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Preface

Symmetric cryptography deals with:

1. the construction of efficient pseudo random functions (PRF), which are the
building blocks of symmetric cryptography, and

2. symmetric cryptographic protocols, which are strategies to utilize the building
blocks to solve some of our our day-to-day problems.

This book does not concern itself with the building blocks themselves; several well
studied PRFs in the form of block ciphers and hash functions already exist. The focus
of this book is instead on the (often under appreciated) range and utility of protocols
and constructions that utilize symmetric PRFs.

Lack of widespread appreciation of the scope of symmetric cryptography has led
to the unwarranted use of more expensive asymmetric cryptography in situations
where symmetric cryptography is adequate. Perhaps, it is the sheer elegance of
asymmetric primitives that instills in us the desire to honor them—by utilizing them
even in situations where symmetric cryptography is adequate. This is one situation
that this book aims to rectify.

The specific topics addressed in this book include:

1. various key distribution strategies for unicast, broadcast, and multicast security
associations, and

2. strategies for constructing compact and efficient digests of dynamic databases.

A unified treatment of seemingly unrelated protocols is made possible by the fact that
only three basic strategies, viz., hash chains, hash trees, and the surprising uniqueness
of random subsets, are reused in a variety of different ways in different protocols.

Ultimately, the utility a cryptographic algorithm stems from the ability to lever-
age well-deserved assumptions regarding the properties of such algorithms; that we
can virtually guarantee the existence of specific relationships between various inputs
and outputs of the algorithm; for example, that the preimage of a cryptographic
hash was chosen before the image was computed, and not vice-versa. Crypto-
graphic algorithms are building blocks for the construction of application-specific
cryptographic protocols, to enable enforcement of application-specific requirements,
between various (application-specific) inputs and outputs.
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viii Preface

By themselves, cryptographic protocols (unfortunately) do not provide the nec-
essary (application-specific) context to the inputs and outputs. It is up to security
protocols that utilize cryptographic protocols to do so. Consequently, practical
security protocols will always need to make some additional noncryptographic
assumptions regarding the environment in which the cryptographic protocol is
executed, and the privacy of keys employed by the algorithms.

Almost every security issue we face in our day-to-day lives stems from the simple
fact that many such noncryptographic assumptions turn out to be unjustified. For
example, while the secure socket layer (SSL) is perfectly safe as a cryptographic
protocol, when used as a security protocol, many vulnerabilities can crop up—
like the recent Heart-bleed vulnerability, or the fact that SSL as a security protocol
relies on the integrity of the public key infrastructure (PKI), which in turn relies on
unverifiable assumptions regarding the integrity of PKI certificate authorities.

Perhaps the only practical recourse is to invest in an infrastructure to real-
ize sufficiently trustworthy hardware modules. Such modules should be capable
of guaranteeing a safe environment in which a wide variety of cryptographic
protocols—necessary for a wide range of applications—can run unmolested. Only
the well-deserved trust in the assumed properties of cryptographic algorithms, and
the integrity of such hardware modules, can then be bootstrapped to realize security
protocols—without the need to make unjustifiable assumptions like the integrity of
software and hardware components in general purpose computers or the integrity
of personnel/organizations with access to sensitive data processed in the computers.
The versatility and low resource requirement for protocols based on symmetric PRFs
make them very well suited for such an approach. Simple fixed functionality involv-
ing only PRF and logical operations, executed within the confines of deliberately
resource limited modules, can be more readily verified to be free of malicious func-
tionality. Almost every security protocol outlined in this book pays extra attention
to additional constraints that may be imposed due to the fact that the security pro-
tocols will need to be executed inside a trustworthy (and severely resource limited)
boundary.

Chapter 1 is a brief review of well-known properties of symmetric PRFs like hash
functions and block ciphers. Chapter 2 outlines some useful constructions using
PRFs that are reused throughout this book.

Chapter 3 presents key predistribution schemes for pairwise authentication—
strategies that are traditionally considered as nonscalable. Two such schemes, the
modified Leighton–Micali scheme (MLS) and the identity tickets (IT) schemes are,
however, shown to be “scalable enough” for most practical applications. Chapter 4
outlines a strategy for employing such schemes in conjunction with trustworthy hard-
ware modules with trivial functionality to secure the domain name system (DNS).
This approach is compared with the current security protocol, DNSSEC, for securing
DNS.

Chapters 5 and 6 present various scalable key predistribution schemes. Chapter 5
outlines many of the advantages of probabilistic schemes over deterministic schemes.
Chapter 6 outlines three scalable schemes realized as extensions of nonscalable
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schemes discussed in Chap. 3. Chapter 7 highlights special considerations for pro-
tecting the integrity of secrets inside resource limited tamper-responsive boundaries.
Such considerations are taken into account to reevaluate the strengths of various key
distribution schemes, and the overhead associated with each approach.

Chapter 8 reviews strategies for multicast security associations like one-to-many
associations (or broadcast security) and group security associations facilitated using
broadcast encryption. While most broadcast encryption schemes employ a tree-
like structure, “flat” schemes based on probabilistic key distribution have some
compelling advantages. The utility of such schemes for practical deployments of
publish–subscribe systems is also discussed in this chapter.

Chapter 9 presents a useful authenticated data structure, the ordered Merkle tree
(OMT), and it’s utility in assuring the integrity of a wide variety of dynamic databases
maintained by untrusted entities. Two variations of the OMT, viz., the index ordered
Merkle tree (IOMT), and the domain ordered Merkle tree (DOMT), are discussed.
Simple algorithms intended to be executed by a trusted resource limited “verifier,” to
assure the integrity of a database maintained by an untrusted “prover,” are presented.

Chapter 10 discusses a new credential transaction model as a specification of
application-specific security protocols. For any system with a desired set of assur-
ances, the strategy is to identity different roles for participants in the system, and
a set of “permitted credential transactions” for each role. The permitted credential
transactions are chosen to guarantee that no desired assurance is violated. Thus, as
long as we can assure the integrity of credential transactions, we can assure the
integrity of the entire system (that all desired assurances are met).

The credential transaction model permits the design of a universal trusted base—
as a hypothetical specification for trusted credential management modules (CMM).
Irrespective of the specific nature of the system, CMMs are entrusted with the task
of assuring the integrity of credential transactions. Only assumptions regarding the
integrity of PRFs, and the integrity of simple algorithms executed inside CMMs
to verify the integrity of credential transactions, are bootstrapped by the security
protocol (the transaction model) to realize all desired assurances. Such an approach
eliminates the need for unjustifiable trust in complex hardware/software components,
and personnel with the ability to influence the operation of such computers. The core
functional components of CMMs include functionality described in Chap. 7 for
unicast security associations, and functionality for maintaining OMTs, described in
Chap. 9.

Starkville, MS Mahalingam Ramkumar
April 2014
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Chapter 1
Introduction

Cryptography (literally, secret writing) has come a long way from it’s original
scope—viz., encryption of messages. Modern cryptography offers several sophis-
ticated tools and strategies to use the tools to achieve well defined security goals.
Specifically, modern cryptography deals with:

1. Construction of cryptographic tools
2. Analysis of the strengths of cryptographic tools
3. Protocols to utilize the tools

The tools in the cryptographic tool-box take the form of deterministic cryptographic
algorithms. Well known examples of cryptographic algorithms [1] include encryp-
tion/decryption algorithms like DES,AES, RSA, hashing algorithms like MD5SUM,
SHA-1, SHA-2, digital signature algorithms like DSA, RSA, etc. Strategies to lever-
age the algorithms to achieve specific security goals are cryptographic protocols, or
more generally, security protocols.

1.1 Cryptographic Algorithms

Cryptographic algorithms can be classified into two broad categories:

1. Symmetric cryptographic algorithms are composed of repetitive simple opera-
tions on small bit-strings—operations like bit-wise logical operations, addition,
and rotation/permutation of bits. The term “symmetric” is due to the fact that tra-
ditionally, most1 well known algorithms in this category were used for encryption
and decryption, where both the encryption and decryption operation utilized the
same key.

2. Asymmetric cryptographic algorithms are mainly composed of modular multipli-
cation operations involving large numbers. The term “asymmetric” is due to the

1 Hashing algorithms, which also fall under this category, do not require keys.

1M. Ramkumar, Symmetric Cryptographic Protocols, DOI 10.1007/978-3-319-07584-6_1,
© Springer International Publishing Switzerland 2014
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fact that such algorithms use two different keys—a private key which is intended
to be a secret, and a public key which is intended to be made public.

1.1.1 Symmetric Cryptographic Algorithms

Commonly used symmetric algorithms include block-ciphers and hash functions.

1.1.1.1 Block Ciphers

Block cipher algorithms (Chap. 7 in [2]) specify an encryption algorithm E() and a
decryption algorithm D(),

C = E(P , K) and P = D(C, K), (1.1)

where P is the “plain-text” message encrypted by algorithm E() using a key K to
yield the “cipher-text” C. Using the same key K , algorithm D() decrypts the cipher
text C to obtain the plain text P . In Eq (1.1)

1. P and C are bit-strings of length b, where b is the block size.
2. K is a bit-string of length k, where k is the key size.

For example, in the erstwhile data encryption standard (DES) algorithm, P and C are
64-bit strings (b = 64), and K is a 56-bit string (k = 56). The more recent Advanced
Encryption Standard (AES) prescribes a block cipher with three key lengths—128,
192, and 256 bits. In AES-128, P , C and K are all 128 bits long (b = k = 128); in
AES-192, b = 128 and k = 192; in AES-256, b = 128 and k = 256.

For a (b, k) block cipher each of the 2k possible keys define a table with 2b rows
and two columns. The first column can be seen as consisting of all possible 2b plain-
text blocks 0b · · · 1b arranged in an order; the second column is a fixed permutation
of the first column. A block-cipher with key length k thus defines 2k such fixed
permutations—one corresponding to each possible key.

Some of the important properties of modern block ciphers are as follows:

1. Given C = E(P , K) it is impractical to determine P without the knowledge of
K .

2. Given any number (say, n) of plain-text-cipher-text pairs (Pi , Ci) where Ci =
E(Pi , K) for i = 1 · · · n, the easiest way to find the key K is still through brute-
force search of all 2k possible keys.

3. A cipher is regarded as a strong cipher if the 2k brute-force search complexity is
deemed impractical.
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1.1.1.2 Cryptographic Hashing

In a cryptographic hashing algorithm H (),

O = H (S, B) (1.2)

1. O and S are bit-strings of length u (the digest size).
2. B is a bit-string of size l (the block-size).

Specifically, B is a block of bits which is combined with the previous state S to yield
the digest (or next state) O. In MD5SUM [3] O and S are 128-bit strings (u = 128),
and B is a 512-bit string (l = 512). The secure hash algorithm (SHA) standard
[4] prescribes SHA-1 with u = 160 and l = 512, and SHA-2 with u = 256 and
l = 512. The recently standardized SHA-3 algorithm supports multiple digest sizes
(u = 224/256/384/512) and multiple block sizes (l = 1152/1088/832/576).

It is convenient to represent the two inputs to the hash algorithm H () as the
preimage X = S ‖ B. Some of the important properties of a cryptographic hash
algorithm are as follows:

1. Given O = H (X) it is impractical to determine a second preimage X′ �= X

satisfying O = H (X′). For a hash function with u-bit digest the easiest way to
determine a second preimage is by brute-forcing—choosing random preimages
and then verifying if the corresponding digest is the desired value O. One can
expect a brute-force attack to require on the order of 2u attempts.

2. It is impractical to determine two different preimages X and X′ �= X such that
H (X) = H (X′). For a hash function with u-bit digest the easiest way to determine
two colliding preimages is by brute-forcing (choosing two random preimages and
then verifying if they yield the same digest). One can expect a brute-force attack
to require on the order of 2u/2 attempts.

1.1.2 Asymmetric Algorithms

An asymmetric cryptographic algorithm [1] can be seen as consisting of several
subalgorithms

1. Ku = Fgen(Kr ): an algorithm to compute the public-key Ku corresponding to
the private key Kr . Typically, the private key Kr is chosen randomly. Some
algorithms however may have some restrictions on this choice (for example, only
prime numbers, only points on a elliptic-curve over which the algorithm operates,
etc.).

2. Algorithms C = Fenc(P , Ku) and P = Fdec(C, Kr ) for encryption of a plain text
C using the public key Ku to derive the cipher-text C, and for decryption of the
cipher text C using the corresponding private key Kr ;

3. Algorithms S = Fsign(M , Kr ) and {0, 1}1 = Fver (M , S, Ku) to derive a value
S (a digital signature) that is a function of a value M and the private key Kr ,
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and to verify that the value M and the signature S are indeed consistent with the
corresponding public key Ku.

Some of the important properties of a good asymmetric algorithm are as follows:

1. Functions Fgen(), Fenc(), Fdec(), Fsign, and Fver () are not prohibitively expensive.
2. It is computationally infeasible to determine the private key Kr given the

corresponding public key Ku;
3. Given C = Fenc(P , Ku), it is computationally infeasible to determine P except

with the knowledge of the private key Kr .
4. Given S = Fsign(M , Kr ) it is computationally infeasible to determine M ′ �=

M satisfying Fver (M ′, S, Ku) = 1; similarly, given a random M , without the
knowledge of Kr , it is infeasible to determine S satisfying Fver (M , S, Ku) = 1.

1.2 Using Cryptographic Algorithms

Currently, block-ciphers are often used for encryption of bulk-data using one of
several modes of operation2. The encryption key is typically conveyed to the intended
receiver using an asymmetric encryption technique.

Hash algorithms like MD5SUM, SHA etc., are commonly used as building blocks
for hash functions. More specifically, the Merkle–Damgard construction [6] is used
to realize a hash function by repeated application of a hashing algorithm. Hash
functions, in turn, are commonly used for two purposes: i) computing a digest for
bulk-data; and ii) jointly computing a digest—a hashed message authentication code
(HMAC) [7]—of the bulk-data and a secret key. In the former scenario, the digest
may signed using an asymmetric signature scheme for authentication of bulk-data.

1.2.1 Block Cipher Modes

For encryption of bulk-data using a block cipher [5], the data is broken into n

chunks of plain-text blocks P1 · · · Pn—each block with b bits (if a b-bit block-cipher
EK ()/DK () used). The output, after encryption of bulk-data, takes the form of an
initial value (IV) chosen by the sender, and n cipher text blocks C1 · · · Cn—one
corresponding to each plain text block.

If cipher block chaining (CBC) mode is used

Cj = EK (Cj−1 ⊕ Pj ), j = 1 · · · n, and C0 = IV (1.3)

2 Popular modes include CBC (cipher block chaining), CFB (cipher feed back), OFB (output feed
back), and CTR (counter).



1.2 Using Cryptographic Algorithms 5

where K is the key shared between the sender and the receiver. On receipt of C0 = IV
and cipher text blocks C1 · · · Cn the receiver computes

Pj = DK (Cj ) ⊕ Cj−1, j = 1 · · · n. (1.4)

If cipher feed back (CFB) mode is used

Cj = EK (Cj−1) ⊕ Pj , j = 1 · · · n, and C0 = IV (1.5)

and the receiver computes

Pj = EK (Cj−1) ⊕ Cj , j = 1 · · · n. (1.6)

If output feed back (OFB) mode is used

Cj = Oj ⊕ Pj , j = 1 · · · n, where O0 = IV and Oj = EK(Oj−1), (1.7)

and

Pj = Oj ⊕ Cj . (1.8)

Finally, in the CTR (counter) mode,

Cj = Pj ⊕ EK (IV + j), j = 1 · · · n, (1.9)

and

Pj = Cj ⊕ EK (IV + j) (1.10)

1.2.2 Hash Function

A hash function d = H(M) takes bulk-data M as input and outputs a u-bit digest
d. The Merkle–Damgard [6] construction for realizing the hash function3 using a
hashing algorithm O = H (S, B) (with block-size l and digest size u), is as follows.

The L bit bulk-data M (for example, a file) is padded to length L + lp, where
1 ≤ lp ≤ l, to ensure that L + lp = ln − 64. The length L is represented as a 64-bit
value and appended at the end to result in ln bits. The ln bit data is segmented into
n l-bit chunks B1 · · · Bn.

A standard hash algorithm is associated with a fixed initial value d0 (u bit value,
same as the digest size). Let

di = H (di−1, Bi), i = 1 · · · n. (1.11)

3 When the MD5SUM hash algorithm is used, the resulting hash function is the “MD5SUM hash
function.”
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Now, the value d = dn is regarded as the digest for L-bit data M .
The digest is also referred to as the commitment for the bulk-data (say, file) M . For

example, the commitment d for a file may be stored in a trusted location while the
file M itself is stored in an untrusted location. If a file M ′ fetched from the untrusted
location satisfies d = H(M ′) the verifier is convinced that M ′ = M (or, the file was
not modified).

1.2.3 Hashed Message Authentication Code

According to the hashed message authentication code (HMAC) standard [8], a hash
function H() can be used to compute the HMAC μ for bulk-data M , and a secret key
K , as

μ = HMAC(M, K) = H((K ⊕ po) ‖ H((K ⊕ pi) ‖ M)), (1.12)

where po = 0x5c5c. . .5c5c is the standard “outer pad” and pi = 0x3636. . .3636 is
the standard “inner pad.”

When bulk-data M is exchanged over an open insecure channel (where it may
be modified by attackers), the key K shared by the sender and receiver is used to
compute the HMAC which is sent along with M . The receiver verifies the integrity
of the HMAC, and on successful verification, is convinced that:

1. The HMAC was computed by a process privy to K .
2. M was not modified in transit.

1.2.4 Asymmetric Encryption and Signatures

In practice, a prerequisite for utilizing an asymmetric key pair—say key pair
(KA

r , KA
u ) generated by an entity A (using algorithm Fgen())—is the existence of

a trusted certificate authority that certifies a binding between the owner A and the
public key KA

u .
As asymmetric algorithms are 2 to 3 orders of magnitude more expensive that

symmetric algorithms, they are used sparingly. They are used for two main purposes:

1. For conveying a symmetric key (which is used for bulk-encryption using a
symmetric block-cipher)

2. For signing the digest of bulk-data M (where the digest is computed using a
standard hashing algorithm)

Any entity can send encrypted data C0 · · · Cn to the intended receiver A, along with
the encryption key K . Specifically, the encryption key K is sent as

K ′ = Fenc(K , KA
u ), (1.13)
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which can be decrypted only by the intended receiver A as

K = Fdec(K ′, KA
r ). (1.14)

To sign document (or bulk-data) M , an entity A i) computes the digest d =
hash(M), and ii) computes the signature as

S = Fsign(d , KA
r ) (1.15)

Any entity receiving M and the signature S can compute d = hash(M) and verify
that

Fver (d , S, KA
u ) = 1. (1.16)

1.3 Cryptographic Protocols and Security Protocols

Broadly, a cryptographic protocol is a construction that utilizes one or more cryp-
tographic algorithms. The purpose of such a protocol is the ability to make specific
assertions regarding specific inputs and outputs to the protocol, based on the
assumptions regarding the properties of algorithms.

As an example, consider the following two-step protocol:

1. Accept inputs M , K and m

2. Verify m = H (M ‖ K)

On successful verification, it is reasonable for the verifier to assert that “the input m

was created exactly in the same manner—by computing m = H (M ‖ K)—by the
process that provided the inputs M , K , and m.”

Note that even while there may exist numerous other values M ′ �= M and K ′ �= K

satisfying m = H (M ′ ‖ K ′), it is safe to assert that such values were not used
to generate m—as such a possibility would amount to the discovery of a second
preimage M ′ ‖ K ′ for the digest m—which is assumed to be impractical.

Thus, based on a specific assumption regarding the properties of the algorithm
H ()—that of second preimage resistance—one can assert the existence of a specific
relationship between the values m, K , and M .

1.3.1 Security Protocols

By itself, a cryptographic protocol is not very useful, as it does not provide meaningful
contexts to the inputs and outputs. This is where a security protocol comes in. A
security protocol provides a context to a cryptographic protocol through additional,
noncryptographic assumptions. For example, a security protocol that utilizes the
two-step cryptographic protocol above may make two assertions, viz.,
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1. The input m was computed as m = h(M ‖ K).
2. m was computed by an entity (say) “Bob.”

The second assertion may rest on an additional noncryptographic assumption that
(apart from the verifying process) only “entity Bob” has access to the key K . As the
value K was should have been used to compute m = h(M ‖ K), only Bob could
have computed m.

Obviously, the strength of the assertions made by a security protocol rest on the
correctness of both cryptographic and noncryptographic assumptions. It should come
as no surprise that almost every practical security issue we face in our day-to-day
lives stems from the failure of noncryptographic assumptions. In other words, security
breaches rarely (if ever) result from an attacker breaking a cipher, or determining a
collision in a hash function. Instead, they result from:

1. Improper storage of keys
2. Choice of weak keys
3. Bugs in software implementations of cryptographic protocols
4. Bugs in the environment in which the cryptographic protocols are executed—

which may provide unknown avenues for attackers to gain improper access,
modify inputs and outputs, or even modify the algorithm.

For the example considered above, for the verifier to assert that it was indeed Bob
that originated the message m, some specific noncryptographic assumptions are as
follows:

1. The process adopted by the verifier and Bob to establish a common secret K did
not leak any information regarding the key to unauthorized parties.

2. The computing platform employed by Bob is completely under the control of
Bob, and does not leak information regarding the key to unauthorized parties.
Some of the not-so-obvious implications of this assumption are that every piece
of hardware in the platform, and every bit of software executed by the platform
is bug-free—as an accidental or malicious bug in hardware or software could
possibly be exploited by an attacker to take control of Bob’s platform.

3. The computing platform employed by the verifier is bug-free. Note that a bug in
the verification process in the verifier’s platform can result in a wrongful claim
that the verification was successful (while it was not).

1.3.2 Symmetric Protocols

In the rest of this book we restrict ourselves to symmetric protocols—both
cryptographic protocols and more general security protocols.

Central to symmetric cryptographic protocols are well-founded assumptions re-
garding specific properties of symmetric cryptographic algorithms. For purposes
of this book, it is not necessary to differentiate between block-ciphers and hash
functions, as both can be generalized as a pseudo-random function (PRF) of the
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form

Y = h(X) (1.17)

where X is the concatenation of two inputs—possibly of different sizes u and l (for
hashing algorithms), or b and k (for block-ciphers), and Y is the output, with the
same size as one of the two inputs.

Without any loss of generality, in the rest of this book we shall assume that the
input to h() is a (u + l)-bit preimage, and the output is a u-bit digest. In other words,

h : {0, 1}u × {0, 1}l→{0, 1}u, (1.18)

is a deterministic mapping from a (u + l)-length bit-string to a length-u bit-string.
Some of the assumed properties of the PRF Y = h(X) are as follows:

1. Given Y = h(X), changing even a bit of the input will produce an output Y ′ that
is no way related to Y .

2. Given a preimage X there is no way to make any reliable prediction regarding
any bit of Y (without actually using h()). In other words, before using h(), every
bit of the digest Y is equally likely to be 0 or 1.

3. Given a digest Y , the easiest way to determine a preimage X′ that satisfies Y =
h(X′) should be by brute-force search for a suitable candidate for X′. As any of
the 2u digests are equally likely, one can expect to search for (on an average)
2u preimages before accidentally discovering an X′ that yields the desired Y =
h(X′).

4. The fastest way to determine any two preimagesX andX′ satisfyingh(X) = h(X′)
(the digests collide) should have brute-force search complexity of 2u/2.

In this book, in many of the symmetric cryptographic protocols constructed using
h(), the size of the input to h() may be indicated as an r-bit value, where r ≤ u + l-
bits. If r < u + l, it is to be assumed that some standard padding mechanism is used
to pad the input with additional (u + l − r) bits. Likewise, in some instances the
input to h() may be larger than u + l bits. In such scenarios it is to be assumed that
multiple applications of h() will be used. To reduce the complexity of notations the
pad and multiple applications of h() will not be explicitly shown.

1.3.3 Symmetric Security Protocols

In the context of security protocols, it is obviously essential to minimize the scope
of intangible (noncryptographic) assumptions. Furthermore, it is also necessary to
provide an unambiguous description of such assumptions. Whenever such assump-
tions are necessary in this book, they simply take the form of “a trusted boundary
within which cryptographic algorithms are executed.”

The main advantages of symmetric cryptographic primitives (compared to asym-
metric primitives) stem from their simplicity and versatility. A symmetric PRF h()
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typically demands substantially lower (by 2 to 3 orders of magnitude) computation
and memory requirements compared a typical asymmetric algorithm. Not withstand-
ing it’s simplicity, a PRF h() can be used in a wide variety of ways to realize an
extensive range of useful cryptographic protocols.

The simplicity of symmetric cryptographic protocols—composed of simple logi-
cal operations and PRF operations—has the indirect effect of strengthening the non-
cryptographic assumptions required for practical security protocols. Specifically, the
assumption of “a trusted boundary within which cryptographic protocols/algorithms
are executed” is indeed more justifiable if we deliberately constrain the complexity
of operations performed inside the trusted boundary. Low complexity inside a trusted
boundary implies lower scope to hide malicious or unintended functionality.

Some of the protocols described in this book aim to be less expensive alternatives
to asymmetric protocols. Currently, asymmetric protocols are used mainly for:

1. Establishment of symmetric session secrets (for one-to-one authentication and/or
privacy)

2. For signing message digests (for one-to-many, or broadcast authentication)

Consequently, the alternative protocols outlined in this book take the form of key
distribution schemes for pairwise and broadcast authentication.

Other protocols described in this book include:

1. Broadcast encryption strategies for communicating a secret to all but a select few
(explicitly excluded) receivers

2. A broad class of useful security protocols based on binary hash trees.



Chapter 2
Some Useful Constructions

Almost every protocol described in this book takes advantage of some, or all of the
following three basic strategies of utilizing a PRF h(): (a) hash chains; (b) hash trees,
which are also referred to as binary hash chains; and (c) the uniqueness of random
subsets of large sets generated using PRF h().

2.1 Hash Chains

A hash chain is [9] constructed through successive applications of the PRF h() on a
bit-string X0.

For example, let

X1 = h(X0), X2 = h(X1), X3 = h(X2) . . . , Xn = h(Xn−1). (2.1)

Such n successive applications that result in the value Xn can be conveniently
represented by the notation

Xn = hn(X0). (2.2)

From the properties of a PRF h() it follows that given a value Xi from a hash chain,
it is

1. Easy to compute Xj , if j ≥ i, through j − i applications of h()
2. Infeasible to compute Xj , if j < i

Furthermore, given two values U and V satisfying hx(U ) = V , even while there
exists numerous values U ′ satisfying hx(U ′) = V , it is safe to conclude that V was
indeed generated by repeatedly hashing U .

Even while the input and output to h() appear to have the same size (u-bits), it
should be assumed that the input is padded with l fixed pad-bits to size l + u.

11M. Ramkumar, Symmetric Cryptographic Protocols, DOI 10.1007/978-3-319-07584-6_2,
© Springer International Publishing Switzerland 2014
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v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 va vb vc vd ve v f

v01 v23 v45 v67 v89 vab vcd ve f

v03 v47 v8b vc f

v07 v8 f

ξ

Fig. 2.1 A binary hash tree

2.1.1 Hash Accumulator

Given a list of values v1 · · · vn, a hash accumulator computes an accumulated hash α

as follows.

α2 = h(v1 ‖ v2)

α3 = h(α2 ‖ v3)

α4 = h(α3 ‖ v4)

...

α = h(αn−1 ‖ vn) (2.3)

Each step in the accumulation of the hash is also referred to as hash-extension. For
example, in the operation h(α2 ‖ v3), “α2 is hash-extended with v3.”

The accumulated hash can be seen as a commitment to all values v1 · · · vn. Specif-
ically, even while there are numerous possible sets of values which yield the same
accumulated value α, given α and the values v1 · · · vn, one can conclude that α was
indeed computed by accumulating values v1 · · · vn.

2.1.2 Hash Tree

A more common strategy for accumulating a set of values v1 · · · vn into a single
commitment α is by arranging values v1 · · · vn as leaves of a binary hash tree. The
binary hash tree is more commonly referred to as a Merkle tree [10]. For simplicity,
we shall assume that n is a power of 2.

Figure 2.1 depicts a Merkle tree with N = 16 leaves v0 · · · vf . A binary tree with N

leaf-nodes has 2N −1 nodes spread over log2 N +1 levels—levels 0 · · · L = log2 N .
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At level 0 are the N leaf-nodes v0 · · · vf . At level 1 are N/2 nodes, each obtained
by hashing together two adjacent nodes in level 0. In the figure, the eight nodes
v01, v23, . . . vef in level 1 are obtained as

v01 = h(v0 ‖ v1)

v23 = h(v2 ‖ v3)

= ...

vef = h(ve ‖ vf ) (2.4)

Similarly, the four nodes at level 2 are each obtained by hashing together two adjacent
nodes in level 1. For example,

v03 = h(v01 ‖ v23). (2.5)

Note that a tree with N = 2L leaves at level 0 has 2L−i nodes in level i, where
i = 0 · · · L. The total number of nodes in the tree is thus

L∑

i=0

2L−i = 2L+1 − 1 = 2N − 1 (2.6)

The lone node at the top of the (inverted) tree is the root of the tree. The root is a
compact commitment to all nodes.

Every node has a sibling. v6 and v7 are siblings (with a common parent v67);
likewise, v8b and vcf are siblings (with a common parent v8f ). Corresponding to any
node at level 0 are L − 1 direct ancestors. For example, the ancestors of node v6 are
v67, v47, v07, and α — one in each level 1 · · · L. The root α is a common ancestor for
all nodes.

Corresponding to every node in level 0 are L complementary nodes—one in each
level 0 · · · L − 1. The L = 4 complementary nodes of v6 are v7, v45, v03, and v8f .
Note that the complementary nodes of any node includes

1. The sibling of the node
2. The siblings of all ancestors

Together, the nodes complementary to v6 can be interpreted as a commitment to all
nodes except v6. v8f is a commitment to eight nodes v8 · · · vf ; v03 is a commitment
to four nodes v0 · · · v3; v45 is a commitment to v4 and v5; and v7 is a commitment to
itself.

Any node in the tree (except the root) is either a right child or a left child of
its parent. For example v7 is a right child of its parent v67; v45 is a left child of its
parent v47. Thus, every node can be associated with an additional bit—say 0 if it a
right-child and 1 if it is a left-child left.

The L complementary nodes of v6 along with their orientations, viz.,

{(v7, 0), (v45, 1), (v03, 1), (v8f , 0)},
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readily provide step by step instructions for mapping leaf v6 to the root, through
a sequence of L PRF operations. For example, following the instructions, we can
compute the root α starting from v6 as

v67 = h(v6 ‖ v7) v47 = h(v45 ‖ v67)
v07 = h(v03 ‖ v47) α = h(v07 ‖ v8f )

Note that the orientation bit specifies the ordering of two nodes before hashing them
together to compute the parent node. As v7 is a right-child (orientation 0) it has to be
placed to the right of v6 before hashing. Similarly, as v45 is a left-child, it has to be
placed to the left before hashing.

Also note that the four orientation bits 0, 1, 1, 0 of the complementary nodes of
v6 (v7, v45, v03 and v8 f respectively) can be readily obtained from the bits used to
represent the index of v6 in binary format (index 6 = 0110b). As a second example,
the complementary nodes of v8 are

1. Sibling v9 which is a right-child (orientation 0)
2. Sibling v89 of ancestor vab (orientation 0)
3. Sibling vcf of ancestor v8b (orientation 0)
4. Sibling v07 of ancestor v8f (orientation 1)

Once again note that the binary representation of the index 8 = 1000b provides the
necessary orientation bits (read from LSB to MSB).

Thus, given any leaf-node v at level 0, it’s index i (where 0 ≤ i ≤ N −1), and the
set of its L complementary nodes c = {c0 · · · cL−1}, we can define a simple function

α = fbt (v, i, c) (2.7)

that maps v to the root α. The function fbt () can be algorithmically represented as
follows:

α = fbt (v, i, {c0, c1, . . . cL− 1}){
FOR ( j = 0· · · L − 1)

IF (i IS EVEN) v ← h(v ‖ c j);
ELSE v ← h(c j ‖ v);
i ← i >> 1; //right shift by one bit

RETURN v;
}

As the PRF h() is preimage resistant, it is infeasible to determine alternate values
ṽ �= v, and c̃ �= c that will satisfy fbt (v, c̃) = α.

In applications that employ Merkle trees the root α of the tree is stored in a trusted
location. The other N − 2 values can be stored in an untrusted location. If values v,
c received from an untrusted source satisfy fbt (v, c̃) = α, the verifier is convinced of
the integrity of such values. More specifically, the verifier is convinced that values v
and c were indeed used in the construction of the tree with root α.
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2.2 Random Subsets

Several symmetric cryptographic protocols of interest to us in this book are based
on the idea of allocation of random subsets of keys [11] from the pool of keys.

Consider a key-pool with P keys K1 · · · KP . Let S1 · · · SN represent subsets of
k < P keys chosen randomly from the key pool.

Let k/P = a < 1. One strategy to choose subset of k keys on an average from
a pool of P keys is by picking each key from the pool with probability a = k/P .
Alternately, if it is desired that each subset should have exactly k keys, the pool of
P keys may be divided into k sub-pools, each with P/k keys; from each of the P/k

pools one key is picked randomly.
When the key pool and subsets are generated using a PRF h() the generator could

start with a single master key μ to generate the pool keys as

Ki = h(μ ‖ i), q ≤ i ≤ P. (2.8)

Any subset may be associated with a seed which determines the indexes of the keys
chosen to be a part of the subset. For example, for a subset associated with a seed
X, a random stream of bits generated from repeated application of h() on X, for
example, X1, X2, . . . generated as

X1 = h(X), X2 = h(X2) · · · (2.9)

can be used to identify the indexes to be assigned to the subset.
Assume that n subsets are picked randomly. Let us represent by Sn the super set

of n such subsets. In addition, we randomly choose two other subsets Si and Sj .
Now, two specific questions of interest to us are

1. What is the probability p that all keys contained in a subset Si is contained in
Sn?
a) For a given n, p, what is the minimum value of the pool size P ?

2. What is the probability that all keys in the intersection of Si and Sj is contained
in Sn?
a) For a given n, p, what is the minimum value of the pool size P ?
b) For a given n, p, what is the minimum value of the subset size k?

2.2.1 Si ⊂ Sn

Consider a specific key in the subset Si . The probability that the same key is found
in specific subset that was chosen to create Sn is a. The probability that the specific
key is not found in any of the subsets in Sn is

ε = (1 − a)n (2.10)
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Thus, the probability that a specific key in the subset Si is included in the union of
n subsets (1 − ε). Consequently, the probability that all k keys in Si are included in
the union of n subsets is

p(n) = (1 − ε)k = (1 − (1 − a)n)k ≈ (1 − e−an)Pa (2.11)

Obviously, p increases with n. It is often of interest to us to achieve a target p(n)
using the least amount of keys. To derive an expression for P , Eq. (2.11) can be
rewritten as

P = n log p

an log (1 − e−an)
= n log (1/p)

−an log (1 − e−an)
(2.12)

For a desired p(n) (i.e., if we fix p and n), the pool size P is minimized when the
denominator (−an log (1 − e−an)) is maximized, which occurs when an = log 2.
Corresponding to the choice of a = log 2

n
the maximum value of the denominator is

( log (1/2))2 = ( log 2)2, and consequently the optimal values of P and k are

P = n log (1/p)

( log 2)2

k = log (1/p)

( log 2)2
(2.13)

As a numerical example, if we desire p(n = 1000) = e−23 ≈ 1 × 10−10 (probability
of 1 in 10 billion), we choose a = log2

1000 , and

P = 1000 × 23

log (2)2
≈ 47870

k = Pa = 23

( log 2)
≈ 33. (2.14)

In other words, if random subsets each with 33 keys are randomly chosen from a
pool of 47870 keys, the probability that the union of 1000 randomly chosen subsets
will contain all keys in yet another randomly chosen subset, is about 1 in 10 billion.

2.2.2 (Si ∩ Sj ) ⊂ Sn

Consider a specific key in the pool of P keys. The probability that the key is present
in both subsets Si and Sj , and therefore, in Si ∩ Sj , is a2. The probability that the
key is present in the intersection, but not present in the union Sn is

ε = a2(1 − a)n. (2.15)
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Thus, for any of the P keys, the probability that a key is present in the intersection
of two sets, and in the union of n sets is 1 − ε. The probability that all keys present
in the intersection are present in the Sn is therefore

p = (1 − ε)P = (1 − a2(1 − a)n)P ≈ (1 − a(1 − a)n)k. (2.16)

In other words

P = log p

log (1 − a2(1 − a)n)
and (2.17)

k = log p

log (1 − a(1 − a)n)
(2.18)

From Eq. (2.18), it can be easily seen that for a given n, p, the number of keys in
each subset, k, is minimized when a(1 − a)n is maximized, which occurs when
a = 1/(n + 1). The maximum value of a(1 − a)n is then

1

n + 1

(
1 − 1

n + 1

)n

= 1/(n + 1)

1 − 1/(n + 1)

(
1 − 1

n + 1

)n+1

≈ 1

en
(2.19)

Thus, for the optimal choice of a = 1/(n + 1),

p(n) = (1 − 1

en
)k ≈ e−k/en (2.20)

The minimal value k and the corresponding pool size P = k/a are then

k = en log (1/p)

P = en(n + 1) log (1/p) (2.21)

As a numerical example, if we desire p(n = 1000) ≈ e−23, we can choose k =
e × 1000 × 23 = 62520 and P = k/a = k(n + 1) = 62582520.

On the other hand, if we desire to minimize the key pool size P , from Eq. (2.18)
we can see that it is required to maximize a2(1 − a)n. This occurs for the choice of
a = 2/n, corresponding to which the maximum value of a2(1 − a)n is

4

n2
(1 − 2

n
)n ≈ 4

n2

1

e2
= 4

n2e2
. (2.22)

As

p(n) = (1 − a2(1 − a)n)P = (1 − 4

n2e2
)P = e

4P

n2e2 , (2.23)

we have

P = n2e2

4
log (1/p)

k = Pa = ne2

2
log (1/p) (2.24)

As a numerical example, if we desire p(n = 1000) ≈ e−23, we can choose P =
42487073 and k = 84974.



Chapter 3
Nonscalable Key Distribution Schemes

A key distribution scheme is a mechanism for distributing secrets and possibly some
public (nonsecret) values to a group of participants. We shall simply refer to a group
of participants as a network. The values distributed to members of the network enable
them to engage in private and/or authenticated exchanges.

The main actors in a key distribution scheme include:

1. One or more key distribution centers (KDC) who generate secrets and public
values

2. Members of the network who utilize such values for securing interactions between
members

Within the network, every member has a unique identity. In a network with N

members, let M1 · · · MN be the unique member identities. Depending on the nature
of the network, members’ identities may take different forms. For example, in a
network where members exchange link-layer packets, the identities may be 6-byte
medium access control (MAC) addresses. In a network where members exchange
Internet protocol (IP) packets, the member identities may be 4-byte IPv4 or 16-byte
IPv6 addresses. For interactions in the application layer, the member identities could
take numerous application dependent forms forms like email addresses, login name,
domain name, etc.

In this chapter, our focus is on key distribution schemes that facilitate establish-
ment of pairwise secrets between members of a network. A secret Kij shared by
members Mi and Mj can be used by Mi and Mj to authenticate messages exchanged
between them by computing message authentication codes using the shared secret,
or for encrypting messages using a suitable block-cipher.

Key distribution schemes for facilitating pairwise secrets can be classified into
two broad categories. In the first category are schemes which require a trusted KDC
to be available online. Such schemes are discussed first in Sect. 3.1.

In the second category are schemes where KDCs are not available online. In such
scenarios, KDCs interact with each member only once—for initial issue of keys and
public values. Schemes with offline KDCs involve offline predistribution of keys by
the KDC.

19M. Ramkumar, Symmetric Cryptographic Protocols, DOI 10.1007/978-3-319-07584-6_3,
© Springer International Publishing Switzerland 2014
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Key predistribution schemes can be broadly classified into nonscalable schemes,
and scalable schemes. In Sects. 3.2 and 3.3 we restrict ourselves to nonscalable
schemes.

3.1 Online KDC

If the trusted KDC is always available online, the symmetric Needham–Schroeder
(NS) protocol [14] can be used for establishing authenticated pairwise secrets
between members.

3.1.1 NS Protocol

The prerequisite for the symmetric NS protocol is that every member shares a secret
with a trusted server T which acts as the KDC for the network. Let Ki be the secret
shared between member Mi and the server T . Likewise, let Kj be the secret shared
between T and a member Mj .

When Mi desires to communicate with Mj , Mi initiates a protocol that facilitates
establishment of a shared secret Kij between Mi and Mj . The simplified NS protocol
can be represented as follows:

Mi→T : {Mi , Mj}
T →Mi : {EKi

(Kij ), EKj
(Mi , Kij )}

Mi→Mj : EKj
(Mi , Kij )

In the protocol above, Mi requests the server T to issue a session secret for com-
municating with Mj . The server chooses a random session secret Kij and sends two
copies back to Mi — EKi

(Kij ) encrypted using the secret Ki shared between the
server and Mi , and the other—a ticket EKj

(Mi , Kij )—encrypted using the secret
Kj shared between the server and Mj . Mi sends the ticket to Mj , which can be
decrypted by Mj to obtain the session secret Kij and the identity Mi of the initiator
of the protocol. At the end of the protocol, both Mi and Mj share a common secret
Kij issued by the trusted server.

The NS protocol is the basis for the Kerberos [15] protocol for establishing secure
channels between end-user clients and various services offered to clients in a Kerberos
realm.

3.1.2 Leighton–Micali Protocol

Leighton and Micali [16] proposed an alternative approach for establishing shared
secrets using a trusted online server. Similar to the NS protocol, Leighton–Micali
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(LM) scheme also assumes the existence of a shared secret between the server and
every member. Once again, let Ki represent the secret shared between Mi and the
server T . The simplified form of the LM protocol for establishing a shared secret
between Mi and Mj is as follows:

Mi→T : {Mi , Mj }
T →Mi : Pij = h(Ki ‖ Mj ) ⊕ h(Kj ‖ Mi).

At the end of the protocol both Mi and MjB can compute a common secret

Kij = h(Kj ‖ Mi). (3.1)

The responder Mj , who has access to Kj , can directly compute Kij = h(Kj ‖ Mi).
On the other hand, the initiator Mi—who does not have access to Kj , but has access
to Ki—uses the value Pij provided by T , to compute the secret Kij as

Kij = h(Ki ‖ Mj ) ⊕ Pij

= h(Ki ‖ Mj ) ⊕ h(Ki ‖ Mj ) ⊕ h(Kj ‖ Mi)

= h(Kj ‖ Mi). (3.2)

As Pij does not reveal any information Ki or Kj (and even Kij —except to entities
who already possess Ki or Kj ), the value Pij need not be kept a secret. Values like
Pij are pair-wise public values. Note that Pij = Pji . For a network of size N there
are

(
N

2

)
such pair-wise public values.

The main advantage of the LM scheme compared to the NS approach stems from
the fact that no authenticated exchange is required between the KDC and the initiator
to receive the public value Pij . It is therefore conceivable that values like Pij are even
be made available in a public repository, to obviate the need for the trusted KDC to
be always online.

If the repository is untrusted, some additional strategies may be required for
authenticating the integrity of the public values hosted by the untrusted repository.
For this purpose, Leighton and Micali proposed a parallel scheme, where each node
receives another independent secret. Corresponding to every public value like Pij is
an authenticator Qij for the public value, the integrity of which can be verified using
the second secret issued to Mi or Mj .

As yet another possibility, the
(
N

2

)
public values could be used to construct a

Merkle hash tree (discussed earlier in Sect. 3) the root of which is known to every
member. The n = (

N

2

)
values are interpreted as leaf-nodes of the tree. The untrusted

repository will now be required to store an additional n−1 internal nodes of the tree.
Any public value provided by the untrusted repository should be accompanied by
L = log2

((
N

2

))
hashes which can be used to verify the integrity of the public value

against the root.
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3.2 Offline KDC

If the KDC is not available online, the chief considerations that will influence the
choice of a suitable key distribution strategy for a specific application include the
(a) network scale and dynamics, and (b) expected communication patterns between
members of the network.

The network scale is a measure of the total number of members. In a network with
dynamic scale, new participants may be added (or even removed) from the network.
In some networks it may be necessary for every member to be able to interact with
every other member. In such scenarios, every possible pair of members should be
able to arrive at a pairwise secret. In some networks, every member may be required
to establish a secret only with small number of other members. For example, in most
client–server networks, a large number of clients may be required to communicate
only with a small number of servers. Clients are not required to communicate directly
with each other.

3.2.1 Basic KDS for Static Small-Scale Networks

In the well-known basic key distribution scheme, for a network with fixed number
(say) N participants, the KDC is required to generate

(
N

2

)
secrets Kij , 1 ≤ i, j ≤

N , i �= j—one corresponding each pair of members—and issue N−1 secrets to each
member. Let Kij be the pairwise secret shared between two members Mi and Mj .
The N − 1 secrets issued to a member Mi are {Kij }, 1 ≤ j ≤ i − 1, i + 1 ≤ j ≤ N .

In practice, the KDC may choose a single master secret μ which can be used to
generate any of the

(
N

2

)
secrets. Some of the possible ways in which a pairwise secret

Kij can be computed by the KDC are

Kij = h(μ ‖ Mi ‖ Mj ) ⊕ h(μ ‖ Mj ‖ Mi) or

Kij =
{
h(μ ‖ Mi ‖ Mj ), if Mi > Mj

h(μ ‖ Mj ‖ Mi), if Mj > Mi

Once the KDC has conveyed N − 1 secrets to each member, the KDC has no further
role to play in the day-to-day functioning of the network.

While the KDC could randomly choose
(
N

2

)
secrets, generating them from a single

secret μ is advantageous, as the KDC needs to maintain secure storage only for a
single secret μ. To convey N −1 secrets to every member, the KDC may first convey
a single secret to each member, and then convey the N − 1 secrets by encrypting
them using the secret previously conveyed. In other words, as long as the KDC is
able to securely convey a single secret to each member, conveying the additional
N − 1 secrets does not pose any significant challenge.

As a practical example, the single secret conveyed to member Mi may simply be

Ki = h(μ ‖ Mi). (3.3)
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Other secrets like Kij could then be conveyed as

K ′
ij = h(Ki ‖ Mj ) ⊕ Kij . (3.4)

To compute the key shared with Mj , member Mi can readily decrypt K ′
ij as

Kij = h(Ki ‖ Mj ) ⊕ K ′
ij . (3.5)

It is also advantageous for members themselves to store their N − 1 secrets in an
encrypted manner. Each member needs to allocate secure storage only for a single
secret—the N − 1 encrypted secrets can then be stored in an easily accessible and
possibly unprotected location.

Corresponding to each of the N − 1 keys, member Mi will need to store two
values—the member identity (like Mj ), and the corresponding encrypted secret K ′

ij .
If identities and secrets are 128-bit (or 16 byte) values, for a network size of 1 million
each member will need 32 MB of (unprotected) storage (in addition to protected
storage for a single secret).

3.2.2 Key Distribution for Dynamic Networks

The basic key distribution scheme is obviously not well suited for large network
scales and for networks with dynamic scales. Even while the rapidly decreasing cost
of storage indicates that even the basic scheme can easily support static networks
with tens of millions of members, such an approach is unsuitable for networks where
new members may join at any time.

Consider a network which currently has N members. When a new ((N + 1)th)
member joins the network the KDC should issue:

1. N secrets to the new member
2. 1 secret to each of the N existing members

It is the second requirement which is especially impractical, as it would imply that
every member will have to communicate with the KDC every time a new member
joins the network.

Ideally, the interactions between the KDC and the members should be restricted
to be a one-time affair—only when a member joins a network. This requirement can
be met by using the modified Leighton–Micali scheme (MLS) described in the next
section.

3.3 MLS Key Distribution

As the name implies, MLS [17] is derived from the LM scheme discussed in
Sect. 3.1.2. In the LM scheme for N members M1 · · · MN , recall that each member
is issued one secret—let Ki be the secret issued to member Mi . In addition, there are(
N

2

)
public values of the form
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Pij = h(Ki ‖ Mj ) ⊕ h(Kj ‖ Mi). (3.6)

For small N , the members themselves may each store N − 1 public values, for
example, Mi stores all N − 1 Pij for which i �= j , 1 ≤ i, j , N . With this approach,
the need for accessing the public repository is eliminated.

The central idea behind the modified scheme stems from the realization that only
one of the two members—Mi or Mj —requires access to the public value Pij . In the
LM scheme the initiator requires access to the value Pij . Unfortunately, as Mi or
Mj could be the initiator, both require access to Pij . However, if we can specify a
clear rule that unambiguously indicates which of the two members (Mi or Mj ) will
always need to use the public value—irrespective of where the member is an initiator
or responder—then only that member will need access to the pairwise public value.

In MLS the rule that dictates which of the two members is required to use the
public value is based on when the members joined the network. The member that
joined the network later (the newer member) should use the public value. Older
members do not need access to public values corresponding to newer members.

The advantage of imposing such a rule is that it solves the issue of dynamic
network scale. Whenever a new member joins the network, only the new member
is to be provided public values corresponding to every existing member. Unlike the
basic KDS, the KDC does not need to convey an additional value to each of the
existing members.

The MLS scheme is well suited for small to medium scale dynamic networks. Let
us assume that the network is intended to support up to 2n participants (for example,
n = 32, or maximum network scale of 4 billion). For such a network, the KDC
chooses a master secret μ. Each member is associated with a sequence number and
an identity. Let the identity assigned to the first member inducted into the network
be M1. The member M1 is assigned a sequence number 1. The secret issued to the
member M1 is computed by the KDC as

K1 = h(μ ‖ (M1 ‖ 1)). (3.7)

The second member with identity M2 is issued a secret K2 = h(μ ‖ (M2 ‖ 2)). In
addition, member M2 is issued one public value (corresponding to the single older
member)

P21 = h(K1 ‖ (M2 ‖ 2)) ⊕ h(K2 ‖ (M1 ‖ 1)). (3.8)

The common secret between M1 and M2 is

K21 = h(K1 ‖ (M2 ‖ 2)). (3.9)

Member M1 can directly compute the secret using its secret K1. M2 computes the
same secret as

K21 = h(K2 ‖ (M1 ‖ 1)) ⊕ P21

= h(K1 ‖ (M2 ‖ 2)). (3.10)
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Similarly, the third member to be inducted into the network, receives one secret
K3 = h(μ ‖ (M3 ‖ 3)) and two public values P31 and P32—one public value
corresponding to each of the two current members. Thus, the millionth member
to be inducted receives one secret and 999, 999 public values—one public value
corresponding to each member inducted earlier.

In general, the common secret between two nodes Mx and My , where x > y is
computed as

Kxy =
{
h(Ky ‖ (Mx ‖ x)) by My

h(Kx ‖ (My ‖ y)) ⊕ Pxy by Mx.
(3.11)

For simplicity of notation, we shall henceforth assume that n MSBs of member
identities like Mi indicate the sequence number i. With this simplified representation,
the secret Ki assigned to Mi is

Ki = h(μ ‖ Mi). (3.12)

The i − 1 public values assigned to Ui are

Pi,1 = h(K1 ‖ Mi) ⊕ h(Ki ‖ M1)

Pi,2 = h(K2 ‖ Mi) ⊕ h(Ki ‖ M2)

...

Pi,i−1 = h(Ki−1 ‖ Mi) ⊕ h(Ki ‖ Mi−1). (3.13)

3.3.1 Identity Ticket (IT) Scheme

An “identity ticket” is derived as a one way function of a label and a secret. For
example, h(K ‖ A) is an identity ticket corresponding to a key K and a label A.
While identity tickets are conceptually similar to key based message authentication
codes, identity tickets are to be treated as secrets (unlike MACs). The identity ticket
KA = h(K ‖ A) is privy only to the entity A and entities who have access to the
secret K (and can therefore readily compute the ticket).

In the identity ticket (IT) scheme the KDC chooses a master secret μ. Similar
to MLS, some LSBs of the identity assigned to every member indicate a sequence
number. Let the sequence number of member with identity Mi be i.

Each member is assigned

1. One secret
2. One identity ticket corresponding to every member inducted before Mi

The secret Ki assigned to Mi is

Ki = h(μ ‖ Mi). (3.14)
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The i − 1 identity tickets issued to Mi are

Ti,1 = h(K1 ‖ Mi)

Ti,2 = h(K2 ‖ Mi)

...

Ti,i−1 = h(Ki−1 ‖ Mi). (3.15)

The shared secret Kij between Mi and Mj (where i<j ) is Tj ,i . The member Mi

computes the ticket as h(Ki , Mj ) using it’s secret Ki . The member Mj already
possesses the ticket Tj ,i = h(Ki , Mj ).

3.4 Comparison

In all three schemes every member needs to store only a single secret, and store
O(N ) values in unprotected bulk storage. Specifically, N is the current network size
in MLS and IT schemes, and the static network size in the basic KDS.

Apart from the obvious advantage of the ability to support dynamic networks
scales, MLS and IT offer several other advantages compared to the basic scheme.
Specifically, MLS and IT.

1. Reduce the bulk-storage complexity for each member by a factor of four (on an
average)

2. Halve the need for access to bulk storage
3. Eliminate the need for searching thorough stored values in bulk-storage

In the basic scheme for a network with N members, a member Mi had to store two
values corresponding to each of the (N−1) members—the identity and the encrypted
secret. In the basic scheme, When Mi receives a message from Mj (authenticated
using the shared secret Kij ), the following occurs:

1. Mi searches the bulk storage for a key with index Mj .
2. Mi fetches the encrypted key K ′

ij .
3. Mi decrypts K ′

ij to compute Kij .

The sender Mj would have also obtained Kij in the same manner, viz., searching its
bulk-storage for a key with index Mi and decrypting the stored key.

In the MLS scheme, Mi will store i −1 public values—one corresponding to each
member inducted before Mi . It is not necessary to explicitly store the indexes as the
key corresponding to Mj j < i can be stored in the j th location. On an average,
every member has to store only N/2 public values. Similarly, in the IT scheme Mi

will store i − 1 tickets, one corresponding to each member inducted before Mi .
Thus, once Mi receives a message from Mj (assume i > j ) authenticated using

secret Kij , Mi (to compute the secret Kij ) proceeds with the following:
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1. It fetches the j th public value Pij (or the j th ticket Ti,j ) from a file in bulk storage
with i − 1 public values/tickets (there is no need to search).

2. It computes Kij = h(Ki ‖ Mj ) ⊕ Pij (or the stored ticket is decrypted to yield
Kij = Tij in IT).

The sender Mj in this case, recognizing that i < j , would have computed Kij as
Kij = h(Kj ‖ Mi) (or Kij = h(Kj ‖ Mi) in IT scheme) without even requiring an
access to its bulk storage.

To summarize, if both identities and public values are of the same size (say, 16
byte or 128-bit values), for the same network size MLS/IT demands only one-fourth
the storage demanded by basic KDS. For any interaction between two members, only
one of the two require access to bulk storage. The basic KDS requires both members
to search for a specific 128-bit identity (a small subset of 2128 possible identities are
stored in a list of size N − 1). In MLS only one of the two members need to access
storage, and even that member does not need to search the storage. As identities need
not be stored, MLS/IT can also use efficiently use large bit-strings as identities if
desired.

One compelling advantage of MLS over IT stems from the fact that distribution
of nonsecret values to members can be more efficient than distribution encrypted
tickets. For example, all public values could be stored in a repository and accessed
by members as and when required. Henceforth, we shall restrict ourselves to MLS,
even while all remaining discussions regarding MLS also applies to IT.

3.4.1 MLS with Multiple KDCs

MLS can be easily extended to support multiple KDCs. When m independent KDCs
are used, each member will need to store m secrets in protected memory. However,
the storage required for public values remains the same as the single KDC scenario.

Consider the scenario with m = 2 KDCs. Both KDCs choose an independent
master secret, say μ1 and μ2. Every member receives one secret from each KDC.
Let the secrets received by member Ui from the two KDCs be

K1
i = h(μ1 ‖ Mi)

K2
i = h(μ2 ‖ Mi). (3.16)

Both KDCs issue i − 1 different public values to Mi . Specifically the values issued
by the two KDCs are respectively,

P 1
ij = h(K1

i ‖ Mj ) ⊕ h(K1
j ‖ Mi), 1 ≤ j ≤ i − 1

P 2
ij = h(K2

i ‖ Mj ) ⊕ h(K2
j ‖ Mi), 1 ≤ j ≤ i − 1. (3.17)

The member Mi combines each of the public values from both KDCs to compute

Pij = P 1
ij ⊕ P 2

ij , 1 ≤ j ≤ i − 1 (3.18)
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and stores the i − 1 public values in bulk storage.
The shared secret between Mi and Mj (assume i > j ) is

Kij = h(K1
j ‖ Mi) ⊕ h(K2

j ‖ Mi) (3.19)

Specifically, Mj computes the shared secret Kij directly using its secrets K1
j and K2

j ,
without the need to access bulk storage. Member Mi computes the same secret as

Kij = h(K1
i ‖ Mj ) ⊕ h(K2

i ‖ Mj ) ⊕ Pij

= (h(K1
i ‖ Mj ) ⊕ P 1

ij ) ⊕ (h(K2
i ‖ Mj ) ⊕ P 2

ij )

= h(K1
j ‖ Mi) ⊕ h(K2

j ‖ Mi). (3.20)

3.4.2 MLS Applications

For most practical networks not all members are required to communicate with all
other members. The necessary communication patterns within a network N can be
modelled by dividing the network into two possibly overlapping sets N1 and N2

where every member in set N1 is required to establish a shared secret with every
member in set N2.

The case where N1 = N2 = N (the two sets completely overlap) corresponds
to the scenario where every member is required to share a secret with every other
member.

In a scenario where |N1| > |N2|, the members N1 may each be required to store
|N2| public values. Thus, the storage requirements are limited by the size of the
smaller set, ns = min(|N1|, |N2|).

The value ns is only limited by the unprotected (but readily accessible) storage
available to every member. Even if every member is a mobile device, storage is not
a practical concern. For example, if ns = 20 × 106, on an average, every member
will need storage for 10 million public values—say 160 MB. The worst case for the
storage requirement of 320 MB. The rapidly reducing costs of storage, and the fact
that only one-time bandwidth overhead is required for disseminating public values,
suggests that MLS (or IT) are indeed practical for most networks. It is also intuitively
satisfying that members who join the network at a later time will require more storage.
In most practical scenarios newer devices will possess better capabilities.

As an example, consider a network N consisting of an unlimited number of clients
and a limited number of servers. Also, assume that it is necessary for the following:

1. Every client to be able to share a secret with every server
2. Every server to also be able to establish a secret with all clients and servers

In this case, the two overlapping sets are N1 = N (which includes both clients and
servers) and N2 (which includes only servers). As long as the number of servers is
not prohibitively high (for example, not more that several tens of millions), MLS/IT
are indeed practical options.
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As some practical examples,

1. The network N may be a global e-mail network, with an unlimited number of
clients, and a substantially smaller number (for example, a few million) e-mail
servers. In such an application, every client may need to interact only with a
small number of servers. However a server may require to interact with any
server, depending on the path to be used for relaying the e-mail.

2. The network may be the domain name system (DNS). The (practically unlimited)
owners of domain names (or zones), and the even larger hosts that query the
domain name system are the clients. The servers are DNS servers that store and
relay domain name records created by zone owners to end users.

Currently, commonly used security protocols like secure socket layer (SSL) and TLS
(transport layer security) rely on expensive asymmetric encryption and signature al-
gorithms, in conjunction with a public key infrastructure (PKI), to facilitate secure
interactions between a different types of servers and clients. The security protocol
used DNSSEC (for securing DNS) uses asymmetric signature algorithms to authen-
ticate DNS records created by owners of zones. Signature verification algorithms are
used by clients who query DNS records. In the rest of this chapter we outline low
complexity alternatives to DNSSEC and TLS/SSL using MLS key distribution.



