + μi , i = 1, . . . , K .

Then define
pρ(x)

∞= ⎡K
i=1 αi

δi

δρ
pi (βi (x)). (5)

Intuitively, this operation can be described as: take a copy of each source pdf, stretch
and shift it such that the variance and mean equals δ2

ρ and μρ respectively, and finally
sum these copies together with the weights adjusted in proportion to the standard
deviations of the source pdfs.

We next prove that the mean and variance of pρ(x) are indeed given by (4). Our
proof is different from the one given in [24], but is inspired by the discussions in that
paper. We believe our proof is more complete, concise, and intuitive for the present
context.

Proposition 3.1 The pdf given in (5) satisfies

(a)
∫

pρ(x)dx = 1,
(b)

∫
xpρ(x)dx = μρ,

(c)
∫

x2 pρ(x)dx = δ2
ρ + μ2

ρ.

(6)

Proof: In general, the π-th moment of the pdf in (5) can be written as

⎣
xπ pρ(x)dx = ⎡K

i=1 αi

⎣
xπ δi

δρ
pi (βi (x))dx

= ⎡K
i=1 αi

⎣ ⎤
(βi − μi )

δρ

δi
+ μρ

⎥π

pi (βi )dβi .

The last equality holds because dβi/dx = δi/δρ. Denote the integral in the above
by

Ii (π)
∞=
⎣ ⎤

(βi − μi )
δρ

δi
+ μρ

⎥π

pi (βi )dβi .

We will show that Ii (π) equals 1, μρ, and δ2
ρ +μ2

ρ, respectively for π = 0, 1, and 2.
Note that if these were true, then Ii (π) is constant with respect to i , thus the weighted
sum of Ii (π) over i simply equals Ii (π), and the proposition is proved.

The case of π = 0 is trivial.
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For π = 1,

Ii (1) =
⎣ ⎤

(βi − μi )
δρ

δi
+ μρ

⎥
pi (βi )dβi

=
⎤⎣

βi pi (βi )dβi − μi

⎥
δρ

δi
+ μρ

= (μi − μi )
δρ

δi
+ μρ

= μρ.

For π = 2,

Ii (2) =
⎣ ⎤

(βi − μi )
δρ

δi
+ μρ

⎥2

pi (βi )dβi

=
⎣ ⎦

(βi − μi )
2 δ2

ρ

δ2
i

+ 2(βi − μi )
δρ

δi
μρ + μ2

ρ

]
pi (βi )dβi

= δ2
i

δ2
ρ

δ2
i

+ 2(μi − μi )
δρ

δi
μρ + μ2

ρ

= δ2
ρ + μ2

ρ.

In addition to the nice feature of interpolating the mean and variance, formula
(5) also interpolates the shapes of the pdfs in some sense. For example, when the
original pdfs are Gaussian, the interpolation is also Gaussian.

When the random variable takes discrete values, an issue is that the transformation
β(x) may produce a value for which probability mass is not defined. An approximate
formula that solves this issue is also provided by [24] for the case of interpolating two
pdfs. We generalize the method to more than two pdfs. Assume that the probabilities
are defined for values −∗, . . . ,−1, 0, 1, . . . ,∗. For integers j and l, and for i =
1, . . . , K , let

λi jl = max

⎛
⎜

0,

min

⎝
βi ( j + 0.5)
l + 0.5

⎞
− max

⎝
βi ( j − 0.5)
l − 0.5

⎞
⎟⎠
⎭ , (7)

where δρ and βi are defined as before. To understand the quantity λi jl , let Ci j,tran
denote the transformed cell [βi ( j −0.5), βi ( j +0.5)], and Cl,pmf denote [l −0.5, l +
0.5], the cell for which the probabilities are defined. Then λi jl is the proportion of
Cl,pmf that overlaps with Ci j,tran; see Fig. 2. Note that the length of Cl,pmf is taken to
be 1; otherwise, λi jl should be normalized by the length of Cl,pmf. The approximate
formula is then

pρ( j) = ⎡K
i=1 αi

⎡
l λi jl · pi (l). (8)

Formula (7) is chosen such that
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(j−0.5)ξ

j−0.5 j+0.5

ξ (j+0.5)ii

γijl

l−0.5 l+0.5

Fig. 2 Interpretation of λi jl

⎡
l λi jl = δi

δρ
, ∼i, j, and

⎡
j λi jl = 1, ∼i, l.

Formula (8), to which we refer as linear interpolation, is what we use in our exper-
iments. Hereafter, we denote the linear interpolation of K pdfs with the coefficient
vector ρ ≤ R

K by Interpol(ρ, p1, p2, . . . , pK ).

3.2 Associating Pdf Families to Locations

It suffices to consider the RSSI profile of all locations observed by a clusterhead
placed at one of the landmarks. The index of the clusterhead is thus suppressed in
all formulae of this subsection.

First, we “regularize” the empirical pdfs to eliminate zero elements. This is nec-
essary because the number of our sample measurements during profiling is finite. As
a result, some RSSI value ρr that is possible but rare for a location Li might not be
observed during profiling, leaving the r th element of the empirical pdf equal to zero.
If we use the empirical pdf directly as the probabilistic descriptor of the location,
then when ρr appears, we would rule out Li immediately, regardless of how many
total observations are made and how the rest of the observations resemble the profile
of location Li . This is clearly undesirable. To mitigate this problem, we mix the
empirical pdf with a discretized Gaussian-like pdf of the same mean and variance.
Namely, let q be an empirical pdf with mean μ and variance δ2. Let σ(μ,δ2) be a
Gaussian-like pdf whose domain is discretized to the set {ρ1, . . . , ρR}. Let λ ≤ (0, 1)
be a chosen mixing factor—typically we set λ to a small value such as 0.1 or 0.2.
Then the pdf after regularization is

q̃ = Interpol

(⎤
1 − λ

λ

⎥
, q,σ(μ,δ2)

)
.

Second, consider the areas represented by the landmarks. Here, we use the pdf-
family framework to achieve robustness. Specifically, suppose Vi has I neighbors—
Ni = {Vj1 , . . . , VjI }. Let θi = (ε

(1)
i , . . . , ε

(I )
i ) ≤ R

I , θi ∈ 0 elementwise, and⎡I
j=1 ε

( j)
i < 1. Let
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ρθi
=




1 −⎡I
j=1 ε

( j)
i

ε
(1)
i
...

ε
(I )
i



.

Then the pdf family associated with Vi can be defined as an interpolation of I + 1
empirical pdfs:

pi (·|θi )
∞= Interpol

⎧
ρθi

, q̃i (·), q̃ j1(·), . . . , q̃ jI (·)
⎪
.

This is motivated by the fact than when localization decisions are made, the mobile
node we seek to locate will never be exactly on top of a landmark and the pdf
of the RSSI measurements may not match well with the pdf associated with that
landmark. By interpolating among all pdfs corresponding to neighboring landmarks,
we create a pdf family which is very likely to have a member that matches well our
measurements.

Last, consider the edges of the landmark graph. For the same reasons we outlined
above, we associate with the edge (i, j) another pdf family defined as a set of para-
meterized interpolations of two pdfs, where the two source pdfs are drawn from the
pdf families representing landmarks i and j . Specifically, let τi j ≤ (0, 1) and θi j be
a vector concatenating θi , θ j , and τi j . The pdf family associated with edge (i, j) is

pi j (·|θi j )
∞= Interpol

(⎤
τi j

1 − τi j

⎥
, pi (·|θi ), p j (·|θ j )

)
.

The collection of pi (·|θi )’s and pi j (·|θi j )’s corresponds to the pdfs defined in
(2), which are then rearranged as in (3).

3.3 An Alternative Interpolation Technique

One may propose another theoretically attractive interpolation technique based on
geodesics in the space of probability distributions. We only discuss the two-pdf case
for simplicity. A well-known geodesic that connects two pdfs p0(x) and p1(x) is a
α−parameterized curve

pα(x) = p1−α
0 (x)pα

1(x)⎣
p1−α

0 (x)pα
1(x)dx

, (9)

where α ≤ [0, 1]. We will refer to this as the geometric interpolation. Like in the linear
interpolation case, one can verify that the geometric interpolation of two Gaussian
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pdfs remains Gaussian. However, our experiments show that the performance of this
interpolation is inferior to that of linear interpolation. The reason is that it emphasizes
too much the common support of both source pdfs.

3.4 An Alternative Gaussian Model

In the above, we associate a family of generally shaped pdfs to each location. If a
Gaussian model of the RSSI is used instead, this task can be greatly simplified. One
may then ask whether using generally shaped pdfs is worth the effort. The answer
to this question may depend on circumstances. However, our experiments show that
significant information regarding the signals transmitted from a location is captured
by our approach, but would be neglected if we assume the Gaussian model. This will
be discussed at length later.

Now, having the location profiles in the forms of pdf families, we are in a good
position to describe our tracking system.

4 Two-Tier Tracking System

In positioning a mobile wireless node, one typically needs to draw on measurements
from multiple (likely more than 3) clusterheads. However, a somewhat surprising
observation is: if we already know the previous location of a wireless device and
ask the question of whether it has moved to another location, the RSSI signature
observed by a single clusterhead provides sufficient information. Furthermore, that
clusterhead can be selected for each location based on the profiling results. We
will refer to such a test that determines whether a device has moved as movement
detection. Thus, if many mobile nodes in the system actually stay at some locations
for prolonged periods of time (e.g., as is the case for office workers), then switching
into the movement detection mode can significantly reduce the workload of the
system. This motivates a two-tier positioning scheme of the following generic form
with parameters TL , H , and TM .

Localization Tier: As will be explained, we will make sure that for every pair of
locations, there is at least one clusterhead that can distinguish them. It ensures that
our system is capable of statistically localizing a mobile device at any location
without ambiguity. When a mobile device enters the coverage area, we have an
initial set a candidate locations based on the set of clusterheads that can detect the
signal from this device. Suppose there are n locations. There is no need to conduct
all n × (n −1) hypothesis tests of these pairs. Instead, we carry out the process in a
greedy, single-elimination manner that guarantees the most reliable n −1 decision
are employed given any deployment. This process is repeated every TL seconds.
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If the device’s position remains the same for H rounds of localization, then switch
to the movement detection tier.
Movement Detection Tier: Every TM seconds, use one clusterhead (selected
during the initial setup for the mobile device’s last known position) to test the
hypothesis that the device’s position is unchanged. If the hypothesis is rejected,
then return to the localization tier. It is worth noting that the single clusterhead,
denoted by C , responsible for detecting whether the device remains at a landmark,
denoted by L , is selected such that all neighboring landmarks of L can be distin-
guished from L by the signal profile viewed from C . Most likely, C is at a location
that is neither too far nor too close to L .

Next we address the issues of how to make the localization and movement detection
decisions and how to ensure that the deployed clusterheads can perform the tasks of
both tiers satisfactorily for every location. We will present a generalized framework
of statistical decisions that covers both tiers. Furthermore, we optimize both tiers
jointly in the clusterhead placement phase.

4.1 Preliminaries

To present the decision rules of the two tiers in a unified framework, we begin
by recalling the Kullback-Leibler (KL) distance [26]. For two distribution func-
tions (assuming discrete random variables) p and q, the KL distance of q from p is
defined as

D(q≥p)
∞=
⎢

y

q(y) log
q(y)

p(y)
(assuming 0 · log

0

a
≈ 0,∼a ∈ 0). (10)

Intuitively, the KL distance reflects the difference between two distributions in a
statistically meaningful way (see [27]). It is not a true distance metric (lacks symmetry
and does not satisfy the triangle inequality) but it is nonnegative, where zero is
achieved if and only if p = q. Typically, q is some sample distribution and p is a
model distribution. For example, if a certain event is impossible according to the
model distribution (p has a zero element somewhere) but the event occurred in the
sample (the corresponding element of q is positive), then the KL distance equals ∗,
and we immediately know that the sample is not drawn from that model distribution.
This example also illustrates that sometimes we may want to avoid proposing a model
distribution with a zero element, which is why we regularize the empirical pdfs in
Sect. 3.2.

Another important quantity that we draw from information theory is the entropy of
the distribution p. Assume a discrete random variable taking values in {ρ1, . . . , ρR}.
The entropy of the distribution is defined as:

H(p) = −
⎢

y

p(y) log p(y). (11)
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Consider an i.i.d. sequence yn = (y1, . . . , yn) drawn from p and let qyn be its sample
(empirical) distribution defined as in (1). It is easy to verify that the probability of
yn can be written as

p(yn) =
R⎨

i=1

p(ρi )
nqyn (ρi ) = e−n[H(qyn )+D(qyn ≥p)]. (12)

Recall now from Eq. (3) that the pdf family associated with the RSSI from loca-
tion l to clusterhead k is pY (k)|θl

(·), l = 1, . . . , N , k = 1, . . . , M , as constructed in
the profiling phase. For either localization or movement detection, suppose the clus-
terhead makes n i.i.d. observations y(k),n = (y(k)1 , . . . , y(k)n ), with a corresponding

sample distribution q(k)
yn , upon which the decision rules apply. The efficiency of the

decision rules to be presented will be quantified using the error exponent, defined as

d
∞= − lim

n√∗ sup
1

n
log P(error). (13)

This represents the exponentially decay rate at which the probability of error con-
verges to zero.

4.2 Statistical Decisions Contributed by a Single Clusterhead

Next, consider the decisions that can be made by one clusterhead (hence the cluster-
head index is dropped). For localization, the core task is to distinguish between two
candidate locations of the mobile device. It was shown in [18, 19] that the question
boils down to a binary composite hypothesis testing problem (composite because the
distributions involved have unknown parameters—the θ’s), and one can use the well-
known Generalized Likelihood Ratio Test (GLRT). In particular, the GLRT decides
location i over j if

1

n
log

maxθ j pY |θ j (y
n)

maxθi pY |θi (yn)
< γi j ,

for some appropriate threshold γi j . We have

γi j >
1

n
log max

θ j

pY |θ j (y
n) − 1

n
log max

θi

pY |θ j (y
n)

= max
θ j

[−H(qyn ) − D(qyn ≥pY |θ j )]
− max

θi

[−H(qyn ) − D(qyn ≥pY |θi )]
= min

θi

D(qyn ≥pY |θi ) − min
θ j

D(qyn ≥pY |θ j ).
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Thus, in terms of the KL distance, the GLRT rule can be expressed as:

Decide location i relative to j if and only if
minθi D(qyn ≥pY |θi ) − minθ j D(qyn ≥pY |θ j ) < γi j .

(14)

A slightly conservative estimate of the corresponding error exponent, denoted by di j ,
was also derived in [19] (including an explanation of why γi j is not always zero and
how it can be selected). Moreover, [19] describes how a decision among many poten-
tial locations can be taken by using a sequence of binary tests; interestingly enough,
such a decision can be taken in a distributed manner by appropriate collaboration
between the clusterheads.

Let us now turn our attention to the movement detection tier. Suppose that the last
known location of a mobile device is location j and we would like to determine if the
device remains at j based on the n i.i.d. observations in yn by a single clusterhead.
The following Generalized Hoeffding Test (GHT) [28], expressed analogously to
(14) using the KL distance, is applicable:

Report “no movement” if and only if

minθ j D(qyn ≥pY |θ j ) < γ j . (15)

Let π j and η j be the error probabilities of false alarm and missed detection, respec-
tively. The following proposition shows that the GHT is optimal in a Generalized
Neyman-Pearson sense.

Lemma 4.1 The test in (15) is optimal in a generalized Neyman-Pearson sense,
that is,

lim sup
n√∗

1

n
log π j < −γ j , ∼θ j , (16)

and − lim supn√∗ 1
n log η j is maximized among all tests satisfying (16) uniformly

for all θi characterizing some alternative pdf.

Proof: Let P j (·) denote a probability conditional on the mobile node having not
moved from location j . Let also Qn = {ν | ν = qyn for some yn} denote the set of
all empirical measures that can be obtained from an n-length observation sequence
and Tn(ν) = {yn | qyn = ν} the set of n-length observation sequences with an
empirical measure equal to ν.

First, letting Pν denote a probability under the measure ν and | · | the cardinality,
wehave

Pν [Tn(ν)] =
⎢

{yn |qyn =ν}
Pν [yn]

=
⎢

{yn |qyn =ν}
ξ(ρ1)

nξ(ρ1) · · · ξ(ρR)
nξ(ρR)
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=|Tn(ν)|e−nH(ν),

which implies
|Tn(ν)| ≤ enH(ν). (17)

Now, for all θ j the false alarm probability is given by

π j = P j [{yn | min
θ j

D(qyn ≥pY |θ j ) ∈ γ j }]

=
⎢

{qyn |minθ j D(qyn ≥pY |θ j )∈γ j }
|Tn(qyn )| pY |θ j (y

n)

≤
⎢

{qyn |minθ j D(qyn ≥pY |θ j )∈γ j }
enH(qyn )e

−n[H(qyn )+D(qyn ≥pY |θ j )]

=
⎢

{qyn |minθ j D(qyn ≥pY |θ j )∈γ j }
e
−nD(qyn ≥pY |θ j )

≤(n + 1)Re−nγ j .

For the first inequality above we have used (12) and (17). In the last inequality above
we used the fact that the set of all possible empirical measures, Qn , has cardinality
upper bounded by (n + 1)R (a symbol of length R with each element taking values
from { 0

n , . . . ,
n
n }). This establishes (16).

Let now Sn be some other decision rule satisfying (16). It is well known that the
empirical measure is a sufficient statistic so any rule will depend only on that. Let πSn

and ηSn denote the corresponding false alarm and missed detection probabilities.
For all θ > 0 and all large enough n we have

πSn ≤ e−n(γ j +θ). (18)

Meanwhile for all θ > 0, all large enough n, and any yn such that Sn declares
“movement” it holds

πSn =
⎢

{qyn |Tn(qyn ) implies movement}
|Tn(qyn )| pY |θ j (y

n)

∈
⎢

{qyn |Tn(qyn ) implies movement}
(n + 1)−Re

−nD(qyn ≥pY |θ j )

∈e
−n[D(qyn ≥pY |θ j )+θ]

,

where the first inequality above uses [29, Lemma 2.1.8]. Comparing the above
with (18) it follows that if yn implies “movement” then for all θ j it should hold
D(qyn ≥pY |θ j ) ∈ γ j . Therefore, the GHT in (15) should declare movement as well,
which implies that ηSn ∈ η j for all θi characterizing an alternative pdf, where
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i �= j . The latter establishes that the GHT maximizes the exponent of the missed
detection probability.

Eq. (16) provides a bound on the exponent of the false alarm probability. To bound
the exponent of the missed detection probability we can use Sanov’s theorem [29,
Chap. 2]. Specifically,

lim sup
n√∗

1

n
log η j ≤ − min

q≤H j

D(q≥pY |θi ), ∼θi , (19)

where H j = {q| minθ j D(q≥pY |θ j ) < γ j }.
Defining

Z j,θi (γ j ) = minq D(q|pY |θi )

s.t. minθ j D(q≥pY |θ j ) < γ j ,
(20)

and
Z j (γ j ) = min

i �= j
min
θi

Z j,θi (γ j ), (21)

we can write

− lim sup
n√∗

1

n
log η j ∈ Z j (γ j ).

The error exponent of the whole test equals the lesser between the exponents of π j

and η j . On the other hand, it is straightforward to show that Z j (γ j ) is monotonically
decreasing in γ j . If we could compute Z j (γ j ), then the solution of Z j (γ j ) = γ j

gives the optimal value of γ j as well as the best achievable error exponent. However,
the computational cost of finding the exact solution is significant. This is mostly
because the constraint in (20) is non-convex and also high-dimensional. To side-step
this problem, we replace Z j,θi (γ j ) with an estimate based on dual relaxation:

Z̃ j,θi (γ j )
∞= maxμ∈0 minθ j minq D(q|pY |θi ) + μ(D(q≥pY |θ j ) − γ j )

s.t
⎡

y q(y) = 1,
q(y) ∈ 0, ∼y.

(22)

As a relaxation, it holds that Z̃ j,θi (γ j ) ≤ Z j,θi (γ j ). The computational gain
comes from the fact that the minimization over q is now convex. In fact, the optimal
solution can be found in closed-form:

q∗(y) =
pα

Y |θi
(y)p1−α

Y |θ j
(y)

⎡
ρ pα

Y |θi
(ρ)p1−α

Y |θ j
(ρ)

, where α = 1

1 + μ
. (23)
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Then Z̃ j (γ j ) = mini �= j minθi Z̃ j,θi (γ j ), which is also monotonically decreasing
in γ j . The solution of Z̃ j (γ j ) = γ j , denoted by h j , gives a near-optimal threshold
and the error exponent at the same time.

4.3 Optimal Clusterhead Placement

From the above, for each landmark (also candidate clusterhead location) k, we have a
collection of localization error exponents di jk , and movement-detection error expo-
nents h jk , all of which are optimized (note that the index of the clusterhead location
is now added back).

In the profiling phase, every location is a potential place of clusterhead installation.
In the actual operation of the tracking system, however, we may not want to place a
clusterhead at every location, because if we do that, some of the clusterheads may
not be in a good position to provide useful information. The budget of the system
may further reduce the number of clusterheads that we are allowed to deploy. For
these reasons, we need to place the clusterheads carefully. In the case of the dense
deployment mentioned above, placement amounts to selecting which nodes from the
ones already deployed will play the role of a clusterhead.

In formulating the clusterhead placement problem, our goal is to ensure:

1. For the localization tier, there should be at least one clusterhead k for each pair
of locations i, j such that Li , L j can be clearly distinguished using observations
of clusterhead k under the GLRT.

2. For the movement detection tier, there should be at least one clusterhead k for
each location j such that L j can be distinguished from alternative locations
using clusterhead k under the GHT.

More precisely, for a given number K of clusterheads to deploy, we maximize the
error exponent level θ that is met (or exceeded) for every location in the movement
detection tier, and for every pair of locations in the localization tier. Furthermore, the
error exponent for each location or each pair of locations is given by the clusterhead
that can best resolve the case (with greatest error exponent). Formally, let P denote
the set of landmarks where clusterheads are placed. The problem can be written as

maxP∩V θ
s.t. |P| = K ,

mini, j maxk di jk ∈ θ,
min j maxk h jk ∈ θ.

(24)

It is important to note that the optimal value of this problem provides an upper bound
on the probability of error for both localization and movement detection decisions.
That is, if θ∗ is an optimal solution, the maximum probability of error of our system
satisfies
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max

s.t. M
k =1 x k = K

M
k =1 yijk = 1 , ∀i, j = 1 , . . . , N, i < j,

M
k =1 zjk = 1 , ∀j = 1 , . . . , N,

yijk ≤ x k , ∀i, j, i < j, k = 1 , . . . , M,

zjk ≤ x k , ∀j, k = 1 , . . . , M,

≤ M
k =1 dijk yijk , ∀i, j, i < j,

≤ M
k =1 hjk zjk , ∀j,

yijk ≥ 0, ∀i, j, i < j, ∀k,

zjk ≥ 0, ∀j, ∀k,

x k ∈ {0, 1}, ∀k.

Fig. 3 Clusterhead placement MILP formulation

lim sup
n√∗

1

n
log P[error] ≤ −θ∗. (25)

Problem (24) can be reformulated as the Mixed Integer Linear Programming
(MILP) problem shown in Fig. 3.

Software exists for solving generic MILPs. Furthermore, we have designed an
algorithm that solves the MILP in Fig. 3 much faster than commercial general pur-
pose MILP-solvers. Our approach is to solve this problem by an iterative feasibility
algorithm along the lines proposed in [30]. In particular, we use a modified version
of a two-phase algorithm proposed in [31]. Its computational advantage lies in the
fact that we solve a feasibility problem in each iteration that contains only O(M)

variables and O(N 2) constraints, instead of the O(N 2 M) variables and O(N 2 M)

constraints that appear in the formulation.

4.4 Putting Everything Together: The Decision Procedure
Involving Multiple Deployed Clusterheads

While movement-detection requires one clusterhead at a time, localization generally
requires more than one clusterhead. No matter how good the decision rule is, a
single clusterhead is normally not enough for distinguishing every pair of locations
in a wide coverage area, because given any single clusterhead, there may be pairs
of locations whose RSSI profiles are similar. So, we use the following procedure to
“chain” together the decisions of multiple clusterheads.

When a wireless device is detected, we can have an initial estimate of the candidate
locations based on the set of clusterheads that received signals from that device.
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Suppose there are n candidate location. Instead of comparing all n × (n − 1) pairs
of them, we apply a greedy selection process.

To understand this procedure, first recall that the profiling and clusterhead place-
ment phases assigned one clusterhead for each pair of locations that need to distin-
guished. Furthermore, the statistical reliability with which this pair of locations can
be distinguished (based on the clusterhead of our choosing) is associated with an
error exponent, the greater value of which indicates higher reliability.

Now, we sort the pairs of candidates in descending order of the associated error
exponent. Using GLRT, we first make a judgment between the first pair of candidates
in this ordered list. That is, we start with the most reliable decision that can be made.
The candidate that loses the judgment is eliminated, so are the pairs that include the
eliminated candidate. Then we move our focus to the remaining pair that is associated
with the next greatest error exponent. In the end, n − 1 judgments are made and a
single winner is left.

5 Experiments

Our testbed is set up on the first floor of a Boston University building (see Fig. 4). The
wireless device used is the MPR2400 (MICAz) “mote” from Crossbow Technology
Inc. (now Memsic Inc.).

5.1 Testing the Complete System

Our two-tier tracking system covers 10 rooms and the corridors, which are mapped
to 30 landmarks, marked by either a green circle or a red square on the floor plan
(Fig. 4), where the latter marks the clusterhead positions obtained from solving the
optimal placement problem. The landmark graph is then constructed resulting in 39
edges. Adding the landmarks and edges together, we have a total of 69 locations.

Fig. 4 Floor plan with the landmarks for the testbed
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Hence, N = 69 and M = 30 in this experiment. A mote is placed at each landmark
location, but only some of them will serve as clusterheads. All 30 motes are connected
to a base MICAz through a mesh network. The base mote is docked on a Stargate
node which forwards the messages back to the server.

The experimental validation of our localization approach can be divided into the
following six phases, which have a one-to-one correspondence to those in Fig. 1:

Phase 1: Map the coverage area to a landmark graph.
Phase 2: We obtained the empirical pdfs for the landmarks corresponding to

Eq. (1). The 30 motes placed at the landmark locations took turns to broadcast packets,
specifically, when one was transmitting the others were listening and recording the
RSSI. A total of 200 packets were transmitted by each mote. The data collection was
repeated for the combinations of two frequencies and two power levels; details will
be given below.

Phase 3: We used the methods in Sect. 3 to construct the pdf families correspond-
ing to Eq. (2), which are the descriptors of all 69 locations. Note that the interpolation
technique allowed us to construct high quality descriptors without densely covering
the area with landmarks.

Phase 4: We obtained di jk and h jk as described in Sec. 4.
Phase 5: We solved the MILP to optimize clusterhead placement and simultane-

ously obtained the performance guarantee of Eq. (25). In the MILP formulation, we
needed to input K , the total number of clusterheads. By varying K from 1 to 30, we
discovered that the performance guarantee reached a satisfactory level after K = 7,
and somewhat flattens afterward. Thus, we placed clusterheads at 7 locations (again,
marked by red squares in Fig. 4).

Phase 6: We introduced mobile motes in the coverage area and let the system
make localization and movement detection decisions.

For Phase 1, the coverage area is mapped to a landmark graph as shown in Fig. 4.
We let Phase 2 (a completely automated procedure) stretch over 24 h to acquire

data under diverse conditions of the surrounding environment. The objective is to
capture the indoor environment in all possible “modes” and configurations so that
the pdfs we generate can model any one of these conditions. Phase 3 takes virtually
no time. Phase 4 takes another 24 h on our computer, although further optimization
of our code may reduce the computation time significantly. Phase 5 only takes about
half an hour. Note that all these steps are performed only once, after which the amount
of real-time computation needed for each localization decision is very small, such
that the resources on the clusterheads (typically motes plugged into a wall outlet or
a large enough battery) are sufficient.

We know from previous experiences [19] and the literature that frequency and
power diversity provide better performance. The mote to be located broadcasted
20 packets over the combination of 2 frequencies (2.410 GHz and 2.460 GHz)
and 2 power levels (0 dBm and −10 dBm), with 5 packets corresponding to each
combination. We achieved a mean error distance of 87.32 inches, which is better
than our earlier result of 96.08 inches [19] based on techniques that do not use a
formal method of pdf interpolation. The percentile of errors< 3 m (118 inches) also
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improved from 80 to 87 %. One may also count from Fig. 5 that the percentile of
errors< 5 m (197 inches) is 95 %.

The total coverage area (we have excluded the rooms that are in the floor plan
but to which we did not have access) was 1827 feet2, that is, about 61 feet2 per
landmark. With a mean error distance of D̄e = 7.3 feet the mean area of “confusion”
was 7.32 = 53 feet2. It is evident that we were able to achieve accuracy on the same
order of magnitude as the area “covered” by a landmark; this is the best possible
outcome with a “discretized” system such as ours. That is, the system was identifying
the correct location or a neighboring location most of the time. We used a clusterhead
density of 1 clusterhead per 1827/7 = 261 feet2. Note that our system is not based
on the “proximity” to a clusterhead; the ratio of locations to clusterheads is 69/7, or
about 10.

We also obtained results for the movement detection tier. The mote to be monitored
now transmits 20 packets at a single frequency and power level depending on its a
priori location. The use of a single frequency/power level was selected because the
diversity only benefits decisions involving multiple clusterheads. The resulting error
probability was 8 %. Again, we emphasize that we are exploiting only the most basic
RF measurements in obtaining these results. Yet, the approach is easily generalizable
to include additional information if available (in that case, instead of scalar RSSI
measurements we will be dealing with an observation vector).
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5.2 A Closer Look at Pdf Interpolation

We have proposed a rather sophisticated interpolation technique for generating
location profiles. One concern is: if the interpolated pdfs were merely low-quality
approximations of the actual pdfs, then we might be better-off using a Gaussian
approximation, which is computationally cheaper. In our experiments however, the
interpolated pdfs did a very good job preserving the shape information of the empiri-
cal pdfs which were not close to a Gaussian. As will be shown, the decision accuracy
using the interpolated pdfs dominates that of the Gaussian approximation by a sig-
nificant margin. Another question that we attempt to answer is: At what length-scale
does pdf interpolation make sense? It turns out that the interpolation is very mean-
ingful when the two end points are about 30 feet (or 9 m) apart, but not when they
are 60 feet apart.

The first experiment is conducted in a roughly straight corridor of about 60 feet
long, mapped to 5 locations roughly 15 feet apart. Labeling the locations consec-
utively as location 1, 2, . . . , 5, we place the clusterhead at location 1 (which is at
one end of the corridor). To measure the signals transmitted from each location, one
of the coauthors stood at that location holding a transmitting mote, which sends a
packet every 5 seconds. We chose to have a person hold the mote because this is close
to an actual application scenario. The clusterhead received the packets and recorded
the RSSI values. During the experiment, a total of 150 packets were sent from each
location. Due to packet loss, the number of actual samples taken by the clusterhead
is less, but we still obtained more than 100 samples for each location. Then, we mix a
Gaussian component into each of the six empirical distributions as described earlier
with a mixing factor of 0.2, i.e., regularized empirical distribution = 0.8 measured
+ 0.2 Gaussian. The empirical distributions for the six locations after regularization
are denoted by q1, q2, . . . , q5.

We compare three interpolation methods. First, in what is labeled “linear short
interpolation,” the interpolated pdf of location i is generated using qi+1 and qi−1:

pi,short = Interpol

(⎤
0.5
0.5

⎥
, qi−1, qi+1

)
, i = 2, 3, 4.

Second, in what is labeled “linear long interpolation,” the interpolated pdfs are gen-
erated using q1 and q5:

pi,long = Interpol




⎩


5 − i

4
i − 1

4


 , q1, q5


 , i = 2, 3, 4.

Third, we adopt the Gaussian model instead and interpolate the pdf of each location
with adjacent locations:
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Fig. 6 Visual comparison of interpolated pdfs for location 2. The horizontal axis represents signal
strength reading of the motes

pi,gaussian = Interpol

(⎤
0.5
0.5

⎥
,σ(μi−1,δ

2
i−1),σ(μi+1,δ

2
i+1)

)

= σ

(
μi−1 + μi+1

2
,
δ2

i−1 + δ2
i+1

2

)
, i = 2, 3, 4.

Last, we also include the geometric interpolation (cf. Sec. 3.3) for comparison,
denoted by pi,geo, where location i ≤ {2, 3, 4} is interpolated by location i − 1 and
i + 1 as in the linear short case.

(1) Qualitative Study: We visually compare the various interpolation results for loca-
tion 2 as an example (Fig. 6). The short interpolation seems to capture some shape
information of the actual pdf that is missed by the Gaussian model. For example,
the empirical pdf is skewed to the left. The interpolated pdf also exhibits the skew-
ness, while the Gaussian pdf is always symmetrical. One may also notice that the
linear long and the geometric interpolations appear very different from the actual
pdf.

(2) Quantitative Observation: First, it is of distance between pdfs. As we have seen,
the KL distance appears in both localization and movement detection error exponents.

The comparison is plotted in Fig. 7. It is very interesting to see that the quality
of linear short interpolation dominates that of the Gaussian model in the KL sense.
For example, the KL distance of short-interpolation-to-empirical for location 4 is
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only a little over one-third of that of the Gaussian model. For locations 2 and 3, the
difference is roughly a factor of 1.5, which is still significant. Similarly, the linear
short interpolation appears superior to the geometric (also short) interpolation. The
long interpolation on the other hand clearly departs from the actual distribution.

Next, we attempted location distinction using these pdfs. We omit the geometric
and the linear long cases as, based on the discussion above, they are not suitable for
our purposes. We will hence change the label “linear short interpolation” to simply
“linear interpolation.” For each location j = 2, 3, and 4, and each sample size n =
5, 10, 15, . . . , 30, we tested the hypothesis that “the wireless node is at location j”
using n RSSI measurements drawn randomly from a large pre-compiled data set.
Each sample contained measurements associated with one single location i , where
i ≤ {1, . . . , 6}. The GHT was used to make the decision, in which the threshold γ
was optimized for each j and n. For each pair of j and n, we repeated the trial 4000
times and calculated the empirical error probability, which is a weighted sum of all
types of errors. The result is shown in Fig. 8.

Several observations are in order. First, very low error probability is achieved
using the linearly interpolated pdfs. Second, and maybe more interestingly, the error
probabilities using linearly interpolated pdfs are lower than those using the Gaussian
model in all instances, and the difference is quite large in most cases. Further, as the
sample size increases, the former decreases faster than the latter. These demonstrate
that the approximation qualities of the interpolated pdfs are fairly notable, and the
added computational effort (compared to the Gaussian model) may indeed be well
justified.

Yet another interesting observation emerges in the comparison with [10], which
has shown that when the spacing of “reference signatures” goes below roughly
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Fig. 8 Comparison of linear interpolation and the Gaussian model in terms of the error probability
of GHT using the interpolated pdf
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Fig. 9 Layout of the experiment. Node 1 is the clusterhead (listener)

10 m, the improvement in performance diminishes. The spacing of the “reference
signatures” there is analogous to the distance between the two end-point locations in
our pdf interpolation. The two end points in the working version (the “short”) of our
pdf interpolation happen to be a little more than 9 m (30 feet) apart. This result rein-
forces that of [10], as both indicate that taking empirical measurements at a spacial
density of less than 9 or 10 m apart, or roughly 1 per 25 sq.m, carries diminishing
benefit.

The interpolations above were done along a line. We also tested interpolations in
a triangle, as shown in Fig. 9. The clusterhead (the listener) was placed at location
1 and the profile of location 5 was interpolated using those of location 2,3, and 6.
Figure 10a shows the KL distance from the interpolated profile of location 5 to the
empirical profile of itself and other locations. The figure shows that under linear
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Fig. 10 a KL distances of the empirical pdfs to the interpolated pdf of location 5 (a clear minimum
at 5 is desired) b Error rate of movement detection for location 5. Comparison of linear interpolation
and the Gaussian model in terms of a the KL distance, b the error rate in GHT

interpolation, the distance to self is clearly lower than those to others—the plot has
a clear minimum at location 5—while the distinction under Gaussian interpolation
is less pronounced. Finally, Figure 10b shows the error probability of GHT using
different profiles. Consistent with the KL distance, the linear interpolated profile
out-performs the Gaussian one significantly.
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5.3 Change of Signal Profiles Over Time

Consideration of short-term changes such as the effect of people walking around has
already been built into our model. With that taken care of, we can consider the signal
profiles to be relatively stable. In the long run, some re-profiling would be inevitable.
Our experiences indicate that the profile experiences virtually no change for the time
scale of one month, but re-profiling may be needed for a period beyond 4 months.

First, to assess the effect of an outdated profile on localization accuracy, we
performed a three-part experiment that used a current profile, an one-month-old
profile, and a four-month-old profile, respectively. When we used the one-month-old
profile the probability of accurately reporting the correct landmark deteriorated by
2.27 % compared to the one obtained by using the current profile. On the other hand,
when we used the four-month-old profile, the probability of accurately reporting the
correct landmark deteriorated by 6.5 % compared to the one obtained by using the
current profile. Real systems are typically overprovisioned so such a performance
deterioration may be tolerable. Of course, the percentage drift in the corresponding
probabilities of error was substantially higher but in any case we work with small
probabilities of error. Furthermore, even when we make an error, the error is small
because the mistaken location is a neighboring landmark in virtually all of the cases.

To gain more insight, we used again the KL distance to measure the drift of
signal profiles. Signal profiles of four locations that resemble a neighborhood in
our landmark graph were measured in 2010, first in July, then in the beginning of
November (i.e., after 4 months), and then at the end of November. Table 2 shows that
the KL distances of signal profiles between pairs of locations are on the scale of 3–8.
On the other hand, Table 1 shows that, the signal profiles changed by a KL distance of
around 0.5 from the beginning to the end of November, which is negligible compared
with the pairwise distances. However, the maximum drift in KL distances from July
to November is around 3, which is large enough (compared to the pairwise distances)
to affect the localization results.

Table 1 KL distance of
signal profile drifting

KL-D Early Nov KL-D July
vs. Late Nov vs. Early Nov

Location 1 0.54 0.57
Location 2 0.68 2.15
Location 3 0.58 1.12
Location 4 0.40 3.19

Table 2 KL distance
between locations

KL-Distance Location 1 Location 2 Location 3 Location 4

Location 1 – 4.42 6.44 6.49
Location 2 3.29 – 5.17 6.96
Location 3 6.86 5.48 – 3.41
Location 4 8.01 7.87 3.45 –
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6 Conclusion

This chapter reviews a set of carefully designed rules and algorithms that underpins
a successful two-tier wireless RSSI-based positioning system. Both theoretical and
experimental justifications are provided. In addition to working out the details of the
design, the experimental validation of the formal pdf interpolation and that of the
single-clusterhead-based movement detection are valuable pieces of information to
practitioners.

Our approach to the localization problem is formal. The coverage area is modeled
as a landmark graph, whose nodes and edges are locations of interest. The signal
profiles between locations are processed using a rigorous pdf interpolation technique.
The decision rules are GLRT and GHT, which provide error probability estimates.
And these error probability estimates are used in a MILP formulation to come up
with optimal system deployment.

Furthermore, these formal approaches are validated by experiments. We showed
that the overall accuracy of our system compared favorably against other state-of-
the-art methods using the same low-cost hardware (although we recognize that the
conditions of experimentation are not strictly comparable). The idea of combining
localization and movement detection to improve system efficiency is also shown to
be practical, i.e., an efficient deployment solution that satisfies the needs of both
localization and movement detection does exist. In addition to validating the entire
system, we also zoomed in to the particularly interesting pdf interpolation technique.
In these more focused experiments, we not only showed that this theoretically appeal-
ing interpolation technique actually works, but also showed that the reason why we
expected it to work is also valid, i.e., the interpolated pdf carries more information
(as measured by the KL distance) for distinguishing between locations.

It is worth noting that the use of advanced decision theory does not make our
approach more difficult to use; quite the contrary. We do record full pdf information
and use formal optimization to decide clusterhead placement, which makes the ini-
tialization of the system a little more complex than other methods. However, after
implementing these algorithms, deploying the system is very easy exactly because
the approach is “formal” at every step. There is little need for trial-and-error type
of adjustments. In short, it is our hope to contribute to the rational decision making
process in constructing a localization system.
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Chapter 6
Protocol Design for Real-Time Estimation Using
Wireless Sensors

Yaser P. Fallah and Raja Sengupta

Abstract This chapter discusses how a wireless sensor network can be built for
real-time estimation purposes. The finite capacity of a wireless network in deliver-
ing information means that a real-time estimation process has finite accuracy too.
Improving accuracy requires faster sampling and more communication; however,
faster communication is not always a possibility due to scalability issues and the
limited capacity of a network. In fact, in networks where the wireless medium is
shared amongst many nodes, the increase in the amount of communication may even
have a negative impact on the capacity of wireless medium, and in turn on the quality
of real-time estimation (e.g., loss of network capacity as seen in CSMA/CA—Carrier
Sense Multiple Access/Collision Avoidance- networks). In this chapter we describe
methods and protocols that can be employed to control the behavior of nodes to
allow maximal use of the shared medium for the purpose of real-time estimation.
We describe how transmission control protocols (adapting rate and range of com-
munication) should be applied in a wireless network of mobile sensors, such as
vehicles, to allow the highest possible accuracy given the limitations of the medium.
Such protocols have been evaluated in the form of transmission rate and range con-
trol schemes in wireless vehicular networks, with the purpose of real-time vehicle
position tracking.
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1 Introduction

Wireless Sensor Networks (WSN) may be used for sensing and observing a physical
phenomenon in real-time. Such an applicationmaybe referred to as real-time tracking
or estimation overWSNs. Tracking latency and resolution will be directly dependent
on the dynamics of the sensed phenomenon and the capacity of the WSN. The
requirements of timeliness and accuracy are usually highwhen real-time estimation is
considered. For example, in a mobile sensor network formed by vehicles, where each
node is expected to estimate the states of its neighboring vehicles, the requirements
become very stringent [1, 5]. This is in particular truewhen applications like collision
warning are considered. Given vehicle dynamics and movements, state of a vehicle
(e.g., its speed, position, heading, etc.) needs to be tracked with a latency of less
than a few hundred milliseconds. Achieving this level of real-time tracking accuracy
puts a huge burden on the wireless network that is the communication backbone of
the vehicular mobile sensor network. The main issue is the limited capacity of the
network, and the effect of the sensor node loads on this capacity limit.

The issue of limited capacity has always been one of the main constraints of net-
works in general, and wireless networks in particular. However, in wireless networks
where coordinated channel access is impossible or difficult, the issue becomes com-
pounded with collisions and wasted bandwidth due to uncoordinated access. This
issue was in particular observed for vehicular mobile sensor networks [6, 15, 31, 33].

Dealing with limited channel capacity has been one of the main topics of research
from the early days of the conception of telecommunications. Traditionally, two
approaches have been considered for addressing this issue. One approach is to try
and compress the information in the application layer in order to fit more information
into a limited size communication pipe. The other approach is to fit as many bits as
possible in a given bandwidth, which can be seen as increasing the available capacity
(size of the communication pipe). While these approaches have their own merits and
are valid efforts, their usefulness and validity is limited to cases where application
and channel (communication network) behavior are independent and can be stud-
ied separately. This is usually true when a single communication channel between
two nodes is considered; however, in networks where the communication medium
and intermediate devices are shared amongst many nodes, the interdependence of
the application and network behavior becomes important. An early example of this
issue was the problem with Internet congestion which would render the entire net-
work useless and drive the capacity to zero [43]. Mitigating such issues resulted in
coarse congestion management schemes to be adopted in transmission control pro-
tocols like TCP. However, while TCP is designed to be agnostic to the application
data types, knowledge of the application will yield considerable benefits when the
interdependence of application and network behaviors are concerned [12].

Wireless sensor networks are indeed meant for sensing and tracking purposes. It
is, therefore, reasonable to look formethods of employing the knowledge of the inter-
action between sensing and tracking applications and the network in order to achieve
the best possible results. Such considerations are in fact the basis of some of the most
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recent developments in devising methods for real-time estimation of vehicle states
over mobile sensor networks [11, 14]. This chapter will use the vehicular application
as a case for studying how communication control protocols can be designed with
the purpose of enabling real-time estimation applications. The process of designing
such a protocol is described in the next sections, following an introduction to the
tracking application that relies on them.

2 Real-Time Estimation and Tracking Over a Multi-Access
Channel

An example of a mobile sensor network that is used for tracking real-time processes
is that of a vehicular network for cooperative safety [1, 5]. Such a network is com-
prised of mobile nodes (vehicles) that sense their state (position, speed, etc.) using
GPS and onboard navigation sensors (e.g., gyro’s and accelerometers) and broadcast
the information over an 802.11p network [2–4]. Vehicles receiving the broadcast
messages will try to create a real-time map of vehicles in their neighborhood, track-
ing each vehicle in their vicinity (Fig. 1). A hazard detection algorithm continuously
analyzes the map to detect dangerous situations, and warn the driver [1] or take an
evasive action. Given the criticality of the application, it is very important that track-
ing of other vehicles is performed with adequate accuracy (for example less than 1m
error with confidence of 95%). This application is called Cooperative Vehicle Safety
(CVS) and is being planned for large scale deployments in the coming years (under
USDOT Connected Vehicle program).

Fig. 1 Cooperative vehicle safety is enabled by a mobile sensor network consisting of vehicles
sensing and broadcasting their state information over an 802.11p wireless network
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The CVS network can be described in a simple problem where multiple Linear
Time Invariant (LTI) dynamical systems track each other over a shared channel.
Each LTI dynamical system represents a single vehicle; each vehicle tries to track all
its neighboring vehicles up to a certain distance. While we describe the LTI exam-
ple of a vehicle movement, other dynamical systems may also be used in the same
problem setting and formulation with straightforward enhancements. In this section,
we describe a mathematical framework for the tracking problem and compare the
performance of different communication policies in ideal conditions. In subsequent
sections we consider more complex and real communication media and re-evaluate
the tracking performance for different algorithms. For a decentralized communica-
tion policy, it is shown that the effect of tracking application and underlying network
on each other has to be considered to achieve robust tracking performance.

2.1 Tracking Problem Formulation

Estimation and tracking over a communication channel has been classically formu-
lated as a sender–receiver pair with one-to-one channel setting (e.g., in [8]). Simple
channel loss models are usually considered in such formulations, assuming that
channel loss follows a stationary distribution and is independent of the transmis-
sion behavior at the sender. Such assumptions make the problem analysis tractable,
but discount the very important effect of sender behavior on wireless network per-
formance, in particular when multiple nodes share the channel (i.e., multi-access
channels, which are commonplace in WSNs). As a result, the classical setting is
not suitable for multi-access channels because the performance of such channels
heavily depends on the transmission behavior of all nodes. For example, an increase
in transmission attempts does not always translate to an increase in the amount of
information successfully delivered. In certain cases, like in simple Aloha networks,
the capacity may actually decrease. Knowing this fact, we formulate the problem as
follows:

Consider a real-time tracking problemwith finite n dynamical systems n = 2,3,…,
where their dynamics are assumed to be decoupled. In analogy to the CVS problem
setting, these nodes represent all vehicles in proximity of a given vehicle. To ease our
discussion, for each node index j ≤ {1, 2, ..., n}, let the state transition be represented
by a simple LTI model. We have

x j (t) = a j × x j (t − 1) + b j × u j (t − 1) + ψ j (t − 1) (1)

where x j (t) is the state of node j, u j (t) and ψ j (t) are the stationary zero-mean input
and noise processes with bounded variance, and t is the time index t ≤ N. In case of
a vehicle, a j and b j represent the mechanical characteristics and physical laws that
govern vehicle j, respectively. The amplification factor a j decides how fast the state
x j evolves. In analogy to our CVS problem setting, by extending the dimensions
of parameters in the LTI model (1), a j can be used to model physical laws that
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Fig. 2 Node internal structure in the analyzed real-time tracking problem

govern that vehicle’s movement, and ψ j (t) can be used to model mechanical and
driver related disturbance [17]. Such an LTI approximation has been used in control
literature for example in [7] and [37].

The internal communication and estimation processes of a vehicle can be rep-
resented as in Fig. 2 ([17]). The n nodes depicted in the figure share the same
wireless channel, for example the 802.11p or DSRC—Dedicated Short Range
Communications-channel [2–4]. Each node contains a discrete-time LTI scalar
process as in (1), a communication logic, and a bank of synchronized model-based
estimators that are used to track other vehicles in the neighborhood.

In this setting, the true state (a real number with an acceptable distortion) of
sender j will be broadcast to the shared channel by its communication logic. The
communication logic has to make two main decisions regarding broadcast of the
state information. One is to decide when to transmit a message, the other is to decide
to what distance transmit it. The former corresponds to determining the policy of
sampling and communication of samples to individual receivers and is sometimes
called “rate control”; the latter concerns with the network size and range of receivers
of the state information, constituting the “range or power control” scheme. The
rate and range control mechanisms can be together seen as the transmission control
protocol for multi-access channels, just as TCP is the transmission control protocol
in IP-based point to point connections.

At the receiver side of the messages, an estimation process is run to recover the
state of the sending vehicle. The model-based estimator at receiver i operates on a
discrete clock and performs an estimation action at each estimation time, based on
whether a new message is received or not. Therefore the estimator switches between
the following two modes:

• If no information regarding node j is received at t − 1, use previous estimate at
t − 1(Xi j (t−1)) and the known model (1) to carry on and derive the new estimate:
Xi j (t) = λ j . Xi j (t−1)
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• If state information of j is received at t −1, x j (t −1), use it to reset estimation error
at t−1, then use the model to estimate the state at time t: Xi j (t) = a j .x j (t − 1)

Note that the state information received at time t over the wireless network is
always representing the sender’s state at some t ′ time where t ′ < t (to account for
communication delay). For simplicity assume t ′ = t − 1. Therefore, the actual state
at any given time t has to be recovered using the estimation process.

In the tracking problem described above, the arrival of a new measurement from
sender j to receiver i resets the tracking process, by setting the estimated state to
that received from the sender. Between message arrivals, the real-time tracking error
could grow due to noise and disturbance. Note that the above calculation of Xi j (t) is
a minimum mean squared error (MMSE) optimal estimate if we assume u j (t) and
ψ j (t) have zero mean. The tracking error ei j (t), the ith vehicle’s estimation error
toward vehicle j, is defined as ei j (t) − Xi j (t). Due to the hidden node problem or
channel fading, this tracking error might vary for different nodes.

2.2 Communication Policies: Uncontrolled versus Controlled

Communication policies that perform the tracking task without dynamically adjust-
ing the process to network or tracking performance are referred to as “uncontrolled”
policies [32]. In contrast, communication methods that control the behavior of the
communication logic based on the performance of state estimation process or the
network are called controlled policies [32]. A number of controlled and uncontrolled
policies for simplified networks such as slotted ALOHA have been described in
[17]. An interested reader can find the details of these methods in [17]; however,
for the sake of clarity, sample results comparing the performance of three different
representative classes of methods over slotted Aloha network is shown in Fig. 3.

InFig. 3, the estimation error is foundversus |a|, a parameter determining the speed
of change for the tracked process. It is observed that probabilistic method, which is
an uncontrolled method based on random transmission of messages at discrete time
instances, is unable to produce stable results for |a| > 1; while a controlled method

Fig. 3 Estimation MSE for
controlled policy (minumum
err-dep), uncontrolled policy
(probabilistic), and ideal
scheduled policy (round robin)
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(minimum err-dep: controlling rate of transmission based on detected collisions)
comes close to reaching the capacity of the channel for supporting the tracking
application, which is seen for the “round robin” method. The round robin method is
based on ideal, centralized deterministic, and scheduled access to the channel and
periodic transmission of messages (which is not practical). While the difference of
controlled and uncontrolledmethods are analytically examined and demonstrated for
simplified and idealized cases in Fig. 3 (from [17]), the complexities of multi-access
schemes such as CSMA/CA used in 802.11p or other wireless networks, require
a careful analysis before a proper design is possible. The next sections describe a
methodical way of analyzing the different components of the system, i.e., real-time
tracking process and the network, and provide a systematic approach to designing
the communication protocols for the purpose of achieving robust real-time tracking
over WSNs.

3 Transmission Control Protocol to Support Real-Time Tracking

It was shown in the previous section that controlled communication policies can
yield great benefits in real-time tracking over simple multi-access networks. It has
been shown in several recent research works by authors [14, 16] that such benefits
are even greater when more complex wireless networks such as 802.11p (DSRC)
are considered. The benefits come from the fact that the tracking process is affected
by, and does affect, the network performance. In this section, the designs of trans-
mission control policies that support real-time tracking as their main application are
considered. The design is specifically studied from the perspective of controlling
the main two decision parameters, range (d) and rate (time and frequency r) of state
broadcast. Controlling the rate and range of transmission is primarily done to support
the real-time tracking process, which is the main process of applications like CVS.
In an analogy to Internet Protocols, the combined control schemes for rate and range
is in fact a “transmission control protocol,” acting much like TCP that controls the
transmission ofmessages over Internet Protocol (IP). In the following subsections we
first examine the general topic of transmission control and also survey some existing
mechanisms for transmission control in wireless sensor networks. The discussion is
then directed towards an analysis of the multi-access networks, on which systems
like CVS operate, in order to help readers understand the design of transmission
control protocols for tracking over multi access channels.

3.1 Transmission Control Protocols

Transmission control is mainly performed to improve the performance of the “appli-
cation” that uses the underlying communication and networking services. Such
improvements may be achieved indirectly through merely improving reliability and
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capacity of the underlying network, or by controlling the communication in a way
that directly impacts the application. For example, a congestion control scheme may
be used to improve the capacity and generally improve application performance;
whereas communication timing may be controlled to directly impact how a tracking
application works (as we will see later in this chapter). Therefore, transmission con-
trol protocols can be viewed as application specific or generic algorithms. Protocols
such as TCP fall under the generic category.

With the introduction of wireless data communication, TCP was observed to be
lacking the features needed for communication over wireless networks. The main
issue was that the congestion control mechanism of TCP would mistake wireless
channel loss for congestion and reduce the transmission rate, further harming the
application performance [18]. As a result, several schemes were suggested to resolve
the issue (a comparison of these schemes is found in [19]). Even though many of
these schemes do enhance the performance, no single scheme has found widespread
use in all wireless sensor network applications due to the fact that underlying wire-
less networks are very diverse and the main TCP objectives (higher throughput and
reliability) are not directly aligned with many specialized application requirements
in WSNs.

A good survey of different transmission control (transport) protocols for wireless
sensor networks is found in [20]. The main functionality provided by the various
transport protocols for WSNs are end-to-end reliability and congestion control. In
the application considered in this chapter, real-time estimation over broadcast multi-
access channels, the issue of end-to-end reliability is replaced by “broadcast relia-
bility”. Congestion control, however, is directly needed as it also impacts broadcast
reliability through improving network performance.

Congestion control in any type of network, including WSNs, requires some
method of detecting congestion. For example, algorithms like Sensor Transmission
Control Protocol (STCP [21]), Fusion [22], andCongestionDetection andAvoidance
(CODA [23]) rely on queue length measurement in intermediate nodes on a multi-
hop path of the data. Algorithms such as Congestion Control and Fairness (CCF
[24]) and Priority-based Congestion Control Protocol (PCCP [25]) infer congestion
at the end nodes. CCF infers congestion based on packet service time, whereas PCCP
calculates congestion degree as the ratio of packet inter-arrival time and packet ser-
vice time. The response to congestion varies for different algorithms. Fusion controls
congestion in a start–stop flow control fashion by making neighboring nodes stop
forwarding packets to the congested node upon congestion detected and notification.
CODAand STCP adjust sending rate in anAdditive IncreaseMultiplicativeDecrease
(AIMD) way; AIMD is also the way TCPmanages sending rate of data at the source.
PCCP and CCF work based on exact adjustment of the Hop-by-Hop rate (compared
to relative methods like AIMD).

While these transport protocols target reliable delivery and congestion control
as the main objectives, their use with the real-time tracking application will not
be directly possible due to several characteristics of the tracking application. First
characteristic is the broadcast nature of the underlying communication topology
(no multi-hop); second is the fact that real-time tracking in systems like CVS
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requires both accuracy of tracking for individual nodes and an acceptable dis-
tance up to which tracking should be done accurately. The second feature brings
in the dimension of space or range of transmission, in addition to the rate or
timing of message transmission. Nevertheless, the existing rate adjustment con-
cepts can be useful in the design of transmission control protocols in our case.
The main difference remains the additional dimension of range in this case. With
this understanding we next review how transmission control for our application of
interest (tracking over multi-access channels of mobile sensor networks) can be
done.

3.2 Transmission Control to Support Real-Time Tracking in
Broadcast Mobile Sensor Networks

To understand what may be required for adapting rate and range of node (vehicle)
state broadcast, the CVS network performance should be characterized in terms
of different choices of rate and range. This will also allow for finding methods of
congestion detection. Deriving a performance model for the CVS network is in fact
a complicated task, primarily due to the fact that the network is not a traditional one.
On one hand, it is based on aMAC layer that follows the CSMA/CA protocol. On the
other hand, the hidden node phenomenon causes many nodes that are not in range of
each other to behave almost in an ALOHA fashion. Several other phenomena such as
silencing effect and prolonged collision ensue from such combination of CSMA/CA
andALOHA-like networks [11]. In [11], these issues are examined in depth and great
detail. In this section a brief overview of the model is presented, with the purpose of
deriving the network performance characteristics, as a function of the rate and range
of transmission.

3.2.1 Network Analysis

To quantify the effect of controllable parameters (rate r and range d) on the overall
performance of the real-time tracking process in a CVS network, we need to relate the
performance of the broadcast network to the performance of the tracking application.
For this purpose, a model describing the accuracy of the tracking process at different
neighboring nodes as a function of system parameters is needed. Designing such a
model requiresmodeling the interaction of the estimation processes in the application
layer with the multiple access scheme. Such an analysis is possible when very simple
networks (like ALOHA) and simple communication/tracking policies (like random
message generation) are considered [17]; however, the problem becomes much more
complex when the CSMA/CA network and communication policies of CVS are
analyzed. Considering the significant effect of hidden nodes and complexities it
creates for networkmodeling, such an integratedmodel has proven to be intractable so
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far.While efforts exist that try to empiricallymodel such systems [12], amathematical
framework has not been presented yet. As a result, we have to use an intermediate
performance measure from the CVS network that corresponds to CVS performance.
We emphasize that such measures are used only to gain insight into the design
of control schemes, and not to, for example, formulate optimization schemes that
focuses the solution on better network performance in place of system performance.
Given the well-known fact that a higher rate of message arrival at an estimation
process will result in more accurate predictions [7, 32], it is plausible to rely on a
corresponding network performance measure as a substitute of the more complex
overall performance measure in analyzing the system (rather than in formulating
final solutions).

The network performance measure should consider the fact that in a CVS broad-
cast network both rate of packet reception at receiver vehicles and number of receivers
are important; that is, it serves the objective of CVS to include more neighbors in
the transmission range, up to some maximum range (e.g., 300m).

A straightforward representation of this performance measure is a form of the
broadcast packet delivery rate, defined here as Information Dissemination Rate
(IDR). IDR represents the number of copies of a packet delivered per unit time
from a single vehicle to its neighbors up to a given distance dmax :

I DR =
⎡

i ≤ Set o f Neighbors upto dmax

r.Psuc(i) (2)

where Psuc(i) is the probability or ratio of successful message delivery to each node
i, and r is the rate of message transmission by each node. This definition can be
modified by including a weighting function that gives a higher weight to closer
vehicles (if CVS design assumes nearer nodes are more important and require higher
accuracy, thus higher reception rate). Here we focus on normal IDR for clarity of
discussion. Weighted IDR is similarly treated.

IDR is expected to increase with the increase in transmission rate or range, if
such increases do not lead to congestion and increase in packet drop. However, the
increase in rate or range significantly and adversely affects the performance of the
network MAC layer, which follows the CSMA/CA protocol. In addition to normal
packet losses due to CSMA/CA collisions, the effect of hidden node interference
is also a significant factor in a CVS. In particular, when the near 1-D topology of a
highway is considered, hidden node collision becomes the dominant source of packet
loss [14, 29].

To quantify how parameters r and d affect IDR, an extensive set of simulation
experiments and detailed mathematical analysis were performed [11, 12]. The simu-
lation andmathematical analysis results have been compared and verified in [11]; due
to space limitation the mathematical model could not be included here. However, we
report the result from [11, 12] to the level needed for the design of the transmission
control protocol of this chapter.
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Fig. 4 IDR versus range of transmission d for different rate r and density σ

The simulations reported here have been performed using an event driven 802.11
MAC simulator developed at UCB (for static topology and initial study) and using
OPNET (for mobile nodes and final evaluation) considering the 802.11p default
parameters [3], with the bitrate of 3Mbps (similar to 6Mbps with 50% duty cycle of
1609). We have considered a 3Km long stretch of a highway (results collected from
the middle 1Km of the topology to avoid edge effects). Nodes were placed randomly
at intervals uniformly distributed in a (0, 2σ) range, where σ is the traffic density in
vehicle/meter. While in the study presented in this subsection node locations were
fixed (to more precisely observe the MAC performance in relation to r and d para-
meters), in later evaluation experiments we used mobile nodes based on trajectories
generated by SHIFT traffic simulator [41].

In the first set of experiments we observe IDR, and plot it versus the choice of
transmission range d for different values of r. Simulation results for two typical
values for road density σ are shown in Fig. 4. To generalize Fig. 4 and better observe
the changes in IDR for different choices of rate and range, the model in [11] is used
to plot a 3-D graph of IDR versus r and d at high resolutions, for a given value of
density σ. The result is shown in Fig. 5. Replacing range dwith σ in this figure results
in a similar plot, since for a highway scenario with 1-D distribution of vehicles the
two parameters are interchangeable through a linear transformation.

As it is observed in thesefigures, themaximumlevel of IDR is reached at a different
value of range d, for any given choice of r and σ. This fact further emphasizes the
need for adaptation of rate or range of transmission. Another interesting observation
from these figures is that the maximum value of IDR is the same for all curves in
Fig. 4. Similarly, in Fig. 5, the maximum value of IDR is seen to be happening not
at a single point, but on a curve. Many choices exist for (r, d) pairs that generate
maximum IDR. These pairs fall on a curve that forms the elongated peak of the
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Fig. 5 IDR versus R and D,
Top seeing only the MAC per-
formance, Bottom considering
both MAC and PHY, [11]

plot in Fig. 5. This observation leads us to believe that maximization of IDR can be
achieved by adjusting one of the parameters of r or d, if other constraints allow. Such
an observation relaxes the 2-D problem of controlling r and d to a one-dimensional
optimization problem if one parameter is in an acceptable range.

3.2.2 Congestion Control to Improve Broadcast Performance

The observation from Fig. 5 leads us to the conclusion that congestion mitigation for
the purpose of improving broadcast throughput (i.e., IDR) can happen by changing
either rate or range of transmission. However, not all pairs of rate and range that
maximize IDR are acceptable; for example, a very small value of range and a large
value of rate is not useful since it does not allow coverage in a desired neighborhood
which may require a larger range. Similarly, a large range and small rate will lead to
inaccurate tracking in a very large neighborhood, which will still be unacceptable.
Therefore, a congestion control design that relies on network performance (IDR)
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maximization, should also consider other restrictions imposed by the application.
Such restrictions in the case of CVS are neighborhood range and tracking accuracy.
Considering this fact, the design of a transmission control protocol can be broken
into two separate parts, focusing on maintaining one parameter in an acceptable
(or optimal from CVS perspective) range, while using the other one to maximize
IDR. The goal of the protocol will be to achieve desirable system performance,
which should be seen from the standpoint of “real-time tracking or estimation.” We
approach this problem by designing a rate control method that aims for achieving
the required tracking accuracy, and then using the range parameter in conjunction
with the result from rate control to increase the reach of the messages and improve
the number of tracked nodes. The next two sections describe how such a design is
accomplished. The overall design of the transmission control protocol is described
following the discussion on how individual components (rate and range adaptation)
are designed.

4 Controlled Policy for Transmission Rate Adaptation

In this section we consider the problem of controlling communication time and
frequency with the purpose of maximizing the efficiency of the estimation process
over a network. Here, efficiency can be defined as achieving higher accuracy at
lower communication cost. There are twomain categories of rate control for tracking
purpose. One is to rely on periodic transmission of messages at a given rate [5], and
then adapting the rate to network conditions [38]. The other method is to use an
error-dependent policy where transmission of messages is directly controlled by
an estimate of the performance of the tracking process and potentially the network
condition [17]. The latter produces aflow that is inherently variable rate, but its overall
average output rate can be adjusted by controlling how sensitive the algorithm is to
tracking error.

While both methods can be tuned to generate the same average rate of message
generation, and potentially achieve the same effect on the network, their real-time
tracking performance will be greatly different. The periodic transmission is in a way
an uncontrolled method when we consider the tracking process as the controllable
entity. The error-dependent policy on the other hand is a controlled method. To
illustrate the difference between the two methods, consider the simple trajectory of
Fig. 6.

Here, periodic transmission of vehicle state information corresponds to periodi-
cally sampling and sending the samples. The figure shows five equally spaced sam-
ples. At the receiver, a model-based estimator (e.g., following a first-order Kinematic
model) is used to recover the trajectory of the sender vehicle for the time between
samples. It is seen that the estimation error grows if vehiclemovementmodel changes
from the sampled model. For example, if the sampled information includes position
and speed vectors, and a constant speed model is used to estimate the position in
between sampling times, any speed change (acceleration) or direction change during
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Fig. 6 Error-dependent policy (bottom) versus periodic or uncontrolled policy (top). Both methods
are using the same overall message rate (five messages in the time window shown)

the time between samples causes the model to become wrong (since speed would be
different). A wrong model then creates an error that grows with time. The error is
particularly high when change in the model is significant (e.g., seen in the form of
direction change in Fig. 6).

To counter this issue, the five samples could be redistributed so that they concen-
trate more on the area of the trajectory where there are sudden changes. The short
term rate of messages will vary, producing higher rate where there is concentration
of messages and lower rate where there is no change in trajectory. However, the
overall rate over the shown time window remains the same for both algorithms. By
concentrating communication samples around times when there are large changes in
vehicle state, we are able to considerably reduce the tracking error [6, 31]. The reason
is that the estimation process which works based on a constant speed model, will
receive more updates when its error may become high due to change in the model
parameters (speed, heading). At times when the trajectory deviates very little from



6 Protocol Design for Real-Time Estimation Using Wireless Sensors 215

Fig. 7 Error must be calculated for longitudinal and lateral components [6]

the path estimated by the model-based estimator, there will not be need for new
messages, since they do not considerably improve the estimation accuracy.

Realizing the error dependent policy requires that the sender have some indication
of the estimation error (of the sender’s state) at the receiver. This is achieved by
including a replica of the receiver node’s estimator of the state of the sender in the
sender itself. This replica is called “remote estimator” in Fig. 8, and replicates the
“neighbor estimator” in the receiver node.

Fig. 8 Architecture of message generation algorithms. Top periodic message generation, bottom
error-dependent message generation
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The remote estimator is fed with the same messages that are transmitted over the
wireless network to the receiver’s “neighbor estimator.” Since both estimators run
the same model, their output will be the same if no messages are lost. Assuming no
message loss, the output of the local “remote estimator” can be compared to the local
state X(t) to determine the estimation error at the receiver (called suspected error).
Packet loss increases the estimation error at the receiver. Since it is not possible
to know exactly which messages have been lost (no acknowledgments in broadcast
networks), an estimate of the packet loss rate will be used in the sender to adjust its
approximation of the estimation error at the receiver.

The packet loss estimate is used as an input to a packet loss simulator module
that randomly drops some of the messages that are sent to the remote estimator
(see Fig. 8). The loss of some of the messages by this module will cause increased
estimation error for the remote estimator [16], in a way simulating the increase in
receiver’s estimation error.

This method allows for close approximation of the estimation error at other nodes
on an average basis but not for individual messages since exact pattern of received
packets at each receivers is not known. As a result, the decision to transmit a specific
sample X(t),measured at time t, has to rely on this approximate estimation error. To
account for this uncertainty, we adopt a probabilistic method of deciding whether a
message should be send or not. The idea is to send the message with a probability p
that is directly related to the approximated estimation error. The higher the error, the
more the probability of message transmission should be. This is achieved by defining
the probability p as an increasing function of the approximated estimation error, ê,
as follows (see Fig. 9):

p(t) = 1 − exp(−λ.|ê(t) − eth |2) for ê(t) > eth (3)

where ê(t) is a node’s approximation of the estimation error on neighboring vehicles
(suspected error) toward its own position in a Euclidean sense (i.e., the usual distance
definition for a Cartesian coordinate system), λ is the error sensitivity, and eth is the
error threshold level. Below eth , there is no need to send a message as approximated
estimation error is acceptably low, so p(t) = 0.

Parameters λ and eth can be used to control the output rate of the message gener-
ator. Higher λ and lower eth will cause more messages to be generated. This design
has been tested in a real-world implementation in [16]; however, it should gener-
ally be possible to use other functions for p(t), or other methods for including the
effect of packet loss, as long as they capture the same concept of increased message
generation for higher approximated error.

The on-demand nature of Eq. (3) responds to the fact that a higher transmission
rate, and thus probability, is required for a node that has more unexpected state
change (as estimated by others). In information theoretical terms, a vehicle with
higher entropy (ameasure of surprise) needs a higher communication rate to describe
its stochastic behavior.
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Fig. 9 The function
relating ê and probability
of transmission p

On the contrary, when the suspected error is small or under the threshold, a node
tends to stay quiet and not send a message, which will allow the channel to be used
by those nodes that have larger suspected error (Fig. 9).

The use of Packet Error Rate (PER) to adjust the suspected estimation error at
receiver nodes is an implicit way of correcting transmission errors. The reason is
that PER estimate is used to increase the rate of message transmission to recover
from lost messages. This is similar to retransmission in protocols like TCP, in which
packet loss is detected through Acknowledgement messages and corrected through
retransmission.

Employing PER for adjusting the suspected error of the receivers happens through
a very simple simulation process. We use the measured PER to stochastically decide
the suspected error eth(t) in Eq.4: ê(t +1) = (1−ρ)ê(t), where ρ is a Bernoulli trial
(similar to coin tossing) with success probability 1-PER to address potential channel
loss. If the trial is successful, the suspected error is reset; otherwise, suspected error
accumulates from ê(t) based on the known state model (e.g., Eq. 1). Note that this
suspected error is not the actual estimation error at the receiver nodes; instead, it is
only a measure used by a sender to adjust its own communication rate. Based on
p(t) in Eq.3, a sender stochastically generates a message (i.e., containing the current
sample of its state).

The PER used by the above Bernoulli trials is estimated on the fly by checking
the inconsistency in sequence numbers of recently received packets from all corre-
sponding senders (with at least two messages received) within a 1 second history
log. That is, a node calculates the number of lost messages divided by the number
of total messages sent by a certain sender to infer recent channel loss rate of that
sender; PER is this measure averaged over all senders heard within a geographical
area. Assuming network symmetry, PER tells a node the likelihood of the loss of its
previous transmission at the receivers. Note that this PER is in fact an average and
roughmeasure of the real error probability of individual links between the sender and
receivers within the spatial neighborhood. The exact value of link error probability
is not practically measurable under the assumptions of the broadcast networks, such
as the one proposed for mobile sensor networks for active safety systems.

While Eq. (5) describes the probability of sending a new message at sampling
intervals, the equivalent instantaneous rate of transmission that results from this
probability can be described as follows:
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R(t) = p(t)/T, p(t) = 1 − exp(−λ · |e(t) − eth |2)

It must be noted that the average rate produced by this policy should be measured
over a sufficiently large number of samples (at least five) to get a correct sense of its
effect on the network. The rate can be partly controlled through the tunable parameter
λ, which specifies how sensitive the controller is to the perceived error. A good value
of this adjustable parameter is found to be around two and is not sensitive to the
varying parameters of the network or dynamics of the tracked process [13, 14].

4.1 Rate-Distortion Modeling of the Message Generation and State
Estimation Process

To design or analyze a rate control algorithm, it is often required that the relationship
between the rate of transmission and the accuracy of estimation be found. This is
similar to finding a rate-distortion model which tells us how rate and distortion (error
or accuracy) are related. In certain cases, where the algorithms andwireless networks
are simple, mathematical closed form solutions may be found [39, 40]. However,
when complex algorithms such as the error-dependent policy are used with complex
networks such as hidden node affected broadcast networks, closed form models
become impossible or very difficult to derive.

In cases where direct mathematical derivation is not possible for rate-distortion
modeling, empirical models are often used. This is in fact a routine practice in other
domains like video where complex encoding and estimation methods are considered
[26, 27]. In this section we use the same approach and characterize the relationship
between the accuracy of tracking a real-time process (such as amobile node position)
and the rate of messages that are used. However, in order to exclude the effect of the
network on the estimation accuracy, and to only evaluate the message generation and
estimation process, we consider the rate of message “reception” instead of message
transmission. This way, an estimationmethod can be evaluated in isolation, assuming
an ideal network. The effect of network can then bemodeled as a reduction inmessage
rate, which can be applied to the overall model.

To find the empiricalmodel, we consider twomessage generation policies of error-
dependent and probabilistic (similar to and instead of periodic).We then observe how
the rate of successful reception of messages (which is rate of transmission multiplied
by success probability) affects tracking accuracy. The results are shown in Figs. 10
and 11 for a typical scenario (Highway speed 30m/s, constant acceleration between
samples, but acceleration changing to a new value according to a normal distribution
N(0,1), creating an autoregressive process for speed). Here, we are using a range
of message reception rates from 1 to 40Hz and observing the resulting accuracy.
Packet transmission is controlled by either randomly selecting whether the message
should be transmitted (probabilistic policy), or using the error dependent policy that
controls the rate based on perceived tracking error, according to [8] and similar to
our method [13].
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Fig. 10 Relationship between
message arrival rate and
tracking MSE

In Fig. 10 the MSE of tracking is shown, while in Fig. 11 a measure called 95%
cut-off error is depicted. The 95% cut-off error is introduced as a statistical sense of
the worst case behavior and is the value belowwhich 95% of the error histogram lies.
We note that in wireless networks the worst case error is unbounded since there may
be unbounded number of consecutive packet losses. Therefore a statistical measure
like 95% error must be used. The 95% cut-off error (simply called 95% tracking
error) tells us that we can expect the estimation error to be less than this value, 95%
of the time.

To produce the results for different message rates (rate of reception in this exper-
iment), the above algorithms were tuned with different ranges of parameters. For
probabilistic policy, the rate is controlled by changing the probability of transmis-
sion at each sampling time (here set to 20msec to examine higher rates, but normally
set to 50msec). For the error-dependent policy, the rate was adjusted through error-
sensitivity parameter λ (0.1–100), as described in Eq.3. As expected, it is seen from
these plots that higher rate of message arrival results in higher tracking accuracy
(lower tracking error). However, the shape and position of the rate distortion curves
are different for these algorithms, with error-dependent policy performing much
better. This observation is consistent with well-known results [7, 8]. Moreover, we
observe that the error saturates after a certain rate.

While these curves were generated for tracking a specific dynamical system,
the general shape of the curves and the difference between the uncontrolled and
controlled policies remain the same. Conceptually, with the same data rate, some
policies are more “efficient” in the sense that they deliver information in a timely
manner to the estimator to eliminate large tracking errors. The more the correlation
of arrival information with the tracking error magnitude is, the lower the resulting
tracking error will be.

Results shown in Figs. 10 and 11 point to the significant improvement that is pos-
sible using error-dependent policy, considering the fact that no communication over-
head is needed and this policy has no extra system cost (e.g., coordination between
nodes, etc.). Therefore, our choice for the message generation algorithm is the error-
dependent policy. As it is observed from the rate distortion curve for this policy, the
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Fig. 11 Relationship between
message arrival rate and 95%
tracking error

error drops quickly as message rate increases, but then saturates beyond a certain
rate. It can be deduced that the estimation performance does not improve after a
certain rate, at which the error is already low. At this point, it might be more useful
to use network resources to reach farther nodes, than to send more packets to closer
nodes. This fact is used in the design of the overall transmission control protocol by
controlling the rate and maintaining it above an acceptable level to produce accurate
tracking, and controlling the range to cover more nodes while avoiding congestion.
The next section describes the range control approach.

5 Controlled Policy for Transmission Range Adaptation

Following the discussion on transmission rate adaptation, and considering the fact
that rate and range can be controlled separately tomaximize IDR, the objective of this
section is to introduce methods for maximizing tracking range without sacrificing
tracking accuracy. Achieving this objective will be possible if we can ensure that
through some algorithms (like the error-dependent policy) nodes are maintaining
high enough rates of message reception, followed by a mechanism that increases
tracking range. From a network measure perspective, this is like increasing the range
as long as IDR is improving. Improvement in IDR may come as a result of more
nodes receiving the messages.

If error-dependent rate control was not used, with increase in range, reception
rate may have dropped while IDR (seen in the form of product of reception rate
and number of receivers) might still increase. However, the rate control scheme
ensures that reception rate stays high and fixed by increasing the transmission rate.
With almost fixed reception rate, increase in IDR means increase in the number
of receivers. Therefore, the policy of choice could be to maximize IDR under the
assumption of controlled transmission rate (fixed reception rate).

Figure5 shows that for any value of transmission rate, there is a value for range that
maximizes IDR. To see this better, assume a fixed transmission rate (not reception
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rate), when IDR is below the maximum point, increase in range will cause more
nodes to receive the messages and IDR improves. Beyond the maximum IDR point,
increase in range causes faster drops in reception rate than increase in the number
of receivers. Around the maximum point, increase in range is met with decrease in
reception rate, keeping IDR almost fixed. This means that if no rate control scheme
is used, IDR should not go near and beyond its maximum, and possibly the operation
point should be at points before maximum IDR happens. With a rate control scheme
that tries to maintain the rate of reception, when increase in range and IDR causes
lower reception rate, the algorithm pushes toward an operation point that has higher
transmission rates. From Fig. 5 this is like moving a plane cut on the IDR surface,
which describes IDR versus d for a given r, towards higher values of r; the maximum
IDR in this case will be achieved at a lower range d. The reduced range ensures that
the algorithm is never operating above the maximum point where reception rate is
sacrificed for better range.

Adapting the range of transmission requires that some feedback is available on
how the network is performing. In [29], an implicit method of controlling the load on
the network through broadcast of the selected power values was proposed; however,
the presented method did not consider the actual network performance and how
it relates to the presented load. The algorithm to measure the load also required
cooperation of all the nodes in a neighborhood. The works in [10, 14] take a different
approach and try to localize the action as much as possible and achieve range control
with least coordination between nodes. Themethods in [10, 14] directly consider how
the network performs by local measurement of readily available channel feedback
measures such as channel busy ratio, and by relating this feedbackmeasure to network
performance IDR.

The idea is inspired by the fact that TCP achieves congestion management in the
Internet with almost no coordination of actions between end nodes. Each node in
TCP monitors the locally observable round trip time and adjusts the rate of trans-
mission in a way that avoids congestion in the routers on the path of TCP flows. A
readily available, locally observable, feedback measure from the wireless network
is “channel occupancy” or “channel busy ratio (CBR).” We had introduced the use
of this measure as an appropriate feedback measure in [13, 15] and later presented
a detailed analysis in [11]. This feedback measure was available in some 802.11p
devices around that time and is now universally available on all common 802.11p
devices. Recent works by other researchers have also taken advantage of the CBR
measure [38]. To understand how CBR can be used, the next subsection describes
the relationship of CBR and network performance.

5.1 Channel Busy Ratio as Feedback Measure

To understand how channel occupancy (busy ratio) is related to the network per-
formance measure, IDR, we use simulation experiments [12] and analytical results
from [11]. Channel busy ratio, denoted as u, is measured by computing the ratio of
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Fig. 12 IDR versus channel occupancy for different values of r (5–115msg/sec), d (20–400m), and
σ (0.1–0.8 vehicle/m, considering an eight lane highway). Points belonging to the same experiment
with different values of d are connected by a line; although due to overlap they are indistinguishable.
[11]

time that the channel is sensed busy in a given window of time T (in the order of
hundreds of milliseconds to seconds). If channel status at each minislot of duration
Tslot is measured, u is found as follows:

u = (

[T/Tslot ]⎡
i=1

θi )/[T/Tslot ] (4)

where θ is 1 for busy minislots and 0 otherwise, and [T/Tslot ] is the number of
minislots in themeasurementwindow. In practice themeasurements are done through
observing results from 802.11 Clear Channel Assessment (CCA) functionality and
measuring durations of idle and busy period.

In Fig. 12, IDR is plotted against channel busy ratio, for a large range of values
of r, d, and road densities σ. Each choice of (r, d, σ) generates one (u, IDR) point.
Interestingly, it is observed that the resulting (u, IDR) points, for all different choices
of parameters, fall on a single dome shaped curve (thus not separable in the figure).
It can be deuced that the relationship between IDR and u is not a function of the
parameters r, d, or σ. It was reported in [11] that the shape is a result of the type
of protocol (CSMA/CA, Aloha, etc.) and the type of interference (pure CSMA/CA
or hidden node affected CSMA/CA), as well as MAC and PHY parameters. While
the result is interesting, it is not totally unexpected. In simple terms, IDR represents
the total channel capacity, and channel busy ratio is related to the offered load. For
simple protocols such as ALOHA it is possible to even mathematically derive the
relationship between IDR and u in a closed form.

To further see how different protocols and situations affect IDR, in Fig. 13 IDR is
plotted for a CSMA network with no hidden node effect, for a CSMA/CA vehicular
network with hidden node effect but no PHY layer, and for CSMA/CA vehicular
network with hidden node effect and PHY layer. Figure13 shows the “normalized
IDR” in order to provide further insight into the effect of different protocols. Normal-
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Fig. 13 Normalized IDR
versus channel occupancy for
different settings. [11]

ization is done with respect to the full capacity of the channel if access was perfectly
and ideally scheduled amongst all nodes (I DRsch = 1/Tp packets per second).

The fact that the relationship of IDR versus u can be described regardless of the
choice of (r, d, σ) is observed for all of the above scenarios. It is also observed that
the presence of hidden node interference causes the total IDR to be much lower than
a fully connected CSMA network. The channel busy ratio at which maximum IDR is
observed is different for each situation, and is at lower values for the case of hidden
node interference. Therefore, it is concluded that the use of channel busy ratio to
estimate IDR should consider the protocol and interference model (hidden nodes in
our case).

Considering the definition of IDR as the number of messages delivered to all
neighbors in a given time period, we can describe IDR measurement as averaging
reception rates over all distances in the neighborhood. Similarly, one could also think
of a weighted average. This way messages that are delivered to different distances
get a different weight; close nodes are valued more than far nodes. In Fig. 14 (top
plot), we demonstrate the weighted IDR (wIDR) for 3 weighting functions: (1) linear
(2) quadratic (3) constant [11]. The constant weight produces the original IDR.

In Fig. 14, differentwIDR versus u curves for range values of 50–600mare plotted.
To better visualize, (u, w I DR) points are plotted as a connected curve for all the
values range 50–600m; different curves are plotted for each value of rate. The rate
was varied from 5–150msg/sec with step size of 10.

It is observed that for original IDR, all curves of (u, IDR) points fall on a single
dome shaped curve and overlap; for the other options the connected curves do not
completely overlap. For higher rates r >15,wIDRpoints are also very closely located.
For very small rates such as r = 5, the curve is far from the set of other curves. In
general, it is observed that with weight functions that have higher weight at closer
nodes (e.g., linear decreasing function), the channel busy ratio at which maximum
wIDR happens is spread over a larger set of values, which makes optimized designs
more dependent on the transmission rate. Note that the absolute values of different
wIDR options should not be compared to each other in this figure.

The choice of which weighting function to use is outside the scope of this paper,
as it is an application specific choice. Nevertheless, we present an example of a
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Fig. 14 Different choices of weighting function (top), weighted IDR versus Channel Occupancy
(U ) for different weighting function (bottom). PHY effect is not shown to accentuate the difference
of curves, otherwise results are similar to the above [11]

design based on one of these choices (normal IDR) in the next section, to provide a
comprehensive guide for designing congestion management protocols.

The observation that IDR and channel busy ratio are related regardless of the
controllable parameters r and d motivates the use of channel busy ratio as a feedback
measure to control the network to achieve maximal IDR. For example, one could
devise a feedback control scheme that adapts the range or rate of transmission to
maintain the observed channel busy ratio around its optimal point (0.7 for highway
setting of a vehicular network), where maximal information dissemination happens.

5.2 Robust Transmission Range Control Based on CBR

From the relationship between IDR and channel occupancy (channel busy ratio), it is
induced that a feedback control scheme can be designed to adjust the rate and range of
transmission so that channel occupancy, hence IDR, is maintained near its optimal
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value. Different designs based on the above concept have been proposed in our
previous works [10, 14]. The idea in these designs is that the range of transmission
can be adapted to network conditions, assuming that the rate of transmission is
dictated by the requirement of the estimation process ([13, 14]) and is controlled to
maintain reception rate above a fixed “good” value. The range control is therefore
free to explore different methods of achieving maximum IDR.

To see how transmission range d can be controlled to operate near optimal channel
busy ratio, we first study how the range of transmission (controllable parameter)
is related to channel busy ratio (the observed measure). For this purpose we plot
the relationship between channel busy ratio and transmission range d, for different
choices of r and node density σ in Fig. 15. As expected channel occupancy increases
with increase in range or rate.Different values of rate or traffic density lead to different
curves describing u versus d.

The u versus d curves can be seen as plantmodels, describing the network behavior
for given parameters r and σ. The general control idea is to observe channel busy
ratio u and throttle range d if u increases. However, this should be done in a way that
channel busy ratio is near its optimal value. Denoting the relationship between d and u
by function u = hr , σ(d), many different decreasing functions of u (i.e., d=g(u)) can
be designed to achieve this behavior. Such range (power) control measures will over
time, under certain stability conditions, result in a solution that sits at the intersection
point of u = hr , σ(d) and d=g(u). However, since each rate r or density σ generates
a different u = hr , σ(d) curve, the intersection point will be different for each r
or σ. This means that the feedback control scheme converges to a different point
for each different r or σ. Given that the values of r and σ are dependent on many
factors including node movement, it is not practical to know a priori which one
of the hr,σ(d) curves characterizes the network for any given case. Therefore, we
resort to a robust, but sub-optimal design of controlling the value of d in a way that
channel busy ratio stays in a range of interest. The range of interest can be easily
determined from Fig. 12, where we can see that the value of u between 0.4 and 0.8
results in near-peak IDR (for further stability, in real implementations 0.35 and 0.85
are used). As it wasmentioned earlier, the right side of the IDRmaximum point is not
desirable since it infers large packet loss and a very busy medium leaving no space
for other applications; therefore, we try to avoid CBR of near 0.9. The following
control function can achieve the objective of maintaining CBR in the desired range:

d = g(U ) =
⎢⎣
⎤

Dmax u < Umin

Dmin + Umax −u
Umax −Umin

(Dmax − Dmin) Umin ∞ u < Umax

Dmin Umax ∞ u
(5)

where Dmin and Dmax denote the minimum and maximum allowed ranges deter-
mined by the application and practical constraints, and Umin and Umax are deter-
mined from Figs. 12 or 14 (0.35 and 0.85). We call this controller the Linear Range
Control or LRC. The LRC control function and its relation to u = hr , σ(d) is shown
in Fig. 15.
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Fig. 15 Channel busy ratio
u(U) versus range d (D),
for (top plot) σ=0.2 and
different transmission rates:
u = h R(d), or (bottom plot)
R = 10 and different density
σ : u = hσ(d); sample range
control function d=g(u) is
also shown [11]

Another option for adapting range of transmission to achieve optimal CBR is the
Gradient descent Range Control (GRC) algorithm of [10], which tries to keep CBR at
its optimal value (e.g., u*=0.7) for IDR maximization. The algorithm uses gradient
descent update to the range value in each iteration:

dk+1 = dk + ρ(u ∗ − uk) (6)

In the above equation, dk denotes the value for range at kth update, and uk is
the resulting measured channel busy ratio. The time interval between updates is T,
and u is calculated as in (4). Clearly, when the algorithm converges the value of
d will be such that u=u* and maximum IDR is achieved. However, for the above
algorithm to converge, the value of ρ has to be selected in a way that: (1) d converges
quickly to near optimal value, before the value of σ or average value of r changes
considerably (2) the system does not overshoot too much or oscillate and stray into
a region that yields significantly low value of IDR (e.g. u > 0.95 or u < 0.3 in
Fig. 12). A convergence study of the GRC algorithm has been reported in [10] where
appropriate range of ρ has been found for a feedback linearized version of GRCwith
a modified update equation:

dk+1 = dk + ρ ln(
1 − uk

1 − u∗ ) (7)



6 Protocol Design for Real-Time Estimation Using Wireless Sensors 227

Fig. 16 The design flow and controller operation ranges; the reverse flow of PER and CBR is not
shown

While GRC is generally more appropriate and has less stability issues than LRC
(since its range of stable gains can be found mathematically), it has the drawback
of relying on a single value of u*. The issue is that this value has to be found for
each network situation and may slightly vary for different cases; however, a value
like what is seen in Fig. 12 (u*=0.7) will be close enough to the optimal value
for different choices of parameters for the CSMA/CA protocol. Change in network
topology requires a different analysis though; the results in Fig. 12 are for a highway-
like linear topology.

Given the above designs for range control, and the rate control algorithm of
previous section, we are now able to revisit the design of the transmission control
protocol and describe the overall design in the next section.

5.3 Protocol Summary and Evaluation

The designs presented in previous sections for adapting transmission rate and range
can be seen together as a transmission control protocol to support real-time tracking
over uncoordinated wireless networks. The combined protocol provides a TCP-like
mechanism that adjusts application’s “load” in order to serve its objective. Here the
objective is real-time tracking, but for TCP the objective is to achieve sustained high
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throughput. The load in TCP is identified as the rate of transmission, whereas the
load in the case of a spatially distributed wireless network can be defined in terms
of the time and space resource that is taken by each node [44]. Controlling access to
the time and space resource translates to rate and range control.

The combined algorithm can be explained in a two-step design flow:

• First the desired accuracy of tracking is decided and then used in the rate-distortion
model to derive the required rate of message reception. The transmission rate
control algorithm, an error-dependent policy, is then responsible for maintaining
the reception rate at this level by adjusting the transmission rate according to the
process dynamics and a PER estimate from the network.

• Second, the range of transmission is controlled according to LRC or GRC, based
on observed CBR, in order to maintain IDR at high levels, resulting in increased
range while keeping the rate above the required levels.

The above design is illustrated in Fig. 16.
CBR is directly affected by the transmission rate, which is in turn due to the error

dependent policy and the density of nodes. A higher CBR (beyond u*) may lead to a
higher PER value; the result is higher transmission rate which further increases CBR
if no range control was employed. However, the range control algorithm is much
more aggressive in reducing the range, than the rate controller is in increasing the
rate. The speed of rate increase becomes slower at higher rates (saturates) as is seen
in Fig. 9, while the LRC range control method maintains its gain over all possible
range values. The result is that the possible positive feedback that is observed because
higher ratesmay cause higher PER and in turn even higher rates, is aggressively offset
by the range control scheme that brings the range and PER down very quickly. The
reduction in PER will be followed by a reduction in transmission rate and therefore
CBR. At this point the reduced CBR will allow the range control to move to a higher
value and the process continues until a balance is reached.

5.3.1 Evaluation

To see how the transmission protocol performs in practical settings, a relatively
realistic simulation experiment was conducted. In this experiment, the mobile sensor
network was an ad hoc network of vehicles broadcasting their state information
(position, speed, etc.) to their neighborhood. Node movements were derived using a
microscopic traffic simulator called SHIFT [41], simulating a 2 km span of a highway
with different traffic density scenarios (Table1). The highway was assumed to have
four lanes of identical traffic in each direction. Traffic in different directionsmay have
different density.Weonly collect statistics fromvehicleswithin a 0.5–1.5kmsegment
to avoid boundary effects in simulations. The simulation scenarios in Table1 include
two sets of homogeneous and mixed traffic for the two directions. Cases H1–H4
represent scenarioswith similar (homogeneous) traffic flows in both directions, while
casesM1–M6 containmixed traffic flow conditions for the two directions.Mean flow
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Table 1 Simulated bidirectional highway traffic scenarios [14]

Case ID Direction #1 Status Direction #1
Speed (mph)

Direction #2 Status Direction #2
Speed (mph)

H1 Congested 14 congested 14
H2 Low speed 30 Low speed 30
H3 Medium speed 53 Medium speed 53
H4 Free flow 74 Free flow 74
M1 Congested 14 Low speed 30
M2 Congested 14 Medium speed 53
M3 Congested 14 Free flow 74
M4 Low speed 30 Medium speed 53
M5 Low speed 30 Free flow 74
M6 Medium speed 53 Free flow 74

speed, in the unit of miles per hour, is also listed for reference. These values and
designations are typical in transportation research.

The trajectory of vehicles fromSHIFT, sampled at 20Hz for 30 s, is fed toOPNET
network simulator.We implemented our algorithms over amodified 802.11a network
(to simulate DSRC) in OPNET. The modified 802.11a PHY module working at
5.9 GHz with 10 MHz bandwidth resembles DSRC. We follow the DSRC channel
model reported in [28] and simplify the far distances as Rayleigh fading instead
of pre-Rayleigh. The rationale for this simplification is that we are considering a
straight highway scenario, while [28] considers urban scenarios with intersections
and corners, which lead to pre-Rayleigh fading observations. In these simulations,
the path loss exponent was set to 2.31. The transceiver was assumed to operate with
–87dBm receiver sensitivity, at 3Mb/s raw data rate. For the 100 and 500ms periodic
beaconing schemes, a fixed 28dBm transmission power was used (which roughly
covers the radius of 250m). This power value is suggested byVSCC [5]. The payload
size of each message is 300 bytes.

Each vehicle’s communication module in the experiment samples its state at
50msec time steps. The communication logic, following the specified rate control
scheme, then decides whether or not to generate a packet. The onboard measure-
ment noise is modeled exactly the same way as in [6], which was in turn based on
experiment data [1].

Upon receiving information from the shared channel, each vehicle updates its
estimation of the sending car’s position. Vehicles maintain a map of all cars in their
proximity. A simple first-order kinematic model (i.e., a constant speed predictor) is
used for tracking neighboring vehicles. Using this predictor, a vehicle is assumed to
run at the same speed and in the same direction after its last successful information
broadcast is received by the predictor.
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5.4 Discussion

In each simulation run, data such as the specific packets that are sent or received
by nodes are collected. This information is used in calculating how the estimation
process in each node progresses and what is the estimation error of each node, of the
position of other nodes, at any given time. The results are then processed to derive
statistics such as 95% tracking error (calculated from Euclidean tracking error)
over all vehicles in predefined distance interval bins from any sender to explore the
law of large numbers. The bins of distance are shown in Fig. 17 (x-axis of all the
plots). We use the 95% cutoff error as the main performance metric for comparisons
in Fig. 17. The main advantage of this performance measure over others (e.g., mean
or standard deviation of error) is that it gives a statistical sense similar to that of a
confidence interval.

To see how the proposed transmission control protocol performs, we compare its
tracking accuracy with that of uncontrolled periodic beaconing methods (at 100 and
500ms intervals) for the scenarios in Table. 1. The following parameters are used for
the transmission control protocol: λ = 2m−2, eth = 0.2m, Lmin = 50m, Lmax =
250m, Umin = 0.4, and Umax = 0.8.

The tracking accuracy (95 percent cutoff Euclidean error) for both 100 and 500ms
beaconing, and our proposed solution is plotted in Fig. 17 with respect to various
traffic conditions in Table1. The result in each subplot shows the tracking accuracy
of the above communication policies at different distance intervals. distance intervals
are presented in 30m bins between 0–240m. The reason for such presentation and
averaging the results in each bin is to produce better statistical results. The results
illustrate how tracking accuracy degrades as the distance from a sender increases.
Only results from cases H1, H2, M3, M5, and M6 are presented in Fig. 17. For cases
H1 and H2, only tracking accuracy in direction #1 is presented since traffic in both
directions is homogeneous; for cases M3, M5, and M6, tracking accuracy in both
direction #1 (left) and direction #2 (right) is presented. For the other scenarios the
results of the periodic beaconing (100ms interval) and the proposed transmission
protocol are similar, since there is no strain on the network and no congestion issues.

The message rate for 100ms beaconing is 10 packets/s, while it is 2 packets/s for
500ms beaconing. Our proposed design produces a message rate of 2–3 packets/s
for the cases shown in Fig. 17. The rate is dependent on node movement and network
condition, so it is variable. On average, the proposed transmission control protocol
achieves better (or equal) tracking accuracy than beaconing methods. As observed
from Fig. 17, the 100 ms beaconing method does not scale well when facing different
traffic conditions, especially when there is a high density of cars. This uncontrolled
method suffers from consecutivemessage losseswhich result in higher tracking error.

The beaconing method with message rate of 2Hz (500ms interval) does not suffer
channel congestion in most cases because its transmission load is much lower than
the 100ms beaconing. Therefore, in some cases 500ms beaconing achieves better
tracking performance than 100ms beaconing due to lower packet collisions and loss.
However, its large inter-message interval is too long for some cases where node
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Fig. 17 Tracking accuracy at different distances from a sender
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movement is high; in such cases, not enough samples are available for neighboring
vehicles to track a sendingnode in real-time.As a result, inmost scenarios the tracking
error of 500ms beaconing is still larger than where our transmission control protocol
is used. Although the channel congestion and load level produced by the proposed
transmission control protocol is similar to that of 500ms periodic beaconing, the
proposed method is more efficient and uses timely transmission of state information
to eliminate large tracking errors.

Furthermore, the range control component of the transmission control protocol
adapts range (power) to maintain an acceptable level of channel occupancy. This
means that when the network is crowded a lower range will be used. The result
is that tracking error stays flat and low for a certain range or distance (this range
depends on vehicular traffic condition and network congestion) and increases beyond
the range of interest. This is in fact a desired effect since in crowded networks there
are many vehicles in close proximity of a given car, and it is more important to
track the close vehicles more accurately than to track both close and far vehicles
with less accuracy. Therefore, the range control method gives up on far nodes, when
there are many vehicles nearby. This is seen in the results as tracking error of the
farther nodes increase beyond the range of interest. Take the H1 case (Fig. 17), for
example; the 95% Euclidean tracking error stays roughly the same within a 90m
radius; beyond that, the tracking error goes up quickly as distance increases. In other
words, the immediate neighbors have better tracking accuracy than others. Here, the
algorithm has responded to congestion by trying to maintain the same amount of
state information available to its closer neighbors, sacrificing the far nodes which are
not actually important from a safety and tracking perspective.

6 Summary

This chapter discussed real-time tracking over a wireless network, in particular in
uncoordinated networks such as those found in wireless and mobile sensor net-
works. It was shown that controlled policies for transmission of state information
can significantly improve the performance of tracking applications. In particular if
transmission time, frequency, and range is tied to the dynamics and requirements of
the process that is being tracked over the network. To this end, a transmission control
protocol that operates in rate and range domains (time and space) was presented and
its analogy to TCP discussed. The transmission control protocol, and in particular
its range control component, has been designed so that the effect of the real-time
tracking application on the uncoordinated wireless network is not detrimental to
the application itself. The uncoordinated networks (like ad hoc networks of DSRC)
suffer from significant loss of capacity if their load increases beyond certain lim-
its, requiring congestion management and transmission control protocols at the end
nodes.
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Chapter 7
Target Counting in Wireless Sensor Networks

Dengyuan Wu, Bowu Zhang, Hongjuan Li and Xiuzhen Cheng

Abstract Target counting in wireless sensor networks has attracted a lot of
attention in recent years from both academia and industry. In this chapter, we review
various problem formulations and technical approaches proposed in recent literature
for target counting. Major existing works are classified into the following four cate-
gories: binary counting, numeric counting, energy counting, and compressive count-
ing, based on the sensing capabilities of the network and the underlying theoretical
foundations of the technical approaches. Within each category, we summarize the
representative works according to their objectives, technical methods, performances,
and advantages and disadvantages. Comparative evaluations are provided to illustrate
the influence of different sensor network settings on the target counting accuracy.
The applicable environments of these algorithms are also discussed at the end of the
chapter.

1 Introduction

Wireless sensor networks (WSNs) have been widely adopted to monitor various
activities in many different types of environments due to the low manufacturing and
maintenance cost they possess and the powerful functionality they provide. Some
of the most important tasks include detecting the presence of a target of interest
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[1–5], counting the number of targets within a monitored area [6, 7], and estimating
the locations of the targets [8–13], just to name a few. In extreme circumstances,
such tasks can not be simply accomplished by human beings because the working
environment may be unreachable or dangerous, or the labor cost is unacceptable.

One of the most fundamental problems in wireless sensor networks is to estimate
the total count of the targets in a particular monitored region. In fact, counting is usu-
ally the first step in many other applications such as target tracking and positioning.
For example, one may be interested in the group size, location, and mobility patterns
of a group of sea birds in a certain seashore area for a given time period to infer other
useful information. In this case, a sensor network is usually deployed to periodically
gather relevant data. Note that the word “target” could refer to not only materialized
objects but also some activities such as the “power-on” status of a device or a signal in
transmission. Although it is usually difficult to obtain the exact target count number,
existing methods have made a great effort to improve the counting accuracy. In this
chapter, we will introduce and summarize the most recent and representative works
tackling the problem of target counting in wireless sensor networks.

The main challenge of target counting in sensor networks lies in two-fold. On
one hand, in order to fully cover an area of interest, sensors are usually densely
deployed,which unavoidably results in overlaps in the sensing region. In otherwords,
The presence of a target may be detected by more than one sensor. On the other
hand, all the targets within the sensing range of a sensor can impact on the sensor’s
measurement—for example, a certain type of sensor may sample the strength of
the accumulated target signals at the position the sensor resides; consequently, it is
usually difficult to infer the exact target count from the sensor measurements in a
straightforward way.

In this chapter, we provide a comprehensive survey of the most recent target
counting techniques. To clearly state the developing trail of these approaches, we
classify existing works into four major categories based on the sensing capabilities
and estimating methods. Binary counting assumes that each sensor is able to report
whether there exists at least one target in its sensing region, i.e., report a value "1" if
any target is detected and ‘0’ otherwise. Numeric counting takes it one step further:
it assumes that each sensor reading captures the total number of targets covered by
the sensing range of the sensor. Energy counting and compressive counting, on the
other hand, employ the direct measurement of the target energy at each sensor to
estimate the target count. These two categories differ in their estimation methods:
compressive counting is fundamentally different from energy counting approaches
as it exploits the Compressive Sampling theory to estimate the count of the targets
while energy counting approaches make use of traditional machine learning and sta-
tistical techniques. The objective, mechanism, performance, and pros and cons of
representative and the most important works are to be examined in detail. A com-
parative analysis will also be provided to demonstrate the applicable environments
of these algorithms.

The rest of the chapter is organized as follows. In Sect. 2, we present an overview
on the problem of target counting in sensor networks and provide a classification
of the most recent target counting techniques. Following that we break down the
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high-level classification and describe the corresponding techniques in detail. More
specifically, we outline the various technical approaches based on binary counting,
numeric counting, energy counting, and compressive counting in Sects. 3, 4, 5, and 6,
respectively. Finally, open issues are discussed in Sects. 7 and conclusions are drawn
in 8.

2 Overview

Although a number of target counting algorithms have been proposed for wireless
sensor networks, each of them has its own cons and pros, and in particular, is suitable
only for some operating environments. Before deploying any target counting algo-
rithm for real world applications, we need to consider the following factors. First, due
to the characteristics of different targets, different network models should be consid-
ered. For example, some targets may have visible contours, which can be detected
by numeric photoelectric sensors [14]. For such targets, it is preferable to deploy a
numeric counting sensor network. For the targets that can not be detected visually,
such as the activities of some radioactive devices, energy sensors are usually pre-
ferred. Second, the target distribution and the sensor deployment pattern may vary.
A target counting algorithm may yield precise counting results only in some specific
scenarios. Last but not the least, the communication cost may be different. The power
storage in a sensor is limited. As a result, it is preferred to deploy distributed algo-
rithms that can save communication cost compared with centralized ones, in order
to achieve a longer lifespan of the wireless sensor network. However, centralized
algorithms tend to yield more precise counting results especially in situations where
the targets are distributed densely and non-uniformly. Therefore sometimes we need
to strike a balance between power consumption and counting accuracy.

In order to provide a clear viewover the developing trail of different target counting
methods, we classify the most recent works into the following four categories based
on the sensing capabilities/network models and the theoretical foundations: binary
counting, numeric counting, energy counting, and compressive counting. The binary
countingmodel relies on binary sensors [15], which can detect the existence of one or
more targets within its sensing range, and output a value " 1" (denoting the presence
of one or more targets) or "0" (denoting the absence of any target). Since the output
is only one bit, it has a low communication overhead and achieves a good robustness
against noise. In thismodel, a lower bound of the target count can be obtained through
geometrical analysis. The numeric counting model deploys numeric sensors that can
figure out the number of targets within its sensing range by photoelectric technology
[14]. Such local counts are then aggregated in a centralized server at which a global
estimation of the target count can be generated. Energy counting relies on energy
sensors [16], which can measure the signal strength of the target energies. Target
count is estimated via analysis of the target energy property and the sensors’ reading
map. Compressive counting also relies on energy sensors. However, it counts the
targets through sparse signal recovery based on the compressive sampling theory. In
the following sections, we will provide a more detailed analysis on these methods.
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3 Target Counting Based on Binary Sensors

3.1 Problem Formation

Binary sensors are widely used in target counting because of the simplicity and relia-
bility they possess. A binary sensor outputs a reading of "1" when there exist targets
within its sensing range, and ‘0’ otherwise. Compared to other target counting tech-
niques, binary counting is simple, practical, and robust. Because each sensor only
needs 1 bit for the output, binary counting has the lowest communication cost for each
communication session. Consequently, the power consumption is less comparedwith
other methods. In addition, since the output of a binary sensor is either "1" or "0", it is
easy for sensors to smooth out noisy readings.Because of the lowcommunication cost
and the robustness against noise, active research has been conducted to explore com-
plex applications, such as target tracking, based on binary sensor networks [17–20].

The current binary target counting methods mainly focus on the following two
problems:

1. How does a binary sensor detect the presence of targets by energy measurement?
2. Given the readings of the binary sensors in the monitored area, how to combine

them and estimate the count of the targets in the whole network?

We will discuss each of the above problems and summarize the corresponding
major technical approaches in the following subsections.

3.2 Target Detection

The authors in [21] propose to use hypothesis testing for the problem of detecting the
presence of targets within a binary sensor’s region of interest (ROI). In their work,
the target detection process is modeled as an independent binary decision between:

H1 : ri = ei + ni (1)

and
H0 : ri = ni (2)

where ri is the reading of the sensor si , ei is the signal strength at si ’s location, and
ni denotes the noise level with a zero mean Gaussian distribution. The hitting rate
phi and the false alarm rate p fi of si can be defined as:

phi =
⎡ ≤

ρ

1

2δ
e

−(x − ei )
2

2 dx (3)
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p fi =
⎡ ≤

ρ

1

2δ
e

−x2
2 dx (4)

where ρ is the parameter used for adjusting the hitting rate and false alarm rate, and
is assumed to be the same for all the sensors.

To further enhance the detection accuracy, this work [21] also proposes an
approach to integrate the local decisions. Suppose that in a local group consisting of
n sensors, each sensor si makes an independent local decision Di (i = 1, 2 . . . , n),
a more precise decision can be made by comparing

⎢n
i=1 Di with a threshold T .

Assume that the detection rate and the false alarm rate of sensor si are phi and p fi ,
respectively. To achieve a better detection rate and a lower false alarm rate than the
individual decision, an interval of T is derived from the Chebyshev’s inequality,
which is presented as follows:

⎣
⎤

N⎥
i=1

p fi +
⎦√√√ N⎥

i=1

(1 − p fi ),

N⎥
i=1

phi −
⎦√√√ N⎥

i=1

phi

⎛
⎜ (5)

The proposed method provides a theoretically sound solution to the following
fundamental problem in target counting: how to detect the presence of the targets.
However, no information about ei is available in real applications, since we do not
even know whether there is a target within the monitored area. The value of ei is
usually replaced with the smallest possible signal amplitude that can be detected by
the sensor si if a target is actually within si ’s sensing region. As a result, the hitting
rate and the false alarm rate are only approximately determined.

3.3 Multiple Target Counting

Because the information obtained from binary sensors is limited, it is difficult to
infer the exact target count or provide an unbiased estimator for the number of
targets within the monitored area. Therefore obtaining the lower bound and/or the
upper bound of the target count attracts a lot of attention. In [22], the authors provide
a lower bound on the target count for binary counting based on geometric analysis.
They also point out that the difficulty of binary counting lies in the interference on the
sensor’s readings caused by multiple targets other than the dimension of the space.
Therefore, the paper considers the one dimensional target counting problem as an
example. Assume that sensors are deployed along a line and each sensor’s sensing
region is represented by an interval Ci with a length 2R. Then it is argued in [22]
that no matter how close two targets are, they can always be distinguished if there
are two sensors with non-overlapping sensing regions that can detect them. In the
proposed geometric analysis, sensors are divided into two groups: on-sensors with
output "1" and off-sensors with output "0." Geometrically, the on-sensors tell the
regions where the targets might reside, and the off-sensors tell the regions where
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Fig. 1 An example of the
feasible target space F

there is no target. The feasible target space F is defined as the union of the sensing
regions of the on-sensors removing the overlapping areas with the sensing regions
of the off-sensors:

F =
⎥

i∈on-sensors
Ci −

⎥

j∈off-sensors
C j (6)

Figure1 shows an example of a feasible target space. Two sensors are said to
be positively independent if they both report "1" when either their sensing regions
are disjoint or they belong to different connected components of the feasible target
space. Then the lower bound of the target count is consistent with the maximum
number of the positively independent sensors. In other words, when all targets are
well separated, the lower bound can be regarded as the target count.

