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Preface

Stochastic Petri Nets (SPNs), introduced in 1980, are a modeling formalism that
can be conveniently used for the performance and reliability evaluation of discrete
event systems. They admit a graphical representation that is well suited to top-down
and bottom-up modeling of complex systems, and present a very straightforward
mapping between events in the SPN model and events in the underlying Markov
process. Although SPNs have become a useful tool for researchers in computer
science, they are unknown to most wireless researchers and are not widely used
to model wireless communication systems. On the other hand, the next-generation
wireless networks such as the 5th Generation (5G) cellular systems will become
increasingly complex in order to support for an increasingly diverse set of services,
applications, and users—all with extremely diverging performance requirements.
Since SPNs are found to be powerful in modeling performance of computer systems
with a wealth of numerical solution techniques, it is very interesting to explore their
applicability in wireless systems. This book was motivated by a desire to bridge
the gap between the research on SPN modeling formalism and on the performance
modeling of wireless networks.

In this book, we present our research results on applying SPNs to the perfor-
mance evaluation of wireless networks under bursty traffic, in terms of typical
Quality-of-Service (QoS) performance metrics such as mean throughput, average
delay, packet dropping probability, etc. In the first chapter, we introduce the key
motivations, challenges, and state-of-the-art research on using SPNs for cross-layer
performance analysis in wireless networks. In Chap. 2, we first introduce the SPN
basics, and then focus on two powerful techniques in SPNs to deal with the well-
known state space explosion problem: (1) model decomposition and iteration; (2)
model aggregation using Stochastic High-Level Petri Nets (SHLPNs). We apply
the first technique to the performance analysis of opportunistic scheduling and
Device-to-Device (D2D) communications with full frequency reuse between D2D
links in Chaps. 3 and 4, respectively. The above two scenarios show two typical
radio resource sharing paradigms in wireless networks: orthogonal sharing by
scheduling and non-orthogonal sharing by frequency reuse. We show that SPNs can
provide an intuitive and efficient way in modeling the multiuser wireless system,
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viii Preface

especially facilitating the inclusion of different resource sharing paradigms between
wireless links. Moreover, the original complex model whose state space grows
exponentially with the number of users can be decomposed into multiple single
user subsystems, and iteration methods can be used for performance approximation.
In Chap. 5, we apply the second technique to formulate a wireless channel model
for Orthogonal Frequency Division Multiplexing (OFDM) multi-carrier systems
with SHLPN formalism in order to simplify the cross-layer performance analysis
of modern wireless systems. Compared with existing Finite State Markov Channel
(FSMC) model whose state space grows exponentially with the number of OFDM
subchannels, our proposed SHLPN model uses state aggregation technique to deal
with this problem. Closed-form expressions to calculate the transition probabilities
among the compound markings of the SHLPN model are provided. When applied
to derive the performance measures for OFDM system, the SHLPN model can
accurately capture the correlated time-varying nature of wireless channels. We
believe the example applications of SPNs to wireless networks and related findings
will reveal useful insights for the design of radio resource management algorithms
and spur a new line of thinking for the performance evaluation of future wireless
networks.

Beijing, China Lei Lei
Chuang Lin

Zhangdui Zhong
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Chapter 1
Introduction

Compared with other high-level modeling formalisms such as queuing theory, SPNs
have received relatively little attention in the research of wireless networks. This is
mostly due to the fact that SPNs are unknown to most wireless researchers. On the
other hand, SPNs are a well-developed theory and have been actively studied in
the computer science field for the last 20 years. They present a very straightforward
mapping between events in the SPN model and events in the underlying Markov
process. Most importantly, a set of powerful techniques have been developed
in dealing with the well-known state space explosion problem in performance
evaluation. In this chapter, we first briefly introduce the general background of
cross-layer performance analysis of wireless networks using stochastic models.
Then, we focus on the motivations and challenges on using SPNs for performance
evaluation. Finally, we provide an overview of the state-of-art research on applying
SPNs to the performance evaluation of wireless networks.

1.1 Cross-Layer Performance Analysis of Wireless Networks
Using Stochastic Models

The next-generation wireless networks such as the 4th Generation (4G) and 5G
cellular systems are targeted at supporting various applications such as voice,
data, and multimedia over packet-switched networks. The performance of such
networks is evaluated in terms of QoS contract satisfaction under diverse traffic
conditions. Performance evaluation can be performed by system-level simulation,
where all effects and algorithms of every network layer are implemented in
software. Although the extracted performance is accurate, the simulation-based
approach is usually time-consuming and cannot be directly applied to the design
of optimal mechanisms and algorithms. Therefore, performance evaluation by
high-level modeling formalism, e.g., queuing networks or SPN, is an attractive

© The Author(s) 2015
L. Lei et al., Stochastic Petri Nets for Wireless Networks, SpringerBriefs
in Electrical and Computer Engineering, DOI 10.1007/978-3-319-16883-8_1
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2 1 Introduction

alternative. When formal methods are applied to performance evaluation, stochastic
models, especially Markovian models are formulated to characterize the dynamic
behavior of the wireless systems. Such a performance model is usually considered
as “cross-layer” if it not only characterizes the physical layer aspects but also the
behavior of the higher layers, e.g., Medium Access Control (MAC) layer. The key
performance measures can be identified and analyzed, revealing the relationships
between them if necessary. Moreover, the optimal system structure and operating
mode can be designed based on the stochastic models, where the system fulfills all
requirements concerning QoS as well as all technical and economic constraints with
the given workload.

There are several reasons why performance evaluation of wireless networks
need to be based on stochastic models instead of the much simpler deterministic
models:

1. Stochastic nature of wireless channel conditions: Compared with wireline net-
works, the performance of wireless systems is dominated by the channel between
antennas. The wireless channel conditions vary in both the time domain and
frequency domain due to complex phenomena such as multipath fading, Doppler,
and time-dispersive effects introduced by the wireless propagation. Therefore,
it is critical for networking researchers and engineers to capture the stochastic
channel characteristics in their cross-layer performance model.

2. Stochastic nature of traffic arrivals: Due to the complex wireless channel
characteristics, the stochastic nature of traffic arrivals is usually neglected for
simplification when studying the performance of wireless networks, especially
when only physical layer performance is considered. The infinitely backlogged
traffic model is used where each user always has data to transmit. However, in
practice, data arrival process at the users is dynamic and bursty. Therefore, with
the accelerating growth of mobile internet and other new wireless applications,
more and more research work focuses on bursty traffic models.

3. Stochastic nature of underlying geometry: User mobility is one salient feature of
wireless networks, which leads to the stochastic nature of underlying geometry
(the relative locations of nodes). Since the underlying geometry of wireless
networks plays a fundamental role due to the interference of other transmitters,
it needs to be characterized by related performance models to analyze key
performance metrics, e.g., Signal to Interference and Noise Ratio (SINR).

Performance models for wireless networks can be generally classified into two
broad categories. The first category focuses on the investigation of performance at
the packet level with an assumption of a static user population [1–7]. The time scale
of the packet-level model is the frequency of scheduling algorithms. The service
rates of the users are the same as the instantaneous channel transmission rates,
which vary randomly over time due to channel fluctuation. The traffic pattern is
usually assumed to be saturated with infinite backlogs (i.e., each user always has
data to transmit) or features dynamic packet arrivals [8]. For the saturated model, a
common objective is to optimize some utility functions of the throughput; while for
dynamic packet arrivals, the focus is on network stability (i.e., the queue occupancy
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can be bounded whenever feasible), the statistical worst case performance (e.g.,
the tail distribution of packet delay) and average performance (e.g., the average
delay, the packet dropping probability). The second category investigates perfor-
mance at the flow level with time-variant user population [9–11]. In the flow-level
analysis, new users arrive according to a stochastic process, and each user has a
finite-length file for transmission. A user leaves the system when the entire file
is transmitted. The time scale of flow level model is the frequency of the user or
flow arrival and departure. Since the full analysis of flow-level performance can
be very complicated, a simple constant-rate service process (e.g., the time average
value of the channel rate) is usually used to approximate the time-varying channel
transmission rate. Important flow-level performance metrics include the distribution
of the number of flows, flow throughput and mean response time. Compared to
the packet-level analysis, the flow-level analysis is based on more practical traffic
patterns, which consider the dependence of performance on user population [9].
However, compared to the flow level analysis, the packet level analysis shows
advantages in involving more realistic channel models, which include the simplest
memoryless on-off channel, the two-state Gilbert-Elliot channel, and the more
complicated and accurate FSMC.

There are several high-level formalisms which provide powerful model formu-
lation and solution techniques for the performance evaluation of wireless networks,
e.g., queuing theory, SPNs, stochastic network calculus, and stochastic geometry,
etc. In this book, we will focus on the SPNs and discuss its applications to the
performance evaluation of wireless networks.

1.2 Motivations and Challenges on Using SPNs
for Performance Evaluation

SPNs were introduced in 1980 as a formalism for the description of Discrete
Event Dynamic Systems (DEDS) whose dynamic behavior could be represented by
means of continuous-time homogeneous Markov chains. They are the stochastic
extension of Petri Nets (PNs), which are a powerful tool for the description and
the analysis of systems that exhibit concurrency, synchronization and conflicts.
Compared with PNs, random variables have been added in SPNs to represent the
duration of activities, or the delay until events. SPNs present a very straightforward
mapping between events in the SPN model and events in the underlying Markov
process. They maintain a clearly arranged graphical structure, and it is easy to
generate the Markov process from any SPN model. Moreover, SPNs have the ability
to structure complex models into modules, so it is possible to capture all relevant
details in a yet concise model. Due to its powerful modeling capability, SPNs have
become a useful tool for researchers in computer science.

Despite of its many advantages, one major challenge in using SPNs for perfor-
mance evaluation is that the models developed in this way tend to result in Markov
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processes which have a large number of states. This phenomenon is known as the
“state space explosion” problem, stemming from the fact that even very “innocent”
nets, with a small number of places and transitions, can lead to very large state
spaces. Moreover, the state space of any Markovian based model generally grows
exponentially with the dimensions of the modeled system, making it impossible to
obtain any solution for large scale systems. In order to deal with this problem, a set
of powerful techniques have been developed in SPNs, such as model decomposition
and model aggregation, which will be discussed in detail in the next chapter.

SPNs have received relatively little attention in the research of wireless networks.
This is mostly due to the fact that SPNs are unknown to most wireless researchers.
The purpose of this book is to introduce the basic principles of SPNs and show
its applications to the performance evaluation of wireless networks with several
examples.

1.3 Related Works on SPNs for Wireless Networks

In recent years, SPNs have been used occasionally to model wireless communica-
tions systems, but a widespread use is not observed. In this section, we provide a
brief overview of the existing state-of-art research.

1.3.1 Ad Hoc Networks

In [12], the authors present an approach for the modeling and analysis of large-scale
ad hoc networks using SPNs. In order to deal with the state space explosion problem,
an approximate model is proposed based on the idea of SPN decomposition, which
exploits the large amount of nodes and essentially describes the behavior of one
node under a workload that is generated by the whole ad hoc network. It is shown
that a close match exists between the obtained results by SPN approach and those
from a simulation model in ns2. Moreover, the proposed scheme costs negligible
computational effort compared with that of a simulation method.

In [13], the authors present a performance study of the Distributed Coordination
Function (DCF), which is the fundamental contention-based access mechanism
of 802.11 wireless LANs. The proposed SPN model can capture all relevant
system aspects in a concise way due to ability of SPN formalisms in structuring
complex models into modules. Numerical results obtained from the SPN model
allow to quantify the influence of many mandatory features of the standard on
performance, especially the backoff procedure, extended interframe spaces, and the
timing synchronization function.
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1.3.2 Cellular Networks

In [14], the authors address the scheduling tradeoff between average cell spectral
efficiency, cell edge performance and fairness in cellular networks. SPNs are used
to model different schedulers, so that their performance can be obtained by Markov
chain steady state analysis without simulation. In an extended work [15], the authors
treat the scheduling tradeoff analysis with a mix of Realtime (RT) and Non-Realtime
(NRT) traffic. The system is abstractly modeled as a SPN which incorporates a
parameter that models the tuning parameter of a real scheduler. The numerical
results show that a tradeoff is possible only for NRT traffic, but with increasing
proportion of RT traffic, this flexibility shrinks down to zero.

In [16], the authors propose an efficient Call Admission Control (CAC) scheme
for mobile networks that takes into account voice connections as well as syn-
chronous and asynchronous data connections. Since Stochastic Well-Formed Petri
Nets (SWNs) are a powerful tool for modeling complex systems with concurrency,
synchronization and cooperation, they are used to model the system interaction,
which consists of several mobile nodes, gateways, cells, and servers. In [17], the
authors develop an executable top-down hierarchical Colored Petri Net (CPN)
model for multi-traffic CAC in Orthogonal Frequency Division Multiple Access
(OFDMA) system. Moreover, four CAC schemes are presented based on the CPN
model taking into account call-level and packet-level QoS. The simulation results
show that CPN offers significant advantages over Markov chain in modeling CAC
strategies and evaluating their performance with less computational complexity in
addition to its flexibility and adaptability to different scenarios.

In [18], the authors focus on modeling, performance evaluation and reliability
of small cell wireless networks, taking into account the retrial phenomenon, finite
number of customers served in a cell and channels breakdowns. It is shown that
the Generalized Stochastic Petri Net (GSPN) model can be used to cope with
the complexity of such finite-source retrial networks under different breakdowns
disciplines, and to derive the related performance and reliability indices.

In [19], the authors present a Stochastic Reward Net (SRN) model for perfor-
mance evaluation of bandwidth allocation in IEEE 802.16 network considering
multiple traffic classes. The proposed model incorporates prioritization and pre-
emption of traffic classes. Packet drop due to waiting time exceeding threshold is
also considered. The performance of the system is evaluated in terms of mean delay
and normalized throughput considering the on-off traffic model.

1.3.3 Multi-hop Wireless Networks

In [20], the authors use SPN formalisms to build different channel models, such
as the Gilbert-Elliot (GE) channel and the FSMC. Wireless system models can be
formulated using the SPN-based channel models, so the performance of single-hop
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system and multi-hop system models can be analyzed. In [21], a credit-based flow
control protocol from the ATM domain is proposed to be used in multi-hop wireless
networks. The authors study the performance of the flow control protocol on two-
hop wireless networks by making use of the SPN-based channel model discussed
in [20]. It is shown that SPN model for two-hop wireless networks can be easily
extended to multiple hops and even towards mesh networks.
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Chapter 2
Stochastic Petri Nets

SPNs were introduced in 1980 as a formalism for the description of discrete event
systems whose dynamic behavior can be represented by means of continuous-
time homogeneous Markov chains [1]. Although SPN models are widely used for
performance and reliability evaluation of many practical systems, the major problem
in this approach, however, is that a large state space of the underlying Markov model
needs to be generated, stored, and processed. In this chapter, we will introduce two
powerful techniques in SPNs to deal with the above state space explosion problem:
one is the model decomposition and iteration technique; the other is the model
aggregation technique in SHLPNs.

2.1 SPN Basics

Before introducing SPNs, it is necessary to learn about what are PNs. PNs were
developed originally by Carl Adam Petri in 1962. Since then, they have been
extended and developed, and applied in a variety of areas, such as office automation,
manufacturing, programming design, computer networks, communications, Inter-
net, railway networks and biological systems.