Chapter 4
MLS for Internet Security Protocols

In this chapter we begin with an overview of the domain name system (DNS)
(in Sect. 4.1), issues in securing DNS (Sect. 4.2), and the current security pro-
tocol, DNSSEC, for DNS (Sect. 4.3). Sections 4.4–4.6 outline the alternative to
DNSSEC, and provide an in-depth comparison of the current and proposed protocols.
Section 4.7 outlines a practical alternative to [35].

4.1 Domain Name System

The domain name system [18, 19] is a tree-hierarchical naming system for services
that can be accessed over the Internet. At the top of the inverted DNS tree (see
Fig. 4.1) is the root. Below the root are generic top level domains (gTLD) like com,
org, net, edu, etc., and country-code top level domains (ccTLD) like br, ca,
etc. A leaf named b.cs.univ.edu in the DNS tree is a server-host in a branch
cs.univ.edu, which stems from a thicker branch univ.edu, which stems from
an even thicker branch .edu, stemming from the root of the DNS tree.

A branch of the tree (including its sub-branches and leaves) under the admin-
istrative control of an owner, is a DNS zone. The owner for a zone is responsible
for:

1. Assigning names for branches and leaves under the zone
2. Creating DNS resource records corresponding to such names
3. (Optionally) delegating an entity as the owner for a branch within the zone

The owner of the root zone has delegated a gTLD zone like .edu to a .edu-gTLD
owner, who has in turn delegated the zone univ.edu to another entity, who may
have delegated a zone cs.univ.edu to yet another authority. All DNS records
for the zone cs.univ.edu have names that end with cs.univ.edu. The zone
records are created by the owner of the zone. The zone owner also specifies the
names of authoritative name servers (ANS) for the zone. A “zone master file” which
includes the set of all DNS RRs for the zone is provided every ANS of the zone.
ANSs for the root zone are the root name-servers. ANSs for gTLD zones are gTLD
servers; ANSs for other zones are simply referred to as zone servers.

31M. Ramkumar, Symmetric Cryptographic Protocols, DOI 10.1007/978-3-319-07584-6_4,
© Springer International Publishing Switzerland 2014
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root

.com .org .edu ··· .ca .in ···

univ.edu col.eduibib.org

cs.univ.edu cas.univ.edua.ibib.org

b.cs.univ.edu

Fig. 4.1 The domain name system (DNS) tree. A leaf of the tree is typically a DNS name of a
server (for example, web-server, mail-server, DNS servers etc.). Some internal nodes correspond to
starting points of DNS zones. Associated with each zone is an authority (or owner), and authoritative
name servers (ANS) for the zone

A client desiring to access a HTTP service www.cs.univ.edu requires the IP
address of the web server with a domain name www.cs.univ.edu. This infor-
mation is available in an A-type record in the master file for a zone under which
the name www.cs.univ.edu falls, and can be obtained by querying any name
server for the zone. To obtain this information, the querier only needs to know the IP
address of one root name server. While the root name server cannot directly provide
the answer to the query “www.cs.univ.edu, A,” it can provide the names and
IP address of the name servers for gTLD and ccTLD zones. In this case, the root
server will respond with the names and IP addresses of all .edu servers.

The querier can now send the same query to any of the.edu servers, which will re-
spond with the name and the IP address of the name servers for the zone univ.edu.
When the same query “www.cs.univ.edu, A” is directed to a name server for
the zone univ.edu, the response includes the names and IP addresses of name
servers for the child zone cs.univ.edu.

Finally, any of the name servers for the zone cs.univ.edu can be queried
to obtain the desired the A-type record. If the zone cs.univ.edu had not been
subdelegated, then the name server for the zone univ.edu would have directly
provided the response. Thus, knowing only the IP address of one root name server,
any one can obtain any DNS record by specifying the name and type, and performing
a series of queries.

4.1.1 DNS Records

Every DNS resource record (RR) [19] is a five-tuple consisting of (i) name, (ii) class,
(iii) time-to-live (TTL), (iv) type, and (v) value; for example,

name=www.cs.univ.edu, IN, TTL=2345, type=A,
value=159.43.7.82.

The class is always IN (for Internet RRs); the field TTL is specified in seconds, and
indicates how long a RR can be cached. In the remaining chapter, to keep notations
simple, we shall ignore the fields “class” and “TTL.”
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A-type RRs indicate an IP address in the value field. An NS-type record
name=cs.univ.edu, type=NS, value=ns1.dserv.net indicates that
ns1.dserv.net is a name server for the zone cs.univ.edu.

A set of records with the same name and type, but with different value
fields, is collectively referred to as an RRSet. For example, the NS-type RRSet
for the name cs.univ.edu may include two NS records—one indicating a
name server ns1.dserv.net, and the other indicating another name server
ns1.cs.univ.edu.

The NS type records are used for delegation. An RRSet of NS records for a
delegated zone (say) cs.univ.edu can be found in the master file of the parent
zoneuniv.edu. Similarly, the NS RRSet foruniv.edu can be found in the master
file of the zone .edu, and so on. Along with NS records which specify ANSs, the
A-type records for the ANSs are also included in the master file as glue records.1

The zone owner is (obviously) always offline. Once the master file for zone has
been provided to all zone servers, and the names of zone servers conveyed to the
authority of the parent zone (and included as NS records in the master file of the
parent zone), the zone owner simply expects the name servers to faithfully accept
and respond to DNS queries regarding the zone.

4.1.1.1 Query-Response Process

DNS queries and responses [19] are typically payloads of UDP packets and have
the same packet format. They include a header, and four sections: QUESTION,
ANSWER, AUTHORITY, and ADDITIONAL. In a query packet QUESTION sec-
tion indicates the queried name and type (all other sections are empty). The
response has an identical QUESTION section. The ANSWER section contains the
desired RRSet. The AUTHORITY section includes NS records for the zone. The
ADDITIONAL section contains A-type glues for the NS records.

In practice, clients initiate queries using stub-resolvers running on their own host
machine. Stub-resolvers do not directly query the zone name servers. Instead, they
use local domain name servers (LDNS) as intermediaries. LDNSs are also referred to
as preferred name servers, or local recursive resolvers, or caching-only name servers,
and are typically operated by Internet service providers (ISP).

An application requiring the IP address of (say) www.cs.univ.edu queries
a stub-resolver running on the same host. The stub-resolver redirects the query

1 Note that zone univ.edu (or even edu) cannot be authoritative for the zone dserv.net.
Thus, while univ.edu can provide an authoritative response regarding the name of the
ANS for the child zone cs.univ.edu, it cannot provide an authoritative A-type record for
the server ns1.dserv.net. To avoid possible circular dependency problems, the necessary
nonauthoritative A-type records are included as glue records.
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((www.cs.univ.edu,A)) to a LDNS. To do so, the host (or the stub-resolver)
should know the IP address2 of at least one LDNS.

All LDNSs are preconfigured with the IP addresses of root servers. The LDNS
queries a root server for (www.cs.univ.edu,A), and receives NS records (with
glued A-type records) for name servers of .edu. The LDNS then queries a .edu
name server to receive NS records of univ.edu, and so on. Finally, a server for the
zone cs.univ.edu responds to the query with the desired A-type RRSet, which
is relayed back to the stub-resolver.

LDNSs may cache RRs for a duration specified by the TTL field in the RR,
and may respond to queries from stub-resolvers using cached RRs. Similarly stub-
resolvers may also cache RRs and respond to queries from applications running on
the same host using the cached RRs.

4.2 Securing DNS

The main goal of attacks on DNS is to simply divert traffic away from genuine ser-
vices, or more often, to divert such traffic to impersonators phishing for personal
information from unsuspecting clients. A common strategy for attackers is to imper-
sonate zone servers to provide fake DNS responses to LDNSs, thereby “poisoning
the cache” of the LDNS, and consequently, the caches of many stub-resolvers which
employ the poisoned LDNS.

The header of every DNS query includes a 16-bit transaction ID tid ; the UDP
packet carrying the query indicates a 16-bit source port p chosen3 by the querier. A
DNS response for query will be accepted only if it is addressed to port p, and if it
indicates an expected transaction ID tid .

To create a fake response that will be accepted by an LDNS, an out-of-path
attacker, who does not have plain-sight view of the query packet, will need to guess
the values tid and p. A typical strategy for an out-of-path attacker is to register a
domain, run his own server for the domain, and query the targeted LDNS for a
name under his domain. When the query from the LDNS is ultimately directed to
the attacker’s server, the attacker learns enough information to narrow down the two
values tid and p within small range.

Recently, Kaminsky [20] pointed out that DNS cache poisoning attacks can have
even more severe consequences. Instead of attempting to poison RRs corresponding
to a specific zone, the attacker can impersonate a root server and send fake glue
records for “IP addresses of gTLD name servers.” Thus, queries to every .com zone,
for example, will then be directed to a computer under the control of the attacker,
which could redirect such queries to other “name servers” under the attacker’s control.

2 Typically, IP addresses of LDNSs are provided to a host by a DHCP server. In UNIX-like machines
the IP addresses of LDNS are stored in a file/etc/resolv.conf.
3 Typically chosen by the operating system.
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4.2.1 Link-Security Approaches

While properly randomizing the two 16-bit values (tid and p) is a good first step,
they offer no defense against in-path attackers. In-path attackers who may be in the
same LAN as the server or the resolver,4 or are conveniently situated in-between the
resolver and the server, have plain-sight access to the values tid and p in the UDP
DNS packets, and can thus readily create fake responses. Securing links between
DNS servers (for example, by using a secret shared between a resolver and the
server queried by the resolver) can prevent such attacks.

Two entities A and B who share a secret KAB can prevent even in-path attackers
from impersonating them by (i) encrypting the message sent over the link using
the shared secret KAB , or (ii) appending a message authentication code (MAC)
h(V ‖ KAB) where V may be the hash of the contents of the DNS response.

Approaches like SK-DNSSEC [21] and DNSCurve [22] adopt such a strategy. In
symmetric key DNSSEC [21] all LDNSs have the ability to establish secure channel
with the root servers. ANSs higher in the hierarchy act as trusted servers and facilitate
establishment of secrets with ANSs lower in the hierarchy, using the Needham–
Schroeder protocol [14]. When a LDNS queries the root server for “cs.coll.edu,
A”, the root server’s response includes a ticket which permits the LDNS to establish a
secure channel with a .edu DNS server. The .edu DNS server then issues a ticket
for securely communicating with an ANS for the zone coll.edu.

DNSCurve [22] employs a Diffie–Hellman scheme over a special elliptic curve
C for setting up a private channel between DNSCurve enabled DNS servers. A
DNSCurve enabled server A chooses a secret a. The secret between two DNSCurve
enabled servers/resolvers A and B (where B’s secret is b) is

KAB = C(b, α) = C(a, β), (4.1)

where α = C(a, S), β = C(b, S), and S is a public parameter.
Link-security approaches assume that the DNS servers themselves are trustworthy.

Note that while link-security approaches protect DNS RRs from out-of-path attackers
(who do not have access to values tid and p) and in-path attackers (those with access
to tid and p), there is nothing that prevents an entity controlling the DNS server itself
from modifying an RR. In practice, such an attacker can be the operator of a DNS
server, or some other entity who has otherwise gained control of the DNS server.
Such an attacker can receive RRs over protected links, illegally modify RRs, and
relay fake RRs over “protected” links.

4 Or, more generally, can exert some form of control over a computer in the same LAN as the server
or the resolver.
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4.3 DNSSEC

Ideally, the “middle-men” should not be trusted: only the zone owner should be
trusted for providing information regarding the zone. This is the approach taken by
DNSSEC [23], where every RRSet in the zone master file is individually signed by
the zone owner.

A DNSSEC zone owner has an asymmetric key pair. The public portion of the key
pair is certified by the owner of the parent zone. For example, the public key of the
zone cs.univ.edu is signed by the owner of zone univ.edu. The public key
of the zone cs.univ.edu can be obtained by querying for a DNSKEY-type RR
for the name cs.univ.edu. To authenticate the public key in the DNSKEY RR,
the parent zone univ.edu introduces two RRs in its zone file: a delegation signed
(DS) RR which indicates a key-tag (a hash) for the public key of its child, and an
RRSIG(DS) record which is the signature for the DS record.

For verifying the RRSIG(DS) record the public key of the parent zoneuniv.edu
is required—which is the DNSKEY RR for the name univ.edu. To authenticate
the public key ofuniv.edu, it is necessary to obtain the DS and RRSIG(DS) record
from its parent zone—.edu, along with the DNSKEY RR for .edu. Finally, the
public key of.edu can be verified by obtaining DS and RRSIG(DS) records from the
root zone (by querying any root server). The public key of the root zone is assumed
to be well publicized.

To summarize, corresponding to every RRSet for the zone cs.univ.edu is a
RRSIG(RRSet) record which contains the digital signature for the RRSet. In response
to a query for an RRSet, the corresponding RRSIG record is also included in the
response. To verify the RRSIG, the required DNS RRs are:

1. DNSKEY RR of cs.univ.edu
2. DS, RRSIG(DS) corresponding to DNSKEY RR of cs.univ.edu, and

DNSKEY RR of the parent zone univ.edu (fetched from the parent zone
univ.edu);

3. DS, RRSIG(DS) corresponding to DNSKEY RR of univ.edu, DNSKEY RR
of .edu;

4. DS, RRSIG(DS) corresponding to DNSKEY RR of .edu, from the root zone.

4.3.1 Authenticated Denial

Consider a scenario where the owner of the zone wesellstuff.com outsources
its DNS operations to dnsnet.net. It is indeed conceivable that a competitor
wealsosellstuff.com could bribe some personnel in dnsnet.net (or any
entity who has acquired control over the server dnsnet.net) to remove the record
for wesellstuff.com (for example, to drive the competitor out of business).

To ensure that DNS servers and/or their operators need not be trusted, DNSSEC
demands a pertinent response from the zone server for every query that falls under



4.3 DNSSEC 37

the zone, where the response is signed by the zone owner. If the queried name exists,
the ANS should provide a signed RRSet. If the queried name does not exist, the ANS
is expected to provide authenticated denial by providing some information signed
by the zone owner, which demonstrates that the queried record does not exist. If the
zone server ignores the query, or provides a nonpertinent response, the resolver will
send the query again, or will query another zone server for the zone, till it receives
a pertinent response.

For example, in response to a query for name abc.xyz.fgh the querier expects
a signed RRSet by the authority for the zone under which the name abc.xyz.fgh
falls, or alternately, expects:

1. A signed response from the authority of the root zone that no record for a name
.fgh exists; or

2. A signed response from the authority of the zone .fgh that no record for the
name xyz.fgh exists; or

3. A signed response from the authority of the zone xyz.fgh that no record for
the name abc.xyz.fgh exists.

As the zone authority is offline, a response denying every possible (as yet unknown)
query, regarding the practically unlimited number of possible names and types that
can fall under the zone, should somehow be signed by the zone authority and in-
cluded in the master file provided to all zone servers. This is accomplished cleverly
through NSEC records [12].A signed NSEC recordabc.example.com, NSEC,
cat.example.com indicating two enclosers is interpreted as an authenticated de-
nial of all enclosed names: viz., names that fall between abc.example.com and
cat.example.com in the dictionary order. For example, if queried for a record
named cab.example.com, this NSEC RR signed by the authority of the zone
example.com (the signature included in a RRSIG(NSEC) RR) is proof (attested
by the zone owner) that no such record exists.

4.3.2 DNS-Walk

Even while DNS RRs are not meant to be private they should only be pro-
vided when explicitly queried by name and type. NSEC permits one to query
random names and learn about unsolicited names of enclosers that do ex-
ist in the zone master file. For example, a querier may send a query for a
random name like axx.example.com and get to know the two enclosers
abc.example.com, cat.example.com that actually exist. The attacker can
then query for a random name like cate.example.com and obtain its enclosers,
say cat.example.com, data.example.com, and so on.

The ability to easily enumerate all services under a zone is obviously a useful
starting point for any attacker. An attacker wishing to obtain all DNS records for
a zone can easily “walk-through” all records in the zone master by simply making
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a sequence of random queries. Such supercilious queries also have the ill-effect of
further burdening the DNS infrastructure.

It is this unintended side effect of providing assurance A2 that created the need for
assuranceA3. NSEC3 [25], a recent modification to NSEC, employs hashes of names
as enclosers instead of using the names themselves as enclosers. For example, an
NSEC3 RR indicating a hash encloser (vl , vh) indicates that no record with a name
y exists, if vl < h(y) < vh. The enclosers vl and vh are hashes of real names
corresponding to records that do exist in the master file.

Unfortunately, simple dictionary attacks can be used to reveal the names behind
hashes like vl and vh. Thus, NSEC3 fails in its attempt to provide assurance A3.

4.4 MLS Based Alternative to DNSSEC

DNSSEC has seen poor levels of adoption as upgrading a “plain-old” DNS server to
support DNSSEC will often necessitate a hardware upgrade due to an order of mag-
nitude increase in the size of DNSSEC records (compared to plain DNS records), and
substantial increase in the size of DNS responses [26–28]. In many cases DNSSEC
may require more expensive TCP (instead of UDP) as the transport protocol for
carrying large DNS responses. LDNSs and stub-resolvers will also need to endure
substantial computational burden due to the need to verify multiple digital signa-
tures. Furthermore, the feasibility of zone enumeration also encourages attackers to
perform supercilious queries, thus exacerbating the issue of high DNSSEC overhead.

4.4.1 Extending Link-Security Approaches

Cryptographic mechanisms for individually securing each link traversed by DNS
records, viz., the links between

1. Offline zone owners and name servers of the zone (for securely conveying master
files)

2. LDNSs and zone server
3. Clients and their LDNSs

demand substantially lower overhead compared to the hierarchical PKI-like approach
employed by DNSSEC. Unfortunately, link-security approaches implicitly assume
that the middle-men are trustworthy: while RRs are protected in transit, there is no
protection for RRs while they reside in the DNS servers.

Specifically, symmetric key DNSSEC [21] and DNSCurve [22] simply assume
that:

1. The keys employed by DNS servers (which are used to compute the link secrets)
are well protected from untrustworthy entities (else, any entity with access to the
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secrets of a DNS server can impersonate the DNS server to send fake RRs); and
that

2. The intermediary DNS servers (i) will not modify RRs, and (ii) will not deny RRs
that do exist.

In the proposed alternative approach every DNS server is assumed to house a low
complexity trustworthy module (TM). The proposed approach does not make such
unjustifiable assumptions regarding the trustworthiness of DNS servers. Instead, the
assumptions are:

1. Secrets protected by the TM (which are used to compute link-secrets) cannot be
exposed.

2. The trivial functionality of the TM cannot be modified.

As we shall see shortly the functionality inside the TM will merely involve ver-
ification and computation if message authentication codes (MAC) using pairwise
secrets are facilitated by MLS key distribution. More specifically, we refer to the TM
functionality as an “atomic relay” as the TM merely:

1. Accepts a MAC μ for a succinct value v from an “upstream” TM
2. Verifies the MAC
3. Recomputes the MAC for v for verification by a “downstream” TM.

Not withstanding the simplicity of TM functionality, the trust that this function-
ality can not be modified, and this functionality alone, is bootstrapped to realize
substantially improved assurances compared to DNSSEC.

For any system with a desired set of assurances, the trusted computing base
(TCB) [29] is a small amount of hardware/software that is trusted to realize the
desired assurances. More importantly no component that is not included in the TCB
is trusted in order to realize the desired assurances. As only TM functionality is
trusted to realize the desired assurances the TMs serve as the TCB for DNS.

4.4.2 Principle of TCB-DNS

In the TCB-DNS protocol [30] every DNS server is equipped with a low-complexity
TM. From the perspective of DNS servers, the TMs are black boxes that accept a
formatted stream of bits as input, and output a message authentication code (MAC).
Such MACs accompany plain DNS responses sent by DNS servers. The operations
performed inside the TM (to map the input bits to a MAC) are a fixed sequence
of logical and cryptographic hash operations. This simple TM functionality is the
TCB of a DNS server, which is leveraged to realize all three assurances A1–A3 with
negligible overhead.
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4.4.2.1 Atomic Relay

In the path of an RRSet originating from the zone owner Z to the client (a stub-
resolver C), is a name server for the zone Z and the LDNS used by the host C. An
atomic relay, as the name suggests, relays a value from one entity to another, in one
atomic step. A TM A in the name server performs an atomic relay of a value V from
the zone authority Z to a LDNS TM P , thus eliminating the need to trust the name
server in which the TM A is housed. Similarly, the TM P in the LDNS performs an
atomic relay of the value V from the ANS TM A to a stub-resolver C, eliminating
the need to trust the LDNS.

From the perspective of the TM A, it receives some input bits which specify

1. The identity of the source Z

2. A value V to be relayed
3. A message authentication code (MAC) MV ,ZA

4. The identity of the entity P to which the value V needs to be relayed.

The TM A does the following:

1. It uses its secrets to compute pair-wise secrets KZA and KAP .
2. Using the pair-wise secret KZA, TM A verifies the MAC MV ,ZA = h(V , KZA)

appended by Z.
3. On successful verification the TM A computes a MAC MV ,AP = h(V , KAP )

using the secret KAP .

The output is the MAC MV ,AP , which is relayed to P .
The values relayed by TMs are hashes of RRSets. The hashes of RRSets are

computed by zone authorities and individually authenticated to each ANS TM using
MACs. ANS TMs can atomically relay the hashes to any LDNS TM which can
then atomically relay the hash to any stub-resolver. The TMs thus provide a parallel
channel for securely conveying hashes of RRSets by leveraging link-secrets (which
are computed using secrets protected by the TM).

An atomic relay does not mean that a values received from an upstream entity
should be immediately relayed. The values can be stored (by the untrusted DNS
server) and relayed any number of times, to any number of downstream TMs. The
DNS server is free to choose the downstream TM or client.

Note that in both DNSSEC and TCB-DNS end-to-end integrity of an RRSet is
realized by securely conveying a preimage resistant hash of the RRSet. In DNSSEC
this is achieved by signing the hash. In TCB-DNS the integrity of the hash is assured
to the extent we can trust the TMs involved in relaying the hashes.

DNSSEC provides assurance A1 by signing hashes of regular DNS RRs, and
provides assurance A2 by signing hashes of NSEC/NSEC3 RRs. Obviously, by
atomically relaying the hashes of regular RRSets and NSEC/NSEC3 records, TCB-
DNS can also provide both assurances provided by DNSSEC. However, a simple
addition to the capability of the TMs can provide TCB-DNS with yet another useful
feature—the ability to provide assurance A3, and thereby eliminate the possibility
of DNS-walk.
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4.4.2.2 “Intelligent” Atomic Relay

If we merely relay hashes of NSEC/NSEC3 records, then TCB-DNS will also be
susceptible to DNS-walk. Fortunately, to realize assurance A3, the only additional
intelligent feature required of TMs is the ability to recognize that “a value V falls
inside an enclosure (Vl , Vh).”

The atomic relay function performed by a TM with identity X, takes the form

MXD = ARX(S, D, V , Vl , Vh, MSX). (4.2)

In executing this TCB function the TM X accepts some fixed-length inputs like:

1. S and D: the identities of a source and destination
2. Cryptographic hashes V , Vl , and Vh

3. A MAC MSX provided by the source S

The TM outputs a MAC for the value V (for verification by the destination D) under
two conditions:

1. The MAC MSX is consistent with V ; or
2. The MAC MSX is consistent with values Vl ‖ Vh, and V is enclosed by (Vl , Vh).

In the latter case, the TM interprets a pair of values (Vl , Vh) authenticated by the zone
authority as proof that no value enclosed by (Vl , Vh) exists in the master file. If V is
enclosed, the TM outputs a MAC for V to inform D that an “enclosure for V was
found.”

In DNSSEC that a value V is enclosed by (Vl , Vh) is checked by the querier. The
need to reveal the enclosures to the querier is the reason that assurance A3 cannot
be provided. In TCB-DNS the enclosure is checked by the ANS TM (not provided
to the querier). To the extent that the TM can be trusted, the querier trusts that an
enclosure exists for the value V (and consequently, is convinced that an RR with the
name corresponding to V does not exist).

More specifically, in TCB-DNS,

1. If the queried name and type exists the response includes the desired RRSet in
the ANSWER section; a MAC for a value V (where V is hash of the RRSet) is also
included in the response.

2. To deny a name and type ni ‖ ti the ANSWER section indicates the name and type
ni ‖ ti ; the MAC for the value V = h(ni ‖ ti) is included in the response to imply
that the indicated name and type does not exist.

Typically, as we shall see in a later section, to provide authenticated denial for a
queried name-and-type, a plurality name-and-types will have to be explicitly denied.
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4.4.3 Computing Link Secrets

For performing the atomic relay, a TM needs to compute two pairwise secrets—one
shared with the sender (the previous hop), which is used to verify the hash V (or the
encloser (Vl , Vh) for authenticated denial), and one shared with the destination (the
next hop). Specifically,

1. ANS TMs require the ability to establish a pairwise secret with (i) the zone owner
for receiving hashes of RRSets, and (ii) all LDNS TMs for securely conveying
hashes of RRSets.

2. LDNS TMs require the ability to establish a pairwise secret with (i) all zone server
TMs, for receiving hashes, and with (ii) all clients who employ the LDNS, for
conveying the hashes.

We can thus interpret all participants in DNS as a network N where N1 = N includes
all participants, and N2 includes all DNS servers. MLS/IT can be used to facilitate
pairwise secret between all (TMs in) DNS servers, between clients and (TMs in)
LDNSs and between zone owners and (TMs in) ANSs. We shall assume that MLS
is used.

4.4.3.1 Key Distribution for TCB-DNS

In TCB-DNS the KDC can be entity under the control of a regulatory authority
(for example, ICANN). The core TCB-DNS entities are TMs associated with DNS
servers. The fringe TCB-DNS entities include zone authorities (who need to securely
convey RRs toANSs) and clients (stub-resolvers) who query DNSs. Pair-wise secrets
for TCB-DNS can be (i) between two core entities (between two TMs), or (ii) between
a core entity and a fringe entity.

For the former case, a sequence number included in the TM identity specifies
which of the two core entities should use the public value to compute the pairwise
secret. For the latter (pairwise secret between a core entity and a fringe entity) the
fringe entity employs the public value—the core entity does not.

The identity X of a TM (associated with an ANS or an LDNS) is of the form
X = Xt ‖ qx where Xt is a succinct code describing the nature of X and duration of
validity; the value qx is a unique number assigned sequentially to every DNS server
TM. To establish a secret between TMs X = Xt ‖ qx and Y = Yt ‖ qy where (say)
qx < qy , Y is required to use the value PXY to compute the pairwise secret KXY ; X

can compute KXY directly using its secret KX.
The TCB-DNS identity Z of a zone authority is of the form Z = Zt ‖ Zname

where Zname is a one-way function of the domain name of the zone. To enable Z to
compute a pairwise secret KZA with an ANS TM A the zone authority is issued:

1. A secret KAZ = h(KA, Z) by the KDC
2. A secret KZ , along with a public value PZA

3. A TM with identity Z (with secret KZ stored inside the TM), along with a public
value PZA.



4.4 MLS Based Alternative to DNSSEC 43

In the TCB-DNS identity of a client C = Ct ‖ C ′, C ′ can be a unique random value.
If P is the identity of a TM in an LDNS used by the client C the client C is issued
(i) a secret KPC = h(KP , C) or (ii) a secret KC and a public value PCP .

Thus, once keys have been distributed to TCB-DNS entities, computing any link-
secret will require the TMs to only perform a single hash computation. Periodically,
the KDC disseminates signed revocation lists indicating identities of entities revoked.

4.4.3.2 Multiple KDCs and Renewal

At the top of the hierarchy of DNSSEC is a single root CA—which is the authority
for the root zone. Though the root zone is expected to sign only public keys for
gTLD and ccTLD zones, the all powerful root zone authority has the ability to
misrepresent public keys for any zone. While ideally we would desire that this
power be distributed among multiple independent entities, such an approach can
further increase the overhead for DNSSEC.

In the case of MLS, If we use m (for example, m = 4) independent KDCs, all
that changes is that computation of any pairwise secret will call for m = 4 hash
operations. We shall use the notation KXY = F (Y , PXY ) to represent the process of
computing the pairwise secret KXY by entity (or TM) X.

For renewal of secrets of a TM X = Xt ‖ qx the regulatory authority simply
issues a new TM with TCB-DNS identity X′ = X′

t ‖ q ′
x , with secrets KX′

1
· · · KX′

m
.

If at the time of renewal, the last issued sequence number was q, the new TM is
issued a sequence number q ′

x = q + 1. The owner of the TM is issued q public
values (where each public value is the XOR of m public values). If the secrets of an
ANS TM A is renewed, only the zone authorities using the ANS need to be issued
new public values for A. If the TM P of a LDNS is renewed, only the clients who
use the LDNS are issued with new public values corresponding to P .

More specifically, a node with sequence number q is the q th node to join the
network, and is issued one secret and q − 1 public values (or m secrets and q − 1
public values if we use multiple KDCs). For renewal we simply add a new node.
The public values are the same size as the pair-wise keys (say 160-bits). A DNS
server with a TM sequence number 10 million will need access to at most 200 MB
of storage for public values (which can easily be stored in the hard-disk of the DNS
server). There is no practical limit on the number of fringe entities (zone authorities
and clients). Each fringe entity requires access only to a small number of public
values (as they need to establish a pairwise secret only with a small number of core
entities—zone authorities with TMs of all ANSs for the zone, and clients with all its
LDNSs).
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4.5 The TCB-DNS Protocol

This section begins with a detailed specification of the atomic relay algorithm. This
is followed by an outline of the operation of TCB-DNS by describing the steps for
creating TCB-DNS master files (in Sect. 4.5.2) and illustrating the sequence of events
in typical a query-response process (in Sect. 4.5.3).

4.5.1 The Atomic Relay Algorithm

A TM with identity X stores a secret KX inside its protected boundary—which is
known only to TM X and the KDC. To relay a value from S to D the TM requires
to compute secrets KXS and KXD . For this purpose the TM needs two additional
inputs—public values PXS and PXD . Thus, the atomic relay function of a TM X

takes the form

MXD = ARX((S, PXS), (D, PXD), V , Vl , Vh, MSX).

In a scenario where X does not require to use a public value to compute KXS , the
input PXS = 0 is provided to the TM (as XOR-ing by 0 leaves a value unchanged).
It is the responsibility of the (untrusted) DNS server to store and provide appropriate
public-values to its TM; if a DNS server provides incorrect public values to its TM
the MAC will be rejected by the next-hop5 which verifies the MAC.

The TM X accepts a formatted stream of bits bi = (S ‖ PXS) ‖ (D ‖ PXD) ‖ V ‖
Vl ‖ Vh ‖ MSX as input from the DNS server which houses the TM; the TM performs
a simple sequence of logical and cryptographic hash operations, and outputs a MAC
MXD or a fixed constant ERROR.. An algorithmic description of the sequence of
operations is depicted in Fig. 4.2.

As shown in the algorithm in Fig. 4.2, the TM computes the pairwise secret KXD

for authenticating TM output to destination D. If S = X (source is indicated as
the TM itself), the TM construes this as a request to output a MAC h(V ‖ KXD)
verifiable by D. This feature, as we shall see soon, permits zone owners to use DNS
TMs.

In general (for S �= X) the TM proceeds to compute the pairwise secret KXS

required for validating the inputs (V , Vl and Vh authenticated by source S using a
MAC MSX:

1. If Vl is zero the TM verifies that the MAC MSX is consistent with V and KXS .
2. If the value Vl is non-zero, the TM verifies that (i) the input MAC MSX is consistent

with the two values (Vl ‖ Vh), and (ii) that V is enclosed by (Vl , Vh). A value V

5 If the next-hop is a LDNS, when an invalid response is received, the LDNS will send the query
again or query another ANS. Similarly if the next-hop is a stub-resolver C, then C will resend the
query or query another LDNS.
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Fig. 4.2 The atomic relay
algorithm ARX(). KXS and
KXD are pair-wise secrets
that X shares with TCB-DNS
entities S and D respectively

A RX (S PXS XD ,V,Vl ,Vh,MSX )
KXD = F(PXD,D);
IF (S== X ) ;

RETURN h(V ‖ KXD);
KXS = F(PXS S );
IF (Vl == 0)

Vi = V ;
ELSE IF (((Vl < V )∧ (V < Vh))∨ ((V >Vl)∧ (Vl > Vh)))

Vi = h(Vl ‖ Vh);
ELSE RETURN ERROR;
IF (MSX ! = h(Vi ‖ KSX ));

RETURN ERROR;
RETURN MXD = h(h(S ‖ V ) ‖ KXD) ;
}

,

,

,D,P {

is enclosed by (Vl , Vh) if Vl < V < Vh. If Vl > Vh then V is enclosed by the
“wrapped around” pair if V > Vl > Vh or V < Vh < Vl .

On successful verification the TM outputs a MAC for the value (S ‖ V ) computed
using the pairwise secret KXD between X and D.

For ease of following the discussion in the rest of this section, note that

MZA,V = ARZ(Z, 0, A, PZA, V , 0, 0, 0)

= h(V ‖KZA) (4.3)

is a MAC for a value V computed by a TM Z (for verification by a TM A). We shall
see soon that zone authorities can employ TMs in this fashion to authenticate hashes
of RRSets for verification by ANS TMs. Also note that

MAP ,VZ
= ARA(Z, 0, P , PAP , V , 0, 0, MZA,V )

= h(h(Z ‖V ) ‖KAP ) (4.4)

is a MAC computed by TM A which can be verified by an entity P . The MAC
represents A’s claim that “a value V was received from Z.” If the MAC is verifiable,
to the extent P trusts A, P can accept the claim that the value V was provided by Z.

Finally,

MAP ,V ′
Z

= ARA(Z, 0, P , PAP , V ′, Vl , Vh, MZA,V ′ )

= h(h(Z ‖V ) ‖ KAP ) (4.5)

is also a MAC verifiable by an entity P ; on successful verification, P concludes
that “a value V was received from Z.” P does not need to differentiate between the
two cases. In the former case, V was explicitly conveyed to A by Z through a MAC
MV ,A. In the latter case, V is any value, not explicitly conveyed by Z, but happens
to fall within an enclosure (Vl , Vh) (and the enclosure is authenticated by Z using
MAC MV ′,A).
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4.5.2 Preparation of TCB-DNS Master File

Consider a zone example.com, which employs ANSs with TMs A and B for the
zone. The sequence of steps performed by the zone authority to prepare a master file
are as follows. Let the TCB-DNS identity of the zone be Z where Z = Zt ‖ Zname,
where Zname is the hash of the name of the zone (example.com). Recall that Zt

includes a succinct representation of the time of expiry of the secrets assigned to Z.

Step 1 Prepare a regular plain DNS master file. Some of the required additions to
plain DNS RRs are as follows:

a) Each RR will indicate an absolute value of time as the time of expiry. This
value can be a 32-bit value like UNIX time, and can be different for each RR.
In general the time of expiry of any RR should not be later than Zt .

b) NS-type RRs (which indicate the name of an ANS) includes two additional
values:
(i) The TCB-DNS identity of the ANS-TM

(ii) The value Zt (note that from the name of the zone in the NS RR, one can
compute the value Zname; along with the value Zt the TCB-DNS identity
of the zone can be computed as Z = Zt ‖ Zname).

In general, a RRSet R has multiple RRs with the same name and type, and
each RR indicates its own a time of expiry.

Step 2 Let r be the total number of RRSets. For an RRset R with name nj and type
tj compute (i) the hash of the RRSet vj = h(RRSet); and (ii) u′

j = h(nj ‖
tj ‖ τ ), where τ is the time at which the authentication for all enclosures
expire. Repeat for all r RRSets.

Step 3 Sort the hashes u′
1 · · · u′

r in an ascending order; Let the sorted hashes be
u1 · · · ur . Now, compute values d1 · · · dr as

dj =
{
h(uj ‖ uj+1) j < r

h(ur ‖ u1) j = r
(4.6)

Note that for the last “wrapped around” enclosure (ur , u1) the first value ur

is greater than the second (u1).
Step 4 For each of the 2r + 1 values in {v1 · · · vr , d1 · · · dr , τ } compute MACs

MZA,i = h(vi ‖ KZA), 1 ≤ i ≤ r , M ′
ZA,j = h(dj ‖ KZA), 1 ≤ j ≤ r ,

and MZA,τ = h(τ ‖ KZA). If the zone authority Z employs a TM Z then
a MAC like MZA,i = h(vi ‖ KZA) is computed by using the atomic relay
function of the TM as

MZA,V = ARZ(Z, 0, A, PZA, vi , 0, 0, 0)

= h(vi ‖ KZA). (4.7)

Prepare a supplementary master file with
a) The values (τ , MZA,τ )
b) r rows of the form (i, MZA,i), 1 ≤ i ≤ r

c) r rows of the form ((uj , uj+1), M ′
ZA,j ), 1 ≤ j ≤ r
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Step 5 Provide the supplementary master file to ANS with TM A along with the
regular master file. The zone authority repeats step 4 for ANS B to create a
supplementary master file with values (τ , MZB,τ ); r rows (i, MZB,i), and r

rows ((uj , uj+1), M ′
ZB,j ).

4.5.3 Verification of RRSets

We shall consider a scenario where an ANS with TM A is queried for an RRSet
cad.example.com,A by a LDNS with TM P . Let us further assume that the
query was initiated by a stub-resolver C.

4.5.3.1 Events at ANS with TM A

Let the identities A and P of the TMs be A = At ‖ qa and P = Pt ‖ qp. If qp < qa

(sequence number of P is less than that of A) the ANS fetches PAP from storage
(else PAP = 0). If the queried name and type (ni , ti) exists, or if a suitable delegation
exists, the ANS

1. Extracts the RRSet from the plain DNS master file, and computes the hash of the
RRSet, vi

2. Extracts the MAC MZA,i for vi from the supplementary master file
3. Requests TM A to compute

MAP ,i1 = ARA((Z, 0), (P , PAP ), vi , 0, 0, MZA,i)

= h(h(Z ‖vi), KAP ). (4.8)

In the response sent to the LDNS, theANS includes the RRSet in theANSWER section
along with the value MAP ,i1 . If the response is a delegation, the NS RRSet can be
included in the AUTHORITY section along with the value MAP ,i1 . The TM A does
not know, or care, if the response is an answer or a delegation.

To deny a name-and-type (ni , ti),

1. ANS extracts the values (τ , Mτ ,ZA) from the supplementary master file for zone
Z.

2. ANS computes vi = h(ni ‖ ti ‖ τ ).
3. ANS finds encloser for vi (say (uj , uj+1)), and corresponding MAC MZA,j from

the supplementary master file.
4. ANS requests TM A to compute MAP ,τ1 and MAP ,i1 as

MAP ,τ1 = ARA((Z, 0), (P , PAP ), τ , 0, 0, MZA,τ )
= h(h(Z ‖ τ ), KAP )

MAP ,i1 = ARA((Z, 0), (P , PAP ), vi , uj , uj+1, MZA,j )
= h(h(Z ‖ vi), KAP ).
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For reasons that will be explained later in Sect. 4.6.2, typically the ANS will need
to deny multiple name-and-type values in a response. Let us assume that q name-
and-type values need to be denied. For each such name-and-type (nl , tl) the ANS
computes vl = h(nl ‖ tl ‖ τ ), finds an encloser for vl and the corresponding MAC in
the supplementary master file, and requests the TM to compute MACs of the form
MAP ,l1 (each of the q requests are made independently—each request results in the
use of the atomic relay function ARA() by the TM A).

In the response sent to the LDNS the ANS includes (in the ANSWER section):

1. Values τ and MAP ,τ1

2. q denied name-and-type values ni ‖ ti
3. q MACs of the form MAP ,i1

4.5.3.2 Events at the LDNS with TM P

Before the LDNS had sent a query to the ANS for a name and type belonging
to zone Z, the LDNS would have queried an ANS for the parent zone of Z—
say W =Wt ‖ Wname, and obtained an NS-type RRSet for the name Zname (where
Z=Zt ‖Zname).

Let us further assume that the NS-type RRSet was authenticated by a TM
G=Gt ‖ qg (housed in an ANS for the zone W ). In other words, the LDNS would
have received a value MGP ,j1 to authenticate the NS-type RRSet, where

MGP ,j1 = h(h(W ‖vj ), KGP ), (4.9)

and, vj is the hash of the NS-type RRSet.
In TCB-DNS, the LDNS is expected to verify the NS RRSet before sending a

query to the delegated server. In this case, where the LDNS had chosen to approach
the ANS A for the zone Z (based on the information included in the NS-type RRSet
authenticated by G) the LDNS computes vj1 = h(W ‖vj ), and requests its TM P to
compute

x = ARP ((G, PGP ), (A, PPA), vj1 , 0, 0, MGP ,j1 ). (4.10)

As long as x �= ERROR, the LDNS considers the NS records to be valid.
Similarly, prior to querying G (ANS for W , the parent of Z) the TM would have

received a response from an ANS for the parent of W (unless W is the root zone
which has no parent—in our case W is the gTLD zone .com). Such a response from
an ANS of W ’s parent zone would have also been verified as above before a query
was sent to G. Thus, after the response from the parent zone W was verified, the
LDNS P had sent a request to A for a name and type under zone Z.

TCB-DNS does not require queries to be authenticated. Queries merely indicate
the TCB-DNS identity of the querier.

Now, after the response is received from A, the LDNS P has all the necessary
information to send the answer to the stub-resolver C which initiated the query.
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Typically, the LDNS will need to include an RRSet in the ANSWER section (along
with a MAC computed by its TM P ). For responses containing authenticated denial
forq name-and-types the response will includeq+1 values authenticated individually
using q + 1 MACs. For both cases, an NS-type RRSet will be included in the
AUTHORITY section indicating ANS for the zone, along with a MAC computed by
the TM P .

More specifically, the hash of the RRSet in the ANSWER section is relayed
atomically from A to C, by P . Similarly, for authenticated denial, the q hashes
corresponding to multiple nonexisting names, and the value τ , are relayed atomi-
cally from A to C by P . The hash of the NS-type RRSet is however relayed atomically
by P from G to C.

For example, to relay the RRSet with hash vi received from A the LDNS first
hashes the RRSet to obtain vi and requests its TM to compute

MPC,i2 = ARP ((A, PPA), (C, 0), vi1 , 0, 0, MAP ,i1 )

= h(h(A ‖ vi1 ) ‖ KPC)

= h(h(A ‖ h(Z ‖ vi)) ‖ KPC). (4.11)

If the hash of RRSet vi computed by the LDNS is not the same as the one authen-
ticated by the zone authority Z, the MAC MAP ,i1 will be found inconsistent by the
TM P , which will return ERROR.

Similarly, to relay the NS-type RRSet received from G along with a value MGP ,j1 ,
the LDNS hashes the RRSet to obtain vj , and uses its TM P to compute6

MPC,j2 = ARP ((G, PPG), (C, 0), vj1 , 0, 0, MGP ,j1 )

= h(h(G ‖ vj1 ) ‖ KPC)

= h(h(G ‖ h(W ‖ vj )) ‖ KPC). (4.12)

The response from the LDNS to C thus includes:

1. The NS-type RRSet (with hash vj ) for Z along with the values W , G and MPC,j2

in the AUTHORITY section, AND
2. The queried RRSet with hash vi , along with a MAC MPC,i2 , and the identity A

of the ANS, OR
3. Authenticated denial of q name-and-type values (by including q + 1 values and

q + 1 MACs), and the identity A of the ANS.

If the parent zone W does not support TCB-DNS (the ANS for W is not equipped
with a TM) then the NS RRSet is relayed without any TCB-DNS authentication.

6 The value W is obtained from the NS type RRSet for the parent zone W , which was obtained by
querying W ’s parent—the root.
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4.5.3.3 Verification by the Stub-Resolver C

The stub resolver performs the following steps:

1. It extracts name of zone from the AUTHORITY section; hashes name to compute
Zname and hence Z = Zt ‖ Zname.

2. If the NS RRSet in the AUTHORITY section has TCB-DNS authentication
a) Client C computes the hash vj of the NS-type RRSet in the AUTHORITY

section and verifies that MPC,j2 =h(h(G ‖ h(W ‖vj ))‖KPC).
b) Parses W as W =Wt ‖Wname and verifies that Wname is a legitimate parent of

Zname.
3. C verifies that Zname is a legitimate parent of the queried name.
4. C verifies that name of the zone is a parent of the queried name7 in the ANSWER

section.
5. If the ANSWER is the desired response, hash the RRSet to compute vi ; compute

vi1 = h(Z ‖ vi), vi2 = h(A ‖ vi1 ), and using key KCP verify that MPC,i2 = h(vi2 ‖
KPC).

6. If the ANSWER is an authenticated denial indicating q values of the form ni ‖ ti ,
for each of the q values compute vi = h(ni ‖ ti ‖τ ), vi1 = h(Z ‖vi), vi2 = h(A‖vi1 ),
and verify that MPC,i2 = h(vi2 ‖KPC).

RRs which have expired (as indicated by time-of-expiry field added to each RR in
an RRSet) will be ignored. If the ANSWER section indicate authenticated denial and
the value τ smaller than the current time, the response is ignored. If any of the TMs
A and P and G involved in relaying the RRSets has been revoked by the KDC, the
RRSet is ignored.

4.5.4 Proof of Correctness

Consider a scenario where the verifier C determines that the set of values
{Z, A, vi , MPC,i2} satisfy

MPC,i2 = h(h(A‖h(Z ‖vi))‖KPC). (4.13)

In concluding that the RRSet (with hash vi) in the ANSWER section was indeed
created by the zone authority Z (as indicated in theAUTHORITY section), TCB-DNS
assumes that:

1. The integrity of TMs A and P : more specifically, (i) secrets assigned to TMs are
not privy to other entities, and (ii) the atomic relay function cannot be modified.

7 Just as there is nothing that stops an authority of example.com from signing an RRSet for
www.yahoo.com in DNSSEC, in TCB-DNS a zone authority can authenticate any value. How-
ever, resolvers will not accept RRSet as valid as Zname = h(example.com) is not a parent of
www.yahoo.com.
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2. The keys of the zone authority Z (possibly protected by a TM Z) are not privy to
anyone else.

3. The hash function h() is preimage resistant.

With these assumptions, it is easy to see that:

1. As the hash function h() is preimage resistant, the value MPC,i2 was computed
by an entity with access to the secret KPC (thus the verifier can conclude that the
value MPC,i2 was computed by TM P ).

2. The TM P can compute MPC,i2 only if it was provided values vi1 = h(Z ‖ vi)
and MAP ,i1 , satisfying MAP ,i1 = h(vi1 ‖ KAP ).

3. Only TM A could have computed the value MAP ,i1 provided to P .
4. TM A can compute MAP ,i1 only if it was provided values {vi , MZA,vi

} satisfying
MZA,vi

= h(vi ‖ KZA).
5. As only Z has access to secret KZA, the value vi was created by Z.

Note that to conclude that “value vi was indeed created by Z,” it is not necessary
that the parent zone W supports TCB-DNS. However, it is indeed desirable that all
zones adopt TCB-DNS. If the parent zone also supports TCB-DNS, then the client
can also verify the integrity of the NS RRSet for zone Z, and thereby confirm that
A is indeed a TM associated with an ANS for the delegated zone Z.

4.6 Practical Considerations

TCB-DNS can be implemented with minimal modifications to current DNS servers.
The specific modifications required to support TCB-DNS are as follows:

1. Every RRSet will indicate an absolute time of expiry (say, 32-bit UNIX time)
specified by the zone authority; this value is unrelated to the TTL value8 specified
in each RR.

2. Each NS record will indicate the TCB-DNS identity of the ANS TM (this is
similar to the requirement in DNSCurve where the elliptic-curve public key of
the ANS is indicated in the NS record).

3. DNS queries will indicate an additional field—the TCB-DNS identity of the
querier.

If an NS record for a zone W provided by a parent zone does not indicate the
identity of a TM, the implication is that the indicated ANS for the zone W does not
support TCB-DNS. It is also possible for a zone to employ as its ANSs, some TCB-
DNS aware servers and some plain DNS servers. The NS records corresponding
to TCB-DNS compliant ANSs will indicate the TCB-DNS identity of the ANS.
NS records corresponding to plain DNS servers will not. Thus, a LDNS which
supports TCB-DNS may prefer to query a TCB-DNS compliant ANS for the zone

8 The TTL value specifies how long an RR can be cached by resolvers.
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Fig. 4.3 Top: original
configuration. Bottom:
bump-in-the-wire (BITW)
implementation

W . Similarly, a plain DNS LDNS may choose to direct its query to a plain DNS ANS
for zone Z.

If a TCB-DNS server receives a query which does not indicate the TCB-DNS
identity of the querier, the querier is assumed to be unaware of TCB-DNS. In this
case a plain DNS record is sent as a response. If a TCB-DNS unaware server is
queried by a TCB-DNS compliant resolver the DNS server will simply ignore the
additional field (Fig. 4.3).

TCB-DNS can easily support bump-in-the-wire implementations. Converting a
plain DNS server to TCB-DNS server can be as simple as adding an additional BITW
unit equipped with a DNS-TM. Only the BITW unit will need to have access to the
TCB-DNS supplemental master file. The BITW unit will

1. Verify TCB-DNS authentication appended to incoming DNS packets, strip
authentication, and relay plain DNS packets to the DNS server

2. Append TCB-DNS authentication to outgoing DNS packets.

4.6.1 TCB-DNS vs. DNSSEC

The main reasons for the poor adoption of DNSSEC are

1. The significant increase in the size of zone files (over that of plain-old DNS) due
to the addition of RRSIG, DS, DNSKEY, and NSEC/NSEC3 records

2. Increased bandwidth overhead for DNSSEC responses
3. The susceptibility of DNSSEC to DNS-walk

Due to the substantial overhead, it is especially expensive for large zones (for
example, .com) to adopt DNSSEC.

DNSSEC and TCB-DNS have many significant similarities:

1. Both do not require DNS servers and their operators to be trusted. Both protocols
achieve this requirement by their ability to securely convey a preimage resis-
tant one-way function of RRSets created by zone owners to end-points (clients),
without the need to trust the intermediary servers.

2. In both protocols lifetimes are imposed on the validity of zone keys. Both specify
validity periods for the authentication appended for RRs (which can at most be
till the expiry of the keys used for validation).

3. Both use a strategy for ordering names (or a one-way function of names) to
provide authenticated denial of enclosed names (or hashes of names).
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4. Both protocols do not possess a mechanism for revoking authentication. Conse-
quently both protocols are susceptible to replay attacks—under some conditions.
If the authentication appended for an RRSet is indicated as valid till some time
t , and if for some reason, there arises a need to modify the RRSet before time t ,
then an attacker may be able to replay the old RRSet (with a signature valid till
time t) until time t .

The primary differences between DNSSEC and TCB-DNS include:

1. The cryptographic mechanisms employed - DNSSEC relies on digital signatures,
while TCB-DNS relies on TMs to atomically relay MACs

2. Unlike TCB-DNS, DNSSEC does not provide assurance A3. Some of specific
differences in the mechanism for authenticated denial, and the rationale for the
choices made in TCB-DNS are outlined in Sect. 4.6.2.

3. DNSSEC demands substantially higher overhead compared to TCB-DNS;
Sect. 4.6.3 provides a comparison of the storage bandwidth overheads of DNSSEC
and TCB-DNS.

4. DNSSEC is more susceptible to replay attacks compared to TCB-DNS; Sect. 4.6.4
outlines the reasons for this phenomenon.

Since the discovery of the Kaminsky attack [31] the need to secure DNS has attracted
renewed attention. Some modifications have been proposed to DNSSEC to address
the main reasons for its poor adoption. However, while such efforts reduce some of the
overhead for DNSSEC (and thereby reduce the resistance to adoption of DNSSEC),
they are at the expense of watering-down some of the originally intended assurances
of DNSSEC.

In Sect. 4.6.5 and we discuss such a mechanism, TSIG [32], which can reduce
overhead for clients, but has the unfortunate side-effect of requiring to trust the
LDNSs. In Sect. 4.6.6 we discuss another modification (NSEC3 opt-out) [33] which
is intended to facilitate easier adoption of DNSSEC by large zones like .com. This
feature has an unfortunate side effect of interfering with the ability to provide authen-
ticated denial. More recently, some attacks that exploit the NSEC3 opt-out feature
have also been demonstrated [34].

4.6.2 Authenticated Denial

Consider a scenario where the ANS for the zone example.com is queried for a
nonexistent record “a.b.example.com, A.” A negative response indicates that:

1. The queried name does not exist
2. No wild-card name like *.b.example.com exists
3. No delegation exists for a zone b.example.com
4. No alias (type CNAME) record exists for the name a.b.example.com.
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In NSEC the enclosures are textual strings indicating names. A single NSEC record
[example.com [A,MX,NS], NSEC, cat.example.com] is adequate for the
resolver to verify that all the above conditions are true (all names that have to be
denied fall within the single NSEC enclosure).

In NSEC3 the enclosures are hashes of names. Each NSEC3 enclosure can only
be used to deny a specific name (which hashes to a value inside the encloser). Thus,
proof of enclosure of three or four different name-hashes have to be provided to the
resolver.

If a record of a type different from NS does exist for b.example.com or if a
record with name a.b.example.com does exist (but not the solicited type A),
then the NSEC3 record has to indicate the list of types that do exist.9

Though intended as an improvement over NSEC, in some ways NSEC3 is actually
inferior to NSEC. In response to a query for a nonexistent record, NSEC revealed
two unsolicited names; NSEC3 typically reveals six hashes corresponding to six
unsolicited name-hashes (which are subject to brute-force attacks). Furthermore,
three RRSIG(NSEC3) signatures have to be verified (instead of one RRSIG(NSEC)).

The mechanism in TCB-DNS for authenticated denial is closer to NSEC3 than
NSEC. The difference is that in TCB-DNS the name and type are hashed together (in
NSEC3 only the name is hashed). As with DNSSEC-NSEC3, multiple name-and-
type hashes will have to be denied by the ANS by using different enclosures. At first
sight, it may seem that an NSEC-like approach may be preferable for TCB-DNS.
After all, if only the TM is privy to the enclosures—viz., textual strings (names)
in NSEC and hashes (of names) in NSEC3, there is no need for hashing names.
However, checking NSEC enclosures will require TMs to compare variable length
text-strings, possibly of different formats (for example, ASCII, Unicode), which can
substantially increase the complexity of TMs. With the NSEC3-like approach only
fixed-length hashes need to be compared. Thus,

1. In DNSSEC with NSEC3 the purpose of hashing is to “hide” names (albeit
ineffectively)

2. In TCB-DNS the purpose of hashing the names is not to hide the names; instead,
it is intended to lower the TM complexity.

In TCB-DNS, the reason for hashing name-and-type together is to ensure that (unlike
NSEC3) names do not have to be disclosed if queried for a nonexistent type. In
TCB-DNS the number of encloser pairs equals the number of unique name-and-type
values (which is the same as the number of RRSets). In NSEC3 the number of hashes
correspond to the number of unique names.

The disadvantage of TCB-DNS is a small increase the number of encloser pairs.
However, this is not a problem in practice. The increase in the number of en-
closer pairs would only be an issue for zones which have a very large number of
names, and many types corresponding to each name. However, such large zones

9 Thus, there are two ways in which NSEC3 fails to realize assurance A3: (i) by being susceptible
to simple dictionary attacks; and (ii) by disclosing unsolicited types for a name.
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Table 4.1 Comparison of TCB-DNS and DNSSEC

Overhead in bytes

Bandwidth Cache per RRSet Cache per name Assurances
DNSSEC 2000 200 300 A1, A2
TCB-DNS 100 24 + 60 A1, A2, A3

(like gTLD .com) which have large number of names, have only a single type (type
NS) corresponding to almost every names.

Another difference between NSEC3 and TCB-DNS is the mechanism used for
hashing names. In TCB-DNS the hash is computed as a function of name, type, and
a value τ . The value τ is the time of expiry of the authentication. In DNSSEC-NSEC3
the time of expiry is indicated in the RRSIG record; the name-hash is computed after
including a salt to the name. Furthermore, repeated hashing is employed to derive
the name-hash. The reason for using the salt is to prevent precomputed dictionary
attacks. The purpose of repeated hashing is to increase the computational complex-
ity for dictionary attacks. As dictionary attacks are not possible in TCB-DNS (as
the enclosers are never sent), TCB-DNS does not need to deliberately increase the
computational overhead for generating name-hashes.

4.6.3 Overhead

Table 4.1 provides a quick comparison of TCB-DNS and DNSSEC. The large size
of DNSSEC records is due to the fact that public keys and signatures are large (1000
to 2000 bits). This increases the cache memory requirements for name servers. The
longer RR sizes, and that multiple RRSIGs, DS and DNSKEY records need to be
fetched and verified, results in substantial bandwidth overhead for responses.

For a typical query, the DNSSEC specific bits that accompany the response (over
and above the plain DNS records) can easily be of the order of 2000 bytes. As
described in Sect. 4.3, the additional DNSSEC specific records required to verify
a RRSet include (typically) one RRSIG(RR), 3 DNSKEY records, 3 DS records,
and 3 RRSIG(DS) records. Additionally, verification of an RRset requires the
computational overhead for verification of 4 signatures.

For TCB-DNS the additional TCB-DNS specific bits that accompany the response
(to a typical query) include (i) the TM identity of the ANS and (ii) one MAC in
the ANSWER section, and two identities (TCB-DNS identity of the parent zone, and
identity of anANS TM of the parent zone) and one MAC in the AUTHORITY section.
If the identities of TMs are 10 bytes long and identities of zones are 20 bytes long,
and all MACs are 20 bytes long, the additional bandwidth overhead is of the order
of 70 bytes. If we consider the additional values inserted in NS records the overhead
may be close to 100 bytes (compared to 2000 bytes for DNSSEC).
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For DNSSEC the increase in cache memory size for any RRSet is due to the
addition of one RRSIG for every RRSet (about 200 bytes for every RRSet if 1600-
bit RSA modulus is used). Additionally (for authenticated denial), corresponding
to every unique name in the master file, one NSEC/NSEC3 record along with an
RRSIG(NSEC/NSEC3) record are required: amounting to an overhead of roughly
300 bytes for every unique name in the master file.

In TCB-DNS, corresponding to every RRSet two additional values are required
for regular responses - an index (of the RRSet within the master file) and a MAC. For
authenticated denial, corresponding to every unique name and type (the total number
of which is the same as the number of RRSets) three values are required: two hashes
(enclosers), and a MAC for the enclosure. Assuming 20 byte hashes and MACs, the
overhead is about 60 bytes for every unique name and type.

4.6.4 Replay Attacks

The fact that anybody can obtain verify a digital signature is a powerful feature of
digital signatures. This power can also be abused more easily when no mechanism
exists for revocation. A signed packet with prematurely invalidated contents can be
more easily abused, compared to a packet authenticated using a MAC.

A DNS RRSet signed by the zone authority can be sent by anyone, from any
place, to any place. However, in TCB-DNS, a MAC appended by a zone authority
is intended only for the TM of a specific ANS. This implies that only the entity with
control of the specific ANS (who has access to the TM) can replay such packets. This
substantially reduces the scope of possible replay attacks.

For both protocols, reducing the scope of replay attacks requires choice of short
life-times for signatures (MACs for TCB-DNS). Unfortunately shorter life-times
imply more frequent re-computation of authentication. Due to the substantially
lower computational overhead required for TCB-DNS we can can actually afford
to recompute MACs more frequently.

4.6.5 DNSSEC with TSIG

As originally intended, DNSSEC provides the end-points with the ability to verify
the integrity of RRs. For most clients this is a substantial computational burden.
This is especially true for an ever increasing number of battery operated mobile
devices. Furthermore, to receive the large number of DNSSEC specific records from
the LDNS the clients may have to employ more expensive TCP instead of UDP as
the transport layer.

It is for this reason that in most standard installations of DNSSEC the verification
of RRs is performed only by the LDNS. Stub-resolvers are expected to establish a
secure channel with LDNSs using some light-weight mechanism like TSIG [32], and
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obtain verified RRSets over the secure channel. TSIG is a protocol which leverages
shared symmetric keys (established by other means outside the scope of TSIG) for
establishing secure channels. In DNS, TSIG is used by zone authorities to securely
send master files to ANSs. This same strategy can also be used for establishing a
secure channel between clients and LDNSs.