The method presented above provides a lower bound for the number of targets
in a given region. This lower bound can serve as a rough estimation for the target
count when the targets are well separated. However, the bound may be too loose for
dense targets. In addition, this lower bound does not increase with the increase of
the number of targets after all sensors output “1.” As a result, the proposed method
is appropriate for sparse target counting only.

4 Target Counting Based on Numeric Sensors

4.1 Problem Formation

With the development of the wireless sensing technologies, sophisticated numeric
sensors such as the photoelectric-based sensors are designed. These sensors can
output the target counts within their sensing regions with a high accuracy.

The numeric counting model can be simply summarized as follows. Assume
that there are Ns sensors deployed in the grid points or randomly and uniformly
in a two-dimensional monitored area. The set of sensors are represented by S =
{s1, s2, . . . , sNs }. Let xi = (x(i)

1 ,x(i)
2 ) denote the location of the sensor si , i =

1, 2, . . . , Ns . The set of all sensors’ locations are represented by
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L S = {x1,x2, . . . ,xNs }. The sensing region of si , denoted by A(si ), can have an
arbitrary shape such as a circle, a square, an eclipse, or other irregular shapes due to
the specialties in its design. But we consider a circular region centered at xi with a
radius h here for simplicity. The sensor si outputs a reading ri , which is the count of
the targets residing in si ’s sensing region A(si ). Let RS = {r1, r2, . . . , rNs } denote
the set of all such readings from the corresponding sensors. The monitored area A
can be defined as the union of the sensing regions of all sensors.

In order to completely cover the area of interest, overlapping of different sensing
regions is unavoidable. As a result, a target in the overlapping area may be detected
by more than one sensor. This phenomenon results in double counting, in which a
target may be counted at least twice. In order to obtain an accurate target count, the
count of targets in the overlapping sensing regions should be analyzed carefully .

4.2 Geometry-Based Target Counting

In [23], the authors propose a method for the target counting problem based on
geometric analysis. To reduce the interference of overlapping regions, the authors
start with selecting a non-redundant subset of the sensors S∞ ∈ S. And the union of
the sensing regions of S∞ equals R, while no sensors can be deleted from S∞ without
losing any coverage of the monitored area. Figure2 illustrates a simple network with
three sensors, one of which is redundant as its sensing region is covered by the other
two sensors.

We assume that R∞ = (r1∞ , r2∞ , . . . , rn∞) denotes the reading set of the non-
redundant sensor subsets; then the target count can be estimated by the following
equation:

N̂t =
⎢n∞

i=1 r ∞
i∗

m
(7)

where m represents the maximum degree of overlapping in S∞. It is straightforward
to conclude that the true target count should be less than the sum of the readings

from R∞,
⎢n∞

i=1 r ∞
i , and more than

⎢n∞
i=1 r ∞

i
m , considering that the maximum degree of

overlapping ism. As a result, the true value of the target count can always be bounded

Fig. 2 An example network
with a redundant sensor s2
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by the range [ N̂t∗
m

,
∗

m N̂t ]. Then target count estimator N̂t can be regarded as the
geometric mean of the two bounds.

In thiswork, the authors also extend their proposed estimationmethod to non-ideal
sensing cases. If the count of targets around a sensor is c, and the sensor can report
any value in the range of [(1 − α)c, (1 + α)c], where α represents the noise level,
then the true target count in the monitored area can be estimated by the following
equation:

N̂t =
⎢n∞

i=1 r ∞
i⎝

m(1 − α2)
(8)

And the true target count can be bounded by the following range:

⎣
⎤ N̂t⎞

m 1+ α
1− α

,

⎟
m
1 + α

1 − α
N̂t

⎛
⎜

This proposed method is simple and efficient. The computational complexity to
build the non-redundant sensor subset is O(Nslog(Ns)) for 1D networks. For two-
dimensional networks, the computational complexity is still polynomial. Besides,
the authors also consider the non-ideal sensing model and extend the corresponding
solution to the target counting problem in noisy environments. However, this method
works well only for the cases in which both the sensors and the targets are deployed
in a uniform pattern. Otherwise, the estimation may deviate significantly from the
true target count. In addition, the proposed target count bounds are loose and can
only provide limited information about the true target count.

4.3 A Probability Mass Function Approach

In [14], the authors propose a target counting approach based on probability theory.
They start with deriving a probability mass function (pmf) of the target distribution.
Assuming that the targets are uniformly distributed in the monitored area, then the
probability that there are k targets in A(si ) of size S can be computed as follows:

P(ri = k) = e−βS(βS)k

k! (9)

In the above equation, β represents the density of the targets, which can be regarded
as a known or unknown factor. If it is unknown, it can be approximately estimated
from the sensor’s reading map.

In the next step, the authors partition the monitored area into smaller subareas
following a simple procedure: the boundaries of the sensing regions of all sensors
provide a natural cut to partition the area.As illustrated in Fig. 3, the area is partitioned
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Fig. 3 Partition themonitored
area

into seven subareas by the boundaries of three sensors, with each subarea being
covered by one or more sensors.

Note that the subareas are not overlapped. Denote by M = {m1, m2, . . . , mo} the
set of subareas, and by rmi the target count in mi , supposing that there are o different
subareas in total. If rmi is regarded as a random variable, it is reasonable to assume
that each rmi is independent. As a result, the following conclusion can be reached

P(rmi = k1 ∼ rm j = k2) = p(rmi = k1) × p(rm j = k2) (10)

On the other hand, based on the definition of conditional probability, the following
equation holds:

P(Nt = k|RS) =
⎢

Rm∈A∼B P(rm1 = k1, rm2 = k2, . . . rmo = ko)⎢
Rm∈A P(rm1 = k1, rm2 = k2, . . . rmo = ko)

(11)

In the above equation, A and B represent the following constraints:

A :

⎠⎭⎭⎭⎭⎭⎭⎭
⎭⎭⎭⎭⎭⎭⎭

⎢
mi ∈Ms1

rmi = r1⎢
mi ∈Ms2

rmi = r2

. . .⎢
mi ∈MsNS

rmi = rNS

rmi >= 0;

(12)

B :
o⎥

i=1

rmo = k (13)
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Given the sensors’ readings, the target count in themonitored area can be estimated
by its conditional expectation, which can be represented by the following equation:

E(Nt |RS) =
max⎥

t=min

t × p(Nt = t |RS) (14)

where min and max represent the smallest possible and the largest possible target
counts, respectively.

This estimator sounds reasonable and it can provide an accurate estimation when
targets are uniformly distributed. However, the computational complexity is not poly-
nomial since the computation of the above equations needs to enumerate all possible
values of the target count as well as all possible target count values in each subarea.

In order to make the algorithm practical, the authors propose the following heuris-
tics in [14]. First, if the sensing region of a sensor contains no target, the sensor as
well as its sensing region will not be considered. Second, because the computational
complexity is not polynomial, the computation cost can be reduced significantly by
partitioning the monitored region into smaller ones and estimating the target count
in each sub-region independently. Thus, the authors introduce a network partition
algorithm. A sensor network can be modeled as a topology graph G(V, E), where V
represents the set of Ns sensors as well as their sensing regions, and an edge eij exists
between sensors si and sj if and only if their sensing regions overlap. The objective
of the algorithm is to find a partition that can result in two balanced sub-partitions
with the interference between them minimized. An objective function, which can
reflect the interference between two sub-partitions, is defined as follows:

fobj (G1, G2) =
⎥

si ∈G1,sj ∈G2

si ze(A(si ) ∼ A(sj )) × (r(si ) + r(sj )) (15)

The graph partition process intends to seek a balanced partition G1 and G2 with
a minimum fobj (G1, G2) value, and is described as follows:

1. Randomly generate a partition G1 and G2, each of which is composed of half of
the sensors and their sensing regions.

2. Select a node in G1 and a node in G2 such that switching these two nodes results
in the most significant decrease in the objective function value. Switch these two
nodes and lock them. A locked node will not be considered for switching again.

3. Repeat step 2 until no further decrease in the objective function value can be
achieved by switching two unlocked nodes.

This heuristic partition algorithm can be completed in polynomial time and can
result in a sub-optimal partition. Figure4 shows an example to illustrate the parti-
tioning procedure. As shown in Fig. 4a, a random partition is first generated and the
corresponding objective function value is 316. After exchanging s2 in G2 with s6 in
G1, the new partition achieves an objective function value of 65 (Fig. 4b).
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Fig. 4 Partition a graph into subgraphs. a A random partition. b Exchange two nodes

By recursively applying the partition algorithm several times, the sensor graph can
be partitioned into a few sub-graphs,with eachhaving atmost a pre-definednumber of
sensor nodes.The sumof the estimated target counts fromall sub-graphs is considered
as a rough estimation of the total target count. This approach has one drawback: the
targets in the overlapping areas of two sub partitions are still duplicately counted
and may result in over-estimation. In order to solve this problem, two compensation
schemes, namely a minus compensation scheme and a plus compensation scheme,
are provided to tune the estimation.
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The proposed approach summarized above is the first attempt to solve the double
counting problem based on probability theory. It works for the cases when the tar-
gets are uniformly distributed in the whole area or piecewise uniformly distributed
(uniformly distributed within each subarea). Precision can be guaranteed for both
cases.However, the time complexity is high and the computation time is unacceptable
when the network topology is complex and the count of targets is large. Although the
network partition algorithm can reduce the computation time, the time complexity
is still not polynomial. As a result, this approach can not be applied to large scale
sensor networks.

4.4 An Applied Statistical Approach

In [24], the authors tackle the double counting problem from a different perspective.
In sensor networks, it is easy to find a subset of sensors that have no overlapping
sensing region. If the target distribution is known, the total number of targets can
be estimated using statistical methods from readings of non-overlapping sensors.
This procedure can be repeated multiple times, i.e., multiple subsets of sensors, with
each containing sensors with non-overlapping sensing regions, can be considered
independently, yielding a sequence of estimated target counts. The final target count
can then be computed from these estimated results based on the maximum likelihood
estimation.

The authors in [24] startwith estimating the distribution of the targets.Assume that
the target position distribution is f (X |π), which can be partially known or unknown,
regular or irregular. The distribution in two-dimensional space can be estimated
based on the sensors’ readings. Given the assumption that the targets are identically
and independently distributed, based on the definition of conditional expectation in
probability theory and the property of continuous functions in calculus, it is proved
that the following approximation holds:

E(Y | x) ∈ Nt × f (x|π) (16)

where Y = R
δh2

, with R denoting the count of the targets in the circular region
centered at x with a radius h. This approximation shows that the expected count of
the targets per unit area at x is approximately proportional to the value of f (x|π) at
x. Therefore, an approximate target distribution function can be obtained using the
regression techniques.

Depending on whether or not certain prior knowledge is available regarding the
target distribution, different regression techniques can be employed. For the case that
the type of target distribution is known while the parameters of the distribution are
unknown, a parametric regression technique can be taken to estimate the unknown
parameters. In [24] the following parametric model is used:

RS = c × f (X |π) (17)
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An estimate π̂ of π can be obtained by minimizing the sum of residue squares, i.e.,
by solving

min
π

Ns⎥
i=1

(rsi − c × f (Xi |π))2, (18)

The Levenberg-Marquardt algorithm (LMA) [25] is usually employed to find a sub-
optimal solution π̂ to this minimization problem.

For the case with no prior knowledge about the target distribution, a non-
parametric kernel regression model is applied to estimate the target distribution.
The non-parametric model first estimates the expected number of targets per unit
area D(x1,x2) in the monitored area using the Nadaraya-Watson estimator [26],
which can be represented by the following equation:

D(x1,x2) =
⎢Ns

i=1 K
(

x1 −x
(i)
1

h

)
K
(

x2 −x
(i)
2

h

)
rsi

⎢Ns
i=1 K

(
x1 −x

(i)
1

h

)
K
(

x2 −x
(i)
2

h

)

where K () is a Gaussian kernel function. With the knowledge of the expected target
count per unit area at each point, by scaling D(x1,x2) and making the integration
of D(x1,x2) over the monitored area to 1, the approximate target distribution can
be obtained.

Given the the approximate target distribution, a maximum likelihood estimator
for target counting can be applied to subsets of sensors with non-overlapping sensing
regions. Obviously, if the sensing regions of a set of sensors do not overlap, the sum
of their readings precisely reflects the total count of the targets within their coverage
areas. A non-overlapping sensor subset selection process is described as follows. Let
Si be the subset selected by the i th run. Initially, Si = ≥.
1. Randomly select a sensor sj , and add sj to Si .
2. Mark sensors whose sensing regions overlapwith that of sj . Thesemarked sensors

will not be considered in the same sensor subset selection process.
3. Repeat steps 1 and 2 until a predefined number of sensors are selected or no more

sensors can be selected.

Figure5 illustrates an example of the selection of a subset of sensors with non-
overlapping sensing regions. The selection process takes linear time.

Suppose that the non-overlapping sensor subset sampling process is executed for
n times, and the union of the sensing regions of the i th subset is represented by A(Si ).
Assume that targets are i.i.d, it is straightforward to reach the following conclusion:
the number of targets that falls into A(Si ) can be regarded as a binomial random
variable B(Nt , Pi ), where Nt is the unknown target count in the monitored area, and
Pi can be estimated by the following equation:
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Fig. 5 An example of non-
overlapping sensor subset

P̂i = ∫ ∫
≈A(sj ),sj ∈Si

f̂ (x|π)dx1dx2

= ⎢
sj ∈Si

∫ ∫
A(sj )

f̂ (x|π)dx1dx2

(19)

If n different sensor subsets are selected, and the count of the targets that fall into
the sensing regions of these sensors are recorded as Nt1, Nt2, . . . , Ntn , the target
count Nt can be estimated by the maximum likelihood estimation (MLE) based on
the binomial assumption. The likelihood function is described as follows:

l(Nt ) =
n∏

i=1

(
Nt

ui

)
P̂ui

i (1 − P̂i )
Nt −ui (20)

The value of N̂t that maximizes the likelihood function is the estimated target
count. Traditional method solving the MLE [27] involves computations of differ-
entiation, which is extremely time-consuming due to the factorials in this context.
However, it is proved in [24] that (20) has onlyone localmaximavalue for this context.
In addition, when Nt < N̂t mle, l(Nt ) is an increasing function; when Nt > N̂t mle,
l(Nt ) is a decreasing function. As a result, the authors propose a heuristic to try from
the smallest possible target count to the largest possible target count. The first Nt that
satisfies (l(Nt ) − l(Nt + 1)) > 0 is taken as N̂t mle. With this heuristic, the problem
can be solved efficiently.

Compared with the algorithm reviewed in Sect. 4.3, the statistical counting
approach can be applied to more patterns of targets. In addition, the computation
takes less time.
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5 Target Counting Based on Energy Sensors

5.1 Problem Formation

Targets emit energy signals such as acoustic, light, or heat. Energy sensors, which
can sense a specific type of signals from surrounding targets, have the potential to
be used to estimate the count of targets within a monitored area.

The problem of target counting based on energy sensors is described as follows.
Let S = {s1, s2, . . . , sNs } be the set of Ns sensors deployed in a two-dimensional
monitored area R, and Tg = {t1, t2, . . . , tNt } be the set of Nt targets who have an
arbitrary distribution. When there is no ambiguity from context, let si = (xsi , ysi )

also represent the location of the sensor si and ti = (xti , yti ) also represent the
location of the target ti . It is widely accepted that the emission of the target signal
follows a decaymodel that can be captured by a function fE (d), which is a decreasing
function of d, the Euclidian distance to the target. Although the decay model may
vary in different papers, most researchers use a model of fE (d) = Et

(1+ d)λ
, with

λ being the decay factor in the range of [2.0, 5.0] [28, 29]. The signal amplitude
E(p, Tg) at any point p in R is the superposition of the signal amplitudes of all targets
at the position p, which can be written as:

E(p, Tg) =
Nt⎥

j=1

fE (d(p, t j )). (21)

The reading of sensor si is E(si , Tg) in a noise free environment. The task of
the energy-based target counting is to estimate the count of targets based on sensor
energy readings and the location information.

Note that although in real world, the base energy levels are different for different
targets, in this category, only identical targets are considered by the existing research.

5.2 Distributed Aggregate Management

The authors in [16] present a simple target counting protocol for wireless sensor
networks. Assume that targets are identical and sparsely deployed. If the reading of a
sensor E(si , Tg) is significantly higher than those of its neighbors, there should be a
target near si , and the target should be closer to si than to si ’s neighbors. Therefore,
the count of the targets can be estimated by the count of the sensors with local
maximum readings. This idea is explored by the distributed aggregate management
(DAM) protocol, which is stated as follows.

In DAM protocol, each sensor records the following data fields: the largest sensor
reading (MaxPr) it has ever seen in a countingprocedure, the IDof the sensor (MaxID)
with the largest reading, the ID of its one hop parent (transID), and the reading of
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its parent (transPr). Every data packet includes all the above information about its
sender as well as the reading of the sender. A sensor that has a higher reading than
all its neighbors is called a leader. A parent of a sensor is its one hop neighbor that
relays a packet from the leader to the sensor. The process of identifying a target
coincides with the leader election process. The leader election process is performed
periodically and can be described as follows:

1. At the beginning of each leader election period, sensors with larger readings than
a threshold σ1 will all join the leader election process. The MaxPr and transPr of
the sensor are initialized to be its own sensor reading. The MaxID and transID
of a sensor are initialized as its own ID. Each sensor will broadcast its state
information to all its one hop neighbors.

2. Once receiving a data packet, a sensor checks if the MaxPr in the packet is larger
than its recorded MaxPr and if its own reading is smaller than the reading of
the packet sender. If both conditions are satisfied, the sensor first updates its
state based on the received information by resetting MaxPr, MaxID, transPr, and
transID, and then broadcasts MaxPr, MaxID, and its own ID and reading to all
its neighbors. Otherwise, the received packet is dropped.

The above process needs to be executed during each counting period. A counting
period ends when no sensor needs to update its state and no more broadcast occurs.
Finally, the sensors whose MaxPr and transPr are equal to their own readings claim
themselves as leaders and report to the server. Figure6 illustrates the leader election
process in DAM. This example contains 9 targets and 100 sensors represented by
solid circles and “+” signs, respectively, in an area of 100m×100m.The solid squares

Fig. 6 Leader election in DAM
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represent the sensors that are elected to be leaders by the algorithm. When the leader
election procedure converges, six leaders are elected, representing six clusters. Each
cluster is a tree rooted at its elected leader.

This protocol is energy efficient and has a fast convergence. However, an accurate
estimation can be achieved only when the targets are sparsely distributed or well
separated. In addition, the authors argue that for grid sensor deployment, two targets
can be discerned clearly by the protocol if d > 2.5r , where d represents the distance
between the two targets and r represents the distance between two neighbor sensors.
While the counting precision of DAM can only be guaranteed when the targets are
well separated, it forms the foundation of a series of other methods.

5.3 Energy-Based Activity Monitoring

When targets are densely deployed, it is not always possible to separate the signals
from two targets that are close to each other using DAM. To address this issue, the
authors in [30] propose a protocol termed EBAM, which stands for energy-based
activity monitoring. EBAM first runs the DAM protocol. Sensors that share the same
leader form a group. The number of targets that reside in the coverage area of each
group is estimated independently using the following proposed method.

It is straightforward to observe that if the signal landscape E(p, Tg) over the
monitored area is known, the energy volume of all targets can be computed by the
following equation:

EV =
⎡

p∈R
E(p, Tg)d(p) (22)

Since the unit target energy volume (UEV) can be obtained by the integral of the
signal decay function, the target count could be estimated by EV

U EV . However, due
to the fact that only the signal amplitude at a sensor’s location is available, a signal
landscape recovery method based on the sensor readings is needed. EBAM employs
an estimated signal landscape based on the Voronoi graph model [31].

The Voronol Cell of a node si , denoted by Vc(si ), consists of all the points that
have a shorter distance to si than to any other nodes, i.e. a point p ∈ Vc(si ) if and
only if d(p, si ) √ d(p, sj ) for any sj , sj �= si . Figure7 shows the Voronoi graph of
25 sensors in a monitored area. Given E(si , Tg), the estimated energy landscape over
Vc(si ), denoted by Êvc(si , Tg), can be built by setting the signal amplitude of each
point in Vc(si ) to E(si , Tg), i.e., for ∀p ∈ Vc(si ), Ê(p, Tg) = E(si , Tg). Then the
estimated energy landscape over the whole monitored area, denoted by ÊR(S, Tg),
is expressed as:

ÊR(S, Tg) = ≈Êvc(si , Tg) (23)
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Fig. 7 A Voronoi diagram for 25 sensors in a monitored area

Using the integral of the estimated energy landscape over the monitored area, the
estimated energy volume ( ˆEV ) can be obtained. Consequently, the estimated target

count in each group can be derived as
ˆEV

U EV .
Due to the attenuation effect of target signals, a sensor’s reading may vary dra-

matically even if the position of a target changes a little. To tackle this issue, a ceiling
value is introduced in EBAM to limit the maximum contribution of a single sensor
to the local sensor group.

Compared with DAM, EBAM can be utilized for dense target deployment. How-
ever, there are some factors that EBAM fails to consider. First, the authors do not
consider the energy leaking effect. If a target is located at the boundary of the moni-
tored area, part of the energy may not be included in the energy volume estimation in
EBAM. Second, the introduced ceiling factor helps to provide a steady target count
estimation only if the targets are very close to a certain sensor. No proper compen-
sation is provided for the case when a target is far away from all sensors. As a result,
the estimation may be biased.

5.4 Energy-Based Target Enumeration

In [29], the authors propose an energy-based target enumeration protocol (EBTN)
based on DAM and EBAM. EBTN aims to improve the communication efficiency
and counting precision. In the leader election phase, EBTN follows the DAMprocess
except that once a sensor realizes that its reading is the largest among all its neighbors,
it declares itself as a leader and broadcasts its position information to its neighbors
immediately. Other sensors, with a reading larger than a threshold σ2, will join the
nearest leader automatically without incurring any data transmission. This procedure
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achieves leader election and group formation with less time and less communication
overhead compared to DAM.

In addition, EBTN improves the counting precision in the following two points:
first, it builds a more accurate estimated signal landscape; Second, it compensates
the energy leaking. Compared with the true energy landscape, the estimated signal
landscape based on the Voronoi graph model is not smooth and less accurate, which
may result in a large error in energy volume estimation. To solve this problem, EBTN
employs a polynomial regression technique to build a more accurate estimated signal
landscape. In EBTN, after the leader election and sensor group formation phase, each
group leader collects the node location and signal amplitude information from its
members. Let (x, y) represent a position in the two-dimensional monitored area. The
following parametric polynomial model is employed to estimate the signal landscape
over the monitored area covered by a group of sensors:

E(x, y) = ε0+ε1y+ε2y
2+ε3x+ ε4xy+ε5xy2+ε6x

2+ε7x
2y+ε8x

2y2 (24)

where E(x, y) is the interpolated signal strength of any given point in the area of
interest. Using the least residue square estimation, the parameter vector ε in the
above equation can be calculated by ε = (X T X)−1X T Z , with

X =

⎧
⎪⎪⎪⎨

1 ys1 y2s1 xs1 xs1ys1 xs1y
2
s1 x2

s1 x2
s1ys1 x2

s1y
2
s1

1 ys2 y2s2 xs2 xs2ys2 xs2y
2
s2 x2

s2 x2
s2ys2 x2

s2y
2
s2

...
...

...
...

...
...

...
...

...

1 ysn y2sn
xsn xsn ysn xsn y

2
sn

x2
sn

x2
sn

ysn x2
sn

y2sn

⎩
 (25)

where (xsi , ysi ) represents the location of the i th sensor in the group, and Z denotes
the signal amplitude vector with the i th element in Z corresponding to the reading of
the i th sensor in the group. Based on the estimated signal landscape, the estimated
energy volume can be obtained. Note that as pointed out by the authors, the energy
volume is usually underestimated due to energy leaking. A constant factor of 0.7 is
then multiplied to the unit target energy volume in their work, which yields a good
accuracy according to the simulation study in [29].

Compared with the previously introduced DAM and EBAM, EBNT has the fol-
lowing advantages. First, the proposed leader election process converges faster, and
incurs less communication overhead. Second, the estimated signal landscape based
on the polynomial regression model can better recover the true energy landscape,
which leads to amore accurate energy volume estimation. Third, the authors consider
the energy leaking problem and provide a constant factor that can help to make a
more precise target count estimation.

However, for different sensor deployment patterns and target distributions, the
constant factor should be different. It may be difficult to find the right value for this
compensation factor.
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5.5 A Monte Carlo Method for Target Counting

From the previous section, we understand that the energy volume from the targets
may be underestimated due to energy leaking. Thus an adaptive method is required
to compensate the energy leaking for different sensor deployment patterns and target
distributions. To study this problem, the authors in [28] propose an approach to
employing Monte Carlo simulations for Target Counting (MCTC).

It is assumed in [28] that targets follow a uniform distribution or a distribution
that can be approximately modeled as piecewise-uniform. The estimated energy
landscape based on the Voronoi graph model [31] is employed. And the authors
prove that for uniform or piecewise-uniform targets, when the number of targets
becomes large, the distribution of the targets approaches to the estimated energy
landscape closely after scaling. As a result, the scaled estimated energy landscape
can be regarded as the approximate target distribution.

Based on this observation, the authors conduct Monte Carlo simulations [32] in a
virtual monitored area. The virtual area R∞ is exactly the same as the real monitored
area R. Ns virtual sensors, denoted by S∞ = {s∞

1, s∞
2, . . . , s∞

Ns
}, are assumed to be

deployed in R∞, with the position of s∞
i being the same as that of si in R. N ∞

t virtual
targets, denoted by T ∞

g = {t ∞1, t ∞2, . . . , t ∞N ∞
t
}, are added to R∞ based on the estimated

target distribution. The virtual targets have exactly the same target energy properties
as the real targets. An Acceptance-Rejection sampling technique [33] is applied to
control the virtual target deployment to make sure that the shape of the virtual energy
landscape is as similar as possible to that of the real target energy landscape when
the algorithm terminates. When the number of virtual targets N ∞

t becomes large, the
distribution of the virtual targets approaches to that of the real targets. As a result,
the energy leaking rate for the real targets and the virtual targets should be similar.

Given the virtual targets’ locations and their energy decay model, the reading
of each virtual sensor can be easily calculated. Specifically, the energy volume of
ÊR(S, Tg), denoted by V̂ER(S, Tg), could be expressed as:

V̂ER(S, Tg) =
m⎥

i=1

Ê(si , Tg) × Area(Vc(si )) (26)

Through the same method, the estimated virtual target energy volume can also be
easily obtained. Thus, the number of targets Nt can be estimated by the following
equation:

Nt = VER(S, Tg) × N ∞
t

VER(S∞, T ∞
g)

(27)

To achieve a more accurate estimation, the authors consider sensor readings in
multiple epoches. They assume that each sensor reports its reading to the cen-
tral server at every epoch and a fixed number of targets keep moving in the
monitored area. Let Tmax be the maximum number of epochs to be considered.



7 Target Counting in Wireless Sensor Networks 255

Then the estimated energy landscape at the Tmax epoches is recorded as: Ê1
R(S, Tg),

Ê2
R(S, Tg), . . . , ÊTmax

R (S, Tg). Correspondingly, the energy volume for each esti-

mated energy landscape, denoted by V̂ 1
E R(S, Tg), V̂ 2

E R(S, Tg), . . . , V̂ Tmax
E R (S, Tg),

can be obtained. Similarly, in each epoch i , a virtual energy landscape ÊR
i
(S∞, T ∞

g)

can be built as described earlier, and the corresponding estimated energy volume is
recorded as V̂ i

ER(S∞, T ∞
g). Finally, the count of the targets can be estimated through

the following equation:

N̂t =
⎢Tmax

i=1 V̂ i
ER(S, Tg) · N ∞

t⎢Tmax
i=1 V̂ i

ER(S∞, T ∞
g)

. (28)

The authors prove that the proposed estimation is approximately unbiased for
uniform targets and piecewise uniform targets.

Compared with the methods described previously, MCTC provides a more accu-
rate solution to the problem of target counting, and the solution is proved to be
approximately unbiased for uniform and piecewise uniform targets. However, this
method requires each sensor to communicate with the central server, which may
incur more energy consumption compared with the distributed methods based on
local communications.

6 Target Counting Based on Compressive Sensing

6.1 Fundamentals of Compressive Sensing

Compressive Sampling (CS) [34] is a newly developed sampling paradigm in data
acquisition that can reconstruct a sparse signal with a much lower sampling rate
compared to the traditional Nyquist rate.

The basic idea of CS can be described as follows. Let X be a N ×1 column vector
in RN . Given an N × N orthogonal basis ψ = [ψ (1), ψ (2), . . . , ψ (N )] with each
ψ (i) being a column vector, X can be expressed by (29),

X = ψ λ =
N⎥

i=1

λiψ (i), (29)

where λ is the coefficient sequence of X in the transform domain ψ . The signal X
is K -sparse if it is a linear combination of K basis vectors. That is, only K of the λi

coefficients are nonzero and the other (N − K ) ones are zero. If K ∩ N , instead
of acquiring N samples for X , one can reconstruct X by taking only a small set of
measurements according to the Compressive Sampling theory:
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Y = σ X = σψ λ = Aλ, (30)

where Y is a M × 1 vector, K < M ∩ N , σ is a M × N measurement matrix,
and A is a M × N matrix. For a N × 1 sparse vector λ , it has been proved that if
A holds the Restricted Isometry Property (RIP) [34], λ can be recovered with only
M → O(Klog(N/K )) measurements through ρ1-minimization at an overwhelming
probability.

The definition of RIP is given below: amatrix A obeys RIPwith parameters (K , σ)
for σ ∈ (0, 1) if

1 − σ √ ∀AV ∀22
∀V ∀22

√ 1 + σ, (31)

holds for all K -sparse vector V . It has been proved that A follows the RIP when ψ

is a typical transform basis such as Fourier or Wavelet and σ is random [34].
If the measurement vector y is corrupted with noise, the measurement becomes

Y = Aλ + N , (32)

whereN is an unknown error term (e.g. an additive white Gaussian noise (AWGN)).
Then the ρ1-minimization with relaxed constraints for reconstruction is

min|λ|ρ1subject to ∀Aλ − Y∀ρ2 < τ (33)

where τ bounds the amount of noise in the data. It has been proved [35] that the
reconstruction error of λ based on the value computed from (33) is bounded by
c0τ0 + c1τ, where c0 and c1 are small constants and τ0 is the reconstruction error
when Y is noiseless.

Motivated by the advances in CS, recent works [36–39] apply CS to sparse target
counting, leading to a considerably low communication overhead due to the low
sampling rate (less number of sensor measurements). These works view target loca-
tions as a sparse signal λ and try to reconstruct λ by CS with a small set of sensor
measurements. Target counting methods based on the CS technique mainly consider
the situation that targets are sparse compared to the total number of grids utilized to
represent the locations of the targets. Target counting methods based on other models
can also be applied to the same situation. However, CS is a fundamentally different
methodology. In addition, CS can be applied to more complex situation when the
energy model of different targets are not identical. Besides that, targets’ location
information can also be obtained from these methods.

One big challenge in CS based target counting is to justify the applicability of
CS to the target counting problem. That is, whether A obeys the RIP. In addition,
traditional CS recovery algorithms possess a high time complexity, while the sparse
signal in target counting often has special properties that can be exploited to simplify
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the recovery algorithm. Therefore, considering CS in target counting, we need to
address the following questions:

1. How to design ψ and σ such that A = σψ satisfies the RIP property?
2. How to design efficient CS recovery algorithms for target counting?

6.2 Target Counting via Spatial Sparsity

The work in [36] represents one of the early effort in applying the CS theory to
sparse target counting in sensor networks. In this paper, the authors partition the
monitored area into N grids such that only K ∩ N of them contain targets. The
target locations are modeled as a sparse signal λ = [λ1,λ2, . . . , λN ], in which
the indices of the nonzero elements represent the locations (grids) of the targets and
the values of the nonzero elements represent the energy amplitudes of the targets at
the corresponding grids they reside. Let Xi record the target energies measured by
the ith sensor deployed in the monitored area. The sparse signal (λ) is then linearly
related to the sensor readings (X ) through a sensing matrix ψ , that is, X = ψ λ .
To define ψ , a target energy decay model that takes into account the physics of the
signal propagation and multipath effects is adopted. For simplicity, we denote by fi j

the decay model of the signal emitted by the target at location i and measured at
location j .

Note that the definition of fi j in [36] is quite complicated as the original design in
[36] considers the case where a sensor at j measures L samples of the signal emitted
by the target at location i . Therefore fi j is a function of the sampling rate, the number
of samples taken, the distance from the target to the sensor, the signal propagation
speed, and the propagation attenuation constant. As the purpose of this chapter is to
summarize the central idea of the major works in target counting, we focus on the
simple case when L = 1 first. Thus our presentation in the following is a simplified
version of the original work proposed in [36].

Assume that we have P sensors. Then the P × N target decay matrix ψ can be
defined as below:

ψ = [ψ T
1 , ψ T

2 , . . . , ψ T
P ]T =

⎧
⎪⎪⎪⎨

f11 f21 . . . fN1
f12 f22 . . . fN2
...

...
...

...

f1P f2P . . . fN P

⎩
 (34)

Let Y = σ X = σψ λ , where σ is a M × P Gaussian random matrix with i.i.d.
Gaussian-distributed entries, which satisfies the RIP property with any fixed basis.
Then the authors can reconstruct λ from Y through ρ1-minimization.

When L > 1, each ψi is then defined as below:
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ψi =

⎧
⎪⎪⎪⎨

( f1i )l=1 ( f2i )l=1 . . . ( fNi )l=1
( f1i )l=2 ( f2i )l=2 . . . ( fNi )l=2

...
...

...
...

( f1i )l=L ( f2i )l=L . . . ( fNi )l=L

⎩
 (35)

In such a case, each Xi is a vector of length L . To conserve communication overhead,
M random projections of each Xi will be transmitted to the central server for target
signal recovery, where M = O(K log(N/K )) is far less than Xi ’s original length L .

This method reduces the amount of communications significantly. Furthermore,
since the CS reconstruction is robust against additive noise, the proposedmethod also
shows a good performance under noisy conditions. Moreover, since the base target
energy is assumed to be a variable that should be computed from sparse recovery
(the values of the non-zero λ entries), the proposed algorithm can be applicable
to the case when the target base energies vary. This also implies that the algorithm
can not count accurately when a grid may contain multiple targets, resulting the
under-counting problem.

6.3 Target Counting via Bayesian Detection

The authors in [38] propose their own CS recovery algorithm for target counting.
Similar to the work in [36], a N -grid monitored area is considered and the sparse
vector λ = [λ1,λ2, . . . , λN ] is a binary vector, with λi = 1 denoting that there
exist targets in the i th grid, andλi = 0 otherwise. This work adopts a N × N sensing
matrix ψ following a target energy decay model defined as follows:

fi j = Et

dλ
i j

|Gij | (36)

where |Gij | captures the absolute value of the Raleigh fading of the target signal,
dij is the distance between i and j , and Et is the target base energy, i.e., the target
energy measured at the target position. The sensing matrix ψ is then defined as:

ψ =

⎧
⎪⎪⎪⎨

f11 f21 . . . fN1
f12 f22 . . . fN2
...

...
...

...

f1N f2N . . . fN N

⎩
 (37)

where fi j denotes the signal energy at grid j for the targets at grid i . Instead of
placing one sensor at each grid, this method randomly deploys M sensors at N
grids, where K < M ∩ N . To represent the sensor locations, a M × N matrix
σ = [σ1, σ2, . . . , σM ]T is defined, whereσi = [γi1,γi2, . . . ,γi N ] is a row vector
denoting the location of the ith sensor, i.e., γi j = 1 if and only if the ith sensor resides



7 Target Counting in Wireless Sensor Networks 259

Fig. 8 Bayesian compressive
sensing for target counting

at the jth grid (Fig. 8). By assuming A follows the RIP property, the authors claim that
it can reconstruct λ from Y = σψ λ according to the CS theory. Rather than using
the conventional CS recovery algorithms, this work proposes a Bayesian recovery
algorithm to recover λ by taking advantage of the binary property of the sparse
vector λ . In the proposed algorithm, the conditional density function of Y over A
and η, and λ over λ are respectively expressed as:

P(Y |A,η2) = (2δη2)−M/2exp(
−1

2η2 ||Y − Aλ||2) (38)

P(λ|λ) = (2δ)−N/2
N∏

n=1

λ
1/2
n exp(

−λnλ2
n

2
) (39)

where λ is a vector of independent hyper-parameters that would be estimated later.
The posterior distribution over the signal λ can be obtained using the Bayes rule:

P(λ|Y,λ,η2) = P(Y |λ,η2)P(λ|λ)

P(Y |λ,η2)
(40)

which is actually a Gaussian distribution N (μ, θ)withθ = (D +η−2ψ T ψ )−1 and
μ = η−2θψ x, where D = diag(λ1,λ2, . . . ,λN ). The unknown parameters λ and
η2 can be estimated using the type-II maximum likelihood procedure [40]. Finally,
this method recovers λ by the posterior distribution over the signal conditioned on

λ̂ and η̂2.
Simulation results indicate that compared with the conventional ρ1-minimization

algorithm, the proposed Bayesian signal recovery algorithm achieves a comparable
performance with an even smaller M . However, it still leaves many problems to be
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discussed. First, the authors assume that its matrix A obeys the RIPwithout providing
a rigorous proof. Second, due to the binary assumption ofλ , the proposed algorithm
can only tell which grids contain targets but is not able to give an accurate count,
especially when each grid may contain multiple targets. Moreover, the target decay
model adopted by this approach assumes the availability of the base target energy,
which may not be always available, rending the approach inapplicable if target base
energies vary. In addition, the performance of the proposed method degrades quickly
when the environment noise increases because the noise may disturb the assumed
probabilistic distribution of the proposed model.

6.4 Target Counting via Orthogonal Matrix

Different from [38], where A is assumed to follow the RIP property, the authors in
[37] introduce a preprocessing step to enforce A to obey the RIP. They define a sparse
N × K matrix λ = [λ1,λ2, . . . , λK ] to represent K targets’ locations. Here λk

is a N × 1 location vector with all elements equal to zero except λk(n) = 1, where
n is the index of the grid point at which the kth target is located. This work adopts
a target energy model slightly different from (36) without considering the Raleigh
fading effect on signal propagation:

fi j = Et

dλ
i j

(41)

A N × N matrix ψ is then defined based on the above target decay model:

ψ =

⎧
⎪⎪⎪⎨

f11 f21 . . . fN1
f12 f22 . . . fN2
...

...
...

...

f1N f2N . . . fN N

⎩
 (42)

where fi j denotes the signal energy at grid j for the targets at grid i . The same
measurement matrix σ proposed in [38] is adopted. Rather than simply assuming
that A = σψ follows the RIP, the authors introduce a preprocessing step in order to
obtain an RIP-compliant matrix:

Y ∞ = Q A†Y (43)

where Q = orth(AT )T , and orth(AT ) is an orthogonal basis for the range of AT that
obeys the RIP. The new CS measurement Y ∞ can be further written as Y ∞ = Qλ +
Q A†τ. Since Q obeys the RIP,λ can be recovered from Y ∞ via ρ1-minimization. This
method also introduces a post-processing procedure in order to compensate for the
errors induced by the grid assumption. The proposed approach picks the dominant
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coefficients inλi whose values are above a certain thresholdξ, and takes the centroid
of these grid points as the location indicator of the targets.

Evaluations demonstrate that the proposed preprocessing step is able to generate
RIP-compliant matrices. Moreover, the signal recovery results verify the reliabil-
ity and robustness of the proposed approach. However, the required pre-processing
step is computationally intensive and it does not always lead to convergence in ρ1-
minimization [41].

6.5 Target Counting via Greedy Matching Pursuit (GMP)

The work by [39] for the first time rigorously justifies the validity of the applicability
of CS on target counting by proving that the matrix A obeys the RIP property. It
also proposes a compressive sensing theory-based problem formulation to count the
targets from multiple different categories. In other words, the targets with different
energy decay models and/or different base energy can be counted based on the new
problem formulation.

The approach proposed in [39] considers a N -grid monitored area and defines a
sparse vector λ = [λ1,λ2, . . . , λN ], where λi ∈ {0, 1, 2, ..., m} represents the
number of targets in grid i and m is an integer indicating the largest possible number
of targets a grid can hold. The target energy decay model is defined as follows:

fi j = Et

dλ
i j

Gij (44)

where Gij is a complex random variable capturing the features of Raleigh fading
with both its real and imaginary components following an independent and identical
Gaussian distribution with a zero mean and a variance of η2. The matrices ψ and
σ are defined similarly as those in Bayesian targeting counting [38]. In order to
justify the applicability of CS to the target counting problem, the authors prove that
A = σψ holds the RIP property with an overwhelming probability. It rewrites the
CS measurement Y = Aλ as:

Y = Arλ + Aiλ, (45)

where Ar and Ai are the corresponding real components and imaginary components
of the elements in A. Notice that if both Ar and Ai obey RIP, A must obey RIP. Since
the real component and the imaginary component of Ai j are both independently and
identically distributed Gaussian variables, it is sufficient to prove that A holds RIP
when Ar holds. Based on probability theory, a rigorous proof is made in [39] to show
that when M → Klog(N/K ), the probability for Ar to satisfy RIP tends to be 1.

Since λi is drawn from a finite set {0, 1, . . . , m}, instead of using conventional
CS recovery algorithms, the authors propose a greedy matching pursuit algorithm
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whose idea is to enumerate all possible values of λi for all grids and find the one
that contributes the most to the observation vector Y . This iterative algorithm can
be sketched as follows. Let Y ∞ be the residual target energy vector. Initially Y ∞ is set
to Y . At each step, the algorithm identifies the grid (i) and the number of targets
at the grid that can maximize Az, where z is a N × 1 vector containing 0 at zj for
all j �= i . Then Az is subtracted from Y ∞, indicating that Y ∞ captures the remaining
observed target energy when the grids withmore number of targets are removed from
the previous steps. The algorithm terminates when no grid that contains at least one
target is found.

The authors further extend the proposed algorithm to multi-categorical target
scenarios, which has never been addressed. Since the matrix ψ is determined by
the target energy decay model and each target category has its own energy decay
property, for different targets, ψ may be different. Assume that there are t categories
of targets, with each having its own matrix ψ characterizing the category-specific
target energy dissipation features. Denote these matrices by ψi for i = 1, 2, . . . , t .
Then the matrix ψmulti for the targets from multiple categories can be defined as
follows:

ψmulti =

⎧
⎪⎪⎨

ψ1 0 · · · 0
0 ψ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · ψt

⎩
 (46)

Similarly, σmulti can be defined as:

σmulti = {σ1, σ2, . . . , σt }, σi = σ for i ∈ 1, 2, . . . , t (47)

where σi is the measurement matrix for category i . For the case when the sensors
have the capability to measure the superposition of the target signals from different
categories. The unknown vector containing the count and positioning information is
denoted byλc

t = {λc
t 1,λ

c
t 2, . . . , λc

t t }T , where λc
t 1 is a N ×1 vector that denotes

the location and number of targets of category i in the N grids. Let A = σmultiψmulti .
Then we have Y = Aλc

t , where λc
t can also be recovered by the proposed GMP

algorithm described above.
Compared with other works, the proposed method has the following advantages.

First, it provides a rigorous proof for the applicability of CS theory to target counting,
which guarantees that the signal can be recovered with a high probability. Second,
besides target locations, the proposed algorithm can precisely count the targets in
each grid while other works are only able to count roughly by telling the number of
grids that contain targets. Third, the proposed method is able to differentiate targets
from multiple categories, which has never been addressed before. In addition, the
proposed algorithm shows a more stable performance while other CS algorithms fail
to converge at a higher probability.
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7 Discussion

In this section, we provide a discussion on the applicable environments of the dif-
ferent methods introduced in this book chapter. We consider different settings of
the wireless sensor network and infer the influence of these settings on the perfor-
mance of different counting methods. The settings under our consideration include:
target characteristics, target deployment, sensor deployment, and the communication
overhead. We summarize the different signal attenuation models utilized in existing
works and their influences on the counting accuracy at the end of this section.

7.1 Target Characteristics

Generally speaking, there are two kinds of targets: the visually distinguishable targets
and the visually indistinguishable targets. A photo-electric sensor can detect the
presence of visually distinguishable targets by the visual contours, and also count
the number of targets within the sensing region with high precision. In general cases,
the external factors have little influence on the reading of a numeric sensor. As a
result, the sensors’ measurements tend to be stable when the number of target within
the sensing region remains stable. The numeric counting model such as [14, 24] can
provide a precise target count estimation based on the local observations in most
cases. However, the working mechanism of numeric sensors is much more complex
than that of energy sensors or energy-based binary sensors. For example, to extract the
target count from local observations, pattern recognition process is executed in each
numeric sensor. As a result, the manufacturing and maintenance costs of numeric
sensors are higher than those of the energy sensors.

Note that energy counting and compressive counting models rely on the energy
sensors. Compared with the numeric sensors, an energy sensor’s reading is less
stable due to the fact that the reading is related to not only the number of targets
within its sensing region but also the relative position of the targets to the sensors.
Due to the rapid attenuation effect of the target signal, the reading of an energy
sensor may vary significantly even when the target position actually slightly changes.
This will lead to unstable target count estimation for most methods. Although the
energy counting model has these shortcomings, it is still the most powerful model
in wireless sensor networks. First, no matter whether a target has a distinguishable
contour or not, it always emits certain kinds of energy, i.e., heat, acoustic, or light,
which can be measured by energy sensors. Second, the measurement of an energy
sensor can not only reflect the presence of targets and the count of targets, but also
the relative position of the targets. Combined with certain localization algorithms,
position information can be inferred from the sensors’ readings.

For the binary counting model, the sensor measurement may be obtained from
both target contour information and energy information.Although thismodel is stable
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and noise-resistant, its counting accuracy is the worst among all models. Actually, it
only provides the lower bound of the target count in most cases.

7.2 Sensor Deployment

It has been pointed out that the counting accuracy is related to the sensor density
and deployment patterns. There are a few works that focus on how to distribute the
sensors appropriately to monitor the targets more effectively [42–46]. However, it is
widely accepted that a uniform pattern can achieve the best counting performance in
general cases.

Considering the sensor density, no conclusive work has been proposed. We sum-
marize the influence of the sensor density by studying the reported simulation results,
then we draw reasonable conclusions as follows.

For numeric counting and binary counting models, the optimal sensor density is
achieved when themonitored area is fully covered withminimal overlapping. In such
a case, the overlapping influence of the targets on different sensors is minimal. Oppo-
sitely, when sensors are densely deployed, the overlapping area becomes larger, and
the estimation process becomesmore complex. Consequently, the counting precision
may not be improved.

For the energy counting model, the influence of the sensor deployment may vary.
The DAM protocol counts targets by enumerating the sensors that have the local
maximumenergy readings. In this case,more sensorsmayhelp to differentiate signals
from different targets. For other methods, the target count is estimated based on
statistical modeling and approximation; thus the counting accuracy does not increase
significantly after the sensor density reaches a certain level.

For compressive counting, the required number of sensors is limited by the min-
imum required signal sampling rate. More sensors may not help to improve the
counting precision significantly, but may result in information redundancy.

7.3 Target Deployment

Both the target density and target distribution may influence the counting precision.
There are five different target distributions that have been studied in the literature:
uniform, hot-spot, multi hot-spot, piecewise uniform, and mixed.

Most algorithms are based on the assumption that targets are uniformly distrib-
uted in the monitored area. If this assumption does not hold, the counting accuracy
decreases. There are a few works that consider the target counting problem in more
general target distribution scenarios. In [14, 28], the authors model the distribution
of the non-uniform targets with a piecewise uniform distribution. In [24], the authors
take a regression model to recover the original target distribution. These algorithms
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should be firstly considered in the casewhen the targets show apparently non-uniform
patterns.

With regard to the target density, binary counting model can only be used for
sparse targets. When the number of targets reaches a certain value, all sensors may
simply output a value “1”, which indicates that there is noway for the binary counting
model to tell whether there are more targets added to the monitored area after the
count of the targets reaches a certain number. For compressive counting model, the
signal recovery algorithms are based on the assumption that the signals are sparse.
As a result, compressive counting model is also mainly used for sparse targets. For
energy counting model, the performance of algorithms based on signal separation
may decrease after the count of targets reaches a certain level, since the signals from
different targetsmay not be separated clearly in this case. However, for the algorithms
based on signal landscape recovery and energy volume estimation, the density of the
targets does not have significant influence on the counting accuracy. For the numeric
counting model, the target density has little influence on the counting accuracy.
Because the algorithms for this model are based on local observations, as long as
the local measurements are precise, the final results generated by aggregating those
local measurements should be precise. However, the computation cost may become
unacceptable for [14] when the target count becomes large.

7.4 Communication Cost

The communication cost of target counting in a wireless sensor network is mainly
related to the following two factors:

1. the amount of information transmitted;
2. the distance of information transmitted.

The binary counting model is the most economic in terms of the amount of infor-
mation per communication since it only transmits 1 bit for each communication. For
other models, the sensor measurement contains more bits.

Considering the second factor, DAM and the algorithms based on DAM can be
considered as completely distributed, since they only involve local data communi-
cations. All other methods require sensors to transmit their states to a centralized
server to make the final global decision.

Compressive counting can also be considered as a communication economic
model. Although it is not distributed, and the information transmitted may be com-
plex, it saves communication overhead by deploying a smaller number of sensors.

A brief summary in the applicability of the four models is listed in Table1:
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Table 1 Applicability of different counting model

Counting model Measurement Sensor deployment Target deployment Communication cost

Binary Presence of targets Depends Sparse Small
Numeric Count of targets Minimal overlap General Large
Energy Energy Depends Depends Depends
CS Energy Sparse Sparse Small

7.5 Energy Attenuation Model

For energy counting and compressive counting models, target signals are assumed
to follow a specific attenuation model. In literature, there are mainly two models that
are widely used, which are listed as follows:

1. fE (d) = Et
(1 + d)λ

2. fE (d) = Et
(d)λ

where d represents the Euclidean distance from the signal source to a location, Et

denotes the base energy level of a target, andλ is the attenuation factor. The difference
of the two models lies in the denominator of the two equations. In the first model,
an “1” is added to make the signal amplitude meaningful at the targets’ location.
For the second model, people usually takes the target’s base energy level as the
signal amplitude at the target’s location. This is the only difference between the two
attenuation models. Since there is no solid result from physics that can assert the
validity of the two models, they need to co-exist. Even though the methods based on
energy sensors may only consider one model, the counting accuracy should not be
significantly different when the other model is considered.

8 Conclusion

In this book chapter, we provide a comprehensive survey over most target counting
algorithms inwireless sensor networks.We categorize the state-of-art target counting
algorithms into four categories, namely binary counting, numerical counting, energy
counting, and compressive counting, based on the sensor’s sensing capabilities and
the underlying theoretical foundation. Technical details, pros and cons of these algo-
rithms are reviewed. Comparisons and analysis are presented and the factors that
may influence the counting precision are also discussed.

Future work in target counting may address the following problems.

1. In wireless sensor networks, sensor failures may be common. Therefore, fault
tolerant target counting algorithms should be designed to overcome the problems
caused by malfunctioning sensors.
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2. Most target counting methods are centralized, which may involve intensive com-
munication cost. However, distributed algorithms are preferred considering that
the power supply of a sensor is very limited. Therefore algorithms with compa-
rable counting precision and a less communication overhead are preferred.

3. It is possible to extend CS-based counting method to other sensing models such
as numeric sensingmodels. In this case, the signal prototype can be different from
those in energy sensing models. New assumptions should be made and proof of
RIP under the new model is needed.

4. Adaptive nestedmodel is another possible direction that deserves some attentions.
A lot of works have been explored in target counting and the pros and cons of
theseworks are basically clear. In this case, it is possible to employ a nested sensor
network with different types of sensors. Multiple algorithms can be embedded in
the network. The network detects the pattern of the targets and chooses the most
appropriate method to estimate the count of targets adaptively.

5. The application of the target counting algorithms should be tested on real-world
sensor network settings or in sensor network testbeds, while major existing works
verify their design mainly based on simulation study.
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Chapter 8
Coverage and Connectivity in 3D Wireless
Sensor Networks

Usman Mansoor and Habib M. Ammari

Abstract A wireless sensor network (WSN) is categorized as three-dimensional
(3D) when variation in the height of deployed sensor nodes is not negligible as com-
pared to length and breadth of deployment field. The fundamental problem in such
3D networks is to find an optimal way to deploy sensor nodes needed to maintain full
(or targeted degree of) coverage of monitored volume and reliable connectivity as
desired by network designers. The solution should yield lower bound on number of
nodes needed to achieve full coverage and connectivity. However, optimizing cover-
age and connectivity in 3DWSNs comes with its inherent complexities and intrinsic
design challenges. 3D WSNs are not only difficult to visualize but their analysis is
also computationally intensive. This literature summarizes major work conducted in
the domain of coverage and connectivity in 3DWSNs. It studies different placement
strategies, fundamental characteristics, modeling schemes, analytical methods, lim-
iting factors, and practical constraints dealing with coverage and connectivity in 3D
WSNs.

1 Introduction

Three-dimensional (3D) wireless sensor networks (WSNs) lie in the forefront of
many advanced industrial applications. For example, airborne WSNs for supporting
intelligent computer vision [18], helping overcome human paropsia [65], air borne
defense systems [1], underwater monitoring including acoustic networks [46, 61],
climate monitoring and weather forecasting, and many more. However, the com-
plexity of 3D WSNs in terms of coverage and connectivity is prohibitively higher
as opposed to two-dimensional (2D) networks. The 2D network model works fine
with terrestrial networks where variation in height of network is small compared to
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length and width of WSN Coverage Field. However, most airborne and underwater
applications necessitate comprehensive understanding of 3D network design. The
fundamental problem in such 3D networks is to find an optimal way to deploy sensor
nodes needed to maintain full coverage of monitored volume and reliable connectiv-
ity as desired by network designers. The solution should yield low bound on number
of nodes needed to achieve full coverage and connectivity.

1.1 Curse of Dimensionality

3DWSNmodel comeswith its inherent complexities and intrinsic design challenges.
3D WSNs are not only difficult to visualize but their analysis is also computation-
ally intensive. This makes self-organization and optimization schemes difficult to
implement since most sensor nodes have limited computational capacity and life
span. Generally speaking, 3D WSNs require higher node densities to achieve same
degree of coverage as 2DWSNs. Furthermore, optimal 3D node deployment usually
requires complex mathematical modeling and simulation. Poduri et al. [47] aptly
names these design challenges as "Curse of Dimensionality," and is a good refer-
ence for introduction to intricacies of 3D WSNs. In this section we highlight these
fundamental challenges (presented in [47]) while designing a 3D WSN network.

Poduri et al. [47] explains that for randomly deployed networks, the critical node
density that results in almost surely connected giant component is greater in 3D than
in 2D with. Therefore almost surely connected randomly deployed components will
have highly dense topology compared to 2D environments [31, 47]. Similarly for
coverage, to avoid coverage-less patches, the sensing spheres of the nodes have to
maintain separation of less than Rs (sensing radius) since spheres do not tile in space.
This results in considerably higher critical nodal density for 3D environments and
requires careful planning and considerations for node placement strategies.

Apart from distance measurements, angular information between nodes or ref-
erence points can also be usefully employed for many algorithms (e.g., localiza-
tion, directional beacons) and protocols. For example, in several power control tech-
niques [17, 66], the angle between adjacent nodes is used to control transmission
power thresholds. The computational complexity to handle angular information-
based schemes and algorithms increases markedly for 3D compared to 2D environ-
ments.

3DWSNsalso require considerably complex andcomputationally intensive analy-
sis to insect degree of coverage of deployed sensing nodes in 3D field. Intersection of
sensing regions is used to determine the degree of network coverage and detect any
coverage-less patches. For 2D WSNs, sensing regions are modeled as circular discs
and their intersection analysis takes computational order of degree O(d2), where d is
the number of node neighborhood sensing region intersections. However, for 3D
WSNs, the analysis becomes considerably more complicated O(d3). Furthermore,
d for 3DWSNs is also higher compared to 2DWSNs [47]. Thismakes coverage plan-
ning amathematically complicated and computationally intensive task. Furthermore,
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for optimum regular deployment of nodes in 3D space, nodes are placed according to
space filling regular polyhedron patterns such as octahedrons, cube etc. The analysis
of space filling polyhedral for optimum packing based on desired degree of cover-
age and connectivity can be a complicated undertaking [47]. The scenario is further
complicated due to tendency of most 3D environments (submerged, terrestrial 3D)
being heavily affected by obstacles. The analysis of obstacles in terms of signal prop-
agation, graph connectivity, coverage effect can be considerably more challenging
for 3D environments compared to 2D WSNs, and might require dedicated software
and analytical techniques to yield reliable and quick solutions.

1.2 Relevance of 3D Design

3DWSNs have found applications inmany emerging applications including defense,
environmental research, weather monitoring, surveillance, space research, commu-
nication, and exploration [3, 18, 29, 43, 46, 48, 57, 61, 65]. A WSN is categorized
as 3D when the variation in height of the deployed sensors is not negligible as com-
pared to length and width of the deployment field. Conventionally, sensor networks
are usually visualized as 2D networks. This assumption is valid for most terres-
trial scenarios since nodes are deployed in same planes and there is usually little
or no across planes nodal communication. However, this 2D model loses its rel-
evance for most submerged and airborne deployments. In fact it is shown in [40,
43, 75] that even terrestrial networks deployed on complex 3D surfaces need to be
analyzed as 3DWSNs as opposed to 2DWSNs since the 3Dmodel-based node place-
ment strategies yield better coverage and reduced number of sensor nodes. Although
as important and crucial as it may sound, 3D WSNs is still relatively unexplored
niche in the WSN domain, and it has only been since recently that concentrated
research efforts have been undertaken in this domain. Especially, Submerged WSNs
commonly referred to as Under Water-Acoustic Sensor Networks (UW-ASNs) have
received serious attention due to defense and economic potential of its prospective
applications. For example, Ocean Sampling Networks consist of network of sensors
andOdysseyClassAUVs (AutonomousUnderwaterVehicles)which collectively can
perform synoptic, cooperative adaptive sampling of 3D costal environments [13, 45].
UW-ASNs can be used in environmental monitoring (chemical, biological, nuclear)
in rivers, lakes, oceans etc. [72]. UW-ASNs can also be used to explore underwater
oilfields and other natural resources. Disaster prevention and early warning systems
to warn against tsunami threats and seismic activities including seaquakes have huge
applications for WSNs in general and 3D WSNs in particular [48, 49]. Assisted
navigation can help improve safety and efficiency in navigation systems. Distributed
tactical surveillance based on 3DWSNs detects and classifies submarines and small
delivery vehicles (SDVs). Such systems are increasingly becoming indispensable
part of any maritime defense systems. Airborne applications include but not limited
to: airborne radars, scanners, climate monitoring, surveillance, drone technology,
communication systems, and surface mapping [1, 20, 59].
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Among many design challenges in 3D WSNs which include routing, energy effi-
ciency, latency, remote configuration, practicality; coverage and connectivity lies at
the forefront. It dealswith optimal placement of nodes in 3D space to achieve targeted
degree of coverage and connectivity with minimum number of sensor nodes.

This survey work summarizes the major work done in the field of coverage and
connectivity in 3D Wireless Sensor Networks. Section2 enlists basic taxonomy.
Section3 entails 3D cell partitioning based on space filling polyhedrons. Section4
studies the transmission and sensing radii constraints for 3D WSNs. These funda-
mentals are essential to model and analyze any 3D WSN. Section5 briefly touches
the domain of Conditional Connectivity. Section6 analyzes the lattice patterns for
full coverage and k-connectivity. Section7 shows use of Continuum Percolation to
find critical node density to achieve specified degree of coverage and connectiv-
ity. Section8 is dedicated to UW-ASNs and different deployment methods for sub-
merged networks. Section9 shows the relevance of 3DWSNs for complex terrestrial
surfaces. Section10 studies the Mobility in 3D WSNs using Virtual Forces Model.
Section11 summarizes some of the relevant works, and finally in Sect. 12 we address
the research challenges and open problems in this domain.

2 Basic Taxonomy

This section enumerates essential terminologies for 3D WSNs.

Preliminaries:
coverage and
connectivity

Spherical
sensing
and
communi-
cation
ranges

In 3D environments, the sensor node coverage and
communication zone are usually modeled as spheres with
radii Rs and Rc centered at the node’s location. Any point
within the coverage sphere (<Rs) is assumed to be seen
(monitored) by the node. Similarly the radius of
communication sphere dictates the transmission range of
the sensor node (<Rc). Typically the communication range
of sensor node is greater than its sensing range (Rc > Rs)

Coverage A point in the 3D Field of Interest (FoI) is said to be 1-covered
if it belongs to at least sensing sphere (lies within the
sensing sphere) of one sensor, and k-covered if it belongs to
at least sensing spheres of k sensors. Depending on the
application an area may require that multiple sensors
monitor each point in the field of interest

Connectivity Connectivity in WSN is often represented by a graph, with
nodes making the vertices. Propagation conditions are
usually modeled by transmission radius which specifies the
communication range of each node. A graph is connected if
there exists a path between any pair of its vertices. For the
network to be declared connected, then any pair of nodes
should be able to communicate with each other, possibly
taking multi-hops through relay nodes

(continued)
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k-connectivity A network is k-connected if there exists at least k
disjoint paths between any two nodes. Higher the
degree of connectivity, greater the network has
resilience to node failure

k-coverage A 3D region is said to be k-covered if each point in 3D
region is covered by at least k sensors. This
constraint is known as k-coverage in which the k
represents the number of nodes that watch each
point. Requiring a k value of more than one will add
complexity to the coverage algorithm

Hop diameter The hop diameter between two nodes u and v is the
shortest path needed to traverse (in terms of hops) to
reach v from u or vice versa

Full coverage When every point in 3D space is at least covered by the
sensing sphere of one sensor

Reduced
coverage

Strict planning for k-coverage of 3D space, where k = 1.
Maximum effort to avoid k>1 patches in the
coverage region

Maximum
coverage

Planning for node placement for Rc/Rs resulting in
maximum coverage of 3D space with minimum
number of sensor nodes

Mathematical
tools

Space filling
polyhedron

Three-dimensional shape consisting of finite number of
polygonal faces and surrounds a bounded volume in
3D space

Voronoi
tessellation

Decomposition of a metric space, determined by
distances to a specified family of objects (subsets) in
the space

Kepler
conjecture

Mathematical conjecture about sphere packing in 3D
space: no arrangement of equally sized spheres
filling space has a greater average density than that
of the cubic close packing (face-centered cubic) and
hexagonal close packing arrangements. Density is
slightly greater than 74%

Kelvin
conjecture

What space-filling arrangement of similar cells of equal
volume has minimal surface area? Proposed solution
was a 14-sided truncated octahedron (TO) having a
very slight curvature of the hexagonal faces. In 1994,
space-filling unit cell consisting of six 14-sided
polyhedra and two 12-sided polyhedra with irregular
faces and only hexagonal faces remaining planar was
discovered. This structure has an isoperimetric
quotient of 0.765, or approximately 1.0% more than
curved TO’s cell

Continuum
percolation

Percolation occurs with positive probability if any given
random shape is part of infinite clump of random
shapes. There exists a node density for which
network detectability reaches almost i.e. an event is
detected with probability of almost 1

(continued)
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Volumetric quotient The ratio between volumes of polyhedron
unit cell and the corresponding
circum-sphere, the sensing range of
the node

Spherical models Ball centered Space inside the sphere. Open Ball does
not include boundaries of sphere

Sphere centered Spherical sensing range with radius r
centered at node location. When used
along Ball centered, sphere usually
only refers to boundaries of sphere
will ball refers to space inside the
boundaries of sphere

Conditional Forbidden faulty set A set of faulty sensors that includes the
entire neighbor set of a given sensor

Conditional connectivity The minimum size of forbidden faulty set
for which graph becomes
disconnected.

k-connectivity and full
coverage

Low connectivity and Full
coverage

Planning for full coverage while
maintaining k connectivity k ≤ 4

High connectivity and full
coverage

Planning for full coverage while
maintaining k connectivity k = 6, 14

Continuum percolation Covered component A covered component (or covered region)
is a maximal set of sensing spheres
(i.e., not included in any other subset
except when it is equal to the original
entire set of sensing spheres) whose
corresponding sensors are
collaborating directly or indirectly

Connected component A connected component is a maximal set
of communication spheres whose
corresponding sensors are
communicating directly or indirectly

Coordinated component A coordinated component is a maximal
set of concentric sensing and
communication spheres whose
corresponding sensors are
coordinating directly or indirectly

Network Homogeneous Consists of sensor nodes with same
abilities, such as computing power and
sensing range, transmission range,
node lifetime

Heterogeneous Consists of sensor nodes with different
abilities, such as different computing
power and sensing range, transmission
range, node lifetime

Hierarchical Some nodes in the network may have
different types, abilities or assigned
roles e.g., Backbone nodes

Non-hierarchical All nodes in the network have same types,
abilities and assigned roles

(continued)
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UW-ASN 2D Sensors at bottom of the Ocean
3D Sensors f loat at different depths

Deployment strategies 3D Random Simplest Strategy, No coordination from surface
station. Sensors are randomly deployed,
sensors choose their depth randomly. Each
sensor informs its position

Bottom-random Sensors are randomly deployed at the bottom.
Each sensor informs its location. Surface
station then calculates the optimal depth for
each sensor. Sensors then take that depth

Bottom-grid Assisted by AUVs. Sensors deployed to
pre-defined target locations to obtain grid
deployment at the bottom of ocean. Each
sensor then accordingly floats to its
designated depth

(continued)

3 Dimensional Cell Partitioning

3DCell partitioning lies at the core of different placement strategies. Cell partitioning
scheme is usually dictated by the ratio of communication to sensing radius.Anetwork
designer wants to optimally divide the 3D space into 3D cells to achieve desired
degree of connectivity and coverage while minimizing the number of required nodes.
3D Cell partitioning can be broadly classified into two categories.

1. Maximal Coverage (1-Coverage)
2. k-coverage (k > 1)

In 1-coverage, it is aimed to minimize the overlap between sensing spheres without
having any coverage-less patches. This is usually achieved by dividing the 3D space
into cell patterns based on space filling polyhedrons. The choice of space filling
polyhedron is dependent on the communication to sensing radius of theWSN nodes.

k-coverage is the logical extension of 1-coverage. In k-coverage, by decreasing the
distance between sensing nodes, desired sensing sphere overlap is achieved. Usually
careful and computationally intensive analysis is required to optimally solve for
k-coverage.

3.1 Volumetric Quotient-Based Approach

3.1.1 Preliminaries: Space Filling Polyhedron

A polyhedron is a three-dimensional shape consisting of finite number of polygonal
faces and surrounds a bounded volume in 3D space. The straight lines where faces
meet are edges, and edges meet at points called vertices. There are five regular
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polyhedrons or Platonic Solids (polyhedrons having convex congruent faces): cube,
dodecahedron, icosahedron, octahedron, and tetrahedron.

A space-filling polyhedron also known as plesiohedron can be used to generate
tessellation of space. There are five space-filling convex polyhedral having regular
faces: the triangular prism, hexagonal prism (HP), cube (CB), truncated octahedron
(TO) [55, 70], and gyrobifastigium [41], with cube being the only Platonic Solid
possessing this property [28, 32, 69]. Of all the 13 Archimedean solids (highly sym-
metric, semi regular convex polyhedron composed of two or more types of regular
polygons meeting in identical vertices), only truncated octahedron tiles space [58].
The determination of maximal density arrangements for non-tiling polyhedrons is a
highly computationally intensive and brutally difficult problem. The rhombic dodec-
ahedron (RD), elongated dodecahedron, and squashed dodecahedron are also space-
fillers. Combination of tetrahedrons and octahedrons also fills space. In addition
octahedrons truncated octahedrons, and cubes, combined in the ratio 1:1:3 can also
fill space [4, 69].

3.1.2 The Big Four (CB, HP, RD, TO)

The number of nodes required for 3D coverage is inversely proportional to volumetric
quotient V/(4πR3/3) of space filling polyhedron. The problem simplifies to finding a
space filling polyhedron with highest volumetric quotient. To fully cover a 3D space,
each Voronoi cell must have maximal volume for given sensing range R. Neglecting
boundary effect, total number of nodes required would be ratio of volume of 3D
space to be covered to volume of one Voronoi cell. To achieve highest Voronoi cell
volume, the radius of circumsphere must be equal to sensing range R.

Alam et al. [4, 6–8] makes use of Voronoi Tessellation of 3D space for creation
of truncated octahedral cells for optimal coverage and connectivity. It uses Kelvin
Conjecture for placement of nodes in the middle of truncated octahedrons. Alam et
al. [4] proves that octahedron placement strategy is valid if the ratio of transmission
to sensing range of nodes is at least 1.7889. Hexagonal Prism or Rhombic dodeca-
hedron (Refer to Fig. 1 for illustrations) placement strategy needs to be adopted for
transmission to sensing range ratio of 1.4142–1.7889. The use of truncated octa-
hedron (TO) is justified by emphasizing the similarity of the problem to Kelvin’s
Conjecture.

Table1 enlists the volumetric quotients of TO, CB, HP, RD. Since Kelvin Prob-
lem is essentially finding a space-filling polyhedron with minimal surface area to
volume ratio, and sphere has the volumetric quotient of 1, such a polyhedron would
ideally approximate sphere. The solution to such single cell shape Kelvin problem is
truncated octahedron. The work in [4] also compares the truncated octahedron with
rhombic dodecahedron, the hexagonal prism, and the cube alongwith their placement
strategies to deploy nodes such that resultant Voronoi cells are chosen space filling
polyhedrons. Jawahar et al. [38] present a similar work which proves the choice of
truncated octahedron on basis of its highest Volumetric Quotient.
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Fig. 1 Rhombic dodecahedron (A2), Cube (B2), Truncated octahedron (C2), Hexagonal prism
(D2). A1,B1,C1,D1 are corresponding Net Images. (The illustrations are taken from http://
mathworld.wolfram.com)

The required minimal transmission range to maintain connectivity among nodes
depends on the choice of polyhedron.When cube is chosen the distance between two
neighboring nodes is 2rs/

√
3. Therefore rc/rs should be∞ 2/

√
3. In HP rc/rs ∞ √

2
to maintain connectivity along x, y planes, and rc/rs ∞ 2/

√
3 along z plane. The

minimum of maximum ratio is selected to maintain connectivity in all the three
planes [4, 8].

3.1.3 TO versus CB, HP, and RD

Interestingly, TO-based deployment strategy is not necessarily the best solution in
every scenario. Although Alam et al. [6] proposes the use of truncated octahedron
shaped cells for in 3D for deployment of sensor nodes, the ratio, minimum sensing
radius to communication radius for TO, is also the greatest of all four. Simula-
tion results in [6] show that truncated octahedron (TO)-based cell division strategy
outperforms cube (CB), hexagonal prism (HP), and rhombic dodecahedron (RD)
respectively but at the expense of larger sensing radius (considering communication
radius to be constant). However, TO-based space division model proves its worth
when the number of active nodes needed to achieve full coverage is observed. Usu-
ally a tradeoff needs to be achieved when considering sensing radius of each node
and number of total nodes required. Table2 compares the sensing to transmission
radii required for all deployment schemes.

Jawahar et al. [38], Wang et al. [62], and Jiang et al. [39] also justify the use of
truncated octahedron model on the basis of better energy dissipation characteristics
of the network and prolonged network lifetime. Jawahar et al. [38] claims increased
network lifetime by a factor of 19 for 3D WSNs. By dividing the densely deployed

http://mathworld.wolfram.com
http://mathworld.wolfram.com
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Table 2 Comparison of different cell partitioning schemes

Polyhedron Sensing Number of active nodes
radius required to achieve full coverage

Truncated octahedron (TO) 0.542326 × transmission radius 1×TO
Cube (CB) 0.5 × transmission radius 2.372239×TO
Hexagonal prism (HP) 0.53452 × transmission radius 1.82615×TO
Rhombic dodecahedron (RD) 0.5 × transmission radius 1.49468×TO

3D sensor field into a number of truncated octahedron cells, only one node in each
cell is in active mode while rest is put in idle mode. In this manner connectivity
and coverage is maintained by using minimal number of active cells. Refer to Fig. 2.
Nodes in a cell keep swapping active-idle roles, resultantly increasing the overall
network lifetime.

However, it has to be said there are some fundamental assumptions in this sim-
ulation work which might make this approach impractical in real-world scenarios.
To state a few: the use of swapping active-idle roles and truncated octahedrons may
result in reduced k-connectivity, increased number of nodes would be required for
deployment, strict node deployment policies will need to be implemented along with
very efficient network wide synchronization scheme will be required to achieve such
a high factor in network lifetime increase.

Xiao et al. [71] gives simulation results of a design experiment. Though the exper-
iment does not specifically follow any polyhedron-based node deployment strategy,
the experiment is considerable similar in nature to [38]. In short, the experiment
tends to show that degree of network connectivity and coverage increases as node
spatial density increases.

Watfa et al. [63] uses body centered cubic (bcc) lattice (shown in Fig. 3) for
3D node placement strategy. It is explained in [63] that the thinnest cover of a
region by spheres is obtained when the centers of the spheres are at the vertices
of the bcc lattice. If the distance between adjacent vertices is one unit, then the
entire region can be covered by the copies of a sphere whose covering radius is
Rcover = √

5/2 = 1.1180. Such a lattice is periodic and is completely reduced.
Thus the deployment will be optimal if the spacing between the centers of adjacent
sensor nodes equals Rs/1.1180. Table3 shows the simulation results for covering a
3D field of dimensions 10×10×10 units3 and sensing radius of x units.

Commuri et al. [22] gives details of series of simulated design experiments which
demonstrate the energy efficiency of bcc lattice-based deployment strategy compared
to random deployment of sensor networks. The work entails different simulated
scenarios. In each scenario it is shown that energy dissipated for a reduced coverage
network—as referred in text—is less than a randomly deployed sensor network.
A reduced coverage network is basically 1-coverage 3D WSN. Failure of a single
node in reduced coverage network will result in loss of coverage in 3D WSN field.
Since reduced coverage deployment strategy is based on bcc lattice pattern, the work
in [22] also deduces that number of nodes required to cover a 3Dfield is less using bcc
lattice-based deployment strategies as opposed to randomly deployedWSNs. Similar
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Fig. 2 a Shows the increased
number of sleeping nodes for
using truncated octahedron
cells. b Shows that 100%
connectivity is achieved for
lesser number of nodes when
using truncated octahedron
cell as opposed to cube or
hexagonal prism. The figure is
a snapshot of results achieved
in simulation in [38]

to [6, 38], Commuri et al. [22] also puts the nodes in idle mode such that minimal
number of nodes are active at given time resulting in reduced coverage (1-coverage)
of the network. A self-healing mechanism is also proposed in which a failing node
in a reduced network alerts its neighbors about the impending failure. Inactive nodes
in the neighborhood are activated and hence loss of coverage is avoided. Watfa et al.
[64] proposes a distributed algorithm for optimal coverage in 3D field. It is proposed
that if the total overlap volume of a sensing sphere Si, formed by the overlap of
sensing spheres of neighbors of Si, is less than the sensing sphere volume Si, then Si
is not completely covered by its neighbors and hence it must always remain active.
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Fig. 3 Body centered cubic lattice

Table 3 Random deployment versus bcc lattice-based deployment scheme

Sensing radius Random deployment Bcc lattice deployment

2 182 54
1.5 325 128
1 773 396

Simulation results from [63] which indicate that lesser number of nodes are required to cover a field
when using bcc lattice deployment as opposed to random deployment scheme. 10×10×10 units3

field is covered

3.2 Spherical Overlap Approach (k-Coverage)

3.2.1 Reuleaux Tetrahedron-Based Coverage Analysis

The reuleaux tetrahedron (also sometimes known as spherical tetrahedron) is three-
dimensional solid formed by intersection of four spheres of radius r centered at
the vertices of a regular tetrahedron with side length r (Refer to Fig. 6). The sphere
through each vertex passes through the other three vertices, which also form vertices
of the reuleaux tetrahedron. The reuleaux tetrahedron has the same face structure
as a regular tetrahedron, but with curved faces: four vertices, and four curved faces,
connected by six circular-arc edges [25, 68].

Ammari andDas in [9, 10] extend thework in [4] by proposing the use ofReuleaux
tetrahedron to characterize k-coverage of a 3Dfield inWSNs andfind the correspond-
ing minimal sensor spatial density.

Ammari and Das in [11] exploited the geometric properties of reuleaux triangle
to define set of conditions to fully K-cover a 2D sensing field. A reuleaux triangle of
side r is formed by the intersection of three symmetric congruent discs. It has central
regular triangle surrounded by three curved regions. Importantly, it has constant
width equal to r. Refer to Fig. 4. Constant width is achieved by a curve in which
the distance between two opposite parallel tangent lines to its boundary is the same,
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Fig. 4 A Reuleaux triangle,
formed by the intersection
of three circular discs. It
has central regular triangle
surrounded by three curved
regions

regardless of the direction of those two parallel lines. For example, a circle also has
constant width equal to its diameter.

It is shown in [11] that a reuleaux triangle field of width r is guaranteed to be
k-covered with k sensors, where r is the sensing range of the sensors (which is same
as the width r if reuleaux triangle). Intuitively, one would try to extend this result for
3D field. However, as opposed to reuleaux triangle which allows for perfect tiling in
2D space, its 3D counterpart—reuleaux tetrahedron (Refer to Fig. 6. for illustration)
neither tiles in 3D space nor has a constant breadth r. Conway and Torquato in [23]
gave two arrangements of regular tetrahedra such that five regular tetrahedral packed
around a common edge would yield a gap of 7.36∗, and twenty regular tetrahedra
packed around a common vertex yield gap of 1.54 steradians. Thus the analysis of
k-coverage in 2D space is not easily extendable to 3D space.

By dividing each of the halves of sensing spheres into six congruent 3D regions
called slices, with each slice having three flat faces and one curved face representing
an equilateral spherical triangle, Ammari et al. [10] shows that if a sensor is located
in region <A,C,D> it is able to cover the whole slice as shown in Fig. 5. Any other
location of active sensors would result in coverage-less patches. Thus to efficiently
solve k-coverage problem with minimum number of spheres, all the active spheres
have to be located in region <A,C,D>.

The basic foundation concept in [9] uses the fact that maximum overlap volume
of four sensing spheres such that every point in this overlap volume is 4-covered
requires that each sensing sphere is at distance r from the centers of all other three
sensing spheres. The intersection volume forms reuleaux tetrahedron denoted by
RT(r). Reuleaux tetrahedron does not have constant width and maximum distance
between pair of points on boundary of RT(r) is 1.066r. Refer to [68] for rigorous
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Fig. 5 a 2D projection of half
sphere and its six slices. b 2D
projection of a slice

Fig. 6 Reuleux tetrahedron
formed by intersection of four
symmetric spheres

proof. For k-coverage the maximal distance between all the pair of points should not
exceed r—the radius of sensing spheres. Therefore for k-coverage RT(r) should have
side length r0 = r/1.066. The results for minimal spatial density for k-coverage and
corresponding connectivity k(G) are listed in Table4.

Table 4 Relationships for spatial density and connectivity for k- coverage when realeaux
tetrahedron-based deployment

Minimal spatial density required to fully
k-cover 3D field

λ (r, k) = k
0.422r30

For homogeneous 3D k-covered field, the
connectivity k(G) with G being
communication graph, a = R/r

12.024a3k ≤ k(G) ≤
RV2/3k
0.422r30
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3.2.2 Spherical Cap-Based Coverage Analysis

Since sensing range of a node is visualized by sphere, it can be said that as long
as spheres of all sensors are sufficiently covered, the whole monitored 3D field is
sufficiently covered. The problem then breaks down to checking whether each sphere
is sufficiently covered. Huang et al. [21] adopts the strategy of reducing the geometric
problem from 3D to 2D space and then further to 1D space. This results in simplified
model and less computationally intensive solution. It is achieved by analyzing the
spherical caps formed by intersection of the spheres, and then projecting it in one
dimension.

Since sensing field is divided into a number of subspaces by sensing spheres,
considering the continuity nature of the 3D network, the level of coverage of a
subspace can be derived from its spherical segments [21]. If each sphere is k-covered
then the sensing field is also k-covered.

To elaborate on the concept consider a sensor si having a Ball Centered sensing
zone Bi of radius ri. The boundary of Bi gives the sphere Si. A Ball usually refers
to space inside a sphere. Open ball does not include boundary while closed ball
refers to inclusion of boundaries also. In mathematical contexts where ball is used,
a sphere is usually assumed to be the boundary points only (namely, a spherical
surface in three-dimensional space) [67]. Refer to Fig. 7 for basic definitions.

Fig. 7 The spherical
cap Cap(i,j) is the intersec-
tion of the sphere Si and ball
Bj. The circle Cir(i,j) is the
intersection of the sphere Si
and Sj. The center of the spher-
ical cap Cap(i,j), denoted by
Cen(i,j) is the intersection of
line sisj and Cap(i,j)
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By using simple geometric principals, it is shown in [21] that to determine the
coverage in field A, it is reasonably sufficient to just find how each circle is covered.
After each cap’s circle coverage level is determined, the sensor’s sphere coverage
level can be found out, which in turn gives the overall coverage of A.

The contribution of Huang et al. [21] is to simplify a 3D problem to 2D and
then further break it down in 1D resulting in reduced computational complexity and
solution determination in polynomial time.

Huang et al. [37] builds on his work in [21] by elaborating on the algorithm to
determine whether a sphere is k-covered or not. First each sensor has to check its
neighboring sensor intersection with itself and calculate the corresponding spherical
caps. Once the coverage degree of the each cap’s circle is found, the coverage degree
of the sphere can be determined, which in turn could be used to infer the coverage
degree of the complete 3D field.

4 Fundamental Characteristics and Extremal Properties

For any randomly deployed 3DWSN, there are various critical transmission/sensing
ranges to achieve specified degree of coverage, convergence and connectivity. In
this section we briefly visit the relationship between these critical ranges and their
corresponding degrees of coverage and connectivity.

Ravelomanana [51] outlays several fundamental characteristics of randomly
deployed 3D WSNS for coverage and connectivity Traditionally, sensor network
is modeled by visualizing n homogeneous nodes being randomly deployed in region
R with Volume V = |R|, uniformly and independently [33, 52, 53]. Since number
of nodes in sensor networks is usually many folds the number in ad hoc networks,
and sensor network nodes are usually deployed inside a phenomenon, therefore it
can be inferred that positions of nodes need not be predetermined or planned. By
assuming sensing range of nodes to be spherical with radius R or RSENSE, a region
R (subset of IR3) is said to be covered if every point in R is at most RSENSE from
a node. Two nodes can only communicate if they are within RTRANSof each other.
ρ = n/V represents expected number of nodes per unit volume. By outlaying a set
of theorems in [51] the following fundamental results are deduced.
Connectivity Regime and Minimum Transmission Range: If n nodes are uni-
formly placed in R (bounded and connected set of IR3), then the network formed by
adding edges between nodes RTRANS = 3

√
3 (lnn + w(n)) /4πρ is connected only if

limn∼∈w (n) ∼ ∈.
Coverage and Minimum Sensing Range : If n sensors with sensing range RSENSE
are uniformly and independently distributed at random in R (bounded set of IR3 of
Volume V) with

RSENSE =
3
√
3 (lnn + lnlnn + w(n)) V

4πn

then every point in R is covered by at least one sensor when w(n) ∼ ∈.
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Table 5 Relationships between different sensing ranges and resultant coverage

Basic condition Sensing range satisfying
this relationship

Resultant condition (if and only if)

For fixed integer l>0, R
is l covered

4/3πρR3
SE N SE =

lnn + llnlnn + w(n)

1 ≥ w (n) ≥ lnlnn

For c(n), 1 ≥ c (n) ≥
lnn

lnlnn

4/3πρR3
SE N SE =

lnn + c(n)lnlnn
Each point covered by at least c(n)

spheres and at most elnn
spheres

For real number l>0 4/3πρR3
SE N SE = (1+l)lnn −X

W−1
+ o (lnn) ≤ N (p) ≤ −X

W0
+

o (lnn) ; whereX = llnn⎦
− l

e(1+l)

)

and N (P) is number of sensing
nodes in each point p of R

For any
c(n), 1 ≥ c (n) ≥

n
lnn

4/3πρR3
SE N SE = c (n) lnn N (p) is covered by c (n) lnn

Degree of Coverage: Different applications and deployment scenarios may require
different degree of convergence. k degree of convergence indicates that each point p
in bounded region R is covered by at least k sensing spheres of radius RSENSE.

If n sensors with sensing range RSENSE are uniformly and independently distrib-
uted at random in R (bounded set of IR3 of Volume V) Then as , following holds as
rigorously proved in [51]. Refer to Table5.

W0(z) and W−1(z) is branch3 of Lambert W(z) functions for W(z)∞ −1 and
W(z)≤ −1 respectively.

Network degree of connectivity is also obtained simply replacing RSE N SEwith
RT R AN S in the above relationships.

Hop Diameter: The hop diameter between two nodes u and v is the short-
est path needed to traverse (in terms of hops) to reach v from u or vice versa.
For n sensor nodes randomly deployed in cubic region of Volume V of IR3 with

RTRANS = 3√(3(1+l)lnV )
4πn , for l > 11/5 then D satisfies limn∼∈[D ≤ 123πn

(61 + l) lnn] = 1.

5 Conditional Connectivity and Forbidden Faulty Set

Anode failure adversely affects the coverage and connectivity regime of any network
including 3DWSNs. For 3DWSNsmodels to bemore realistic it is essential that node
failure is included in analysis. The concept of conditional connectivity and forbidden
faulty sensor set studies the effect of sensor failures on 3D k-coverage of the network.
Ammari et al. [9] also explores the concept of conditional connectivity [35] and
forbidden faulty sensor set [26] both for homogeneous and heterogeneous k-covered
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3D WSNs. The work in [9] outlays model for both conditional and unconditional
connectivity.

In an attempt to better quantify the fault resilience of a network, the concept of
forbidden faulty sets has been introduced by Esfahanian in [26]. The idea states
that each node has at least one non-faulty neighbor. Under this forbidden faulty set
condition, the number of tolerable faulty nodes is significantly larger with a slight
increase in the fault diameter [24]. The forbidden faulty set analysis of restricted
connectivity and fault tolerance assumes that a set of nodes cannot be faulty at
the same time. For homogeneous networks having k-coverage degree in a cubic
field, every location must be k-covered including the location ξ0 of the sink s0. To
disconnect sink under the forbidden faulty set constraint, the reuleaux tetrahedron
(with side r0) should be surrounded by an empty annulus (sensors in this annulus
have gone faulty) of width R. It can be visualized that reuleaux tetrahedron and
annulus together they form a larger (outer) reuleaux tetrahedron of side r0 +2R. The
conditional connectivity for such a network then becomes

k (G) = ((r0 + 2R)3 − r30 )k

r30

It is important to understand that any non-faulty sensor located in the inner RT still
has non-faulty neighbors in the inner reuleaux tetrahedron. The same holds for any
non-faulty sensor located outside the outer reuleaux tetrahedron i.e. it has non-faulty
neighbors outside outer reuleaux tetrahedron. Any faulty sensor inside the annulus
has non-faulty neighbor either in inner or outer reuleaux tetrahedron.

For heterogeneous 3D k-covered networks the annulus may contain sensors with
communication radii less than Rmax/2, the non-faulty neighbor sensors in one con-
nected component will only be able to communicate with non-faulty neighbors of
other connected component if width of annulus is less than Rmax [9].

6 k-Connectivity and Full Coverage

k-connectivity and full coverage has many important real world applications in the
domain of 3D Wireless Sensor Networks. k-connectivity indicates that there are at
least k disjoint paths between any pair of sensor nodes. Though intuitively a network
designermaywantmaximal connectivity for a networkwhichmay result in increased
resilience in case of node failure, however, maximal connectivity comes at the cost
of increased number of deployed nodes or increased spatial density of deployed
sensors. Therefore network designers always have to find a sensible tradeoff between
k-connectivity of network and practicality. The final choice of k-connectivity for
a network boils down to particular application specific requirements, deployment
constraints and economics.
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6.1 Low Connectivity and Full Coverage (Lattice Pattern)

Low connectivity indicates that there are at least k disjoint paths between any pair of
sensor nodes where k ≤ 4.

Many airborne sensor network applications use lowconnectivity deployment strat-
egy. Since the scale and volume of deployment field is huge inmost such applications,
the choice of low connectivity and full coverage model makes economic and practi-
cality sense. Some of the examples include airborneWSNs for supporting intelligent
computer vision [18], helping overcome human paropsia [65], airborne defense sys-
tems [1], and atmospheric pollution monitoring [59]. The applications however are
not only limited to airborne 3D WSNs but also include submerged WSNs.

Zhang et al. [74] and Bai et al. [16] study the problem of low connectivity and full-
coverage in the domain of lattice. By using regular lattice deployment patterns in [74],
the optimality of 1-connectivity, 2-connectivity, 3-connectivity and 4-connectivity
for any value of RTRANS/RSENSE or rc/rs is derived. All sensors have same spherical
communication rc and sensing rs domains and are deployed in vast 3D field such
that boundary problems can be ignored.

6.1.1 Lattice Pattern for 1- AND 2-Connectivity

Due to symmetry of lattice odd connectivity patterns do not exist in this sce-
nario. Therefore the optimal solution (less sensor nodes required in a pattern) for
1-connectivity is also optimal solution for 2-connectivity.

Zhang et al. [74] and Bai et al. [16] address this problem by categorizing the rc/rs

in four different ranges. The results are summarized in Table6.

6.1.2 Lattice Pattern for 3- AND 4-Connectivity

The lattice model for 1-and 2- connectivity is extended for 3- and 4- connectivity
and full coverage in [74] and [16] (Table7).

Detailed analysis in [74] summarizes that when rc/rs = 1, the number of nodes
needed to achieve 14-connectivity is around 2.5 times that to achieve 3- or 4-
connectivity, and 3.5 times that to achieve 1- or 2-connectivity. The extra number of
nodes required for 14-connectivity increases as rc/rs decreases. When rc/rs = 0.5,
the number needed to achieve 14-connectivity is almost 6 times that to achieve 3- or
4-connectivity, and around 18 times that to achieve 1- or 2-connectivity as indicated
in Fig. 10.
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Table 6 Lattice pattern 1- and 2- connectivity generated for different ranges of rc/rs

rc/rsRange Lattice pattern generated Dimensions of lattice

rc/rs < 4/3 Body centered lattice
generated by cuboid a
Height of a is rc Refer to
ψ2–1 in Fig. 8 for
illustration

Upper and lower faces lengths e1 =√
1
2

⎦
3r2s − r2c + rs

⎣
9r2s − 2r2c

)

Any sensor can
communicate with
neighbors along
direction of height

e2 = 1
2

⎦
3rs + ⎣

9r2s − 2r2c
)

4/3 ≤ rc/rs <

12/
⎣
9 + 32

√
3

Body centered lattice
generated by cuboid a
Refer to ψ2–2 in Fig. 8.
Height of a is rc. Any
sensor can communicate
with neighbors as shown
in ψ2–2

Upper and lower faces lengths

e3 = e4 =
⎦⎣

4r2s − r2c /4
)

12/
⎣
9 + 32

√
3 ≤

rc
rs < 2

√
3/

√
5

Body centered lattice
generated by cube a
Refer to ψ2–3 in Fig. 8.
Any sensor is able to
connect with its two
neighbors along the
direction of B-diagonal.

Length of edges e5 = 2rc/
√
3

2
√
3/

√
5 ≤ rc

rs Body centered lattice
generated by cube a
Refer to ψ2–4 in Fig. 8.
Any sensor is able to
connect with its two
neighbors along the
direction of B-diagonal

Length of edges e6 = 4rs/
√
5

6.2 High Connectivity and Full Coverage (Lattice Patterns)

6.2.1 Lattice Pattern for 6- AND 14-Connectivity

In work similar to [16, 74], Bai et al. [15] outlay a set of patterns for full coverage
and two representative connectivity requirements, i.e. k = 14-, 6-connectivity.

For 14-connectivity, the lattice pattern follows body centered cubic (bcc) lattice
generated by cubeABCDEFGHwith centerO.Without the loss of generality, the sen-
sor position at O has 8 of its connected neighbors as vertices of the cubeABCDEFGH
and other 6 are the centers of neighboring cubes IJKLMN. The voronoi polyhedron
generated by each sensing sphere in such pattern is truncated octahedron.

For further details refer to Table8 and Figs. 11 and 12 summarizing the approach
in [15].
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Fig. 8 Lattice patterns for 1- and 2-connectivity with full coverage. For ψ2-1(rc/rs < 4/3)and

ψ2−2(4/3 ≤ rc/rs < 12/
⎣
9 + 32

√
3) refer to (a1). ψ2-1and ψ2−2have the same lattice structure

(cuboid) but have different edge lengths which are dictated by the ratio of rc/rs. The communication

in this body centered lattice structure is along the height of the cuboid. Forψ2−3(12/
⎣
9 + 32

√
3 ≤

rc
rs < 2

√
3/

√
5)(and ψ2-4(2

√
3/

√
5 ≤ rc

rs ) refer to (a2). ψ2-3and ψ2-4 have same lattice structure
(cube) but different edge lengths which are dictated by the ratio of rc/rs. The communication in a2
is along the B-Diagonal of lattice structure. The illustration has been taken from [74]. Refer to [74]
for further details

Fig. 9 Lattice patterns for 3- and 4-connectivity with full coverage. For ψ4-1(rc/rs < 4/3) and
ψ4-2(4/3 ≤ rc/rs < 2 3

√
2/

√
3) refer to (b1).ψ4-1and ψ4-2have the same lattice structure (cuboid)

but have different edge lengths which are dictated by the ratio of rc/rs. The communication in this
body centered lattice structure is along the height plane of the cuboid. For ψ4-3(2

3
√
2/

√
3 ≤ rc

rs <

2
√
3/

√
5) and ψ4−4(2

√
3/

√
5 ≤ rc

rs ) ) refer to (b2). ψ4-3and ψ4−4 have same lattice structure
(cube) but different edge lengths which are dictated by the ratio of rc/rs . The communication in b2
is along the B-Diagonal Plane of lattice structure. The illustration has been taken from [74]. Refer
to [74] for further details

6.3 Lattice Pattern Interdependency and Mutual Relationships
(Pattern Evolution)

It is interesting to observe that how different patterns are linked. By the principal
of symmetry lattice ψ2-2 also yields 4-connectivity and ψ2-3 yields 8-connectivity
(sensor I can connect with sensors A, B, C, D, E, F, G, and H). Similarly ψ2-4
also achieves 14-connectivity. ψ4-3 achieves 8-connectivity and ψ4–4 achieves 14-
connectivity. Furthermore it can be analyzed that if a certain lattice pattern is optimal
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Table 7 Lattice pattern for 3- and 4-connectivity generated for different ranges of rc/rs

rc/rsRange Lattice pattern generated Dimensions of lattice

rc/rs < 4/3 Body centered lattice
generated by cuboid a
Height of a is rc Refer to
ψ4–1 in Fig. 9 for
illustration Any sensor
can communicate with
its 4 neighbors in one
plane. sensor E is
connected with A, N, M
and H

Upper and lower faces lengths

e7 = e8 =
⎦
2rs + ⎣

4r2s − 2r2c
)

4/3 ≤ rc/rs < Body centered lattice
generated by cuboid a
Refer to ψ4–2 in Fig. 9.
Height of a is 4rs/3
sensor E is connected
with A, N, M and H

Upper and lower faces lengths
e9 = 4rs/3 e10 = 8rs/3

2 3
√
2/

√
3 ≤ rc

rs <

2
√
3/

√
5

Body centered lattice
generated by cube a
Refer to ψ4–3 in Fig. 9.
sensor I is connected
with A, B, G and H

Length of edges e5 = 2rc/
√
3

2
√
3/

√
5 ≤ rc

rs Body centered lattice
generated by cube a
Refer to ψ 4–4 in Fig. 9.
Any sensor is able to
connect with its two
neighbors along the
direction of
B-diagonals.sensor I is
connected with A, B, G
and H

Length of edges e6 = 4rs/
√
5

solution for k1 connectivity and also yields k2 connectivity where k2 > k1, then it
is also optimal solution for k2 connectivity. Therefore ψ2-2 , ψ2-3 , ψ4-3 , ψ2-4
and ψ4 − 4 are optimal lattice patterns for up to 4, 8, 8, 14 and 14 respectively [16,
74]. Similarly ψ6-2 pattern [15] actually achieves 8−connectivity, and ψ6-3 pattern
achieves 14-connectivity for 4

√
5 ≤ rc/rs.

6.4 Full Coverage and 1-Connectivity (Strip-Based Approach)

A strip-based placement scheme is proposed for 3D networks in [8] that provides
full coverage and 1-connectivity when rc

rs < 4/
√
5. The approach will automatically

provide full coverage and k-connectivity for rc
rs > 4/

√
5 Based on work in [14] for

2D networks, Alam et al. [8] extends the concept for 3D networks.
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Fig. 10 Number of sensors nodes for 2- (1-), 4- (3-) and 14-connectivity by optimal lattice pat-
terns, respectively, plotted against different ratios of rc/rs. Deployment volume: 10003 m3.rs =
30m.15m < rc < 30m. [16]

Fig. 11 Solid lines represent connected links and dashed lines represent body structure of cube.
For 14- connectivity for the sensor located at O, a1 shows 8 connected neighbors which are vertices
of the cube, and a2 shows other 6 connected neighbors which happen to be the center points of
the neighboring cubes. a3 shows the Voronoi polyhedron formed by the sensing spheres of the
connected sensor nodes: truncated octahedron. a4 The lattice pattern achieves full coverage of a
3D volume, which is illustrated by Voronoi polyhedra generated by sensing spheres. Illustrations
taken from [15]

By setting distance between any two nodes in a strip as a = min{rc, 4rs/
√
5} and

distance between two parallel strips in a plane as β = 2
⎣

r2s − (a/4)2; and distance
between two planes of strips as β/2, and deploy strips such that strip of one plane is
placed between two strips of neighboring planes as shown in Fig. 13.

The distance between two nodes residing in different planes then becomes γ,
Where γ = ⎣

β2/2 + a2/4 . Since maximum distance between any two nodes in
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Table 8 Lattice pattern for 6- and 14-Connectivity generated for different ranges of rc/rs

rc/rs Range Lattice pattern generated Dimensions of lattice

For k=14 Body centered cubic lattice
generated, center at O. 8
neighbors are vertices,
and remaining 6 are
centers of adjacent
cubes. Refer Fig. 11

Length of edge e5 = min(4rs/
√
5, rc)

voronoi polyhedron: truncated
octahedron

For k = 6rc/rs <

9
√
43

Pattern is basic lattice,
denoted by ψ6-1.
Generated by seed
parallelepiped a with
diamond shaped-base.
Its six neighbors are
ABCDE and F. Refer
Fig. 12

e1 = rc one base diagonal = rc

h = 2
⎛⎜

2rcr2s + r3s − r3c
⎝
/ (2rc + rs)

voronoi polyhedron: hexagonal prism

9/
√
43 ≤ rc/rs <

2
√
3/

√
5 For

k = 6

Pattern is bcc, denoted
ψ6-2. Refer Fig. 12

Edge length e2 = 2rc/
√
3

2
√
3/

√
5 <

rc/rsFor k =
6

Pattern is bcc, denoted
ψ6-3. Refer Fig. 12

e3 = 4rs/
√
5

Fig. 12 Lattice patterns for 6-connectivity with full coverage. When rc/rs <, the pattern formed is
shown in b1, the sensing sphere form voronoi polyhedron called hexagonalprismb2, b3 shows that
full coverage is achieved in 3D environment. For rc/rs < and , the pattern formed is body centered
cube similar to (a1) in previous figure with edges and respectively

original truncated octahedron (TO) model is 4 rs /
√
5, connectivity is maintained

when by setting a = min{rc, 4rs/
√
5} Since only 1-connectivity is required, β can

be kept as large as possible as long as full coverage is not compromised.
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Fig. 13 a Nodes in a partic-
ular plane. b horizontal and c
vertical projections nodes in
two different planes. Nodes
with same color are from same
planes [8]

7 Continuum Percolation

Let P be a homogeneous Poisson Process in k-dimensional Euclidean Space, Rk.
Let S be a random k-dimensional shape, often a sphere. Centre an independent copy
of S at each point of P. Percolation occurs with positive probability if any given
random shape is part of infinite clump of random shapes [34]. In the theory of
continuum percolation, nodes are distributed according to Poisson density λ. The
theory states that there exists a positive value of λ commonly known as critical
density, λc, for which phase transition occurs in graph. In simplicity, it indicates that
node density of λc is required to achieve network detectability close to 1—i.e. when
an event takes placewithin a sensor network, its detection probability is almost P.Hall
[34] comprehensively addresses the problem of continuum percolation. Gilbert [30]
introduced continuum percolation as a model for growth and structure of random
networks in communication theory. The target is to find the critical density of a
Poisson point process at which an unbounded connected component almost surely
appears so that the network can provide long distance multi-hop communication.

Ammari andDas [12] investigate the problemof the critical density for percolation
in coverage and connectivity in 3D WSNs, as well as the corresponding critical
network degree. Following three questions are addressed:

(a) Critical density above which a giant covered region of a field will almost surely
appear for the first time and its corresponding critical network degree.

(b) Critical density above which a giant connected component will almost surely
appear for the first time and its corresponding critical network degree.

(c) Critical density abovewhich a giant covered region of a field and giant connected
component will almost surely appear for the first time and its corresponding
critical network degree.

The work in [12] explains that due to dependency between coverage and connec-
tivity in WSNs, the problem is not only a continuum percolation but also integrated
continuum percolation. Since generally speaking communication and sensing radii
of the nodes are not same, hence critical density for full coverage does not necessarily
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Fig. 14 a covered, b connected, c coordinated components [12]

mean it will result in complete connectivity of the network. Following definitions
excerpted from [12] will help understand further text.

A covered component (or covered region) is a maximal set of sensing spheres
(i.e., not included in any other subset except when it is equal to the original entire
set of sensing spheres) whose corresponding sensors are collaborating directly or
indirectly (Fig. 14a shows three covered components).

A connected component is a maximal set of communication spheres whose cor-
responding sensors are communicating directly or indirectly (Fig. 14b shows three
connected components).

A coordinated component is a maximal set of concentric sensing and communi-
cation spheres whose corresponding sensors are coordinating directly or indirectly
(Fig. 14c shows three coordinated components).

Let Xλ = {ξi : i ∞ 1} be a homogeneous Poisson Point of density λ in R3,
where ξi is the location of sensor si. The sensing range of si is a sphere of radius
ri and communication range is a sphere of radius Ri, centered at ξi (location of si).
All deployed sensors have same communication and sensing radii (homogeneous
model).

Bi(r) = {ξ ψ R3 : |ξi − ξ| ≤ r}
Bi(R) = {ξ ψ R3 : |ξi − ξ| ≤ R}

where |ξi − ξ| is the Euclidean distance between ξi and ξ.
Two spheres si and sj are said to be collaborating if |ξi − ξj| ≤ 2r; and communi-

cating if |ξi−ξj| ≤R. They are said to be coordinating if only if they both collaborate
and communicate.

Since percolation model can be visualized as an ensemble of points distributed in
space, where some points are adjacent or connected, Boolean Model is considered:

A Boolean Model consists of two components, namely, point process Xλ and
connection function: h. The set Xλ = {ξi : i ∞ 1} is a homogeneous Poisson point
process of density λ in 3D Euclidean space R3 where elements of Xλ are the location
points of sensors. The connection function h states that two points ξi, ξj are adjacent
with probability h|ξi − ξj| = 1if|ξi − ξj| ≤ d, and h|ξi− ξj| = 0if|ξi − ξj| > d where
d ∞ 0 and |ξi − ξj| is the euclidean distance between ξi and ξj [12].
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7.1 Sensing Coverage Percolation COVP

For a given 3D field, compute the density λcov
c called the critical coverage percolation

density such that there surely exists a giant covered region that spans the entire sensor
field when λ > λcov

c . It is noteworthy that Boolean function (Xλ, {Bi(r) : i ∞ 1})
only percolates when λ > λcov

c . Refer to [12] for rigorous proof. We summarize the
results in the Table8.

7.2 Network Connectivity Percolation CONP

For a network which is originally disconnected, compute the density λcon
c called the

critical connectivity percolation density such that there surely exists a giant connected
component that spans the entire sensor field when λ > λcon

c . It is noteworthy that
Boolean function (Xλ, {Bi(R) : i ∞ 1}) only percolates when λ > λcon

c . Refer to
[12] for rigorous proof. We summarize the results in the Table9.

The main difference between solutions for COVP and CONP is the compulsion
for existence of sphere overlap for CONP.While for COVP it is sufficient for sensing
spheres to just intersect, for CONP at least half of their communication spheres must
overlap as indicated in Fig. 15.

Vmin = 5

12
πR3

It is shown that minimum overlap volume fraction must be 0.3125. Hence
0.3125 ≤ wt < 1 [12]; where wt is the fraction of volume overlap of communi-
cation spheres. Similarly ws is the fraction of volume overlap of sensing spheres.
Since ideally sensing spheres just need to intersect (barely touch at boundaries),
hence ws can take range 0 < ws < 1.

7.3 Integrated Continuum Percolation (Coverage and Connectivity
Percolation)

For a given 3D field, compute the densityλcov−con
c called the critical integrated per-

colation density such that there surely exists a giant covered region that spans the
entire sensor field and giant connected component that spans the entire sensor field,
when λ > λcov−con

c . Refer to [12] for rigorous proof. We summarize the results in
the Table9.

Since for two spheres si and sj to collaborate, |ξi - ξj| ≤ 2r ; and to communicate
|ξi − ξj| ≤ R. They are said to be coordinating if |ξi − ξj| ≤ min{2r,R}. As can
be inferred the overlap volume of the sensing spheres depend on the ratio r/R. It
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Table 9 Mathematical expressions for COVP, CONP and ICP

COVP λcov
c (r, ws) = 0.119

(1−ws )r3
0 < Ws < 1

CONP λcon
c (R, wt ) = 0.955

(1−wt )R3 03125 < Wt < 1

ICP λcov−con
c (r, ws , a) = 0.955

(1−ws )a3r3
; Ws is the overlap volume between sensing

spheres, θ(a) ≤ Ws < 1; θ(a) = (4 + a)(2 − a)/16; 1 ≤ a < 2; r is the
radius of sensing spheres

Fig. 15 Minimum overlap
volume for CONP Vmin =
5
12 π R3

is reasonable to believe that R∞ r since communication radius is larger than the
sensing radius. Therefore R = ar, where a ∞ 1. Since distance between pair of any
sensors cannot exceed 2r, by applying same reasoning to case when a∞ 2, the critical
percolation density for ICP is achieved. Hence, range of a : 1 ≤ a < 2.

8 Underwater 3D WSNs: Network Planning and Deployment

Underwater sensor networks have increasingly important applications in many fields
including oceanographic data collection, ocean sampling, environmental and pol-
lution monitoring, offshore exploration, disaster prevention, tsunami and seaquake
warning, assisted navigation, distributed tactical surveillance, search and rescue,
and mine reconnaissance. There has been significant increase in interest to moni-
tor aquatic environments both for scientific, environmental and defense needs [48].
Most currentmethods including remote telemetry and sequential local sensing cannot
adequately meet the standards of submerged 3D WSNs, which require the sensing
mechanism to be highly precise, real time and fine grained spatio-temporal sam-
pling of the oceanic environment. Wireless Underwater acoustic networking is the
enabling technology for these applications. Under Water Acoustic Sensor Networks
(UW-ASNs) consist of a variable number of sensors and vehicles that are deployed to
perform collaborative monitoring tasks over a given area. To achieve this objective,
sensors and vehicles self-organize in an autonomous network which can adapt to the
characteristics of the ocean environment [60].
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Acoustic communications is the typical physical layer technology for most under-
water sensor networks. The choice is justified by the fact that radio waves propagate
at long distances through conductive sea water only at extra low frequencies (30–
300Hz). This requires impractically large antennas and high transmission power—
not a friendly design choice for a wireless sensor node. For example, the experiments
performed by Robotic Embedded SystemLaboratory (RESL) at University of South-
ernCalifornia showed thatBerkeleyMica 2Motes—apopularWSNnode platform—
is reported to have transmission range of only 120cm underwater at 433MHz [60].
Optical signals although do not suffer from such high attenuation but are affected
by scattering, and also require high precision to establish laser beam communica-
tion link between two small nodes. Therefore acoustic wireless communication is
the only reasonable choice for underwater sensor networks. However, design of an
underwater sensor network is prohibitively demanding task both in terms of tech-
nological and practical constraints. UW-ASN poses unique challenges due to harsh
underwater environment, such as limited bandwidth capacity [54], high and variable
propagation delays [50], high bit error rates, and temporary losses of connectivity
caused by multipath and fading phenomena [56].

There are two fundamental deployment architectures for UW-ASNs, i.e., two-
dimensional architecture, where sensors are anchored to the bottom of the ocean, and
the three-dimensional architecture, where sensors float at different ocean depths cov-
ering the entire monitored volume region. A three-dimensional deployment strategy
is usually adopted when the phenomena cannot be adequately observed by bottom-
anchored sensor network [3]. Younis et al. [73] gives a detailed guide on node place-
ment in wireless sensor networks. Though the work focuses on 2DWSNs, it outlays
some essential considerations for node placement which are also relevant to 3D
Network Architectures.

UW-ASN network designer has following objectives to meet:

(1) Determine the minimum number of sensors to be deployed while not compro-
mising the target coverage (sensing) and connectivity.

(2) Provide guidelines on how to choose the optimal deployment surface area, given
a target region.

(3) Study the robustness of sensor network to node failures, and include appropriate
number of redundant sensors in the design to account for node failures.

In [51], connectivity and coverage in 3 dimensional networks is extensively stud-
ied. It is shown that sensing range r required to achieve 1-coverage is greater than
transmission range t required to achieve connectivity. Since in most applications
t > r , hence a network is guaranteed to be connected if it has at least 1-coverage.