A PN is a directed bipartite graph with two types of nodes called places and
transitions which are represented by circles and rectangles (or bars), respectively.
Arcs connecting places to transitions are referred to as input arcs; while the
connections from transitions to places are called output arcs. A non-negative integer
(the default value is one) may be associated with an arc, which is referred to as
multiplicity or weight. Places correspond to state variables of the system, while
transitions correspond to actions that induce changes of states. A place may contain
tokens that are represented by dots in the PN. The state of the PN is defined by its
marking, which is represented by a vector M D .l1; l2; : : : ; lk/, where lk D M.pk/

© The Author(s) 2015
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is the number of tokens in place pk . Here, M.�/ is a mapping function from a place
to the number of tokens assigned to it.

A PN is formally defined by the following tuple

PN D .P; T I F; W; m0/ (2.1)

where

• P D .p1; p2; � � � ; pP / is the set of places.
• T D .t1; t2; � � � ; tT / is the set of transitions.
• F � .P �T /[.T �P / is the set of arcs which are between places and transitions

(and between transitions and places).
• W W F ! N is a weight function.
• m0 D .m01; m02; � � � ; m0P / is the initial marking.

Figure 2.1 is a simple PN with all components.
This PN has two places P1,P2, and one transition T1. P1 has one token and P2 has
no token, that is M.P1/ D 1, M.P2/ D 0.

A transition must be enabled before it is fired. A transition is enabled when the
number of tokens in each of its input places is at least equal to the arc weight going
from the place to the transition. An enabled transition may fire at any time. When
fired, the tokens in the input places are moved to output places, according to arc
weights and place capacities. This results in a new marking or state of the PN.
Figure 2.2 is an example of firing a transition.

Fig. 2.1 A simple Petri Net

P1

P2

T1
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Fig. 2.2 Petri Nets transition process. (a) Petri Nets before T1 fires, (b) Petri Nets after T1 fires

SPNs are one kind of PNs in which an exponentially-distributed time delay is
associated with each transition. An SPN is formally defined by the following six-
tuple

SPN D .P; T I F; W; m0; �/ (2.2)

where .P; T I F; W; m0/ have the usual meanings so that the underlying PN model
constitutes the structural component of a SPN model. � D .�1; �2; � � � ; �T / is the
set of firing rates associated with transitions, where �i is the mean firing rate of
transition ti . The reciprocal of firing rate �i D 1=�i denotes the mean firing delay
or mean service time of transition ti .

SPNs can be associated with stochastic process. Due to the memoryless property
of the exponential distribution of firing delays, it is easy to find that SPN systems
are isomorphic to Continuous-Time Markov Chains (CTMCs). Specifically, a state
in the Markov process is associated with every marking in the SPNs. In addition,
an event, or transition, in the Markov process is associated with each firing of a
transition in the SPNs which causes the corresponding change of marking.

Although SPNs provide a clear and intuitive formalism for generating Markov
processes, they do have the disadvantage that the models constructed in this way
can soon become exceedingly large. GSPNs represent an extension of the SPN
formalism, which are designed to address this problem. GSPNs divide the transitions
into two classes: the exponentially-distributed timed transitions (represented by
blank rectangles), which are used to model the random delays associated with the
execution of activities, and immediate transitions (represented by bars), which are
devoted to the representation of logical actions that do not consume time.

The immediate transitions have precedence over immediate transitions in firing.
Consider the example in Fig. 2.3. A token in place P1 starts the activity modeled
by timed transition T1. If a token arrives in P2 before the firing of T1, immediate
transition T2 becomes enabled and fires, thus disabling timed transition T1.

The presence of immediate transitions brings about a difference among markings.
Markings in which no immediate transitions are enabled are called tangible,
however markings enabling at least one immediate transition are referred to as
vanishing. The GSPN system spends a positive amount of time in tangible markings,
and a null time in vanishing markings. Since the vanishing markings can be
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Fig. 2.3 Petri Nets with an
immediate transition

P1

T1 T2

P2

P4P3

eliminated from the reachability graph before the Markov process is generated, the
GSPN models have smaller number of markings compared with the SPN models.

Due to the space limitation of this book, we cannot provide a comprehensive
introduction of the SPNs and GSPNs. Interested readers may refer to [1, 2] for
more detailed information. Here, we only introduce two specific forms of SPNs
that will be used in the following chapters. The first one is the Deterministic and
Stochastic Petri Nets (DSPNs), which further extend GSPNs in that they allow
timed transitions to have an exponentially-distributed time delay or an deterministic
timed delay (represented by filled rectangles). The second one is the Discrete
Time Stochastic Petri Nets (DTSPNs) [3], which are extended from the PNs by
associating a geometrically distributed delay with each transition, so that they can be
mapped to a Discrete-Time Markov Chain (DTMC) instead of CTMC as in regular
SPNs. A nonzero conditional probability p is associated with each transition. The
probability p < 1 is defined as the probability that the enabled transition fires at
the next time step, given (conditioned on) the fact that no other transition fires.
Since multiple firings may occur at any time step in a DTSPN, its analysis requires
an additional step to decondition the probabilities before the normal Markovian
analysis is attempted.

2.2 Model Decomposition and Iteration Technique

To make performance evaluation of SPNs attractive for many real life applications,
we have to deal with models in the range of billions of states. Model decomposition
uses the “divide and conquer” principle in various ways to overcome complexity.
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It breaks up a model according to its network structure and divides the model into
multiple submodels. Since the solution complexity is roughly exponential in the
model size, it is cheaper to solve several small models than a single large one. Even
if each smaller model must be solved several times in an iteration, the total effort
can be orders of magnitude less [4]. The price is an approximation in performance
measures.

Several model decomposition techniques have been proposed. For example
in [5], the time scale decomposition technique was proposed by Ammar and
Islam in 1989. It is suitable for GSPN models which are described by system of
different magnitude operation time. When it comes to the reliability, efficiency
and dependency of system, there may be orders of magnitude differences in firing
rate of transitions. For instance, there is a big difference between firing rate of
normal operation and that of failure operation: since a failure operation is rare,
its firing rate is much smaller. In this section, we will focus on another important
model decomposition technique developed by Ciardo and Trivedi in 1993 [6], which
decomposes a GSPN into a set of “nearly independent” subnets and solves each
individual subnet separately. Because there exist some dependencies among the
subnets, after solving each subnet, certain quantities need to be exported to other
subnets, and this is conducted iteratively.

When decomposing a Markov chain to obtain an approximate steady-state
solution, the quality of the approximation is related to the degree of coupling among
the blocks into which the Markov matrix is decomposed. Better approximations are
obtained when the transition rate matrix is near-decomposable, i.e, its off-diagonal
blocks are close to zero. In contrast to the above Markov chain level decomposition,
it is more desirable to decompose a GSPN model directly (net level decomposition)
without generating the underlying Markov chain, whose size is the main limitation
to study the GSPN. In [6], the concept of a near-independent Markov chain is
proposed to characterize the level of approximation when applying the net level
decomposition. For example, consider the GSPN C, obtained by composing two
independent GSPNs A and B. Construct RC and SC, the transition rate matrix of
the underlying CTMC and the tangible reachability set of the GSPN C, and compare
them to RA, SA, RB and SB, the transition rate matrices and the tangible reachability
sets of A and B. If jSAj D m and jSBj D n, then RA is m � m and RB is n � n. SC

is the cross-product SA � SB. RC can be expressed as the Kronecker sum [7]

RC D RA ˚ RB D RA ˝ In C Im ˝ RB;

where Ii is the i � i identity matrix. We recall that the Kronecker product “˝” of
two matrices E, er � ec , and F , fr � fc , is the erfr � ecfc matrix

E ˝ F D
2
4

E1;1F � � � E1;ec F

� � � � � � � � �
Eer ;1F � � � Eer ;ec F

3
5
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RC =

RA
1,2 RA

1,m
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· · · · · · · · · · · ·

RA
m,1 RA

m,2
· · · · · · · · · RB
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Fig. 2.4 The structure of RC

RC consists of m2 blocks of size n � n (Fig. 2.4). Each of the m diagonal blocks is
equal to RB, while the off-diagonal block in position .i; j / has zero entries except
on the diagonal where all the elements are equal to RC

i;j

The Kronecker sum and product are noncommutative operators, but RA ˚ RB

and RB ˚ RA differ only in the ordering of the indices.
A transition rate matrix is near-independent if it can be partitioned so that the

diagonal contains two or more occurrences of (approximately) the same block, while
the off-diagonal blocks must have (approximately) the structure of Fig. 2.2, but they
are not at all required to have small entries as the near-decomposable matrix. Three
basic structures of near-independent GSPN models are proposed in [6].

• Rate relation—For an SPN model consisting of multiple submodels, at least
one rate in one submodel is a function of the marking of another submodel. This
will lead to one of the positive entries of the transition rate matrix changing to a
different positive value.

• Synchronization relation—There is at least one synchronous transition between
different submodels, which results in one of the off-diagonal zero entries in an
off-diagonal block changing to a positive value.

• External relation—There exists at least one forbidden arc between different
submodels, which results in one of the diagonal positive entries in an off-diagonal
block changing to zero.

We generally need the following steps to exploit near-independence at the GSPN
level.

1. Decomposition—Given a GSPN A, generate GSPNs A1; � � � Ak . Often, Ai is
not a subnet of A, but it shares common subnets with it. These GSPNs are
parametrized: the firing rates of some of their transitions might be expressed
as a function of (real) parameters to be specified.

2. Import graph—For each SPN Ai , fix the value of its parameters using imports
from Aj , 1 � j � k. Also, specify the quantities exported from Ai after its
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solution. If Ai imports a quantity from Aj , we write Aj � Ai . With a slight
abuse of notation, we also denote the transitive closure of the import relation
with the symbol �. The graph describing the import relation may be cyclic (the
case Ai � Ai , a cycle of length one, may occur).

3. Iteration—If the import graph is acyclic, it implicitly defines a (partial) order
for the solution of the GSPNs Ai . If Ai � Aj , Ai must be studied before Aj .
If neither Ai � Aj nor Aj � Ai , then Ai and Aj can be studied in any order.
If Ai and Aj belong to a cycle, one of them must be chosen to be studied first,
but its imports are not available and initial guesses must be provided for them.
After each Ai has been studied once, more iterations can be performed, each time
using the most recent value for the imports. Convergence is reached when all the
imports remain (almost) constant between successive iterations.

Note that the iteration in Step 3 is necessary because the model cannot be
decomposed very “cleanly”, i.e., there are interactions between submodels that
cannot be ordered. In such cases fixed point iteration is used to determine those
model parameters that are not available directly as input or by solving other models.
In this technique, the relations between model parameters and model outputs result
in an equation of the type

x D f .x/; (2.3)

where x WD .x1; : : : ; xn/ is the vector of iteration variables. This is the fixed
point equation corresponding to the iterative model, and the vector x that satisfies
this equation is called a fixed point of this equation. The simplest way of finding
this fixed point is by successive substitution. In this method, starting with an initial
guess x0 we iterate in the following way:

xn D f .xn�1/: (2.4)

This iteration is terminated when the difference between two successive iterates
is below a certain tolerance level. Note that this iteration may not always converge.
If it converges, it may not always converge to the same value. Therefore, before
we use the iterative method, we must be sure that a solution to the above equation
exists. In [8], the theoretical problems that arise while using iteration with SPNs are
studied. Specifically, it is proved that if the iteration variables are expected reward
rates and the underlying CTMC has exactly one closed communicating class, a fixed
point will exist.

2.3 Stochastic High-Level Petri Nets

The model decomposition techniques have been widely used in SPNs and can
work quite well in practice. They drastically reduce the solution time with respect
to that of the overall exact model (which might not even be feasible to solve).
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However, the model decomposition techniques can only be applied to the models
with specific structures, e.g., near-independency. For those SPN models without
these desirable structures, another powerful technique that may be considered is
the model aggregation, which corresponds to the state grouping in the Markov
domain. In this section, we will introduce one such model aggregation technique—
the compound marking technique in SHLPNs.

SHLPNs are extensions of High-Level Petri Nets (HLPNs) in which each
transition has an exponentially distributed firing time associated with it [9]. HLPNs,
on the other hand, are extensions of regular PNs that lead to simpler models with a
more readable graph. Specifically, markings in regular PNs are indiscriminate, while
markings in HLPNs may have properties or be distinguished by different colors.
Different types of HLPNs have been proposed, for example, predicate transition
nets, colored Petri nets, relation nets, and all of them are conceptually similar.
Moreover, the model of a system constructed using one type of HLPN can be
informally translated into any other type of HLPN.

A HLPN consists of the following elements.

(a) A directed graph .P; T; A/ where

• P is the set of places
• T is the set of transitions
• A is the set of arcs, A � .P � T / [ .T � P /.

(b) A structure set † consisting of some types of individual tokens .ui / together
with some operations .opi / and relations .ri /, i.e., † = .u1; : : : ; unI op1; : : : ;

opmI r1; : : : ; rk/.
(c) A labeling of arcs with a formal sum of n attributes of token variables (including

the zero-attributes indicating a noargument token).
(d) An inscription on some transitions being a logical formula constructed from

the operation and relations of the structure † and variables occurring at the
surrounding arcs.

(e) A marking of the places of P with n attributes of individual tokens.
(f) A natural number K which assigns to the places an upper bound for the number

of copies of the same token.
(g) Firing rule: Each element of T represents a class of possible changes of

markings. Such a change, also called transition firing, consists of removing
tokens from a subset of places and adding them to other subsets according to
the expressions labeling the arcs. A transition is enabled whenever, given an
assignment of individual tokens to the variables which satisfies the predicate
associated with the transition, all input places carry enough copies of proper
tokens, and the capacity K of all output places will not be exceeded by adding
the respective copies of tokens. The state space of the system consists of the set
of all markings connected to the initial marking through such occurrences of
firing.
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The definition of SHLPNs is the combination of HLPNs and SPNs. The basic
idea of SHLPNs is not only to keep the properties of HLPNs in model description
and solution, but also have the state space and Markov Chain (MC) isomorphism
as in SPNs by inducing exponentially distributed firing times to the transition set of
HLPNs.

The state space size of SHLPN models can be further simplified due to the
introduction of the compound marking technique, where subsets of equivalent states
in the SPN models of homogeneous systems can be grouped together into a single
compound state in the SHLPN model. The compound marking concept is based
on the fact that a number of entities processed by the system exhibit an identical
behavior and they have a single subnet in the SHLPN model. The only distinction
between such entities is the identity attribute of the token carried by the entity. If,
in addition, the system consists of identical processing elements distinguished only
by the identity attribute of the corresponding tokens, it is possible to lump together
a number of markings in order to obtain a more compact SHLPN model of the
system. Clearly, the model can be used to determine the global system performance
in case of homogeneous systems when individual elements are indistinguishable.
Since there is an isomorphism between SHLPN and Markov chains, any compound
markings of an SHLPN correspond to grouping, or lumping of states in the Markov
domain.

Definition 2.1. A compound marking of a SHLPN is the result of partitioning an
individual SPN marking into a number of disjoint sets such that:

• The individual markings in a given compound marking have the same distribution
of tokens in places, except for the identity attribute of tokens of the same type.

• All individual markings in the same compound marking have the same transition
rates to all other compound markings.