The implication of using such an approach to lower overhead for clients is that
DNSSEC can no longer claim that end-points do not have to trust the middle-men.
With this approach, clients are required to trust the LDNSs (and consequently their
operators).

More specifically,

1. If a DNSSEC enabled LDNS X is compromised, or if the TSIG secret of X is
privy to an attacker, then X (or the attacker) can disseminate fake RRSets for any
zone; such RRSets will be blindly accepted by all stub-resolvers which query
LDNS X.

2. Similarly, if a DNSCurve enabled LDNS X is compromised, or if the DNSCurve
secret of X is privy to an attacker, then X (or the attacker) can disseminate fake
RRSets to all stub-resolvers that query LDNS X.

3. On the other hand, in the case of TCB-DNS, if a LDNS X (with DNS-TM P )
is compromised, the attacker cannot disseminate fake RRSets. It is only if the
secrets of the TM P become privy to the attacker (and if the TM P has not been
revoked) can the attacker disseminate fake RRSets to the stub-resolvers that query
LDNS X.

4.6.6 NSEC3 Opt-Out

For consummate realization of DNSSEC assurances even top level domains should
adopt DNSSEC. While authenticated denial is an especially important feature for
gTLDs, the overhead for this purpose can be substantial for large zones, and espe-
cially for zones where new names are frequently added. More specifically, zones
with frequent addition/deletion of names become more susceptible to replay attacks.

Consider a scenario where an RRSet corresponding to a new name (or name-hash)
x needs to be added. Before the name is added, a signed encloser (xl , xh) will exist
for x. However, after inserting x the encloser (xl , xh) needs to be revoked. Two new
enclosers should be added instead, (xl , x) and (x, xh). Similarly, consider a scenario
when an existing name y needs to be removed, and two signed enclosers (yl , y)
and (y, yh) currently exist. In this case, both enclosers (yl , y) and (y, yh) need to be
revoked and replaced with a new encloser (yl , yh).

Due to the fact that it is not possible to foresee which of the currently valid
records will need to be revoked due to the addition of an (as yet unknown) name in
the future, it is necessary to choose small enough life-times for all NSEC/NSEC3
enclosers. Obviously, for gTLDs like .com with several tens of millions of names,
this is far from practical.
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In TCB-DNS, due to the low overhead for computing MACs even gTLDs can
afford to recompute enclosers more frequently. However, frequent reauthentication
of NSEC3 records in DNSSEC is expensive for two reasons. The obvious reason
is that the computational overhead for digital signatures is high. The other reason
is that NSEC3 deliberately increases the complexity of hashing names to render
dictionary attacks more time-consuming. Due to the substantial overhead involved
in re-generation of signed NSEC3 records, DNSSEC is forced to employ larger life-
times for NSEC3 signatures and consequently become more susceptible to replay
attacks.

Recently, NSEC3 with an opt-out specification [33] has been proposed to make it
more practical for gTLDs to adopt DNSSEC. Using opt-out NSEC3 can reduce the
instances leading to revocation of RRSIG(NSEC3) RRs, thereby permitting longer
lifetimes for NSEC3 RRSIGs. An NSEC3 record indicating an encloser (xl , xh) with
an unset opt-out bit is proof that no enclosing records exist. However, if the opt-out
bit is set, the implication is that zero or more unsigned delegations may exist, thereby,
diluting assurance A2. Furthermore, some serious security exploits resulting from
using the opt-out approach have been identified recently [34].

4.7 Alternative to IPSec

The atomic relay function can be used for relaying authenticated values or secrets.
Specifically, relaying an authenticated value serves the purpose of broadcasting

an authenticated value to any number of receiving processes.
While it does not make much sense to relay a secret to an unlimited number of

processes10 relaying one-way functions of secrets can serve useful purposes. For
example, consider a scenario where a secret K created by a process is relayed over
a path A, P to C. Specifically, assume that a secret KC provided to C is a one-way
function of the secret K and the path (A, P , C), for example,

KC = h(h(h(K ‖A)‖P )‖C) (4.14)

As the source can easily compute KC if the path is known, and as C has knowledge
of KC , KC can be used as a secret for securing subsequent interactions between the
source and C.

Such a functionality to atomically relay secrets can be added to TCB-DNS
modules to cater for authenticated end-to-end secrets necessary for protocols like
SSL/TLS and IPSec. Any server can relay a secret to a TM associated with any
name server for the zone. A secret K chosen by the server can be provided to a
zone DNS server module A as KA = h(K ‖ A). Similarly, a secret KB = h(K ‖ B)
can be provided to another zone server with module B. Zone server modules can
relay a function of this secret to any module associated with a local DNS server. The

10 After all, what is the use of the secret if access to the secret is not controlled?
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secret KA is relayed by name server module A to a local DNS server module P as
KP =h(KA ‖P ). Similarly name server module B could relay the secret to another
preferred name server Q as KQ =h(KB ‖Q), and so on. A client C may then receive
a value KC =h(KP ‖C) from module P .

This enables clients and servers to opportunistically establish a common secret
KC in the process of making a DNS query. When a client queries the local DNS
server (module) P for a DNS record corresponding to a server, the local DNS server
queries the zone name server module A for the record. The zone name server module
A which already has the secret KA provided by the server can now relay this value
to P as KP , which is relayed by P to client C as KC . The client can now establish
a secure connection with the server. By merely indicating the path (A, P , C) to the
server, the client enables the server to compute KC which can be used as the shared
secret for an end-to-end security protocol like SSL or IPSec.

4.7.1 IPSec Operation

IPSec [35] is a family of end-to-end security protocols between two hosts identified
by the source and destination IP address in an IP packet. As IPSec is transparent to the
layers above, even IPSec unaware applications can take advantage of the assurances
provided by IPSec.

When a host (with IP address) A sends a packet to a host B, IPSec component of
A first verifies if a security association (SA) for B exists in A’s SA database (SAD).
If not, the SA is established by exchanging ISAKMP (Internet security association
key management protocol) packets [36], with IKE (Internet key exchange) [37]
payloads. IKE employs the Oakley key determination protocol [38] which often
relies on a variation of Diffie-Helman key establishment protocol for establishment
of a shared secret between the two end-points.

In IPSec parlance, an “IPSec SA” is a function of the shared secret, and various
security parameters related to the process of sending IP packets from A to B. The
security parameters include the specification of a specific IPSEc “mode” to be used,
cryptographic mechanisms to be used, and the IP address A of the sender. All such
parameters are captured as a security parameter index (SPI), which is a one-way
function of the parameters.

IPSec SAs are one-way associations. In other words, an SA established between
A and B for packets from A to B can not be used for packets from B to A (for which
a new SA with a different SPI will have to be generated).

IPSec can provide authentication-only service using authentication headers (AH)
or privacy-only service using encapsulating security payload (ESP) headers, or both
privacy and authentication using ESP header with authentication. IPSec provides
two modes of operations. In the transport mode AH or ESP headers are inserted in
IP packets between the IP header and the transport header. In the tunnel mode, IPSec
packets (with a IP header followed by an IPSec header) can carry entire plain IP
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packets as payloads. In fact even an IPSec packet can be a payload of another IPSec
packet. Any number of such IPSec nesting may exist.

The specific modes and services to be employ are determined by policies specified
in a security policy database (SPD). Specifically, before A can send an IP packet
to B, depending on the IP destination, and possibly transport protocol and port, the
SPD may specify an appropriate SPI to be used.

An SA is in the SAD is uniquely identified by the SPI, the IP of the destination, and
security protocol (AH or ESP) identifier. Thus, using the SPI information obtained
from the SPD, the corresponding SA can be extracted from the SAD.

4.7.2 IPSec Issues

The immense flexibility of IPSec is a two-edged sword. While enabling the use of
IPSec in a wide variety of deployment scenarios, the complexity of IPSec options
can render deployment of IPSec a difficult task. This is perhaps the main reason for
luke-warm adoption of IPSec.

IPSec was also designed originally to be an integral part of IPv6. During the
design of IPSEc it was assumed that network address translators (NAT) are a short
lived work-around to address the limitation on the number of IPv4 addresses (232

total addresses). Unfortunately, IPv6 adoption took off very slowly, and NATs are
still around.

IPSec, by design, cannot be used by hosts behind NATs [39], as the security
parameter index in the IPSec header will be unverifiable for the receiver due to two
reasons:

1. Change to the source IP address field introduced by the NAT
2. Changes to transport port numbers (the integrity of which is protected by IPSec)

by NATs

Currently the only alternative is to establish an IPSec tunnel between the host and
the NAT and another tunnel between the NAT and the destination, through which a
plain IP packet can be tunneled. Such an approach, obviously can not be considered
as true end-to-end security.

Yet another reason that has prevented global use of IPSec is that establishment
of shared keys using Diffie–Helman can be expensive, especially considering that
servers that will need to establish two SAs for each client.

4.7.3 IPSec Alternative Leveraging TCB-DNS

In the alternative to IPSec, which we shall term as ipsec, A-type records created by
the zone owner indicate an additional field, a TCB-DNS identity corresponding to the
host. A host with TCB-DNS identity X is authorized to receive a secret corresponding
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Table 4.2 Port mapping in the receiver in TCB-DNS based alternative to IPSec

S-IP TCB-DNS ID S-Port Actual protocol Actual source port Assigned port

R R1
T 42000 UDP u1 u1

R R2
T 42000 UDP u2 u2

R R3
T 42000 TCP t1 t1

R R4
T 42000 TCP t1 t ′2 �= t1

to identity X from TCB-DNS key distribution centers, and public values necessary
to establish a shared secret with each of the name servers for the zone.

The host with identity X can choose a random secret K and supply the secret to
an ANS module A. As outlined earlier in this section, this enables the host and the
client to establish a shared secret in the process of making a DNS query. Thus, for
ipsec, a DNS query is also simultaneously serves as the ISAKMP/IKE protocol
for establishing ipsec SAs.

Theipsec layer will receive packets from higher layers (identified by IP protocol
numbers) like TCP, UDP, ICMP, IGMP etc. These packets will be encapsulated by
an ipsec header. The ipsec header will indicate the TCB-DNS address of the
client and server hosts, and the TCB-DNS path (the identities of an ANS module and
a LDNS module) through which the server host received the secret.

The ipsec packet is prepended with a dummy transport header (say, UDP)
indicating a special port number (for example, an as yet unassigned number like
799). Thus, the lower layer, viz., the IP layer will simply see ipsec packets as
UDP packets with sender/destination port numbers 799/799. The main reasons for
introducing a dummy UDP layer are:

1. To permit seamless introduction of ipsec (no modifications to the IP layer), and
2. To facilitate clients behind NATs to employ ipsec

In an ipsec enabled host the ipsec layer is seen by the IP layer as a process
listening at UDP port 799.

For clients behind a NAT, the NAT may replace the source port number (UDP,
port 799) with another assigned port number (say, 42000).

Note that from the perspective of the NAT, all ipsec packets from a host with
a private address R will correspond to a single entry in the NAT table. Consider a
scenario where a host with a private IP R and TCB-DNS identity RT has several
active TCP connections with source ports t1 · · · tn and multiple UDP “connections”
with source ports u1 · · · um. From the perspective of the NAT all such connections
will correspond to a single entry in the NAT (mapping source UDP port 799 and
source IP R to assigned port 42000).

When a host receives a packet from a source behind a NAT, if the source port is not
799, the receiver can deduce that the client is behind a NAT. There may be multiple
simultaneous connections with R. The TCB-DNS identity in the ipsec header will
be different for different hosts behind the same NAT. Also note that that the actual
port number in the inner transport packet will not be modified by the NAT. Thus, it is
possible that two inner transport packets with the same source port and protocol, to
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originate from different computers (different TCB-DNS identities) behind the same
NAT with IP address R.

While the ipsec layer can readily differentiate the two connections using the
TCB-DNS identities the higher layers can not. For this purpose the ipsec layer
may need to modify the inner source port address and maintain a port mapping table
as shown in Table 4.2.

Table 4.2 depicts a scenario where the payload of ipsec packets from two differ-
ent hosts R3

T and R4
T behind the same NAT (IP address R) carry transport payloads

with the same protocol (TCP) and port number (t1). In order for the TCP layer to
differentiate between the two connections (both TCP, same port, and same source
address R) the inner port number will need to be mapped to a value t ′2 �= t1. When
the response transport packet is received the ipsec layer can map the port number
back to t1. From the table it can also determine that for packets to R the source port
in the outer (dummy) UDP header should be set to 42000.

More specifically, the ipsec layer will need to modify the port number only if
the source address R, and the protocol (TCP), and port number t1, are identical for
packets with different TCB-DNS identities.



Chapter 5
Scalable Key Distribution Schemes

While schemes like MLS and IT may be sufficient for most practical networks, the
need for storage proportional to the current network size can cramp their utility
in some application scenarios. In several emerging application scenarios, billions,
or possibly even trillions of resource limited devices may be deployed, where any
device may be required to compute a pairwise secret with any other device. Thus,
key distribution schemes with no limitation on scalability are called for.

Scalable key distribution schemes can be broadly classified into certificate-based
and identity-based schemes.

5.1 Certificates Based Schemes

In certificates-based schemes each entity is associated with an identity, a public key,
and a private key. Each entity is free to choose their own private key and compute
the corresponding public key. An entity with identity A can choose a private key RA

and derive (compute) a public key UA.
Unfortunately, the public key UA provides no information about the identity A.

Consequently, a trusted third party—in the form of a certificate authority—has to
securely specify a binding < A, UA > between the identity and the public key of
every entity. This is achieved through a certificate issued by the CA. For very large
scale networks the CAs themselves may be organized in a hierarchical fashion. In
such scenarios, certificate [40] will be required to facilitate validation of public keys.

Certificate based schemes typically rely on asymmetric encryption and signature
schemes like RSA, El Gamal (and variants like DSA), and elliptic curve schemes,
used in conjunction with a hierarchical organization of CAs in the form of a public
key infrastructure (PKI). Such schemes facilitate any two entities with signed public
keys to exchange certificate chains to convince each other of the validity of their
respective public keys. The verified public key of an entity A can then be used to
send a private value to A.

63M. Ramkumar, Symmetric Cryptographic Protocols, DOI 10.1007/978-3-319-07584-6_5,
© Springer International Publishing Switzerland 2014
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5.2 Identity Based Schemes

For identity (ID) based schemes the identity of an entity itself doubles as the public
key, thus obviating the very need for certificates. In such schemes, a key distribution
center (KDC) chooses public parameters of the system and one or more master
secrets. The KDC can then compute the private key(s) corresponding to any public
key (the identity). The private keys for an entity with identity A are thus assigned
by the KDC to the entity A.

For convenience, the identity of an entity may be chosen as a one-way function of
a descriptive real-life identity. For example, Alice, with a real-life identity described
by string SA = “Alice B Cryptographer, AnyTown, USA” can be assigned an identity
A = h(SA).

Identity-based public key schemes for encryption (IBE) and signatures (IBS),
most of which take advantage of pairings in special elliptic curve groups, have
attracted substantial attention recently [41–43]. Identity-based schemes are increas-
ingly seen as preferable over certificates based schemes for large scale networks, and
especially for many emerging applications. In typical client–server interactions in
existing networks, the client and server exchange public key certificates for mutual
authentication, at the end of which a shared secret is established. This secret can
be used for authentication and encryption of a large number of packets exchanged
between them subsequently. Thus, the overhead (exchange of certificates or certifi-
cate chains and their verification) incurred for establishing a shared secret can be
amortized for securing large amounts of data exchanged subsequently between the
server and a client.

In several emerging applications however, participants engage in relatively brief
interactions with a large number of other participants. Thus, the overhead for ex-
changing certificates for each interaction may be prohibitive, especially for large
scale networks where chains of certificates need to be exchanged and verified.
With identity-based schemes two participants A and B can independently and
instantaneously (without any handshakes) compute a shared secret KAB .

5.2.1 Identity-Based Key Predistribution Schemes

Identity-based key predistribution schemes (KPS) consist of a KDC and nodes (par-
ticipants that need to establish shared secrets) with unique identities drawn from an
“identity space” I.

The KDC chooses a set of P master secrets S; each node is provided with a set
of k ≤ P secrets. The set of k secrets SA assigned to a node with identity A ∈ I is
determined by a public function F () which takes two inputs—the identity A, and the
set of P master secrets S.
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Two nodes A and B (with secrets SA and SB respectively) can compute a common
secret KAB using another public function G(). In other words,

SA = F (S, A)
SB = F (S, B)

}
andKAB = G(SA, B) = G(SB , A) (5.1)

Apart from A and B who can legitimately compute KAB using their respective secrets
(SA and SB respectively), an attacker who has access to secrets of many (say, v) nodes
{O1 · · · Ov} may also be able to illegitimately compute KAB . An n-secure KPS can
resist a collusion of n attackers pooling all their secrets together. In other words, for
a n-secure KPS, an attacker who has access to keys of n nodes cannot determine any
illegitimate1 shared secret.

Most scalable KPSs require every node to possess a key chain with k = O(n)
keys to realize n-security. Note that with O(n) limitation on storage

1. Nonscalable KDSs (like the basic KDS and MLS) can only support networks of
size N = O(n).

2. Scalable KPSs can however, support any network size N ≤ |I|—as every node
requires a unique identity and the number of nodes is limited only by the size of
the identity space (for example, N = 2128 if 128-bit identities are used)—but can
only tolerate a collusion of up to n entities.

5.2.2 Blom’s Schemes

Blom et. al. [44] proposed the first KPS in the literature. In the n-secure Blom’s
polynomial scheme, the KDC chooses P = (

k

2

)
secrets from Zq = {0, 1, . . . , q − 1},

where n =  k−1
2 � and q ≥ N is a prime.

The P = (
k

2

)
secrets are interpreted as the coefficients rij of a symmetric

polynomial f (x, y) of order k − 1,

f (x, y) =
k−1∑

i=0

k−1∑

j=0

rij x
iyj mod q. (5.2)

For a symmetric polynomial, as rij = rji , f (x, y) = f (y, x).
Every node is assigned a unique identity—as a number chosen from Zq =

{0, 1, . . . , q − 1} (or I = Zq). A node A receives the k coefficients a0 · · · ak−1

of the polynomial

gA(x) = f (x, A) =
k−1∑

i=0

aix
i mod q. (5.3)

1 The attacker can obviously determine all shared secrets that each of the n compromised nodes
can legitimately compute.
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as its k secrets. Similarly, B receives the k coefficient of the polynomial gB(x) =
f (x, B).

Now, A and B can compute

KAB = KBA = f (A, B) = f (B, A) = gA(B) = gB(A) (5.4)

independently. More specifically, node A with secrets a0 · · · ak−1 and node B with
secrets b0 · · · bk−1 can readily compute

KAB =
k−1∑

i=0

aiB
imod q.

=
k−1∑

i=0

biA
imod q. (5.5)

With access to k secrets each from more than n =  k−1
2 � nodes, an attacker can

construct a system of P independent simultaneous equations to solve for all P

secrets chosen by the KDC. As long as the attacker can only construct less than P

simultaneous equations the attacker learns nothing about the P KDC secrets, and
consequently the secrets assigned to uncompromised nodes.

5.2.2.1 Blom’s SKGS

In the symmetric key generation system (SKGS) scheme based on MDS (maximum
distance separation) codes, also proposed by Blom [45], a n-secure scheme requires
k = n + 1 secrets to be assigned to each entity.

SKGS employs a public primitive element (or generator2) α ∈ Zp. Corresponding
to any i ∈ Zp let us define vectors

gi = {gi
0, gi

1, . . . gi
n} where gi

j = α(i−1)(j−1) (5.6)

The KDC chooses a (n + 1) × (n + 1) symmetric matrix D with
(
n+1

2

)
independent

values chosen randomly from Zq . The
(
P=n+1

2

)
values are the KDC secrets. Node A

is issued k = n + 1 values (secrets) computed as dA = DgA. A and B (with secrets
dA and dB respectively) can now calculate

KAB = (dA)TgB = (dB)TgA.

=
n+1∑

j=1

dA
j α(j−1)(B−1) =

n+1∑

j=1

dB
j α(j−1)(A−1) (5.7)

An n-secure SKGS is unconditionally secure as long as n or less entities pool their
secrets together. It is completely compromised if more than n entities do so.

2 More generally, for any N the (n+1)×N matrix G = [g0 g1 · · · gN] is referred to as the maximum
distance separation (MDS) generator matrix.
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5.3 Probabilistic KPSs (PKPS)

More generally, KPSs can be regarded as (n, p)-secure, where an attacker, by pooling
secrets assigned to n entities can illegitimately compute a pairwise secret with a
probability p. In other words, such attacker can only expose a fraction p of all
illegitimate pairwise secrets by utilizing secrets pooled from n compromised nodes.

A (n = 1000, p = 2−64)-secure probabilistic KPS offers a guarantee that an
attacker who has access to all secrets of n = 1000 nodes can only compute one in
264 illegitimate pairwise secrets (involving nodes that have not been compromised).
Note that as long as p is low enough (say, 2−64) it is computationally infeasible for
an attacker to even identify which pairwise secrets can be compromised by using the
pool of secrets exposed from n entities.

Deterministic n-secure KPSs (like Blom’s SKGS) can be seen as special cases of
(n, p)-secure KPSs where p takes only binary values (0 or 1). While deterministic
KPSs fail catastrophically (p(n′) = 0 for n′ ≤ n and p(n′) = 1 for n′ > n), for
(n, p)-secure probabilistic KPSs p increases gracefully with n.

5.3.1 Allocation of Subsets

Almost every PKPS in the literature is based on the idea of allocation of a subset of
keys to every entity, chosen form a larger pool of keys. Two nodes A and B use all
the common secrets to derive a pairwise secret KAB .

Early subset allocation schemes [46–47] relied on deterministic strategies for
allocation of subsets of keys to every node. The matrix scheme [46] was far from
efficient in terms of number of stored keys needed in each node (for a network size of
N each node needs O(n

√
N ) keys in order to be n-secure). Many other strategies for

key allocations were proposed subsequently, [47–48], for which k = O(n log N )—
most of them were motivated by Erdos et al.’s seminal work on intersections of
subsets [49].

However, the complexity of the deterministic key allocation algorithm makes
it challenging for two nodes to discover which secrets they actually share. Conse-
quently, nodes had to explicitly exchange information regarding the indexes of the
keys they possess to identify common secrets. Such schemes cannot be considered
as identity based as the identity of nodes are not used for deriving the pairwise secret.
Furthermore such schemes can cater only for privacy—not authentication.

Dyer et al. [11] was the first to point out the simplicity and effectiveness of random
subset allocations. Early in the first decade of this millennium, interest in low com-
plexity key distribution strategies were rekindled by the emergence of new paradigms
like ad hoc sensor networks. While several approaches [50–55] based on random
subset allocation were proposed, all of them ignored the need for authentication.
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5.3.2 Random Preloaded Subsets

The random preloaded subsets (RPS) scheme [56] is an identity based extension of
Dyer’s scheme. The main difference is that the indexes of secrets assigned to a node
are tied to the identity of the node, through a simple one-way function.

In the random preloaded subsets (RPS) scheme, the KDC chooses:

1. An indexed set of P secrets [K1 · · · KP ]
2. A one-way function F ()
3. A key-ring size k < P ; let a = k/P < 1

For a node assigned identity A ∈ I, the key allocation function outputs of the indexes
of the keys to be assigned to A.

F (A) = {A1 · · · Ak}, 1 ≤ Ai ≤ P. (5.8)

For example, a random permutation of the numbers 1 · · · P could be generated using
the identity A as the seed for F (), and the first k numbers may be chosen as values
A1 · · · Ak .

Node A is now assigned a set of k secrets

SA = {KA1 · · · KAk
}. (5.9)

Two nodes A and B can execute F (A) ∩ F (B) to discover the indexes of common
keys. If k/P = a, two nodes will share (on an average) m = ak = a2P keys. Let the
m common indexes be s1 · · · sm, 1 ≤ si ≤ P∀i. The corresponding shared secrets
are then Ks1 · · · Ksm . All shared secrets are XORed together to compute KAB as

KAB = Ks1 ⊕ · · · ⊕ Ksm. (5.10)

As an example, let P = 8 and k = 4. Let K1 · · · K8 be the keys chosen by the KDC.
Let

F (A) = {1, 4, 6, 7} and

F (B) = {1, 5, 6, 8}. (5.11)

The shared keys are then K1 and K6, and

KAB = K1 ⊕ K6. (5.12)

5.3.3 Hash-Chain KPS

In [16] Leighton and Micali also proposed a scalable key predistribution scheme
(in addition to the alternative to Kerberos that was discussed in Sect. 3.1.2). In the
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hash-chain KPS (which was referred to simply as Scheme III in [16]) the KDC
chooses:

1. An indexed set of P secrets [K1 · · · KP ]
2. A value L—the hash chain length
3. A key allocation function f (), which generates uniformly randomly distributed

numbers between 1 and L

Corresponding to an identity A

f (A) = {a1 · · · aP }, 0 ≤ ai ≤ L − 1 (5.13)

determines the hash depth of the k = P secrets to be assigned to node A, viz

SA = {Ka1
1 · · · KaP

P } (5.14)

where

K
j

i = hj (Ki) (5.15)

is the result of hashing Ki repeatedly, j times.
Two nodes A and B with secrets SA = {Ka1

1 · · · KaP

P } and SB = {Kb1
1 · · · KbP

P }
can compute P common secrets

SAB = {Kx1
1 · · · KxP

P } where xi = max(ai , bi). (5.16)

For example, corresponding to an index 23, let a23 = 4 and b23 = 6. Node A has
access to K4

23, and node B has access to K9
23. Node A may now hash K4

23 five times
(5 = 9−4) to compute a common secret K9

23. All P common secrets are then XORed
together to yield the shared key KAB as

KAB = K
x1
1 ⊕ · · · ⊕ K

xP

P . (5.17)

As a trivial example, let P = 8 and L = 4. Let K1 · · · K8 be the keys chosen by the
KDC. Let

f (A) = {4, 2, 1, 3, 3, 4, 2, 1} and

f (B) = {3, 4, 2, 3, 2, 2, 1, 4}. (5.18)

The keys assigned to A and B are

SA = {K4
1 , K2

2 , K1
3 , K3

4 , K3
5 , K4

6 , K2
7 , K1

8 } and

SA = {K3
1 , K4

2 , K2
3 , K3

4 , K2
5 , K2

6 , K1
7 , K4

8 } (5.19)

and

KAB = K4
1 ⊕ K4

2 ⊕ K2
3 ⊕ K3

4 ⊕ K3
5 ⊕ K4

6 ⊕ K2
7 ⊕ K4

8 . (5.20)
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5.3.4 Hashed Random Preloaded Subsets (HARPS)

Hashed random preloaded subsets [57] is a combination of RPS and the hash-chain
KPS. In HARPS, the KDC chooses:

1. An indexed set of P secrets [K1 · · · KP ]
2. Hash-chain length L

3. Key-ring size k = aP , a < 1
4. A key allocation function G(), which generates a set of k indexes between 1 and

P , and corresponding to each of the k indexes, a uniformly randomly distributed
number between 1 and L.

Corresponding to an identity A

G(A) = {(A1, a1) · · · (Ak , ak)}, 1 ≤ ai ≤ L, 1 ≤ Ai ≤ P (5.21)

determines the k secrets to be assigned to node A, viz

SA = {Ka1
A1

· · · Kak

Ak
} (5.22)

where K
j

i = hj (Ki) is obtained by repeatedly hashing Ki , j times.
Two nodes A and B can determine (on an average) m = a2P = ak common

indexes, say s1 · · · sm where 1 ≤ si ≤ P . Corresponding to each shared index the
two nodes may however possess a key at different hash depths. Let the hash depths
of the secrets assigned to A and B corresponding to a shared index si be dai

and dbi

respectively, and let

d ′
i = max(dai

, dbi
), 1 ≤ i ≤ m. (5.23)

The m common keys between A and B are then

K
d ′

1
s1 · · · Kd ′

m
sm , (5.24)

and the shared secret KAB is computed as

KAB = K
d ′

1
s1 ⊕ · · · ⊕ K

d ′
m

sm . (5.25)

As an example, let P = 8, k = 4 and L = 4. Let K1 · · · K8 be the keys chosen by
the KDC. Let

G(A) = {(1, 4), (4, 2), (6, 1), (7, 3)} and

G(B) = {(1, 3), (5, 1), (6, 3), (8, 2)}. (5.26)

The keys assigned to A and B are

SA = {K4
1 , K2

4 , K1
6 , K3

7 } and

SA = {K3
1 , K1

5 , K3
6 , K2

8 } (5.27)
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and using the two shared indexes 1 and 6, A and B compute a common secret

KAB = K4
1 ⊕ K3

6 . (5.28)

HARPS is a generalization of both RPS and hash chain KPS. Specifically, RPS is
HARPS with L = 1 as all keys have the same hash depth. The hash chain KPS is
HARPS with k = P (or a = 1).

5.4 (n, p)-Security of HARPS

An analysis of HARPS [57] involves estimation of the probability p that an attacker
who has access to all keys of n nodes can discover an illegitimate pair-wise secret.
RPS can be seen as a special case of HARPS with L = 1 (as all nodes have keys
at the same hash-depth). The hash-chain scheme can be seen as a special case of
HARPS with a = k/P = 1.

Consider P round game involving n + 2 participants—2 participants intending
to compute a pairwise secret, and n nodes in the attacker coalition attempting to
illegitimately determine the pairwise secret. In the i th round all n + 2 nodes choose
the key Ki from the key pool with probability a (or, do not choose the index Ki

with probability 1 − a). In each round (corresponding to each of P root keys), the
two nodes arrive at an elementary share of their shared secret if both pick the secret
Ki—which occurs with a probability a2. If both nodes do pick the key, they also pick
a random hash depth between 1 and L. Let the maximum of the two hash depths be
d. If both nodes happen to choose Ki , the elementary shared secret corresponding
to the index i is Kd

i .
This elementary share is “safe” if the attacker coalition cannot determine the

secret Kd
i . In other words, this elementary share is safe if none of the n attackers

choose the index Ki with hash depth less than or equal to d. This may be because

1. None of the attackers chose the key Ki , or
2. Some (say u ≤ n) of the attackers choose the key, but all of them chose a hash

depth greater than d .

The two nodes win the round i if

1. Both nodes pick Ki.

2. The attacker coalition is not able to determine the key Kd
i .

In order to win the match, the two nodes have to win only one of the P rounds. Note
that even if they win one round, they arrive at a shared secret which is not available to
the attacker coalition. In other words, the attacker coalition has to win all P rounds.

We shall denote by ε, the probability that the two nodes win any round i. The
probability p(n) that the attacker coalition wins all P rounds is then

p(n) = (1 − ε)P . (5.29)
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5.4.1 Probability of Winning a Round

The probability that two nodes pick the ith key is a2. In other words, a2 is the
probability that the two nodes arrive at an elementary share. Out of the n nodes in
the attacker’s coalition, zero or more nodes may also pick the ith key.

Let us consider a scenario where u of the n attacker nodes pick the ith key. The
probability that exactly u (0 ≤ u ≤ n) of n nodes pick the ith key is the binomial
probability Ba(n, u), where

Ba(n, u) =
(

n

u

)
au(1 − a)n−u. (5.30)

Let α1, α2 be the hash depths corresponding to the ith root key in the two nodes, and
let α = max(α1, α2). Let β1 · · · βu be the corresponding hash depths of the u keys, in
the attacker’s nodes. As long as β = min(β1 · · · βu) > α = max(α1, α2), the attacker
coalition cannot discover the elementary shared secret.

The probability Pr{β > α} is

Q(L, u) =
L∑

i=1

2i − 1

L2

(
L − i

L

)u

, (5.31)

where 1 ≤ u ≤ n. Thus, the probability that the elementary share is safe is

ε =
n∑

u=0

a2Ba(n, u)Q(L, u)

=
n∑

u=0

(
n

u

)
au+2(1 − a)n−u

L∑

i=1

2i − 1

L2

(
L − i

L

)u

. (5.32)

The probability that the attacker wins all P rounds is then

p(n) = (1 − ε)P =
{

(1 − ε)
1
a

}k

. (5.33)

For the special cases of RPS (L = 1) and LM (a = 1), the expressions for ε are
respectively

ε =
{

εR = a2Ba(n, 0) = a2(1 − a)n L = 0, a < 1
εL = Q(L, n) a = 1, L > 0

. (5.34)

Note that the expression for ε for HARPS has n + 1 terms corresponding to u =
0 · · · n. For LM (with a = 1), only the term corresponding to u = n is non-zero. For
RPS (with L = 1) only the term corresponding to u = 0 is non-zero. For the same
value of a obviously εR ≤ ε, indicating that the probability that each elemental share
is safe (or the probability that the two nodes win any round) is higher for HARPS.
Alternately, for the same P , k, p(n) for HARPS (L ≥ 0) is less, or at worst equal, to
that of RPS (with L = 1). As L increases, p(n) decreases.
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5.4.2 Optimization of Parameters

For all three PKPSs the KDC can generate P secrets by choosing a master secret S

and realizing any secret as Ki = h(S ‖ i). Thus, the total number of secrets P is not
an issue. However, as each node needs to store k secrets, it is desirable to minimize k.

Let us assume that it is desired that p(n) < p∗ for all n ≤ n∗. For the hash chain
KPS,3 with P = k there is no scope for optimization. For RPS, for a desired p(n),
the KDC can choose an optimal value of a = k/P that minimizes k. For HARPS,
the optimal value of a will also be a function of the maximum hash depth L.

For RPS, with pR(n) = (1−a2(1−a)n)k/a , k is minimized when a = 1/(n∗ +1).
Corresponding to this optimal (k-minimizing) choice of a,

k = n∗e log (1/p∗)

P = n∗(n∗ + 1)e log (1/p∗) and

m = k2

P
≈ e log (1/p∗) (5.35)

where m is the average number of secrets shared between any two nodes.
For HARPS, it is far from trivial to derive a simple closed form expression relating

optimal choice of parameters k and P to a desired p(n∗) ≤ p∗. However, from
numerical computations using Eqs. (5.32) and (5.33) we can readily compute the
optimal value of k/P for different values of L.

In general, for HARPS

a = ca/n
∗

k = ckn
∗ log (1/p∗)

P = cP (n∗)2 log (1/p∗)and

m = cm log (1/p∗) (5.36)

where the constants ca , ck , cP and cm depend on L. We already know that for RPS
(or HARPS with L = 1), we have ca ≈ 1, and ck ≈ cP ≈ cm = e ≈ 2.72.

For increasing L it can be seen that

1. ck reduces from its maximum value of e for L = 1; in other words HARPS
requires a lower number of keys to be stored by every node to achieve a desired
(n∗, p∗)-secure scheme.

2. cP also reduces—at a faster rate than ck .
3. cm increases marginally; in other words, even while the reduction in cP is faster

than the reduction in ck , it does not reduce fast enough to prevent increase of
c2
k/cP .

3 The hash chain KPS by itself is inefficient as it requires more that k = O(n2) keys to be assigned
to each node. We shall not discuss this KPS further.



74 5 Scalable Key Distribution Schemes

Fig. 5.1 Variation of HARPS
parameters with maximum
hash depth L
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The four values are plotted as a function of L in Fig. 5.1. For ready reference, they
are also tabulated in Table 5.1.

Thus, for a desired p(n) ≤ p∗, if we choose L = 64, the number of keys to be
stored by each node reduces by a factor of e/1.7 ≈ 1.6 compared to RPS. Note that
the advantage of choosing even larger L rapidly diminishes as L increases. Given
that larger L will increase the computational overhead4 for computing the shared
secret, it does not seem productive to increase L beyond (for example) 64.

Finally, as a concrete example, if we desire p(n) ≤ 10−20∀n ≤ 1000 the optimal
choice of parameters for RPS are P = 125166005 and k = 125041. For HARPS
with L = 64, P = 44405682 and k = 78154. Figure 5.2 depicts the performance of
HARPS for various values of L—L = 1 (RPS) and L = 2, 4, 8, 16, 32, 64 and 128.
All eight schemes are optimized to realize p(n) ≤ 10−20∀n ≤ 1000.

As expected the performance curves of all schemes are close together for n close
to the design value n∗ = 1000. Note that unlike deterministic schemes which fail
catastrophically for n greater than the design value, (n, p)-secure schemes deteriorate
gracefully. Notwithstanding the fact that HARPS requires a smaller number of keys
per node, the performance of HARPS the performance of HARPS also deteriorates
more gracefully than RPS. The plot on the right in Fig. 5.2 illustrates the performance
of RPS and HARPS for values of n substantially higher than the design value of
n∗ = 1000.

4 For each of the k2/P shared secrets one node has to perform L/3 hashes on an average to arrive
at a key with the same hash depth as the other node.
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Table 5.1 Optimal values of a = k/P and k chosen to minimize k to realize a (n∗, p∗)-secure
HARPS for various values of L. The corresponding values of key pool size P and the average
number of shared secrets m are also shown

L a k P m = k2/P

1 1
n∗ 2.718n∗ log (1/p∗) 2.718n∗2 log (1/p∗) 2.718 log (1/p∗)

2 1.236
n∗ 2.294n∗ log (1/p∗) 1.856n∗2 log (1/p∗) 2.836 log (1/p∗)

4 1.437
n∗ 2.015n∗ log (1/p∗) 1.402n∗2 log (1/p∗) 2.896 log (1/p∗)

8 1.585
n∗ 1.854n∗ log (1/p∗) 1.17n∗2 log (1/p∗) 2.938 log (1/p∗)

16 1.679
n∗ 1.767n∗ log (1/p∗) 1.052n∗2 log (1/p∗) 2.967 log (1/p∗)

32 1.733
n∗ 1.721n∗ log (1/p∗) 0.994n∗2 log (1/p∗) 2.984 log (1/p∗)

64 1.762
n∗ 1.699n∗ log (1/p∗) 0.964n∗2 log (1/p∗) 2.994 log (1/p∗)

128 1.777
n∗ 1.687n∗ log (1/p∗) 0.950n∗2 log (1/p∗) 2.998 log (1/p∗)

256 1.785
n∗ 1.681n∗ log (1/p∗) 0.942n∗2 log (1/p∗) 3.001 log (1/p∗)

512 1.789
n∗ 1.679n∗ log (1/p∗) 0.938n∗2 log (1/p∗) 3.003 log (1/p∗)

1024 1.791
n∗ 1.677n∗ log (1/p∗) 0.936n∗2 log (1/p∗) 3.004 log (1/p∗)
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Fig. 5.2 Comparison of HARPS and RPS designed to meet the same specification, viz., p(n) ≤
10−20∀n ≤ 1000. Even while HARPS requires a smaller number of stored keys per node, p(n) for
HARPS increases in a slower manner as n increases

5.5 Deterministic Versus Probabilistic KPSs

Renewed interest in KPSs since the beginning of this millennium stems from the
emergence new application paradigms involving resource limited devices that may
be deployed in very large numbers. In emerging ubiquitous computing applications
[58], billions of unattended devices may need to interact among themselves, and
co-operatively perform tasks to realize synergistic benefits.

Inexpensive resource limited sensors deployed in an unattended manner may sense
various environmental conditions like pressure, humidity, temperature, pollen count,
toxicity, etc., and relay such measurements to locations where such information is
required. Devices with limited wireless transmission range may themselves form
multi-hop ad hoc networks to relay data packets, thereby making it possible to quickly
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deploy vital communication infrastructure even in remote locations. Sensors are also
expected to play a large role in reducing the cost of health-care in the future, where
inexpensive sensors may continuously monitor the functioning of crucial organs and
provide early warnings of abnormalities.

Not withstanding the fact that the devices are intended to be inexpensive, and re-
source limited (as most devices may be battery powered, and their useful lifetime may
be limited by their battery life), it is important to assure the integrity of data emanating
from or relayed by such devices. Unless there is some confidence in the integrity of
reports from sensors—regarding the state of vital organs, or structural weaknesses
in bridges, or the presence of dangerous contaminants in the atmosphere/potable
water—the very utility of such emerging applications becomes questionable.

One essential prerequisite for emerging applications is thus an effective crypto-
graphic strategy for protecting the integrity of data in transit. Useful cryptographic
strategies for such applications are unfortunately constrained by several factors.

1. Ultimately, the strength of any cryptographic mechanism is limited by the extent
of protection offered to secrets of the device. Thus, notwithstanding their low
cost, unattended devices require well protected storage for secrets. Without such
protection mechanisms, attackers can readily gain access to the secrets of a device
to impersonate the device, to send deliberately misleading information.

2. For any device X, it may not be possible to identify a priori, a restricted set of
specific other devices with which the deviceX may need to interact. Consequently,
any device should have the capability to establish a shared secret with every
(possibly billions or even trillions) device.

3. Devices in remote locations may not have access to a trusted server for mediation.
Consequently, schemes that support ad hoc establishment of shared secrets are
necessary.

While certificates based asymmetric cryptographic schemes can easily cater for ad
hoc establishment of secrets, they may be prohibitively expensive for several devices
that are deliberately resource limited to conserve battery life. In large-scale networks
requiring ad hoc establishment of shared secrets where proactive mechanisms to pro-
tect secrets are mandatory in any case, KPSs do merit consideration as an alternative
to conventional approaches based on asymmetric cryptography. This is especially
true if the proactive strategies to protect secrets can ensure that it is impractical for
attackers to compromise secrets from a large number of devices.

An ideal KPS should demand low computational, bandwidth and storage
overhead, and simultaneously resist large coalitions of colluders. More specifically

1. Low computational and storage requirements are especially crucial inside the
protected boundary within every device where secrets are stored and computa-
tions using such secrets are performed—smaller the protected boundary, better
the extent of protection that can be afforded to components inside the protected
boundary.

2. Low bandwidth for authentication of data is important as transmission overhead
has a bearing on the battery life.
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3. Storage overhead for nonsecret values is increasingly less of an issue. With rapidly
decreasing costs of storage any conceivable device could support flash storage of
several MBs, or even GBs.

5.5.1 KPS Complexity

The complexity of any KPS can be seen as composed of the following facets:

1. KDC complexity for issuing secrets to nodes
2. Complexity for any two nodes to compute a pairwise secret

The complexity for computing a pairwise key which can in turn be seen as consisting
of three factors:

1. Storage for keys
2. Public function complexity—for operations that do not need access to KPS secrets
3. Private function complexity—for operations performed using KPS secrets

The reason to distinguish between public and private functions is that private
functions will need to be executed inside a well-protected environment.

KDC Complexity

In SKGS, the KDC chooses a public generator α ∈ Zq and computes k = n + 1
secrets dA = {dA

0 , dA
1 , . . . dA

n } where

dA
i =

n−1∑

j=0

D(i, j )αjA mod q, 0 ≤ i ≤ n, (5.37)

D(i, j ) = D(j , i) are the k2 = (n + 1)2/2 KDC secrets. The overhead for the
KDC for computing the secrets dA to be assigned to node A amounts to O(n + 1)2

finite-field multiplications. On the other hand, for PKPSs, the KDC complexity for
computing k = O(n log (1/p)) secrets increases linearly with n (and k).

Storage for Key-Ring

For the deterministic n∗-secure SKGS the size of the key ring is k = n∗ + 1. For
(n∗, p∗)-secure RPS the storage required is k ≈ en∗ log (1/p∗). For HARPS the
storage required k ≈ ckn

∗ log (1/p∗) where ck ≤ e.

Public Function Complexity

In SKGS, to ultimately computeKAB , a node A first needs to computeαiB , 0 ≤ i ≤ n.
This amounts to about log2 n+n−1 finite-field multiplications.5 In PKPSs like RPS

5 log2 n multiplications for computing αB and n − 1 multiplications for computing αiB , 2 ≤ i ≤ n

values.
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and HARPS A has to compute F (A) and F (B) (to generate 2k pseudo-random
numbers), and determine the m common indexes.

Private Function Complexity

In SKGS A will need to perform n+1 finite-field multiplications xis
A
i , 0 ≤ i ≤ k−1

(where sA
i are the k secrets assigned to A). In PKPSs a relatively small number of

secrets (m) to derive the shared secret KAB . For (n∗, p∗)-secure RPS m = e log (1/p∗)
block-cipher/hash operations will be required. In HARPS, where m ≈ 3 log (1/p∗),
as some secrets will need to be hashed further, the private function complexity is
3 log (1/p∗)(L/6) (on an average, half of the m secrets will need to hashed forward
by an average of L/3 hashes).

5.5.2 Complexity Versus Desired Collusion Resistance n

For deterministic schemes like SKGS, all facets of complexity increase linearly with
n. For SKGS the private function complexity can become comparable to public key
schemes even for n of the order of hundreds. The KDC complexity also increases
as the square of the desired collusion resistance n. Thus, deterministic KPSs are ill
suited for scenarios where we desire large n.

The main advantage of PKPSs is that the private function complexity (m ∝
log (1/p∗)) is independent of the desired collusion resistance n. Furthermore, the
only two facets of complexity that are proportional to the desired collusion resis-
tance n—storage and public function complexity may even be offloaded to external
resources.

5.5.3 Using External Resources

Offloading storage is trivial as all keys can be encrypted and stored in an untrusted
location to which the node has ready access (for example, a flash card plugged into
the device). Only the single secret used for encrypting all secrets need to be stored
inside the protected boundary.

Offloading public function F () to external resources is also easy in scenarios
where the module is merely used a trusted session key generator. In such a scenario,
an external resource employed by A computes F (A) and F (B) to identify the indexes
of m secrets shared with B, fetches m encrypted secrets from storage, and supplies
the m encrypted secrets to the protected module in A. The module A, decrypts the m

secrets to compute KAB , chooses a random nonce NAB , and outputs the nonce NAB

and a session key computed as

KS = h(KAB ‖ NAB). (5.38)

However, if the protected module is expected to verify the authenticity of message
authentication codes computed using the shared secret or convey/receive authen-
ticated secrets from other nodes, it is not sufficient for the module to restrict it’s
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scope to operations with secrets. The module also needs to verify that the indexes
of the encrypted secrets supplied by the external resource are indeed consistent with
F (). Note that unless the module executes F () by itself, it cannot verify the binding
between the indexes of keys and the identities.

Fortunately, if the key allocation function is redefined as

ai = F (A, i), 0 ≤ i ≤ k − 1, 0 ≤ ai ≤ P/k, (5.39)

then any index can be computed at random. In this scenario, the module only needs
to be provided with the m ∝ log (1/p∗) shared secrets, along with shared indexes
s1 · · · sm. The module A can then simply verify that si = F (A, i) = F (B, i) before
using KAB to verify the consistency of the message authentication code from B, or
preparing an encrypted secret to be conveyed to B.

5.5.4 Low Complexity Hardware

Probabilistic KPSs are especially well suited for application scenarios where com-
putations with secrets are performed inside a low-complexity tamper-responsive
boundary. PKPSs requires only a secure PRF inside the module, which can be used
for encryption, hashing, and public function operations. Note that a PRF is required
in any case to perform computations (encryption of messages and computing mes-
sage authentication codes) using pairwise secrets—irrespective of whether we use
PKPSs or deterministic KPSs. Implementation of finite-field arithmetic required for
Blom’s SKGS can be more expensive as additional circuitry will be required for this
purpose.

5.5.5 Multiple KDCs and Renewal

Probabilistic KPSs lend themselves readily to seamless renewal of keys, and sim-
ple strategies for employing multiple independent KDCs. Two (n, p)-secure PKPSs
can be combined to yield an (n, p2)-secure PKPS. An (n, p)-secure RPS/HARPS
scheme with parameters (P , k) can actually be s parallel deployments of (n, pi)-
secure schemes with parameters (P , ki) where

∏s
i=1 pi = p, and

∑s
i=1 ki = k.

Thus, parallel deployments (controlled by independent KDCs) can be realized with-
out any loss in efficiency. Furthermore, to facilitate seamless renewal, s − 1 of the s

systems can be used during the finite period required for renewing the secrets of one
of the s systems.

In deterministic Blom’s SKGS changing even one of the P secrets chosen by the
KDC (the symmetric matrix D) will result in modification of every secret assigned
to every node. Thus, renewal of keys involves replacing all secrets assigned to every
node. This may be very difficult to achieve seamlessly (without interrupting the
operation of the deployment). Also note that if two n-secure deterministic schemes
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are deployed in parallel (controlled by two independent KDCs; each node receives
O(n) secrets from each KDC), the resulting KPS, where shared secrets from both
KPSs are used to establish pairwise secrets, is still only n-secure.

5.5.6 Exploiting Multi-path Diversity

Yet another advantage of PKPSs (compared to deterministic KPSs) is their ability
to exploit “multi-path diversity” [51]. In a network where A and B have multiple
independent communication paths—say A→B, A→C→B and A→D→B, A can
send (to B) three independent components of a session secret over the three paths.
In order to gain access to the session secret, the attacker has to compromise KAB ;
KAC or KCB ; and KAD or KDB .

For an (n, p)-secure scheme where the probability that the attacker can compute
a specific secret is p << 1, the probability that the attacker can compute s specific
secrets is O(ps) << p. Thus, at the cost of some bandwidth overhead, a (n, p)-
secure PKPSs can be rendered (n, ps)-secure. For deterministic schemes, due to
the catastrophic onset of failure, the attacker gains access to all secrets or none.
Consequently, deterministic schemes cannot take advantage of multi-path diversity.

5.5.7 Conclusions

Probabilistic KPSs have several compelling advantages over deterministic KPSs. The
most important advantage is the need for lower overhead inside the protected envi-
ronment in which security sensitive operations like performing computations with
secrets need to be performed. This feature, coupled with the fact that the devices can
easily take advantage of external untrusted resources for performing more resource
intensive tasks, renders PKPSs even more appealing.



Chapter 6
Scalable Extensions of Nonscalable Schemes

Ultimately, even if probabilistic key predistribution schemes (PKPS) permit offload-
ing of complexity to eternal resources, the achievable security is still restricted by
the computational overhead for the public function F () (which increases linearly
with k ∝ n). While storage for even several million encrypted keys (16 MB for a
million encrypted 128-bit keys) is unlikely to be prohibitive for almost any conceiv-
able device, the overhead for generating millions of indexes and identifying common
indexes is far from acceptable.

A new class of PKPSs based on multiple parallel instances of nonscalable schemes
overcome this limitation. In this chapter we discuss three such (n, p)-secure scalable
key predistribution schemes (KPS). Specifically,

1. m parallel instances of the nonscalable basic key distribution scheme (KDS),
where each instance supports a network size of l, yields the parallel basic key
predistribution scheme (PBK) scheme;

2. m instances of the Leigton–Micali KDS, where each instance supports a network
size of l, yields the parallel Leighton–Micali (PLM) scheme.

3. m instances of the identity ticket scheme, where each instance supports a network
size of l, yields subset keys and identity tickets (SKIT) scheme.

6.1 Parallel Basic KPS

In the “basic” KDS, for a network of N nodes the KDC chooses
(
N

2

)
secrets and each

node is provided with N − 1 secrets. PBK is a scalable extension of the basic KDS
where m independent deployments of basic KDS, each catering only for a network
size of l, are used in parallel. The m systems cater for practically unrestricted network
sizes.

In the PBK scheme [59, 60], the KDC chooses m sets of secrets S
1 · · · Sm, where

each set consists of
(
l

2

)
secrets:

S
i = {Ki(j1, j2)}, 0 ≤ i ≤ m, 0 ≤ j1, j2 ≤ l − 1, (6.1)

where Ki(j1, j2) = Ki(j2, j1).

81M. Ramkumar, Symmetric Cryptographic Protocols, DOI 10.1007/978-3-319-07584-6_6,
© Springer International Publishing Switzerland 2014
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A node with identity A is assigned m “short-IDs,” one in each of the m parallel
systems. Each short-ID is log2 (l)-bit long (for l = 1024 each short-ID will be 10
bits). A simple one-way function

f (A) = {a0 · · · am−1}, 0 ≤ i ≤ m − 1, (6.2)

where ai’s are uniformly distributed between 0 and M − 1 is employed to assign
such short-IDs. Note that the function f () merely needs to produce a pseudo-random
sequence of m log2 l bits. In practice, if a 160-bit PRF h() is also used to realize f (),
A could be repeated hashed m log2 l/160 times to generate the m short identities.
For example, if m = 60 and log2 l = 10, then a pseudo random sequence {a0 · · · a59}
of 600 bits can be generated by hashing the identity A four times.

Node A assigned short-IDs a0 · · · am−1 is issued l secrets from each of the m

parallel systems—corresponding to the short-ID ai in each system. Specifically,
node A with short-IDs a0 · · · am−1 is issued k = m × l secrets

SA = {Ki(ai , j )}, 0 ≤ i ≤ m − 1, 0 ≤ j ≤ l − 1 (6.3)

Node B, like wise, issued k = lm secrets SB = {Ki(bi , j )}0 ≤ i ≤ m − 1, 0 ≤ j ≤
l − 1.

In practice the KDC can choose m master secrets μ0 · · · μm−1 and compute any
Ki(j1, j2) as

Ki(j1, j2) = Ki(j2, j1) =
{
h(μi ‖ j1 ‖ j2) j1 ≥ j2

h(μi ‖ j2 ‖ j1) j1 < j2

where0 ≤ i ≤ m − 1, 0 ≤ j1, j2 ≤ l − 1 (6.4)

Nodes A and B possess m shared secrets

Si(A, B) = Ki(ai , bi) = Ki(bi , ai), 0 ≤ i ≤ m − 1 (6.5)

Specifically, by executing f (A) and f (B) both nodes can determine their respective
short-IDs {(ai , bi)} in each of the m parallel deployments, and the corresponding
shared key in each deployment. All m shared secrets are used to derive the pairwise
secret KAB .

6.2 Parallel Leighton–Micali Scheme (PLM)

Recall that in the Leighton–Micali KDS for a small network consisting of l nodes,
each node receives one secret. In addition, there exist

(
l

2

)
public values corresponding

to each possible pair of nodes.
PLM [61] employs m parallel instances of the nonscalable LM scheme, where ev-

ery node receives one secret from each of the m parallel deployments, corresponding
to a short-ID in each deployment.
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Similar to PBK, PLM employs a public function f (), which when seeded by the
identity of a node yields m short-IDs—each log2 l-bits long.

The KDC chooses m master secrets μ0 · · · μm−1. A node with identity A is
assigned m short-IDs [a0 · · · am−1] = f (A), and receives m secrets,

SA = {Kai
(i) = h(μ(i) ‖ ai)}, 0 ≤ i ≤ m − 1, (6.6)

one corresponding to each deployment.
Corresponding to any two secrets Kj1 (i) and Kj2 (i) is a public value

P i
j1,j2

= P i
j2,j1

= h(Kj1 (i) ‖ j2) ⊕ h(Kj2 (i) ‖ j1). (6.7)

Two nodes A and B can compute m common secrets—one in each of the m deploy-
ments. Specifically, A and B determine their respective short IDs [a0 · · · am−1] and
[b0 · · · bm−1] in each deployment, and proceed to compute a secret

SA,B(i), 0 ≤ i ≤ m − 1 (6.8)

in each deployment. For computing the common secret only one node uses the public
value. For example, if A with short-ID ai has access to the public value P i

ai ,bi
the

common secret is

SA,B(i) = h(Kbi
(i) ‖ ai)

= h(Kai
(i) ‖ bi) ⊕ P i

ai ,bi
(6.9)

Instead, if B with short-ID bi has access to the public value P i
ai ,bi

the common secret
is

SA,B(i) = h(Kai
(i) ‖ bi)

= h(Kbi
(i) ‖ ai) ⊕ P i

ai ,bi
(6.10)

To unambiguously determine which of the two should use the public value, the KDC
specifies a rule pv() based on their short-IDs. Thus, if pv(ai , bi) = ai the entity
A with secret Kai

(i) should have access to the public value Pai ,bi
(i). Similarly, if

pv(ai , bi) = bi , B requires access to the corresponding public value and A does not.
The rule can be expressed as

pv(j1, j2) =
{

min(j1, j2) (j1 + j2) ≡ 1 (mod 2)
max(j1, j2) (j1 + j2) ≡ 0 (mod 2)

(6.11)

For example, pv(6, 3) = 3, pv(4, 8) = 8, pv(5, 7) = 7. In plain English the rule
pv() translates to “if sum of the two inputs is odd choose the minimum of the two;
if then sum is even choose the maximum.” According to this rule, the shared secret

SA,B(i) =
⎧
⎨

⎩

h(Kbi
(i) ‖ ai) pv(ai , bi) = ai A uses pub. value

h(Kai
(i) ‖ bi) pv(ai , bi) = bi B uses pub. value (6.12)
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When public values are allocated according to this rule, every node will need to
store exactly l/2 public values corresponding to each deployment (or a total of ml/2
public vales). More specifically, in a deployment i, a node with short-ID ai stores
the following l/2 public values:

1. If ai is even, A stores public values P i
ai ,j

for all even js less than ai , and all odd
js greater than ai .

2. Corresponding to an odd ai , A stores public values P i
ai ,j

for all odd js less than
ai , and all even js greater than ai .

6.3 (n, p)-Security of PBK and PLM

For PBK and PLM, a secret SA,B(i) is also computable by a node C if [c0 · · · cm−1 =
f (C) is such that ci = ai or ci = bi (or ci = ai = bi).

The probability that some node C can compute SA,B(i) is thus

γ = 2 l

l2 − 1
≈ 2

l
, (6.13)

where the approximation holds for large l. The probability that an entity which has
access to secrets of n nodes can not compute SA,B(i) (or the key SA,B(i) can be safely
used by A and B) is thus

si(n) = (1 − γ )n ≈ e−nγ . (6.14)

The probability that the entity (with access to secrets of n nodes can compute all
SA,B(i), 0 ≤ i ≤ m − 1 (or all m keys are unsafe) is

p(n) ≈ (1 − e−nγ )m ≈ (1 − e−2n/l)m. (6.15)

where the first approximation follows from the well known identity (1−1/x)x ≈ e−1

for large x.

6.3.1 Optimal Choice of Parameters m and M

For a target p(n) ≤ p∗∀n ≤ n∗ it is beneficial to choose m and l so as to minimize
k = ml. Note that in PBK, every node needs to store ml secrets. In PLM every node
needs to store m secrets and ml/2 public values. As we shall see shortly, typically
m << l. Thus, for both PBK and PLM it is advantageous to minimize k = ml.

From Eq. (6.15), replacing m with k/l we have,

k = 2n log (1/p)

−x log (1 − e−x
) where x = 2n

l
. (6.16)
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Table 6.1 Reducing m b 2 3 4 5 8

l′/l 2.409 5.191 10.74 21.83 177.1
k′/k 1.204 1.730 2.685 4.366 22.137

Minimizing k calls for maximizing −x log (1 − e−x), which occurs when e−x = 0.5,
or x = log (2). Substituting e− 2n

l = 1/2 in Eq. (6.15), we have

p(n) =
(

1

1 − 1/2

)m

= 1

2m

m = log2 (1/p) = log (1/p)/ log (2)

l =2n/ log (2) ≈ 2.885n

k =ml = 2

( log (2))2
n log (1/p) ≈ 4.16n log (1/p) (6.17)

If we desire to reduce m by a factor b (to m′ = m
b

< m) but still realize the same
p(n) we can choose l′ > l such that

p(n) = (1 − e− 2n
l )m = (1 − e− 2n

l′ )m′ ⇒
e− 2n

l′ = 1 − 1/2b (6.18)

Thus, it is required to increase l′ (and k′ = l′m′/2) to

l′ = −2n/ log (1 − 1/2b) k′ = k
log (1−1/2)

b log (1−1/2b) (6.19)

Table 6.1 depicts the trade-off involved in reducing m (by a factor b) vs. the cor-
responding increases in M and the total storage k = ml (or k/2 = lm/2 for
PLM).

Decreasing m by a factor of 3 (b = 3) calls for increasing storage k by a factor
1.73 (and increasing l by a factor 3 × 1.73). As an example, PBK/PLM scheme with
parameters (m = 64, l = 216) is the storage efficient choice to meet the requirement
p(22500) < 2−64. The choice of (m = 24, l = 218) instead meets the requirement
p(22500) < 2−64 with a 1.5 fold increase in storage requirement.