Pompili et al. [48] and [49] extensively analyze the deployment strategies for
underwater acoustics networks. While the major focus of the work is in 2D domain,
[48] also addresses themajor problems for 3DUW-ASNs. In 3DWSNsensors float at
different depth to observe a phenomenon. Usually sensors are deployed by anchoring
winch-based sensor devices to the bottom of the ocean as depicted in Fig. 16b. Each
sensor is equipped with a floating buoy which pulls the sensor towards ocean surface.
The length of wire connecting the sensor to the anchor is used to control the depth
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Fig. 16 Architectures for a two-dimensional and b three-dimensional underwater sensor networks.
Illustration is taken from [48]

of the sensor. The network sensors should regulate their depths collaboratively to
enable coordinated operations, coverage of 3D field and ensure network topology be
always connected.

Pompili et al. [48] proposes three deployment strategies for three-dimensional
UW-ASNs to obtain 1-coverage while enlisting following assumptions. These
assumptions are relevant to most 3D UW-ASNs network designers.

(1) Transmission range of the sensor is greater than sensing range of the sensor.
(2) Solution for 1-Coverage UW-ASN will also yield a connected topology of UW-

ASN because transmission range of a sensor is greater than sensing range of the
sensor.

(3) Winch-based sensor devices are anchored to the bottom of the ocean in such a
way that they cannot drift with ocean currents.

(4) Sensor devices are equipped with floating buoy that can be inflated by a pump.
Sensors therefore can adjust their heights according to requirements.

The three deployment strategies in [48] are given below in Table10:
For a given target coverage ratio, it can be generalized that minimum number of

sensors needed to achieve desired coverage ratio decreases with the complexity of
the deployment strategy.

8.1 Grid-Based Deployment Scheme

Cayirci et al. [19] and Tezcan et al. [57] use a 3D grid-based coordinate system in
which the whole sensing volume is divided into cubes of size r. r is the resolution
distance which is the edge length of a unit cube that sensor space is partitioned into.
Coordination distance a is also specified which indicates the distance in neighboring
cubes for a node to coordinate its depth.While a node arranges its depth, it exchanges
information with the nodes within the coordination distance. Figure17 illustrates the
concept.
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Table 10 Three major deployment strategies

3D Random Simplest Strategy, No coordination
from surface station. Sensors
are randomly deployed, sensors
choose their depth randomly.
Each sensor informs its position

Will require greatest number of
sensor nodes to cover a region.
Might result in coverage-less
patches. Only suitable for less
critical applications

Bottom-
Random

Sensors are randomly deployed at
the bottom. Each sensor
informs its location. Surface
station then calculates the
optimal depth for each sensor.
Sensors then take that depth

Relatively more efficient strategy.
Better 1-coverage probability is
ensured

Bottom-Grid Assisted by AUVs. Sensors
deployed to pre-defined target
locations to obtain grid
deployment at the bottom of
ocean. Each sensor then
accordingly floats to its
designated depth

The benefit of reduced number of
sensors might be offset by
expensive deployment strategy.
Yields best result for
1-coverage

Fig. 17 The coordinate system for a sensor space with coordination distance a = 1 [19]

Each cube is also identified along the z-axis (depth) from the sea surface to
maximal depth with a layer number. For example, all the cubes between depth 0 and
depth r constitute layer 0.

The goals:

(1) Achieve Maximum Coverage Efficiency
ε = nc

nn
; where nc is the number of cubes covered by at least one sensor and nn

is the total number of nodes in the sensor space.
(2) Achieve Maximum Average Distance
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θ =
⎞k

i=1 ei
k ; where ei is the between two nodes in node pair i. If there are nN nodes

in the sensor field, we can have as many as k node pairs; k = nN(nN−1)
2 . The goal is

to reduce the probability that all nodes are concentrated on certain depths.

In the proposed distributed 3D space coverage scheme [19], a node coordinates
its depth with the other nodes in their coordination space whose x and y coordinates
meet the following conditions.

xi − a ≤ xn ≤ xi + a

yi − a ≤ yn ≤ yi + a

where xn and yn are coordinates of the given node, and xi and yi are coordinates
of the neighboring nodes. The proposed algorithm elaborates that nodes maintain
neighbor tables. Nodes listen to the neighbor broadcasts of info packets within their
coordination space. Based on the available information, a node selects an appropriate
depth for itself.

8.2 Cluster-Based Deployment Scheme

Akkaya et al. [2] gives a scheme for self-deployment of sensor networks for max-
imized coverage in underwater acoustic sensor networks. The scheme which is
designed to be fully distributed has four phases: (1) Clustering, (2) Grouping, (3)
Depth Assignment and (4) Additional Rounds. In Clustering, nodes, which are ran-
domly deployed at the bottom of the ocean, are clustered with the node with highest
ID becoming the cluster leader. In Grouping, Cluster leaders determine the possible
coverage overlaps based on the information provided by the nodes in the cluster. The
cluster leader makes sure that no two nodes having an edge shares the same GID.
A sample grouping is shown in Fig. 18. Once Cluster leader finishes the process, it
sends a message to each node within the cluster which contains the node’s GID. The
GIDs are than used to determine the new location (i.e., depth) of the nodes.

Depths are assigned in phase three with the objective of reducing the coverage
overlaps and improve the overall 3D coverage. The space between two different
groups will be D/(G + 1) where D is the depth of water and G is the number of
groups. Finally in phase four, each node determines its closest neighbor in terms of
distance and checks whether it has a sensing coverage overlap with that node. The
node will move by an amount dependent on the distance to this neighbor. The closer
the two nodes are, the further apart they will attempt to move from one another.
The movement will need to be stopped when there is no significant improvement for
coverage or a certain number of rounds is achieved.
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Fig. 18 a Grouping of the nodes based on sensing coverage overlaps. b Depth adjustment based
on grouping [2]

8.3 Tetrahedrons-Based Deployment Scheme

In many practical underwater applications full coverage might not be possible
because of vast dimensions of monitored region, then using truncated octahedrons
might not be the best solution. Akkaya et al. [2] highlights interesting result which
may have practical ramifications for many UW-ASNs deployments. Although it has
been shown in [4] that optimal space filling polyhedron-based deployment strategy
is truncated octahedron, Akkaya et al. observe that it is only true when there are
enough sensor nodes to cover the complete 3D field. In such a scenario minimizing
the overlap between sensing ranges will improve the overall coverage. Refer Fig. 19.
For such a placement, the use of tetrahedrons would yield better results. The nodes
are located at the vertices of these tetrahedrons.

8.4 Hierarchical Underwater Networks and Deployment Analysis

A hierarchical network has more powerful and robust backbone nodes and less pow-
erful failure prone sensor nodes. A non-hierarchical network is like an ordinary
sensor network where there is only one type of nodes. Alam et al. [5] analyzes
node placement for hierarchical and non-hierarchical underwater networks. Only
the hierarchical network work in [5] is added in this section since the concepts for
non-hierarchical network are adequately covered in the earlier sections.

The network backbone nodes communicate with the sink using other backbone
nodes as routers. Backbone nodes placement strategies are based on Voronoi cells
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Fig. 19 Coverage comparison with varying the number of nodes. The simulation experiment used
different deployment schemes to cover a fixed volume. Octahedron-based placement performs
poorly for reduced number of node but yields maximum coverage when number of nodes are
increased [2]

formation in 3D space. Neglecting boundary effects, ideally the total number of
nodes required to fully cover the region is ratio of volume of total monitored region
to volume of one Voronoi cell. Revisiting the concepts explained in earlier sec-
tions, minimizing the number of nodes can be achieved if the corresponding virtual
Voronoi cell has the highest volume among all placement strategies subject to the
constraint that the radius of its circumsphere cannot exceed rbs,where rbs is some
deterministic threshold dictating the communication range between sensor node and
back bone node. The analysis of different virtual Voronoi cells (cube (CB), hexag-
onal prism (HP), rhombic dodecahedron (RD) and truncated octahedron (TO)) is
adequately covered in the previous sections. However, it can be summarized that
CB, HP and RD model respectively require 85.9, 43.25 and 43.25% more back-
bone nodes than the TO model. In order to keep any two physically neighboring
backbone nodes within the value of rbb—the maximum separation possible between
two backbone nodes for communication link to still operate—CB, HP, RD and TO
model requires that rbb/rbs is at least 1.1547, 1.4142, 1.4142 and 1.7889 respectively.
Therefore the radius of circumsphere is adjusted accordingly to ensure communica-
tion between backbone-backbone and backbone-sensor nodes. When using adjusted
TO for rbb/rbs > 1.7889, ensuring full coverage automatically realizes that all back-
bone nodes are connected to all 14 of its physical neighbors. However, when rbb/rbs

is small 14-connectivity might not be realized. Relaxing full connectivity with all
first tier neighboring nodes makes sense when the nodes are expensive and robust
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Fig. 20 A TO-based hier-
archical network when
1.549 < rbb/rbs < 1.7899.
Small grey dots are failure
prone mobile sensors. Large
black dots are backbone nodes.
Backbone network links are
shown with red lines. When
1.7889 < rbb/rbs , each inner
backbone node has 14 links as
opposed to 8 links shown in
the figure

with very low probability of failure. For example when 1.549 < rbb/rbs < 1.7899,
the backbone node still has connectivity with 8 neighboring backbone nodes which
may be sufficient in most applications. Refer to Fig. 20.

8.5 Effects of Oceanic Parameters

It is paramount to have reasonable understanding of behavior and characteristics of
acoustic signalswhen designing 3D submerged network.Naik et al. [44] describes the
effect of ocean parameters on acoustic signals in the context node location estimation.
Due to acoustic nature of the communication signals, the distance measurements
in UW-ASNs can be affected by temperature, salinity and depth. Leroy et al. [42]
proposed an equation for sound speed which is a function of temperature (T), salinity
(S), depth (Z) and latitude (θ) in all oceans and open seas.

Speed of Sound ‘C’ = 1402.5 + 5T − 5.44x10−2T2 + 2.1x10−4T3 + 1.33S −
1.23x10−2ST + 8.7x10−5ST2 + 1.56x10−2Z + 2.55x10−7Z2 − 7.3x10−12Z3 +
1.2x10−6Z(θ-45) − 9.5x10−13TZ3 + 3x10−7T2Z + 1.43x10−5SZ.

Due to special mechanical properties of sea water, sound moves at the mean
speed of 1500m/s. It has to be said that network designers should keep these oceanic
parameters in mind while deciding on network latency, connectivity, and deployment
and configuration algorithms.
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9 Surface Coverage in Wireless Sensor Networks

In surface coverage, the target field of interest is a complex surface in 3D space
and sensors can be deployed only on the surface. There can be scenarios in many
real-world applications where Field of Interest (FoI) is neither a 2D ideal plane
nor a full 3D space. Instead they are complex surfaces. For example, in Tungurahua
volcanomonitoring project [36], 2Dplane coverage strategy cannot be used due to the
complex surface of the volcano. Similarly, the sensor network cannot be modeled as
3D network since the nodes can only be placed on the surface of the volcano. Zhao et
al. [75] addresses the problem of surface coverage by deriving analytical expressions
of the expected coverage ratio on surface coverage for stochastic deployment. The
work in [75] is compactly summarized in following text.

It is assumed that sensing field is a convex surface which can be modeled as a
single valued functions z = f(x,y). For stochastic deployment, two sensor distribution
models are considered: space surface Poisson point process model and planar surface
Poisson point process model. The complex surface is simplified into many small
triangles as it pertains to 2D ideal planes to complex surface. An approximate value
for the coverage ratio when sensors are stochastically deployed is then achieved.

Jin et al. [40] addresses the surface deployment problem in terms of sensing quality
by introducing a general function to measure the unreliability of monitored data in
the entire sensor network. Sensors do not always make perfect measurements, but
exhibit unreliability that in general depends on the distance between the sensor and
target to be sensed.

Let pi denote the position of sensor i on the Field of Interest denoted as A. Given a
point q on A, the sensing unreliability function g(||q − pi ||) describes how unreliable
the measurement of information at point q is, sensed by sensor i.

It is demonstrated that centroidal voronoi partition-based sensing regions achieve
the optimal solution. Surface parametrization is used for one-to-one mapping from
3D surface to planar domain. However, it is essential to compensate for the distance
distortion when computing the generalized centroidal Voronoi Partition on mapped
planar disk. The conformal mapping preserves the surface Riemannian metric (dis-
tance) up to a scaling factor called conformal factor. The conformal factor cf at a
point p on the surface can be computed as ratio between infinitesimal areas around p
in the 3D surface and the 2Dmapped plane, i.e. c f (p) = (Area3D(p))/(Area2D(p)).
Figure21 shows the major steps of the algorithm.

In the simulation study [40] sensors are deployed on the testing surface models.
The first row of Fig. 22 shows sensors are randomly deployed on the surfaces which
give a very high sensing unreliability as shown in Fig. 23. Partitioning the sensing
area using voronoi partition of the set of sensors improves the coverage by decreasing
sensing unreliability by 47.58%. However, generalized centroidal voronoi partition-
based deployment of sensor nodes yields the optimum solution by decreasing the
total sensing unreliability by 89.94% as compared to random sensing deployment.

It is shown that optimal surface deployment of complex surfaces can be achieved
by using centroidal Voronoi-based sensing partition of the Field of Interest.
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Fig. 21 (Step 1) The algorithm starts with initial random deployment of set of sensors on mountain
surface approximated by 5k triangles, denoted as M in a. (Step 2) The mountain surface is mapped
to a planar unit disk based on a conformal parametrization denoted as f, with sensors mapped to
the disk accordingly. b shows the computed conformal mapping of the surface to unit planar disk,
denoted as f(M) = D. (Step 3) Metric distortion of the surface on the disk is measured by conformal
factor cf , color coded. c shows the color encoded cf, which measures the metric distortion of M
on D. (Step 4) A generalized centroidal Voronoi partition of the set of sensors is computed on the
planar disk based on its compensated metric, where points and polygons representing the computed
sensor positions and their sensing regions respectively. Computed generalized centroidal Voronoi
partition on D based on its compensated metric is shown in d with red pointsand marked polygons
representing the computed sensor positions and their sensing regions respectively. (Step 5) The set
of sensors and their corresponding sensing regions are projected back to the surface. e depicts the
optimal deployment of the set of sensors and their sensing regions onM by projecting the computed
generalized centroidal Voronoi partition on D to M based on f1 [40]

Fig. 22 Thefirst row shows randomsensing partition. The second row showsVoronoi-based sensing
partition, and the third row shows generalized centroidal voronoi-based sensing partition [40]

The scheme uses conformal mapping to estimate the 3D depth of the region and
then partitions the field accordingly for optimal sensor deployment resulting in min-
imum sensing unreliability of the Field of Interest.

Liu et al. [43] study the coverage problem for rolling terrains, and derive the
expected coverage ratios under the stochastic sensors deployment. Both regular and
irregular terrain coverage problems are analyzed. For regular terrains, general expres-
sion of the expected coverage ratio for the 3D surface function z = f(x,y) is derived.
For irregular terrains, Digital Elevation Model (DEM) is used to derive analytical
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Fig. 23 Sensing unreliability with different deployment and sensing partition methods on various
surface models as shown in Fig. 22 [40]

expression of the expected coverage ratios. By partitioning the Field of Interest in
areas of small triangles which have very have very small dimensions compared to the
sensing radius of the sensor, the coverage ratio of the surface is estimated. A triangle
is considered covered only if all its vertexes are covered. The ratio between the sum
of covered triangle’s area to the total surface area yields the coverage ratio.

10 Mobility

The mobility of sensor nodes can be exploited to enhance coverage of the network.
The objective is to determine positions and/or movements of nodes to achieve max-
imum coverage and to form a uniformly distributed wireless network. As opposed
to static nodes, the support of mobility in a network brings flexibility as well as
adaptability. It gives the network designers the convenience to change the location
of nodes depending on the application time specific requirements.

Fang et al. [27] propose a set of algorithms for coverage enhancement in mobility
enabled sensor network. Fang et al. use the idea of virtual force proposed in [76] to
calculate the net virtual force which dictates the direction of the movement of mobile
sensor node. These forces can be either positive (attractive) or negative (repulsive).
The movement of a sensor si will be calculated as a vector summation of all forces



312 U. Mansoor and H. M. Ammari

executed on si . The solution proposed in [27] is listed below. This work can be
extended for many mobility-based coverage and connectivity applications.

10.1 Type of Virtual Forces

10.1.1 Attractive Force of Target Field

When a sensor si is place outside of region ζt , ζt will execute attractive force on si

denoted by FA(si ), which is defined as

.FA(si) =
⎟

lA − li if li is not member of ζt
0 otherwise

where A is the point in ζt which is nearest to si . lA represents location of A in
cartesian coordinates. lA − li is the vector which points from location of si (xi, yi, zi)
to location of A (xA, yA, zA).

10.1.2 Repulsive Force of Boundary

When a sensor si is placed in region ζt , and is close to boundary of ζt,the boundary
exert repulsive force on si denoted by FB(si ). When ζt is in 3D space, the boundary
will be a 2D surface. The boundary (extended boundary) is visualized as 2D space
which is perpendicular to ζt and contains boundary of ζt . It will be some planes
which are perpendicular to ζt and include the corresponding line segments Fig. 24.

FB (si) =

⎠⎭
⎭

li −lB
d(B, si )

· (r − d (B,si)) if li ≈ ζt − BANDd (B,si) < r

ν.r if li = B

0 otherwise

Fig. 24 The extended bound-
ary concept as illustrated in
[27]
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If there are m boundaries having distance less than r from si , then

FB (si) =
m∑
j=1

FB (si) j

Each sensor checks its location and if it finds itself too close to boundaries, it will
bounce back by the resultant force from these boundaries.

10.1.3 Repulsive Force Between Sensors

Tomaintain optimum separation between the sensors, the sensors also exert repulsive
force on each other defined by

FC (si, s j) =
{

li −l j

d(si,sj)
· ⎜2r − d

⎜
si,sj

⎝⎝
if d

⎜
si,sj

⎝
< 2r

0 otherwise

The total repulsive force on a sensor is the vector summation of repulsive forces
exerted by all the other sensors.

10.1.4 Attractive Force of Potential Field

The most important challenge for moving a sensor to a potential field or repair-
ing a coverage hole is to detect the potential field or coverage hole effectively and
accurately. A sensor is moved to uncovered area if it is located adjacent to such an
uncovered patch. Based on spherical overlap coverage detection method in [37], the
adjacent potential field coverage is detected for a given sensor si .

As shown in Fig. 25, for ARCi
j q which is part of Cir(i,j), there exists an adjacent

potential field ζ jq which includes ARCi
j q, if ARCi

j q is not covered by any other
sensor besides si and s j . The attractive force exerted by ζ jq on si is defined as

FD (si, ı jq) =
{

lpq−loi j

d(si ,s j)
· sin

⎦
θ
2

)
ifCe (si, ıt) is not equal

0 otherwise

where Oij is center point of Cir(i,j), is the central angle for ARCi
j q, Pq denote the

midpoint of this arc. The total attractive force on a sensor is the vector summation
of all forces exerted by adjacent potential fields.
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10.2 Movement of Sensors

The total virtual force exerted on the sensor is calculated by the weighted addition
of all the four types of forces. The resultant movement mi is expressed as

mi = CA.FA(si) + CB .FB(si) + CC .FC(si) + CD.FD(si), where CA, CB, CC

and CD are constant factors [27].

11 Major Work Summary

This section lists the major works on Coverage and Connectivity in 3D WSNs. The
Table11 categorizes the work based on lattice pattern, placement strategy, major
contribution, and relevant application.

12 Open Problems and Research Challenges

This section highlights the major challenges and open problems for future research
work on Coverage and Connectivity in 3D WSNs.

Fig. 25 Attractive force of
3D potential field as illustrated
in [27]
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12.1 Mobility

Though some work has been done in the domain of Mobility in 3D WSNs, still
there is vast scope for future work in this field. Many perspective applications for
submerged networks, including tactical deployments and surveillance, may require
mobility supported WSNs. Coordinated operations of Mobile and Static Sensing
Nodes in unfriendly environment is a major design challenge. Furthermore most of
the present work visualizes sensor nodes as small mobile platforms highly efficient
in movement. This assumption is not practical. AUVs are usually slow and bulky
machines. Furthermore, the number of nodes is also limited. Mobility model for 3D
WSNs which addresses practical constraints is a major open problem in this field.

12.2 Heterogeneous Sensor Nodes

Most present work assumes the sensor nodes to be homogeneous in terms of com-
putational ability, sensing and communication radii, life span etc. However this is
not true in most applications. In some applications different classes of nodes may
be deployed. While in other applications same types/classes of nodes might behave
differently. For example, it is a common assumption to consider sensing and com-
munication radii of nodes to be same network wide. Many placement strategies use
Rc/Rs to find optimal 3D node placement strategies. However even if the nodes have
same hardware, their Rc/Rs might be considerably different due to non-uniform sen-
sor workload and power dissipation and local environmental characteristics. In most
cases, the sensing range is location dependent and is highly irregular. Multi-path and
shadowing dramatically affects the communication range of a sensor, sometimes
with nodes nearer to each other have no links while nodes apparently far distant
from each other have strong links. More realistic models, which includes practical
constraints and considers nodes as heterogeneous as opposed to homogeneous are
required.

12.3 Heterogeneous Networks

Although in much of present literature, the term heterogeneous networks usually
refers to presence of nodes with non-uniform sensing and communication radii in the
networks and it is used interchangeably with heterogeneous nodes, the requirement
for considering thewhole network heterogeneous in terms of regional nodal densities,
propagation characteristics, latency, coverage and connectivity requirements is an
unexplored research problem. A network can be considered heterogeneous if its
regional characteristics and requirements are not same as universal. For example
some applicationsmight require higher degree of coverage and connectivity in certain
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regions of the networks as opposed to others. One such work is [40]. It would be an
interesting work to incorporate ‘location dependent value’ in the deployment model
to assign different node densities to different regions in themonitored zone according
to requirements. Models for such networks hardly exist at the moment. It would be
remarkable work to formulate simple 3D node placement models which addresses
the heterogeneous coverage and connectivity requirements of 3D WSNs.

12.4 Coverage in Obstacles

Coverage in the presence of obstacles is a challenging problem and has not been
addressedmuch in the literature. For example, in many pre and post disaster manage-
ment applications, it is required to operate in hostile, obstacle prone and unpredictable
environments. Studying of propagation characteristics both for electromagnetic and
acoustic signals specific to 3D WSNs would be a major step forward in enhancing
coverage in obstacle prone 3D fields. Modeling Obstacles with arbitrary shapes and
improving coverage and connectivity in such spaces is an open problem and existing
tools and techniques need to be substantially extended to meet these challenges.

12.5 Node Retrieval and Failure Analysis

While there are many optimal placement strategies both random and deterministic,
there is almost no node retrieval strategy. In many practical applications, there can be
numerous scenarioswhen a node needs to be replaced or retrieved. Such scenarios are
plausible when nodes are expensive and non-expendable, e.g., tactical systems. For
such scenarios analysis needs to be done for replacing a node, the degree of acceptable
tolerance in position dislocation, its effect on regional coverage and connectivity etc.

13 Conclusion

This work is a survey of recent efforts and major works in the field of Coverage
and Connectivity in 3D WSNs. 3D WSNs is an emerging arm of WSNs and has
applications in the defense, space exploration, submerged networks and airborne
reconnaissance. In this work we have tended to enlist major 3D node placement
techniques based on the cell partitioning schemes. Generally speaking, a 3D space
can be partitioned using space filling polyhedrons which tile in 3D space. The four
major space filling polyhedrons are truncated octahedron (TO), rhombic dodecahe-
dron (RD), cube (CB) and hexagonal prism (HP). Though TO based cell partitioning
usually yields optimal solution in terms of number of nodes required, it however
requires relatively higher coverage to communication radii ratio. This might make
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TO impractical for many scenarios. CB is welcoming alternate which achieves same
coverage with slightly increased number of minimum required nodes. Due to simpler
model and easier mathematical manipulations, CB based models can also be readily
extended to meet different degrees of desired connectivity. By varying the lengths of
the edges of cube (cuboid) different mutually interdependent k-connectivity lattice
patterns can be derived easily. For k-coverage realueaux tetrahedrons based deploy-
ment schemes are used which employ spherical overlap of sensing radii of nodes
to yield desired degree of coverage. For random deployments continuity percola-
tion based analysis yield the critical densities for desired degrees of coverage and
connectivity. Continuity Percolation based analysis is useful for scenarios involving
huge number of nodes dispersed randomly in large monitoring zones. Underwater
sensor networks are by far the most common example of 3D WSNs. This work also
lists major deployment schemes for submerged networks along with their practi-
cal constraints and design challenges. To abridge, this survey enumerates the major
techniques for systematic and random node deployments for 3D environments, their
comparisons and practical design constraints for such networks.
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Chapter 9
Localization in Three-Dimensional Wireless
Sensor Networks

Usman Mansoor and Habib M. Ammari

Abstract A wireless sensor network (WSN) is categorized as three-dimensional
(3D) when the variation in the height of deployed sensor nodes is not negligible
as compared to length and breadth of deployment field. Localization is one of the
fundamental components of any wireless sensor application. A localization algo-
rithm estimates the position of a node by using information provided/inferred from
anchor beacons, reference nodes or neighbors connectivity. The effectiveness of a
localization algorithm is usually determined in terms of accuracy, resilience to node
failure, computational cost, messaging overhead, hardware constraints and deploy-
ment practicality. This survey overviews the major recent work done in the field of
localization in 3D WSNs. The major contribution of this work is to present all the
major 3D (generic, airborne, terrestrial and submerged) localization schemes in a
single literature along with their relative strengths and weaknesses.

1 Introduction

Localization in Wireless Sensor Networks is a key enabling technology and takes an
essential role in many practical applications. The inherent objective of any localiza-
tion scheme is to estimate node position with reasonable accuracy (specific to appli-
cation) with minimal cost (economic, computational, messaging, energy). Accuracy
and resilience requirements, prospective deployment environment, hardware con-
straints, energy conservation targets, and economic viability play a critical role when
designing a localization scheme tailored for a certain application [66].

A WSN is categorized as 3D when the variation in height of deployed sensors is
not negligible as compared to length and width of the deployment field. Convention-
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ally, sensor networks are usually visualized as two-dimensional (2D) networks. This
assumption is valid for most terrestrial scenarios since nodes are deployed in same
planes and there is usually little or no across-planes nodal communication. However,
this 2D model loses its relevance for most submerged and airborne deployments [1,
10, 60, 92, 99].

There has been considerable work done in the domain of localization in WSNs
complemented by some excellent surveys in the field [3, 28, 30, 31, 45, 51, 71].
Although these works adequately address the localization problem in general, con-
centrated work in 3D localization for WSNs is still to be undertaken. Interestingly,
most present work in 3D localization for WSNs gyrate around theoretical and con-
ceptual designs, and little effort has been extended towards proposing localization
schemes based on practical real-world 3D WSNs. It can be said that there is scope
for ground breaking research and new ideas for practical 3D localization schemes in
Wireless Sensor Networks.

Extensibility of a 2D localization scheme to 3D is an algorithmic challenge rather
than a hardware challenge.Any localization systems/scheme can be divided into three
distinct components: distance/angle estimation, position computation, and localiza-
tion algorithm (refer to [6] for more details). Either range based (ToA, TDoA, RSSI)
or range free (connectivity, proximity) techniques are employed to estimate/infer
distance/angle which is fed into position computation algorithm to compute relative
position of the node from anchors. While "distance/angle estimation" and "position
computation" deal with the ranging techniques, measurements and location calcu-
lation of the nodes, "localization algorithm" outlays the generic operation of the
scheme, its hardware requirements and constraints, operational environment (sub-
merged, terrestrial or airborne), anchor types, etc. It is usually designedwhile consid-
ering prospective applications, deployment and operational costs, etc. The distance
estimation component usually is not dimension dependent and can be easily extended
for 3D. For example, ranging circuitry for ToA or TDoA will not need much if any
modification to work in 3D. The position computation involves mathematical calcu-
lation to simultaneously solve set of equations using node measurements. Therefore,
the answer to first two components is: Yes. However, it is the localization algorithm
which cannot be readily extended to 3D scenarios, hence creating the requirement
for dedicated 3D localization schemes. Since localization algorithms usually also
consider the physical constraints, anchor types, anchormovement andmobility, oper-
ational environment, etc., a 2D localization scheme may not necessarily be suitable
for a 3D environment. Figure1 depicts the scenario graphically.

The major contribution of this work is to present all the major 3D (generic, air-
borne, terrestrial, and submerged) localization schemes in a single literature. As
opposed to most major surveys [3, 28, 30, 31, 60], this work is solely dedicated to
3D localization schemes. However, the most significant contribution of this work is
to propose new classification based on functionalities of anchors for both generic
and submerged networks and list their relative strengths and weaknesses.

Section2 outlays the major anchor functionalities and requirements for different
3D localization schemes. Section3 is arranged so as to provide brief introduction to
essential localization taxonomy and explains the new classification. Section3 also
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Fig. 1 Extensibility of 2D localization schemes to 3D. Distance estimation and position computa-
tion components of the 2D schemes can be extended to 3D. Localization Algorithm which involves
practical implementation of the scheme, physical constraints, and hardware requirements cannot be
readily extended to 3D

lists generic localization schemes/techniques according to their economic, messag-
ing, delay, and computational cost. Section4 lists major works in radio (generic) 3D
localization schemes arranged according to the new classification. These schemes
are either for airborne or terrestrial applications. Schemes which do not specify any
application are also placed in this section. Section5 is solely dedicated to localization
schemes for submerged networks. Section6 lists the salient features of each scheme
along with its prospective applications. Finally, in Sect. 7 the open research problems
in 3D localization are discussed.

2 Anchors Requirements in Localization

The practicality of a localization scheme essentially depends on the choice and role
of employed anchors, their hardware requirements, deployment mechanism, mobil-
ity support, and density. To classify a localization mechanism based on practicality
is prone to debate and counter arguments; since apart from anchors, localization
delays, messaging overhead, convergence, accuracy, and resilience are also impor-
tant metrics while determining the suitability of a localization scheme for a particular
requirement. However, this classification weighs the practicality of anchor types to
determine the relevance of overall localization scheme for a particular application,
since a highly precise and resilient scheme employing highly complex and imprac-
tical anchors would be unusable for most prospective applications. In our analysis
following factors are pivotal in determining the practicality of an anchor employed
by a localization scheme.
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2.1 Three-Dimensional Anchor Mobility

Some of the schemes require the anchors to be mobile in 3D plane. This might
require anchors to be mounted on airborne independent platforms, e.g., drones,
remotely piloted balloons, or autonomous submerged vehicles, etc. While airborne
3Dmobile anchors [58, 77, 95, 97] require flightmechanisms, submerged 3Dmobile
anchors are usually retrofitted in autonomous underwater vehicles [26, 47]. How-
ever, most present schemes do not elaborate on mechanical fittings and design of
such anchors which makes the practical implementation of such schemes a difficult
realization. Furthermore, such anchors also require careful trajectory and mobility
planning for complete localization coverage. Multiple anchors operating simulta-
neously would require sophisticated collaboration mechanisms. Furthermore, since
such anchors usually have limited flight/submerged operational time, the localization
scheme should not consist of long delays to avoid operational and maintenance costs
of the anchor-mounting vehicles. Since economic cost of such platforms might be
prohibitively high, careful investigation needs to be done to weigh benefits of using
such a localization scheme for a prospective application.

2.2 Anchor Mobility in 1D

Interestingly, most submerged 3D localization schemes might require mobility of
an anchor only in 1D plane [15, 25, 26, 47]. This might seem counterintuitive, but
closer inspection reveals that a 1D mobile anchor can act as a good beacon source
for the nodes deployed in 3D space. These anchors are also referred to as Detachable
Elevator Transceivers (DETs) [25, 53, 104]. DETs usually operate by using a surface
buoy as its launch platform. Once released by a surface buoy, DET descends along
the depth of ocean while transmitting beacons. Though the schemes usually do not
address the mechanical aspects of DETs, a practical implementation of a DET might
face considerable constraints. DETs are prone to sway laterally due to ocean currents
and swirls which might lead to transmission of erroneous beacons [22, 83]. The dive
and rise mechanism of DETs would require rugged hardware. The cost of 1Dmobile
anchor depends on the type of mobility mechanism employed, which in turn dictates
the practicality and relevance of the localization scheme for real-world scenarios.

2.3 Anchor Circuitry Requirements

A localization scheme works by using either range-based or range-free techniques.
In either of ranging mechanisms, anchor plays a pivotal role acting as a beacon for
the un-localized nodes. In both techniques, un-localized nodes receive or exchange
beaconswith the anchor nodes and estimate their positions. Depending on the scheme
employed, estimation could be carried out centrally or in distributed manner. How-
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ever, depending upon scheme and estimation mechanism employed, certain timing
circuitry requirements and standards might need to be imposed not only on anchor
nodes but also sensing nodes. For example, ToA-based schemes might require very
tight synchronization requirements [27, 102]. TDoA-based schemes which operate
using electromagnetic signals might require high resolution timing circuitry espe-
cially for radio-based ranging which increases the per node cost [43, 87, 93].

2.4 GPS Requirements

Accurate knowledge of self-position is paramount to the working of an anchor. Since
the un-localized nodes in the network use positioning information of anchors as their
reference, errors or inaccuracies in the anchor self-location estimation will propagate
throughout the network, rendering the whole localization process erroneous. There-
fore, it is essential that an anchor always has accurate knowledge of its position before
it disperses its position information in localization beacons [7]. Apparently, the most
logical methodologymight be the use of GPS by anchor nodes to determine their own
positions [97, 99]. Not surprisingly, this is also the most common approach in most
localization schemes. However, for many schemes, depending on the environment,
remote deployment fields, etc., the use of GPS might not be possible. For example,
for many submerged 3D WSNs, submerged anchors [15, 102, 104] determine their
positions using surface buoys. Some AUVs for submerged networks use sophisti-
cated trajectory tracking mechanisms to keep track of their positions while beneath
ocean surface. These surface buoys act as satellites for deeply submerged, remotely
located, inaccessible anchors. Therefore, depending on application and environment,
anchor self-localization can incur cost and may compose of complicated mechanical
and softwaremechanisms. A tradeoff needs to be achieved between desired accuracy,
system complexity, and economical cost of the anchor hardware.

2.5 Service Delay of Anchors

Most non-silent schemes require a complete handshake with the anchor node [26].
Based on request/response mechanism, the anchors send location information to
nodes for position estimation. However, hardly any present work takes into account
the service delays of anchors. An anchor serving a large number of sensing nodes
might have long service (queuing) delays especially in acoustic systems. Since
an anchor might have limited flight or submerged operational time (e.g., airborne
anchors or AUV mounted anchors), long service delays might result in inhibitive
economic cost for localization per node. Anchors might be required to carry out
multiple sorties to fully localize a network resulting in huge operational and main-
tenance costs for the network.
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2.6 Communication Range Constraints

Communication range can also be a significant factor in determining the relevanceof a
localization scheme for a specific application [52]. Communication range determines
the influence region of an anchor. Increasing the communication radius might result
in reduced anchor density for many silent schemes [16, 17]. However, for schemes
which require two-way handshake between the un-localized nodes and anchors,
increase in communication radius of anchor has to be complemented by increase in
communication radius of sensing nodes also [28, 83]. This is not simple to achieve
since it might require hardware and battery upgrades for sensing nodes. This might
lead to preference for silent schemes. However, most silent schemes demand nodes
to be synchronized or utilize complex ranging mechanisms for position estimation
from anchor beacons. Resultantly, this increases computational, circuitry, and energy
constraints for the sensing nodes.

2.7 Messaging Overhead and Hand shaking

Different localization schemes have different messaging overheads and hand shak-
ing mechanisms between the anchor and un-localized nodes. Silent schemes do not
exchange any messages with the anchors and just listens to the beacons transmitted
by the anchors [16, 17, 27]. This gives the liberty of increasing the communication
range of anchors since two-way communication between the nodes and anchors is
not being realized. On the other hand, other schemes might require complete hand-
shake between an anchor and a node. For example, TDoA-based schemes [28, 60]
exchangemessages with the anchors and uses time difference in arrival of message to
estimate distance from anchors. Though such schemes might yield higher localiza-
tion accuracy they require higher messaging overhead and close enough proximity
of anchors to complete a handshake.

3 Essential Terminologies and Classification

In this section, we first briefly overview essential terminologies used in 3D WSNs
followed by our proposed new classification.

3.1 Essential Terminologies

Localization algorithms may be classified based on several criteria, fundamen-
tal design, prospective application, network architecture, ranging mechanism, etc.
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Table 1 Taxonomy and essential terminologies

Anchor based Specially retrofitted nodes act as reference nodes. These nodes determine
their absolute positions either directly by GPS (terrestrial or airborne
networks) or indirectly by surface buoys (submerged networks) These
anchors initialize the localization process by dispersing beacons in the
network. Sensing nodes use these beacons to compute their absolute
positions central or distributed manner

Anchor free Coarse grained localization is achieved by using the relative positions of
the nodes. These schemes usually employ connectivity information of
the connected component of WSNs to determine the relative position
of a node in a neighborhood

Range based A method which employs radio or acoustic technologies to determine
absolute distance/angle between two points for position estimation

Range free Instead of using absolute distance/angle for position estimation, such
schemes usually derive position estimate based on other metrics such
as connectivity [14, 34, 44, 90], anchor proximity etc

Centralized Nodes forward their range-based or range-free measurements to central
sink. A sink can be fitted with computationally intensive and
sophisticated position computation algorithm which produces globally
optimized results. Once computed, coordinates are relayed back to the
nodes

Distributed Nodes compute their positions locally. Since measurements are not
forwarded to the central sink, such schemes have lower messaging
overhead and may achieve quicker localization. However, these
schemes put higher computational load on nodes

Time of Arrival
(ToA)

A ranging technology which employs signal propagation delay [9, 28, 62,
93, 96]. ToA circuitry may require tight synchronization and precision
timing

Time Difference of
Arrival (TDoA)

A ranging technology which uses time difference between arrivals of two
signals (request/response mechanism). Many practical applications of
this technology can be found [4, 9, 32, 33, 64, 70]

Angle-of-Arrival
(AoA)

Nodes can use angle of arrival information of received beacons for
position computation. By using AoA from multiple unique beacons,
nodes can use triangulation to estimate their relative position to the
anchors [56]

RSSI The strength of received signal level is translated into distance estimation.
It is essential that channel properties of the medium are known [5, 24,
28, 88]. RSSI based systems RADAR [4] and SpotOn [35] have been
proposed for hardware constrained systems [33, 98]

Trilateration By using the distance estimate from three reference points, equations for
three spheres are formed and then solved simultaneously to yield
intersection point. Accounting for ranging errors, unique solutions
might not be possible [6]. Imitris et al. [50] explains the solutions to
3D trilateration in detail

Triangulation If the bearings to reference nodes are known, simple trigonometry-based
triangulation can be employed to determine relative position of the
node [103]
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Table 1 (continued)

Anchor-based Specially retrofitted nodes act as reference nodes. These nodes
determine their absolute positions either directly by GPS
(terrestrial or airborne networks) or indirectly by surface buoys
(submerged networks). These anchors initialize the localization
process by dispersing beacons in the network. Sensing nodes use
these beacons to compute their absolute positions central or
distributed manner

Multilateration This lateration method uses more than three reference points. This
helps compensate for the ranging errors and achieve unique
solution with greater accuracy

Bounding box Computationally simple but less accurate method proposed in [79]
which uses cubes instead of spheres for trilateration [6, 59]

Proximity-based Usually centroid-based position computation method which takes
simple averages of coordinates of neighborhood reference points to
estimate its own position

Silent Nodes do not exchange messaging with anchors or other reference
points. Nodes achieve localization by listening to beacons

Active Sensing nodes exchange messages with anchors and complete
handshake

Synchronized Nodes use globally synchronized high resolution timing circuitry and
precision clocks

Non Synchronized Nodes are not synchronized and use less expensive circuitry
DETs Detachable Elevator Transceivers are special types of mechanically

operated anchor nodes used in submerged networks which realize
vertical motion

Surface anchors Surface anchors usually remain on ocean surfaces and do not
submerge. They use GPS to confirm their absolute positions and
then act as satellites for submerged anchors

ToA versus TDoA Shen et al. [76] comprehensively compares all the major range-based
time-of-arrival (ToA) and time-difference-of-arrival (TDoA)
location estimation methods for three-dimensional scenarios. It is
recommended to refer to [13, 20, 76] for thorough comparison of
ToA versus TDoA Analytical methods

Youssef et al. [96] succinctly present taxonomy for localization in WSNs which can
act as a good serve for abridged introduction to generic taxonomy for localization
inWSNs. Table1 lists essential terminologies. Table2 arranges different nonspecific
generic schemes in descending order in terms of their economic, delay, messaging,
and computational costs.

3.2 Classification Based on Anchor Functionalities

The 3-dimensional Wireless sensor networks can be broadly classified into two main
categories: radio wave networks and acoustic networks. All infrastructure, terrestrial,
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and airborne 3D networks employ radio waves for ranging and beaconing. Acoustic
networks usually refer to submerged networks. Both categories of 3D networks have
their specific design and implementation technicalities and have different require-
ments for the anchors. Based on the present scope of literature, a broad classification
for both radio and acoustic networks is being proposed.

3.2.1 Radio Networks Classification and Naming Scheme

The study of literature reveals that localization schemes for radio networks can be
broadly classified into four main categories depending on the anchor functionalities,
position computation mechanism, complexity, and accuracy of the schemes.

The proposed naming scheme for the classification uses four letter abbreviations
XYZz. The denotations are briefly explained below.

X: The single letter ‘X’ code refers to the mobility support in the anchor. ‘S’ stands for
stationary anchors while ‘M’ stands for mobile anchors. Since mobility usually refers to
anchors being mobile in 3D for radio networks, we do not specify the dimensionality of
anchor mobility in the denotation.

Y: The single letter ‘Y’ code refers to mobility support in the sensing nodes of the network.
‘S’ stands for stationary sensing nodes while ‘M’ stands for mobile sensing nodes. Due
to lack of literature on mobile sensing nodes in 3D WSNs, ‘M’ based classification is not
included at present.

Zz: The two letter ‘Zz’ code represents the stand out feature of the localization scheme in
terms of position computation mechanism. ‘Ce’ represents centroid based schemes; ‘Cn’
represents connectivity based schemes; ‘Ln’ represents lateration based schemes; and ‘Ns’
represents not specified. Most schemes employing stationary anchors fall in one of three
classes: ‘Ce’ (centroid), ‘Ln’ (lateration) or ‘Cn’ connectivity based schemes. Some schemes
employ mobile anchors with myriad of hybrid or new ranging and position computation
mechanisms. These schemes are grouped under ‘Ns’ category.

SSCn (Stationary Anchors for Connectivity-Based Stationary Networks)

These schemes utilize connectivity information between the connected compo-
nent of 3D WSNs to estimate node position. Beacons from stationary anchors are
received by in-range nodes and then forwarded to distant nodes. Since the location
information is derived from network connectivity, these schemes are not known
for their accuracy especially for irregularly deployed networks. However, these
schemes put least computational load on the nodes and are fairly unproblematic to
implement.

SSCe (Stationary Anchors for Centroid-Based Stationary Networks)

These schemes have reduced complexity and practically simple to implement, and
use range-free anchor proximity mechanism to achieve localization. Centroid-based
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Table 2 Different schemes/technologies are arranged in descending order of respective sub-table
heading

(a) Economic cost in terms of timing circuitry (descending order)
Range based Synchronized ToA-based schemes. Employ

high resolution timers (high)
Range-based Non-synchronized TDoA based schemes.

Employ request/response mechanism
(high cost but maybe less than ToA)

Range free Non-synchronized. No special circuitry.
Estimation using connectivity (acceptable
cost)

(b) Messaging overhead
Centralized TDoA (very high)
Centralized ToA (high)
Distributed TDoA (high)
Centralized Range free (acceptable to high)
Distributed ToA (silent to low)
Distributed Range free (low, merge with normal traffic)
(c) Localization delay
TDoA Centralized (very high, impractical)
ToA Centralized (high)
TDoA Distributed (acceptable to high depending on

anchor positioning and range)
ToA Distributed (low to high depending upon

types of anchors)
Range free schemes (low to high

depending upon scheme)
(d) Computational cost/node
Distributed schemes (acceptable to high)
Centralized schemes (almost nonexistent)
(e) Economic cost of anchors
Fully mobile airborne (very high, special

applications)
Fully mobile submerged (very high)
DETs (vertical motion submerged) (high)
Surface buoys with GPS (affordable, numerous

practical examples available)

Schemes are arranged in descending order of (a) cost of timing circuitry, (b) messaging overhead,
(c) localization delay, (d) computational cost per node, and (e) economic cost of anchors

determination is usually computationally simple but only yield coarse grained local-
ization accuracy. These schemes are a reasonable tradeoff between design complica-
tion, computational andmessagingoverheads, algorithmcomplexity, and localization
accuracy.
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SSLn (Stationary Anchors for Lateration-Based Stationary Networks)

Lateration techniques (tri and multi-lateration) are fine grained (accuracy within
1m) ranging schemes which yield highly accurate results at the expense of increased
computational and messaging overheads, algorithm complexity, and intricate rang-
ing mechanisms. Depending on schemes, the anchors and sensing nodes might
require to be retrofitted with high resolution timing circuitry, synchronous clocks,
or sensitive transceivers. These schemes are relevant for sensitive applications
which require high accuracy and can afford intricacies usually associated with such
schemes.

MSNs (Mobile Anchors for Stationary Networks)

3D mobile anchors in radio schemes are generally envisioned to be retrofitted in
drones or other airborne platforms, e.g., steered balloons. A mobile anchor for such
schemes may have exorbitant hardware and operational costs limiting its use to
applications sponsored by defense or resourceful corporations. These schemes can
yield high accuracy but are prone to complexities arising due to rangingmechanisms,
radio communications, trajectory planning, etc.

3.2.2 Acoustic Networks Classification and Naming Scheme

Acoustic networks are by far themost common 3DWSNs [84]. Hence the availability
of literature for localization in submerged networks is far greater than radio based
networks. This leads to six broad classifications for submerged acoustic 3D WSNs.
The proposed naming scheme for the classification has ‘XiiYi’ arrangement. We will
briefly explain the denotations here.

Xii: ‘Xii’ represents themobility support of anchor in the employed scheme. ‘X’ can be either
‘M’ (meaning mobile) or ‘N’ (meaning not-mobile). The two lower case letters ‘ii’ only
appear for ‘M’ (mobile) scenarios and essentially describe the degree of anchor mobility in
the network. The ‘ii’ can be either ‘1d’ or ‘3d’, representing motion of anchor in 1 dimension
and 3 dimensions respectively. The ‘ii’ does not appear when preceded by ‘N’.

Yi: ‘Yi’ represents the dominant trait/feature of the scheme which dictates the position com-
putation mechanism employed. ‘Y’ can be either ‘C’, which represents centralized schemes;
or ‘D’, which represents distributed schemes. The lower case trailing ‘i’ denotes the salient
feature of the centralized/distributed scheme. The ‘s’ indicates synchronous schemes; ‘a’
indicates synchronous free schemes; ‘v’ indicates localization scheme extendable for mov-
ing nodes such as AUVs; and a missing ‘i’ denotes ‘un-specified’.

M1dC (Vertical Motion (1D Mobile) Anchors for Centralized Schemes)

These schemes employ vertically mobile anchors which accomplish motion in one
dimension for submerged acoustic 3DWSNs. Since the position estimation for such



336 U. Mansoor and H. M. Ammari

schemes is done centrally, these schemes are ‘non-silent’ andmay incur considerable
extra network traffic, long acoustic CSMA delays and resultantly long localization
delays. However since sink can be retrofitted with computationally intensive and
sophisticated position estimation mechanism, these schemes can yield high accuracy
and relieves computational load on nodes due to centralized estimation.

M1dDs (Vertical Motion (1D Mobile) Anchors for Synchronized Distributed
Schemes)

These schemes use anchors which also realize motion vertically (1D). However their
distributed synchronous nature allows them to be implemented as ‘silent’ (for ToA-
based systems) and also eliminates long sink service and communication delays of
typical acoustic networks. However, their distributed nature puts greater computa-
tional load on the nodes.

M1dDa (Vertical Motion (1D Mobile) Anchors for Non-Synchronized Distributed
Schemes)

Flexible in design, these schemes offer numerous different designs based on rang-
ing mechanisms and anchor-node handshake. Their non-synchronized nature allows
elimination of the need for maintaining tight synchronization globally which reduces
hardware and circuitry complexity as well as economic costs.

ND (Non-Mobile Anchors (DET Free) Distributed Schemes)

These schemes do not employ conventional 1D or 3D mobile anchors; rather anchor
nodes are similar in mechanical abilities to other sensing nodes in the network.
Stationary anchors initialize the localization process. These schemes can be either
range or connectivity based.

M3dD (AUV (3D Mobile) Anchors for Distributed Schemes)

A 3D mobile AUV for submerged operations can be retrofitted to acts as anchor and
transmit beacons underwater to initiate localization process for the sensing nodes.
AUV is usually a very expensive hardware with sophisticated on board piloting
systems for autonomous maneuvering. AUV trajectories also need to be carefully
pre-planned to provide complete localization coverage. Though use of AUV brings
flexibility in the localization scheme and may also help improve accuracy, the hard-
ware, and operational costs for 3D mobile anchors restrains their use to very limited
submerged applications.
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NDv (Fixed Anchors for AUV Localization)

Though most AUVs have onboard sophisticated trajectory tracking mechanisms to
reliably determine their own positions; it is possible that AUVs reconfirm their posi-
tions fromfixed anchorswhile submerged for improved accuracy. Someof the present
schemes for 3D localization can be easily evolved to be used for these purposes. Apart
from providing localization to conventional stationary sensing nodes, these localiza-
tion schemes can have applications in navigational assistance, collision avoidance,
and steerage through obstacle-prone submerged environments for AUVs.

4 Three-Dimensional Localization Algorithms

The classification of localization schemes is a moot point and open to debate. Differ-
ent authors have classified the localization algorithms in numerous different ways.
For example, Guangjie et al. [31] classify the algorithms based on mobility of sensor
nodes and reference nodes. Resultantly there are four main classes in [31]: static
nodes, static anchors; mobile nodes static anchors; static nodes, mobile anchors;
and mobile nodes, mobile anchors. Some authors classify based on centralized and
distributed algorithms. Range-based classification is also commonly used for local-
ization schemes. It is fairly common that schemes are further sub-classified based on
centralized/distributed, mobility, active/silence, etc. However, due to non-presence
of vast literature in 3D localization in WSNs, such extensive classifications are not
relevant for 3DWSNs at this moment. Instead, a new classification is being proposed
based on anchor mobility and position computation method employed by the generic
radio-based 3D WSNs. The new classification not only covers the present literature
in this field but also classifies schemes into groups based on complexity and accuracy.

Note: Some of the abbreviations for the localization schemes used in the section
might have been altered from the original work to avoid conflicting abbreviations for
different schemes.

4.1 SSCn (Connectivity-Based Stationary Anchors)

In terms of complexity and hardware requirements of anchors, schemes which
utilize connectivity based stationary anchors are inherently similar to range-free
centroid-based stationary anchors. The fundamental difference is that the beacons
are essentially embedded into the network traffic. Although this might sound appeal-
ing from the perspective of reduced messaging overhead, however, most such mech-
anisms require sensing nodes to exchange and forward messages. At the network
level, this actually results in increased messaging overhead per node. Furthermore,
connectivity-based schemes are also trickier to implement and require careful and
considerate planning. These schemes also tend to have prohibitively long localiza-
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tion delays. Wang et al. [46] propose a Distance Vector DV-Hop algorithm for 3D
space. Nodes receive the beacons from anchors, increment the hop count and forward
to further nodes. Beacons also monitor the traffic exchange and internally estimate
average per hop distance in the network. The un-localized nodes extract this informa-
tion from beacons to estimate their own position. Though the scheme is fairly simple
and computationally less intensive, if not implemented vigilantly, it can result in
exorbitant increase in messaging overhead as well as localization delays. Further-
more, since hop distance is used for location estimation, some localization error is
inherent in the scheme. Shu et al. [78] also propose a DV-based localization algo-
rithm. The algorithm performs in three phases: compute the least hop counts, trans-
late into distance between node and beacon node, and determine node position using
Assumption Based Coordinate (ABC) [69] algorithm. The main feature of the algo-
rithm is its simplicity. However, localization error of as high as 40% might result
for irregularly placed nodes in the network. Zhao et al. [100] outlay an important
prospective application for connectivity-based localization for 3D Surface localiza-
tion. In 3D surfaces, the wireless signals only propagate along the surfaces with
no direct correlation between Euclidean distance and shortest path between nodes.
For example, sensors deployed on the surface of mountain, uneven platforms, etc.
Easily available and economical on-board pressure sensors measure the height in
each node. The problem is then treated in 2D with connectivity information of the
graph being projected onto x–y plane. The projected triangular mesh is used to yield
localization solution. Since the variables are reduced due to use of pressure sensors,
the scheme yields high accuracy. The authors have also practically implemented the
scheme with good results. The scheme offers a practical design for many complex
3D surfaces. However, it is to be noted that the algorithmworks for single value com-
plex surfaces and may fail to yield solution for more intricate 3D surfaces. Shang et
al. [74] also use connectivity to estimate distance when there are no anchors with
absolute position. Using node connectivity, it builds a distance matrix. It then uses
this distance matrix to layout a map with relative positioning of nodes. The scheme
is computationally intensive in order of O(x3) but offers great flexibility and scala-
bility in design. Numerous flexible variants of the scheme can be implemented. For
applications which may not have reliable anchors and can afford slight computation
overhead, this relative positioning mechanism can be a reasonable resort. In conclu-
sion, it can be said that connectivity-based schemes which employ stationary anchors
usually are simple to implement and practical. They do not have specific hardware
and mobility requirements for the anchors. However, these schemes not only have
high messaging overhead and long localization delays, their location estimation is
also not highly accurate due to fact that nodes infer their position by using average
hop distance in the network. However, these schemes can be a reasonable choice
for small evenly deployed 3D networks with uniform hop distance. Refer to [55] for
comprehensive analysis of DV schemes (the work is for 2D systems).
Advantages: These schemes have simple and flexible design and put less computa-
tional load on the nodes. They have Low implementation cost and do not need sophis-
ticated on-board timing circuitry for the nodes. Vigilant implementation reduces
messaging overheads.
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Disadvantages: These schemes have low localization accuracy and are also prone to
propagating errors throughout the network. Schemes might incur long localization
delays and messaging overheads. Accuracy greatly reduces for irregularly deployed
networks.

4.2 SSCe (Centroid-Based Stationary Anchors)

Schemes based on Centroid algorithm are practically simple and can be implemented
as silent if desired. These schemes are anchor-proximity schemes which use range-
freemechanism to achieve localization. Anchors broadcast their position information
to all nodes within their transmission range. Nodes listen to these reference beacons
and estimate their position using centroid determination (usually averaging of coor-
dinates of anchors). Though centroid algorithms are computationally simple and easy
to implement, they mostly only achieve coarse-grained localization and are prone to
considerable inaccuracies. Chen et al. [14] build on thework presented in [90] and use
centroid theorem of coordinate-tetrahedron in the volume coordinate system to esti-
mate the localization information for 3DWSNs. By randomly selecting four anchors
and forming a virtual tetrahedron, it uses centroid theorem to calculate barycenter of
each tetrahedron. Averages of many barycenters yields estimated position. Although
this tetrahedron-based centroid algorithm approach increases computational load
on the nodes, it helps alleviates considerable estimation inaccuracies compared to
typical centroid algorithms. Bulusu et al. [8] show that tetrahedron localization algo-
rithm can improve accuracy by 29% compared to traditional algorithms but at the
expense of increased computation. Furthermore, it is noteworthy that since a two-
way handshake is not completed in this scheme, anchors can transmit over long
ranges hence minimizing the requirements for number of anchors required. This also
enables silent implementation of the scheme. However, compared to typical centroid
algorithms, tetrahedron based centroid approach requires at least four anchors to
achieve localization. Lai et al. [44] also use centroid algorithm which makes use of
geometric relationships and communication constraints between the nodes. Instead
of using a 3D polyhedron such as a tetrahedron, [44] constructs a 3D graph and then
maps it to a 2D plane. It lays out an analysis mechanism to estimate node position.
Interestingly, localization ratio approaches as high as 99%—a very high ratio for a
centroid-based algorithm—when the anchor (reference) node density is greater than
6. However, this scheme can result in considerable high computational load. The
computational overheads are coupled with messaging overheads when this scheme
is implemented in distributed manner. Lv et al. [49] present a spherical shell overlap
algorithm. Although this scheme does not follow the complete definition of a cen-
troid algorithm, it has intrinsic similarities with centroid-based systems. Concentric
spheres are used to virtually divide the space with anchors being visualized at the
center of these spheres. By considering the spherical centers of the adjacent spheres
and spherical overlap information, the unknown node coarsely estimates its position.
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The scheme requires extremely low computation and messaging overhead but only
offers low localization accuracy.

To abridge, centroid-based localization algorithms are a good choice for coarse-
grained range-free location estimation. Though their results are prone to inherent
error, such schemes can be a sensible choice for many low-end applications. Since
these schemes usually do not require extra hardware, mobility mechanism or high
resolution timing circuitry for anchors; anchors in such schemes can be deployed as
stationary reference points. The reduced complexity in anchors usually offsets the
slight increase in cost due to higher number of minimum anchor required in such
schemes.
Advantages: Schemes offer reasonable accuracy (higher than connectivity-based
schemes) and comparatively low computational load. They do not require sophisti-
cated on-board timing circuitry for the nodes and also offer flexible design.
Disadvantages:Not suitable for applications demanding very high localization accu-
racy. Nodes need to be in range of at least four anchors/reference nodes.

4.3 SSLn (Lateration-Based Stationary Anchors)

Lateration is a rangebased technique that uses distance measurements between
anchor and sensing nodes. While the tri-lateration uses three reference points, multi-
lateration generally uses 4 or more reference points for 3D space [21, 29, 43, 72,
73]. This makes most multi-lateration techniques a fine grained (accuracy within
1m) ranging schemes which yield highly accurate results, however, at the expense
of usually increased computational and messaging overheads. Kuruoglu et al. [43]
propose a multi-lateration based scheme (3D-AML) which uses concept of intersect-
ing spheres to estimate distances. The intersection of two spheres yields equation of
circle. The fourth reference point is then used to determine the final position without
ambiguity. Though the scheme is considerably accurate for most applications, it also
has higher computational cost per node. Furthermore, since themodel assumes trans-
mission ranges of anchors to be uniformly omnidirectional, this can make the model
inaccurate in obstacle prone environments. Detailed topographic maps may need to
be required to have accurate modeling of communication ranges of anchors. Inac-
curate modeling may reduce the accuracy to conventional centroid-based schemes
while the computational overhead would still be high. Doukhnitch et al. [23] tend to
reduce some of the extra computational load incurred in lateration-based schemes by
using a trilateration based method (DODS) which uses vector notations and simple
add and shift operations. The vectors are recursively rotated towards each other to
find intersection points. This method is named Dynamic rotation method with fixed
angle and is based on work in [68]. Refer to [23] and [68] for detailed explana-
tion and graphical depictions. The resultant method achieves a good compromise
between accuracy, complexity, and computational overheads. It is claimed in [23]
that computational load could be relieved as much as 67% by employing DODS.
The only drawback is the dependence on recursive steps for solution. This can be
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a potential pitfall since this may lead to error magnification in some scenarios. If a
prospective application requires considerable accuracy and can afford extra compu-
tation inherent with lateration-based methods, Manolakis uses trilateration in [50]
which compensates for reasonable errors in range measurements by incorporating
polynomial-type form of algorithm. Similarly, Thomas et al. [87] use constructive
geometric arguments for trilateration, and derive a formula containing a few num-
ber of Cayley-Menger determinants which allows easier identification of erroneous
results. Refer to [87] for more details. Zheng et al. [101] propose an interesting local-
ization algorithm which is inspired by the living habits of bees in physical world.
Though the method is not specifically based on lateration, it uses received signal
strength, cosine laws and mobility models of bees to determine relative positions.
Amusingly, the scheme yields high accuracy, although the hardware and computa-
tional constraints make the practical realization of this algorithm infeasible for most
applications.

In conclusion, lateration-based techniques which employ stationary anchors yield
very high accuracy at the expense of increased computational load for the nodes.
These techniques are mostly range based and use distance information from at least
4 anchors in 3D space to compute the position. However, this accuracy is dependent
on rigorous calibration of rangingmechanisms such as RSSI, ToA, etc. Some ranging
mechanisms call for special hardware and high resolution timing circuitry increasing
the economic cost. Furthermore, the number and optimal positioning of anchor nodes
for maximal ranging coverage can also be a potential design limitation.
Advantages: High localization accuracy.
Disadvantages:High computation load for nodes. Nodes require sophisticated rang-
ing mechanisms (timing circuitry, signal detection). Complex lateration-based posi-
tion estimation techniques need to be efficiently applied on resource constrained
sensing nodes. Erroneous beacons introduce error which might offset the increased
accuracy of lateration-based schemes.

4.4 MSNs (Mobile Anchors for Stationary Networks)

Mobile anchors can be used as beacon sources for localization in 3D networks.
Not surprisingly, this is neither simple nor cost effective for most applications. Ide-
ally, mobile anchors fly over or travel through the network using their mobility
mechanism and transmit beacons. Nodes use this information to estimate their own
positions. Using mobile beaconing can be cumbersome task since a lot of parame-
ters such as anchor speed, beacon transmission frequency, transmission range, etc.,
need to be carefully configured. Furthermore, mobility patterns also need to be pre-
planned. However, the biggest obstacle to using mobile anchors in most schemes is
its intimidating economic costs. Refer to [2] for a detailed survey on mobile wireless
sensor localization. An autonomous mobile anchor needs a propulsion mechanism,
resilient communication systems, safetymechanisms, extended battery backups, take
off (launch, initialization), and landing (finish, end) systems along with vigilant
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maintenance. These all factors when compounded together can result in significantly
high costs for the localization scheme. Therefore mobile anchors are usually selected
for applications which have very specific requirements and their operational envi-
ronments do not allow for stationary anchors. For example, in defense applications,
airborne mobile anchors could be used for localizing nodes on the ground. For nodes
installed in extremely remote or hostile environments, mobile anchors could help
initialize the localization procedure. Yadav et al. [95] outlay a range-free localiza-
tion technique which uses GPS-equipped mobile anchors as beacon sources. Static
nodes listen to beacons and update their entries. Using the connectivity information
withmobile beacons, nodes estimate their positions. Authors claim that this approach
is less computationally intensive and requires 98 computations (54 multiplications
and 44 additions) as opposed to 153 computations (88 multiplications and 65 addi-
tions) in [58, 95]. Furthermore, this scheme allows the node to compute absolute
position since GPS information is embedded in beacons. Also, since a same anchor
can transmit from multiple locations, the un-localized nodes have multiple unique
beacons for reference which results in high accuracy. Ou and Ssu [58] also use flying
anchors, which fly through the sensing space transmitting their current locations.
The basis of this scheme is the geometric corollary that states that a perpendicular
line passing through the center of sphere’s circular cross section also passes through
the center of that sphere [58]. The sensor nodes listen to the beacons and main-
tain a visitor list. After receiving four unique beacons, circular cross sections are
constructed to determine position. Authors highlight that with transmission radius of
15m, spherical cross section based approach has localization error of 1.6m compared
to 2.4m for centroid algorithms. However, it also needs to be noted that transmission
radius of just 15m would require the anchors to fly exceptionally low which might
require additional expensive low-flying collision avoidance systems. Yu et al. [97]
also propose the use of airborne mobile anchors and has same system setup as [58,
95]. However, in [97] the sensor nodes select the set of best RSSI beacon updates
and use them to construct non-parallel planes perpendicular to anchor trajectories.
The scheme puts almost negligible computational load on sensing nodes. However,
RSSI-based measurements are prone to error unless accurate channel models are
available. Zhang et al. [99] address the problem of 3D surface localization by using
air borne mobile anchors as functional dual of target tracking. Terrestrial nodes track
the moving targets by listening to beacons and inferring their own positions. The use
of mobile anchors for 3D surface and using target tracking allows the localization
scheme to work independently of node densities and hence robust to complex 3D
environments.

It is interesting to note that most airborne mobile anchor-based schemes silent
in nature and do not require a handshake between an anchor and the sensing node.
Sensing nodes can listen to beacons transmitted by distant airborne anchors and
estimate their own positions. Furthermore, since an anchor can transmit beacons
from multiple locations, a single airborne anchor might be enough to help achieve
localization for a reasonably sizednetwork.Asopposed to other coarse grained range-
free schemes, mobile anchor based schemes (especially airborne mobile anchors)
have reasonable high accuracy. These characteristics make such schemes a fitting
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Table 3 Salient features of range-free schemes

Range free scheme Design hazards Advantages

Anchor proximity
(centroid) [8, 14, 44,
49, 90]

Optimum anchor positioning.
Accuracy dependent on number
of anchors. Nodes need to be
within anchor range

Low Messaging overhead. Can be
implemented as silent schemes.
Small localization delay. Prone
to high localization errors

Connectivity [46, 78,
95]

High messaging overhead. Prone
to long localization delays.
Inherent estimation error

Extremely simple to implement.
Can be incorporated with
normal traffic. Resilient

choice for many demanding applications, e.g., defense, hazardous area monitoring,
etc. However, the usually excessive cost of airborne mobile anchors might deter their
use in most low-end practical applications of 3D WSNs.
Advantages:High localization accuracy can be achieved. Trajectory planning allows
for comprehensive localization coverage. Single an anchor can transmit multiple
uniquebeacons fromdifferent locations; this eliminates the need formultiple anchors.
Disadvantages: Exorbitant hardware and operational costs for anchors. Anchors
require careful trajectory planning and flight paths. Extended operations for the
anchors might not be feasible.

4.5 Additional Remarks on Range-Free and Range-Based 3D
Localization Schemes

Range-free localization schemes are relevant for applications which do not have
stringent localization accuracy requirements (error of 20–40% is common [78]) and
require computationally simple algorithms. These schemes usually estimate position
either by connectivity information or anchor proximity. While connectivity-based
range-free schemes are also prone to high messaging overhead (DV-Hop, DHA),
network flooding and long localization delays; anchor proximity (centroid)-based
schemes suffer from anchor positioning issues. However, intelligent and efficient
implementation can offset some of these bottlenecks. For example, the messaging
overhead in DV-Hop can be reduced by incorporating localization information in the
normal network traffic (refer Table3).

Generally speaking, range-based schemes usually have high localization accuracy
conditional to rigorous calibration of ranging mechanisms. Some ranging mecha-
nisms call for special hardware and high resolution timing circuitry increasing the
economic cost. Furthermore, the number and optimal positioning of anchor nodes
for maximal ranging coverage can also be a potential design limitation. Table4 lists
salient features of range-based schemes covered in this section.
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Table 4 Salient features of range-based schemes

Range-based type Design hazards Advantages

RSSI based [97, 99,
101]

Rigorous calibration of RSSI based
estimation hardware required.
Inherent error in estimation

Hardware less expensive compared
to ToA, TDoA. Low
computation overhead.
Schemes can be implemented
as silent schemes

ToA, TDoA [43, 68,
87, 93]

Complex timing circuitry.
Synchronization might be
required in ToA. Expensive
hardware. Computation for
signal processing

Very high accuracy especially in
submerged environments. RF
based ToA schemes can have
very long ranges

5 Underwater Acoustic Sensor Networks (UASNs)

UASNs are by far the most common practical three-dimensional Sensor Networks
with increasingly important applications in oceanographic data collection, ocean
sampling, environment and pollution monitoring, offshore exploration, disaster
prevention, tsunami and seaquake warning, assisted navigation, distributed tacti-
cal surveillance, search and rescue, and mine reconnaissance [63, 89]. Unlike many
terrestrial sensor networks which can be modeled as two dimensional networks, the
sheer large size and scope of UASNdeployment fields and height variations inUASN
deployed nodes make it essential to visualize such networks as 3D in nature.

Acoustic communications is the typical physical layer technology for most under-
water sensor networks. UASN poses unique challenges due to harsh underwater
environment, such as limited bandwidth capacity [80], high and variable propaga-
tion delays [65], high bit error rates, and temporary losses of connectivity caused
by multipath and fading phenomena [81]. Kantarci et al. [28] presents a compre-
hensive survey for localization techniques for UASNs. Although the work is not
specific to 3D networks it adequately covers the major works carried out in this field.
Partan et al. [60] discusses major challenges and practical issues for underwater sen-
sor networks. The survey work in [82] and [91] discusses most of UASN localization
schemes in detail. In the following text we briefly study the relevance of different
ranging technologies for UASNs.

ToA. It is much preferred choice in UASN than in terrestrial systems. Since sound travels at
fraction of speed of light, the level of sophistication required for ToA-based ranging of
acoustic signals is less and also more economical.

RSSI. Time-varying properties of the ocean environmentsmakeRSSI based rangingmechanisms
unreliable [42]. It is not a preferred choice.

AoA. Though used in numerous schemes, it requires use of directional acoustic transceivers and
careful consideration for anchor positioning and directional beacons [94].

TDoA. Able to achieve localization without global synchronization, TDoA yields good accuracy
and high reliability. There are several schemes employing TDoA for UASNs [28].
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Fig. 2 Evolutionary arrangement of the submerged 3D localization schemes. Arrangement is also
based on centralized and distributed localization; synchronized and non-synchronized operations.
The direction of arrow head shows an evolved scheme.Broken line indicates that scheme is coarsely
based on previous scheme

Figure2 depicts the major schemes covered in this section. It also indicates
the evolutionary relationship between different schemes and salient standout fea-
tures/characteristics of evolved schemes.

As opposed to most other classifications, the proposed new classification is based
on two main metrics: degree of anchor mobility and centralized/distributed nature of
localization scheme. This classification not only directly translates into practicality
of a scheme; but also indicates complexity, accuracy, and economic cost of the 3D
localization schemes.

5.1 M1dC (Vertical Motion (1D Mobile) Anchors for Centralized
Schemes)

Vertically mobile anchors accomplish motion in 1 dimension for submerged acoustic
3DWSNs. Such anchors can be referred as Detachable Elevator Transceivers (DETs)
[28, 104]. They use surface buoys to change their depth. Anchor can be mechani-
cally tied to the surface buoy and can change its depth either by buoyancy control
or cable-wind/unwind operations. Since DETs are designed to realize only vertical
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motion, their absolute coordinates for x–y plane remain the same as their respective
surface buoys. Surface buoys get their location usingGPS and relay it to DETs. DETs
can determine their own depth by employing economical submerged pressure sen-
sors which have considerable accuracy. Zhou et al. [104] use DETs (scheme called
3D-MALS) which descend and transmit beacons at varying power levels along the
way. The un-localized nodes send their lowest power reading to the sink. Based
on the lowest power readings of a node from different anchors (or different bea-
con series), the sink estimates the position and conveys it back to node. Ideally, the
scheme should yield high accuracy. However, due to ocean currents, DETs may drift
laterally and transmit erroneous beacons. This error can be compensated by incor-
porating sophisticated ocean current modeling in the centralized decision maker
(sink). Mirza and Schurgers [53] use buoyancy control in anchors (referred to as
drogues in text). However, to account for lateral drift due to ocean currents and
reduce error in absolute position estimation, use of profiler nodes is also proposed.
Drogues track the trajectories of profiler nodes which act as moving references. The
scheme reduces error in estimation but at the expense of increased design and imple-
mentation complexities. In practical scenarios, realization of such multi-stage local-
ization scheme with multifarious hardware would not be an easy accomplishment.
Therefore, although these schemes have high accuracy and relieves computational
load on nodes due to centralized estimation, they are prone to significant errors if
ocean currents modeling is inadequate. Furthermore, centralized estimation comes
at the price of ’silent-localization.’ Since nodes have to send their measurements
to sink, considerable extra network traffic could be incurred. For acoustic networks
this might result in exorbitant long delays in terms of sink service availability and
acoustic CSMA. For example, it is explained in [54] that to limit collisions to less
than 5%, acoustic CSMA back off may be as large as 300s for a 10 byte packet to
be transmitted over a distance of 500m. However, centralized processing allows for
globally optimized results since sinks not only have network wide positioning esti-
mates, but can also be equipped with sophisticated ocean current modeling system
to compensate for undesired lateral movements of anchors. These schemes can be an
appropriate choice for delay tolerant submerged applications with computationally
limited nodes.
Advantages: Globally optimized position estimation can be done at the central sink.
No computational load on the nodes.
Disadvantages:Nodes need to forward theirmeasurements to central sink. Long sink
service delays might be incurred. High messaging overhead compared to distributed
schemes.



9 Localization in Three-Dimensional Wireless Sensor Networks 347

5.2 M1dDs (Vertical Motion (1D Mobile) Anchors for
Synchronized Distributed Schemes)

Vertically mobile anchors (1D Mobility) for distributed schemes usually have same
mechanical requirements for anchors as centralized schemes except that nodes com-
pute their own positions instead of forwarding their measurements to central sink.
This allows for the schemes to be implemented as ‘silent’ (for ToA-based systems)
and also eliminates long sink service and communication delays of typical acoustic
networks. Erol et al. [27] proposes a synchronized distributed scheme (DNRL)which
uses buoyancy controlled anchors similar to [53, 104]. The DETs (anchors) dive and
rise periodically while broadcasting beacons. Nodes listen to the beacons and use
ToA based measurements to determine their own positions. The major drawback of
such schemes is their synchronization-based distance estimation. All nodes need to
be fitted with synchronized high resolution accurate clocks. A synchronization offset
is difficult to detect and will lead to fallacies in estimation. However, since local-
ization can be achieved without a handshake between mobile beacons and nodes,
long range beacon signals can be used to localize nodes located in remote hostile
environments. These schemes can be a good choice for sparsely dense, remotely
located networks with computationally capable nodes. Another limitation of such
schemes is the requirement for each node to be within range of at least 4 unique
beacons. The requirement relaxes to 3, if nodes use pressure sensors to estimate
their depth and anchor beacons to determine their positions in x-y plane. How-
ever, in any case, this can be bottleneck for beacon-out-of-range nodes. Erol et
al. [25] address this problem by introducing a supplementary phase in localiza-
tion process. The scheme is called MSL [25] and is an evolution of DNRL [27]. The
newly localized nodes inMSL act as coarse beacons sources for beacon-out-of-range
un-localized nodes. These coarse-localized nodes can recalculate their position once
they receive DNRL beacon signals. The result is not only greater localization ratio
for the network but also at quicker pace. Kantarci et al. [28] analyze the MSL and
explain that it is one of few localization schemes for acoustic networks which utilize
realistic underwater mobility model. However, by forcing localized nodes to trans-
mit coarse beacons (coarse since these beacons are prone to compound error) MSL
losses its ‘silent’ trait. But it is not a dreadful tradeoff since these beacons can be
embedded in network traffic and extra messaging overheads could be limited to safe
margins.
Advantages: Synchronized ranging mechanisms yield considerable accuracy.
Disadvantages:Tight global synchronization requires expensive high resolution tim-
ing circuitry and precision clocks. Synchronization offsets are difficult to
detect.
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5.3 M1dDa (Vertical Motion (1D Mobile) Anchors
for Non-Synchronized Distributed Schemes)

Non-Synchronization-based distributed schemes offer flexible design. Not only such
schemes relieve the node to maintain tight synchronization globally but also put
less messaging overhead on loads due to distributed localization processing. Chen
et al. [15] propose a scheme referred as DETL, and employs Detachable Elevator
Transceiver. The scheme is an improved variant of LSHL [102] (covered under non-
mobile surface buoys as anchors). DETs realize motion in one dimension (vertically)
and transmit beacons for the network nodes. The network nodes contain a small
percentage of high power nodes (secondary anchors)which useDETbeacons for self-
localization. These anchors then initiate localization process for ordinary nodes in
the network. DETL tends to mitigate some of the deficiencies in LSHL. For example,
[15] eliminates the need of long range communication requirements between anchors
and surface buoys in LSHL at the expense of additional DET hardware. Although
the scheme does not specifically outlay itself as synchronization-free, its simple
bounding box-based position estimation method allows for flexible implementation.
Advantages:Non-synchronized schemes are easier to implement, more flexible, and
require less expensive timing circuitry for acoustic networks.
Disadvantages: Prone to longer localization delays. Some schemes require hand-
shake with the anchors which incurs messaging overheads and makes them ‘non-
silent.’

5.4 ND (Non-Mobile Anchors (DET Free) Distributed Schemes)

If an anchor refers to mechanically operated DET in submerged networks, these
schemes can then also be classified as anchor-free schemes. These schemes do not
employ conventional 1D or 3D mobile anchors; rather anchor nodes are similar in
mechanical abilities to other sensing nodes in the network. These schemes can be
either range based [102] or connectivity based [57]. For range based, these anchors
(reference nodes) can estimate their position using their proximity to surface buoys
and then act as beacon sources for other distant nodes in the network. Connectivity-
based schemes have lesser accuracy and do not employ any anchors or surface buoys,
and just use connectivity information of the network to estimate the relative positions
of the nodes. These schemes are economical and comparatively easier to implement.
Such schemes usually relieve intricate mechanical hardware requirements of sub-
merged anchors at the expense of accuracy in localization process. Othman et al.
[57] propose an anchor-free scheme (AFL) which requires no submerged anchors.
A seed node initiates the node discovery process. As the network discovery pro-
ceeds, nodes maintain connectivity map of their neighborhood and use it to estimate
their relative position in the network. As expected, the process incurs considerable
messaging overhead. However, if implemented carefully and efficiently, the messag-



9 Localization in Three-Dimensional Wireless Sensor Networks 349

ing overheads can be mitigated to acceptable levels. Furthermore, during deploy-
ment, vigilant recording of sensor IDs and their deployed field region has to be
done. This allows for mapping relative position of nodes to their actual positions
in the deployed 3D field during localization process. The scheme has low localiza-
tion accuracy, prone to long delays and yields only relative position of the nodes
based on their connectivity matrices. However, it has relevant applications for many
scenarios where mechanically operated anchors and surface buoys are not readily
available. Zhou et al. [102] propose a range-based hierarchical scheme called LSHL
which do not employ mobile anchors. Submerged anchors (similar in mechanical
abilities as other nodes in the network) employ their proximity to the surface buoys
and use range-based mechanism to determine their position. Using one-way ToA
ranging and lateration, ordinary nodes listen to beacons from submerged anchors
and determine their positions. Once localized, a node starts acting as a reference
node for the other distant nodes in the network. Though the scheme is economical
to implement, one-way ToA requires tight synchronization. Furthermore scheme is
also prone to compound error in location estimation for distant nodes in the net-
work. However, the economic and implementation practicality of scheme makes it
a suitable candidate for many applications which do not have stringent accuracy
requirements. Isik and Akan [40] also use just three surface buoys to initialize local-
ization in a scheme referred as 3DUL. Similar to [102], localized nodes assume roles
of beacon sources for other nodes in the network. However, as opposed to rang-
ing mechanism in [102], 3DUL uses two way ranging mechanism and lateration to
estimate node positions. This relieves the nodes from tight synchronization require-
ments but requires two-way handshake between reference nodes and un-localized
nodes. This can incur significant messaging and delay overheads due to acoustic
CSMA. The scheme is also prone to magnifying and propagating errors in its itera-
tive cycles. However, this scheme should perform well for sparsely dense networks.
Teymorian et al. [18, 85, 86] propose a localization framework termed USP. USP
allows 2D terrestrial rangingmechanism to be extended for 3Dnetworks. By employ-
ing non-synchronization-based ranging mechanism and a location projection tech-
nique that maps the position of reference nodes onto a same plane, USP is able to
achieve localization for the sensing nodes. Zhou et al. [22] propose a hierarchical
scheme (SLMP) which uses a submerged anchor nodes with long range communi-
cation with surface buoys to determine their positions. Sensing nodes use anchors
to localize themselves and can also assume the role of reference nodes to increase
localization coverage in the network. The major contribution of the scheme is incor-
poration of node movement due to water currents and dispersion. It is explained
in [22] that movement of underwater objects is dependent on many environmen-
tal factors including current and temperature. Furthermore, mobility characteristics
of submerged objects vary markedly in different environments and ocean depths.
For example, submerged nodes near sea shore demonstrate semi-periodic property
because of tides. The work in [22] investigates mobility characteristics in shallow
seashore areas and effect of tidal currents on node movements. Nodes predict their
future mobility patterns according to their past position information and estimate
their present location. Anchor nodes continuously check for error offset between
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predicted location and measured location. If the error is within the stipulated limits,
the mobility model is assumed valid. Otherwise anchor re-executes mobility pre-
diction algorithm and re-estimates its position, followed by regeneration of beacon
updates for sensing nodes. The scheme is one of few works which incorporates
node mobility due to ocean currents in its fundamental model. The scheme is espe-
cially relevant for seashore based 3D WSNs deployments. The work in [22] can
be extended or incorporated for other localization schemes to improve localization
accuracy.
Advantages: Mechanical complexities of mobile anchors are relieved. Schemes are
easier and more flexible to implement. Vast presence of literature allows for myriad
of selection options.
Disadvantages:Higher anchor densitieswith absolute coordinatesmight be required
compared to vertically mobile anchors.

5.5 M3dD (AUV (3D Mobile) Anchors for Distributed Schemes)

AUVs are autonomous underwater vehicles with propulsion system allowing them
to move in 3 Dimension. An AUV is usually a very expensive hardware with sophis-
ticated on-board piloting systems for autonomous maneuvering. An AUV can get
its GPS coordinates while on surface and can keep track of its position while sub-
merged by carefully tracking its trajectory underwater. AUV acts as anchor and
transmit beacons underwater to initiate localization process for the sensing nodes.
Therefore, AUV based schemes are relevant for very critical applications with huge
budgets, e.g., defense or underwater oil exploration, etc. Erol et al. [26] propose
AUV-based scheme (AAL). The scheme is intuitively simple. It uses three basic
messages: wakeup, request and response. AUV sends a wakeup message. The nodes
respond with a location request message. AUV responds with its location update.
Round Trip Delay of request/response exchange with AUV is used to determine
position of nodes. Multiple (at least three) exchanges with AUV are used in trian-
gulation by the nodes to determine their positions in x–y plane and pressure sen-
sors are used to determine the depth. Since AUV trajectories can be pre-planned to
cover remote inaccessible niches, the design brings flexibility in the system comple-
mented by reasonable accuracy. Furthermore, lack of synchronization requirements
also allow for less expensive on-board timing circuitry for sensing nodes. How-
ever, since the scheme is fundamentally based on multiple exchanges with AUV,
acoustic CSMA could be a considerable bottleneck. Furthermore, as pointed out
in [28], the accuracy of [26] may also be severely affected by the frequency of
the location calibration of the AUV. Additionally, since it may take long service
delays, AUV might have to stay submerged for extended periods of time adding
to fuel and maintenance costs. Long service delays of AUV will also result in
long localization delays for the nodes. Luo et al. [47] build on their work in [48]
and mitigate the long AUV servicing and messaging delays by proposing a silent
AUV-based scheme called LDB. AUVs are mounted with directional transceivers.
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AUVs followed pre-planned trajectories while transmitting conical shaped direc-
tional acoustic beams at constant intervals. Nodes listen to these beacons silently
and estimate their locations. Since nodes do not need to exchange messages with
AUVs, AUVs can transmit long range directional beacons. This helps in greatly
reducing the submerged stay of AUVs—resultantly reducing the fuel and mainte-
nance costs. However, the scheme incorporates extra complexity in acoustic trans-
ceivers due to directional beacons. Furthermore, beacon transmission frequency
also considerably affects the localization accuracy. Higher frequency achieves better
estimation at the expense of beaconing overhead. A careful and practical tradeoff
has to be achieved.
Advantages: High localization ratio and accuracy can be achieved. Trajectory plan-
ning could allow for complete localization coverage. Single anchor can transmit
multiple unique beacons from different locations which eliminates the need for mul-
tiple anchors.
Disadvantages: Very high initial and maintenance cost. AUVs operation requires
special training. Sophisticated trajectory planning, piloting and steering mecha-
nisms need to be procured. AUVs cannot remain submerged for extended periods of
time.

5.6 NDv (Fixed Anchors for AUV Localization)

AUVs act as beacon sources for many localization schemes. It is essential that
AUVs maintain accurate estimate of their own position while submerged to avoid
transmitting erroneous beacons. Most such schemes [26, 47] demand use of sophis-
ticated trajectory tracking for AUVs while submerged. However, for improved accu-
racy, it is possible for AUVs to reconfirm their positions from fixed anchors while
being submerged. Cheng et al. [16] and [17] propose a scheme called UPS which
employs a hybrid of AUVs and fixed nodes for sensing purposes. By using four
fixed anchors, AUVs and other sensing nodes can determine their position using
trilateration-based ranging. The nodes detect differences in signal arrival times from
four anchor nodes, and perform trilateration to determine their coordinates from
range estimates. The scheme is silent and does not require synchronization. Authors
take into account different error sources including receiver system delay, underwa-
ter multipath fading and variable acoustic speed underwater. UPS can have rele-
vant applications for other schemes also where AUVs act as anchors, and can help
increase accuracy of self-position estimate of AUVs. UPS however requires all the
nodes to be within optimum range of four anchors which can be a design limita-
tion in practical systems. The error incurred during ranging could be signified if the
anchors are too close. Tan et al. [83] extends UPS in a scheme named WPS and
proposes a variant which achieves localization with high probability regardless of
positioning of reference nodes. WPS uses an extra anchor (UPS-5) to accomplish
this higher localization ratio and accuracy. Not surprisingly, WPS has higher local-
ization success at the expense of more messaging (beaconing) and higher anchor
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density (extra anchor). Although not directly based on UPS and WPS, LSLS pro-
posed byCheng et al. [19] is considerably similar in implementation to these schemes
and uses non-synchronization-based time difference (TDoA) measurements from
anchors. The scheme computes time differences by employing local timers which
eliminates the need for synchronization. The scheme is supplemented by iterative
phases which select newly localized nodes as reference nodes. Each subsequent iter-
ative phase is designed to increase accuracy and localization coverage. Although
these schemes are not specifically designed for AUV localization, the similarities
in their architecture and ranging methods demand them to be grouped together.
Furthermore, UPS and WPS incorporate channel modeling for ocean current and
error analysis due to acoustic signal fading. The model helps greatly increase the
accuracy and reliability in location estimation for all sensing nodes including AUVs
(if employed). Apart from providing localization to conventional stationary sensing
nodes, these localization schemes can have applications in navigational assistance,
collision avoidance, and steerage through obstacle prone submerged environments
for AUVs.
Advantages: Assisted navigation support for AUVs. Schemes can be used for
increased accuracy in self-position estimation for AUVs.
Disadvantages: Extra cost incurred. No dedicated system present at the moment.

5.7 Practical Systems

It is essential to survey practical 3DWSNs existing today so as to put these localiza-
tion schemes into perspective. Presently, examples of 3DWSNs schemes (including
localization) making beyond the realms of simulation environment into real world
practical applications are rare. MASL is one of few 3D localization schemes tested
on actual hardware [41, 91]. Usually inhibitive hardware costs and requirements
for special test environments make physical testing difficult. Furthermore, most of
the present proposed schemes are designed with little regard for physical world
constraints and economic ramifications. In this section (Table5) we present some
practical 3D WSNs systems and their localization mechanisms. It is interesting to
note the small scale of these networks. This highlights the requirement for acad-
emic researchers to design small, resilient and practical 3D localization schemes as
opposed to most present large, complex schemes.

6 Major Work Summaries

This section lists the major works on Localization in 3D WSNs. Table6 categorizes
the work based on distributed/centralized, ranging mechanism, architecture and rel-
evant applications.
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Table 5 Practical 3D WSNs existing today and their localization procedures

System Application Localization procedure Scale

Actuated acoustic
sensor network
[37]. Developer:
University of
Manchester

Monitoring nuclear
waste storage pools

Small robot localized
using acoustic
beacons from
anchors located at
corners of pool

Small. Lab
Environment.
Manchester

Autonomous ocean
sampling
network [38].
Developer:
MBARI

Deep ocean monitoring Surface buoys, mobile
anchors, deep sea
nodes, AUVs act in
coordination

Large. Since 2003.
Monterey Bay. US

NASNet [39].
Developer:
Nautronix
(Commercial)

‘Underwater GPS’
system for
positioning and
navigational
solutions

Assists in obtaining
precise navigational
data utilizing a
subsea acoustic
transmission grid

Large. Commercial
solution

AMOUR
(Autonomous
Modular Optical
Underwater
Robot) [36].
Developer:
CSAIL, MIT

Underwater monitoring.
Research

Localization achieved
using acoustic
signals. High
accuracy within
2.5m

Small. Lab
Environment

Seaweb [67]
Developer: US
Navy

Multiple. Anti
submarine warfare,
navigation,
monitoring,
intrusion detection,
communication

Surface and submerged
beacons. AUVs,
Airborne, surface
and submerged
vehicles coordinate
for acoustic ranging.
Both long and short
ranging

Large. Defense
Applications.
Multiple
deployments since
1998. Large trials
since 2003

Robotic Fish
developer:
Chonnam
National
University [77].
Michigan State
University [75]

Academic Research.
Environment
monitoring

Submerged AUV not
driven by propellers.
GPS or RF
TDoA-based
systems employed.
Localization occurs
when AUV is at
surface

Small. Lab
Environment

7 Future Research Problems

This section discussed some of the future research problems for Localization in 3D
Wireless Sensor Networks.

1. Most algorithms at the moment—especially for submerged 3D WSNs—employ
anchors which have limited or full support formobility. Formost of these schemes
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mobile anchor plays a central role for submerged 3D localization. However there
can be many practical scenarios when mobility might be hindered or not feasible.
This might result in failure for node localization. Research needs to be focused
on design of schemes which are adaptable and flexible and does not rely solely
or heavily on submerged mobile anchors.

2. Most present schemes tend to achieve localization in an economically cost effec-
tive solution. However most schemes fail to incorporate the economic cost of
mobile anchors both in terms of hardware and operational costs. Comparative
analysis needs to be performed to weigh the potential gain/loss of such schemes.
For example, deployment and operational cost analysis of fully mobile anchors
versus increased density of static anchors or DETs can be done.

3. Few works have been done which incorporate speed of mobile anchors and
path trajectories especially for 3D WSNs. There hardly exists any work which
addresses the issue of path planning and trajectory of mobile anchors for 3D
WSNs. Research work in this direction would be meaningful contribution in this
field.

4. In submerged networks, correlated motion of the underwater nodes which due
to ocean currents may be utilized favorably to provide assistance in localization
as discussed in [28]. Research work in this area which utilizes natural energy
of ocean currents for efficient localization would be an interesting contribution.
However suchworkwould need complexmathematical modeling andwould need
to incorporate seasonal variations etc.

5. Most localization algorithms assume that localization is being carried out inde-
pendently of other network function. Cross layer optimization and integrat-
ing/merging of localization schemes in other network functions could result in
serious performance gains.

6. It is explained in [61] that most of the work is directed towards optimization
of localization algorithm and less work has been done in improvement of local-
ization estimation. Accordingly, bias and variance performance are often sec-
ondary concerns. Reporting both bias and variance performance along with the
Cramér-Rao lower bound (CRLB) will help provide a reference for comparison
[11, 61]. Refer to [61] for more details on this problem.

7. Most present schemes are either range-based or range-free. Both schemes have
their own pros and cons. However the distinction between the two schemes should
not be as distinct as it is usually referred in literature. Instead research should be
focusedonproposing schemeswhich are hybrid of range-free and range-based and
are adaptable and flexible according to application requirements. Such schemes
would have the capacity to tune to desired accuracy mode.

8 Conclusion

In this survey we have tried to list all the major works carried out in the field of
3D localization in WSNs. The localization schemes presented are divided into two
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sections: generic and submerged. The relative strengths and weaknesses of each
scheme are also discussed. The survey can be categorized in three major sections.
First section covers the classification and taxonomy. The second section can be
considered the core of survey and lists most of 3D localization schemes and their
prospective benefits. Third section outlays future and open problems in this field.
The target of this survey is to provide the reader with basic understanding and quick
reference ofmajor efforts being carried out in recent past in thefield of 3D localization
in WSNs.
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Chapter 10
Three-Dimensional Wireless Sensor Networks:
Geometric Approaches for Topology and
Routing Design

Yu Wang

Abstract Three-dimensional (3D) wireless sensor networks have attracted a lot of
attention due to their great potential usages in both commercial and civilian appli-
cations, such as environmental data collection, pollution monitoring, space explo-
ration, disaster prevention, and tactical surveillance. Unfortunately, the design of
3D networks is surprisingly more difficult than the design in two-dimensional (2D)
networks. Many properties of the network require additional computational com-
plexity, and many problems cannot be solved by extensions or generalizations of 2D
methods. In addressing these challenges, there have been new network protocols and
algorithms designed for 3D wireless sensor networks using geometric approaches.
In this chapter, we review the most recent advances in 3D topology control and 3D
geographic routing for 3D wireless sensor networks.

1 Introduction

Most existing wireless sensor network systems and protocols are based on two-
dimensional design, where all wireless sensor nodes are distributed in a two-
dimensional (2D) plane. This assumption is somewhat justified for applications where
sensor nodes are deployed on earth surface and where the height of the network is
smaller than transmission radius of a node. However, this 2D assumption may no
longer be valid if a wireless sensor network is deployed in space, atmosphere, or
ocean, where nodes of a network are distributed over a 3D space and the difference
in the third dimension is too large to be ignored. In fact, recent interest in underwater
sensor networks [3], underground sensor networks [4], airborne sensor networks [6],
ocean sensor networks [98], or space sensor networks [33] hints at the strong need
to design 3D wireless networks. Nevertheless, sensor network problems in 3D have
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not been adequately analyzed until recently. There is a tendency to either ignore the
extension of algorithms from 2D to 3D or believe that it is straightforward. Unfor-
tunately, the design of 3D networks is surprisingly more difficult than the design
in 2D. Many properties of the network require additional computational complex-
ity, and many problems cannot be solved by extensions or generalizations of 2D
methods. In facing up to these challenges, there have been new network protocols
and algorithms specifically designed for 3D wireless sensor networks using geomet-
ric approaches by exploring rich geometric properties of sensor networks. In this
chapter, we will review the most recent advances in 3D wireless sensor networks
with a focus on geometric approaches for two particular sensor network problems:
3D topology control and 3D geographic routing.

1.1 Applications of 3D Wireless Sensor Networks

Three-dimensional wireless sensor networks have a variety of applications. Figure 1
shows three possible applications of 3D wireless sensor networks.

Underwater sensor network: Underwater acoustic sensor network (UWSN) [3]
or ocean sensor network [98], shown in Fig. 1a, can find applications in oceanographic
data collection, pollution monitoring, offshore exploration, disaster prevention,

(a) 

(b) (c) 

Under

Fig. 1 Examples of three-dimensional wireless sensor networks: a underwater sensor network,
b underground sensor network, and c airborne sensor network
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assisted navigation, and tactical surveillance applications. Three-dimensional UWSN
is used to detect and observe phenomena that cannot be adequately observed by means
of ocean bottom sensor nodes (in a 2D sensor network), i.e., to perform cooperative
sampling of the 3D ocean environment. In 3D UWSN, sensor nodes float at dif-
ferent depths to enable the exploration of natural undersea resources and gathering
of scientific data in collaborative monitoring missions. Besides the 3D deployment,
UWSN is also significantly different from terrestrial sensor networks: (1) acoustic
channels used under water feature long propagation delays and low bandwidth; (2)
underwater sensor nodes may move with water, thus introducing passive mobility.

Underground sensor network: Underground sensor network (UGSN) [4] can be
used to monitor a variety of conditions, such as soil properties for agricultural appli-
cations, integrity of belowground infrastructures for plumbing, or toxic substances
for environmental monitoring. For example, agriculture can use underground sensors
to monitor soil conditions such as water and mineral content [21]. Wireless sensors
can also be used to monitor the underground tunnels in coal mines [52] as shown
in Fig. 1b. These tunnels are usually long and narrow and distributed in 3D, with
lengths of tens of kilometers and widths of several meters. A full-scale monitoring
of the tunnel environment (including the amount of gas, water, and dust) has been a
crucial task to ensure safe working conditions in coal mines.

Airborne sensor network: Unmanned air vehicles (UAVs) has been proposed
to be used as mobile, adaptive communication backbones for ground-based sensor
networks [75, 86]. Figure 1c illustrates that multiple UAVs can serve as an airborne
relay for a ground-based sensor networks. The UAVs and the sensor nodes together
form a 3D airborne sensor network to support the military applications. The UAVs can
also provide communication connectivity to sensors that cannot communicate with
each other because of terrain, distance, or other geographical constraints. Moreover,
the UAVs themselves can have sensing capacity and form a pure airborne sensor
network [6].

Besides examples above, 3D wireless sensor networks can also be found useful
in many other applications, such as a large 3D space network for space explorations
[33] or a small 3D sensor network in a multi-floor building for structure monitoring
[106]. Due to its wide-range potential applications, 3D wireless sensor network has
recently emerged as a premier research topic in wireless sensor network community.

1.2 Model of 3D Wireless Sensor Networks: Unit Ball Graph

A 3D wireless sensor network consists of a set V of n wireless sensor nodes dis-
tributed in a 3D plane R

3. Each sensor node has the same maximum transmission
range R, thus its transmission region can be simply modeled as a 3D sphere with
radius R (as shown in Fig. 2a). All wireless sensor nodes define a unit ball graph
(UBG), or called unit sphere graph, as shown in Fig. 2b, in which there is an edge
uv between two nodes u and v if and only if the Euclidean distance ≤uv≤ between
u and v in R

3 is at most R. In other words, two nodes can always receive the sig-
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Fig. 2 Illustrations of unit ball graphs: a the transmission region around sensor u is modeled as a
unit ball with radius R and b a unit ball graph formed by 100 sensors

nal from each other directly if the distance between them is not more than R. For
simplification, we usually assume R = 1 in our analysis. If there exists a link uv
in UBG, ν is a neighbor of u. All neighbors of u form its one-hop neighborhood,
denoted as NU BG(u) or N (u). The size of NU BG(u) is the node degree of u in UBG.
Clearly, UBG includes all possible communication links in a 3D wireless sensor
network.

We assume that all wireless nodes have distinctive identities and each node knows
its position information either through a low-power GPS receiver or some other ways
(such as 3D localization methods in [19, 111, 114]). By one-hop broadcasting, each
node u can gather the location information of all nodes within its transmission range.
As in the most common power-attenuation model, the power to support a link uν
is assumed to be ≤uν≤β , where β is the path loss exponent which is a real constant
between 2 and 5 depending on the wireless transmission environment.

1.3 Topology Control and Routing in Wireless Sensor Networks

Topology control technique is to let each sensor node locally adjust its transmission
range and select certain neighbors for communication, while maintaining a structure
that can support energy efficient routing and improve the overall network perfor-
mance. For a 3D wireless sensor network, given the UBG defined by all sensors,
topology control aims to build and maintain a sparse 3D subgraph of the UBG as
the underlying topology for the network. Unlike traditional wired networks, sensor
nodes are often moving or changing status during the communication, which could
change the network topology. Hence it is more challenging to design a topology
control algorithm for sensor networks: the topology should be locally and self-
adaptively maintained without affecting the whole network, and the communica-
tion cost during maintaining should not be too high. Routing is also a challenging
task in wireless sensor networks, which aims to delivery packets from a source
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node to a destination node via multihop relays. Route discovery in most existing
routing protocols (for wired networks or even wireless ad hoc networks) can be
very expensive in communication costs, thus reducing the response time of the net-
work. On the other hand, explicit route maintenance can be even more costly in the
explicit communication of substantial routing information and the usage of scare
memory of wireless sensor nodes. Fortunately, the geometric nature of multihop
wireless sensor networks allows a set of promising approaches to confront these
challenges.

1.4 Geometric Approaches for Wireless Sensor Networks

In wireless sensor networks (especially 3D wireless sensor networks), sensors are
distributed in a certain geographical region. The physical locations of sensor nodes
greatly impact the system design. With rich geometric properties of the wireless sen-
sor network, many geometric algorithms can be used to solve hard problems (such
as localization, topology control, naming, and routing) and provide provable per-
formance guarantee even in a probabilistic and dynamics world. In the past several
years, geometric-structure-based topology control algorithms [32, 51, 58, 59, 72,
73, 77, 87, 103] have been proposed and widely used in sensor networks. They are
primarily targeted to maintain network connectivity, optimize network throughput
with power-efficient routing, conserve energy, and increase fault tolerance. At the
same time, quite a few geographic routing protocols [17, 37, 41, 43, 45, 84, 94] have
been proposed and adopted for ad hoc and sensor networks to improve scalability.
Localized geographic routing protocols do not need the dissemination of route dis-
covery information, and no routing tables are maintained at each node. They only use
the local position information at each node and geometric properties of surrounding
neighbors to determine how to route the packet. This leads to lower overhead and
higher scalability, and makes such routing protocols suitable for large-scale and com-
plex wireless sensor networks. In this chapter, we will see different new geometric
approaches which are designed for topology control or geographic routing in 3D
wireless sensor networks.

Chapter Organization: The rest of the chapter is organized as follows. We review
the current 3D geometric approaches for energy efficient topology control and local-
ized geographic routing in Sects. 2 and 3, respectively. In each section, we first briefly
discuss the prior art for 2D networks and new challenges in 3D networks, and then
present current solutions in details. Finally, we conclude this chapter with a short
summary in Sect. 4.
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2 Topology Control for 3D Wireless Sensor Networks

In this section we focus on the design of 3D geometric topologies which support
energy-efficient paths and/or fault tolerance for communications while can be easily
constructed with purely local information.

2.1 Topology Control Problem for Energy Efficiency

Topology control protocols aim to maintain a 3D structure H from the original
communication graph UBG of a 3D sensor network that can preserve connectivity,
optimize network throughput with power-efficient routing and conserve energy. The
constructed 3D topology H could be a directed or undirected graph. In the literature,
the following desirable features of the structure are well-regarded and preferred in
wireless sensor networks:

(1) Connectivity: To guarantee communications among all sensor nodes, the con-
structed topology H needs to be connected, i.e., there exists a path between
any pair of nodes in the topology. This is the most fundamental requirement
of topology control. Here, we always assume that the original communication
graph UBG is a connected graph.

(2) Bounded Node Degree: It is also desirable that node degree in the constructed
topology H is small and upper-bounded by a constant. If H is a directed graph,
both in-degree and out-degree should be bounded. A small node degree reduces
the MAC-level contention and interference, and may help mitigate the well-
known hidden and exposed terminal problems. In addition, if a graph has a
bounded node degree, it is also a sparse graph, i.e., the total number of links
is linear with the total number of nodes in the graph. A sparse graph conserves
more energy in term of maintaining the constructed network topology.

(3) Energy Spanner: A good network topology should be energy efficient, i.e., the
total energy consumption of the least energy cost path between any two nodes in
final topology should not exceed a constant factor of the energy consumption of
the least energy cost path in the original network [58]. Given a path ν1ν2 · · · vh

connecting two nodes ν1 and νh , the energy cost of this path is
∑h−1

j=1 ≤ν jν j+1≤β .
The path with the least energy cost is called the shortest path in a graph. A
subgraph H is called a energy spanner of a graph G if there is a positive real
constant ρ such that for any two nodes, the energy consumption of the shortest
path in H is at most ρ times of the energy consumption of the shortest path
in G. The constant ρ is called the energy stretch factor. An energy spanner of
the communication graph (e.g., UBG) keeps the possibilities of energy-efficient
routing.

(4) Fault Tolerance: Due to constrained power capacity, hostile deployment
environment, and other factors, events like individual node failures are more
likely to happen in real life wireless sensor networks. To achieve fault tolerance



10 Three-Dimensional Wireless Sensor Networks 373

(such as surviving k − 1 node failures), the constructed topology needs to be
k-connected, given the communication graph (e.g., UBG) is k-connected.

(5) Localized Construction: Due to limited resources and high mobility of wire-
less nodes, it is preferred that the topology can be constructed locally and in a
self-organizing fashion. Here, a topology is localized, i.e., can be constructed
locally, if every node u can decide all edges incident on itself in the topol-
ogy by only using the information of nodes within a constant hops of u. Actu-
ally, all construction algorithms of our topologies presented here only use 1-
hop neighbor information. Notice that if multi-hop neighboring information or
global information is available, some distributed or centralized algorithms can be
applied.

2.2 Previous Solutions for 2D Sensor Networks

With the objective of achieving energy efficiency and maintaining network con-
nectivity, several localized geometrical structures have been proposed for topology
control in 2D wireless networks, such as local minimum spanning tree (LMST) [54,
62], relative neighborhood graph (RNG) [16, 81], Gabriel graph (GG) [16, 37], Yao
graph (YG) [58, 59], cone-based topology control (CBTC) [51, 103], Delaunay-
based graph (Del) [29, 55, 57], and different combinations of these graphs [56, 82,
92]. By constructing such sparse topology structures, transmission power of nodes
can be minimized. As a result, the number of links in the constructed topology is
significantly reduced compared with that of the original communication graph which
contains all links supported by the maximum transmission power (modeled by the
unit disk graph (UDG) in 2D, which contains an edge between two nodes if and
only if their distance is at most one). Among these 2D structures, some are pla-
nar structures (such as LMST, RNG, GG and Delaunay-based graphs), some are
energy spanners of UDG (such as GG, Yao graph, CBTC, and Delaunay-based
graphs), and some are with bounded node degree (such as Yao graph). On the
other hand, lacking of redundancy makes the topology more susceptible to node
failures or link breakages. In order to achieve routing redundancy and construct
k-connected topologies, existing topology control algorithms have been extended
to incorporate fault tolerance (such as FLSSk[53], CBTCk[11], RNGk /GGk[115],
YGp,k[60]).

Besides these localized geometrical structures, there are also other various tech-
niques proposed by researchers for topology control in 2D sensor networks, such as
how to construct a virtual backbone for routing [7, 14, 63, 69] and how to minimize
the total transmission power while maintaining connectivity or other properties [20,
65, 93, 116, 117]. We refer readers to some nice surveys [72, 77, 87] on 2D topology
control for more details.
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2.3 Localized 3D Topology Control for Energy Efficiency

Although geometric topology control protocols have been well studied in 2D net-
works, the design of 3D topology control is surprisingly more difficult than the design
in 2D. Current 2D methods cannot be directly applied in 3D networks. There is no
embedding method mapping a 3D network into a 2D plane so that the relative scale
of all edge length is preserved and all 2D geometric topology control protocols can
still be applied for energy efficiency. In other words, any simple mapping method
from 3D to 2D does not work for energy efficient topology control.

Simply mapping from 3D to 2D does not work for topology control: For
3D topology control, the first thought is whether there exists an embedding
method mapping the 3D networks onto a 2D plane so that all 2D geometric
topology control protocols can still be applied. Here, an embedding of a 3D
graph G = (V, E) into a 2D plane is a mapping f : V → R

2, i.e., each
vertex vi ∞ V with 3D position is identified with a point v∗

i in the 2D plane.
To keep the spanner property of 2D geometric topologies in 3D, we need to
have a mapping method f such that for any two vertex vi and v j the distances
between them in 2D and 3D plane should satisfy ≤v∗

i v
∗
j≤2D = a≤vi v j≤3D

where a is a constant. By applying such a mapping method, for any UBG G
in 3D with a transmission range R, we can define a G ∗ in 2D by scaling the
transmission range to a R. The G and G ∗ share the same connectivity, node
degree, and stretch factors. Unfortunately, there is no such mapping method.
Consider a regular tetrahedron (see Fig. 3) where the distances between any
two nodes from the four endpoints are the same. In a 2D plane, there is no
graph formed by four nodes where the distances between any two nodes are
the same. Therefore, mapping 3D networks to 2D ones does not work when
we want to achieve energy efficiency.

Therefore, there have been many new 3D geometric structures [11, 31, 38, 50,
90, 91] proposed for 3D wireless sensor networks. Next, we review them by groups.
We start with the group of sparsest 3D structures (LMST, 3D GG and 3D RNG),
then discuss a group of 3D structures with bounded degree (3D Yao graph and its
relatives), and finally introduce 3D Delaunay, which is the most complicated structure
and hard to built with only local information.

Fig. 3 Mapping 3D into 2D
does not work for topology
control: no such mapping
maintaining the relationship
of lengths among links exists

1v

2v
3v

4v
2v’

3v’

4v’

v’1 ?
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2.3.1 LMST, 3D GG, and 3D RNG

The minimum spanning tree, denoted by MST, is the tree which connects all nodes
with minimized total edge length. MST is obviously one of the sparsest possible
connected subgraphs, but its energy stretch factor can be as large as n − 1 and
it cannot be built locally. Therefore, Li et al. [54] proposed a localized topology
called local minimum spanning tree (LMST) to estimate MST and keep the network
connected. In LMST, each node builds its local minimum spanning tree in one-hop
neighborhood independently and only keeps one-hop on-tree nodes as neighbors.
They proved that LMST is connected, and has a bounded degree of 6. Then, Li et al.
[62] further proposed k-localized minimum spanning tree (LMSTk) which can be
locally constructed using k-hop information. LMSTk is connected and planar, the
total edge length of the LMSTk is within a constant factor of that of the MST when
k ∼ 2. Notice that LMST (or LMSTk) still works for 3D sensor networks. It can
guarantee the connectivity of the network and is easy to be constructed by using
local information. However, as the same problem as in 2D, the energy stretch factor
of LMST can be arbitrarily large, i.e., unicast routing between a pair of nodes may
need to travel a much longer distance than the shortest path in UBG.

It is very natural to extend the related neighborhood graph (RNG) [85] and Gabriel
graph (GG) [26] to 3D. The definitions of 3D RNG and 3D GG are as follows: an
edge uv ∞ RNG if and only if the intersection of two balls centered at u and ν with
radius ≤uν≤ does not contain any node from the set ν; an edge uv ∞ GG if and
only if the ball with edge uv as a diameter contains no other node of ν. Figure 4
illustrates the new 3D definitions. RNG and GG contains MST, which indicates that
they are connected if the UBG is connected. However, both of them do not have
bounded node degree. Assume that a node u has large number of neighboring nodes
on the surface of its transmission sphere. In both RNG and GG, these neighboring
nodes are all kept by u, thus u will have a large node degree. From the definitions,
RNG ∈ GG since the shaded area in GG is included in the one in RNG. By using
[58]’s example and proof in 2D case, we can prove that RNG is not an energy spanner,
while GG is an energy spanner with the energy stretch factor of one. In other words,
all edges in the least energy path in UBG are kept in GG.