In this case, an equivalence relation exists among the SHLPN model with
compound markings and the original SPN model with individual markings. Both
provide the same information about the system being modeled but the SHLPN
model with the compound marking is a scaled down version of the original SPN
model with a lower number of states. Therefore, the main advantage of modeling
homogeneous systems using SHLPN is that the resulting models are simpler, more
intuitive, and have a smaller number of states.

We denote by pij the probability of a transition from the compound marking i

to the compound marking j and by pinjk
as the probability of a transition from the

individual marking in to the individual marking jk , where in 2 i and jk 2 j . The
relation between the transition probability of compound markings and the transition
probability of individual markings is

pij D
X

k

pinjk�
: (2.5)
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The relation between the transition rate of compound markings and the transition
rate of individual markings is

qj .t/ D d
�P

i pji
�

dt
D

P
i d

�P
k pjnik

�

dt
; (2.6)

qij.t/ D dpij

dt
D

P
k d

�
pinjk

�

dt
: (2.7)

If the system is ergodic, then the sojourn time in each compound marking is an
exponentially distributed random variable with average

"X
i2H

.qjk/i

#�1

; (2.8)

where H is the set of transitions that are enabled by the compound marking and qjk

is the transition rate associated with the transition i firing on the current compound
marking j .
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Chapter 3
Performance Analysis of Opportunistic
Schedulers Using SPNs

In Chap. 2, we have introduced the model decomposition and iteration technique in
SPNs to deal with the state space explosion problem. In this chapter, we adopt this
technique to study the performance of wireless opportunistic schedulers in multiuser
systems under a dynamic data arrival setting. We first develop a framework based
on Markov queueing model and then analyze it by applying the decomposition and
iteration technique. Since the state space size in our analytical model is small, the
proposed framework shows an improved efficiency in computational complexity.
Based on the established analytical model, performance of both opportunistic and
non-opportunistic schedulers are studied and compared in terms of average queue
length, mean throughput, average delay and dropping probability. Analytical results
demonstrate that the multiuser diversity effect as observed in the infinite backlog
scenario is only valid in the heavy traffic regime. The performance of the Channel-
Aware (CA) opportunistic schedulers is worse than that of the non-opportunistic
round robin scheduler in the light traffic regime, and becomes worse especially with
the increase of the number of users. Simulations are also performed to verify the
accuracy of the analytical results.

3.1 Packet Level Performance Analysis of Opportunistic
Schedulers

In wireless systems, channel conditions are inherently time-varying due to the
existence of fading and shadowing effects. Moreover, since different wireless
users may experience independent channel variations, the event that there exist
users with strong channel gains at any time instant occurs with high probability,
which is referred to as multiuser diversity. In order to exploit such channel
fluctuation and multiuser diversity for throughput improvement in wireless systems,
Opportunistic Scheduling (OS) has been appeared. Here, the “opportunistic” means
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the mechanism can take advantages of the favorable channel conditions in resource
allocation. So far, the concept of OS has been widely applied in the 3rd-Generation
(3G) wireless systems such as Code Division Multiple Access (CDMA) 2000 1xEV-
DO [1] and 4G wireless systems such as 3rd Generation Partnership Project (3GPP)
Long Term Evolution (LTE). While all OS algorithms take into account the channel
state information, some of them may also consider the queueing status of users.
In this chapter, we use “channel/queue-aware” and “channel-aware” to indicate
respectively whether queue state information is considered or not in OS algorithms.

We focus on packet-level performance analysis of OS algorithms considering
dynamic packet arrivals. Several research work in this aspect focused on network
stability, i.e., the queue occupancy can be bounded whenever feasible [2, 3],
with both channel-aware and channel/queue-aware OS algorithms. The typical
observations are that most channel-aware OS algorithms, e.g., the Proportional
Fair (PF) algorithm, are unstable [2] and a quadratic Lyapunov function argument
can be used to prove the stability for channel/queue-aware algorithms [3]. Moreover,
several research work also studied the statistical worst case performance of OS
algorithms using effective bandwidth and its related concepts [4–6]. In [5], a
formula is provided to approximate the tail distribution of packet delay for the
greedy channel-aware and round-robin algorithms under the FSMC model. In
[6], the maximum throughput for the channel-aware and the channel/queue-aware
algorithms are estimated under the constraints that the tail distribution of the queue
length cannot exceed a certain threshold, where the wireless channel condition or
variation is assumed to be a memoryless on-off process.

While all these works on the network stability and statistical worst case perfor-
mance provide important insights into the queueing behavior of the OS algorithms,
the average performance, such as average delay and average throughput, are also
essential in network design. However, the difficulties lie in deriving the steady-state
distribution of the queue states. This situation becomes even harder in wireless
systems due to the time-varying channel conditions. In [7], a two-dimensional
Markov model for computing the steady-state distribution in single user systems is
proposed, where two dimensions represent channel and queue states, respectively.
However, such analytical model cannot be directly extended to multiuser systems
since the state space of the Markov model grows exponentially as the number
of users increases. Thus, designing a practically implementable analysis model
is critical for analyzing the performance of OS algorithms in multiuser wireless
systems.

In this chapter, a new analytical framework is proposed for multiuser systems,
which can be used for studying the performance of different wireless schedulers in
terms of average queue length, mean throughput, average delay and dropping prob-
ability. The wireless schedulers under consideration include not only opportunistic
schedulers using channel-aware and channel/queue-aware algorithms, but also non-
opportunistic ones using round-robin and queue-aware algorithms. Specifically,
by characterizing the service process from the FSMC as a Markov Modulated
Deterministic Process (MMDP), the wireless downlink for the multiuser system is
first modeled as an M/MMDP/1/K queueing system. Then, a deterministic & DSPNs



3.2 The DSPN Model Formulation 21

model is constructed, where different scheduling algorithms can be expressed
by model parameters, such as the enabling predicates and random switches. By
applying the model decomposition technique in SPNs, the multiuser system is
decomposed into multiple single user subsystems with inter-correlated service
rates. To facilitate the analysis for each subsystem separately, some approximation
methods including the replacement of the instantaneous service rates by steady-
state average ones and a fixed-point iteration method, are introduced. The proposed
analytical framework significantly reduces the state space of the Markovian system
model in analysis and shows good performance in scalability. Numerical results
show that (1) the channel-aware algorithm performs better than the round robin
algorithm only in heavy traffic regime; (2) the scheduling gain of the channel-aware
algorithm increases with the number of users only when the traffic load per user is
heavy; and (3) the channel/queue-aware algorithm outperforms the channel-aware
algorithm in light traffic regime and converges to the channel-aware algorithm in
heavy traffic regime.

Notice that the selection of stochastic Petri nets approach results from the
facts that (1) it provides an intuitive and efficient way in describing the multiuser
system, especially facilitating the inclusion of different scheduling strategies; and
(2) there exist a set of well-developed techniques for stochastic Petri nets, which
can decompose the original complex model into simple subsystems and provide
iteration methods for performance approximation.

3.2 The DSPN Model Formulation

In this section, a general framework is introduced for modeling and analyzing a
multiuser system using DSPNs.

3.2.1 The M/MMDP/1/K Queuing System

Consider the downlink of a cellular wireless network, where a Base Station (BS)
transmits data to N.N � 1/ mobile users. The BS maintains a separate data buffer
for each mobile user and each buffer has a finite capacity of K < 1 bits. For each
data buffer n, the data arrives according to Poisson distribution with average rate �n

bits/s. The transmission in the time is slot-by-slot based and each slot has an equal
length 4T . In each time slot the BS can transmit data to one user only. It is assumed
that all channel conditions are available at the BS so that the Adaptive Modulation
and Coding (AMC) algorithms can be applied. The wireless channel for each mobile
user is modeled as an independent FSMC with total L states. Each state of FSMC
corresponds to one non-overlapping consecutive Signal to Noise Ratio (SNR) region
and a fixed transmission rate determined by the AMC algorithm. During each time
slot, the channel stays at the same state.
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The described system model can be formulated by an M/MMDP/1/K queueing
system as follows. The defined fluid queueing system consists of a finite number,
N , of input flows indexed by n D 1; 2; : : : ; N , and one server. For any n, there is
a finite, irreducible, and continuous-time Markov chain Hn.�/ with total L server
states, which corresponds to the L channel states of the FSMC model. The transition
rates of the Markov chain depends on its channel fading speed and is not necessarily
identical for all input flows, but the transitions of different Markov chains are
independent. Associated with the l-th (l 2 1; : : : ; L) state of Hn.�/ is a fixed service
rate Rn;l bits/s, which is a non-negative integer. If at time � the server is allocated
to flow n with Hn.�/ in the l-th state, the queue n is served at a deterministic rate
Rn;l , i.e., the user is served according to an L-state MMDP.

3.2.2 The DSPN Model

The M/MMDP/1/K queueing system designed for the multiuser wireless downlink
can be equivalently modeled as a DSPN by following the similar procedure as shown
in [8]. The modeled DSPN consists of a SPN for representing service processes
and a DSPN for representing resource sharing. The SPN, as shown in Fig. 3.1a, is
further composed of N subnets and each subnet n corresponds to the L-state Markov
modulated service process of user n. Each subnet is described by places .fHnlgL

lD1/

and transitions (ftunlgL�1
lD1 and ftdnlgL�1

lD1 ). The DSPN, as shown in Fig. 3.1b, models
the resource sharing relationship of the multiuser system and can be characterized
by places (fQngN

nD1, fwngN
nD1 and r) and transitions (fcngN

nD1, fdngN
nD1 and fsngN

nD1).
The meanings of all the places and transitions are described as follows.

• Qn: a place for the queue state of user n.
• Hnl: a place for the l-th server state of user n.
• cn: an exponentially-distributed timed transition denoting new bit arrivals from

user n, with firing rate �n. When it fires, one bit of data arrives at the queue
place Qn.

• dn: an immediate transition denoting the execution of scheduling strategy.
Different scheduling strategies are expressed using different enabling predicates
and random switches. The details will be discussed in the next subsection.

• sn: a deterministic timed transition for service process. When it fires, one bit of
data is transmitted from the queue place Qn. Its firing rate �n depends on the
marking of the places fHnlgL

lD1, i.e., if M.Hnl/ D 1, then

�n D Rn;l ; l D 1; : : : ; L;

where M.�/ is a mapping function from a place to the number of tokens assigned
to it, and M.Hnl/ is either 1 or 0, which represents whether user n is in its l-th
server state or not.
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Fig. 3.1 The DSPN model
for multiuser wireless
downlink. (a) SPN for service
processes, (b) DSPN for
resource sharing
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• tunl, tdnl: exponentially-distributed timed transitions for the server state transi-
tions of user n. The firing rates of tunl and tdnl equal pn

l;lC1=4T and pn
lC1;l =4T ,

which are determined by (3.35) and (3.36) in Appendix 2, respectively. When
tunl (tdnl) fires, the server state transits from l.l C 1/ to l C 1.l/.

3.2.3 Scheduling Strategies

The performance of the multiuser system depends on the scheduling strategies
applied. In the defined DSPN model, different scheduling strategies can be described
by different enabling predicates and random switches of the immediate transition dn.
The enabling predicate specifies the condition under which user n is an eligible
candidate for data transmission, while the random switch indicates the probability
that user n will be selected for service.

1) Round-Robin (RR) algorithm: In round-robin algorithm, the scheduler polls
queues for service in a cyclic order independent of the wireless channel
conditions. Therefore, for the RR algorithm, the enabling predicate yn of dn is

yn W .M.Qn/ > 0/: (3.1)

and the random switch gn.M/ of dn is

gn.M/ D
�

1=kRR.M/k; if n 2 RR.M/;

0; otherwise;
(3.2)

where M is a vector representing the number of tokens in each place of the DSPN
model, which include {Qn, fHnlgL

lD1gN
nD1 and RR.M/ D fi j M.Qi / > 0g.
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2) CA algorithms: The channel-aware algorithms aim at improving the scheduling
performance by incorporating channel state information. Two typical CA algo-
rithms are greedy algorithm and PF algorithm.

Greedy algorithm is also referred to as the Max-SNR algorithm. The algo-
rithm always picks the user with the best SNR for transmission, or equivalently,
the best transmission data rate is guaranteed at every scheduling instant. For the
greedy algorithm, the enabling predicates and random switches can be found as

yn W .M.Qn/ > 0/ ^ .8i ¤ n; �i � n/ _ .8i ¤ n; M.Qi / D 0/: (3.3)

gn.M/ D
�

1=kCA.M/k; if n 2 CA.M/;

0; otherwise;
(3.4)

where CA.M/ D fi j �i D max.�1; : : : ; �N /; M.Qi / > 0g, and the operators
^ and _ represent “logical and” and “logical or”, respectively.

PF algorithm, on the other hand, picks the user in each time slot among
all backlogged users in the system which has the best transmission data rate
normalized by the average throughput it has already received so far. Obviously,
if all users experience statistically identical channels, there is no difference
between the greedy algorithm and the PF algorithm in the long run, i.e., Eqs. (3.3)
and (3.4) can also be used to describe the behavior of the PF algorithm. In fact,
the enabling predication and random switches defined in (3.35) and (3.36) can
be easily extended to describe the PF algorithm in more general scenarios by
replacing the actual transmission rate �i , i D 1; : : : N , with the normalized
transmission rate �i /�i , i D 1; : : : N , where N�i , i D 1; : : : N , is the average
transmission rate of user i .

3) Queue-Aware (QA) algorithms: The queue-aware algorithms are actually not
“opportunistic” in the sense that they do not consider the channel state informa-
tion in scheduling. Although they are more commonly used in wireline networks,
in this chapter, for the purpose of comparison with the channel/queue-aware
algorithms, a simple QA algorithm, which always selects the user with the largest
queue length, is studied. For the QA algorithm, we have

yn W .M.Qn/ > 0/ ^ .8i ¤ n; M.Qi / � M.Qn//: (3.5)

gn.M/ D
�

1=kQA.M/k; if n 2 QA.M/;

0; otherwise;
(3.6)

where QA.M/ D fi j M.Qi / D max.M.Q1/; : : : ; M.QN //; M.Qi / > 0g.
4) Channel/Queue-Aware (CQA) algorithms: The systems with CA algorithms are

ordinarily not stable, since the CA algorithms do not take into account the queue
length information, and therefore do not know how to react when one queue starts
getting too large. On the contrary, the CQA algorithms are a class of schedulers,
which consider the information about both channel and queue occupancy. A
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simple CQA algorithm is called the Max-Weight algorithm, where the user with
maximum product of queue length and transmission data rate is served. For Max-
Weight algorithm, we have

yn W .M.Qn/ > 0/ ^ .8i ¤ n; M.Qi /�i � M.Qn/�n/: (3.7)

gn.M/ D
�

1=kCQA.M/k; if n 2 CQA.M/;

0; otherwise;
(3.8)

where CQA.M/ D fi j �i M.Qi / D max.�i M.Q1/; : : : ; �N M.QN //;

M.Qi / > 0g.

3.3 Model Solution and Performance Analysis

In this section, analysis methods are introduced to find the solutions of the system
derived in Sect. 3.2.