6.4 Subset Keys and Identity Tickets (SKIT)

Similar to PBK and PLM, the key subset and identity tickets (SKIT) scheme [62]
is defined by two parameters (m, l), where typically l >> m. Similar to PLM and
PBK, the KDC chooses

1. m master keys μ(i), 0 ≤ i ≤ m − 1
2. One-way function f () which when seeded by an identity generates m log2 l-bit

short-IDs.
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A node with identity A receives a set m secrets

SA = {Kai
(i) = h(μ(i) ‖ ai)}, 0 ≤ i ≤ m − 1, (6.20)

In addition, A is issued ml tickets corresponding to its identity

TA = {h(Kj (i) ‖ A)}, (6.21)

for all 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ l − 1.
Two nodes A and B share 2 m tickets

1. Node A can compute m of B’s stored tickets using its m secrets.
2. Node B can compute m of A’s stored tickets using its (B’s) m secrets.

The 2 m common tickets are

SA,B(i) = h(Kai
(i) ‖ B), 0 ≤ i ≤ m − 1 (6.22)

SB,A(i) = h(Kbi
(i) ‖ A), 0 ≤ i ≤ m − 1 (6.23)

The 2 m common tickets are XORed together realize the shared secret KAB . To
compute KAB , A evaluates f (B) and fetches m stored tickets. A then computes m

additional tickets (stored by B).

6.4.1 (n, p)-Security of SKIT

A node C can compute SA,B(i) if ci = ai (probability 1/l). The probability that an
entity who has access to secrets of n nodes cannot compute SA,B(i) (or the probability
that SA,B(i) is safe) is

si(n) = (1 − 1/l)n ≈ e−n/l. (6.24)

Similarly, C can compute SB,A(i) only if ci = bi . The probability that an entity which
has access to secrets of n nodes cannot compute SB,A(i) is also si(n) ≈ e−n/l.

Thus, the probability that the n-attacker collusion can compute a specific ticket
(of the 2m tickets common to A and B) is

γ = (1 − e−n/l) (6.25)

An entity with access to secrets of n nodes can compute all 2 m tickets (and thus
compute KAB) with a probability

p(n) = γ 2 m ≈ (1 − e−n/l)2 m. (6.26)
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6.4.2 Optimal Choice of Parameters

As m is typically small, the number of secrets m is not an issue. However, as every
node needs to store k = ml tickets, it is advantageous to minimize k = ml to achieve
the desired (n∗, p∗)-security.

Comparing Eq. (6.15) for p(n) for PBK/PLM, with Eq. (6.26)

p(n) ≈ (1 − e−2n/l)m PLM/PBK

p(n) ≈ (1 − e−n/l)2m. SKIT (6.27)

we can see that using SKIT we can afford to

1. Reduce l by a factor 2
2. Reduce m by a factor 2

to achieve the same p(n) characteristics as PBK/PLM!
The choice of parameters that minimizes k = ml are thus

m = log (1/p∗)
2 log 2 = log (1/p∗)/2

l = n∗
log 2 =

}
⇒ k = 1

2 log2 2
n∗ log (1/p∗) (6.28)

As a concrete example, SKIT with parameters m = 32 and l = 211 will have identical
p(n) characteristics as PBK/PLM with m = 64 and l = 212. All schemes satisfy
p(n) ≤ 2−64∀n < 1420. SKIT requires only one fourth the storage of PBK (where
each node needs to store ml secrets) and half of that of PLM (where each node
requires access to ml/2 public values).

As with PBK and PLM it is possible to reduce m by increasing l to achieve the
desired p(n). As with PBK/PLM decreasing m by a factor of 3 calls for increasing
storage k by a factor 1.73 (and increasing l by a factor 3 × 1.73). Decreasing m

from 32 to 12 calls for a four-fold increase in l, and a 1.5 fold increase in k. In other
words, SKIT with (m = 32, l = 211) and (m = 12, l = 213) meet the requirement
p(1420) < 2−64.

6.5 Comparison of KPSs

Consider PBK/PLM with parameters m = 64 and l = 212 satisfying p(n =
l/2.885 ≈ 1420) ≈ 2−64. For PBK, each node will need to store ml = 218 secrets.
If each secret is 128-bits long, the total storage required is about 5 MB. For PLM
each node will need to store m = 64 secrets and ml/2 = 217 public values—about
2.5 MB of storage per node.

For SKIT, the same p(n) characteristics can be obtained by choosing m = 32 and
l = 211. Each node will need to store 32 secrets and ml = 216 identity tickets. If
each ticket is 128-bits long, the total storage required is about 1.25 MB.
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Fig. 6.1 Comparison of 5
(n, p) secure KPSs. PBK,
PLM, and SKIT have
identical p(n) characteristics.
The storage per node required
for the different schemes are
PBK—5 MB, PLM—2.5 MB,
SKIT—1.25 MB,
RPS—3.26 MB, and
HARPS—2.04 MB
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RPS (3.26 MB)
HARPS (2.04 MB)

To meet the same requirement, viz., p(n) ≤ 2−64∀n ≤ 1420, the choice of
parameters for random preloaded subsets (RPS) (with L = 1) and Hashed random
preloaded subsets (HARPS) (with L = 64) will be

kr = n∗e log (1/p∗) ≈ 171233

Pr = (n∗ + 1)kr ≈ 243322093

k = 1.70n∗ log (1/p∗) ≈ 107088

P = 0.96(n∗)2 log (1/p∗) ≈ 85872352. (6.29)

For 20 byte (128-bits) keys the storage (for each node) required for RPS and HARPS
are 3.26 and 2.04 MB respectively.

The public function complexity for PBK, PLM, and SKIT is trivial compared to
RPS and HARPS. The public function calls for pseudo random generation of m,
log2 M values (and not k values as in RPS/HARPS).

In PBK m = 64 secrets need to be fetched from storage and used for computing
any pairwise secret. For PLM, on an average, m/2 = 32 values need to be fetched
from storage. For SKIT, m = 32 identity tickets need to be fetched. For RPS the
average number of secrets needed for computing a pairwise secret is m = 121. For
HARPS, m = 133. The operations with secrets are also less complex in PBK, PLM,
and SKIT (m = 64/m = 32 instead of m = 121 or m = 133).

To summarize, for RPS and HARPS both storage overhead and public function
complexity were proportional to n. For PBK, PLM, and SKIT only the storage
complexity is linear in n. All other facets of complexity are proportional to m ∝
log (1/p).

The three plots in Fig. 6.1 depict the p(n) characteristics of the five schemes
(PBK, PLM, and SKIT have identical p(n) characteristics). Apart from substantially
lower complexity, SKIT, PLM, and PBK also boast slower degradation of security
with increasing n, compared to RPS (and similar to HARPS in this respect).



6.5 Comparison of KPSs 89

Fig. 6.2 Comparison of five
realizations (with different
parameters m, l) of SKIT
designed to meet the same
(n, p)-security. The increase
in storage (factor kf )
compared to the scheme with
storage optimized choice of
parameters (or kf = 1) is
indicated for each plot
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SKIT (m = 32, l = 211, k f = 1.000)
SKIT (m = 18, l = 212, k f = 1.125)
SKIT (m = 12, l = 213, k f = 1.500)
SKIT (m = 9, l = 214, k f = 2.250)
SKIT (m = 7, l = 215, k f = 3.500)

If storage is not an expensive resource, and as all other facets of complexity is
proportional to m, it may be advantageous to lower m (at the cost of increasing
storage mM).

Figure 6.2 depicts the performance (n vs log (p) curves) of SKIT schemes de-
signed to meet p(n) ≤ 2−64∀n ≤ 1420. The solid line represents the performance of
schemes designed to minimize k = ml. The dashed and dotted lines represent four
different choices for m, l that reduce m and increase l, and consequently, the storage
k = ml by a factor Kf > 1. Note that the plots are applicable even for PLM/PBK
with double the value of m and l.

Apart from reduced public and private function complexity, schemes with higher
kf (and smaller m) enjoy slower degradation of security. We already saw in Fig. 6.1
that even the choice of kf = 1 results is slower degradation of PBK/PLM/SKIT
security compared to RPS. Choosing SKIT/PBK/PLM with kf > 1 further slows
down the degradation.

At first sight it may appear that such trade-offs, viz., reducing m = ak—the num-
ber of shared secrets—by increasing k beyond the optimal (k-minimizing) choice,
and reducing a = k/P (to a value less than 1/n) — can also be performed for subset
allocation schemes like RPS and HARPS. However, for RPS and HARPS m can
never be reduced below log (1/p). To see this note that for small a = k/P (as we
need to reduce a by a larger factor for reducing m = ak)

p(n) = (1 − a(1 − a)n)k ≈ (1 − ξe−na)m/a ⇒

m ≈ a log (p)

log (1 − ξe−na
≈ a log (1/p)

−ae−na

= log (1/p)ena (6.30)

Thus, even for a→0, m cannot be reduced below log (1/p). Reducing m by a factor
b < e will require a = 1−log b

n
calling for increase in k by a factor 1

b(1−log b) . For
example, for b = 2 (say, reducing m from 121 to about 60) calls for increasing k by
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a factor 1.66 (for PBK/PLM/SKIT reducing m by a factor 2 increases k only by a
factor 1.2). Reducing m to 45 will necessitate a 35 fold increase in the value of k.

6.6 Beyond (n, p)-Security

Thus so far we have used the simple (n, p)-security metric to evaluate the strength of
probabilistic KPSs. For a P-KPS designed to be (n∗, p∗)-secure (or p(n∗) ≤ p∗∀n <

n∗) an attacker who has compromised all secrets from n nodes can compute any
specific shared secret with a probability p(n).

For example, if such an attacker with access to secrets from n nodes desires to
eavesdrop on exchanges between two specific nodes A and B, there is a probability
p(n) that the attacker will be successful in discovering the shared secret KAB . Al-
ternately, as the attacker can expose a fraction p(n) of illegitimate pairwise secrets,
a nonpicky attacker may have the freedom to search for identities X and Y such
that KXY is computable by the attacker. In other words, an attacker seeking any
illegitimate key has two avenues:

1. Compromise nodes and expose secrets (to increase the probability p of determin-
ing any shared secret), and/or

2. Perform brute-force search to identity pairs that can be compromised using the
exposed secrets.

In identity based schemes the identity space I is typically substantially larger than
the actual number of nodes that may be deployed. Specifically, it is common practice
in identity based schemes to choose descriptive identities (for example, “Alice B.
Cryptographer, Anytown, U.S.A”), or the (128/160 bit) cryptographic hash of a
descriptive identity as the identity. If 128-bit identities are used, and if only billion
nodes (≈ 230) actually exist in the network, only one in 298 identities correspond
to nodes that actually exist. Obviously, most pairwise secrets that the attacker may
be able to compute (using secrets exposed from other nodes) will correspond to
nonexistent nodes.

In a scenario where an attacker has successfully (through brute-force search)
determined such an X and Y , there are thus three possibilities:

1. Both X and Y are nonexistent nodes
2. One node (say, X) is nonexistent while the node Y is a real node
3. Both X and Y are real nodes

The first scenario, where the attacker has unrestricted freedom to search for X and
Y , is not of much use to the attacker. In the third scenario, which is obviously useful
for the attacker, the attacker’s freedom to search is fortunately limited by the number
of actual nodes. However, the second scenario may also be useful for the attacker to
carry out some attacks.

As an example, consider a scenario where an attacker desires to impersonate a
(for example, temperature) sensor to provide misleading information to one or many
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target nodes. The attacker has practically unrestricted freedom to generate identities
that will be recognized by potential targets as a “temperature sensor.” The attacker is
not constrained to impersonate a real sensor. Leveraging this freedom, the attacker
may be able to search for a suitable identity X, such that KXY is computable for a
substantially larger fraction of identities in Y ∈ I (using the secrets he has exposed
by tampering with several nodes). With the increased probability of finding a suitable
Y , the attacker has a better chance of identifying an actually exploitable target Y .

More formally,

1. Let I represent the large space of identities assigned to nodes.
2. Let A = {A1 · · · Ar} represent the identities of a set of r nodes from which an

attacker has exposed all secrets.
3. Let T = {T1 · · · Ts} represent the identities of a set of s nodes—the potential

target set for the attacker.
4. Let X = I\A represent the set of identities of nodes that the attacker may attempt

to illegitimately impersonate.

It is important to remember that while A and T represent nodes that physically exist,
most of the identities in X will correspond to nodes that do not actually exist. The
attacker can however search for a subject X ∈ X that he can impersonate, and an
object Ti ∈ T, such that KXTi

is computable using the secrets pooled from r nodes.
The only constraint on the ability of the attacker in choosing a suitable subject for
the attack is the brute-force search complexity that can be borne by the attacker. The
target (or object) of the attacks are however constrained to be nodes that actually
exist, and to which the attacker can physically send messages (either directly or
over multiple hops). We shall henceforth refer to such attacks as message injection
attacks.

To characterize the resistance of PKPSs to message injection attacks let us consider
a (n, φ, pa) security model where pa(n, φ) represents the “capability of an attacker”
who has

1. Access to secrets of n randomly chosen nodes
2. Perform 1/φ brute-force searches

Thus, for example, pa(1000, 2−40) is the probability of a successful message injection
attack by an attacker who is willing to perform a brute force search of up to 240

different identities from X in order to discover a X ∈ X such that KXY is computable
for a fraction pa of all nodes.

6.6.1 (n, φ, pa)-Security of RPS

For carrying out a message injection attack the attacker seeks some X ∈ I such that
all/most keys assigned to X are available from the r compromised nodes. Specifically,
if the set of k keys assigned to X ∈ I is SX, and if S

A
r represents set of all secrets

accumulated from r compromised nodes, the attacker can search for a suitable X

such that S
A
r ∩ SX is maximized.
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Consider RPS with parameters (P , k), where t = 1/a = P/k ≈ n∗ and k ≈
n∗e log (1/p∗). The probability that a particular key of X is not found in key ring of
a specific node A1 in the attacker pool is (1 − 1/t). Thus, the probability that none
of the r nodes (in the attacker pool) possess the specific key (or the probability that
the key is not found in the set S

A
r ) is

ε = (1 − 1/t)r ≈ e−r/t (6.31)

The probability that at least ks of the k keys of X are included in the attacker pool is
then

φ(r , ks) =
k∑

i=ks

(
k

i

)
(1 − ε)iεk−i . (6.32)

In other words, by performing 1/φ brute-force searches, the attacker can expect to
find some X ∈ X such that at least ks of the k secrets of X are available to the attacker.

In such a scenario, let δ = k−ks

k
be the fraction of missing keys. If δ = 0 (or

ks = k) the attacker can obviously compute all pairwise secrets of the form KXY

for any Y (or pa = 1). On the other hand, if δ > 0 the probability pa < 1 can be
evaluated by considering a k-round game between the attacker and Y .

Let us assume that the index of the keys assigned to X are x0 · · · xk−1. Each round
of this k-round game corresponds to a one of the k keys of X. In each round (say,
round (i) the attacker is successful in drawing the index xi with a probability 1 − δ.
However, Y succeeds only with a probability 1/t . Thus, the probability that the
attacker looses any round is δ/t .

However, the attacker has to win all k rounds to win the game (and compute KXY ),
for if he looses even one round, one of the keys required for computing KXY is not
available to the attacker. The probability that the attacker will win all k rounds (and
be able to compute a specific KXY ) is

pa(δ) = (1 − δ/t)k (6.33)

As k ≈ te log (1/p∗), and as e ≈ (1 − 1/t)t for large t , we have

pa(δ) ≈ eδe log (p∗). (6.34)

If the design value p∗ = 2−64, we have e log (2−64) ≈ −120.59. For 120.59δ ≈
0.693 (or δ ≈ 0.00575) we have pa = 0.5. Thus, the attacker needs about ks =
0.99425k of the k keys of node X in order to impersonate X successfully for its
interactions with half (pa = 0.5) the nodes Y ∈ T. To be able to inject a message to
at least one of the nodes in the set T (with s nodes) the attacker requires pa = 1/s.
For s ≈ 230 the attacker requires δ ≤ 0.1718. For s ≈ 220 the attacker requires
δ ≤ 0.1145. For s ≈ 210 the attacker requires δ ≤ 0.057.

Plots of log (φ(r , pa)) vs r for various values of pa are shown in Fig. 6.3 for RPS
with parameters k = 7, 902, 779, a = 2−16 (designed to meet p(n∗ = 216) = p∗ =
2−64). For achieving a desired pa the attacker can either compromise more nodes
(by increasing r) or perform more brute-force searches (reduce φ).
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Fig. 6.3 (r , φ, pa)-security characteristics of RPS. Note that for a desired pa , φ increases rapidly
with a small increase in the attacker pool size r . However increasing pa requires a substantial
increase in r

For a brute-force complexity of 2−50, an attacker with access to secrets from one
about r = 114, 000 nodes can inject a message to one in a billion targets (pa =
2−30); for r ≈ 140, 000 the attacker can inject a message to one in a million targets
(pa = 2−20); with r ≈ 184, 000 the attacker can inject a message to one in a thousand
targets (pa = 2−10); with r = 335, 500 the attacker can inject messages to every
other node (pa = 1/2).

The fact that the plots for φ(r , pa) vs r are almost vertical indicates that even
a small increase in r can significantly reduce the brute-force complexity for the
attacker. In other words, the attacker cannot use brute-force capability productively
to reduce r (the number of nodes from which secrets need to be exposed).

6.6.2 (n, φ, pa)-Security of PBK/PLM

As the conditions necessary for an attacker to determine KXY are identical for PBK
and PLM, let the short-identities assigned to X be x0 · · · xm−1. If any of the r nodes
in the attacker pool is also assigned x0 as its first short identity, then the attacker has
access to all the l secrets (in PBK) or the 0th deployment secret corresponding to
short-identity x0 (in PLM). More generally, if any of the r nodes are assigned the
same short-ID xi as X in the ith deployment, then the attacker has all keys of X

corresponding the ith deployment.
The probability that a specific short identity xi is also assigned to a node A1 ∈ A

is 1/l. The probability that none of the r nodes in the attacker’s pool is assigned the
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Fig. 6.4 (r , φ, pa)-security characteristics of PBK/PLM

short identity xi in the ith deployment is

ε = (1 − 1/l)r ≈ e−r/l. (6.35)

The probability that at least ms ≤ m short identities are assigned to the nodes in the
attacker pool is thus

φ(r , ms) =
m∑

i=ms

(
m

i

)
(1 − ε)iεm−i . (6.36)

In a scenario where the attacker has access to ms of the m sets of keys assigned to
X, the key KXY can still be computed if for the other m − ms deployments, at least
one of the r nodes in A is assigned the same short identity as Y .

The probability that a specific node in A is assigned the same short ID as Y in a
specific deployment is 1/M . The probability that none of the r nodes are assigned
the same short-ID as Y in the ith deployment is (1 − 1/M)r = er/l. Thus, given that
the attacker has found an X such that ms sets of secrets of X are available to the
attacker, the probability pa that the remaining m − ms keys can be computed is

pa(r , ms) = (
1 − e−r/l

)m−ms
. (6.37)

Figure 6.4 depicts plots of pa vs. r for three different values of φ for PBK/PLM
with parameters m̃ = 64 and l̃ = 189, 097 (designed to meet the requirement
p(n∗ = 216) = p∗ = 2−64). Note that (unlike RPS), for PBK/PLM φ decreases
gracefully with increasing r . Furthermore, realizing large pa (close to one) is easier
in PBK/PLM.

An attacker capable of performing 250 brute-force searches (φ = 2−50) can achieve
pa = 2−30, 2−20, 2−10 respectively with pool sizes of r = 54, 000, r = 73, 000 and
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r = 96, 000 respectively. With r = 165, 000 nodes the attacker can realize pa = 1
(plot labeled φ = 2−50 in the figure). However, if the brute-force capability is 230,
the attacker requires substantially higher r ≈ 240, 000 to realize pa ≈ 1, thus,
clearly demonstrating that the attacker can indeed take advantage of brute-force
search capability.

6.6.3 (n, φ, pa)-Security of SKIT

For SKIT with parameters m and l, to find a shared secret KXY , the attacker needs
access to the m secrets corresponding to the identity X and the m secrets correspond-
ing to the identity Y . The probability that the attacker’s pool of secrets will include
all secrets of a specific node X is

φ(r) ≈ (1 − e−n/l)m (6.38)

Also the fraction of Y ∈ X for which all m secrets are included in the attacker’s pool
is

pa(r) = φ(r). (6.39)

In other words, the attacker cannot take advantage of brute-force search capability
(or low φ) to choose a subject, as a low φ also implies low pa .

For (n∗ = 216, p∗ = 2−64)-secure SKIT with parameters m = 32 and l = 94, 548,
for target pool sizes of s = 103, s = 106, and s = 109 (or pa = 2−10, 2−20, 2−30

respectively) the size of the required attacker pool size is r = 155, 000 (for pa =
2−10), r = 99, 000 (for pa = 2−20) and r = 70, 500 (for pa = 2−30). For φ = pa ≈
1/2 the attacker requires r = 363, 000.

A comparison of the resiliency of three P-KPSs: RPS, PBK/PLM and SKIT de-
signed to meet the same (n, p)-security criterion are tabulated in Table 6.2. The table
depicts the number of nodes r required in the attacker pool to inflict message injec-
tion attacks with a probability pa (for pa = 2−30, 2−20, 2−10, 1/2). For PBK/PLM
(where the attacker can take advantage of brute-force search capability) the value r

is based on the assumption that a brute-force search capability of 250 is possible for
the attacker.

In general, (n, p)-secure RPS exhibits substantially higher resistance to message
injection attacks compared to (n, p)-secure PBK/PLM. However, while RPS exhibits
better resistance than SKIT for small values of pa , SKIT offers better resistance for
higher values of pa (close to 1). In the next section we argue why it is especially
desirable for a PKPS to offer high resistance (larger r) for values of pa close to one.

6.6.4 Addressing Message Injection Attacks

There are two broad strategies to address message injection attacks. The first is to
reduce the search freedom for the attacker by limiting the size of the identity space.
This is not desirable as it reduces the inherent advantages of identity based schemes.
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Table 6.2 Number of nodes
required in the attacker pool
for an attacker to carry out
message injection attacks

pa SI PBK/PLM SKIT-1

2−30 114,000 54,000 70,500
2−20 140,000 73,000 99,000
2−10 184,000 96,000 155,000
1/2 337,600 149,000 363,000

The second is by employing multiple “check points.” If the multiple check-point
defense (MCD) [62] is enforced, to send a message to B, A will need to authenticate
itself to B, and possibly some nodes (randomly) designated by B (say C, D). While
this is not an issue for a legitimate A (which can compute KAC and KAD), MCD
makes it more difficult for an attacker to impersonate A, as the attacker will also
need access to KAC and KAD (apart from KAB).

In a scenario where an attacker has found (through a brute-force search) some
identity A with pa = 10−3 (or he can compute KAy for one in a thousand y ∈ X), the
probability that he can compute KAC , KAD , and KAB is substantially lower (10−9).
More generally, when t check points are used, the probability of attacker success
reduces from pa to pa

t .
Obviously, if the attacker can achieve pa = 1 (or very close to one), MCD is

rendered useless. Thus, even while we desire that both φ and pa should be low for
an attacker who has access to the key-rings or r nodes, it is especially important to
ensure that achieving pa close to one is impractical for attackers.

One of the main weaknesses of PBK/PLM is that it is easier (relatively small r

required) for the attacker to achieve pa = 1. RPS can take better advantage of MCD
as it better resists realization of high pa . SKIT offers an even higher resistance to
“high pa” (pa closer to 1) attacks, and thus takes best advantage of MCD.

6.7 PLM for Sensor Networks

Clearly, SKIT appears to have a substantial edge over all other PKPSs. The achievable
security for RPS/HARPS is limited by the complexity of the public function F ().
For PBK, PLM, and SKIT the achievable n is limited only by available storage. The
only difference between a (n = 1000, p)-secure (PBK/PLM/SKIT) scheme and a
(n = 100000, p)-secure scheme is that the latter will need 100-fold higher storage.
All other facets of complexity are identical for both schemes, and more importantly,
very low.

All other facets of complexity, which are proportional to log (1/p), can further
be lowered if desired, by increasing storage complexity. As unprotected storage (a
plentiful resource) is the only bottle-neck, and as SKIT is the most storage efficient,
SKIT appears to be the best choice. The appeal of SKIT is further improved by its
substantially higher resistance to message injection attacks (better (n, φ, pa)-security
compared to PBK/PLM).

However, there are still specific application models where PBK or PLM may be
better suited than SKIT. Specifically, as we shall see later in Sect. 7.2.5, PBK has
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some unique advantages that will become apparent when we consider issues specific
to tamper-responsive hardware modules which may be used to protect secrets and
perform private computations. Similarly, as we shall soon see, PLM is better suited
for a broad class of classical sensor network applications.

6.7.1 Classical Sensor Network Model

Ad hoc networks of spatially distributed battery powered wireless sensors are useful
for many application scenarios involving monitoring of environmental conditions like
temperature, pressure, humidity, pollution levels, etc. Such networks are typically
constituted by many inexpensive wireless sensors with limited battery resources
and limited transmission range (to reduce their battery consumption) [63]. Sensors
will relay measurements over multiple hops to one (or more) more capable proxy
devices. The proxies may have intermittent access to satellite channels for relaying
measurements to a remote location.

Typically, a large number sensors and a small number of proxies may be aerially
dropped over a region to be monitored. The more capable proxy devices may be
equipped with GPS capabilities. The sensors and proxy devices may then engage
in protocols to facilitate geographic localization of sensors [64]. After all, without
the knowledge of the geographic positions of the sensors the measurements may not
be very useful. Sensors may also exchange messages with each other to determine
optimal paths for relaying measurements to the closest proxy. In some application
scenarios the proxy devices may also be directed (from a remote location) to send spe-
cific queries to specific sensors. Sensors may also exchange measurements amongst
themselves, possibly for more efficient relaying of sensed measurements.

One important requirement for securing interactions between sensors is the ability
to establish pairwise secrets between sensors. For this purpose every sensor device
will be initialized with one or more secrets using which the required pairwise secrets
can be computed.

6.7.2 Assumptions

Let us assume that sensor devices are mass produced as chips. The total number of
manufactured sensors may be billions. Every sensor is assigned a unique identity,
and preloaded with a small set of secrets by a key distribution center in the factory
floor. Every sensor is equipped with modest hardware for performing symmetric
cryptographic computations, and a few tens of kilobytes of storage for keys and
sensor-specific software.
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Proxy devices may be general purpose devices equipped with GPS and satellite
communication capabilities. The proxy devices are assumed to be much more capa-
ble, say comparable in capability to a modern mobile phone/PDA. It is assumed that
proxy devices can support several GBs of storage using flash storage cards.

An entity desiring to deploy a sensor network may acquire a random set of sensor
chips along with a few proxy devices. The sensors and proxy devices may then be
aerially dropped over some region to be monitored. Periodically, sensors may be
replenished by dropping a fresh batch of sensors over the region, say when many of
the earlier batches of sensors have been depleted of their battery power. Likewise,
proxies may also be replenished periodically.

Once the sensors (along with proxies) are dropped over a remote region, every
sensor will be required to establish pairwise secrets with a few other sensors. Most
often, sensors will be required to establish a pairwise secret with all the “accidental
neighbors” that happen to fall close to them. Thus, even while a sensor may have
to establish shared secrets only with a small set of sensors (e.g, neighbors), no
information may be available regarding the potential neighbors of a sensor A at the
time the sensor A was provided with secrets (in the factory floor). Thus, any two
sensors should have the ability to establish a pairwise secret.

6.7.3 Key Distribution for Sensor Networks

If the total number of proxy devices is small, it is easy to provide every sensor with a
secret corresponding to every proxy device. For example if we have L proxy devices
identified as 1 · · · i ≤ L the KDC could assign a secret KR

i to the ith proxy device.
Every sensor can be given a ticket for every proxy device. For example, a sensor with
ID A can be issued L identity tickets KR

i,A = h(KR
i , A), 1 ≤ i ≤ L. Sensors to use

the proxy devices act as mediators to establish a secret session with other sensors.
This approach is not desirable due to three reasons. Firstly, the general purpose

proxy devices are trusted only for relaying measurements: only the sensors are trusted
for the measurements reported by them. Thus, keys assigned to sensors for purposes
of authentication of sensor data (either data sent to remote locations or data exchanged
between sensors) should not be privy to the proxies. Secondly, it is undesirable for
an attacker who has compromised a proxy device to be able to impersonate a large
number sensors. While an attacker who has compromised a proxy device may be able
to stop the network (or a part of the network) from being useful, it is not desirable for
the attacker to be able to impersonate sensors to send misleading information—“no
information” is acceptable; deliberately misleading information is not. Thirdly, even
the number of proxies L may be large.

If a scalable KPS like SKIT is used instead, each sensor is issued m secrets and
k = mM tickets. We cannot realize high levels of collusion resistance n due to limited
storage available to sensors. One possibility is to utilize the storage capabilities of
the proxy device to store encrypted secrets on behalf of the sensors. In other words,
the k tickets assigned to every sensor can be stored encrypted (using a secret privy
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only to the sensor to which the tickets were issued) in a proxy device reachable by
the sensor. In such a scenario, a proxy device catering for N sensors will need to
store kN encrypted tickets. Once deployed, the sensors may establish multi-hop link
to the proxy and fetch only the tickets they requires to establish shared secrets with
neighboring sensors.

Unfortunately, as it may not be possible to a priori associate every proxy with a
specific set of sensors, we desire that any proxy should be able to store and serve
encrypted tickets to every possible sensor. If the total number of sensors is practically
unlimited, then even with generous storage capabilities, the number of keys per sensor
(that can be stored by proxy devices) will be small.

For example, assume that every proxy device is equipped with a 64 GB flash
card, and a (m, M)-SKIT scheme is used for the deployment. The proxy can store
230 128-bit tickets. If the proxy is designed to support a N sensors then we can use
a SKIT scheme with mM ≤ 230/N . For example, if N = 220, then the proxy can
store 210 tickets per sensor. In such a scenario a SKIT scheme with m = 16 = 24

and l = 26 = 64 can be used.
Perhaps the most efficient way to use a proxy device as an untrusted storage

resource is to use the proxy for storing PLM public values. If (m, l) PLM is used,
then all proxies store all m

(
l

2

)
public values. Sensors will need to store only m secrets

each. Note that the total number of sensors N does not affect the choice of ml. The
m

(
l

2

)
public values stored by any proxy device can be utilized by any sensor.

Unlike the scenario in Sect. 6.3.1 where it was desirable to minimize the total
storage every node, for our current application of interest, the main constraint on
achievable security is imposed by the total storage for public values in the proxies.

For proxy devices capable of storing 230 public values some of the possible choice
of m and l are (for example) (m = 64, l = 5793), (m = 96, l = 4730), (m = 128, l =
4096), (m = 160, l = 3664), (m = 224, l = 3096), (m = 256, l = 2896) etc.

6.7.4 Key Establishment

Similar to sensors, every proxy device is also equipped with a chip with a special
identity, and issued m secrets, and ml/2 public values.

After deployment, a proxy with identity R broadcasts a message [R, 0] to all
neighboring sensors. A neighbor F may then rebroadcast the packet onwards as
[R, F , 1]. A neighbor G of F two-hops away from the proxy R similarly broadcasts
[R, G, 2] and so on. Every sensor will broadcast as many packets as the number of
proxies. Simultaneously this facilitates a sensor A to identify the proxy closest to it
and the identities of all its neighbors.

Assume that A is within the range of r neighbors N1 · · · Nr , and the proxy with
ID R is the proxy closest to A. The sensor A relays the list of its neighbors to the
closest proxy. This list can be authenticated by A using the secret shared between
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Fig. 6.5 Performance of
PLM for a classical sensor
network. All schemes require
the same storage for proxies
(to store m
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sensor A and proxy R, viz.,

KAR = h(K0,a0 , r0) ⊕ · · · ⊕ h(Km−1,am−1 , rm−1 (6.40)

The proxy which has access to all public values computes the same secret by XORing
m values of the form

Si = h(Ki,ri , ai) ⊕ P (ai , ri), 0 ≤ i ≤ m − 1. (6.41)

The proxy relays r values to A—one public value corresponding to each neighbor.
The public value corresponding to a neighbor B of A is

PA,B = P0(a0, b0) ⊕ · · · ⊕ Pm−1(am, bm) (6.42)

The shared secret KAB is computed by A as follows

KA,B = h(K0,a1 , b1) ⊕ · · · ⊕ h(Km−1,am−1 ) ⊕ P ′
A,B (6.43)

Sensor B can simply compute KAB as

KAB = h(K0,b0 , a0) ⊕ · · · ⊕ h(Km−1,bm−1 , am−1). (6.44)

6.7.5 Performance and Overhead

The bandwidth overhead for relaying public values to each sensor is proportional to
the number of neighbors. Specifically, as only one of the two neighbors will need
access to the public value, a sensor with r neighbors will require r/2 public values
provided by the proxy.
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For sensors the computational overhead is m—as m PRF operations are required
to compute a pairwise secret. The storage overhead is also m.

Minimizing ml2 (instead of ml, when every node stores public values) will in
general result in a larger choice of m. As m does not affect the bandwidth overhead,
and as pairwise secrets will need to be computed infrequently in stationary sensor
networks (one a secret for a neighbor has been computed, it can be stored) it may be
advantageous to increase m to the extent permitted by the limited storage available
to sensors.

Figure 6.5 depicts the performance of PLM (p(n) vs n) for classical sensor
networks for various choice of m and M constrained to meet the requirement
230 = ml2/2.

6.8 Conclusions

Scalable KPSs like PLM, PBK, and SKIT, derived as extensions of nonscalable KPSs,
have some clear advantages over PKPSs like RPS and HARPS which demand sub-
stantial public function complexity. While the achievable security for RPS/HARPS
is limited by the complexity of the public function F (). For PBK, PLM, and SKIT
the achievable n is limited only by available storage. The only difference between a
(n = 1000, p)-secure (PBK/PLM/SKIT) scheme and a (n = 100000, p)-secure
scheme is that the latter will need 100-fold higher storage. All other facets of
complexity are identical for both schemes, and more importantly, very low.

All other facets of complexity, which are proportional to log (1/p), can further
be lowered if desired, by increasing storage complexity. As unprotected storage (a
plentiful resource) is the only bottle-neck, and as SKIT is the most storage efficient,
SKIT appears to be the best choice. The appeal of SKIT is further improved by its
substantially higher resistance to message injection attacks (better (n, φ, pa)-security
compared to PBK/PLM).

However, there are still specific application models where PBK or PLM may be
better suited than SKIT. PLM is better suited for a broad class of classical sensor
network applications. As we shall see in the next chapter, PBK has some unique
advantages that will become apparent when we consider issues specific to tamper-
responsive hardware modules that may be used to protect PKPS secrets and perform
private computations using such secrets.



Chapter 7
Using PKPSs with Tamper-Responsive Modules

Tamper-responsive modules are expected to provide two broad assurances—write-
proofing of values stored inside the module and read-proofing of secrets protected by
the module. The two requirements are however not independent [65]. For instance,
with the ability to tamper with the module functionality (software executed by the
module), an attacker could direct the module to “spit out” its secrets. On the other
hand, secrets that are protected can be used to authenticate software that will be
executed by the computer, using (for example) key based hashed message authenti-
cation codes (HMACs). Unless the secret used for computing the HMAC is known,
the attacker cannot modify the software.

In practice read-proofing is a stepping stone to the more elusive goal of tamper-
proofing of software. Attacks aimed at modifying software to reveal secrets can be
prevented by ensuring that software does not have access to at least some of the secrets
that are protected. Some secrets may be generated, stored, and used by dedicated
hardware [66, 67]. However, authenticating software with the secrets provides a
bootstrapping problem [68]. After all, some software should be loaded (typically the
BIOS) which includes instructions to load the secret and perform the authentication.
Recently Gennaro et al. [65] have argued that providing assurances that software
cannot be modified entails assurances of read-proofing and the additional assurance
of a write protected nonvolatile counter.

Execution of an algorithm inside a tamper-responsive boundary may have some
additional constraints compared to the execution of the same algorithm in a general-
purpose computing environment. Thus a fair evaluation of different probabilistic key
predistribution schemes (PKPSs) will need to take such special considerations into
account.

7.1 Core Principles

The problem of practical realization of sufficiently trustworthy tamper-responsive
modules has received significant attention since the development of the ABYSS
coprocessor [69] in the late 1980s. Even with substantial changes in semiconductor
technology and the capabilities of tools that can be utilized by attackers since then,
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the core principles behind possible attacks and countermeasures have not changed
significantly.

Most realizations of tamper-responsive modules like ABYSS [69], Citadel [70],
Dyad [71], IBM 4758 [66], and Cerium [72] consist of a tamper-resistant package
that includes the CPU, DRAM, battery-backed RAM (BBRAM), and flash ROM.
Tamper attempts will result in zeroizing, or erasure of secrets stored. In almost all
approaches a secure public–private key pair is generated inside the module, and only
the public key is exported. The private key (typically a private RSA exponent) is
stored in BBRAM and is protected at all times—even when the CPU in the module
is off.

Most modules will also generate a private symmetric master secret which can
be used to encrypt all other secrets that need to be protected. The master secret
can be used to encrypt even the private RSA key when the CPU is off. Encrypted
secrets could then be stored in nonvolatile memory (NVM) that is not afforded any
protection. Only the master secret stored in BBRAM needs to be protected when the
device is off. However, when the device is in the on state, other physical areas of the
module (like DRAM, special cache memories, etc.) will also be extended protection.

7.1.1 Active and Passive Shields

Such protection measures take the form of active and passive shields, and circuitry
that execute countermeasures for zeroizing when active sensors are triggered by
intrusions.

Passive shields block inbound and outbound electromagnetic radiations. Out-
bound radiations (emanating from inside the chip) can be used to reveal some
information about the secrets used. Inbound radiations can be used for inducing faults,
which can in turn lead to compromise of cryptographic keys [73, 74]. For example,
differential power analysis (DPA) [75] can be used for gaining clues about se-
crets based on instantaneous power consumption by the processor. Countermeasures
against DPA include introducing redundant steps in cryptographic computations [76]
and the use of self-timed circuits [77].

Active shields attempt to identify intrusions and activate circuitry for zeroizing.
Thus active shields are also sensors which can trigger various countermeasures. For
instance, sophisticated attacks involving focused ion beam (FIB) techniques [78]
can permit an attacker to drill fine holes and establish connections with the computer
buses. With such taps the attacker can gain access to the bits that pass through the
buses when the CPU is functioning. The active shields used as countermeasures
typically take the form of a mesh (or many layers of meshes) of nonintersecting
conductors [66, 71]. They can prevent microprobes and picoprobes [79] from gaining
line-of-sight access to the buses. Even if one line of the mesh is cut, the resulting open
circuit will trigger the circuitry for zeroization. In addition, even if we can ensure that
only a fraction of the lines can be tapped, it may be possible to use private circuits
[80] to ensure that the attacker gains no knowledge (by tapping a few lines).
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A side effect of shielding is that it may make it difficult to dissipate heat gen-
erated inside the shielded boundary. An obvious strategy to minimize this issue is
simply to reduce to the extent possible the computational overhead inside the pro-
tected boundary. For example, limiting operations inside the boundary to symmetric
pseudo random functions (PRF) operations (or avoiding more expensive asymmetric
operations) can be a useful strategy.

7.1.2 State Transitions

Any tamper-responsive module can be at one of two broad states—in use (or “on”)
or at rest (or “off”). Secrets have to be protected during both states.

When the module is off there is no need to extend protection to all regions—only
the privacy of a single master secret and the integrity of a single monotonic counter
needs to be assured. However, when the module is on, the scope of protection will
need to be wider. Various registers, scratch pad memory, and buses inside the module
may also need to be extended protection.

Physical unclonable functions (PUF) [81] provide a satisfactory solution to protect
secrets of a device while the device is at rest. Silicon PUFs [82] exploit uncontrol-
lable statistical delay variations of connections and transistors etched on substrates
in each manufactured chip to provide an “uncharacterizable” and therefore unclon-
able unique physical one-way function (POWF) [83] which can serve as a “random
oracle.” The response of the random oracle (PUF) to a randomly chosen challenge
could be used to encrypt the master secret at rest. The challenge itself could be stored
in the clear in NVM. When the device is at rest, there is no way for the attacker to
challenge the PUF to determine the response used for encrypting the secrets. When
the device is powered on for this purpose, the tamper detection sensors kick in. Thus,
PUFs eliminate the need for active shielding of modules at rest.

7.1.2.1 Remnance

One of the hidden problems associated with the dynamic scope of countermeasures
takes the form of remnance in volatile memory [84, 85]. Most protected volatile
memory regions during the on state are not protected when the module is in the
off state. Unfortunately, bits stored in volatile memory (especially for extended
periods) can leave decipherable “footprints.” The footprints can be scavenged even
after the power supply is removed. The ability of the attacker to scavenge bits from
footprints can be improved by cooling the chip, for example, by immersing the chip
it in liquid nitrogen. Thus, even after volatile memory regions like cache/RAM have
been powered off (in the off state, where only the BBRAM is extended protection),
secrets that were stored in RAM/cache regions (while the device was on) may be
revealed.
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Safe deletion [84] of contents in magnetic and solid state memories require many
repeated overwriting operations. Some of the usual countermeasures against attacks
that exploit this weakness include:

1. Clean erasure (by repeated overwriting) of contents of volatile memory (like
RAM/cache memory, except contents of BBRAM) before powering off, and as
part of zeroization

2. Ensuring that secrets are not stored for long durations in RAM
3. Use of special sensors that respond to sudden changes in temperature and trigger

clean erasure [71] of volatile memory regions
4. Increasing the mass of the modules to inhibit rapid cooling [71] to provide an

adequate response time to execute countermeasures
5. Periodic ones-complementing of some highly sensitive secrets [66, 84], (for ex-

ample, the master secret stored in the BBRAM) with dedicated circuitry for this
purpose, to ensure that no footprints are left behind.

Increasing the mass of modules may simply not be a viable option for various appli-
cations scenarios of interest to us. Furthermore, while periodic ones-complementing
may be possible for a limited number of secrets (for example, contents of the
BBRAM), extending such protection to all volatile memory regions like cache mem-
ory and RAM, where the values stored may be actively used in computations, is far
from practical.

Even storing secrets for a fleeting duration in RAM can be risky, as simple attacks
that induce faults in memory [85] that could cause the CPU to hang. As a result, a
key that was intended to be stored only for a fleeting moment at the time the fault
was induced may end up being stored for a long time. The process of inducing a fault
could be as easy as shining a powerful beam of light [78], if proper shielding is not
provided.

Even with good shielding to ensure that the risks of such attacks are minimal,
there may be numerous other reasons, including hardware/software bugs, which
may result in the CPU hanging. If the CPU hangs while a sensitive secret is stored
in the RAM, an attacker can wait for some duration to ensure that the secret leaves
a deep footprint before plunging the module in liquid nitrogen.

While sensors that can detect rapid changes in temperature (which obviously
should work independent of the CPU and are well protected by active shields) can
erase contents of the RAM, the repeated overwriting operations mandated for clean
erasure of all sensitive information in the RAM may not be possible. Even repeated
overwriting may not be a satisfactory solution for DRAMs [84] for which the only
option may be to ensure that sensitive values are not stored for extended durations1

(even a few tens of seconds).

1 For clean erasure of contents stored for long durations in DRAM the only option (apart from
heating) may be to store some random value for a long duration to “dilute the stress” [84] imposed
on the oxide layer by the old data.
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7.1.3 Single-Step Countermeasures

Countermeasures that involve more than a single step to be effective are inherently
vulnerable. With complete knowledge of the layout of the components (which at-
tackers can easily determine by tampering with a few chips/modules [79]), attackers
can “force their way in” using FIBs to cut off circuitry (or power supply) responsible
for undertaking the countermeasures. Even with good shielding and assurances that
it is not possible for intrusive attempts to evade active shields, with such attacks the
attacker does not have to worry about triggering active shields (which leads to erasure
of the master secret). As long as the circuitry for taking additional countermeasures
(like clean erasure of contents of RAM) can be cut off, the attacker can still scavenge
bits from RAM.

The end result of a successful attack is that the attacker gets a snapshot of all
contents of all volatile memory regions (except the BBRAM) at the instant the attack
was launched. However, the attacker is limited to a single snapshot as the module is
irrevocably destroyed in this process, and the master secret used for encrypting all
other secrets is erased. Nevertheless, the attacker gains knowledge of secrets/data
that may have been stored unencrypted in RAM, even temporarily, at the instant the
attack was carried out.

7.2 The DOWN Policy

If contents of the volatile RAM cannot be well protected following abnormal state
transitions that can be induced by the attacker, a solution is to make sure that the RAM
has very minimal information at any point in time. A simple security policy—decrypt
only when necessary (DOWN) [60], recognizes the fact that most cryptographic
operations have some inherent atomicity. At any point in time only one, or maybe
even a small part of a secret may be necessary for cryptographic computations.

For instance, if the secret to be protected is an RSA private exponent r (say, of
size 1024 b), and n is the RSA modulus, decryption of a cipher text C involves
modular exponentiation of C with r as P = Crmod n. However, to perform the
exponentiation, only one bit of r is needed at any point in time (for example, expo-
nentiation using the square and multiply algorithm). We could thus keep r encrypted
at all times, and decrypt each bit as and when necessary.

When the DOWN policy is used, the single master secret χ in the module is
used for encrypting all secrets—which may then be stored in unprotected NVM. A
protected PRF block inside the module can generate any number secrets of the form
Si = h(χ ‖ i), where Si is used for encrypting the ith secret Ki stored in NVM. At
any point in time, at most one Si can be stored in RAM—or no footprint will reveal
more than one Si .

The master secret can indeed be afforded a high level of protection as:

1. This secret is not shared with any other entity
2. The secret is never used by any software (never transferred to RAM), and
3. Does not leave footprints
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Without the use of the DOWN policy an attacker may be able to scavenge the entire
RSA private key from footprints in RAM. With the DOWN policy in effect, the
attacker can discover no more than 1 b of the RSA secret. As in this process the
master secret is erased, the attack can not be repeated to determine other bits.

With the DOWN policy in place, operations like computing a signature using
a private key, or decrypting a value using a private key, or using multiple keys
to compute a shared secret are broken down into several DOWN cycles, wherein
each cycle secret (or a part of the secret) is decrypted using a secret Si generated
from the master secret, and is used as an input to some algorithm which performs
application specific operations using the decrypted secret. During each DOWN cycle
the decrypted secret overwrites the secret employed in the previous DOWN cycle.

7.2.1 DOWN-Enabled Modules

For DOWN-enabled modules the master secret χ generated spontaneously inside
the module is the only secret that is directly protected. The master secret is stored in
special volatile register (a BBRAM). The CPU in the module has has exclusive access
to a hardware PRF. The processor exposes dedicated CPU instructions for using the
hardware PRF in conjunction with the master secret χ for generating secrets like
Si . As special protection may be in place when the master secret is used, we shall
represent by D the special operations that involve the master secret, or

Si = D(i) (7.1)

The secrets like Si are used to encrypt all other secrets indirectly protected by the
module.

The module draws power from external devices during its operation. While the
CPU is off battery backup power the BBRAM and minimal active circuitry required
for protecting the master secret. The active circuits include mechanisms for period-
ically ones complementing the master key so that even if the battery backups fail,
no decipherable footprints of the master secret are left behind. The battery or power
lines from the battery do not need to be protected. For any countermeasure the only
step is erasure of the master secret by removing power supply to the BBRAM.

7.2.1.1 DOWN with RSA

In RSA two large secret primes p and q are chosen and the RSA domain Zn =
{0, 1, . . . , n− 1} is computed as n = pq. A value e, 3 ≤ e ≤ Φ(n) = (p − 1)(q − 1)
is chosen as the public exponent subject to the constraint that e and Φ(n) are relatively
prime. The inverse d of e in the modular domain of Φ(n), or d ≡ e−1mod Φ(n) is
the private exponent. The values p, q, and Φ(n) are then destroyed.

For encryption the cipher-text C ∈ Zn corresponding a plain-text P ∈ Zn is
computed as C ≡ P e mod n. The decryption of C is performed as P ≡ Cd mod n.
Similarly signing a hash H of a message is performed as Σ ≡ Hd mod n, and
verification of the signature Σ is achieved by computing H = Σe mod n.
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The goal of the DOWN policy is to protect the private exponent d from being
scavenged from memory. Computations performed for encryption and verification
of signatures (which do not use the private key) are unaffected by the DOWN policy.
The private exponent d is used for decryption and signing. The private exponent needs
to be stored in RAM for performing computations like P ≡ Cd mod n (decryption)
and Σ ≡ Hd mod n (signing).

Modular exponentiation is often performed using the square and multiply ([1],
Chap. 5) algorithm. Let the binary representation of d be δ1δ2 . . . δb (or δi , i =
1 ≤ i ≤ b are the b bits of d , where δ1 represents the most significant bit (MSB)
and δb the least significant bit (LSB)). The evaluation of P = Cdmod n with the
square-and-multiply algorithm proceeds in b steps

zi =
{

z2
i−1mod n if δi = 0

z2
i−1 C mod n if δi = 1

(7.2)

with z0 initialized to 1 and zb = P . Note that in each step (loop) only one bit of the
private key d is required.

Thus the private exponent d can be stored as b independent encryptions of each bit.
For each step in the evaluation of the square-and-multiply algorithm one encrypted
bit is fetched, decrypted, and used in modular computations. Thus no snapshot will
reveal more than one bit of the private key. Recall that without the DOWN policy
the entire private key could be exposed by a snapshot.

7.2.2 DOWN with Other Asymmetric Schemes

The effectiveness of the DOWN policy is intricately tied to the nature of cryptographic
computations that have to be performed using the private key. Such computations may
involve different types of finite field (or ring or group) operations like exponentiation,
multiplication, and computation of multiplicative inverses. As seen earlier, modular
exponentiation (where the exponent is a secret to be protected) is naturally facilitated.
Modular multiplication of two quantities (one of which is a secret to be protected)
can also be facilitated in the same way. Just as exponentiation involves “squaring”
or “squaring and multiplication” in every loop (depending on whether the particular
bit of the private key is a 0 or a 1), for multiplication each loop involves “doubling”
(left shift) or “doubling and addition,” (left shift followed by addition) depending on
the particular bit of the private key.

7.2.2.1 DOWN with Exponential Ciphers

For example, in the El Gamal cryptosystem ([1], Sect. 6) over Zp, using a primitive
element g ∈ Zp, private key a ∈ Zp, and public key α = gamod p. Encryption of a
message x using the public key and decryption using the private key are carried out
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as follows:

eK (x, k) =(y1, y2),

{
y1 = gk mod p

y2 = xαkmod p

dK (y1, y2) =x = y2({ya
1 })−1mod p. (7.3)

where k ∈ Zp−1 is randomly chosen by the entity encrypting the message. The scope
of the DOWN policy in this case is to ensure that no more than a small fraction of
the private key a is decrypted and stored in RAM at any point in time during the
computation of ya

1 . As in the case of RSA, exponentiation with a requires only one
bit of a in each loop of the square and multiply algorithm.

In the El Gamal signature scheme ([1], Sect. 7.3) {p, g, a, α} over Zp, where
g ∈ Zp is a primitive element, and a ∈ Zp is the private key of the signer, and
α = gamod p is the corresponding public key, the signature sig(x, k) for a value
x ∈ Zp, and a random k ∈ Zp−1 is

sig(x, k) = (γ , δ),

{
γ = gkmod p

δ = (x − {aγ })k−1mod p − 1
(7.4)

The operation performed with the secret a (during signing of a message) is evaluation
of aγ modp. Multiplication with a can also be trivially performed using only one bit
of a in each loop.

The popular Diffie–Helman (DH) key exchange algorithm also lends itself readily
to DOWN. In the DH key exchange algorithm two nodes A and B agree on some
prime p and gZp, choose secrets a and b respectively and make public α = gamod p

and β = gbmod p respectively, to establish a shared secret KAB = αb = βa .

7.2.2.2 Elliptic Curves

DOWN also readily extends itself to protecting the private keys of elliptic curve (ECC,
[1], Sect. 6.5) based systems. Elliptic curves form an additive group G ∈ Zp × Zp

defined over a finite field Zp. For example

G = {(x, y)} : y2 ≡ x3 + a0x + a1 mod p (7.5)

is an elliptic curve.
Consider points P = (xP , yP ), Q = (xQ, yQ) ∈ G that lie on the elliptic curve,

where and xp, yP , xQ, yQ ∈ Zp. The operation R = P + Q (addition of two points
on the curve) results in another point R which also lies in the same curve.

G ={(x, y)} : y2 ≡ x3 + a0x + a1 mod p

R =P + Q = (xR , yR),

⎧
⎪⎪⎨

⎪⎪⎩

xR = λ2 − xP − xQ

yR = λ(xP − XR) − yP

where λ =
{

(yQ − yP )(xP − xQ)−1 P �= Q.

(3x2
P + a0)(2yP )−1 P = Q

(7.6)
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For ECC schemes the private key is a randomly chosen value a ∈ Zp. The security of
ECC schemes rely on the assumption that if P ′ = aP , where P , P ′ ∈ G, even with
the knowledge of P and P ′, it is infeasible to evaluate a. The operation performed
with the secret (private key) a in all ECC schemes involves computation of a value
aP . Multiplication of a point P ∈ G by a value a ∈ Zp is carried out as log2 (a)
doubling /“doubling and addition” group operations where only one bit of a need to
be used at any time. Thus, ECC schemes also “DOWN compatible.”

7.2.2.3 Generation of Private Keys

A strict implementation of the DOWN policy mandates that the DOWN policy should
be observed throughout the life cycle of the module. While for most public key
schemes observing the DOWN policy for using the secrets is trivial, for RSA it may
be very difficult to observe the DOWN policy during generation of primes p and q.
Furthermore, many of the optimizations employed for speeding up exponentiation
[86] in RSA can render observing the DOWN policy even for using2 the private key
difficult.

However, generation of secrets is not an issue for El Gamal (and variants) and
ECC schemes, where the private key can be randomly chosen from Zp. Thus for
such schemes it is possible to generate each bit of the private key a independently,
encrypt, store them.

7.2.3 DOWN With ID-Based Schemes

Recall that for ID-based schemes (Sect. 5.2) the ID of the node itself doubles as
the public key, thus obviating the very need for certificates. In ID-based schemes
a key distribution center (KDC) chooses public parameters of the system and one
or more master secrets. Using the secrets the KDC can compute the private key(s)
corresponding to any public key (ID). The private keys for a node with identity A

are thus assigned by the KDC to the node A.
We saw several advantages of ID-based schemes (over certificate-based schemes)

in Sect. 5.2. Another desirable feature of ID-based schemes, especially for their use
in conjunction with tamper-responsive devices, comes from the fact that the keys are
implicitly escrowed (by the KDC). In tamper-responsive devices, false alarms leading
to unintended zeroization can never be ruled out. Without key escrow, functional
devices will be rendered useless under such circumstances. This could even lead to
scenarios where an unfortunate end user may be locked out of all data encrypted using
a secret protected by the module. With escrowed ID-based schemes such devices can
be easily reinstated into the network.

2 Most such optimizations involve exponentiating with the private key in Zp and Zq where n = pq

is the RSA modulus. Thus both the exponent and the modulus (p and q) have to be protected, which
may not be feasible.
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While identity-based schemes based on symmetric primitives require multiple
keys to be stored by each participant, identity-based schemes based on asymmetric
primitives require only one key to be stored by each participant.

7.2.3.1 Shamir’s IBS Scheme

The first identity-based signature (IBS) scheme, was proposed by Shamir [43]. The
KDC chooses:

1. Two large primes p and q, where n = pq

2. e ∈ Zn relatively prime to Φ(n) = (p − 1)(q − 1) (and e is preferably a large
prime)

3. A one-way function f ().

The KDC makes n, e, and f () public. A node with ID IDi is issued a secret gi where
ge

i ≡ IDimod n, or gi is a eth root of IDi in Zn (which can be easily computed by
the KDC as the KDC knows the factors of n). To sign a message M the signer:

1. Chooses a random r ∈ Zn

2. Computes t ≡ re mod n

3. Computes α = rf (t ,M). The signature for a message M is (s, t), where

s ≡ {giα} mod n. (7.7)

The verification condition is se ≡ IDit
f (t ,M) mod n.

Note that the operations with the secret gi by the signer only involve multiplication
({giα}), which poses no problems with DOWN implementation.

7.2.3.2 Pairing-Based Schemes

Shamir’s identity-based scheme does not support encryption. Boneh and Franklin
[41] responded to Shamir’s challenge to develop the first ID-based scheme which
could support both encryption and signatures. Such ID-based encryption (IBE) and
signature (IBS) schemes [41, 42] rely on a bilinear mapping e : G1 ×G1→G2, where
G1 is an additive group and G2 is a multiplicative group. Typically G1 is a special
elliptic curve and the mapping e represents a class of Weil pairings [41]. For pairing-
based IBE/IBS schemes the private key assigned to each node is a point in the elliptic
curve G1.

The pairing operation requires group additions involving a secret in G1, which in
turn calls for computation of multiplicative inverses using the secret. Computation
of multiplicative inverses, say b = a−1mod m, where only one part of the secret a

can be revealed at any time, does not appear to be trivial.
Note that while ECC schemes call for group addition (which requires computation

of multiplicative inverses), the operation is performed on points on the elliptic curve
which do not reveal any information about the private key. For ECC schemes points
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on the elliptic curve may be publicly known generators or intermediate values of
computations. For pairing-based IBE schemes on the other hand, the private key is
itself a point on the elliptic curve. Thus the more versatile pairing based IBE/IBS
schemes do not seem to support DOWN implementations.

7.2.4 DOWN Assurance and Complexity

The DOWN assurance provides a guarantee that an attacker can expose no more
than one elementary fraction of the secret (private key) by tampering with a tamper-
responsive module, as long as the master secret cannot be compromised. In other
words, the DOWN assurance relies only on the first-step countermeasure (erasing
the master secret by removing power supply to the BBRAM). By simply tolerating
the fact that the attacker cannot expose more than 1 b (or fraction) of the private key,
the DOWN policy eliminates the need for the expensive and inherently vulnerable
multi-step measures.

Without the DOWN policy we saw that several additional countermeasures are
mandated to address the problem of remnance. Specifically, such countermeasures
mandated:

1. Sensors for detecting rapid changes in temperature
2. Exclusive circuitry for erasing footprints (when active shields or temperature

sensors are triggered)
3. Increasing the mass of modules

Furthermore such expensive countermeasures are still vulnerable as an attacker with
complete knowledge of the layout of a module can still expose an entire private key
from RAM. With the DOWN policy the attacker is restricted to exposing at most
1 b (or a fraction) of the private key. The complexity imposed by DOWN depends
on the number of elementary DOWN operations into which the process of decryp-
tion/signing is split. For a 1024-b private key d the DOWN complexity is 1024
DOWN operations. However, for protecting the 1024-b private exponent we do not
need to employ 1024 DOWN operations. If we employ only two (where in each
DOWN operation 512 b of the private key are decrypted) no more than 512 b of the
private key can be revealed by a snapshot. In practice, if the PRF used by the module
produces (say) 128-b outputs, it may be more efficient to store the private key as mul-
tiple (encrypted) 128-b chunks. Each DOWN operation may require mode switching
if the dedicated CPU instruction for encrypting/decrypting secrets is permitted only
in a special secure kernel mode [67] (or a concealed execution mode [87]).

The DOWN policy readily lends itself to asymmetric schemes as long as the oper-
ations that employ the private key is restricted to modular exponentiation (RSA, DH
key exchange, El Gamal encryption schemes) or multiplication (El Gamal signature
scheme and variants, ECC). However the DOWN policy is better suited for El Gamal
and ECC schemes where there are no restrictions on the choice of the private key
(unlike RSA where it is required to verify that the private keys p and q are indeed
primes).
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7.2.5 DOWN with PKPSs

When DOWN is used with PKPSs it can provide the assurance that not more than
one of the multiple secrets can be revealed. The effect of this assurance is, however,
different for different PKPSs.