Based on their definitions, 3D RNG and 3D GG can be easily constructed using
1-hop neighbors’ position information only. Thus, the message complexity of the
topology control protocol is O(n) where n is the total number of nodes. Notice that
all of these message exchanges are for learning the positions of 1-hop neighbors.
There is no additional message exchange needed after each node learns its 1-hop

Fig. 4 Definitions of a 3D
RNG and b 3D GG. Shaded
areas contain no nodes u v u v

(a) (b)
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neighbors via periodic beacon messages. To check whether a neighbor w is inside
the shaded areas, node u can simply check whether ≤uw≤ < ≤uν≤ and ≤wν≤ < ≤uν≤
for RNG or ≤uw≤2 +≤wν≤2 < ≤uν≤2 for GG. Therefore, the time complexity of the
topology control protocol at each node is O(d) where d is the number of neighbors
at that node.

2.3.2 3D Yao Structures and CBTC-Based Methods

Since both 3D RNG and 3D GG cannot bound node degree, it is also of interest to
extend Yao graph to 3D. Yao graph [107] is originally proposed for construction of
high-dimensional MST, but has been recently used for topology control in 2D ad hoc
and sensor networks [58, 59]. In 2D, Yao graph Y Gk is defined as follows. At each
node u, any k equally-separated rays originating at u define k cones. In each cone,
choose the shortest edge uv among all edges emanated from u, if there is any, and
add a directed link −→uv. In [58, 59], Li et al. proved that 2D Yao graph is an energy
spanner of UDG. Their proof of the spanner property is based on the induction of
link length. As shown in Fig. 5, for each removed link uv /∞ Y Gk , they proved the
energy consumed by a shorter link uw and a path from w to v is within constant times
of the energy consumed by link uv. The key result of their proof can be summarized
by the following lemma:

Lemma 1. [58, 59] The energy stretch factor of the Yao-based graph is at most
1

1 − (2 sin δ
2 )β

, if for every link uv that is not in the final graph, there exists a shorter

link uw in the graph and ∠vuw < δ, where δ is a constant smaller than π/3, as
shown in Fig.5.

Clearly, if k > 6, 2D Yao graph has its energy stretch factor bounded by 1
1 − (2 sin π

k )β
.

3D Yao structures can use certain types of 3D cones to partition the transmission
region of a node (which is a sphere), and inside each 3D cone the node only keeps a
link to the nearest neighbor. If the number of such 3D cones is bounded by a constant
k, 3D Yao structures can bound the node out-degree by k. However, it is hard to
define the partition boundary of Yao structure of a node in 3D. Notice that a disk
in 2D can be easily divided into k equal 2D cones which do not intersect with each
other, but in 3D case, it is hard to divide a sphere into k equal 3D cones without
intersections among each other. Basically, 3D Yao structures can be categorized into
two sets based on their partition methods: fixed partition and flexible partition.

Fig. 5 Illustration of
Lemma 1 for spanner property
of Yao structure

δ

w

u v
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3D Yao Structures based on Fixed Partition:

In fixed partition, 3D cones from one node do not intersect with each other and the
partition method is the same for all nodes. In [90, 91], Wang et al. first proposed two
methods to divides the transmission range of a node into certain number of 3D cones.
Figure 6a and b illustrate these two methods, which divide the transmission ball into
32 and 56 cones respectively. For each cone, node u will choose the shortest edge
uv ∞ U BG among all edges emanated from u, if there is any, and add a directed link−→uv. Ties are broken arbitrarily or by ID. The resulting directed graphs are denoted by
FiY G32 and FiY G56 respectively. Notice that these cones in FiY G32 and FiY G56
are different and do not intersect with each other.

In FiY G32, for each node u, it first divides its transmission region into 8 pieces
by three orthogonal planes (i.e., xy-plane, yz-plane and zx-plane), where each piece
is a 1/8 sphere. Then it uses three more planes as shown in Fig. 6a to cut each piece
into four cones (nodes c1, c2 and c3 are the middle points of arcs in the 1/8 sphere).
In FiY G56, smaller cones are used for partition, as shown in Fig. 6b. Each piece of
the 1/8 sphere is cut into 7 cones, where c1 and c∗

1, c2 and c∗
2, c3 and c∗

3 trisect the
arcs of 1/8 sphere respectively.

Recently, Kim et al. [38] proposed another localized Yao-based structure with
Platonic solid (PYG) which also uses a fixed partition method. To construct PYG,
each node divides the 3D sphere neighborhood into k equal cones by using a regular k-
polyhedron and selects the nearest neighbor in each cone. The resulting directed graph
is denoted by PY Gk . Possible polyhedrons include tetrahedron, cube, octahedron,
dodecahedron, and icosahedron for k = 4, 6, 8, 12, 20 respectively. Figure 6c and d
illustrates partition examples with an octahedron k = 8 and a dodecahedron k = 12.
Notice that the cones in this method are with same shape/size and do not intersect
with each other.

For all these 3D Yao structures based on fixed partition (FiY Gk or PY Gk), it
is obvious that they have a bounded out-degree of k. In terms of energy spanner, it

Fig. 6 Definitions of 3D
Yao Structures with fixed
partitions: a and b partitions
of the 1/8 sphere in FiYG:
FiYG32 and FiYG56; c and d
partitions using an octahedron
or a dodecahedron for PYG:
PYG8 and PYG12
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depends how large k is used during the construction. For example, it is easy to show
that the largest angle inside a cone in FiY G32 is the angle ∠c1uc2 = π/3. Thus,
the energy stretch factor 1

1 − (2sin( δ
2 ))β

in Lemma 1 could be infinite when δ = π/3.

Similar situation happens for PY G8. Therefore, to build an energy spanner using
3D Yao structures, k needs to be large enough, such as in FiY G56 and PY G12.
Finally, all above methods based on fixed partition can be performed locally using
1-hop neighbor information and with O(d) time, where d is the number of 1-hop
neighbors.

Notice that in [38], the authors also consider the interference effects to adaptively
choose the neighbor with the minimum transmit power and adjust the topology. How-
ever, such modification will break the connectivity and energy spanner guarantees
of 3D Yao structures brought by geometric properties.

3D Yao Structures Based on Flexible Partition

In flexible partition, identical 3D cones with a top angle θ are used to partition
the transmission ball and where to define these cones depends on the locations of
neighbors around node u (i.e., different nodes may get different partitions). Here θ
is an adjustable parameter. Clearly, larger θ leads to lower node out-degree at each
node. We use Cuv to represent the 3D cone with uv as its axis. In [90, 91], Wang et al.
proposed three different methods to perform such a partition. However, they showed
that the first method (simply applying Yao structure for every 3D cone defined by
each neighbor of u and adding the shortest link in each cone) does not bound the
node out-degree. See Fig. 7a for such an instance. Let v0, v1, . . . and w0, w1, . . . are
all node u’s neighbors, their lengths satisfy (1) ≤wiu≤ > ≤wi+1u≤ and ≤wiu≤ < ≤vju≤
for any i, j , and (2) ∠vi uvi+1 = ∠wi uwi+1 = α. Since wi u is the shortest link in
cone Cuvi , it will be added in the resulting structure so that all wi are neighbors of u in
the final structure. If the angle α is arbitrarily small, the number of nodes wi could be
large, i.e, the node out-degree at u in the resulting structure could be extremely large.

α

u

w
ww

vvv 012

2
1

0

α

u

v

θ

v’
θ/2

u

(a) (b) (c)

Fig. 7 Illustration of degree bounds for FlY Gθ: a proof of unbounded degree for the first method
in [90, 91]; b and c proof of bounded degree for the third method in [90, 91]
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Fig. 8 Definitions of 3D Yao structures with flexible partitions FlY Gθ: a 3D cone defined by uvi
and b possible overlapping of cones

To fix this problem, the second and third methods by [90, 91] mark the neighbors
who have been processed by a 3D cone as processed and disable them to be processed
by another 3D cone (thus 3D cones are only defined for unprocessed links). In the
second method, when link uv is in processing, Cuv is defined and only the shortest
link uw inside the cone is kept, then all links in Cuv are marked as processed. The third
method first orders all links uv in term of link length and then processes them follows
an ascending order. Here, we just review their third method and its performance
analysis in detail. Initially, all neighbors vi of node u are unprocessed and ordered
by the distance to u. The algorithm processes link uv from the shortest link and
follows an ascending order. When it processes uvi , it defines the 3D cone Cuvi which
uses uvi as its axis (as shown in Fig. 8a), adds the link uvi , and marks all other links
in Cuvi as processed. We denote the final structure as FlY Gθ or FlYG when value of
θ is clear. Algorithm 1 illustrates the detailed algorithm. The time complexity of this
algorithm is O(d log d) due to the sorting. Notice that the 3D cones in this method
are in the same size/shape and can intersect with each other (as in Fig. 8b).

Algorithm 1 Construct 3D Yao Structure FlY G for Node u
Input: all neighbors NU BG(u) of node u in UBG.
Output: neighbors NFlY G(u) of u in the constructed FlYG.
1: Sort all neighbors vi ∞ NU BG(u) by its length such that ≤uvi ≤ ≥ ≤uvi+1≤, where i = 1 to

|NU BG(u)|.
2: Set PROCESSED(vi ) = 0 for all neighbor vi ∞ NU BG(u).
3: for i = 1 to |NU BG(u)| do
4: if PROCESSED(vi ) = 0 then
5: As shown in Fig. 8a, let Cuvi be the cone using uvi as the axis and θ as the top angle.
6: Keep vi as a neighbor of u in FlYG, i.e., add vi in NFlY G(u).
7: Set PROCESSED(w) = 1 for every other neighbor w inside Cuvi .
8: end if
9: end for
10: return NFlY G(u)
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Now we prove the properties of FlY Gθ as the following theorem.

Theorem 1. [90, 91] The node out degree of FlY Gθ is bounded by 2
1 − cos( θ

4 )
and

the energy stretch factor of FlY Gθ is bounded by 1
1 − (2sin( θ

4 ))β
when θ < 2π/3.

Proof. In Algorithm 1, after u processes Cuv, it marks all links inside Cuv as
processed and those links will never be processed. And each processed cone adds
at most one outgoing link in the final structure. Therefore, we only need to prove
the number of processed cone is bounded by a constant, then the node out-degree of
FlY Gθ is bounded. Here, we claim that for any two processed cones, the angle α
between their axes satisfies α ∼ θ/2 as shown in Fig. 7b. Assume there exists any
two processed cones Cuv and Cuv∗ , the angle between their axes ∠vuv∗ = α < θ/2.
Then v∗ is inside Cuv and v is inside Cuv∗ . One of v and v∗ will be processed first, let us
assume it is v. Then after adding the shortest link uv in Algorithm 1, u will mark all
nodes inside Cuv as processed including v∗. Thus, v∗ will never be processed which
is a contradiction. It is easy to show that the number of processed cones is bounded
by a constant. Since α ∼ θ/2, the cones with uv and uv∗ as axes and with θ/2 as
top angle cannot intersect each other. Thus, the total number of processed cones is
bounded by how many such θ/2 cones can be put into a unit sphere so that they do
not intersect with each other. By using a volume argument, this number is bounded
by 4π/3

2π(1 − cos(θ/4))/3 = 2
1 − cos( θ

4 )
. See Fig. 7c for reference. This finishes proof of

the first part of this theorem about degree bound.
In Algorithm 1, for a link uw /∞ FlY Gθ, there must exist a shorter link uvi ∞

FlY Gθ who defined Cuvi where uw is removed. See Fig. 8a. The angle ∠wuvi < θ/2,
since uvi is the axis. By Lemma 1, the energy stretch factor of FlY Gθ is 1

1 − (2sin( θ
4 ))β

when θ < 2π/3. This finishes proof of the second part of this theorem about energy
stretch factor.

Notice that if θ = π/2, the degree bound is 2
1 − cos( θ

4 )
≈ 26 which is much smaller

than those of FiY Gs, and if θ = π/3, the degree bound is 58.

CBTC-Based Methods

Bahramgiri et al. [11] generalized the cone-based topology control (CBTC) proto-
col [51, 103] from 2D to 3D to preserve connectivity. Basically, each node u increases
its transmission power until there is no empty 3D-cone with angle degree α, i.e., there
exists at least a node in each 3D-cone of degree α centered at u, if α � 2π

3 . Even
though this approach can guarantee connectivity, the gap detection algorithm applied
to check the existence of the empty 3D-cone of degree α is very complicated. The
time complexity of the gap detection algorithm at a node u is O(d3 log d), where d
is the node degree of u. Moreover, their method cannot bound node degree, as shown
by [60].

Ghosh et al. [31] also presented two CBTC-based approaches for 3D wireless
networks. Though the first approach, a heuristic based on 2D orthographic projec-
tions, can provide excellent performance in practice, it cannot guarantee connectivity
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for sure. In the second approach, a spherical Delaunay triangulation (SDT) is built
to determine the existence of empty 3D cones. Although the second approach can
guarantee connectivity of the network, the expense to construct the SDT is very high.
Similarly, Poduri et al. [70] also used the spherical Delaunay triangulation to find
the largest empty 3D cone in order to apply a CBTC-based topology control. The
expense of SDT construction makes it inefficient in practice.

2.3.3 3D Yao & Reverse Yao and 3D Symmetric Yao

Even though 3D Yao structures (including FiYG, FlYG, and PYG) can bound the
node out-degree, their node in-degree could be as large as O(n) where n is the number
of nodes in the networks. Bounded out-degree from 3D Yao structures gives us
advantages when applying several routing algorithms on these structures. However,
possible unbounded in-degree at some nodes will often cause large overhead or
contention at those nodes which may make them exhausted earlier than other nodes.
Therefore, it is often imperative to construct a sparse network topology such that
both the in-degree and the out-degree are bounded by a constant while it is still
energy spanner. Faced up with this challenge, Li et al. [50] proposed two general
frameworks to build 3D topologies with bounded node degree (both bounded in-
degree and out-degree). Their general frameworks are based on any existing 3D Yao
structure (such as FiYG [90, 91], FlYG [90, 91] and PYG [38]). Hereafter, we define
a general function 3D-YAO-Structure() which can generate the neighbor set of 3D
Yao structure at node u given the current neighbor set of u. The 3D-YAO-Structure()
function can be any generation methods of existing Yao-based 3D structures. We use
YG to denote the generated 3D Yao structure.

The first set of 3D topologies is 3D Symmetric Yao Graph (SYG), an undirected
graph, which guarantees that the node degree is at most k. It first applies the 3D Yao
structure to select the closest node in each 3D cone. An link uv is selected to graph
SYG if and only if both u and v are selected to be kept by each other in YG, i.e.,
v ∞ NY G(u) and u ∞ NY G(v). See Fig. 9a and b for illustrations. Algorithm 2 shows
the framework. It is clear that only one-hop information is used and total O(n) of
messages are used. Thus, the SYG can be built locally and efficiently. Notice that
similar idea has been used in 2D networks [57, 83, 96].

u v u v

w

u v

(a) (b) (c)

Fig. 9 Illustrations of 3D Yao Structures with bounded degree: a and b 3D Symmetric Yao Graph;
c 3D Yao and Reverse Yao Graph. Here, (a) uv ∞ SYG, (b) uv /∞ SYG, (c) −→uv ∞ YYG
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Algorithm 2 Building 3D Symmetric Yao Graph at Node u
Input: all neighbors NU BG(u) of node u in UBG.
Output: neighbors NSY G(u) of u in the constructed SYG.
1: NY G(u) =3D-YAO-Structure(NU BG(u)).
2: Broadcast NY G(u) to all neighbors NU BG(u).
3: for all node v ∞ NY G(u) do
4: if u ∞ NY G(v) then
5: Keep v as a neighbor of u in SYG, i.e., add v in NSY G(u).
6: end if
7: end for
8: return NSY G(u)

Algorithm 3 Building 3D Yao and Reverse Yao Graph at Node u
Input: all neighbors NU BG(u) of node u in UBG.
Output: neighbors NY Y G(u) of u in the constructed YYG.
1: NY G(u) =3D-YAO-Structure(NU BG(u)).
2: Broadcast NY G(u) to all neighbors NU BG(u).
3: Let N in

Y G(u) be the set of u’s incoming neighbors, i.e., all node v satisfying u ∞ NY G(v).
4: N in

Y Y G(u) =3D-YAO-Structure(N in
Y G(u)).

5: Broadcast N in
Y Y G(u) to all neighbors NU BG(u).

6: for all node v ∞ NY G(u) do
7: if u ∞ N in

Y Y G(v) then
8: Keep v as a neighbor of u in YYG, i.e., add v in NY Y G(u).
9: end if
10: end for
11: return NY Y G(u)

The second set of 3D topologies is 3D Yao and Reverse Yao Graph (YYG), a
directed graph, which guarantees that both node in-degree and node out-degree are
at most k. The basic idea is to apply reverse 3D Yao structure on YG to bound the
node in-degree. Node u chooses a node v from each 3D cone, if there is any, so the
incoming link √−uv in YG has the smallest length among all incoming links from YG
in that cone as shown in Fig. 9c. Similar idea has been used for 2D networks by [32,
59, 76]. Algorithm 3 shows the detailed algorithm. 3D YYG can be built locally and
efficiently with only 1-hop neighbor information and linear number of messages.

We are now ready to provide some analysis on these 3D structures built by our
general frameworks. We will use two basic properties of the underlying 3D Yao
structures: (1) the out-degree of 3D YG is bounded by k; and (2) if a link uv ∞ U BG
is not kept in 3D YG, there must exist a shorter link uw kept in 3D YG and ∠vuw < θ.
Here θ is the largest angle possible in a 3D cone in FiYG or the half of the top angle
of the 3D cone in FlYG.

Theorem 2. [50] Both 3D SYG and 3D YYG are strongly connected if the original
3D UBG is connected and the angle parameter θ in 3D YG is bounded by π/3.
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Proof. We first prove the connectivity of 3D SYG, which is equivalent to prove that
there is a directed path from u to v in SYG for any two nodes u and v with ||uv|| ≥ 1.
We prove this claim by an induction over the distance ||uv|| between nodes u and
v. First, note that the edge between the closest pair of nodes must be kept in SYG.
Assume that the claim is true for all links less than ||uv||. Now we consider nodes u
and v. If uv is kept in SYG, the claim is true. If uv is not in SYG, there must a node
w inside one of 3D cones at u or v who causes the deletion of uv. Assume w and v
are in the same cone of u and ||uw|| < ||uv||. Because the angle ∠wuv is less than
θ ≥ π

3 , we have ||vw|| < ||uv||. By induction there is a path from u to w and a path
from w to v in SYG. Therefore a path from u to v exists in SYG. This finishes the
proof for SYG.

We next prove that SYG is a subgraph of YYG, which then can imply the con-
nectivity of 3D YYG automatically. Assume that there exists a link uv in SYG but
not in YYG. From the definition of SYG, we know link uv is selected by both u and
v in 3D YG. Then if we apply reverse Yao structure on incoming neighbor of 3D
YG (as Line 4 in Algorithm 3), uv will also be selected by node v. Thus, uv must be
in YYG. This is a contradiction. Therefore, YYG is a supergraph of SYG and fully
connected.

Theorem 3. [50] The node degree of 3D SYG is bounded by k while both node
out-degree and in-degree of 3D YYG is bounded by k, where k is the degree bound
of underlying 3D YG.

Proof. This theorem is straightforward from the construction methods of SYG and
YYG. Both methods first apply 3D YG. Since each node has at most k 3D cones
during this construction, the out-degree is bounded by k. For 3D SYG, a link is kept
only if both endpoints keep it in 3D YG. Thus, the node degree of SYG is obviously
bounded by k. For 3D YYG, the second round of 3D YG is applied to incoming links,
thus the node in-degree is also bounded by k. Notice that in 3D YYG, the out-degree
and in-degree neighbors of a node may be different set of nodes.

Theorem 4. [50] The 3D SYG is not a power spanner of UBG, while 3D YYG is a
power spanner of UBG when β ∼ 3 and θ < π/3.

Proof. The first half of this theorem can be directly obtained from a result by
Grunewald et al. [32]. They basically show how to construct a counter example
of a 2D network in which SYG is not a power spanner. Since the 2D network is a
special case of 3D networks, the same counter example works for 3D networks.

The proof of power spanner property of YYG is much challenging, even in
2D. Jia et al. [34] first proved that 2D YYG is a power spanner when θ ≥ π/60
(i.e., k ∼ 120). It seems that their proof might be extended to 3D case, however, the
node degree bound will be huge (larger than 4π/3

2π(1 − cos(θ/2))/3 ∼ 5836). Thus it is
not very useful in practice. Schindelhauer et al. [79] then proved that 2D YYG is a
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power spanner with power spanning ratio (8c + 1)2 (2c)β

1 − 2(2−β) for β > 2 when k > 6.

Here c = 1
1 − 2 sin(π/k)

. They proved this by first proving that 2D YYG is a weak
c-spanner. In a weak c-spanner, between any two nodes there exists a path which
remains within a disk or sphere of radius c-times the Euclidean distance between
them. Their proof of weak spanner property of YYG can also be extended to 3D
YYG with θ < π/3. However, to further extend it to 3D power spanner, it requires
β ∼ 3. More specifically, 3D YYG is a power spanner with power spanning ratio

(8c +1)3 (2c)β

1 − 2(3−β) for β > 3 or O(c12) for β = 3 when θ < π/3. Therefore, we can
claim that 3D YYG is a power spanner for β ∼ 3 and θ < π/3. When 2 ≥ β < 3,
the power spanner property is still open.

2.3.4 3D Delaunay

Delaunay triangulation [25, 30] is a well-known geomtric spanner. A triangulation of
V is a Delaunay triangulation (Del), if the circumcircle of each of its triangles do not
contain any other vertices of V in its interior in 2D and if the circumsphere of each of
its tetrahedrons do not contain any other vertices of V in its interior in 3D (as shown
in Fig. 10). In 2D, Del is a planar length spanner which implies it is also an energy
spanner. 3D Del keeps the energy spanner property and also has certain benefits for
geographic routing (we will discuss them in Sect. 3). However, it is not appropriate to
require the construction of Del in the wireless communication environment because
of the potentially massive communications it requires. Several published results
(localized Delaunay graph (LDel) [55] , partial Delaunay graph [57], and restricted
Delaunay graph [29]) were proposed to build 2D Del in a localized way. Similar
techniques can be used to build 3D Del for 3D wireless sensor networks, as did in [64].

2.4 Localized 3D Topology Control for Fault Tolerance

In order to be energy efficient, topology control algorithms try to reduce the num-
ber of links, and thereby, reduce the redundancy available for tolerating node and
link failures. Thus, the topology derived with such algorithms is more vulnerable to
node failures or link breakages. However, due to constrained power capacity, hos-
tile deployment environment, and other factors, events like individual node failures
are more likely to happen, which might cause network partitions and badly degrade
the network performance. Therefore, in order to gain certain degree of redundancy
and guarantee the overall performance, fault tolerance becomes an additional and
critical requirement for the design of wireless sensor networks. As fault tolerance
strongly depends on the network connectivity, topology control for such networks
needs to consider both energy efficiency and fault tolerance. Fortunately, most of the
3D structures we introduced so far can be easily extended to support fault tolerance
[11, 88, 89]. Next, we briefly review some of them.
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Fig. 10 Definition of 3D
Delaunay triangulation:
Delaunay tetrahedron abcd

a

b
c

d

2.4.1 3D k-RNG and 3D k-GG

The first two localized structures are based on 3D RNG and 3D GG. The definitions of
3D k-RNG and 3D k-GG are as follows: an edge uv ∞ RN Gk if and only if the inter-
section of two balls centered at u and v with radius ≤uv≤ contains less than k nodes
from the set V ; an edge uv ∞ GGk if and only if the ball with edge uv as a diameter
contains less than k nodes of V . See Fig. 11 for illustrations. Clearly, by definitions,
3D RNG and 3D GG are subgraphs of 3D k-RNG and 3D k-GG, respectively. This
also implies 3D k-RNG and 3D k-GG preserve the basic connectivity.

Now we prove both 3D k-RNG and 3D k-GG can preserve the k-connectivity,
which is much stronger than 1-connectivity.

Theorem 5. [88, 89] The 3D structures k-RNG and k-GG are k-connected if the
UBG G is k-connected, i.e., both k-RNG and k-GG can sustain k − 1 node faults.

Proof. We first prove the theorem for 3D k-RNG. Given a set S of k − 1 nodes,
S ⊂ V , due to the k-connectivity of G, we know that G − S is still connected.
To prove k-RNG is k-connected, we prove that k-RNG−S is connected by contra-
diction. Assume that graph k-RNG−S is not connected, then, there must exist at
least a pair of nodes such that there is no path between them. Let the nodes u, v be
the pair with the smallest distance to each other , i.e., ≤uv≤ ≥ ≤u∗v∗≤ for any pair of
nodes u∗, v∗ that are not connected. Since uv /∞ k-RNG−S, uv /∞ k-RNG. According
to the definition of k-RNG, there should be at least k neighbors w of node u that

u v u v i

x

θ
u

v

(a) (b) (c)

Fig. 11 a 3D k-RNG and b 3D k-GG: an edge uv is kept if and only if the shaded area has less
than k nodes. Here assume k = 3, thus uv is kept. c 3D k-Yao Graph: k shortest links kept in one
cone
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satisfy the condition ≤uw≤ < ≤uv≤ and ≤wv≤ < ≤uv≤. Assume the removed k − 1
nodes are neighbors of node u, then there is at least one neighbor w left in k-RNG−S
with ≤wv≤ < ≤uv≤. As nodes u, v is the pair with the smallest distance among those
disconnected pairs in k-RNG−S, nodes w, v must be connected. Therefore, nodes
u, v are also connected via w, which is a contradiction to the assumption. Thus,
k-RNG−S is connected, and k-RNG is k-connected. Note that for the case where
removed nodes are not all neighbors of u, the proof also holds. The above proof using
contradiction can be easily adopted for 3D k-GG too.

Considering the energy efficiency of routes in 3D networks, 3D k-RNG is not
an energy spanner for UBG while k-GG is an energy spanner of UBG with stretch
factor of one. The latter part can be directly obtained from GG ∈ k-GG. Next, we
consider the situation with at most k − 1 node failures. Assume that the set of k − 1
failure nodes is S and UBG(V, E) is the original communication graph. We use
UBG∗ to represent the communication graph without failure nodes and links, i.e.,
UBG∗ = G(V − S, E − {uv|u ∞ S and v ∞ S}). Similarly, k-GG* is the graph
that removes all failure nodes and links from 3D k-GG. We can prove the following
theorem on the power efficiency of 3D k-GG:

Theorem 6. [88, 89] The structure k-GG* is a power spanner of UBG∗ with span-
ning ratio bounded by one even with k − 1 node failures S.

Proof. Basically, we need to prove that every link on the least energy cost paths
in UBG∗ is kept in k-GG*. We prove this by contradiction. Consider any link uv
in any least energy cost path in UBG∗. Assume that uv /∞ k-GG*, thus uv /∞ k-GG.
By the definition of k-GG, there must be at least k neighbors of node u inside the
ball B with edge uv as a diameter. After removing k − 1 failure nodes S, there must
be at least one neighbor left and let us assume it as w. Since w is inside the ball B,
≤uw≤2 + ≤wv≤2 < ≤uv≤2. Remember β > 2, thus ≤uw≤β + ≤wv≤β < ≤uv≤β . In
other word, the path using uw and wv uses less energy cost than the path using uv.
This is a contradiction. It implies that the assumption is wrong, i.e., that edge uv
remains in k-GG and k-GG*.

2.4.2 3D k-Yao Structures and CBTC-Based Methods

Both 3D Yao structures and 3D versions of CBTC methods can be extended to
support fault tolerance. Wang et al. [88, 89] extended their 3D Yao structures as
follows. When the algorithm processes a 3D cone (either in fixed partition or flex
partition), it adds the k shortest links in this cone instead of the shortest link only.
We denote the final structure as k-YG. Figure 11c shows an example of the algorithm
when k = 3. Bahramgiri et al. [11] extended their 3D CBTC algorithm to ensure
k-connectivity as follows. Each node u increases its transmission power until there
is no empty 3D-cone with angle degree α, i.e., there exists at least a node in each
3D-cone of degree α centered at u, if α � 2π

3k .
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Now we prove some properties of k-YG in the following three theorems. Here we
use FlYG as the underlying 3D Yao structure. However, similar proofs can be done
for other 3D Yao structures.

Theorem 7. [88, 89] The structure k-YG is k-connected if the original UBG G is
k-connected.

Proof. For simplicity, assume that all k−1 fault nodes v1, v2, . . . , vk−1 are neighbors
of a node u. We show that the remaining graph of k-YG after removing the k − 1
nodes is still connected. Notice that G is k-connected, thus, the degree of each node
is at least k. Additionally, with the k − 1 fault nodes removed, there is still a path
in G to connect any pair of remaining nodes. Assume that the path uses node u and
have a link uw, we can prove by induction that there is a path in the remaining graph
to connect u and w.

If uw has the smallest distance among all pairs of nodes, according to the con-
struction algorithm uw must be in k-YG. Assume the statement is true for node
pair whose distance is the r th shortest. Consider uw with the (r + 1)th shortest
length.

If w is one of the k closest nodes to u in some cone, the link uw remains in the
remaining graph. Otherwise, for the cone in which node w resides, there must be
other k nodes which are closer to u than w and they are connected with u in k-YG.
Since we only have k − 1 failure nodes, at least one of the links of k-YG in that
cone will survive, say link ux . As ∠xuw < θ < π

3 , xw in triangle xuw is not the
longest edge. Thus, ≤xw≤ < ≤uw≤, and nodes x and w are connected. Then link uw
can be replaced by link ux and a path from x to w by induction. This finishes the
proof.

Note that for the case where the nodes removed are not all neighbors of the same
node, the induction proof also holds. Induction is based on all pair of nodes.

Theorem 8. [88, 89] The node out-degree of k-YG is bounded by 2k
1 − cos( θ

4 )
.

Proof. Notice that for each processed 3D cone, at most k outgoing links are added
in k-YG. Since that the number of processed cones is bounded by 2

1 − cos( θ
4 )

as we

proved in Theorem 3, the node out-degree of k-YG is bounded by 2k
1 − cos( θ

4 )
.

For energy efficiency of k-YG, it is obvious that k-YG is an energy spanner of
UBG since 1-YG ∈ k-YG and 1-YG is an energy spanner. Again, we now consider
the situation with at most k − 1 node failures. Assume that S is the set of failure
nodes, UBG∗ and k-YG* are the communication graph without failure nodes/links
and the 3D k-YG without failure nodes/links respectively.

Theorem 9. [88, 89] The structure k-YG* is a power spanner of UBG∗ with span-
ning ratios bounded by a constant, 1

1 − (2sin( θ
4 ))β

, even with k − 1 node failures S.

Proof. For any link ux /∞ k-YG* (also /∞ k-YG), there must exist k shorter links
in the resulting graph k-YG and k-YG*. Thus, with at most k − 1 node failures,
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there exists at least one shorter link, say uv, and ∠xuv < θ/2 < π/3. Therefore, by
Lemma 1, k-YG* is still a power spanner of UBG∗ with spanning ratios bounded by

1
1 − (2sin( θ

4 ))β
.

2.5 Summary

So far, we have introduced several 3D geometric structures which can be constructed
locally. Some of them have bounded node degree, some of them are energy span-
ners of UBG. Table 1 summarizes the properties of existing 3D geometric topolo-
gies. Since 3D Del cannot be constructed locally, we list localized Delaunay graph
(LDel)[55] instead. Notice that all listed topologies only need 1-hop neighbor infor-
mation to be constructed, i.e., all construction algorithms are localized algorithms.
Thus, when nodes move, the updates of these topologies can be efficiently performed
in a local area without any global affects. The time complexity of 3D Yao-based struc-
tures is O(d) for fixed partition and O(d log d) for flexible partition (due to sorting of
neighboring links). Here d is the number of 1-hop neighbors. In addition, the energy
stretch factor of 3D YYG is O(1) only for β ∼ 3, but still open for 2 ≥ β < 3.

In this section, we mainly focus on 3D geometric topologies for energy efficient
topology control. But there are also other interesting topics within 3D topology
design where geometric techniques can be applied, such as topology design for
sensing coverage [35, 101, 102, 112] or connectivity [74] or both coverage and
connectivity [5, 8–10, 12, 13, 109]. We believe that geometric approaches will be
applied to wider topology design topics in 3D wireless sensor networks far beyond
topology control protocols.

3 Geographic Routing for 3D Wireless Sensor Networks

The geometric nature of the multi-hop wireless networks provides a promising idea:
localized geographic routing (also called geometric routing, georouting, or position-
based routing) [66]. A routing protocol is localized if the decision to which node to

Table 1 Properties of proposed and existing 3D geometric topologies

3D structure Connectivity Out-degree In-degree Power stretch
factor

Message Time

3D LMST Yes O(1) O(1) O(n) O(n) O(d2)

3D RNG Yes O(n) O(n) O(n) O(n) O(d)

3D GG Yes O(n) O(n) 1 O(n) O(d)

3D YG Yes O(1) O(n) O(1) O(n) O(d) or O(d log d)

3D SYG Yes O(1) O(1) O(n) O(n) O(d) or O(d log d)

3D YYG Yes O(1) O(1) O(1) O(n) O(d) or O(d log d)

3D LDel Yes O(n) O(n) O(1) O(n) O(d2)
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forward a packet is based only on: (1) the information in the header of the packet
(including the source and the destination of the packet); (2) the local information
gathered by the node from a small neighborhood (i.e., 1-hop neighbors of the node).
In this section, we mainly focus on how to design 3D localized geographic routing
to achieve packet delivery in large-scale 3D sensor networks.

3.1 Review of 2D Geographic Routing

There have been numerous 2D localized geographic routing protocols [15, 17, 40,
66, 84] proposed in the networking and computational geometry literature. The most
common and efficient localized routing is greedy routing. In greedy routing, packets
are greedily delivered to the neighbor which is the nearest one among the current
node and all its neighbors to the destination. Greedy routing has been demonstrated
to be very effective in large-scale wireless sensor networks and can be adapted to
topology changes dynamically. However, greedy routing fails to deliver the packet
when it meets a node which cannot find a neighbor closer to the destination than itself.
This problem is called local minimum phenomenon. Such situation often happens
at the boundary nodes of topology holes in a wireless sensor network, thus it is
also known as routing hole problem of geographic routing. To guarantee the packet
delivery after simple greedy heuristic fails at the local minimum, most geographic
routing protocols have their own special methods to find a detour path [18]. The most
common approach is using face routing as a backup.

Right hand rule is a long-known method for traversing a 2D graph (in analogy
to following the right hand wall in a maze). Applying the right-hand rule in planar
graphs, face routing [40] walk along the faces which are intersected by the line
segment from the source to the destination. In each face, it uses the right-hand rule
to explore the boundaries. It can guarantee to reach the destination after traversing
at most O(n) edges where n is the number of nodes when the underlying network
topology is a planar graph. To make face routing more efficient, a natural approach
is to combine greedy routing and face routing by using face routing to recover the
routing after simple greedy method gets stuck in a local minimum. Many wireless
protocols used this approach [17, 37, 41, 43, 84]. For example, both greedy face
routing (GFG) [17] and greedy perimeter stateless routing (GPSR) [37] can guarantee
the delivery of the packets by using 2D RNG or GG as the underlying planar routing
topology.

Beyond face routing over planar topology, there are also other approaches to build
detour paths. For example, in [23], Qing et al. studied how to identify the stuck nodes
where greedy forwarding gets stuck in the local minimum and build detour routes
around holes, which are connected regions of the network with boundaries consisting
of all the stuck nodes. In [46], Leong et al. proposed a greedy distributed spanning
tree routing (GDSTR) where greedy routing switches to routing on a spanning tree
to around the local minimum area. In order to choose a direction on the tree that
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is most likely to make progress towards the destination, each node needs to store
a summary of the area covered by the subtree below each of its tree neighbors. A
nice survey on various detouring methods can be founded at [18]. Recently, there
are also several greedy embedding-based methods [39, 78, 108, 110] proposed for
2D sensor networks, which embed the network into certain space such that greedy
routing guarantees delivery in the new virtual space.

3.2 3D Greedy Routing

Most classical and widely used localized geographic routing is greedy routing, in
which a packet is greedily forwarded to the closest node to the destination in order
to minimize the average hop count. Greedy routing can be easily extended to 3D
case. Actually, several underwater routing protocols [71, 105] for underwater sensor
networks are just variations of 3D greedy routing. Figure 12 illustrates the basic idea
of 3D greedy routing. Let t be the destination node. As shown in Fig. 12a, current
node u finds the next relay node v who is the closest to t among all neighbors of u.
But, it is easy to construct an example (see Fig. 12b) to show that greedy routing will
not succeed to reach the destination but fall into a local minimum (at a node without
any “better” or “closer” neighbors). This is true for both 2D and 3D networks.

However, to guarantee packet delivery of 3D greedy routing is not straightforward
and very challenging. Face routing can be used on planar topology to recover from
the local minimum of greedy routing and guarantee the delivery in 2D networks,
as did in many 2D localized routing protocols [17, 37, 43]. However, there is no
planar topology concept any more in 3D networks, thus, face routing cannot be
applied directly to help 3D greedy routing get out of local minimum. In the following
subsections, we will review several negative or positive results on design of 3D
geographic routing with delivery guarantee, and most of them are based on 3D
greedy routing.

Fig. 12 Illustration of greedy
routing in 3D sensor networks:
a the forwarding neighbor and
b the local minimum t

v

u
t

u

(a) (b)
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3.3 None Existence of Deterministic Localized Routing with
Delivery Guarantee in 3D Networks

Durocher et al. [22] recently proved that there is no deterministic localized routing
algorithm for general 3D networks that guarantees the delivery of packets. Next, we
briefly review their results and ideas of their proofs.

They first proved that there is a 2-local routing method that guarantees the delivery
of packets if the thickness of the 3D network is less than or equal to 1∩

2
times the

transmission ranges of nodes. Here a localized routing is k-local if each intermediate
node vs routing decision only depends on knowledge of the labels (or positions) of
the source and destination nodes and of the k-hop neighborhood of v. This result can
be obtained by mapping the UBG into a a d-quasi unit disk graph (d-QUDG) with
d ∼ 1∩

2
, for which a 2-local algorithm with delivery guarantee exists [42]. Here,

a d-QUDG is a geometric graph in which any two nodes at distance at most d are
always connected, nodes at distance greater than one cannot be connected, and nodes
at distance between d and one may or may not be connected.

They then proved that there is no deterministic k-local routing algorithm that
guarantees delivery for the class of UBGs contained in thicker slabs, i.e., slabs of
thickness 1∩

2
+ ε. They proved it by showing that if a k-local routing algorithm

were to exist for such UBGs to succeed, then a 1-local algorithm for routing with
delivery guarantee would also exist for an arbitrary graph, which is impossible. The
detailed steps are as follows. They first showed that any graph G can be translated
to a 3D UBG G ∗. The translation is similar to construct an electronic circuit on three
layers with added chains of virtual nodes. They then assumed that there is a k-local
routing algorithm Ak with delivery guarantee in 3D UBG. Since the introduction of
virtual nodes in UBG G ∗, Ak cannot see more than 1-hop neighbors of the original
graph G. The translation from G to G ∗ is strictly local, thus, we can easily simulate
1-local routing algorithm on G. In other words, there also exist a 1-local routing
that succeeds for any connected and labelled graph G. Finally, they showed that such
1-local routing does not exist for arbitrary graphs, by constructing a counter example.
This disprove the existence of Ak for 3D UBG with a slab of thickness 1∩

2
+ ε. This

negative result shows that it is very hard to guarantee the packet delivery in 3D
geographic routing if only the local information is used.

3.4 3D Routing via Mapping and Projection

Fevens et al. [2, 36] proposed several 3D position-based routing protocols and tried
to find a way to still use face routing to get out of the local minimum. Their basic idea
is projecting the 3D network to a 2D plane (as shown in Fig. 13a), then applying the
face routing in the plane. They called the method projective face routing and combine
it with the greedy routing. However, as shown in Fig. 13b [36], a planar graph cannot
be extracted from the projected graph. It is clear that removing either v∗

3v∗
4 or v∗

1v∗
2 will
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1v

2v

3v

4v

1v’

4v’ 2v’

3v’

(a) (b)

Fig. 13 Simple projection from 3D to 2D does not work: a 3D-2D projection and b projection
causes intersections

break the connectivity. Fevens et al. [2, 36] also proposed face coordinate routing
which first projects the network onto the xy plane and runs face routing on it. If the
face routing fails on the projected graph, it will project the network onto the second
plane (the yz plane). If the face routing fails again, the network is projected onto the
third plane (the xz plane). However, if the face routing fails on the third plane, this
method fails.

In 2D, several greedy embedding algorithms [39, 78, 108, 110] can embed the
2D network into certain space such that greedy routing guarantees delivery in the
new virtual space. Unfortunately, none of the greedy embedding algorithms in the
literatures can be extended from 2D to 3D general networks.

Even though the projection method cannot solely solve the delivery guarantee
problem in 3D geographic routing, it can still be used for parts of combined solutions
or even other purposes. For example, Xia et al. [104] recently proposed a deterministic
3D greedy routing which uses volumetric harmonic mapping to map the boundary
of a dense unit tetrahedron mesh structure to a sphere, so that greedy routing on the
surface of this virtual sphere can guarantee delivery of packets among the boundary
nodes. We will review their detailed approach in Sect. 3.9. In [48, 49], Li et al.
proposed a 3D circular sailing routing (3D CSR) to balance the traffic load in 3D
sensor networks which also projects 3D nodes on a surface of sphere. Under uniform
communications, shortest path routing or greedy routing suffers from uneven load
distribution in the network, such as crowed center effect where the center nodes have
more load than the nodes in the periphery. Aim to balance the load, 3D CSR maps
the 3D network onto a 3D or 4D sphere and routes the packets based on the spherical
distance on the sphere. Two projection methods to map the nodes in 3D Euclidean
space to a sphere are proposed. As shown in Fig. 14, the first projection method maps
nodes on the surface of a 3D sphere while the second projection method maps on the
surface of a 4D sphere using stereographic projection. Stereographic projection is
conformal in any dimension, i.e., it preserves the angles at which curves cross each
other and also preserves circles. Therefore, a circle on the sphere is also a circle in
the plane (or hyperplane). 3D CSR can calculate the circular distance on the sphere
between projected nodes and use it as the routing metric. Since there is no “center”
on the sphere surface, the crowed center effect vanishes and the load is balanced.
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Fig. 14 Projection methods in 3D CSR. a, b Projection method I: from a node m(x, y, z) in 3D
space to a node m∗(x ∗, y∗, z∗,φ) on the 3D sphere. There are two cases for the calculation of spherical
distance d∗(m∗, n∗) as shown in a and b. c Projection method II—stereographic projection: an one-
to-one mapping from a node m in a 3D hyperplane to a node m∗ on a 4D sphere

3.5 Randomized 3D Greedy Routing

Since no deterministic localized geographic routing can guarantee the packet delivery
[22], randomized algorithms become possible solutions. Now we review two of such
approaches based on 3D greedy routing for 3D wireless networks.

In [1], Abdallah et al. proposed a set of randomized geographic routing for 3D
networks. First, a randomized algorithm, called randomized AB3D algorithm, selects
the next hop x randomly from three candidate neighbors n0, n1 and n2 of the current
node u. One of the candidate n0 is the node nearest to the destination t as 3D greedy
selects. The other two candidates n1 and n2 are the node chosen by 3D greedy from
all neighbors of u above or below the plane defined by n0, u and t. The probabilities to
choose x from these three candidates could be the same or related to the angle ∠ni ut
or the distance ||ni t||. Then, this randomized AB3D algorithm can be again combined
with face coordinate routing [2, 36] to form different hybrid 3D routing methods.
However, all of these routing methods do not have any performance guarantee.

In [24], Flury and Wattenhofer explored using random walks to escape from
the local minimum and proposed a greedy-random-greedy (GRG) routing method.
The packet is first forwarded greedily until a local minimum is encountered.
To resolve the local minimum, a randomized recovery algorithm based on random
walk kicks in. Whereas a packet moving around randomly in the network may seem
very inefficient and too simplistic, they do proposed several techniques to make ran-
dom walks more efficient. First, instead of walking on a general graph, they build a
sparse virtual graph (called dual graph) which is defined by connecting local spher-
ical structures. By doing so it reduces the search time of random walk significantly.
Second, instead of searching the entire network to hit a node which is closer to the
destination than current node, the proposed method limits the search space within
k-hop. Since the perfect k value is unknown, the recovery algorithm performs an
exponential search by limiting the random walk in sequence to 2i -hop ranges. Last,
similar to the face routing in 2D graphs, the proposed method can further restrict the
search to nodes delimiting the hole which causes the local minimum and which needs
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to be surrounded. Based on the dual graph, the surface can be locally determined by
nodes. They also provided a proof that the expected number of hops needed for the
random walk method is in the square of the optimal geographic routing algorithm.
However, in practice, this randomized method still often leads to high overhead or
long delay in 3D networks.

3.6 Critical Transmission Range of 3D Greedy Routing

One way to guarantee the packet delivery for greedy routing in 3D networks is letting
all nodes have sufficiently large transmission range to avoid the existence of local
minimums. It is clear that this can be achieved when the transmission range is infinite.
Assume that V is the set of all wireless nodes in the network and each wireless node
has the same transmission range. Let B (x, r) denote the open sphere of radius r
centered at x . Let

ρ (V ) = max
(u,v)∞V 2

u →=v

min
w∞B(v,≤u−v≤)

≤w − u≤ .

In the equation, (u, v) is a source-destination pair and ≤u − v≤ denotes the Euclidean
distance between nodes u and v. Since w ∞ B (v, ≤u − v≤), we have ≤w − v≤ <

≤u − v≤. It means w is closer to v than u. If the transmission range is not less than
≤w − u≤, w might be the one to relay packets from u to v. Therefore, for each (u, v),
the minimum of ≤w − u≤ over all nodes on B (v, ≤u − v≤) is the transmission range
that ensures there is at least one node that can relay packets from u to v, and the
maximum of the minimum over all (u, v) pairs guarantees the existence of relay
nodes between any source–destination pair. Clearly, if the transmission range is at
least ρ (V ), packets can be delivered between any source-destination pairs. On the
other hand, if the transmission range is less than ρ (V ), there must exist some source-
destination pair, e.g., the (u, v) that yields the value ρ (V ), such that packets can’t be
delivered. Therefore, ρ (V ) is called the critical transmission range (CTR) for 3D
greedy routing that guarantees the delivery of packets between any source-destination
pair of nodes among V .

Recently, Wang et al. [99, 100] studied the critical transmission range for large-
scale random 3D networks. Consider a set V of n wireless sensor nodes uniformly
distributed in a compact and convex 3D region D with unit-volume in R

3. By proper
scaling, we assume the nodes are represented by a Poisson point process Pn of
density n over a unit-volume cube D. Each node has a uniform transmission range
rn , thus the communication network is modeled by a unit ball graph (UBG) G(V, rn),
where two nodes u and v are connected if and only if their Euclidean distance is at
most rn . The following theorem on CTR ρ (Pn) of 3D greedy routing in random
sensor networks are obtained in [99, 100].

Theorem 10. [99, 100] Let β0 = 3.2 and n
( 4

3πr3
n

) = (β + o (1)) ln n for some
β > 0. Then, for 3D greedy routing,
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1. If β > β0, then ρ (Pn) ≥ rn is asymptotic almost surely.
2. If β < β0, then ρ (Pn) > rn is asymptotic almost surely.

This theorem basically shows that the CTR for 3D greedy routing is asymptotic

almost surely (a.a.s). at most 3
√

3β ln n
4πn for any β > β0 and at least 3

√
3β ln n

4πn for any
β < β0, where β0 = 3.2. This theoretical result answers a fundamental question
about how large the transmission range should be set in a 3D sensor networks, such
that 3D greedy routing guarantees the delivery of packets between any two nodes
with high probability (w.h.p.).

3.7 3D Greedy Routing on Delaunay Triangulation

Recall that in a d-dimensional Euclidean space, a Delaunay triangulation [25, 30] is
a triangulation Del(V ) such that there is no point in V inside the circum-hypersphere
of any d-simplex in Del(V ). For example, in 3D space the 3-simplex is a tetrahedron,
while in 2D scarce the 2-simplex is a triangle. In [68], Morin proved that 2D greedy
routing can guarantee the packet delivery on Delaunay triangulation. This is also true
in 3D space, as stated in the following theorem (detailed proof in [99]).

Theorem 11. [99] The 3D greedy routing can guarantee the packet delivery on any
Delaunay triangulation Del(V ).

Delaunay triangulation has been used as routing topology for wireless ad hoc net-
works [55, 94]. Since building the Delaunay triangulation needs global information
and the length of a Delaunay edge could be longer than the maximum transmission
range, several methods [55, 57, 94] use local structures to approximate the Delaunay
triangulation. This also break the delivery guarantee of 3D greedy routing over them.

Recently, Lam and Qian [44] proposed to use a virtual Delaunay triangulation
to aid geographic routing. They called their routing method multi-hop Delaunay
triangulation (MDT). The key idea is to relax the requirement that every node be
able to communicate directly with its neighbor in Delaunay triangulation. In a MDT,
the neighbor of a node may not be a physical neighbor. A virtual link represents a
multi-hop path between them. When the current node u has a packet with destination
t, it forwards to a physical neighbor closest to t if u is not a local minimum; otherwise
the packet is forwarded via a virtual link to a multi-hop Delaunay neighbor closest to
t. Due to Theorem 11, MDT can guarantee the packet delivery using a finite number of
hops. Simulations also show MDT has low routing stretch from efficient forwarding
of packets out of local minimum. In [44] , the authors provided detailed methods to
construct and maintain the multi-hop Delaunay triangulation at each node. However,
such construction and maintaining are not purely localized. MDT also works for 2D
networks or networks with higher dimension.

Liu and Wu [64] also used a Delaunay structure to divide the 3D network into
closed subspace and then proposed a greedy-hull-greedy (GHG) routing, which uses
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hull routing over the subspace to escape the local minimum and guarantee the deliv-
ery. It is a 3D analogue to face routing in 2D. First, a 3D partial unit Delaunay trian-
gulation (PUDT) is constructed to define network hulls (structures corresponding to
subspaces) in 3D networks. Here, PUDT construction basically removes intersecting
triangles and edges. It can be proven that if there is no intersecting edge and triangle,
then there is no overlapping tetrahedra. This is because when two tetrahedra overlap,
one of the four triangles on the first tetrahedron must intersect a triangle on the second
tetrahedron; moreover, if two triangles intersect, an edge of one of the triangles must
intersect the other triangle. Notice that unlike in Delaunay triangulation 3D greedy
can encounter a local minimum in PUDT. Once a packet travels to a local-minimum
during 3D greedy forwarding in GHG, one of the adjacent hulls of the local-minimum
is selected such that the message can recover from the local-minimum by searching
the nodes on this hull. GHG selects the hull whose subspace contains the segment
connecting the local-minimum and destination, and uses a depth-first-search to travel
this hull. Eventually, it can send the message to the node where greedy can be recov-
ered. This local search of possible recover node over the surface of the subspace is
very similar to the one used in GRG [24].

3.8 3D Greedy Routing with Spanning Trees

Guarantee delivery can be achieved at the cost of more (non-constant-bounded)
storage space. For example, the MDT method [44] need to store and maintain MDT
neighbors and paths to them at each node. Zhou et al. [113] also proposed to use hull
tree structures (spanning trees) to store possible routes around the void. Such an idea
has been used in a 2D geographic routing, GDSTR [46].

In [113], GDSTR is extended to 3D. The new 3D version (GDSTR-3D) uses two
hull trees (both spanning trees) for recovery. For each tree, each node stores two 2D
convex hulls to aggregate the locations of all descendants in the subtree rooted at the
node. The two 2D convex hulls approximate a 3D convex hull at each node to save
the storage space.

GDSTR-3D forwards packets greedily as long as it can find a neighbor closer to
the destination than the current node. If the packet ends up in a local minimum, the
node then attempts to forward the packet to a neighbor that has a neighbor closer
to the destination than itself. In other words, GDSTR-3D uses 2-hop 3D greedy
routing as the default method. If 2-hop greedy routing still fails, GDSTR-3D switches
to forwarding the packet along the edges of a spanning tree which aggregates the
location of the nodes in its subtrees using two 2D convex hulls. Since the spanning
tree can always reach the destination if the network is connected, GDSTR-3D can
always guide the packet to escape from the local minimum and guarantee the delivery.

However, in the worst case routing with the hull tree degrades to depth first search,
so the routing path could be long and the storage in a node can be very large. In [104], it
has been shown that the storage overhead of GDSTR-3D could be proportional to net-
work size. In addition, some nodes (such as the roots of trees) will be heavily loaded.
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3.9 Hybrid 3D Greedy Routing via Unit Tetrahedron Cell Mesh
and Volumetric Harmonic Mapping

Xia et al. [104] recently proposed a hybrid 3D greedy routing which uses both a con-
structed routing structure (unit tetrahedron cell) and a projection method (volumetric
harmonic mapping). We now briefly review their geographic routing methods.

First, a unit tetrahedron cell (UTC) mesh structure is constructed from all 3D
nodes. A UTC is a tetrahedron formed by four network nodes, which does not intersect
with any other tetrahedrons. The union of all UTCs form a mesh structure as shown
in Fig. 15b. Notice that UTC mesh is different with 3D Delaunay triangulation, since
there maybe nodes inside the circumsphere of a UTC. It is more similar to PUDT
[64] in some sense. A simple algorithm to create the UTC mesh has been proposed.
However, their method relies on certain assumptions, such as there is no degenerated
edges or nodes in the network and any internal hole has been identified, to successfully
establish the UTC mesh.

Fig. 15 Illustrations of the hybrid greedy routing method from [104]. a A 3D sensor networks where
local minimums of node-based greedy are marked as blue squares and red triangles for boundary
nodes and internal nodes respectively. b The unit tetrahedron cell mesh structure. c Result after
volumetric harmonic mapping. d The path found by hybrid greedy routing
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Second, a face-based greedy routing is proposed to delivery packets within the
internal (non-boundary) UTC. The idea is very like the face routing in 2D. The
face-based greedy routing will pass a sequence of faces which intersect with the
line segment between the source and destination. Each intermediate node can easily
calculate the next face by using the information about its neighboring UTCs. It
can be proved that such face-based greedy routing does not fail at a non-boundary
UTC.

Third, to handle the possible failure of greedy routing at boundaries, the proposed
method maps the whole UTC mesh using volumetric harmonic mapping (VHM)
under spherical boundary condition (as shown in Fig. 15c) so that the boundary
nodes are now on a surface of a sphere. This can guarantee the node-based greedy
routing can reach any boundary node successfully. VHM is a one-to-one map that
yields virtual coordinates for each node in the entire 3D network to enable global
end-to-end greedy routing. In other words, the UTC mesh should remains valid under
the virtual coordinates.

Last, a hybrid greedy routing, which alternately uses face-based greedy for internal
UTCs and node-based greedy for boundary UTCs, is proposed. Face-based greedy
can guarantee the delivery in non-boundary UTCs. When the packet fails at a bound-
ary UTC, node-based greedy is applied to escape the void. Since the boundary has
been mapped to a sphere, node-based greedy routing always successes on boundary.
When it is possible, it switches back to face-based greedy to route the packet towards
the destination. Fig. 15d shows such an example.

Notice that even though a distributed spherical/volumetric harmonic mapping
methods are provided in [104], the complexity of such complex procedures still
makes the proposed method not very practical. In addition, how to handle multiple
inner holes and routing across them is still not clear.

3.10 3D Greedy Routing for Energy Efficiency

Beside the delivery guarantee of packets, the energy efficiency of paths is also very
important for 3D wireless sensor networks. Given a routing method A , let PA (s, t)
be the path found by A to connect the source node s and the destination node t. A
routing method A is called energy efficient if for every pair of nodes s and t, the
energy consumption of path PA (s, t) is within a constant factor of the least energy-
consumption path connecting s and t in the network. Even a 3D localized routing
method can find the route to deliver the packet, it may not guarantee the energy effi-
ciency of the path, i.e., the total power consumed compared with the optimal could
be very large in the worst case. Several energy-aware localized 2D/3D routing pro-
tocols [47, 67, 71, 80] already took the energy concern into consideration, but none
of them can theoretically guarantee the energy-efficiency of their routes. For path
energy efficiency, recently, Flury and Wattenhofer [24] proved that no deterministic
localized routing method is energy efficient in 3D networks. They proved the claim
by constructing an example of a 3D network (see Fig. 16) where the path found by
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Fig. 16 An example
from [24] in which any
deterministic localized routing
in the worst case needs at least
ψ(d3) to route a packet from
an arbitrary surface node to
the center of the sphere

w

t

any localized routing protocol to connect two nodes s and t has energy consumption
(or hop-count or distance) asymptotically at least λ(d3) in the worst case, where d
is the optimum cost.

Since no deterministic localized routing protocol is energy-efficient in 3D net-
works, the simple 3D greedy routing may lead to energy-inefficient paths in the
worst case Recently, Wang et al. [97, 99] designed a localized routing method,
energy-efficient restricted greedy (ERGrd) routing, that is energy-efficient with high
probability for random 3D sensor networks. Here a routing method is energy effi-
cient with high probability (w.h.p.) if (1) with high probability, the routing method
will find a path successfully; and (2) with high probability, the found path is energy
efficient. We now briefly review the idea behind ERGrd routing.

In 3D greedy routing, current node u selects its next hop neighbor based purely on
its distance to the destination, i.e., it sends the packet to its neighbor who is closest
to the destination. However, such choice might not be the most energy-efficient link
locally, and the overall route might not be globally energy-efficient too. Therefore,
ERGrd routing uses two concepts energy mileage and restricted region to refine the
choices of forwarding nodes in 3D greedy routing. Given an energy model e(x)

(representing the energy cost for transmit packet over distance x), energy mileage
is the ratio between the transmission distance and the energy consumption of such
transmission, i.e., x

e(x)
. Let r0 be the value such that r0

e(r0)
= maxx

x
e(x)

. We call r0

as the maximum energy mileage distance. We assume that the energy mileage x
e(x)

is
an increasing function when x < r0 and a decreasing function when x > r0. ERGrd
greedily selects the neighbor who can maximize the energy mileage as the forwarding
node. In addition, instead of selecting the forwarding node from all neighbors of
current node u (a unit ball in 3D as shown in Fig. 17a), ERGrd prefers the forwarding
node v inside a smaller restricted region. The region is defined inside a 3D cone
with an angle parameter α < π/3, such that angle ∠vut ≥ α, as shown in Fig. 17b.
The use of α (restricting the forwarding direction) is to bound the total distance
of the routing path. Then the restricted region is a region inside this 3D cone and
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Fig. 17 Illustrations of our 3D routing: a all possible forwarding neighbors, b best energy mileage
forwarding, c greedy forwarding inside 3D cone, d classical greedy forwarding

near the maximum energy mileage distance r0, such that every node v inside this
area satisfies η1r0 ≥ ≤uv≤ ≥ η2r0, as shown in Fig. 17b. Here, η1 and η2 are two
constant parameters. This can help us to prove the energy-efficiency of the route.
A detailed algorithm of ERGrd is given in Algorithm 4. There are four parameters
used by our method. Three adjustable parameters 0 < α < π

3 and η1 < 1 < η2
define the restricted region, while r0 is the best energy mileage distance based on the
energy model. For example, the following setting of these parameters can be used
for energy model e(x) = x2 + c: α = π

4 , r0 = ∩
c, η1 = 1/2 and η2 = 2. Notice

that if ERGrd fails to find a forwarding node, randomized scheme [24] could also be
applied.

Algorithm 4 Energy-Efficient Restricted 3D Greedy Routing (3D ERGrd)
1: while node u receives a packet with destination t do
2: if t is a neighbor of u then
3: Node u forwards the packet to t directly.
4: else if there are neighbors inside the restricted region and r0 < r then
5: Node u forwards the packet to the neighbor v such that its energy mileage ≤uv≤

e(≤uv≤) is maximum
among all neighbors w inside the restricted region, as shown in Fig. 17b.

6: else if there are neighbors inside the 3D cone then
7: Node u finds the node v inside the 3D cone (Fig. 17c) with the minimum ≤t − v≤.
8: else
9: Greedy routing (Fig. 17d) is applied, or the packet is simply dropped.
10: end if
11: end while
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The path efficiency of 3D ERGrd is given by the following two theorems [97, 99].

Theorem 12. [97, 99] When 3D ERGrd routing indeed finds a path PE RGrd(s, t)
from the source s to the target t, the total Euclidean length of the found path is at
most δ≤t − s≤ where δ = 1

1 − 2 sin α
2

, thus, a constant factor of the optimum.

Theorem 13. [97, 99] When 3D ERGrd routing indeed finds a path PE RGrd(s, t)
from the source s to the target t, the total energy consumption of the found path is
within a constant factor σ of the optimum. When r0 ∼ r , σ depends on α; otherwise,
depends on η1, η2 and α.

Notice that 3D ERGrd routing may fail, as all other greedy-based methods do,
when an intermediate node cannot find a better neighbor to forward the packet. The
CTR of ERGrd routing in random 3D wireless networks can be obtained as the CTR
of 3D greedy routing in Sect. 3.6.

Theorem 14. [97, 99] Let β0 = 2
1 − cosα and n

(
4

3
πr3

n

)
= β ln n for some β > 0.

Then, for 3D ERGrd routing,

1. If β > β0, then ρ (Pn) ≥ rn is a.a.s..
2. If β < β0, then ρ (Pn) > rn is a.a.s..

Here, β0 = 4π/3
2π(1 − cosα)/3 = 2

1 − cosα is the ratio between the volume of a unit ball
and the volume of a 3D cone (the forwarding region) inside the ball. Therefore, in
summary, by setting the transmission range of each sensor larger than its CTR, 3D
ERGrd routing can guarantee the packet delivery and achieve energy-efficient route
with high probability in large-scale random sensor networks.

3.11 Summary

In this subsection, we briefly review existing geometric solutions for designing 3D
geographic routing to guarantee the packet delivery. These methods are all based
on 3D greedy routing but use one or multiple of following techniques to achieve
the goal of guaranteed delivery and avoiding the local minimum: storing escaping
paths from the local minimum, mapping the network to a virtual space to remove
all local minimums, randomly choosing the next hop at a local minimum, enlarging
transmission range to eliminate all local minimums, building geometric structures
around the surface of a void and traverse around the surface. Table 2 summarizes
these 3D routing methods. In summary, to guarantee the delivery in 3D with limited
resources is a very challenging task. Beyond the goal of delivery guarantee, there
are also other design goals for 3D geographic routings, here we only use energy
efficiency as one of such examples. More about geometric approaches for routing in
wireless sensor networks can be found in [27].
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4 Conclusion

3D wireless sensor networks have attracted a lot of attention due to their great poten-
tial usages in wide range of applications, such as environmental data collection,
pollution monitoring, space exploration, disaster prevention, and tactical surveil-
lance. The design of 3D networks is surprisingly more difficult than the design in
2D networks. For example, simply projecting the 3D network into 2D does not work
for topology control and geographic routing. Fortunately, the rich geometric proper-
ties of 3D wireless sensor network provide new possibilities of applying geometric
approaches to address challenging problems (such as localization, topology con-
trol, naming, and routing) and provide provable performance guarantee even in a
probabilistic and dynamics world. In this chapter, we only focus on the most recent
advances in 3D topology control and 3D geographic routing. This is definitely not
the whole story. We strongly believe that geometric approaches can be widely used
in design and analysis of network protocols for 3D wireless sensor networks. For
more topics on geometric approaches in ad hoc and sensor networks (2D or 3D ones),
please refer to the following surveys: [27, 28, 61, 87, 95, 98].
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Chapter 11
Routing in Three-Dimensional Wireless Sensor
Networks

Anne Paule Yao and Habib M. Ammari

Abstract Advances in wireless sensor networks (WSNs) technology have been
undergoing a revolution that promises a significant impact on society. Most existing
wire-less systems and protocols are based on two-dimensional design,where all wire-
less nodes are distributed in a two-dimensional (2D) plane. However, 2D assumption
may no longer be valid if a wireless network is deployed in space, atmosphere, or
ocean, where nodes of a network are distributed over a three-dimensional (3D) space
and the differences in the third dimension are too large to be ignored. In fact, recent
interest in wireless sensor networks hints at the strong need to design 3D wireless
networks. The characteristics of 3D wireless sensor networks require more effective
methods to ensure routing and data dissemination protocols in these networks. In this
chapter, we present a survey of the state-of-the-art routing techniques in 3D WSNs.

1 Introduction

Three-dimensional (3D) wireless sensor networks (WSNs) have recently emerged
as a premier research topic and have attracted a lot of attention due to their great
potential usages in both commercial and civilian applications, such as environmen-
tal data collection, pollution monitoring, space exploration, disaster prevention, and
tactical surveillance. Several current researches in 3D networks focus on cover-
age [1–4], connectivity [4, 5], topology control [6, 7], and routing issues [8–14]
and protocols [15–20]. Since it is well known that the sensor nodes have a lim-
ited transmission range, and that these sensors have a limited processing and stor-
age capabilities as well as scarce energy resources, specific routing protocols are
designed for these networks. They are responsible for maintaining the routes in the
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network andhave to ensure reliablemulti-hop communicationunder these conditions.
Most existing wireless sensor systems and protocols are based on two-dimensional
(2D) design, where all wireless sensor nodes are distributed in a two-dimensional
plane. This assumption is somewhat justified for applications where sensor nodes
are deployed on earth surface and where the height of the network is smaller than
transmission radius of a node. However, 2D assumption may no longer be valid
if a wireless sensor network is deployed in space, atmosphere, or ocean, where
nodes of a network are distributed over a 3D space and the difference in the third
dimension is too large to be ignored. In fact, recent interests in under-water sen-
sor networks [21] or space sensor networks [22] hints at the strong need to design
3D wireless networks and 3D settings reflect more accurate network design for
real-world applications. For example, a network deployed on the trees of different
heights in a forest, in a building with multiple floors, or underwater [21], requires
design in 3D rather than 2D space. Thus, increasingly today, some efforts have been
devoted to the design of routing and data dissemination protocols for 3D sensing
applications. This chapter surveys recent routing protocols for 3D Wireless Sen-
sor Networks and presents a classification for the various approaches pursued. We
first outline the network characteristics and design challenges for routing proto-
cols in 3D WSNs followed by a presentation and definition of terms and concepts
used in 3D WSNs. Then, we focus on a comprehensive survey of different rout-
ing techniques for 3D WSNs. And, in the following part, we make a comparison
between the routing protocols. The chapter concludes with possible future research
areas.

1.1 Motivation for 3D WSNs Routing Protocols

Today,wireless communication is essential since space andwater are used as commu-
nication medium. Moreover, in order to capture any information in any place, a huge
number of nodes which may rise up to thousands are needed. Theses nodes should
have some characteristics to properly feature any type of environment and appli-
cation. Thus, the nodes should be small, with sensing capabilities for environment
monitoring, low power, low bit rate, low cost, and autonomous. The applications
based on WSNs are then multiple and very varied: Target Tracking, military and
security issues, environmental monitoring, health, home, space exploration, chemi-
cal processing, disaster relief, etc.

Moreover, to be able to sense every kind of information, nodes are now deployed
in the three dimensions (forests, buildings, oceans, etc.). 3D space is essential in
most of these applications. Then, 3D wireless sensor networks are best suitable to
meet the requirements. Consequently, 3D WSN routing protocols which help to
implement these applications by finding the best way to route the data such that
network requirements are meet, have an important role to play. Routing protocols
define the mode operation of the network.
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2 Network Characteristics and Routing Issues

The characteristics of sensor networks and application requirements have a signifi-
cant impact on the network design objectives and routing protocols in termof network
capabilities and network performance [23].

2.1 Network Design in 3D WSNs

Wireless sensor networks in three dimensions have several applications from mili-
tary to civilian through those environmental applications such as surveillance, target
tracking, monitoring, and disaster prevention. These wireless systems are designed
according to sensor networks specific characteristics and they are also based on the
applications objectives. This part focuses on the main characteristics of 3D WSNs
and on the design objectives of these 3D networks.

2.1.1 Network Characteristics of 3D WSNs

Wireless sensor networkswhether in twodimensions or three dimensions have certain
distinctive features of wireless sensor networks. Although sensor networks in 2D
and 3D in general have the same characteristics, these characteristics are accentuated
when the network have to be designed for high dimensions (dimension≤ 2) [24]. As a
reminder, sensor nodes can be imagined as small computers, extremely basic in terms
of their interfaces and their components. They usually consist of a processing unit
with limited computational power and limited memory, sensors, a communication
device (usually radio transceivers or alternatively optical), and a power source usually
in the form of a battery [25]. The main characteristics of these networks include [26]:

Dense sensor node deployment: Sensor nodes are usually densely deployed. In
3D space, in order to cover the entire considered space, node deployment can be very
large, several orders of magnitude higher than that in 2D WSNs. Node deployment
has two types: random or deterministic (e.g., grid-based deployment) [27].

Power consumption constraints: For nodes using batteries, these ones determine
lifetime of each sensor and of the entire network. There are also sensors nodes that
use energy harvesting and that are subject to the same restricted energy constraint.

Severe computation and storage constraints: Sensor nodes in 3D have to deal with
much more processes—due to the high number of nodes and the dimension of the
workspace (dimension ≤ 3)—despite their highly limited computation, and storage
capabilities. Well in 3D, computation and storage constraints are emphasized.

Ability to cope with failures (of nodes and communication): The sensor network
can be subjected to communication problems and faulty or inaccuracy data both
related to the quality of nodes and links between them. Sensor nodes are not always
reliable since they are prone to physical damage or failures due to its deployment
environment (air, ocean or even building) and maintenance. Moreover, even though
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nodes can be reliable, communications links between themmay fail because of nodes
deployment, some interferences or blockages. These failures are different from the
losses on communication channels such as path loss which remains intrinsic to the
wireless channel.

Asymmetry in the communication: Due to obstacles between two nodes, the com-
munication between them can be affected such that the volume of transmitted data is
much greater in one direction than the other or the speed of transmitted data is much
greater in one direction than the other or even the communication is possible in only
one direction. The sensor network copes with asymmetry in the communication.

Nodes mobility: Sensor nodes are able or free to move and change place in the
network.

Frequent topology change: The mobility leads to a frequent topology change
characteristic of these networks. This also happens when a node joins, leaves the
network, or fails.

Self-configurable: Sensor nodes are usually randomlydeployed and autonomously
configure themselves into a communication network.

Ability to withstand harsh environmental conditions: Since 3D sensor nodes are
deployed everywhere in the atmosphere, and underwater, sensor nodes should be
able to resist to very hard natural conditions.

Ease of use: Sensor nodes are simple computing systems very easy to deploy and
to use.

Data redundancy: Sensor nodes collaborate to accomplish sensing task. Themore,
networks are dense, the more the data sensed by multiple sensor nodes typically have
a certain level of correlation or redundancy.

Application specific: A sensor network is usually designed and deployed for a
specific application. The design requirements of a sensor network change with its
application.

Pattern of node deployment: In most sensor network applications, the data sensed
by sensor nodesflow frommultiple source sensor nodes to a particular sink, exhibiting
a many-to-one traffic pattern.

Node type (Homogeneous/Heterogeneous): The set of nodes that are selected for
a sensor network can be either a homogeneous or heterogeneous group of nodes. A
homogeneous group is a group in which all of the nodes have the same capabilities.
A heterogeneous group is one in which some nodes are more powerful than other
nodes. Usually there is a smaller group of more powerful nodes known as cluster
heads which would gather data from the less powerful nodes [28].

3D environment specific constraint: In 3D sensor networks, nodes are distributed
over a 3D space. The height of the network is not negligible as compared to the
length and the width. The nodes may be placed at different heights and depths (in the
atmosphere or ocean for example) and the transmission radius of a node may cover
or extend over 360 degree.

Thus, 3D sensor networks share a lot of sensor nodes features with 2D sensor net-
works. The main difference is the dimension of the work space: 3D. This obviously
leads to changes in network design and management. However, constraint character-
istics like power consumption, computation, and storage capacities or ability to cope
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with network failures and changes aremuch stressed and they influence the routing in
these networks. 3D WSNs are as well networks with high resource-constrained and
dynamic nature with sensor nodes which have limited memory and inaccurate local
information. This has made the design of 3D routing protocols more complicated
and challenging.

2.1.2 Network Design Objectives

Designs objectives of 3D sensor network mainly depend on requirements of the
underlying sensing application that will be run on it. Thus, some frequent objectives
found in wireless sensor network design include the following [26, 27, 29].

• Many more nodes to cover the 3D space: 3D WSNs need many more nodes to
cover the space. Thus, a network design objective is to build small node size net-
works. Then, with appropriate coverage technique numbers of deployed nodes can
be reduced in order to facilitate node deployment and to minimize the power con-
sumption and cost of sensor nodes. Nodes deployment is dense and 3D algorithm
design is based on it.

• Dynamic network topology: Any topology change in the network will have an
influence on the communications path (routes) between the sensor nodes. There-
fore, network design should consider network topology dynamic which is due to
node mobility, joining or leaving node, and to node or communication failure.

• Guaranteed connectivity: Network connectivity is very important to ensure data
routing andmaintain an available sensor network.More precisely, any source node
that generates data should be connected with the sink otherwise network cannot
operate properly.

• Data redundancy and security: Moreover, the network design should provide
data redundancy in order to increase data accuracy. When multiple sensors sense
the data, they ensure better decision making by the sink node and also provide a
security level to the network. Therefore, the sensor networks introduce effective
security mechanisms to prevent the data information in the network or a sensor
node from unauthorized access or malicious attacks.

• Robustness and adaptability: Furthermore, the sensor network has to be fault-
tolerant. In fact, when there is a failure at node level (deplete all energy, leave the
network, etc.) or at communication links level (blockage, interferences, etc.) and
when there is a new network node entry (node joining the network), the network
should ensuremaintenance of all nodes and update all algorithms to fitwith the new
topology. Hence, sensor network should tolerate the presence of faulty sensors and
remain functional in spite of those faulty sensors. This is network design robustness
and adaptability properties.

Thus, network protocols designed for sensor networks should be adaptive to such
density and topology changes. Radios must be robust in harsh environments and
System needs to adapt to various application requirements.
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• Reliability: Also, network reliability is needed to provide error control and cor-
rection mechanisms to ensure reliable data delivery over noisy, error-prone, and
time-varying wireless channels.

• Minimization of energy consumption: Another desired network property is to
extend network lifetime. When sensors nodes exhaust all their energy, they no
longer belong to the network. So life expectancy of sensor is related to their
energy consumption. And sensor nodes are powered by battery and it is often very
difficult or even impossible to charge or recharge their batteries. Therefore, one
of the main network objectives is to lower power consumption of sensor nodes so
that the lifetime of the sensor nodes, as well as the whole network is prolonged.

• Node resources constraints: Moreover, sensor network protocol design should
take into account resource constraints of sensor nodes. Thus, running protocols on
sensor nodes should not require high computational operations or high capacities
storage.

2.2 Routing Challenges and Design Issues in 3D WSNs

Most existing routing algorithms inWSNsassumea two-dimensional topology.Thus,
when making the step from 2D to 3D, some issues arise. These issues are discussed
in this part.

Deployment and configuration of sensor networks to ensure desired levels of con-
nectivity and sensing coverage is fundamentallymore challenging in 3D as compared
to 2D [30]. In fact, the coverage of an entire area also known as full or blanket cov-
erage means that every single point within the field of interest is within the sensing
range of at least one sensor node. Ideally, it is preferred to deploy the minimum
number of sensor nodes within a field in order to achieve blanket coverage. Sensor
network entire connectivity is also a challenge in 3D WSNs since the sensing space
is larger, nodes are more numerous and nodes can be deployed in a random manner.
These factors can create connection interruptions. So, routing protocols must have
sufficient connectivity for navigation and forwarding purposes. Then, an issue for
routing in 3D WSNs is the network coverage and connectivity. The challenges here
are to find the best way to place the nodes in three dimension such that the number
of nodes required for surveillance of a 3D space is minimized, while guaranteeing
100% coverage and to find the minimum ratio of the transmission range and the
sensing range of such a placement strategy.

In 3D WSNs the problem in routing scalability and energy efficiency is greatly
exacerbated in comparison with its 2D counterpart. This is due to dramatically
increased sensor nodes in order to cover a 3D space. Thus, the routing protocol
should provide a high scalability using the minimal data and network resources.
And, algorithms designed for these 3D Wireless Sensor Networks need to be both
memory and energy efficient.

Also, in routing algorithms, computation complexity each node depends on the
number of communicating neighbors or the number of nodes with which its sensing



11 Routing in Three-Dimensional Wireless Sensor Networks 417

range overlaps. In 3D, both these numbers are twice the corresponding numbers in
2D. Hence routing protocol algorithms are more complex and required more sen-
sor resources (computation, storage, etc.). However, characteristics of sensor nodes
require the design of new protocols that take into consideration resources scarcity in
sensor nodes like memory and computing power [31].

Another essential criterion that should be taken into considerationwhile designing
a protocol for wireless sensor nodes is power consumption. Since sensor nodes
are battery powered, energy becomes a limiting factor. In most cases, changing or
recharging the battery might cost more than deploying a new node. Hence, extending
the network lifetime is a critical metric in the evaluation of wireless sensor network
protocols. That is why traditional routing algorithms like distance vector and link
state are not suitable for the use in wireless sensor networks.Moreover, when passing
from 2D to 3DWSNs, additional dimension to the destination location leads to more
possible routing direction. This has the disadvantage of reducing delivery rate which
is a real challenge in routing protocols of 3DWSNs. In fact, most of routing protocols
(in 2D) handle delivery using their own assumptions which limit the use of such
algorithms to specific environments that satisfy these assumptions. However, these
assumptions are not anymore hold in 3D WSNs.

For example, let us consider the local minimum problem. In general graph, data
forwarding may be stuck at a node that is a local minimum, i.e., it is closer to the
destination than any of its neighbors [33]. In these cases, when a packet is stuck in
a 2D WSNs routing protocol, 2D face routing protocol [32, 34] which is the most
prominent solution to recover from local-minimum, move the packet out of the local
minimum. Then, these protocols provide guaranteed delivery for a planar graph [35].
When using face routing in 2DWSNs, the faces to be traversed are determined by the
line from source to destination. However, in 3D graphs, this line does not determine
the faces [10] but its boundary becomes a surface, yielding an arbitrarily large number
of possible paths to be explored and thus rendering face routing infeasible. In fact in
[36], they recently proved that there is no deterministic localized routing algorithm
for 3D networks that guarantees the delivery of packets. There is no planar topology
concept anymore in 3D networks and simple projection from 3D to 2Dmay break the
network connectivity. Thus, 2D face routing algorithms are not directly applicable
to 3D. Hence, guaranteed delivery in 3D sensor network is very challenging.

Moreover, in 3D WSNs, routing protocols have much more routing possibilities
to the destination of a packet. So, depending on the algorithm the routing or distance
stretch factor can increase considerably compared to the shortest path, which leads to
a waste of nodes resources. Then, a good routing algorithm should provide efficient
stretch factor and storage overhead.

In addition, routing and data dissemination protocols must guard against radio
frequency (RF) flooding because too many transmissions in a fixed bandwidth could
lead to a serious degradation in RF performance [29]. Moreover, routing algorithms
should adapt with sensor network topology continuously changing, self-adapting
to the connectivity and propagation conditions and to the traffic and user mobility
patterns. Even in harsh propagation conditions, algorithms have to provide reliable
and uninterruptible communication. And, since the number sensor nodes in sensor
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networks are in the order of tens, hundreds, or thousands, network protocols designed
for sensor networks should be scalable to different network sizes. Also, adaptability
of routing protocols is needed to handle node failure, joining ormoving, whichwould
result in changes in node density and network topology.

Furthermore, routing protocols are based on network information like for example
node location. There is a possibility to get inaccurate or even faulty informationwhich
may affects the performance and the correctness of the routing protocol. This is due
to failures at the nodes, links, or even communication between the sensors. Thus,
this may require more robust protocols capable to tolerate faulty or inaccurate data.
Similarly, the asymmetry in nodes communication affects the routing protocols since
the communication between two nodes is not equal. So 3D routing protocols should
be more robust to handle incomplete data due to a lack of information resulting from
the asymmetric communication.

And, since sensor networks have limited bandwidth resources, communication
protocols designed for sensor networks should efficiently make use of the bandwidth
to improve channel utilization. All this should be taking into account in the routing
and data dissemination protocols of 3DWSNs. Designing efficient routing protocols
in 3D networks is surprisingly difficult, even though similar problems in 2D can be
easily handled.

3 Terms and Concepts Definitions of Routing Protocols
in 3D WSNs

This part focuses on the basic and general definitions of terms and concepts used in
3D routing and data dissemination.

3.1 Terminology and Models for 3D WSNs (Concepts and
Definitions)

Here, we describe Delaunay Triangulation (DT) and Unit Disk Graph (UDG) / Unit
Ball Graph (UBG) models that have been widely used as network model of 3D
WSNs.

3.1.1 Delaunay Triangulation

A distributed DT of a set S of nodes is specified by {< u, Nu > |u ∈ S}, where Nu
represents the set of u’s neighbor nodes, which is locally determined by u.

A triangulation of a set S of nodes (points) in 2D is a subdivision of the convex hull
of nodes in S into non-overlapping triangles such that the vertices of each triangle are
nodes in S. A DT in 2D is a triangulation such that the circumcircle of each triangle
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does not contain any other node inside [37]. The definition of DT can be generalized
to a higher dimensional space using simplexes and circum hyper spheres. In each
case, the DT of S is a graph to be denoted by DT(S).

3.1.2 Unit Disk Graph and Unit Ball Graph Diagrams

Assume that the set of n wireless hosts is represented by a point set S in the 3D space.
All the network hosts have the same communication range R, which is represented
as a sphere volume of radius R. Two nodes are connected by an edge if the Euclidean
distance between them is at most R. The resulting graph is called a unit disk graph
(UDG). The Gabriel Graph [38] is a sub-graph of the graph G that can be constructed
locally as follows: given any two adjacent nodes u and v in G, the undirected edge
(u, v) belongs to Gabriel Graph if, and only if, no other node w ∈ G is located in
the sphere of minimum diameter circumscribing (u, v). The Gabriel Graph is planar
if G is 2D-UDG. The 3-D UDG is a common geometric graph to represent sensor
networks and ad hoc networks.Moreover, since we are dealing with sensor networks,
each node has a fixed spherical sensing range Rs.

Then, in 3D space, the disk is replaced by a corresponding three-dimension ball;
the obtain graph is the Unit Ball Graph called UBG.

3.2 Taxonomy of 3D WSNs Routing Protocols

We present the different classes of routing protocols mostly used in 3D WSNs.

3.2.1 Position-Based Protocols (Geographic Routing)

Position-based protocols also called location-based protocols are de-fined in the
following. Most of the routing protocols for 3D Wireless Sensor Networks require
location information for sensor nodes. Generally, location information is needed
to estimate the position of a node in the network and at the same time, figure out
who are its neighbors and their position. Then, the distance between two particular
nodes can be calculated and the energy consumption can be evaluated. Since, there
is no addressing scheme for sensor networks like IP-addresses and they are spatially
deployed on a region, location information can be utilized in routing data. Diverse
kind of routing algorithm for 3D WSNs use this location information to build a
path from a source node to a target node. In fact, using nodes position in the routing
algorithmbringsmore scalability and can guarantee packet deliverywith less storage.
In this way, stringent resource constraints in 3D WSNs on individual node about
computation complexity and storage space bounded by a small constant can also
be fulfilled. Then, position-based or location-based routing algorithms eliminate
some of the limitations of topology-based routing by using additional information.
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A location service is used by the sender of a packet to determine the position of the
destination and to include it in the packet’s destination address. Thus, location-based
routing does not require the establishment or maintenance of routes (Forwarding
Strategy). Several routing techniques are position-aware like greedy routing [39],
geometric routing [40], etc. [41, 42]. The next section gives an overview of location-
aware routing protocols proposed for 3D WSNs.

In fact, Position-based routing protocols assume that the node knows: (1) the
coordinates (x, y, z) of its position, which can be obtained using a method like
a global positioning system; (2) the location of its neighbors using a periodical
exchange of control messages; and (3) the location of the destination, e.g., by using
a location service [13]. The position-based routing task is to find a path from the
source node to the destination node. It uses the local information at each node to
determine how to route the packet. We are interested in the following performance
measures for routing algorithms: the delivery rate, which is the percentage of times
that the algorithm succeeds in delivering its packet, and the network survivability,
which can be measured by the remaining power in the maximum used node during
a set of consecutive routing messages.

Geographic routing or Position-based routing (also called geometric routing) is a
routing principle that relies on geographic position information. It ismainly proposed
for wireless networks and based on the idea that the source sends a message to
the geographic location of the destination instead of using the network address. In
geographic routing schemes, each network node is assumed to know the coordinates
of itself and all adjacent nodes, and each message carries the coordinates of its target.
We define a geographic routing algorithm to base its decision solely on the position of
the current node, the neighbors, and the destination, andwe require the network nodes
to be memory-less, i.e., not store any state for messages they see. This not only binds
the routing state uniquely to the messages, but also removes an additional storage
overhead from the nodes, which could limit the number of messages forwarded by
a node if its memory is too small. As a matter of fact, the size of the memory is not
the largest challenge. The problem of storing message state is that this data arrives
dynamically, and it is hard to predict how much of this data needs to be stored at any
given time. Dynamic memory allocation would solve the problem, but introduces an
overhead that many devices cannot afford.

Geographic routing has the advantage that it is more scalable due to the lesser
need for routing information.

But the routing algorithm may not perform well in case the location of the nodes
changes rapidly since the routing table may grow in size and maintaining the routing
tables will cause significant overheads.

3.3 Greedy Routing

A greedy algorithm is an algorithm that follows the problem solving heuristic of
making the locally optimal choice at each stage with the hope of finding a global
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optimum. Inmany problems, a greedy strategy does not in general produce an optimal
solution, but nonetheless a greedy heuristic may yield locally optimal solutions that
approximate a global optimal solution in a reasonable time.

Greedy routing is interesting in routing design of 3D WSN for many reasons.
With both of its computation complexity and storage space bounded by a small
constant, greedy routing is known for its scalability to large networks with stringent
resource constraints on individual nodes. Under most greedy routing algorithms, a
node makes its routing decision by standard distance calculation based on a small
set of local coordinates only. Such salient property is imperatively needed in the
emerging 3D sensor network, where the problem in routing scalability is greatly
exacerbated in comparison with its 2D counterpart, due to dramatically increased
sensor nodes in order to cover a 3D space.

4 Overview of Routing and Data Dissemination Protocols
in 3D WSNs

Routing and data dissemination algorithms in three-dimensional Wireless Sensor
Networks are mostly location-based. Thus, these routing protocols should be able
to have position of nodes in the 3D WSN. A node can learn its position through
hardware support such as GPS. Alternatively, the position can be obtained through
localization algorithms, of which a variety has been proposed in recent years [43,
44]. Existing geographic routing algorithms can be broadly classified into two
categories:

1. Beacon-based.
2. Beacon-less.

This classification was adopted for simplicity

4.1 Beacon-Based Localized Routing Algorithms

Beacon localization approaches have been proposed in the literature as an interesting
alternative for centralized/decentralized approaches because of their low cost, their
accuracy and their low energy consumption. Beacon-based algorithms require the
forwarding node to know the position of all neighbors in its transmission range.
Position of the direct neighbors is obtained by observing beacon messages (hello-
messages). Each node periodically broadcasts beacon messages which containing its
own position and identifier. However, their main drawback in a random deployment
remains the lack of a well-defined mobile beacon trajectory that ensures localization
for all the nodes with acceptable error estimations.
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Fig. 1 Projective face routing
algorithm. The neighboring
nodes are preserved after
projection [45]

4.1.1 Projection Heuristic

Projection heuristic: The Position-based routing protocol [45] is a geometric routing
protocol primarily proposed for 3D MANETs, but can also be used for 3D WSNs
because it favors energy conservation.

The design of this algorithm is motivated by Face routing. Face routing [46]
guarantees the delivery on 2D geometric planar graph. The line st that connects the
source and destination nodes determines the 2D faces to be traversed. But, this line
does not determine these faces in a 3D graph and this algorithm cannot be directly
applicable on 3Dgraph. Then, the simple heuristic proposed here is a projection of the
3D network to a 2D plane in order to apply face routing. It is an orthogonal projection
on the 2D plane as depicted by Fig. 1. However, Face routing on the projected plane
does not ensure a packet to move out of a void in the original 3D network so it cannot
guarantee the delivery.

4.1.2 Three-Dimensional Circular Sailing Routing

Three-dimensional circular sailing routing (3D-CSR) [12] algorithm is a load balanc-
ing greedy routing for 3D WSNs, based on mapping techniques. 3D-CSR proposes
other projectionmethods tomap nodes in 3D space on a sphere. The projectionmeth-
ods guarantee the one-to-one mapping between nodes in 3D networks and virtual
nodes on the sphere. They establish two projection methods to map the nodes in 3D
space to a sphere (either a 3D sphere or a 4D sphere) and then route the packets on
the sphere.

First, considering a node with the following coordinates m(x, y, z) in a finite
3D region IR. This node is mapped to the node m∞(x ∞, y∞, z∞, ρ) where (x ∞, y∞, z∞)
represents the 3D projection of the projection nodem∞ and ρ is the Euclidean distance
from m to the center of the 3D sphere O (0, 0, 0) which radius equals r. The virtual
coordinates of m∞ are computed according to the following equations:

x ∞ = r√
x2 + y2 + z2

x
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y∞ = r√
x2 + y2 + z2

y

z∞ = r√
x2 + y2 + z2

z and,

ρ =
√

x2 + y2 + z2

Using these virtual coordinates, the geodesic [47] shortest distance d(m
∞
n

∞
)

between two projections m∞ and n∞ on the sphere of the nodes m and n respectively,
is calculated according to the following equations:

||mn|| represents the Euclidean distance between the two points m and n [12].

dm∞n∞ = rarcos
om∞2 + on∞2 − m∞n∞2

2om∞on∞

If m∞ and n∞ are in different positions on the sphere (Fig. 2a).

dm∞n∞ = dmn = mn

If m∞ and n∞ are at the same point on the sphere (Fig. 2b).
For the mapping to a 4D sphere, in the same manner the virtual coordinates are

computed and the geodesic shortest distances are deducted. In the case the equations
are the following:

x ∞ = 4r2

x2 + y2 + z2 + 4r2
x

y∞ = 4r2

x2 + y2 + z2 + 4r2
y

z∞ = 4r2

x2 + y2 + z2 + 4r2
z,

w∞ = 4r2

x2 + y2 + z2 + 4r2
w,

And

dm∞n∞ = rarcos(
xm∞ xn∞ + ym∞ yn∞ + zm∞ zn∞ + wm∞−r + (wn∞−r )

r2
)

Figures2 and 3 depict the two projection methods respectively.
Then, the 3D-CSR after computing the virtual coordinates of each sensor node

and of its neighbors, as well as the geodesic distance for any link, uses this latter
calculated distance as the cost on each link (called circular distance) and applies a
shortest path algorithm with circular distance as the routing metric to choose the best
path minimizing the total circular distance.
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Fig. 2 Projection method I:
from a node m(x, y, z) in 3D
space to a nodem∞(x∞, y∞, z∞, ρ)
on the 3D sphere, and two case
calculations of d(m∞n∞) [12]

Fig. 3 Projection method II:
Stereographic projection: a
one-to-one mapping from a
node in a 3D hyper-plane to a
node on a 4D sphere [12]

Moreover, a localized-based version of the 3D-CSR called 3D-LCSR (Local-
ized Circular Sailing Routing) permits to route packets only on the base of local
information at each node. This formulation brings to the algorithm low overhead,
easy implementation and good scalability [12]. Even if, 3D-CSR uses another pro-
jection scheme specially proposed for load balancing and can reduce hot spots of
congestion (wireless congestion) in the network and increase the energy lifetime of
the network by spreading the traffic across a virtual sphere, it does not guarantee
delivery.

4.1.3 Greedy Distributed Spanning Tree Routing for 3D Sensor Networks

The Greedy distributed spanning tree routing for 3D sensor networks (GDSTR-
3D) routing protocol is a geographic routing based on GDSTR [48] protocol for 2D
networks, which has been extended and adapted for 3D sensor networks. The routing
protocol is based on a convex hull-based tree structure. A hull tree is a spanning tree
where each node has an associated convex hull that contains within it the locations of
all its descendant nodes in the subtree rooted at the node. Then, the convex hulls of the
nodes uniquely define a routing subtree that must contain the destination node, if the
packet is deliverable. The routing subtree is defined as the subtree comprising of all
the nodes in the network whose hulls contain the coordinates of the destination node.
If a packet is not deliverable, the routing subtree will be a null tree. The principle of
the GDSTR-3D routing algorithm is defined into two forwarding modes: the greedy
mode and the tree forwarding mode.

First, GDSTR-3D attempts to forward packets greedily, i.e., to the neighborwhose
coordinates is strictly closer to the destination node in Euclidean distance than the
current minimum node. GDSTR-3D has also a feature that is a node has records of
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its one-hop neighbor information. Thus each node is aware of two-hop information
and if none of its immediate neighbors is strictly closer to the destination, it will
attempt to forward the packet instead to the neighbor that has a one-hop neighbor
that is closer to the destination than the current minimum.

When a local minimum is reached, GDSTR-3D switches to tree forwarding mode
by forwarding the packet along the edges of a spanning tree, guiding the packet to
escape from the local minimum.

And, GDSTR-3D switches back to greedy when it finds a neighbor that is strictly
closer to the destination than the current minimum. GDSTR-3D is geographic rout-
ing protocol for 3D networks that uses 2-hop neighbor information during greedy
forwarding to reduce the likelihood of local minima, and aggregates 3D node coor-
dinates using two 2D convex hulls. Thus, it offers deterministic routing and is able to
guarantee packet delivery. However, each node must maintain a set of convex hulls,
and thus requires a storage space proportional to network size and some nodes (such
as the roots of trees) are heavily loaded.

4.1.4 Greedy-Hull-Greedy

The Greedy-Hull-Greedy (GHG) [13] is an efficient geometric routing algorithm for
3D sensor networks. GHG is considered as a 3D analog to Face Routing. The algo-
rithm is based on network hulls constructedwith partial unit Delaunay triangulations.

Like most of geometric routing protocol, GHG starts with greedy forwarding,
which is simple and close to optimal. In greedy forwarding, each node knows the
positions of its neighbors, and the node forwards each message to the neighbor that
is the closest to the message’s destination. However, greedy forwarding is not always
successful: it fails when a message reaches a local minimum node whose neighbors
are all further away from the destination than the node itself.

Then, they define a localized 3D partial unit Delaunay triangulation (PUDT) algo-
rithm for capturing the empty 3D network subspaces in order to perform an efficient
local-minimum recovery search. For a set of vertices in 3D space, applying Delau-
nay Triangulation (DT) [49, 50] divides the space into a number of non-intersecting
tetrahedra and a single outer subspace. A tetrahedron is determined by a set of four
points T(p1, p2, p3, p4). With DT, tetrahedra are constructed such that there is no
point inside the circumsphere T(p1, p2, p3, p4) of which is the ball(p1, p2, p3, p4). A
ball(p1, p2, p3, p4)is determined by four points not in the same plane. Thus, PUDT
algorithm is used to remove intersecting triangles in away that there is no intersecting
edge and triangle, then there is no intersecting tetrahedra. After the PUDT algorithm,
each node knows all of its adjacent valid edges and triangles. Then, each node locally
groups single edges and triangles into hulls of different subspaces (i.e., identify local
hulls) [13] and for a given destination, uses hull-based routing to select the target
[13]. Determine the target hull consist to find a representative object (a triangle or a
single edge) of the target hull that is the closest object to the (s, t)-segment.

So, analogous to Face Routing, once the message reaches a local minimum, hull-
based routing is used to partition the network into subspaces, limiting the recovery to
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search a subspace only. This process constrains the local minimum recovery search
on the hull of a particular subspace instead of the whole network. GHG algorithm
switches to greedy mode when a node that is closer to the destination than the local-
minimum is reached.

An execution of GHG like some other geometric algorithms is a repetitive alter-
ation between greedy forwarding and hull-based local-minimum recovery. Here,
Delivery is guaranteed since hull routing can always make progress. However, like
planarization, the distributed computation of Delaunay triangulations is a hard prob-
lem [51] and so GHG is not likely to be usable in practical networks with arbitrary
topologies.

4.1.5 Deterministic Greedy Routing Based on a Unit Tetrahedron Cell Mesh
Structure (UTC-Greedy Routing)

In Greedy routing algorithms, a node makes its routing decision by standard distance
calculation based on a small set of local coordinates only. These greedy routing
algorithms called also node-based greedy routing have a computation complexity and
a storage space bounded by a small constant, and a well-known scalability to large
networks with stringent resource constraints on individual nodes. Such properties
make it very attractive for 3D Wireless Sensor Networks. Nevertheless, this kind of
algorithms bring challenging issues when there are used for 3D space. The problem
of local minimum (void), that is no longer a face but a surface where the possible
paths which have to be explored, is very large.

Such local minimums may appear at either boundary or internal nodes. Also,
greedy routing in 2D cannot be extended for 3D networks. More, the challenge
of greedy routing in 3D networks is further revealed in [36], which proves that
there does not exist a deterministic algorithm that can guarantee delivery based on
local information only in 3D networks. UTC-greedy routing in [52] investigated
decentralized solutions to achieve greedy routing in 3D sensor networks.

This solution is based on a Unit Tetrahedron Cell (UTC) mesh structure. A UTC
is a tetrahedron formed by four network nodes, which does not intersect with any
other tetrahedrons. They design a simple iterative algorithm to create a mesh UTC
from the 3D network.

The objective of the UTC-Greedy Routing is to enable greedy routing from any
source to any destination in a given 3D sensor network.

Then, for internal UTCs (local minimum at internal node), a Faced-based greedy
routing is used to establish the route from a source to a destination node. The source
node computes a line segment between s and d the destination node. This line denoted
φ passes through a set of UTCs between s and d, and intersects with a sequence of
faces where data packets are forwarded andwhich determine the path of themessage.

The previous Faced-based greedy routing cannot support greedy data forwarding
at boundaries when there is a local minimum. Then, a distributed algorithm has been
proposed to realize volumetric harmonic mapping (VHM) under spherical boundary
condition. It is a one-to-one map that yields virtual coordinates for each node in the
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Fig. 4 Illustration of the proposed greedy routing protocol [52] a, b, c, d, e, f

entire 3Dwireless sensor network to enable global end-to-end greedy routing. In fact,
the entire UTCmesh is homeomorphically (one-to-one)mapped to a solid tetrahedral
ball in IR3 [52]. After the boundary has been mapped to a sphere, node-based greedy
routing is always successful in this case.

Thus, during network initialization, the above mapping algorithm is executed on
the UTCmesh, so that each node has its own virtual coordinates in a 3D space. Then
to route a data packet to its destination, face-based and node-based greedy routing
algorithms are employed alternately at internal andboundaryUTCs, respectively. The
source node first identifies a sequence of faces F that intersects with the line segment
between s and d. If the next face is reachable according to local information, the
packet is forwarded accordingly by face-based greedy routing. When the packet fails
to find the next face toward node d , it must arrive at a boundary, which has been
mapped to a sphere. Thus node-based greedy routing is applied to move the packet
across the void.Whenever d becomes reachable, face-based greedy routing is applied
again. The above process continues until the packet reaches its destination. Figure4
depicts the greedy routing protocol.

The UTC-Greedy realizes deterministic greedy routing with constant-bounded
storage and computation in 3D sensor networks ensuring de livery.

4.1.6 Three-Dimensional Greedy Anti-void Routing

Greedy-based routing algorithms within the three-dimensional (3D)Wireless Sensor
Networks face the unreachability problem (i.e., the so-called void problem or local
minimum) resulting from the greedy routing algorithms that have not been fully
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resolved, especially under the 3D environment. Three-dimensional Greedy anti-void
routing (3D-GAR) location-based protocol [53] is proposed to solve the void prob-
lem under the unit ball graph (UBG) settings. It employs the 3D rolling-ball UBG
boundary traversal (3D-RUT) scheme to guarantee the delivery of packets from the
source to the destination node.

The 3D-GAR protocol is a hybrid scheme consisting of both the greedy routing
algorithm and the 3D rolling-ball UBG boundary traversal (3D-RUT) scheme. The
3D-RUT algorithm is utilized to determine the boundary node set within the networks
under the occurrence of void nodes. As the greedy algorithm fails due to the void
nodes, the 3D-RUTschemecanbeutilized to escape from thevoidnodes by traversing
the boundary node set and finally restart the greedy for-warding process again. In
this way, the packet delivery can therefore be guaranteed.

The 3D-RUT scheme is employed at a node where a void problem is detected
means a node that cannot continue to use the greedy forwarding algorithm to transmit
packet. 3D-RUT therefore, assign a rolling ball that is a 3D ball hinged at the vertex
node with half of transmission range as radius, which can freely rotated and define
without any network node inside the ball. The corresponding center point of the
ball is called the starting point (SP), Si . It is noticed that there should always exist
an SP for each void node. Based on the rotation of the rolling ball, an SP surface
is generated with the accumulation of the corresponding SPs to each node in the
network. The resulting SP surface will become a constrained SP surface and is stuck
with all the surface-adjacent nodes of node i . These surface-adjacent nodes can be
served as the next hopping nodes of node i . Subsequently, i node will inform these
surface-adjacent nodes to continue the 3D-RUT scheme by sending control packets
that contain the information of their corresponding SPs in order to construct other
constrained SP surfaces. Repeatedly, all surface-adjacent nodes continue the 3D-
RUT scheme until reaching the destination node. As a result, all the constrained SP
surfaces are established and identified; they can be aggregated into a closed surface.
This closed surface consists of a set of corresponding nodes, which is established as
a boundary node set by adopting the 3D-RUT scheme and which define the route.
They theoretically probed that the void problem is solved by the 3D-GAR protocol
with guaranteed packet delivery.

4.1.7 Greedy Random Greedy

Authors in [36] proved that there does not exist a deterministic local routing algorithm
for 3D networks that guarantees delivery of messages. To address this issue, the
randomized geographic routing algorithm called Greedy Random Greedy (GRG)
routing [54] for UBG (unit ball graphs) networks has been proposed. This algorithm
is based on random walk. We recall that greedy geographic routing falls into the
local minimal issue and as it has been proved in [36], there is also no deterministic
recovery algorithm that could take off packets out of localminima. Then an excursion
to random walks helps to escape such local minima.
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On a graph G = (V, E), a Random Walk (RW) can be captured using a Markov
chain or a flow in an electrical network obtained from G by replacing every edge
by a resistance of 1 ohm(A survey on Random Walk in [55]). In order to ensure the
performance of the RandomWalk, four techniques are applied. The Region Limited
Random Walks technique permits to reduce the exploration of the entire network
to the ball of around at the local minimum u node of radius k, with the length
of the shortest path connecting and the next node v. Since the next node v in the
routing is not known in advance as well as the length k, they consider radius of value
2i , for i = 1, 2, 3... until a node closer to the target is found. Another restriction
of the RW takes into account only nodes delimiting the hole which causes the local
minimum and which needs to be surrounded. Also, building a sparse graph of the
network permits to remove edge that is not critical for the connectivity of the graph.
And they apply the power of choice for RWwhich consists to not return to a previous
node (a node that is already in the path of the packet).

The principle of the Greedy-Random-Greedy (GRG) in 3D WSN is to forward
greedily the packet until a local minimum is encountered. The randomized recovery
algorithm (Random Walk—RW) permits to resolve the problem of local minimum
by finding a node more close to the destination node. And then, the greedy process
can restart again.

Thus, it has been showed that if k is the length of the optimal path between a given
pair of source and destination nodes, then the expected length of the route obtained
by any randomized or even deterministic routing algorithm is given by O(k3). Even
if the local structure employed by RW permits to escape from voids when a local
minimum is reached, such attempts for randomized recovery of local minimums
are non-deterministic and often lead to high overhead or long delay. Nevertheless,
Random-Walk is currently one of the truly greedy routing schemes with constant-
bounded storage and computation complexity.

4.1.8 Three-Dimensional Geographical Routing

Three-dimensional geographical routing is a position-based routing algorithm [31]
that makes use of the position to route packets from sources to destinations with high
path quality and reliability. It pro-vides high adaptability to changes in topology and
recovery of link failures which increases its reliability. 3DGR assumes as in previous
algorithms that links between nodes are Bidirectional and does not assume radio
ranges are uniform and that they cover unit disks. Three-dimensional geographical
routing (3DGR) routing protocol relies on greedy forwarding and geographical rout-
ing. Every node knows its position (either throughGPS or after running a localization
algorithm) and tries to route packets in the direction toward the destination location.
Geographic routing has the advantage that it ismore scalable due to the lesser need for
routing information. A common problem that faces this kind of algorithms is local-
ization errors in addition to other problems related to the specific approach used.
The main problem that faces greedy approaches is the void problem. Void problem
also called local minimum arises when there is no node closer to destination than
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the sender and thus results in failure of the greedy approach in finding a path to the
destination although one might exist.

3DGR uses techniques: geocasting, recent path, and battery awareness measures.
The purpose of geocasting is to send a message to nodes in a specific geographic
region in other words, to check whether a node belongs to a specific region in the 3D
space. This method defines an angle which determines the aperture of the geocasting
region. The geocasting region is the intersection of source range sphere and the cone
whose head is the source and its head angle α.

Recent path technique permits to store recent path to destination locally and
temporally in order to forward a packet to the same destination directly using the
recent path without applying any algorithm. Hence, significant overhead and delay
can be saved.

Recent studies [56] states that the energy consumed fromabattery is not equivalent
to the energy dissipated in the device. When discharging, batteries tend to consume
more power than needed, and can reimburse the over-consumed power later. The
process of the reimbursement is often referred to as battery recovery. This behavior
is due to chemical characteristics of batteries. So if the battery is given time to recover,
its energy can be used more efficiently.

Based on a discrete time battery model, an optimization to 3DGR protocol is to
dynamically schedule routing in sensor networks. This algorithm is aware of the
battery status of network nodes and schedules recovery to extend their lifetime. This
process corresponds to battery awareness measures.

Then, in 3DGR, an initialization phase permits each node to broadcast Hello
packet including their position information. At the end of the initialization phase,
every node knows its neighbors and their respective position.

When a source wants to send a packet to some destination, it starts by checking if
it has a recent path to that destination. If such a path exists, the packet is forwarded
to the next node in the path. Otherwise, it geo-casts a small request packet that
includes the coordinates of the destination and setting a timer. Then, each node that
has heard the request, checks if it is in the intended region specified by the request
packet. If not, it silently drops the packet. Otherwise it checks for a recent path to
the requested destination. If a recent path exists, it sends a response for the request
indicating that. Otherwise, it checks its neighbors’ list and picks the closest one to
the requested destination. A flow cart of the sending algorithm can be found in [31].
Even if the 3DGR routing algorithm does not guarantee delivery, it provides a way
of shortcutting where a path to the same destination is found at an intermediate node.
When such a path exists, the algorithm switches to another mode where there is no
need for routing anymore. It rather follows the already existing path and therefore
the overhead incurred in the routing process is avoided. Also, with the battery-aware
energy efficient schemes, the overall lifetime of the network increases.
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4.1.9 Energy-Efficient Restricted 3D Greedy Routing

Energy-efficient restricted 3D greedy routing (ERGrd) [57] is a refined 3D greedy
routing protocol to achieve energy-efficiency of its paths with high probability.
ERGrd is an energy-efficient localized 3D routing method. This position-based
routing protocol is based on a variation of classical greedy routing and an exten-
sion of a localized routing method [58] designed for 2D networks. The selection
criterion of a node in 3D greedy routing being its distance to the destination, ERGrd
needs to ensure energy-efficiency of the overall route and of local links. Therefore,
this routing method uses two concepts to refine the choices of forwarding nodes in
3D greedy routing [59].

Energy mileage corresponds to the ratio between the transmission distance and
the energy consumption of such transmission. A high value of energy mileage cor-
responds to a transmission over a long distance that consumes few among of energy.
Then, the 3D localized routing greedily selects the neighbor who can maximize the
energy mileage as the forwarding node.

The second method is the restricted region which aims to reduce the region where
a forwarding node can be selected. Thus, the region is defined inside a 3D cone such
that the angle between the forwarding node v, the current node u, and the destination
node tδ(vut), have to be less than a certain angle parameter α ∗ π/3;

These two properties ensure the path efficiency of 3D ERGrd routing protocol.
Moreover, the study proves that 3D greedy routing guarantee the delivery of packets
under the condition that the underlying topology is Delaunay Translation. So, they
investigate the asymptotic Critical TransmissionRadius (CTR) for 3D greedy routing
to ensure the packet delivery in large-scale random 3D sensor networks. A superior
bound of the CTR in the casewhere nodes are generated by a Poisson point process of
density over a convex compact regionof unit-volume, has been established for general
case and for 3D ERGrd algorithm. They theoretically prove that the CTR for 3D

greedy routing is asymptotic almost surely (a.a.s)3
∼
3β0Inn
4πn , where β0 = 3.2. So, this

theoretical result answers a fundamental question about how large the transmission
radius should be set in 3D networks, such that the greedy routing guarantees the
delivery of packets between any two nodes.

ERGrd consists of the design of 3D greedy routing protocols which can guarantee
delivery of packets and/or energy-efficiency of their paths with high probability in a
randomly deployed 3D sensor network.

4.1.10 Geometric STAteless Routing

The resource-constrained and dynamic nature of 3D Wireless Sensor Networks,
such as nodes have limited memory and inaccurate local information, has made the
design of 3D routing protocols complicated. Geometric routing which only uses the
local location information to deliver packets with low communication and storage
overheads appear to be more suitable. Geometric STAteless Routing (G-STAR) for
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3-D Wireless Sensor Networks is a distributed stateless geometric routing protocol
[60]. The main idea of G-STAR is to distributively build a location-based tree and
find a path dynamically such that no state information is proactively maintained at
each node (stateless).