3.3.1 Single User System

We first consider the simplest case where there is only one mobile user, e.g., user
n, in the system. Since previously defined M/MMDP/1/K queue underlying the
DSPN model does not hold Markovian property, the direct analysis for such a single
user system is still difficult. In order to simplify the analysis, we introduce the
following embedded Markov chain [9]. Let Hn.�/ be the Markovian server state
process and Qn.�/ be the length of the queue occupancy at any time instant � .
Since the channel state keeps unchanged during each time slot, we can discretize
the random processes at every �T interval and define Hn;t WD Hn.t � �T / and
Qn;t WD Qn.t � �T /. After discretization, the server and queue states are assumed
to change only at the sample instant. Obviously, the two-dimensional embedded
Markov chain f.Hn;t ;Qn;t /; t D 0; 1; : : :g can accurately represent the system
behavior. A similar discrete-time Markov chain has also been introduced in [7] for
a single user wireless LAN (WLAN) system.

Let pn
.l;k/;.m;h/ be the transition probability from state .l; k/ to state .m; h/ of the

embedded Markov chain. Then,

pn
.l;k/;.m;h/ D PfQn;tC1 D hjHn;t D l;Qn;t D kgpn

l;m D �
n;l
k;hpn

l;m; (3.9)

where �
n;l
k;h D PfQn;tC1 D hjHn;t D l;Qn;t D kg and pn

l;m denotes the transition
probability of the FSMC from state l to m. The determination of pn

l;m under
Rayleigh fading channel is given in Appendix 1.
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Let An;t denote the number of bits arrived during the t -th time slot. Since the
queueing process evolves following

Qn;tC1 D minŒK; maxŒ0;Qn;t 	 Rn;l�T � C An;t �; (3.10)

we have

�
n;l
k;h D

8̂
<̂
ˆ̂:

P.An;t D h 	 k C Rn;l�T / k � Rn;l�T; h ¤ K;

P.An;t D h/ k < Rn;l�T; h ¤ K;

P.An;t � K 	 k C Rn;l�T / k � Rn;l�T; h D K;

P.An;t � K/ k < Rn;l�T; h D K;

(3.11)

where P.An;t D u/ D .�n�T /u

uŠ
e��n�T due to Poisson assumptions.

Define matrices �n;l D Œ�
n;l
k;h� and Pn D Œpn

.l;k/;.m;h/�. We can partition Pn into
blocks, each of which is a .K C 1/ � .K C 1/ matrix as shown in (3.12). Note that
except for the main, upper and lower diagonals, all other blocks are zeros.

Pn D

0
BBBBBBBB@

pn
1;1�n;1 pn

1;2�n;1

pn
2;1�n;2 pn

2;2�n;2 pn
2;3�n;2

pn
3;2�n;3 pn

3;3�n;3 pn
3;4�n;3

: : :
: : :

: : :

pn
L�1;L�2�n;L�1 pn

L�1;L�1�n;L�1 pn
L�1;L�n;L�1

pn
L�1;L�n;L pn

L;L�n;L

1
CCCCCCCCA

:

(3.12)

Define the steady-state probability �n
l;h 
 limt!1 PfHn;t D l;Qn;t D hg and

the vector �n D .�n
1;0; �n

1;1; : : : ; �n
1;K; : : : ; �n

L;0; �n
L;1; : : : ; �n

L;K/. Then, the station-
ary distribution of the ergodic process f.Hn;t ;Qn;t /g can be uniquely determined
from the balance equations

�n D �nPn; �ne D 1; (3.13)

where e is the unity vector of dimension L � .K C 1/ and �n can be derived as
the normalized left eigenvector of Pn corresponding to eigenvalue 1. Given �n, the
performance metrics such as the average queue length, the mean throughput, the
average delay and the dropping probability can be derived.

• The average queue length equals

Qn D
KX

kD0

LX
lD1

�n
l;kk: (3.14)



3.3 Model Solution and Performance Analysis 27

• The mean throughput can be expressed as

T n D
LX

lD1

KX
kD1

T n
l;k�n

l;k; (3.15)

where

T n
l;k D

�
Rn;l if k � Rn;l�T;

k
�T

if k < Rn;l�T:
(3.16)

This is the sum of the product between the service rate in state l and the
probability that the server is in state l given there are data in the system.

• The average delay then can be calculated as

Dn D Qn=T n: (3.17)

• Let Bn
l;k be the random variable which represents the amount of dropped bits

when Hn;t D l and Qn;t D k. Since K Cb D An;t CmaxŒ0; k 	Rn;l�T �, where
b is the number of bits dropped during the t -th slot,

P.Bn
l;k D b/ D P.An;t D K C b 	 maxŒ0; k 	 Rn;l�T �/: (3.18)

Then, the dropping probability pn
d can be estimated as

pn
d D Average # of bits dropped in a time slot

Average # of bits arrived in a time slot

D
PL

lD1

PK
kD0

P1
bD0 bP.Bn

l;k D b/�n
l;k

�n�T
: (3.19)

3.3.2 Model Decomposition and Iteration

Although the analytical method in previous section for the single user system can
be applied to the multiuser scenario by constructing an embedded Markov chain
fH1;t ;Q1;t ; : : : ;HN;t ;QN;t g with appropriately defined transition probabilities, the
exponentially enlarged state space makes it unacceptable for a large user population.
Since directly solving the DSPN suffers the high computational complexity, in
this subsection, model decomposition and an iteration procedure are introduced to
simplify the analysis.
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Fig. 3.2 Decomposed DSPN
model. (a) SPN for the
service process of user n,
(b) DSPN for the queuing
process of user n
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1) Model decomposition: According to Sect. 2.2, the original DSPN can be decom-
posed into a set of subnets, as shown in Fig. 3.2. The subnet Fig. 3.2a remains the
same structure as that in Fig. 3.1a, while the DSPN in Fig. 3.1b is decomposed
into N DSPN subnets in Fig. 3.2b. The n-th DSPN subnet consists of the
exponentially-distributed timed transition cn, the deterministic timed transition
sn, and the queue place Qn. Note that the places r , wn and the immediate
transitions dn in Fig. 3.1 are all deleted in the decomposed model for simple
model description. The transition cn and the place Qn remain the same as that in
the original DSPN model, while the firing rate of transition sn is associated with
the random switch gn.M/ of the immediate transition dn in the original DSPN.
The resource sharing relationship of the original DSPN model is implicitly
expressed in the marking-dependent firing rate of sn as

�0
n D �ngn.M/: (3.20)

By decomposition, the original multiuser system is represented by N sub-
systems, each of which consists of one SPN in Fig. 3.2a and one DSPN in
Fig. 3.2b. Obviously, if each subsystem can be analyzed separately, the model
decomposition can significantly reduce the size of the state space in the
analysis and achieve better performance in computational complexity. Since
each subsystem n in the decomposed DSPN model is almost the same as that
defined for the single user system, a similar two-dimensional Markov model
.Hn;t ;Qn;t / as described in Sect. 3.3.1 can be constructed for each subsystem.
The only difference is that the firing rate of sn becomes �0

n instead of �n.
Unfortunately, the random switch gn.M/ at the t -th time slot depends not

only on its own marking, but also on the markings of all other subsystems. So
such model decomposition is not “clean”, i.e., there exist interactions among
subsystems due to the marking-dependent firing rate �0

n. The interactions belong
to rate relation, which is a basic structure of near-independent model discussed
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in Sect. 2.2. Thus, in order to solve the n-th subsystem, the markings of all other
subsystems have to be available at the same time. There are two difficulties
arising from this situation: (1) the marking of a subsystem is equivalent to the
states of a Markov chain, which is time-dependent and cannot be used/derived as
the input/output parameters of any other subsystems; (2) the subsystems cannot
be ordered, giving rise to cycles in the model solution process. Considering a
two-user system as an example, each subsystem 1 or 2 needs the output of
the other as input and neither can be first solved correctly. In order to solve
these difficulties, two methods are introduced in the following two subsections.
The first difficulty will be solved by using the steady-state probabilities of
the markings instead of the instant markings as the subsystem input, and
the second difficulty will be solved by fixed point iteration as discussed in
Sect. 2.2. Simulation results shown in Sect. 3.4 indicate that such approximation
is reasonable.

2) Subsystem solution: Let �n denote the steady-state probabilities of the embed-
ded Markov chain fHn;t ;Qn;t g (i.e., the steady-state probabilities of the mark-
ings) for the n-th subsystem. Due to the interactions between the subsystems, the
solution �n for the n-th subsystem can be obtained only when the solutions of
all the other subsystems f� i gN

iD1;i¤n
are known. Obviously, if the N subsystems

are solved sequentially by index, the above requirement cannot be satisfied since
only f� i gn�1

iD1 are known when solving the n-th subsystem. In this subsection,
we will derive the solution for the n-th subsystem under the assumption that
f� i gN

iD1;i¤n
are given. We will leave the discussion of how to satisfy this

assumption using the fixed point iteration method in the next subsection.
Given f� i gN

iD1;i¤n
, we can approximate the random switch gn.M/ with

Qgn.M/, which is a function of the steady-state probabilities of the markings.
Notice that gn.M/ indicates the probability that user n will be selected given a
certain marking M, while Qgn.M/ indicates the long-run selection probability for
user n. Based on Qgn.M/, the firing rate of sn can be determined as

Q�0
n D

�
�n; with probability Qgn.M/;

0; with probability 1 	 Qgn.M/;
(3.21)

In the follows, the derivation of Qgn.M/ for different scheduling algorithms is
discussed.

• For the RR algorithm, the selection probability of user n can be expressed
as

Qgn.M/ D
X
U 2U

1

kU k
Y

i2U;n¤i

PŒM.Qi / > 0�
Y

j 2U

PŒM.Qj / D 0�; (3.22)

where U D fn; : : :g is a set of users that must include user n and may include
any other users, and U is the set that contains all possible sets of U .
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• For the CA algorithm, the selection probability of user n depends on the
server state. If the server is in the l-th state for user n, i.e. M.Hnl/ D 1, we
have �n D Rn;l , and Qgn.M/ can be expressed as

Qgn.M/ D
X
U 2U

Y
i2U;n¤i

PŒM.Qi / > 0�
Y

j 2U

PŒM.Qj / D 0�pU .M/; (3.23)

where

pU .M/ D
X
V 2V

1

kV k
Y

i2V;n¤i

PŒM.Hil/ D 1�
Y

j 2U;j 2V

l�1X
mD1

PŒM.Hjm/ D 1�;

(3.24)

V � U and V is the set that contains all possible subsets of U .
• For the QA algorithm, the selection probability of user n depends on its

queue length. If the queue length of user n is k, i.e. M.Qn/ D k, Qgn.M/

can be expressed as

Qgn.M/ D
X
U 2U

Y
i2U;n¤i

PŒM.Qi / > 0�
Y

j 2U

PŒM.Qj / D 0�pU .M/; (3.25)

where

pU .M/ D
X
V 2V

1

kV k
Y

i2V;n¤i

PŒM.Qi / D k�
Y

j 2U;j 2V

PŒM.Qj / < k�:

(3.26)

• For the CQA algorithm, the selection probability of user n depends on both
the server state and its queue length. If the server is in the l-th state and the
queue length is k for user n, i.e. M.Hnl/ D 1 and M.Qn/ D k, Qgn.M/ can
be expressed

Qgn.M/ D
X
U 2U

Y
i2U;n¤i

PŒM.Qi / > 0�
Y

j 2U

PŒM.Qj / D 0�pU .M/; (3.27)

where

pU .M/ D
X
V 2V

1

kV k
Y

i2V;n¤i

PŒ�i M.Qi / D �nlk�
Y

j 2U;j 2V

PŒ�j M.Qj / < �nlk�:

(3.28)
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With Qgn.M/, each subsystem n can be solved by following the similar way as
in Sect. 3.3.1 with the following revisions for some system parameters.

• The computation of pn
.l;k/;.m;h/ should be changed to

pn
.l;k/;.m;h/ D .�

n;l
k;h Qgn.M/ C �

n;0
k;h.1 	 Qgn.M///pn

l;m; (3.29)

where �
n;l
k;h and �

n;0
k;h are determined according to (3.11) with Rn;0 D 0.

• The mean throughput of user n becomes

T n D
LX

lD1

KX
kD1

T n
l;k Qgn.M/�n

l;k; (3.30)

where T n
l;k is derived according to (3.16). The total mean throughput of the

multiuser system is

T D
NX

nD1

T n: (3.31)

• The dropping probability can be computed as (3.19). However, the value of
P.Bn

l;k D b/ equals

P.Bn
l;k D b/ D P.An;t D K C b 	 maxŒ0; k 	 Rn;l�T �/ Qgn.M/

CP.An;t D K C b 	 k/.1 	 Qgn.M//: (3.32)

3) Fixed point iteration: In the previous subsection, we assume that the solutions
of all the other subsystems f� i gN

iD1;i¤n
are already derived and can be used as

input parameters when solving the n-th subsystem. However, this assumption is
not true if the N subsystems are solved sequentially by index. In this subsection,
fixed point iteration is used to deal with this problem.

Let f�1; : : : ; �N g be the vector of iteration variables of the fixed point
equation

f�1; : : : ; �N g D f .f�1; : : : ; �N g/; (3.33)

where the function f is realized by solving the N subsystems successively with
the subsystem solution method as described in the previous subsection. That
is, the function f can be decomposed into N independent functions fn, n D
1; : : : ; N , with fn representing the solution of the n-th subsystem

�n D fn.f�1; : : : ; �N g/:
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Fig. 3.3 The z-th iteration
for the three-user scenario
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Obviously, the vector of steady-state distributions of the N subsystems
f�1; : : : ; �N g satisfies (3.33), which is referred to as the fixed point of this
equation.

The fixed point can be derived by successive substitution in Sect. 2.2. Let the
initial vector of iteration variables be f�0

1; : : : ; �0
N g. Each element of �0

n .n D
1; : : : ; N / can be set to an arbitrary value between 0 and 1. In the z-th iteration,
we have

f�z
1; : : : ; �z

N g D f .f�z�1
1 ; : : : ; �z�1

N g/; (3.34)

where the iteration variables are determined by the function f based on the val-
ues of the last iteration, and the function f is realized by solving the N subsys-
tems successively using the solution method as described above. Specifically, in
solving the n-th subsystem in the z-th iteration, f�z

1; : : : ; �z
n�1; �z�1

n ; : : : ; �z�1
N g

is used as the input to derive the value of �z
n. After that, �z�1

n is replaced by
�z

n as input in solving the rest of the subsystems (from the .n C 1/-th to the
N -th subsystems) during the z-th iteration. An example for the z-th iteration of
a three-user system is illustrated in Fig. 3.3.

The iteration is terminated when the differences between the iteration vari-
ables of two successive iterations are less than a certain threshold value. The
convergence of the fixed point iteration is proved in Appendix 2.

The computational complexity of the proposed analytical approach can be
obtained as follows. Let Z represent the number of iterations for analysis
to converge. Since in each iteration, the steady-state probabilities of the N

subsystems have to be derived, the total time for the approach termination is
T D Z � N � Tsub, where Tsub denotes the amount of time to solve each
subsystem. Tsub depends on the state number of the embedded Markov chain
for each subsystem, which equals .K C 1/ � L. Note that the state number
of the embedded Markov chain before decomposition equals

�
.K C 1/ � L

�N
.
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Therefore, the proposed analytical approach with decomposition and iteration
techniques greatly reduces the computational complexity.