In general, for all PKPSs O( log (1/p)) DOWN cycles will be necessary. Random
preloaded subsets (RPS), hashed random preloaded subsets (HARPS), and parallel
basic key predistribution scheme (PBK) can take good advantage of the DOWN as-
surance. As only one of the k = O(n log (1/p) secrets can be exposed by successfully
tampering with any device, to obtain the equivalent of “secrets from n nodes,” an
attacker has to successfully tamper with nk devices. In other words, an (n, p)-secure
PKPS is rendered (nk, p)-secure with the DOWN assurance.

Unfortunately, parallel Leighton–Micali scheme (PLM) and subset key and iden-
tiity tickets (SKIT) cannot take very good advantage of the DOWN assurance. In
PLM/SKIT, if an attacker can able to expose one of the m secrets from a snap-
shot, the DOWN assurance merely improves the collusion resistance by a factor
m = O( log (1/p)).

Without the DOWN assurance all schemes below:

1. PBK/PLM with parameters m = 64 and l = 212

2. SKIT with m = 32 and l = 211

3. RPS with kr = 171, 233
4. HARPS with k = 107, 088

satisfy p(n) ≤ 2−64∀n ≤ 1420. With the DOWN assurance, however,

1. PBK is rendered (372, 244, 480, 2−64)-secure (nlm = 372, 244, 480)
2. RPS is rendered (243, 150, 860, 2−64)-secure (nkr = 243, 150, 860)
3. HARPS is rendered (152, 064, 960, 2−64)-secure (nkr = 152, 064, 960)
4. PLM is rendered (90, 880, 2−64)-secure (nm = 90, 880), and
5. SKIT is rendered (45, 440, 2−64)-secure (nm = 45, 440)

7.3 A Second Look at Key Predistribution Scheme (KPS)
Complexity

That KPSs will be used in conjunction with a tamper-responsive module influences
not only the security of KPSs but also the overhead. In order to get a better un-
derstanding of various facets of complexity associated with practical deployment of
KPSs, consider the following generic device model suitable for a broad range of
applications.
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Fig. 7.1 Generic device model. A node A includes the device AD , module AM , and an external
resource AS . The external resource may be a passive storage resource, or an active resource which
may also perform some computations on behalf of AD

7.3.1 Generic Device Model

Fig. 7.1 depicts a broad device model where a “node” A is seen as consisting of three
components:

1. A device AD ,
2. A (possibly external) resource AS employed by device AD

3. A tamper-resistant module associated with device AD

While possible, it is not necessary that the three distinct components are physically
linked together. The only assumption is that there exists a channel—a possibly open
channel AD ↔ AS and AD ↔ AM . At one extreme, all three components may
be housed in a single physical unit. At the other extreme, the links AS ↔ AD and
AD ↔ AM may be over long-range networks.

Some practical examples of nodes under this model are as follows:

1. AD may be a wireless sensor device. AM is a chip housed in the device; AS refers
to a proxy device that may even be shared by several nodes.

2. The device AD is a mobile phone; AM is a chip/SIM card in the mobile phone;
AS is a flash memory card in the phone.

3. AD is a general purpose server; AS is a remote database, and AM is a chip possibly
housed in a remote secure location.

Under this device model, the process employed by A for computing a secret KAB

shared with node B can be seen as consisting of the following steps:

Step 1: Computation of Public Function This step is necessary to determine the
indexes of a small fraction of KPS secrets necessary for computing KAB . While this
operation will most likely be the responsibility of the device AD , it may also be
performed by an active external resource AS . In Fig. 7.1 the complexity of this step
is represented as CD .

Step 2: Retrieving Secrets from Storage In general, PKPSs will require the re-
source AS to store k = O(n log (1/p)) secrets/tickets/public values. Out of the k

secrets, only a small fraction m = O( log (1/p)) values will need to be retrieved, for
computing a specific KAB . Let us represent the storage overhead as SS . Let BD = m

be the bandwidth overhead incurred for retrieving the m values.
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Step 3: Providing Inputs to Module AM The m values retrieved from storage may
be combined before they are presented as inputs to the module. For most PKPSs
the m values may be XORed together into a single value. We shall represent the
number of values that need to be provided to the module AM as BM . For most PKPSs
BM = 1. For some PKPSs, however, the m values will have to be provided as inputs
to the module AM (or BD = BM = m).

In scenarios where the external resource is active, the overheadCD may be borne by
the external resource. The external resource retrieves m values, XORs them together
and may provide only a single value to device AD , which is passed on by device AD

to module AM . In this scenario BD = BM = m. If the external resource is a passive
storage device the overhead CD is borne by the device AD . The device may XOR m

values together and submit a single value to the module AM . In this case BD = m

and BM = 1.

Step 4: Operations with Secrets The module AM performs some operations using
secrets stored inside the module, and values presented as inputs to the module. The
secrets that need to be stored inside the module and number of values that need to
be presented to the module will both influence the storage SM required inside the
module.

For most PKPSs O(m) PRF operations will need to be performed inside the
tamper-responsive boundary of the module. Let the number of PRF operations that
need to be performed inside the module be CM . In addition to PRF operations (if
the DOWN policy is used) then the number of DOWN cycles will also need to be
considered as a source of complexity (as each cycle may require mode switching).
Let DM represent the DOWN complexity for module AM .

Ideally, while we would like to minimize all facets of complexity, it is especially
important to minimize the complexity of the module AM , viz., SM (memory require-
ment inside the module), CM (computations performed by the module), and DM

(DOWN complexity).
In addition, it is also necessary to consider the overhead mandated for KDCs. For

any KPS, the KDC can choose a single master secret χ and derive all other values
from χ . Thus, storage for secrets is not an issue. We shall also assume that every
node already possesses a secret it shares with the KDC, which can also be readily
computed by the KDC using the master secret χ . For example, let us assume that
the secret shared between module A and the KDC is KA. The secret KA will then be
used for encrypting all other secrets conveyed to A.

It is not sufficient to enforce the DOWN policy merely for computation of pairwise
secrets. The DOWN policy should also be enforced during the process of receiving
secrets from the KDC. Note that if the secret KA is revealed from a snapshot, all
secrets assigned to A are compromised. A simple way around this is for the KDC to
issue two secrets to every node. Let the two secrets shared with A be KA and K ′

A.
For example, the KDC may compute the two secrets as

KA =h(χ ‖ A ‖ 0) and

K ′
A =h(χ ‖ A ‖ 1) (7.8)
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A secret Sij (associated with an index (i, j )) may then be conveyed to module A as

SA
ij = h(KA ‖ i ‖ j ) ⊕ h(K ′

A ‖ i ‖ j ) ⊕ Sij (7.9)

Module A decrypts SA
ij in two DOWN operations—one in which only KA is revealed,

and the other in which only K ′
A is revealed. This ensures that only one of the two

secrets KA or KA′ can be salvaged from a snapshot. After obtaining Sij , it is re-
encrypted using module A’s master secret (say, χA) as

S ′
ij = h(χA ‖ i ‖ j ) ⊕ Sij (7.10)

Overall, two DOWN operations will be required for the KDC to convey a secret to a
module; three DOWN operations will be required for a module to accept each secret
from the KDC. However, this is a one-time operation.

7.4 Comparison of KPSs

We are now ready to evaluate the seven facets of complexity
(CT , SS , BD , CD , BM , CM , SM for various KPSs we have discussed thus far.
For a fair comparison, we shall evaluate the complexity of all five KPS for the same
(n, p)-security: n = 1420 and p = 2−64. The parameters necessary for the five
KPSs to achieve this requirement are as follows:

1. PBK/PLM: m = 64 and l = 212;
2. SKIT: m = 32, l = 211;
3. RPS: P = 243, 322, 093, k = 171, 233;
4. HARPS: L = 64, P = 85, 872, 352, K = 107, 088.

7.4.1 Deployment Complexity

For all KPSs the KDC starts with a single secret μ.

7.4.1.1 SKIT

The m SKIT secrets χ0 . . . χm−1 can be computed as

χi = h(χ ‖ i). (7.11)

Corresponding to each μi the KDC can readily compute l secrets as

Ki
j = h(χi ‖ j ), 0 ≤ j ≤ M − 1. (7.12)
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Let the two shared secrets between the KDC and node A be KA = h(χ ‖ A ‖ 0)
and K ′

A = h(χ ‖ A ‖ 1). As l = 211, the m short IDs assigned to A are 11-b values.
Thus, the public function f (A) = [a0 . . . am−1] outputs a sequence of m = 32 11-b
values. The sequence of 32 × 11 = 352 b can be readily obtained by hashing A

repeatedly. If a 160-b hash function h() is used, then three evaluations of h() can be
used for realizing f (A) = [a0 . . . am−1].

For providing m secrets to A the KDC has to compute

K
ai

i = h(h(χ ‖ i) ‖ ai), 0 ≤ i ≤ m − 1 (7.13)

and for encrypting each secret the KDC has to compute KA = h(μ ‖ A ‖ 0) and
K ′

A = h(μ ‖ A ‖ 1), and

K
ai

i

′ = K
ai

i ⊕ KA ⊕ K ′
A (7.14)

This calls for four hash operations and three DOWN cycles for generating and
encrypting each of the m = 32 secrets to be supplied to A.

Similarly, the ml tickets to be conveyed to A are computed as

T
j

i (A) = h(h(h(χ ‖ i) ‖ j ) ‖ A), 0 ≤ i ≤ m − 1, 0 ≤ j ≤ M − 1. (7.15)

As tickets assigned to A do not reveal secrets assigned to other devices, it may be
an overkill to extend DOWN protection to every ticket. The KDC may thus convey
a single secret KT

A to A which is used for encrypting every ticket. For example, the
secret KT

A may be generated as h(χ ‖ A ‖ A). The ml tickets are encrypted as

T
j

i (A)′ = T
j

i (A) ⊕ h(KT
A ‖ i ‖ j ), 0 ≤ i ≤ m − 1, 0 ≤ j ≤ M − 1. (7.16)

Thus, for generating any encrypted ticket two DOWN cycles and four hash operations
will be required. As ml >> m, the computational overhead for the KDC can be seen
as 2 ml DOWN operations and 4 ml hash operations. As ml = 216 the KDC overhead
is 217 DOWN operations and 218 hash operations.

For accepting the m + 1 secrets (decrypt the secrets using KA and K ′
A and reen-

crypting them using the master secret μA) module A will require three hashes in three
DOWN cycles. For accepting the ml tickets and reencrypting them two DOWN cycles
and two hashes will be required per ticket.

7.4.1.2 PLM

For PLM the leading factor in KDC complexity is the cost for computing ml/2
public values per node. Computing each K

ai

i will require two hash operations and
one DOWN operation. As two such values and two additional hashes will be needed
for computing a pairwise public value (Kai

i and K
j

i required for computing P i
ai ,j

),
each public values requires four hash operations and two DOWN operations. The
total computational overhead for the KDC is thus 2 ml/2 DOWN operations and
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4 ml/2 hash operations. As ml = 218 the total overhead is 218 DOWN operations
and 219 hash operations.

For accepting m secrets (decrypt the secrets using KA and K ′
A and reencrypting

them using the master secret μA) module A will require three hashes in three DOWN
cycles. No operations with public values are required.

7.4.1.3 PBK

In PBK the KDC has to compute ml secrets to be assigned to every node. Computing
any K

ai

i will require one DOWN operation and two hash operations. Computing each
of the l secrets derived from K

ai

i will require another hash operation. In addition,
two DOWN operations and two hash operations will be required for generating the
secrets KA = h(χ ‖ A ‖ 0) and K ′

A = h(χ ‖ A ‖ 1) to be used for encrypting each
of the ml secrets. Two more hash operations will be required for encrypting each
of the ml secrets using KA and K ′

A. Thus, a total of (1 + 2)ml DOWN operations
and (2 + 2 + 2)ml hash operations are called for. As ml = 218 the total overhead is
3 × 218 DOWN operations and 6 × 218 hash operations.

For accepting ml secrets and rencrypting them 3 ml DOWN cycles and 3 ml hash
operations will be required.

7.4.1.4 RPS and HARPS

For RPS and HARPS with parameters (P , k) (and L for HARPS) it is beneficial to
choose P/k as a power of two. In other words, the P keys in the KDC’s pool can
be seen as k sets of keys each with P/k keys. Every node receives one key from
each set. The index of the ith key assigned to a node A can be readily computed as
a

j

i = h(A ‖ i) where 0 ≤ a
j

i ≤ P/k − 1 is truncated to log2 (P/k) bits. The value
a

j

i identifies the index of the secret (within the subpool i) to be assigned to A. In
HARPS the index and the hash depth can be obtained as a

j

i ‖ d
j

i = h(A ‖ i) where
d

j

i is a log2 L bit value.
Once an index ai is identified using one hash operation, the KDC can compute

the ith secret to be assigned to A as as Ki = h(χ ‖ i ‖ ai) (one DOWN operation
and one hash operation). For encrypting each secret two DOWN operations and two
hash operations will be called for (a total three DOWN operations and four hashes
per issued secret). For HARPS apart the secret Ki will need to hashed (on an average
L/2 times) before it is issued. Thus, the total number of operations per issued secret
is three DOWN operations and 4 + L/2 hash operations.

For RPS with k = 171, 233 the overall KDC complexity is about 1.95 × 218

DOWN operations and 2.6 × 218 hash operations. For HARPS with k = 107, 088
and L = 64 the overall KDC complexity is about 1.22 × 218 DOWN operations and
14.7 × 218 hash operations.

For accepting k secrets 3k hash operations and 3k DOWN cycles will be called
for.
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Table 7.1 Complexity of PKPSs designed to meet the requirement p(n = 1420) = 2−64.
Deployment complexity

KDC (Generating secrets) Node (Receiving secrets)

PKPS CT DT C′
M D′

M

SKIT 218 217 217 217

PBK 6 × 218 3 × 218 3 × 218 3 × 218

PLM 218 219 192 192
RPS 2.6 × 218 1.95 × 218 1.96 × 218 1.96 × 218

HARPS 14.7 × 218 1.22 × 218 1.23 × 218 1.23 × 218

Table 7.1 summarizes various facets of complexity associated with deployment
of probabilistic KPSs—CT is the computational overhead to be borne by the KDC
for generating secrets for a node, performed in DT DOWN cycles. C ′

M is the com-
putational overhead for a node to accept the secrets issued by the KDC, where the
process calls for D′

M DOWN cycles. From the perspective of complexity of deploy-
ment of the KPS all schemes are comparable. The only exception is PLM, where
the complexity for receiving secrets is substantially lower due to the fact that public
values generated by the KDC can be directly stored without additional processing.

7.4.2 Complexity During Regular Operation

During regular operation the the three components of every device will need to
perform some tasks in order to compute any pairwise secret. For a node A, SS values
will need to be stored by SA. For computing any pairwise secret CA computations will
have to be performed to identify BM encrypted secrets/public values to be fetched
from storage. This will be followed by supplying BM values to mode AM . Module
AM will require an internal storage of SM to store secrets and inputs provided by
AD . Module AM will then have to perform CM PRF operations in DM DOWN cycles
to compute the pairwise secret.

7.4.2.1 SKIT

At node A, the ml encrypted tickets can be stored in storage SA. Thus, SS = ml = 216.
The m = 32 secrets K

ai

i and the secret KT
A used for encrypting all secrets are stored

inside the module (encrypted using module A’s master secrets μA).
To compute a pairwise secret KAB , the device AD:

1. Computes [a0 . . . am−1] = f (A) to identify the 32 encrypted tickets that need to
be fetched from storage AS

2. Fetches 32 tickets T
bi

i (A)′ from AS (or BD = 32)
3. XORs all 32 (encrypted) tickets together to obtain

TB(A)′ = T
b0

0 (A)′ ⊕ T
b1

1 (A)′ . . . ⊕ T
b31

31 (A)′ (7.17)
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4. Provides TB(A)′ (along with the identity B) to the module AM (BM = 2)

Note that each of the 32 encrypted tickets is of the form

T
bi

i

′ =T
bi

i ⊕ E
bi

i where

E
bi

i =h(KT
A ‖ i ‖ bi) (7.18)

Thus, the XOR of the 32 unencrypted tickets, viz.,

TB(A) =T
b0

0 (A) ⊕ . . . ⊕ T
b31

31 (A)

=(T b0
0 (A)′ ⊕ E

b0
0 ) ⊕ . . . ⊕ (T b31

31 (A)′ ⊕ E
b31
31 )

=TB(A)′ ⊕ EB where

EB =E
b0
0 ⊕ . . . ⊕ E

b31
31 . (7.19)

The module AM :

1. Computes [ao . . . am−1] = f (A) and [bo . . . bm−1] = f (B)
2. Computes m = 32 tickets

T
ai

i (B) = h(Kai

i ‖ B), 0 ≤ i ≤ 31 (7.20)

that B has access to, and XORs all of them together as

TA(B) = T
a0

0 (B) ⊕ . . . ⊕ T
a31

31 (B) (7.21)

For decrypting the m keys K
ai

i m DOWN operations and m hash function oper-
ations will be required. For computing m tickets, m additional hash operations
will be required (a total of 2 m hash operations in m DOWN cycles).

3. Computes E
bi

i = h(KT
A ‖ i ‖ bi), 0 ≤ i ≤ m − 1 to determine the secrets used

for encrypting the tickets T
b0

0 (A) . . . T310b31 (A) fetched from storage, and XORs
them together as

EB = E
b0
0 ⊕ . . . ⊕ E

b31
31 . (7.22)

For decrypting KT
A one DOWN operation and one hash operation is required. For

computing the m Eis, m hash operations are called for (m + 1 hash operations
and 1 DOWN cycle for computing EB).

4. Finally, module AM computes the pairwise secret as

KAB = TB(A) ⊕ EB ⊕ TA(B) (7.23)

Thus, for module AM , CM = 2 m+m+1+6 = 103—2 m h() operations are required
to compute TA(B), m + 1 operations for computing EB , and six hashes to compute
f (A) and f (B). The number of DOWN cycles required is DM = m + 1 = 33.
The storage complexity for AM is SM = m + 1 + 2 = 35 (32 secrets of the form
K

ai

i , 0 ≤ i ≤ 31, the secret KT
A , and two values—the XORed tickets and the identity

of the peer B—provided as inputs).
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7.4.3 PLM

For PLM with m = 64, l = 212 (ml/2 = 217), the ml/2 public values can be stored
in storage SA. Thus, SS = ml/2 = 217. The m = 64 secrets are decrypted and stored
inside the module.

For computing a pairwise secret, the device AD:

1. Computes f (B) and f (A) (CD = 2 × 5 = 10)
2. Fetches (on an average) m/2 public values from storage (BD = m/2 = 32)
3. XORs them together to obtain PAB

4. Provides PAB to AM (or BM = 1)

Thus, BD = m/2 = 32, CD = 10, and BM = 2.
The module AM stores m = 64 secrets. The module

1. Computes f (B)
2. Computes m secrets Si = h(Kai

i ‖ B) and XORs them together, and computes
the pairwise secret as

KAB = S0 ⊕ . . . ⊕ S63 ⊕ PAB (7.24)

This calls for m DOWN cycles in which each K
ai

i is decrypted, and m hash operations:
CM = m + 5 = 69, and SM = m + 2 = 66, and DM = m = 64.

7.4.4 PBK

For PBK with m = 64, l = 212 (ml = 218) the ml encrypted secrets can be stored in
SA—SS = ml = 218.

To enable AM to compute a pairwise secret KAB , the device AD:

1. Computes f (A) = [a0 . . . a63 and f (B) = b0 . . . b63.
2. Fetches m = 64 encrypted keys Kbi

ai

′
from storage (BD = m = 64)

3. Computes

S ′ = Kb0
a0

′ ⊕ . . . ⊕ Kb63
a63

′
(7.25)

4. Supplies two values—S ′ and the identity B to AM

Thus, BD = m = 64, CD = 10, and BM = 2.
To compute the pairwise secret the module:

1. Computes f (A) = [a0 . . . a63 and f (B) = b0 . . . b63

2. Computes m values of the form Ei = h(μA ‖ ai ‖ bi)—the values used to encrypt
the secrets stored in storage—and computes

KAB = E0 ⊕ . . . ⊕ E63 ⊕ S ′ (7.26)

Thus, CM = m + 10 = 74, DM = m = 64 and SM = 2.
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7.4.5 RPS and HARPS

For RPS with parameters P and k the k encrypted secrets can be stored in in AS (or
S = 171, 233. To determine the shared secret, device AD

1. Computes F (A) and F (B) (or CD = 2k.
2. The m ≈ 121 encrypted secrets K ′

j1
. . . K ′

j121
are fetched from storage: BD = 121

3. The 121 encrypted secrets are XORed together as

K ′
AB = K ′

j1
⊕ . . . ⊕ K ′

j121
(7.27)

4. Values K ′
AB and B are inputs to module AM , along with the m common indices.

Let us assume that 121 (for example, 16-b) indexes is equivalent to 12 keys
(BM = 2 + 12 = 14).

The module AM now needs to:

1. Verify the m indexes j1 . . . jm. To verify that f (A, i) = f (B, i) = ji two hash
operations will be required.

2. Compute Ei = (μA ‖ i ‖ ji) for each shared index (121 PRF operations in 121
DOWN cycles) and compute

KAB = E1 ⊕ . . . ⊕ E121 ⊕ K ′
AB (7.28)

Thus CM = 3 m = 363 and Dm = m = 121.
For HARPS with parameters the k encrypted secrets can be stored in in AS (or

S = 107, 088. To determine the shared secret, device AD:

1. Computes F (A) and F (B) to determine the m = k2/P ≈ 133 (on an average)
shared indexes j1 . . . jm. Thus, CD = 2k.

2. The m ≈ 133 encrypted secrets K ′
j1

. . . K ′
j133

are fetched from storage: BD = 133
3. The 133 values K ′

j1
. . . K ′

j133
along with 133 shared indexes are inputs to module

AM (BM = 133 + 13).

Module AM :

1. Verifies F (A) and F (B) for the shared indexes j1 . . . jm (about 2 m = 266 h()
operations).

2. For each shared index ji compute Si as follows:
(a) Compute Ei = (χA ‖ i ‖ ji), and S ′

i = Ei ⊕ K ′
ji

to decrypt the stored secret
(b) Depending on the hash depths of A and B corresponding to the index ji the

secret S ′
i may need to be hashed to reach the same depth as the other node.

As the average difference between any two uniformly distributed numbers
between one and L is L/3, and as only for half the keys a node has to hash
forward, the average number of additional hashes per shared key is L/6.

3. All 133 hashes secrets are XORed together to yield KAB .

Thus CM = 2 m + m + mL/6 ≈ 1818, and DM = m = 133.



124 7 Using PKPSs with Tamper-Responsive Modules

Table 7.2 Complexity of PKPSs designed to meet the requirement p(n = 1420) = 2−64 without
the DOWN assurance, and p(n × db) = 2−64 with the DOWN assurance

Storage Device Module DOWN benefit

PKPS SS CD BD SM CM DM db

SKIT 65,536 3 32 35 103 33 32
PBK 262,144 10 64 2 74 64 262,144
PBK′ 393,216 9 24 2 33 24 393,216
PLM 131,072 10 32 65 69 64 64
RPS 171,233 171,233 121 14 363 121 171,233
HARPS 107,088 107,088 133 16 1818 133 107,088

Table 7.2 summarizes various facets of complexity associated with regular day-
to-day use of probabilistic KPSs. RPS and HARPS can be immediately rejected as
unsuitable due to the considerable overhead for devices—for computation of the
public function to determine common indexes.

Among the three KPSs with low public function complexity, viz., SKIT, PLM, and
PBK, PBK is clearly advantageous due to the fact that it requires the least overhead
inside the module, and that it can take good advantage of the DOWN assurance.
For PLM and SKIT taking advantage of the DOWN assurance will require a larger
choice of parameter m, which will unfortunately increase both the computational
overhead CM and DOWN complexity DM . On the other hand, for PBK we can
actually improve the DOWN assurance while lowering computational overhead CM

and DOWN complexity DM . For example, instead of m = 64 and l = 212, we can
choose the m = 24 and l = 214 to achieve the same p(n) security. However for such
a scheme:

1. Computational overhead CM and DOWN complexity DM are lower by a factor
24/64 = 0.375.

2. As ml increases by a factor 1.5, so does the benefit db accrued from the DOWN
policy.

In Table 7.2 the overhead for PLM with lower m (and higher l and storage ml) is
labeled PBK′.

7.5 KPS Algorithms

Irrespective of the specific nature of the KPS, the algorithm executed by two modules
Mi and Mj for computing a pairwise secret Kij can be represented as

Kij = fpw(〈Ki〉, Mj , Pij ) = Kji = fpw(〈Kj 〉, Mi , Pji) (7.29)

where

1. Ki represents the secrets stored inside Mi

2. Kj represents the secrets stored inside Mj

3. Pij and Pji are pairwise non secret values
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As secrets like Ki and Kj are always stored inside the module, they need not be
provided as inputs to the module every time the function fpw() is invoked (this is
the reason they are enclosed in angled brackets). Values like Pij and Pji can either
be public values (in the case of MLS or PLM) or encrypted secrets (for SKIT and
PBK).

The difference between the nonscalable MLS and scalable schemes (SKIT, PBK,
and PLM) is that in the former every Pij is independently stored. For scalable schemes
the Pij is obtained by XORing multiple values together.

Specifically, to obtain the value Pij required for Mi to compute Kij :

1. In MLS the public value Pij is fetched from storage.
2. In SKIT m encrypted tickets are XORed together to obtain the input Pij .
3. In PLM m/2 public values (on an average) are XORed together to obtain Pij .
4. In PBK m encrypted secrets are XORed together to obtain Pij .

Scalable KPSs also require evaluation of short IDs. Specifically,

1. In SKIT and PLM Mi requires to compute m the short IDs corresponding to Mj .
2. In PBK Mi requires to compute the short-IDs itself (Mi) and Mj .

Let us represent by [j1 . . . jm] = fsid (m, n, Mj ) a function which generates m short
IDs of Mj , each of length n bits, where 2n = l for a (m, l) PKPS. As mentioned
earlier, if the PRF outputs L bits hashes then ceil(mn/L) hashes will be computed
to generated to compute m n-b short-IDs. The function fsid () is as follows:

[ j1 || ··· || jm] := fsid(m,n,Mj){
t ceil(mn/L)
tmp h(Mj)
FOR c = 2 : t
tmp tmp || h(tmp);

TRUNCATE tmp to mn bits
}

Irrespective of the KPS, if DOWN policy is enforced, every module possesses a
master secret. Let χi be the master secret in module Mi . Let us represent the DOWN
operation as D(). When invoked with a value X

D(x) = h(χi ‖ X) (7.30)

returns as secret used to encrypt another secret with an index X.
However, the number of secrets Ki are different for different schemes. Specifi-

cally,

1. In MLS every module will need to store as many secrets as the number of indepen-
dent KDCs. At least two KDCs should be used to take advantage of the DOWN
assurance (at most one of the two secrets can be exposed from a snapshot). Let
the encrypted secrets be K1

i and K2
i . The secrets can be decrypted using a DOWN

operation as D(1) ⊕ K1
i and D(1) ⊕ K2

i respectively.
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2. In PBK no additional secret is necessary as all mM secrets are encrypted using
the master secret and stored outside. The decryption secret for a secret with index
(ci , cj ) stored outside is D(ci ‖ cj ).

3. In PLM m secrets (say) K1
i . . . Km

i are stored inside the module. Specifically, even
inside the module they are stored encrypted using the master secret; only one of
the m secrets will be revealed by any snapshot. The secret Kc

i can be decrypted
using a DOWN operation D(c).

4. In SKIT the module Mi stores m + 1 secrets used to compute tickets, and one
secret used to decrypt stored tickets. Let the m + 1 secrets be K1

i . . . Km
i , and Kt

i

respectively. The secret Kc
i where c = 1 . . . m can be decrypted using a DOWN

operation D(c). The secret Kt
i is decrypted using D(m + 1).

The function fpw() executed inside module for various KPSs can be algorithmically
represented as follows.

7.5.1 MLS

Two DOWN operations are required to decrypt the two secrets assigned to Mi . Unlike
scalable KPSs function fsid () is not required.

Ki j := f mlspw (Mj ,Pi j){
RETURN h((D(1) K1

i ) Mj) h((D(2) K2
i ) Mj) Pi j;

}

7.5.2 Scalable KPSs

In PBK Mi will need to compute [i1 . . . im] and [j1 . . . jm] to determine the index
(ic, jc) (where 1 ≤ c ≤ m) required for performing the DOWN operation.

Ki j := f PBKpw (Mj ,Pi j){
[i1 · · ·im] = fsid(m,n,Mi);
[ j1 · · · jm] = fsid(m,n,Mj);
K Pi j;
FOR (c = 1 : m)
K K D(ic, jc);

RETURN K;
}

In PLM the m secrets stored inside the module can be decrypted using DOWN
operations D(1) . . . D(m). Each secret then needs to be hash extended using a short
ID of Mj .
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Ki j := f plmpw (Mj ,Pi j){
[ j1 · · · jm] = fsid(m,n,Mj);
K←Pi j;
FOR (c = 1 : m)
tmp←D( c) ⊕Kci ;
K←K⊕h(tmp ‖ jc);

RETURN K;
}

In SKIT the m + 1 secrets stored inside the module can be decrypted using
DOWN operations D(1) . . . D(m) and D(m+1). After decryption each secret is used
to compute a ticket by hash extending the secret using the identity Mj . The short IDs
of Mj are required to decrypt the encrypted tickets (XORed together as Pij ).

Ki j = f skitpw (Mj ,Pi j){
[ j1 · · · jm] = fsid(m, n,Mj);
K←Pi j;
FOR (c = 1 : m)
tmp←D(c)⊕Kci ;
K←K⊕h(tmp ‖Mj);

tmp←D(m+ 1)⊕Kti ;
FOR (c = 1 : m)
K←K⊕ h(tmp ‖ jc);

RETURN K;
}

7.6 Security Protocols Utilizing fpw()

The shared key Kij is typically used for two broad purposes:

1. Authenticating a value, or
2. Encrypting a secret

Specifically, a process Ui with access to module Mi can utilize the module to convey
an authenticated value/secret to a process Uj with access to module Mj .

The authenticator for a value v emanating from module Mi for purposes of verifi-
cation by a module Mj , will take the form of a message authentication code (MAC)
computed using the secret Kij . Specifically, the MAC for value v may be computed
using a PRF h() as

Aij = h(v ‖ Kij ). (7.31)

For conveying a secret K to module Mj , module Mi can encrypt secret K using Kij .
More specifically, the Mi chooses a random nonce N and computes

K ′ = K ⊕ h(Kij ‖ N ) (7.32)

as the encrypted version of K . On receipt of the encrypted secret and the nonce N ,
the receiver may now decrypt the secret as

K = K ⊕ h(Kij ‖ N ) (7.33)
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If the simple operations above for computing/verifying MACs or for encrypt-
ing/decrypting secrets are also performed inside the trusted boundary of the modules,
there is no reason for the processes like Ui and Uj that employ the modules to gain
access to shared secrets like Kij .

More generally, authenticated values and encrypted secrets may also be atomically
relayed by modules. We already saw the utility of relaying authenticated values in
the trusted computing base–domain name server (TCB–DNS) protocol outlined in
Sect. 4.5. In the rest of this section we provide a more useful generalization of such
atomic relay protocols, where the module functionality fpw() is utilized to compute
pairwise secrets between modules.

7.6.1 Atomic Relay Protocols

An atomic relay function executed by a module Mi receives as inputs authenticated
values from an upstream module Mu. Relayed values may be modified in a specific
manner to provide a context. For example, to indicate that a value v was received
from Mu, the module Mi may relay a value v′ = h(v ‖ Mu) to the downstream
module Md .

The atomic relay function can be used for relaying authenticated values or secrets.
Specifically, relaying an authenticated value serves the purpose of broadcasting an
authenticated value to any number of receiving processes. Recall that such a function
was used in TCB–DNS (Sect. 4.5) to relay authenticated values corresponding to
DNS records created by zone owners, to any number of DNS clients who may desire
a specific record created by the zone owner. In TCB–DNS the authenticated values
were relayed over a fixed number of hops. A value created by a zone owner was
relayed over two hops to DNS clients. At the first hop is the module associated with
a name server for the zone, and at the second hop was the preferred name server (or
the local DNS server) employed by the client to perform iterative queries. Similarly,
the atomic relay function can also be used to relay secrets over multiple hops to result
in unique path based secrets. In this section we take a deeper look at atomic relay
protocols.

7.6.2 Atomic Authentication Relay Algorithm

The inputs to an atomic relay algorithm Fra() can be classified into the following
categories:

1. [Mu, Pu, Md , Pd ]—Values needed for fpw() to compute pairwise secrets with the
upstream module Mu and downstream module Md .

2. [v, α]—Authenticated values provided by the upstream module Mu. The value α

is an authenticator (a MAC) for the value v.
3. A value o for representing path length.
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The output of Far () is an authenticator αi (which is the input α for the downstream
module).

Using the inputs [Mu, Pu, Md , Pd ] the module Mi executing Far () can readily
compute the shared pairwise secrets Kiu (between Mi and Mu) and Kid (between Mi

and Md ) as

Kiu = fpw(Mu, Pu)andKid = fpw(Md , Pd ) (7.34)

If the input Mu = 0, the implication is the inputs [v, α] to Far were not provided by
an upstream module. Specifically, the v has been provided by the untrusted process
Ui with access to Mi .

When Mu = 0 the authenticator for v is computed by Mi as

αi = h(v ‖ o = 1 ‖ Kid ) (7.35)

The value o = 1 conveys to the downstream module that Mi is the initiator of the
relay.

If Mu �= 0 the implication is that the values [v, α] provided as inputs to Mi were
outputs of Far () executed by Mu. The integrity of the MAC α is verified as

α = h(v ‖ o ‖ Kiu) (7.36)

where o is the hop count of the upstream module.
On successful verification, the verified value v can be relayed to the down-

stream module Md as vi = h(v ‖ Mu) indicating that v was received from Mu.
The authenticator αi is computed as

αi = h(vi ‖ o + 1 ‖ Kid ). (7.37)

Note that the authenticator is bound to the incremented hop count.
The process Ui employing Mi is free to decide if the inputs [v, α] should merely

be verified, or if the values should be relayed onward. For the former scenario Far ()
is invoked with Md = 0 (no downstream module). For the latter scenario, Md �= 0.

The algorithm for Far () can be represented as follows:

Ad := Far([Mu,Pu,Md ,Pd], [v,α ],o){
Kiu ← fpw(Mu,Pu);Kid ← fpw (Md ,Pd); //Compute Keys Shared with Mu and Md
IF (Mu = 0)

RETURN α i ←h(v ‖1 ‖Kid);
ELSE IF(Mu /= 0)

IF (α /= h(v ‖o ‖Kiu)) RETURN 0;
IF (Md > 0) RETURN α i = h(h(v ‖Mu) ‖o+ 1 ‖Kid);
ELSE RETURN v;

}

A value v initiated by a process with access to module MA, relayed over a path
that includes MB and MC will be received any module MD downstream of MC as

vc = h(h(h(v ‖ MA) ‖ MB) ‖ MC) (7.38)



130 7 Using PKPSs with Tamper-Responsive Modules

Accompanying this will be an authenticator for hop count o = 3. the hop count
prevents the process UA associated with MA to choose (for example) v = h(v′ ‖ MX)
to effectively implicate MX as the originator of a value v′.

The main difference between the function Far () and the atomic relay function
used in TCB–DNS is that the latter did not require a hop count, as the path length
was always the same. In TCB–DNS values like v are created by zone owners and
relayed by two intermediate modules—one associated with an zone name server for
the zone and the second associated with a preferred name server employed by the
querying stub resolver.

Note that from the perspective of a receiver, there in no way to differentiate
between a value v = h(v′ ‖ Mk) initiated by Mi and a value v′ initiated by Mk .
If path lengths can be variable, then the hop count is required to eliminate such
ambiguities. Specifically, as Mi did not receive the value v′ from Mk it will set the
hop count to o = 1 in the authenticator relayed downstream. On the other hand, if
Mi had actually received a value v′ from Mk then the hop count in the authenticator
relayed downstream will be o = 2.

7.6.3 Atomic Path Secret Relay Algorithm

The inputs to an atomic relay algorithm Fras() are

1. [Mu, Pu, Md , Pd ]—Values needed for fpw() to compute pairwise secrets with the
upstream module Mu and downstream module Md .

2. [v, α, N ]—Authenticated values provided by the upstream module Mu. N is a
nonce necessary to decrypt the encrypted secret v, and the MAC α enables
verification of the integrity of the decrypted secret.

3. A flag r which specifies an instruction by the previous hop indicating if the secret
should be relayed onward.

The outputs of Fars() include a value vi (which is the input v to the downstream
module), an authenticator αi (which is the input α for the downstream module) and
a nonce Ni .

Using the inputs [Mu, Pu, Md , Pd ] the module Mi executing Fars() can easily
compute the shared pairwise secrets Kiu (between Mi and Mu) and Kid (between Mi

and Md ).
If the input Mu = 0, the implication is the inputs [v, α, N ] to Fars were not

provided by an upstream module. Instead, the v has been provided by the untrusted
process Ui with access to Mi . In such a scenario the module Mi generates a nonce
Ni . The secret v is first encrypted as to

vd = h(v ‖ r ‖ Md ) (7.39)

where r is an instruction to Md .
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The secret vd is then encrypted using a generated nonce Ni and the pairwise secret
Kid as

vi = h(Kid ‖ Ni) ⊕ vd (7.40)

to obtain the output vi .
The value r provided as input serves as an instruction to the downstream module.

1. If r = 0 the next hop Md is instructed to not forward the secret onward. Md is
required to return the secret to the process invoking Fars() in Md .

2. If r = 1 the secret should only be relayed onward, and can not be returned to the
process.

The authenticator αi is computed as a function of the secret vd and the instruction
r as

αi = h(vd ‖ r ‖ Kid ) (7.41)

7.6.4 Accepting Relays

If Mu �= 0 the implication is that the values [v, α, N ] provided as inputs to Mi were
outputs of Fars() executed by Mu.

The secret is first decrypted as

v′ = h(Kid ‖ N ) ⊕ v (7.42)

Unlike the scenario for relaying authenticated values, the process Ui does not have
the freedom decide if the secret should be returned to the invoking process Ui or
relayed onward. Whether Mi will relay the secret or return the secret to Ui depends
on the value r bound to the authenticator α provided by the upstream module.

If the upstream module had set r = 0 for purposes of computing the authenticator,
then the function Fars() should be invoked with Md = 0 (no downstream module
should be specified). On the other hand, if the upstream module had specified r = 1
then Md should not be zero.

If Md = 0 the authenticator for the received secret is verified as

α = h(v′ ‖ 0 ‖ Kiu) (7.43)

On successful verification the value v′ is returned to the process Ui . If Md �= 0 the
authenticator for the received secret is verified as

α = h(v′ ‖ 0 ‖ Kiu) (7.44)

The secret is then used to generate the secret

vd = h(v′ ‖ r ‖ Md ) (7.45)
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to be conveyed to the downstream module Md , along with the instruction to relay
(r = 1) or to not relay (r = 0).

The secret vd is encrypted as

vi = h(Kid ‖ Ni) ⊕ vd (7.46)

to obtain the output vi , where Ni is also provided as an output. The authenticator for
vi and the instruction r bound to vi is

αi = h(vd ‖ r ‖ Kid ). (7.47)

The algorithm for Fars() can be represented as follows:

Ad := Fars([Mu,Pu,Md ,Pd], [v,α ,N], r){
Kiu← fpw(Mu,Pu);Kid ← fpw(Md ,Pd); //Compute Keys Shared with Mu and Md
ELSE IF(Mu = 0)
Ni = frsg();
vd ← h(v ‖ r ‖Md);
vi← h(Kid ‖Ni) ⊕vd ;
α i← h(vd ‖ r ‖Kid);
RETURN Ni, vi,α i;

ELSE IF((Mu /= 0) ∧ (Md = 0))
vi← h(Kiu ‖N) ⊕v;
IF (α = h(vi ‖0 ‖Kiu)) RETURN vi;

ELSE IF((Mu /= 0) ∧ (Md > 0))
v′ ← h(Kiu ‖N)⊕v;
IF (α /= h(v ′ ‖1 ‖Kiu)) RETURN 0;
vd = h(v ′ ‖ r ‖Md);Ni = frsg() ;
vi← h(Kid ‖Ni) ⊕vd ;
α i← h(vd ‖ r ‖Kid);
RETURN Ni, vi,α i;

}

For purposes of relaying a secret, a secret v relayed over a path MB and MC for
consumption by the process associated with module MD will take the form

vd =h(vc ‖ 0 ‖ MD) where

vc =h(vb ‖ 1 ‖ MC) where

vb =h(v ‖ 1 ‖ MB) (7.48)

Note that all relays should be associated with a value r = 1 and the terminal (MD in
this case) with r = 0.

In order to permit multiple independent processes to utilize a trusted module,
untrusted processes may themselves be issued “module” identities and secrets corre-
sponding to such identities. Some bits in the identity of every “module” can specify
if the module is trusted or untrusted. Thus, for example, all DNS clients employing
a local DNS server associated with module Mp can be seen by Mp as “modules” to
which authenticated values/secrets can be relayed.

As module identities of all relaying modules are bound to authenticated values,
authentication information that includes untrusted modules in the path can be ignored.
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Untrusted modules can however be terminal points for authenticated values and path
secrets.

Once again the difference between the atomic relay strategy discussed in Sect. 4.7
and the more generic version outlined in this section is that the instruction r was not
used in the former. In the former scenario, all intermediaries (modules associated
with a zone name server and a preferred name server) can only relay decrypted
secrets, and not return secrets to the calling process.

7.7 Conclusions

The choice of an appropriate key distribution strategy is influenced by several fac-
tors. Ultimately, algorithms for computing pairwise secrets will need to be executed
inside trustworthy tamper-responsive boundaries. From the perspective of lowering
overhead inside the trusted boundary, MLS is the ideal choice as it requires the least
overhead inside the trusted boundary, and that it is not susceptible to collusion.

While MLS may be sufficient for a wide range of applications, the limit on its
scalability, albeit a soft limit, can render MLS unsuitable for some application sce-
narios. Until we develop substantial confidence in the ability to offer close to absolute
guarantee of the integrity of the master secret in tamper-responsive devices (as this
is a prerequisite for the DOWN assurances) SKIT may be a wiser choice for sce-
narios demanding unlimited scalability (due to the fact that SKIT offers the best
(n, p)-security for a fixed amount of storage, and that SKIT also offers the best re-
sistance to attacks that can leverage brute-force search capabilities. Thereafter, PBK
is a better choice.



Chapter 8
Broadcast Authentication and Broadcast
Encryption

A broadcast authentication (BA) scheme permits any receiver to verify the authentic-
ity of the source and the integrity of the contents of the broadcast message. This can
be achieved using digital signatures if public key cryptography is used. However, in
many application scenarios, resource constraints may prohibit the use of asymmetric
cryptographic primitives. BA schemes that employ only symmetric cryptographic
primitives include one-time signature (OTS) schemes, schemes like TESLA, based
on asymmetry of time, and schemes based on probabilistic key predistribution.

Broadcast encryption (BE) [88] provides a means of establishing shared secret
between g privileged devices, among a set of G = g+r devices, where the r devices
which are not provided with the secret are usually referred to as revoked devices. BE
schemes can be broadly classified into tree-based schemes and “flat” schemes based
on probabilistic key predistribution.

8.1 Certificates-Based Broadcast Authentication (BA)

BA schemes can be broadly classified into certificates-based schemes and identity-
based schemes. In certificates-based schemes, the signer has complete freedom to
choose the private key R and compute the corresponding public key U . Consequently,
the public key U reveals no information about the identity of the signer. This is the
reason that a certificate authority is required to certify the binding between a public
key and an identity/credential. Recall that in identity-based schemes, the private key
is assigned by a key distribution center (KDC)—corresponding to a public value
(identity) assigned by the KDC. In identity based schemes, no certificate is required.

Certificates-based schemes employing only symmetric cryptographic primitives
include one-time signature schemes and TESLA.

8.1.1 One-Time Signatures (OTS)

In public key schemes, a message signed using a private key R can be verified using
the corresponding public key U . Unlike an asymmetric key pair (R, U ), which can be
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used for signing any number of messages, one-time-signature (OTS) key pair (r , u)
can be used for signing only a single message (or equivalently, a b-bit hash).

An OTS key pair (r , u) is generated by choosing a private key r and computing
the public key as

u = gots(r) (8.1)

where the OTS key generation function gots() involves several applications of a PRF
h().

8.1.1.1 One-Time Signatures (OTS) Key Pair Generation

If the hash to be signed is b-bits long, the signer chooses:

1. values np, lp such that np log2 lp ≥ b; and
2. values ns and ls such that lns

s ≥ np(lp − 1).

For example, for b = 80, the signer can choose np = 10, lp = 256, ns = 2, ls = 51
(np log2 lp = 10 × 8 = 80, ln

s

s = 512 = 2601 > np(lp − 1) = 10 × 255 = 2550).
As another example, the signer can choose np = 8, lp = 1024, ns = 2 and ls = 91
(np log2 lp = 8 × 10 = 80, ln

s

s = 912 = 8281 > np(lp − 1) = 8 × 1023 = 8184).
The private key r is used to generate:

1. np “primary” hash chains, each of length lp, and
2. ns “secondary” hash chains, each of length ns .

The head values of the primary chains can be readily computed from r as

P 0
i = h(r , i, 0), 1 ≤ i ≤ np. (8.2)

Each head value is hashed repeatedly to create the respective tail values

P
lp−1
i = hlp−1(P 0

i ), 1 ≤ i ≤ np. (8.3)

Similarly, the head values of the ns secondary hash chains are computed as S0
j =

h(r , j , 1). Let their respective tails be S
ls−1
j , 1 ≤ j ≤ ns . The np + ns tails

P
lp−1
1 · · · P lp−1

np and S
ls−1
1 · · · Sls−1

ns
(8.4)

are hashed together to yield the public key u.
To sign a b-bit value M using the key pair (r , u), M is interpreted as np log2 lp-bit

values m1 ‖ · · · ‖ mnp
. For example, if b = 80, np = 10, lp = 256, then the 80-bit

M is seen as 108-bit values 0 ≤ mi ≤ 255.
Let X = ∑np

i=1 mi . Now let xj , 1 ≤ j ≤ ns represent the digits of a base-ls
representation of X, or

X =
∑

j=1

nsx
j−1
i (8.5)



8.1 Certificates-Based Broadcast Authentication (BA) 137

Let uj be the complement of xj (or uj = ls − 1 − xj , 1 ≤ j ≤ ns). The signature for
M is then np + ns hashes, P

mi

i , 1 ≤ i ≤ np and S
uj

j , 1 ≤ j ≤ ns (one value from
each chain).

Verifying the signature is performed by:

1. repeatedly hashing the values P
mi

i , 1 ≤ i ≤ np, lp − 1 − mi times (to arrive at
the tail values of each primary chain);

2. computing X and thus the xj values;
3. hashing values S

uj

j , 1 ≤ j ≤ ns , xj times (to arrive at the tail values of the
secondary chains); and

4. hashing all tails together to arrive at the public key u.

If the result is indeed the public key u, the verifier can conclude that only an entity
with access to the corresponding private key r could have computed the signature.

Note that given a value P
mi

i , 1 ≤ i ≤ np and S
uj

j , 1 ≤ j ≤ ns , only entities with

access to the private key r can compute values P
m′

i

i for m′
i < mi and S

u′
j

j for u′
j < uj .

While any one can compute P
m′

i

i for m′
i > mi , in such cases X′ = ∑np

i=1 m′
i =∑ns

j=1 x ′
j l

j−1
s will be such that at least one x ′

j > xj (or at least one u′
j < uj ). Thus,

without access to the private key r , computing a valid signature for any message
M ′ �= M will require inverting the one-way function h().

8.1.2 Timed Efficient Stream Loss Tolerant Authentication
(TESLA)

In “timed efficient stream loss tolerant authentication” (TESLA) [12], the signer A

generates a hash chain {K0
A, K1

A, . . . , KL−1
A , KA

L } by choosing a random secret (head
of the chain) K0

A, and repeatedly hashing the value to generate the remaining values
in the chain. The last value in the chain, KL

A is made public.
Each value in the chain is associated with an absolute value of time. A TESLA key

associated with time ti should be kept a secret until time ti . The key can be used to
compute an hashed message authentication code (HMAC). Any verifier who receives
the HMAC before time ti can verify the HMAC after time ti , when the TESLA key
used for computing the HMAC is made public.

Unlike digital signatures and OTS schemes, TESLA-based authentication is delay
sensitive, and does not facilitate instantaneous verification. In a TESLA hash chain

HA
t0,Δ = {K0

A, K1
A, . . . , KL−1

A , KA
L } (8.6)

with public key (or commitment) KA
L is associated with an absolute value of time t0

and a period (or TESLA interval) �, for example, � = 1 s, and ti is December 1
2014 0600:00 GMT. The signer and all verifiers are assumed to agree on the current
time within a small margin of error (less than the interval �).

A is required to keep the key KL−i
A private till time ti = t0 + i�. The key

KL−i
A can be used for authenticating any arbitrary value M by appending an HMAC



138 8 Broadcast Authentication and Broadcast Encryption

h(M , KL−i
A ), provided the HMAC reaches potential verifiers before time ti (when

KL−i
A is still a secret known only to A). Once KL−i

A is made public (after time ti),
the verifier can (1) verify the TESLA HMAC using KL−i

A ; and (if consistent) (2)
repeatedly (i times) hash KL−i

A and verify that the result is indeed KA
L .

8.2 Identity-Based Broadcast Authentication (BA) Using Key
Predistribution

For broadcast authentication using key predistribution, the KDC chooses a set of ml

indexed secrets {Kij }, 0 ≤ i ≤ m − 1, 0 ≤ j ≤ l − 1, and a one-way function f (),
which generates m values between 0 and l − 1.

Corresponding to a node assigned identity A, where f (A) = a0 · · · am−1, node A

is assigned m secrets,

SA = K0a0 · · · K(m−1)(am−1) (8.7)

and ml identity tickets

TA = {T A
i,j = h(Kij ‖ A)}, 0 ≤ i ≤ m − 1, 0 ≤ j ≤ l − 1. (8.8)

To sign a message (or equivalently, the hash M of a message), the signer computes
ml message authentication codes (MAC) using each of its k = ml tickets. For
example, the MAC corresponding to a ticket T A

ij is

μM
ij = h(T A

ij ‖ M). (8.9)

A node B assigned keys defined by indexes f (B) = b0 · · · bm−1 can verify m of the
ml MACs. Specifically, the m MACs verifiable by B are μM

0b0
· · · μM

(m−1)(bm−1).
For an (n, pf )-secure broadcast authentication scheme, an attacker who has secrets

of n nodes can forge the signature of an arbitrary source (not included in the n

compromised nodes) for the purpose of fooling a specific verifier, with a probability
pf .

A node C can compute μM
ibi

if ci = ai (probability 1/l). The probability that an
entity who has access to secrets of n nodes cannot compute a specific MAC, μM

ibi
is

ε = (1 − 1/l)n ≈ e−n/l. (8.10)

Thus, the probability that the n-attacker collusion can compute all m MACs verifiable
by B (and thus impersonate A for purposes of deceiving B) is

pf (n) = (1 − ε)m = (1 − e−n/l)m. (8.11)

For a desired level of security, say pf (n) < p∗∀n < n∗, if we desire to limit the size
of the signature (which is proportional to k = ml, the number of MACs appended
by the signer), the choice of m and l that minimizes ml are

m = log (1/p∗)
log 2 = log (1/p∗)

l = n∗
log 2 =

}
⇒ k = 1

log2 2
n∗ log (1/p∗). (8.12)
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For example, for pf = 2−64, the bandwidth minimizing choice of parameters is
m = 64 and M ≈ 1.44n.

8.2.1 Reducing Signature Size

The bandwidth required for k = ml MACs is β = mlb, where b is the size of each
MAC. To conserve bandwidth, each of the ml MACs may be truncated. Each MAC
may even be truncated to 1 bit. This may however open up another line of attack for
the attacker—just “guessing” the signature bits that cannot be obtained by using the
exposed secrets. Fortunately, success by guessing is not as favorable for the attacker
as the ability to actually compromise the keys and compute the signature bits.

In situations where the attacker has to resort to guessing a few MACs, the attacker
has no way of knowing a priori if the impersonation attempt is going to succeed.
Furthermore, while the attacker may succeed in impersonating A for fooling B for
a specific message, success is not guaranteed for the next message—as the attacker
will have to guess all over again. In scenarios where the attacker may need to care-
fully orchestrate attacks where a series of messages (with authenticated misleading
information) need to be propagated, blindly guessing the MAC—even if the attacker
has to guess just one bit in each attempt—certainly cramps the attacker’s ability.

When we truncate MAC sizes, we need to modify the metric used for defining the
security of such schemes. An (n, pf , w)-secure scheme implies that attacker desiring
to forge the signature of a node using secrets exposed from n other nodes can identify
only 1 in 1/pf potential receivers such that for fooling such a receiver the attacker
will only have to guess w or less bits (and thus, succeed with a probability 1/2w). In
other words, while we had earlier defined the probability of attacker failure (1 −pf )
as the probability that at least one of the m verifiable MACs should be safe, according
to the new metric “at least u = w/b of the m MACs should be safe,” in a scenario
where each MAC is truncated to b bits.

As ε is the probability that any MAC is safe, the probability less than u MACs
(among the m MACs that can be verified by a specific verifier) are safe, or the
probability that the attacker has to guess at least w or less bits) is

p′
f (n) =

u−1∑

0

(
m

u

)
εu(1 − ε)m−u. (8.13)

If we choose (say) w = 8, and if we desire to limit the signature size to (say) 1024
bits some reasonable options for the choice of parameters are as follows:

1. ml = 1024, 1-bit MACs
2. ml = 512, 2-bit MACs,
3. or more generally, ml = 1024/b, b-bit MACs.

In a scenario where an attacker has exposed secrets from n nodes, if we choose b = 1,
we desire that at least w/b = w = 8 of the m MACs that can be verified by a specific
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Fig. 8.1 Plots of probability of forgery pf for various choice of parameter m (x-axis). For all four
plots mlb/n—the ratio of the total bandwidth mlb for the signature and the number of nodes n in the
attacker collusion is the same. The dashed plots are for the choice of 1-bit message authentication
codes (MACs). The dotted plots are for 2-bit MACs

verifier cannot be obtained from keys exposed by the attacker (by tampering with
n nodes). If b = 2 instead, we desire that at least four of the m MACs that can be
verified by a specific verifier cannot be obtained from keys exposed by the attacker.

As for any pf the signature size will need to increase linearly with n, we shall
compare the (n, pf , pg) security of schemes constrained to demand the same sig-
nature bandwidth β = mlb. Figure 8.1 depicts the probability of forgery pf for an
attacker who has access to secrets from n nodes. For all four plots, the parameters
m (the number of MACs verified by any node), l and b (ml is the total number of
b-bit MACs in the signature) have been chosen such that the ratio of the total band-
width (mlb) to the number of colluding nodes (n) is the same. The x-axis depicts
various choices of m (higher m implies lower l to keep ml constant). The y-axis is
the logarithm of the probability of forgery pf .

From Fig. 8.1, it is clear that for any n, and any choice of m and l, choosing
b = 1 leads to lower pf (the dashed lines are clearly better as they correspond to
substantially lower pf ). For example, when the signature is constrained to be 1024
bits long 1024 1-bit MACs) m = 72 (and l = 1024/72 ≈ 14) is the best choice of
parameters against an attacker who has secrets from n = 10 nodes.

Table 8.1 depicts the bandwidth efficient choice of parameters (in terms of pf and
n) to realize an (n, pf , w)-secure BA scheme (with 1-bit MACs) for various values
of w.

If we desire an (n = 10, pf = 2−32, w = 8)-secure scheme, then the optimal
choice of parameters is m = 2.42 log pf ≈ 54 and l = 1.35 × 10 ≈ 14. The
signature will consist of ml = 756 bits. Any verifier can verify m = 54 bits.
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Table 8.1 Bandwidth
efficient choice of parameters
m and l for a desired
(n, pf , w)-security. The
parameters are indicated in
terms of n and pf . Note that
l ∝ n and m ∝ log pf , and
the bandwidth
mlb = ml ∝ n log pf

w l
n

−m
log pf

β

(−n log pf )

32 1.14 12.39 14.19
16 1.27 3.96 5.04

8 1.35 2.42 3.27
6 1.37 2.14 2.95
4 1.39 1.90 2.65
3 1.40 1.79 2.50
2 1.41 1.67 2.36
1 1.43 1.56 2.23

8.2.2 Effect of Decrypt Only When Necessary (DOWN) Assurance

With the DOWN assurance, as only one of the m secrets of a node can be exposed
by tampering with a node, the attacker has to expose one secret from nm nodes
in order to expose an equivalent of “all m secrets from n nodes.” Thus, an (n =
10, pf = 2−32, w = 8)-secure BA scheme with (m = 54, l = 14) is rendered
(nd = mn = 540, pf = 2−32, w = 8)-secure with the DOWN assurance.

For the (nd = 540, pf = 2−32, w = 8)-secure scheme every node is assigned
ml = 756 tickets. The signer requires 756 hashes to compute the MACs, and outputs
the last bit of each MAC. Verifiers will be required to compute m = 54 hashes. The
storage required for each node, for ml = 756 tickets and m = 54 secrets, is about
16 KB (assuming 128-bit secrets and tickets).

While it is not desirable to increase the computational overhead or bandwidth
overhead to improve the security, we can afford to increase the storage overhead.
The DOWN assurance allows us to take advantage of plentiful storage. For example,
let us assume that each node can afford an s-fold increase in storage. For example,
s = 1024 implies a storage requirement of 16 MB per node instead of 16 KB. In
this case, each node can be issued sml tickets and sm secrets. For computing MACs
for authenticating a value M , only ml of the sml tickets will be chosen. The specific
ml tickets can be dictated by a simple one way function of the message M to be
authenticated. For example, if u = log 2(sml) then a function

f (M) = m0 · · · mml−1 (8.14)

generates ml u-bit values m0 · · · mml−1, which dictates the indexes of the tickets to
be used for computing MACs. Thus, as earlier, the signer has to compute only ml

MACs, and each verifier verifies (on an average) m MACs. The bandwidth overhead
still remains ml.

Compared the (nd = 540, pf = 2−32, w = 8)-secure scheme which required
16 KB, the modified scheme which requires the same computational and band-
width overhead, but an s = 1024 increases in storage overhead (16 MB), is (nd =
552, 960, pf = 2−32, w = 8)-secure. If 160 MB storage per node is acceptable, then
the scheme is rendered (nd = 5, 529, 600, pf = 2−32, w = 8)-secure.
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8.3 Broadcast Encryption

Broadcast encryption (BE) [88] provides a means of establishing a shared secret
between g privileged devices, among a set of G = g + r devices, where the r

devices which are not provided with the secret are referred to as revoked devices.
BE schemes involve a set-up phase where secrets are distributed to all devices in

the network. To disseminate a broadcast secret Kb to all devices (except r explicitly
excluded devices), the source

1. encrypts Kb using n keys Ke1 · · · Ken, and
2. broadcasts n values1 Kei(Kb), 1 ≤ i ≤ n.

The secrets Ke1 · · · Ken are chosen in such a way that none of the r = G−g revoked
devices can (using the secrets they possess) determine any of the keys Ke1 · · · Ken.
On the other hand, each of the G − r privileged devices should have access to at
least one of the secrets Ke1 · · · Ken, and consequently, the broadcast secret Kb.

The capability to establish and control access to group secrets has a wide variety
of applications like digital rights management (DRM) [89], publish–subscribe sys-
tems [90], and multicast communications [91]. For instance, in DRM applications,
regulating access to content C is realized by encrypting content with a content en-
cryption key KC . The content encryption key is encrypted with the group secret KG

(and the key KG(KC) may be distributed along with the encrypted content) to ensure
that only members of the group can gain access to KC , and hence, the content.