Compared of other 3D geometric routing protocols like GDSTR [61], GHG [13],
G-STAR run in only one mode and guarantees packet delivery even when the loca-
tion information at some nodes is inaccurate or missing. More, this routing proto-
col does not assume network models such that unit disk model or unit ball model
like GRG [54]. However, three conditions are required on the network to ensure
that the protocol functions properly. Thus, network links has to be bidirectional,
the network has to be connected—any source and destination are connected, and
network topology remains static during the routing process since no routing pro-
tocol can guarantee packet delivery if the network topology changes fast during
the routing process [36]. These assumptions can be fulfilled easily in real-world
applications.

InG-STAR, a node always routes a packet to the neighbor closest to the destination
as long as no loop is created. To avoid loops, a list of a subset of nodes which a
packet has traversed is recorded by the protocol. Thereby, by examining the partial
explored-node list of a packet and the locations of neighbors, a node is able to
determine where to forward the packet. When a packet is first generated, the partial
explored node list is initialized to be empty.When a node either generates or receives
a packet, it first appends itself to the partial explored-node list and checks if it
appears on the list more than once. If a node appears on the list twice, the nodes
in between two entries are one of the branches the packet has just visited. There
is no need to keep both entries in the list, so the earlier duplicated entry is kept
and the new entry is removed. In other words, a node does not append itself to
the list if it is already in the list. By doing so, a node records where the packet
originally came from in the partial explored-node list as the last neighbor ahead of
it in the list, which is called parent. At this moment, if the node still has neighbors
not in the partial explored node list, it forwards the packet to the one closest to the
destination among them. Otherwise, the node will just forward the packet back to its
parent.

To improve the behavior of G-STAR, a post optimization technique, namely Path
Pruning (PP) [62], is introduced. The routing performance of geometric routing
protocols improves dramatically at critical network densities since PP permits a
node to listen to the wireless radio channel after it transmits a packet and then it can
improve the routing of a packet being aware of newchanges.Also, to furtherminimize
the overhead of path pruning, a light-weight path pruning, namely Branch Pruning
(BP) that goes with G-STAR has been proposed [60]. In BP, if a node forwards a
packet to a neighbor different from its greedy choice, it keeps a next hop entry for
the destination of that packet and it will then forward the subsequent packets for that
destination directly to this recorded next hop.

G-STAR routing protocol builds a location-based tree on-the-fly and finds a short
path when traversing the tree. It is a robust protocol in the sense that it functions well
even when the location information is inaccurate or not available for some nodes in
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the network. The lightweight BP algorithm and the optimization technique PP help
to reduce the path length and to optimize the G-STAR obtained path respective.

4.1.11 Power Adjusted Greedy Algorithm

Acrucial problem in sensor networks is finding an efficient and correct route between
a source and a destination; however for many networks, a more important problem
is providing an energy efficient route because of, for example, the limited battery
life of the wireless nodes [63]. In position-based routing algorithms, the nodes use
the geographical position of the nodes to make the routing decisions. Power adjusted
greedy (PAGs) are localized power-aware 3D position-based and beacon-based rout-
ing algorithms that increase the life-time of the network by maximizing the lifetime
of the nodes. The idea of the algorithm is to replace the constant transmission power
of the nodewith an adjusted transmission power during two stages—first a low power
while discovering the neighboring nodes, and, if needed, a second high transmission
power during the routing process.

The network model used in PAG algorithms ensures the same communication
range of nodes R and builds a Unit Disk Graph (UDG). This power aware routing
protocols are basedon the adjustments of the node transmission power at two stages—
(1) while discovering the neighboring nodes; and (2) during the routing process.

We can distinguish 3 different versions of PAG routing protocols. We have:

1. Power Adjusted Greedy algorithm (PAG): This algorithm can be summarized as
follows:

• All nodes use the low transmission range μ, which equals half of their maximum
transmission range, to discover their neighbors. This process is done periodically.

• Greedy routing is started between the source and the destination.
• If the packet reaches a local minimum (packet stuck at a node that does not have a
neighbor that makes progress to the destination) at low transmission level, then the
current node increases its transmission range by a factor of β and runs neighbor
nodes discovery step again. Figure5 gives an example of this point: when the

Fig. 5 A node may increase
its transmission range in PAG
algorithm [63]
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message arrives to the node B that does not have any neighbor that make a progress
to the destination, B will increase its transmission range by a factor of β to find
a new neighbor. Each node can adjust its transmission range just one time while
routing a single packet.

• If the node does not discover a new neighbor thatmakes progress to the destination,
then the algorithm fails, otherwise Greedy routing continues

2. PAG:CFace(3): The previous algorithm PAG and its associated fixed power
Greedy has a great advantage in terms of power saving. In our simulations it
suffers from a low delivery rate if the network is very sparse. The proposed
solution is to use CFace(3) (Coordinate Face) [65] routing if the PAG algorithm
fails to deliver the message. The combination is called PAG:CFace(3) and can
summarized as follows:

• The algorithm starts with PAG routing algorithm.
• If the current node adjusts its transmission range, and after that, it stays in the local
minimum situation, then the algorithm changes to CFace(3) algorithm.

• If CFace(3) fails to deliver the message the algorithm fails.

3. PAG: CFace(1):PAG The only difference between this algorithm and PAG:
CFace(3) is that instead of trying another projective plane if the first projective
plane fails, it returns immediately back to the PAG algorithm. PAG:CFace(1):
PAG is summarized in detail as follows:

• The second hybrid algorithm starts with PAG algorithm.
• Once it arrives at a local minimum, and the adjusted transmis-sion range does not
help to get a new neighbor to make a pro-gress to the destination, the algorithm
switches toCFace(1). CFace(1) is a simplified version of CFace(3), which attempts
face routingwith the points projected once only onto one of the xy, yz, or xz planes,
randomly chosen.

• CFace(1) traverses one projective plane, which is randomly one of the xy, yz, or
xz planes starting from the local minimum C as the new source node.

• If the destination is not reached during CFace(1) and looping occurs, the algorithm
goes back to PAG.

PAG(s) provide a maximize delivery rate nearly 100%. Also, with the energy-
aware design, there is an improvement of network life time.

4.1.12 3D Sensing Spheres Close the Line Routing Algorithm

3D sensing spheres close the line routing algorithm (3DSSL) protocol focus on two
issues in 3D WSNs: coverage and routing. For coverage problem, they introduce a
new approach for obtaining a static covered network in the 3-D environment. This
technique is referred to as the Chipset model. This would be accomplished by using
a small number of sensor nodes in order to save up some energy. For routing issue, a
new position-based routing protocol referred to as the 3-D Sensing Spheres close to
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Fig. 6 The top view of the
chipset model [66]

the Line routing algorithm (3-D SSL) has been proposed [66]. This protocol achieves
100% delivery rate on top of the 3-Dmodel. This routing algorithmmight reduce the
energy consumption of the nodes, therefore, prolonging the lifetime of the network.

At the beginning, the Chipset coverage algorithm constructs a Chipset model
like in Fig. 6, consisting of 3-D columns or pins with equal lengths, is only created
once for a region, and the pins’ densities are neglected. Moreover, the four lines
that construct the base (the square holding the pins), do not really exist and they are
represented just for illustration purposes. Figure6 illustrates a Chipset model used
to cover a region of an ocean with 2 m × 2 m × 2m. Therefore, the height of each
pin is 2 m and since the region has a length of 2 m and a width of 2 m along with the
assumption that the spacing between the pins, referred to as S, is equal to 1 m, there
will be 9 pins constructing the Chipset model.

Then every single point on each of these pins needs to be covered by at least one
node’s sensing sphere. The algorithm, therefore, starts placing one sensor node at
a time at the Chipset model. If a newly placed sensing sphere covers at least one
uncovered point on one pin, then the new sensor node becomes active; otherwise it
will be discarded. The algorithm keeps placing new sensor nodes until obtaining full
coverage for not only for a pin (covering the points on a pin), but for all the Chipset
model’s pins. This procedure leads to resolve the power saving issue, since they are
only placing the necessary sensing spheres at our Chipset model.

Although a full coverage is obtained for all the pins, the model is still partially
covered. The reason is that according to the coverage definitionmentionedpreviously,
every single point in a chosen region, not only the points on the pins, must be covered
by at least one node’s sensing sphere. Therefore, there is a possibility that the 3-D
spaces between the pins are not covered, since we were only dealing with the pins
themselves. We resolve this issue as follows. After covering all the points on all the
pins by a set of sensor nodes, the algorithm increases the sensing range by a factor
of the spacing between pins S.

After the covering process, 3DSSL protocol can run. This protocol simply works
as follows. A current node checks if the sensing spheres of its neighbors intersect the
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line segment joining the source and the destination. After having this set of nodes,
the current node picks the one which is the closest to the destination. The 3-D SSL
algorithm keeps continuing like this until reaching the destination. This algorithm
always guarantees the delivery of packets at all the times. This would show that the
Chipset model is a robust approach for the 3-D coverage problem.

4.1.13 Geographic Routing MDT

The geographic routing protocol, named MDT [67], is designed for 2D, 3D, and
higher dimensions with these properties: (1) guaranteed delivery for any connected
graph of nodes and physical links, and (2) low routing stretch from efficient forward-
ing of packets out of local minima. The guaranteed delivery property holds for node
locations specified by accurate, inaccurate, or arbitrary coordinates.

The MDT protocol suite includes a packet forwarding protocol together with
protocols for nodes to construct and maintain a distributed MDT graph for routing.
Furthermore, MDT protocols are specially designed to handle churn, i.e., dynamic
topology changes due to addition and deletion of nodes and links.

Based on Delaunay Triangulation (DT), Multi-hop DT algorithm designs MDT
graphs which are the summation of every physical links and every DT edge in the
network. MDT is communication efficient. Then, routing is realized with MDT for-
warding. The key idea of MDT forwarding at a node, say u, is conceptually simple:
For a packet with destination d, if u is not a local minimum, the packet is forwarded
to a physical neighbor closest to d; else, the packet is forwarded, via a virtual link,
to a multi-hop DT neighbor closest to d.

For a more detailed specification, consider a node u that has received a data
messagem to forward.Node u stores itwith the format:m =< m.dest,m.source,m.

relay,m.data > in a local data structure, where m.dest is the destination location,

Table 1 MDT forwarding protocol at node u [66]

Step # Condition Action

1. u = m.dest No need to foward (node u is at
destination location)

2. There exists a node v in Pu and v =
m.dest

Transmit to v (node v is at destination
location)

3. m.relay ∈= null and m.relay ∈= u Find tuple t in Fu with t.dest = m.relay,
transmit to t.succ

4. There exists a node v in Pu U {u}
closest to m.dest, v ∈= u

Transmit to node v (greedy step 1)

5. There exists a node v in Nu U {u}
closest to m.dest, v ∈= u

Find tuple t in Fu with t.dest = v, transmit
to t.succv(greedy step 2)

6. Conditions 1–5 are all false No need to foward (node u is closest to
destination location)
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m.source is the source node, m.relay is the relay node, and m.data is the payload of
the message. Note that if m.relay ∈= null, message m is traversing a virtual link.

The MDT forwarding protocol at a node, say u, is specified by the conditions
and actions in Table1. To forward message m to a node closest to location m.dest,
the conditions in Table1 are checked sequentially. The first condition found to be
true determines the forwarding action. In particular, line 3 is for handling messages
traversing a virtual link. Line 4 is greedy forwarding to physical neighbors. Line 5 is
greedy forwarding to multi-hop DT neighbors. It has been theoretically proved that
MDT forwarding in a correct multi-hop DT provides guaranteed delivery.

4.2 Beaconless Routing Algorithms

In beacon-less routing algorithms, nodes do not require to periodically broadcast the
hello (beacon) messages. These algorithms select the next hop forwarder among the
previous hop forwarder node’s neighbors. But, the previous hop forwarder is unaware
of the position and even the existence of its neighbors. Data packets are broadcasted
and then using some strategy one of the receiving nodes is selected as a next hop
forwarder. Thus, the routing protocol does not require nodes to periodically broadcast
hello-messages, and thus avoids drawbacks such as extensive use of scarce battery-
power, interferences with regular data transmission, and performance degradation

4.2.1 3D Blind Geographic Routing

BGR is a two-dimensional beacon-less geographic routing algorithm using a
broadcast-based contention scheme [68]. 3D Blind Geographic Routing (3D-BGR)
extends the routing protocol to work with three-dimensional WSNs.

During BGR functioning, the nodes do not carry any neighborhood or topology
information. Packets are forwarded via broadcast. Nodeswhich receive this broadcast
determine if they are located within a special area called forwarding area. A descrip-
tion of the forwarding area is included in the packet. The forwarding area is oriented
toward the destination location, and its dimension ensures that all nodes with-in it
can mutually communicate with each other (provided the unit disk graph model;
however, BGR also performs well with more realistic, irregular radio propagation).
Examples for forwarding areas are shown in Fig. 7.

Nodes which receive a broadcast and are located within the forwarding area start
a contention timer depending on their distance to the destination. The timer of the
node which is closest to the destination expires first; this node declares itself as next
hop and forwards the packet again. The other nodes which have still a timer running
also receive this packet and cancel their timers.

BGR like Beacon-less algorithms, can easily be extended to operate in 3D space.
Thus, the forwarding areas have to be converted into for-warding volumes by con-
structing the solid of revolution around the forwarder-destination axis.
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Fig. 7 Forwarding areas: 60≥ sector, circle, and Reuleaux triangle [68]

Hence, the 2D sector becomes a spherical sector, the circle becomes a sphere,
and the Reuleaux triangle becomes the solid of revolution of a Reuleaux triangle.
Note that this is different from the Reuleaux tetra-hedron, whose diameter is slightly
larger than the radius of the intersecting spheres from which it is constructed.

3D-BGR’s forwarding volumes suffer from an analogical problem, since the cov-
ered fraction of the transmission volumes is only half as large as in the 2Dcase.Hence,
recovery mode is triggered more often and the number of sent packets increases. The
delivery ratio is also slightly lower. Additionally, simulation results revealed that
in case of location errors, 3D routing has significantly more problems than its 2D
counterpart.

4.2.2 Energy Aware Beaconless Geographic Routing Approach
for Three Dimensional WSNs (3D-EABGR)

The proposed energy aware beaconless geographic routing approach for three dimen-
sional WSNs [69] takes into account energy budget of nodes besides the distance, in
next hop forwarder selection process.

This increases the lifetime of the network bymaximizing the lifetime of the nodes.
The assumptions of this routing algorithm are:

1. All nodes are homogeneous in nature. Thismeans, that all the nodes have identical
sensing ability, computational ability, the ability to communicate.We also assume
that the initial battery powers of the nodes are identical at deployment.

2. All nodes have identical communication range R. Communication is Omni-
directional and the communication region of each node can be represented by
a sphere of radius R, having the sensor node at its center.

3. Nodes know their own location coordinates throughGPS or any othermechanism.
4. Nodes know the location of the final destination.
5. All the nodes are randomly deployed over the surveillance volume.

Then, according to the energy model [69], the forwarding volume is calculated.
In this Algorithm, let e is the energy budget of the node; parameters that are used

in the calculation of time interval t are illustrated with the help of Fig. 8. Where d is
the distance between the forwarder node and destination, p is the distance between
forwarder node and the projection of the candidate node’s position on the straight
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Fig. 8 Parameters for the
calculation of the time interval
t [68]

line from for-warder to destination and r is transmission range. And MaxDelay is the
maximum time a forwarder is allowed to wait before retransmission.

4.3 Comparison

Although we classified a sample of routing and data dissemination protocols for 3D
WSNs, other classification could be made (e.g., on the type or model of networks
used, random or deterministic networks [57, 59], and unit ball graphmodel [53, 54]).
The fact is that several efforts have been made to make efficient routing protocols in
3D WSNs. However, all these routing algorithms have strengths and weaknesses.

Regarding our classification, the beacon-based approaches have the following
drawbacks:

1. If nodes are mobile then position information of nodes may change over time.
This inaccuracy of node’s positions increases load onMAC layer. If routing layer
is not taking care of this situation packets may be lost.

2. The beacons themselves impose additional load on the network.
3. Beacons can interfere with regular data transmission.
4. Battery power consumption and bandwidth usage by beacons cannot be neglected.

Even the nodes that are not taking part in routing process waste their energy and
power resource.

Since in beacon-less routing algorithms, nodes do not require to periodically
broadcast the hello (beacon) messages, therefore, avoids all the draw-backs of
beacon-based algorithms mentioned above. Nevertheless, beacon-less routing algo-
rithms require to be executed under multiple assumptions like:

1. Identical sensor nodes (in sensing and communication abilities); this requirement
cannot be easily fulfilled in all three-dimensional sensor networks.

2. Other beacon-less routing simply used broadcast technique which brings large
overhead especially in three-dimensional sensor networks where a large number
of sensors is needed to cover the entire space. And, the delivery ratio is not
guaranteed at 100%.
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The studied routing algorithms are then classified according to some criteria in the
following parts.

4.3.1 Network Design

Routing algorithms which use some changing or design new elements to improve or
facilitate routing likeGDSTR,GHGmay introduce an additional overhead compared
to the other ones such as ERGrd or G-STAR. In fact, spanning tree is constructed for
the entire network (GDSTR) or for a subgraph of the network (GHG) and each node
makes use to its children in the tree for routing. All this require high calculations
which would demand significant processing resources; it will also introduce high
storage over-head in order to maintain the configuration and if the location informa-
tion is inaccurate, a defective spanning tree will be constructed and routing may fail.
These protocols are considered too expensive for 3D WSNs. More such routing that
proactively maintains states of information at each node are called statefull unlike
the stateless ones like G-STAR or GRG which require less resource capacity.

4.3.2 Network Models

The utilization of simplified models of networks such that Delaunay triangulation
(DT), unit disk graph (UDG) and unit ball graph (UBG) allows the routing pro-
tocols to search path from source to destination in a uniform network in order to
increase to routing efficiency. Network models allow simplifying the network and
make it more accessible. However, these models are not always representative of
real network especially three-dimensional networks which can be very complex for
example in case of configuration designs like undersea 3DWSNs.Most of the routing
approaches use models: The Delaunay triangulation (DT) network-based models are
used for example inGreedy-Hull-Greedy (GHG),Deterministic greedy routing based
on a unit tetrahedron cell mesh structure (UTC-Greedy Routing), Energy-efficient
restricted 3D greedy routing (ERGrd) [57], and Geographic routing MDT(Multi-
hop DT algorithm), etc. Regarding the algorithms such as Greedy Random Greedy
(GRG), Three-dimensional greedy anti-void routing (3D-GAR), or Power Adjusted
Greedy algorithm (PAG), the routing protocol is based on a unit ball graph (UBG)
settings. Thus, like planarization, the distributed computation of DT or UBG settings
is a hard problem [51] and so these algorithms are not likely to be usable in practical
networks with arbitrary topologies. More, they require a storage space proportional
to network size and some nodes are heavily loaded.

Some routing in return such as Three-dimensional Geographical Routing (3DGR)
assumes as in previous algorithms that links between nodes are bidirectional but does
not assume that radio ranges are uniform and that they cover unit disks. Similarly for
Geometric STAteless Routing (G-STAR), which does not assume network models
such that unit disk model or unit ball model like GRG [54] or MDT [67].
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Others algorithms like Projection heuristic (PH) [45] and Three-Dimensional
Circular Sailing Routing (3D-CSR) [12] use projection to have virtual coordinates or
other mapping techniques in order to build a network where the routing protocol can
be run. The techniques are very simple leading to lowoverhead, easy implementation,
and good scalability but they cannot guarantee the delivery.

4.3.3 Delivery Rate

The aim of routing is to delivery packets from one source to a destination. But
because of 3D topology sensor networks constraints, which often lead to dead ends
during the routing of a packet, some routing protocol cannot guarantee the delivery
at 100%. Thus, projection heuristic [45] or load balancing (3D-CSR) [12] are not
able to deliver all packets properly since projection methods do not reflect the truly
topology of the network. The evaluation of the virtual coordinate is not localized and
has to be updated whenever the topology changes. This is the same case for others
protocols like 3DGR [31]. Even if the 3DGR routing algorithm does not guarantee
delivery, it rather favors other criterion like the overheadwhich is completely avoided
thanks for reuse of the already existing path. Likewise, PAG(s) routing protocols [64]
focus on energy-awareness and try to maximize the delivery rate nearly to 100%.
And, Beacon-less routing algorithm like 3D-BGR [68], which forwards packets via
broadcasting have a lower delivery ratio since routing decision are taken using the
forwarding area extended from 2D to 3D space into a forwarding volume. These
forwarding volumes cannot ensure the total coverage of nodes which badly affects
the routing success or the delivery rate.

However other random protocol like GRG [54] addresses this issue andmay guar-
antee delivery with certain probability using a random walk which often lead to high
overheador longdelaywhendeterministicmethods such asGreedy routing-UTC [52]
proposes deterministic routingmethod that ensures the delivery of all packets. In fact,
most of the greedy-based routing algorithms face a delivery problem—unreachability
problem also called void problem or local minimum—due to the 3D environment of
sensor networks (see Sect. 2.2). Thus several greedy-based routing main objectives,
is to handle the void problem in order to ensure a guaranteed delivery. They use
network models or routing configuration and assumption which sometimes require
high storage and computation complexity. Then some algorithms have been design to
offer deterministic routing and guarantee packet delivery. It is the case of GDSTR-3D
[61], or GHG [13] algorithm that uses hull routing to progress in the routing proto-
col. Similarly, the UTC-Greedy routing realizes deterministic greedy routing with
constant-bounded storage and computation in 3D sensor networks ensuring delivery.
And 3D-GAR location-based protocol [53] under the UBG settings scheme guaran-
tees the delivery of packets from the source node to the destination node. Also, under
the condition that the underlying topology is Delaunay Translation (DT), the 3D
greedy routing, ERGrd [57] guarantees the delivery of packets with high probability
in a randomly deployed sensor network. In addition, routing objective is emphasized
in routing algorithm such that 3DSSL which uses the Chipset model and a position-



442 A. P. Yao and H. M. Ammari

based line routing protocol to reach 100% delivery rate for 3D WSNs. Compared
of other 3D geometric routing protocols like GDSTR [61], GHG [13], G-STAR
[60] guarantees packet delivery even when the location information at some nodes
is inaccurate or missing. It is a robust protocol in the sense that it functions well
even when the location information is inaccurate or not available for some nodes in
the network. As to the geographic routing protocol Multi-hop DT (MDT) [67], it
ensures a guaranteed delivery for any connected graph and low routing stretch even
if node locations are specified by accurate, inaccurate, or arbitrary coordinates and
is designed to efficiently handle dynamic topology changes.

4.3.4 Power Consumption

Another property that should hold 3DWSNs is energy-efficiency. This challengewas
pointed explicitly in some algorithm like ERGrd [57] while other ones do not take
it as a priority where the goal was more oriented towards guaranteeing reception of
packets or ensure load balancing. Therefore, routing and data dissemination protocols
designed for WSNs should be as energy efficient as possible to prolong the lifetime
of individual sensors, and hence the network lifetime.

Energy-efficient restricted 3D greedy routing (ERGrd) [57] achieves energy-
efficiency of its paths through the selection criterion of node based on energymileage
and the Restricted region concepts which allow choosing the best next hop accord-
ing to the minimum power consumption. It can guarantee delivery of packets and
energy-efficiency of their paths with high probability in a randomly deployed 3D
sensor network. Similarly, the battery awareness measure of 3DGR [31] ensures the
minimum power consumption and increase the overall lifetime of the network. Other
dedicated routing algorithms and data dissemination techniques to energy-awareness
are the power adjusted greedy algorithms (PAGs) [64] are localized power-aware 3D
position-based and beacon-based routing algorithms that increase the lifetime of
the network by maximizing the lifetime of the nodes. Furthermore, Energy aware
beaconless geographic routing approach for three dimensional WSNs (3D-EABGR)
[69] takes into account energy budget of nodes besides the distance, in next hop for-
warder selection process. This increases the lifetime of the network by maximizing
the lifetime of the nodes. Thus, routing and data dissemination algorithms for 3D
WSNs have to be energy-aware design routing protocols in order to deal with severe
power consumption constraints.

4.3.5 Modes of Protocols

Another feature that emerges from this study is the different stages or modes used
in the routing algorithms. Most of the routing and data dissemination algorithms
can use several modes according to routing criteria. Generally, the position-based
routing protocols for 3D WSNs use a simple protocol like a greedy forwarding to
transmit packets and when the routing algorithms face a void problem, they switch
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to another mode which permits to handle the problem and, after the void have been
solved; they switch back to the first routing algorithm. Theses algorithms employ
alternately routing techniques to route the packets towards their destination.

Therefore, GDSTR-3D [61] routing algorithm is defines into two forwarding
modes: the greedy mode and the tree forwarding mode (when there is a local mini-
mum) similarly to GHG [13] which execute a Greedy-Hull-Greedy forwarding pro-
tocol by a repetitive alteration between greedy forwarding and hull-based local-
minimum recovery. Likewise the GRG [54] follows a Greedy-Random-Greedy rout-
ing process. The 3D-GAR [53] is a hybrid scheme consisting of both the greedy rout-
ing algorithm and the 3D rolling-ball UBG boundary traversal (3D-RUT) scheme.
AndUTC-GreedyRouting algorithm [52] route a data packet to its destination using a
face-based and a node-based greedy routing algorithms that are employed alternately
at internal and boundary UTCs, respectively.

Compared to the previous 3D geometric routing protocols like GDSTR [34] and
GHG [13], G-STAR [60] runs in only one mode. And more, it does not assume
network models such that unit disk model or unit ball model like GRG [54].

Furthermore, some algorithms do not have mode but their routing and data dis-
semination process are based on several techniques that should be perform in order
to ensure a correct routing. It is the case for 3DGR algorithm [31] which uses geo-
casting, recent path and battery awareness measures techniques to transmit packets;
the Energy-efficient restricted 3D greedy routing [57]: this routing method uses two
concepts to refine the choices of forwarding nodes in 3D greedy routing: Energy
mileage and the restricted region.

In addition, to improve their behavior, some algorithms have post optimization
techniques. G-STAR can improve the routing of a packet being aware of new changes
via the Path Pruning (PP) [62], and further minimize the overhead of path pruning,
through a light-weight path pruning, namely Branch Pruning (BP) [60].

Therefore, some protocols result in a very practical and good performance in terms
of energy-efficiency, network overhead, delay, and data delivery while others routing
can offer poor performance in reality. In Table2, there is a summary according the
verified criteria of all these protocols we have presented above.

5 Conclusion and Future Research

Routing and data dissemination protocols for three-dimensional Wireless Sensor
Networks received recent attention from the community. Regarding the challenges
that these routing protocols should offer in terms of performance, resource con-
servation and energy efficiency, several routing algorithms and techniques have
been investigated. Most of these routing algorithms are location-based and there-
fore they are subject to related problems like local minimum, position inaccuracy.
Authors tried to resolve these issues using diverse methods and they produce accept-
able solutions. However, improvements have to be done in energy-efficiency field
since energy resource of sensor is scarce. Furthermore, a lot of research has been
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Table 2 Comparison summary of 3D WSNs routing protocols

Classification criteria Protocols

Beacon-based
location-awareness

Projection heuristic [45], 3D-CSR [12], GDSTR-3D [61],
GHG [13], UTC-Greedy Routing [52], 3D-GAR [53],
GRG [54], 3DGR [31], ERGrd [57], G-STAR [60], PAG
[63], 3DSSL [65], Geographic routing MDT [66]

Beacon-less 3D-BGR [67], 3D-EABGR [68]
Random routing GRG [54], 3D-BGR [67]
Deterministic routing UTC-Greedy routing [52], GDSTR-3D [61], GHG [13],

3D-GAR [53]
Guarantee delivery GDSTR-3D [61], GHG [13], UTC-Greedy Routing [52],

3D-GAR [53], ERGrd [57], G-STAR [60], 3DSSL [65],
Geographic routing MDT [66]

Energy-awareness ERGrd [57], 3DGR [31], PAG [63], 3DSSL [65],
3D-EABGR [68]

Low overload/ Over-head Projection heuristic [45], 3D-CSR [12], 3DGR [31],
G-STAR [60]

High overhead/ Long delay GDSTR-3D [61], GHG [13], GRG [54]
Constant-bounded storage and

computation complexity
UTC-Greedy Routing [52], GRG [54]

DT-based GHG [13], UTC-Greedy Routing [52], ERGrd [57],
Geographic routing MDT [66] UBG-based GRG [54],
3D-GAR [53], PAG [63]

Virtual coordinates and
mapping techniques

Projection heuristic [45], 3D-CSR [12], UTC-Greedy
Routing [52]

Two forwarding modes GDSTR-3D [61], GHG [13], UTC-Greedy Routing [52],
3D-GAR [53]

done in three-dimensional Routing in Underwater Acoustic Sensor Networks [70–
72, 15] because of the large variety of oceanographic applications. Even if these
routing algorithms are primarily designed for underwater communications, they
can be an inspiration in designing routing protocols for terrestrial or aerial 3D
WSNs.
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Chapter 12
The Future of Wireless Underground Sensing
Networks Considering Physical Layer Aspects

Agnelo Rocha da Silva, Mahta Moghaddam and Mingyan Liu

Abstract The design of a WSN for the underground environment is typically
characterized by an excess of either pessimism or optimism. For many years, under-
ground communication has been considered infeasible. Rather, we should neither
abandon the hope of designing a functioning underground WSN, nor expect things
to automatically work in an underground setting by simply importing technologies
from existing WSNs, the majority of which are developed for aboveground envi-
ronment. Besides energy challenges (more critical compared to typical WSNs), the
design of an undergroundWSN is governed by the characteristics of the underground
communication channel. Compared to over-the-air (OTA) radio frequency commu-
nication, signal attenuation in soil can be 20–300 times worse. For instance, a typical
communication range of 300m for a radio transceiver can decrease to less than 1m in
soil. Moreover, while OTA transceivers and underwater communication have been
available for many years, the same cannot be said for underground communica-
tion. The mining industry has been looking for a long-range, low-power, wireless
communication solution for rescue missions in the event of trapped miners due to
a collapse, and has so far not been very successful. These facts highlight the chal-
lenges in realizing wireless underground communication. Recent innovations based
on relatively short-range communication and high density of nodes can potentially
lead to the proliferation of wireless underground sensor networks (WUSNs) in the
near future. In this chapter, we present in detail the traditional challenges faced by
WUSN researchers, the perceived limitations, and recent technological advances that
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are beginning to change the outlook. Through this discussion, we show that a generic
solution for WUSNs cannot be expected. Instead, the design must be tailored to the
application. For instance, the features and techniques to be exploited in designing a
WUSN to detect oil pipeline leakage are distinctly different from that of a WUSN
for agricultural draught or landslide monitoring.

WirelessUndergroundSensorNetworks (WUSNs) is a special type ofWSNwhere
some (typically, themajority) of the sensor nodes are deployedbelow the ground.Two
communication technologies for underground settings have been proposed: radio
electromagneticwaves radiation (EM) [1] andmagnetic induction (MI) [2]. Although
specific WUSN applications can take advantage of one or the other technology, we
believe that the future ofmostWUSNs lies in the strategic integration of both because
the drawback of one technology can be compensated by the characteristics of the
other technology.

Existing communication models for WUSNs are presented by highlighting the
main constraints and the communication performance in typical scenarios. Theoreti-
cal results as well as outcomes of real-world implementations are also highlighted in
this chapter. Specifically, we start this chapter by introducing radio wave propagation
through soil. In doing so, we attempt to better understand the challenges involved in
applying traditional WSN hardware and software solutions directly to WUSNs. The
pros and cons of the recent EM-based solutions for WUSNs are discussed. More-
over, issues arising from buried antennae and the impact of a phenomenon called
lateral waves (LWs) are discussed. We then present WUSN designs based on MI and
a comparison between EM and MI solutions. The importance of hybrid solutions
based on both EM and MI is highlighted.

This chapter has some similarities with [3]. To illustrate both similarities and
differences between the works, the topics of each work are presented in Fig. 1. The
topics with the same color are the ones with some similarities. The remaining topics
are discussions that are not considered at all or only briefly mentioned in one or
other work. In particular, our current work extends [3] by highlighting the potential

Fig. 1 Comparison between
this chapter and Ref. [3]
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technological advantages of mixing EM- and MI-based systems. In this context,
terms such as LW and UG2AG/AG2UG links are introduced. Also, practical aspects
related to the design and deployment of WUSNs are discussed.

1 Introduction

Wireless Underground Sensor Networks (WUSNs) is a special type of WSNs where
some of the nodes are deployed below ground, either in soil or in a similar confined
environment. For instance, sensors deployed inside walls or in the basement of a
building may be considered WUSNs. A variety of novel applications are enabled by
the use of WUSNs, initially categorized [1] as follows: environmental monitoring,
infrastructure monitoring, location determination, and security monitoring.

The main challenge in the design and operation of WUSNs is the realization
of wireless communication given the high EM signal attenuation going through the
medium (e.g., soil). For instance, if we consider typical values of soil texture and soil
moisture, the communication range between 2WSN commodity sensor nodes buried
at 40cm depth is smaller than 1m in the 400–2400MHz frequency range (10dBm
transmit power level). This estimate is based on the same radio technology used
for over-the-air (OTA) communication. Technological enhancement in radio trans-
ceiver, antenna design, network protocols, and placement strategies can potentially
mitigate this problem [4–11]. However, large coverage using EM-based solution
in underground settings remains a challenge. Moreover, various aspects of the soil
environment including its makeup, density, and the dynamics of soil moisture, can
contribute to significant changes in the conditions of the underground communication
channel.

Within this context, MI-based solutions are being proposed as a potential answer
especially to large and sparse WUSNs [2]. Given similar volume, cost, and energy
parameters, the communication range between two undergroundMI-based nodes can
easily double that of EM-based nodes.More recent development in this area indicates
the potential of increasing the range by almost 2 orders of magnitude. Moreover, the
environment settings do not significantly impact the MI-based communication; this
simplifies the development of communication protocols.

However, for many reasons MI-based solutions cannot be seen as a replacement
for EM inWUSNs. Firstly, the bandwidth of MI communication is very limited (i.e.,
few KHz), which constrains its applicability in some scenarios. Secondly, recent the-
oretical results show that EM range can potentially be increased bymore than 1 order
of magnitude if the lateral waves effect is properly exploited in WUSNs [12–14].
Thirdly, MI-based communication cannot be directly realized between underground
and aboveground nodes, thus creating challenges in the design. Finally, the nonex-
istence of commercial transceivers of this very recent technology (MI) also impacts
its immediate adoption.

The ultimate conclusion given in this chapter is that both EM and MI technolo-
gies for WUSNs will experience significant development during the next few years.
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Accordingly, we believe that cost-effective WUSNs will be heterogeneous networks
with a mix of nodes using EM and MI technologies. In Sect. 3.2, the strategic use of
both technologies is discussed and their complimentary features are highlighted.

1.1 WUSN Applications

While for some applications, the sensor itself needs to be buried (e.g., soil moisture
probes can only function when buried among soil), it is not always clear why the
transceiver/antenna also needs to be underground. One reason is concealment. For
instance, due to aesthetic (e.g., in a golf field) or security (e.g., border control)
concerns, some or all parts of a sensor node may need to be out of plain sight. In
some other applications, wires and aboveground posts can potentially impact the
regular activities. Moreover, the wiring infrastructure and electronic devices can be
easily damaged by such activities, such as soil plowing, crop harvesting, etc. Two of
such examples are precise irrigation (due to human and machine activity in the crop
field) [8, 11] and sensors embedded in a sidewalk to provide guidance to the visually
impaired [12].

A second reason is to prevent damage. For some applications the aboveground
infrastructure such as wiring and posts may be damaged exactly when the network
is needed the most (e.g., in landslide control). Finally, there are cases where the
phenomenon being observed can only be captured by underground antennas (more
detail is given in Sect. 2); that is, the antennas are the “sensors.”

In [1] WUSN applications are organized into four classes: environmental moni-
toring, infrastructure monitoring, location determination, and security. We believe a
fifth class, geophysical exploration, may be added. While similar to environmental
monitoring, these are networks with much more specific needs as we explain below.
There are twoWUSN applications that have received increasing attention in the past
few years: precision agriculture/farming (environmental monitoring) and oil leakage
detection (infrastructuremonitoring). The above classification is shown in Fig. 2 with
each class explained in more detail next.

Environmental monitoringWUSNs aremostly associatedwith soil sensingwith
soil sensors buried underground. In particular, irrigation management is by far the

Fig. 2 Categories of WUSN
applications
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most important application in this class and also for WUSNs in general, in response
to increased water shortage around the world.

Infrastructure monitoring is primarily related to underground infrastructures
such as pipes and liquid reservoirs. The inspection of the foundation and internal
structure of buildings, tunnels, bridges, etc., are potential extensions of this scenario.
MI technology is mainly meant for this class of applications, as we will discuss in
more detail in Sect. 3.

Location determination refers to the use of a network of underground nodes to
forward location-related information to a mobile aboveground node passing through
the area, which can be a robot, a car, or a person. An interesting application for the
visually impaired using such a concept is suggested in [12].

Security monitoring underground sensor nodes naturally carry a much higher
degree of concealment compared to other more traditional security solutions, and
therefore this area is a potential one for the application of WUSN. For instance, even
to detect the existence of such a WUSN can be extremely difficult; a sniffer device
would have to be physically very close to the WUSN. One potential application is
border-patrol [1, 15].

Geophysical exploration applications are associated with the potential use of
underground communication as a sensing technique by itself. For instance, radar
remote sensing (RRS) techniques have been widely used to study characteristics of
topsoil (i.e., the top 30cm of soil) and subsoil (usually the next 30–100cm region)
[16]. Depending on the frequency and soil makeup, the penetration depth of an RRS
system can increase by an order ofmagnitude. Some geophysical investigations (e.g.,
oil prospection) require very deep measurements. A technique similar to RRS can be
employed if aWUSN is formed at the boundaries of the area under investigation (deep
soil). In this case, the wireless communication among nodes is used collectively as a
sensor instrument. In otherwords, instead of usingRSS systems, the characteristics of
the medium under investigation can be inferred by the characteristics of the wireless
communication between 2 or more nodes, in particular the signal attenuation. In this
very particular class of WUSN application, the ultimate goal of the network is not
the realization of wireless communication but the capture of information about the
soil medium by means of the analysis of the signal attenuation.

1.2 Wireless Communication in Underground or Confined Areas

While our main interest in this chapter is WUSNs, it is worth mentioning a bigger
class of wireless systems, those underground or in confined areas. Examples include
systems deployed in mines, tunnels, and in certain disaster-relief scenarios. Different
wireless communication technologies have been developed for such systems, and a
taxonomy is given in Fig. 3. For a long time, the mining industry looked for effective
wireless communication solutions to help trapped miners [12, 17]. Some of these
options are categorized as Through-The-Earth (TTE) communication techniques.
This is a point-to-point solution; more on TTE is discussed in Sect. 1.4. Wireless
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Fig. 3 Taxonomy of wireless communications in underground or confined areas (WCUCA)

communication techniques for networks located in underground and confined areas
have been investigated in different contexts. Note that wireless networks used for
mines and tunnels actually employ over-the-air communication.

We now turn to our main interest in this chapter,WUSNs. As shown in Fig. 3, such
networks are classified as Topsoil (up to 30cm depth), Subsoil (30–100cm depth),
and Deep Soil (>1 m depth) or Confined Areas WUSNs. Although the terms topsoil
and subsoil typically match with the terms used in soil sciences [16], the exact length
of each type of soil actually varies. However, such proposed classification for the
WUSN context is primarily associated with two aspects: the physical security of
the underground device and the signal attenuation level related to the underground
communication. Devices buried at the Subsoil or Deep Soil are potentially protected
against external agents (e.g., plowing activities in a farm, intruder, etc.). Second, EM-
based communications in Deep Soil or in certain regions of Subsoil are potentially
impacted if low-power transceivers are used, as discussed next.

Within this context, we define burial depth as the smallest distance between the
antenna and the soil surface. Naturally, the closer the sensor node is to the surface,
the easier is the installation and maintenance of that node. But the notion of burial
depth has other significance as we discuss below.

The shallower the placement of a sensor node, the more achievable improvements
in communication range. This is true for both EM and MI techniques, although for
different reasons, as we will see in more details in Sects. 2 and 3, respectively. For
an MI-based WUSN, it becomes economically feasible to install more and more
MI-relay devices closer to surface. For an EM-based WUSN, the communication
with aboveground nodes is greatly enhanced with shallower burial depths; as a result
large and sparse networks involving underground nodes become feasible. Moreover,
with shallower burial depths, the underground-to-underground communication range
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also significantly increases due to the lateral waves (LW) effect at the vicinity of the
soil–air interface. Therefore, the future of topsoil WUSNs (nodes buried up to 30cm
depth) is very promising.

Subsoil WUSNs are sometimes needed to protect nodes from potential damage
due to aboveground activities, e.g., machinery activity in the crop field [8]. Note that
even when the soil sensor is installed deeper, what really matters to the communi-
cation is the location of the antenna. Deep WUSN remains a relatively unexplored
research area; a natural problem is the installation and deployment cost. To date, prac-
tical implementations based onEMwaves are only feasible if high power transceivers
(e.g., 2W) are used. Moreover, deep burial depths limit the practical utilization of the
LW effect because only the attenuation for the vertical parts of the signal path (i.e.,
from the transmitter up to the soil surface and again from the surface down to the
receiver) can be high enough to impede the communication. By adopting a smaller
frequency, such attenuation can be significantly reduced but the bigger dimensions
of the antenna can be a problem considering the deployment requirements of some
applications. For this reason, in this chapter, the term WUSN in the context of EM-
based solutions will generally refer to topsoil and subsoil WUSNs considering the
current available technology. On the other hand, MI-based solutions are typically
applicable independent of the burial depth. MI technology is also a potential solution
for WUSNs located at confined areas in general. However, typically MI modules
involve higher physical volumes than EM modules; more about MI is discussed in
Sect. 3.

1.3 Signal Propagation Through Soil

In this section, we introduce the main challenges behind any EM-based solution for
WUSNs. When an EMwave propagates through a homogeneous dielectric material,
the attenuation to the signal is governed by the frequency, distance, and conduc-
tivity/permittivity/permeability properties of the material [8]. However, the analysis
becomes much more complex when a mixture of substances is involved. Soil typi-
cally consists of 3 components: sand, silt, and clay, each having distinct grain sizes
as shown in Fig. 4. In this figure, the point P represents a soil type clay loam with
30% of clay, 35% of silt, and 35% of sand. In addition, pockets of air may form in
between these grains, which leads to sandy soil (the opposite is clay soil); the amount
of air inside the soil is also a function of the soil density or how compact the soil is.

Besides sand, silt, clay, and air, soil also contains water, which is a very complex
component to analyze for at least 2 reasons [18–21]. The first has to do with water
dynamics in the soil: the environment and weather constantly affect the amount of
water in the soil. Topography and soil makeup also influence the quantity of water
in the soil, which is also referred to as the volumetric water content (VWC). Even
locations within close proximity can have very distinct values of VWC.

The second reason why it is hard to analyze the effect of water on signal prop-
agation through soil is related to the type of water present in the soil. Bound water
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Fig. 4 Soil texture triangle
based on the United States
Department of Agriculture
(USDA) classification [3, 20]

refers to water molecules that are tightly connected to the surface of the soil particles.
By contrast, free water refers to water molecules that reside in the voids between soil
particles. Due to the smaller size of a clay particle, clay soils typically have more
bound water than sandy soils, and for this reason usually have higher VWC. If this
does not sound intuitive enough, the following analogy may help. Imagine a box
filled with 100 balls and we need to paint all of them. Consider now a second box
with the same volume but filled with 10,000 much smaller balls. In the second case,
a lot more paint would be needed due to the larger total surface area. In this analogy,
the smaller balls correspond to the clay particles and the paint the bound water.

When the VWC is smaller, attenuation to the signal is also smaller. Thus sandy
soil is typically more favorable to signal propagation. This, however, is not always
true, a fact sometimes ignored when indoors experiments of WUSNs are performed
[9]. Consider irrigating a sample of sandy soil and clay soil, respectively. Free water
increases faster in the sandy soil than bound water does in the clay soil; thus during
the irrigation process, sandy soil may pose higher attenuation. This is why during
or immediately after a rain event, sandy soil can become extremely unfavorable for
EM signal propagation. This example highlights the challenges in designing a sound
communication system that can adapt to dynamic changes in the environment.

In addition, the VWC parameter alone is not sufficient for any EM attenuation
model. The dielectric properties of bound water are different from free water; thus
the attenuation to a signal as well as the change in its propagation speed (i.e., phase
shift) vary as a function of both bound and free water amounts. Soil texture and its
bulk density are also essential elements in the analysis.

If we ignore obstacles, the attenuation to a signal propagating over-the-air is
typically modeled as a monotonic function of its frequency [22]; this is true for a
large frequency band. This is also valid for many dielectric materials. Unfortunately,
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this does not hold for soils. It is well known that signal attenuation in soil mixtures
follows a very complex process. Depending on the frequency range, different models
can be used to calculate the signal attenuation, a simple conductivity model or a
more complex permittivity model. Let us assume that the operating frequency is at
the 100MHz–5GHZ range.

The effective conductivity combines DC conductivity losses, polarization losses,
and magnetization losses. Assuming a non-magnetic soil, the conductivity remains
quite well-defined and stable for frequencies below certain values (e.g., 300MHz),
as empirically observed for different kinds of soil and water content levels [23].
This result can be explained by the fact that the excitation frequency is not close
to the orientational polarization of free water and the polarization losses factor is
small enough to be neglected. Therefore, for relative low frequencies, simple electric
conductivity models maybe enough. However, as the frequency increases, the water
polarization effect becomes more and more pronounced and the signal attenuation
is better captured by a permittivity model that takes into account the amounts of free
and bounded water at the soil. Geometrical characteristics of the soil particles are
very important in this scenario and, as expected, the permittivity model becomes
more complex.

In any case, if we limit our discussion to the 100MHz–5GHZ range, the soil
attenuation will decrease if lower frequencies are used. However, the use of frequen-
cies smaller than 300MHz typically implies the adoption of non-practical antenna
for WUSNs due to its physical dimension. Based on this fact, we can potentially
narrow the EM frequencies for WUSNs to values above 300MHz. At the UHF band
(i.e., 300MHz–3GHz), knowledge of soil permittivity is essential, as previously
explained. However, there is no simple way to obtain permittivity even if all parame-
ters discussed so far are known. The difficulty is due to the impact of the geometric
aspects associated with different soil makeups and density and how bound and free
water are distributed in the soil structure.

Many studies have been done to establish a practical way to determine soil per-
mittivity for different frequencies. Some of the proposed models are very accurate,
but they require sophisticated instrumentation. Simpler approaches, usually semi-
empirical models, can provide the answer for EM-based WUSNs. For instance, the
Peplinski semi-empirical model [24] for the soil permittivity estimation was used in
many WUSN works [3, 12, 25, 26]. Additional models are also referenced in the

Table 1 EM-based communication through soil: effect of soil properties on signal attenuation
listed according to their impact (high to low)

Soil property Effect on signal attenuation

Water content More water: higher attenuation (critical)
Sand and clay Clay soil: higher attenuation
composition Sandy soil: smaller attenuation

Bulk density High bulk density (soil is more compacted): higher attenuation
Temperature High temperature: higher attenuation
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WUSN works mentioned in this chapter. A summary of the effect of soil properties
on signal attenuation is provided in Table1.

The magnetic induction (MI) technique is not based on wave propagation, as we
will see later in Sect. 3. MI is actually related to the variation of the induced magnetic
field, similar to what occurs with the primary and secondary coils of a transformer.
The soil is actually the core of this “transformer” system.Because, the soil is typically
a non-magnetic medium, the signal losses exist and still are significant. In fact, the
non-propagatingmagnetic field (quasi-static) decay is roughly governedby an inverse
cube law and the communication range of the system is also impacted. However, the
key difference in relation to the EM losses discussed in this section is the fact that
the magnetic field losses are not strongly influenced by the soil type and especially
by the water content. Moreover, the multi-path interferences will not occur for the
MI scenario.

1.4 TTE Techniques and WUSNs: A Comparison

Through-The-Earth (TTE) solutions provide some form of wireless emergency
communication to trapped miners in a disaster scenario. Usually, a point-to-point
approach is sufficient for this purpose. On the surface one might expect to find many
similarities between TTE and WUSN technologies. Moreover, because TTE tech-
niques have been in use for a long time, one might also expect to reuse many of the
TTE techniques in WUSNs. Unfortunately, this is not the case because the charac-
teristics of typical TTE and WUSN solutions are significantly different, as shown in
Table2.

One of the most important differences between TTE and WUSN is the commu-
nication range. Usually, a powerful TTE device is placed at the soil surface. This
equipment is used to transmit data many hundreds of meters down in the direction
of possible locations where the miners are. This aboveground device can transmit

Table 2 Comparison between Through-The-Earth (TTE) techniques and WUSNs [12]

Design aspect TTE-based communication EM-based WUSN

Frequency band VLF/LF VHF/UFH
Maximum range (soil path) Up to hundred meters Up to dozen meters
Bandwidth Very small: bps Small: Kbps
Network topology One-hop One-hop or multi-hop
Network size Sender-receiver pair or few nodes Up to hundred of nodes
Underground channel noise Very critical Small impact
Rock penetration Feasible Typically not possible
Soil moisture impact Small impact Very critical
Energy criticality Relatively small impact Very critical
Node cost Relatively high Small
Communication protocol design Emphasis on the physical layer Cross-layer approach
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a strong signal without critical energy/processing constraints. On the other hand,
energy-constrained TTE devices located in the mine can severely limit the bottom-
up communication performance. TTE communication has been used for 3 classes
of applications [12, 17]: miner locating systems, geophysical exploration, and mil-
itary underground communication during the nuclear age. Currently, TTE devices
are mainly used for the first class of applications. However, due to recent develop-
ments in WUSNs, especially in the MI area, it is conceivable that TTE solutions will
eventually adopt more and more WUSN technologies.

2 Electromagnetic-Based Solutions (Radiation Field)

In this section, the most recent WUSN development based on the propagation of
Electromagnetic-Based (EM) waves at the UHF band are examined. Note that the
signal propagation path is not limited to the underground settings. For instance, some
designs require no communication between the underground nodes; they always
communicate with an aboveground node [1, 10, 11]. More elaborated solutions,
also called Hybrid WUSNs [1], combine different modes of communication at the
same time. To better distinguish different types of communication links, we give the
following classification, also shown in Fig. 5:

• Underground-to-underground (UG2UG) Link: the communication between the
sender and receiver occurs without the assistance of an aboveground node. Typ-
ically, the propagation path is entirely in the soil. For some scenarios, when the
LW effect is considered, part of the path is over-the-air.

• Underground-to-aboveground (UG2AG) Link: the receiver node is above the
ground and the sender is buried. This link accounts for the most common need
for WUSNs, i.e., sensing data on the underground environment is transmitted to
aboveground relays or sinks.

• Aboveground-to-underground (AG2UG) Link: the sender node is above the
ground and the receiver is buried. This link is typically used for management
purposes, such as informing the underground node about measurement schedules.

Fig. 5 Typical Topsoil and Subsoil WUSNs employ 3 types of communication links: underground-
to-underground (UG2UG), underground-to-aboveground (UG2AG), and aboveground-to-
underground (AG2UG) [11, 12]
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Empirical results show that the above 3 links have very distinct characteristics and a
single communication model is not possible [8, 10, 11]. Therefore, we will analyze
each separately. We will begin with an introduction to the buried antenna problem,
as all 3 WUSN links have at least part of the wave propagation path through soil.

2.1 Buried Antenna Problem

The first studies related to the EM waves propagating in a medium different from
air/vacuum began in 1909, with the work of Sommerfeld analyzing the radiation of
an electric Hertzian dipole in a dissipative half-space [27]. Although these studies
consider dipole sources located in free-space (the antennas are just above the soil
surface), the generic free-space Friis equation does not apply in this scenario. The
pioneer investigation of the radiation of a Hertzian dipole immersed in a conducting
medium, such as the soil, is realized by Tai in 1947 [28, 29]. Since then this has been
a subject of intensive study.

The classicwork of Banos in 1966 [30] includes a complete characterization of the
electromagnetic field components for points in the dissipative medium (sea water) or
above it (air). At that time, it was clear that the radiation model cannot be achieved
by a closed formula. However, approximate formulas can be achieved for certain
frequency bands and specific media. In fact, the Banos formulas are only valid for a
conducting medium, such as sea water, and at low frequencies.

The antenna problem is not included in these pioneer works because only ideal
elementary source dipoles were considered. However, in order to fully characterize
the wireless underground communication, two problems must be simultaneously
solved: the propagation problem, as previously mentioned, and the antenna problem.
More recently, in 1980, King [23] partially addressed the antenna problem for lossy
medium such as soil. It is observed that, for underground communication purposes
at UHF frequencies, only insulated antennas can be considered [23, 29]. In fact, in
the experiments reported in [8, 9], one failure in the antenna insulation invalidated a
set of experiments due to the resulting additional attenuation.

Only some important classes of embedded insulated antennas are considered in
[23]: dipole, loop, and terminated monopole (travelling wave antenna). For all these
cases, the subsurface is the soil region of choice (for very high power solutions, deeper
installations are also feasible). The reason behind this constraint is the LWeffect. The
mathematical and physical justifications for the existence of lateral waves and their
use in radio communication are provided in the classic work of Brekhovskikh [31].

Buried/immersed antennas and lateral waves propagation were mainly studied on
the1940–1980sdue to twomain application scenarios at that time: (a) communication
with submarines and (b) protection of the communication system of a country in the
case of a nuclear attack. Since then, a lack of potential applications for LW likely
explains the relatively low activity in this area during the last few decades. The
continuation of these original studies by extending and adapting them to the WUSN
scenario is first proposed in [12] and such research was extended in [13, 14].
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When an antenna is immersed in a dielectric medium, its design must be adjusted.
The typical design found in the literature considers a non-isolated antenna in
air/vacuum. In this case, the wavelength is calculated considering the light speed.
In soil, wave propagates in a lower speed resulting in a smaller wavelength for the
antenna design. However, as explained in Sect. 1.3, changes in the soil characteristics
and VWC modify the dielectric constant of the soil surrounding the antenna over
time, resulting in changing wavelengths. Therefore, the design of an antenna must
take this dynamic aspect into account. An ultra-wide band antenna can be an option,
as demonstrated in [4–6, 10–12].

Adjusting the wavelength is just one of the design aspects of the buried antenna.
Its radiation pattern must also be carefully evaluated according to the locations of
potential neighbors of a node (i.e., directivity). One aspect common to all WUSN
studies done so far is that the communication range between two devices is drastically
reduced compared to the over-the-air case. Therefore, the 1-hop neighborhood of a
node is also significantly smaller. Moreover, if the LW effect is exploited, the best
approach is to use an antenna with high directionality toward the area above the
buried antenna.

2.2 EM-Based Underground-to-Underground Communication

In this section, the state-of-the-art EM-based UG2UG communication forWUSNs is
discussed with a focus on the physical layer. We start by analyzing the first proposed
UG2UG model, which is a variant of the well-known two-ray model [22] for the
underground setting. This model considers two components of the received signal:
the direct and reflected waves (DW and RW) as shown in Fig. 6. Related work up
to 1980 was briefly mentioned in the previous section. Additional studies, some of
them related but not directly targeting WUSNs, are presented in [1]. An important
research area that provides the foundation for the current wireless underground com-
munication models is microwave remote sensing [18, 19, 22, 32, 33]. Similarly,

Fig. 6 The received signal is a superposition of direct waves (DW), reflected waves (RW), and
lateral waves (LW) [12–14]
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studies on detecting landmines using Ground Penetrating Radar (GPR) [34, 35] also
help us understand why multiple soil permittivity models exist.

An overview of the challenges related to the WUSNs is provided in [1]. The chal-
lenges for performing outdoor WUSN experiments are discussed and guidelines are
provided in [9]. A theoretical model specifically for wireless UG2UG communica-
tion is proposed in [1], though without empirical results to validate the model. More
detailed information of this model is also reported in [26].

UG2UG experiments using Mica2 motes at 433MHz are reported in [8] and the
results show a good agreementwith themodel proposed in [26] for high burial depths.
Unfortunately, even considering the best soil conditions and very small burial depths,
the estimated inter-node distance is smaller than 5m. For deeper deployments (e.g.,
1m), the inter-node distance is smaller than 1m.Although such results are insufficient
in general for WUSNs, they do enable some applications. For instance, in [36], a
very small inter-node distance of 30cm is enough for that WUSN application.

Themismatches between themodel in [26] and the empirical results for low burial
depths suggest the existence of a missing factor not considered in that model. This
factor is the lateral waves (LW), as pointed out in [12] where a more complete model
is proposed; this is shown in Fig. 6. It became clear then that medium to long-range
UG2UGcommunication canonlybe realistically achieved if the system is specifically
designed to take advantage of the LW effect. Alternatively, a very high density of
nodes and/or the use of very high power transceivers can be employed. We believe
that the LW effect is the key to successful WUSN designs based on EM waves.
However, it is important to highlight that this statement is particularly significant
for shallower burial depths (topsoil and some subsoil WUSNs). For instance, if
two typical 433MHz WSN nodes are installed at 1m-depth (deep soil), only the
attenuation due to the up-down path of the signal in fair soil conditions can be
enough to impact the communication (e.g., >100dB [8]) and the advantages of the
LW are impacted in this context. Although smaller frequencies can still be used to
minimize the mentioned signal attenuation, there are tradeoffs in relation to practical
antenna sizes that must be taken into account.

More recently, the role of LWs in the UG2UG communication has been high-
lighted in the literature and two UG2UGmodels containing the LW component have
been proposed [13, 14]. However, empirical UG2UG work is still limited to short
inter-node distances (e.g., <3m) and the proposed models that consider the LW
component still requires more significant empirical validation.

We next provide a more detailed historical survey on UG2UG applied toWUSNs.
In 2006, commodity sensors MicaZ motes (2.4GHz, 0dBm transmit power level)

were tested for UG2AG and UG2UG links in [37]. The UG2UG communication
was reported infeasible for that specific testbed scenario. In 2009, many aspects
related to theUG2UGexperiments in outdoorswere highlighted in [9]. That year new
UG2UGexperimentswere realized using verywell-controlled procedures [8].MicaZ
and IRIS motes (2.4GHz, 0 and 10dBm transmit power, respectively) were tested
and successful UG2UG communication was achieved for inter-node distances of up
20cm for a typical soil condition. Although such distance is still useless for many
practical WUSN implementations, this result indicates that UG2AG and AG2UG
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communication is potentially feasible when the underground node is installed at
shallower depths. As discussed in subsequent sections, this was confirmed by both
theory and practice.

In 2008, a study was published on WUSN experiments based on UG2AG and
UG2UG communication and a customized 27MHz mote and 30dBm of transmit
power [38]. As expected, the lower frequency allowed a significant increase in the
inter-node distance. In this case, a distance of 20m (17% frame error rate) was
reported on the UG2UG link with 30cm-burial depth. Nonetheless, the power con-
sumption and the antenna size (2.8m) were still limiting factors for many WUSN
applications.

In 2009, outdoor experiments using Mica2 motes at 433MHz confirmed that low
frequencies at the VHF band are specially promising for WUSNs due to perfor-
mance and antenna size considerations [8]. Inter-node distances of 50 and 90cm
were achieved with 0 and 10dBm of transmit power (40cm-burial depth), respec-
tively. Theoretically, in sandy soil with smaller water content the distance may reach
1–2m using the models in [12–14, 26]. Moreover, the same work revealed that a
significant improvement was achieved when shallower depths were used. By then
reported WUSN work was mainly based on UG2AG/AG2UG communication.

An additional feature of the UG2UG communication channel revealed in [8]
was that it apparently was highly stable: the overall packet error rate (PER) over
a 24h-period was smaller than 0.5% with a very small variance. In other words,
once communication is achieved even under a high soil moisture condition, the
probability of error is very small. This phenomenon is explained by the fact that
noise encountered over-the-air is drastically reduced in the underground domain.
This observation points to at least two design strategies. First, error control can be
greatly simplified or even eliminated, minimizing communication overhead. Second,
it is possible to design UG2UG communication for low VWC (thus, low power
consumption) and temporarily suspend network operationwhen theVWCdrastically
increases (e.g., during rainfall). Note, however, for the second strategy to work, the
sensor node must be equipped with a moisture sensor.

In 2010, guidelines for the development of an outdoor WUSN testbed were pro-
posed in [9]. The goal was to improve accuracy and efficiency in conducting WUSN
experiments. In particular, a typical problem encountered outdoors was mentioned:
since sophisticated equipment is rarely used, especially if such equipment must be
buried, the common approach of using radio to take signal strength measurements
suffers from what is called clipping effect, when the received signal strength (RSS)
reported by the radio is smaller than the actual value.

Also in 2010, the feasibility of an UG2UG link on the seabed (100 m below the
sea) was investigated in [39]. This study is especially important when deep WUSNs
are considered for geophysical exploration. Simulations were done for different fre-
quencies and a high transmit power (40dBm=10W). Besides the expected high
inter-node distance, the seabed scenario presents a very high VWC, far beyond the
typical values for soil. As expected, VHF frequencies such as 700MHz are associated
with very high path loss: 12 and 40dB per meter for 5 and 50% VWC, respectively.
On the other hand, for 1MHz the path loss was reduced to 1 and 3dB per meter,
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respectively. The conclusion of this study was that low frequency combined with
a multi-hop topology (with nodes acting as relays) is the proper solution for that
scenario.

In the above case, the antenna size was not a critical consideration. However, for
the majority of WUSNs big antennas are associated with higher deployment com-
plexity and cost. Acceptable antenna sizes limit us to the VHF band; the resulting
inter-node distance for UG2UG (ranging from less than 1m to a fewmeters) is likely
far from ideal for manyWUSN applications, though it is sufficient for some applica-
tion scenarios. Two such examples are [40, 41]. In [40], a WUSN was proposed for
the detection of soil displacement during the excavation of a gallery, and the UG2UG
link was reported to be feasible. The “soil” medium in this case is gravel inside a
metallic tube and the prototype of the system is considered successful for an inter-
node distance of up to 1m. This is a rare example of a Deep Soil WUSN, as defined
in Sect. 1.2. In this case, the metallic pipe potentially acts as a waveguide. A second
example is given in [41]. In this study, a sensor node is embedded in wet concrete
and used to continuously monitor concrete curing and structural health. At 433MHz,
the maximum inter-node distance (in terms of concrete thickness) was measured to
be 50cm. In all, the receiver can be up to 5m away from the concrete structure:
4.5m over-the-air and 0.5m through wet/dry concrete. Moreover, this study showed
that while the concrete is curing (high humidity), the communication performance
is deteriorated, similar to the effects of soil moisture reported in [8, 26]. Again, the
small inter-node distance of EM-based UG2UG links was not a limiting factor in
this scenario.

In 2011, an UG2UG model that highlights the importance of the electrical con-
ductivity of the soil was proposed [42] and empirical results were presented. For the
first time, it was shown that 2.4GHz commodity motes (MicaZ) can be used to real-
ize UG2UG communication. A PVC box was buried at 1.4m-depth with multiples
nodes immersed in different kinds of sand and soil moisture conditions. Under these
conditions, the maximum inter-node distance of approximately 1m was achieved.
In the proposed model, only direct waves was considered (no RW or LW waves),
making it suitable for deep WUSNs.

The majority of the WUSN implementations require a larger inter-node distance,
e.g., 5–50m. Solutions to this challenge come in two flavors: LWeffect for EM-based
solutions andmagnetic induction (MI). In 2010, as previouslymentioned, for the first
time the LW effects were linked toWUSN in [12]. In 2011, three additional UG2UG
models were proposed. The first one [43] is similar to the one proposed in [26], also
without considering theLWeffects, and simulated resultswere presented. The second
proposed model [13] includes the LW effect for subsoil and in particular for topsoil
WUSNs. In the third work [14], an UG2UG model based on [26] was extended to
include the LW component. It was shown via simulation [12–14] that a commodity
WSN mote can achieve successful UG2UG communication over higher distances,
such as 5–10m. In addition, the work in [14] considers the network connectivity
aspect for WUSNs that involve UG2UG, UG2AG, and AG2UG links.

Despite rapid advances in modeling the UG2UG communication channel, the
models presented so far do not fully characterize the problem when the “antenna
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problem” (Sect. 2.1) is not taken into account. This is because antennas in these
models are assumed to have the same behavior as in free space. More specifically,
the effects of the directivity and other performance parameters of the antennas are
simplified by the introduction of a fixed term in the antenna gain. While this practice
works well for over-the-air scenario, it is no longer appropriate for buried antennas.
In [12], the antenna factor was included in the model as a dynamic parameter to
be empirically determined given a set of parameters related to the deployment and
environment. Still, more comprehensive studies showing the best antenna design
practices for a given WUSN scenario are currently lacking. For instance, if the LW
effect is to be enhanced in order to achieve a higher inter-node distance, Silva [12]
suggested that a directional antenna with a sharp beam pointing in the direction
of soil interface and with an angle close to the critical angle is the best approach.
However, this approach is only part of the solution. In 1963, extensive experiments
were done with antennas buried at different depths [44]. It was observed that the
radiation pattern of the antennas is significantly disturbed when they are close to soil
interface. Part of the explanation has to do with stronger presence of reflected and
lateral waves. Also, as already explained, the antenna was designed for over-the-air
wavelength and the change ofwavelength in underground settings affects the antenna.
Moreover, the antenna impedance also changes with a number of parameters, such
as soil moisture, potentially causing an additional loss. The current set of models
does not fully address the antenna factor, at least not in an analytical form.

We end this section with a more detailed discussion on lateral waves and the
antenna problem.

As already explained, the LW effect should be exploited in order to achieve inter-
node distances that are desirable for a broader class of WUSN applications. The
theory of LW is addressed with a rigorous mathematical approach in [23, 31, 45].
Below we give a qualitative explanation of this phenomenon applied specifically to
WUSNs.

Consider the interface of twomaterialswith different dielectric constants: a thinner
medium, such as air, and a denser medium (smaller propagation speed, higher per-
mittivity), such as soil. Assume that both sender and receiver nodes are at the denser
medium but close to the interface. When the EM waves reach the interface precisely
at the critical angle by Snell’s law, they are refracted at the thinner medium (e.g., air)
and propagate along the interface while continuously penetrating the denser medium
(e.g., soil) at the same critical angle. There is no geometric-optical representation for
this phenomenon, but it is not hard to realize that the energy associated with the wave
front at the critical angle does not disappear. The LWs never radiate through the thin-
ner medium, but return to the denser medium as shown in Fig. 6. For simplification,
we usually represent only the wave front (graphically as a ray) that reaches the point
of interest (where the receiver is located). This explains why this propagation mode
is sometimes called “up-lateral-down.” Note that we cannot simply assume that the
received power is the transmit power subtracted by the dense medium path losses
(“up” and “down” paths) and by the thinner propagation loss (e.g., air). In fact, the
received power is much smaller. The solution to this problem does not have a closed
form and usually approximations are used [12–14, 23, 27–31, 45].
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It is worth noting that the LW effect is rarely mentioned in communication system
textbooks. This is because usually the sender and receiver nodes are not located in the
vicinity of an interface as described above. Also, even when the interface is present,
the medium where the sender and receiver are located is typically not as lossy as the
soil. Therefore, the LW effect on the received signal is negligible compared to direct
or reflected waves.

By contrast, for typical soil conditions and inter-node distances higher than 3m,
the tiny contribution of LWs becomes the dominant factor in the received signal
strength. Therefore, communication over high distances is only possible if LWs reach
the receiver with sufficient energy, and thus design of the UG2UG link must take into
account the LW effect when shallower depth deployment is the case. Fortunately,
there is a way to improve the communication range without increasing the transmit
power, through the use of directional antenna. Specifically, only a tiny fraction of
the transmitted waves from an isotropic antenna impinges the interface at the critical
angle, resulting in huge energy waste (dissipated into the soil or radiated into the
air). On the other hand, if the antennas on both sides have a sharp beam (pencil-like)
in the upward direction and centered at the critical angle, the results are significantly
improved due to the higher LW contribution. It should be noted, however, that varia-
tions of soil parameters such as soil moisture can change the critical angle, and that
antennas with very high directivity can be hard to build.

2.3 Underground-to-Aboveground
and Aboveground-to-Underground Links

In this section, the state-of-the-art on UG2AG and AG2UG communication is
presented. MI-based techniques may not be the proper solution for typical WUSN
scenarios because the signal attenuation due toMI technique for an over-the-air com-
munication path is significantly higher compared to the EM technique. Nonetheless,
over-the-air communication using MI are mentioned in [46, 47]. However, consid-
ering the use of low-power transceivers and the distances involved in the WUSN
scenarios presented in this section, only EM-based solutions are considered. Differ-
ently from UG2UG, the communication range in this new scenario can be extended
to relatively long distances (e.g., 30m) with low-power transceivers. Since higher
burial depth means worse performance, these communication links are only feasible
for subsoil and especially topsoil WUSNs.

Some commercial products are available in this context [48, 49] and, frequently,
a star-topology is adopted. The underground nodes typically communicate only with
aboveground nodes in the vicinity. Multi-hop communication among aboveground
nodes (over-the-air) eventually provides full connectivity for the network, including
the sink node(s). This is a simple but very effective approach to WUSNs. In fact,
wherever possible, the use of aboveground nodes greatly reduces the complexity and
increases the reliability ofWUSNs. Moreover, mobile aboveground nodes have been
suggested as a way to increase the physical coverage of a highly sparse WUSN [1].
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However, the realization of UG2AG and AG2UG communication is not without
challenges. Depending on the soil makeup and condition, the communication range
can significantly differ under otherwise identical conditions. Asymmetry is another
prominent feature: a successful UG2AG communication does not imply that AG2UG
will succeed and vice-versa [10, 11]. Moreover, for the UG2AG link, the radiation
pattern of the buried sender node (with an omnidirectional antenna) in its vicinity
is highly irregular. We have mentioned this phenomenon in the UG2UG context,
and it was empirically observed for different frequencies, environmental, and test
conditions [8, 44]. Moreover, the antenna is a critical design factor for UG2AG
and cannot be simply assumed as represented by a static gain. Similarly, the same
comments apply for AG2UG links.

Below we provide a survey on UG2AG and AG2UG communication, again with
a focus on the physical layer. The research in WUSN actually started with UG2AG
communication as it corresponds to the primary goal of an underground node: to
collect data from the underground environment. In 2006, commercial sensors MicaZ
motes (2.4GHz, 0dBm transmit power level) were tested and UG2AG performance
presented in [37]. Two sets of tests were conducted: the receiver node at the soil
surface and elevated 1m above soil surface. The maximum horizontal inter-node
distances achieved, with packet error rate less than 10%, were 2.5 and 7m for 13cm
and 6cm-burial depths, respectively. Very similar results were achieved latter (2009)
using TelosB mote (2.4GHz and 0dBm of power level) [50].

Also in 2006, a wideband antenna for UG2AG communication was proposed [5].
As discussed in Sect. 2.1, when the antenna is buried the target wavelength in antenna
design is smaller compared to that in the over-the-air case. However, because soil
moisture has temporal and spatial variation, antenna design must take into account
a wide range of wavelengths. The proposed wideband antenna mitigates this issue.
The same author subsequently proposed a communicationmodel for theUG2AG link
[6]. In this study, the communication was unidirectional and the AG2UG link was
absent. A simple star-topology was adopted. A customized sensor node called Soil
Scout (868MHz, 10dBm of transmit power) was used with the wideband antenna.
The results showed a radiation efficiency of more than 90% for the proposed antenna
in different soil textures and VWC levels. A special high-gain antenna, elevated at
12m, is used at the receiver. Communication ranges of 30 and 150m were reported
for burial depths of 40 and 25cm, respectively. This UG2AG model assumes long-
range links (e.g., >20m) while communication in the vicinity of the sender was not
considered.

In 2007, a real-world deployment of a WUSN with both UG2AG and AG2UG
on a golf field was reported in [51]. 18 customized nodes (868MHz, 10dBm) were
buried at a depth of 10cm (approximate) and 24 aboveground nodes at the same
frequency form a mesh network. The inter-node (UG2AG) distance was reported to
be 62m.

In 2008, an empirical model for the UG2AG link for a water distribution moni-
toring system was proposed [52]. In this case, a signal generator (2.4GHz, 24dBm)
was placed in an air-filled underground fire hydrant (concrete box), while the above-
ground node was a spectrum analyzer with an antenna placed at different heights.
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There was no soil above the sender’s antenna, but elements including the con-
crete, the soil outside the fire hydrant, and its metallic lid were factors that could
degrade the communication performance. The maximum and minimum horizontal
distances achieved for reliable communication were determined to be 38m (north
direction/lid on/4m-height) and 4m (north direction/lid off/3m-height or south direc-
tion/lid on/2m-height), respectively. The impact of soil makeup and condition in the
area surrounding the fire hydrant was not investigated in this work.

In 2009, a unidirectional UG2AG communication model was proposed [7] and
simulated and empirical (laboratory) results were presented. A customized sensor
node SoilNet (2.4GHz, 19dBm of transmit power) was used for the experiments.
The burial depth for the device is 9cm (topsoil WUSN) allowing the model to be
simplified. It concluded that an inter-node distance of up to 400mwould be possible.
A real-world implementation based on SoilNet devices was presented in [53], and
inter-node distances slightly smaller than 100m were successfully achieved (based
on the sensor map given in the paper). The AG2UG link was also shown to work
properly, although an explicit model for this link was not provided.

The previous work [6, 7, 51] demonstrates that long-range communication in
WUSNs is realistic with shallower deployments. Commercial solutions following
this type of network topology (aboveground node at the center of a star-topology) are
already available. A residential irrigation system for shallower depths (10cm) has a
nominal inter-node distance of 180m [48]. Another similar solution at 900MHz and
the same burial depth has a range of 152m [49].

Also in 2009, well-controlled UG2AG experiments were conducted using com-
mercial Mica2 motes (433MHz, 10dBm) with their original monopole antennas
[54]. One of the goals of the experiment was to observe in low-power devices the
radiation pattern of a buried antenna. Previouswork (in 1963) [44] had concluded that
a typical over-the-air radiation pattern is significantly disturbed when the antenna is
buried. Throughout the test, the soil was carefully examined in order to remove any
kind of obstacle (rocks, plants, etc.). Moreover, the tests were performed at 2 distinct
sites with homogeneous soil makeup and without surface irregularities. As shown
in Fig. 7, the typical radiation pattern of the original monopole antenna was signifi-
cantly modified underground. For instance, observe that the packet error rate (PER)

Fig. 7 The radiation pattern
of an underground node is not
typical; it does not follow its
over-the-air counterpart [54]
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at dh = 3m and 50cm-height is 0%with a signal strength of−87.5dBm (acceptable
for Mica2). However, at dh = 4m and 100cm-height, the signal strength is higher
(−83.4dBm), but the communication is practically infeasible (PER = 84%). In the
same paper, a second experiment (different site) presented similarly unusual behav-
ior. Moreover, such irregular radiation pattern changes with soil moisture. This result
highlights the importance of considering the antenna factor as a dynamic component
in any theoretical model for WUSNs, as pointed out in Sect. 2.1. However, based
on the results of the majority of UG2AG/AG2UG works previously discussed, this
problem does not seem to be significant for shallower burial depth and/or long-range
(i.e., far-field region) links.

In the same year, field experiments for the UG2AG and AG2UG links were done
withMica2mote (433MHz, 10dBm)with aboveground antenna height fixed at 2.5m
[10]. Different combinations of sender and receiver antennas were tested, starting
with the motes’ original monopole antennas. With an ultra wideband antenna for
the underground node (35cm-burial depth), the UG2AG horizontal distance was
enhanced by more than 266% and the AG2UG was realized (13m) at that depth.
When the burial depth changed from 35 to 15cm, the communication range is
increased by 40 and 300% for UG2AG and AG2UG links, respectively. Moreover,
a 21% increase in soil moisture led to more than 70% decrease in communication
range. It also reported for the first time that UG2AG and AG2UG links are asym-
metric, though typically there is a region where both enjoy good performance and
thus symmetry between the two may be assumed. This complex scenario naturally
requires strategicWUSNdesigns. Usually, UG2AG links have better communication
range performance. If we return to Fig. 5, we can observe an interesting strategy: the
sink at the top of the building is properly collecting data from some buried nodes.
However, if control data (such as configuration) must be sent to an UG node, another
AG node closer to this one can be used as a relay node.

The first real-world WUSN experiment involving a mobile sink and buried nodes
was demonstrated in [11]. It was done in a corn crop with a center-pivot irrigation
system. The aboveground node (sink) was fixed at the mobile irrigation system and
8 nodes were buried at the root zone (around 40cm). All nodes were Mica2 motes
(433MHz, 10dBm). The goal was to determine if it was possible to automate the
system and control the amount of water based on sensor information. The average
horizontal distance before the center pivot reached a certain area was found to be
6m, proving the feasibility of the proposed solution.

In 2011, a probabilistic routing protocol for UG2AG/AG2UG links was proposed
in [55] with an outdoor testbed composed of 17 TelosB motes (2.4GHz, 0dBm
transmit power level) in a 20m × 20m area. Different burial depths were analyzed:
0, 10, and 20cm. In addition to empirical results, simulations were also presented
and discussed.

In 2012, aWUSN architecture is designed consisting of mobile nodes that harvest
data from stationary underground nodes. In this work, the impacts of packet size and
error control schemes (ARQandFEC) on network performance are investigated and a
family ofWUSNprotocols is proposed.Empirical experiments basedonMica2motes
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are realized and the advantages of having mobile nodes in WUSNs are highlighted
in this work.

In the same year, it is proposed a compressing technique for in-situ soil moisture
measurements [56]. Although, it is an application-related effort, it reveals the fact
that many WUSN applications related to soil parameters measurements can employ
techniques to minimize the amount of data flowing in the network.

In 2012, a cross-layer solution for static and low duty-cycles WSNs [57] is pro-
posed in order to achieve very high energy efficiency for such scenarios. Although the
presented experiments only involve abovegroundWSN nodes, the solution proposed
in this work is specifically designed considering nodes with non-rechargeable batter-
ies in large and sparse networks. Such aspects can potentially match the deployment
requirements of many WUSNs

As a conclusion for this section, the main challenge for EM-based solutions to
WUSNs is propagation loss in the soil that also depends on the soil composition,
density, and moisture. Such loss can vary from 20dB/m to more than 100dB/m
in various scenarios. Assuming a dynamic range of almost 100dB for the radio
transceivers (typical), the inter-node distance between 2 buried sensors can vary
from a few centimeters to 5m in the best case (assuming typical commodity nodes
used in WSNs). Although reflected waves from the soil surface are associated with
a positive effect [8, 26], their contribution is not significant. Two strategies can
mitigate the problem: shallower burial depths and LW-based solutions. The first,
shown to be successful in UG2AG/AG2UG communication, achieves lower soil
path attenuation simply due to shortened path length. However, not all applica-
tions can allow shallower deployments, precision agriculture being a prime example
[8, 11]. The second strategy (LW) deserves attention especially because to date it
has not been fully exploited. If antennas are properly designed to enhance the LW
effect, the UG2UG inter-node distance can increase significantly, theoretically going
beyond 10m [12–14]. To achieve even higher distances in practice, such as 50m,MI-
based solutions emerge as the preferred option, although only very low bandwidth
can be achieved using the state-of-the-art MI technology, as we will see in Sect. 3.

In this section, the state-of-the-art EM-basedUG2UGcommunication forWUSNs
is discussed with a focus on the physical layer. We start by analyzing the first pro-
posed UG2UG model, which is a variant of the well-known two-ray model [22] for
the underground setting. This model considers two components of the received sig-
nal: the direct and reflected waves (DW and RW) as shown in Fig. 6. Related work
up to 1980 was briefly mentioned in the previous section. Additional studies, some
of them related but not directly targeting WUSNs, are presented in [1]. An impor-
tant research area that provides the foundation for the current wireless underground
communication models is microwave remote sensing [18, 19, 22, 32, 33]. Similarly,
studies on detecting landmines using Ground Penetrating Radar (GPR) [34, 35] also
help us understand why multiple soil permittivity models exist.



12 The Future of Wireless Underground Sensing Networks 473

3 Magnetic Induction-Based Solutions (Static Magnetic Field)

Magnetic induction (MI) does not significantly suffer from soil path propagation loss
compared to EM-based solutions simply because the communication is not based
on wave propagation. Although the transmission also involves alternating electric
and magnetic fields, the combination of low power and low frequency causes the
radiation effect to be extremely minimized. Naturally, path loss still exists especially
that related to magnetic coupling.

MI techniques applied to WUSNs works in a way similar to the step-down lines
transformers used in power supplies years ago. Radiation exists in such devices,
but is mainly limited to the vicinity of the transformer. Nonetheless, the effect of
the magnetic induction on the secondary coil of the transformer is responsible for
transferring majority of the energy. If we turn on/off the alternating current at the
primary coil, such effect is “communicated” to the secondary coil of the transformer.
This might help us understand how it is possible to achieve communication using
MI while neglecting the radiation (i.e., propagation) effect. Essentially, the radiation
phenomenon is not of interest in this case, so the electric field of MI transceivers
can be minimized or eliminated. Only the magnetic field is effectively used and the
communication region of interest is the static field (also, the quasi-static region)
in contrast to the far-field region typically used in communications based on the
propagation of EM waves.

Below we start with a survey onMI again with a focus on the physical layer. Then
in Sect. 3.2, we give a comparison of EM andMI techniques applied to UG2UG links
in WUSNs and discuss hybrid solutions.

3.1 Related Work

In 1997, unidirectional and high-powerMI communication at 3KHzwas investigated
for military operations in coastal regions [58]. Successful results were reported at
data rates of up to 300bps. This work anticipated what would be a constant in MI
communication: relative low frequencies andvery small bandwidth. In 2009, the same
company behind the work in [58] commercialized a relative low-power device, MI
Remote Activation Munition System [46], which achieved communication range of
200m through soil, rock, vegetation, and water. It also commercialized TTE devices
(discussed in Sect. 1.4) based on MI technology.

In 2001, the advantages of using MI for wireless close-proximity (e.g., <3m)
applications, such as those using Bluetooth devices, were highlighted in [59]. A
comparison with high-frequency RF systems was given and smaller power con-
sumption and complexity were singled out as main features of MI-based solutions.
It also pointed to 11–15MHz carrier for MI communication systems. Some of the
current proposals for WUSNs operate at this frequency range.

In 2002, the theoretical model of a simple electric circuitry for MI devices was
discussed in [60]. This circuitry would eventually become the basic cell in MI
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Fig. 8 a Ordinary transformer. b MI system based on resonant LC circuits with optional use of
additional relay coil(s) (MI waveguide effect)

communication for the ensuing years. As shown in Fig. 8, both transmitting and
receiving coils have a capacitor in parallel, thus forming a resonant circuit. At the
center frequency of resonance, the maximum magnetic field is achieved at both
the transmitting coil and the receiving coil. The inductor carries a resistance due
to wiring. Thus controlling the characteristics of this RLC circuitry is the key to
achieving higher bandwidth.

The basic MI principle used in [58] had limited application to low-power com-
munication due to the small communication range, although it was higher than the
range achieved with RF propagation underground with the same transmit power.
However, this drastically changed with the introduction of the MI waveguide con-
cept [61] in 2002. Using the regular transformer analogy, the basic idea is to create a
chain of transformers in series: between the initial transmitting and receiving coils,
guiding structures are used asMI relays, as illustrated in Fig. 8b. Such structures have
essentially the same L and C elements of the MI-transmitter and receiver devices,
excluding the active electronics interfaces. It is worth noting that MI waveguides are
passive components and require no power source, a desirable feature for WUSNs.

In 2003, an empirical study [62] validated the physicalmodel presented in [60, 61].
In 2007, the MI technology was highlighted as a potential option for WUSNs [63].
In the same year, MI was also considered for communication between implantable
devices in the human body [64].

In 2009, the first communication models for UG2UG links in WUSNs were pro-
posed in [65]. Both the ordinary (basic) MI channel and MI with waveguides were
considered. Simulated results at 300 and 900MHzwere presented and it was reported
that ordinary MI system had similar performance as EM-based solution. However,
the MI technique is unaffected by variations in the permittivity of the medium



12 The Future of Wireless Underground Sensing Networks 475

(i.e., soil). Moreover, with the use of the waveguide technique the path loss was
greatly reduced. In 2010, the same authors presented more detailed versions of these
MI models and simulations for 10MHz were presented [66]. Different design para-
meters for the MI coil were considered and an inter-node distance of 250m was
achieved with a relatively small coil radius (0.15m), 0.01ohms/m wire for the coil,
and MI relays (waveguides) placed every 5m (49 relays). With configuration the
bandwidth was limited to 1KHz. Changing the spacing of relays to 4m (61 relays)
increased the bandwidth to 2KHz.

The MI waveguide technique can allow more than one topology in a network. For
instance, a relay coil can be used by more than one pair of MI transmitter/receiver.
With this observation deployment algorithms were proposed in [67] along with sim-
ulated results. However, the implementation aspects of relay coils remain an open
research topic.

In 2010, an additional MI communication model using waveguides was
proposed [68]. Three excitation methods were investigated. Differently from under-
ground communication models for EM wave propagation, the MI models are rela-
tively simple because the environment usually does not play a significant role in this
case. However, if there are underground metallic objects, a modified MI model or
architecture becomes necessary.

In 2010 and 2011 some MI models were proposed for specific scenarios, e.g.,
underground network formed around pipelines [2, 69, 70]. In [2], a WUSN archi-
tecture (MI-based) for underground pipeline monitoring was proposed. Relay coils
were suggested to extend the communication range only if the pipeline was made
of non-metallic material. However, it was highlighted that for metallic pipelines, no
(or very few) relay coils are necessary because the pipeline itself would provide the
magnetic core for the MI waveguide. In [69], a similar WUSN scenario with steel
pipes for controlling pumps in a heating system was discussed. The pipelines were
metallic and a theoretical model was developed with simulated results. A low fre-
quency of 3KHz was used in the design/simulations. The maximum coverage varies
from 20 to 40m for a total path loss of 100dB at this frequency.More recently in [70],
the authors presented the optimal design for transmitter and receiver coil antennas
for the system proposed in [69] at 3KHz, along with an interesting discussion on
the advantages and disadvantages of using the metallic pipe as core for the coils,
one design guideline of which being that the transmitting coil should have the small-
est possible radius and the converse for the receiving coil. The authors ultimately
decided to air-filled core coils.

In 2012, rescue system for miners (point-to-point communication) based on MI
is presented in [47]. Communication range of up to 30m is achieved with a relative
low-power device and triaxial antenna loops.

It is important to highlight that the physical dimensions of the antenna in [47]
is around 30cm3. In fact, based on the design of other MI antennas at the related
works listed in this chapter, we can expect relatively higher volumetric dimensions
of a MI antenna compared with the antennas used in typical WSNs and also in EM-
based WUSN nodes. Nonetheless, despite this potential constraint and also reduced
bandwidth, the MI technique is a very promising one for WUSNs. Ordinary MI
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technology is already commercially available for themilitary and themining industry,
in the form of point-to-point communication. The adaptation of such solutions to a
network, including theMI relay devices, is themain challenge in usingMI inWUSNs.
For instance, MI devices behave similarly to directional antennas, leading to network
coverage issues that need to be investigated.

3.2 Comparing EM and MI-Based Solutions for WUSNs

In this section, EM and MI techniques are compared in relation to their application
to the physical layer of UG2UG communication in WUSNs. This discussion is not
meant to be conclusive as technologies continue to evolve. The enhancements to both
techniques, LW andMI waveguide, respectively, have not been empirically validated
in large-scale networks. For certain WUSN scenarios, one or the other solution may
be a better choice. The following are some of the important aspects that highlight
the pros and cons of EM and MI solutions:

Communication with aboveground nodes: While an EM transceiver can be
used for both UG2AG and AG2UG communication with relative long distances,
the communication range of MI devices for the over-the-air path is significantly
impacted. Therefore, in many UG2AG/AG2UG scenarios presented in this chapter,
the EM-based solution is the answer.

Communication range: An ordinaryMI system is typically superior compared to
the basic EM solution in terms of communication range. This is evenmore prominent
when we also consider the fact that EM wave propagation is highly impacted by soil
parameters, in particular soil moisture. On the other hand, the LW effect is expected
to improve EM systems, while implementation guidelines on MI systems have yet
to appear. Therefore, it is at present unclear if MI systems will maintain superiority
in range. For instance, a critical aspect in installing relay coils is the need for proper
alignment among the coils, which counts against MI systems.

Network topology: The directionality ofMI antennas is evident in Fig. 8b. There-
fore, chain-like deployments are ideal to be realized by MI-based solutions. On the
other hand, if disk-like coverage is an important consideration, MI systems can be
more complex than desired. EM solutions are more flexible with respect to this
requirement, depending on the type of antenna employed.

Bandwidth: EM solutions typically have a small bandwidth and resulting data
rate (e.g., 250Kbps). Such data rate is usually enough for the majority of WUSN
applications. On the other hand, the MI bandwidth is very small with an expected
data rate of around 1 Kbps. A significant number of WUSN applications will not
operate properly under this constraint. This is one of the main limitations of MI
solutions applied to WUSNs.

Energy: The comparisons between EM and MI in this chapter have been made
assuming the same low-power regime (e.g., between 0 and 10dBm). However, MI
solutions are potentially more energy efficient. This is particularly true when the soil
moisture level increases. In such cases, EM transceivers are forced to temporarily use
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a higher transmission power. Alternatively, communication can be suspended while
VWC is high. MI solutions are not significantly impacted by the environmental
conditions underground. Moreover, the relay coils used in the MI waveguide are
passive elements.

Deployment costs: Judging from existing MI literature, the dimensions of MI
devices are significantly larger compared to EM devices. Therefore, in cases where
a hole must be dug to install MI devices, the associated costs are expected to be
higher. This is especially true if shallower deployments are not an option or are less
desirable, as the effects of installing MI devices close to soil surface have not been
investigated so far.

Transceivers: Commodity RF transceivers are used for EM-based WUSNs and
usually the antenna is the component that requires additional customization. How-
ever, low-power MI transceivers are not commercially available and such design
must be included in the current MI implementation.

Air-filled underground scenarios: Many of the scenarios where MI-based solu-
tions are being proposed are building basements and similar environment. In these
cases, the LW effect cannot be used as a factor to boost the communication range for
EM-based solutions. Consequently, MI devices are potentially the proper choice.

Enhancements to EM-based solutions include: (a) the adoption of shallower
depths when possible, (b) antenna design, and (c) the adoption of environment-
aware communication protocols [5, 6, 8, 11, 12, 71]. By contrast, enhancements to
MI-based solutions are unclear due to a lack of real-world implementation, especially
involving MI waveguides. Thus the proper technology choice often depends on the
state-of-the-art in EM and MI technologies at the time of the WUSN project. Never-
theless, there is no doubt that for some scenarios one of the two is a better option. For
instance, when the aboveground communication is a regular requirement, EM is the
proper choice. In confined large areas such as basements of buildings, MI technology
can be a better option. In some other scenarios, a single technology may not be the
answer and a hybrid solution may be better. The following case exemplifies why a
hybrid solution is necessary in some cases.

Assume that soil sensors must be installed at 10, 70 and 90cm depths on
a farm. The sensors take soil measurements every 30min. The sensors and the
communication module must be protected against physical damage (due to the plow-
ing machinery and similar activities). The proposed architecture mentioned in [12] is
shown in Fig. 9. It is formed by a module close to the surface (topsoil), a module with
a higher burial depth (subsoil), and aboveground devices. The subsoil device has a
permanent installation and has an expected lifetime of 3 or more years. The topsoil
devices have temporary installation, that is, they are manually installed just after the
seeding phase. Also, these devices are removed right before crop harvesting.

In this case, clearly the use ofMIdevices alone is not enoughdue to the existence of
aboveground communication. Similarly, EM technology alone is problematic due to
the energy requirements and the high soil path losses involved. Therefore, a hybrid
solution seems to be the proper design. The topsoil device can be an EM device
installed very close to soil surface in order to extend the communication range. The
energy solution for this device is not critical because the batteries can be replaced
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Fig. 9 Example of a scenario where a hybrid solution (EM and MI) is potentially the best archi-
tecture [12]

after every crop season. EM, however, is not a good solution to the subsoil module
due to its deep installation. Even its communication with the topsoil module is a chal-
lenge when these 3 factors are considered simultaneously: low-power (constrained
transmit power level), high soil moisture (irrigated area), and inter-node distance
(e.g., >50cm). Note that LWs is not an option for the UG2UG communication in
this scenario due to the geometry involving the topsoil and subsoil devices. Thus the
subsoil module should use MI technology instead to communicate with the topsoil
device, which will have 2 transceivers (EM and MI). Recall that the soil moisture
level will not significantly impact the MI path loss. Also, the inter-node distance is
sufficiently small to guarantee very low power consumption while maintaining good
communication. Finally, this application does not require high data rate and the small
bandwidth of the MI communication will not be a problem.

As we can see from this example, both technologies (EM and MI) are being
exploited considering their strengths and limitations. Therefore, before deciding on
a single communication technology in theWUSNdesign, it is also helpful to evaluate
if a hybrid solution exists.

This section is concluded with an overview of the wireless underground commu-
nication range achieved in empirical work, as shown in Table3.

4 Research Directions and Conclusions

In this chapter, the challenges related to the underground deployment of a WSN
(a WUSN) are investigated. Two technologies for the physical layer are considered:
traditional wave propagation (EM) and the novel technique based onmagnetic induc-
tion (MI). Both technologies have pros and cons. Based on simulated results, MI is
clearly superior, as its communication performance is not significantly affected by
environmental conditions including soil moisture variation. Also, in terms of com-
munication range, MI is expected to have better performance, especially when MI
waveguide is adopted. On the other hand, the current technology for the MI tech-
nique presents two main drawbacks: (a) it is associated with very small data rates,
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(b) the MI communication with aboveground devices can be severely impacted. The
motivation for the latter statement is due to the fact that MI has a theoretical 1/r3

signal attenuation rate. In addition, the noise level of the air-channel is potentially
higher for MI devices that operate at low frequencies, i.e., 50–20KHz, compared to
typical WSN radio channels. However, UG2AG and AG2UG links based on MI is
still a research topic to be better investigated.

The lack of real-world implementation of large WUSNs based on MI contributes
to the difficulty in some of our discussions and comparisons. Moreover, commodity
MI devices are not yet available. On the other hand, EM solutions to WUSNs can be
enhanced in a number of ways. The main technique is the combination of shallower
burial depths and an antenna design tailored to the use of lateral waves (LW). How-
ever, similar to MI, empirical work exploiting such techniques is currently lacking.
Based on theWUSN literature, we can expect to see more and more hybrid solutions
mixing EM and MI technologies.

Once the physical layer of WUSNs achieves a high degree of acceptance and
standardization, the next step will be development of network protocols tailored to
WUSNs. This task is also a challenge because the required energy efficiency for

Table 4 Direction for future researches in WUSNs

Layer Tech. Open research challenge

Physical EM Antenna design specific for buried nodes (antenna
factor)[5, 10–12, 23, 71, 72]

Physical EM Implementation of solutions based on LW effect [12–14,
45]

Physical EM/MI Modulation scheme [71]
Physical EM Soil channel-aware control error [10–12, 71, 72]
Physical MI Practical deployment strategies for MI waveguides [47,

69, 70]
Physical EM/MI Comparison between EM and MI techniques for

UG2AG and AG2UG links
Physical EM/MI Hybrid EM/MI solutions
Data Link EM Soil channel-aware adaptive FEC schemes [71, 72]
Data Link EM Comparison between TDMA and contention-based

MAC schemes [57, 72, 71]
Data Link EM/MI Optimal packet size [71, 72]
Network EM Soil channel-aware and event-aware adaptive routing

protocols [71]
Network EM/MI Opportunistic routing protocols based on the use of

aboveground nodes [12, 71]
Transport EM Transport reliability and QoS metrics specific for

WUSNs [71]
Transport EM Congestion control for WUSNs [71]
Cross-layer EM Utilization of soil moisture (VWC) data for channel

prediction [8, 12, 71]
Cross-layer EM Hybrid MAC/routing protocols [57, 71]
Cross-layer EM Hybrid Link/transport protocols [57, 71]
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WUSNs is very critical. Besides hardware improvements, the design of software
modules must consider the typical low data rate of WUSN applications, and a new
protocol suite for WUSNs is required.

In a research work [71], the authors point out future directions for researches in
WUSNs. At Table 4, we summarize these directions and include additional aspects
considering both EM and MI systems. Observe that there are many issues related
to the EM systems that were not listed for MI-based solutions, highlighting the fact
that the MI technique is still in its first development stages.
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Chapter 13
A Communication Framework for Networked
Autonomous Underwater Vehicles

Baozhi Chen and Dario Pompili

Abstract Underwater acoustic communications consume a significant amount of
energy due to the high transmission power (10–50 W) and long data packet trans-
mission duration (0.1–1 s). Mobile Autonomous Underwater Vehicles (AUVs) can
conserve energy by waiting for the ‘best’ network topology configuration, e.g., a
favorable alignment, before starting to communicate. Due to the frequency-selective
underwater acoustic ambient noise and high medium power absorption—which
increases exponentially with distance—a shorter distance between AUVs translates
into a lower transmission loss and a higher available bandwidth. By leveraging the
predictability of AUV trajectories, a novel solution is proposed that optimizes com-
munications by delaying packet transmissions in order to wait for a favorable network
topology (thus trading end-to-end delay for energy and/or throughput). In addition,
the proposed solution exploits the frequency-dependent radiation pattern of underwa-
ter acoustic transducers to reduce communication energy consumption. Our solution
is implemented and evaluated through emulations, showing improved performance
over some well-known geographic routing solutions and delay-tolerant networking
solutions.

1 Introduction

UnderWater Acoustic Sensor Networks (UW-ASNs) [1] have been deployed to
carry out collaborative monitoring tasks including oceanographic data collection,
disaster prevention, and navigation. To enable advanced underwater explorations,
Autonomous Underwater Vehicles (AUVs), equipped with underwater sensors, are
used for information gathering. Underwater gliders are one type of battery-powered
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energy-efficient AUVs that use hydraulic pumps to vary their volume in order to
generate the buoyancy changes that power their forward gliding. These gliders are
designed to rely on local intelligence with minimal onshore operator dependence.
Acoustic communication technology is employed to transfer vital information (data
and configuration) among gliders underwater and, ultimately, to a surface station
where this information is gathered and analyzed.

Position information is of vital importance in mobile underwater sensor networks
as the collected data has to be associated with appropriate location in order to be
spatially reconstructed onshore. Even though AUVs can surface periodically (e.g.,
every few hours) to locate themselves using Global Positioning System (GPS)—
which does not work underwater—over time inaccuracies in models for deriving
position estimates, self-localization errors, and drifting due to ocean currents will
lead to the increase of position uncertainty of underwater vehicle. Such uncertainty
may degrade the quality of collected data and also the efficiency, reliability, and data
rates of underwater inter-vehicle communications [39]. Besides the need to asso-
ciate sensor data with 3D positions, position information can also be helpful for
underwater communications. For example, underwater geographic routing protocols
(e.g., [23, 25]) assume the positions of the nodes are known. AUVs involved in
exploratory missions usually follow predicable trajectories, e.g., gliders follow saw-
tooth trajectories, which can be used to predict position and, therefore, to improve
communication.

By leveraging the predictability of the AUVs’ trajectory, the energy consumption
for communication can be minimized by delaying packet transmissions in order to
wait for a favorable network topology, thus trading end-to-end (e2e) delay for energy
and/or throughput.1 For instance, Fig. 1 depicts a scenario where glider i waits for a
certain time period Δt [s] to save transmission energy and to achieve higher through-
put. Based on j’s and d’s trajectory, glider i predicts a ‘better’ topology with shorter
links after Δt and postpones transmission in favor of lower transmission energy
and higher data rate. This approach differs from that proposed for Delay Tolerant
Networks (DTNs), where delaying transmission becomes necessary to overcome the
temporary lack of network connectivity [11].

To estimate an AUV’s position, in [9] we proposed a statistical approach to esti-
mate a glider’s trajectory. The estimates were used to minimize e2e energy con-
sumption for networks where packets in the queue need to be forwarded right away
(delay-sensitive traffic). In this work, we focus on delay-tolerant traffic and propose
an optimization framework that uses acoustic directional transducers to reduce the
computation and communication overhead for inter-vehicle data transmission. More-
over, we offer the distinction between two forms of position uncertainty depending
on the network point of view, i.e., internal and external uncertainty, which refer to
the position uncertainty associated with a particular entity/node (such as an AUV)
as seen by itself or by others, respectively (see Sect. 5.1 for more details).

1 Due to the peculiar ‘V’ shape of the underwater acoustic ambient noise and the high medium
power absorption exponentially increasing with distance [35], a shorter distance between AUVs
translates into a lower transmission loss and a higher available bandwidth.
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Glider i ’s
position 
after Δt

Glider i ’scurrent 
position

Glider j ’scurrent 
position

Destination d ’s
position after Δt’’

Destination d’s
current 
position

Glider j ’sposition 
after Δt’

Fig. 1 Glider i delays its transmission by Δt waiting for a better topology so to improve e2e
energy and/or throughput to destination d. Wide arrows represent the packet forwarding routes and
dashed/dotted simple arrows represent glider trajectories

Based on the estimated external uncertainty, we propose QUO VADIS,2 a QoS-
aware underwater optimization framework for inter-vehicle communication using
acoustic directional transducers. QUO VADIS is a cross-layer optimization frame-
work for delay-tolerant UW-ASNs that jointly considers the e2e delay requirements
and constraints of underwater acoustic communication modems, including trans-
ducer directivity, power control, packet length, modulation, and coding schemes.
Specifically, the proposed framework uses the external-uncertainty region estimates
of the gliders and forwards delay-tolerant traffic with large maximum e2e delay,
which includes Class I (delay-tolerant, loss-tolerant) traffic and Class II (delay-
tolerant, loss-sensitive) traffic [25]. Moreover, our cross-layer communication frame-
work exploits the frequency-dependent radiation pattern of underwater acoustic
transducers. By decreasing the frequency band, transducers can change their “direc-
tivity” turning from being almost omnidirectional (with a gain of ≤0 dBi)—which
is a desirable feature to support neighbor discovery and multicasting, geocasting,
anycasting, and broadcasting—to directional (with gains up to 10 dBi)—which is
useful for long-haul unicast transmissions.

The contributions of this work are as follows:

• We offer the distinction between two forms of position uncertainty (internal and
external, depending on the view of the different nodes). A statistical approach is
then proposed to estimate the position uncertainty and this estimated uncertainty
is then used to improve network performance.

• We exploit the frequency-dependent directivity of the acoustic transducer that is
originally used as omnidirectional transducer at one frequency to optimize network
performance.

2 “Quo vadis?” is a Latin phrase meaning “Where are you going?”.
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• We propose a distributed communication framework for delay-tolerant applica-
tions where AUVs can conserve energy by waiting for a ‘good’ network topology
configuration, e.g., a favorable alignment, before starting to communicate.

The remainder of this chapter is organized as follows. We first introduce the basic
knowledge on underwater acoustic sensor networks in Sect. 2 and review the related
work in Sect. 3. Then we present the underwater communication model in Sect. 4 and
propose our solution, QUO VADIS, in Sect. 5. In Sect. 6, performance evaluation
and analysis are carried out, while conclusions are discussed in Sect. 7.

2 Basics of Underwater Acoustic Sensor Networks

UW-ASNs are applied in a broad range of applications, including environmental
monitoring, undersea exploration, disaster prevention, assisted navigation and tacti-
cal surveillance.

Underwater networking is a rather unexplored area although underwater commu-
nications have been experimented since World War II, when, in 1945, an underwater
telephone was developed in the United States to communicate with submarines [29].
Acoustic communications are the typical physical layer technology in underwater
networks. In fact, radio waves propagate at long distances through conductive sea
water only at extra low frequencies (30−300 Hz), which requires large antennae and
high transmission power. For example, the Berkeley Mica2 Motes, the most popu-
lar experimental platform in the sensor networking community, have been reported
to have a transmission range of 120 cm in underwater at 433 MHz by experiments
performed at the Robotic Embedded Systems Laboratory (RESL) at the University
of Southern California. Optical waves do not suffer from such high attenuation but
are affected by scattering. Moreover, transmission of optical signals requires high
precision in pointing the narrow laser beams. Thus, acoustic waves are generally
used for underwater communications [34].

The traditional approach for ocean-bottom or ocean-column monitoring is to
deploy underwater sensors that record data during the monitoring mission, and then
recover the instruments [27]. This approach has the following disadvantages:

1. No real-time monitoring: The recorded data cannot be accessed until the
instruments are recovered, which may happen several months after the beginning of
the monitoring mission. This is critical especially in surveillance or in environmental
monitoring applications such as seismic monitoring.

2. No online system reconfiguration: Interaction between onshore control sys-
tems and the monitoring instruments is not possible. This impedes any adaptive
tuning of the instruments, nor is it possible to reconfigure the system after particular
events occur.

3. No failure detection: If failures or misconfigurations occur, it may not be
possible to detect them before the instruments are recovered. This can easily lead to
the complete failure of a monitoring mission.
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4. Limited storage capacity: The amount of data that can be recorded during the
monitoring mission by every sensor is limited by the capacity of the onboard storage
devices (memories, hard disks).

Therefore, there is a need to deploy underwater networks that will enable real-
time monitoring of selected ocean areas, remote configuration and interaction with
onshore human operators. This can be obtained by connecting underwater instru-
ments by means of wireless links based on acoustic communication.

To communicate with each other acoustically, underwater sensor nodes need to
use acoustic modems, which are able to convert electrical signals into sound waves
and vice versa. As of today, many acoustic modems—such as those designed and
manufactured by companies like LinkQuest, Teledyne Benthos, DSPComm are com-
mercially available to provide communication capabilities in different underwater
environments. These modems uses communication techniques such as Frequency-
Shift Keying (FSK), Phase-Shift Keying (PSK), Direct Sequence Spread Spectrum
(DSSS) and Orthogonal Frequency-Division Multiplexing (OFDM), offering data
rates up to 38.4 kbps over different communication ranges, i.e., short range (up to
about 500 m), medium range (up to about 4000 m), and long range (up to about
10000 m) in different underwater environments (shallow water or deep water) for
different communication link setups (vertical or horizontal communication link).

These modems have been used in different underwater communication networks.
However, they are generally big in size, which is not suitable for underwater vehicles
such as the SLOCUM glider. Due to the size constraint, the popular choice for under-
water gliders today is the Micro-Modem produced by Woods Hole Oceanography
Institution (WHOI), as shown in Fig. 2. The WHOI Micro-Modem is currently the
state-of-the-art modem used on the SLOCUM glider. It is compact in size (including
the transducer), offering data rates from 80 to 5300 bps with communication range
of up to a few kilometers. Such feature makes it an appropriate choice for AUVs like
underwater gliders.

Many researchers are currently engaged in developing networking solutions for
terrestrial wireless ad hoc and sensor networks. Although there exist many recently
developed network protocols for wireless sensor networks, the unique characteris-

With Transducer With Towfish & Multi-array

Fig. 2 WHOI micro-modem connected to different transducers
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tics of the underwater acoustic communication channel, such as limited bandwidth
capacity and variable delays [28], require very efficient and reliable new data com-
munication protocols.

Major challenges in the design of underwater acoustic networks are as the fol-
lowing.

• The available bandwidth is severely limited;
• The underwater channel is severely impaired, especially due to multi-path and

fading problems;
• Propagation delay in underwater is five orders of magnitude higher than in Radio

Frequency (RF) terrestrial channels, and extremely variable;
• High bit error rates and temporary losses of connectivity (shadow zones) can be

experienced, due to the extreme characteristics of the underwater channel;
• Battery power is limited and usually batteries can not be recharged, also because

solar energy cannot be exploited;
• Underwater sensors are prone to failures because of fouling and corrosion.

Underwater acoustic communications are mainly influenced by path loss, noise,
multi-path, Doppler spread, and high and variable propagation delay. All these fac-
tors determine the temporal and spatial variability of the acoustic channel, and make
the available bandwidth of the underwater acoustic channel limited and dramatically
dependent on both range and frequency. Long-range systems that operate over sev-
eral tens of kilometers may have a bandwidth of only a few kHz, while a short-range
system operating over several tens of meters may have more than a hundred kHz of
bandwidth. In both cases these factors lead to low bit rate [7], in the order of tens of
kbps for existing devices.

Here after we analyze the factors that influence acoustic communications in order
to state the challenges posed by the underwater channels for underwater sensor
networking. These include:

Path loss: Attenuation is mainly provoked by absorption due to conversion of
acoustic energy into heat. The attenuation increases with distance and frequency.
Figure 3 shows the acoustic attenuation with varying frequency and distance for
a short range shallow water acoustic channel, according to the Urick’s propagation
model in [37] (see Sect. 4 for more details). The attenuation is also caused by scatter-
ing and reverberation (on rough ocean surface and bottom), refraction, and dispersion
(due to the displacement of the reflection point caused by wind on the surface). Water
depth plays a key role in determining the attenuation. Geometric Spreading refers
to the spreading of sound energy as a result of the expansion of the wavefronts.
It increases with the propagation distance and is independent of frequency. There
are two common kinds of geometric spreading: spherical (omni-directional point
source), which characterizes deep water communications, and cylindrical (horizon-
tal radiation only), which characterizes shallow water communications.

Noise: Man-made noise is mainly caused by machinery noise (pumps, reduction
gears, power plants), and shipping activity (hull fouling, animal life on hull, cavi-
tation), especially in areas encumbered with heavy vessel traffic. Ambient noise is
related to hydrodynamics (movement of water including tides, current, storms, wind,
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Fig. 3 Path loss of short range acoustic channel versus distance and frequency in band 1–50 kHz

and rain), and to seismic and biological phenomena. In [14], boat noise and snapping
shrimps have been found to be the primary sources of noise in shallow water by
means of measurement experiments on the ocean bottom.

Multi-path: Multi-path propagation may be responsible for severe degradation
of the acoustic communication signal, since it generates Inter-Symbol Interference
(ISI). The multi-path geometry depends on the link configuration. Vertical channels
are characterized by little time dispersion, whereas horizontal channels may have
extremely long multi-path spreads. The extent of the spreading is a strong function
of depth and the distance between transmitter and receiver.