3.4 Numerical Results

In this section, both analytical and simulation results are presented to compare
the performance of different scheduling algorithms. In the simulation, all users
are assumed to have statistically identical wireless channels. The SNR thresholds
and the corresponding transmission rates for each service process are defined in
Table 3.1 [10]. If the instantaneous SNR is below 	12:5 dB, the transmission
rate is set to be 0. Accordingly, the FSMC model has 12 states in total. The
carrier frequency f and the time slot duration �T are set to 1.9 GHz and 1.67 ms,
respectively. The velocity v of the mobile users is assumed to be 3 km/h so that
the Doppler frequency f n

d becomes 5 Hz. We also let the mean SNR 	n be 0 dB
and the buffer size K D 2;500 bits. Notice that for other values of SNR, similar
observations can be obtained.

In order to simplify the simulations by further reducing the state space of the
Markov model, we redefine the data unit in the queueing system, or equivalently
the token unit in the Petri net model, so that one data unit represents 50 bits. This
approximation is acceptable since the amount of data that arrive to or depart from the
system in one time slot usually includes a large number of bits. After redefinition,
both the transmission rate Rn;l and the buffer size K should be divided by 50, and
the arrival rate and the performance metrics derived in the follows are in terms of
data units. Note that the maximum queue length becomes 50 data units.

Figure 3.4 examines the accuracy of our analysis method described in Sect. 3.3.
The stationary queue length distributions from both analytical and simulation results
are compared, which are denoted by “Analysis” and “Simulation” in the figure,

Table 3.1 SNR threshold
and rates

SNR threshold 	n;l (dB) � Rates Rn;l (Kbs)

�12.5 38.4

�9.5 76.8

�8.5 102.6

�6.5 153.6

�5.7 204.8

�4.0 307.2

�1.0 614.4

1.3 921.6

3.0 1228.8

7.2 1843.2

9.5 2457.6
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a b

Fig. 3.4 Analytical and simulation results of queue length distribution for different schedulers.
(a) Round robin algorithm, (b) channel-aware algorithm

respectively. In the simulation, the number of users is set to 2, and the mean data
arrival rate per user is fixed at 1,500 data units per second. Each simulation runs for
20,000 time slots. Note that in the simulation, the analytical results converge after
three iterations. In each iteration, the steady-state probabilities of the two embedded
Markov chains for subsystems 1 and 2 are obtained, respectively. The state number
of the Markov chain for each subsystem 1 or 2 equals 612, while the state number
of the embedded Markov chain for directly modelling the whole system equals
374,544. This further demonstrates the computational complexity reduction by the
proposed approach.

In Fig. 3.4, two subfigures (a) and (b) correspond to the RR and the CA algo-
rithms, respectively. From the figures, it can be observed that, for both scheduling
algorithms, the analytical results match well with those from the simulation, i.e., the
proposed analytical method is accurate. The same observation is also true for the
QA and the CQA algorithms, and the simulation and analytical results for these two
algorithms are omitted. Since the buffer size K equals 50 data units and the arriving
data is dropped if the buffer is full, the distribution of the queue length is truncated
at 50. Since the queue length distribution at 50 represents the sum probability of the
queue length equal to and larger than 50 if no buffer limitation exists, one peak at
50 is observed. In what follows, we will apply analytical results only to compare the
performance of the four scheduling algorithms. The performance metrics include
average queue length, mean throughput, average delay and dropping probability.

Figure 3.5 shows the performance comparison among the algorithms under
different arrival rates (or traffic loads). The results are based on the fixed user
number of 2 and the variant average data arrival rate per user from 1,000 to 40,000
data units per second. From the figure, it can be observed that (1) when the arrival
rate is below a certain threshold (approximately 3,000–5,000 data units per second
with respect to different performance metrics), the CA algorithm has the worst
performance, while the QA algorithm achieves the best one; (2) when the arrival
rate is higher than the threshold, the performance of the QA algorithm becomes the
worst, while those of CA and CQA algorithms get very close and become the best;
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a b

dc

Fig. 3.5 Performance comparison under different arrival rates. (a) Average queue length (data
units), (b) mean throughput (data units per second), (c) average delay (ms), (d) dropping
probability

(3) the performance of the RR algorithm converges to that of the QA algorithm with
the increase of the arrival rate. All these observations can be explained as follows.
The CA algorithm tends to select a user with a better channel condition, while the
QA algorithm favors a user with a larger queue length. When the traffic load is light,
the instantaneous queue length is relatively short so that the actual transmission rate
of a selected user n at any time slot t is mainly determined by its instantaneous
queue length instead of its current channel condition. Therefore, in this case, the
QA algorithm, which favors users with larger queue lengths, can maximize the
transmission rate, while the CA algorithm performs worst due to the ignorance of
queue length information. When the traffic load is heavy, on the other hand, the
queue length is relatively large and the actual transmission rate of a selected user n

at any time slot t is determined by its instantaneous channel condition. Therefore,
the QA and the CA change their positions in system performance. Since the CQA
algorithm considers both channel and queue states in user selection, it can balance
the service rate and the queue length in both situations and thus achieve relatively
good performance under all traffic conditions. When the traffic load is extremely
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heavy, i.e., the queues of the users are saturated, the queue length information is not
important any more in user selection, which results in the performance convergence
of the CA/CQA and RR/QA algorithms. Also, note that in Fig. 3.5c, the average
delay of QA algorithm is concave (increases before the arrival rate reaches 5,000
data units per second and decreases afterwards) while the average delay of others
are monotonically decreasing with traffic load. This is because when the traffic load
is light, the average queue length of the QA algorithm increases much faster than its
mean throughput as shown in subfigures (a) and (b).

Figure 3.6 shows the performance of the scheduling algorithms under different
numbers of users. The average data arrival rates per user are set at the low (1,500
data units per second) and high (5,000 data units per second) levels. The number of
users varies from 2 to 10. In infinite backlog traffic model [11], it is well-known
that the OS algorithms achieve larger throughput than the RR algorithm, or the
scheduling gain, defined as the ratio between the throughput of an OS algorithm
and the RR algorithm, is larger than 1. Furthermore, such scheduling gain increases
with the number of users due to the improved multiuser diversity effect. However,
Fig. 3.6a, b reveal that for dynamic data arrivals, the above observations only hold
for high average arrival rate (5,000 data units per second). When the average arrival
rate is low (1,500 data units per second), the scheduling gain of the CA algorithm
over the RR algorithm becomes smaller than 1, and decreases with the increase of
the number of users. A similar observation can be obtained for the average delay
and the dropping probability, as well. When the average arrival rate is high, the
performance of CA algorithm deteriorates more slowly in terms of the average
delay and the dropping probability than the RR algorithm as the number of users
increases. But, when the average arrival rate is low, an opposite results can be
observed. The analytical results for these two performance metrics are omitted here
due to space limitation. The faster performance degradation of the CA algorithm
under light traffic load results from the facts that (1) the multiuser diversity gain has
little effects on the transmission rate, which is dominated by the queue length; and
(2) such negative effects are enlarged in terms of delay and dropping probability
when more users are waiting for transmission.

3.5 Summary

In this chapter, a general framework for analyzing performance of the wireless
schedulers in multiuser systems has been discussed. The system behavior is for-
mulated by an M/MMDP/1/K queueing model and the approximation for multiple
performance metrics is derived with low computational complexity by applying the
decomposition and the iteration techniques from SPNs. Based on this framework,
four classes of typical wireless schedulers, which are referred to as round robin,
channel-aware, queue-aware and channel/queue-aware, are analyzed and compared
in terms of average queue length, mean throughput, average delay and dropping
probability. The analysis shows that
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a b

Fig. 3.6 Performance comparison under different number of users. (a) Mean throughput—arrival
rate 1.5 Kps, (b) mean throughput—arrival rate 5 Kps

• while in heavy traffic regime the channel-aware scheduler indeed outperforms
the round robin scheduler, this is not true when the traffic load is light;

• the performance of the channel/queue-aware scheduler is better than that of the
channel-aware scheduler in the light traffic regime, and converges to the latter
with the increase of the traffic load; and

• the ratio of the throughput between the channel-aware scheduler and the round
robin scheduler, which is commonly referred to as the scheduling gain, decreases
with the increase of the number of users when the traffic load per user is light.

Appendix 1: Determination of pn
l;m

in Rayleigh Fading
Channel

For Rayleigh fading channel, pn
l;m can be determined as follows [12]. Assume the

state transitions of the FSMC happen only between adjacent states, i.e.

pn
l;m D 0; jl 	 mj � 2: (3.35)

Let 	n;l , .l D 1; : : : ; L 	 1/, denotes the SNR threshold value between the l-th
and .l C 1/-th states of the FSMC model for user n. The adjacent-state transition
probability can be calculated as

pn
l;lC1 D 
.	n;lC1/�T

�n;l

; l D 1; : : : ; L 	 1; (3.36)

pn
l;l�1 D 
.	n;l /�T

�n;l

; l D 2; : : : ; L: (3.37)
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Here, 
.	n/ denotes the level cross rate at an instantaneous SNR 	n and is given by


.	n/ D
s

2�	n

	
f n

d exp.	 	n

	n

/; (3.38)

where f n
d denotes the mobility-induced Doppler spread, 	n D EŒ	n� is the average

received SNR, and �n;l .l 2 L/ denotes the stationary probability that the FSMC is
in state l given by

�n;l D exp.	n;l=	n/ 	 exp.	n;lC1=	n/: (3.39)

Finally, pn
l;l can be derived from the normalizing condition

PL
mD1 pn

l;m D 1 as

pn
l;l D

8̂
<
:̂

1 	 pn
l;lC1 	 pn

l;l�1; .l D 2; : : : ; L 	 1/;

1 	 pn
l;lC1; .l D 1/;

1 	 pn
l;l�1; .l D L/:

(3.40)

Appendix 2: Convergence of the Fixed Point Iteration

According to Sect. 2.2, in order to prove the convergence of the fixed point iteration
for the decomposed DSPN model as described in (3.34), it is sufficient to show that
the following lemma is true.

Lemma 3.1. The embedded Markov chain .Hn;t ;Qn;t / for the n-th subsystem is
irreducible, if K � Rn;L�T .

Proof. It has been proved in [7] that the Markov chain for the single user system
is irreducible. Similarly, we prove Lemma 3.1 by showing that for each transition
from state .l; k/ to .m; h/, there exists a multi-transition path .l; k/ ! .l�; k/ !
.l�; h/ ! .m; h/ with non-zero probability, where Rn;l��T � k. Since K �
Rn;L�T , there always exists such l� that satisfies this condition.

Since the FSMC model is irreducible, we have that pn
l;l� , pn

l�;l� and pn
l�;m

are all
positive. Now we shall verify the following inequalities:

(a) �
n;l
k;k Qgn.M/ C �

n;0
k;k.1 	 Qgn.M// > 0;

(b) �
n;l�

k;h Qgn.M/ C �
n;0
k;h.1 	 Qgn.M// > 0;

(c) �
n;l�

h;h Qgn.M/ C �
n;0
h;h.1 	 Qgn.M// > 0.

For inequality 1), since An;t D k	maxŒ0; k	Rn;l�T � � 0 (Rn;0 D 0 included),
we have �

n;l
k;k > 0 and �

n;0
k;k > 0. Therefore, inequality 1) is true with Qgn.M/ 2 Œ0; 1�.

The proof of inequality 3) is similar.
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For inequality 2), since An;t D h	maxŒ0; k 	Rn;l��T � � 0, we have �
n;l�

k;h > 0,
where Rn;l��T � k. Now consider both the cases when the value of k is zero or
not. If k D 0, we have Qgn.M/ D 0 and �

n;0
k;h > 0; otherwise, if k > 0, we have

Qgn.M/ > 0 and �
n;0
k;h � 0. Thus, the inequality 2) is true under both cases.

According to (3.29), we have pn
.l;k/;.l�;k/

> 0, pn
.l�;k/;.l�;h/

> 0 and pn
.l�;h/;.m;h/

>

0, where Rn;l��T � k, which prove the existence of the multi-transition path with
non-zero probability for each transition from state .l; k/ to .m; h/.
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Chapter 4
Performance Analysis of Device-to-Device
Communications with Dynamic Interference
Using SPNs

In Chap. 3, we have adopted the model decomposition and iteration techniques in
the SPNs to analyze the performance of opportunistic schedulers. In this chapter, we
use this approximation technique to study the performance of D2D communications
with dynamic interference [1]. In specific, we analyze the performance of frequency
reuse among D2D links with dynamic data arrival setting. We first consider the
arrival and departure processes of packets in a non-saturated buffer, which result
in varying interference on a link based on the change of its backlogged state. The
packet-level system behavior is then represented by a coupled processor queuing
model, where the service rate varies with time due to both the fast fading and the
dynamic interference effects. In order to analyze the queuing model, we formulate
it as a DTMC and compute its steady-state distribution. Since the state space of
the DTMC grows exponentially with the number of D2D links, we use the model
decomposition and some iteration techniques in SPNs to derive its approximate
steady state solution, which is used to obtain the approximate performance metrics
of the D2D communications in terms of average queue length, mean throughput,
average packet delay and packet dropping probability of each link. Simulations
are performed to verify the analytical results under different traffic loads and
interference conditions. Note that Chaps. 3 and 4 show two typical resource sharing
paradigms in wireless networks—orthogonal sharing by user scheduling and non-
orthogonal sharing by frequency reuse, which induce different interactions among
the decomposed submodels.

4.1 Packet Level Performance Analysis of D2D
Communications

D2D communications are commonly referred to as the type of the technologies that
enable devices to communicate directly with each other without the infrastructure,
e.g, access points or base stations. Bluetooth and WiFi-Direct are two most popular
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D2D techniques in the market, bothing working in the unlicensed 2.4 GHz ISM
bands. Cellular networks, on the other hand, do not support direct over-the-air
communications between user devices. However, with the emergence of context-
aware applications and the accelerating growth of Machine-to-Machine (M2M)
applications, D2D function plays a more and more important role since it facilitates
the discovery of geographically close devices and reduce the communication cost
between these devices. To seize the emerging market that requires D2D function,
the mobile operators and vendors are exploring the possibilities of introducing D2D
function in the cellular networks to develop the network assisted D2D commu-
nications technologies [2–5]. The most significant difference between the cellular
network assisted D2D communications and the traditional D2D technologies such
as WiFi-direct is that the former works in the licensed band of cellular networks
with more controllable interference and the base station or the network can assist
the D2D user equipments (UEs) in various functions, such as new peer discovery
methods, physical layer procedures, and radio resource management algorithms.

In the emerging new cellular networks such as 3GPP LTE, orthogonal time-
frequency resources are allocated to different users within a cell to eliminate
intracell interference. The introduction of D2D function may bring two categories of
potential intracell interference into cellular networks: interference between different
D2D users and interference between a cellular user and one or multiple D2D users.
The former category of interference arises when the radio resources are reused
by multiple D2D users, while the latter arises when the radio resources allocated
to a cellular user are reused by one or more D2D users. The latter category of
interference can be avoided by statically or semi-statically allocating a group of
dedicated resources to all the D2D users at the cost of reduced spectrum efficiency.
Most of the existing work on D2D communications focus on the design of optimized
resource management algorithms using a static interference model, where each
D2D link or cellular link is assumed to be saturated with infinite backlogs and
constantly cause interference to the other D2D links or cellular links [6–12]. The
base station can either centrally determine the radio resource allocation of D2D
connections along with the cellular connections [5, 6] or let the users perform
distributed resource allocation by themselves [4, 7]. In this chapter, we focus on the
first category of interference (i.e., interference between D2D links) with centralized
resource allocation and study the performance of D2D communications using a
dynamic interference model, where the finite amount of data arrives to the links
at each time slot. Thus, the links do not always have data to transmit and cause
interference to the other links. In order to focus on the dynamic interference, we
consider the Full Reuse (FR) resource sharing strategy in this chapter, where all the
available resources are reused by all the D2D links with non-empty queues in each
time slot.