The ability to protect any secret depends on the number of members that have
access to the secret. Obviously, the higher the number of members with access to a
secret, the higher is the susceptibility of the secret to exposure. With BE, all except
a few revoked members share the group secret. In practical application scenarios
involving group secrets, some proactive measures are required to protect the group
secrets. For instance, the group secrets, and the predistributed secrets that are lever-
aged for disseminating the group secrets, should be protected by a tamper-responsive
module. Limiting such modules to perform only symmetric cryptographic primitives
is obviously a useful strategy.

8.3.1 Tree-Based Broadcast Encryption (BE) Schemes

Many efficient BE schemes that utilize only symmetric cryptographic primitives have
been proposed in the literature. Most solutions [92, 93] are tree-based, where the
KDC keys are maintained in a binary tree-like structure. A small set keys from the
tree are assigned to every intended receiver. The receiver utilize their keys to decrypt
broadcast secrets.

1 the notation K(M) represents encryption of a quantity M using a secret K , using a standard
symmetric cipher.
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Fig. 8.2 Complete subtree
broadcast encryption (BE)
scheme

I0 I1 I2 I3 I4 I5 I6 I7
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In the complete subtree scheme for a system with N = 2L devices, the N devices
are assumed to correspond to the leaf nodes of a binary tree of depth L. Each of the
2N − 1 = ∑L

i=0 2i nodes in the binary tree, nij , 0 ≤ i ≤ L, 0 ≤ j ≤ 2i − 1 is
associated with a secret Kij chosen by the KDC.

Each device is also associated with L direct ancestor nodes, one in each level of
the tree. A device Il receives L + 1 secrets, L secrets associated with its L ancestor
nodes, and the secret KLl corresponding to the leaf node nLl .

Figure 8.2 depicts such a tree for L = 3 (or N = 8). Device I3 corresponds to the
node n33 with ancestors n21, n10 and n00, and thus receives secrets K33, K21, K10,
and K00. All devices receive K00, half the devices receive K10, and so on.

To revoke I5 the KDC encrypts a broadcast secret Kb with three secrets—K34,
K23, and K10, and broadcasts

B = [I5 ‖ (K34(Kb), K23(Kb), K10(Kb))]. (8.15)

Any device receiving the broadcast B can determine which secrets have been used
by the source (as the revoked node is explicitly specified). Devices I0 · · · I3 can
decrypt K10(Kb). I6 and I7 can decrypt K23(Kb). I4 can decrypt K34(Kb). In general,
revoking any device will call for L encryptions of the broadcast secret. Note that any
number of devices can be revoked together, in one broadcast. Further, while revoking
one device calls for using log2 N encryptions, revoking more than one, say r > 1
devices, will require less than r log2 N encryptions. Even in the worst case scenario
only r log2 (N/r) encryptions are called for [92].

8.3.1.1 Multisource Extensions

In tree-based schemes, the source of the broadcast is assumed to be the KDC, who
distributes the secrets in the first place. However, BE schemes that cater for broadcasts
by multiple sources have some very useful applications.

In multisource BE schemes, the keys distributed by the KDC can be used to
securely receive broadcast secrets from any number of broadcast sources. Many
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multisource BE schemes employing public key primitives exist [94, 95]. Some tree-
based schemes can also be readily extended to cater for multisource BE if asymmetric
cryptographic primitives are employed.

Extending a tree-based BE scheme to facilitate broadcasts by multiple sources
involves interpreting the value assigned to each of the 2N − 1 nodes in the binary
tree as a public value, corresponding to which secrets (or private keys) are assigned
to every device. Thus, corresponding to each of the 2N − 1 nodes nij , the KDC
generates public–private key pairs {(Uij , Rij )}.

Each device stores L + 1 private keys. In this case, device I3 stores private keys
R33, R21, R10, and R00. The public values Uij of all 2N − 1 nodes are made public
(provided to all potential sources of broadcasts). Any source with the knowledge of
the public keys can encrypt the broadcast secret using the public keys, which only
devices with the corresponding private keys can decrypt.

8.3.2 Broadcast Encryption (BE) Using Probabilistic Key
Distribution

Probabilistic key predistribution schemes (PKPSs) like hashed random preloaded
subsets (HARPS) and random preloaded subsets (RPS) can also be used for encrypt-
ing broadcast secrets. Unlike tree-based schemes, BE schemes based on PKPSs can
also be used for broadcasts by multiple sources. As HARPS, defined by parameters
(P , k, L) is a generalization of RPS (or HARPS with L = 1), we shall begin by il-
lustrating the principle behind BE using HARPS. We shall initially restrict ourselves
to BE by the KDC, and then discuss simple extensions to facilitate multisource BE.

Consider, for example, HARPS with P = 8, k = 4, L = 4 depicted below. The
KDC chooses P = 8 keys K1 · · · K8. Device A has been issued four keys with
indexes i = 1, 2, 4, 6 at hash depths 4, 2, 1, and 3, respectively (keys K4

1 , K2
2 , K1

4 ,
and K3

6 ). The row marked di is the hash depth, the KDC can safely employ for each
1 ≤ i ≤ P for encrypting Kb. For example, for revoking A and B, the KDC can use
keys K3

1 , K1
2 , K2

5 , K1
6 , K4

7 , and K4
7 as none of the secrets can be determined by A or

B, or even by A and B pooling their secrets together. Device C can determine K4
7

by hashing its secret K2
7 twice, and thus decrypt Kb. Device D can determine K3

1 or
K1

6 or K4
8 (Table 8.2).

In the case of RPS, where all secrets have the same hash depth, each device either
has a key corresponding to some index, or does not. In this case, the KDC can choose
the key corresponding to indexes 7 and 8 to encrypt the broadcast secret (to revoke A

and B). As it turns out in this (overly simplified) example, both C and D can employ
the key with index 7.
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Table 8.2 Example illustrating hashed random preloaded subsets broadcast encryption (HARPS
BE). The table depicts the hash depths (or x if the key is not assigned) of keys corresponding to
each index assigned to four devices

i 1 2 3 4 5 6 7 8
A 4 2 x 1 x 3 x x
B x 3 1 x 3 2 x x
di 3 1 x x 2 1 4 4
C x 3 4 1 x x 2 x
D 2 x x x 3 1 4 x

8.3.3 Broadcast Encryption (BE) by Sources Other Than Key
Distribution Center (KDC)

One of the main advantages of PKPS-BE schemes comes from the fact that they
trivially cater for BE by any source. The KDC can authorize any source, say a
content distributor Θ , to perform broadcast encryption by providing the distributor
Θ with PL identity tickets

SΘ = {T i,j
Θ = h(Kj

i ‖ Θ)}, 1 ≤ i ≤ P , 1 ≤ j ≤ L. (8.16)

In the case of RPS, the broadcast source Θ is issued just P tickets

SΘ = {Ki
Θ = h(Ki ‖ Θ)}. (8.17)

To revoke r device, just as the KDC can use a subset (or hashed subset) of the secrets
K1 · · · KP —say K

d1
Ii

· · · Kdn

In
, to encrypt the broadcast secret Kb, the external source

Θ can use T
I1,d1
Θ · · · T In,dn

Θ to encrypt Kb. A device that has a secret Kd
i can still

compute tickets K
i,d ′
Θ = h(Kd ′

i ‖ Θ) for any d ′ ≥ d.

8.4 Performance of Probabilistic Key Predistribution Scheme
Broadcast Encryption (PKPS BE)

In order to broadcast the secret to all but r devices, none of the tickets that can be
computed using any of the keys of the r revoked devices may be used for encrypting
the broadcast secret.

A ticket Ti,j is safe for purposes of conveying a broadcast secret only if the node
of the r revoked devices is assigned a key with index high at a hash depth j or lower.
Consider a key indexed i, which say u of the r revoked devices possess. Let the hash
depths of those u keys be d1 · · · du, with d ′ = min(d1 · · · du). The ticket Ti,j can be
safely used as long as j < d ′.

Let nj be the average number of such safe tickets at hash depth 1 ≤ j ≤ L. With
these n = ∑L

j=1 nj encryptions of the broadcast secret, the KDC hopes to “reach”
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(or convey to secret Kb to) every privileged device. In order to decrypt a secret
encrypted with a ticket index i at depth j , a device should have a secret indexed i

at depth d ≤ j , which will occur with a probability ξj

L
. Obviously, encryption keys

corresponding to higher hash depths will be more effective in conveying the secret
to more privileged nodes.

The value nL corresponds to the keys that none of the r devices have (at any hash
depth). The probability that any device has a key indexed i is a = k

P
. The probability

that none of the r devices have key i is (1 − a)r . In other words,

nL = P (1 − a)r . (8.18)

For RPS (with L = 1), n = nL = P (1 − a)r is the total number of safe keys.
For HARPS, nj may be nonzero even for hash depth less than L. Specifically, the
expected number of safe keys at a hash depth j is

nj = P

r∑

u=1

(
r

u

)
au(1 − a)(r−u) (L − j )u − (L − j − 1)u

Lu
. (8.19)

As any key is assigned to any node with probability a = k/P , the probability that
exactly u of r nodes have a secret corresponding to some index i is the binomial prob-
ability Ba(r , u) = (

r

u

)
au(1 − a)(r−u). Let the u keys be K

d1
i · · · Kdu

i . The probability
j + 1 = d ′ = min(d1 · · · du) is

Pr{d ′ = j + 1} = Pr{d ′ > j} − Pr{d ′ > j + 1}

= (L − j )u − (L − j − 1)u

Lu
.

While it is guaranteed that none of the r devices can decipher the broadcast secret,
there is a possibility that some of the g = G−r privileged devices may not be able to
decrypt any of the n = ∑L

i=1 nj encryptions. Let po be the “outage probability”—the
probability that an arbitrary device among the group of g privileged devices cannot
decrypt any of the n encryptions.

For a particular encryption key at hash depth j (or any one of the nj keys), the
probability of outage is poj

= (1 − a
j

L
). In general, broadcast source may not have

to use all the n = ∑L
j=1 nj possible safe keys. Only a subset ne = ∑L

j=q nj keys may
be used to achieve a target outage probability of p∗

o . For instance, the source will
first try to use only keys at depth L (as they will be more useful for more privileged
nodes), and if necessary consider using keys at depth L − 1, and so on, till a target
outage probability is reached.

Assume that the source uses all possible safe keys at depth greater than q, and
nq

′ ≤ nq keys at depth q. In this case, the probability of outage for any device, and
hence the total number of encryptions n∗

e required to convey the broadcast secret to
all privileged nodes are

p∗
o =(1 − ξ

q

L
)n

′
q

L∏

j=q+1

(1 − ξ
j

L
)nj , (8.20)
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n∗
e =gp∗

o + n′
q +

L∑

j=q+1

nj , (8.21)

where the term gp∗
o accounts for the accidentally missed devices. For instance, if

source chooses a target of p∗
o ≈ 1/g ≈ 1/G, one of the g devices will be accidentally

missed on an average, for every revocation. To reach the missed devices, either an
additional safe key can be added for each missed device (as the source does not
typically use all possible safe keys to achieve the target of po), or they can be
conveyed by encrypting the broadcast secret with a unique key provided to each
device.

Apart from broadcasting the several encryptions of the secret, recall that for tree-
based schemes the broadcast should indicate the identities of the revoked nodes (for
example, I5 in Eq (8.15)). For PKPS-BE, while this is possible, it is more efficient,
both in terms of bandwidth needed and computational complexity at the receiver,
to instead provide the indexes and the hash depths of the keys used to encrypt the
broadcast secret.

8.4.1 Performance Bounds

The exact analytical expressions for the relationship between P , k, L and the number
of encryptions n∗

e (Eqs. (8.19)–(8.21)) necessary to revoke r devices, can be used
readily for evaluating the performance of PKPS-BE for various choices of P , k, L,
and r . However, they provide very little intuition regarding the bounds of perfor-
mance. To gain some more insight we shall look more closely at the simpler case
(RPS) where no hashing employed.

With P secrets chosen by the KDC, and k = aP provided to each device, as the
total number of safe tickets is n = P (1 − a)r the minimum achievable probability
of outage for revoking r devices, is

pmin = (1 − a)n = (1 − a)P (1−a)r ≈ 1/Gmax , (8.22)

where Gmax is the maximum possible group size. Obviously pmin can be reduced to
any extent (or Gmax increased to any extent) by increasing P . The question now is
what is the “optimal” choice of a for some G, r?

If we wish to minimize P , the optimal choice of a should minimize C = (1 −
a)(1−a)r , which occurs when a ≈ 1/r (for large r). Also, for large r

(1 − 1/r)r→e−1 ⇒ pmin = (1 − a)P/e. (8.23)

As log(1 − a) ≈ −a for small a (or large r ≈ 1/a), we have

P ≈ er log Gmax k ≈ e log Gmax ne ≈ r log Gmax. (8.24)
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where λ = p−1
min ≈ Gmax . For a network size of one billion (230), where we would

desire pmin ≈ 2−30, for r = 128, we require k ≈ 57, P = rk = 7296, calling for
ne ≈ 2661 encryptions of the broadcast secret.

A better measure is the number of encryptions ne required for revoking r devices.
Now instead of choosing ξ = 1/r , let us instead choose ξ = b/r , b > 1. In this
case, pmin = (1 − b/r)P (1−b/r)r ≈ (1 − b/r)P e−b

, or

P ≈ r eb

b
log (1/pmin) k ≈ eb log (1/pmin) ne ≈ r

b
log (1/pmin). (8.25)

In other words, if we increase P by a factor eb−1/b, and k by a factor eb−1, we can
reduce the bandwidth needed for conveying the broadcast secret by a factor b. For
b = 4 for instance, P = 36636, k = 1145, but ne reduces to 665 encryptions for
revoking 128 devices (for a group size of 1 billion).

8.4.2 Over-Provisioning Keys

For a group size of G = 230 (or po = 1/G), RPS with parameters P = re log G =
7296, k = e log (G) = 57 can revoke r = 128 = P/k device, using r log G

encryptions of a broadcast secret. With this choice of parameters

1. of the P = re log G possible secrets of the KDC, only a fraction P/e are “safe”
(on an average), when r devices have to be revoked;

2. all ne = r log G safe secrets are required to achieve the target outage probability
of po = G−1. Thus, even if r is less than 128, the KDC will still need to transmit
ne = 1/a log G encryptions in order to convey the secrets to the G − r ≈ G

privileged nodes (or achieve outage probability po ≈ G−1).

In other words, for r < 128, the bandwidth efficiency per revoked node reduces (or
ne/r increases, as ne remains the same), and for r much larger than 128, the system
is unusable.

However, now consider a scenario where the same P = 7296, k = 57 scheme is
used for a group size of G = 210 (thousand, instead of a billion). In this case, we are
actually employing P and k three times larger than what is required to revoke 128
devices2. Alternately, we can interpret this approach as a scheme corresponding to
the choice of b = 2.11 (as eb log (210) = 57) to reduce bandwidth by a factor b (see
Eq (8.25)), and designed for r∗ = b ∗ 128 ≈ 270 and G = 210.

Thus, for a group size ofG = 210 the (P = 7296, k = 57), scheme can revoke upto
270 devices with ne/r = ( log G)/b = 3.29 encryptions per revoked device. At the
same time, 128 devices can be revoked with an efficiency of ne/r = log G = 6.93,
as only a fraction of the P/e safe secrets need to be employed for ensuring outage
probability po ≈ log (G−1).

2 Choosing k = 19, P = 2432 would have sufficed.
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While a system designed to minimize P , k for some r is efficient only for a narrow
range of r , by over-provisioning keys, we can realize efficient operation over a wider
range of r . As an other example, RPS with P = 200 × 128, k = 200 can cater for
efficient operation for a range of r between 128 and 340 for G = 230, and a range of
128 to 460 for G = 220 (a million). For larger ranges, we could increase k further, or
alternately, employ parallel deployments of RPS with different values of a = k/P ,
so that together, they can be used efficiently for a wide range of r .

8.4.3 Hashed Random Preloaded Subsets (HARPS) vs. Random
Preloaded Subsets (RPS)

Without over-provisioning keys, the KDC cannot revoke much more than P/k de-
vices in a batch as the KDC runs out of the n = P (1 − a)r safe secrets that can be
used to convey the broadcast secret to the privileged devices in the group. However,
in the case of HARPS, in addition to nL = P (1 − a)r safe secrets (corresponding to
which none of the r nodes have a secret assigned) other nL−1, . . . n1 safe secrets are
available.

While closed form expressions for the performance bounds of HARPS (akin to
Eqs. (8.24) and (8.25) for RPS) are not readily tractable, the performance of HARPS
can still be evaluated using the analytical expressions derived in the previous section
(see Eqs. (8.19)–(8.21)), for the relationships between ne, r , (P , k, L) and G ≈ 1/po.

Figure 8.3 depicts the performance of RPS and HARPS with the same P =
7296, k = 57 (and L = 64 for HARPS) in terms of ne/r (y-axis) and the number of
revoked devices, r (x-axis), for a group size of G = 230. Note that till the point r is
not much larger than 128, both RPS and HARPS perform identically, as only keys
at hash depth L are used for HARPS (keys at lower hash depths are not needed yet).
But for larger r while RPS runs out of safe secrets/tickets, HARPS can begin using
keys at lower hash depths, and thus continue to operate efficiently (even for r > 500
as can be seen from the figure).

Just as over-provisioning helped improve the usable range of r for RPS, it can
also help to further improve the usable range of HARPS. For example, for P =
25, 600, k = 200, for values of L = 1, 2, 4, 6, 8, 16, 32, and 64, respectively, the
range of usable3 r is between 128 and rL, where rL for different L is shown in the
table below (the case L = 1 corresponds to RPS):

L 1 2 6 8 16 64
rL 340 565 1040 1185 1520 2000

3 We define the usable range r0 = 1ξ to rL, where for revoking rL devices the efficiency is the
same as revoking r0 = 1/a devices. The maximum efficiency (or minimum ne/r) occurs at some
r between r0 = 1/a and rL.
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Fig. 8.3 Comparison of hashed random preloaded subsets (HARPS) and random preloaded subsets
(RPS) for P = 7296, k = 57. For HARPS L = 64

Now consider a scenario where we desire to cater for efficient revocation for a
range of r from 128 to say 1000, for a group size of 1 billion. With RPS, we can
realize this by using two schemes, one with (k = 200, a = 1/128), and the second
with (k = 200, a = 1/360). However (as can be seen from the table above), a single
deployment of HARPS with k = 200, a = 1/128, L = 6 can meet this requirement
(usable range of r).

In Fig. 8.4, the plot-labeled RPS depicts the performance (in terms of ne/r for
different r) when the two RPS schemes are used in parallel (the first is used for
r ≤ 155, and second for r > 155). The plot-labeled HARPS, L = 6 is for the
case with a single HARPS deployment (P = 25, 600, k = 200, L = 6), caters for a
slightly larger range of r than two deployments of RPS used in parallel. As a quick
comparison of the two approaches,
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Fig. 8.4 Comparison of two approaches—one using two parallel deployments of random preloaded
subsets (RPS) and the second using one deployment of hashed random preloaded subsets (HARPS)
with L = 6

1. HARPS requires 200 secrets to be assigned to each device, RPS requires 400;
2. the KDC requires P = 25600 secrets for HARPS, and 25600+360∗200 = 97600

for RPS;
3. to facilitate BE by external sources, each external source requires 25600 × L =

153600 (L = 6) encryption secrets for HARPS, and P = 97600 (the same as the
KDC) for RPS.

8.4.3.1 Choice of P , k, L for Practical Deployments

A reasonable approach then, to cater for efficient revocation for a wide range of
r , may be to use say four independent deployments, (1) a = 1/4, k = 100, (2)
a = 1/16, k = 100, to cater for small r , (3) a = 128 for r between 128 and 1050,
and (4) a = 1024, k = 200 for larger r , for a total of 600 keys per device.

Further, the scheme supporting large r (a = 1/1024) could use large L (say 512)
to facilitate batch sizes even upto 30,000. However, depending on the storage ability
of the external source, the source does not have to store all L×1024×200 encryption
secrets for the scheme with a = 1/1024. For instance, if the external source decides
to acquire only 1024 × 200 secrets at hash depth L, the deployment of HARPS can
still be used with the same efficiency as RPS by the external source (while at the
same time the KDC can employ much larger batch sizes). Note that in this case the
external source has, and can thus use, only the nL = P (1 − a)r safe secrets. Or the
situation is no different from using RPS instead.

Thus, HARPS can simultaneously be used in the “RPS mode” by external sources
that cannot afford to store a large number of secrets. Such a scheme (HARPS used
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in “RPS mode”) can still be used by external sources for efficient revocation of up
to 3000 devices (while the KDC can revoke upto 30,000 devices using

∑L
j=1 nL safe

secrets). Furthermore, if the source can store 2 ×1024 ×200 encryption secrets (say
corresponding to hash depths L and L/2), the external source can support batch sizes
upto 5000 nodes (in this case, for the external sources the scheme is equivalent to
HARPS with L = 2).

By providing 200 more keys to each node of a P = 25000 × 200, k = 200, L =
1024 (or 1/a = 25000) HARPS scheme, the KDC can support batch sizes of up to
a million. While this calls for a storage of 5 million keys by the KDC, in practice,
the KDC does not have to actually store all the secrets—it could simply generate
any secret on demand using a single (or a few) highly protected secrets using strong
hash functions.

Thus, with HARPS, there is almost no practical limitation on the maximum batch
size for the KDC. External sources, can also support sufficiently large batch sizes r

with storage of O(r log G). In most practical scenarios, even several GBs of storage
is an inconsequential requirement for external sources (for example, distributors of
digital content who may have to deal with thousands of TB of content). Furthermore,
as we shall see in the next section, while it is desirable for the KDC to support large
batch sizes, it is strictly not necessary for revocation by external sources to support
large batch sizes.

8.5 Models for Broadcast Encryption (BE)

From the perspective of the KDC, the “network size” N is the number of devices
that are assigned (or could be assigned) secrets. Most conventional models for BE
assume that the group size G is the same as the network size N . Furthermore, the
devices taking part in such deployments are also assumed to be stateless devices [92].
In other words, once keys are distributed to such devices, there is no way to provide
them with new secrets. In most cases, the source of the broadcast (the entity which
revokes devices) is also the entity that distributes the secrets in the first place—the
KDC. On the other hand, there are many application scenarios calling for BE, where
N >> G. In such scenarios, many independent sources (apart from the KDC) will be
able to control group secrets for their specific interest groups consisting of perhaps
G << N users/devices.

8.5.1 G = N Models

A practical example of a G = N stateless model is the case of DVD content pro-
tection, where each DVD player is provided with a set of secrets (that cannot be
modified during the lifetime of the device). By default, all DVD players can render
all DVDs, unless explicitly revoked. The content in a DVD is encrypted with a con-
tent encryption key KC , and the secret KC is encrypted with a secret KN . The secret
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KN is disseminated using BE (included in every DVD) so that only nonrevoked de-
vices can gain access to KN , and hence KC , and thus decrypt the content. Typically,
DVD players that are suspected to have been compromised by attackers are revoked.
More specifically, a player is “compromised” when an attacker has exposed (or is
suspected to have exposed) secrets from the player.

By using secrets exposed from one or more compromised players, say D1 · · · Dn,
an attacker can synthesize any number of illegitimate players. If such illegitimate
players are discovered, it may be possible to employ traitor tracing [92] schemes
to determine the original DVD players D1 · · · Dn, whose secrets were employed for
constructing the illegitimate players. Thus, revoking D1 · · · Dn will simultaneously
revoke all such illegitimate DVD players in addition to the D1 · · · Dn.

8.5.1.1 Revocation in G = N Stateless Models

Assume that a month after such a system is deployed, n1 devices have been identified
as compromised. For all content distributed from this point onwards, a new group
secret KN1 is chosen and conveyed to all devices except the n1 devices. At the end
of the second month, say n2 more compromised devices are identified. Now a new
group secret KN2 is chosen and conveyed to all but n1 + n2 devices (in all DVDs
pressed after this point; revoked devices can still play older DVDs).

8.5.1.2 G = N Stateful Models

In G = N stateful models, the DVD players can remember (store) changing group
secrets. In this case, it may appear at first sight that revocations can be performed in
batches. For example, all devices share a secret KN0 initially. At the end of the first
month, a broadcast revokes n1 devices by providing a secret K ′

N1
to all other devices.

Thus, the new group secret shared (and stored) by all N − n1 legitimate devices is
KN1 = KN0 ⊕ K ′

N1
. At the end of the second month a revocation broadcast revokes

n2 devices by broadcasting K ′
N2

that the n2 devices cannot decrypt. The group secret
after the second revocation is then KN2 = KN1 ⊕ K ′

N2
.

Note that while the n1 devices revoked in the first batch can still gain access to K ′
N2

,
they cannot gain access to the new group secret KN2 = KN1 ⊕K ′

N2
= KN0 ⊕K ′

N1
⊕K ′

N2

as they do not have access to K ′
N1

. Unfortunately, a pirate with access to secrets from
one device in the first batch and one device in the second batch can still gain access to
the new group secret KN2 . Thus, if the purpose of revocation is for excluding devices
suspected of key compromises, revocation should not be performed in batches.

8.5.2 N >> G Models

In many application scenarios, where BE can be performed by multiple sources, the
network size N can be substantially larger than the group size G. Consider a scenario
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where a maximum of N = 232 (about 4 billion) DRM enabled set-top boxes (STB)
could be deployed for playing protected video content. Every end user owns one such
STB. A content distributor D may have G << N paying subscribers (say G = 220,
or a million). From the perspective of the distributor, the group size is a million.
Each member of the group (or the STB’s belonging to the G users) may be provided
with a secret KG0 as part of the subscription process. Later, when the distributor
desires to cancel the membership of r (say 1000) of his G subscribers, the distributor
can broadcast a new secret KG1 to the G − r continuing subscribers, that explicitly
revokes r subscribers.

8.5.2.1 Revocation by Sources Other than the Key Distribution Center (KDC)

Thus, the new secret that is broadcast, is protected only from the r explicitly revoked
subscribers. However, Both the G − r continuing subscribers and the N − G non-
members can gain access to the secret KG1 . To prevent any of the N −G nonmembers
from gaining access to the broadcast secret the entire broadcast may be encrypted
with the group secret KG0 . Nevertheless, it still does not prevent a revoked user from
colluding with one of the N − G users outside the group G to determine the secret
KG1 .

In other words, ideally N − (G − r) ≈ N users/STBs will have to be revoked,
which is obviously impractical (it is far more efficient to unicast the broadcast secret
independently to each of the G − r nodes when N >> G). However, mandating
that all N − (G − r) nodes be revoked by D, while impractical, is also unnecessary.

In the N = G scenario, and for revocation broadcasts by the KDC for N >> G

models, revocation will occur when secrets are (or suspected of being) compromised.
However, the purpose of revocation by external sources in N >> G models is to
control access to group secrets to paying customers. A revoked user is not necessarily
more malicious than a user who is not revoked, or some user outside the group. Given
the fact that it is impractical to revoke all N − (G−r) devices in any case, mandating
that revocation broadcasts by distributors like D should not be batched, does not help
much.

8.5.2.2 Revocation by Key Distribution Center (KDC)

However, revocation by KDC in N >> G models will still be for the same purpose as
N = G models—ejecting devices that are suspected of compromise of secrets. While
ideally, revocation broadcasts by the KDC should be able to support unlimited r , in
practice this is not an essential requirement if devices taking part in the deployment
are not stateless.

Note that stateless devices are not well suited for N >> G scenarios in any
case, as external sources will need to provide dynamic group secrets to members of
the group. Consider a scenario where broadcasts by KDC supports batch sizes upto
rmax = 100, 000. Arguably, irrespective of the network size N , a scenario where
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such a large number of devices are suspected of being compromised, is a crying need
for renewal of secrets. The devices revoked by the KDC will not be allowed to take
part in renewal.

In other words, for systems that are not stateless, rmax is just the number of devices
that trigger renewal of the system. While we would still like rmax to be high (as the
process of renewal may be expensive), it is sufficient if rmax is “high enough.” In
other words, while the BE by KDC should support large r , it does not have to cater
for unbounded r .

8.5.3 Batch Sizes for External Sources

For revocation by sources other than the KDC, where revocation can be performed in
batches, at first sight it might seem that we could simply employ a scheme optimized
to revoke one device in each batch, in that case any number of devices can be revoked
efficiently. However, there are two very important reasons as to why this is not a good
approach:

1. Schemes optimized for low r will employ a = k/P very close4 to one (or almost
every node has almost every KPS secret), and are thus less secure.

2. the efficiency increases (or ne/r reduces) for schemes optimized for larger r

(small ξ ).

8.5.3.1 Resistance to Synthesis Attacks

By compromising secrets from a certain number of devices, an attacker can determine
a large fraction of the secrets5 of the system.

One measure of the security of any KDS is their resilience to “synthesis attacks.”
More specifically, if an attacker needs to compromise secrets from ns devices to
expose all secrets of a fraction p of the devices (or pN devices that are not part
of the ns compromised devices), the resistance of the KDS to synthesis attacks is
p(ns). For RPS with ξ = 1/128 and k = 200, by compromising all secrets from
ns ≈ 340 devices, an attacker can synthesize one in a million devices (or p(340) ≈
10−6. HARPS performs significantly better under this metric. For ξ = 1/128 and
k = 200, L = 64, for HARPS p(1650) ≈ 10−6. On the other hand, if ξ = 200/206
(RPS optimized for batch size of 1), even by compromising secrets of one node (or
ns = 1), the attacker has access to all secrets of one in every two thousand devices
(or p(1) = 1/2000).

4 For example, for G = 230, and a batch size of one, with a limit of 200 keys assigned to each
device, the best choice of parameters for RPS is P = 206, k = 200, and P = 201, k = 200, L = 64
for HARPS.
5 Even while each device is provided with a unique secret (which will be used under conditions of
outage), note that such secrets are meant to be used rarely.
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8.5.3.2 Bandwidth Efficiency

In practical application scenarios, it is only the efficiency for large batch sizes that
really matters. If a PKPS-BE scheme that is optimized for a batch size of 100 is
used for revoking two devices, the overhead may be the same as the case of revoking
100 devices. The fact that the overhead is say 20 KB instead of 200 bytes may not,
however, be a serious limiting factor. However, we would certainly desire that the
overhead for revoking say 100,000 devices is not prohibitively high.

Let us consider two scenarios (1) HARPS with k = 200 optimized for batch size of
one, and (2) HARPS optimized for r >> 1, for revoking r nodes. In the first case, the
r independent broadcasts (even though they can actually be sent together) revoke one
device each. In other words, each privileged device will receive r secrets, while the
revoked devices will receive only r −1 secrets. The final group secret then is derived
from all r secrets, thus shielding the secret from the r revoked devices. However,
in this case, the overall outage probability for the privileged devices increases, as
outage can happen even if one of the r secrets “evade” a privileged device.

Thus, instead of aiming for an outage probability of po = G−1, with batched
revocation (with batch size of one) our target is to ensure outage probability less than
p′

o, for each batch, where (1−p′
o)r ≈ G−1, or p′

o ≈ (rG)−1) instead. In other words,
effectively the scenario is equivalent to increasing the group size G by a factor r . We
already know that PKPS can take advantage of reduced group sizes G to improve
their efficiency (irrespective of N ). Obviously, the effective increase in group size
for batched approaches will make them even less efficient.

The table below compares the achievable ne/r for two schemes—one with a =
200/201 ≈ 1, L = 64 for r = 1, and the other with a ≈ 1/128, L = 64 for r = 500,
for three different group sizes G (a billion, million, and thousand). For the batched
scheme with a ≈ 1, the table also indicates the reduction in efficiency due to the
need to cater for reduced outage probability. In other words, row 2 in the table is ne

for revoking one device without taking the need to reduce outage probability into
account. Row 3 (labeled a ≈ 1∗), however, takes this into account.

G = 230 G = 220 G = 210

a = 1/128 5.39 2.71 0.62
a ≈ 1 5.8 3.81 2.02
a ≈ 1∗ 7.68 5.58 3.62
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8.6 Application of Probabilistic Key Predistribution Scheme
Broadcast Encryption (PKPS BE) in Publish–Subscribe
Systems

Users of a publish–subscribe system [90] can assume the role of a publisher (of
content), or subscriber, or both. Publishers regulate access to their content by issuing
a group secret to their subscribers.

In a practical publish subscribe system, every user may employ a smart card,
which protects:

1. the core predistributed secrets used for disseminating group secrets, and
2. the group secrets themselves, from the end users.

Content published by publishers may be encrypted directly or indirectly with the
group secret. For example, a content encryption secret KC for a specific content may
be encrypted using the group secret KG, and distributed with the content.

In all scenarios, the core secrets and group secrets have to be protected from the
subscribers—only their smart cards will have access to the secrets. In some applica-
tion scenarios, even the content encryption secret KC may have to be protected. For
example, the secret KC will be handed over only to a trusted DRM enabled device.

The role of the key distribution center for a publish–subscribe systems is to identify
compromised smart cards and revoke such smart cards from the deployment, by
providing all nonrevoked smart cards with a time varying universal secret Ui . Apart
from encrypting session secrets (or content encryption secrets) with group secrets,
all messages will also be encrypted using the secret Ui to ensure that revoked devices
cannot take part in the deployment. When the number of revoked devices crosses a
threshold, the KDC could renew the predistributed secrets and provide new secrets
to every nonrevoked smart card in the system.

The publishers on the other hand do not have to concern themselves with the
possibility of compromised devices. Furthermore, the system should also support
mutual authentication of a publisher A and potential subscriber B (by facilitating
discovery of a secret KAB), to facilitate initial dissemination of the publishers (A)
group secret to the newly inducted subscriber B. Thereafter, revoking privileges of
node B (once B cancels his subscription) can be realized by employing BE.

In addition, the system also needs to cater for authentication of broadcasts by the
publisher—both content and revocation messages.

8.6.1 Desirable Features

A very desirable feature in such large scale application scenarios is practically
unlimited scalability.



158 8 Broadcast Authentication and Broadcast Encryption

1. Identity-Based Deployment: Even while the total number of users (say N ′) in the
system may never exceed a few billions, it is still desirable to assign large IDs to
each user (for example 160-bit IDs) to facilitate ID-based naming.

2. Dynamic Group Sizes: The group sizes can have a wide range. Even very large
distributors may have only millions of subscribers. Thus, it is desirable that the
predistributed secrets can be leveraged for efficient broadcast for any number of
revoked nodes, for any network size.
Privacy: As revocation broadcasts are public, users may wish to maintain infor-
mation regarding memberships private. Thus, revocation broadcasts should not
explicitly indicate the identities of revoked nodes.

8.6.2 PKPS-BE vs. T-BE for Pub–Sub Systems

Some of the considerations for the choice of an appropriate BE scheme include
the group size of dynamic groups, scalability, privacy of participants, and storage
required for secrets.

8.6.2.1 Dynamic Group Size

For the use of T-BE schemes for scenarios where N >> G, one possibility (though
not very desirable) is to let the KDC control memberships of every group within the
network (if we desire to eliminate the use of asymmetric primitives). Even in this
case, irrespective of the group size G, the efficiency of revocation will still depend
on the network size N . For example, for a T-BE scheme that caters for a network size
of 230 (a billion), where say G = 210 (a thousand) of the N = 230 devices belong to a
group, to revoke r of the G devices, the number of encryptions required is still 30×r

- or log2 (N ) = 30 encryptions per revoked device. Unlike T-BE schemes, PKPS-BE
can take advantage of reduced group sizes to increase their efficiency. Recall that for
small group sizes (say 1000), the number of encryptions required per revoked device
can be substantially smaller than one.

8.6.2.2 Scalability

Even if we ignore the primary disadvantage of T-BE schemes for multisource BE, the
need for asymmetric cryptographic primitives, T-BE does not scale as well as PKPSs,
due to the storage complexity to be borne by external sources. For multisource T-
BE schemes, sources other than the KDC need to store O(N ) public values (more
specifically 2N − 1 public values corresponding to the 2N − 1 nodes in the binary
tree). This may not be a problem in practice even for network sizes of billions. After
all, storing billions of public keys will call for a (mere) few hundreds of GBs of
storage, a trivial requirement for any content distributor. Nevertheless, calling for
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storage proportional to N certainly certainly cramps the scalability of the network
(for example, making the use of identity based approaches impractical). Further, for
T-BE schemes we have to take future scalability into account before we decide N .

For PKPSs, the storage required for external sources6 is PL ∝ r log (N ′), where r

is the maximum number of nodes that can be revoked in a single batch. As far as the
KDC is concerned, revocation broadcasts by the KDC should reach all nodes. If the
system actually has N ′ nodes at some point in time, the KDC has to ensure outage
probability po ≈ 1/N ′ to convey the secret to every node with a high probability.
Similarly, the publishers (with group size G) only have to cater for po ≈ 1/G′. Thus,
irrespective of the theoretical maximum network size N (for example, N ≈ 2160 if
identities are 160-bit long) the KDS just has to cater only for the maximum number
of users currently in the system.

8.6.2.3 Privacy

In T-BE schemes, the revoked devices have to be explicitly specified in the revocation
broadcast. In PKPS-BE, we only need to specify the indexes (and hash depths) of
the ne secrets used in the broadcast (to encrypt the broadcast secret). Apart from
protecting privacy of group membership information, we can also afford to use large
IDs without adding to the bandwidth overheads.

8.6.2.4 Storage for Secrets

The advantages of PKPS-BE over schemes are achieved primarily by increasing the
number of secrets assigned to every device (smart card). Even for network size of
260, T-BE schemes like the complete subtree scheme require only storage for 60
secrets per node. However, a PKPS scheme requiring n parallel deployments defined
by parameters (Pi , ki , Li), 1 ≤ i ≤ n calls for

∑n
i=1 ki secrets to be stored in each

device (for example 800 secrets if n = 4 and each deployment has 200 secrets).
However, in any scenario calling for protection of multiple secrets, a very common

approach (dating back to at least 1978 [96]) is to employ a single host master secret to
encrypt all other secrets. The smart card A belonging to a user Alice could store just
one master secret MA, and all other

∑n
i=1 ki decryption secrets assigned to A could

be encrypted using MA and stored outside the smart card, for example, in the hard-
disk of Alice’s desktop/laptop (or even a SD card that can be plugged into a PDA).
Obviously, the storage complexity for the decryption secrets is not an issue. In other
words, we can increase the number of decryption secrets substantially to facilitate
bandwidth efficient revocation (for example increasing k by a factor 50 = ea−1 to
reduce bandwidth requirement by a factor five.

6 typically of the order of tens or hundreds of MB.
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It is pertinent to point out that tree-based schemes substantially more efficient
(ne/r ≈ 1.25) [92] have also been proposed which call for a storage complexity
of log2 (N )2/2 keys (about 512 keys per device for N = 232, and 1800 keys for
N = 260). However, such schemes extend less readily to BE by external sources.

8.6.3 Pub–Sub Operation

A pub–sub system employing PKPS-BE will consist of a KDC who chooses a set of
n HARPS systems and public functions Fi() and fi(). Every participant in the system
employs a smart card, which protects the

∑n
i=1 ki PKPS decryption secrets and group

secrets on behalf of the participant. The smart card is assumed to be plugged into a
general purpose computer, for example, desktop, laptop, or a mobile phone. Each
smart card, associated with a user is assigned a 160-bit identity, based on the identity
of the owner.

All users who desire to be publishers can be provided with a maximum of∑n
i=1 PiLi tickets. However, operations involving tickets are not performed by the

smart card as the tickets issued to Alice need not be protected from Alice. The secrets
that are protected (hidden from the owner of the smart card) by the smart cards are (1)
predistributed secrets used for decrypting the broadcast secret, (2) the group secrets,
and (3) the broadcast secrets (which may be used to modify the group secrets).

Apart from providing encryption secrets to the publishers, the tasks performed by
the KDC include

1. proactive measure to identify compromised nodes, and revoke them from the
system, and

2. renew secrets of the system periodically when a substantial number of nodes have
been revoked.

8.6.3.1 Establishing Group Secrets

Consider a scenario where a publisherAlice, with smart card A inducts a member Bob
with smart card B. Apart from catering for BE, HARPS also facilitates establishment
of shared secrets between any publisher (or any user with PL tickets) with any user
with decryption secrets. For example, for using the system with P = 204, 800, k =
200, L = 64 for mutual authentication, Alice determines the k indexes and the hash
depths of the decryption secrets SB . Using k of PL encryption secrets SA, Alice can
encrypt a session secret KS that only Bob’s smart card can decrypt [57].

The publisher Alice chooses a group secret KGA0 and supplies the group secret
to her smart card A, which encrypts the secret KGA0 with the universal secret Ui .
The secret Ui(KGA0 ) is now provided to the newly inducted member, over a channel
secured using the established session secret KS . Note that smart cards revoked by
the KDC (that do not have access to the secret Ui) cannot decrypt the group secret,
and thus cannot become members of any group. By using the secret shared between
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the publisher and the subscriber to authenticate a commitment, hash-chain-based ap-
proaches [12,13], could be used for authenticating subsequent revocation broadcasts
by the publisher.

8.6.3.2 Revoking Users from Publishers Groups

For revoking a set of r users who have have access to the current group secret KGAj

of the publisher Alice, Alice chooses a new group secret KGAj+1 , and encrypts it with
the current universal revocation secret Ui (by providing KGAj+1 to her smart card A).

The secret Kb = Ui(KGAj+1 ) is broadcast by encrypting it with ne encryption
secrets. Note that the primary complexity associated with PKPS-BE lies in the de-
termining the indexes and hash depths of the ne secrets to use, for revoking a specific
set of r nodes (by evaluating the public functions). However, for purposes of creating
the revocation broadcast, the only operation performed by the smart-card is encrypt-
ing the secret KGAj+1 to provide the publisher with the secret Ui(KGAj+1 ). All other
operations are performed by Alice’s desktop computer.

8.6.3.3 Decryption of Group Secrets

Depending on the nature of content distributed by the publisher, the revocation
broadcast can be posted in the Website of the publisher or distributed with the content.
With PKPS-BE, the distributor only indicates the indexes and the hash depths of the
keys used.

At the other end, a subscriber Bob, accesses the broadcast with ne encrypted
versions of the broadcast secret, and a header indicating the indexes of the PKPS
secrets. Bob’s computer can evaluate public functions F (B) (and f ()) to determine
an index of the secret that can be used by his smart card B to decrypt the broadcast
secret Kb.

For instance, assume that (1) the broadcast includes Ke(Kb) where Ke = h(K63
46 ‖

A), (2) F (B) includes the index 46, and (3) f (B, 46) = 42 < 63. In other words,
one of B’s decryption secrets SB is 42K46, which is stored in Bob’s desktop computer
as MB(K42

46 ) (or encrypted with the master secret MB stored inside the the smart card
B). In such a scenario, Bob provides his smart card with the values

[MB(K42
46 ) ‖ Ke(Kb) ‖ 21 ‖ A]. (8.26)

The sequence of operations to be performed by the smart card to gain access to the
group secret are as follows:

1. perform one decryption to determine K42
46 , and 21 = 63 − 42 repeated hashes to

evaluate K63
46 .

2. compute Ke = h(K63
46 ‖ A)

3. decrypt Ke(Kb) to determine Kb

4. decrypt Kb with Ui to determine new group secret KGAj+1
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5. encrypt KGAj+1 with MB , and
6. hand MB(KGAj+1 ) back to Bob’s desktop for storage

Note that the smart card stores only the master secret MB and possibly the current
universal secret Ui (controlled by revocation broadcasts by KDC).

Any content distributed by the publisher Alice (with smart card A), meant ex-
clusively for her subscribers, is encrypted with a secret KC . The secret KC is then
encrypted with the group secret KGAj+1 , and distributed along with the encrypted
content. Thus, Bob provides his smart card B with MB(KGAj+1 ) and KGAj+1 (KC).
The smart card performs two decryption operations to evaluate KC . Depending on
the nature of the specific application scenario and type of content, the secret KC may
be handed over to Bob, or handed over to a trusted DRM-enabled device.



Chapter 9
Authenticated Data Structures

Authenticated data structures (ADS) [97–103] are useful constructions in scenarios
where databases are maintained by an untrusted database server. In typical applica-
tions employing ADSes, clients who query a server trust only the originator/provider
of the data, and not the middle-man—the untrusted server maintaining the database.
Specifically, the clients trust only a compact ADS digest duly authenticated by the
source of the data.

An ADS is characterized by a construction algorithm fc() and a verification algo-
rithm fv(), where both fc() and fv() typically involve simple sequences of pseudo
random function (PRF) (for example, h()) operations.

Using an ADS, a database of records D may be summarized as a succinct value

r = fc(D), (9.1)

such that for any record R ∈ D it is possible to determine a verification object (VO)
vR satisfying

r = fv(R, vR). (9.2)

The provider A of a set of records D computes a static summary r = fc(D). The
database records D are hosted by an untrusted repository/server. Along with a re-
sponse R to a query by a client, the server is expected to send a VO vR satisfying
r = fv(R, vR), and the signature of the originator A for the summary r . The client
is now convinced that the response R is identical to the one that would have been
provided by the originator A, if the client had directly queried A—thereby, rendering
the middleman transparent from a security perspective.

Some limitations of the above approach, where ADSes are constructed by the data
source and verified by clients, render it unsuitable for several practical services with
any of the following characteristics:

1. The legitimate response to a query is a function of records submitted by multiple
independent providers. For example, in a remote file storage system, the database
maintained by a server can be seen as hashes of different versions of files. A file
hash for a file may be provided by any possible multiple entities who may have
write access to the file. As another example, the database may be required to store
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quotes for prices for different widgets from different providers. When a querier
queries the database for the price of a widget, the database may be expected to
provide the least price. Such a database may even be a routing database where
different routers provide their best path to different destinations.

2. Data provided by originators are dynamic and/or provided in an asynchronous
manner. Assume that the summary r is signed by the source indicating an expiry
time of t . If the summary needs to be modified at any time before t (for example,
if there is a need to update any record in the database before time t), then the
source can provide a fresh signature for the updated summary. However, at a time
t ′ < t , there is nothing that prevents the untrusted middleman from replaying the
old record consistent with the previous (but still valid till time t) signature.

3. In providing the VO to the clients, it is desired that servers should not need
to reveal any information that is not explicitly queried. For example, in a sce-
nario, where the database contains DNS records for a zone, NSEC records
provided to demonstrate nonexistence of the queried names can reveal unsolicited
information.

All such inadequacies can be overcome if ADSs are constructed and verified by a
trusted third party (TTP). As typical ADS construction and verification algorithms
involve simple sequences of cryptographic hashing operations, the TTP can be a low
complexity trustworthy module T.

Irrespective of whether ADSs are verified by the querier, or a TTP, the ADS-based
protocols can be seen as an interaction between two parties

1. an untrusted prover who maintains the database, and identifies the appropriate
VOs for any record, and

2. the verifier who has access only to the summary.

In the former scenario (where the verifier is a client), the summary is signed by the
originator of the data. In the latter scenario (where the verifier is module T), the
summary r is stored inside the module T.

In the rest of this chapter, our focus is on ADS models where verification is
performed by a resource-limited trusted module.

9.1 Merkle Tree as an ADS

The Merkle hash tree discussed in Sect. 9.1.2 is one example of an ADS. Recall that
the Merkle hash tree can be used to obtain a commitment for a set of N leaf nodes
v0 · · · vN−1 (the root of the tree is the commitment to all leaf nodes). Each leaf node
can in turn be seen as a commitment to a record, in a database with N records. For
a leaf-node vi at position i (where 0 ≤ i ≤ N − 1), a set of L complementary nodes
ci = {c0 · · · cL−1}, is a VO satisfying

r = fbt (vi , i, ci), (9.3)

where r is the root of the tree, and the function fbt () was outlined in Sect. 2.1.2.
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Fig. 9.1 Merkle hash tree

If vi = h(Ri) (or vi is the commitment to the ith record Ri in the database), then

r = fbt (vi , i, ci) = fv(R = h(vi), vR = ci). (9.4)

As long as the PRF h() used for realizing the ADS construction and verification
algorithms are guaranteed to be preimage resistant, it is infeasible to determine

1. R′ �= R satisfying r = fv(R′, vR); or
2. a VO v′

R �= vR satisfying r = fv(R, v′
R).

In a database represented as a Merkle hash tree, each leaf can be independently
verified against the root r (using fv()). Each leaf can also be independently modified.
For example, if there is a legitimate requirement to modify record R to R′, we need
to update vi = h(Ri) to v′

i = h(R′
i). A modification to vi will require a corresponding

modification to the root d . Specifically, the old root r and the new root r ′ are related
as

r =fbt (vi , i, ci)

r ′ =fbt (v
′
i , i, ci). (9.5)

Recall that the VO ci can be seen as a set of commitments to all leaf nodes except vi .
As the same VO, used to verify the integrity of the old vi against root r , is also used
to compute the new root, the VOs themselves are unaffected due to the change. As
the VOs are commitments to all other leaves, it is guaranteed that they are also not
affected when the root is changed to r ′ (Fig. 9.1).

9.1.1 Merkle Tree Protocols

Protocols employing Merkle hash trees can be seen as an interaction between two
parties
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1. an untrusted prover U and
2. a trusted verifier T.

Typically the prover U has plentiful storage resources. U maintains all records and
nodes (or the entire Merkle tree). The verifier T is, however, resource limited, and
maintains a single value—the root of the tree. As a practical example, the prover
may be database server. The verifier may be a trusted module that is entrusted with
the integrity of the root r .

The verification protocol can be represented as

U→ T : v, i,v
T : IF (r = fbt (v, i,v)) VERIFICATION SUCCESSFUL (9.6)

On successful verification, the verifier is assured that v is an authentic leaf-node of
a Merkle tree with root r .

To update the ith leaf-node v, the prover provides the current value v, the position
i, the VO for the leaf node, the new value v′, and a justification J as to why the
update is warranted. Obviously the nature of the justification J and the mechanism
for verifying the justification will be closely tied to the nature of the application. In
scenarios involving multiple independent providers, the application specific justifi-
cation may indicate which sources are permitted to modify which records, and under
what specific circumstances.

The verifier verifies that the current leaf-node is indeed consistent with root r

before updating v to v′. Once the update is successful, the prover may now update
the tree to modify all direct ancestors of v (as a change in v will affect all ancestors
of v including the root).

U→ T : v, v′, i,v, J
T : IF (J not satisfactory) RETURN

ELSE IF r = fbt (v, i,v)
RETURN r = fbt (v′, i,v).

U : Update v → v′. Update all ancestors of v (9.7)

The Merkle tree by itself is not associated with a protocol for insertion or deletion
of records. In other words, in practical applications utilizing Merkle tree protocols,
the verifier—for example, a trusted module T—is assumed to be initialized (by an
entity trusted by the prover and the verifier) with a root r0 corresponding to the initial
snapshot of the database with N records.

From this point onwards, the prover U can utilize the update protocol to update
records. The verification protocol is typically used in scenarios where the prover is
required to advertise a record R from the database to a third party. For example, the
third party could be a client that has queried the database for a specific record. As
the third party may only trust the verifier T (and not the prover), the prover has two
options:
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1. Request the verifier to certify the current value of the root r; the prover can then
submit the record R, the VO for R, along with the certificate authenticated by the
verifier T to the third party.

2. Request the verifier to verify and certify that the “record R is indeed consistent
with the current root.” This certificate can then be sent to the third party along
with the record R.

The second option is useful in scenarios where we desire to minimize the bandwidth
overhead for the exchange between the third party and the prover, or in scenarios
where the database server does not desire to leak any additional information regarding
the database. Note that if the first option is used, the client will get to know “other
information” regarding the database like the (approximate) total number of records
(from the size of the VO) and the position i of the record in the database.

9.2 Ordered Merkle Tree

While the fact that each record is independent (each record is verified/updated inde-
pendent of other records) certainly eases the task of the resource-limited verifier T, it
does not, unfortunately, permit the verifier to infer some useful holistic properties re-
garding the database of records. Furthermore, that records cannot be inserted/deleted
cramps the utility of such an approach for scenarios involving dynamic number of
records.

If the Merkle tree is enhanced to include a well-defined protocol for insertion and
deletion of the leaves, and if the protocol for insertion/deletion guarantees that all
records will be ordered in a specific manner, then it is possible for the verifier T to
readily infer some useful properties regarding the database.

For example, if every record is associated with a unique index (which may be
different from the actual position i of a leaf in the database), and if records are
constrained to be ordered by the index, then the verifier T can readily verify the
nonexistence of records with a specific index. If a record for index F and a record
for index X can be verified to be adjacent (for example, positions i and i + 1), T
can conclude the nonexistence of all records with indexes between F and X. Such
a conclusion is not possible if a plain Merkle tree is used, as the verifier will need
to verify all the leaves before concluding that the desired index does not exist. As
another example, if all records are constrained to be ordered by another field (for
example, cost) in each record, then it becomes trivial for the verifier to readily identify
the record with the least or highest cost.

The ordered Merkle tree (OMT) is such an extension of the Merkle tree.

9.2.1 OMT Leaves

The main differences between an OMT and a plain Merkle tree are as follows:
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1. The OMT specifies a rigid structure for the leaves of the tree. An OMT leaf is of
the form

L = (a, an, ωa). (9.8)

where a is an index, an is the next index, and ωa is a value associated with
index a. Alternately, a could represent the beginning of an interval, and an the
beginning of the next interval. In the latter case, ωa is a value associated with the
half-open interval1 [a, an). For all but one leaf in the tree, an > a. For the leaf
with (a = x > an = y) indicates that a = x is the highest index—the next index
y = an is lowest index in the tree.

2. The OMT specifies a protocol for insertion and deletion of leaves.
3. The OMT has a special interpretation of the value 0.

Corresponding to an OMT leaf (a, an, ωa) is a leaf node computed as

va =HL(a, an, ωa)

=
{

0 a = 0,
h(a ‖ an ‖ ωa) a �= 0.

(9.9)

The first field a is constrained to be unique for every record in the tree. Together the
first and second fields (a, an) indicate that no record exists in the tree for which the
first field is circularly enclosed by (a, an). The tuple (a, an) is a circular enclosure
for b only if

(a < b < an) OR (an < a < b) OR (b < an < a) (9.10)

For example, (2, 42) circularly encloses 4; 48 is enclosed by (46, 23); 21 is enclosed
by (43, 26); 21 is not enclosed by (26, 43).

In the rest of this chapter, we shall represent as fencl((a, an), b), the condition
required for (a, an) to be circular enclosure for b. fencl((a, an), b) = TRUE implies
(a, an) does enclose b.

The third field ωa is a value “associated” with index a (or the interval [a, an)). It
is also possible that ωa is itself the root of an OMT nested in the leaf (a, an, ωa) of
the “outer” OMT.

An OMT can also be interpreted as a circular list, where each element in the list
is bound to a value. An example of the leaves of an OMT (with four leaves) is

[(2, 4, ω2), (4, 98, ω4), (98, 101, ω98), (101, 2, ω101)]. (9.11)

All leaves together can be interpreted as a representation of a circular list
2→4→98→101→2, where each element in the list is associated with a value—2 is
associated with ω2, 98 with ω98, and so on.

1 An interval that includes all x satisfying a ≤ x < an.
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L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 La Lb Lc Ld Le L f L′

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 va vb vc vd ve v f v′

v01 v23 v45 v67 v89 vab vcd ve f v′

v03 v47 v8b vc f v′

v07 v8 f v′

r v′

r′

Fig. 9.2 Ordered Merkle tree

9.2.2 OMT Nodes

In a plain merkle tree, two siblings u and v (where u is the left sibling and v is the
right sibling), and their immediate parent p are related as

p = h(u ‖ v). (9.12)

In an OMT, the relationship between a parent and its two children is defined instead
as follows:

p = HV (u, v) =
⎧
⎨

⎩

u if v = 0
v if u = 0
h(u ‖ v) if u �= 0, v �= 0

(9.13)

Note that the value 0 has a special significance in OMTs.

1. The parent of two nodes is the hash of the two child nodes only if both the children
are nonzero. If any child is zero, the parent is the same as the other child. The
parent of u = v = 0 is p = 0.

2. An OMT leaf with the index set to zero is an empty leaf, represented as Φ. The
leaf hash corresponding to an empty leaf is 0. Introducing an empty leaf node
(corresponding to an empty leaf) does not affect any node of the tree due to the
way HV () is defined. Consequently, any OMT implicitly includes an unlimited
number of empty leaves. A tree with root 0 has no nonempty leaf.

Figure 9.2 depicts an OMT with 16 leaves L0 · · · Lf . The function HL() is used to
derive the leaf node corresponding to the leaf. The function HV () is used to combine
two siblings to derive a parent at the next level.
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Similar to the Merkle tree, a tree with N = 2L leaves has a height of L and
includes

L∑

i=0

2L−i =
L∑

i=0

N

2i
= 2N − 1 (9.14)

internal nodes (N nodes at level 0, N/2 at level 1, . . . a lone node at level L).
However, this relationship between total number of leaves N and the total number of
internal nodes 2N −1 does not hold in Merkle tree if N is not a power of two. On the
other hand, in an OMT, this relationship holds even when N is not a power of 2. To
see this, consider a scenario where a 17th node is added (represented by faint lines
in Fig. 9.2). Corresponding to the 17th node L′, let the leaf-node be v′ = HL(L′).
The ancestor nodes of v′ at various levels remain v′ as all other nodes to the right of
v′ are zero. The new root is then r ′ = HV (r ‖ v′).

Note that only two new values—v′ and r ′ have to be maintained to account for an
additional node. It can be easily seen that adding an 18th node will add two more
values, the leaf-node (say) v′′ corresponding to the 18th node, and the common parent
v′′′ = HV (v′ ‖ v′′) which will replace v′ in levels 1 to L. Thus, irrespective of whether
N is a power of 2, the total number of distinct nodes that have to be maintained by
the prover is always 2N − 1.

9.2.3 Verification and Update Protocols

The OMT verification and update protocols are very similar to that of the correspond-
ing Merkle tree protocols. To demonstrate that a leaf (a, an, ωa) does indeed belong
to the tree, the prover provides the following values to the verifier T:

1. the leaf (a, an, ωa), along with its position i = bL−1bL−2 · · · b0 (where bi is a bit
of i) in the tree, and L = log2 N ;

2. a verification object (VO) consisting of L intermediate nodes, say (x0 · · · xL−1).

The verifier first computes v = HL(a, an, ωa), and proceeds to compute

FOR i = 0 TO L − 1
IF (bi = 0)

v = Hv(v, xi)
ELSE IF(bi = 1)

v = Hv(xi, v) (9.15)

If the final result v after L iterations is the same as the root of the tree the verifier
concludes that (a, an, ωa) is indeed a part of the tree.

Henceforth, we shall represent the process of iterating through the values x in the
VO starting with a value v as

r = fomt (v, i, x) (9.16)

where, if the number of VOs is l, then
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1. r is a root of a subtree of depth l

2. v is a leaf-node in the subtree at position i

Thus, the verification protocol can be represented as

U→ T : (a, an,ωa), i,x
T : v = fomt(HL(a, an,ωa), i,x), (9.17)

where verification is deemed successful if v = r , the OMT root stored by the verifier.
In a scenario, where the prover U has successfully demonstrated to the verifier T

that (for example) (4, 98, ω) is a leaf of the tree, the verifier can make the following
conclusions:

1. a value ω is bound to (4, 98); and
2. no record exists with index 4 < x < 98.

On the other hand, in a scenario where the verifier is convinced that (101, 2, ω′) is
a leaf in the tree (note that the second field 2 is smaller than the first field 101), the
verifier can conclude that

1. a value ω′ is bound to (101, 2); and
2. no record exists with index x < 2, and no record exists with index x > 101.

The OMT update protocol is used to modify the third field in leaf—for example,
modifying (a, an, ωa) to (a, an, ω′

a). To update a leaf, the prover will need to provide
a (application specific) justification J for the update. The update protocol can be
represented as:

U→ T : (a, an,ωa), i,x,ω′
a, J

IF (J not satisfactory) RETURN;
ELSE IF r = fomt(HL(a, an,ωa), i,x)

r = fomt(HL(a, an,ω′
a), i,x) / / update root r

(9.18)

If the justification is acceptable, and if the current leaf belongs to an OMT with root
r , then the root is updated.