High delay and delay variance: The propagation speed in the acoustic channel
is five orders of magnitude lower than in the radio channel. This large propagation
delay (0.67 s/km) can reduce the throughput of the system considerably. The very
high delay variance is even more harmful for efficient protocol design, as it prevents
from accurately estimating the round trip time (RTT), which is the key parameter for
many common communication protocols.

Doppler spread: The Doppler frequency spread can be significant in acoustic
channels [34], causing a degradation in the performance of digital communications:
transmissions at a high data rate cause many adjacent symbols to interfere at the
receiver, requiring sophisticated signal processing to deal with the generated ISI.
The Doppler spreading generates a simple frequency translation, which is relatively
easy for a receiver to compensate for; and a continuous spreading of frequencies,
which constitutes a non-shifted signal, which is more difficult to compensate for.
If a channel has a Doppler spread with bandwidth BBW and a signal has symbol
duration Tsym , then there are approximately BBW Tsym uncorrelated samples of its
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complex envelope. When BBW Tsym is much less than unity, the channel is said to be
underspread and the effects of the Doppler fading can be ignored, while, if greater
than unity, it is said to be overspread [17].

Most of the described factors are caused by the chemical-physical properties of
the water medium such as temperature, salinity and density, and by their spatio-
temporal variations. These variations, together with the wave guide nature of the
channel, cause the acoustic channel to be highly temporally and spatially variable.
In particular, the horizontal channel is by far more rapidly varying than the vertical
channel, in both deep and shallow waters.

3 Related Work

We review the following areas: geographical routing solutions, terrestrial and under-
water DTN solutions, solutions using directional transducers and underwater cross-
layer optimization solutions, which are related to our work.

Geographic routing protocols rely on geographic position information for mes-
sage forwarding, which requires that each node can determine its own location and
that the source is aware of the location of the destination. In this way the message
can be routed to the destination without knowledge of the network topology or a
priori route discovery. Geographic routing protocols offer a number of advantages
over conventional ad hoc routing protocols. Geographic routing does not require
maintenance of routing tables or route construction prior to or during the forward-
ing process. Packet forwarding also allows a packet to adapt to topology change by
selecting the next best hop based on the geographic location. It is also scalable as
it does not rely on information that depends on the network size. Here we review
some well-known geographic routing schemes that are proposed for terrestrial wire-
less networks as research on underwater geographic routing is still very limited.
Many geographical routing schemes, including some well-known ones such as Most
Forward within Radius (MFR) scheme [36], Greedy Routing Scheme (GRS) [12]
and Compass Routing Method (CRM) [18], have been proposed for terrestrial wire-
less networks. In MFR, the message is forwarded to the neighbor that is closest to
the destination, while in GRS a node selects the neighbor whose projection on the
segment from the source to destination is closest to the destination (i.e., the node
with maximum advance to the destination). In the Compass Routing Method (CRM)
[18], a message is forwarded to a neighbor whose direction from the transmitter
is the closest to the direction to the destination. In [22], a scheme called Partial
Topology Knowledge Forwarding (PTKF) is introduced, and is shown to outper-
form other existing schemes in typical application scenarios. Based on the estimate
using local neighborhood information, PTKF forwards packet to the neighbor that
has the minimal e2e routing energy consumption. These solutions are proposed for
terrestrial wireless networks. In UW-ASNs, they may not work well since prop-
agation of acoustic signals is quite different from that of radio signals. Moreover,
localization underwater is generally more difficult than in the terrestrial environment.
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Delay tolerant networks are networks that have intermittent connectivity between
network nodes, such as networks operating in mobile or extreme terrestrial environ-
ments, or interplanetary networks in deep space. In other words, DTNs are character-
ized by the lack of connectivity, resulting in a lack of instantaneous end-to-end paths.
For networks using conventional protocols, such intermittent connectivity causes
loss of data, where packets that cannot be forwarded immediately are dropped. For
example, in TCP/IP networks, temporary disconnections may cause the slower packet
retransmission. If packet dropping is too severe, TCP eventually ends the session,
causing the applications to fail. To address this problem, protocols are designed care-
fully to support such intermittent communications between nodes in DTNs. Using
the store-and-forward approach, a packet is incrementally moved and stored across
the network so that it will eventually reach its destination. In this way, the reliability
of packet forwarding can be guaranteed in DTNs. A common goal in many DTN
routing protocols is to maximize end-to-end reliability. A common technique used to
achieve this goal is to replicate copies of the message in the hope that it will succeed
in reaching its destination.

Solutions for DTNs have been proposed for communications within extreme and
performance-challenged environments where continuous e2e connectivity does not
hold most of the time [5, 11]. Many approaches such as Resource Allocation Pro-
tocol for Intentional DTN (RAPID) routing [2], Spray and Wait [32], and MaxProp
[4], are solutions mainly for intermittently connected terrestrial networks. RAPID
[2] translates the e2e routing metric requirements such as minimizing average delay,
minimizing worst-case delay, and maximizing the number of packets delivered before
a deadline into per-packet utilities. At a transfer opportunity, it replicates a packet
that locally results in the highest increase in utility. Spray and Wait [32] “sprays” a
number of copies per packet into the network, and then “waits” until one of these
nodes meets the destination. In this way it balances the tradeoff between the energy
consumption incurred by flooding-based routing schemes and the delay incurred
by spraying only one copy per packet in one transmission. MaxProp [4] prioritizes
both the schedule of packets transmissions and the schedule of packets to be dropped,
based on the path likelihoods to peers estimated from historical data and complemen-
tary mechanisms including acknowledgments, a head-start for new packets, and lists
of previous intermediaries. It is shown that MaxProp performs better than protocols
that know the meeting schedule between peers. These terrestrial DTN solutions may
not achieve the optimal performance underwater as the characteristics of underwater
communications are not considered. Hence, in the rest of this section, we focus on
related solutions for UW-ASNs.

Several DTN solutions for UW-ASNs have been proposed in [8, 15, 16, 21]. In
[8], an energy-efficient protocol is proposed for delay-tolerant data-retrieval appli-
cations. Efficient erasure codes and Low Density Parity Check (LDPC) codes are
also used to reduce Packet Error Rate (PER) in the underwater environment. In [15],
an adaptive routing algorithm exploiting message redundancy and resource reallo-
cation is proposed so that ‘more important’ packets can obtain more resources than
other packets. Simulation results showed that this approach can provide differenti-
ated packet delivery according to application requirements and can achieve a good
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e2e performance trade-off among delivery ratio, average e2e delay, and energy con-
sumption. A Prediction Assisted Single-copy Routing (PASR) scheme that can be
instantiated for different mobility models is proposed in [16]. An effective greedy
algorithm is adopted to capture the features of network mobility patterns and to pro-
vide guidance on how to use historical information. It is shown that the proposed
scheme is energy efficient and cognizant of the underlying mobility patterns.

In [21], an approach called Delay-tolerant Data Dolphin (DDD) is proposed to
exploit the mobility of a small number of capable collector nodes (namely dolphins)
to harvest information sensed by low power sensor devices while saving sensor
battery power. DDD performs only one-hop transmissions to avoid energy-costly
multi-hop relaying. Simulation results showed that limited numbers of dolphins can
achieve good data-collection requirements in most application scenarios. However,
data collection may take a long time as the nodes need to wait until a dolphin moves
into the communication ranges of these nodes.

Compared to the number of approaches using directional antennae for terrestrial
wireless sensor networks, solutions using directional transducers for UW-ASNs are
very limited due to the complexity of estimating position and direction of vehicles
underwater. Moreover, these solutions generally assume the transducers are ideally
directional, i.e., they assume the radiation energy of the transducer is focused on
some angle range with no leaking of radiation energy outside this range. For exam-
ple, such transducers are used for localization using directional beacons in [19] and
for directional packet forwarding in [40]. These solutions also use only one fre-
quency. In our work, rather than using the ideal transducer model, we consider the
radiation patterns of existing real-world transducers at different frequencies in order
to minimize energy consumption for communications.

Over these years, cross-layer optimization becomes a popular choice to improve
the performance in wireless networks. By removing the strict constraints on the com-
munication interfaces between layers that are defined in the standard Open Systems
Interconnection (OSI) model, different layers can share more information and inter-
act with each other in order to improve the network performance. For example, in
the physical layer, a node can change its channel coding based on the packet error
rate from the link layer. Cross-layer optimization has been shown to be an effective
way to improve the network performance, especially in a harsh environment such
as the underwater [33]. A cross-layer optimization solution for UW-ASNs has been
proposed in [25], where the interaction between routing functions and underwater
characteristics is exploited, resulting in improvement in e2e network performance in
terms of energy and throughput. Another cross-layer approach that improves energy
consumption performance by jointly considering routing, MAC, and physical layer
functionalities is proposed in [23]. These solutions, however, do not consider uncer-
tainty in the AUV positions and are implemented and tested only by software simula-
tion platforms and are not designed for delay-tolerant applications. On the contrary,
we propose a practical uncertainty-aware cross-layer solution that incorporates the
functionalities of the WHOI Micro-Modem [13] to minimize energy consumption.
Moreover, our solution is implemented on real hardware and tested in our emulator
integrating WHOI underwater acoustic modems.
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4 Network Model

In this section we introduce the network model that our solution is based on and state
the related assumptions. Suppose the network is composed of a number of gliders,
which are deployed in the ocean for long periods of time (weeks or months) to collect
oceanographic data. For propulsion, they change their buoyancy using a pump and
use lift on wings to convert vertical velocity into forward motion as they rise and
fall through the ocean. They travel at a fairly constant horizontal speed, typically
0.25 m/s [1]. Gliders control their heading toward predefined waypoints using a
magnetic compass.

Assume the gliders need to forward the data they sensed to a collecting glider.
The slow-varying and mission-dependent (and, for such reasons, ‘predictable’) tra-
jectory of a glider is used in our solution to estimate another glider’s position using
the position and velocity estimate of some time earlier. A glider estimates its own
trajectory and position uncertainty using its own position estimates; the parameters
of the estimated trajectory and internal-uncertainty region are sent to neighboring
gliders. Using these parameters, these gliders can extrapolate the glider’s current
position and a confidence region accounting for possible deviation from the extrap-
olated course.

The Urick model is used to estimate the transmission loss T L(l, f ) [dB] as,

T L(l, f ) = κ · 10 log10(l) + α( f ) · l, (1)

where l [m] is the distance between the transmitter and receiver and f [Hz] is the
carrier frequency. Spreading factor κ is taken to be 1.5 for practical spreading, and
α( f ) [dB/m] represents an absorption coefficient that increases with f [35].

The Urick model is a coarse approximation for underwater acoustic wave trans-
mission loss. In reality, sound propagation speed varies with water temperature,
salinity, and pressure, which causes wave paths to bend. Acoustic waves are also
reflected from the surface and bottom. Such uneven propagation of waves results
in convergence (or shadow) zones, which are characterized by lower (or higher)
transmission loss than that predicted by the Urick model due to the uneven energy
dispersion.

Due to these phenomena, the Urick model is not sufficient to describe the under-
water channel for simulation purposes. The Bellhop model is based on ray/beam trac-
ing, which can model these phenomena more accurately. This model can estimate the
transmission loss by two-dimensional acoustic ray tracing for a given sound-speed
depth profile or field, in ocean waveguides with flat or variable absorbing boundaries.
Transmission loss is calculated by solving differential ray equations, and a numerical
solution is provided by HLS Research [26]. An example plotted using the Bellhop
model is shown in Fig. 4. Interesting enough, if node 1 sends a packet, node 4 has
higher probability of receiving the packet than node 3 even though this node is closer.
Because the Bellhop model requires more information about the environment than
a glider will have, such as sound speed profile and depths of receivers and ocean
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Fig. 4 Shadow zone scenario: the left subfigure represents the transmission loss of node 1 located at
the origin, while the right subfigure depicts the sound speed profile used to derive the transmission
loss (the y-axis is the depth, which has the same range used in the left; the blue, yellow and red
areas denote large, medium and small path losses, respectively)

boundary, it is only used to simulate the acoustic environment for testing (relying on
trace files with historic data). Hence, the proposed solution uses the Urick model in
the cross-layer optimization (Sect. 5.2), which can be computed online on the glider.

We adopt the empirical ambient noise model presented in [35], where a ‘V’ struc-
ture of the power spectrum density (psd) is shown. The ambient noise power is
obtained by integrating the empirical psd over the frequency band in use.3

5 Proposed Approach

Our proposed optimization is based on the estimation of the gliders’ trajectories
and their external-uncertainty regions. Therefore, in this section, we introduce the
estimation of external-uncertainty regions for gliders first. We then present the cross-
layer design of our proposed framework.

5.1 Internal and External Uncertainty

We first offer the distinction between two types of position uncertainty, followed
by the discussion on the relationship between these two types of uncertainty. Then
we present the statistical approach for external-uncertainty region estimation when

3 Note that in underwater acoustics, power (or source level) is usually expressed using decibel (dB)
scale, relative to the reference pressure level in underwater acoustics 1 μPa, i.e., the power induced
by 1μPa pressure. The conversion expression for the source level SL re μPa at the distance of
1 m of a compact source of P watts is SL = 170.77 + 10 log10 P .
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gliders are used as AUVs and ocean currents are unknown. Since the details have
been presented in [10], we just summarize them here.

Internal uncertainty refers to the position uncertainty associated with a particular
entity/node (such as an AUV) as seen by itself. Existing approaches such as those
using Kalman Filter (KF) [3, 38] may not guarantee the optimality when the linearity
assumption between variables does not hold. On the other hand, approaches using
non-linear filters such as the extended or unscented KF attempt to minimize the
mean squared errors in estimates by jointly considering the navigation location and
the sensed states/features such as underwater terrain features, which are non-trivial,
especially in an unstructured underwater environment.

External uncertainty, as introduced in this chapter, refers to the position uncer-
tainty associated with a particular entity/node as seen by others. Let us denote the
internal uncertainty, a 3D region associated with any node j ∈ N (N is the set of
network nodes), as U j j , and the external uncertainties, 3D regions associated with j
as seen by i, k ∈ N , as Ui j and Uk j , respectively (i ∞= j ∞= k). In general, U j j ,Ui j ,
andUk j are different from each other; also, due to asymmetry, Ui j is in general differ-
ent from U j i . External uncertainties may be derived from the broadcast/propagated
internal-uncertainty estimates (e.g., using one-hop or multi-hop neighbor discovery
mechanisms) and, hence, will be affected by e2e network latency and information
loss.

The estimation of the external-uncertainty region Ui j of a generic node j at node i
(with i ∞= j) involves the participation of both i and j . Here we use the received U j j

as Ui j (a delayed version due to propagation delay, transmission delay and packet
loss). Better estimation of Ui j involves estimation of the change of U j j with time and
is left as future work. We provide a solution for internal- and external-uncertainty
estimation when (1) gliders are used (following a ‘sawtooth’ trajectory) and (2)
ocean currents are unknown.

Internal-uncertainty estimation at j : Assume gliders estimate their own loca-
tions over time using dead reckoning. Given glider j’s estimated coordinates,
Pn = (xn, yn, zn) at sampling times tn (n = 1 . . . N ), as shown in [10], its tra-
jectory segment can be described as P(t) = P̄ + −∗v (t − t̄), where P̄ = (x̄, ȳ, z̄) =
1
N

⎡N
n=1(xn, yn, zn) and −∗v = ∼−−−∗⎢P1 ⎢PN ∼

∼(a∈,b∈,c∈)∼·(tN −t1)
·(a∈, b∈, c∈). Here, [a∈, b∈, c∈]T is

the singular vector of N × 3 matrix A = [[x1 − x̄, . . . , xN − x̄]T , [y1 − ȳ, . . . , yN −
ȳ]T , [z1 − z̄, . . . , zN − z̄]T ] corresponding to its largest absolute singular value,
t̄ = 1

N

⎡N
n=1 tn is the average of the sampling times, and ⎣Pi is the projection of point

Pi on the line segment (Fig. 5a).
The internal-uncertainty region of j is estimated as a cylindrical region [10] U

described by its radius R and its height HU − HL , where HU and HL—in general
different—are the signed distances of the cylinder’s top and bottom surface (i.e.,
the surface ahead and behind in the trajectory direction, respectively) to glider j’s
expected location on the trajectory. In [9] we demonstrate that:

1. HL and HU can be estimated as
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⎤
HL = H − t̂α,N−1S(H)

≥
1 + 1/N

HU = H + t̂α,N−1S(H)
≥

1 + 1/N
, (2)

where H = ⎡N
n=1 Hn/N is the mean of these N samples, S(H) = [ 1

N−1

⎡N
n=1(Hn −

H)2]1/2 is the unbiased standard deviation, 1 −α is the confidence level, and t̂α,N−1
is the 100(1 − α/2) % of Student’s t-distribution [6] with N − 1 degrees of freedom
(here Hn is the nth sample calculated from Pn’s [9]); and

2. R is estimated by

R =
≥

N − 1S(R)

⎥
χ̂α,2(N−1)

, (3)

where S(R) = [ 1
N−1

⎡N
n=1(Rn − R)2]1/2, R = 1

N

⎡N
n=1 Rn , and χ̂α,2(N−1) is the

100(1 − α) % of χ-distribution with 2(N − 1) degrees of freedom (here Rn is the
nth sample calculated from Pn’s [9]). As shown in Fig. 5b, j’s internal-uncertainty
region becomes smaller over time (from T0 to T2), i.e., as more position estimates
are acquired.

External-uncertainty estimation at i : After receiving j’s trajectory and internal-
uncertainty region parameters (P̄, t̄,−∗v , HU , HL , R), glider i can update the estimate
of j’s external-uncertainty region. Because AUVs involved in missions show pre-
dictable trajectories, information about the sawtooth segment can be used to derive
the entire glider trajectory through extrapolation assuming symmetry between glider
ascent and descent. Due to packet delays and losses in the network, j’s external-
uncertainty regions as seen by single- and multi-hop neighbors are delayed versions
of j’s own internal uncertainty (Fig. 5b). Hence, when using multi-hop neighbor dis-
covery schemes, the internal uncertainty of a generic node j,U j j , provides a lower
bound for all the external uncertainties associated with that node, Ui j , ≈i ∈ N .
Hence we use the received U j j as Ui j (a delayed version due to propagation delay,
transmission delay and packet loss).

5.2 Cross-Layer Optimization for Delay-Tolerant Applications

With the external-uncertainty regions, a glider needs to select an appropriate neighbor
to forward each packet to its final destination. Because the major part of available
energy in battery-powered gliders should be devoted to propulsion [24], acoustic
communications should not take a large portion of the available energy. Our proposed
protocol minimizes the energy spent to send a message to its destination and considers
the functionalities of a real acoustic modem for a practical solution. Specifically,
we provide support and differentiated service to delay-tolerant applications with
different QoS requirements, from loss sensitive to loss tolerant. Hence, we consider
the following two classes of traffic:

Class I (delay-tolerant, loss-tolerant). It may include multimedia streams that,
being intended for storage or subsequent offline processing, do not need to be deliv-
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Fig. 5 External- and internal-uncertainty regions for gliders under the effect of unknown ocean
currents. a Estimated internal-uncertainty region by j : a cylinder with circular bottom radius R and
height HU − HL . b Change of internal-uncertainty region over time

ered within strict delay bounds. This class may also include scalar environmental
data or non time-critical multimedia content such as snapshots. In this case, the loss
of a packet is tolerable at the current hop, but its e2e PER should still be below a
specified threshold.

Class II (delay-tolerant, loss-sensitive). It may include data from critical mon-
itoring processes that require some form of offline post processing. In this case, a
packet must be re-transmitted if it is not received correctly.

Our protocol employs only local information to make routing decisions, resulting
in a scalable distributed solution (even though the destination information is required
for routing, we can use the destination information learned from local neighbors to
predict the position of the destination). It is a suboptimal solution instead of a global
one since it relies on local information. The external-uncertainty regions obtained as
described in Sect. 5.1 are used to select the neighbor with minimum packet routing
energy consumption. Here, a framework using the WHOI Micro-Modem [13] is
presented. This framework can be extended and generalized in such a way as to
incorporate the constraints of other underwater communication modems.
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To be more specific, given the current time tnow [s] and a message m generated
at time t0 [s], glider i jointly optimizes the time Δt [s] to wait for the best topology
configuration, a neighbor j∈, a frequency band fi j , transmission power P(i, j)

T X (t) [W],
packet type ξ, and number of frames4 NF (ξ), so that the estimated energy Eid(t) [J]
to route m to destined glider d’s region Uid is minimized and message m reaches it
within Bmax [s] (i.e., the maximum e2e delay from the source to the destination). We
assume power control is possible in the range [Pmin, Pmax ] although transmission
power is currently fixed for the WHOI Micro-Modem. We anticipate more advanced
amplifier hardware will make this power optimization possible.

Here, Eid(t) is estimated by the energy to transmit the packet to neighbor j in one
transmission, the average number of transmissions N̂ (i, j)

T X (t) to send m to j , and the

estimated number of hops N̂ ( j,d)
hop (t) to reach regionUid via j . We need to estimate the

transmission power and the number of hops to destination. The external-uncertainty
region is used to estimate the number of hops N̂ ( j,d)

hop (t) to d via neighbor j and the

lower bound of the transmission power as follows (Fig. 6). Let l̂i,p1,p2(t) [m] be
the projected distance of line segment from i to position p1 on the line from i to
position p2, and li,p(t) be the distance from i to position p. N̂ ( j,d)

hop (t) is estimated by

the worst case of li,p(t)/l̂i,p1,p2(t), i.e., Eq. (8). The lower bound for transmission
power is estimated by the average transmission power so that the received power
at every point in Ui j is above the specified threshold PT H . The transmission power
lower bound is the integral of the product of the transmission power to obtain PT H

at a point in Ui j and the probability density function (pdf) of j to be at this point.
To estimate the received power, it is necessary to estimate the transducer gains

at the transmitter and receiver. To estimate the transmitter’s gain GT X (θi j ,φi j , fi j ),
i needs to compute the radiation angles—the horizontal angle θi j ∈ [−180√, 180√]
and the vertical angle φi j ∈ [−90√, 90√] with respect to j . Assume the initial posi-
tion of the transducer is as shown in the top left corner of Fig. 7, then i’s normalized
transducer direction vector is −∗ni = (0, 0,−1) with the horizontal plane z = z(i)

0
(defined as the plane perpendicular to −∗ni ). While the glider is moving, its pitch,
yaw, and roll angles are denoted by εi , ζi , and ηi , respectively. From geometry, the

direction vector after rotation is
−∗
n′

i = Qx (ηi )Qy(ζi )Qz(εi )
−∗ni

T , while the trans-

ducer’s horizontal plane is Qx (−ηi )Qy(−ζi )Qz(−εi )[x, y, z]T = z(i)
0 , where z(i)

0 is

4 Each packet sent by WHOI Micro-Modem consists of a number of frames where the maximum
number depends on ξ.
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-3 dBi gain

z

horizontal 
planez

Fig. 7 Picture of our underwater glider and radiation pattern of the BT-25UR transduce

a constant, and Qx (ηi ), Qy(ζi ) and Qz(εi ) are

⎦


1 0 0
0 cos ηi − sin ηi

0 sin ηi cos ηi


⎛ ,

⎦


cos ζi 0 − sin ζi

0 1 0
sin ζi 0 cos ζi


⎛ ,

⎦


cos εi − sin εi 0
sin εi cos εi 0

0 0 1


⎛ ,

respectively.

With the position vector
−−∗
Pi Pj from i to j , we can derive cos φi j =

−̂−∗
Pi Pj √−−∗

Pi Pj

∼−̂−∗
Pi Pj ∼·∼−−∗

Pi Pj ∼

and cos θi j =
−̂−∗
Pi Pj √−∗v i

∼−̂−∗
Pi Pj ∼·∼−∗v i ∼

, where
−̂−∗
Pi Pj is the projection of

−−∗
Pi Pj on the transducer’s

horizontal plane, √ is the inner product, and −∗vi = ∼−∗vi ∼ · [cos εi cos ζi , cos εi sin ζi ,

sin εi ] = (a∈
i , b∈

i , c∈
i ) is the velocity vector of glider i as estimated in Sect. 5.1. As−∗

n′
i is perpendicular to the transducer’s horizontal plane, we have sin φi j = cos(90−

φi j ) =
−∗
n′

i √−−∗
Pi Pj

∼−−∗
Pi Pj ∼

and
−̂−∗
Pi Pj = −−∗

Pi Pj − (
−−∗
Pi Pj √ −∗

n′
i ) · −∗

n′
i . The transducer’s gain at

receiver j , G R X (θ j i ,φ j i , fi j ), can be estimated in a similar way.
Let Lm(ξ) be m’s length in bits depending on packet type ξ and B(ξ) be the corre-

sponding bit rate. The energy to transmit the packet to neighbor j in one transmission
can therefore be approximated by P(i, j)

T X (t) · Lm (ξ)
B(ξ) . Overall, the optimization problem

can be formulated as
P(i, d, tnow,Δtp): Cross-layer Optimization Problem

Given:Pmin, Pmax , Ξ,Ωξ, GT X , G R X , η, Bmax, P E Re2e
max

Computed:εi , ζi , ε j , ζ j ,Ui j ,≈ j ∈ Ni ∪ {d} (i.e., R(i)
j , H (i, j)

L , H (i, j)
H )

Find: j∈ ∈ Ni , P(i, j)∈
T X (t) ∈ [Pmin, Pmax ],

ξ∈ ∈ Ξ, N∈
F (ξ) ∈ Ωξ,Δt∈, f ∈

i j ∈ [ fL , fU ]
Minimize:Eid(t) = P(i, j)

T X (t) · Lm(ξ)

B(ξ)
· N̂ (i, j)

T X (t) · N̂ ( j,d)
hop (t). (4)
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In P(i, d, tnow,�tp,Ni , Ξ , and Ωξ denote the set of i’s neighbors, the set of packet
types, and the set of number of type ξ frames respectively. The objective function (4)
estimates the energy required to send message m to the destination region Uid . To
solve this problem, we need to derive the relationship between these variables. Let
L F (ξ) [bit] be the length of a frame of type ξ, L H [bit] be the length of message m’s
header, P E R(SI N Ri j (t), ξ) be the PER of type ξ at the Signal to Interference-plus-
Noise Ratio SI N Ri j (t), T L(li j (t), fi j ) be the transmission loss for distance li j (t)
and carrier frequency fi j [kHz]—which is calculated using Eq. (1)—A\{i} be the

set of active transmitters excluding i , and P(i, j)
T X (t) be the transmission power used

by i to reach j , we have the following formulas,

(class-independent relationships)

t = tnow + Δt; (5)

tT T L = Bmax − (tnow − t0); (6)

Lm(ξ) = L F (ξ) · NF (ξ) + L H ; (7)

N̂ ( j,d)
hop (t) = maxp∈Uid

li,p(t)

minp1∈Ui j ,p2∈Uid
l̂i,p1,p2 (t)

; (8)

SI N Ri j (t) = P(i, j)
T X (t) · 10Gi j (li j (t), fi j )/10

⎡
k∈A\{i} P(k, j)

T X (t) · 10Gi j (lk j (t), fi j )/10 + N0

; (9)

Gi j (li j , fi j ) = GT X (θi j , φi j , fi j ) + G R X (θ j i , φ j i , fi j ) − L AM P ( fi j ) − T L(li j , fi j );
(10)

θi j = arcsin

−∗
n′

i √ −−∗
Pi Pj

∼−−∗
Pi Pj ∼

; (11)

φi j = arccos

−̂−∗
Pi Pj √ −∗v i

∼−̂−∗
Pi Pj ∼ · ∼−∗v i ∼

. (12)

Note that N0 = ⎜ fU
fL

psdN0( f, w)d f is the ambient noise, where psdN0( f, w) is
the empirical noise power spectral density (psd) for frequency band [ fL , fU ] and
w [m/s] is the surface wind speed as in [35]. tT T L is the remaining Time-To-Live
(TTL) for the packet, L AM P ( fi j ) [dB] is the power loss of the power amplifier at fi j

and P E Re2e
max is the maximum e2e error rate for packet m. In these relationships, Eq.

(5) is the time after waiting Δt ; Eq. (6) calculates the remaining TTL for message
m; Eq. (7) calculates the total message’s length; Eq. (8) estimates the number of
hops N̂ (i, j)

hop (t) to reach destination d; Eq. (9) estimates the SINR at j while Eq. (10)
estimates the total transmission gain in dB from i to j , including the transducer gain
at the transmitter and receiver, loss at the power amplifier, and transmission loss;
Eqs. (11) and (12) estimate the transducer’s radiation angles of j with respect to i .
The constraints for P(i, d, tnow,� tp) are,
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(class-independent constraints)

P(i, j)
T X (t) ∩

⎝
(x,y,z)∈Ui j

PR X (i, j, x, y, z) · 10−Gi j (li j (t), fi j )/10 · gR(x, y) · gH (z)dxdydz;
(13)

PR X (i, j, x, y, z) ∩ PT H ; (14)

0 →Δt → tT T L

N̂ (i, j)
T X (t) · N̂ ( j,d)

hop (t)
. (15)

In these constraints, PR X (i, j, x, y, z) is the received signal power at the generic 3D
location (x, y, z) when i transmits to j . Last, gR(x, y) and gH (z) are the pdfs of the
glider’s position on the horizontal plane (i.e., χ-distribution with degree of 2N − 2)
and on the vertical direction (i.e., Student’s t-distribution with N − 1 degrees of
freedom), respectively [9], PT H is the received power threshold so that the packet
can be received with a certain predefined probability. Equation (13) estimates the
lower bound of the transmission power to cover the external-uncertainty region so
that the received power is above a pre-specified threshold, as accounted for in Eqs.
(14) and (15) estimates the bounds of Δt , which must be less than the maximum
tolerable delay at the current hop. To support the two classes of delay-tolerant traffic,
we have the following additional constraints,

(additional class-dependent constraints)

Class I =
⎞

N̂ (i, j)
T X (t) = 1

1 − ⎟
1 − P E R(SI N Ri j (t), ξ)

⎠N̂ ( j,d)
hop (t) → P E Re2e

max

; (16)

Class II =
⎭

N̂ (i, j)
T X (t) = ⎟

1 − P E R(SI N Ri j (t), ξ)
⎠−1

. (17)

The first constraint for Class I traffic forces packet m to be transmitted only once,
while the second constraint guarantees the e2e PER of m should be less than a
specified threshold P E Re2e

max. The constraint for Class II traffic guarantees message
m will be transmitted for the average number of times for successful reception at
j . By solving the local optimization problem every time when the inputs change
significantly (not every time when a packet needs to be sent), i is able to select the
optimal next hop j∈ so that message m is routed (using minimum network energy)
to the external-uncertainty region Uid where destination d should be. Obviously
different objective functions (e2e delay, delivery ratio, throughput) could be used
depending on the traffic class and mission QoS requirements. Note that in fact our
solution can be extended to serve two other classes of traffic—(1) delay-sensitive,
loss-tolerant traffic, and (2) delay-sensitive, loss-sensitive traffic—by setting Δt to 0.

To reduce the complexity, we can convert P(i, d, tnow,�tp) into a discrete opti-

mization problem by considering finite sets of P(i, j)
T X and Δt , which can be taken to

be a number of equally spaced values within their respective ranges. The problem
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then can be solved by comparing the e2e energy consumption estimates of different
combination of these discrete values. Assuming that transmission power and time
are discretized into NP and Ntime values, respectively, for the case of WHOI modem
(3 frequencies and 14 combinations of packet types and number of frames [9]), the
processor in node i needs to calculate the objective value 42NP · Ntime · |Ni | times
in each round. The embedded Gumstix motherboard (400 MHz processor and 64
MB RAM) attached to the Micro-Modem is adequate to solve such a problem. To
further reduce the computation, instead of running the solution for every packet, it
will be rerun only at tnow + Δtp for the same class of traffic flow that is sent from
i to the same destination d. Here, Δtp is taken as the minimum of the Δt values
of the packets belonging to the same class of traffic and the same destination, esti-
mated from the previous run. Figure 8 depicts an example of how P(i, d, tnow,�tp)

is solved at i . At time tnow, the problem is solved with j found to be the next hop
to d. The minimum of the Δt values of these packets belonging to the same class of
traffic and the same destination observed before tnow is Δt ′p. Packets for d will then
be forwarded to j with the calculated transmission power at the selected frequency
band until tnow + Δt ′p. Then, the problem is solved again and k is found to be the
next hop. The minimum Δt observed so far is Δt ′′p and, hence, the problem will be
solved at tnow + Δt ′p + Δt ′′p .

Once the optimal frequency band is selected, i needs to notify j to switch to the
selected band. A simple protocol can be used as follows. All AUVs use the same
frequency band as the Common Control Channel (CCC) to tell the receiver which
band is selected. A short packet or preamble with the selected band number is first
sent by the transmitter using the CCC, followed by the data packet using selected
frequency band after the time for the transmitter and receiver to finish frequency
band switching. The receiver will first listen on the CCC, switch to the selected band
embedded in the short control packet or preamble, receive the data packet, and then
send back a short ACK packet to acknowledge the reception. Finally, both sides switch
back to the CCC if the transmission succeeds or the transmission times out. More
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sophisticated frequency-band switching protocols, which are out of the scope of this
chapter, can be designed to improve network performance. We rely on the Medium
Access Control (MAC) scheme with the WHOI modem to send the data. Since the
speed of acoustic wave underwater is very slow when compared with radio waves, the
propagation delay has to be considered in order to avoid packet collisions. However,
it is difficult to estimate the propagation delay since the positions are uncertain. It may
not improve the performance much as the actual propagation delay may be different
from the estimation. Moreover, the inter-vehicle traffic underwater is generally low.
So the problem of packet collisions is not severe and hence we can just use the MAC
scheme provided by the WHOI modem.

6 Performance Evaluation

The communication solution is implemented and tested on our underwater commu-
nication emulator [9] as shown in Fig. 9. This underwater acoustic network emulator
is composed of four WHOI Micro-Modems [13] and a real-time audio processing
card to emulate underwater channel propagation. The multi-input multi-output audio
interface can process real-time signals to adjust the acoustic signal gains, to intro-
duce propagation delay, to mix the interfering signals, and to add ambient/man-made
noise and interference. Due to the limited number of Micro-Modems (four in our
case) and audio processing channels, we can only mix signals from up to three trans-
mitters at the receiver modem (one modem as the receiver and the other three as the
transmitters). Therefore, we calculate, select for transmission, and mix with ambient
noise, only the three most powerful signals the receiver will encounter. We leave the
simulation of more than three simultaneously transmitted signals as a problem for
further research.

We are interested in evaluating the performance of the proposed solution in terms
of e2e energy consumption, e2e reliability (i.e., e2e delivery ratio), average bit rate

Solve P(i,d,tnow , tp),
calculate tp’

time

tnow tnow+ tp’ tnow+ tp’+ tp’’

i

j

k

Solve P(i,d,tnow , tp’),
calculate tp’’

Solve P(i,d,tnow , tp’’),
calculate tp’’’

Fig. 9 Solving P(i, d, tnow,�tp) every Δtp at i
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Table 1 Emulation scenario parameters

Parameter Value

Deployment 3D region 2500 (L)×2500 (W)×1000 (H) m3

Confidence parameter α 0.05
[Pmin, Pmax ] [1, 10] W
Packet types Ξ {0, 2, 3, 5}
Glider horizontal speed 0.3 m/s
Gliding depth range [0, 100] m
Carrier frequencies 10, 15, 25 kHz
Bmax 10 h

of a link, and overhead, under an environment that is described by the Bellhop model
(and the Munk acoustic speed profile in Fig. 4 as input).

Assume that a glider’s drifting (i.e., the relative displacement from the glider’s
trajectory) is a 3D random process {X (t), t ∩ 0} as the following [30]: (1) In the
beginning of the deployment, the drifting is 0, i.e., X (0) = (0, 0, 0); (2) The drifting
has independent increments, in that for all 0 → t1 < t2 < · · · < tn , X (tn)− X (tn−1),
X (tn−1) − X (tn−1), . . . , X (t2) − X (t1), X (t1) are independent; (3) The drifting has
stationary increments, in that the distribution of X (t + s) − X (t) does not depend
on t and is normally distributed with zero mean and covariance matrix sσ2 I3, where
I3 is the 3 × 3 identity matrix, and σ is a scaling factor that decides the magnitude
of drifting. Note that this drifting model is ideal since the drifting in any of the
x, y, z directions is Gaussian. The consideration of realistic drifting pattern is left
as future work. Emulation parameters are listed in Table 1. The radiation pattern of
the BT-25UF transducer (Fig. 10) is used in the emulations. Every 10 s, a packet
is generated in each node. A glider is randomly selected as the collector and half
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1010LT Audio 
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(Dell Optiplex 755)

PC #1
(Dell Optiplex 755)

USB Cables

Bottom Layer:
Micro-Modem

Middle Layer: Modem 
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Micro-Modem

Micro-Modem 
System:

Gumstix and Micro-
Modem

Fig. 10 Underwater communication emulator using WHOI micro-modems
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of the other gliders are randomly selected to forward their packets towards it. For
statistical relevance, emulations are run for 50 rounds and the average is plotted with
95 % confidence interval. Note that it actually is a scenario for deep water. We will
also evaluate the performance in shallow water, where acoustic waves propagate
differently.

We are interested in evaluating the performance of our solution for the two
classes of traffic in Sect. 5.2, using either the BT-25UF transducer or an ideal
omni-directional transducer (with gain equal to 0 dBi). We also want to compare
the performance of our solution, which delays the transmission for optimal topology
configuration, with the solution without delaying the transmission. For convenience,
we denote QUO VADIS for Class I traffic using the BT-25UF transducer, for Class I
traffic using the ideal omni-directional transducer, for Class II traffic using the BT-
25UF transducer, for Class I traffic using the ideal omni-directional transducer, the
solution with no delaying of the transmission (i.e., Δt = 0 for P(i, d, tnow, �tp))
by ‘QUO VADIS I’, ‘QUO VADIS I - OMNI’, ‘QUO VADIS II’, ‘QUO VADIS
II-OMNI’, and ‘QUO VADIS-ND’. We will also compare the performance of our
solution (which is closely related to geographic routing and delay-tolerant network-
ing) with geographic routing solutions—MFR, GRS, CRM, and PTKF—and DTN
solutions—RAPID, Spray and Wait, and MaxProp—as reviewed in Sect. 3. To make
the comparison fair, we use two variant protocols for each of these solutions by
adding the constraints of the two classes of traffic to these solution. For example, we
denote the MFR solution with Class I constraints in Eq. (16) by ‘MFR I’, and the
solution with Class II constraints in Eq. (17) by ‘MFR II’.

The following networking metrics are compared:

• e2e energy consumption: the average energy consumed to route one bit of data
to the destination;

• e2e delivery ratio: the number of data packets received correctly over the number
of data packets sent;

• link bit rate: the average bit rate between a transmission pair;
• overhead: the number of bytes used for position and control to facilitate the

transmission of payload data.

Emulations are done for different settings and the results are plotted with 95 %
confidence interval and discussed in the following sections.

6.1 Comparison with Geographic Routing Protocols

Our proposed solution forwards packets based on the geographic location. To see
how well our solution performs against existing geographic routing protocols, sim-
ulations are run and the results are plotted in Figs. 11 and 12 (as existing research
on underwater geographic routing is still very limited, the solutions we compare
against are taken from those originally designed for terrestrial wireless networks).
As shown in these two figures, we can see that QUO VADIS has better performance
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Fig. 11 Performance comparison for Class I traffic with geographic routing protocols. a Delivery
ratio comparison. b Energy consumption comparison. c Link bit rate comparison
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Fig. 11 (continued)

than QUO VADIS-OMNI and QUO VADIS-ND for the same class of traffic in terms
of these three metrics. By delaying packet transmissions to wait for the optimal net-
work topology, the e2e energy consumption is reduced while the e2e delivery ratio
and link bit rate increase (e.g., with 5 gliders, the energy consumption for QUO
VADIS I is around 30 % of that for QUO VADIS-ND). By exploiting the frequency-
dependent radiation pattern of the transducer, received signal power may obtained a
gain of up to 20 dB, which we observed in the simulations. Hence QUO VADIS using
the BT-25UF transducer has better performance than that using the omni-directional
transducer. Due to the QoS requirements, retransmissions are needed to recover link
errors, resulting in higher e2e delivery ration for Class II traffic than for Class I traffic.
On the other hand, this leads to more energy consumption.

Different versions of our QUO VADIS solutions also perform better than geo-
graphic routing protocols GRS, MFR, CRM, and PKTF. This is because that the
uncertainty in location leads to errors in route selection, packet transmissions, and
transmission power estimates. Also these geographic routing protocols do not con-
sider the propagation delay underwater, which results in degraded communication
performance. Interesting enough, we can see that among these geographic routing
protocols, PKTF offers the best performance. This is because it jointly considers the
transmission power and routing to minimize the e2e energy consumption. Therefore
it performs better than the other geographic routing protocol, which only consider the
distance or angle metrics for routing (not closely related to network performance).
GRS gives the worst performance since it generally needs to forward the packet to
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Fig. 12 Performance comparison for Class II traffic with geographic routing protocols. a Delivery
ratio comparison. b Energy consumption comparison. c Link bit rate comparison
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Fig. 12 (continued)

the node that is far from the transmitter, which introduces bad link performance. Sim-
ilarly, CRM performs better than MFR as the CRM has less probability to forward
packets to node that is far away than MFR does.

6.2 Comparison with DTN Solutions

Similar to the comparison against the geographic routing solutions, we compare
the performance of QUO VADIS against the DTN solutions—RAPID, MaxProp
and Spray and Wait. As shown in Figs. 13 and 14, QUO VADIS gives improved
performance over RAPID, MaxProp and Spray and Wait. That is mainly due to that
these DTN solutions transfer packets once the neighbors are in the transmission range.
Such schemes may be good for scenarios where the connectivity is intermittent.
However, the performance may not be optimal since this may not be the time to
achieve the best link performance. In contrast, QUO VADIS predicts and waits for the
best network configuration, where nodes move closer for the best communications.
So the e2e delivery ratio and link bit rate of QUO VADIS is the highest while its energy
consumption is minimal. Note that among these compared DTN solutions, RAPID
performs the best. This is because RAPID prioritizes old packets so they won’t be
dropped. MaxProp gives priority to new packets; older, undelivered packets will be
dropped in the middle. Spray and Wait works in a similar way, which does not give
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Fig. 13 Performance comparison for Class I traffic with DTN protocols. a Delivery ratio compar-
ison. b Energy consumption comparison. c Link bit rate comparison
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Fig. 13 (continued)

priority to older packets. On the other hand, Spray and Wait is slightly better than
MaxProp. This is because in our scenario, the network connectivity is not disrupt.
The way that MaxProp routes (based on the e2e delivery ratio estimation) will be very
different from that Spray and Wait does (i.e., just transmits the packet to a neighbor
then lets the neighbor continue to forward it). Moreover, MaxProp still needs to pay
for the overhead to obtain the global e2e delivery ratio information.

6.3 Overhead Comparison

We plot and compare the overheads (per node) of these protocols in Fig. 15. Note
that as QUO VADIS, QUO VADIS-ND, and QUO VADIS-OMNI work almost the
same way, i.e., the uncertainty region information is broadcast periodically (here
the period is taken to be 60 s), their overheads are the same and thus we use QUO
VADIS in the figure to represent these variant versions. Similarly, nodes running
the geographic routing protocols GRS, MFR and CRM only need to periodically
broadcast the position information so their overhead is basically the same. Hence we
use GRS/MFR/CRM to represent them.

Surprisingly, even though QUO VADIS achieves the best network performance,
its overhead is not the biggest. The protocols with the larger overhead are RAPID and
MaxProp. In order to work, RAPID needs the following control information: average
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Fig. 14 Performance comparison for Class II traffic with DTN protocols. a Delivery ratio compar-
ison. b Energy consumption comparison. c Link bit rate comparison
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Fig. 14 (continued)
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Fig. 16 Shallow water: performance comparison for Class I traffic. a Delivery ratio comparison.
b Energy consumption comparison. c Link bit rate comparison
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Fig. 16 (continued)

size of past transfer opportunities, expected meeting times with nodes, list of packets
delivered since last exchange, the updated delivery delay estimate based on current
buffer state, and information about other packets if modified since last exchange with
the peer, which takes a large number of bytes. MaxProp needs to exchange a list of the
probabilities of meeting every other node on each contact, which is basically global
information. It also has the neighbor discovery overhead. Compared to RAPID and
MaxProp, QUO VADIS only needs to exchange the external uncertainty information
of itself and the destination node, which is obviously less. On the other hand, PKTF
needs a probe message that has five data fields. Only the nodes in the selected path
are required to respond with a probe—whether it is sent for the forwarding or reverse
direction. The Spray and Wait protocol reduces transmission overhead by spreading
only a few number of data packets to the neighbors. The source node then stops
forwarding and lets each node carrying a copy perform direct transmission. In our
emulation, we select the number to be one to make the comparison fair and hence
the overhead is small. Lastly, for the other geographic routing protocols GRS, MFR,
and CRM, the nodes just need to know the geographic locations of the neighbors
and the destination. Therefore the overhead required is the least. Note that here it is
not necessary to differentiate the two classes of traffic since the overhead difference
is small.
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Fig. 17 Shallow water: performance comparison for Class II traffic. a Delivery ratio comparison.
b Energy consumption comparison. c Link bit rate comparison
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Fig. 17 (continued)

6.4 Performance in Shallow Water

So far the results are obtained using the setting in Table 1, which is for the deep water.
We change the network scenario to the shallow water scenario by setting the depth
of the 3D region to 200 m. Note that generally there is no definite depth value for
shallow water as the sound propagation depends on the corresponding underwater
environment. Therefore in some references (e.g., [1]), the shallow water is considered
to be less than 100 m deep, while for some other acoustic researchers this depth can
be up to 500 m [20]. Here we use 200 m, which is used by National Oceanic and
Atmospheric Administration (NOAA) as the depth for the first layer (and this depth is
used in quite a few cases in the well-known set of benchmark shallow water test cases
presented in the Shallow Water Acoustic Modeling Workshop 1999 (SWAM’99)
[31]). In this shallow water scenario, the path loss estimated by the Urick’s model
is very different from that estimated by the Bellhop model. We had anticipated the
performance will degrade because of this mismatch. Surprising enough, as shown
in Figs. 16 and 17, we find the performance (in terms of e2e delivery ratio, energy
consumption, and link bit rate) in the shallow water is actually better. A more careful
analysis reveals the reason—the existence of the surface duct in the shallow water.
Surface duct is basically a zone below the sea surface where sound rays are refracted
toward the surface and then reflected. The rays alternately are refracted and reflected
along the duct out to relatively long distances from the sound source. Hence the
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Fig. 18 Uncertainty update interval: performance comparison for Class I traffic. a Delivery ratio
comparison. b Energy consumption comparison. c Link bit rate comparison
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Fig. 18 (continued)

acoustic waves are relatively concentrated in the surface duct, leading to less path
loss. This consequently leads to improved network performance.

6.5 Performance Using Different Uncertainty Update Intervals

So far the broadcast interval of uncertainty region is fixed to 60 s. Our last interest
is to evaluate the performance of the QUO VADIS variants when different broadcast
intervals are used. Therefore we re-run the emulations for two more cases: (i) half of
interval (i.e., 30 s); and (ii) double of interval (i.e., 120 s). From Figs. 18 and 19, we
can see that the performance of the QUO VADIS variants becomes worse when the
update interval is doubled. This is because when the interval is doubled, the position
uncertainty information becomes less accurate. This leads to larger error in neighbor
selection for packet forwarding and in the estimation of transmission power. On the
other hand, halving the interval leads to performance improvement as the uncertainty
information is updated in a more timely manner (therefore routing error becomes
smaller and transmission power is better estimated). However, this obviously leads to
the increase in overhead. Therefore the tradeoff between overhead and metrics such as
delivery ratio, energy consumption, and link bit rate should be carefully considered
for different applications. Here we use “QUO VADIS-Half,” “QUO VADIS,” and
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Fig. 19 Uncertainty update interval: performance comparison for Class II traffic. a Delivery ratio
comparison. b Energy consumption comparison. c Link bit rate comparison
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Fig. 19 (continued)

“QUO VADIS-Twice” to denote the cases with update interval of 30, 60, and 120 s,
respectively.

To sum up, our proposed framework QUO VADIS improves the network perfor-
mance for delay-tolerant applications in terms of e2e energy consumption, delivery
ratio, and link bit rate by waiting for a ‘favorable’ topology configuration and by
exploiting the gains of directional transducers. Through emulations for different
setups, we demonstrated that they can offer better performance than the well-known
geographic routing and DTN protocols when serving two classes of delay-tolerant
traffic.

7 Conclusion

We proposed QUO VADIS, a QoS-aware underwater optimization framework for
inter-vehicle communication using acoustic directional transducers. Based on the
trajectory and position uncertainties of the AUVs, an AUV predicts a favorable net-
work topology with relatively short links in the future and postpones transmission in
favor of a lower transmission energy and a higher data rate. Communication energy
consumption is further reduced by exploiting the frequency-dependent radiation pat-
tern of underwater acoustic transducers. The proposed solution is implemented and
tested in our underwater communication emulator, showing improvement over some
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well-known geographic routing protocols and DTN protocols in terms of e2e energy
consumption, reliability, and link bit rate.
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Part VII
Multimedia and Body Sensor Networks



Chapter 14
Low-Complexity Video Streaming for Wireless
Multimedia Sensor Networks

Scott Pudlewski and Tommaso Melodia

Abstract In recent years, there has been intense research and considerable progress
in solving numerous wireless sensor networking challenges. However, the key prob-
lem of enabling real-time quality-aware multimedia transmission over wireless sen-
sor networks is largely unexplored. The large amount of data generated by most
multimedia applications (compared to traditional scalar sensor networks), along with
the higher QoS requirements make it difficult to meet the low energy use require-
ments of practical sensor networks. We explore the use of compressed sensing (aka
“compressive sampling”) to reduce the energy required to encode and transmit high
quality video in a severely resource-constrained environment. In this chapter, we
will examine some of the major challenges of wireless multimedia sensor network
(WMSN) implementation. Specifically, we examine what it would take to develop a
WMSN that has similar performance (and restrictions) as a traditional scalar wire-
less sensor network (WSN). We then examine how we can use the new paradigm of
compressed sensing (CS) to solve many of these problems.

1 Introduction

Advances in sensing, computation, storage, and wireless networking are driving
an increasing interest in multimedia [1–4] and participatory [5, 6] sensing appli-
cations. While these applications show high promise, they require wirelessly net-
worked streaming of video originating from devices that are constrained in terms of
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instantaneous power, energy storage, memory, and computational capabilities. How-
ever, state-of-the-art technology, for the most part based on streaming predictively
encoded video (e.g., MPEG-4 Part 2, H.264/AVC [7–9], H.264/SVC [10]) through
a layered wireless communication protocol stack, is not appropriate for wireless
multimedia sensor networks (WMSNs) because of the following limitations:

• Predictive Video Encoding is Computationally Intensive. State-of-the-art pre-
dictive encoding requires calculating motion vectors, which is a computationally
intensive operation, requires significant power consumption and complexity at the
sensor node. Ideally, a WMSN system would transfer most of the complexity to
the multimedia sink, which is in general not a resource-constrained system.

• Predictive Encoding of Video Increases Impact of Channel Errors. In existing
layered protocol stacks (e.g., IEEE 802.11 and 802.15.4), frames are split into
multiple packets. Any errors in even one of these packets, after a cyclic redundancy
check, can cause visible distortion in a video frame. Because of the predictive
nature of modern video encoders, distortion can then propagate to tens or even
hundreds of frames that are dependent on the distorted frame. Structure in video
representation, which plays a fundamental role in our ability to compress video,
is detrimental when it comes to wireless video transmission with lossy links.

Both of these limitations lead to an increase in complexity at the sensor node. In
the first case, the computational complexity of traditional video encoders immedi-
ately restricts the type of processors that can be used. There are many commercially
available processors that can encode video, but they require much more power, and
are much more expensive, than what is appropriate for a WSN.

To compensate for noisy channels, increasing the received signal-to-noise ratio
(SNR) is often necessary to reduce the number of bit errors to an acceptable level.
Since power is limited in real systems, other methods have been developed to decrease
the BER. Traditionally, forward error correction (FEC) methods (i.e., Reed-Solomon
[11] codes or RCPC [12] codes) are employed to reduce the BER for a fixed SNR.
However, FEC will increase the size of each encoded packet, which could result in
a net increase in total energy required for transmission. In addition, this will again
lead to an increase in complexity.

Compressed sensing (CS) [13–19] is a promising technique for dealing with these
limitations. Compressed sensing (aka “compressive sampling”) is a new paradigm
that allows the faithful recovery of signals from M << N measurements where N is
the number of samples required for the Nyquist sampling. Since these M measure-
ments are created by taking M linear combinations of the N pixels, CS can offer an
alternative to traditional video encoders by enabling imaging systems that sense and
compress data simultaneously at very low computational complexity for the encoder
[20, 21].

The remainder of this chapter is structured as follows. In Sect. 2 we highlight
some of the challenges in developing a video transmissions system for wireless
multimedia sensor networks. We introduce compressed sensing in Sect. 3, we intro-
duce compressive imaging in Sect. 4, and we introduce CS-based video encoding in
Sect. 5. CS-based error correction ia introduced in Sect. 6. The energy-rate-distortion
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analysis of the CS-based video encoder is presented in Sect. 7, and rate control of
the CS video is presented in Sect. 8. Finally, future work is presented in Sect. 9 and
in Sect. 10 we draw the main conclusions.

2 Challenges

Multimedia networking applications are normally characterized by high complex-
ity and high data rate. However, sensor nodes are ideally low-cost, low-complexity
devices that have a long network lifetime, which generally leads to a lower data
rate than other types of networks. For a practical WMSN implementation, a video
encoding system must be designed that can fit within these constraints. Below, we
examine some of the key constraints.

2.1 Complexity Constraints

While high-end mobile devices have recently become commercially available (i.e.,
smartphones, tablets), WMSN sensor nodes should ideally be simple, low-complexity
devices. For example, imote2 nodes [22], earlier generation imote nodes, or other
WSN platforms are much cheaper and have a much longer battery life than even
low-end smartphones. However, this increase in battery life comes at the cost of a
decrease in computational complexity. Many such devices only contain 8- or 16-bit
processors with very limited RAM memory, and are unable to implement complex
video encoding algorithms.

Some attempts have been made to implement video on low-complexity devices
using traditional encoding methods. The best-known example of this is motion JPEG
[23] (MJPEG), where a video is encoded as a series of JPEG encoded images. While
MJPEG has become popular in devices such as digital cameras and cellphones, it
is clearly not an ideal solution. For example, MJPEG does not take advantage of
temporal correlation in a video sequence. In addition, JPEG image encoding still
requires the source node to capture and temporarily store an entire raw video frame
and perform a DCT [24] transform on each block of the image. While far less complex
than motion vector calculations, these are still not insignificant operations. To address
this completely, an entirely new system is required that encodes video at very low
computational complexity, yet still takes advantage of temporal correlation within
the video stream. Below, we demonstrate that CS can be used to design such a system.
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2.2 Channel Constraints

A major challenge in WMSNs is compensating for lossy channels. Because WSN
nodes transmit at lower power than other (nonenergy aware) types of wireless nodes,
restricting ourselves to the WSN device will result in a lower SNR channel, resulting
in more bit errors and packet losses. To achieve our target of high quality received
video, rather than attempting to reduce or eliminate bit errors, we need a low-
complexity technique that will compensate for the inevitable errors in the received
video packets. We will discuss two aspects of wireless transmission that complicate
the transmission of video, namely bit errors and multipath fading.

Bit Errors: It is well known that predictively encoded video is very susceptible
to bit errors. It is also well known that with variable-length coding (i.e., Huffman
coding [25]) a single bit error can cause the loss of entire blocks of data. In data
networks, bit errors are usually dealt with using some form or ARQ or FEC. Both of
these methods generally have an all-or-nothing approach to error correction, in that
a received packet is either entirely correct or is discarded and must be retransmitted.
However, even though video is less tolerant to bit errors than images, it is much more
tolerant of bit errors than data networks [26, 27]. While the quality does decrease
sharply when the BER increases beyond some threshold, for low levels of BER there
is no measurable decrease in video quality.

This leads to an obvious tradeoff between the quality of the received video and
the techniques used to reduce the BER. As is shown in Sect. 7, there is little or no
effect in the perceivable quality in the received video for BER rates of up to 10−4

for H.264 or for 10−3 for CVS. One advantage of CS-encoded images and video is
that, because of independence between samples within an image, many more errors
can be tolerated before significant quality degradation is noted in the received video.

Important for WMSN applications, this shows us that, while channel conditions
are very poor when using WNS nodes, in many cases we can simply ignore these
errors. When we look at a system implementation, this intuitively tells us that even
with low quality trancievers transmitting at low power such as a WSN system, we
can still achieve high quality video by (i) not using a packet-level error detection
scheme such as CRC, and (ii) assuring that the BER is “low enough.” Below, we
demonstrate that a CS system can potentially accomplish this.

Fading: While bit errors alone can cause major problems for video transmission
if not accounted for, time correlation of those errors (i.e., fading) can also cause
video quality to decrease significantly. One of the major problems associated with
a fading channel is that, with correlation, the bit errors will tend to be “grouped
together” within a single packet, rather than distributed randomly throughout the
entire transmission. This can cause problems when using FEC to correct errors.
When bit errors are grouped together within a single packet, there may be too many
errors in that one packet for the FEC code to correct, leading to the incorrect decoding
(and subsequent loss) of that packet.

A discussion of all of the effects of fading on wireless video communication
could be an entire chapter (or book) by itself, and is beyond the scope of this chapter.
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We bring it up here to emphasize that, while time correlation of errors causes prob-
lems for traditional video streaming systems, it has virtually no impact on a system
that streams CS-encoded video. If errored video samples could be dropped without
hindering the decoding of the correctly received samples, the “error grouping” effect
of a fading channel would have no negative impact on received video performance,
without the need for interleaving video samples. As we will demonstrate, CS can
accomplish this very easily.

2.3 Data Rate Constraints

Unlike other types of sensor network traffic, multimedia traffic, specifically video
traffic, offers some severe challenges. Protocols developed for sensor networks (i.e.,
Zigbee [28] or Bluetooth [29]) are designed for reduced power consumption. Gen-
erally, this is accomplished using techniques to power down the radio when it is not
in use and reducing the transmit power. However, both of these approaches will lead
to a significant decrease in the maximum data rate. For multimedia applications, this
will require much more aggressive compression techniques, which are more complex
and therefore require more power.

While there exist standardized medium access control (MAC) protocols that are
able to provide a high enough data rate to wirelessly transmit multimedia content
(e.g., 802.11 [30], WiMAX [31]), and there exist standardized protocols that are
able to reduce the power consumption at each node to acceptable levels, achieving
both at the same time is much more difficult. The standard power saving method
in sensor network MAC protocols is for nodes to enter a sleep mode when they are
not transmitting or receiving data. However, these sleep cycles reduce the maximum
data rate, which is unacceptable when multimedia traffic is being transmitted.

CS-based systems cannot solve this problem directly. Indeed, we will show that
from a purely rate-distortion perspective, H.264 performs far better than any CS
system. However, as we will show later, rate-distortion performance itself does not
give the entire story in resource-constrained systems. It is important to examine
what causes this limit in data rate. For all MAC protocols, the protocol specifications
determine some modulation and channel coding combination that will achieve a
given BER at the receiver. However, we have shown above that CS-based systems
are able to tolerate a relatively high BER. This means that we could potentially reduce
the channel coding rate, increase the number of bits per symbol in the modulation
technique or both to result in a higher data rate at the cost of a higher (but still
tolerable) BER.
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2.4 Cost Constraints

Finally, to be feasible in a large scale, WMSN nodes should be as inexpensive as
possible. While a cost analysis is beyond the scope of this chapter, we mention this
simply because, while more expensive processors and bigger batteries may solve
many of the challenges posed above, this is not a realistic solution for WMSNs
[1, 3]. As we have been stressing throughout this work, we would like to keep the
cost of the WMSN node to around the cost of a comparable scalar WSN node not
taking the actual camera into account, around $50 USD.

3 Compressed Sensing Basics

In this section, we introduce the basic concepts of compressed sensing as applied
to image compression. We consider an image signal represented through a vector
x ≤ R

N , where N is the number of pixels in the image and each element of the
vector xi represents the i th pixel in the raster scan of the image. We assume that
there exists an invertible transform matrix Ψ ≤ R

N×N such that

x = Ψ s (1)

where s is a K -sparse vector, i.e., ‖s‖0 = K with K < N , and where ‖·‖p represents
p-norm. This means that the image has a sparse representation in some transformed
domain, e.g., wavelet [32]. The signal is measured by taking M < N samples of the
element vectors through a linear measurement operator Φ, defined by

y = Φx = ΦΨ s = Ψ̃ s. (2)

We would like to recover x from measurements in y. However, since M < N the
system is underdetermined. Hence, given a solution s0 to (2), any vector s∞ such that
s∞ = s0 + n, and n ≤ N (Ψ̃ ) (where N (Ψ̃ ) represents the null space of Ψ̃ ), is also
a solution to (2). However, it was proven in [15] that if the measurement matrix Φ

is sufficiently incoherent with respect to the sparsifying matrix Ψ , and K is smaller
than a given threshold (i.e., the sparse representation s of the original signal x is
“sparse enough”), then the original s can be recovered by solving the optimization
problem

minimize
s

‖s‖0

subject to y = Ψ̃ s
(3)

which finds the sparsest solution that satisfies (2), i.e., the sparsest solution that
“matches” the measurements in y.

Unfortunately, finding the sparsest vector ŝ using (3) is in general NP-hard
[33]. However, for matrices Ψ̃ with sufficiently incoherent columns, whenever this
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problem has a sufficiently sparse solution, the solution is unique, and it is equal to
the solution of the following problem:

minimize
s

‖s‖1

subject to
⎡⎡⎡y − Ψ̃ s

⎡⎡⎡2

2
< ψ

(4)

where ψ is a small tolerance.
Formally, any sampling matrix Φ must satisfy the uniform uncertainty principle

(UUP) [15, 34]. The UUP formally states that if enough samples are taken, such that

M ∗ KlogN , (5)

then for any K -sparse vector s, the energy of the measurements Φs will be compa-
rable to the energy of s itself:

1

2

M

N
· ‖s‖2

2 ∼ ‖Φs‖2
2 ∼ 3

2

M

N
· ‖s‖2

2. (6)

To intuitively see the association between UUP and sparse reconstruction [34], sup-
pose that (6) holds for sets of size 2 K. If our K sparse vector y is measured as
y = Φs0, then there cannot be any other K -sparse or sparser vector ŝ∈ ≥= s0 that
leads to the same measurements. If there were such a vector, then the difference
h = ŝ0 − ŝ∈ would be 2K -sparse and have Φh = 0. However, this is not compatible
with (6).

Note that (4) is a convex optimization problem [35]. The reconstruction com-
plexity equals O(M2 N 3/2) if the problem is solved using interior point methods
[36]. Although more efficient reconstruction techniques exist (for example, those
mentioned in Sect. 9.1), we only discuss specific reconstruction algorithms when
necessary to understand the specific imaging or video system. Otherwise, the dis-
cussions presented here are independent of the specific reconstruction algorithm.

4 Compressive Imaging

The CS-based video compression schemes are similar to many traditional video
encoders that use a combination of image encoding schemes and motion compression
schemes. Because of this, before discussing CS video, it is important to understand
CS-based imaging and how CS-encoded images behave in a real system.

4.1 Compressive Imaging Background

Since most images can be represented in a sparse domain (i.e., wavelet or DCT), they
can be sampled and compressed using (2) and recovered using (4). In this section



536 S. Pudlewski and T. Melodia

we will examine some of the properties of images that have been compressed using
this CS system, and how these properties can help address the challenges described
in Sect. 2.

Effects of Approximate Sparsity: In Sect. 3, we stated that any K -sparse signal
sampled using (2) that satisfies (5) can be recovered using (4). However, wavelet (or
DCT) transformed images are only approximately sparse. For example, Fig. 1 shows
the DCT coefficients of the Lena image [37] sorted in increasing order. While the
image is clearly compressible, none of the DCT coefficients are exactly 0.

When we use (4) to reconstruct Lena with M < N , the reconstruction process
will force the smaller coefficients to be exactly 0 [16], which will cause distortion in
the reconstructed image. We can see how this affects the quality of the reconstructed
image by measuring the effect of this sparse approximation on DCT transformed
images. The results of this test are shown in Fig. 2. This figure was created by cal-
culating the DCT transform of the Lena image, forcing the smallest coefficients to
zero and calculating the inverse transform of the result. As the number of coefficients
forced to 0 increases, the quality of the reconstructed image decreases.

In practice, this means that, unlike the sparse case described above, “exact” recov-
ery is not possible. Instead, as more samples are used in the reconstruction (i.e., as
M approaches N ), the reconstructed image quality increases. This is demonstrated
in Fig. 3, which shows the mean of the received quality over all of the images in
the USC SIPI database [37]. These tests were done using the wavelet transform
as the sparsifying transform and reconstructed using the gradient projection for
sparse reconstruction GPSR [38] algorithm. As M is increased and more samples
are used in the image reconstruction, the SSIM of the image approaches 1. It is also
worth while to note that, rather than a “minimum” number of samples required to
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correctly reconstruct the image, using fewer samples simply results in a lower quality
reconstructed image.

Effects of Quantization: In general, CS theory assumes that the signal is com-
pressed and recovered in the real domain. However, we are usually interested in
transmitting a quantized version of the signal. Since the user chooses the value of
M , which is arbitrary within a certain range, there is a tradeoff between transmitting
fewer samples encoded with more bits each or transmitting more samples encoded
with fewer bits. This is examined empirically (again over the images in the SIPI
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database), and is presented in Fig. 4. All of the original images are gray-scale images
quantized at 8 bits per pixel. It is interesting to note that the highest quality recon-
struction occurs when the number of samples per symbol is lower than the number
of samples per pixel in the original image. This means that there is less precision in
the samples than in the original pixels, yet we are still able to reconstruct the image
with high quality.

This result is in agreement with [16], which shows that CS reconstruction is
generally very resistant to low power noise, such as quantization noise. Suppose we
have a set of measurement samples y# = Φx + n corrupted by noise, where n is a
deterministic noise term, and is bounded by ‖n‖2 < ψ. As long as Φ obeys (6), then
the value of x# reconstructed using (4) from y# will be within

‖x# − x‖ ∼ C · ψ, (7)

where C is a “well behaved” constant.1

While the full proof of this is beyond the scope of this chapter, it is easy to see
why Φx# will be within 2ψ of Φx using the triangle inequality. Specifically,

‖Φx# − Φx‖2 ∼ ‖Φx# − y‖2 + ‖Φx − y‖2 ∼ 2ψ. (8)

This can be seen in Fig. 5, which represents a system that samples a variable x ≤ R

2

with a sampling matrix A ≤ R

1×2. The line represents y = Φx, while the diamond
represents the λ1 norm ball. The two dashed lines represent the maximum variation
in the samples when corrupted by additive noise of magnitude ψ. The point where

1 For practical systems, C is a small constant between 5 and 10 [16].
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∼2ε

y = Ax

Fig. 5 Geometric interpretation of λ1 norm minimization

the smallest norm ball intersects the line is the sparsest solution, and is therefore
the solution to (4). While this is a simplistic example, it is easy to see that, at least
in this case, the error in the reconstructed sample will result in a small variation in
the magnitude of the reconstructed signal. In the system represented in Fig. 5, the
magnitude of ψ would have to be about 1

3 of the signal power before an incorrect
“corner” of the norm ball is selected.

Effects of Bit Errors: Though we accurately model the video distortion when
there are no errors [27, 39], any bit errors may add further distortion to the received
image. As shown in Fig. 6, the video does not have to be received perfectly for it
to be acceptable at the receiver. Figure 6 shows the reconstruction quality of images
transmitted through a binary symmetric channel. At low BER rates, there is almost no
effect in the received SSIM. As the BER increases above some threshold, however,
the video quality drops off significantly.

Sampling Complexity: Traditional image compression schemes generally par-
tition an image into smaller components, and compress each of these components
individually. An example of this can be seen in the popular JPEG standard. A JPEG
encoder first divides an image into 8×8 pixel blocks. Then each of these 64 pixel
groups are transformed using a DCT transform. JPEG2000 [40] is based on a 2D
wavelet transform. However, the actual implementation of that 2D wavelet transform
is based on a series of 1D wavelet transforms [41] of each column and row sequen-
tially. In both of encoders, the processing is limited to a subset of the image pixels
at any given time.
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Methods of dividing imaging problems into subproblems are necessary because
of the computational complexity required to encode realistic sized images with non-
linear transform operations. Like JPEG and JPEG2000, a CS imaging system must
manage this complexity as part of the development of any implementable system.
For example, a direct implementation of (2) requires the creation and storage of
Φ ≤ R

M×N . Assume we are dealing with a 512×512 pixel image, and that M
is set at N

5 (representing 80 % compression). This will result in a Φ matrix that is
52,429 × 262,144. A direct implementation would require matrix multiplication
with a matrix of over 13 billion elements, which is clearly not practical.

This can be avoided by sampling using a scrambled block Hadamard matrix [42],
defined as

Y = H32 · X, (9)

where Y represents image samples (measurements), H32 is the 32 × 32 Hadamard
matrix and X the matrix of the image pixels. The matrix X has been randomly
reordered and shaped into a 32 × N

32 matrix. Then, M samples are randomly chosen
from Y and transmitted to the receiver. The receiver then uses the M samples along
with the randomization patterns for both randomizing the pixels into x and choosing
the samples out of Y (both of which can be decided before network setup). The
result is a sampling system that is much lower complexity, yet is equivalent to the
performance of (2).
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4.2 Single Pixel Camera

A major step in making the theoretical CS imaging applications more practical was
the development of the single pixel camera [43]. The single pixel camera is able to
simultaneously measure and compress images in hardware with very low complexity.
The camera uses a Texas Instruments digital mircomirror device (DMD) [44] to
reflect an image onto a single photodiode. The DMD is able to individually change
the angle of each mirror from a bank of 1027×768 mirrors to either +12 or −12≈
from horizontal. Using a biconvex lens, this allows the system to aim a subset of
the mirrors at the photodiode. The output of this photodiode is then amplified and
quantized to produce a single CS sample. This process is then repeated to produce
all M samples. Each of these samples is then passed through an analog-to-digital
converter, and either transmitted or stored in memory.

For WMSN applications, the major advantage of this system is the simplicity
compared to other image sampling methods. The entire camera-encoder system con-
sists of a single DMD and an analog-to- digital converter. All of the signal processing
(i.e., the linear combinations of pixels) is done implicitly when the intensity at the
photo-detector is measured. Another less obvious advantage is that, since only a
single photodiode is used, a infrared imaging system can be built without increasing
the cost significantly over the visual light system.

4.3 Wireless Transmission of CS-Encoded Images

There are two very important advantages that CS imaging has over JPEG imaging.
First, CS imaging can compress an image with far lower computational complexity.
While it is difficult to get an accurate quantitative measurement between the two,
note that, neglecting the DMD, the entire CS imaging described in Sect. 4.2 is lower
by a factor of M

N than the complexity required simply to capture the image in a
JPEG-based device.

CS-based encoders also perform comparatively well in a noisy channel. CS-
encoded samples constitute a random, incoherent combination of the original image
pixels. This means that, unlike traditional wireless imaging systems, no individual
sample is more important for image reconstruction than any other sample. Instead,
the number of correctly received samples is the main factor in determining the quality
of the received image. This naturally leads to scheme where, rather than trying to
correct bit errors, we can instead detect errors and simply drop samples that con-
tain errors. This is demonstrated in Fig. 7, where a set of images [37] are encoded
using CS and transmitted over a lossy channel. For the purpose of demonstration,
we assume that there is a genie at the receiver that is able to perfectly detect when a
sample is received incorrectly. We then show the image reconstruction quality with
and without those samples. Clearly, based on Fig. 7, simply removing those samples
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results in a far better reconstruction quality that if those incorrect samples are used
in the reconstruction process.

While it is easier to deal with errors in a CS system, the errors that are used in
the reconstruction process do not have as much impact on the reconstructed image
quality as when using a JPEG system. A small amount of random channel errors does
not affect the perceptual quality of the received image at all, since, for moderate bit
error rates, the greater sparsity of the “correct” image will offset the error caused
by the incorrect bit. This is demonstrated in Fig. 7. For any BER lower than 10−4,
there is no noticeable drop in the image quality. For BER levels of 10−3 or lower,
the SSIM is above 0.8, which is an indicator of good image quality. If the BER is
kept below 10−5, there is virtually no distortion in the received image.

This has important consequences and provides a strong motivation for studying
compressive wireless video streaming in WMSNs. This inherent resiliency of com-
pressed sensing to random channel bit errors is even more noticeable when compared
directly to JPEG. Figure 8 shows the average SSIM of the SIPI images [37] trans-
mitted through a binary symmetric channel with varying BER. These values were
calculated by encoding a set of images using both encoders, transmitting those files
through a simulated channel, and reconstructing the image including the bit errors.

The quality of CS-encoded images degrades gracefully as the BER increases, and
is still good for BERs as high as 10−3. Instead, JPEG-encoded images very quickly
deteriorate. This is visually emphasized in Fig. 9, which shows an image taken at the
University at Buffalo encoded with CS (above) and JPEG (below) and transmitted
with bit error rates of 10−5, 10−4, and 10−3. The difference is stunning—the effect
of channel errors is disruptive for structured data like JPEG-encoded images. The
reader will easily realize that the effect of channel errors on predictively encoded
video is even more disruptive, since even low bit error rates can lead to the loss of
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I frames, causing the decoder to be unable to decode long sequences of frames that
depend on the I frame.

5 Video Encoding with Compressed Sensing

We saw in the previous section that CS-encoded images are more resilient to channel
errors than JPEG encoded images. Based on this, the most straightforward video
encoding scheme is to take each frame of a video individually, treat it as an image
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and use CS image encoding schemes. Although this approach seems very simplistic,
it is conceptually analogous to the very common MJPEG.

While such a system would indeed have low complexity at the sensor nodes, and
the error resilience of CS-encoded images is much higher, (taking care of most of
our challenges), such a scheme ignores the temporal correlation between consecutive
frames. We know that because of complexity, motion vectors used in traditional
schemes are not appropriate for these applications. There are however methods for
taking advantage of this correlation without using motion vectors. Below, we describe
three computationally “easy” techniques based on state-of-the-art CS video encoders.

5.1 Exploiting Temporal Correlation via Difference Vectors

To take advantage of temporal correlation, we consider the algebraic difference
between the CS samples, as in [39]. The motivation behind this is that a CS-encoded
image is simply a series of linear combinations of subsets of the pixels of an image,
which is represented by the multiplication by the sampling matrix Φ. Now assume
that we have two frames xi and xi+1. For most CS applications, it is assumed that the
transmitting sensor node does not have access to the raw image data; in this case xi
and xi+1. Instead, the sensor node only has access to yi = Φxi and yi+1 = Φxi+1.
However, as long as Φ is kept constant, it is easy to see that if we calculate a difference
vector dv as

dvi+1 = yi+1 − yi, (10)
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that this is equivalent to
dvi+1 = Φxi+1 − Φxi

= Φ(xi+1 − xi),
(11)

which is the same as if we had sampled the difference between the two frames
explicitly.

Then, each dvi+1 is again compressively sampled and transmitted. If the image
being encoded xi+1 and the reference image xi are very similar (i.e., have a very
high correlation coefficient), then dvi+1 will be sparse (in the domain of compressed
samples) and have less variance than either of the original images. The main com-
pression of the difference frames comes from the above properties and is exploited
in two ways. First, because of the sparsity in the difference frame, it can be further
compressed using CS. The number of samples needed is based on the sparsity as
in the CS sampling of the initial frame. Second, the lower variance allows us to
use fewer quantization levels to accurately represent the information, and therefore
fewer bits per sample. A block diagram representing this encoding scheme is shown
in Fig. 10.

Formally, dv is compressed using (2), quantized and transmitted. The number
of samples m needed to represent dv after it is compressed is proportional to the
sparsity K of dv and defined as m √ K log(N ) where N is the length of dv. For
videos with very high temporal correlation such as security videos, the dv will also
have very low variance, allowing for a lower quantization rate Q. In the simulations
reported in this paper, we used Q = 3.

In terms of compression ratio, the effectiveness of this scheme depends on the
temporal correlation between frames of the video. The compression of each of these
schemes (at the same received video quality) was compared to basic CS compression
(i.e., using I frames only) for three videos. The videos chosen were Foreman (repre-
senting high motion) and two security videos; one monitoring a walkway with mod-
erate traffic (moderate motion) and one monitoring a walkway with only light traffic
(low motion), and the percentage improvement, calculated as Size without P frames

Size with P frames ×100
is presented in Table 1. While the compression of the high motion video can be
increased by 172 %, the moderate and low motion security videos (which represent
typical application scenarios for our encoder) show far more improvement by using
the P frames.

5.1.1 Video Decoding

While the majority of the computational complexity of the system lies in decoding
the video, a description of this system is relatively straightforward. A block dia-

Table 1 Compression gain
using P frames

Amount of motion low (%) medium (%) high (%)

Gain 556 455 172
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gram representing the CVS video decoder is shown in Fig. 11. If the received frame
is an I frame, then the decoder simply solves (4) based on the received samples.
These samples are also stored for use in decoding the P frames, and are defined as
ŷI. If the received frame is a P frame, then the received samples represent a differ-
ence vector d̂v. Once d̂v is reconstructed, again by solving (4), the samples of the
P frame are calculated from ŷP = d̂v + ŷI, and the P frame can be reconstructed.
Since the original dv is calculated as the difference between the samples of the P
frame and I frame, the vector ŷP should be very close to the original samples of the
P frame, and can then be used to reconstruct the P frame.

Solving this system is based on some implementation of a convex solver. While
the details of such a solver are beyond the scope of this chapter, we would like
to note that common commercial solvers such as CVX [45] or SeDuMi [46] are
not appropriate for a problem of this image reconstruction, as the dimension of the
problem is too high. There do however exist solvers designed specifically for high
dimension CS reconstruction, such as (GPSR) [38] or stagewise orthogonal matching
pursuit (StOMP) [47]. For the decoders here, including the CVS video decoder, the
specific implementation of the solver is not important.

6 Image Encoding and Recovery Using Compressed Sensing
with CSEC and AP

We have seen that CS-encoded signals are resilient to channel errors. In this section,
we examine a system that uses CS to actively protect the encoded images and video
from channel errors. There are two main goals to this system.

• Maintain Target Image Quality. The CSEC portion of the system is charged
with maintaining the image quality given a lossy channel. This system takes as
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input both the number of packets expected to be lost due to collision or transmitter
errors and the number of samples expected to be lost due to bit errors that would
be detected by the AP system. Oversampling is then used to make up for these
errors and allow the receiver to recover the image as if the original number of
samples were sent. For example, assume that the transmitter intended to transmit
10,000 samples to the receiver to recover some image. Also assume that 5 % of
the packets will be lost due to collision or transmission errors, and 3 % of the
remaining samples will be lost due to bit errors, which results in a total loss rate of
7.85 %. By oversampling the signal to compensate for the expected loss, the total
number of samples K can be found to be 10,852. This tells the transmitter that,
based on the loss estimate of 7.85 %, if 10,852 samples are transmitted, roughly
10,000 samples will eventually be received correctly at the receiver. The details
of the CSEC oversampling rate will be explained in detail in Sect. 6.1.

• Minimize the Number of Transmitted Samples for a Target Desired Quality.
The AP portion of this system uses the estimated bit error rate of the channel
to determine the optimal number of samples to include for each parity bit. This
system will then use this information to determine the expected number of correctly
received samples. This is done by analytically determining the optimal number of
parity bits needed to maximize the number of correctly received samples at the
receiver. The details of the AP calculation will be explained in detail in Sect. 6.2.

The basis for both of these systems is that the compressed samples which are
created using the CS paradigm are all equally important and losing a single sample
does not affect the receivers ability to be able to recover any other sample. Also,
the specific samples chosen for use in the recovery of the image are arbitrary. This
means that, if a sample is lost, a different sample can be transmitted in its place with
no effect on the quality of the recovered image.

6.1 Erasure Channel Coding Using Compressed Sensing

CSEC has the ability to recreate the signal with some degradation even if the errors
exceed the threshold for recovery. This is possible by oversampling the signal to
compensate for the losses. The total number of samples needed, K , depends on the
channel loss probability and is given by

K = m

(1 − p)
, (12)

where K is the number of samples needed for a lossless transmission and is a function
of the sparsity of the signal and m is the number of correctly received samples needed
to achieve a desired image quality. Basically, the coding is done such that the number
of correctly received samples for a given error probability p is equal to the number
of samples in the original signal without errors, i.e., (1 − p) · (K ) = m.
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To see how the recreation of an image is affected by oversampling, we simulated
the recovery of a 32×32 image under three conditions; no loss, 20 % sample loss,
and CSEC with 20 % oversampling. The sampling matrix is assumed to be Gaussian
with mean zero and variance 1

1024 . An image size of 32 × 32 was chosen. The number
of measurements in lossless case (m) is taken to be 800. We choose PSNR as the
reconstructed image quality indicator, which is defined as

PSNR = 10 · log10

⎢
M AX2

I

M SE

⎣
, (13)

where MAX I is the maximum possible pixel value for each frame. MSE is the mean
squared error, which is defined as

MSE = 1

mn

m−1⎤
i=1

n−1⎤
j=1

‖I (i, j) − K (i, j)‖2. (14)

We use the Discrete Cosine Transform (DCT) as the sparsifying transform and CVX
to solve the reconstruction problem (4).

In the lossless case, the PSNR is found to be 21.40 dB. With a sample loss rate of
20 % and no oversampling, the PSNR drops to 16.78 dB. Finally, with 20 % loss and
20 % oversampling, the PSNR value is 20.10 dB. Comparing PSNR values of the
lossless and oversampled recovery cases, we can see that the images in both cases
have similar reconstruction quality. The differences between the errorless case and
the oversampling case can be accounted for by variations in the sampling matrix,
which was different for each image.

6.2 Adaptive Parity-based Transmission

It was shown for images [26] that in CS, the transmitted samples constitute a random,
incoherent combination of the original image pixels. This means that, unlike tradi-
tional wireless imaging systems, no individual sample is more important for image
reconstruction than any other sample. Instead, the number of correctly received sam-
ples is the only main factor in determining the quality of the received image. Because
of this, a sample containing an error can simply be discarded and the impact on the
video quality is negligible as long as the amount or errors is small. This can be real-
ized by using even parity on a predefined number of samples, which are all dropped
at the receiver or at an intermediate node if the parity check fails. This is particularly
beneficial in situations when receiver or at an intermediate node if the parity check
fails. This is particularly beneficial in situations when the BER is still low, but too
high to just ignore errors. To determine the amount of samples to be jointly encoded,
the amount of correctly received samples is modeled as

C =
⎥

Q · b

Q · b + 1

⎦
(1 − B E R)Q·b, (15)
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where C is the estimated amount of correctly received samples, b is the number of
jointly encoded samples, and Q is the quantization rate per sample. To determine the
optimal value of b for a given BER, (15) can be differentiated, set equal to zero and
solved for b, resulting in

b =
−1 +

√
1 − 4

log(1 − B E R)

2Q
. (16)

The optimal channel encoding rate can then be found from the measured/estimated
value for the end-to-end BER and used to encode the samples based on (15). The
received video quality using the parity scheme described was compared to different
levels of channel protection using rate compatible punctured codes (RCPC). Specif-
ically, we use the 1

3 mother codes discussed in [12]. Briefly, a 1
3 convolutional code

is punctured to decrease the amount of redundancy needed for the encoding process.
These codes are punctured progressively so that every higher rate code is a subset of
the lower rate codes. For example, any bits that are punctured in the 2

5 code must also
be punctured in the 1

2 code, the 2
3 code, and so on down to the highest rate code ( 8

9 , in
this case). Because of this setup, the receiver can decode the entire family of codes
with the same decoder. This allows the transmitter to choose the most suitable code
for the given data. Clearly, as these codes are punctured to reduce the redundancy,
the effectiveness of the codes decreases as far as the ability to correct bit errors.
Therefore, we are trading BER for transmission rate.

Figure 12 shows the adaptive parity scheme compared to RCPC codes. This figure
shows received video quality of a video encoded using CS and then protected from
errors using either the adaptive parity scheme or traditional convolutional codes.
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Specifically, we use the 1
3 mother codes described above and vary the puncturing

rate to achieve all of the shown code rates. For comparison, the total number of
transmitted bits is kept constant, so that as the strength of the FEC code increases,
the number of CS samples is decreased to keep the number of bits constant. For all
reasonable bit error rates, the adaptive parity scheme outperforms all levels of RCPC
codes. The parity scheme is also much simpler to implement than more powerful
forward error correction (FEC) schemes. This is because, even though the FEC
schemes show stronger error correction capabilities, the additional overhead does
not make up for the video quality increase compared to just dropping the samples
which have errors.

7 Energy-Rate-Distortion Analysis of CVS

A question that naturally arises is how is the performance of CVS compares to that of
H.264. The rate-distortion performance of CVS is not comparable to state-of-the-art
encoders such as H.264. However, traditional rate-distortion analysis is inadequate to
account for the computational and power limitations of mobile/sensing devices—the
better rate-distortion performance of H.264 comes at a high power and computational
cost. In addition, the CVS encoder is inherently resilient to channel errors, while the
highly structured video representation of H.264 makes it highly vulnerable in lossy
channels. Therefore, unlike H.264, CVS does not require strong channel coding and
the resulting overhead. Different from previous work on low-complexity encoding,
we jointly consider the effects of (i) processing on resource-constrained devices and
of (ii) wireless transmission on the performance of wireless encoders, and conduct
an experiment-driven analysis of the rate-power-distortion performance of different
streaming systems designed for embedded wirelessly networked devices.

Intuitively, for a fixed energy budget, as more energy is allocated to the encoder
(resulting in less compression and a video of better quality), less energy is available
to transmit that video over a wireless link, which would potentially result in an
increased bit error rate and lower quality at the receiver. Conversely, as more energy
is allocated to transmission, less energy is available to encode the video, resulting in
a lower quality video.

To analyze the rate-distortion performance of video encoders, we must first
develop a model that accurately predicts the effect of compression and bit errors
on the video quality. In a lossless channel, video distortion can be modeled [27] as

σ(rv) = D0 − ρ

rv − R0
, (17)

where D0, ρ and R0 are video dependent constants determined through linear least
squares estimation techniques.

Though this model works very well when there are no errors, any bit errors can
decrease the quality of the received video. Unlike typical data networks, however,
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the video does not have to be received perfectly, i.e., a moderate level of distortion
is acceptable. This can be seen by observing a plot of the received video quality as
a function of the bit error rate of the received video, as shown in Fig. 13. For this
plot, the videos were encoded at a quality of 0.9 as measured in structural similarity
(SSIM)2 [48], transmitted through a binary symmetric channel with varying bit error
rates (BER) and then decoded. For low BER, there is almost no effect in the received
SSIM. After the BER increases past a certain level, however, the video quality drops
off significantly.

Based on this observation, we have modeled the error performance as a low-pass
filter using

U (rch, rv) = σ(rv)√
1 + θ 2(BER(rch, rv))2

(18)

where rch is the channel coding rate (in bits in
bits out ), rv is the encoded video rate in kbit/s,

U (rch, rv) is the quality of the received video in SSIM as a function of rch and rv.
The encoder-dependent constant θ is used to indicate where the quality begins to
decrease.

As is clear from Fig. 13, using (18) to represent the video quality allows us to
very clearly compare the error resilience of different video encoders by observing
the cutoff point (modeled by the variable θ ) of different encoders. Clearly, CVS can
tolerate a far higher BER before there is any noticeable effect on the reconstructed

2 The SSIM index [48] is preferred to the more widespread peak signal to noise ratio (PSNR), which
has been recently shown to be inconsistent with human eye perception [48, 49].
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quality than H.264. As we will see below, this increase in acceptable BER translates
to a decrease in the required transmission energy for the same reconstructed quality.

7.1 SNR Model

Consider the energy budget per frame EB as the energy available to the system during
each frame period t f = 1

f ps where f ps represents the number of frames per second
of the video. We can then express the average energy available for frame transmission
as

EE (rv) = EE,max · te(rv), (19)

where EE,max is the maximum energy available to the encoder during the frame
period, and te(rv) is the processor load, i.e., the time fraction of a frame that the
encoder needs to encode video at rate rv. The transmitted energy per video frame ET

is defined as
ET = (EB − EE (rv)), (20)

i.e., the total energy available reduced by the energy needed to encode the video.
For the encoders considered in this paper, the empirical models

te(rv) = a rv + b, (21)

and

te(rv) = c − T

rv + d
, (22)

accurately model the processor load as a function of the encoded video rate. The
time t f = 1

f ps , defined as the inverse of the framerate of the video, is used as the
maximum allowed encoding time, i.e., the mean encoding time per frame for a real-
time video must be less than t f . The actual encoding time per frame, tv is measured
or estimated and compared to t f . We can then find the value te = tv

t f
which represents

the fraction of time used to encode each frame.
Based on this, we can then give the SNR model as

SNR(rch, rv) = L · rch · d f ree · (EB − EE (rv))

N0
rv

rch · f ps

, (23)

where L is the path loss, N0 is the noise power and d f ree is the free distance of the
channel code rch . As rv increases, the energy needed to encode the video increases
while the transmission energy per bit decreases, causing the SNR to decrease.
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7.2 Energy-Rate-Distortion Comparison

In Figs. 14 and 15, we show the energy-rate-distortion comparison between H.264
and CVS. We consider both the case where the video is originating at a relatively
high powered system with EE,max = 0.5J (i.e., the energy to encode a frame on a
desktop or laptop computer) in Fig. 14, and with EE,max = 0.167m J (i.e., the energy
to encode a frame on a smart phone) in Fig. 15.

These figures show two important comparisons between the two encoders. Tra-
ditional rate-distortion evaluation is equivalent to evaluating both of the encoders at
the maximum power budget (the point at the far right of the graph). If this were all
that mattered, then clearly H.264 would “outperform” CVS. However, as the energy
budget is decreased, we see that CVS is still able to encode and transmit very high
quality video, even when the energy budget is too low for H.264 to encode any
video at all. In any system where using less energy overall is preferable, CVS far
outperforms H.264.

8 Rate Control of CVS Encoded Video

To truly achieve a networked video system, we must define how a set of video
sources can distributively determine the optimal video encoding rate (i.e, the size
of Φ in (2)) so as to achieve the maximum sum video quality at the receiver. In
this section, we introduce such a congestion-avoiding rate control mechanism for
use with the compressed sensed video encoder (CSV). The rate control subsystem
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both provides fairness in terms of video quality and maximizes the overall video
quality of multiple videos transported through the network. We then prove that this
rate controller is indeed optimal in the domain of video quality.

8.1 CVS Rate Control Law

To avoid network congestion, a sending node needs to take two main factors into
account. First, the sender needs to regulate its rate in such a way as to allow any
competing transmission at least as much bandwidth as it needs to attain a comparable
video quality as itself. Note that this is different from current Internet practice, in
which the emphasis is on achieving fairness in terms of data rate (not video quality).
Second, the sender needs to regulate its rate to make sure that packet losses due to
buffer overflows are reduced, which can be done by reducing the overall data rate if
it increases to a level that the network can not sustain.

To determine congestion, the round trip time RT T is measured for the transmitted
video packets, where RT T is defined as the amount of time it takes for a packet to go
from the source to the destination and a small reply packet to go from the destination
back to the source. The change in RT T is measured as
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Θ˜RT Tt =

N−1⎤
i=0

ai · RT Tt−i

N ·
N−1⎤
i=0

ai

−

N⎤
i=1

ai · RT Tt−i

N ·
N⎤

i=1

ai

, (24)

which represents the difference of the weighted average over the previous N received
RT T measurements with and without the most recent measurement. The weights ai

are used to low-pass filter the round trip time measurements, to give more importance
to the most recent RT T measurements and to make sure that the protocol reacts
quickly to current network events, while averaging assures that nodes do not react
too quickly to a single high or low measurement.

The CVS video encoder generates two types of video frames; the I frame, which
is an intra-encoded frame, and the P frame, which is an inter-encoded frame. The I
frames are independently encoded, i.e., they are encoded using only the data contained
within a single frame allowing these frames to be decoded independently of the
previous frame. However, I frames do not take advantage of correlation between
frames resulting in lower rate-distortion performance. P frames on the other hand
are encoded based on previous frames by leveraging the temporal correlation between
frames. Although this results in smaller frame sizes, it also allows errors to propagate
from one frame to the next [27].

We present a novel approach in which the sampling rate πI of the video is used
to control the data rate. Since πI is linearly proportional to the compression of the I
frames (as seen in Fig. 16), controlling πI controls the compression rate of the entire
video and therefore the data rate of the video transmission. Because of this linear
relationship, we can control the compression of the entire video by varying only the
I frame video quality.

We model the quality of the received video stream with a three-parameter model
[27]

DI = D0 + β

πI − R0
, (25)

where DI represents the distortion of the video. The parameters D0, β and R0 depend
on the video characteristics and quantization level Q and can be estimated from
empirical rate-distortion curves via a linear least-square curve fitting.

The rate control is based on the marginal distortion factor η, which is defined by

η = β

(πI − R0)2 , (26)

i.e., the derivative of (25) with respect to πI .
At the source node of each video transmission, the amount of data generated by

the video source for the (t + 1)th group of pictures is controlled through
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πI,t+1 =
⎛⎜
⎝

πI,t − (1 − η) · ω · Θ˜RT T t if Θ˜RT T t > σ

πI,t − η · α · Θ˜RT T t if Θ˜RT T t < −σ

πI,t else,
(27)

where ω > 0 and α > 0 are both constants used to scale η to the range of the
sampling rate. σ is a constant used to prevent the rate from oscillating with very

minor changes in Θ˜RT Tt . The marginal distortion factor is used in (27) to promote
fairness in terms of distortion. If there are two nodes transmitting video and both
observe the same negative the sending node with the lower current video quality
will take advantage of the decreased network congestion faster than the node that is
transmitting at a higher rate by increasing its sampling rate more aggressively. The

sampling rate more aggressively. The inverse is true for positive values of Θ˜RT Tt .
This can be seen in Fig. 16. At lower compression levels, a change in the rate has
a higher impact on the received image quality than an equal change will have at a
higher rate. Similarly, 1 − η, results in a function which has low values at low rates,
and higher values at higher rates. The term 1 − η is then used to prevent a node from
decreasing the rate significantly when the rate is already low, but encourage the node
to decrease the rate when the data rate is already high.
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8.2 The Optimality of the C-DMRC Rate Controller

Next, we analyze the performance of the rate controller presented in Sect. 8. We
represent the network as a set N of nodes. The set L represents the set of all links
in the network.

maximize
πI

⎤
s≤S

Us(πI,s)

subject to
⎤

i :l≤L (i)

θiπI,i ∼ cl , ∀l ≤ L
(28)

where πI = [πI,1, πI,2, . . . , πI,|S |] is the vector of sampling rates for all sources,
θi is a constant that maps sampling rates to data rates, i.e., xi = θiπI,i , Ui (πI,i ) =
D0,i + βi

πI,i −R0,i
is the quality of video source i at sampling rate πI,i and cl represents

the capacity of link l. Since Ui (πI,i ) is a concave function and the constraints are
affine in the rate variables, the problem is convex. We modeled the problem (28) with
CVX [45] and solved it as a semidefinite program using SeDuMi [46].

We can now prove the following lemma.

Lemma 1 The rate control equation update (27) converges to a distributed solution
to (28).

Proof The Lagrangian of (28) is defined as [35]

L(πI, Λ) =
⎤
s≤S

Us(πI,s) −
⎤
l≤L

Λl

⎞
⎟ ⎤

s≤S (l)

θsπI,s − cl

⎠
⎭

=
⎤
s≤S

⎞
⎟Us(πI,s) − θsπI,s

⎤
l≤L (s)

Λl

⎠
⎭ +

⎤
l≤L

Λl cl ,

(29)

where Λ = [Λ1, Λ2, . . . , Λ|L |]. The Lagrange dual function is then given by

g(Λ) = maxπI L(πI, Λ)

=
⎤
s≤S

max
πI,s

[
Us(πI,s) − θπI,sΛ

s] +
⎤
l≤L

Λl cl , (30)

where Λs =
⎤

l≤L (s)

Λl .

Each Lagrange multiplier Λl , which can be interpreted as the delay at link l [50],
is implicitly updated as

Λl(t + 1) = [
Λl(t) − σ

(
cl − x∞

l (Λ(t))
)]+ (31)
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Fig. 17 Simple network topology demonstrating congestion between two video streams

where x∞
l (Λ(t)) =

⎤
s≤S(l)

θsπ
∞
I,s represents the total optimal rate offered at link l and

σ denotes the step size. We define [·]+ as max(0, ·).
Since Us(πI,s)−θsπI,s is differentiable, maxπI,s

[
Us(πI,s) − θsπI,sΛ

s
]

is obtained
when

dUs(πI,s)

dπI,s
= θsΛ

s, (32)

which states that the derivative with respect to the sampling rate should be equal
to a scaled version of the delay. Since Us(πI,s) (as defined in (25)) is a concave

monotonically increasing function in πI,s , dUs (πI,s )

dπI,s
is decreasing in πI,s . Therefore,

as Λs varies, the optimal update direction of πI,s is the negative of the direction of
the change in round trip time.

The simplest interpretation of ΘRT T i (t + 1) as calculated in (24) and used in
(27) for source i is the difference between consecutive delay measurements Λi (t) −
Λi (t − 1). The update direction of πI,s is then given by (− ΘRT T ), which is the
direction of the update in (27). Finally, it was shown in [51] that given a small enough
step size, a gradient projection algorithm such as (27) will converge to the optimal
sampling rate allocation.

Numerical simulations were also run to support this interpretation. Two simple
networks were tested as shown in Figs. 17 and 18, respectively, where Ci represents
the capacity on link i and Ni represents node i . The arrows represent video streams. In
both cases, the optimal rate allocation was determined by solving the optimization
problem directly as a semidefinite program using SeDuMi [46] with the convex
optimization toolbox CVX [45], and the same problem was solved using the iterative
algorithm (27).
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Fig. 18 Linear network topology demonstrating varying congestion between four video streams
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Fig. 19 Sampling rate from the C-DMRC rate controller compared to the optimal sampling rate
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These two topologies were chosen because they verify two important require-
ments for a distortion-based rate controller. The network in Fig. 17 has two video
streams with a single bottleneck link. This topology can be used to assure that two
different videos with different rate-distortion properties achieve the same received
video quality. The other topology, shown in Fig. 18, was used to show that the rate
controller will take advantage of unused capacity. Video 3 in this network is only
contending with a single other video, while the other three videos are contending
with each other resulting in a higher optimal rate for video 3.

The results from these tests are shown in Figs. 19, 20, 21 and 22. Figures 19 and
20 show the I frame sampling rate of the videos compared to the optimal value, and
Figs. 21 and 22 show the actual video qualities. In all cases, the rate found by the
iterative algorithm was within 5 % of the optimal value as determined by the convex
solver. The 5 % difference between the optimal rates and the rates obtained from the
iterative algorithm are due to the step size of the algorithm. If the step size were
decreased, the resulting rate would be closer to the optimal. However, making the
step size too small results in an algorithm which is infeasible to implement because
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allocation for topology 2

of the amount of updates needed. Finally, to avoid the trivial solution of all rates and
qualities being equal, different videos were transmitted. The simulations show that
the iterative algorithm achieved all requirements, and was nearly optimal for both
networks.

9 Future Research Challenges

While the current research in the application of CS techniques is promising, there are
still a few challenges that need to be solved before this technology can be realized
in a realistic network. In this section, we will introduce some of these challenges.

9.1 Reconstruction Complexity

This paper has been focused on the sampling and encoding of video using compressed
sensing. However, the biggest hurdle in CS reconstruction is the complexity required
to reconstruct a video. Currently, the most common reconstruction algorithms are
either least absolute shrinkage and selection operator (lasso) [52] or gradient projec-
tion for sparse reconstruction (GPSR) [38]. Others commonly seen are orthogonal
matching pursuit (OMP) [53], stagewise orthogonal matching pursuit (StOMP) [47],
basis pursuit denoising (BPDN) [54], and many others (see for example [55]). While
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some of these algorithms are very fast, none of them can reconstruct video in real
time, i.e., at 30 frames per second (or even 12 frames per second).

There are a few techniques for accomplishing this that may be promising. First
is reducing the dimensionality of the signal, and reconstructing it in blocks, as is
done in [56–58]. As stated above, since the complexity of even the fastest algorithm
is (much) more than linear, reconstructing four N

2 × N
2 images will be faster than

reconstructing one N × N image. However, the “amount” of sparsity in an image is
related to the size of the image. As the image size decreases, the number of samples
needed to reconstruct that image increases for the same reconstruction quality. This
limits the practical applications of this technique.

Another processing technique for reducing the complexity is to use properties of
the images in the reconstruction. For example, in [54], the authors present a scheme
for iteratively updating a CS solution based on a previous solution. Since natural
images are smooth, the difference in the sparse transforms of each column vector of
an image can itself be represented as a sparse vector. This sparse column difference
vector is then used to update the reconstruction of the previous column. The authors
show that this system is indeed faster that others available. However, it is still not
fast enough for real-time decoding.

9.2 Adaptive Sampling Matrices

A major issue in CS encoding of images is that, while the compression is good, it
does not generally compare to more deterministic video compression methods. While
we have shown that the power required to compress and transmit a video using CS
techniques is much lower than traditional methods [59], reducing the compressed
size of the video would present more applications for this technology.

One way to do this is to adapt the sampling matrix to the image, and increase the
sparsity at the source. For instance, the sampling matrix Φ and the sparse transform
matrix Ψ in (2) can be specifically chosen to optimize the rate-distortion performance
at each frame. While there are some rather obvious techniques to accomplish this, to
be practical, the system must be able to adapt to the properties of the video without
first sampling the entire video. The system must be able to work on a single pixel
camera or similar device.

10 Conclusions

We have presented an introduction to compressed sensing as applied to video encod-
ing. The goal of this chapter was to make a case for why CS should be used in
video encoding for low power WMSN nodes. Currently available state-of-the-art
algorithms are not suitable for sensor networks, and CS solves many of the problems
associated with traditional methods. We have presented the background necessary
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to begin approaching this problem. We have also described some of the leading
algorithms developed for applying CS to video.
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Chapter 15
Body Sensor Networks for Activity and Gesture
Recognition

Narayanan C. Krishnan and Sethuraman Panchanathan

Abstract The last decade has witnessed a rapid surge of interest in new sensing and
monitoring devices for health care applications. An important development in this
area is that of Body Sensor Networks (BSN) that operate in a pervasive manner for
on-body applications. Intelligent processing of the sensor streams from BSN is key
to the success of applications that rely on this framework. In this chapter we dwell
upon one application ofBSN that involved processing ofwearable accelerometer data
for recognizing ambulatory or simple activities and activity gestures. We elaborate
on the different steps such as feature extraction and classification involved in the
processing of raw sensor data for detecting activities and gestures. We also discuss
various aspects associated with a real-time simple activity recognition system such
as computational complexity and factors that emerge considering that the sensors
are worn by humans. While some of these factors are common to wireless sensor
networks in general, the discussion of the chapter is focused on the BSN system
developed by us for recognizing simple activities and activity gestures.
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1 Introduction

Advances in the area of sensors, low power integrated circuits and wireless com-
munication networks have enabled the development of a new generation of wireless
sensor networks—BodySensorNetworks.BodySensorNetwork (BSN) also referred
to as Body Area Networks is a specific category of wireless sensor networks that are
intended to operate in a pervasive manner for on-body applications. Much of the the-
ory relating to general wireless sensors also relate to BSN and issues such as power
optimization, battery life performance and radio design are key issues. Aspects that
are unique to BSN include usability, durability, and robustness, how well the sensor
fits in with the application, reliability, and security of data.

This sensor architecture has seen increasing interest over the last decade as it
facilitates inexpensive and continuous monitoring of health of individuals. A num-
ber of intelligent physiological sensors can be easily integrated into a wireless body
network that can be used for computer assisted rehabilitation of early detection of
medical conditions. Understandably, most of the applications of BSN are drawn from
the health care domain and include monitoring the physical activities of older adults
for detecting wandering, falls and other behavioral changes, continuous monitoring,
and tracking of patients suffering from chronic diseases such as diabetes, asthma and
heart attacks. Other applications of BSN include sports—to understand the perfor-
mance and kinematics of athletes; military—monitor the movements of soldiers and
understand their activity; and for monitoring the lifestyle and general well-being of
individuals for designing pro-active intelligent environments.

In this chapter, we discuss one application of BSN that concerns the recognition
of ambulatory movements of individuals and activity gestures involved in complex
activities such as cooking and taking medicine. Ambulatory movements such as
walking, running, sitting, etc., that are predominantly defined by movements belong
to the category of simple activities and the term—Simple Activity Recognition refers
to the process of inferring activities defined bymovements from sensor streams. BSN
that consist of wearable accelerometers provide one of the best platforms for sens-
ing movement information about these activities. Simple activity recognition system
finds use in many applications in the health care domain. Systems that monitor the
ambulation of an elderly individual to detect a fall or other abnormal movement
patterns depend on the recognition of the simple activities. With the growing pop-
ularity of mobile devices embedded with inertial sensors, there has been a lot of
focus on developing applications that can track the energy expenditure of an indi-
vidual on simple physical activities. Recently there has also been a lot of focus on
recognizing simple activities through inertial sensors for assisting the process of
location estimation in GPS denied environments. In addition to health care applica-
tions, recognizing simple activities or other related movement patterns also find a lot
of interest in gaming applications. An example of this is the popular Nintendo Wii
mote gaming systems.

Recognition of these activities is not a trivial problem. Figure1 illustrates biaxial
accelerometer data for some simple activities. The movement in these activities can
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Fig. 1 Biaxial accelerometer data for different simple activities from an accelerometer placed on
the ankle

be either characterized by a static posture as in the case of sedentary activities such
as sitting and standing or is defined by a repetitive movement pattern as in the case of
walking or bicycling. The different ways in which the continuous data stream from
accelerometers can be modeled has resulted in different recognition paradigms. The
goal of this chapter is to introduce the reader to field of wearable accelerometer-
based activity recognition and to this end, the chapter describes the different aspects
involved in designing a system that can detect simple activities in real-time and
for recognizing activity gestures. It begins by discussing simple activity recogni-
tion approaches found in the literature in Sect. 2. It discusses the steps involved in
the process of deciphering activities from raw sensor data. Section3, then presents
experiments conducted on the recognition paradigm on a publicly available simple
activity dataset. These experiments lay the foundation for the real-time system that
we have developed. The lessons learned from these experiments are then used to
design and develop a simple activity recognition system that is presented in Sect. 4.
Section5 discusseswearable accelerometers for activity gesture recognition. Conclu-
sion and pointers to some of the state of the art and future directions are highlighted in
Sect. 6.

2 Background and Related Work

Much of the ongoing research focuses on prototyping wearable systems using BSN
(accelerometers, microphones, pressure sensors, etc.) to recognize human activi-
ties. Miniaturized accelerometers have received attention from the bioengineering
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community as an effective tool tomonitor the physical activity of an individual [1, 2].
Accelerometers have also been used as an alternative modality for capturing motion
information for recognizing ambulatorymovements [3, 4].With the increasing use of
accelerometers for understanding humanmovements, different approaches have been
adopted by researchers for analyzing and classifying the acceleration data streams,
with some focusing on analyzing the data to extract salient features [5], while others
concentrating on pattern recognition routines for detecting specific activities [6–9].
Since the focus of this chapter is on accelerometer-based activity recognition, we
begin with a brief overview of an accelerometer.

Accelerometer is probably one of the most popular and ubiquitous sensors. It is
has been made popular by devices and applications that change their functionality
by changes in tilt or orientation such as the iPhone, or capture gaming devices that
capture movements of individuals to interact with the game such as the Wii mote.
An accelerometer is a sensor that measures the linear acceleration that is induced by
gravity or by the movement of the sensor. It is sensitive to shock, orientation, and
vibrations. An accelerometer is designed around the principle that a mass in accel-
eration exerts force. If the exerted force and the mass of the body can be measured,
acceleration can be derived based on principles of physics (force = mass × acceler-
ation). There are different kinds of accelerometers based on its type of construction
and its sensitivity range.Most commonly found accelerometers are piezoelectric sen-
sors that use the piezoelectric effect to measure the dynamic changes in the exerted
forces. Some of the other categories of accelerometers based on its type of construc-
tion are MEMS, strain gauge, and capacitive. The sensitivity of an accelerometer is
defined in terms of the acceleration due to gravity (g). Low g accelerometers can
sense up to ±12g accelerations, medium g accelerometers sense in the range of
±100g, while high g accelerometers offer >100g sensing capabilities. Acceleration
values in human movements typically fall in the range of Low g accelerometers.

Advances in MEMS technology has enabled the development of miniaturized
accelerometers that can be worn by individuals. These sensors transform into pow-
erful wearable sensing units when they are coupled with small form factor wireless
communication technologies. There are a number of commercially available wireless
accelerometers as presented in Fig. 2. Experiments in this chapter were conducted
on data captured from two commercially available accelerometers—the WiTilt from
Sparkfun [22] and ZStar from Freescale [23]. Other commercially available prod-
ucts are Mercury from Shimmer [24] and Wocket from MIT [25]. In contrast to an
accelerometer, gyroscopes measure the angular velocity with respect to the inertial
frame of reference. They are often used in conjunction with an accelerometer for
activity recognition.

The process of deciphering an activity from the raw acceleration data involves
a number of steps namely; Preprocessing, Segmentation, Feature Extraction, Clas-
sification and Post Processing. The subsequent paragraphs briefly describe these
steps.