In the queuing model for such system, the service rate at each queue varies
with time due to two factors: the fast fading effect of the wireless channel and the
dynamic arrival and departure of packets which results in the dynamic variation
of interference from a link when its status changes from busy to idle or vice
versa. When only the second factor is considered, the system can be modeled as



4.1 Packet Level Performance Analysis of D2D Communications 43

a coupled-processor server, where the service rates at each queue vary over time
as governed by the backlogged state of the other queues. The complex interaction
between the various queues renders an exact analysis intractable in general and
steady-state queue length distributions are known only for exponentially distributed
service in two-queue systems [13–15]. In [16, 17], the flow-level performance
in wireless networks with multiple base stations is investigated, which can be
formulated as a coupled-processor model in the single user class scenario. Due
to the complex nature of the coupled-processor model, Bonald et al. [16] derives
bounds and approximations for the key performance metrics by assuming maximum
and minimum interference in neighbours of the reference cell and [17] studies the
performance gains of intercell scheduling in a two-cell network and a simplified
symmetric network, respectively. In [18], the upper and lower bounds on the
moments of the queue length of the coupled-processor model are obtained by
formulating a moments problem and solving a semidefinite relaxation of the
original problem. This analysis method is applied in [19] to study the impact of
user association policies on flow-level performance in interference-limited wireless
networks. Although the semidefinite relaxation method can be applied to study the
coupled-processor model with more than two queues, the size of the formulated
optimization problem scales exponentially as the number of queues increases.

In this chapter, we consider both the fast fading and dynamic interference effects
to better depict the variations of the service rate in the practical D2D system. The
FSMC model with respect to the SINR is constructed for each link, which not only
captures the fast fading effect of the wireless channel as in the traditional FSMC
model based on SNR partition [20, 21], but also considers the dynamic variation of
interference due to the changing backlogged states of the other active links. Based
on the above FSMC model, we formulate a coupled processor queuing model for
such a system with time-varying service rates and propose an analytical method
to derive the state transition probability matrix and steady-state distribution of the
underlying Markov process. However, the scalability of proposed analytical method
with large number of links is limited by the exponentially increasing state space
of the Markov process. Therefore, we use the model decomposition and iteration
approach in SPN which has been discussed in Sect. 2.2 to deal with the coupling
between the service rates of the different links. Specifically, we formulate the SPN
model for the above queuing system with multiple D2D links and decompose
it into multiple “near-independent” subnets, where each subnet corresponds to a
queuing system with a single link and is solved separately. Because the subnets are
correlated, after solving the problem in each subnet to get its steady-state statistics,
the distributions are exported to other subnets to derive their approximate state
transition probability matrices and steady-state distributions, and this is conducted
iteratively. Finally, performance metrics such as throughput and packet dropping
probability can be obtained from the steady-state distribution of the Markov process.
Note that although both Chaps. 3 and 4 use the model decomposition and iteration
approach to analyze the performance of wireless networks, the interaction between
different subsystems is due to scheduling and interference, respectively.
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4.2 The Coupled Processor Queueing System

Consider a cellular wireless network with D2D communication capability.
Figure 4.1a illustrates the case where two D2D links share radio resources with
each other. A D2D link consists of a source D2D User Equipment (UE) transmitting
to its destination D2D UE. Potential interfering link exists for D2D link 1 (resp.
D2D link 2) from the transmitter of source D2D UE2 (resp. source D2D UE1)
to the receiver of destination D2D UE1 (resp. destination D2D UE2). Since there
are two categories of links, i.e., D2D links and potential interfering links, all links
mentioned are referred to the D2D links by default in the rest of the chapter. We
consider that each source D2D UE maintains a queue with finite capacity to buffer
the dynamically arriving data. An interfering link is ‘potential’ since it only exists
when the queue of the source D2D UE associated with its transmitter is non-empty.
The transmission rate of each link is determined by its own SINR, which varies
with time due to the fast fading effects of its own wireless channel, and also the fast
fading effects and changing on-off status of its potential interfering link. Moreover,
the transmission rates of different links vary asynchronously over time. Therefore,
Fig. 4.1a can be modeled as a queuing system as illustrated in Fig. 4.1b, where there
are two queues and each one is served by a private single-server, whose service rate
is determined by the transmission rate of the corresponding link.

Let D D 1; : : : ; D denote the set of non-overlapping links. Each link maintains
a queue at the source D2D UE, and each queue has a finite capacity of K < 1
packets, where packets are assumed to be of the same size B bits. For each queue i ,
packets arrives according to Poisson distribution with average rate �i packets/s. The
transmission in the time is slot-by-slot based and each slot has an equal length �T .
In each time slot, the resource can be allocated to one or more links, depending on
the resource sharing and scheduling strategies. Although there are various resource
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Fig. 4.1 Cellular wireless networks with D2D communications capability (a) resource sharing
between two D2D links; (b) queuing model of (a)
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sharing strategies between the links, there are two extreme cases which incur the
maximum and minimum interference, respectively:

• FR: The links reuse all the available resources, causing interference to each other.
However, the links get the largest amount of resources to use.

• OS: The links use orthogonal resources with each other where no interference
exists. However, each link gets the least amount of resources to use.

We focus on the performance of FR strategy with dynamic interference. This
resource sharing strategy is not a practical one, since it may cause excessive amount
of interference between D2D links. However, it is an extreme case which incurs the
maximum interference but achieves the best frequency reuse. On the other hand, the
queuing performance of the other extreme case, i.e., the OS strategy, can be analyzed
using the method in our earlier work [22]. Since the practical resource allocation
strategies try to achieve the best tradeoff between frequency reuse and interference
control, the performance of the two extreme cases provide lower bounds for the
performance of practical resource allocation strategies. Moreover, the packet-level
performance evaluation method of other practical resource allocation methods can
be developed based on those of FR and OS strategies.

Assume that the instantaneous channel gains of the D transmitters Txi on the
source D2D UEs of links i 2 D with the D receivers Rxj on the destination D2D
UEs of links j 2 D remain constant within a time slot, the value of which at time
slot t can be represented by a D-by-D channel gain matrix Gt , where item Gij;t

denotes the channel gain between the transmitter Txi of link i and the receiver Rxj

of link j . The channel gain matrices Gt and Gt 0 in different time slots t ¤ t 0
can be different due to the fast fading effects of the wireless channel. Let Ii WD
fIjigj 2Dnfig denote the set of potential interfering links of link i , where Iji is the
potential interfering link from the transmitter of link j 2 Dnfig to the receiver of
link i . Note that the channel gain of link i is Gii;t , while the channel gains of set of
potential interfering links Ii are fGji;t gj 2Dnfig. Let P D fPi giD1;:::;D be the D-by-1
power matrix that determines the transmission power of every link i .

We consider that a link does not always have data to transmit, and its transmitter
first examines whether the queue is empty or not at the beginning of every time
slot t . Only when the queue is non-empty shall it move the packets out of the
queue for transmission and thus cause interference to the other links. We consider
the transmission capability of link i during time slot t as b ri;t �T

B
c, where ri;t is its

instantaneous data rate in terms of bits/s and b�c is the integer no bigger than �.
Here, we assume that if a packet could not be transmitted completely due to time-
slot expiration at the end of time-slot t , which can be foreseen at the beginning
of this time slot, the entire packet is not transmitted in this time slot but at the
next time-slot (t C 1). Although a packet can be truncated for transmission in a
realistic scenario, for example, by the RLC protocol in the LTE systems, assuming
the realistic scenario will make the queue length a real number instead of an integer,
which will result in the infinite state space of the Markov chain. Therefore, we make
this approximation in our analysis, while keeping the approximation under control
by adjust the packet size B . This approximation has also been used in existing work
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in literature[21, 23], where the service rate is given in terms of packets/s instead
of bits/s. If the number of packets in the queue of link i at the beginning of time
slot t is less than its transmission capability during time slot t , padding bits shall be
transmitted along with the data according to the LTE standard. Arriving packets are
placed in the queue throughout the time slot t and can only be transmitted during
the next time slot t C 1. If the queue length reaches the buffer capacity K, the
subsequent arriving packets will be dropped. Let EQt D fQi;t gi2D denote the queue
length of every link i in terms of packets at the beginning of time slot t , and Ai;t

denote the number of packets arrived to link i during the time slot t , which is a
Poisson distributed stationary process with mean �i �T . According to the above
assumption, the queuing process evolves following

Qi;tC1 D minŒK; maxŒ0; Qi;t 	 bri;t �T

B
c� C Ai;t �: (4.1)

From the above discussion, the SINR of every link i depends on the subset of
other links in the system with non-zero queue length at the beginning of time slot t ,
which is denoted as Ji;t . Let E‚t D f‚i;t gi2D, where ‚i;t D 1.Qi;t > 0/ denotes
the queue status (empty or not) of the link i at the beginning of time slot t . Note
that E‚t can take 2D possible values �v; v D 1 : : : ; 2D . Therefore, we have Ji;t WD
fj 2 Dnfig W ‚j;t D 1g. The SINR value for each link i at time slot t is given by
the following formula:

SINRi;t D Pi Gii;t

Ni C P
j 2Dnfig Pj Gji;t ‚j;t

D 	ii;t

1 C P
j 2Dnfig 	ji;t ‚j;t

; (4.2)

where 	ii;t WD Pi Gii;t
Ni

is the SNR value of link i , and Ni is the noise power on link i .

Similarly, 	ji;t WD Pj Gji;t

Ni
; j 2 Dnfig can be referred to as the ‘virtual SNR’ value

of the link Iji, where it is “virtual” since Iji is an interference link instead of a link
and it is in fact the ‘interference to noise ratio’ considering the physical meaning.

The corresponding instantaneous data rate ri;t is a function of SINRi;t . In this
chapter, we assume that AMC is used, where the SINR values are divided into L

non-overlapping consecutive regions and if the SINR value SINRi;t of link i falls
within the l-th region Œ
l�1; 
l /, the corresponding data rate ri;t of link i is a fixed
value Rl , i.e., ri;t D Rl; if SINRi;t 2 Œ
l�1; 
l /. Table 4.1 gives the AMC scheme
in 3GPP LTE systems where L D 16 [24]. As an example, l D 2 if SINRi;t 2
Œ	4:46 dB; 	3:75 dB/, and R2 D 213:3 Kbs. Since the AMC function can select the
appropriate coding and modulation schemes according to the instantaneous SINR of
the wireless channel guaranteeing that the packet error rate is above an acceptable
value, we do not consider the transmission errors. Although it is an interesting and
challenging research problem to study the transmission errors due to factors such as
imperfect Channel State Information (CSI), it is outside the scope of this chapter.
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Table 4.1 SINR threshold and rates

Channel state index l SINR threshold 
.l�1/ (dB) � Rates Rl (Kbs)

2 �4.46 213.3

3 �3.75 328.2

4 �2.55 527.8

5 �1.15 842.2

6 1.75 1227.8

7 3.65 1646.1

8 5.2 2067.2

9 6.1 2679.7

10 7.55 3368.8

11 10.85 3822.7

12 11.55 4651.2

13 12.75 5463.2

14 14.55 6332.8

15 18.15 7161.3

16 19.25 7776.6

In order to achieve AMC, we assume that the BS has knowledge of the channel
gain matrix Gt and the queue status E‚t of all the D2D links at each time slot t ,
so that it can determine the modulation and coding schemes for each D2D link
with non-empty queues and inform the source and destination D2D UEs with
downlink control signaling. Since network assisted D2D communications have not
been standardized in 3GPP, there is currently no specific signaling protocols for
resource allocations of D2D connections. In [2], we have proposed a candidate
signaling procedure.

Since the SINR value SINRi;t of any link i 2 D can be derived according to (4.2),
the wireless channel for each link i can be modeled as a FSMC with total L states,
where Hi;t represents the channel state of the FSMC model of link i at time slot t .
Each state of FSMC corresponds to one non-overlapping consecutive SINR region
and a fixed transmission rate determined by the AMC algorithm. From (4.2), it can
be seen that the SINR value SINRi;t and thus the channel state Hi;t of link i depends
on the SNR value 	ii;t of link i and the ‘virtual SNR’ values 	ji;t of its interfering
links Iji; j 2 Dnfig, and also the queue status ‚j;t of the links j 2 Dnfig. For any
link i 2 D, since both the (virtual) SNR values 	ji;t ; j 2 D and the queue status
‚j;t ; j 2 Dnfig remain constant within a time slot t , the SINR value SINRi;t also
remains constant within a time slot.

There has been a lot of research on the finite state Markov modeling of wireless
fading channels, where interference is not considered. Compared with these work,
our FSMC has two additional complicating factors: (1) the fading of the potential
interfering links of link i ; (2) the variation of the set of interfering links of link i

due to changing backlog status of the other links. For factor (1), the channel gain of
an interfering link in time slot t can be considered as only dependent on its channel
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gain in time slot t 	 1 due to the time correlation as assumed in the existing first-
order FSMC models. For factor (2), the queue length of a link at time slot t only
depends on its queue length at time slot t 	 1 and the channel state Hi;t�1 at time
slot t 	 1, as will be discussed later and calculated in (4.4). Therefore, the channel
state Hi;t of link i at time slot t only depends on the channel gains of link i and its
potential interfering links at time slot t 	 1 and the queue length of the other links
at time slot t 	 1, which obeys the Markovian property.

The above D2D communications system can be formulated by a coupled
processor queuing model as follows. The defined queuing system consists of a finite
number, D, of queues indexed by i D 1; 2; : : : ; D, each of which has a server
i corresponding to a D2D link i . For any i , there is a Poisson distributed packet
arrival process with mean �i �T fixed length packets of B bits, and a finite and
discrete-time Markov chain Hi;t with total L states representing the evolution of the
channel states of D2D link i . Associated with the l-th (l 2 f1; : : : ; Lg) state of the
FSMC model of any link i is a fixed service rate Rl bits/s of server i , which is a
non-negative integer and the same for all the links. Since the wireless channels vary
with time asynchronously for different links, the transitions of the channel states are
link dependent and the channel states Hi;t and Hj;t of any two different links i ¤ j

at time slot t are not necessarily the same. If at time slot t the queue i is non-empty
with Hi;t in the l-th state, the queue i is served at a deterministic rate Rl , i.e., the
queue is served according to an L-state MMDP. For any link i 2 D, since SINRi;t

depends on f‚j;t gj 2Dnfig and thus fQj;t gj 2Dnfig, the state of Hi;t depends on the set
of queues in the system with non-zero queue length, which corresponds to a coupled
processor server.

4.3 Steady-State Solution of the Queueing System

Let EHt WD fHi;tgi2D denote the channel states for every link at time slot t . Let
EQt as defined in Sect. 4.2 represent the queue states for every link at time slot t .