9.2.4 Insertion of OMT Leaves

A leaf with index a can be inserted into an OMT only if no leaf with index a currently
exists. To prove to the verifier that a does not exist currently in the tree, the prover
has to demonstrate the existence of an encloser leaf with first two fields (b, bn) such
that fencl((b, bn), a) = TRUE.

After insertion, the newly inserted leaf will have the first two fields set to (a, bn)
and the encloser will be modified to (b, a). Note that insertion of a leaf with index a

will modify two leaves:
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1. an empty leaf is modified to (a, bn, ωa); and
2. the encloser (b, bn, ωb) is modified to (b, a, ωb).

As we shall see in the next section when a leaf with index a is inserted, the value ωa

will be set to one of the two values:

1. if the OMT is an index ordered Merkle tree (IOMT) then ωa = 0;
2. if the OMT is a domain ordered Merkle tree (DOMT) then ωa = ωb (same as the

value in the encloser).

For now we shall ignore the precise differences between an IOMT and a DOMT.
For reasons that will become apparent later, inserting a leaf subject to the rules
mentioned above (existence of an encloser, initial value for inserted leaf) will not
modify the actual database represented by the OMT. A newly inserted leaf is merely
a “placeholder,” possibly for an anticipated change to the database. Thus, the prover
does not have to provide an application-dependent justification J for doing so. A
justification is required only for updating the value (third field) in a leaf.

To update the root to reflect the newly inserted leaf, two leaf nodes have to be
updated simultaneously:

1. a leaf node v1 = 0 (corresponding to an empty leaf) should be updated to v′
1 =

HL(a, bn, ωa) (where ωa = {0, ωb} depending on whether the OMT is an IOMT
or a DOMT).

2. a leaf node (corresponding to the encloser) should be modified from v2 =
HL(b, bn, ωb)→v′

2 = HL(b, a, ωb).

One exception from the general rule is for insertion of the first leaf. Before the first
leaf is inserted, the root of the OMT (with no nonzero leaves) is r = 0. The first
inserted leaf for index a will take the form (a, a, 0) (both index and next index are
the same), corresponding to which the root will be HL(a, a, 0). Note that (a, a) is a
circular enclosure for all values except a. Following this, if a second leaf is inserted
for an index b, then the resulting two leaves will be (a, b, 0) and (b, a, 0).

The protocol for inserting a leaf can be represented as follows:

U→ T : a, ia,xa, (b,bn,ωb), ib,xb
T : IF (r = 0)//insertion of first leaf

r = HL(a,a, 0);
ELSE IF ( fencl((b,bn),a))
va = 0;vb = HL(b,bn,ωb);v′b = HL(b,a,ωb);
IF (IOMT) v′a = HL(a,bn, 0);
ELSE IF (DOMT) v′a = HL(a,bn,ωb);
IF (r = fomt(vb, ib,xb))

IF ( fomt(0, ia,xa)  = fomt(v′b, ib,xb))
r = fomt(v′a, ia,xa) // update root r

(9.19)

If the root r is not 0 then T verifies that the index a to be inserted is enclosed by
(b, bn). If (b, bn, ωb) is a valid leaf in the tree with root r then after insertion, the leaf
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will be modified to (b, a, ωb), and the newly inserted leaf will be (a, b, 0) (if the OMT
is an IOMT) or (a, b, ωb) (if the OMT is a DOMT). To update two leaf nodes from
0→v′

a = HL(a, b, ωb) and vb = HL(b, bn, ωb)→v′
b = HL(b, a, ωb), the verifier T

1. verifies that vb is a leaf node of r

2. computes the leaf node r ′ that will result if vb is updated to v′
b, or r ′ =

fomt (0, ia , xa)
3. verifies that xa is the VO for an empty leaf with root r ′, (or verify r ′ =

fomt (0, ia , xa))
4. compute r ′′ necessary to modify leaf node va = 0→v′

a (or r ′′ = fomt (v′
a , ia , xa)),

and
5. update root to r ′′.

9.2.5 Reordering OMT Leaves

The physical ordering of the OMT leaves has no bearing on the interpretation of the
database represented by the OMT. For example, the two OMTs below (each with
four leaves)

[(2, 4, ω2), (4, 98, ω4), (98, 101, ω98), (101, 2, ω101)] and

[(98, 101, ω98), (4, 98, ω4), (2, 4, ω2), (101, 2, ω101)] (9.20)

represent the same database of records. Note that the second OMT can be obtained
by swapping the first and third leaves of the first OMT.

Even while swapping the position of two leaves does not modify the database
represented by the OMT, it changes the OMT root. In a scenario where the prover U
desires to swap two leaves2 of the OMT, the protocol to be adopted is as follows:

U→ T : va, ia,xa, vb, ib,xb
T : v′

b = va;v′
a = vb;

IF (r = fomt(vb, ib,xb))
IF ( fomt(va, ia,xa)  = fomt(v′

b, ib,xb))
r = fomt(v′

a, ia,xa) / / update root r (9.21)

To swap two leaf nodes va and vb (which can be seen as simultaneously updating
va→vb and vb→va), the protocol is similar to the insertion protocol. The verifier T

1. verifies that vb is indeed a leaf node of a tree with r at position ib
2. compute r ′ necessary to update vb→va

3. verifies that xa is also a VO for va at position ia for a tree with root r ′
4. compute r ′→r ′′ to modify va at position ia to vb, and
5. sets the root to r ′′.

2 The practical utility of the prover’s ability to swap leaves is explained later in this chapter.
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The protocol for swapping leaves can actually be used for swapping even positions
of two subtrees (and thus all leaves under the two subtrees) within an OMT. For
example, to swap the position of all the four leaves L0 · · · L3 (all of which have a
common ancestor v03) with the positions of the four leaves L8 · · · Lb (with a common
ancestor v8b, it is sufficient to swap v03 and v8b. More specifically, in a subtree with
depth 2 rooted at r , as the leaf nodes are v03, v47, v8b, and vbf , the leaf-node v03 has
an index 0, and the leaf node v8b has an index 2. The VO for v03 is {v47, v8f }. The
VO for v8b is {vcf , v07}.

9.2.6 Index Ordered Merkle Tree

In an index ordered Merkle tree (IOMT) leaf (a, an, ωa), the first field a is interpreted
as the index of a record. The second field is the next higher index in the tree. The
third field ωa provides some information regarding index a (for example, hash of
the record for index a). A leaf with ωa = 0 is a placeholder indicating that “no
information is available” regarding index a. Some examples of databases that can be
represented using an IOMT are as follows:

1. The database can be a routing information database (RIDB). In a leaf (a, an, ωa),
the index a is the destination, and ωa is the hash of the record for the destination
a. The root of the tree is a succinct representation of the entire RIDB stored by a
router. ωa = 0 implies no record exists for a.

2. The database can be an access control list (ACL) for a specific resource. The value
ωa specifies the type of access granted to a. For example, ωa = 1 may imply
read-only access, ωa = 2 may imply read-write access, ωa = 3 may imply the
permission to even modify the ACL, etc. ωa = 0 implies no access.

3. The database can represent a list of items some of which may occur multiple
time. A leaf (a, an, ωa) indicates that the item a appears ωa times in the list. For
example, a list (2, 2, 3, 3, 4, 6, 6, 6, 6) can be represented by an OMT with four
leaves

(2, 3, 2), (3, 4, 2), (4, 6, 1), (6, 2, 4). (9.22)

It is easy to see that inserting a placeholder for an arbitrary index (say) 245 does
not change the database. After insertion of the placeholder for index 245, the five
leaves of the IOMT will be

(2, 3, 2), (3, 4, 2), (4, 6, 1), (6, 245, 4), (245, 2, 0). (9.23)

4. The database can represent credential associations. For example, an entity a and
a public key ωa , or an entity a and the domain name ωa owned by the entity, or
the IP address ωa assigned to a network interface with message authentication
code (MAC) address a (or vice-versa). ωa = 0 implies no information is available
regarding address a.
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5. More generally, the third field in each leaf can even be a root of another OMT. For
example, an OMT leaf (a, an, ωa) may indicate that ωa is a root of an ACL IOMT
for a resource identified as a. ωa = 0 implies no ACL exists for resource a.

Note that in each scenario the act of inserting a placeholder (with value 0) does not
affect the integrity of the database. Consider the following two scenarios where for
an IOMT

1. No leaf exists for an index a.
2. A placeholder (a, an, 0) exists.

In the first scenario, a leaf (b, bn, ωb) should exist in such a tree such that
fencl((b, bn), a) is TRUE. By demonstrating the existence of the leaf (b, bn, ωb), the
prover can convince the verifier that “no information exists regarding index a.” In
the second scenario, the prover can demonstrate the existence of the leaf (a, an, 0) to
convince the receiver of the same thing—that “no information exists regarding a.”

9.2.7 Domain Ordered Merkle Tree

The DOMT can be seen as a look up table (LUT) for a step-wise approximation of
any function y = f (x). In a DOMT, each leaf (say, (a, an, ωa)) indicates the half-
open domain [a, an) of the independent variable x (or a ≤ x < an), corresponding
to which the function evaluates the dependent variable y = ωa . In general, a DOMT
leaf (a, an, ωa) indicates that the interval [a, an) is “associated” with a value ωa .

The following are some examples of databases that can be represented using a
DOMT:

1. IP registry database. A leaf (a, an, ωa) indicates that the IP addresses in the range
a ≤ x < an are assigned to an entity ωa . ωa = 0 implies unallocated addresses
[a, an).

2. An LUT for a possibly complex function y = f (x). ωa = 0 implies that the
function is undefined for the range [a, an).

3. A two dimensional LUT for a function y = f (x1, x2). In this case, in a leaf
(a, an, ωa), [a, an) is the domain of x1 and ωa is the root of a DOMT. A
leaf (b, bn, ωb) in the DOMT with root ωa conveys the domain [b, bn) of the
independent variable x2, and the range y = f (a ≤ x1 < an, b ≤ x2 < bn) = ωb.

While a nested DOMT can be used literally as an LUT of two variables, it can
also be used for representing real-life databases. For example, such a nested DOMT
could be used in geographic information systems to represent latitude and longitude
enclosures for tessellations of geographical regions owned by/delegated to various
entities. In such a scenario, a leaf (a, an, ωa) and a leaf (b, bn, ωb) in the DOMT with
root ωa conveys that ωb is the owner of the tessellation demarcated by longitudes
[a, an) and latitudes [b, bn).
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In such a DOMT, ωa = 0 implies that no entity has been assigned any area
between longitudes [a, an). ωb = 0 (in a leaf in the nested OMT with root ωa �= 0)
implies that the tessellation ([a, an), [b, bn)) is unassigned.

Recall that in a DOMT (as in any OMT), for inserting a leaf with first field
c, a leaf (a, an, ωa) should exist such that (a, an) encloses c. In a DOMT, after
insertion the enclosing leaf will become (a, c, ωa), and the newly inserted leaf will
be (c, an, ωc = ωa). Such an operation does not change the integrity of the database,
as all that insertion accomplishes is the split domain into two intervals and assigns
the same range (third field) to both intervals, before the split interval [a, an) was
associated with ωa . After insertion of a placeholder, the two leaves indicate that (1)
interval [a, c) is associated with ωa; and (2) interval [c, a′) is also associated with ωa .

For example, a DOMT leaf (10, 45, ω) implies that values in the interval [10, 45)
are associated with ω. After insertion of a new leaf, say with first field 22, the two
leaves will become (10, 22, ω) and (22, 45, ω), implying values in the range interval
[10, 22) are associated with ω and values in the range interval [22, 45) are associated
with ω.

In a 2D OMT, where the outer OMT provides horizontal coordinates and the
nested OMTs correspond to vertical coordinates, inserting a leaf in the outer OMT
splits a rectangle into two rectangles with the same vertical dimensions. Inserting a
leaf in an inner OMT splits a rectangle into two rectangles with the same horizontal
dimensions.

9.2.8 Summary of OMT Properties

Some of the important properties of OMTs are as follows:

1. The leaf hash corresponding to an empty leaf Φ is zero.
2. An OMT with root 0 can be seen as a tree with any number of empty leaves.
3. For a tree with a single nonempty leaf, the leaf node is the same as the root of

the tree.
4. The existence of a leaf (a, a, ωa) (the first two fields are the same) in an OMT

indicates that the leaf is the sole leaf in the tree (the root of the tree will be the
same as the leaf node HL(a, a, ωa)).

5. Existence of a leaf like (1, 3, ω1) is proof that no leaf exists with first field in-
between 1 and 3. Existence of a leaf like (7, 1, ω7) is a proof that no leaf exists
with first field less than 1 and that no leaf exists with first field greater than 7.

6. Swapping leaves of an OMT does not affect the integrity of the database
represented by the OMT. For example, both

(1, 3, ω1), (3, 4, ω3), (4, 7, ω4), (7, 1, ω7) and
(3, 4, ω3), (1, 3, ω1), (4, 7, ω4), (7, 1, ω7)

(9.24)

represent an identical database with four records—either an IOMT corresponding
to four indexes 1, 3, 4, and 7, or a DOMT for four intervals [1, 3), [3, 4), [4, 7),
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and [7, 1). The interval represents all values greater than or equal to seven, and
all values less than one).

7. A leaf with a first field a can be inserted only if an encloser exists. that circularly
encloses a exists.

8. A placeholder is a nonempty leaf whose insertion does not change the inter-
pretation of the database. For an IOMT, a placeholder is of the form (a, a′, 0).
Introduction of a placeholder for an index A does not change the database in any
way, as both the existence of placeholder for index a and the nonexistence of a
leaf for index a implies that “no record exists for index a.” Thus,

(3, 4, ω3), (1, 3, ω1), (4, 7, ω4), (7, 1, ω7) and
(3, 4, ω3), (1, 3, ω1), (4, 5, ω4), (5, 7, 0), (7, 1, ω7)

(9.25)

which correspond to before and after insertion of a placeholder for an index 5,
represent an identical database.

9. For a DOMT, a placeholder is a leaf with third value, the same as the third
value of the encloser. Specifically, inserting a leaf can be seen as a process of
splitting a leaf (for example), (4, 7, ω4) into two leaves (for example) (4, 5, ω4)
and (5, 7, ω4). Thus, both

(1, 3, a), (3, 4, b), (4, 7, c), (7, 1, d) and
(1, 3, a), (3, 4, b), (4, 5, c), (5, 7, c), (7, 1, d)

(9.26)

represent an identical database. Before insertion, the leaf (4, 7, c) indicated that
values 4 ≤ x < 7 are associated with c. Nothing has changed after the range is
split into two, as values (4 ≤ x < 5) and values (5 ≤ x < 7) are associated with
the same quantity c.

10. While operations like swapping leaves in any OMT or insertion/deletion of a
placeholder do not change the contents of the database, they will result in a
change in the root of the tree—say from r to r ′. Such roots are considered as
equivalent roots.

9.3 OMT Algorithms in Trusted Resource Limited Boundaries

In practice, the verifier T will often be trustworthy tamper-responsive module. Such a
module T is expected to be write-proof—to protect the integrity of the dynamic OMT
root stored inside, and to preserve the integrity of OMT algorithms (necessary for
protocols like verification, update, insertion, and swapping of OMT leaves) executed
inside the boundary.As the module T will be required to certify the integrity of records
to third parties, the secrets used for authentication of outputs need to be protected
to ensure that the module cannot be impersonated. In other words, the module also
needs to be read-proof.

One obvious goal is to minimize the computational and memory requirements
inside the module T for executing the OMT protocols. One challenge in implemen-
tation of various OMT algorithms for verification, insertion/deletion of leaves, and
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swapping of leaves is that for large databases the VOs themselves (log2 N values for
a tree with N leaves) may demand non-negligible memory requirements inside the
module. Furthermore, the fact that VOs can be of any size (as the database can be of
any size) can also complicate algorithms executed inside T.

9.3.1 Self-Certificates

One useful strategy to address this challenge is that of employing self-certificates.
A self-certificate is a memorandum issued to oneself. For example, an entity A may
issue a memorandum to itself to the effect that “a value V was received from Y at
time t” by computing a MAC

μ = h(θ ‖ χ ), where θ = V ‖ Y ‖ t , (9.27)

and χ is a secret known only to A. The certificate (or MAC) μ can be handed over by
the “memory-constrained” entity A (which stores only the secret χ ) to an untrusted
entity (prover) for storage. A may prepare any number of certificates in this manner
(number of certificates limited only by the storage available for the prover). The
prover can at any time convince A (by providing values X, Y , t , and μ) that “A
received a value V from Y at time t .”

As one example of how such an approach can reduce the memory requirements
inside the module consider a scenario where a database whose integrity is assured
by T has close to 226 (about 64 million) records. To verify the integrity of any leaf,
the module will require temporary storage for a VO with 26 values. However, using
a symmetric certificate enables the module to safely split the computations required
into multiple steps.

For example, assume that the module can support only VO sizes up to eight. Let v
be a leaf node of a tree with root r , with depth 26 (between 225and226 leaves). In such
a scenario, the prover can provide a VO with eight values to map v to an ancestor y1,
eight levels higher. After verifying that y1 is indeed an ancestor of v, the module T
issues a self-memoranda to the effect that “it has been verified that y1 is an ancestor
of v.” For example, such a certificate could be of the form

μ = h(y1 ‖ v ‖ χ ) (9.28)

A simple function y = fomt (v, i, v) that maps a value v to a value y up to eight levels
higher can be reused for mapping the ancestor y1 to another ancestor y2 at a higher
level, and so on. Thus, the prover can obtain certificates relating y1 to an ancestor y2

at level 16, and a certificate relating y2 to an ancestor y3 at level 24.
Finally, to obtain a certificate relating y3 to the root that is six levels higher, only

six VOs are needed. To simplify fomt (), assume that it does not even have to check
the size of the VO (it is always assumed to be eight). This is not an issue, as a VO of
length eight with last two values set to zero is the same as a VO of length six. More
specifically

fomt (v,i, x = [x0x1x2x3x4x5]) = fomt (v, i, [x0x1x2x3x4x500]. (9.29)
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Note that this is again a consequence of the special way in which HV ()—the function
that maps two child nodes to the common parent—is defined.

A simple function that utilizes fomt () to map any node to a node, a few levels (for
example, eight) higher and issues a self-certificate to this effect, along with simple
functions that combine one or more such self-certificates, can eliminate the need
for complex functions—for simultaneously verifying/updating a plurality of leaves,
especially for large databases.

9.3.2 Core OMT Functions

OMT related functions executed inside T can be broadly classified into internal
functions (that are not exposed) and exposed functions that can be invoked by any
entity U with access to T.

The internal functions include:

1. fl() to compute a leaf-node corresponding to a leaf (same as HL() discussed
earlier)

2. fv() to map two siblings to their parent (same as HV ()) and
3. fm() that maps a node to an ancestor eight (or less) levels above

v = fl(a, an,ωa){
IF (a = 0) RETURN 0
ELSE RETURN h(a ‖ an ‖ ωa);

}
p = fv(v1, v2, b){

IF (v1 = 0) RETURN v2;
ELSE IF (v2 = 0) RETURN v1;
ELSE IF (b = 0) RETURN h(v1 ‖ v2)
ELSE IF (b = 1) RETURN h(v2 ‖ v1)

}
y = fm(v, i,x){/ / x = {x[0]· · ·x[7]}

tmp ← v; j ← i;
FOR (i = 0 TO 7)

tmp ← fv(tmp, x[i], LSB(j)) ;
j ← j >> 1; // right shift j

RETURN tmp;
} (9.30)

The function fl() returns 0 if the first field is zero. Else it returns the hash of the
leaf. If any of the two siblings is zero, function fv() returns the other sibling (which
can also be zero, in which case fv() returns 0). If both siblings are nonzero, the
third (single-bit) input b specifies the orientation. Depending on the value of b, fv()
returns h(v1 ‖ v2) or h(v2 ‖ v1).
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The function fm() performs eight repeated applications of fv() using the eight
values in the VO x. The input i is a 8-bit (or one byte) value. In each iteration, the
LSB provides the value b required for fv(). In each iteration, the byte is right shifted.

9.3.3 OMT Functions Exposed by T

The exposed OMT functions can be used to create self-certificates authenticated by
the module. The various types of certificates created by T include:

1. “Node Verify” certificates (type NV)
2. “Two-Node Verify” certificates (type NV2)
3. “Node Update” certificates (type NU)
4. “Two-Node Update certificates, (type NU2) and
5. “Equivalent Root” certificates (type EQ)

All certificates are message authentication codes computed using a secret χ known
only to the module (verifier) T.

A certificate of type NV is computed as

ρnv = h(NV ‖ x ‖ y ‖ χ ). (9.31)

Such a certificate is issued by T after verifying the existence of a VO v satisfying
y = fm(x, i, v). The values x, y, and ρnv can be presented to the module at any time
to convince the module that “y is an ancestor of x.”

A certificate of type NV2 is computed as

ρnv2 = h(NV 2 ‖ x1 ‖ x2 ‖ y ‖ χ ). (9.32)

The existence of such a certificate implies that T has verified that “y is a common
ancestor of nodes x1 and x2.”

A certificate of type NU is computed as

ρnu = h(NU ‖ [x ‖ y] ‖ [x ′ ‖ y ′] ‖ χ ). (9.33)

The existence of such a certificate implies that T has verified that “y is a an ancestor
of x, and modifying x→x ′ will require y→y ′.”

Certificates of type NU2 are computed as

ρnu2 = h(NU2 ‖ [x1 ‖ x2 ‖ y] ‖ [x ′
1 ‖ x ′

2 ‖ y ′] ‖ χ ). (9.34)

The existence of such a certificate implies that T has verified that “y is a common
ancestor of both x1 and x2 and modifying (x1→x ′

1) and (x2→x ′
2) will result in y→y ′.”

Certificates of type EQ are computed as

ρeq = h(EQ ‖ x ‖ y ‖ χ ). (9.35)
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The implication of such a certificate is that T has verified that “an OMT root x

can be modified to y, or an OMT root y can be modified to x.” More specifically,
such certificates are issued after T verifies that such transformations correspond to
insertion/deletion of placeholders, or swapping of leaves. Thus, changing the root in
accordance with an equivalence certificate does not affect the integrity of the database
assured by T.

9.3.3.1 Function Fv1()

Function Fv1() issues a certificate of type NV.

Fv1(v, i,v){
y ← fm(v, i,v);
RETURN h(NV ‖ v ‖ y ‖ χ );}

(9.36)

9.3.3.2 Concatenation of NV Certificates

Function Fvc() concatenates two NV certificates—one stating that “y is an ancestor
of x” and another to the effect that “z is the ancestor of y” to issue a certificate stating
that “z is an ancestor of x.”

Fvc(x, y, ρ1, z, ρ2){
IF (ρ1 �= h(NV ‖ x ‖ y ‖ χ )) RETURN;
IF (ρ2 �= h(NV ‖ y ‖ z ‖ χ )) RETURN;
RETURN h(NV ‖ x ‖ z ‖ χ );

} (9.37)

Function Fvv() concatenates two NV certificates

ρ1 =h(NV ‖ x1 ‖ y ‖ χ ) and

ρ2 =h(NV ‖ x2 ‖ z ‖ χ ) (9.38)

where y �= x2. In this case, the ancestors y (of x1) and z (of x2) are assumed to be
siblings with parent p = fv(y, z, 0) (y is assumed to be the left of its sibling z). From
the two certificates, the verifier T can conclude that both x1 and x2 have a common
ancestor p.

Fvv(x1, y, ρ1, x2, z, ρ2){
IF (ρ1 �= h(NV ‖ x1 ‖ y ‖ χ )) RETURN;
IF (ρ2 �= h(NV ‖ x2 ‖ z ‖ χ )) RETURN;
RETURN h(NV 2 ‖ x1 ‖ x2 ‖ fv(y, z, 0) ‖ χ );

} (9.39)
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Note that the certificate issued by function Fvv binds two nodes to their lowest com-
mon ancestor. In scenarios where it may be required to demonstrate that x1 and x2

are nodes in a tree with root z, an NV2 certificate binding x1 and x2 to a common
ancestor p can be combined with an NV certificate binding p to an ancestor z of p to
issue another NV2 certificate binding x1 and x2 to ancestor p’s ancestor z. Function
Fvv′ accomplished this.

Fvv′ (x1, x2, p, ρ1, z, ρ2){
IF (ρ1 �= h(NV 2 ‖ x1 ‖ x2 ‖ p ‖ χ )) RETURN;
IF (ρ2 �= h(NV ‖ p ‖ z ‖ χ )) RETURN;
RETURN h(NV 2 ‖ x1 ‖ x2 ‖ z ‖ χ );

} (9.40)

9.3.3.3 Update Certificates

Most often, verification of a node against an ancestor is performed for updating the
node and it’s ancestor. Function Fu1() issues a certificate of type NU which states
that “y is an ancestor of x, and if x→x ′ then y→y ′.”

Fu1(x, x′, i,x){
y ← fm(x, i,x);y′ ← fm(x′, i,x);
RETURN h(NU ‖ [x ‖ y] ‖ [x′ ‖ y′] ‖ χ );

} (9.41)

Note that two NV certificates cannot be combined to produce an NU certificate, as in
the NU certificate, the same VO is used for computing both the old and the updated
ancestor.

Function Fuc combines two NU certificates to issue another NU certificate.

Fuc(x, y, x′, y′, ρ1, z, z′, ρ2){
IF (ρ1 �= h(NU ‖ [x ‖ y] ‖ [x′ ‖ y′] ‖ χ )) RETURN;
IF (ρ2 �= h(NU ‖ [y ‖ z] ‖ [y′ ‖ z′] ‖ χ )) RETURN;
RETURN h(NU ‖ [x ‖ z] ‖ [x′ ‖ z′] ‖ χ );

} (9.42)

Function Fuu combines two NU certificates

ρ1 =h(NU ‖ [x1 ‖ y1] ‖ [x ′
1 ‖ y ′

1] ‖ χ ) and

ρ2 =h(NU ‖ [x2 ‖ y2] ‖ [x ′
2 ‖ y ′

2] ‖ χ ) (9.43)

assuming that y and z are siblings, and thus making p = hv(y1, y2, 0) a common an-
cestor of x1 and x2. If x1→x ′

1 and x2→x ′
2, then y1→y ′

1 and y2→y2, and consequently,
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p→p′ = fv(y ′
1, y ′

2, 0).

Fuu(x1, y1, x′
1, y′

1, ρ1, x2, y2, x′
2, y′

2, ρ2){
IF (ρ1 �= h(NU ‖ [x1 ‖ y1] ‖ [x′

1 ‖ y′
1] ‖ χ )) RETURN;

IF (ρ2 �= h(NU ‖ [x2 ‖ y2] ‖ [x′
2 ‖ y′

2] ‖ χ )) RETURN;
p ← fv(y1, y2, 0); p′ ← fv(y′

1, y′
2, 0);

RETURN h(NU2 ‖ [x1 ‖ x2 ‖ p] ‖ [x′
1 ‖ x′

2 ‖ p′] ‖ χ );
} (9.44)

Function Fuu′ combines an NU2 certificate binding two nodes to a common ancestor
p to an ancestor w of p (conveyed in a certificate of type NU)

Fuu′ (x1, x2, p, x′
1, x′

2, p′, ρ1, z, z′ρ2){
IF (ρ1 �= h(NU2 ‖ [x1 ‖ x2 ‖ p] ‖ [x′

1 ‖ x′
2 ‖ p] ‖ χ )) RETURN;

IF (ρ2 �= h(NU ‖ [p ‖ z] ‖ [p′ ‖ z′] ‖ χ )) RETURN;
RETURN h(NU2 ‖ [x1 ‖ x2 ‖ z] ‖ [x′

1 ‖ x′
2 ‖ z′] ‖ χ );

} (9.45)

9.3.4 Root Equivalence Certificates

Recall that operations like swapping leaves of an OMT or inserting a placeholder
does not modify the database captured by the OMT (even while root changes from
x to y). Such roots are equivalent roots.

9.3.4.1 Equivalence Due to Swapping Nodes

A function Fsw() generates equivalence certificates after verifying that the transfor-
mation of the root corresponds to swapping two nodes in the tree. Swapping two
nodes x1 and y1 is the same as simultaneously updating two nodes—x1→x2 and
x2→x1. Thus, an NU2 certificate of the form

ρ �= h(NU2 ‖ [x1 ‖ x2 ‖ y] ‖ [x2 ‖ x1 ‖ y ′] ‖ χ ) (9.46)

is proof that y and y ′ are equivalent roots. Function Fsw() simply verifies an NU2
certificate with the special structure to issue an EQ certificate.

Fsw(x1, x2, y, y′, ρ ){
IF (ρ �= h(NU2 ‖ [x1 ‖ x2 ‖ y] ‖ [x2 ‖ x1 ‖ y′] ‖ χ )) RETURN;
RETURN h(EQ ‖ y ‖ y′ ‖ χ );

} (9.47)

Equivalent certificates can be flipped or concatenated. Flipping a certificate h(EQ ‖
x ‖ y ‖ χ ) modifies the certificate to h(EQ ‖ y ‖ x ‖ χ ). Obviously, any equivalent
transformation that was performed can also be undone readily.
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Concatenation of two equivalent certificates for (x, y) and (y, z) produces a cer-
tificate that (x, z) are equivalent root. Function Fce() can be used for flipping or
concatenating EQ certificates.

Fce(x, y, z, ρ1, ρ2){
IF (ρ1 �= h(EQ ‖ x ‖ y ‖ χ )) RETURN;
IF (ρ2 = h(EQ ‖ y ‖ z ‖ χ ))

RETURN h(EQ ‖ x ‖ z ‖ χ );
ELSE RETURN h(EQ ‖ y ‖ x ‖ χ );

} (9.48)

9.3.4.2 Equivalence Due to Insertion of Placeholders

For enforcing rules for the purpose of inserting a placeholder, the module needs to
know if the OMT is of type IOMT or DOMT.A simple strategy to mark an OMT as an
IOMT or DOMT is to reserve a bit in the first field in every leaf for this purpose. For
reasons that will become apparent soon, we reserve n MSBs (for example, n = 16)
in the first field of every OMT leaf to identity the specific nature of the OMT. For all
leaves in the OMT, both the first and second fields will have n identical MSBs.

1. For an IOMT, the MSB is zero. For a DOMT, it is one.
2. The second MSB is used to identify that an OMT leaf has a nested OMT. If the

second MSB is one then the third field in every leaf in the OMT is actually the
root of an OMT. If it is zero the third filed is not an OMT.

3. The remaining n − 2 bits are reserved for reasons to be explained later.

More specifically, the specific type of the OMT is decided by the first placeholder
inserted into the OMT, say (x, x, 0). From this point onward, any placeholder inserted
into the OMT should have the first n bits the same as those of x.

We shall represent by MSB1(a), MSB2(a), and MSBn(a), functions that return the
first, second, and first n bits of the MSB of a value a.

The algorithm Fph() for generating an EQ certificate is as follows:

Fph(a, an,ωa, b, y, y′, ρ ){
IF (ρ = 0) RETURN h(EQ ‖ 0 ‖ fl (b, b, 0) ‖ χ )
IF (MSBn(a) �= MSBn(b)) RETURN;
IF (! fencl((a, an), b)) RETURN;
va ← fl (a, an,ωa);v′

a ← fl (a, b,ωa);vb = 0;
IF (MSB1(b) = 0) v′

b ← fl (b, an, 0);
ELSE v′

b ← fl (b, an,ωb);
ρ1 ← h(NU2 ‖ [va ‖ vb ‖ y] ‖ [v′

a ‖ v′
b ‖ y′] ‖ χ )

ρ2 ← h(NU2 ‖ [vb ‖ vb ‖ y] ‖ [v′
b ‖ v′

b ‖ y′] ‖ χ )
IF (ρ {∈� ρ1, ρ2}) RETURN;
RETURN h(EQ ‖ y ‖ y′ ‖ χ );

} (9.49)
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In general, as two nodes will need to be simultaneously modified to insert a place-
holder, an NU2 certificate is required to generate an EQ certificate for inserting
placeholders. An exception is for the first placeholder. If the first placeholder to be
included is for an index b then the root before and after insertion will be 0 (corre-
sponding to an empty tree) and fl(b, b, 0) (the root corresponding to the tree with a
single placeholder). Thus, 0 and fl(b, b, 0) are equivalent for all b’s.

For all other cases, insertion of a placeholder for b requires existence of a cover
leaf (a, an, ωa). Yet another condition to be satisfied is that the two MSBs of a and b

should be the same. After insertion, the leaf node va = fl(a, an, ωa) will be modified
to v′

a = fl(a, b, ωa) and corresponding to a newly inserted node a leaf node vb = 0
will be modified to v′

b = fl(b, a, 0) (if MSB1(b) = 0) or v′
b = fl(b, an, ωa) (if

MSB1(b) = 1).
The NU2 certificate relating the two nodes va , vb and the current root y and v′

a , v′
b

with modified root y ′ conveys that y and y ′ are equivalent.
Note that there are two possibilities for such an NU2 certificate, depending on

whether the placeholder for b is inserted to the right/left of the encloser a.

ρ =h(NU2 ‖ [va ‖ vb ‖ y] ‖ [v′
a ‖ v′

b ‖ y ′] ‖ χ ) or

ρ =h(NU2 ‖ [vb ‖ vb ‖ y] ‖ [v′
b ‖ v′

b ‖ y ′] ‖ χ ) (9.50)

9.3.4.3 Equivalence Transformations to Nested OMTs

Consider a scenario where an OMT is nested. In such a scenario, in a leaf (a, an, ωa),
the third field ωa is the root of another OMT. To insert a placeholder in the inner
OMT (with root ωa), or to swap leaves in the inner OMT, an EQ certificate of the
form h(EQ ‖ ωa ‖ ω′

a ‖ χ ) can be readily obtained.
In general, modifying the third value in any OMT leaf can be performed only by

providing an application specific justification J . However, we make an exception for
changes in the third field due to equivalent changes in the nested OMT.

Thus, in addition to the equivalent certificate, an NU certificate is needed to update
the root y of the outer tree to y ′. Specifically,

1. the root y should be consistent with leaf node v = fl(a, an, ωa),
2. the new root y ′ should be consistent with v = fl(a, an, ω′

a), and
3. ωa and ω′

a should be equivalent.

Function Fnst () issues a certificate to enable equivalence transformations in nested
OMTs. This function can be used only if the second MSB is set in the OMT leaf
index (indicating the presence of a nested OMT).
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Fnst (a,an ,ωa ,ω ′
a ,y,y′,ρ ,ρe){

IF (MSB2(a) �= 1) RETURN;
IF (ρe �= h(EQ ‖ ωa ‖ ω′

a ‖ χ )) RETURN;
v← fl (a,an,ωa);v′ ← fl (a,an,ω′

a);
IF (ρ �= h(NU ‖ [v ‖ y] ‖ [v′ ‖ y′] ‖ χ ) RETURN;
RETURN h(EQ ‖ y ‖ y′ ‖ χ );

} (9.51)

9.3.5 Module T State

The state of the module (verifier) T is captured succinctly by a single OMT root r .
The module functionality outlined thus far, viz.,

1. the three core (or internal) functions
a) fl(): for obtaining the leaf node corresponding to an OMT leaf,
b) fv(): for computing the parent of two sibling nodes; and
c) fm(): for determining an ancestor of a node at higher level (upto eight levels

higher);
2. and the 12 exposed functions

a) Fv1(): for generating a certificate of type NV
b) Fvc(): for concatenating two NV certificates to create a new NV certificate
c) Fvv(): for concatenating two NV certificates to create an NV2 certificate
d) Fvv′ (): for concatenating an NV2 and an NV certificate to create an NV2

certificate;
e) Fu1(): for generating a NU certificate
f) Fuc(): for concatenating two NU certificates to create a new NU certificate
g) Fuu(): for concatenating two NU certificates to create a NU2 certificate
h) Fuu′ (): for concatenating an NU2 and an NU certificate to create an NU2

certificate
i) Fsw(): for generating an EQ certificate for swapping two leaves of an OMT
j) Fec(): for concatenating and flipping EQ certificates
k) Fph(): for generating an EQ certificate for inserting a placeholder
l) Fnst (): for generating an EQ certificate for performing an equivalence

transformation in a nested OMT

can all be considered as state independent functions. All such functions operate the
same way irrespective of the current state r of the module T.

State dependent functions, as the name suggests, either change the state, and/or
are influenced by the state r . State dependent functions can be broadly classified into
two categories:

1. functions that perform state changes independent of the application context; and
2. functions that are influenced or change state according to application-specific

rules.
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The context independent functions in the first category merely change the state r to
an equivalent root r ′ if an equivalence certificate relating r and r ′ can be provided.

We need only one such context independent (but state-dependent) function Fci()
outlined below. This function can be used to request T to modify its state by changing
the OMT root r to an equivalent root. For this purpose, a self-certificate of type EQ
is supplied to T.

Fci(r′, ρ ){
IF (h(EQ ‖ r ‖ r′ ‖ χ ) = ρ ) r = r′;
ELSE IF (h(EQ ‖ r′ ‖ r ‖ χ ) = ρ ) r = r′;
ELSE RETURN ERROR;

} (9.52)

As the equivalence certificate states that x and y are equivalent either by issuing a
certificate h(EQ ‖ x ‖ y ‖ χ ) or h(EQ ‖ y ‖ x ‖ χ ). In other words, toggling
an OMT root between equivalent roots x and y does not affect the integrity of the
database. This is the reason why we do not need equivalence certificates for deleting
OMT leaves. If inserting a node modifies a root from x→y then deleting the inserted
root will modify the root from y→x.

Consider a scenario where the OMT root is y. Also assume that the tree has a
leaf that encloses the index a for the placeholder the prover desires to insert into the
tree. Let the root after insertion be y ′. The prover can readily obtain VOs from the
OMT to demonstrate to module that y and y ′ are equivalent. Specifically, the VOs
will be supplied to the T using two or more calls to fu1(), to obtain two or more
NU certificates. NU certificates can be provided as inputs to functions like Fuu() and
Fuu′ to receive an NU2 certificate. An NU2 certificate indicating old and updated
ancestors y to y ′ can be submitted to T as a request to issue an EQ certificate binding
(y, y ′). After the certificate is issued, the prover can update its database (by inserting
the placeholder) and request the module to update the root to y ′.

To delete a placeholder, the prover can first go ahead and remove the placeholder
from its OMT. Let the OMT root be x before deletion and x ′ after deletion. After
deletion of the placeholder, the prover can readily identify VOs necessary to con-
vince the module that (x ′, x) are equivalent. More specifically, the database with a
placeholder already removed provides the VO necessary for convincing the module
of the equivalence of (x, x ′). As the prover has already changed its root to x ′, the
prover requests the module to change its root x→x ′.

Recall that EQ certificates can also be generated for purposes of swapping leaves.
As an example of the utility of the ability of the prover to swap (and thereby, rearrange
OMT leaves), consider a scenario where an OMT is used to represent a dynamic
database of files stored by a file server, where each leaf corresponds to a file hash.
Popular file services may support millions of clients, where each client may upload
thousands of files. Even while the file server is required to track billions of file hashes,
during small interval only a few thousands of the billions of files may undergo active
editing. Thus, to reduce the overhead for maintaining the OMT, it is advantageous to
reorder the OMT leaves such that all active files are grouped together. In this case,
only a small part of the OMT used to represent the files will need to be cached for
faster access.
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v4 v5 v6 v7

v45 v67

v47

v03 v47 v8b vc f

v07 v8 f

r

Fig. 9.3 The subtree rooted at v47 includes both the leaf nodes v4 and v7 to be updated. Updating
the two nodes will require an update to v47. The subtree to the right—with depth two, four leaf
nodes v03, v47, v8b, vcf , can be used to update root r corresponding to the update to v47

9.3.6 Using Module Functions

Consider a scenario where the prover maintains an IOMT shown in Fig. 9.2 and
that she desires to insert a placeholder for an index 110 at position L4 (L4 is
currently an empty leaf with corresponding leaf node v4 = 0). Also assume that
L7 = (101, 115, ω) is the encloser for the leaf to be inserted.

After insertion, the leaf-node v4 changes from v4 = 0→v′
4 = fl(110, 115, 0).

The leaf node corresponding to the encloser L7 will need to be changed from v7 =
fl(101, 115, ω)→v′

7 = fl(101, 110, ω). Figure 9.3 depicts only the relevant subtrees
affected by the update.

Note that the earliest common parent of v4 and v7 is v47, with left child v45 and
right child v67. Now,

1. The VO that maps v4 to the left child v45 of the common parent is {v5}; the index
of v4 in the subtree rooted at v45 is 0.

2. The VO that maps v7 to the right child v67 of the common parent is {v6}; the index
of v4 in the subtree rooted at v67 is 1.

3. The VO that maps the common parent v47 to the root r is {v03, v8 f }; the index of
v47 in the subtree (with four leaf nodes v03, v47, v8b, vcf ) rooted at r is 1.

Invoking function Fu1(v4 = 0, v′
4, i = 0, x = {v5}) will result in an NU certificate of

the form

ρ1 = h(NU ‖ 0 ‖ v45 ‖ v′
4 ‖ v′

45 ‖ χ ) (9.53)

instructing that if 0→v′
4 then v45→v′

45.
Invoking function Fu1(v7, v′

7, i = 1, x = {v6}) will result in an NU certificate of
the form

ρ2 = h(NU ‖ v7 ‖ v67 ‖ v′
7 ‖ v′

67 ‖ χ ) (9.54)

instructing that if v7→v′
7 then v67→v′

67.
Recall that Fuu() can be used to bind two NU certificates that binds two leaves to

the earliest common parent. In this case, to bind v4 and v7 to common parent v47,
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invoking Fuu(0, v45, v′
4, v′

45, ρ1, v7, v67, v′
7, v′

67, ρ2) will result in an NU2 certificate

ρ3 = h(NU2 ‖ [0 ‖ v7 ‖ v47] ‖ [v′
4 ‖ v′

7 ‖ v′
47] (9.55)

where v47 = fv(v45, v67, 0) and v′
47 = fv(v′

45, v′
67, 0). This certificate is an instruction

if 0→v′
2 and v7→v′

7, then the common parent changes from v47→v′
47.

The common parent v47 can be mapped to root r by invoking Fu1(v47, v′
47, i =

1, x = {v03, v8 f }), resulting in a certificate

ρ4 = h(NU ‖ [v47 ‖ r] ‖ [v′
47 ‖ r ′] ‖ χ ) (9.56)

where r ′ should be the root resulting from insertion of the leaf.
Recall that F ′

uu can be used to combine an NU2 certificate binding two nodes
with a common ancestor to an ancestor at a higher level. In this case, we desire to
bind nodes v2 and v7 to ancestor r . Invoking Fuu′ (0, v7, v47, v′

2, v′
7, v′

47, ρ3, r , r ′ρ4) will
result in another certificate of type NU2

ρ5 = h(NU2 ‖ [0 ‖ v7 ‖ r] ‖ [v′
2 ‖ v′

7 ‖ r ′] ‖ χ ). (9.57)

This certificate is an instruction if 0→v′
2 and v7→v′

7, then an ancestor r→r ′.
The prover can now invoke the function Fph(a = 101, an = 115, ωa = ω, b =

110, r , r ′, ρ5) that will simply produce an equivalence certificate

ρ6 = h(EQ ‖ r ‖ r ′ ‖ χ ), (9.58)

declaring the equivalence of roots r and r ′.
For executing all the functions above the module did not bother to refer to the

root r stored inside. As long as the prover is maintaining a tree consistent with the
root r stored by the module, it is trivial for the prover to identify VOs necessary to
obtain the necessary equivalence certificate.

Finally, in order to actually request the module to change the root to r ′, the prover
invokes Fci(r ′, ρ6).

9.3.7 Context/Application Dependent Functions

The context dependent functions have two main purposes:

1. specify rules for initialization of the OMTs and
2. specify rules for updating the value field in any OMT leaf. Thus far, we have

loosely denoted such rules as a justification J for requesting an update.

In applications secured by leveraging trusted modules, the broad purpose of a module
T is to assure the integrity of the information obtained from a database maintained by
an untrusted entity U. Specifically, entities that receive information from U expect
the information to be authenticated by the trusted module T associated with U. In
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order to ensure the integrity of the database, the module is required to ensure that
the database is initialized and updated only according to application-specific rules.

As a practical example, consider a scenario where U is an untrusted remote file
service. The users of the file service upload files to the file server. The owner/creator
of the file may specify access control lists (ACL) for each file by explicitly identifying
the users that have access to the file and the type of access (for example, read-only,
read-write, etc.).

In such an application, when a user requests a file from the file server, the file
server is expected to provide the latest version of the file. To be convinced of the
integrity of the file provided by the file server, the users expect the module T to
authenticate the file hash corresponding to the latest version of the file. Only the
owner of the file, and the users with read-write-access (in the ACL specified by the
owner) may supply newer versions of the file.

As the server U is untrusted, all desired assurances sought by the users should
be realized by leveraging only the trust in T. It is very important for the module to
provide an authenticated response (even if it is negative response) to every query
from every user.

Specifically, as any user is free to request any file (even nonexistent ones), it is
necessary for T to be able to readily determine nonexistence of files so that the querier
can be informed accordingly. Note that if T is not able to readily infer nonexistence
of a file, then the querier will be required to trust the file service U when the file
server claims that the queried file does not exist—a trust that can be abused by U (by
denying the presence of files that actually exist).

Similarly, if the file exists, but the querier does not have access to the file, once
again T should be able to unambiguously determine that the querier does not have
access (or the querier is not included in the ACL for the file). If the module T is not
able to determine lack of access, then the server may abuse its privilege and deny
access to an authorized user.

One strategy to secure such an application is for the module to maintain two IOMT
roots—say r1 and r2. The corresponding two IOMTs maintained by U are:

1. File hash IOMT: The file hash IOMT is indexed as a function of the file name
and name of the owner; for example a file with name f created by Ui will be
represented as fi = h(f ‖ Ui). The value field is the file hash for the latest
version of the file.

2. ACL IOMT: TheACL IOMT has the same index as the first IOMT. For this IOMT,
the value field is the root an IOMT which serves as the ACL for the file.

Let us assume that every user has a unique identity, and that the module can easily
compute the secret shared with each entity. Let Ki be the secret shared between T
and user Ui .

The rules for updating the IOMTs are as follows:

1. In both IOMTs, the value field in leaf with index fi can be updated from 0 to a
nonzero value or from a nonzero value to 0, only by the owner of the file. For this
purpose, U is required to provide
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a) a user name Ui and file name f satisfying fi = h(f ‖ Ui)
b) values gammafi

andACL IOMT root αfi
authenticated using secret Ki known

only to the user Ui (and T)
c) NU certificates for updating the two roots.

2. In a leaf for index fi in the first IOMT, the value can be updated from ω �=
0→ω′ �= 0 by the owner, or by a user in the ACL for the file. For demonstrating
that a user, Ux (who has requested the update), can indeed update the file, the
server U is required to provide the following inputs to T
a) Values (Ux , U ′

x , a = 2) (assume a = 2 implies read-write access for Ux) and
an NV certificate relating a node v = fl(Ux , U ′

x , 2) to a value y.
b) A leaf (fi , f ′

i , y) from the ACL IOMT along with an NV certificate relating a
node vo = fl(fi , f ′

i , y) to a value r2, where r2 is the root of the second IOMT.
c) Values x and x ′ corresponding to old and new file hashes for the file fi , duly

authenticated by user Ux .
d) An NU certificate to update the root r1 to r ′

1. As in the first IOMT, a leaf
(fi , f ′

i , x)→(fi , f ′
i , x), a leaf node in the first IOMT needs to be modified

from v1 = fl(fi , f ′
i , x)→v′

1 = fl(fi , f ′
i , x ′). The NU certificate should bind

v1→v′
1 to r1→r ′

1.
3. If the user does not have access to the file, then an encloser (Uy , U ′

y , a) should be
demonstrated to be consistent with y in the ACL leaf (fi , f ′

i , y), by providing an
NV certificate. Another NV certificate should be provided binding the leaf node
vo = fl(fi , f ′

i , y) with the root r2 of theACL IOMT.Alternately, a placeholder for
Ux can be inserted into the tree with root y by providing an equivalent certificate.
The third value of zero in the placeholder will convince the module T that Ux

does not have write access.

As long as such simple update rules can be encoded in a manner that is easily
enforceable by resource limited T, such modules can be leveraged to assure the
integrity of even complex databases.

9.4 Infrastructural Requirements

Assume that a trusted infrastructure T exists to mass produce identical tamper-
responsive modules T. We have already discussed several components of useful
algorithms that can be executed inside resource limited boundaries. Apart from the
OMT functions discussed in this chapter, module functionality will include function-
ality fpw() for computing pairwise secrets (using MLS/PBK/SKIT, etc.), and atomic
relay function Far () which leverages fpw().

While all modules will have identical functionality their differences stem from
two aspects:

1. Every module has a unique identity, and unique secrets corresponding to the
identity.

2. Every module is initialized with some parameters depending on the expected role
of the module.
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Assume that all module identities are 160-bits long, and the first 32 bits are used to
convey information regarding the nature of the module. For example, some bits may
indicate the extent to which the module can be trusted—depending on the extent
of tamper-resistance features and the level of rigorousness of integrity verification
performed before the module was made available for use. Other bits may be used to
identify the specific role of the module. The exact nature of the tasks performed by
any module will depend on the nature of the databases—the integrity is assured by
the module. The databases tracked by the module will in turn depend on the intended
role of the module.

We already saw that for a module with a role of assuring the integrity of a remote
file service, one possible approach was to maintain two IOMTs. In general different
roles will call for different number and types of OMTs. As some practical examples
of various possible roles:

1. module for protecting integrity of IP registry database:
2. module for border gateway protocol (BGP) router
3. module for AODV (an ad hoc routing protocol) router
4. module acting as a key distribution center
5. module associated with a certificate authority
6. module for a general look-up server
7. module for zone owner database
8. module for zone server database
9. module for caching-only domain name system (DNS) server database

10. module for IMAP server
11. module for POP3 server,
12. module for maintaining GIS database
13. module for a publish–subscribe system
14. module for protecting group secrets in a pub–sub system, etc.

The remaining 128 bits may be used to specify a unique identity within the role. For
example, for a DNS zone owner module, the name may be obtained as a one-way
function (hash) of the owned name. For any server, the identity could be the hash of
the DNS name. More generally, 128 bits of the identity could be obtained by hashing
a descriptive identity.

All modules with the same role will be initialized with the same initial state
(OMT roots). The main purpose of initialing the OMT roots is to convey the specific
structure of OMTs used. Note that inserting one leaf into any OMT is enough to
completely characterize the OMT (whether it is an IOMT or DOMT, if it has nested
OMTs, etc.) as the first n bits of every leaf in an OMT are constrained to be the
same. If an OMT has nested OMTs then just one leaf is required in the nested OMT
to characterize that OMT. If the nested OMT has another level of nesting then one
leaf will be required in the innermost level too.

For example, if the first OMT is an IOMT and has a nested DOMT, all that is
needed to convey this is to create one leaf (a, a′, ωa) where the first two bits of a

convey the type of OMT (0 and 1 in this case as the OMT is an IOMT and it has
a nested OMT). The root ωa of the nested OMT may correspond to a single leaf
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(b, b′, ωb �= 0) where the first two bits are 1 (DOMT) and 0 (ωb is not an OMT root).
If less than four OMTs need to be maintained for a particular role, the unwanted
OMTs may be initialized to zero.

Untrusted provers U (for example, a server) that utilize the module will be expected
to initialize their databases to be consistent with the initial roots. From this point
onwards, they can perform operations like inserting any number of placeholders,
swapping positions of leaves if required etc. Each time to ensure that the roots in the
module stay in sync with the database maintained by the prover U, the prover can
utilize exposed module functionality to create equivalent certificates and use such
certificates along with function Fci() to modify the roots stored by the module.

The reason that the database (OMT) maintained by the prover and the root of the
module needs to be in sync is that no one will accept information from U unless it is
authenticated by T. However, T will authenticate only information consistent with
the roots stored inside.

Ideally, we would like to identify a small number of simple rules for any appli-
cation/role. However, the number of rules is not really a practical concern. Using a
large number of simple rules does not affect the complexity of operations that need
to be performed inside the trusted boundary, as the rules themselves can be stored
outside as leaves of an OMT. Only the root of the tree will need to be stored inside.
Thus, complex application-specific rules can be broken into multiple simple rules.

From the perspective of functions required to perform equivalence transformations
on OMT roots, the first two bits of an OMT leaf provide all necessary information
(IOMT or DOMT, nested or not). However, from the perspective of an application
rules, an IOMT indexed by (say) file names may have to be treated differently from an
IOMT indexed by (say) file hashes. Thus, the application-specific rules can benefit
from using the n − 2 reserved bits in each leaf to identify different (application
specific) types of OMTs.

To summarize, the responsibilities of the trusted infrastructure T are as follows:

1. certify modules T
2. assign identities to module
3. deploy key distribution centers for facilitating pairwise secrets between modules
4. identify different roles, and static rules associated with each role.

The role dependent static rules will need to provide an unambiguous specification
of conditions required to update different types of OMT leaves. The root of the
OMT that includes static rules and parameters as leaves becomes the unambiguous
definition of the security protocol for the role.

With the existence of such an infrastructure modules, T, with fixed functionality,
can be leveraged to secure possibly any application. More importantly, for such
applications T is the trusted computing base. No component/personnel/organization
(except the infrastructure T ) needs to be trusted to realize the desired assurances.

However, it is obviously desirable to reduce the scope of the involvement of the
trusted infrastructure T . In the next chapter, we shall discuss broad strategies to
limit the involvement of the trusted infrastructure to merely certifying the integrity
of modules.



Chapter 10
Universal Trusted Computing Bases

For any system with a desired set of assurances, the trusted computing base (TCB)
includes every component that needs to be trusted to realize the desired assurances
[29]. In other words, the assumptions regarding the integrity of the TCB components,
and more importantly, only the assumption of integrity of the TCB is required to
realize all desired assurances for the system.

Unfortunately, for almost every practical system in use today, we either do not
explicitly understand what exactly is included in the TCB, or make unjustifiable
assumptions regarding certain components in the TCB. Obviously, the incorrectness
of such assumptions can lead to the failure to realize the desired assurances.

10.1 Practical Systems

When Average Joe sends an e-mail, he implicitly expects the contents of the mail to
be privy only to the addressee. He does not pause to ponder if the e-mail could be
accessed by personnel with access to the e-mail server, or computers in the local area
network (LAN), or someone at the other side of the globe, who has surreptitiously
acquired control of a computer in the LAN. When he makes a credit card transaction
over a “secure SSL connection,” he assumes that the transaction is secure. He does
not pause to consider where and how the credit card information is stored, or who has
the ability to access this information, if and what mechanisms are enforced to prevent
abuse. When he performs a mundane task like accessing the weather report on a smart
phone, he simply accepts the report as valid—even while he has no knowledge of
the numerous possible reasons that may result in misrepresentation of the report.

10.1.1 Complexity and Ignorance

This gap between implicit assumptions and reality—resulting from an inevitable lack
of transparency regarding the operation of complex systems—is not limited merely
to uninformed users of systems. Just as end users are required to unquestioningly
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trust a system (about which they may know next to nothing), entities involved in
the operation/design of a system are often required to unquestioningly trust various
lower-level building blocks/subsystems of the system.

Increasingly, a subsystem is often an application running on a computer or a
network of computers. There are two broad reasons as to why assumptions regarding
the integrity of subsystems are ill-advised: complexity and ignorance (lack of domain
knowledge).

The complexity of most subsystems render it impractical to rule out the presence
of hidden undesired functionality within the subsystem. Hidden functionality may be
in the form of deliberate Trojan horses or accidental bugs in any hardware/software
component of the subsystem, and/or malice/incompetence in personnel who may be
involved in the production, testing, maintenance, or operation of the application.

Users of a system X, who may have very little idea of the inner workings of the
system X, nevertheless tend to make some implicit (and often incorrect) assumptions
regarding specific properties of system X. Some such users of a system X may
include designers of a more complex system Y that employs X as a subsystem. In
an increasingly interconnected world, very soon (if not already), we may even lose
track of many such implicit (and possibly incorrect) assumptions.

For example, in various security protocols designed to assure the operation of
a complex system like the Internet, we are required to trust organizations like reg-
istries and registrars (responsible for delegation of domain names, IP addresses, and
autonomous system (AS) numbers), certificate authorities (CA) of the public key
infrastructure (PKI), etc. We do not ponder if and what mechanisms exist to prevent
the domain name registry from issuing the same domain name to multiple entities,
or who has legitimate access to the databases maintained by registries, and how such
privileges can be abused. We do not question the integrity of personnel who may be
able to modify the registry database; if such personnel use strong passwords; if they
protect their passwords well; or if a password is accessible to anyone who cares to
look under their desk for a Post-it note.

We do not question the integrity of hardware and software running on the platforms
used by such organizations or the suppliers of such components. We do not ponder
if such platforms can be illegitimately controlled by unknown entities by exploiting
a hidden functionality in some component of the platform.

We do not question the security of registration mechanisms used by CAs before
they certify the public key for a domain name or the integrity of the process employed
by PKI registrars to verify the claimed credentials of the owner of the key before their
public key is attested by the CA. We do not question how CAs protect their private
keys, or who is responsible for ensuring that they do so. We do not question how the
private key of an organization is protected, or who exactly in the organization guards
the key, and what safeguards are in place when the private key is actually used (to
sign a document or decrypt a secret).

The Internet, notwithstanding its questionable assurances, serves as a foun-
dation for several complex systems. With every passing day, the complexity of
systems/applications built on top of the Internet increases, along with our reliance
on such systems. We build clouds; we build platforms for running complex web
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services; we build systems that assimilate data from disparate sources; and “intelli-
gently” fuse and digest data to provide valuable information to end users or to other
complex systems that depend on that information. A mundane application like an
automatic vacation planner may fuse data from several systems like weather reports,
bus/train/airplane schedules, hotel/attraction reviews, etc.

The issue of “trust without adequate transparency” is at the core of almost every
security issue we face today, and will only get worse with increasing sophistication
and complexity of systems.

10.1.2 System Security Model

Securing any system is a process consisting of three broad elements:

1. Specification of desired assurances D
2. Identification of reasonable assumptions A and
3. Design of a security protocol S : A→D to translate the assumptions A to the

desired system-specific assurances D

The assumptions A can be tangible or intangible. Examples of tangible (quantifiable)
assumptions include assertions regarding the strengths of well-tested cryptographic
primitives like AES, SHA-1, RSA, etc. Intangible assumptions include broad asser-
tions like “the integrity of CA of the PKI,” and various system-specific assumptions
regarding the integrity of specific components of a system.

Ultimately, security violations—or failures to meet desired assurances—rarely1

result from improper design of the security protocol, or incorrect assumptions re-
garding the strengths of cryptographic primitives. Often, the unsurprising reason is
that some intangible assumptions turn out to be incorrect.

Computers with complex hardware and software components, with a high like-
lihood of hidden malicious functionality, are an increasingly integral part of almost
every facet of our day to day lives. Notwithstanding the fact that it is infeasible to
provide meaningful assurances regarding the integrity of tasks performed by such
computers, they are nevertheless entrusted with various crucial tasks like managing
and performing financial transactions, controlling the operation of various critical in-
frastructures: military systems and civilian systems like nuclear plants, water supply
systems, traffic control systems, communication networks, etc.

Ideally, we would like to eliminate all such intangible assumptions. One common
approach to minimize the extent of intangible assumptions regarding the integrity of
complex entities (for example, computers, or networks of computers, or personnel,
or organizations) is to replace the trust in complex entities with the trust in a hard-
ware module. More specifically, the assumption of integrity of a set of functions F

1 Notable exceptions to this rule are the infamous WEP [104] protocol, and the Xbox hack [105]
that exploits a weakness in the Tiny Encryption Algorithm (TEA) cipher [106].
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executed inside a trustworthy boundary like a tamper-responsive hardware module
can replace some or all intangible assumptions that may be necessary for a secu-
rity protocol. Two well-known approaches that rely on a trusted hardware module
specification to bootstrap security assurances include:

1. The Trusted Computing Group (TCG) trusted platform module (TPM) [107]
approach, and

2. Trinc [108].

10.2 Trusted Platform Modules

Currently, the predominant approach to provide some extent of assurance regarding
the tasks performed by a general purpose computer is the trusted computing group
(TCG) approach to realize a trusted platform.