Preprocessing consists of steps that prepare the data for analysis, like the removal
of high frequency noise spikes using techniques like nonlinear, low-pass median
filters [3], Laplacian filters [10], and Gaussian filters [11] or the removal of the
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Fig. 2 Some of the common wireless accelerometers available off-the-self. The images have been
adapted from [22–26]

gravitational acceleration component from the data using high pass filters [1, 3, 12].
Segmentation plays an important role in systems that perform continuous activity
recognition. It results in either fixed length or variable length segments depending
on the set of target movements. Fixed length segmentation has been typically used for
ambulatorymotion recognition [6, 9, 13]. Explicit segmentation techniques resulting
in variable length segments have been used [14] for spotting ambulatory movements
and for recognizing workshop activities using audio features [15]. Holger et al. [16]
uses a modified version of the SWAB algorithm to perform segmentation using the
accelerometer and gyroscope data.

Feature extraction involves deriving salient and distinguishable features from
the raw data. The statistical and spectral properties of the acceleration signal carry
important cues for distinguishing different movements. Foerster et al. [1] and Knight
et al. [17] employ only the mean value of the acceleration to distinguish ambulatory
movements. The correlation between the axes of accelerometers placed at different
locations in the body is another important feature for classification as illustrated by
Bao et al. [13]. Although the effectiveness of other statistical features like variance,
zero crossing rate, and mean crossing rate have been investigated by Maurer et al.
[2] the performance of these features varies with respect to the activities.

The frequency content of the acceleration signal, represented as Fourier transform
coefficients [5, 18] or aggregate quantities like spectral energy and entropy [13], have
been used to differentiate activities like running and bicycling, or distinguishing
between different walking patterns. Wavelets have also been used for detecting a
variety of activities [10] and for modeling falls [19]. In addition to the features
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extracted from the raw data, features from derivatives of the signal have also been
explored for classification [6, 16, 20]. Huynh et al. [21] proposes to use multiple
Eigen spaces for reducing the dimension of the acceleration data feature space for
activity recognition.

Classification involves learning the mapping between the extracted feature vec-
tors and the corresponding activity labels. Literature is abundant with techniques
that use simple threshold-based models such as decision trees and decision tables
and generative classifiers such as Hidden Markov Models (HMM) for recognizing
simple activities. These techniques have been used in conjunction with a number of
inertial sensors for simple activity recognition. Fixed length template matching using
k-Nearest Neighbor (k-NN) has been quite popular among researchers for classifying
simple activities using accelerometer data. Foerster et al. [1] employ k-NN for recog-
nizing ambulatorymovements using templates defined by the features extracted from
fixed length window frames of accelerometer data placed at four different locations
on the body. Jafari et al. [27] describes a method to detect the transitions between
ambulation again using feature-based templates in conjunction with k-NN. Maurer
et al. [2] also investigates the performance of k-NN for recognizing ambulation. All
of these approaches first extract features from the acceleration movement pattern,
which are in-turn used as the templates for matching.

For its computational efficiency naive Bayes classifiers are commonly used for
recognizing ambulatory movements as demonstrated by Kern et al. [28], Bao et al.
[13], Ravi et al. [9], and Maurer et al. [2]. The fixed length feature vectors extracted
from movement data are used for learning the probability distribution of samples
belonging to different classes. The probability distribution function is typically
defined as a uni-modal Gaussian. Allen et al. [29] and Ibrahim et al. [5] use Gaussian
mixture models for recognizing the transitions between different ambulation and
walking patterns. These approaches assume that movement patterns of a specific
type adhere to a Gaussian distribution. Olguin and Pentland [30] explore HMM for
recognizing ambulatory movements from inertial sensor data obtained from different
on-body locations.

Ambulatory movements consist of static body postures such as sitting, standing,
and lying down alongwith dynamicmovements involved in walking, running, climb-
ing stairs, etc. Techniques that determine thresholds on features such as variance or
energy, offer a simple approach for classifying these different types of movements.
Thus decision trees such as C4.5 are a natural choice for accelerometer-based ambu-
latory movement recognition. Bao et al. [13] experiment with decision tables and
trees for classifying around 20 different activities from accelerometer data collected
from five different locations on the body. Karantonis et al. [12] discuss a real-time
human movement classifier using tri-axial accelerometer using binary decision trees
for classifying walking patterns. Maurer et al. [2] uses decision trees to recognize
ambulatory movements using data frommultiple sensors. Tseng and Cook [31] eval-
uate the performance of decision trees for determining the age of an individual based
onmovement patterns. Ravi et al. [9] experimented boosting and baggingwith a num-
ber of base classifiers such as decision tables, decision trees, etc., for recognizing
ambulatory movements from a single accelerometer and gyroscope readings placed
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on the waist of an individual. Lester et al. [7] uses Adaptive Boosting (AdaBoost)
to extract probabilities for classifying activities using data from multiple modalities.
They also use AdaBoost as a feature analyzer to determine the importance of the dif-
ferent modalities for activity recognition. Artificial neural networks have also been
used for activity and gesture recognition. Jafari et al. [27] explores MLP for learning
the transitions between different ambulation. Yang et al. [32] discuss a time-delay
neural network-based approach for recognizing motion patterns from trajectories
extracted from image sequences. Mantyla et al. [33] recognizes static hand gestures
from accelerometer data using self-organizing maps (SOM). Laerhoven et al. [20]
also use SOM in conjunction with a Markov chain for differentiating ambulatory
movements using data from a single inertial sensor placed on the thigh of the indi-
vidual.

Suutala et al. [8] use support vector machines (SVM) for classifying ambulatory
movements using accelerometers located on the thigh, wrists, and neck regions.
Ravi et al. [9] use SVM along with boosted SVM for recognizing different activities
using a single accelerometer placed on the waist of an individual. They observe that
boosted SVMoffers only a marginal improvement in classification performance over
a regular SVM. Tseng and Cook [31] illustrate the effectiveness of SVM over other
classification techniques such as multi-layer perceptron (MLP) and decision trees
for determining the age of an individual using movement patterns. While these are
the different approaches adopted in the literature for simple activity recognition, the
performance of discriminative classifiers for simple activity recognition has not been
explored to a fuller extent. The work presented in this chapter is motivated by the
need to evaluate powerful discriminative classifiers for simple activity recognition.
In particular it presents experiments conducted with Adaptive Boosting, Support
Vector Machines, Regularized Logistic Regression, and Hidden Markov Models. A
description of each of these techniques is provided in the following paragraphs.

AdaBoost, short for Adaptive Boosting, is a meta-machine learning algorithm,
formulated by Freund and Schapire [73]. It is typically used in conjunctionwithmany
other learning algorithms such as C4.5 decision trees and naïve Bayes to improve
their performance. AdaBoost is adaptive in the sense that subsequent classifiers built
are tweaked in favor of those instances misclassified by previous classifiers. Thus
as the iterations progress, AdaBoost increases the weights of those instances that
have been consistently misclassified by the previous classifiers thereby increasing
the likelihood of learning a classifier in the subsequent iteration that can correctly
classify this instance. As a result, AdaBoost is sensitive to noisy data and outliers. It
has however shown good improvement in the performance over the base classifiers
for a number of applications. The classifiers it uses can be weak (i.e., display a
substantial error rate), but as long as their performance is not random (resulting in an
error rate of 0.5 for binary classification), they will improve the final model. The final
model is a linear combination of the weak classifiers. Even classifiers with an error
rate higher than by chance will be useful, since they will have negative coefficients
in the final linear combination of classifiers and hence behave like their inverses.
While one can use different base classifiers in conjunction with AdaBoost, we use
binary decision stumps with the objective of building a simple model. We request
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the reader to refer to the seminal article of Freund and Schapire [73] for more details
about AdaBoost.

A support vector machine [74] is a very popular supervised learning method that
analyzes data and recognizes patterns, used for classification and regression analysis.
The standard SVM takes a set of input data and predicts, for each given input, which
of two possible classes forms the input, making the SVM a non-probabilistic binary
linear classifier. Given a set of training examples, each marked as belonging to one
of two categories; an SVM training algorithm constructs a hyperplane or a set of
hyperplanes in the high-dimensional feature space. It selects the hyperplane that
achieves good separation between the data points of the two classes. This optimal
hyperplane has the largest distance to the nearest training data point of both the
classes. New examples are then mapped into that same space and predicted to belong
to a category based on which side of the gap they fall on. One of the common
tricks used with SVM is that of mapping the data points belonging to space where
they are not linearly separable to a higher dimensional space where the separation
becomes easier. This mapping is usually performed using the Kernel function, which
reduces the computational complexity of the algorithm, by calculating the distance
between the points in the high-dimensional space instead of determining the actual
mapping of the points. There have been many commonly used Kernel functions
such as polynomials, radial basis functions and sigmoid functions. The choice of the
kernel function and the parameters of the function are dependent on the data and the
application domain.

While AdaBoost and SVM are non-probabilistic classifiers, regularized logistic
regression is a generalized linear model that follows binomial regression for deriving
classification probabilities for each of the data sample. Regularized Logistic regres-
sion (RLogReg) [74] is a probabilistic discriminative approach for the classification
problem. The posterior probability of a class is written as a logistic sigmoid func-
tion of the feature vector. The maximum likelihood estimation process is employed
to determine the coefficients of the logistic sigmoid function. Regularization is per-
formed to derive small values for the coefficients of the logistic sigmoid function. The
margin of classification obtained from AdaBoost and SVM can be used to approxi-
mate the posterior probability of a class through the logistic regression process.

HiddenMarkovmodels (HMM) are probably themost commonly used generative
models for modeling movement patterns. It is a powerful generative model that
includes a hidden-state network. HMM is rich in mathematical structures; it serves
as the theoretical basis for a wide range of applications. It can model spatio-temporal
information in a natural way. It also has elegant and efficient algorithms for learning
and recognition, such as the Baum-Welch algorithm and Viterbi search algorithm.
HMMhas attracted a lot of attention as a useful tool for modeling the spatio-temporal
variability in gestures. The unique internal segmentation property of the HMM i.e.,
the states and transitions of a trained HMM represent sub-patterns of a gesture and
their sequential order, makes it a popular choice for modeling varying length spatio-
temporal patterns.HMMs are effective formodeling temporal data because the global
features extracted from the data do not explicitly capture the temporal nature of the
data. Another advantage of HMMs is these samples can be of varying length.
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Post Processing consists of smoothing the classification results [6, 7] or correcting
the label based on domain constraints as illustrated By Suutala et al. [8].

3 Experimental Framework

This section discusses the feature extraction, classification and post classification
label-smoothing techniques that have been employed leading up to the real-time
system for simple activity recognition.

3.1 Description of the Dataset

The data used for conducting experiments with the computational framework for
simple activities is a subset of the data collected by Bao et al. [13]. The data was
collected in two different ways—supervised approach (activity), where the subject
is given explicit instructions about what action to perform, and a semi-naturalistic
approach (obstacle), where the subject is given instructions to perform an activity of
daily life that implicitly encodes the action patterns. The data corresponding to 10
random subjects froma pool of 20, for 7 lower body activities namelywalking, sitting,
standing, running, bicycling, lying down and climbing stairs, from accelerometers
placed at hip, dominant ankle, and non-dominant thigh, for the two modes of data
collection have been considered for the experiments performed in this work. The data
was collected from biaxial accelerometers that were strapped to the different body
locations using Velcro. The accelerometers are sampled at approximately 76.25Hz.
Figure1 depicts typical samples that are obtained from the accelerometers.

3.2 Feature Extraction

The first step in the feature extraction process is to divide the acceleration stream
into frames. The acceleration stream is divided into frames of size 512 samples, with
256 overlapping samples between successive frames, as described by Ravi et al. [9].
For each frame, the statistical features like mean, variance, correlation between all
the axis of all the accelerometers, along with the spectral features like energy and
entropy are computed. Figure3 illustrates the projection of these features onto a three
dimensional space derived through principal component analysis. For activities that
have a significant amount of motion like walking, running, etc., the rate of change
of acceleration is a characteristic property that distinguishes them. These variations
are captured by computing statistical features like mean, variance and correlation
between all the axes on the first order derivative of the acceleration data in addition
to the features mentioned above.



576 N. C. Krishnan and S. Panchanathan

Fig. 3 Projection of the simple activity data samples onto three dimensions obtained through
principal component analysis

The effect of different features on classification performance of AdaBoost was
studied for determining the relevance of the features for discriminating simple activ-
ities. Separate AdaBoost classifiers were trained with the standard set of features,
statistical features of the first derivative of the acceleration data and a combination
of both. The accuracies for the three scenarios were 89.82, 81.9 and 92.81%, respec-
tively. It is evident from Fig. 4 that the standard features perform significantly better
than the derivative features. However, there was a 34% increase in the accuracy when
both features were combined. Figure4 presents the class-wise accuracy for the three
scenarios. It can be noticed that the derivative features are able to distinguish accu-
rately activities characterized by distinctive motion patterns like walking, running,
etc., (1, 4, 5, and 7). The accuracies for these classes are on par with that of the
standard features. This indicates that features extracted from the first derivative of
acceleration data are able to capture the subtleties in the motion data.

3.3 Isolated Recognition

The performance of AdaBoost, SVM, and RLogReg on the features extracted from
each frame was evaluated for developing the computational framework for iso-
lated simple activity recognition. Binary classifiers were trained for each activity.
The AdaBoost classification routine was implemented in MATLAB based on the
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Fig. 4 Class-wise accuracies using AdaBoost trained on the three features (1 walking, 2 sitting, 3
standing, 4 running, 5 bicycling, 6 lying down, 7 climbing stairs)

Table 1 Subject independent, adaptive, and dependent accuracies for the different discriminative
classifiers

Classifiers Subject independent Subject adaptive Subject dependent

AdaBoost 92.81 93.96 47.88
RLogReg 86.55 88.14 74.56
Linear SVM 82.28 83.60 72.64

description of the algorithm in Duda and Hart [34]. The SVM and RLogReg imple-
mentation from the SVMLight package by Joachims [35] and Komarek’s Logistic
regression toolbox [36] was used respectively. Given a test sample, the class that
yielded maximum margin/probability, was considered as the predicted activity.

Three different evaluation scenarios were considered for the analysis. For the
subject independent scenario, activity data from nine subjects were considered as
training samples and the obstacle data from the remaining one subject was the test
data. The activity data of all the ten subjects were considered as the training set
and the obstacle data from each of the subject formed the test set, for the subject
adaptive scenario. The activity and obstacle data from only a single subject formed
the training and test set for the subject dependent evaluation.

The results summarized in Table1 show that AdaBoost performed best in both
subject independent and adaptive scenario, while RLogReg had the highest accu-
racy in subject dependent case. The 90% reduction in the size of the training
data for the subject dependent scenario was the cause for the poor performance
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Table 2 The aggregate confusion matrix obtained from subject independent 10 folds cross valida-
tion using AdaBoost trained on combined features

Activity Walking Sitting Standing Running Bicycling Lying down Climbing stairs

Walking 840 0 18 2 9 0 20
Sitting 0 296 0 0 0 4 0
Standing 0 13 128 0 8 0 1
Running 10 0 6 458 11 0 9
Bicycling 0 0 32 0 443 0 0
Lying down 0 57 0 0 0 343 0
Climbing stairs 13 0 4 1 1 0 323

of AdaBoost. We did not experiment with kernels for SVM due to the high computa-
tional costs associated with them. The confusion matrix for classification aggregated
over the 10 subjects for subject independent scenario using AdaBoost is presented
in Table2. The misclassification of walking samples as climbing stairs and vice
versa, suggests that the motion patterns involved in them are similar. There were
also misclassifications occurring between activities that do not involve any quanti-
tative motion in them, probably indicating that necessity of data from other parts
of the body. A probable reason for this is that, data from accelerometers placed
only in the lower parts of the body have been considered. Adding data from other
accelerometers might improve the classification of these activities. Misclassification
of bicycling samples as standing seems to be a very strange anomaly. On further
analysis of the data, it was observed that these samples did not show any represen-
tative motion pattern associated with bicycling, thus can be possibly considered as
outliers.

3.4 Post Classification Label Smoothing for Continuous
Recognition

Human activity is a continuous process and though these discriminative techniques
are effective in classifying an individual frame, they do not consider temporal con-
tinuity for classification. Based on the results from the previous experiments we
observed that a number of samples that have been misclassified were actually in the
midst of a continuous streamof correctly classified samples. Thismeans that the strict
condition of independent samples can be relaxed in this scenario to correct some of
the inaccuracies in classification. Lester et al. [7] and Suutala et al. [8] propose to use
a HiddenMarkovModel trained on the probability of classification obtained through
AdaBoost and SVM, respectively, to correct these types of errors. In this section a
classification framework that incorporates this temporal continuity of human activity
is proposed that does not require re-computation of the feature vector nor require any
additional training, thus remains computationally inexpensive. It relies on the sim-
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ilarity of successive samples in the continuous stream to combine the probabilities
of classification.

Formally, classification margin mc( ft ), for a frame ft , belonging to a class c
derived either in AdaBoost or SVM reflects the confidence of prediction. This margin
can be used by the classifier to output the probability, pc( ft ), of the frame belonging
to class c. A method to compute the probability directly is to fit a sigmoid function
to the output of AdaBoost or SVM as described in the following equation.

pc( ft ) = eψmc( ft )

1 + eψmc( ft )

ψ is a constant that is determined empirically through a cross validation process on
the training dataset. The probability values computed for the frame fi at time instant
i can aid in classifying successive temporally close frames. For a frame ft , let the
frames that influence its classification be fi , where i = t−λt, . . . , t .Weweighed the
probability Pc( fi ), for the frame at i belonging to class c, by two factors - a function
of i (temporal distance between the frames) denoted by g(i) and a function of the
similarity between the current frame and the past frame, measured as the Euclidean
distance between them denoted by h(t − i, t). Thus the final probability Pc( ft ) for
the frame at t , is given by the following equation where the denominator acts as a
normalizing factor.

Pc ( ft ) = pc( ft ) + ∑λt
i=1 g (i) ∗ h(t − i, t) ∗ Pc( ft−i )∑λt

i=1g(i) ∗ h(t − i, t) + 1
, c = 1 . . . 7

For the experiments conducted in this work, the function g(i) was treated as a
Gaussian distribution. This was done to ensure that frames that are farther away in
time have minimal influence on each other. The function h(t − i, t) was represented
as h(t − i, t) = e{−σd( ft−i , ft )}, where d(·) corresponds to the Euclidean distance
between the feature vectors describing the frames. This assumes that if adjacent
frames are similar, then they should belong to the same class. This framework is
illustrated in Fig. 5. Though in this work, experiments were conducted with only
AdaBoost and RLogReg, the proposed framework can be adopted to work with any
classifier.

The continuous acceleration stream from the obstacle dataset as a sequence of
overlapping frames was considered for evaluating the proposed methodology. The
number of past frames considered for classifying the current frames was varied.
The optimal performance was achieved when three past frames were considered for
classifying the current frame. AdaBoost and RLogReg classification routines were
considered for the evaluation of the framework. While adding temporal information
to staticAdaBoost resulted in an average 10 fold cross validation accuracy of 95.35%,
RLogReg resulted in 89.63%. For both algorithms, an improvement of about 2.5–3%
was observed.



580 N. C. Krishnan and S. Panchanathan

Fig. 5 Illustration of the post classification label-smoothing framework

3.5 Human Factors Assisting in Continuous Classification

The human body can be viewed as a kinematic system with well-defined degrees of
freedom of movement. This kinematic system defines the transitions that can occur
between different activities. For example, an individual cannot shift directly from a
sitting state to a running state. The human body goes from a sitting state to a standing
state and then to a running state. This sequence of states is actually reflected in the data
captured through wearable sensors. A mechanism that can capture this information
can be used to assist in the continuous classification process. The action grammar
work of Ivanov and Bobick [37] is one way to capture this information. Ivanov
and Bobick [37] in their seminal work on action grammars combine the syntactic
and statistical schools of pattern recognition for the purpose of activity recognition.
Statistical knowledge about the components or low-level primitives is combinedwith
the structural knowledge expressed in the form of grammar. The syntactic knowledge
acts as a constraint to the recognition of individual components as well as directs
the process of recognition of the activity as a whole. The methodology proposed by
them is useful in the context of recognizing the high-level activity.

In the context of simple activity recognition, this type of a grammatical frame-
work can be used to validate the transitions between different activities. For example,
a walking state cannot be reached from a sitting state without passing through the
standing state. Thus the structure of the transition relationship between these activ-
ities can be modeled using action grammars. Adding these types of constraints has
the potential to improve the performance in a continuous scenario. The framework
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Table 3 Transition matrix for the CFG defined for simple activities

Activity Walk Stand Sit Run Lie down

Walk 0.6 0.2 0 0.2 0
Stand 0.3 0.3 0.2 0.2 0
Sit 0 0.2 0.6 0 0.2
Run 0.2 0.2 0 0.6 0
Lie down 0 0 0.2 0 0.8

described in the previous section does not explicitly model the transitions between
the activities and thus a context free grammar (CFG)-based approach may aid the
recognition process.

While Ivanov andBobick’s work describe how to integrate an action grammar into
a statistical recognition framework, they do not discuss how to build the grammar.
It is assumed that the grammar exists or can be derived from the domain. In scenar-
ios where the action is defined by a small group of gestures (such as the examples
described in their work drawing a square), these models can be constructed manu-
ally. To validate the transitions between the different simple activities, a CFG was
manually constructed based on the human constraints in the performance of these
activities. The five simple activities that were considered for this study are sitting,
standing, walking, running and lying down. A CFG that represented the relationship
between the different activities was constructed. Probability values were assigned to
each of the possible transition in the CFG. This probabilistic CFG can be represented
in terms of a first orderMarkov chain transitionmatrix. The entries in thematrix were
crafted manually by counting he transitions between the different activities in the
training dataset. It was assumed that the tendency of a subject to remain in an activ-
ity was higher than moving to another activity. This is reflected in high probability
values for the self-transition elements in the transition matrix. The probability values
for all the other transitions are equally distributed. Table3 describes the probability
values of this transition matrix.

It is interesting to note from the transition matrix that the ‘Stand’ is the unstable
activity amongst the rest as it can easily transit to other activities. The self-transition
probability of this activity is lowest. This is in accordance with what one typically
observes in the real world. This matrix defines finite state automata that can be used
to smooth out the labels post classification. The data from the previous study was
used to study the properties of such a finite state automata. Samples correspond-
ing to cycling and climbing stairs were removed from the continuous stream of
sensor data. The AdaBoost classifier was used for recognizing the individual sam-
ples. The classification probabilities for every time step, derived through boosting
were the input to the finite state automata. The probability values were propagated
through the automata and normalized for every time step. The state resulting in
maximum normalized probability was considered as the activity label for that par-
ticular time step. The average error rates obtained from testing on data collected
from 4 subjects were 0.08 and 0.09 with and without the finite state automata model.
It can be seen that adding the CFG framework improves the accuracy only by a
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marginal amount. The static AdaBoost model itself resulted in very high recogni-
tion rates, thus adding the grammatical framework does not influence the outcome
significantly.

4 Real-Time Classification

Encouraged by the results obtained in the previous section, a real time system for
detecting and recognizing lower body simple activities (walking, sitting, standing,
running, and lying down) using streaming data from tri-axial accelerometers was
designed. The first step is collecting data from the two accelerometers and passing
this information through the preprocessing and segmentation stage. In this second
stage, spurious noise in the data is removed and the continuous stream is broken down
into more manageable segments. Each data segment then passes through the feature
extraction step, where salient features are extracted to characterize the properties
of the raw data. These fixed-length feature vectors are then sent through the clas-
sification stage, where a trained AdaBoost classifier is used to identify the activity
corresponding to the sample and the probability of the classification is computed. The
next sections describe each of the steps of the activity recognition system framework
in more detail.

The unique contribution of the research presented here is the use of data gath-
ered from a limited number of accelerometers. While the performance is marginally
superior to the best of the previous results, this approach is distinct in using only
accelerometer data. It improves on standard feature extraction frameworks by using a
boosted classifier for recognition, resulting in a system that has a very high accuracy
for real-time activity recognition.

4.1 Data Capture

The system relies on off-the-shelf accelerometers (WiTilt v2.5 employing a Freescale
MMA7260Q triple axis accelerometer with class 1 bluetooth) connected to a com-
puter using awireless Bluetooth serial port. These accelerometers are sturdy and have
only minimal data loss over long periods of continuous sampling (<1% for 600s).
Data from three subjects (twomales and one female) was collected. The accelerome-
ters were placed on the right ankle and on left thigh, with the x-axis facing perpendic-
ular to the ground, to maintain consistency across the subjects as illustrated in Fig. 6.
Each subject was asked to perform five different activities (walking, sitting, standing,
running, and lying down) for duration of 1min. The accelerometers were sampled at
the rate of 100Hz. The 60s trial of a subject was then broken down to smaller chunks
each consisting of 100 acceleration samples. This gives a total of 180 chunks per
activity combining the data from all the subjects. Each sample corresponds to the
acceleration data from each of the three axes of the two accelerometers.
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Fig. 6 Accelerometer placement for the real-time simple activity recognition system

4.2 Data Processing and Feature Extraction

The second step is to break the continuous data stream into equal-length segments
of information, which is an approach proposed by Bao et al. [13]. In this framework,
each segment consists of 100 samples and successive segments have an overlap of
50 samples. The sampling rate of the accelerometers is 100Hz, so each segment cor-
responds to 1 second from the data stream. This time interval proved to be sufficient
for analyzing the activities we were trying to recognize (walking, sitting, standing,
running, and lying down). In the next step statistical and spectral features described
in our prior work was extracted. These features are computationally inexpensive and
characterize most of the distinguishing features for separating the activities consid-
ered for the real-time implementation (walking, sitting, standing, running, and lying
down).

4.3 Classification

A threefold cross validation technique was used to learn the optimal activity model.
For each fold, the data corresponding to one subject was used for the testing the
model learned by training the AdaBoost on the remaining data. The classifier stabi-
lized after 250 iterations.We usedAdaBoost as it had resulted in the best performance
in the set of experiments discussed before. The average subject independent accu-
racy obtained in this fashion was around 95.2%.We also experimented with the data
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Fig. 7 Illustration of the real-time system developed by us for recognizing simple activities. The
data streams from the two accelerometers can be seen in the lower size of the application, with the
activity classification probabilities plotted above. The current example shows the subject to be in
the Walking phase

from each accelerometer: when data from only the ankle accelerometer was used, the
accuracy of the classifier dropped to 62%; when data from only the thigh accelerom-
eter was used, the accuracy was 83%. Analysis of the confusion matrix obtained
after the classification revealed that data from the ankle accelerometer was insuffi-
cient for classifying two activities (sitting and standing), while data from the thigh
accelerometer was insufficient for classifying four activities (sitting, lying down,
walking, and running). Clearly, these experiments demonstrate the necessity of mul-
tiple accelerometers for recognizing the activities selected for our system. However,
when one is interested in designing a system for a subset of these activities (for
example, sitting, standing, walking and running), a single accelerometer (located in
the thigh) might result in high classification accuracy. The choice of the location of
the accelerometer is verymuch dependent on the activities that we want to recognize.
There is no clear deterministic way of identifying the optimal location and one has
to rely on empirical investigations for achieving this.

Finally, the data from all three subjects were used to train the classifier, with the
resulting model incorporated into the continuous activity recognition framework.
Figure7 illustrates the system developed by us for recognizing the simple activities.
This classifier has been presented in a number of live demonstrations using volunteers
not in the training database illustrating its robustness and dependability. Figure8
illustrates the real-time classification for an interesting example. The data consists of
a total of approximately 8000 samples (corresponding to 80s), and it can be seen that
the classification is only 84.4% accurate once the activity stabilizes. This particular
subject walked faster than the three training subjects in the database and illustrates
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Fig. 8 An example of real-time continuous classification comparing the output of the AdaBoost
classifier with the ground truth

the most likely type of misclassification (confusion between walking and running)
that can occur using the current classifier. If walking is excluded as a possible ground
truth, the accuracy of the system returns to our typical 98%. It was also noticed that
the probability of classifying the samples as walkingwas low. However, the threshold
that was used to remove transitions and other arbitrary activities was not sufficient
to detect these anomalies. This clearly indicates the need for an adaptive threshold
model for detecting out-of-vocabulary samples.

4.4 Computational Complexity

In this section, the theoretical analysis of the computational complexity of the simple
activity recognition system is first presented. The activity recognition system consists
of two parts— feature extraction and classification. Thus the overall computational
complexity CC of the system can be broken down as follows:

CC = CCF E + CCC L ,

where CCF E corresponds to the complexity of feature extraction and CCC L is the
complexity associated with the classification step. The current real-time system con-
sists of two accelerometers each sampled at 100Hz. Continuous data from these two
sensors were classified using sliding window protocol. The window was of length
100 samples (1 s) with an overlap of 50 samples between successive windows. Sta-
tistical and spectral features consisting of mean, variance, correlation energy, and
entropy were extracted from each window. Multiple AdaBoost classifiers trained on
samples for each of the activity was used to classify the sample.

Let us now look at the order of complexity of the feature extraction step. Table4
lists the set of features considered in this work, along with their computational
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Table 4 Computational complexity of the features extracted,where N is the number of data samples

Feature Order Dimensions

Mean O(N ) 6
Variance O(N ) 6
Correlation O(N 2) 15
Spectral energy O(N log N ) 6
Spectral entropy O(N log N ) 6

complexity. Thus every sliding window requires a total of 12O(N ) + 15O
(
N 2

) +
12O(N log N ) computations for extracting the features. N refers to the number of
accelerometer samples in each window. In the proposed system this value is 100.
The total number of computations for extracting the feature vector is approximately
1.6 e06.

Focusing on the classification step, the AdaBoost classifier was trained using
decision stumps. A decision stump is a primarily a threshold-based classifier and
has a computational complexity of O(1). The maximum number of boosting itera-
tions during training was set to 100. It was observed that some of the classifiers had
learnt less than 100 weak hypotheses. However, for computing the worst case sce-
nario, assume that each of the classifier has 100 hypotheses. Thus the computational
complexity of classifying a frame is 500 (100 × number of classes = 5).

Therefore, the total computational cost of extracting and classifying a single win-
dow can be derived as

CC(N ) = 12O(N ) + 15O(N 2) + 12O(N log N ) + 500O(1)

and in this particular example, for N = 100, this value turns out to be ≈ 1.6e06
computations. Assuming that the device needs D units of battery discharge to com-
plete one computation, the discharge lost by the battery for classifying one window
is 1.6 e06/D. If the complete discharge of the battery happens after T discharges,
the duration of the battery in this system will be T ×D

1.6e 06 s.
Boyd et al. [38] conducts an extensive evaluation on the effect of different para-

meters of an accelerometer-based activity recognition system by identifying Pareto-
optimal points in the operational parameter design space. For a practical solution to
the above question, an experiment similar to the one proposed by Boyd et al. [38] was
designed to study the effect of variation in the key parameters of the system such as
sampling rate, window size and features extracted on the performance of the system.
The computational complexity of the system was measured in terms of normalized
computation time for classifying one window. The performance of the system was
measured in terms of its accuracy. Simple activity data from three subjects were used
in this experiment. Figure9 depicts the impact of these parameter variations on the
accuracy of the system. The accuracy was the average value obtained through three
rounds of subject independent evaluation. The sampling rates for the experiment
were chosen to be 100, 50, 20, and 10Hz. The window size values were 1, 2, 4, 6, 8,
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Fig. 9 Comparing the normalized computational time for different parameters of the system against
the performance measured as accuracy

and 10s. The features set considered in this systemwas divided into statistical (mean,
variance, and correlation) + spectral (energy and entropy), statistical only, mean +
spectral, mean + variance. Each of these combinations of operational parameters is
represented as a point in the plot according to its normalized computational time and
accuracy.

Thepoints inside the ellipse correspond to the scenarioswhere correlation between
the axes was used as a feature for classification. The distinct separation between these
points and other pointswith respect to the computational time clearly supports the fact
that correlation is an expensive feature. At the same time, it is clear that parameters
without the correlation feature did not result in change in the performance of the
system. Thus the contribution of correlation toward the performance of the system
is significantly less compared to other features.

It is very interesting to note that the system is able to support low power consump-
tion without compromising on the performance as indicated by the green diamond
and the blue triangle in the top left corner of Fig. 9. The current parameters (indicated
by the solid lines) are suboptimal in terms of the computational time. However, this
can be rectified by using the operational parameters described by the points on the
top left part of Fig. 9 without compromising on the accuracy. Assuming that one unit
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of battery discharge takes place during the time required for the computation of a
sample; the optimal parameters for the systemwouldmake the battery last 5% longer
than the current operational parameters.

5 Activity Gesture Recognition

Traditional, accelerometer-based activity recognition systemshavebeenused tomon-
itor and assess elderly individuals by detecting and recognizing the high-level ambu-
latory movements (walking, sitting, standing, climbing stairs, etc.) that are part of the
activities of daily life. The steady posture or the repetitive movement that defines the
simple activities facilitates easy and reliable recognition as discussed in thework pre-
sented in the previous chapter. However, complex activities such asmaking a drink or
cooking consists of various complex, short durationmovements (predominantly hand
movements)—activity gestures, along with many interactions with objects. Tracking
these complex activities relies on reliable recognition of both the objects and the
activity gestures.

The primary aim of this section is to support multi-modal systems for tracking the
complex activity rather than to develop an activity recognition system based solely on
activity gestures. There are many approaches in the literature where the overall activ-
ity of an individual is determined using sensors embedded in the environment such
as RFID tags or reed switches. The problem with these approaches is that, while they
provide high-level information about the activity such as making a drink or making
brownie, by gathering information about the objects, they do not reliably detect the
tasks involved in these activities. For example, given that an individual is interacting
with a spoon, kettle, tea bags, and water, it is easy to reliably infer that the activity is
making tea by exploiting object-activity relationships. But mere object information
is insufficient for recognizing the tasks involved in the activity such as pouring milk,
scooping sugar, stirring tea. That is, holding a spoon in hand provides information
about the possible tasks that the person is doingwith the spoon such as scooping sugar,
stirringmilk, ormixing tea, but cannot pin point which among these is he/she actually
performing. This fine level of information is required to effectively predict the future
tasks that an individual might perform. The movement information is essential for
understanding the activity task.While it is probably not feasible to differentiate these
gestures, frommovements in other activities of daily living; given the context that the
current activity is making a drink, is it possible to detect and recognize the activity
gestures is the problemaddressedhere. The context canbederived throughother sens-
ing mechanisms using information such as the location of the individual, or objects
of interaction and is assumed to be given in this work. This section of the chapter
describes an approach for recognizing activity gestures fromwearable accelerometer
data.
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5.1 Gesture Recognition approaches

The recognition of isolated gestures has been studied extensively over years and
many approaches have been proposed to tackle the diverse problems. Given a ges-
ture/activity sample, these approaches classify it as belonging to one of the labels.
They do not attempt to detect where the activity or gesture began or ended in a
continuous stream. In general, these approaches can be broadly divided into three
categories based on the computational framework adopted for classification: Tem-
plate based, generative and discriminative approaches. In the next three sub-sections
a review of the different approaches in these three categories are discussed.

5.1.1 Template-Based Approaches

Template matching approaches are transductive in nature and can be divided into two
categories based on the type of the templates: fixed length and variable length. Fixed
length template matching using k-NN has been quite popular among researchers
for classifying simple activities using accelerometer data. Foerster et al. [1] employ
k-NN for recognizing ambulatory movements using templates defined by the fea-
tures extracted from fixed length window frames of accelerometer data placed at
four different locations on the body. Jafari et al. [27] describe a method to detect the
transitions between ambulation again using feature-based templates in conjunction
with k-NN.Maurer et al. [44] also investigate the performance of k-NN for recogniz-
ing ambulation. All of these approaches first extract features from the acceleration
movement pattern, which in-turn are used as the templates for matching.

Variable length template matching is performed using a simple length-based
normalization or approaches based on the more advanced dynamic time warping
(DTW) as demonstrated by Sakoe et al. [45]. Corradini et al. [46] use DTW as a
matching technique for determining the similarity between the unknown input and
a set of previously defined templates for video-based sign language recognition.
Darrell and Pentland [47] employ DTW for matching space-time motion trajecto-
ries associated with manipulating objects for recognizing isolated gestures. Niyogi
and Adelson [48] and Gavrila and Davis [49] use DTW to match sequences of
joint model configurations obtained from image sequences. Veeraraghavan et al.
[50] propose a DTW method for action recognition that allows better modeling of
variations within model sequences. More recently, Alon et al. [51] propose a con-
strained dynamic programming-based DTW approach for spotting gestures from
continuous data streams. The approach proposed by them unifies the spatial and
temporal characteristics of the sample for the purpose of matching. While the DTW-
based approach is quite popular among the computer vision community, there are
only a few approaches that employ DTW for accelerometer-based movement pattern
recognition.
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5.1.2 Generative Approaches

Generative models are used in machine learning for either modeling data directly
(i.e., modeling observed draws from a probability density function), or as an inter-
mediate step to forming a conditional probability density function. A conditional
distribution can be formed from a generative model through the use of Bayes’ rule.
Generative models contrast with discriminative models, in that a generative model
is a full probability model of all variables, whereas a discriminative model provides
a model only of the target variable conditional on the observed variables. Examples
of generative models include Gaussian mixture model, hidden Markov model and
naive Bayes.

Starner and Pentland [52] implemented an HMM-based system for recognizing
sentence-level American Sign Language (ASL) without explicitly modeling fingers
from video sequences. Bregler et al. [53] learn a kind of switching-state HMMover a
set of autoregressive models, each approximating linear motions of blobs in a video
frame. Oka et al. [54] propose HMM-based recognition of gestures from motion
trajectories of finger tips tracked in a video stream. Gandy et al. [55] use HMM for
modeling hand gestures from motion trajectories determined using an IR camera.
Lester et al. [7] employ HMM as a post processing tool to smoothen out the recogni-
tion results of an AdaBoost classifier for detecting human activities using data from
on-body sensors. Olguin and Pentland [30] explore HMM for recognizing ambula-
tory movements from inertial sensor data obtained from different on-body locations.
Ward et al. [15] use HMM on top of features obtained from Linear Discriminant
analysis for recognizing activities in a workshop such as sawing, drilling, etc. Junker
et al. [16] use HMM for recognizing gestures from body-worn inertial sensors in
their two-stage user activity detection algorithm. Al-ani et al. [19] model walking
speeds and transitions between different ambulation using a HMM. Mannil et al.
[75] propose a methodology for rejecting irrelevant movements from the dataset
using a Hidden Markov model. The goal of their approach is to filter irrelevant
movements from relevant postural changes from data collected through wearable
accelerometers.

Various extensions to the more general class of dynamic Bayesian networks
(DBN)havebeenproposed toovercome limitations ofHMMas illustratedbyGhahra-
mani et al. [57]. Brand et al. [56] learn coupled HMMs tomodel interactions between
several state variables. They use a two state coupled HMM to recognize interactions
between left and right handmotions duringTai Chi exercises. Park andAggarwal [58]
use a complex DBN to model interactions between two persons, such as hugging,
handshaking, and punching. Peursum et al. [59] model interactions between people
and objects in their work using Bayesian networks. Nguyen et al. [60] propose to use
hierarchical HMMs for video activity recognition. Jojic et al. [61] and Toyama and
Blake [62] extend HMMs with separate latent states for posture and view for pose
and view invariant activity recognition.
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5.1.3 Discriminative Approaches

In contrast to their generative counterparts, discriminative approachesmodel the con-
ditional probability of the target variable given the observations. These approaches
typicallymodel the boundary separating the data samples between two classes.While
this genre of techniques is commonly used for a variety of classification and regres-
sion tasks, it is applicable to the problem of recognizingmovement patterns, when the
pattern is described in terms of a feature that implicitly encodes the spatio-temporal
variation in the movement pattern.

Cui and Weng [63] discuss an appearance based multidimensional discriminant
analysis approach for selecting linearly discriminating features for hand gesture
recognition using a recursive partition tree approximator. Lester et al. [46] use
AdaBoost to extract probabilities for classifying activities using data from multiple
modalities. They also use AdaBoost as a feature analyzer to determine the impor-
tance of the different modalities for activity recognition. Ong et al. [64] propose a
modified version of the AdaBoost algorithm using decision trees as weak learners
for recognizing hand shapes (gestures) from video streams. Pentney et al. [65] dis-
cuss a virtual evidence-based boosting algorithm for recognizing activities by fusing
accelerometer data with RFID tags. Yang et al. [66] use SVM for classification of
static or short duration hand gestures for improving the overall performance of the
American Sign Language recognition system. Morency and Darrell [67] discuss an
intelligent user interface through head gestures classified using SVM.

A significant amount of recent work has shown the power of discriminative mod-
els such as conditional random fields (CRF) for specific sequence labeling tasks.
CRF use an exponential distribution to model the entire sequence given the observa-
tion sequence [68–70]. This avoids the independence assumption between observa-
tions, and allows non-local dependencies between state and observations. A Markov
assumption may still be enforced in the state sequence, allowing inference to be
performed efficiently using dynamic programming. CRFs assign a label for each
observation (e.g., each time point in a sequence), and they neither capture hidden
states nor directly provide a way to estimate the conditional probability of a class
label for an entire sequence. Sminchisescu et al. [70] applied CRFs to classify human
motion activities (i.e., walking, jumping, etc.) and showed improvements over an
HMM approach. When the sequence under consideration has distinct sub-structure,
models such as hidden-state CRFs (HCRF) [71] that exploit hidden state is advan-
tageous. Wang et al. [71] propose a gesture recognition technique based on HCRF,
which can estimate a class given a segmented sequence. Since they are trained on sets
of pre-segmented sequences, these HCRF models capture only the internal structure
and not the dynamics between gesture labels. Morency et al. [72] proposed latent-
dynamic hidden CRFs (LDCRFs) for vision based gesture recognition. LDCRFs are
a framework for detecting and recognizing sequential data, which can model the
sub-structure of a label and learn dynamics between labels.

One can thus see that there has been substantial amount of work in the literature on
gesture recognition, which is predominantly vision based. There has not been much
work in exploring the feasibility of these approaches for accelerometer-based gesture
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Table 5 The mock and semi-naturalistic scenarios used for data capture

Activity gesture Mock scenario (CS1) Semi-naturalistic
scenario(CS2)

Pour Take the glass that is full and pour
its contents into the empty
glass. Pour a small quantity
every time.

Pour the water from the glass.

Scoop Use a spoon to scoop contents
from the glass that is full into
the empty glass

Use two scoops of powder for
making the drink

Unscrew cap Unscrew the lid of the water bottle.
Pause for a couple of seconds.
Screw on the lid on the bottle

Open the powder drink jar, and
close it after you finish using it

Stir Take the spoon and stir the
contents of the glass for 30 s

Ensure the powdered drink has
dissolved by stirring the
mixture

Lift to Mouth Take an empty glass and pretend
that you are drinking water
from the glass by taking several
short sips

Drink the glass of beverage that
was prepared

recognition. In this sectionwe evaluate the performance of the classifiers from each of
the three genres for recognition of activity gestures. The focus is on the recognition
of gestures that build the basis for the inference of more abstract activities. The
primary aim is to support complex activity spotting systems rather than to develop
an activity spotting system based solely on hand gestures. Nonetheless, this work
shows how, for suitable domains, good performance can be achieved without any
additional information.

5.2 Data Collection

Data for five activity gestures namely—lift to mouth, pour, stir, scoop, and unscrew
cap were collected using the wearable accelerometers. Two different scenarios were
used for collecting these data. While a semi-naturalistic mode of collecting the data
that permits a greater degree of freedom to the subject in performing the activity is
proposed by Bao et al. [13], for the activity gestures considered in this work it is not
practical for a subject to perform the same activity a number of times in one session.
Instead, an alternative data capture session was devised during which the subjects
enacted the samemovementswithmock objects a number of times, thereby providing
sufficient data samples for training. For each of the five gestures, alternate scenarios
representing the actual movement needed to perform the activity were designed. The
mock scenarios are explained in Table5. Explicit instructions were given on how
to perform each movement. Each subject was asked to perform each of the actions
20 times. Figure10 describes the settings for the data capture session, and a video
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Fig. 10 a Illustrates the different locations for placing the accelerometer, bDepicts the data capture
setup and c shows the annotation software that synchronizes the video and accelerometer data

camera was used to record the sessions. The subject started in a ‘rest’ state, where the
hands rested on the table, and the subject began the action after receiving a cue from
the experimenter. The video was used off line to synchronize the accelerometer data
and to extract relevant portions from the continuous data stream that corresponded to
the actions. In addition data was also collected from the subjects performingmultiple
trials of the actual activity in an unrestricted manner. This consisted of two sessions
performed during different days. During each session the subjects were asked to
make a glass of powdered drink and drink it, twice. The video recordings from these
sessions were later used for annotating the actions.

All the subjects in our experiments were college students aged 22–28 years, and
all of the subjects were right-handed. Three accelerometers were used for data col-
lection. The first accelerometer was placed on the wrist of the right hand and the
second accelerometer was placed just above the right elbow.We observed during our
experimental data capture sessions that subjects sometimes used their left hand as
support during the actions, so the third accelerometer was placed on the left wrist.
Each of the accelerometer-sensing units was attached using Velcro tapes.

5.3 Feature Analysis

Figure11 illustrates the samples collected from a single subject using the mock
setup (activity gesture set CS1). These signals were obtained from the accelerometer
placed on the right wrist. The most evident observations are that samples are of vary-
ing length and that each action can be distinguished by observing the acceleration
patterns. For example, unscrewing the cap can be defined by a number of rapid repet-
itive movements, while slower repetitive movements represent stir. A dip in the z-
axis acceleration appears for the actions scoop and lift to mouth, but the y-axis values
increase for scoop and fall significantly for lift to mouth. Similar observations can
be made for other actions, leading to the conclusion that it is possible to differentiate
these actions using the accelerometer data we gathered.
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Fig. 11 The action samples collected from one subject using the accelerometer placed on the right
wrist. The RGB lines stand for the x-, y-, and z- axis, respectively. The continuous stream of data
was annotated offline using the video recording. a Samples recorded from a single data capture
session. b One representative sample for each of the actions

To analyze these gestures, several statistical and aggregate spectral features:mean,
variance, correlation, spectral energy, and spectral entropy were extracted. The spec-
tral energy value was computed as the sum of the squared amplitude of discrete FFT
coefficients, ignoring the DC coefficient. Similarly, the spectral entropy was com-
puted as the normalized information entropy of the magnitudes of the discrete FFT
coefficients, also ignoring the DC coefficient. Since the DC coefficient represents
the mean of the signal, and is already being captured explicitly, we ignored it while
computing these additional features. Each feature was computed for each axis of
each accelerometer. Pair wise correlation between all the accelerometer axes (across
all accelerometers) was also computed.

The feature analysis presented here is based on the data collected from the right
wrist only. The problem of variable length sequences was circumvented by extracting
fixed length feature vectors (mean: 6, variance: 6, correlation: 15, energy: 6, entropy:
6, totality of dimensions: 39) from the sequence. Similarity of samples from different
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Fig. 12 Principal component analysis of activity gesture samples from all the subjects

subjects was visualized by conducting a principal component analysis (PCA) on the
feature vectors. The distribution of the samples belonging to the different classes
reduced to a 3-dimensional space is illustrated in Fig. 12. The action lift to mouth
represented by the cross marks is distinct, but there was some overlap between the
other actions (probably indicating that each subject performed the actions differ-
ently). Data points, belonging to the same class and the same subject, obtained after
PCA, resulted in tight clusters. The multiple clusters belonging to the same class
corresponded to different subjects.

These features were further analyzed using the AdaBoost framework. AdaBoost
works by iteratively calling a certain weak learning algorithm known as the base
learner to arrive at a classifier that gives better than ‘by chance’ accuracy, and con-
stantly updates the distribution of weights of the samples after every iteration. If the
base learner is a decision stump, then the process of boosting results in a number of
weighted decision stumps, which when combined linearly gives the final class label.
These weights associated with the decision stumps can further be used to derive
weights for each of the feature dimensions. Feature dimensions with relatively high
weights can then be considered to characterize the corresponding gestures more
effectively. This process was adopted to study the importance of the different fea-
tures extracted with respect to the activity gestures.

Based on the distribution of weights computed through AdaBoost, for every
gesture, features with weights, twice or more than that of the uniform weights
were selected. Table6 presents the features that were selected through this process.
It is interesting to note that with the exception of the gesture unscrew cap, all
other gestures have nearly 10 dominant features (out of a total of 39) contribut-
ing to nearly 60% of the total weight. The significance of these features was further
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Table 6 Dominant features for each of the gestures as calculated using AdaBoost (X1, Y1, Z1
and X2, Y2, Z2 are the X, Y, and Z axes of the accelerometers placed on the wrist and elbow,
respectively)

Activity gesture Dominant feature Aggregate weight

Lift to mouth Mean (Z1), variance (X1, X2), correlation (X1 and
Y1, Y1 and Z1, Y1 and X2)

57.59

Pour Mean (X1), correlation (X1 and Z1, Y1 and Z1, Z1
and X2, Z1 and Z2, X2 and Z2)

65.88

Scoop Mean (Y1, Z1, Y2), correlation (Y2 and Z2), entropy
(Z1)

68.56

Unscrew cap Mean (Z2), correlation (X1 and Y1, X1 and X2, Y1
and X2)

28.99

Stir Mean (X2, Z2), variance (Y1), correlation (X1 and
Z1), energy (Y1, Z1), entropy(Y1)

59.94

measured, by observing the classification performance by training AdaBoost only
on these features. The AdaBoost trained on this reduced feature set resulted in an
accuracy of 89.12%, which was approximately the same accuracy obtained using
all the features. This clearly validates the use of AdaBoost as a feature selection
mechanism.

It was also noted that the features selected were intuitive in characterizing the
gestures. As an example, for the activity gesture lift to mouth that is represented
by the variations in the accelerometer data on the wrist, the majority of the features
selected corresponded to this characterization. A similar observation was made with
respect to all the other gestures as well, except for unscrew cap. While one would
expect the energy and entropy features for the unscrew cap to have high significance
due to the repetitive movement of the hand, low weight values were observed for
these features. This probably also indicates a need to explore other features, for
understanding some of these gestures.

5.4 Classification: Results and Discussion

The performance of k-NN a template matching model, HMM a generative model
and AdaBoost a discriminative model was evaluated using three scenarios:

• Subject Independent Evaluation: Thiswas performed using a leave one out strategy
where data from four subjects was used as the training data to be tested on the
fifth subject, in a round robin fashion. This evaluation provides the most difficult
classification scenario for the classifiers.

• Subject Adaptive Evaluation: This was also performed using a leave one out strat-
egy, with a modification. In addition to the data from four subjects, 25% the data
from the fifth subject was also used during training and the resulting classifier was
tested on the remaining 75% of the samples of the 5th subject.
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Fig. 13 Training error using AdaBoost across iterations for the different activity gestures

• Subject Dependent Evaluation: In this scenario, part of the data (50%) from a
subject was used for training and the remaining for testing. This can be correlated
to a scenario where the system has been personalized for a single subject and is
being evaluated for this subject alone.

AdaBoost had demonstrated excellent results in previous experimentswith similar
accelerometer data for ambulatory motion [52]. Each AdaBoost classifier passed
through a maximum of 100 iterations. The training error reduced exponentially over
the iterations and is illustrated in Fig. 13. It can be seen that there was a uniform
decrease in the training error across all the actions.

As in the case of AdaBoost, a HMM was trained for each of the classes and the
label with maximum likelihood estimated by the classifiers was chosen as the win-
ner. The statistical and spectral features were extracted at a rate of 10Hz (determined
through empirical evaluation) from the data. This stream of features was used to
train the HMMs. Each state in the HMM was modeled using a Gaussian mixture
model. The parameters for HMM namely the number of Gaussians at every state and
the number of hidden states—was decided using a trial and error method of cross
validation. The optimal value for the number of hidden states and the number of
GMMs was found to be 3 and 3, respectively. The same HMM parameters were used
for training all the classes.

Since k-NN was a common technique used for classifying ambulatory move-
ments, we also experimented with it for classifying hand movements. Dynamic Time
Warping-based distance techniques that can handle data of varying length need exten-
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Fig. 14 Subject independent, adaptive, and dependent accuracies for AdaBoost, HMM and k-NN
using the data from the accelerometer on right wrist

Table 7 Aggregate confusion matrix obtained for AdaBoost classification

Activity gesture Lift to mouth Pour Scoop Unscrew cap Stir

Lift to mouth 95 0 5 0 0
Pour 3 94 3 0 0
Scoop 0 0 92 2 3
Unscrew cap 0 0 8 85 4
Stir 0 0 5 5 65

sive computation and sowere not considered. Instead,we chose to use the fixed length
features and a Euclidean distance based k-NN.

The subject independent, adaptive, and dependent accuracies obtained for ges-
ture dataset are summarized in Fig. 14. Overall, recognition accuracy is highest for
AdaBoost in the subject independent and adaptive evaluations with 90 and 95%
accuracy. HMMs were the second most accurate algorithm. The 14 lower recogni-
tion accuracy for AdaBoost for the subject dependent evaluation can be attributed
to the reduction in the number of training samples. K-NN resulted in a mere 43%
subject independent accuracy.

Table7 shows the aggregate confusion matrix for AdaBoost classifier based on
the leave one out subject independent evaluation. Recognition accuracies for the
stir action were 68%, while lift to mouth, pour, and scoop had significantly better
accuracies of 95, 94, and 92%, respectively. There was a notable confusion between
the actions stir and unscrew cap, both of which involve repetitive patterns with only
marginal differences in the rate at which the action is performed. Thus, there is
a chance of miss-classification when stir is performed quickly or unscrew cap is
performed slowly.
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Overall, the recognition accuracywas significantly higher for AdaBoost, probably
indicating the need for a discriminative classifier that models the boundaries between
the classes for recognition. The high accuracy obtained for the leave one out subject
independent evaluation process indicates the presence of strong correlations in the
action patterns of different subjects. In addition, since this evaluation used a large
training data set (from 4 subjects), the training process would have resulted in a more
generalized classifier.

5.4.1 Accelerometer Configuration

It is evident from the analysis of the ambulatory movements that placement of the
accelerometers plays a crucial role in determining the performance of the system.
This holds true for handmovements aswell. The discriminatory power of the different
accelerometer locations on the hand was evaluated using the AdaBoost classifier. As
mentioned before, three locations for placing the accelerometers: right wrist, right
elbow, and left wrist were used. Since all the subjects were right-handed, the right
wrist is the most intuitive location to place the accelerometer. While the palm would
be the position that can discriminate the most between the different actions, placing
the accelerometer on the palm would restrict the individual’s movement and hence
was not used.

Table8 summarizes the recognition accuracies obtained using data from these
three accelerometer positions. The best performance was achieved with a combina-
tion of accelerometers on the right wrist and the right elbow. This is intuitive, as
the subjects used their right hand for all the actions, resulting in a strong correla-
tion between the motion at the wrist and the elbow. Thus monitoring the joints that
determine the movement of the hands is useful for recognizing the actions involved
with mixing and drinking a powdered beverage. However, movements from the right
elbow alone are not sufficient to classify the actions. While our initial hypothesis
was that data from the accelerometer on the left wrist, would aid in classification,
surprisingly adding acceleration information from the left wrist reduced the perfor-
mance. A review of the video recordings highlighted one possible explanation for
this result: not all subjects used their left hand, nor did subjects use their left hands
in a similar manner during the recorded activities.

Table 8 Classification accuracies for different configurations of the accelerometers

Accelerometer configuration Classification accuracy

Right wrist 89.31
Right elbow 74.90
Right elbow and wrist 90.01
Right and left wrist 65.45
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Table 9 Isolated recognition performance on CS2 dataset through classifiers trained on CS1, CS2,
and a combination both the datasets

Classifiers Gesture data from
only CS1

Gesture data from
only CS2

Combination of CS1
and CS2 datasets

AdaBoost 0.74 0.68 0.86

5.4.2 Performance Semi-Naturalistic Scenario Activity Gesture Dataset

The same experiment was repeated with the data collected in CS2 corresponding
to the real-life scenario. Three training strategies were used to evaluate the perfor-
mance in this scenario. In the first strategy, models learnt from data collected using
CS1 were used to test samples from CS2. In the second strategy, samples from two
trials of every subject obtained from CS2 were used for training. However, since the
number of training samples available from data collected under CS2 is very less,
samples collected from CS1 were also included in training in the third strategy. For
training scenarios that used data from CS2, the trained models were tested on the
remaining trials of the subject. The two test trials was chosen in a round robin fashion,
for determining the most generalized accuracy in the given situation. The isolated
recognition accuracies for each of the models are shown in Table9. As expected,
there is a drop in performance of AdaBoost when trained on samples using CS1.
Since there is an inherent difference in the movement patterns between the scenarios
as CS2 corresponds to an unconstrained environment. The accuracies obtained using
models trained on data collected in real-life scenarios are also poor. This is probably
because of the lack of sufficient number of training samples. Models were trained
with approximately 10–20 samples per class. However, when the samples from both
CS1 and CS2 were combined, the performance of AdaBoost improved drastically
clearly indicating some similarity in the movement samples from both the scenarios
that can assist in the learning process.

6 Conclusion

This chapter introduces an application of Body Sensor Networks that deals with
recognizing simple ambulatory activities from wearable accelerometer data. It
presents the generic framework for processing sensor data to recognize activities. It
evaluates the effectiveness of different discriminative classifiers for simple activity
recognition from low-resolution accelerometer data. A technique for post classifica-
tion label smoothing based on the temporal continuity of the data was also discussed.
This proposed technique for adding temporal continuity to the classification yielded
promising results with about 2.5–3% improvement in accuracy. It also discusses a
methodology for taking into consideration human factors for improving the classi-
fication performance in the continuous scenario. Based on these results, a real-time
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simple activity recognition system was designed and implemented. The proposed
real-time system is able to accurately recognize the simple activities in real-time
achieving a performance superior to existing approaches in the literature. The com-
plexity of the system was discussed both in terms of the computational complexity
and normalized time for computation for classifying a single sample.

This chapter also discussed the application of BSN for recognizing activity ges-
tures. These gestures symbolize different spatio-temporal variations and pose a sig-
nificant problem for automatic recognition. The performance of different discrimina-
tive, generative-, and template-based classification approaches for recognizing these
gestures was studied on the gesture datasets collected from wearable accelerome-
ters. The results indicate a superior performance of discriminative classifiers trained
on statistical features extracted from the accelerometer data over generative and
template-based approaches. This establishes the feasibility of accelerometer-based
activity gesture recognition.

There have been a few recent studies similar to the on discussed in this chapter
that use commercially available mobile devices to collect data for activity recogni-
tion. Kwapisz et al. [39] use an Android-based smart phone for recognizing simple
activities, while Yang et. al [40] and Brezmes et. al [41] employ a Nokia N95 device
for achieving the same goal. Hache et. al [42] use an accelerometer integrated in
a Blackberry Bold 900 for detecting changes in the state of the subject. In a more
recent work, Dernbach et. al [43] explore the ability of a Samsung Captivate smart
phone for recognizing both simple and complex activities of daily living. Even with
the rapid advances made by in the field of body sensor networks, there still remain
many computational research challenges that have to be solved for integrating the
BSN applications into the real world. These challenges include, improving the clas-
sification performance on data being sampled at a significantly lower sample rate,
reducing the power consumed by the sensor, building on-chip computational algo-
rithms for processing the data for reducing the data transmission from the sensors
and handling the variations resulting from the wearability aspect of these sensors
such as sensor slippage [76], orientation, and location changes. Current research in
this area is focused on addressing some of these challenges.

Acknowledgments The authorswould like to thankColin Juillard,DirkColbry,AshokVenkatesan,
and Rita Chattopadhyay for the assistance they rendered in designing the real-time system and for
collecting activity data from different subjects. They also would like to thank Stephen Intille for
sharing the accelerometer-based activity data collected by his group which was used to conduct
some of the experiments in this chapter.

References

1. F. Foerster, S. Smeja, J. Fahrenberg, Detection of posture and motion by accelerometery: a
validation study in ambulatory monitoring. J. Comput. Hum. Behav. 15, 571–583 (1999)

2. M. Uiterwaal, E.B.C. Glerum, H.J. Busser, R.C. van Lummel, Ambulatory monitoring of
physical activity in working situations, a validation study. J. Med. Eng. Technol. 22(4), 168–
172 (1998)



602 N. C. Krishnan and S. Panchanathan

3. M.J. Mathie, A.C.F. Coster, N.H. Lovell, B.G. Celler, Detection of daily physical activities
using a triaxial accelerometer. J. Med. Biol. Eng. Comput. 41, 296–301 (2003)

4. M.J. Mathie, A.C.F. Coster, N.H. Lovell, B.G. Celler, S.R. Lord, A. Tiedmann, A pilot study
of long-term monitoring of human movements in the home using accelerometry. J. Telemed.
Telecare 10(3), 144–151 (2004)

5. R.K. Ibrahim, E. Ambikairajah, B.G. Celler, N.H. Lovell, Time-frequency based features for
classification of walking patterns, inProceedings of International Conference on Digital Signal
Processing, pp. 187–190 (2007)

6. N.C. Krishnan, S. Panchanthan, Analysis of low resolution accelerometer data for continuous
human activity recognition, in Proceedings of International Conference on Acoustics, Speech
and Signal Processing, pp. 3337–3340 (2008)

7. J. Lester, T. Choudhury, N. Kern, G. Borriello, B. Hannaford, A hybrid discrimina-
tive/generative approach for modeling human activities, in Proceedings of International Joint
Conference on Artificial Intelligence, pp. 766–772 (2005)

8. J. Suutala, S. Pirtikangas, J. Roning,Discriminative temporal smoothing for activity recognition
from wearable sensors, in Proceedings of International Symposium on Ubiquitous Computing
Systems, 2007), pp. 182–195

9. N. Ravi, N. Dandekar, M. Preetham, M.L. Littman, Activity recognition from accelerome-
ter data, in Proceedings of International Conference on Innovative Applications of Artificial
Intelligence, IAAI, pp. 1541–1546 (2005)

10. N. Bidargaddi, A. Sarela, L. Klingbeil, M. Karunanithi, Detecting walking activity in cardiac
rehabilitation by using accelerometer, inProceedings of International Conference on Intelligent
Sensors, Sensor Networks and Information, pp. 555–560 (2007)

11. N.C. Krishnan, D. Colbry, C. Juillard, S. Panchanathan, Real time human activity recognition
using tri-axial accelerometers, in Proceedings of Sensors Signals and Information Processing
Workshop (2008)

12. D.M. Karantonis, M.R. Narayanan, M.J. Mathie, N.J. Lovell, B.G. Celler, Implementation of a
real-timehumanmovement classifier using a tri-axial accelerometer for ambulatorymonitoring.
IEEE Trans. Inf. Technol. Biomed. 10(1), 156–167 (2006)

13. L. Bao, S.S. Intille, Activity recognition from user-annotated acceleration data, in Proceedings
of International Conference on Pervasive Computing, vol. 3001, pp. 1–17 (2004)

14. R.Muscillo, S. Conforto, M. Schmid, P. Caselli, T. D’Alessio, Classification of motor activities
through derivative dynamic time warping applied on accelerometer data, in Proceedings of
International Conference on Engineering in Medicine and Biology, pp. 4930–4933 (2007)

15. J.A. Ward, P. Lukowicz, G. Troster, T.E. Starner, Activity recognition of assembly tasks using
body worn microphones and accelerometers. IEEE Trans. Pattern Anal. Mach. Intell. 28(10),
1553–1567 (2006)

16. H. Junker, O. Amft, P. Lukowicz, G. Toster, Gesture spotting with body worn inertial sensors
to detect user activities. Pattern Recogn. 41(6), 2010–2024 (2008)

17. J.F. Knight, H.W. Bristow, S. Anastopoulou, C. Baber, A. Schwirtz, T.N. Arvantis, Uses of
accelerometer data collected from a wearable system. J. Pers. Ubiquit. Comput. 11(2), 117–
132 (2007)

18. T. Huynh, B. Schiele, Analyzing features for activity recognition, in Proceedings of Joint
Conference on Smart Objects and Ambient Intelligence: Innovative Context-Aware Services:
Usages and Technologies, pp. 159–163 (2005)

19. T. Al-ani, Q. Trang Le Ba, E. Monacelli, On-line automatic detection of human activity in
home using wavelet and hidden markov models scilab toolkits, in Proceedings of International
Conference on Control Applications, pp. 485–490 (2007)

20. K.V. Laerhoven, O. Cakmakci, What shall we teach our pants, in Proceedings of International
Symposium on Wearable Computers (2000)

21. T. Huynh, B. Schiele, Unsupervised discovery of structure in activity data using multiple
eigenspaces, in Proceedings of International Workshop on Location and Context Aware-
ness3987, 151–167 (2006)

22. http://www.sparkfun.com/commerce/categories.php

http://www.sparkfun.com/commerce/categories.php


15 Body Sensor Networks for Activity and Gesture Recognition 603

23. http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=ACCLOWG&tid=vanxyz
24. http://fiji.eecs.harvard.edu/Mercury
25. http://wockets.wikispaces.com/Wockets+at+Stanford
26. E.Munguia Tapia, S.S. Intille, L. Lopez, K. Larson, The design of a portable kit of wireless sen-

sors for naturalistic data collection, inProceedings of PERVASIVE 2006 (Springer, Heidelberg,
2006)

27. R. Jafari, W. Li, W. Bajcsy, S. Glaser, S. Sastry, Physical activity monitoring for assisted living
at home, in Proceedings of International Workshop on Wearable and Implantable Body Sensor
Networks13, 213–219 (2007)

28. N. Kern, B. Schiele, A. Schmidt, Multi-sensor activity context detection for wearable comput-
ing, in Proceedings of European Symposium on Ambient Intelligence, pp. 220–232 (2003)

29. F.R. Allen, E. Ambikairajah, N.H. Lovell, B.G. Celler, An adapted Gaussian mixture model
approach to accelerometery based movement classification using time-domain features, in
Proceedings of International Conference on Engineering in Medicine and Biology Society
(2006)

30. D. Olgun, A. Pentland, Human activity recognition: accuracy across common locations for
wearable sensors, in Proceedings of International Symposium on Wearable Computing (2006)

31. C.C. Tseng, D. Cook, Mining from time series human movement data, in Proceedings of
International Conference on Systems, Man, and Cybernetics, pp. 3241–3243 (2006)

32. H.M. Yang, N. Ahuja, M. Tabb, Extraction of 2Dmotion trajectories and its application to hand
gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1061–1074 (2002)

33. V.M. Mantyla, J. Mantyjarvi, T. Seppanen, E. Tuulari, Hand gesture recognition of a mobile
device user, in 2000 IEEE International Conference on Multimedia and Expo, 2000, ICME
20001, 281–284 (2000)

34. R.O. Duda, P.E. Hart, D.G. Stork,Pattern Classification (JohnWiley&Sons, NewYork, 2001),
pp. xx + 654, ISBN: 0-471-05669-3

35. T. Joachims, in Making large-Scale SVM Learning Practical, ed. by B. Schölkopf, C. Burges,
A. Smola. Advances in Kernel Methods—Support Vector Learning (MIT-Press, Cambridge,
1999)

36. P. Komarek, A. Moore, Fast Robust Logistic Regression for Large Sparse Datasets with Binary
Outputs (2003)

37. Y.A. Ivanov,A.F.Bobick,Recognition of visual activities and interactions by stochastic parsing.
Trans. Pattern Anal. Mach. Intell. 22(8), 852–872 (2000)

38. J. Boyd, H. Sundaram, A. Shrivastava, Power-accuracy tradeoffs in human activity transition
detection. DATE 1524–1529 (2010)

39. J.R. Kwapisz ,M.W. Weiss, S.A. Moore, Activity recognition using cell phone accelerometers,
in Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor
Data, Washington DC, pp 10–18 (2010)

40. J. Yang, Toward physical activity diary: Motion recognition using simple acceleration features
with mobile phones, in First International Workshop on Interactive Multimedia for Consumer
Electronics at ACM Multimedia (2009)

41. T. Brezmes, J.L. Gorricho, J. Cotrina, Activity Recognition from accelerometer data on mobile
phones, in IWANN Proceedings of the 10th International Conference on Artificial Neural
Networks, pp. 796–799 (2009)

42. G. Hache, E.D. Lemaire, N. Baddour, Mobility change-of-state detection using a smartphone-
based approach, in Proceedings of International Workshop on Medical Measurements and
Applications, pp. 43–46 (2010)

43. S. Dernbach, B. Das, N.C. Krishnan, B.L. Thomas, D. Cook, Activity recognition on smart
phones, in IEEE International Conference on Intelligent Environments (2012)

44. U.Maurer,A. Smailagic,D.P. Siewiorek,M.Deisher,Activity recognition andmonitoringusing
multiple sensors on different body positions, in Proceedings of the International Workshop on
Wearable and Implantable Body Sensor Networks, pp. 113–116 (2006)

45. S. Hiroaki, Dynamic programming algorithm optimization for spoken word recognition. IEEE
Trans. Acoust. Speech Signal Processing 26, 43–49 (1978)

http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=ACCLOWG&tid=vanxyz
http://fiji.eecs.harvard.edu/Mercury
http://wockets.wikispaces.com/Wockets+at+Stanford


604 N. C. Krishnan and S. Panchanathan

46. A. Corradini, Dynamic time warping for off-line recognition of a small gesture vocabulary, in
Proceedings of the IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and
Gestures in Real-Time Systems, p. 82 (2001)

47. T. Darrell, A. Pentland, Space-time gestures, in IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, pp. 335–340 (1993)

48. S.A. Niyogi, E.H. Adelson, Analyzing and recognizing walking figures in xyt, in IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 469–474 (1994)

49. D.M. Gavrila, L.S. Davis, Towards 3-d model-based tracking and recognition of human move-
ment: a multi-view approach, in International Workshop on Automatic Face- and Gesture-
Recognition. IEEE Computer Society, pp. 272–277 (1995)

50. A. Veeraraghavan, R. Chellappa, A.K. Roy-Chowdhury, The function space of an activity, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 959–968
(2006)

51. A. Jonathan, A unified framework for gesture recognition and spatiotemporal gesture segmen-
tation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1685–1699 (2008)

52. T. Starner, A. Pentland, W. Joshua, Real-time american sign language recognition using desk
wearable computer based video. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1371–1375 (1998)

53. C. Bregler, Learning and recognizing human dynamics in video sequences, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, p. 568 (1997)

54. K. Oka, Y. Sato, H. Koike, Real-time fingertip tracking. IEEE Gesture Recogn. 22, 64–71
(2002)

55. T. Starner, J. Auxier, D. Ashbrook, M. Gandy, The gesture pendant: a self-illuminating, wear-
able, infrared computer vision system for home automation control and medical monitoring,
in Fourth International Symposium on Wearable Computers, pp. 87–94 (2000)

56. M. Brand, Shadow puppetry, in Proceedings of the International Conference on Computer
Vision2, 1237 (1999)

57. Z. Ghahramani, Learning dynamic Bayesian networks. Lect. Notes Comput. Sci. 1387, 168
(1998)

58. S. Park, J.K. Aggarwal, Recognition of two-person interactions using a hierarchical bayesian
network, ACM SIGMM International Workshop on Video Surveillance, pp. 65–76 (2003)

59. P. Peursum, G. West, S. Venkatesh, Combining image regions and human activity for indirect
object recognition in indoor wide-angle views. Proc. IEEE Int. Conf. Comput. Vis. 1, 82–89
(2005)

60. N.T. Nguyen, D.Q. Phung, S. Venkatesh, H. Bui, Learning and detecting activities from move-
ment trajectories using the hierarchical hiddenmarkovmodels. Proc. IEEEComput. Soc. Conf.
Comput. Vis. Pattern Recogn. 2, 955–960 (2005)

61. N. Jojic, N. Petrovic, B.J. Frey, T.S. Huang, Transformed hidden markov models: estimating
mixture models of images and inferring spatial transformations in video sequences, in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 26–33
(2000)

62. K. Toyama, A. Blake, Probabilistic Tracking, with Exemplars in a Metric Space. Int. J. Com-
puter Vision, Issue 1. Vol. 48, 9–19 (2002)

63. Y. Cui, J. Weng, Appearance-based hand sign recognition from intensity image sequences.
Comput. Vis. Image Underst. 78(2), 157–176 (2000)

64. E. Ong, R. Bowden, A boosted classifier tree for hand shape detection, IEEE International
Conference on Automatic Face and Gesture Recognition, p. 889 (2004)

65. S. Wang, W. Pentney, A.M. Popescu, T. Choudhury, M. Philipose, Common sense based joint
training of human activity recognizers, in Proceedings of the International joint conference on
Artificial Intelligence, pp. 2237–2242 (2007)

66. H.Yang, S. Sclaroff, S. Lee, Sign language spottingwith a thresholdmodel based on conditional
random fields. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1264–1277 (2008)

67. L.P. Morency, T. Darrell, Head gesture recognition in intelligent interfaces: the role of context
in improving recognition, in Proceedings of the International Conference on Intelligent User
Interfaces, pp. 32–38 (2006)



15 Body Sensor Networks for Activity and Gesture Recognition 605

68. J.D. Lafferty, A. McCallum, F.C.N. Pereira, Conditional random fields: probabilistic models
for segmenting and labeling sequence data, in International Conference on Machine Learning,
pp. 282–289 (2001)

69. S. Kumar, M. Hebert, Discriminative random fields: a discriminative framework for contextual
interaction in classification, in International Conference on Computer Vision, pp. 1150–1157
(2003)

70. C. Sminchisescu, A. Kanaujia, D. Metaxas, Conditional models for contextual human motion
recognition. Comput. Vis. Image Underst. 104(2), 210–220 (2006)

71. S.B. Wang, A. Quattoni, L.P. Morency, D. Demirdjian, Hidden conditional random fields for
gesture recognition, in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 1521–1527 (2006)

72. L.P. Morency, A. Quattoni, T. Darrell, Latent-dynamic discriminative models for continuous
gesture recognition, in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 1–8 (2007)

73. Y. Freund, R.E. Schapire, A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 14(5),
771–780 (1999)

74. Bishop C, Pattern Recognition and Machine Learning, Springer 2006.
75. J. Mannil, M. Bidmeshki, R. Jafari, Rejection of irrelevant human actions in real-time hid-

den Markov model based recognition systems for wearable computers, ACM International
Conference on Wireless Health, pp. 10–13, October 2011

76. N. Kale, J. Lee, R. Lotfian, R. Jafari, Impact of sensor misplacement on dynamic, time warping
based human activity recognition using wearable computers, ACM International Conference
on Wireless Health, pp. 23–25, October 2012



Part VIII
Social Sensing



Chapter 16
Analytic Challenges in Social Sensing

Tarek Abdelzaher and Dong Wang

Abstract Social sensing applications refer to those where individuals play an impor-
tant role in data collection. They can act as sensor carriers (e.g., carrying GPS devices
that share location data), sensor operators (e.g., taking pictures with smart phones), or
as sensors themselves (e.g., sharing their observations on Twitter). The proliferation
of sensors in the possession of the average individual, together with the popularity
of social networks that allow massive information dissemination, heralds an era of
social sensing that brings about new research challenges reviewed in this chapter.

1 An Introduction to Social Sensing

The idea that individuals will play an important part in data collection pipelines has
been around for some time in sensor network literature. Several surveys appeared
in recent literature that offer different visions for the social sensing landscape [2,
5]. Pioneering work at UCLA defined participatory sensing as sensing that requires
active participation from a human operator. Geo-tagging applications, where indi-
viduals need to explicitly mark locations of interest to the sensing application
are a good representative of participatory sensing. Participatory sensing is often
distinguished from opportunistic sensing, where individuals offer their sensing
devices for transparent opportunistic exploitation by a distributed application for
purposes of collecting data for the community. Finally, social networks, such as
Twitter, offer new opportunities for utilizing human observations that are volun-
tarily reported on the social medium as another sensing modality of events in
the physical world. This chapter collectively refers to the above sensing appli-
cations as social sensing. Hence, social sensing is defined as applications, where
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humans play a key role in the data collection system by acting as sensor
carriers (e.g., opportunistic sensing), sensor operators (e.g., participatory sensing),
or sensors themselves. A confluence of three social and technology trends suggests
that social sensing applications will have an increasingly important role in the future:

• Sensing device proliferation: The first trend that fuels social sensing applications
is the commercial proliferation of sensing systems that are commonly accessible to
large consumer populations. Active RFIDs, smart residential power meters (with
a wireless interface), camera cell-phones, in-vehicle GPS devices, accelerometer-
enhanced entertainment platforms (e.g., Wii-fit), and activity monitoring sports-
ware (e.g., the Nike+iPod system) have all reached mature market penetration,
offering unprecedented opportunities for data collection.

• Mobile connectivity: The second trend lies in ubiquitous mobile Internet access
available to sensing platforms on the move. This untethered connectivity allows
events to be measured and reported in real time, anytime, anywhere. A clear exam-
ple is the case of GPS measurements and pictures taken by cell-phones. Besides
GPS and cameras, modern smart phones currently host myriads of other sensors as
well, such as accelerometers, magnetometers, and gyroscopes, and offer 3G/4G,
WiFi and Bluetooth network access, which enables sharing their data. Vehicu-
lar Internet access, is also becoming available, for example, in recent models of
Chrysler and BMW, which enables applications that exploit network connectivity.
The vehicular OBD-II interface is already being used by services such as OnStar
for remote diagnostics. Other applications may perform traffic statistics, alert to
nearby accidents, or detect emergency conditions. In medical spaces, significant
investments have been made in sensor technology for longitudinal monitoring.
Microsoft HealthVault is one example of a recent initiative to automate collection
of and access to medical information. A significant number of vendors announced
wearable health and biometric monitoring sensors that automatically upload user
data to HealthVault. The proliferation of sensing devices with Internet connectiv-
ity that collect data in social spaces makes it feasible to build human-centric data
collection and sharing applications that augment human capabilities or improve
“situation awareness.”

• Social networks: The existence of sensors and Internet connectivity, however, is
not necessarily sufficient, by itself, to support social sensing in the mainstream.
The third key trend that fuels social sensing is the increased popularity of mass
information dissemination channels, afforded by social networks. Twitter, Flickr,
Twitpic, YouTube, and other networks allow individuals to globally broadcast their
observations. It is this global dissemination opportunity that makes it easy to build
large-scale applications that utilize commonly-available sensors, upload data in
real-time, and share the observations at scale.

The above opportunities have generated significant interest in the research com-
munity in building application prototypes that rely on observations made by humans
or by sensors in their vicinity. In the rest of this chapter, we briefly present recent
work related to social sensing, categorize social sensing applications, then identify
main challenges they need to overcome.
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2 The Multidisciplinary Roots of Social Sensing: A Survey

This section describes the different analystic foundations and avenues of work related
to Social sensing [14, 60]. An early overview of social sensing applications is pre-
sented in [1]. Some early applications include CenWits [43], a participatory sensor
network to search and rescue hikers in emergency situations, CarTel [46], a vehicular
sensor network for traffic monitoring and mitigation, CabSense [72], an application
that analyzes GPS data from NYC taxis and helps you find the best corner to catch a
cab [76] and BikeNet [29], a bikers sensor network for sharing cycling-related data
and mapping the cyclist experience. In recent years, social sensing applications in
healthcare have also become very popular. Numerous medical devices have been built
with embedded sensors that can be used to monitor the personal health of patients,
or send alters to the clinic or through the patient’s social network when something
unexpected happens. Such social sensing can be used for activity recognition for
emergency response [56], long-term prediction of diseases [38, 57, 58], and lifestyle
changes that affect health [20, 33].

Recent work in social sensing focused on challenges such as preserving privacy
of participants [10, 67], improving energy efficiency of sensing devices [63, 64] and
building general models in sparse and multi-dimensional social sensing spaces [9,
79]. Examples include privacy-aware regression modeling, a data fusion technique
that produces the same model as that computed from raw data by properly computing
non-invertible aggregates of samples [10]. Authors in [67] gave special attention to
preserving privacy over time-series data based on the observation that a sensor data
stream typically comprises a correlated series of sampled data from some continu-
ous physical phenomena. Acquisitional Context Engine (ACE) is a middleware that
infers unknown human activity attributes from known ones by exploiting the obser-
vation that the values of various human context attributes are limited by physical
constraints and hence are highly correlated [63]. E-Gesture is an energy efficient
gesture recognition architecture that significantly reduces the energy consumption
of mobile sensing devices while keeping the recognition accuracy acceptable [64].
The sparse regression cube is a modeling technique that combines estimation the-
ory and data mining techniques to enable reliable modeling at multiple degrees of
abstraction of sparse social sensing data [9]. A further improved model to consider
the data collection cost was proposed in [79].

Social sensing is often organized as “sensing campaigns” where participants are
recruited to contribute their personal measurements as part of a large-scale effort to
collect data about a population or a geographical area. Examples include documenting
the quality of roads [71], measuring the level of pollution in a city [61], or reporting
locations of garbage cans on campus [70]. In addition, social sensing covers scenarios
where human sources spontaneously report data without prior coordination, such
as data describing important events. Examples include large volumes of reported
observations of political unrest, riots, and natural disasters on Twitter. The spread of
social networks such as Twitter and You-tube offers a forum for global and real-time
sharing of reported data, which makes the reporting especially powerful. This type of
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applications represents a very broad, distributed and collaborative sensing paradigm
that features the most versatile mobile platform, the human user, as the sensor. Recent
research attempts to understand the fundamental factors that affect the behavior of
these emerging social sensing applications, such as analysis of characteristics of
social networks [23], information propagation [45] and tipping points [84].

A critical question about trustworthiness arises when the data in social sensing
applications are collected by humans whose “reliability” is not known. In social
sensing, anyone can contribute data. Such openness greatly increases the availability
of the information and the diversity of its sources. On the other hand, it introduces
the problem of understanding the reliability of the contributing sources and ensuring
the quality of the information collected. Trusted Platform Module (TPM), commonly
used in commodity PCs, can be used to provide a certain level of assurance at the
expense of additional hardware [34]. YouProve is a recent technique that relies on
trust analysis of derived data to allow untrusted client applications to verify that the
meaning of source data is preserved [35]. Trust analysis can also be performed at the
server side by building a likelihood function for sensed data to provide a quantifiable
estimate of both source reliability and the correctness of observations.

2.1 Trust Analysis in Information Networks

To assess the credibility of facts reported from sources of unknown reliability, a
relevant body of work in the machine learning and data mining communities per-
forms trust analysis. Hubs and Authorities [53] used a basic fact-finder where the
belief in a claim c is B(c) = ⎡

s≤Sc
T (s) and the trustworthiness of a source s is

T (s) = ⎡
c≤Cs

B(c), where Sc and Cs are the sources asserting a given claim and
the claims asserted by a particular source, respectively. Pasternack et al. extended
the fact-finder framework by incorporating prior knowledge into the analysis and
proposed several extended algorithms, such as Average.Log, Investment, and Pooled
Investment [65]. Yin et al. introduced TruthFinder as an unsupervised fact-finder
for trust analysis that works on a providers-facts network [86]. Other fact-finders
enhanced the basic framework by incorporating analysis of properties or dependen-
cies within claims or sources. Galland et al. [31] took the notion of hardness of facts
into consideration. The source dependency detection problem was discussed and
several solutions were proposed [12, 25, 26]. More recent work adapted Bayesian
analysis to model source trustworthiness in an explicit and probabilistic way and
improved the accuracy of truth estimation. Wang et al. [78] proposed the Bayesian
Interpretation scheme as an approximation approach to correctly quantify the likeli-
hood of correctness of conclusions obtained from the basic fact-finding scheme. Zhao
et al. [90] presented another Bayesian approach to model different types of errors
made by sources and merge multi-valued attribute types of entities in data integration
systems. Additionally, trust analysis was done both on a homogeneous network [11,
87] and a heterogeneous network [74]. Fact-finding in the case of social sensing is
more challenging due to the highly dynamic nature of social sensing applications [6].
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The outputs of fact-finders are, in general, rankings of credibility values of sources
and facts, which cannot be used to directly quantify participant reliability or mea-
surement correctness in social sensing. Recent work established the relation between
ranking outputs of fact-finders and posterior probabilities of participant reliability
and measurement correctness by using Bayesian analysis. A maximum likelihood
estimator, based the Expectation Maximization (EM) scheme, will be discussed later
in this chapter.

There exists a good amount of literature in the machine learning community to
improve data quality and identify low quality labelers in a multi-labeler environ-
ment. Sheng et al. proposed a repeated labeling scheme to improve label quality by
selectively acquiring multiple labels and empirically comparing several models that
aggregate responses from multiple labelers [73]. Dekel et al. applied a classification
technique to simulate aggregate labels and prune low-quality labelers in a crowd
to improve the label quality of the training dataset [22]. While applicable to social
sensing, some of the above approaches make explicit or implicit assumptions that
may be limiting. For example, the work in [73] assumed labelers were known a priori
and could be explicitly asked to label certain data points. The work in [22] assumed
most of labelers were reliable and the simple aggregation of their labels would be
enough to approximate the ground-truth. In general, participants in social sensing
upload their measurements at will, based on their own preferences, and the simple
aggregation technique (e.g., majority voting) was shown to be inaccurate when the
reliability of participants is not sufficient [65]. We later describe a recent maximum
likelihood estimation approach that intelligently casts the QoI quantification problem
in social sensing into an optimization problem that can be efficiently solved by an
EM scheme.

2.2 Estimation Theory

In estimation theory, Expectation Maximization (EM) is a general optimization tech-
nique for finding the maximum likelihood estimation of parameters in a statistic
model where the data are “incomplete” or involve latent variables in addition to esti-
mation parameter and observed data [24]. That is, either there are some missing
value among the data, or the model can be formulated more simply by assuming
the existence of some unobserved data. The general EM algorithm iterates between
two main steps: the Expectation step (E-step) and the Maximization step (M-step)
until the estimation converges (i.e., the likelihood function reaches the maximum).
In the E-step, the algorithm computes the expectation of the log-likelihood function
(so-called Q-function) of complete data with respect to the conditional distribution
of the latent variables given the current settings of the parameters and the observed
data. In the M-step, it re-estimates the parameters in the next iteration that maximizes
the expectation of the log-likelihood function defined in the E-step. EM is frequently
used for data clustering in data mining and machine learning. For language modeling,
the EM is often used to estimate parameters of a mixed model where the exact model
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from which the data is generated is unobservable [89]. There are many good tutorials
on EM algorithms [13, 59]. In recent work, it was shown that social sensing appli-
cations lend themselves nicely to an EM formulation. The optimal solution, in the
sense of maximum likelihood estimation, directly leads to an accurate quantification
of measurement correctness as well as participant reliability.

The Cramer-Rao lower bound (CRLB) is a fundamental bound used in estimation
theory to characterize the lower bound on the estimation variance of a deterministic
parameter [21]. The bound states that the variance of any unbiased estimator is
lower-bounded by the inverse of the Fisher information. The partial derivative with
respect to the estimation parameter of the log-likelihood function is called the score.
The Fisher information is defined as the second moment of the score vector of
random variable and estimation parameter [40]. The Fisher information is a way of
measuring the amount of information that an observable random variable X carries
about an unknown estimation parameter θ upon which the probability of X depends.
Intuitively, if the Fisher information is large, the distribution with the θ0 (i.e., true
value) of the estimation parameter will be different and well distinguished from
the distributions with parameter that is not so close to θ0. This means we are able
to estimate θ0 well (hence a small variance) based on the data. Conversely, if the
Fisher information is small, our estimation will be worse. One of the key properties
of maximum likelihood estimation (MLE) is asymptotic normality. This property
basically states that the MLE estimator is asymptotically distributed with a normal
distribution as the data sample size goes up [15]. The mean of the normal distribution
is the MLE of the estimation parameter and the variance is given by the CRLB of
the estimation. Recent work derived an approach to compute the confidence interval
in participant reliability estimation based on both the real and asymptotic CRLB by
leveraging the asymptotic normality of the MLE estimator.

2.3 Outlier Analysis and Attack Detection

Several previous efforts on data cleaning and outlier analysis from data mining and
noise removal from statistics addressed some notion of noisy data [27, 28, 47–
49, 51]. They differ in the assumption made, the modeling approach applied and
the objective targeted. For example, Bayesian inference and decision tree induction
techniques are applied to fill the missing values of data by predictions from their
constructed model [28]. Binning and linear regression techniques are used to smooth
the noisy data by either using bin means or fitting data into some linear functions [47,
49]. Clustering techniques are widely used to detect outliers by organizing similar
data values into clusters and identifying the ones that fall outside the clusters as
outliers [48]. Other approaches are used in statistics to filter noise from continuous
data [27, 51]. The Kalman filter is an efficient recursive filter that estimates some
latent variables of a linear dynamic system from a series of noisy measurements [51].
It produces estimates of the measurements by computing a weighted average of the
predicted values based on their uncertainty. Particle filters are more sophisticated
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filters that are based on Sequential Monte Carlo methods. They are often used to
determine the distribution of a latent variable whose state space is not restricted to a
Gaussian distribution [27]. The above techniques will likely improve the quality of
data analysis in social sensing.

In intrusion detection, one critical task is to detect (or identify) malicious nodes (or
sources) accurately and confidently. Two main kinds of detection techniques exist:
signature-based detection and anomaly-based detection [48, 82]. The signature-
based detection takes the predefined attack patterns (by domain experts) as signatures
and monitors the node’s behavior (or network traffic) for matches to report the anom-
aly [48]. The anomaly-based detection builds profiles of normal node’s (or network)
behavior and use the profiles to detect new patterns that have a remarkable devia-
tion [82]. For the QoI quantification problem in social sensing, identifying malicious
patterns can help estimation participant reliability.

Since people are an indispensable element in social sensing, it is important to
address “bad” sources and defend against a series of common attacks. The collusion
attack is a common attack carried out by a group of individuals who collectively
perform some malicious (sometimes illegal) actions based on their agreement to
defraud honest sources or obtain an unfair advantage in the system. This attack
could be mitigated by monitoring the interactions or relationships among attackers
or identifying abnormal behavior from the group [55]. The sybil attack is another
important attack carried out by a single attacker who intentionally creates a large
number of independently named entities and uses them to gain a disproportionately
large influence within the system. This attack could be mitigated by increasing the
cost of creating identities and limiting the resources the attacker can use to create
new identities [88].

2.4 Recommender and Reputation Systems

Social sensing is related to a type of information filtering systems, called recom-
mender systems, where the goal is usually to predict a user’s rating or preference for
an item using a model built from the characteristics of the item and the behavioral pat-
tern of the user [4]. Maximum-likelihood estimation has been used in collaborative
recommender systems as a clustering module based on user interests [62], as well as
in content-based recommender systems as a weighting factor estimator [68]. Recom-
mender systems can help filter results of social sensing applications. For example, by
offering the user knobs that decide trust weights in sources, a recommender system
can help a user zoom in on trusted measurements. Consider a user who identifies
several facts as assuracte in results of participatory sensing. The recommender sys-
tem may then give several additional recommendations on data to look at based on
similarity in sources, observed locales, or observation conditions.

Social sensing is also related to reputation systems. The basic idea of reputa-
tion systems is to let entities rate each other (e.g., after a transaction) or review
some objects of common interest (e.g., products or dealers). The aggregated ratings
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or reviews can then be used to derive trust or reputation scores, which can help
other entities in deciding whether or not to trust a given entity or purchase a certain
object [50]. Different types of reputation systems are being used successfully in com-
mercial online applications. For example, eBay is a type of reputation system based
on homogeneous peer-to-peer systems, which allows peers to rate each other after
each pair of them conduct a transaction [3, 41]. The Amazon online review system
represents another type of reputation systems, where different sources offer reviews
on products (or brands, companies) they have experienced. Customers are affected by
those reviews (or reputation scores) in making purchase decisions. Writing a review
or a reputation assessment can be thought of as an instance of social sensing, where
humans seriver information on other humans or objects, much like a sensor would
measure a variable in its external environment. Note that, reputation systems are in
general vulnerable to several attacks such as self-promoting, slandering, and denial
of service [39]. Many of these attacks actually originate from collusion and Sybil
attacks that we mentioned earlier, making it important to address security issue in
social sensing.

The above has been a broad overview of work related to social sensing in dif-
ferent communities. with this general background, next, we classify social sensing
applications and detail selected research challenges that arise in their context.

3 A Functional Taxonomy of Social Sensing Applications

One can generally divide social sensing applications into three types, depending on
their functionality. The three types differ in the level of complexity of data processing
done to the measurements.

• Data-point-centric applications: The first and simplest social sensing application
is one where individuals share single data points (the observations) that are then
made available to clients or decision-makers. An example is geo-tagging applica-
tions, where individuals share pictures (tagged by location) of entities of relevance
to the application. For example, a sensing campaign might ask participants to doc-
ument locations of invasive spieces in a park, or locations of garbage on a beach.
These observations (and pictures) can then be displayed on a map, or offered to
municipal decision-makers for appropriate action.

• Statistics-centric applications: The second type of social sensing applications is
one where statistics are computed from the data. An example might be a traffic
speed monitoring or a pollution monitoring application where the speed or pollu-
tion levels measured by different individuals are used to compute statistics such
as averages and probability distributions. Many early examples of social sensing
belong in that category. For example, traffic patterns were monitored in a city to
help drivers avoid congestion areas [46], bike route data were collected by bik-
ing enthusiasts to help them pick better routes [29], and hiker encounters were
recorded on mountain trails to help locate missing hikers [43]. These applications
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Fig. 1 An application template

offer useful statistics about a given locale, that are of interest to individuals in that
locale.

• Model-centric applications: A third and most general type of social sensing appli-
cations has recently been described in literature, where generalizable models are
learned from sensory data collection, that can be used to affect human decision
making outside of the collection locale. For example, sharing data collected by
smart energy meters installed in some households, together with relevant context,
can lead to a better understanding of energy consumption in contemporary homes
and best practices that increase energy efficiency elsewhere around the nation.
Similarly, sharing data collected by activity sensors among fitness enthusiasts can
lead to lifestyle recipes that promote healthier behaviors for multitudes of others.
Also, sharing data on environmental pollutants and personal well-being (e.g., loca-
tions and incidents of asthma attacks) can establish links between likelihood of
attacks and exposure to specific contaminants, which may help individuals reduce
their exposure to those contaminants. For example, in a recent study of vehicular
fuel-efficiency, a model predicts the total fuel consumption for a vehicle on a road
segment as a function of several variables such as road speed, degree of conges-
tion, and vehicle parameters. Once the model is known, it is possible to optimize
human decisions by offering better (GPS) navigation advice for any vehicle on
any street. Figure 1.

In the rest of this chapter, we cover three social sensing challenges, each motivated
by one of the above application categories. These challenges are:

• Challenge #1: Fact-finding. Motivated by the need of data-point-centric applica-
tions, fact-finding addresses the problem of assertaining the correctness of reported
observations. The individuals involved in data collection might report poor quality
data, offer incorrect measurements, or inappropriately operate sensors. The reli-
ability of such individuals and measurements may not, in general, be known to
the collection point. It may further be expensive to verify the correctness of each
observation. Hence, new techniques are needed to assess the credibility of data.

• Challenge #2: Privacy-preserving data collection. In observation-centric and
statistics-centered applications, another issue that arises is the privacy of reporting
individuals. Unless the application is managed by a globally trusted authority (i.e.,
one that is entrusted with private data), ensuring the privacy of data shared could
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be a concern. Anonymity is not always a sufficient solution because the data them-
selves (such as GPS traces) may reveal the identity of the owner even if shared
anonymously. One question becomes whether it is possible to perturb the data in a
way that protects privacy, but without degrading application quality. For example,
in statistics-centered applications, can one perturb the individual data points (for
privacy reasons) without affecting the statistical properties of the aggregate?

• Challenge #3: Generalized model construction. In model-centric applications,
models of the measured system might have a significant number of parameters,
non-linearities, and discontinuities. Learning the model implies partitioning the
input parameter space into subspaces within which individual models apply, and
deriving the best model in each subspace. For example, in a vehicular fuel con-
sumption modeling application, the most important predictors of fuel efficiency of
cars may depend on the type of car, make, year, or other inputs. Understanding how
best to generalize across different cars is not an easy undertaking. Some model
inputs may be static (e.g., car weight). Some may be dynamic (e.g., traveled road
speed and degree of congestion). In many cases, the space of possible parameters
is very large. It is difficult to predict a priori which parameters will be more telling
and for what subset of the input space. It is the responsibility of the social sensing
service to offer a general mechanism for applications to partition the input data
space appropriately and build good models quickly from the data collected. This
is complicated by the high-dimensionality of the problem space and the relatively
sparse sampling of that space by users. New learning techniques are needed to
address this challenge.

The above challenges are described in the following sections, respectively.

4 Challenge #1: Fact-Finding

In this section, we establish the analytic foundation and general software framework
for fact-finding (in the absence of prior information about the individual sources).
Fact-finding, in data-point-centric applications, refers to the question of ascertaining
the correctness of individual data points, and the reliability of the sources, given
niether pieces of information in advance. Hence, underlying the fact-finding process
is the abstraction of sources (e.g., sensors and people) and claims (the observations
they make). The goal is simply to select (i.e., “distill”) from the pool of all claims
only those that exceed a certain credibility threshold.

Claims, in our framework, are a very general notion that can be applied in many
different settings. The main requirement is that one can identify corroborating claims.
Towards that end, we define a distance function that describes how similar or different
two claims are. For example, if claims refer to sensory data, such as temperature
values, the distance function could simply be the difference in temperature. If claims
refer to pieces of text, a distance function might be the Jaccard distance [75], a
commonly used metric for deciding how similar two pieces of text are. (More complex
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functions are needed to identify topic similarity, and recognize synonyms, negation,
etc.) Finally, if claims refer to images taken, a distance function might be the color
correlogram [42] (or a more complex similarity metric). Note that, claims can also be
multi-dimensional. For example, if temperature is sensed at different locations and
different times of day, one can think of these measurements as points in a space whose
dimensions are sensor value (temperature), location, and time of day. A distance
metric such as an (appropriately weighted) L2 norm can be defined between points
in that space. The distance function plays a very important role in that it enables
similar claims to be clustered together. Examples of similar claims include tweets
that say (approximately) the same thing, pictures of (approximately) the same scene,
or similar sensory measurements from the same location and time. Such similar
claims can be consolidated into one, thus forming a source-claim network, where
(in general) sources make multiple claims and claims are corroborated by multiple
sources.

The source-claim network, formed as described above, is a general representation
of reported data that enables fact-finding. For simplicity of illustrating the fact-finding
process, let us consider the case where claims are binary. In general, let Si C j denote
an observation reported by source Si claiming that C j is true. For example, in a city
cleaning effort, a source might report that location j has offensive wall graffiti. Let
P(Ct

j ) and P(C f
j ) denote the probability that the variable C j is indeed true or false,

respectively. Different sources may make different numbers of observations. Let us
define ai as the (unknown) probability that source Si reports a measured variable to
be true when it is indeed true, and bi as the (unknown) probability that source Si

reports a measured variable to be true when it is in reality false. The only input to the
algorithm is the source-claim matrix SC , where Si C j = 1 when source Si reports
that C j is true, and Si C j = 0 otherwise.

4.1 Expectation Maximization

One way to assess the correctness of sources and claims is to use the Expectation-
Maximization (EM) algorithm. EM is a general algorithm for finding the maximum
likelihood estimates of parameters in a statistical model, where the data are “incom-
plete” or the likelihood function involves latent variables [24]. Intuitively, what EM
does is iteratively “completes” the data by “guessing” the values of hidden variables
then re-estimates the parameters by using the guessed values as true values.

The main challenge in using the EM algorithm lies in the mathematical for-
mulation of the problem in a way that is amenable to an EM solution. Given an
observed data set X , one should judiciously choose the set of latent or missing val-
ues Z , and a vector of unknown parameters θ, then formulate a likelihood function
L(θ; X, Z) = p(X, Z |θ). Once the formulation is complete, the EM algorithm iter-
atively finds the maximum likelihood estimate.

The social sensing problem fits nicely into the Expectation Maximization (EM)
model. First, let us introduce a latent variable vector Z where zj = 1 when C j is true
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and z j = 0 otherwise. We further denote the source-claim matrix SC as the observed
data X , and take θ = (a1, a2, ...aM ; b1, b2, ...bM ; d) as the parameter of the model
that we want to estimate. The goal is to get the maximum likelihood estimate of
θ for the model containing observed data X and latent variables Z . The likelihood
function L(θ; X, Z) is given by:

L(θ; X, Z) = p(X, Z |θ)

=
N⎢

j=1

⎣
M⎢

i=1

a
Si C j
i (1 − ai )

(1−Si C j ) × d × z j

+
M⎢

i=1

b
Si C j
i (1 − bi )

(1−Si C j ) × (1 − d) × (1 − z j )

⎤
(1)

where, as we mentioned before, M and N refer to the number of sources and mea-
sured variables, respectively. Parameters ai and bi are the conditional probabilities
that source Si reports variable C j to be true given that C j is in fact true or false,
respectively. Si C j = 1 when source Si reports that C j is true, and Si C j = 0 other-
wise, and d is the background bias that a randomly chosen measured variable is true.

Given the above formulation, it is shown in recent work [81] that EM, applied to
the above problem, results in two simple equations that can be solved iteratively to
compute the conditional probability that the latent variable z j (and hence claim C j ),
as well as the reliability of sources, expressed by parameters a∗

i , b∗
i are computed

for the current value of z j . Specifically, the Expectation step (E-step) becomes:

Q
⎥
θ|θ(t)

⎦
= EZ |X,θ(t)[log L(θ; X, Z)]

=
N∑

j=1

{
p(z j = 1|X j , θ

(t))

×
⎛

M∑
i=1

(Si C j log ai + (1 − Si C j ) log(1 − ai ) + log d)

⎜

+ p(z j = 0|X j , θ
(t))

×
⎛

M∑
i=1

(Si C j log bi + (1 − Si C j ) log(1 − bi ) + log(1 − d))

⎜⎝

(2)

where X j represents the jth column of the observed SC matrix (i.e., observations
of the jth measured variable from all participants) and p(z j = 1|X j , θ

(t)) is the
conditional probability of the latent variable z j to be true given the observation
matrix related to the jth measured variable and current estimate of θ, which is given
by:
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p(z j = 1|X j , θ
(t))

= p(z j = 1; X j , θ
(t))

p(X j , θ(t))

= p(X j , θ
(t)|z j = 1)p(z j = 1)

p(X j , θ(t)|z j = 1)p(z j = 1) + p(X j , θ(t)|z j = 0)p(z j = 0)

= A(t, j) × d(t)

A(t, j) × d(t) + B(t, j) × (1 − d(t))
(3)

where A(t, j) and B(t, j) are defined as:

A(t, j) = p(X j , θ
(t)|z j = 1)

=
M⎢

i=1

a
(t)Si C j
i (1 − a(t)

i )(1−Si C j )

B(t, j) = p(X j , θ
(t)|z j = 0)

=
M⎢

i=1

b
(t)Si C j
i (1 − b(t)

i )(1−Si C j ) (4)

A(t, j) and B(t, j) represent the conditional probability regarding observations about
the jth measured variable and current estimation of the parameter θ given the jth
measured variable is true or false respectively.

Next we simplify Eq. (2) by noting that the conditional probability of p(z j =
1|X j , θ

(t)) given by Eq. (3) is only a function of t and j . Thus, we represent it by
Z(t, j). Similarly, p(z j = 0|X j , θ

(t)) is simply:

p(z j = 0|X j , θ
(t))

= 1 − p(z j = 1|X j , θ
(t))

= B(t, j) × (1 − d(t))

A(t, j) × d(t) + B(t, j) × (1 − d(t))

= 1 − Z(t, j) (5)

Substituting from Eqs. (3) and (5) into Eq. (2), we get:

Q
⎥
θ|θ(t)

⎦
=

N∑
j=1

{
Z(t, j)

×
⎛

M∑
i=1

(Si C j log ai + (1 − Si C j ) log(1 − ai ) + log d)

⎜



622 T. Abdelzaher and D. Wang

+ (1 − Z(t, j))

×
⎛

M∑
i=1

(Si C j log bi + (1 − Si C j ) log(1 − bi ) + log(1 − d))

⎜⎝

(6)

To compute the maximization step (M-step), we choose θ∗ (i.e., (a∗
1 , a∗

2 , . . . a∗
M ;

b∗
1, b∗

2, . . . b∗
M ; d∗)) that maximizes the Q

⎞
θ|θ(t)

⎟
function in each iteration to be the

θ(t+1) of the next iteration.
To get θ∗ that maximizes Q

⎞
θ|θ(t)

⎟
, we set the derivatives ∂Q

∂ai
= 0, ∂Q

∂bi
= 0,

∂Q
∂d = 0 which yields:

N∑
j=1

⎠
Z(t, j)(Si C j

1

a∗
i

− (1 − Si C j )
1

1 − a∗
i
)

⎭
= 0

N∑
j=1

⎠
(1 − Z(t, j))(Si C j

1

b∗
i

− (1 − Si C j )
1

1 − b∗
i
)

⎭
= 0

N∑
j=1

⎠
Z(t, j)M

1

d∗ − (1 − Z(t, j))M
1

1 − d∗ )

⎭
= 0 (7)

Let us define S Ji as the set of measured variables the participant Si actually
observes in the observation matrix SC , and ¯S Ji as the set of measured variables
participant Si does not observe. Thus, Eq. (7) can be rewritten as:

∑
j≤S Ji

Z(t, j)
1

a∗
i

−
∑

j≤ ¯S Ji

Z(t, j)
1

1 − a∗
i

= 0

∑
j≤S Ji

(1 − Z(t, j))
1

b∗
i

−
∑

j≤ ¯S Ji

(1 − Z(t, j))
1

1 − b∗
i

= 0

N∑
j=1

⎠
Z(t, j)

1

d∗ − (1 − Z(t, j))
1

1 − d∗ )

⎭
= 0 (8)

Solving the above equations, we can get expressions of the optimal a∗
i , b∗

i and d∗:

a(t+1)
i = a∗

i =
⎡

j≤S Ji
Z(t, j)

⎡N
j=1 Z(t, j)

b(t+1)
i = b∗

i = Ki − ⎡
j≤S Ji

Z(t, j)

N − ⎡N
j=1 Z(t, j)
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d(t+1)
i = d∗

i =
⎡N

j=1 Z(t, j)

N
(9)

where Ki is the number of measured variables observed by participant Si and N is
the total number of measured variables in the observation matrix. Z(t, j) is defined
in Eq. (3).

Given the above, The E-step and M-step of EM optimization reduce to simply
calculating Eqs. (3) and (9) iteratively until they converge. The convergence analysis
has been done for the EM scheme in prior work [83].

4.2 Analysis of Confidence

Netx, it is possible to derive a confidence interval based on the Cramer-Rao Bound
for the aforementioned formulation of maximum likelihood estimation of source
reliability [80].

In statistical mathematics and information theory, the Fisher information is a way
of measuring the amount of information that an observable random variable X carries
about an estimated parameter θ upon which the probability of X depends. The partial
derivative of the log-likelihood function with respect to θ is called the score vector.
The Fisher information is defined as the second moment of the score vector. It takes
the form of an k × k matrix, where k is the number of elements in θ. In estimation
theory and statistics, the Cramer-Rao bound (CRB) expresses a lower bound on the
variance of estimators of a deterministic parameter. In its simplest form, the bound
states that the variance of any unbiased estimator is at least as high as the inverse of
the Fisher information [40]. The estimator that reaches this lower bound is said to
be efficient.

An unbiased maximum likelihood estimator has the property that estimation error
covariance reaches the Cramer-Rao bound (i.e., it is an efficient estimator). Hence,
we can use the Cramer-Rao bound to derive a confidence interval that quantifies the
accuracy of the estimated parameters, θ. Computing the Fisher Information Matrix
from the likelihood function described in Eq. 1 for the truth assignment in our source-
claim network, and given the converged estimate of θ̂M L E from EM, the estimation
error covariance matrix, Cov(θ̂M L E ), can be written as:

(Cov(θ̂M L E ))i, j (10)

=




0 i ∞= j
1⎡

j≤S Ji
Zc

j

(âM L E
i )2

+
⎡

j≤ ¯S Ji
Zc

j

(1−âM L E
i )2

i = j ≤ [1, M]

1
Ki −

⎡
j≤S Ji

Zc
j

(b̂M L E
i )2

+
N−Ki −

⎡
j≤ ¯S Ji

Zc
j

(1−b̂M L E
i )2

i = j ≤ (M, 2M]
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The estimation error of each element in the estimation parameter θ (i.e., ai and
bi ) follows an asymptotic norm distribution respectively with 0 mean and variance
given by the main diagonal elements of the covariance matrix specified by Eq. (10).
From this variance, a confidence interval in the estimates can be readily computed.

4.3 Evaluation

An evaluation of the above maximum likelihood estimation algorithm and confi-
dence bound shows that it is successful at estimating credibility and error bounds.
To evaluate fact-finding in data-point-centric applications, participants were asked
to report locations of free (i.e., non-pay) parking lots on campus. In the experiment,
30 participants were invited, and 106 parking lots were surveyed (46 of which were
indeed free). There were 901 reports collected from participants, some with conflict-
ing data. Analysis using the proposed algorithm to determine which lots are indeed
free resulted in less than 10 % false positives/negatives, compared to more than 20 %
when simple majority (vote) is used. A larger-scale experiment was performed with
Twitter, collecting data on major international events, where each tweet was consid-
ered a “claim” and similar tweets were clustered together into one, thereby forming
a source-claim network that conformed to our theoretical model. Millions of tweets
were collected on current events. Top tweets were then computed and manually ver-
ified to be true (the individuals who verified them had access to material published
later in newspapers and online sources). It was shown that all tweets deemed reli-
able by the fact-finder were verified to be true according to the news. The Twitter
experiments are presented in prior work [80, 81].

The above theoretical results and their experimental validation allow us to (i)
compute a maximum likelihood estimate in the correctness of different claims and
sources given only the information on who said what, and (ii) quantify our statistical
confidence in the correctness of that estimate. In particular, the estimate is derived
with neither prior knowledge of the reliability of sources nor independent means
of verifying the claims. It is this absence of requirements for prior knowledge that
makes the above approach especially suitable for social sensing applications, where
sources (e.g., individuals who downloaded the social sensing phone app) may not
be vetted and where their claims may be hard to independently verify. The above
demonstrates that reliable information can indeed be distilled with confidence from
unreliable sources, which is a key challenge in social sensing.