The .2 � D/-dimensional DTMC f. EHt ; EQt /; t D 0; 1; : : :g can be used to represent
the system behavior of the above queuing system. The state number of the DTMC
is ..K C 1/ � L/D , which grows exponentially with the increasing number D

of D2D links. In this section, we focus on the derivation method of the exact
transition probabilities and steady-state solution of the DTMC and leave the state
space explosion problem to the next section, where the model decomposition and
iteration method in SPN is used to decompose the DTMC with ..K C 1/ � L/D

number of states to D DTMCs each with .K C 1/ � L number of states. Based on
the exact method discussed in this section, the approximate transition probabilities
and steady-state solution of the decomposed DTMCs can be derived.
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Let p
.En;Eh/

.El ;Ek/
be the transition probability from state .El ; Ek/ to state .En; Eh/ of the

Markov chain, where El WD fli gi2D, Ek WD fki gi2D, En WD fni gi2D and Eh WD fhi gi2D.
Note that li ; ni 2 f1; : : : ; Lg, and ki ; hi 2 f0; : : : ; Kg. We can first decompose

p
.En;Eh/

.El ;Ek/
into two components as

p
.En;Eh/

.El ;Ek/
D Pr:f EQtC1 D Ehj EHt D El ; EQt D Ekg � Pr:f EHtC1 D Enj EHt D El ;

EQt D Ek; EQtC1 D Ehg D p
Eh
.El ;Ek/

pEn
.El ;Ek;Eh/

; (4.3)

where the first component p
Eh
.El ;Ek/

is the transition probability of the queue state from

EQt D Ek to EQtC1 D Eh, given the channel state EHt D El ; and the second component
pEn

.El ;Ek;Eh/
is the transition probability of the channel state from EHt D El to EHtC1 D En,

given the queue states EQt D Ek and EQtC1 D Eh.

In the rest of Sect. 4.3, we will first discuss the computation method of p
Eh
.El ;Ek/

and pEn
.El ;Ek;Eh/

, respectively, to get the state transition probability p
.En;Eh/

.El ;Ek/
of the Markov

chain of f. EHt ; EQt /; t D 0; 1; : : :g according to (4.3). The framework of computing

p
.En;Eh/

.El ;Ek/
in the following part is illustrated in Fig. 4.2. Then, we will derive the steady-

state distribution of the Markov chain from its state transition probability matrix and
prove that the steady-state distribution exists and is unique under certain conditions
in Theorem 4.3.
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4.3.1 Transition Probability of the Queue State

According to (4.1) and given ri;t D Rli , we have

p
hi

li ;ki
D Pr:fQi;tC1 D hi jHi;t D li ; Qi;t D ki g (4.4)

D

8̂
<̂
ˆ̂:

Pr:.Ai;t D hi 	 ki C �i / if ki > �i ; hi ¤ K;

Pr:.Ai;t D hi / if ki � �i ; hi ¤ K;

Pr:.Ai;t � K 	 ki C �i / if ki > �i ; hi D K;

Pr:.Ai;t � K/ if ki � �i ; hi D K;

where �i D b Rli �T

B
c, and Pr:.Ai;t D a/ D .�i �T /a

aŠ
e��i �T due to Poisson

assumptions.
Since the transition probability p

hi

li ;ki
of each link i depends only on its own server

and queue states, we have

p
Eh
.El ;Ek/

D
DY

iD1

p
hi

li ;ki
: (4.5)

4.3.2 Transition Probability of the Server State

According to (4.2), the value of SINRi;t is determined by the (virtual) SNR vector
E	i;t WD f	ji;t gj 2D and the queue status vector f‚j;t gj 2Dnfig. Therefore, we have the
following theorem.

Definition 4.1. Denote the set of all possible values of Qi as SQi , the set of all pos-

sible values of EQ as SQ WD QD
iD1 SQi , which is the Cartesian product of SQi ; i 2

D, and the set of all possible values of fQj gj 2Dnfig as S Ni
Q WD Q

j 2Dnfig SQj .

Partition S Ni
Q into 2D�1 non-overlapping regions S Ni

�v
; v D 1; : : : ; 2D�1, such that

the subset of queues with non-zero queue length is identical within each region, i.e.,
if fQj gj 2Dnfig 2 S Ni

�v
, then f‚j gj 2Dnfig D �v .

Theorem 4.1. 8 EQt D Ek 2 SQi � S Ni
�v

and 8 EQtC1 D Eh 2 SQi � S Ni
�w

, the values of
p

ni

.li ;Ek;Eh/
are the same and can be denoted as p

ni

.li ;�v ;�w/.

The proof of Theorem 4.1 is straightforward from (4.2). Therefore, we try to
derive the value of p

ni

.li ;�v ;�w/, which equals

p
ni

.li ;�v ;�w/ D p
.li ;ni /

.�v;�w/

p
li
�v

; (4.6)
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where

p
.li ;ni /

.�v;�w/ D Pr:fHi;t D li ; Hi;tC1 D ni jf‚j;t gj 2Dnfig D �v; f‚j;tC1gj 2Dnfig D �wg:
(4.7)

p
li
�v

D Pr:fHi;t D li jf‚j;t gj 2Dnfig D �vg: (4.8)

1. Derivation of p
li
�v

Since Hi;t D li , we have SINRi;t 2 Œ
.li �1/; 
li /. Therefore, according
to (4.2), E	i;t at time slot t belongs to the convex polyhedron ‡li WD fE	i j	ii 	

.li �1/

P
j 2Dnfig 	ji‚j;t � 
.li �1/; 	ii 	 
li

P
j 2Dnfig 	ji‚j;t < 
li ; E	i � 0g.

The (virtual) SNR regions corresponding to the channel state li and li C 1 are
separated by the hyperplane 	ii 	 
li

PD
j D1;j ¤i 	ji‚j;t D 
li . Assume there are

two links in the system, an illustration of the SINR regions and its equivalent
(virtual) SNR vector regions of link 1 when the channel state H1;t D 1; 2; 3 and
f‚2;t g D f1g is shown in Fig. 4.3. Therefore, the steady-state probability that
Hi;t D li given that f‚j;t gj 2Dnfig D �v can be derived as

Fig. 4.3 (Virtual) SNR regions corresponding to the channel states and possible transitions of Hi

from li into ni when v D w



52 4 Performance Analysis of Device-to-Device Communications with Dynamic. . .

p
li
�v

D
Z

‡li

f .E	i /dE	i D
Z

‡li

Y
j 2D

.f .	ji/d	ji/: (4.9)

where f .E	i / is the joint probability distribution function (pdf) of the stationary
random process f	ji;t gj 2D, and f .	ji/ is the pdf of 	ji;t . The second equality is due
to the independence between the r.v. elements in the set f	jigj 2D. For a Rayleigh
fading channel with additive white Gaussian noise, the received instantaneous
SNR, 	ji, is exponentially distributed with mean N	ji.

Therefore, p
li
�v

can be derived by the integration of a multivariate exponential
function over a convex polyhedron, which can be equivalently written as

p
li
�v

D
Z

� � �
Z 1

0

� Z ub.li ;Jt /

lb.li ;Jt /

f .	ii/d	ii
� Y

j 2Jt

f .	ji/d	ji; (4.10)

where ub.li ;Jt / D 
li C 
li

P
j 2Jt

	ji, lb.li ;Jt / D 
li �1 C 
li �1

P
j 2Jt

	ji.
Therefore, the integration limits of 	ii can be written as affine functions of 	ji; j 2
Jt , while the integration limits of 	ji; j 2 Jt are all from 0 to 1. Therefore, the
closed-form expression for p

li
�v

can be written as

p
li
�v

D
Y

j 2Jt

1

N	ji
.

exp.	
.li �1/= N	ii/Y
k2Jt

.1= N	ki C 
.li �1/= N	ii/
	 exp.	
li = N	ii/Y

k2Jt

.1= N	ki C 
li = N	ii/
/: (4.11)

2. Derivation of p
.li ;ni /

.�v;�w/

The transition of channel state Hi from li to ni can be due to two categories
of factors: (1) the fading of link i and its potential interfering links; (2) the
variation of the set of interfering links of link i from �v to �w due to the changing
backlog status of the other links. Therefore, we consider that v D w and v ¤ w,
respectively, and derive the value of p

.li ;ni /

.�v;�w/ under each scenario. In the former
scenario, factor (2) doesn’t exist and we can focus on the SINR variation due to
the fading effects.

a) When v D w: the values of f‚j;t gj 2Dnfig and f‚j;tC1gj 2Dnfig remain the
same during two consecutive time slots, and thus the set of interference links
fIjigj 2Jt and fIjigj 2JtC1

remain the same in time slot t and t C 1. Therefore,
the transition of Hi;t in state li to Hi;tC1 in state ni can only be due to the
variations of the (virtual) SNR vector f	jigj 2fig SJt

in time slot t and t C 1.
In [20], in order to derive the transition probability of the FSMC based on
SNR partition, the product of the SNR level crossing rate and the time slot
interval is used to approximate the joint probability that the channel states
are in adjacent states in time slot t and t C 1, respectively. Furthermore, it
assumes that the joint probabilities that the channel states are in different and
non-adjacent states in two consecutive time slots are zero. In this chapter, we
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use a similar method to approximate the transition probabilities of the FSMC
based on SINR partition. However, since the state transition of the SINR-
based FSMC can be due to the variations of any of the (virtual) SNR elements
in the (virtual) SNR vector f	jigj 2fig SJt

, the derivation method is much more
complicated. We first use a similar assumption as in the SNR-based FSMC
that the state transition of Hi;t can only occur between adjacent states, i.e.,
p

.li ;ni /

.�v;�w/ D 0, if jni 	 li j > 1. Then, we try to derive the transition probabilities
between adjacent states as

p
.li ;li C1/

.�v;�w/ � NI.
li /�T; p
.li ;li �1/

.�v;�w/ � NI.
.li �1//�T; (4.12)

where NI.
li / is “level crossing rate” in terms of the SINR, i.e., the expected
number of times per second the SINR passes downward across the threshold

li . This approximation is similar to the method in [20]. NI.
li /�T , whose
value is smaller than one, can be explained as the probability that the SINR
passes downward across the threshold 
li in a time slot interval �T .

In order to derive the value of NI.
li /�T , we consider a small time interval
�t ! 0. Therefore, NI.
li /�t can be explained as the probability that the
SINR passes downward across the threshold 
li in a small interval �t .

Theorem 4.2. We find the SINR value of link i crosses downward the
threshold 
li in a small time interval �t if one of the mutually exclusive
and exhaustive eventualities in the set {Ej gj 2fig SJt

occurred, where Ej is
defined as the event that the (virtual) SNR 	ji passes downward (or upward)
across a threshold j;li , which equals

j;li D
(

1

li

.	ii 	 
li .1 C P
k2Dnfi;j g 	ki‚j;t //; if j ¤ i;


li .1 C P
k2Dnfig 	ki‚j;t /; if j D i;

(4.13)

while the other (virtual) SNR values in the set f	kigk2fig SJt
remain

unchanged. The probability of event Ej can be calculated as

Pr:.Ej / D
Z

� � �
Z

Nj .j;li /�t
Y

k2fig SJt nfj g
f .	ki/d	ki; (4.14)

where Nj ./; j D 1; : : : ; D is the level crossing rate of the (virtual) SNR 	ji

at  , which is the expected number of times per second the (virtual) SNR 	ji

passes downward (or upward) across the threshold  , and can be calculated
according to the Doppler shift fm and the normalized threshold = N	ji [20].

Proof. Due to the equivalence between the SINR region Œ
.li �1/; 
li / and
the (virtual) SNR region ‡li when the channel state Hi;t D li ; .li D
1; : : : ; L/, the SINR value of link i crosses downward the threshold 
li

if and only if the (virtual) SNR vector E	i passes across the hyperplane
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	ii 	 
li

P
j 2Dnfig 	ji‚j;t D 
li from the convex polyhedron ‡li C1 to ‡li

in a small interval �t . Consider a (virtual) SNR 	ji for j 2 fig SJt , given
the values of the rest of the (virtual) SNR elements in the set f	kigk2fig SJt

,
we can derive the (virtual) SNR threshold j;li according to (4.13) so that
if 	ji crosses downward (or upward) j;li then the (virtual) SNR vector E	i

crosses the hyperplane 	ii 	 
li

PD
j D1;j ¤i 	ji‚j;t D 
li from the convex

polyhedron ‡li C1 to ‡li . Since Nj ./�t is the probability that the (virtual)
SNR 	ji passes downward (or upward) across the threshold  in a small
interval �t , and the values of the rest of the (virtual) SNR elements in the
set f	kigk2fig SJt

can be taken over the field of non-negative real numbers as
long as j;li > 0 with the pdf function f .	ki/, the probability of event Ej can
be derived as (4.14).

Note that the probability of multiple simultaneous variations of the (virtual)
SNR elements in the vector E	i in a small interval �t are prohibited in the sense
that each such multiple event is of order o.�t/. Therefore, we will find the
SINR value of link i crosses downward the threshold 
li , or equivalently the
(virtual) SNR vector E	i crosses the hyperplane 	ii	
li

P
j 2Dnfig 	ji‚j;t D 
li

from the convex polyhedron ‡li C1 to ‡li in a time interval �t , if one of the
mutually exclusive and exhaustive eventualities Ej ; j 2 fig SJt occurred.

Example 4.1. As illustrated in Fig. 4.3 where there are two links and three
channel states of Hi;t ; i D 1; 2, we consider the link 1 and assume that
f‚2;t g D f‚2;tC1g D �v D f1g, i.e., link 1 suffers interference from link 2 in
both time slots t and t C 1. SINRi;t crosses downward across threshold 
1 so
that H1;t D 2 and H1;tC1 D 1. This is equivalent to f	11;t ; 	21;t g crosses across
the hyperplane 	11;t

1C	21;t
D 
1 from ‡2 to ‡1, which can only happen when

	11;t crosses downward across threshold a while 	21;t D a=
1 	 1 remains
unchanged or 	21;t crosses upward across threshold 	21;t D a=
1 	 1 while
	11;t D a remains unchanged, where a takes values over the region Œ
1; 1/.

According to Theorem 4.2, we have

NI.
li /�t D
X
j 2D

Pr:.Ej /: (4.15)

Let both sides of (4.15) be divided by �t , we can derive the level crossing
rate NI.
li / of the SINR value of link i . Combining (4.15) with (4.12), we
have

p
.li ;li C1/

.�v;�v/ �
DX

j D1

Z
� � �

Z 1

0

Nj .j;li /�T
Y

k2fig SJt nfj g
f .	ki/d	ki; p

.li ;li �1/

.�v;�v/

�
DX

j D1

Z
� � �

Z 1

0

Nj .j;.li �1//�T
Y

k2fig SJt nfj g
f .	ki/d	ki:

(4.16)
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b) When v ¤ w: the values of f‚j;t gj 2Dnfig and f‚j;tC1gj 2Dnfig are different
during two consecutive time slots. Therefore, the transition of Hi;t from state
li to Hi;tC1 in state ni can be due to not only the variations of the (virtual) SNR
vector f	jigj 2fig SJt

in time slot t and t C1, but also the change of interference
link set from fIjigj 2Jt to fIjigj 2JtC1

. Therefore, we can no longer assume that
the state transition of Hi;t can only occur between adjacent states. Given �v

and �w, we find the channel state Hi;t in li and Hi;tC1 in ni , respectively, if
one of the three following (mutually exclusive and exhaustive) eventualities
occurred:

1) that due to (virtual) SNR variations from N	i;t to N	i;tC1, we would have found
the channel state Hi;t in state li and OHi;tC1 in state li C 1 at the beginning
of time slot t and t C 1, respectively, if the value of f O‚j;tC1gj 2Dnfig
remains unchanged as f‚j;t gj 2Dnfig, which equals �v; however, since
f‚j;tC1gj 2Dnfig changes to �w at the beginning of time slot t C 1, Hi;tC1 is
in state ni instead of state li C 1 with the same set of underlying (virtual)
SNR vector values N	i;tC1; the multi-transition path described above is
denoted as Hi;t D li ! OHi;tC1 D li C 1 ! Hi;tC1 D ni ;

2) that similar to event 1), except that OHi;tC1 D li 	 1, i.e., Hi .t/ D li !
OHi;tC1 D li 	 1 ! Hi;tC1 D ni ;

3) that similar to event 1), except that OHi;tC1 D li , i.e., Hi .t/ D li !
OHi;tC1 D li ! Hi;tC1 D ni .