The TCG approach is an attempt to transform a platform constituted by untrust-
worthy general-purpose components into a trusted platform by ensuring that “only
preverified and authorized software can take control of the platform.” To accomplish
this goal, the TCG model relies on three roots of trust:

1. Root of trust for measurement (RTM)
2. Root of trust for storage (RTS) and
3. Root of trust reporting (RTR)

Two of three roots of trust are inside the trusted boundary of a TPM chip housed in
the platform. Specifically, the RTS takes the form of a set of platform configuration
registers (PCR) maintained by the TPM; the RTR leverages the private key of a
TPM to sign the PCR values. Trust in RTS stems from the assumption that the
registers inside the TPM cannot be modified by external entities except by using
TPM commands executed by the TPM. Trust in the RTR stems from the assumption
that the private key of a TPM cannot be exposed, and is privy only to the TPM,
and that the entity/authority that had authenticated the corresponding public key2 is
trustworthy.

The third root, RTM, is constituted by components outside the TPM. The implicit
assumption behind the trust in the RTM is that “some essential hardware” for running
software (like CPU, RAM, BIOS, etc.) are trustworthy.

10.2.1 Realizing a TCG Trusted Platform

Starting from the time a computer is booted up (from the time the CPU receives the
first instruction stored at a fixed address), every piece of code is measured before

2 Typically the manufacturer of the TPM chip.
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control is passed to the code. The unit of code is a file and the “measurement” of
a unit is a cryptographic hash of the file. The first layer of code—the BIOS—has
additional code for:

1. Measuring itself (by hashing BIOS)
2. Measuring the next layer (the boot loader)
3. Reporting measurements to a trusted module (TPM chip) and
4. Passing control to the second layer

The second layer measures and loads the third layer (typically the operating system
(OS) kernel), and provides the measurement to the TPM before control is passed to
the third layer, and so on.

The TPM merely requires the ability to securely store the measurements in its
PCRs, and report the measurements to any entity on request. Entities interacting
with the platform can choose to abandon the interaction if the reported measurements
differ from expected values (which can happen if any code with uncertified measure
was loaded).

In the event that the hash of the BIOS reported by the TPM is the same as the
expected value, as long as it is reasonable to assume that the BIOS cannot be modified
and that some essential hardware is trustworthy, it can be concluded that only the
verified BIOS took control of the platform and loaded the second layer and reported
the correct measurement of the second layer to the TPM. Similarly, as long as the
hash of the second layer is an expected value, we can expect the second layer to
report the correct measurement of the third layer, and so on.

10.2.2 Pitfalls of the TCG Approach

Almost every security issue [109–110] in the TCG–TPM approach stems from our
inability to trust the measurement infrastructure. Specifically, in trusting that the
measurements reported by a TPM is a correct indication of the actual state of the
platform (actual software bits that have taken control of the platform since the last
reboot of the platform), we are required to trust:

1. A “trusted” infrastructure to actually verify the integrity of complex software.
2. That software cannot be illegally modified after it is loaded.
3. The binding between the platform and the TPM.

The ability to verify the integrity of complex software implies the ability to rule out
the possibility of hidden malicious functionality in software, for example, function-
ality which can load some illegal software component while reporting the hash of
a good/permitted component to the TPM. In such a scenario, the integrity of any
software that is loaded after the component with hidden malicious functionality is
loaded is questionable.

The well-known time-of-use-time-of-check (TOCTOU) [111] problem in the
TCG model is a result of the fact that there are a variety of ways in which a code,
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which has been measured and loaded, could be modified before it is actually exe-
cuted. Consequently, the state reported by the TPM may not correspond to the actual
state of the platform.

Finally, in trusting that a report from a TPM, X corresponds to a measurement
from a specific platform that entails a verifiable binding between the RTM of the
platform and the RTS/RTR of the TPM. In practice, during every reboot, the platform
establishes a private channel to the TPM chip housed in the platform. From the
perspective of the TPM, any external entity that invokes the first TPM command after
reboot is assumed to be the platform. In practice, any entity can invoke this command
and report expected values to the TPM while actually loading and executing entirely
unrelated software components.

Several approaches have been proposed to address different issues in the TCG ap-
proach. To address the problem of inability to verify large code bases, approaches like
Next-Generation Secure Computing Base (NGSCB) [112] and Terra [113] attempt
to remove large chunks of code from the chain of trust. More specifically, the OS is
removed from the chain of trust by employing virtual machines (VMs) [114, 115] to
provide isolation from the core OS. The VMs may include a stripped-down version
of a generic security-enhanced OS to cater for the needs of the specific application.

Approaches that further reduce the size of the trusted code base employ late-launch
features [116, 117] made possible by additional instructions supported by some Intel
and AMD processors along with the dynamic root of trust measurement (DRTM)
[118] feature in the TPM 1.2 specification. In such approaches, small pieces of code
could be “late-launched” and run unmolested irrespective of the state of the platform
preceding the late launch. Some attacks against this feature have been discovered
[119].

10.3 Trinc

A trinket [108] is a hardware module following the Trinc specification, which
attests the value of monotonic counters stored inside the module. Trinc is not af-
fected by the three issues above that plague TPMs, as no assumptions are made
regarding the integrity of software, and no hardware binding is assumed between a
subsystem/computer and the associated trinket.

Every trinket has a unique identity, and a key pair bound to the identity. A primary
counter of a trinket is leveraged to create a plurality of secondary counters—whenever
a new counter is created, it is identified by the current value of the primary counter
(which is incremented on creation of the new counter). The functions exposed by a
trinket can be used to:

1. Request a trinket to create a new counter with identity n, or
2. In a scenario, where the secondary counter n is currently associated with counter

value cn, an arbitrary value x can be bound to the counter n along with a new
counter value c′

n ≥ cn.
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3. Attest the value of a counter (along with a value bound to the counter); typically
this is achieved by providing a signed certificate binding values n, cn, the value
x associated with counter n with the value of the primary counter.

4. Attest the value of a counter using a group secret instead of a digital signature.
5. Verify the integrity of a counter certificate authenticated using a shared secret.

As an example, we shall consider once again a simple remote file system. A typical
client–server model of file storage system includes clients (users) who create files
or data blobs and a server with access to plentiful storage. Users upload files to
the centralized server for later retrieval from any location. Files can be edited and
reuploaded any number of times. As a user may employ different client machines
at different locations (work, home, on the road), and as the files in different client
machines may not be synchronized (except through the untrusted server), users have
to trust the server to provide the latest version of the file.

Assume that users upload files along with a signature to attest the file (for example,
the signature computed over the file hash). Thus, any person receiving the file can
convince themselves of the integrity of the file. If the creator of the file changes the
file at a later time, the new file along with a new signature may be uploaded to the
file storage system. Unfortunately, there is nothing that prevents the file server from
continuing to serve the old file. After all, the old file still has a valid signature from
the creator of the file.

This is one scenario where a trinket can help. Assume that a trinket with identity
G is expected to assure the freshness of files stored in the remote file storage system.
The signature for the file is now computed over a file hash, the trinket identity G, and
a counter identity n of trinket G. The owner requests the trinket G to bind a value x

and counter value cn to the counter number n. Anyone receiving the file can request
trinket G to attest the values x, n, cn against the current primary counter.

Whenever the file is updated, the owner of the file ensures that that a fresh x ′ is
bound to counter n with a c′

n > cn. From this moment onwards, the trinket will not
attest the old x and cn values. Thus, the file server cannot replay older versions of
updated files, as the current counter value c′

n is no longer consistent with the old x.
The Trinc specification limits the number of counters that can be “remembered”

by a Trinc to a small queue length. To reduce the overhead for digital signatures,
shared secrets between trinkets can be used to sign and verify trinket attestations. In
this case, an additional system-specific trusted third party is required to set up shared
secrets bound to specific counters of different trinkets.

Trinc by itself does not offer an explicit mechanism for binding a Trinc identity to a
specific subsystem or binding a specific piece of data3 associated with the subsystem
to a specific counter in a specific trinket. For example, in the case of the remote file
storage system, users had to sign their files. Implicit in this assumption is that some
additional infrastructure like PKI is required for this purpose. Security solutions
that leverage Trinc will, therefore, need to rely on other system-specific trusted

3 For example, a file hash, or signature, or current balance, or a DNS record, etc.
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parties to provide various trusted services like distributing symmetric keys, binding
subsystems and Trinc identities, and binding specific counters of specific trinkets to
system-specific data records, etc.

10.3.1 Virtual Counters

In [120], the authors suggest a strategy for enhancing the ability of current TPM chips,
by including new TPM functionality to maintain a Merkle hash tree. Such additional
functionality can then be leveraged for securing a wide variety of applications.

Once again, let us consider a remote file storage system. In the virtual counters
approach, a trusted module T (enhanced TPM) associated with the untrusted file
server U is intended to eliminate the need to blindly trust the server.

A Merkle tree is used to virtually store a large number of counters c0 . . . cN . Each
counter is cryptographically bound to a file—say uniquely identified by values id ‖ l,
where id is the unique identity of a user and l is a label assigned to the file by the
user. Every time a file is changed the corresponding counter is incremented and the
root is updated.

Even the root of the tree is not stored inside the module. Instead, only a nonreset-
table monotonic counter is stored inside the module, and the root is cryptographically
bound to the counter. The reason for this choice is that the latest TPM specification
already includes such a nonresettable monotonic counter.

If the root is r when the primary counter is c, the module issues a certificate
binding values r and c. Similarly, a file id ‖ l with file-hash hid,l is bound to the ith
counter ci though the certificate issued by the module. Every time a file is updated
the counter bound to the file hash is incremented causing the root r to change. Every
time the root r changes the counter c is incremented. New certificates are issued by
T to (1) bind the updated root and the counter; and (2) bind the incremented ci to the
new file hash.

To send the current version of the file to a user, the server U requests the module
to authenticate the hash of the current file by submitting the following values:

1. i ‖ ci ‖ id ‖ l ‖ hid,l

2. The certificates binding the file hash to a counter ci and certificate binding r and
primary c, and

3. Verification object (VO) to map ci to the root.

The module can now attest the values id ‖ l ‖ hid,l to the user.
A counter ci bound to file id ‖ l will be updated by the module only if an

authenticated hash h′
id,l (authenticated by the owner id) is provided to the module.

Apart from the authenticated hash, the module will be provided inputs (i ‖ ci ‖ id ‖
l ‖ hid,l ; two certificates; and the VO required to verify the current leaf against the
root. To complete this update the module:

1. Increments ci to c′
i = ci + 1

2. Updates the root of the tree using the VO
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3. Increments the counter c to c′ = c + 1
4. Issues a certificate binding values r ′ and c′
5. Issues a certificate binding c′

i with the updated hash h′
id,l and

6. Outputs an certificate to the effect that the “update has been carried out”

It would seem reasonable at first sight to assume that when a user has received a
confirmation from the module T that the “update has been carried out,” the server
can no longer replay older versions of the file—as the module will not authenticate
the old hash. Specifically, after the update to the root, the module will not recognize
the hash of older version as authentic. Unfortunately, this is not true.

The security loophole in the virtual counter approach is that there is no way to
prevent the server from binding the same file id ‖ l to multiple (say two) counters
cu and cv. Now, following the first update, the server instructs the module to update
counter cu and issue a confirmation to the user, and deliberately leaves counter cv

intact. The old file corresponding to counter cv can be replayed by the server as cv

is still a part of the tree. More generally, the server may associate a file with any
number of counters (leaves) and maintain different older updates in such leaves.

A second security pitfall of the virtual counter approach is the inability to provide
authenticated denial. Consider a scenario where a user submits a request for a nonex-
istent file id ‖ l. As no verifiable leaf bound to id ‖ l exists and the module can only
make reliable statements about the leaves of the tree, the module cannot authenticate
a denial which conveys the nonexistence of id ‖ l. In such a scenario, the untrusted
server is implicitly trusted to convey nonexistence. The unfortunate side effect is that
the untrusted server can abuse this privilege by “conveying nonexistence” of files
that do exist.

At the core of both problems is the inability of the module to verify nonexistence
of leaves. If the server can easily verify that no counter has been bound to file id ‖ l

then the module will permit binding of id ‖ l to a counter ci , only if the module
can verify that id ‖ l does not currently belong to the tree. In such a scenario, the
server cannot force the module to bind id ‖ l to multiple leaves. Similarly, when
queried for a nonexistent file, a module which can easily verify the nonexistence can
provide authenticated denial, thus eliminating the need to trust the server. Obviously,
using an object modeling technique (OMT) instead of a Merkle tree can address both
pitfalls of the virtual counter approach.

10.4 Credential Management Modules

Strategies to secure any practical system using Trinc or TPM will almost always
(unfortunately) require components other4 than the Trinc/TPM module to be trusted.

4 Intangible assumptions regarding the integrity of such “other” components can turn out to be
incorrect.
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Security solutions that leverage TPMs implicitly trust an entity/organization re-
sponsible for verifying the integrity of every bit of code that can gain control of the
platform. The motherboard assemblers have to be trusted to ensure that the TPM
chip cannot be easily removed (without destroying the chip). The BIOS is assumed
to be trusted as modifications to the BIOS can result in the BIOS reporting expected
values to the TPM while ceding control to unauthorized software.

Security solutions that leverage Trinc will need to rely on other system-specific
trusted parties to provide various trusted services like distributing symmetric keys,
binding subsystems and Trinc identities, and binding specific counters of specific
trinkets to system-specific data records, etc.

The need for additional system-specific trusted parties for a system (say) X poses
two types of security risks. First, the rationale for the trust and the precise conse-
quences of misplaced trust in such entities, may not be well understood by designers
of other systems that rely on system X (or on some information provided by system
X). Second, a system-specific trusted entity is far less likely to be vetted thoroughly
(compared to global entities responsible for certifying TPM/Trinc).

Both TPM and Trinc can be seen as nonconsummate approaches, as they merely
attempt to replace some intangible assumptions with the assumption of integrity of
trusted module functionality (Ftpm/Ftrinc).

In the rest of this chapter, we outline broad features for an alternate trusted module
specification intended to eliminate all intangible assumptions. For reasons that will be
clear soon, such trusted modules are called credential management modules (CMM).

10.4.1 Credential Transaction Model

Consider a broad model for systems where any system is seen as “an interconnection
of subsystems.” Each subsystem has a well-defined role and is associated with a set
of dynamic credentials.

For example, subsystems in a financial system have roles like buyer, seller, finan-
cial institution, regulator, etc.; subsystems in the domain name system (DNS) [18],
[19] have roles like domain name registry, zone owners, DNS servers/resolvers, etc.;
roles of subsystems in the Internet’s border gateway patrol (BGP) inter-domain rout-
ing system [122] include BGP speakers (in BGP routers), autonomous system (AS)
owners, AS registry, IP registry and registrars, etc.

To execute role-specific tasks, every subsystem possesses a set of credentials and
is permitted to perform specific transactions. In general, a transaction between two
entities results in a change in the credentials of both entities. While credentials are
dynamic, the rules that govern credential transactions are static. Both credentials and
rule are, however, system specific.

As some examples to illustrate the application-dependent nature of credentials and
rules for transacting credentials, we shall consider the DNS, BGP, and a geographic
information system (GIS).
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10.4.1.1 DNS Credentials

In DNS, a credential associated with a zone owner A is the name x of the owned
zone. The owner is permitted to:

1. Create new subzones like w.x (names of subzones of x end with x), and
2. Assume ownership or delegate the newly created subzone.

DNS resource records can also be seen as credentials created by a zone owner, where
for any owned name (say, w.x or u.w.x) the owner A has the freedom to specify two
quantities—a record type and a value.

Such credentials are then issued to DNS servers for the zone, as a way of autho-
rizing them to readvertise such credentials to other DNS servers/resolvers. Once a
subzone w.x has been delegated by the owner of x (A) to (say) B, the credential of
B is modified, as it gains ownership of w.x. The credential of A is also modified, as
it can no longer create resource records for names ending with w.x. The root zone
can be seen as the original owner of the entire name space that delegates names to
owners of top-level domains (TLD).

10.4.1.2 BGP Credentials

The Internet is an interconnection of autonomous systems (AS) [122]. Each AS
owns one or more chunks of the IP address space, where the number of addresses in
each chunk is a power of 2. IP chunks are represented using the classless interdomain
routing (CIDR) IP prefix notation. For example, the IP prefix 132.5.6.0/25 represents
232−25 IP addresses for which the first 25 bits are the same as the address 132.5.6.0,
viz., addresses 132.5.6.0 to 132.5.6.127. An AS registry assigns AS numbers to AS
owners. AS owners may acquire ownership of IP prefixes from an IP registry (through
IP registrars or ISPs).

While each AS may follow any protocol for routing IP packets within their AS, all
ASes need to follow a uniform protocol for inter-AS routing. The current inter-AS
protocol is the BGP, whereAS owners employ one or more BGP speakers to advertise
reachability information for IP prefixes owned by the AS. Specifically, every BGP
speaker recognizes a set of neighboring BGP speakers. Neighbors may belong to the
same AS or a different AS. The main responsibility of BGP speakers are as follows:

1. Originate BGP update messages for prefixes owned by the AS, and convey such
originated messages to neighbors of other ASes

2. Relay BGP update messages received from neighbors to other neighbors
3. Aggregate prefixes for reducing the size of routing tables

BGP is a path vector protocol. BGP update messages communicated between BGP
speakers indicate an AS path vector for an IP prefix and a BGP weight for the
path. The weight for a path is influenced by the length of the AS path and various
parameters like “local preference” and “multiple exit descriptor” specified by the AS
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owner for each neighboring speaker (from which a BGP speaker can receive BGP
update messages or to whom update messages can be sent).

The IP registry can be seen as the original owner of the entire space of IPv4
addresses. The registry delegates5 chunks of consecutive IP addresses to AS owners.
AS owners in turn can delegate “subchunks” of addresses to a BGP speaker for the
AS. A speaker that has been delegated a prefix is allowed to initiate path vectors for
the prefix, by creating a BGP update message (which is then sent to all neighboring
speakers). A BGP speaker receiving a BGP update message (from a neighbor) for a
prefix X can insert its AS number in the path and readvertise the path for X to all its
neighbors. However, only the best path for prefix X can be relayed.

Credential transactions between registries and AS owners include AS numbers
and IP prefixes. Credentials provided by an AS owner to a BGP speaker include part
or the entire owned prefix, list of neighbors, and BGP weights associated with each
neighbor. The credentials provided to BGP speaker influence the process of creation
and relay of BGP update messages. BGP update messages can themselves be seen
as a credential created as a function of several credentials.

10.4.1.3 GIS Credentials

In any GIS-based application, the entire surface of the earth may be represented as
tessellations bounded by specific lat–long coordinates. Tessellations may be dele-
gated to various owners (subsystems), who in turn may split a tessellation into smaller
tessellations for purposes of delegation to other subsystems.

The credentials associated with a subsystem can include lat–long enclosures of
tessellations owned and the types of services the subsystem is authorized to advertise.
For each type of service (say, service G = “gas station”), a special subsystem
may assign such a credential (of participant in a service G or “gas station owner”).
Subsystems will be allowed to advertise the exact location of different services (for
example, a gas station, a restaurant) only as long as:

1. The advertised location of the service falls within an owned tessellation.
2. They possess the credential to advertise the service (for example, “gas station

owner”).

The information from such systems may serve as inputs to other complex systems
that may utilize such information for providing a wide range of useful services.

In general, across different systems, credentials can take substantially different
forms that may include simple scalar values like name, address, current balance,
time of expiry, file hash, a secret, etc., or more complex functions of a plurality of
scalar values like the cryptographic hash of multiple scalar values, a range of latitude
and longitude coordinates, a range of addresses, an access control list, a revocation

5 In practice the delegation may occur in a hierarchical manner, through multiple levels of registrars
and ISPs.
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list, a path vector, a look-up table, etc. The versatility of OMTs and the integrity of
OMTs can be assured even by resource-limited modules like CMMs, which make
them well suited as a strategy for representing dynamic credentials.

10.4.2 Consequential Transactions

In a credential transaction model for any system

1. Interactions between subsystems are credential transactions. A transaction results
in the modification of the credentials of both subsystems, in accordance with a
system-specific rule.

2. A transaction is consequential if failure to adhere to the credential transaction
rule can lead to the violation of the desired assurances.

Under this model, securing any system simply boils down to ensuring the integrity
of all consequential credential transactions.

This process begins with the explicit enumeration of various properties of the sys-
tem, like different subsystem roles, types of credentials, and permitted transactions
T1 . . . Tn. Any subsystem that is required to perform a consequential transaction is as-
sociated with a trusted CMM that vouches for the integrity of credential transactions
performed by the subsystem.

10.4.3 Virtual Networks

Alongside the network of subsystems (say, A, B, . . . ) that form a system X, the
CMMs associated with each subsystem (say, A′, B ′, . . . ) form a parallel virtual net-
work (VN) X′. Credential transactions between two (untrusted) subsystems A and
B are mirrored by exchange of VN messages between the trusted CMMs A′ and B ′
in the VN X′, to authorize the transaction.

The identity X′ of a VN created to secure a system X is simply a cryptographic
commitment to all explicitly enumerated properties TX (roles, credentials, permitted
credential transactions, system-specific constants, etc.) of system X. The explicitly
enumerated properties TX can also be seen as a specification of a system-specific
security protocol SX : F→DX that translates the universal assumption (of integrity
of) F to the desired system-specific assurances DX.

From the perspective of CMMs, the enumerated properties TX (or the security
protocol SX) serve as unambiguous instructions for the verification of integrity of
system-X transactions. Subsystems are expected to maintain an OMT to represent
system-specific credentials. The corresponding OMT root is tracked by a CMM
associated with the subsystem.

The tasks performed by CMMs can be broadly classified into:

1. Tasks for managing VN
2. Tasks for operating in a VN
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Managing VNs includes tasks like creating a VN, inducting other CMMs as members
of the VN, joining a VN, etc.

A CMM can create any number of VNs and take part in any number of VNs.
For example, a CMM can be the creator of 5 VNs and a member of 20 other VNs.
Members of a VN may have different roles. For example, a VN with a million
members may have, as its members, only four members with the role of a server and
all other members with the role of a client. VNs can be loaded, unloaded, and deleted.
When operating in a VN X, the CMM assumes the personality of a VN member in
a VN currently loaded on to the CMM.

Creating aVN will involve constructing a static OMT (say TX, with root X) whose
leaves specify the security protocol for the system. The root of the static OMT is the
VN identity. The VN rules also explicitly specify the identity of one CMM, which is
regarded as the creator of the CMM. The designer of the VN will typically designate
a CMM under his/her control (or physical possession) as the creator of the VN. The
CMM itself does not care how the rules are constructed, and the purpose of such
rules. All that a CMM “knows” is when it is operating in a VN X, it will abide by
any rule (elucidated in an OMT leaf) in an OMT with root X.

The VN designer can request the creator (CMM) to induct other CMMs into the
VN and assign possibly different roles within the VN. The CMMs that are inducted
and the member identities/roles to be assigned to the inducted VN members are
entirely up to the discretion of the possessor of the VN creator. For purposes of
inducting CMMs into VNs (and for joining VNs), the interfaces exposed by CMMs
will facilitate establishment of shared keys between VN members (CMMs that have
joined the VN).

Such shared keys are used for authentication of VN messages exchanged between
VN members while operating in the VN. During regular operation in a VN, CMM
interfaces will enable the subsystem to insert/delete OMT leaves, swap OMT leaves,
create VN messages, and update a VN leaf (modify the third field) subject to VN-
specific rules (consistent with VN identity X).

10.4.4 VN State Changes

From the perspective of the CMM, irrespective of the specifics of the system or the
nature of the credentials represented by an OMT, the subsystem is allowed to insert
leaves or swap leaves in any OMT maintained by the subsystem. Corresponding
to such changes, the CMM will readily modify the OMT root. More specifically,
the rules that dictate how the CMM should modify its root to account for insertion,
swapping, or modification of a leaf, or how the CMM should verify the integrity of
a leaf against the root, are not application specific.

However, for creating a VN message or updating an OMT leaf, the CMM will
expect as input, additional justification in the form of a rule consistent with the VN
identity X′. Specifically, from the perspective of a CMM operating in aVN X′, leaves
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of an OMT with root X′ describe rules of the form

f (a, an, ωa)→v or g(a, an, ωa , v) = {ω′
a , v′}, (10.1)

where:

1. A transaction rule f () specifies how contents (a, an, ωa) of an OMT leaf can be
used to generate a VN message v = f (a, an, ωa), and

2. A transaction rule g() specifies how a received VN message v can be used to
update an OMT leaf (modify (a, an, ωa)→(a, an, ω′

a)), and (optionally) generate
a VN message v′.

In other words, a transaction is an atomic operation which results in:

1. The creation of a message of a specific type to convey a value v; or
2. (On receipt of a message v) an update (a, an, ωa)→(a, an, ω′

a) to an OMT leaf, or
creation of a response VN message v′, or both.

In general, the rules for updating a leaf may be different for different roles. All VN
members operating in the same VN X′, with the same role, follow the same set of
rules.

10.4.5 CMM State and VN State

CMMs will possess protected nonvolatile storage for storing a long-lived secret χ ,
and a monotonic counter CM . The two values stored in protected nonvolatile memory
are used to seal and restore the integrity of the dynamic CMM state across power
off–on cycles of the CMM.

The state of the CMM is captured by a dynamic value ξ and a CMM identity Mid .
Before a CMM is powered off, the CMM outputs a self-certificate (MAC)

μ = h(ξ ‖ Mid ‖ CM ‖ χ ) (10.2)

along with the CMM’s current state ξ .
When a CMM is powered on the values ξ , Mid , and the certificate μ are provided

as input to restore the CMM state. The monotonic counter CM is incremented (the
certificate μ for the previous state cannot be reused as the counter CM has been
incremented).

The CMM state ξ is the root of an IOMT. The leaves of the IOMT correspond to
any number of VNs in which the CMM plays a role (as a creator or a member).

To load a VN, any IOMT leaf (V , V ′, ν) consistent with ξ can be provided. The
first field V is the VN identity, and the third field ν is the state of the VN (Fig. 10.1).

CMMs can be seen as being in three basic states:

1. Off state, in which the values χ and CM in nonvolatile memory are protected.
2. On state with no VN loaded. During this state, the CMM state ξ can be modified

for purposes of inserting/deleting place holders (each corresponding to a different
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Fig. 10.1 CMM state and VN
state

χ ,CM Non Volatile

ξ ,Mid CMM State

(V,V' , ν ) State of VN V

(r1, r2, r3, r4, c1, c2,mid) Components of VN State

VN) in the tree with root ξ (by providing a EQ certificate indicating a root
equivalent to ξ ).

3. On state with VN loaded. During this state, a VN leaf (V , V ′, ν) consistent with
ξ is loaded.

The VN-state ν is a function of several parameters. Specifically, ν = 0 implies that
the VN V has not been initialized. For an initialized VN,

ν = h(r1 ‖ r2 ‖ r3 ‖ r4 ‖ c1 ‖ c2 ‖ mid ). (10.3)

Values r1 . . . r4 are OMT roots. c1 and c2 are counters used within the VN. mid is the
identity of the VN member (whose VN state is ν).

Only when a initialized VN V is loaded, the CMM can assume the personality
of the VN member mid to operate in VN V . During this state, the VN member is
permitted to:

1. Perform equivalence transformations on roots r1 . . . r4

2. Create and process various types ofVN specific messages subject to rules specified
in any leaf of a static OMT with root V (VN identity)

3. Update leaves of OMTs r1 . . . r4 and VN counters c2, c2 (subject to VN V rules).

Before a VN is unloaded:

1. The update value of ν is corresponding to changes to r1 . . . r4, c2, c2, etc., that
may have occurred when the VN was loaded

2. The CMM state ξ is updated to record the updated state of VN V

10.4.6 Changing VN State

Every subsystem (for example, A) in system S ′ is associated with a dynamic set of
credentials (CA). Subsystems maintain their dynamic credentials as leaves of up to
four OMTs (some or all of which may be nested). The dynamic roots of the OMTs
are tracked by VN-member (CMM) mS

A.
To engage in a transaction with each other, subsystems A and B request their

respective CMMs (more specifically, the VN members mS
A and mS

B , respectively) to
create/accept VN messages. VN messages are exchanged over VN links (Fig. 10.2).
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Fig. 10.2 System S ′ and
associated VN S
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The broad steps that will need to be performed by two subsystems A and B (belonging
to the same system, and thus subject to the same transaction rules TS) to perform a
transaction are as follows:

1. Subsystem A requests its CMM A′ to create a message M consistent with a rule
f () in the currently loaded VN.

2. CMM A′ authenticates the message M (by providing a token μ) for verification
by B ′.

3. Subsystem A sends message M along with token μ to B.
4. B provides the message M and token μ to it’s CMM B ′, along with a VN rule

g().
5. Depending on the contents of message M, and rule g() B ′ modifies one or more

OMT leaves, and/or creates a response message.

As subsystems are untrusted, that a message was created by CMM A′ is no guar-
antee that the message will be delivered by the subsystem A to B or by B to CMM B ′.
In other words, in the VN-link between any two CMMs, A′ and B ′ are two untrusted
middlemen A and B (the subsystems). In scenarios where it is essential to ensure
that the middlemen do not drop messages, the rules for creation of messages can
include “locks.” For example, the rules may dictate that A′ should set a lock for B ′,
which will be removed only if an authenticated response from B ′ is submitted to A′
within some duration τ . The specific implications of the existence of a lock may also
be system dependent. As one example, a lock may result in the termination of the
link, due to which A and B may not be able to transact credentials (possibly for a
specific duration) in the future.

10.4.7 CMMs as ADS Constructors and Verifiers

In a system, secured using CMMs, each subsystem can be seen as an untrusted prover
for anADS. The verifier for theADS is a trusted CMM associated with the subsystem.
Specifically, the CMM is both the constructor and the verifier of the ADS.

In general, there may exist a plurality of asynchronous data sources for the ADS.
The ADS is constructed by the CMM in a piecewise manner by updating the ADS
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when new data is supplied. The data sources are CMMs associated with other sub-
systems (or other CMMs belonging to the same VN). More specifically a credential
transaction is a process where data supplied by a CMM are accepted by another
CMM to update the ADS.

In general, the rules for initializing the ADSs corresponding to each member of
the VN, and the rules for creating data (supplied to other CMMs) are dictated by VN
rules. Specifically, rules of the form f () dictate how data, in the form of a specific
type ofVN message can be created for delivery to another CMM. The rule g() dictates
how the received data, in the form of a VN message from another CMM, should be
used for updating the ADS.

Through this ability to act as trusted sources and verifiers of application-dependent
data. the CMMs forming the VN guarantee that subsystems need not be trusted.
Untrusted subsystems:

1. Actually store the database and
2. Identify VOs for purposes of verification and construction of the ADS by the

CMM.

The choice of OMT as theADS is due to its versatility. To simplify the application-
specific representation of rules, the CMM model provides the untrusted subsystems
with the ability to make inconsequential updates to the OMT. Specifically, such
inconsequential updates may be performed for the purposes of swapping OMT leaves,
or inserting/deleting placeholders. Simplified application-specific rules for updating
OMT leaves have been investigated for a wide range of practical systems like remote
file storage systems [123], mobile ad hoc networks [124, 125], supervisory control
and data acquisition (SCADA) systems that control critical infrastructures, generic
data dissemination [129] and encrypted content dissemination [128] systems, etc.

10.5 CMM System Architecture

Similar to existing trusted module specifications like TPM, Trinc, etc., the CMM
specification can be open one—or CMMs can be manufactured by any entity. Like any
trusted module specification, CMMs will include explicit functionality for achieving
tamper-responsiveness, true random sequence generators (for example, using physi-
cal unclonable functions), self-check functions, circuitry for protecting the integrity
of clock frequencies, etc.

Similar to TPMs/Trincs, CMMs will generate an asymmetric key pair; CMMs
will have a few tens of reserved registers, modest (for example, a few kB) scratch
pad memory, and I/O registers. CMMs will be equipped with a hardware pseudo-
random function block (for example, a standard cryptographic compression function
h() like SHA-1, or the newer standard SHA-3) as almost every task performed by the
CMM will involve repeated use of h(). CMMs will possess logic circuits necessary
to realize functions Fcmm; the contents of nonvolatile memory are assumed to be
protected by tamper-responsive circuitry even when the CMM is powered off; the
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integrity of volatile memory regions and the CMM clock are assured only when the
CMM is powered on.

Bootstrapping a CMM is a process where a CMM is inducted to operate in a
specific “CMM universe” by a trusted authority for the universe by attesting the
public key of the CMM. CMMs in the same universe can form VNs. Specifically,
corresponding to a network of consequential subsystems of a system to be secured,
a parallel VN is formed by the CMMs associated with each subsystem. A CMM can
belong only to one universe. Within the universe it can create or join any number of
VNs.

10.5.1 CMM Universe

Associated with a universe U is a trusted infrastructure TU . TU constituted by n

independent entities deemed responsible for verification and certification of CMMs
inducted into universe U , and m entities that issue symmetric keys to each certified
CMM. Such symmetric keys render the CMM eligible to take part in the universe U .

Each of the m+n entities is associated with a CMM: say V1 . . . Vn and Y1 . . . Ym,
respectively. To induct a CMM F with public key UF , at least n′ ≤ n CMMs V1 . . . Vn

should convey the attested public key UF and an assigned identity F to each KDC
CMM Y1 . . . Ym.

From the perspective of a KDC (CMM Yi), a CMM assigned identity F and
associated with public key UF , which has been attested by at least n′ ≤ n verification
CMMs, is eligible to receive a secret generated by the KDC (CMM Yi).

Unlike TPM and Trinc, the asymmetric key pair of CMM F is used sparingly—
only for securely receiving a secret from each KDC for the universe. Each CMM
inducted into the universe receives one secret from each KDC. The identities V1 . . . Vn

and Y1 . . . Ym of CMMs that induct CMMs into the universe U are assumed to be of
public knowledge. Their identities are one-way functions of their respective public
keys. Also n (the number of verification agencies for the universe) and m (the number
of KDCs for the universe) are values of public knowledge . For example, one such
universe may choose n = 6, n′ = 4, m = 4, etc.

10.5.2 Creation of Virtual Networks

CMMs in the same universe can form VNs. Consider a system constituted by un-
trusted subsystems (A, B, . . . ). Let O be stakeholder/owner of the system; let O ′ be
the identity of a CMM associated with the stakeholder. The broad steps involved in
deploying CMM-based security for the system are as follows:

1. The stakeholder O enumerates all credential transaction rules for the system S as
leaves of a static OMT TS (with any number of leaves) with root S. S becomes
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the identity of the VN to be created to mirror system. The contents of static OMT
TS will include values like:
(a) The identity O ′ of the CMM creating the VN
(b) Different roles
(c) Types of messages
(d) Types of credentials
(e) Parameters of f () for creating messages and
(f) Parameters of g() for modifying OMT leaves based on a received message,

etc.
2. Stakeholders can now request the CMM to issue any number of NV certificates

to bind any leaf of the static OMT TS to its static root S.
3. Stakeholder inserts a place holder index S in the IOMT whose root ξ captures the

CMM state.
4. Stakeholder invokes a function to initialize VN by loading the place holder for S.

The CMM can be provided a NV certificate to demonstrate that O ′ is the creator
of VN S (as a leaf in the tree with root S will specify the VN creator identity).

5. One leaf of the rules OMT will specify the starting roots r1 · · · r4 and counter
c1, c2 and a fixed mid (say, mid = 0) for the VN creator. The CMM can thus
be requested to set the values accordingly. After this point, whenever the VN is
unloaded the new values will be sealed against the CMM state ξ .

6. After the CMM O ′ has been initialized as the VN creator, CMM O ′ can now
induct other CMMs into the VN. When a CMM X is inducted into a VN S, the
stakeholder in possession of O decides the role of the member and the member
identity. It is convenient to have a few bits of the member identity reserved to
indicate one of several possible roles within the VN. Let mx be the member
identity to be assigned to CMM X.

For the creator of the VN S, the IOMT with root r1 has leaves which indicate the
member identity as index and the CMM identity as the third field. The stakeholder
can request the CMM to add place holder for mx . The root r2 corresponds to a tree
in which the leaves have CMM identity as index and member identity as the third
field. CMM O is requested to insert a place holder for X in the tree with root r2.

One leaf in the static rules tree will indicate the initial values r1 . . . r4 and counters
c1, c2 for members. Specifically, one such leaf will exist for different member-
ship roles within the VN. Such a leaf can be provided to request O ′ to create an
authenticated message to CMM X to induct X into the VN.

Before creating such a message, the CMM will update the place holders (for mx

in the first IOMT and X in the second IOMT). This ensures that:

1. The member identity mx cannot be assigned to any other member
2. CMM X cannot receive two memberships in the same VN

The induction message will be authenticated by using inter-CMM pairwise secret
KO ′X facilitated by the KDCs of the CMM universe to which both O ′ and X belong.
The authenticated message will convey all initial parameters for mx .
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The entity in possession of CMM X requests X to insert a placeholder for VN S,
and load the uninitialized VN. The induction message is submitted to the CMM to
modify its VN state. When the VN S is unloaded, the CMM state will be updated to
reflect the modifications to the VN state.

10.5.3 Intra-VN Key Distribution

Pairwise keys between CMMs are used only for induction of CMMs into VNs. When
operating in a VN, messages between VN members are authenticated using intra-VN
secrets. The VN rules specify the identities of CMMs that will serve as KDCs for
the VN.

CMMs will expose functions which can be used to request the creator of a VN to
prepare message instructing a KDC CMM (say Y ) for the VN to issue secrets to a
CMM (say X) corresponding to a VN member identity mx . The VN rules will also
specify the type of key distribution scheme (MLS/SKIT/PBK, etc.) and parameters
like m, l associated with the key distribution scheme.

Such a certificate can be submitted to KDC Y which will then prepare a message
to convey secret(s) to CMM X (to be used when CMM X assumes the personality
of VN member mx).

For small VNs, the creator CMM itself may serve as the KDC.

10.5.4 VN Links

Armed with intra-VN secrets, aVN member can now exchangeVN-specific messages
with other VN members. Any number of message types may be specified by the VN
rules, along with the rules f () indicating how a message of a specific type can be
created.

A message created by a VN member mj and sent to mj is authenticated using a
MAC μ computed using intra-VN secrets shared between mi and mj . All messages
however have the same format, viz.,

[y ‖ mid ‖ v ‖ t ‖ t ′] (10.4)

where:

1. y is the message type.
2. v is a value conveyed by the message.
3. t is the clock tick value at the time the message was created.
4. t ′ is the clock tick time indicated in a previous message from mj (for which this

message is an acknowledgement).

In general, VN messages will be sent over established over VN links. A VN link is
created by exchanging HELLO messages between VN members. Messages of type
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HELLO are not specific to any VN, and the creation is not subject to VN specific
rules. In a HELLO, no VN-specific value is conveyed (or v = 0). Only the clock
tick counts are used. This can be useful in scenarios where it is necessary for some
amount of time synchronization between VN members.

For example, an exchange:

mi→mj ti , 0
mj→mi tj , ti

(10.5)

where an immediate HELLO response is sent by mj to a HELLO message from
mi permits mi to detect the offset of the clocks between the two CMMs.

Assume that the response is submitted to mi when the clock tick count is t ′i , and
that the round trip time δ = t ′i − ti is sufficiently small. The best estimate of the time
(according to clock of mi) tj is (ti + t ′i )/2. Thus, the offset between the clocks of mi

and mj is tj − (ti + t ′i )/2.
The estimation of offsets may be necessary for application scene, it is necessary

to impose validity durations on credentials. Depending on the extent of accuracy
required the VN rules may specify the maximum round trip time δ permitted (as the
maximum error in the estimate is δ) to compute the offset.

In general, for most VNs, it may be useful to use one IOMT to maintain a VN
link table. Each leaf in the IOMT is indexed by the identify of the VN member at
the other end of the link. The third value corresponding to a member mj may be a
function of several parameters like:

1. o: the clock offset
2. th: the time at which mj was last heard from
3. K ′: the (encrypted) pairwise secret shared with mj , etc.
4. tl : the time at which an as yet unacknowledged message was sent to the mj .

The field tl may be reset to zero when the expected acknowledgement is received.
The VN rules may specify the maximum duration allowed for a response, and the
action to be taken if tl is not reset. For example, the VN rules may specify that no
VN messages can be sent to member mj until time tl + Δ, after which tl may be set
to zero.

10.6 Credential Transaction Model of Representative Systems

The broad purpose of the credential transaction model is to specify rules for cre-
dential transactions in a manner that can be readily understood by resource-limited
CMMs. From the perspective of CMMs (or VN members), leaves of a static OMT
TS contain simple instructions for generating messages of a specific type, or for
updating IOMT/DOMT leaves.

The leaves of TS will explicitly specify various system parameters like subsystem
roles; types of credentials, how they should be represented (IOMT or a DOMT);
message types; the relationship between contents of a specific message type and the
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contents of one or more OMT leaves (specified as parameters of a function f ());
types of messages that can be exchanged between specific VN members (depending
on their respective roles); if locking is necessary for assured delivery of messages;
influence of a received message on one or more OMT leaves (parameters of a function
g()); any number of system-specific constants; CMM identity of the creator of the
VN; identities of CMMs that will play the role of KDCs for the VN, etc.

10.6.1 Credential Transaction Model for DNS

The domain name system [18] is a hierarchical name space. At the top is the root
zone which is allowed to create TLDs—both generic TLDs like com, edu, etc.,
and country code TLDs likein, fr, ca, tv, etc. The root zone delegates TLD
names to TLD owners. A TLD like com can create names like abc.com. Names
created by TLDs are typically delegated to a zone owner specified by a DNS registrar.
A zone owner of (say) abc.com can create any number of names that end with
abc.com. Zone owner either assumes ownership of such names or delegates some
such names to other zone owners. For instance, the owner of abc.com may assign
ownership of names like x.abc.com and x.y.abc.com to itself, and delegate
a name like go.abc.com to another entity (which then becomes the owner of the
delegated zone).

The owner of a zone can create any type of DNS record for a name that it owns.
DNS records for a zone are grouped into resource record sets (RRSETs) of DNS
records for the same name and type. All RRSETs for a zone are hosted by DNS
servers that are deemed authoritative for the zone (by creating name server or NS
type records). For example, the owner of abc.com creates NS records indicating
the authoritative name servers for the zone abc.com; the NS records are, however,
hosted by the name server authoritative for the parent zone com. DNS servers may
be queried either directly or indirectly through other DNS servers (like local DNS
servers) for DNS records by specifying the name and type.

Some of the desired assurances regarding DNS are as follows:

1. A zone cannot be delegated to multiple owners.
2. A zone is not allowed to create DNS records for the names that it has delegated.
3. DNS servers should not modify the DNS records.
4. DNS servers should not be able to incorrectly deny the existence of an RRSET

(queried by specifying name and type) [23].
5. In the process of demonstrating nonexistence of a queried name and type, no

unsolicited information should be provided (to avoid attacks like DNS-walk [24],
[25]).

Assurances (1, 2, and 5) are not provided by the current standard (DNSSEC) for
securing DNS. While TCB DNS provides assurances 3, 4, and 5, assurances 1 and 2
are not provided. In the rest of this section, we outline a credential transaction model
that caters for all five assurances.
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10.6.1.1 Roles

We can readily identify five different subsystem roles for DNS participants:

1. Owner of root zone
2. DNS registrars
3. Owner of TLDs
4. Owner of zones (other than TLD or root zone) and
5. DNS servers

Let R be a VN member with the role of the root zone owner; G a VN member with
the role of a DNS registrar; Z, a zone owner (of any zone); and D, with the role of
a DNS server. The identity assigned to a VN member will have reserved bits (for
example, the least significant byte of the VN identity) that explicitly specifies the
role of the VN member.

10.6.1.2 Credentials

Credentials in this system include names, record types, and a value (that represents
an RRSET) associated with a name and type. More specifically, the credentials are:

1. Hashes of DNS names
2. Hashes of name and type and
3. Hash of an RRSET for a name and type

A constant Φ is defined as the credential corresponding to the root zone; a constant
δ corresponds to record type NS.

The credential y corresponding to a TLD name n1 is obtained by hash-extending
Φ as y = h(Φ ‖ h(n1)).

A child n2.n1 of n1 corresponds to w = h(y ‖ h(n2)), and so on.
Corresponding to a specific name credential ν and and type credential p the

name-and-type credential is h(ν ‖ p).

10.6.1.3 OMT Types

All DNS credentials are represented using an IOMT. The index of the leaves are
names. The value (third field ω) is the owner of the name. The IOMT maintained by
a root owner R is initialized with a single leaf

(Φ, Φ, R). (10.6)

In the IOMT maintained by a TLD owner T , the leaf indexes can be:

1. TLD names owned by itself following delegation by the root zone (for such leaves
ω = T ).

2. Names derived by hash extending a TLD name. The zone owners to whom the
derived name is delegated is the value field.
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3. Name and type values where the name is a TLD name and the type corresponds
to name-server (NS) records (the value is the hash of the RRSET for NS records
to be provided to NSs for the root domain).

Two differences between TLDs and other zone owners are:

1. TLDs cannot create records of type other than NS, while zone owners can create
any type of record.

2. TLDs require an authorization from a registrar to delegate a name. Zone owners
do not.

In the IOMT maintained by a zone owner Z, the leaf indexes can be:

1. Any name delegated by a TLD owner (or another zone owner)
2. Names derived by hash extending an owned name
3. Name and type derived by hash-extending any owned name

For names received as delegations, the value is set to itself (Z). For names derived
by hash extending an owned name, the value can be set to itself (if the name is not
going to be delegated) or to another zone owner (if the name is to be delegated).
Corresponding to name-and-type indexes the value is a the hash of an RRSET.

In the IOMT maintained by DNS servers, the index of any leaf corresponds to a
name-and-type hash. The value corresponds to:

1. A RRSET hash v (if the value was provided directly by a zone authority) or
2. h(v ‖ t) where t is an instant of time, if the value was received from another DNS

server.

10.6.1.4 Message Types

Two types of messages are defined. A message of type DG (for “delegation”) conveys
a value h(n ‖ v) that is the function of a delegated name n and the identity v = Y of
theVN member (to which the name has been delegated). Messages of type RR convey
a value h(y ‖ v) where y is name-and-type credential, and v is a value associated
with the name and type.

10.6.2 DNS Transactions

A transaction can be broadly seen as an unambiguous relationship between a pre-
condition and a postcondition (on completion of the transaction). The preconditions
can be the value v of an OMT leaf and/or receipt of a message of a specific type. The
postconditions can be the creation of a message of a specific type and/or modification
of value v in an OMT leaf. In general,

1. There may be any number of (different) transaction rules for each role (as each
rule will be a leaf in OMT S which can have any number of leaves).
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2. A message may be intended for another VN member or to itself (this feature
enables complex transaction rules to be split into multiple simple steps).

The transactions for the five different roles are listed below by specifying the purpose
of the transaction; preconditions (within squared brackets); and postconditions.

Registrar G transactions

G1 Assign x as owner of name a; [x has role “zone owner”]; (a, an, 0)→(a, an, x).
G2 Inform ownership of v1 to a TLD; [(v1, v2, x) exists]; DG message h(a, x).

Root Zone R Transactions

R1 Assume ownership of root zone; [a = Φ]; (a, an, 0)→(a, an, R).
R2 Reserve a TLD name a for x; [inputs x, e|v1 = h(Φ, e)]; (a, an, 0)→(a, an, x).
R3 Assign TLD a to x; [(a, an, x) exists; x is a TLD owner]; DG message h(a, x).

TLD Owner Transactions

T1 Assume ownership of name a; [DG message h(a, T ) from R];
(a, an, 0)→(a, an, T ).

T2 Reserve name a for x; [(a′, a′
n, T ) exists; DG message h(a, x) from G; input

b | a = h(a′, b)]; (a, an, 0)→(a, an, x).
T3 Delegate name a to x; [(a, an, x) exists; x is a zone owner]; DG message h(a, x).
T4 Create NS record for name a; [(a′, a′

n, T ) exists; x is not zone owner, a =
h(a′, δ)]; a, an, 0)→(a, an, x).

T5 RR Message to convey NS record to parent (root zone); [(a, an, x) exists; x is
not a zone owner]; RR message h(a, Y ).

Zone Owner Z Transactions

Z1 Accept delegation of name a from a TLD/zone owner; [DG message h(a, Z)];
(a, an, 0)→(a, an, Z).

Z2 To assume ownership of a new name a, or delegate a name a, or create
a name-and-type for name a; [(a′, a′

n, Z) exists; inputs x, b|a = h(a′, b)];
(a, an, 0)→(a, an, x).

Z3 Delegate name a to x; [(a, an, x) exists; x is a zone owner;] DG message h(a, x).
Z4 Create RR message for name-and-type a;[(a, an, x) exists; x is not a zone owner];

RR message h(a, x).

DNS server D Transactions

D1 Accept a DNS RRSET for name-and-type a; [RR message h(a, x)];
(a, an, 0)→(a, an, x).

D2 Convey RRSET for a at time t ; [(a, an, x �= 0) exists]; RR message h(a, h(x, t)).
D3 Deny RRSET for name-and-type a; [(a, an, 0) exists]; RR message h(a, 0); note

that the receiver of the RR message does not need to know enclosers of a (corre-
sponding to names/types of records that do exist) to be assured of nonexistence
of queried name and type.
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As the transaction model enumerated above is only for illustrative purposes, not
all transactions are included. For example, transactions for surrendering ownership
of a name have not been accounted for. For this purpose, some additional subsystems
may need to be added to the system. For example, the registrar subsystem may be
seen as composed of multiple subsystems with a transaction model that defines how
names are assigned/leased to potential zone owners, and how ownership of names
can be revoked. Similarly, the transaction model does not specify how ownership of
various TLD are assigned by the owner of the root zone. In practice, the root zone
may also be broken down into several subsystems.

In general, complex systems can be broken down into simpler systems, each with
a different VN. In such a scenario, in a CMM belonging to VN V1 and V2, credentials
from one VN (say, V1) may be imported into the other VN V2 (if the rules in V2

permit). For example, a VN S1 may correspond to a system for instructing registrars
to assign/revoke domain name and zone-owner bindings. A VN S2 may be the DNS
system. Registrars may be members of both VNs S1 and S2. Specifically, a CMM X

may have the role of registrar R1 in VN S1 and registrar R2 in VN S2. R2 may be
explicitly permitted (by the rules in VN S2) to import credentials of R1.

10.6.3 Transaction Models for Other Systems

In general, the value in any OMT leaf may be a function of multiple credentials
(instead of just a name or owner identity in the case of DNS). Similarly, while in the
transaction model for DNS every VN member was required to maintain only a single
IOMT, in general, each VN member may need to maintain multiple IOMTs/DOMTs.
We already saw in Sect. 9.3.7 that a module corresponding to a remote file server
may have to maintain two OMTs.

Just as we defined two message types RR and DLG for DNS, models for different
systems may define any number of message types constructed using a parametric
function f (). As an example, in BGP, a message can correspond to a BGP update
message. Such a message can be seen as a function of several credentials like (1) IP
prefix of the destination; (2) AS path; (3) and multiple BGP weights.

In deriving credential transaction model for any system, a designer has com-
plete freedom in deciding how to “slice and dice” a system into several subsystems.
Multiple simple subsystems could be combined into one subsystem. On the other
hand, a complex subsystem could be split into multiple subsystems for purposes of
simplifying the credential transaction rules for each subsystem.

As an example, consider a subsystem like a BGP speaker. Transactions performed
by a BGP speaker include:

1. Receiving BGP update messages from neighboring routers
2. Modifying the weight according to AS policies/preferences
3. Storing all update messages in such a way as to easily identify the path with the

best weight for any prefix
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4. Advertise the best path for any weight, after adjusting some components of BGP
weight depending on the next hop

5. Aggregating IP prefixes when the best paths for two adjacent prefixes go through
the same next hop, etc.

For simplifying the transaction model, each router subsystem can be seen (for exam-
ple) as constituted by three subsystems—one for sending/receiving BGP updates and
adjusting weights according to AS policies; the second, responsible for storing all
received paths and selecting the best path for any prefix; and the third for aggregating
prefixes.

Other BGP subsystems may include:

1. A registry for AS numbers which maintains an IOMT where a is an AS number
and value ω is the identity of the AS owner, who assigned the AS number

2. A registry for IP addresses which maintains a DOMT. The range [a, an) is the
range of IP addresses assigned to AS ω

3. AS owner, which maintains a DOMT where each leaf represents a chunk of
addresses owned by the AS. The AS owner can easily divide any chunk into
multiple chunks (by inserting a placeholder), and assign subchunks to different
BGP speakers for the AS. For each BGP speaker in the AS. The AS owner will
also have the freedom to specify:

(a) Permitted neighbors
(b) Components of BGP weights like local preference (LP), multiexit discrimina-

tor (MED), etc., for each neighbor
(c) Prepath (or CISCO) weights for different prefixes, etc.

4. And finally, BGP speakers, which could each be split into several subsystems to
simplify the transaction model

In GIS applications, tessellations can be represented using a nested DOMT. Consider
a leaf (a, an, ω) where ω is the root of a DOMT with a leaf (a′, a′

n, x). The implication
is that a tessellation defined by latitude [a, an) and longitude [a′, a′

n) is owned by x.
The interval [a, an) can be split into any number of intervals (by inserting a leaf),
where all leaves will have the same ω. Similarly leaves of the nested tree (longitude
coordinates) can also be split. While operations for splitting the ranges will not be
guided by system dependent rules, system dependent rules will dictate how an x can
be modified (for example to delegate a tessellation).

In a system for electronic cash, an IOMT indexed by user identities could be used.
The value field is the cash reserve for the user. Any transaction involving transfer of
an amount x from one user to another will involve reducing the value ω in one leaf
by a value x and increasing the value ω in another leaf by the same value x.
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Conclusions

Almost every security issue in our day-to-day lives stems not from weaknesses in
cryptographic algorithms but the environment in which cryptographic algorithms
are executed. There is a dire need for investment in a (perhaps global) infrastruc-
ture for realizing sufficiently trustworthy hardware modules, which can provide
a safe environment for execution of cryptographic algorithms. As security proto-
cols guarantee the existence of specific application-specific relationships between
application-specific inputs and outputs, in order to ensure application-specific as-
surances, the trusted environment should have the capability to execute a possibly
unlimited number of application-specific algorithms.

One possible approach outlined in this book, based on trusted credential
management modules (CMMs), is to:

1. Identify a set of broad application-independent high-level protocols executed in
the trusted confines of CMMs and

2. Device a strategy to specify application-dependent protocols as a set of static
parameters

Application-independent protocols for CMMs identified in this book include
protocols for:

1. Key generation, distribution, and using secrets for computing pairwise secrets
2. Verifying, inserting, and updating leaves of an ordered Merkle tree
3. Establishment of virtual networks (VN) to mirror a system/application
4. Time synchronization between VN members
5. Authentication and integrity verification of various types of VN messages with a

fixed format

The credential transaction model was adopted as the strategy for the latter, viz., spec-
ification of application-dependent parameters. Specifically, application-dependent
parameters capture rules for:

1. Generation of various VN-specific message types
2. Updating the value field ω in an OMT leaf
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Application-independent protocols for key predistribution schemes like modified
Leighton–Micali scheme (MLS), parallel basic key predistribution scheme (PBK),
and subset key and identity tickets (SKIT) can be useful. Specifically, MLS is
preferable as long as the limitation in its scalability is not an issue for the specific
application. SKIT and PBK are preferable for the scenarios demanding unlimited
scalability. More specifically, SKIT will remain preferable until the time we have de-
veloped sufficient confidence in our ability to produce sufficiently tamper-responsive
modules. As much of PBK’s advantages stem from the ability to take advantage of
the decrypt-only-when-necessary (DOWN) assurance, and as the DOWN assurance
relies on the assumption that a single highly protected master secret in a tamper
responsive module can not be revealed, it is only after gaining experience from real-
world deployments can we be confident of the assumption behind the DOWN policy.
From then on, PBK will be a preferred approach for scenarios requiring unlimited
scalability.

Two variants of the ordered Merkle tree (IOMT) and domain ordered Merkle
tree (DOMT), together, were shown to be suitable for representing the dynamic
credentials corresponding to a participant in any application/system.

From the perspective of the trustworthy modules, protocols for creation of a VN
involves specification of a VN identity, recognition of it’s own role in the VN, and
distribution of VN specific keys to other VN members,which are intended to be used
for mutual authentication of members.

The protocol for time synchronization is required in scenarios where the clocks
of the modules are not assumed to be synchronized. More specifically, this assump-
tion obviates the need to trust the integrity of the hardware clock of the module
when the module is powered off. Time synchronization is achieved through “quick”
handshakes (with a maximum error less than the round-trip time for the handshake).

Many high-level application-independent protocols were constructed by combin-
ing inputs and outputs of lower-level protocols using self-certificates. The lower level
protocols were themselves in turn constructed as simple sequences of a small num-
ber of symmetric pseudo random function (PRF) operations. In the same manner,
to permit possibly complex application-specific rules to be captured, the parameters
may specify simple rules for generation of application-specific self-messages that
can be combined using simple application-specific rules to finally yield a message
of a certain type to be delivered to a VN member, or for creation of a self-message
instructing that the value field in a specific OMT leaf should be updated from ω→ω′.

The main motivation for the CMM-based approach to secure systems is to elimi-
nate the need for vague notions of trust (like “trust in an organization” or “trust in a
specific person” or trust in “(possibly complex) software executed by a computer”)
with something that is arguably less vague—the assumption of read-proof and write-
proof CMMs (that secrets protected by CMMs cannot be exposed and that the simple
functionality of CMMs cannot be modified).

However, the trust in CMMs themselves is bootstrapped from the trust in the
infrastructure for realizing and certifying the integrity of CMMs. Nevertheless, this
is not a serious limitation due to the following reasons:
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1. The infrastructure could be constituted by any number of independent verifying
and certifying authorities.

2. It is possible for any entity to raise questions regarding the trust in such entities
by demonstrating the feasibility of attacks that violate the assumed integrity of
modules.

3. Deliberately limiting the protocols executed inside CMMs (or, functions executed
inside CMMs) to simple PRF and logical operations, and deliberately constrain-
ing the storage memory requirements inside CMMs make it easier to verify the
integrity of assumed trusted functionality.

4. Deliberately lowering the computational overhead inside the trusted boundary
reduces concerns of heat dissipation, and thereby permits unconstrained strategies
for (active and passive) shielding CMMs from intrusions.

5. That all CMMs will possess identical fixed functionality implies the ability to
automate several tasks required for certification of integrity, and realization of
CMMs at low cost.

6. Lower cost of CMMs implies that a larger fraction of CMMs can undergo
consummate destructive testing.

In the final analysis, key distribution schemes for multicast security associations may
not be as useful as schemes for unicast security. This is due to the fact that the ability
to perform atomic relays using unicast security can eliminate the need for broadcast
authentication using digital signatures. In those very rare circumstances where this
is not feasible, one-time signature schemes could be used.

Broadcast encryption was primarily seen as a strategy suitable for stateless
devices—most often in the form of set-top boxes. The rapidly lowering costs of
general-purpose computing modules have dramatically modified the trend in the
construction of such devices. There is perhaps no set-top device that is manufac-
tured currently that does not employ a general-purpose computer running (a possibly
highly stripped version of) a general-purpose operating system. Consequently, the
very notion of stateless devices may not exist in a few years.

For stateful devices which can receive group secrets after deployment, the ability
to atomically relay secrets, and/or the ability to succinctly specify group memberships
using access control lists (ACLs) represented as OMTs—which can specify explicitly
included devices or explicitly excluded devices—is perhaps a better alternative to
distribute secrets to eligible devices.
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