5 Challenge #2: Privacy-Preserving Data Collection

Ensuring privacy in data sharing is a key challenge in promoting social sensing. Since
the sensor data in many cases (e.g., in the case of sharing GPS traces) may reveal
the owner’s identity even if shared anonymously, solutions other than anonymity are
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needed to protect privacy. We shall not consider solutions that require the applica-
tion itself to be globally trusted with private data (i.e., trusted by all participants)
as such a trust requirement would significantly increase barrier to entry, impeding
the introduction of new applications. Instead, below, we describe the mathemati-
cal foundations for perturbing time-series sensor data at the source for purposes of
privacy-preserving sharing without significantly impacting the accuracy of models
derived from community data. We define user privacy as the degree of uncertainty
or error incurred in estimating the user’s private data given the shared (perturbed)
data. Our challenge is therefore to perturb a user’s sequence of shared data values
prior to sharing, such that: (i) the individual user data and trends (i.e., data changes
with time) cannot be estimated without large error, whereas (ii) the distribution of
the data aggregation results from all users and any models derived from the data can
still be estimated with high accuracy.

A significant amount of research was done on data perturbation in the database
community in the context of privacy-preserving data mining. Our work is different
in addressing the scenario of sensing applications, marked by (i) sharing of one or
more, possibly correlated, time-series data streams, as opposed to individual values,
(ii) a high-dimensional data space, and (iii) the desire to learn regression models
from data. Privacy-preserving perturbation of correlated time-series data that allows
reconstruction of accurate multidimensional statistics and regression models from
perturbed data is an exciting new problem. Of particular interest is the derivation of
mathematical privacy measures and privacy bounds on such measures that quantify
the efficacy of a perturbation scheme at hiding private information.

Examples of data perturbation techniques can be found in [7, 8, 30]. Early
approaches relied on adding independent random noise. These approaches were
shown to be inadequate because independent noise is easy to filter out [52] when
the underlying data are correlated. Later approaches took data correlation among
different users into account [44]. However, they did not make assumptions on the
model describing the evolution of data values obtained from the same user over time,
which can be used to jeopardize privacy of time-series data streams.

5.1 A Privacy-Preserving Perturbation Algorithm

Recent work [32], presented a perturbation technique that preserves privacy of time-
series data. It demonstrated that private time-series data could not be recovered from
perturbed time-series data by eliminating added noise using common techniques
such as spectral filtering [52] and principal component analysis (PCA) [44]. It also
demonstrated client-side tools that automate noise generation for client data. To give
intuition into the perturbation algorithm, let N be the number of users in the com-
munity. Let M be the number of data points shared by each user (we assume this to
be the same across users for notational simplicity, but we shall develop algorithms
that do not depend on that). Let xi = (xi

1, xi
2, . . . , xi

M ), ni = (ni
1, ni

2, . . . , ni
M ), and
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yi = (yi
1, yi

2, . . . , yi
M ) represent the data stream, noise, and perturbed data shared by

user i , respectively. At time instant k, let fk(x) be the empirical community distri-
bution, f e

k (x) be the exact community distribution, fk(n) be the noise distribution,
and fk(y) be the perturbed community distribution. User data streams can be gen-
erated according to either linear or non-linear discrete models. In general, a model
can be written as a discrete function of index k, which can be time, distance, or other
(depending on the application), parameters θ, and inputs u, and is denoted as g(k,θ,
u). Notice that θ is a fixed length parameters vector characterizing the model while
u is a vector of length M characterizing the input to the model at each instance.
Given the data xi = (xi

1, xi
2, . . . , xi

M ), the model g(k,θ, u), and the approximated
distributions f n

θ (θ), f n
u (u), the perturbed data for user i is generated by (i) gener-

ating samples θi
n and ui

n, from the distributions f n
θ (θ) and f n

u (u), respectively, (ii)
generating noise stream ni = (ni

1, ni
2, . . . , ni

M ), where ni
k = g(k,θi

n, ui
n), and (iii)

generating perturbed data by adding the noise stream to the data stream yi = xi +ni .
Now, consider reconstructing the distribution of community data at a given point

in time. At time instance k, the perturbed data of each user is the sum of the actual
data and the noise yi

k = xi
k + ni

k . Thus, the distribution of the perturbed data fk(y) is
the convolution of the community distribution fk(x) and the noise distribution fk(n),
fk(y) = fk(n) ∗ fk(x).

All the distributions above can be discretized as:

fk(n) = ( f n(0), f n(1), . . . , f n(L))

fk(x) = ( f x(0), f x(1), . . . , f x(L))

fk(y) = ( f y(0), f y(1), . . . , f y(2L))

The convolution can therefore be rewritten as:

f y(m) =
∗∑

k=−∗
f x(k) f n(m − k) (11)

Since convolution is a linear operator, Eq. (11) can be written as

fk(y) = H fk(x) (12)

where H is a L × (2L + 1) Toeplitz cyclic matrix, which is also called the blurring
kernel, constructed from elements of the discrete distribution fk(n) as:

H =




f n(0) 0 0 . . . 0
f n(1) f n(0) 0 . . . 0
f n(2) f n(1) f n(0) . . . 0
. . . . . . . . . . . . . . .

0 0 . . . f n(L) f n(L − 1)

0 0 0 . . . f n(L)


⎧⎧⎧⎧⎧⎧⎪

(13)
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In Eq. (12), fk(x) is the community distribution at time k that needs to be esti-
mated, H is known and fk(y) is the empirical perturbed data distribution. This
problem is well known in the literature as the deconvolution problem.

Several algorithms have been developed to solve this problem and can be catego-
rized into two classes. The first is a set of iterative algorithms, such as Richardson-
Lucy algorithm, the EM algorithm, and the Poisson MAP method. The second class
of algorithms are non-iterative. Examples include Tikhonov-Miller restoration and
SECB restoration.

Consider the Tikhonov-Miller restoration [77], for an example. It requires an
apriori bound ε for the L2 norm of the noise, together with an apriori bound M for
the L2 norm of the community distribution:

||H f e
k (x) − fk(y)||2 ∼ ε (14)

||(H T H)−ν f e
k (x)||2 ∼ M (15)

where || ||p denotes the L p(R) norm of a vector. The optimal solution fk(x) is
chosen to minimize the regularized quadratic functional:

||H fk(x) − fk(y)||22 +
⎥ ε

M

⎦2 ||(H T H)−ν fk(x)||22 (16)

The fraction λ = ε/M is called the regularization coefficient which governs the
relative importance between the error and the regularized term.

By minimizing Eq. (16), the exact expression for the optimal solution f ∗
k (x) can

be found:

f ∗
k (x) = Q−1

T H T fk(y) (17)

QT = H T H +
⎥ ε

M

⎦2
(H T H)−2ν (18)

Equations (17) and (18) can be used in an aggregation server to reconstruct the
community distribution.

5.2 Evaluation

In recent work [66], a participatory sensing service was described where drivers
are allowed to “lie” about their speed, location, and time, yet the service is able
to construct accurate congestion maps that plot the right average traffic speed as a
function of true location (street) and true time of day. This problem is related to
the more general concern of privacy-preserving classification [85], except that it is
applied to the challenging case of aggregates of time-series data. Figure 2 presents
preliminary results comparing the real and estimated community speed distributions
for different streets. Informally, it can be seen that these distributions are very close.
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Fig. 2 Comparison of real and reconstructed speed distrib

Comparing the percentage of speeding vehicles computed from the real and perturbed
distributions of different streets, we find that the error is small (e.g., University Ave
15.60 % vs 17.89 %, Neil Street 21.43 % vs 23.67 %, Washington Street 0.5 % vs
0.15 %, and Elm Street 6.95 % vs 8.6 %).

6 Challenge #3: Generalized Model Construction

Another social sensing challenge is model extraction from high-volume, sparse, high-
dimensional raw data. Model extraction is difficult for two reasons. On one hand,
the sheer volume of collected data at a server may quickly become overwhelming,
hence requiring scalable solutions. On the other hand, data are usually parametrized
by many attributes (e.g., measured fuel consumption of a vehicle depends on its make,
model, class, year, and other vehicle parameters). This leads to a high-dimensional
space that is sparsely populated due to the exponential explosion of attribute com-
binations. Deriving models for that space is challenging. While a large number of
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efficient regression analysis and modeling techniques exist in current literature, a
significant research problem is automated partitioning of the input attribute space
such that one may derive accurate models with an appropriately small number of
parameters in each subspace. This is akin to linearization of a complex system by a
collection of linear models. One difference is that linearization only simplifies the
modeling function, but does not change its inputs. Instead, our goal is to determine
the best inputs as well, which may be different from one subspace to another. For
example, when modeling human behavior, the best behavior predictors (inputs of
the behavior model) might be substantially different depending on age. Hence, in
high-dimensional data spaces, it is key to automatically jointly determine a good
partitioning of the space and good models in each partition.

A recent solution approach leverages and extends OLAP (On-line analytical
processing), a well-investigated topic in the database community [16, 36] when
dealing with multi-dimensional data. The underlying data structure in OLAP sys-
tems is often called an OLAP Cube [36]. This cube can be thought of as a lat-
tice where the root represents aggregate properties of the entire data set, and each
level of descendants drills down by grouping the data by one additional dimen-
sion. This creates an exponential number of subcubes each grouping the data by
a different subset of the original attributes. For example, the (car class, car year)
subcube groups all data by car class and year. A specific instance such as (car class
= midsize, car year = 2004) is called a cell. Operations common on data cells in
commercial databases include sum and average [37]. Unfortunately, queries com-
mon to commercial database applications are different from the type of information
one expects to learn from sensing the physical world. Physical data typically obey
underlying physical models that we wish to extract. Hence, data in a cube should
be organized in a way that facilitates model construction and analysis; rather than
returning the average of a cell, one might want to return a physical model that fits cell
data.

A new category of OLAP cubes is called the sampled regression and sampled
prediction cubes. They extend the concepts of regression and prediction cubes cov-
ered in previous literature [17–19, 69], by considering issues of sparse deployment
and hence sparse sampling inherent to socially-embedded cyber-physical systems.
Current regression or prediction cubes compute, for each subcube, a regression or
prediction model that fits cell data.1 Partial deployment of new services gives rise to
lengthy periods where many of the cells have no data or have a small amount of data
that is not statistically significant [54]. Answering queries about such missing data
requires generalization. The challenge of generalization from sparse data has been
previously proposed in the context of sampled cubes, but used for the purpose of
generalizing only simple cell statistics such as sum and average [54]. Generalizing
regression and prediction models, such as prediction of fuel efficiency, is substantially
more complicated and requires further advances in data cubes. A particular challenge

1 Regression is a technique from estimation theory, applied to continuous or inherently ordered
parameters to predict continuous or ordered values. In contrast, prediction uses machine learning
to predict unordered class labels.
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is to explore automated techniques for model construction that exloit correlations
between parameters and compute their predictiveness to automate identification of
the best model structure from the data cube. Below, we review one technique that
achieves the above.

6.1 Computing Regression Models and Error

Consider the problem of optimally partitioning a data space into subspaces given by
different regression models. We start by building a least squares estimate, in each cell
c, that estimates a parameter vector, η̂c, and error Errc, given a set of nc data tuples,
each with k inputs and one output, organized into arrays Xc and Yc, respectively.
This estimate is our regression model for the subspace, c. Note that a cell is the
“unit of resolution” in subdividing the input space. One must then try different ways
of coalescing cells that have similar models in hopes of reducing the total number
of models used for different parts of the space, while simultaneously increasing
statistical confidence in each. A main challenge is to express the standard regression
model and its estimation error in a way that can be hierarchically computed, such
that models and errors computed from larger data sets can be composed from those
of their subsets without refering back to the original data. This recursion would
significantly speed-up search for the best coalescing of similar cells that results in
the most accurate and general models, or equivalently the best partitioning of the
overall data space. Hence, an efficient “divide” process would be achieved.

Let us define a scalar ρc = Y T
c Yc, a vector (of size k) νc = X T

c Yc, and a matrix
(of size k × k) Θc = X T

c Xc. Starting with the common expression for a least squares
estimator, we can now reformulate the derivation of regression coefficients and error
for cell c as follows:

η̂c =(X T
c Xc)

−1 X T
c Yc =Θ−1

c νc (19)

Errc =(Yc−Xcη̂c)
T (Yc−Xcη̂c)=Y T

c Yc−(Xcη̂c)
T Yc−Y T

c Xcη̂c+(Xcη̂c)
T Xcη̂c

=ρc − η̂T
c νc − νT

c η̂c + η̂T
c Θcη̂c (20)

What is significant about the above expressions is that our estimated model para-
meters, η̂c, and error, Errc, are now expressed exclusively in terms of the interme-
diate quantities ρc, νc, and Θc. Note also that the dimensions of these intermediate
quantities depend only on the number of regressors, independently of the input data
size.

What is more significant, however, is that models of larger spaces can now be
computed recursively from those of smaller subspaces. Let i = 1, . . . , m be the m
cells used to obtain aggregate values for a cell c. It is easy to see that ρc, νc, and nc

are distributive measures and can be accurately aggregated as follows:
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ρc = Y T
c Yc = [Yc1 . . . Ycm ] ⎨Yc1 . . . Ycm

⎩ =
m∑

i=1

Y T
ci

Yci =
m∑

i=1

ρci

νc = X T
c Yc = [Xc1 . . . Xcm ] ⎨Yc1 . . . Ycm

⎩ =
m∑

i=1

X T
ci

Yci =
m∑

i=1

νci

nc =
m∑

i=1

nci Θc =
m∑

i=1

Θci

Hence, having computed the above parameters (the algebraic measures) for each
cell, one can determine the regression model and error for any aggregation of cells
simply by adding the corresponding per-cell parameters and using Eqs. (19) and (20),
respectively. The distributive property of the algebraic measures mentioned above
allows efficient search for best generalizations.

6.2 Reliability Measure

A second challenge in modeling using regression cubes is to develop a reliability
criterion which only uses the information stored in the data cells (i.e., the algebraic
representation) in order to determine model reliability. Not requiring further infor-
mation makes this criterion easy to evaluate and therefore usable in the context of a
data cube with a potentially large number of data cells.

For the estimation of cell reliably as a function of algebraic measures, the reader is
referred to recent work [9]. Below, we simply state the result. Namely, the prediction
error in the cell remains below δ with probability 1−ε, if nc > k and kσ2

δ2λmin(Θc)
< ε,

where λmin denotes the minimum eigenvalue and σ2 = Errc
nc−k . This equation allows

testing whether the model computed in a cell is reliable in the sense of being bounded
to a specified error δ with a specified probability 1−ε. The contribution of the above
expression lies in the fact that it is given exclusively in terms of distributive measures.
Hence, cell reliability can be efficiently computed.

We can now summarize the cube construction procedure as follows: We start
by the apex cuboid (which groups all data together and builds a single model) and
compute the regression model for all of the cells in that cuboid and its children
cuboids. We then find the cuboid with the lowest prediction error compared to its
parent. Cuboids that contain an unreliable cell are discarded. At each step, we add
the cuboid with the maximum reduction in average error and consider its children as
the next-step candidates. This is done until there is no error reduction above some
threshold, or all new cells are unreliable (indicating that we do not have sufficient
data there). The result is a partitioning of the space that satisfies model reliability
requirements and maximizes accuracy.
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6.3 Evaluation

To apply the above concepts consider a green navigation application, called
GreenGPS, in which it is desired to estimate the fuel consumption of a vehi-
cle on any given path from a source to a destination. There are several fac-
tors that affect the fuel consumption of cars on streets. They can be classified
into (i) street parameters, (ii) car parameters, and (iii) personal parameters. In
GreenGPS, vehicle weight, size, tire diameter, engine type, gear ratio, shape, and
manufacturer all play a role in fuel consumption. Given a high-dimensional space,
we shall develop techniques that group cars into categories and find minimal-
parameter models for each category, from collected data, that have a sufficiently
accurate predictive power. Further, street parameters can refer to static street char-
acteristics, such as speed limit and number of lanes, as well as dynamic para-
meters such as the actual average speed (recently made available on large city
streets by a Google service that uses feeds from participating GPS devices in cell
phones).

Figure 3 demonstrates the efficacy of sparse regression cubes at modeling the fuel
consumption of a car, comparing them to three other approaches; namely (i) a single
multi-dimensional regression model obtained by using support vector regression
(SVR), (ii) regression cubes [18], and (iii) sampling cubes [54]. Figure 3a shows that
the proposed technique significantly improves prediction accuracy. Figure 3b, shows
that the analytically computed estimated error is very close to the actual observed
error and that it is indeed less than the (95 %) confidence bound.2 These results
are encouraging, motivating further investigation into reliable modeling of physical
systems from social sensing data.
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2 To make error values meaningful, we have normalized fuel consumption values to be zero mean
and between −1 and 1.
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7 Summary and Discussion

In this chapter, we reviewed a set of analytic challenges motivated by emerging
social sensing systems. These include quantifying the correctness of collected data,
ensuring data privacy, and developing appropriate models from data. Solutions to
address these key challenge are non-trivial.

Social sensing systems are one example of information distillation systems. Infor-
mation distillation (or reduction of large amounts of data into smaller amounts of
actionable information) is an increasingly important interaction modality between
humans and data. While the ability of technology to generate and disseminate infor-
mation has grown dramatically in recent years, human cognitive ability to consume
it remains unchanged. This imbalance between the growing availability of informa-
tion and the human capacity to consume it suggests the increasing importance of
the category of services whose main objective is to distill real-time information for
human consumption.

Information distillation services are further made popular by a shift in the digi-
tal information landscape. This shift is from a web of slowly updated cross-linked
objects (e.g., Web pages) to streams of continually generated real-time data emit-
ted by humans and sensors. Examples include data shared on social networks such
as Twitter, Flikr, YouTube, and FourSquare, and data generated by sensors such
as neighborhood watch cameras and medical devices for longitudinal monitoring.
The availability of real-time data offers both new opportunities and new challenges.
There are unprecedented opportunities for building real-time “situation awareness”
applications such as disaster-response services that help first-responders assess cur-
rent damage, transportation advisories that help individuals avoid traffic bottlenecks,
and citizen-science tools that collect and process data from speciality sensors (such
as rain guages or pollution sensors) owned by interested individuals. Problems dis-
cussed in this chapter are the challenges that arise and are fundamental to information
distillation. Indeed, reliable information must be distilled from unreliable data. Indi-
viduals who share the data may require some privacy guarantees. Applications that
use the data must address modeling challenges, in order to offer predictive services
that learn from past observations. Several categories of sensing applications were
discussed ranging from those where humans collect data points that are individ-
ually significant to those where models or statistical properties of aggregates are
sought.

Many other challenges remain topics of current research. Those include fron-
tend challenges (e.g., energy consumption), coordination challenges (e.g., partic-
ipatory sensing campaign recruitment), back-end challenges (e.g., modeling and
prediction), and challenges in the overall understanding of the emergent behav-
ior of social sensing systems at large. While a significant amount of research has
already been undertaken along those fronts, much remains unsolved. New interdis-
ciplinary research is needed to bring about better solutions for a better theoretical
understanding of emerging social sensing systems in a future sensor- and media-rich
world.
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Chapter 17
Behavior-Aware Mobile Social Networking

Wei-Jen Hsu and Ahmed Helmy

Abstract The next frontier in sensor networks is sensing the human society. Human
interaction, with technology and within mobile communities provides enormous
opportunities to provide new paradigms of user communication. Traditionally, com-
munication in computer networks has focused on delivering messages to machine
identities. Each host is uniquely addressed, and network protocols aim to find routes
to a given machine identity efficiently. While this framework has been proven suc-
cessful in the past, it is questionable whether it will be sufficient in the era of social
networking and mobility. As we envision the emergence of mobile terminals tightly
coupled with their users and thus reflect the behavior and preferences of the users, it
is beneficial to consider an alternative (and complementary) framework: Could user
behavior be collected and summarized as a representation of the user’s interest, and
be leveraged as a way to guide message delivery? In this chapter, we elaborate on this
possibility, discussing user behavior trace collection, representation, and pioneering
works on behavior-aware mobile network protocols.
This proposed new framework is to be usedmainly as an alternative of the IP (routing)
layer in the Internet today and provides a new mechanism for network message
routing. However, as opposed to the current routing schemes (e.g., IP) which address
each host with a unique ID, in this new framework it is the behavior descriptors
of the hosts, not its identities, to be used as the target for a message. Therefore, in
behavior-aware routing protocols, messages are destined to a behavior descriptor
and it is moved across the network based on comparisons of behavior descriptor of
intermediate nodes to the target behavior. Note that a behavior descriptor can map
to many potential recipients, or none.
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This chapter provides a survey of important research work on behavior-aware
routing. In this chapter, we motivate and introduce the new paradigm in Sect. 1.
In Sect. 2, we introduce the goal of behavior-aware routing and its challenges. We
then introduce a framework, namely TRACE, to discuss the steps involved in the
design of social behavior-aware routing. We also give examples from the literature
to explain what each step involves. The most important task in this paradigm is
to summarize and represent node behavior in a succinct form, in such a way that
the new representation can be used in place of node identities (e.g., addresses) for
routing. We then provide examples for various behavior-aware routing protocols
from the literature in Sect. 3. Important research topics in this area for further study
are discussed in Sect. 4. Section5 concludes the chapter.

1 Why Behavior-Aware Social Networking?

In recent years, the rapid advances in wireless communication (e.g., Wifi, 3GPP
standards for cellular data connectivity, WiMax) have made ubiquitous network con-
nectivity an emerging reality. We are now free from the wires and can get network
connectivity almost everywhere; at home, at school, at public hubs, and even on
the go. More importantly, the mass production and adoption of portable devices
(e.g., laptop computers, tablets, smart phones) have shifted the paradigm of how
people access information and manage personal identity or presence on the Internet.
Until just recently, Internet users used to share devices (e.g., a desktop computer
at home or in the library) and access the Internet only from a limited number of
information hubs. This is no longer the status quo, and will be even less so as we
embrace further advances in mobile computing and communication devices.

This shift of paradigm has many interesting consequences. One particular note-
worthy change is nowpeople are in possessionof personal communication/computing
devices (e.g., PDAs, smart phones, laptops) which are used almost exclusively by
their sole owners. This one-to-one tie between devices and owners has never been
so direct and inseparable in the past. Due to this tie, it has become increasingly
obvious that the way each mobile computing device is used is strongly influenced by
its owner, reflecting her behavior and preferences directly. We can easily imagine,
while many devices may be equally capable of accessing any information on the
Internet from any physical location, a laptop owned by a computer science graduate
student who is mostly on campus is likely to be used in significantly different ways
than a smart phone owned by a business manager who travels around the globe. The
difference manifests itself in many possible instances, including the locations and
means by which the devices access the network, the physical mobility pattern, the
applications used, the websites and data downloaded, other devices with which a
peer-to-peer communication link is established, and many more. The regularity and
repetition of the above behavioral aspects (i.e., how “predictable” the user is) also
differ between different types of users.
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Furthermore, emerging mobile devices today (e.g., smart phones) are equipped
with unprecedented capabilities in terms of communication, computation, storage,
and sensing. These capabilities enable mobile devices to sense, store, process, and
exchange behavioral profiles that reflect detailed history of user activities and inter-
actions. This facilitates customized experience for the users based on their inferred
behavioral profiles.

As such, the mobile devices carried by its users could be conceptually considered
as a sensor network of a different form. While the devices are mainly used for tasks
other than sensing, they do have the capability to capture many aspects of their
owner’s daily lives. Today, the ever-increasing number of mobile devices in service
form an ever-expanding sensing infrastructure capturing the human behavior. With
this new opportunity, it is very possible to incorporate the sensed human behavior
into the design of more efficient mobile networks.

This linkage between devices and owners further opens the door for the study of
usage logs from mobile devices to understand the behavioral patterns of their own-
ers. The analysis can be useful in many ways from a system-wide optimization to
personalized recommendations. For example, an analysis of user mobility patterns
on a university campus (e.g., summarizing when and where users log on to campus
WLAN) can help the network administrator to understand the composition of net-
work users and plan for future network deployments [8]. Analysis of websites one
particular device accessed in the past can be used to construct better personalized
data caching and recommendation systems. This direction is generally known as the
“Behavior-Aware Mobile Networks” and is a research area evolving rapidly.

In this chapter, we are particularly interested in the concept of social-behavior
aware message routing in mobile networks. Its basic concept is actually not very
different from how information is spread among human beings without modern
technology. Take a brief moment to reflect on how we acquire or spread information
among people around us—In our social networks, each friend and acquaintance
plays a different role, based on the closeness of the mutual relationship, personal
interests and preferences, and many other factors. The friend you turn to for tips on
online games may be different from the mentor you consult with for career advice.
You spread recent discoveries on algorithms or on a new place to hang out among
different social circles, based on their respective interests.We all observe and leverage
our personal contacts according to their properties to achieve efficient outcomes in
terms of acquiring or propagating information. Now, thanks to the personalization
of mobile computing devices, a similar concept can also be instantiated in mobile
networks formed by device peer-to-peer wireless radio connections. Since now each
device reflects the personality and interests of its owner, it is very possible that a
communication protocol observes and leverages this fact, and therefore makes the
best use of the right contacts when sending or retrieving information. The key of
success in social behavior-aware routing is to leverage the diversity in user behavior
and choose the “proper” ones based on the nature and context of messages.

As an overview, design of a behavior-aware routing protocol involves the follow
conceptual steps: (1) Behavior collection: each node keeps track of its own behavior
and stores relevant events locally. (2) Behavior summarization and extraction: based
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on the context of the problem, each node extracts a useful and succinct behavior rep-
resentation from the events collected. (3) Behavior exchange and comparison: nodes
then exchange their behavior representation, based on which they determine which
nodes are useful to relay a particular message. (4) Message delivery: message are
then transferred from one node to another, according to the choice made by the pro-
tocol based on behavior representations. Note that the above steps have to be carried
out locally on each participating node, without a centralized entity which controls
the network (which is impractical due to the dynamic nature of mobile networks).

There are many potential benefits in social behavior-aware routing, including:
(1) Improving the success rate of acquiring the information wanted: it is always the
best to “ask the experts” for each topic, and who the experts are of course depends
heavily on the topic. (2) Increasing the visibility of a broadcast message with lower
overhead: in a social network, there are usually people who represent information
hubs. It is the best to broadcast messages through them to maximize message spread.
(3) Reaching the right audience: if messages are delivered selectively, we minimize
randommessages that do not fit into our interest or focus. One person’s spammay be
the other person’s treasure. (4) Providing anonymity: since messages are delivered
based on the behavior descriptor of the devices, not the actual device identity, it is
possible through careful protocol design to maintain anonymity of the true identity
of the users. Note that there are typically many people with similar behavior at the
level behavior representation is made, it is not possible to distinguish these users,
helping anonymity.

2 Objective and Challenge in Behavior-Aware Routing

In this chapter, our specific goal is to utilize user behavior representation for mes-
sage routing. To achieve this goal, we need to carefully understand the relationship
between the target behavior for the message and the behavior that enables oppor-
tunities of communication. In mobile networks, typically, mobility of nodes creates
“encounters” when two nodes are in physical proximity and they can exchange mes-
sages during this period over short-range radio (e.g., WiFi, Bluetooth, etc.). Usu-
ally, a representation in the realm of user mobility (e.g., mobility preference vector,
encounter frequency vector, etc.) is used for nodes to estimate or predict potential
future encounters. In general, nodes with similar mobility preference are more likely
to encounter with each other; and due to natural tendency of human beings to have
repetitive behavioral patterns in life, frequent past encounters is a good indicator for
likelihood of future encounters. (See [12] for research on location preferences and
repetitive patterns of mobile users).

There are two different objectives in using user behavior for routing: (1) Use user
behavior to identify good candidate(s) to deliver a message to a particular node ID,
and (2) use a user behavior descriptor itself as a target profile, and the protocol is
responsible for both discovering nodes following this behavior, and delivering the
message to them.
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Fig. 1 a In behavioral space, nodes with similar mobility (nodes with the same legends) are close to
each other. b In interest space, nodes with similar interest do not necessarily have similar mobility.
(i.e., not of the same legend)

If the goal is to deliver a message to a particular node ID, the above construct of
mobility preference or encounter probability is in general adequate for the sender or
message relaying nodes to find out which contacts are more probable to deliver the
message with higher success rate. This is illustrated in Fig. 1a, where the distance
of the legends represents the similarity of their behavior. In the behavior space,
nodes with similar mobility behavior (represented by the same legend) are more
likely to encounter directly. Thus, similarity in behavior representations can be used
as indicators of suitability to deliver a message, if the destination node’s behavior
representation is known. However, as was pointed out in the introduction, a major
advantage of social behavior-aware routing is the potential paradigm shift to deliv-
ering the message based on user behavior. In this more generic setting, the goal of
message delivery may or may not be related with the mobility-based representa-
tion. For example, a message sender may want to reach all classic music lovers in a
community, but these potential recipients have various mobility preferences. In the
more generic interest space, similar interest does not always lead to similar mobility
patterns and thus higher chance to meet. It is therefore a more challenging problem
to deliver messages based on mobility-independent interests, as illustrated in Fig. 1b.
While some recent work in the literature attempts to start to bridge this gap, we
believe social behavior aware routing in this more generic form still needs much
further research.

In the following section we discuss a framework for steps necessary to achieve
the goal listed in this section, including behavior collection, summarization, and
validation.
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Fig. 2 Illustration of TRACE framework

3 Framework for Social Behavior Extraction and Examples

The foundation of social-aware routing roots in the collection and abstraction of
user behavior data. Based on realistic data, detailed user behaviors can be extracted
and leveraged for routing tasks. To this effect, we use the TRACE framework in
Fig. 2 to outline the procedural steps for a study based on user data [10]. The study
begins with Trace collection, followed by a series of procedures to Represent the
data to capture meaningful and important behavioral trends. Then, further effort is
exerted to Analyze and Characterize the users based on the representation, in order
to identify metrics and structures useful for the application at hand. Finally, all the
above understanding and insights are Employed in the actual application. We will
describe each step in more depth below.

3.1 Collecting and Sharing of Behavioral Data

The first step towards behavior-aware mobile networking is the extensive collection
of user traces. To achieve this goal, we leverage the existing infrastructure (e.g.,
mobile devices, WLAN access points, cellular phone towers) today as a sensor net-
work to collect user behavior traces. The direct linkage between the mobile devices
(e.g., laptops, smart phones, PDAs) and their owners today provides an excellent
opportunity for the researchers to sense and capture human behavior from these
devices owners closely.

User behavior is a very generic term. In a broad sense, it entails anything users
do while they are online. Theoretically, to capture all aspects of behavior, one would
keep as detailed as possible log of all operations a user performs, following every step
the user takes as he uses the mobile device. However, not all aspects of user behavior
are directly related to routing, and making very detailed user information available
to the system operator and even to other users certainly raises privacy concerns. It is
thus important to strike a balance between publishing sufficient information to enable
behavior-aware routing, and adequately hiding information to ensure user privacy.

To solve this dilemma, the usual approach taken is the following: While collect-
ing user data, very detailed information is retained or anonymized. However, before
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such data is shared and made available, a pre-processing step will occur. This pre-
processing step summarizes the data in a way that reduces the amount of information
shared. As we will see later in the chapter, this operation not only helps to preserve
user privacy, but also makes the raw data even more useful in a refined, summarized
form.

In terms of data collection, there are three broad approaches: (1) Centralized
approach, (2) Completely decentralized approach, and (3) User-aided centralized
(hybrid) approach. There are a multitude of wireless network user/device activ-
ity traces available in the research community. Many of them are enlisted in trace
archives, such as the CRAWDAD [2] orMobiLib [18] projects. We discuss a handful
of prominent traces along with the approaches used to collect them below.

As a final note, although behavior traces can be collected in various ways to facil-
itate behavior-aware routing research, the actual working assumption of a behavior-
aware routing protocol is usually that nodes need to collect its own behavior in a
decentralized fashion. There is therefore no one entity that collects and stores the
behavior data of all users. Centralized trace collection mentioned below is exclu-
sively for the purpose of understanding how behavior-aware routing would work
based on how users behave today.

3.1.1 Centralized (Infrastructure-Based) Trace Collection

Centralized data collection approach is the most commonly used in research litera-
ture, since it is a simple scheme to deploy at scale. In this approach, the individual
users do not participate in data collection actively; they are passively monitored for
their behavior, in most times not even knowing that such monitoring has occurred.
One very common technique used in the research literature is to collectWLAN traces
from access points to observe the behavior of users associated with the wireless net-
work (e.g., when and where users log on, log off, how much data is transmitted,
etc.). This approach does not require any changes to the users’ devices, and thus can
be carried out to collect traces from the general public once the infrastructure is in
place. This makes the centralized monitoring approach the easiest to implement and
scale, and the least intrusive (i.e., the users do not deviate from their normal behavior
since they are usually not conscious about being monitored, even though they agree
to the terms and conditions of the WLAN when they log in).

As an example for centralized data collection, the most extensive publicly avail-
ablewireless network user logs are fromwireless LANs (WLAN). Themost common
form of this type of trace logs the user association and disassociation events with
access points (APs), and therefore can be used as a coarse-grained location log of the
mobile nodes. WLAN logs have been collected from Dartmouth College, University
of Southern California, University of Florida, IBMWatson research, EPFL, to name
a few. A typical example of WLAN association traces is shown in Table1. Some of
these traces have additional information available. For example, the Dartmouth and
IBM traces have syslogs that record the amount of traffic each AP sent and received.
The USC trace has netflow data that keeps the flows generated by each user.
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Table 1 Typical example of WLAN association trace

Node ID Access point Association Association
(Anonymized) location start time duration

A Building X 326674 634
A Building Y 327897 3294
B Building X 328623 6298
C Building Z 328821 2631
D Building Y 329125 3742

Note that additional information may be available depending on the trace collection details

However, the centralized approach also has a strong dependency on the technology
available today (e.g., WLAN), and there would always be the question of whether
behavior observed from the trace is really an artifact of the technology itself, and
not the intrinsic user behavior had the technology not been deployed. One classic
example of such a debate is, while we can use the AP association in WLAN traces
to observe how mobile devices move on a university campus, would this mobility
pattern be the same if there were no WLAN deployed on campus?

3.1.2 Decentralized (User-Based) Trace Collection

On the contrary, the decentralized scheme usually requires each device to log its own
traces, and later reports the log to a data repository. It is a more typical approach for
small-scale, experimental trace collection. Usually, a specialized device or software
is deployed through a carefully chosen, small set of subjects, and the goal of trace
collection is focusedonvery specific aspects of user behavior.While the decentralized
approach is more suitable for a specific need that cannot be covered by existing,
deployed technology, it is also usually less scalable and can only be carried out in a
much smaller and well-defined controlled set of subjects. Two prominent examples
of decentralized trace collection from the literature are:

• The Haggle project (for pocket switched networks) [7] has set the focus on col-
lecting human encounter patterns. They distributed iMotes (a small sensor with
short-range radio) to a set of people in various settings, including research labs,
academic conferences, and university campuses. The sensors discover each other
if they are in close physical proximity, and the resulting trace is a log of com-
munication opportunities available among the participants over the course of the
experiments. Each experiment includes tens or slightly more than a hundred par-
ticipants.

• MITRealitymining project [21] uses cell phones to collect encounter traces. Using
the Bluetooth radio module, the software installed on phones keeps track of all
Bluetooth capable devices in close proximity of the phone. Thus, it collects not
only the encounter events among the phones, but also the encounter events of the
phones and other “external” Bluetooth capable devices apart from the participating
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phones. The trace collection lasted for about one academic year and involved about
a hundred participants.

3.1.3 Other Approaches

The above two approaches represent the ends of a full spectrum. A combination
of these approaches may be used. For example, in a study of end users watching
video from popular sites (e.g., Youtube.com), the researchers obtain statistics for the
most popular video clips from the website itself, use web crawler to understand the
linkage between video clips, and sniff HTTP packets to analyze each video download
transaction made by users [6].

On a different note, there are also efforts in the research community to come up
with realistic mobility models that capture the mobility patterns observed within real
traces.Major types of realisticmobilitymodels include the following twomajor types
(among others). In the “location-preference based” models, location preferences and
time-variant, periodic user behavior are two important features to capture. Prominent
examples of such mobility models include the TVC model [12, 22] and the ORBIT
[5]model.Another class ofmobilitymodels uses the argument that the influence from
other users (social ties) is the main driving force under the movement decisions made
by users [19]. Mobility models based on social network theory is then generated.

3.2 Representation of Behavior

After the trace is collected, it is important to distill the raw data format (usually
presented by [time, event] pair as the events of interest occur in the environment)
and have a more precise representation towards the behavior to be leveraged later.
This step is of crucial importance, since a proper selection of behavior representation
makes it much easier to handle the succinct summary than dealing with the raw trace,
and helps to represent information in a way that suppresses noise and focuses on the
subject behavior of interest. Typically, it is an iterative research process to decide
the best possible representation to shed the best light on the raw data. Each selected
representation needs to be assessed for its effectiveness, as described in Sect. 3.3
below. More importantly, the selected representation needs to be proven useful for
the target applications.

The selection of behavior representation is application dependent.As far as routing
is concerned, it is usually themobility (i.e., patterns of location visits) of users and the
opportunities of communication (i.e., physical proximity of users, often referred to as
“encounters”) that are considered to be the most important behavior to capture, since
they determine the possible paths of message flow in the network. In the following,
we use examples from the literate to show various possible ways to summarize and
represent user behavior from raw traces.
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3.2.1 Location Preference: Association-Time Vector

In the most common format of WLAN traces, user associations to access points are
captured as individual events. To understand the mobility pattern of a given user,
however, it makes more sense to follow all events from the user and put them in a
summarized form. The most popular way to do so is to sum up the total time the
user spends at a given AP (across multiple association events at this AP). By listing
this sum of association time at each AP in a vector form, it captures the mobility
preference of the user (i.e., a large entry in the vector indicates the corresponding
AP is heavily visited by the user). Note that this summary can be obtained by either
centrally processing the WLAN trace, or by each user individually observing the
access points it associates with.

This is one of the simplest and widely used forms to represent user mobility
preference. It has been shown that on university campuses or research buildings,
user mobility preference is highly skewed, meaning a given user only visits a small
set of access points among all available ones, and spends most of online time at these
access points (e.g., typically, users spend about 95% of their online time at as few
as five access points) [9].

3.2.2 Location Preference: Association Matrix

While summing online time spent at each access point provides a first-order represen-
tation for user mobility preferences, it does not capture potential variations of mobil-
ity preference of a given user at different time slots. For example, it is highly probable
that the same student attends different classes thus visits different parts of a cam-
pus on different days of the week. It is also very likely that a person shows different
mobility patterns during weekdays versus weekends. A study of mobility traces from
university campuses reveals that most users display “multi-modal” mobility [10].

Therefore, a more granular representation than a single vector is required. One
proposal that captures user mobility with multiple vectors is illustrated in Fig. 3,
known as the association matrix. In the association matrix, each row is an association
time vector for a different time slot. That is, each row vector captures the percentage
of online time the user spent at various locations during this time slot. The time slot
can be chosen based on the granularity desired for the representation. Typically, each
row is used to represent a different day, since daily cycle is the most natural boundary
in human behavior.

While the association matrix captures user mobility preference and its variation
across time slots, it is a much more lengthy representation. Fortunately, researchers
have discovered that there exists high repetition in human behavior, and thus the
association matrix can be efficiently compressed. Using a standard technique for
matrix summarization, singular value decomposition, it is shown that only a handful
of vectors are sufficient to capture most of the variation in association matrix (e.g.,
five vectors are enough to capture typically more than 90% of power in most user’s
association matrix), based on the study of WLAN traces from university campuses
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Fig. 3 Illustration of association matrix

(Dartmouth College and University of Southern California) [10]. We refer to these
Eigen-vectors as Eigen-behavior for the users [4, 10].

The strength of the Eigen-behavior representation stems from its autonomous and
succinct nature. Each node can generate its Eigen-behavior autonomously without
involving other nodes, and this representation is small enough for easy exchange
between nodes to facilitate behavior-aware routing protocols.Wewill further display
this in the next section.

3.2.3 Node Centrality

Another approach to capture user behavior is by graph analysis. Consider eachmobile
device in the network as a node, and an edge between two nodes and its weight
represent the likelihood of the mobile devices meeting each other, the whole mobile
network can be summarized as a graph.

Now, to route packets across this graph, it is crucial to understand that nodes
play different roles in the graph. Some of the nodes are more important in terms
of connecting people in the network as they are placed at the center of the graph,
through whom the connections of otherwise disconnected nodes are made possible.
This property can be discovered by calculating the centrality of each node in the
network. This metric can then be used as a single figure to measure the relative
importance of nodes in terms of bridging the network for others. While traditional
definition and calculation of betweenness centrality requires complete knowledge
of the graph, which cannot be done by individual nodes, a modified definition of
egocentric betweenness centrality [17] can be derived individually by each node
with local, partial knowledge of the network and is thus useful for decentralized
applications such as routing.
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3.2.4 Delivery Probability Vector

Amajor event of interest to facilitate behavior-aware routing is the encounter among
mobile nodes (i.e., two nodes move within radio communication ranges). When an
encounter event happens, the two involved nodes have an opportunity to exchange
messages.

One representation to capture the likelihood of nodes being suitable candidate
for messages targeted for a given destination is the delivery probability vector, first
introduced in one of the earliest behavior-aware routing protocol PRoPHET [16, 20].
The delivery probability vector contains as many entries as the number of total nodes
in the network. If nodeA encounters with nodeB often, thenA is a good candidate for
messages targeted for B. This is reflected by increasing the entry for node B in node
A’s delivery probability vector each time they encounter. The delivery probability
vector also considers transitivity, that is, if A meets with B and Bmeets with C often,
then C can also be considered a suitable candidate for messages for A. Finally, if
two nodes have not encountered for an extended period of time, then they are not
as good a candidate to deliver messages for each other as before. Thus the delivery
probability vector ages with a multiplication factor less than 1 periodically as well.

3.3 Validation of User Behavior

After the representation of user behavior is obtained, how do we validate that the
particular summary is chosen in a meaningful way? With the plethora of wireless
network user traces available today, and the rich information available from these
data sets, it is possible to come up with almost infinitely many ways to represent user
behavior. However, after one comes up with the representation that seems to be the
most relevant to the task at hands, it is important to validate the representation to see
if it is a meaningful way to look at the data.

Firstly, we want to check the stability of the representation—if the chosen rep-
resentation truly reflects an intrinsic property of the users, it is unlikely for the
representation to change drastically for a given user with respect to time. It is thus
important to observe how the chosen representation for a user varies across time, and
whether such variation can be justified. If the representation fluctuates a lot without
reasonable justification, then perhaps the representation does not capture an intrinsic
user behavior.

Secondly, one very important condition to consider is whether the representa-
tion leads to a well-separated classification of users. It is typical that when a social
behavior is meaningfully captured, users show different patterns based on the rep-
resentation. Leveraging these natural differences among users, a classification can
be drawn with well-defined boundaries. While users in the same group are highly
similar to each other based on the given representation, users in different groups are
drastically different. This result can be compared against putting users randomly in
groups and the classification based on the behavior representation should showmuch
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more significance. If this cannot be achieved, perhaps the representation is not doing
a good job discerning users, and hence is not a good candidate when we want to
leverage users with different behaviors for routing purpose.

While validating the representation, it is also worthwhile to look at multiple
sources of user traces and dig into the similarity and difference in user behavior.
Many times, populationwith similar properties (e.g., students from similar university
campuses) would display similar behavior trends. The qualitative similarity can often
be striking. In contrast, different sub-user populations (e.g., laptop v.s. PDA) may
display different behavior trends. By analyzing various populations or sub-groups
within a population and trying to explain the similarity or difference discovered, one
can understand deeper if the representation has captured user behavior meaningfully.

In the following subsections we further elaborate these points with examples from
relevant research papers.

3.3.1 Time Stability of the Representation

Firstly, if the user behavior representation really captures an intrinsic aspect of user
behavior, it is expected the trend should be stable (i.e., not varying randomly) for the
same user. After all, one major reason we rely on user behavior representation for
routing is that we expect the past behavior to be a good predictor for future behavior,
and thus we can count on the persistence of user behavior to make intelligent routing
decisions. If this is not the case, there is not much use to base routing decisions on
user behavior. Thus, it is crucial to verify the representation has at least some stability
for a meaningful time horizon for the application.

For example, in [11], based onWLAN traces collected from university campuses,
the representation of Eigen-behavior of a given user is compared against its future
behavior. As illustrated in Fig. 4, at two different time points T days apart, the same
user’s association matrix is created using the trailing d days of traces, and the cor-
responding Eigen-behavior vectors are calculated. The similarity score, as defined
in [10], is then calculated between the two resulting sets of Eigen-behavior. The
results are shown in Fig. 5. We can observe a few interesting properties from the
figure. (1) the similarity score remains high for the same user for a long time into the
future. When we consider T = 35days (5weeks) apart, the mobility profiles from
the same user still show high similarity, with values higher than 0.6. This implies the
current association matrix and the derived Eigen-behavior is a reliable predictor of
user behavior into the future. (2) The amount of history used does not influence the
result too much when the considered T is large enough to avoid overlaps in the used
mobility history (i.e., when T > d).

The stability gives us the confidence that once the Eigen-behavior of a user is
derived, it remains similar for a period of time. This period of time is long enough
for the purpose of message delivery in mobile networks so that the Eigen-behavior
can be leveraged as guidelines based on which routing decisions are made. Even if
two nodes do not encounter frequently to update their Eigen-behaviorwith each other,
the historical information is still meaningful and useable. It is such a stability that



652 W.-J. Hsu and A. Helmy

Fig. 4 Illustration: Compare the Eigen-behavior vectors obtained from trailing d-days trace at two
points T days apart

Fig. 5 Average similarity
metric of the Eigen-behavior
from the same user at T days
apart

Table 2 Percentage of power captured by themost important Eigen-behavior from each user group,
from two WLAN traces

For its own group For other group

USC 0.779 0.005
Dartmouth 0.727 0.004

creates a structure in social behavior that can be explored by routing protocols.While
we show only an example with Eigen-behavior, similar stability analysis should be
carried out as a first step to examine if a given metric can be considered as a reliable
indicator for behavior-aware routing.

3.3.2 Significance of User Grouping

Another way to examine the validity of a representation is to compare whether a
certain trend is likely to appear due to random chances with statistical analysis. If it
is not likely, then the representation has captured something significant, and intrinsic
to user behavior rather than due to chances. This is another important way to verify
that the representation is useful.

One example of this verification is done to user grouping based on similarmobility
trends in [10]. Once the grouping has been determined, we would like to verify if
the mobility trend is indeed consistent and unique for each identified group. In order
to determine the uniqueness, we take the most dominant Eigen-behavior from each
user group and calculate how much power it captures for this user group and other
user groups. From Table2 we can easily see each of the top group Eigen-behavior
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Fig. 6 Scatter graph:
Cumulative power captured
in top four Eigen-behavior
vectors of random groups (X)
and groups formed accord-
ing to similarity in Eigen-
behavior (Y)

captures significant more power within its own group than other groups. This verifies
the uniqueness of identified groups in terms of user behavior. Each group collects
nodes with behavior different from other groups.

In order to determine the consistency of behavior of users in the same group,
we calculate the percentage of power captured by the top Eigen-behaviors from the
whole group. The idea is, if the users in the group follow a coherent behavioral
trend, the percentage of power captured by the top Eigen-behavior vectors should
be high. On the other hand, if users with different trends are mistakenly put in one
group, the percentage of power captured by its top Eigen-behavior vectors should be
much lower. We then compare the cumulative power captured by the top four Eigen-
behavior vectors of our groups with random groups of the same size (i.e., randomly
pick the same number of users from the whole population) in scatter graphs, in Fig. 6.
Clearly, most of the dots are well above the 45-degree line, indicating the users in the
same group follow a much stronger coherent behavioral trend than randomly picked
users, and therefore the user grouping is of statistical significance.

3.3.3 Cross-Validation: Experiment with Multiple Data Sources

One additional step to verify validity of a particular behavior representation is to
cross validate with multiple data source. If a representation works well not only on
one, but multiple data sets, we have better confidence that this is a genuine way to
capture user behavior. Therefore, in many research work on this front [3, 9–11, 13],
we see the results are reported for multiple data sets, while similar observations are
made. This is not just a repetition. While at times the data sets are obtained from
similar settings (e.g., traces fromdifferent university campuses), it is a very important
step to prove that the behavior trend captured is not an artifact from a specific place,
but at least a common behavioral trend from similar environments.
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4 Behavior-Aware Routing Protocols

In the following sections we use studies in the literature as examples to present the
state-of-art of user behavior data collection, representation, and summarization. We
further discuss several studies that use these behavior representations for routing
tasks.

Once we obtain a valid representation of user behavior, it can be leveraged for
many applications. Routing is just one very important example. The fundamental
argument for behavior-aware routing is that human behavior is repetitive. Therefore,
based on the past history, if some event happened frequently, it is likely to happen
again, and this trend can be leveraged to determine which nodes are better candidates
to deliver messages for a target.

Typically, behavior-aware routing leverages a greedy, gradient-ascend approach.
While the actual metric and protocol operation details differ, most of them use a
similar principle: Starting from the source node, each node looks for other nodes that
are better candidates (i.e., more likely to deliver themessage successfully) and in turn
sends themessage to these promising intermediate node(s). These nodes then operate
similarly to find even better candidates for the message, and this operation continues
until the message is delivered. Each protocol differs from others by the metrics they
use, theway thesemetrics are collected andmaintained, the protocol operation details
such as using single or multiple message copies, amount of control messages needed
for protocol operation, recovery mechanism from faults, or termination conditions.
This general form of behavior-aware routing protocol is illustrated in Fig. 7.

In this section we introduce some well-known works from this very new research
area to provide examples of behavior-aware routing protocols.

4.1 PRoPHET

PRoPHET [16] is one of the earliest work that introduces the notion of behavior
aware message routing. In PRoPHET, a delivery probability vector is maintained by
each node, detailing the probability that it is a good candidate to deliver messages to
all the nodes in the network. Consider a given node A in the network. If it encounters
with node B repeatedly, then the delivery probability for node B should be increased
in node A’s vector. Also, if node B meets with node C, D frequently, by transitivity,
node A should also increases its delivery probability for node C, D as it can get to
these nodes through B. Finally, all entries in the vector slowly decay with time as
an extended time period absent of encounter events should be reflected by reducing
the delivery probability. When nodes encounter with each other, they exchange the
encounter probability vectors in order to update each other about encounter transi-
tivity.

When it comes to message delivery, each node simply looks out for other node
which has a higher delivery probability for the message destination node than itself
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Fig. 7 Conceptual illustration of gradient-ascend routing in behavior space—Each node calculates
a score based on its own behavior and the target profile. Based on this score, the message is
transmitted towards node ranked higher, progressing towards the target profile

as the next hop. The message follows an increasing gradient in delivery probability
to reach the final destination.

4.2 Mobility-Pattern-Space Routing

Another early work in behavior-aware routing, in [15] the authors introduce the con-
cept of MobySpace. Each node is represented by a single coordinate in this space,
using the representation of association vector as introduced in Sect. 3.2.1. The pro-
tocol assumes that the association vector of the destination node is known to the
sender, and it is used in the place of destination node ID for message delivery. A
message follows a pure greedy ascend approach across the network. Current mes-
sage owner attempts to find another node with an association vector more similar
(i.e., shorter Euclidean distance) to the destination than itself and relay the mes-
sage to this node. This process continues until the message reaches the destination
node.

This work is among the first ones to look at repetitiveness in user behavior, in this
case mobility, and leverage it for routing. It turns out performing much better than
other simple strategies, such as random routing, hot potato routing, or waiting for the
sender and destination nodes to meet directly, in terms of both delay and success rate.
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This is one of the earliest work to leverage mobility pattern (a form of behavior) to
represent the destination of a message.

4.3 Social Orbit

The notion of social orbit is proposed by Ghosh et al. in [5]. It is likely for an
individual to have a bunch of frequently visited locations (known as “hubs” in their
terminology), and a set of probable sequences by which the individual visits these
locations (known as “social orbit” in their terminology). This social orbit exists at
micro-level (e.g., buildings on a university campus) and at macro-level (e.g., cities
in the nation). It is highly likely that an individual repeats her mobility pattern from
one of the already known social orbits.

Once the social orbits are identified, they can be leveraged in a routing proto-
col. The authors propose a Sociological Orbit aware Location Approximation and
Routing (SOLAR) protocol, which works as follows. In this protocol, if the source
node already knows the social orbit of the destination node, the message is sent
(through greedy geographic routing [14]) towards the geographical central point of
all hubs of the destination node. Once the source and destination nodes connect with
each other (i.e., exchange the first packet of a stream of packets), they include their
updated social orbit and the current hub they are at within the packet header to inform
each other with better location knowledge. Subsequent packets are then delivered
using geographic routing to the location of the other party directly. Once two nodes
exchangemessages they become acquaintances and store the social orbit information
of each other.

If the social orbit of the destination node is not yet known to the sender, then
sender carries out a series of actions to discover the social orbit of the destination
node. Query packets are sent from the sender to its acquaintances in order to check
if one of the acquaintances knows about the destination’s social orbit. Among all
the acquaintances, a subset is chosen carefully to maximize the number of hubs
covered by the queries while minimizing the number of queries sent (i.e., pick the
acquaintance that goes to hubs that no one else goes first).

4.4 Mobile Social Network Routing

Social network properties can also be leveraged for routing protocol, as displayed by
Daly et al. in [3]. In this work, instead of focusing on individual behavior properties,
such as mobility pattern, the authors try to identify the role a node plays in the larger
network of mobile nodes by quantifying several network properties. They choose (1)
a node’s betweenness centrality, (2) a node’s social similarity to the destination node,
and (3) a node’s tie strength relationship with the destination node, as the metrics to
pick promising next hop for message forwarding.
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Betweenness centrality is a measure of the extent to which a node has control
over information flowing between others. While the correct number of betweenness
centrality cannot be obtained without the knowledge of the whole network topology,
each node in the network can however use only its local view to derive a measure of
egocentric betweenness, which has the same ranking as the sociocentric betweenness
(the one obtained from complete network knowledge). The strength of ties between
mobile nodes can be calculated based on the frequency, duration, and recency of
their mutual encounter events. And finally, the social similarity of two nodes can be
estimated by the size of the group of common nodes they both encounter with.

The authors then devise a utility function to evaluate all possible intermediate
nodes for their suitability of message forwarding, incorporating all three metrics
mentioned above. For a given message, if only one copy is allowed in the network,
it is transmitted when another intermediate node with higher utility is encountered
by the current message holder. If more than one copy of a message is allowed, when
the current message holder meets a new node, they split the number of copies of
message each of them is responsible to distribute later, according to the ratio of their
utility function.

In another work by Hui et al. social network structure is also considered in a rout-
ing protocol named Bubble Rap [13]. The authors consider two important factors in
human network, community and popularity. They obtain the community structure
from inter-node encounter traces using standard community detection algorithms,
such as K-clique or weighted network analysis. Popularity of a node within its com-
munity and global popularity are then measured by betweenness centrality. One key
observation from the authors is that a globally popular node may not be the best
forwarder for messages destined at a given community if this node does not belong
to the community. Therefore, the Bubble Rap protocol works in stages. First, a mes-
sage follows the global popularity metric to reach a globally popular node. But as the
message progresses in the network, at the later stage, it is the local popularity within
the destination community that better determines which nodes are the most useful
to deliver the message. Using the knowledge of the community of the destination
nodes, the local popularity metric then can be used for better forwarding decisions.

In the work by Costa et al. [1], a publisher-subscriber model is integrated with
message delivery in social network. Their fundamental assumption is that similar
interest implies higher probability of co-location (i.e., birds of the same feather flock
together). This assumption is applicable in some cases to facilitate behavior-aware
message delivery. Based on the assumption, the authors device a utility function
that considers two factors (1) whether a given node co-locate with any nodes with
certain interest i, and (2) if a given node has a lot of connectivity changes (i.e.,
addition and removal of neighbors), to device a utility function for this node’s utility
to deliver messages for interest i. This work provides some indirection between
message destination IDs and message destination properties (e.g., interest).

The success of utilizing social network metrics for routing decision indicates that
not only individual behavior, but also social behavior, displays a repetitive pattern
in our daily life. A node that is central to a network in the past is likely to remain
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central, and a strong tie among two nodes is likely to persist. Therefore, inter-node
relationship could be leveraged to build efficient behavior-aware routing protocols
as well.

4.5 Small-World and CSI

Most of the previously discussed work use either individual behavior patterns (e.g.,
encounter or mobility history) or social behavior patterns (e.g., betweenness, com-
munity) for message forwarding decisions. However, it is yet unclear how these two
types of behavior patterns are related to each other.

In the work by Hsu et al. [11], it is found that individual nodes display stability
in their mobility profiles (as we discuss in Sect. 3.3.1). More interestingly, there is
a linkage between the similarity of this mobility profile and the social relationship
between nodes. If two nodes are similar in their mobility profiles, they are likely
to encounter, and encounter with much longer time duration (as shown in Figs. 8
and 9). On the contrary, if two nodes show very dissimilar mobility profiles, they
are unlikely to encounter, but the encounter probability is not zero (Fig. 8). More
interestingly, when we compare the sets of nodes encountered by two given nodes,
we discover that if the two nodes are dissimilar in mobility profiles, the sets of nodes
they encounter directly are very different (Fig. 10). Thus, these rare and random
encounters between dissimilar nodes are very important events in a mobile network
for message routing. They bring the distance across the network much smaller, by
introducing an opportunity to exchange messages among group of nodes which are
otherwise unlikely to meet. A social network is typically a Small-world network
[9]. The authors argue that the cliques in the social network are formed by people
with similar mobility profile and thus encounter often. The random links that bring
the network distance shorter are formed by the random encounter events between
dissimilar nodes.

Fig. 8 Mobility similarity
leads to higher probability of
encounter
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Fig. 9 Mobility similarity
leads to longer duration of
encounter

Fig. 10 Mobility similarity
leads to similarity in the sets
of nodes encountered

With this property in mind, the authors further design CSI protocol for mes-
sage dissemination in social networks. The proposed CSI protocol has two modes:
CSI:Target (CSI:T) mode and CSI:Dissemination (CSI:D) mode. The idea behind
CSI:T is somewhat similar to mobility space routing discussed in Sect. 4.2. Given a
target mobility profile, intermediate nodes send the message towards another node
with more similar mobility profile to the target profile, thus improving the chance
to meet with target nodes. This is illustrated in Fig. 7. CSI:T can be used when the
mobility profile can be used to represent the target of a message.

CSI:D mode provides a more generic protocol suitable for message delivery
towards target profiles that cannot be represented by a mobility profile. One example
is to reach people who like movies on a university campus. If there are no movie
theaters on the campus, the measured mobility profile cannot be used to infer such
interest. This challenge is pointed out in Sect. 2 (Fig. 1)—nodes that are similar in the
interest space may not be similar in mobility behavior space, thus the gradient ascend
approach does not work. There appears to be little insight provided by the similarities
between the nodal mobility profile to guide message propagation, as the intended
receivers in this case may be scattered in the behavior space, and the relationship
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between the target profile and the mobility profile cannot be easily quantified. How-
ever, the authors argue otherwise, suggesting that mobility profile can be of use even
if the target of message delivery has nothing to do with mobility itself.

The objective of CSI:D mode is to introduce a small number of message copies
transmitted and stored in the network intelligently, yetmake it possible formost nodes
to get a copy quickly, if they are the intended receivers. CSI:D leverages the discovery
made earlier on the relationship between nodal encounter patterns and the similarity
between mobility profiles. That is, nodes with dissimilar mobility profiles are more
likely to encounter with different sets of nodes, while nodes with similar mobility
profiles tend to meet often (i.e., belonging to the same social clique). Therefore,
when the objective is to reach most of the nodes in the network with lesser message
replication, it is wise to keep only one copy of the message in each social clique, and
make a copy only if a message holder encounters with a node that displays dissimi-
lar mobility profile from all known message holders. In this regard, CSI:D protocol
attempts to spread copies of the message out to the network intelligently, leverag-
ing only the rare but important encounter events in social network—the encounter
between different social cliques, or between nodes with dissimilar mobility profiles.
With this strategy, the authors show that the mobility profile can still be useful to
guide message delivery, even if the target of message has nothing to do with mobility
patterns.

5 Discussions

5.1 User Privacy

Collecting user behavior and using such behavior for message delivery certainly
raises privacy concerns. While the full picture of privacy implication of behavior-
aware routing protocols and the necessary means to protect user privacy are still
under research, the following comments can be made with respect to user privacy in
behavior-aware routing.

Firstly, While the research of behavior-aware routing uses the complete informa-
tion from user traces as a mean to understand user behavior, full access to such traces
is not necessary for the routing protocols given in Sect. 4 to operate. Specifically,
each participating node does not need complete knowledge of all other nodes in
the network (in fact, this is an important requirement for routing protocol in mobile
network—it has to work in a decentralized fashion). Each node merely collects its
own behavior and exchanges with nodes it communicates with. Also, there is no
“service provider” responsible for setting up the network and marshaling message
propagation. Thus, no one has the ability to track or store the behavior data of users
in the network. Individual users own their behavior data, and can potentially control
how much to share with other people.
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Secondly, the behavior summarization step helps to reduce the granularity of
information made available to other users. Using mobility pattern as an example,
the raw event (I am at location X from time T1 to T2) is never shared. Instead, a
summarized mobility preference vector (my most frequent locations are X, Y, Z, and
I spend 50, 30, 15% of time, respectively, at these locations) is shared. Furthermore,
the summarization stepmay in fact remove the actual semantic of trace in some cases.
All that the protocol cares is if two users are similar (e.g., visiting similar location
sets), and exactly which locations they are is not really important.

Finally, users with privacy concerns may opt out of the protocol, and they can do
so without severely impacting the network performance. One interesting property for
social network is its robustness—it is show in [9] that the network of mobile nodes
formed by encounters is robust to node removal. Even if 20–30% of nodes choose
to not participate in message routing at all, the messages still find alternative ways
through the network.

5.2 Relationship to the Current Internet and Alternative Network
Structures

In this section, we briefly discuss the relationship of the behavior-aware routing pro-
tocol to the current Internet, and several other proposed alternative network structures
in literature.

Until now, most communication paradigms and primitives in computer networks
have been identity-centered. Messages are destined to a machine identity (e.g., uni-
cast, multicast or broadcast IP addresses) when they are sent across the network.
Thus, in traditional network protocols, searching and addressing services need to be
maintained for the purpose of looking up the information provider’s machine identity
(i.e., use Google for the library website and use DNS to find its IP address), and the
parties are then connected using identity-centered protocols. This is illustrated in
Fig. 11a, where well-known look-up services become an essential part in all com-
munication. However, communication occurs in many cases for a purpose different
than reaching a particular machine ID (e.g., I want to find out information about
library hours, whoever actually provides the information is irrelevant to me). Social
behavior-aware routing, on the contrary, has the potential to provide a new paradigm
where the behavior itself is used to guide message delivery. There is potentially more
than one specific receiver identity in many scenarios. Instead, whoever matches the
target social behavior of the message are all potential receivers. The network pro-
tocol itself collects, maintains, and routes messages based on behavioral properties
of participating nodes in the network, in a distributed fashion. This is illustrated in
Fig. 11b, where the sender specifies the target behavioral profile in the header of the
message and injects it into the network.While this paradigm deviates from traditional
networking, it is not meant to replace existing paradigms but to augment them. We
do believe that in many contexts, there is really no hard requirement to reach specific
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Fig. 11 Traditional ID-based versus behavior-based message forwarding schemes, a Node
ID-based message forwarding, b Behavior-based message forwarding

node(s). Instead, matching communication parties based on the desired behavior pat-
terns may be the most efficient, robust, and application-centric paradigm in mobile
networks in many cases.

6 Conclusion

With the advances of mobile computing and communication devices, it is envisioned
that each person will possess personal devices exclusively used by the owner. This
emerging trend makes it possible to leverage these devices as sensors for human
behavior to collect usage data from the owners. While many applications are possi-
ble with this collected data, in this chapter we focused on its usage in behavior-aware
mobile social networks. The traces are used to understand different roles played by
each individual from networking perspective, and leverage this understanding to
deliver message intelligently by selecting appropriate forwarders. This new research
area, which we describe as social behavior-aware routing, is actively under develop-
ment.
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In order to successfully design a social behavior-aware routing protocol, it is
imperative to collect realistic user data, summarize and represent the user data in a
suitable form for the application, and examine the validity (stability and significance)
of the representation. It is also beneficial if the chosen representation canbe calculated
by each node with its local knowledge, enabling decentralized application.

While most of the behavior-aware protocols in the current literature still use
machine IDs as the final destination of messages with behavior awareness being
used as a mean to facilitate this goal, a new possibility with behavior-aware routing
is to use the actual behavior, instead of amachine ID, as the destination.We argue that
this form of routing is actually more natural in many applications such as targeted
advertisement or topic-based discussions. However, the linkage between general
interest and user mobility (the main facilitating factor of communication in mobile
networks) is to be further studied and understood.
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Chapter 18
Emerging Applications of Wireless Sensing
in Entertainment, Arts and Culture

Jeffrey A. Burke

Abstract This chapter provides an overview of cultural applications of wireless
sensing systems from four perspectives: the “Internet of Things”, the “Smart Grid”,
“participatory sensing” on mobile phones, and an event-based point of view. The
challenges and unique requirements of these applications are examined, and future
opportunities for research are suggested in three technical areas: Machine Learning,
Networking and Privacy. The need for more advanced authoring tools—enabling
creators of cultural applications with less technical backgrounds to develop complex
systems that use wireless sensing—also motivates work on these three technical
topics.

1 Introduction

This chapter explores the current and emerging roles of wireless sensing (and related
examples in embedded sensing) in cultural applications—entertainment, arts and
culture—where it is offering new opportunities for human creativity and experience.
Three related technological movements are reviewed: the Internet of Things, which
focuses on IP-enabled objects; the Smart Grid, which involves network-connected
infrastructure and utilities (water, power, etc.); and participatory sensing, which
concerns personal wireless devices in the consumer market and related research in
sensing using these devices. Each movement provides a specific perspective on the
potential for culture-related uses of wireless sensing.

While these three areas share common technology and overlapping research agen-
das, their visions intersect with the cultural sphere in different and informative ways.
Also described is a fourth, less pervasive perspective—that of events—represented
most formally through live performance, but also applicable to a variety of human

J. A. Burke (B)

University of California, California, LA, USA
e-mail: jburke@ucla.edu

H. M. Ammari (ed.), The Art of Wireless Sensor Networks, 665
Signals and Communication Technology, DOI: 10.1007/978-3-642-40066-7_18,
© Springer-Verlag Berlin Heidelberg 2014



666 J. A. Burke

encounters. This perspective poses complementary challenges to the creators of
wireless sensing systems. The chapter concludes by describing research topics in
wireless sensing that hold promise for empowering cultural users to author more
sophisticated, ubiquitous applications.

Cultural applications, as described here, include the arts, entertainment, and
projects of civic and cultural engagement. Such applications have aesthetic, ludic,
experiential and social objectives that extend beyond simply supporting commu-
nication or efficient task completion using technology. They relate to experiences
with processes that strive to engage its participants, who are willingly committing
their free time to be engaged; they are not necessarily supposed to be quick or seem
efficient. Compared to commercial technology, cultural applications have a less util-
itarian perspective on their employment of technology and involve decisions that
may more frequently and more explicitly challenge (and delight) their users.

The approach of this chapter emerges from 15 years of experimentation at the
University of California, Los Angeles. The research explores the roles of new tech-
nologies in cultural applications, and is part of a larger, ongoing movement by many
cultural producers and critics. Sensing has played an important role in this area, con-
necting the physical world occupied by humans with the digital media and tools that
are now fundamental to many applications within the arts, entertainment and culture.

Sensing is part of the changing sphere of cultural production. Other elements of
the expanding palette for creators include: more sophisticated tools for capturing,
distributing, and using digital media; new tools for infusing data into built environ-
ments through changes in lighting, material characteristics, sound, and other me-
dia; expanded modes of storytelling using nonlinear, locative, and database-driven
structures; and new paradigms for interconnecting components, such as information-
centric networking. It is within systems of these components that wireless sensing is
considered.

2 Perspectives

2.1 From the Internet of Things to the Internet of Places
and Experiences

Mark Weiser’s early vision for ubiquitous computing has motivated research and
consumer product development for two decades [30]. One recent evolution of the
ubicomp vision has been the Internet of Things concept, which envisions almost
every device and many objects as IP-enabled (as illustrated in Fig. 1) and, to varying
extents, context-aware [10]. Within this vision, wireless sensing is integrated into
Internet-connected objects, as well as deployed as independent, Internet-connected
infrastructure.

Integrating Internet-enabled things into cultural experiences can be pursued
object-by-object. For example, the ways to integrate IP-enabled “things” into so-
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Fig. 1 Artist’s rendering of the Internet of Things concept

cial networks and other existing networked systems can be considered as needed.
Perhaps reframing the discourse in this research area to consider places and experi-
ences, instead of things, would a significant opportunity for the cultural sector. This
terminology better represents the design challenges faced by those who make the
“things” for people to use in their everyday lives.

In the Internet of Things, sensing is used both as inputs for direct HCI (human-
computer interaction or human-device interaction) and for observations that do not
involve direct interaction with a user. (These two modes exist within the other per-
spectives treated in this chapter as well.) Creators of cultural applications have ex-
plored both modes of operation; they have extended the notion of network-supported
interaction and interconnection of everyday devices beyond task support to other
human pursuits, including creating emotionally and aesthetically pleasing objects
and engaging with the surrounding political, cultural and environmental context. In
these cases, focuses on experience and place take precedence over any one object.

A significant (and representative) early exploration of HCI opportunities within
the Internet of Things (before it was known as such) was Hiroshi Ishii’s Tangible
Bits [15]. Ishii and the MIT Tangible Media Group explored the idea of Tangi-
ble User Interfaces (TUIs) that “provide physical form to digital information and
computation.” They anticipated network-connected objects used for accessing infor-
mation and often using external computer vision to create interactions, in addition to
other sensingmechanisms. Not just everyday objects, these “objects of wonderment”
(a term later coined by Paulos [23]) would encourage their users to think differently
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Fig. 2 IO brush from the
tangible media group at MIT,
a cultural context example
of future human-computer
interaction possible in an
Internet of Things. (Ryokai,
Marti, and Ishii 2004)

about the possible connections between the digital and physical worlds. The Tangible
Media Group’s projects, such as the IO Brush in Fig. 2, emphasized shifts in user
experience—made possible through technology embedded in everyday objects, not
only the connection of those objects to digital systems.

The observational model for the use of sensing devices within the cultural realm
can be seen in the work of artists, such as Stanza, who, in gallery exhibitions, sonifies
and visualizes data from wireless sensors placed in the urban environment.1 For
example, his project, Capacities: Life in The Emergent City uses wireless networked
sensors to capture temperature, light, pressure, noise and sound data from the city
outside the gallery, and controls elements of a physical artwork in real-time based on
this information. The project uses forty mote-based sensor packages as data sources.
It is one of twelve such works created by the artist between 2004 and 2012.

3 Challenges and Opportunities

Designing complete experiences andphysical environments that incorporate Internet-
connected, sensor-enabled objects poses substantial technical challenges, as dis-
cussed in other chapters of this book. In cultural applications, aesthetic and usability
requirements are paramount, even in experimental work, and often drive technical

1 http://www.stanza.co.uk

http://www.stanza.co.uk
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requirements further than in the scientific fields that have motivated early work in
sensing [4].

Regardless of experimentation, the complexities of wireless radios and mesh net-
working of devices had limited the creation of ecosystems of wireless sensors that
would enable these types of experiences. As these challenges have been addressed
and the technologies further commercialized, the Internet of Things vision has be-
come more viable, as have extensions into everyday life that move beyond everyday
objects.

The emergence of “maker” culture (Economist 2011) has brought significant
experimentation into the cultural sector. Low cost and open source hardware has been
designed to support experimentation with wireless sensing, including the Arduino2

microcontroller platform and XBee3 radios. Until recently, many experiments were
networked through application-specific gateways (if networked all). With increasing
support for IP and even HTTP on small devices, as well as web services such as
Pachube (now Cosm4) for sensor data aggregation, the Internet of Things vision is
developing. The prevalence of HTTP connectivity, for accessing sensor data at the
gateway and device level, has made the incorporation of sensor data more viable for
cultural producers primarily familiar with web development.

Cosm, in particular, presents an intriguing interface to the Internet of Things. It
allows a global database of live data streams to be accessed through a consistent
interface, making data access both consistent and approachable to “makers”, while
also centralizing it within a single web-based aggregator.

Cultural applications of wireless sensing will benefit from two new possibilities
enabled by the Internet of Things networking of sensorswith the commodity Internet:
integration with media and federation of many devices. IP integration will enable
the creation of Internet of Things (IoT) applications connected to the mainstream
media world of high definition content and interactive environments—integrating
capture, processing and dissemination of high-bitrate digital media, sensing and
control, distributed processing, and user interfaces in increasingly sophisticated and
complex combinations, with scales and diversity far beyond today’s applications.

At the same time, related trends in cultural production—e.g., social networking,
cloud-hosted media, location-based experiences, and multiplayer online gaming—
suggest that the IoT will not only be used for a collection of isolated device-centric
experiences, but for the creation of multi-person, multi-site, multi-device experi-
ences. Cultural producers, responsible not only for individual devices but entire
experiences, will need approaches to wireless sensing designed to be integrated into
experiences and places in a holistic way, not simply to create networked things.

The network of objects will become a fundamental part of how places and expe-
riences are created—in the home, workplace, entertainment-focused environments
and “third places”, what Ray Oldenburg called the coffee shops, public spaces, and

2 http://www.arduino.cc
3 http://www.digi.com/xbee
4 https://cosm.com

http://www.arduino.cc
http://www.digi.com/xbee
https://cosm.com
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other locations where we spend our time outside of home and work. And they will
also be linked to the emerging world of Internet-supported media distribution.

The interweaving of wireless sensing systems (and Internet-enabled objects that
incorporate them) withmedia presents engineering challenges—bridging the various
networks involved, each with different power, bandwidth, and security requirements.
It also presents more fundamental challenges—how to conceive media-based expe-
riences that can be adjusted based on sensor data, and how to process sensor data
in a way that generates aggregated values or features that are relevant to particular
domains of cultural authorship. Network-enabled objects for public manipulation
in a science museum, for example, require features and sampling rates to support
their use as human-computer interfaces in that context, whereas a system of sensor-
enabled objects designed to observe and illustrate patterns of crowd flow in a public
park would have different needs. The Internet of Things perspective, in particular,
suggests that key research challenges emerge after the vision of interconnectivity
for a single object or device is achieved—a familiar but still pressing challenge for
creators of wireless sensing systems, recast in the context of cultural production. To
enable authoring of experiences and places built up from IP-connected devices that
include sensing components is to drive a host of new innovations. (The last section of
this chapter addresses some of the research challenges generated by cultural uses of
wireless sensing, as articulated by the description of each technological perspective).

3.1 The Smart Grid as a New Host for Cultural Production

In contrast to the Internet of Things vision, which emphasizes Internet-connected
objects and devices, the Smart Grid and “Intelligent Building” movements
emphasize the instrumentation and interconnection of the entire built environment,
including infrastructure and buildings. And recently, this has taken into consideration
commodity networking and web interfaces for management and control. (See Fig. 4.)
The emphasis is on taking the existing electrical “grid” and other similar resources,
and providing highly granular instrumentation to support sustainability, energy man-
agement, and increased security across a variety of scales—from the desktop to the
power plant [2], as illustrated in Fig. 3. In this context, wireless sensing is often
employed for instrumentation, where wired connectivity is infeasible or the devices
to be instrumented are mobile. Sensing as a whole is primarily a mechanism for
observation, not human-computer interaction, which is done via web-based services
and other graphical interfaces.

While the impetus to develop and deploy Smart Grid technologies, including
wireless sensing, does not typically derive from cultural applications, the new con-
nectivity and instrumentation of the built environment offer unique opportunities for
culture, art and entertainment.

Unlike the Internet of Things, the Smart Grid’s intrinsic focus on larger scale
networks works well with the architectural design of places in the cultural sector—
from public spaces to buildings and “third places”. Employing wireless sensing
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Fig. 3 Gallery photo of the artwork capacities V2 by the artist stanza (photo by stanza)

within a Smart Grid approach could impact both the design of the built environment
and its technological infrastructure, as well as generate new uses for an already
deployed infrastructure. Such an infrastructure could be shared, duty cycling between
supporting energy management and cultural applications, for example.

For many buildings, deployments of Smart Grid technologies are typically part of
building projects or renovations. They often involve architectural design and physical
construction; such projects typically consider each component and system within a
design for its aesthetic impact and human usability, in addition to its functional role.
In the past, the information technology of a building had often been exempt from
aesthetic and (architectural) usability considerations, yet the close coupling of the
physical and digital worlds in the Smart Grid suggests increasing similarity to other
materials and systems in building projects, especially as cultural and artistic uses for
these technologies emerge.

Rather than existing as fixtures attached to a finished structure, Smart Grid
systems—including their wireless sensing components—will be considered inte-
gral to the fabric of buildings and contributors to the overall experience of the built
environment. This is analogous to how lighting operates as not only a functional but
fundamental aesthetic component of the experience of a place. The Internet-enabled
sensing infrastructure of modern buildings will, over time, become a core component
of their experience.
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Fig. 4 Artist’s rendering of the smart grid

More specifically, in Building Automation Systems (BAS), the emergences of
Ethernet and IP as common networking platforms have already started to unify the
mechanisms of control for aesthetic functions—such as window shades, lighting,
and environmental sound—with building management. Modern buildings are likely
to be equipped at construction with digitally controlled and often IP-addressable
lighting and environmental systems (heating, ventilation, air conditioning), which
is motivated at a minimum by energy management concerns. These systems can
become part of the overall experience of the building as well. The same building
may have security systems for intrusion detection and access control that employ a
variety of presence, contact, flow, and identity sensing, the purposes of which may
exceed management and extend to experiences with cultural or artistic objectives. At
a rudimentary level, an apartment building’s chilled water flow represents a measure
of resource consumption that could be reflected in a display or other feature that
engages the residents with their usage patterns.

In amore complex example scenario, wireless cameras providing personnel track-
ing could be employed to both monitor pedestrian flow and create an interactive
experience. In fact, this has already been demonstrated using a wired solution;
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Fig. 5 The Breezeway at Rockefeller Center by Electroland, in which LED lighting is controlled
based on the movement of visitors, as sensed by a 3D camera-based personnel-tracking system.
(photo by Electroland)

The Breezeway at New York’s Rockefeller Center, created by Electroland using
Tyzx’s PersonTrack solution, implements an interactive lighting installation inte-
gral to the built environment. The Breezeway links visitor movement with aesthetic
experience through a variety of real-time interactions and game-like relationships
between movement and light. (See Fig. 5.) Another recent artwork, Harmonic Fugue
is an interactive sound and light environment created by Christopher Janney. It em-
ploys a network of touch sensors in a hallway to trigger LED lighting and sound and
encourage play in the environment.5 (See Fig. 6.) While these projects currently rely
on dedicated wired infrastructure, they might be implemented with a combination
of wired and wirelessly networked devices and shared with other functions in the
future.

The opportunities for multiple uses of sensing infrastructure promise a host of
new challenges to future design of wireless sensing systems. Beyond the basic tech-
nological concerns, these challenges are similar to what can be observed in existing
building systems. Specific authoring challenges (discussed further in the last portion
of the chapter) include: application integration of IP-connected subsystems—the en-
gineering challenge of providing applications access to various building subsystems
across subnets, firewalls, and VLANs; privacy of sensor data gathered from indi-
vidual participants; and the need for post-processing increasing amounts of sensor
data to make it useful for applications. In addition to the ones discussed here, other
security challenges abound in these increasingly heterogeneous networks that link

5 http://janneysound.com/urban-musical-instruments/harmonic-fugue/

http://janneysound.com/urban-musical-instruments/harmonic-fugue/
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Fig. 6 Harmonic Fugue at Hendrix College, Conway, AK. © 2011, phenomenArts, inc.;
Christopher Janney, artistic director. (photo: © N. Chenault)

critical and non-critical systems. These issues are not unique to cultural applications,
but are foregrounded by that domain’s explorations of linking typically disparate
systems.

4 Public Space on the Grid

As illustrated above, public space provides a specific, important example of possible
roles for wireless sensing, as part of a Smart Grid that supports cultural and artistic
applications. They also yield a rich and important domain for experimentation, as
they play an integral role in human life. As described by Oldenburg, public spaces
provide another crucial type of third place between home and school or home and
work, where people go for relaxation and exercise, social interaction, or solitude,
for big and small events. Since Jane Jacobs’ seminal book, The Death and Life
of Great American Cities [16], challenged modern urban planning to understand
neighborhood parks, value busy sidewalks, and develop mixed uses of urban space,
the attention of planners, academics, and architects has been captured by the question
of how to make great public spaces.

Designing public spaces that incorporate Smart Grid technologies offers an oppor-
tunity to engage with not only the basic functional requirements of the environment,
but also the nature and potential of public space for cultural applications. In the same
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Fig. 7 The D-Tower art-
work (http://lab.v2.nl/
projects/dtower.html) in the
Netherlands, glowing green to
reflect the current state of the
surrounding people

way that the public broadcasting system was created to harness the technological
innovations of television and radio for public benefit beyond what commercial mar-
kets were able to offer, a Smart Grid for cultural production could act as a public
resource layered on top of emerging infrastructure. By supporting human–computer
interaction as well as observation, wireless sensing can help to enliven public places
with new learning, recreation, and interaction opportunities. Today, when people are
in a public space, modern technology can easily connect them back towork or school,
and enables commercial media to reach them there. Less attention has been given
to the question of how technology can support the intrinsic and enjoyable roles of
public space in lifelong learning, civic engagement, and social interaction. Below are
reviews of examples that express sensor data in public space. As with those above,
not all of these examples involve wireless sensing systems specifically. They illus-
trate opportunities that exist in the public sphere as the technologies become more
viable for widespread deployment.

Cultural opportunities for public space include community-driven interactive
art projects, such as the D-Tower in Doetinchem, The Netherlands, shown in
Fig. 7. The D-Tower consists of an interactively-related physical sculpture, ques-
tionnaire, and web site that map the emotions of Doetinchem’s inhabitants on a daily
basis. The tower lights up in different colors in accordance with which emotions are
most prevalent in the city, as measured by a daily survey of residents. This concept

http://lab.v2.nl/projects/dtower.html
http://lab.v2.nl/projects/dtower.html
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can be extended to a broader range of possible data sources from a Smart Grid,
suggesting an opportunity to engage the public with data about their environment in
an aesthetically striking and ongoing manner. Other projects have engaged people
in public space through interaction via SMS (text messages), including CitySpeak
by Obx Laboratories at Concordia University,6 which projected live text messaging
in public space, and UCLA REMAP’s Junction/Juncture7 (2007), which used text
messaged keywords from the public to control the selection of themes in a digital
mural.

While the D-Tower engages participants to contribute to the state of a “beacon” in
their public space, sensing can also be used to create direct relationships between the
physical presence and movement of the public and artworks. Artist Rafael Lozano-
Hemmer’s “relational architectures” offer an example, using media to overlay in-
dividual, collective, or imagined memories onto physical architecture.8 His recent
artwork, Nave Solar (Fig. 8), uses sensing to capture the motion of participants and
drive both a solar simulation and parametric sound environment. A very different
project, Color Forecast9 (Fig. 9), uses cameras in public space and basic computer
vision techniques to “predict” fashion trends by observing the colors worn in Paris,
Milan, andAntwerp. It links activity in public space to the web through sensing. Ross
Miller’s Harbor Fog10 (Fig. 10) uses motion sensors to detect pedestrian interaction
with an outdoor sculpture and generate changes in light and fog. Figure11 shows
Great Street Games by KMA,11 which combined thermal imaging with projected
light to create interactive urban playing areas.

These examples illustrate two important concepts. First, there are diverse oppor-
tunities for using sensing to enliven the cultural aspects of public space by creating
new relationships among the public and their environment. Second, the intersection
of sensing systems with media systems (as in the Internet of Things vision) will
become increasingly important in public space applications specifically and for the
Smart Grid vision more broadly.

Though most of the projects described deploy their own media infrastructure,
there will be an ever-increasing set of opportunities to share existing infrastructure
for cultural purposes. Increasingly, public spaces, like most buildings today, have
broadband access to the public Internet as well as private IP networks. With the in-
creasing importance of digital media, it is common for new facilities to have locally
and remotely fed displays and projection, paging or sound systems, video recording
or web broadcasting capabilities, and even large displays with touch or movement-
based interfaces. These features represent opportunities for shared output infrastruc-
ture, in the same way that wireless and wired sensing can provide shared input
infrastructure.

6 http://www.obxlabs.net/
7 http://la.remap.ucla.edu/junction/
8 http://www.lozano-hemmer.com/
9 http://www.pimkiecolorforecast.com/
10 http://www.rossmiller.com/RM/harbor_fog.html
11 http://www.kma.co.uk/

http://www.obxlabs.net/
http://la.remap.ucla.edu/junction/
http://www.lozano-hemmer.com/
http://www.pimkiecolorforecast.com/
http://www.rossmiller.com/RM/harbor_fog.html
http://www.kma.co.uk/
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Fig. 8 Artist Rafael Lozano-Hemmer’s Nave Solar, 2011. (Photo courtesy by Rafael Lozano-
Hemmer)

Fig. 9 The Color Forecast (http://www.pimkiecolorforecast.com/) project’s view of a Paris street,
showing camera signal, image after background subtraction, and color histogram

In projects with a “public face” (part of the building or facility near public streets
or courtyards, or otherwise intended to engage visitors), such media systems provide
unique opportunities and are often already available via local area TCP/IP networks.
These media subsystems often support IP-based control and configuration, as well
as media streaming over IP using common codecs (e.g., H264) or locally focused
approaches, such as the CobraNet digital audio protocol [31]. Existing networking
challenges strive to make these systems available for use in applications, a few of
which are discussed in later sections of this chapter.

http://www.pimkiecolorforecast.com/
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Fig. 10 Harbor Fog by Ross Miller, on Boston’s Rose Kennedy Greenway

5 Participatory Sensing on Mobile Devices

The Smart Grid focuses on infrastructure integrated into the built environment. How-
ever, an even larger, more fluid “grid” already exists: the mobile phone network.
Wireless sensing research has recently expanded to consider what is perhaps themost
ubiquitous of wireless devices.While one of themost prominent non-communication
roles of mobile devices in the commercial environment is as a receiver of content
and applications, this research focuses on the typical smartphone’s intrinsic sensing
capabilities. Robust in construction and performance, widely deployed, and with an
increasing number of sensors, mobile phones offer unique opportunities as they re-
late to scale and continual proximity to people. Various paradigms have emerged for
the use of such devices to sense phenomena, including “opportunistic sensing” [6]
and participatory sensing. The latter is used as the primary example here, because
of its direct engagement with users and the public.

Participatory sensing tasksmobile devices to form interactive, participatory sensor
networks. These networks enable public and professional users to gather, analyze
and share local knowledge, as suggested in Fig. 12. They serve as paradigms for
crowd-sourcing data collection to a population of volunteers, aiming to support both
individualized feedback and/or compute aggregate models, maps, or statistics of
mutual interest [5].

The ecosystem of sensing applications that use personal and community-scale
participatory data collection continues to grow, fueled by the proliferation of mobile
phones now accessible to large consumer populations. The concept of participatory
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Fig. 11 Artist’s rendering of KMA’s Great Street Games

sensing has also expanded to incorporate smart residential wireless power meters
(an overlap with the Smart Grid vision) in-vehicle GPS devices, sensor-enhanced
entertainment platforms (e.g., Wii-fit), and activity-monitoring sportswear(e.g., the
Nike+iPod system), which has reached mature (if niche) market penetration.

Research uses of participatory sensing that are transitioning into the mainstream
include the collection GPS trajectories to monitor traffic patterns [14], collection
of pollution traces to assess environmental impact [20], and gathering vehicular
fuel-efficiency measurements to find “minimum footprint” driving routes [1]. While
not addressed here in detail, vehicular networking will offer another new front for
cultural applications. Ubiquitous wireless connectivity (e.g., WiMax) and vehicular
Internet access enable new applications that exploit networking to export, aggregate,
and exploit sensory information.

Many culturally-engaged participatory sensing examples are in an area termed by
Paulos et al. [23] as “participatory urbanism,” in which mobile devices act as net-
worked measurement instruments used to understand the urban environment. These
authors provide examples of observational uses of wireless sensing devices, e.g.,
extending cell phones to act as air quality sensors. Such uses are able to have a
complementary intent to the artworks described above, another significant intersec-
tion of wireless sensing with public space: Wireless sensing is deployed to explore
our surroundings rather than as part of an intervention. There is also an important
crossover with the creation of original artworks in this public context. For example,
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Fig. 12 Artist’s rendering of the concept of participatory sensing on mobile phones

PreemptiveMedia, a group of “artists, activists, and technologists” (Beatriz da Costa,
Jamie Schulte, and Brooke Singer) created the project Area’s Immediate Reading
(AIR), in which portable air monitoring devices with CO, NOx, and O3 sensors are
used to explore neighborhoods for pollution hotspots.12 These devices and their use
on the street are shown in Fig. 13. Indeed, many “participatory” projects involve
some type of “output” back into the urban environment.

AIR is representative of an important trend for not only participatory sensing, but
also for the other perspectives on wireless sensing described above. As sensing sys-
tems become more ubiquitous, they will be used for applications that cross between
many spheres, e.g., productivity, sustainability, learning, and culture. They will also
be tools for engagement—the citizenry to their surroundings from scientific, social,
civic, and cultural perspectives. Paulos et al. [24] discuss what they call the “rise
of the expert amateur,” in which non-technologists leverage technologies, such as
wireless sensing, to conduct investigations of their environment that are not easily
categorized within existing frameworks.

12 http://www.pm-air.net

http://www.pm-air.net
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Fig. 13 Portable air monitoring device: the preemptive media project’s AIR (Area’s Immediate
Reading). (Photos by preemptive media.)

6 Challenge of Personal Privacy

Perhaps one of the most pressing challenges for participatory sensing on mobile
devices is privacy protection for individual participants. For example, a significant
amount of work has focused on the capture and analysis of individual mobility pat-
terns (time-location “traces”) as fundamental data streams around which to organize
and correlate other collected data [28]. Detailed time-location traces are obtained
easily because modern mobile phones are often GPS-equipped and commonly car-
ried by owners almost continuously. Such traces are of substantial and immediate
interest for studying time-location patterns of individuals and communities in urban
planning, public health, social and behavioral sciences, and cultural domains.

Time-location traces provide a rich data set that can be used and can also reveal
significant details of a person’s life. A complicated challenge is presented by balanc-
ing ease of use, user participation in privacy decisions, and creator’s and scientist’s
desires for detailed data sets of this and similar types. This and other participatory
sensing privacy challenges are surveyed [7] and [27], and discussed in more de-
tail below, as are challenges in networking of mobile data publishers and applying
machine learning to participatory sensing data sets.

6.1 Event-Based Perspectives: Intersections
with Live Performance

The three perspectives above focus on objects, infrastructure and buildings, and mo-
bile devices, respectively. Cultural applications often take an event-based perspective
as well, whether within an ad-hoc event, such as a “flash mob”, or a more formal one,
such as a live performance (illustrated in Fig. 14). Here, the latter serves as a rep-
resentative example of the event-based perspective, providing unique opportunities
for developing new modes of human-computer interaction.
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Fig. 14 Artist’s rendering of live performance using wireless sensing

During the last 5 years, reliable wireless sensing has become increasingly acces-
sible to creators of live performance through some of the same do-it-yourself (DIY)
means discussed above—include motes, easily programmed microcontrollers, wire-
less radio modules, and other inexpensive, easily integrated components. Previously,
use of wireless sensing had been limited to experimental performances that could
tolerate less reliability (or scaling) or large budget productions that could afford
extensive development and testing.

Live performance provides a context for wireless sensing that is already infused
with awide range of digital technology at a variety of scales. Theater and dance artists,
as well as musicians, already incorporate digital media into their work; they use
digital systems for playback, control and manipulation of sound, lighting, motor, and
projection effects. In fact, creators of performance have experimented with sensing
itself in several contexts. In the eminent choreographer Merce Cunningham’s piece
Biped (1999), he used motion capture quite differently than in Robert Zemeckis’
more familiar movie Polar Express (2004), which used motion capture for facial and
body animation. To striking effect, Cunningham juxtaposed live dancers with the
projection of non-photorealistic renderings generated from captured performance
data. [8, 19] Work like his has expanded interest within the performance world in
marker-less tracking and other long-term computer vision research, which will be
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Fig. 15 Wireless position sensor embedded in prop, shown onstage in the UCLA Department of
Theater’s 2001 production of Ionesco’s Macbett. (Courtesy of UCLA REMAP)

supported by pervasive computing infrastructures, and have already been explored
by Sparacino [29] and others. As wireless sensing becomes viable, these vanguard
works provide inspiration for its use in performance, perhaps enabling what had to
be pre-rendered for Cunningham to be created in real-time.

An established, though still experimental, real-time use of wireless sensing sys-
tems in live performance is tomap relevant physical phenomena—movement, sound,
and image from the performers and sometimes the audience—into some of these al-
ready digitally controllable outputs of the stage environment, including lighting,
sound, and projection. In this use case, the phenomena are amplified or transformed
in real-time to create an effect under direct control of the performer or audience,
without requiring an operator. For example, the author’s work in a UCLA theatrical
production of Ionesco’s Macbett [3] is shown in Fig. 15. There, a commercial ultra-
sonic positioning systemwas deployed to track the position of actors and props, such
as the witch’s staff shown in the figure. The resulting position data was processed to
yield short-time features that were then used to put lighting and sound under direct
control of the former. Work by many artists—such as David Rokeby and the Troika
Ranch and Palindrome dance companies—has explored similar uses of such technol-
ogy. More recently, Park et al. [22] created a wearable wireless sensor platform for
heartbeat, joint angle, gyro, and accelerometer to support interactive dance perfor-
mances. Feldmeier and Paradiso [9] created an inexpensive (“give-away”) wireless
sensor suitable for gathering rhythm and activity data from crows or large ensem-
bles. Commercial companies, such as beaudry interactive, have started to integrate
high-performance, inertial wireless sensing into theatrical props, as shown in Fig. 16.
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Fig. 16 Wireless gyro-
and accelerometer-enabled
wands for theatrical perfor-
mance. (Courtesy of beaudry
interactive)

7 Challenges

Direct, real-timemappings between the data generated by these wireless sensing sys-
tems and aspects of the stage environment, such as lighting and sound, are common.
They can be donewithminimal software development, in contrastwith gesture recog-
nition or other approaches requiring machine learning or other advanced techniques.
However, the aesthetic limitations of one-to-one real-time mappings are significant.
As discussed below, machine learning is an important area of future development. It
could enable more sophisticated mappings from the action of performers and audi-
ence to stage control.

Additionally, unlike the intermittent, ongoing operation of mobile sensing and the
continuous but lower sampling rate sensing of many Smart Grid applications, per-
formances most often consist of an intense few-hour period of continuous operation
with high reliability and sampling rate requirements. (After this period, devices can
be checked and batteries replaced before another performance or rehearsal.) In this
way, they have the most in common, perhaps, with the requirements of commercial
gaming and entertainment that incorporate sensing, such as the Nintendo Wii Re-
mote andMicrosoft Kinect. While device performance is not treated explicitly in this
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chapter, the use of wireless sensing in live events provides a challenging set of re-
quirements for future research, especially when used as a basis for human-computer
interaction with professional performers [4].

Live performances are also created within a temporal structure shared with other
temporary deployments and iteratively developed projects: cycles of design, re-
hearsal / testing, and public demonstration. One of the most important periods to
support is rehearsal, in which various options for performance and design are at-
tempted, revised and refined in a continuous cycle of iterative development with
many other elements. Based on the author’s experience, rehearsal presents an ex-
tremely demanding use case for wireless sensing systems, which in this context
must include authoring interfaces, middleware, and physical packaging in addition
to basic electronic components. While some reliability requirements are relaxed in a
rehearsal scenario, the ability to reconfigure systems while they are online is of para-
mount importance—and not always achievable using current technologies. Unlike
performance itself—in which some elements are typically fixed, even in the most
improvisational circumstances—rehearsals are a “learn-by-doing” environment, in
which a constantly shifting set of ideas are explored. The more “viscosity” to change
presented by the technological systems of performance, the more limited their in-
tegration into the artwork becomes. As a result, performance can provide a unique
driver towards flexibly configured and controlled systems, as well as suggest new,
iterative, and online authoring approaches to human-computer interaction.

7.1 Research Opportunities: Authoring Cultural Applications
that Use Wireless Sensing

As is evident in the case of live performance, and also true for the other perspectives
described above, a fundamental challenge in incorporating wireless sensing into
cultural applications is the need for authoring frameworks that provide appropriate
abstractions and flexible approaches to on-the-fly configuration and experimentation.

For digital video tomove into themainstreamof cultural productionduring the past
15 years, not just hardware and software for capture and disseminationwere required.
Editing software becoming available and relatively easy to use was essential. To
be most useful in cultural production, wireless sensing, viewed from any of the
perspectives outlined, also requires tools and techniques for creative authoring that go
beyond simplymaking the sensors network-addressable, power-efficient and reliable.

From the wide variety of examples given above, it is clear that sensing systems
can be integrated into diverse cultural projects, createdwith broad considerations that
range from aesthetic, technical, and usability-related concerns to specific challenges
from deployment contexts, such as urban public space. Given the holistic, iterative
way in which many such cultural projects are designed, components and systems
must not only be conceived for their final role in a public experience, but for their
use by designers and creators. Through iterative development, design decisions are
tested against a variety of factors.
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In this way, authoring and deployment in a cultural context is a “tussle” between
three types of goals.

Operational objectives relate to familiar requirements for performance and
robustness (amongst others).

Expressive or communicative goals emerge from applications’ important, non-
functional considerations: lighting color quality or cross-fade smoothness when
driven from a sensor input; use of multiple modalities of media; the size and thick-
ness of a device; or the openness of a platform to user configuration. These goals
are connected not by basic function but by the needs of iterative development, end-
user experience and deployment context. As described above, cultural applications
place high demands on integration across heterogeneous systems. This, for example,
suggests that high-bitrate content and sensing will not be so separate in the future.

Participatory goals concern the demands of user-facing components (for example,
when users may be the designers of cultural applications, not just an audience), just-
in-time configuration and content selection, ad-hoc networking, and consideration
of intermittent interaction and other human factors.

Stated elsewhere are a few general design considerations for cultural applica-
tions that are valuable for wireless sensing systems [5]. They can be applied across
operational, expressive, and participatory goals:

• A “sense of time,” the consideration of synchronization of events (an operational
perspective) or their rhythm (an expressive perspective);

• A “sense of space” that extends beyond location awareness to the notion of a
defined region of responsibility for a given sensor or system;

• “Drill-down,” the opportunity for abstraction layers to be set aside by design-
ers who wish to deal with less processed data directly (an expressive objective
sometimes at odds with operational benefits of increased abstraction);

• “Guided deployment,” in which systems aid the users directly in deploying dis-
tributed sensor networks to meet appropriate coverage and other goals.

Each of these considerations can be applied to the various perspectives
described above. For example, a “sense of space” in SmartGrid sensing infrastructure
could come from providing location metadata (both building name and GPS coordi-
nate) for each sensor plus spatial query capability as a straightforward application-
programming interface. In this manner, a cultural application might easily address
all sensors within a given location through a building name query rather than refer-
ring to an external, offline mapping between sensor IP address, port, and/or channel
number. While such mappings are straightforward conceptually and exist in research
labs and certain larger systems, they are often not yet available in practice, and often
limit the ability to quickly author applications with a human-understandable notion
of the location of wireless sensor data.
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8 Evaluating Authoring Systems

To evaluate these and other research results—intended to reduce the complexity of
authoring—systematic methods can be applied that are inspired by other domains.
An example is the cognitive dimensions framework, originally developed for evalu-
ating programming languages but applied to other domains [12, 13]. Six framework
dimensions of note that apply to authoring cultural applications of wireless sensing
systems are described below:

• Closeness of mapping between the “problem world” (mental models) and the
“real world” in the systems to be designed and deployed (close mappings reduce
authoring complexity but can come at the cost of generality).

• Secondary notation: Expressiveness beyond the official semantics. (This provides
an opportunity to embeduseful information consistently, in code and configuration,
for example.)

• Hard mental operations: How much must be expressed / manipulated outside of
the notation. (Typically this should be reduced, balanced for the possible further
losses of generality).

• Premature commitment: Constraints on the order of doing things (especially impor-
tant to limit in iterative development and testing typical to cultural applications).

• Progressive evaluation: Ability to work with incomplete systems (similarly vital
for cultural applications).

• Viscosity: Resistance to (local) change. (For many types of systems that have
multiple uses and evolving configurations, this should be reduced).

Outlined below are three important research areas for promoting the cultural use
of wireless sensing systems with discussion based on these dimensions. Examples
of how “lower-level” (non-application) research can benefit cultural applications of
wireless sensing are provided.

9 Machine Learning

Though not specific to wireless sensing, machine learning will play a crucial role in
increasing the use of wireless sensing in cultural applications. The primary producers
of cultural experiences are not scientists, engineers, or statisticians. They generally
do not have experience in deriving data they want from sensed signals using machine
learning and signal processing techniques. Toolkits for machine learning will help
enable them to do so, improving the closeness ofmapping betweenmentalmodels (of
gesture, for example) and programming interfaces (to body-mounted accelerometers,
for example).

Another example is the FAAST toolkit,13 developed by the USC Institute for Cre-
ative Technologies. It provides basic gesture recognition from the Microsoft Kinect

13 http://projects.ict.usc.edu/mxr/faast/

http://projects.ict.usc.edu/mxr/faast/
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3D camera and maps recognized gestures to keystrokes and mouse movements.
This enables artists and others to easily experiment with computer vision-based in-
teraction. Toolkits like FAAST already benefit human-computer interaction uses of
wireless sensing for cultural applications by simplifying the amount of programming
necessary to map gestures to other parameters. By enabling “learning by example”,
the closeness of mapping between the problem domain and the control domain is
increased, though the training time for the system could increase premature commit-
ment and negatively impact both expressive and operational objectives.

In wireless sensing for observation, learning of high-level patterns can be used to
develop measures of difference between repeated actions (e.g., an actor’s movement
from rehearsal to rehearsal or performance to performance) or to extract higher-level
features that are more relevant to the application at hand (e.g., significant places
in a person’s daily commute captured as part of a participatory sensing activity.
[26]) Additionally, managing the reputation of participants in systems—relying on
contributions of varying quality from many individuals—can also leverage learning
of contribution patterns [25].

10 Networking

Similarly, IP has provided consistent and cost-effective connectivity to building sys-
tems, traditional hosts, and mobile devices, but connectivity alone does not make
authoring accessible for the various cultural applications outlined. The Internet of
Things and Smart Grid visions chart a course for increasing crossover between In-
ternet applications and embedded computing, sensing, and control. However, just
because systems are increasingly IP-connected does not mean that it is easy to create
and deploy secure applications that integrate their various components, especially
with the commodity Internet. Device networking advances can be applied to improve
the closeness of mapping, make secondary notation more relevant to the application
at hand, and reduce premature commitment due to viscosity of networking configu-
ration changes.

In practice, physical segmentation and/or address translation in IP networks (used
in the applications discussed above) often make their configuration difficult to au-
thor with and brittle to application change, especially in contexts without significant
network engineering support. Or, following Green’s terminology, it requires a num-
ber of hard mental operations to track the relationship between, for example, IP
network configuration and application needs. For reasons related to security, stabil-
ity, QoS, and simplicity of administration, the many IP networks involved in both
infrastructure-based and mobile sensing are often isolated through VLANs, with
firewalls between systems, or are not interconnected at all. Networks for building
automation and media distribution (to form crucial components of future cultural
applications, as described above) are often similarly segregated. They use differ-
ent protocols to share even basic data and control mechanisms, and can be quite
hard to integrate at the scale of an enterprise or in specialized facilities. Differing
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protocols and IP gateway mechanisms, addressing schemes, content distribution and
security requirements across various subsystems pose further authoring challenges
to software developers.

Furthermore, in current systems, significant knowledge is bound up in areas not
accessible to the application software developer or end user. VLANs embody bound-
aries between systems identified during design and deployment, but they are typically
unseen or inaccessible, as are IP sub-netting and routing, which reflect device organi-
zation and interconnectivity. Firewall configurations describe expectations for access
between systems. Keys and certificates for SSL connections and VPNs may identify
components or connections. VPN configuration and enterprise authentication hold
network access permissions. None of these are typically accessible to application
software in traditional systems; they are “network configuration”. In fact, they repre-
sent important system information that is often replicated ad-hoc from configuration
to configuration. A simple example is how an application must be configured to
know that one IP subnet is for lighting control and another is for network streaming
of sound, and must be connected physically to both. This is site-specific and mean-
ingless to the application, and might not be generalized or abstracted in a quickly
assembled system.

Information-Centric (or Content-Centric) Networking is an example of recent
research that could be applied to reduce the complexity of authoring applications for
distributed systems of wireless sensors. One such project in this area is the Named
Data Networking (NDN) effort led by UCLA and Xerox PARC. NDN is a communi-
cation architecture based on named content that aims to generate a next-generation,
evolutionary replacement for TCP/IP [21]. Rather than addressing content by its loca-
tion, NDN refers to it by name. The project’s approach is based on Content-Centric
Networking research at PARC [17], and similar to other CCN and ICN projects
surveyed [11].

In NDN, the network infrastructure routes and forwards based directly on
hierarchical names that can be selected to have meaning to the application, e.g.,
<enterprise_root>/occupancy/<building>/<room> for a networked occupancy
sensor for a given building and room. Though similar results can be achieved using
DNS, no latency is added due to lookup, and integration with intranet DNS man-
agement is not necessary. Additionally, while NDN supports TCP/IP and UDP/IP
as underlying transport protocols, it is not reliant on them. It could also, for exam-
ple, take advantage of broadcast capability in modern wireless channels to discover
devices and communicate without requiring address assignment. By improving the
closeness of mapping between the network and application semantics through the
use of names, it enables sensors and devices to be addressed by both the network and
the application author in terms of application-understandable location, function, or
other identifiers, without the need for middleware. While still an open topic of study,
in this way, NDN is an example of how lower-level research in fundamental areas,
such as networking, can aid authors of cultural systems.
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11 Privacy

Finally, many cultural applications involve direct interaction between or obser-
vation of participants and the public. Especially in mobile phone-based partici-
patory sensing—wherein sensing “follows” people anywhere that they take their
mobile device—there are significant privacy challenges, both technical and social.
The proximity to people’s everyday activities, the subtlety with which sensing can be
accomplished, and the rapid dissemination of sensed data together create significant
new avenues for unexpected and/or uncontrolled leakage of personal information.
A full review of privacy for each perspective described above is provided outside
of the scope of this chapter, but cultural applications provide a unique venue for
privacy research that would benefit from further investigation. Based on the author’s
experience, cultural applications are likely to be created in contexts without formal
privacy and security policies. This leaves, for example, limits on data retention or de-
identification to ad-hoc decision-making processes, if they are dealt with explicitly
at all. In this case, their operational objectives take precedence over participatory
goals.

Formalizing privacy and security requirements for sensing applications is a mat-
ter of both policy and technology, as discussed by Shilton [27] in the context of
participatory sensing and Kang et al. [18], relative to self-surveillance using sim-
ilar technologies. Shilton provides a framework for system design that includes
three factors—participant primacy, longitudinal engagement and data legibility—
intended to engage users in data-sharing decisions and protect their privacy in a
participatory sensing context. While not all cultural applications are explicitly par-
ticipatory, their (typical) engagement with lay public audiences suggests that these
dimensions can provide a provocative starting point for further research. “Participant
primacy” is to foreground the role of the sensed participant in deciding what is done
with their data. “Longitudinal engagement” suggests that those being sensed should
be involved throughout the preparation, collection, and retention of data about them.
“Data legibility” emphasizes the importance of making collected data understand-
able to sensed participants. It also promotes important cognitive benefits for authors,
including increased closeness of mapping and a reduction in hard mental operations
to understand system function. These dimensions are designed to give participants
in sensing systems a substantial decision-making role with respect to their data.

Given that the object (Internet of Things), infrastructure (Smart Grid) and mobile
(participatory sensing) perspectives on wireless sensing all promote ongoing inter-
action between people and the network through sensors, these design dimensions
developed for continuous participatory sensing can be adapted to the broader con-
text of this chapter. For example, participant primacy suggests that a participant is
the owner of a smart, Internet-connected object who should have access to the data
that it gathers about them. This should be in contrast to the data being available
solely to the entity that manufactured the object, wishing to integrate it with their
social networking presence. Developing mechanisms for longitudinal engagement
with data collection in smart infrastructure might motivate the building of a deeper
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engagement with users about key issues, e.g., how their environment “sees” and
“remembers” them. To each perspective, legibility applies a goal of making what is
sensed available in a clear and understandable way to the end user—an approach that
can yield a deeper grasp for developers and system designers as well.

Incorporation of privacy-related design goals may be motivated by the individual
beliefs of creators, corporate social responsibility or civic responsibility. A challenge
towireless sensing researchers exists not only in themechanics of privacy-preserving
approaches—summarized in recent work described above—but in how they are pre-
sented to the end users and, even before that, to developers. Similar to machine
learning and networking, providing effective, participatory options for privacy are
an authoring challenge. Further research in the field could aim to provide tools that
enable key privacy questions, to be addressed effectively during design time.

12 Conclusion

Wireless sensing—whether incorporated in objects, infrastructure or mobile devices,
or provisioned across each of these on an event-by-event basis—stands to become a
significant element of cultural expression. It enables new types of human-computer
interaction, as well as automated observation of built and natural systems that can
be incorporated into cultural production.

Creators of the range of applications, surveyed by this research, face challenges
that, while relevant to other domains, are not often considered primary concerns. In
many ways, however, they anticipate the challenges of broader uses of wireless sens-
ing. Other domains stand to benefit significantly from the results of research driven
by the integrative, iterative approaches taken to design and develop cultural projects.
Support of authoring, in particular, represents an area where there are advances in
learning, networking, and privacy. These can be applied to benefit creators of cultural
experiences, as well as other users of wireless sensing systems.
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