Example 4.2. As illustrated in Fig. 4.4 where there are two links and three
channel states of Hi;t ; i D 1; 2, we consider the link 1 and assume that
f‚2;t g D �v D f0g and f‚2;tC1g D �w D f1g, i.e., link 1 suffers no
interference from link 2 in time slot t , but it receives interference in time
slot t C 1. We consider that H1;t is in state 3 and H1;tC1 is in state 1 as shown
in the upper part of Fig. 4.4 and examine the events that can cause this to
happen as shown in the lower part of Fig. 4.4, which maps the SINR regions
corresponding to the three states of H1;t to the (virtual) SNR regions. The solid
lines mean that there is a change in the (virtual) SNR or the queue status, while
the dotted lines mean no change has happened. First, assume that f O‚2;tC1g is
unchanged as f‚2;t g D f0g, and OH1.t C 1/ can transit to the adjacent state
2 or remain in the same state 3 as H1.t/. The (virtual) SNR region E	1;tC1

corresponding to both states are shown in Fig. 4.4 as light gray and medium
gray areas. Second, since f‚2;tC1g is f1g instead of f0g, H1;tC1 is in state 1

instead of state 2 or state 3, and its corresponding (virtual) SNR region E	1;tC1

falls in the region surrounded by the bold lines, i.e., the overlapping regions
of the horizontal stripped area with the light gray and medium gray areas. The
multi-transition paths of the above two events are H1;t D 3 ! OH1;tC1 D 3 !
H1;tC1 D 1 and H1;t D 3 ! OH1;tC1 D 2 ! H1;tC1 D 1.

Therefore, we have

p
.li ;ni /

.�v;�w/
D p

.li ;li C1/

.�v;�v/
� Opni

.li C1;�v;�w/
C p

.li ;li �1/

.�v;�v/
� Opni

.li �1;�v;�w/
C p

.li ;li /

.�v ;�v/
� Opni

.li ;�v ;�w/
;

(4.17)
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Fig. 4.4 Possible transitions of Hi from li into ni when v ¤ w

where p
.li ;li /

.�v ;�v/ (resp. p
.li ;li C1/

.�v;�v/ , p
.li ;li �1/

.�v;�v/ ) is the conditional joint probability

that Hi;t is in state li and OHi;tC1 is in state li (resp. li C 1, li 	 1), given
that f O‚j;tC1gj 2Dnfig D f‚j;t gj 2Dnfig D �v , whose value can be derived
from (4.16). On the other hand, Opni

.li ;�v ;�w/ (resp. Opni

.li C1;�v;�w/, Opni

.li �1;�v;�w/)
represents the conditional probability that Hi;tC1 is in state ni , given that
f O‚j;tC1gj 2Dnfig D �v , OHi;tC1 is in state li (resp. li C 1, li 	 1), and
f‚j;tC1gj 2Dnfig D �w, i.e.,

Opni

.li ;�v ;�w/ D Pr:fHi .t C 1/ D ni j OHi .t C 1/ D li ; f O‚j;tC1gj 2Dnfig
D �v; f‚j;tC1gj 2Dnfig D �wg: (4.18)

Given that OHi .t C 1/ D li and f O‚j;tC1gj 2Dnfig D �v , the (virtual)
SNR vector E	i;tC1 belongs to the convex polyhedron ‡li WD ŒE	i j	ii 	

.li �1/

P
j 2Dnfig 	ji O‚j;tC1 � 
.li �1/; 	ii 	 
li

P
j 2Dnfig 	ji O‚j;tC1 <


li ; E	i � 0g. Similarly, given Hi .t C 1/ D ni and f‚j;tC1gj 2Dnfig D
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�w, E	i;tC1 also belongs to the convex polyhedron ‡ni WD fE	i j	ii 	

.ni �1/

P
j 2Dnfig 	ji‚j;tC1 � 
.ni �1/; 	ii 	 
ni

P
j 2Dnfig 	ji‚j;tC1 <


ni ; E	i � 0g. Therefore, the (virtual) SNR vector E	i;tC1 should belong to
the convex polyhedron ‡li

T
‡ni , and

Opni

.li ;�v ;�w/ D Opli ;ni

.�v;�w/

p
li C1
�v

; (4.19)

where

Op.li ;ni /

.�v ;�w/ D Pr:f OHi .t C 1/ D li ; Hi .t C 1/ D ni jf O‚j;tC1gj 2Dnfig D �v; f‚j;tC1gj 2Dnfig D �wg

D
Z

‡li

T
‡ni

f .E	i;tC1/dE	i;tC1; (4.20)

p
li C1
�v

D Pr:f OHi .t C 1/ D li jf O‚j;tC1gj 2Dnfig D �vg: (4.21)

The denominator of (4.19) can be derived according to (4.11). Similar
to (4.10), the numerator of (4.19) is also the integration of a multivariate
exponential over a convex polyhedron according to (4.20). However, since

	ii 2 �
maxflb.li ;Ji;t /; lb.ni ;Ji;tC1/g; minfub.li ;Ji;t /; ub.ni ;Ji;tC1/g�;

(4.22)

the integration limits of 	ii cannot be written as affine functions of 	ji; j 2
Dnfig. Since integration over an arbitrary convex polyhedron is a non-trivial
problem, and it has been shown that computing the volume of polytopes
of varying dimension is NP-hard, we present a relatively simple method to
calculate the integration of (4.20) in the Appendix 1.

Similar to (4.19), we can derive the values of p
ni

.li C1;�v;�w/ and p
ni

.li �1;�v;�w/.

Taking these values into (4.17), we can derive the value of p
.li ;ni /

.�v;�w/ when
v ¤ w.

Now we have derived both the values of the denominator (by (4.11)) and
numerator (by (4.16) when v D w and by (4.17) when v ¤ w) in (4.6), we
can finalize the calculation of p

ni

.li ;�v ;�w/ and thus p
ni

.li ;Ek;Eh/
.

Finally, we have

pEn
.El ;Ek;Eh/

D
DY

iD1

p
ni

.li ;Ek;Eh/
: (4.23)
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4.3.3 Steady-State Probability of Markov Chain

Define the transition probability matrix P D Œp
.En;Eh/

.El ;Ek/
� and the steady-state probability

matrix � D Œ�El ;Ek�, where �El ;Ek 
 limt!1 Pr:f EHt D El ; EQt D Ekg. Each element of
the transition probability matrix P can be derived from (4.3) combining with (4.5)
and (4.23).

Theorem 4.3. The stationary distribution of the Markov chain . EHt ; EQt / exists; �

is unique, and � > 0.

Theorem 4.3 is proved in Appendix 2. Then, the stationary distribution of the
ergodic process f EHt ; EQt g can be uniquely determined from the balance equations

� D �P; �e D 1; (4.24)

where e is the unity vector of dimension .L � .K C 1//D and � can be derived as
the normalized left eigenvector of P corresponding to eigenvalue 1.

4.4 Model Decomposition and Performance Approximation
Using DSPNs

4.4.1 The DSPN Model

The analytical method in the previous section for the multi-user system faces the
challenge of the exponentially enlarged state space, which makes it unacceptable
for a large number of links. Since directly solving the queuing model suffers the
high computational complexity, in this section, we formulate the SPN model of the
above queuing system and use the model decomposition and an iteration procedure
of SPN to simplify the analysis.

The .2 � D/-dimensional discrete-time Markov chain f. EHt ; EQt /; t D 0; 1; : : :g
can be seen as a sampled-time Markov chain of a continuous-time semi-Markov
process sampled at every �T interval, while the continuous-time semi-Markov
process can be modeled as a DSPN. The DSPN consists of a SPN for representing
service processes and a DSPN for representing queuing processes. The SPN, as
shown in Fig. 4.5a, is composed of D subnets and each subnet i corresponds to
the L-state Markov modulated service process of link i . Each subnet is described
by places (fhilgL

lD1) and transitions ftr.l;n/
i gL

l;nD1
l¤n

. The DSPN, as shown in Fig. 4.5b,

models the queuing behavior of the links and can be characterized by places fqi gi2D,
and transitions fci gi2D, fsi gi2D. The meanings of all the places and transitions are
described as follows.

• hil: a place for the l-th channel state of link i .
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Fig. 4.5 The DSPN Model
of FR strategy. (a) The
service process in SPN, (b)
The queue process in DSPN

a

b

• tr.l;n/
i : exponentially-distributed timed transitions for the channel state transitions

of link i . When tr.l;n/
i fires, the channel state transits from l to n. The firing rate

of tr.l;n/
i can be derived as �

.l;n/
i D pn

.l;Ek;Eh/
=�T , where pn

.l;Ek;Eh/
can be obtained

by (4.6). Therefore, �
.l;n/
i depends on the queue states of the other links before

and after hil transits to hin, i.e., whether M.qj /; .j 2 Dnfig), is equal to or larger
than zero, where M.�/ is a mapping function from a place to the number of tokens
assigned to it. Note that transitions from any channel state hil; l 2 f1; : : : ; Lg
to any other channel states hin; n 2 f1; : : : ; Lgnfig are possible as proved in
Lemma 4.1.

• qi : a place for the queue state of link i .
• ci : an exponentially-distributed timed transition denoting new packet arrivals

from link i , with firing rate �i . When it fires, one packet arrives at the queue
place qi .

• si : a deterministic timed transitions for service process. When it fires, one packet
is transmitted from the queue place qi . Its firing rate �i depends on the marking
of the places fhilgL

lD1, i.e.,

�i D bRl�T

B
c=�T; if M.hil/ D 1; l D 1; : : : ; L; (4.25)

where M.hil/ is either 1 or 0, which represents whether link i is in its l-th channel
state or not.
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4.4.2 Model Decomposition and Iteration

According to Sect. 2.2, the original DSPN can be decomposed into a set of
“near-independent” subnets. By decomposition, the original multiuser system is
represented by D subsystems, each of which consists of one subnet in Fig. 4.5a and
one subnet in Fig. 4.5b. Obviously, if each subsystem can be analyzed separately,
the model decomposition can significantly reduce the size of the state space in the
analysis and achieves better performance in computational complexity.

However, unfortunately, such model decomposition is not “clean”, i.e., there
exist interactions among subsystems, which is the same as those in Sect. 3.3.2.
Specifically, for any subsystem i 2 D, the firing rate of transition si depends on
the marking of the places fhilgL

lD1, which in turn depends on the markings of the
queue places qj of those links j 2 Dnfig.

In order to solve this dilemma, we use the same methods have been proposed in
Sect. 3.3.2. First, the steady-state probabilities of the markings instead of the instant
markings of the other subsystems are used as the input of subsystem i in order to
derive its steady-state probabilities of the markings. Next, fixed point iteration is
used to deal with the cycles in the model solution process.

Let fHi;t ; Qi;t g denote the sampled-time Markov chain for the i -th DSPN
subsystem. Let � i WD Œ�i

li ;ki
� denote the steady-state probabilities of fHi;t ; Qi;t g,

where �i
li ;ki


 limt!1 Pr:fHi;t D li ; Qi;t D ki g. In order to derive the steady-state
probabilities � i of subsystem i , we have to first derive the transition probability
matrix Pi D Œp

.ni ;hi /

.li ;ki /
�. First, p

hi

.li ;ki /
can be derived according to (4.4). Next, we try

to analyze the transition probability of the channel state from li to ni given the queue
states .ki ; hi /. According to (4.6), we can derive the value of p

ni

.li ;Ek;Eh/
. However, since

only the queue state .ki ; hi / of subsystem i is given instead of . Ek; Eh/, we assume
that the steady state probabilities of all the other subsystems f�j gD

j 2Dnfig are known
and derive the approximate transition probability Qpni

.li ;ki ;hi /
as follows:

Qpni

.li ;ki ;hi /
D

X

fkj gj 2Dnfig2SNi
Q

fhj gj 2Dnfig2SNi
Q

p
ni

.li ;Ek;Eh/

Y
j 2Dnfig

�kj ;hj ; (4.26)

where �kj ;hj 
 limt!1 Pr:fQj;t D kj ; Qj;tC1 D hj g is the joint steady-state
probability that the queue length of link j is kj in time slot t and hj in time slot
t C 1. Therefore, we have,

�kj ;hj D
LX

lj D1

p
hj

lj ;kj
�

j

lj ;kj
; (4.27)

where p
hj

lj ;kj
can be obtained by (4.4).



4.4 Model Decomposition and Performance Approximation Using DSPNs 61

Finally, we have

Qp.ni ;hi /

.li ;ki /
D p

hi

.li ;ki /
Qpni

.li ;ki ;hi /
; (4.28)

which gives the transition probability matrix Pi , and the steady state probabilities
� i can be derived similar to (4.24).

Define xj WD f�kj ;hj gK
kj ;hj D0. According to (4.26), the solution � i for the i -th

subsystem can be obtained only when the measure fxj gj 2Dnfig are known so that
the transition matrix Pi can be derived, and the value of fxj gj 2Dnfig depends on the
solutions of all the other subsystems f�j gj 2Dnfig according to (4.27). Obviously, if
the D subsystems are solved sequentially by index, the above requirement cannot
be satisfied since only fxj gi�1

j D1 are known when solving the i -th subsystem. In the
following, we can also use the fixed point iteration method analyzed in Sect. 3.3.2
to solve this problem.

We get the steady state probabilities � by the fixed point iteration, so the
performance metrics such as the average queue length, the mean throughput, the
average packet delay and the packet dropping probability can be derived as in [22].

• The average queue length of link i equals

Qi D
KX

ki D0

LX
li D1

�i
li ;ki

ki ; (4.29)

where
PL

li D1 �i
li ;ki

is the probability that Qi;t D ki .
• The mean throughput of link i in terms of packets/s can be expressed as

T i D
LX

li D1

KX
ki D1

Tli ;ki �
i
li ;ki

; (4.30)

where

Tli ;ki D
(

b ri;t �T

B
c=�T if ki � b ri;t �T

B
c;

ki

�T
if ki < b ri;t �T

B
c;

(4.31)

is the service rate of link i in terms of packets/s when Hi;t D li and Qi;t D ki .
It depends on the minimum value of the channel transmission capability and the
amount of packets in the queue of link i . Note that the service rate is 0 when
queue i is empty .ki D 0/. Therefore, T i is the sum over the whole system state
space of the product between the service rate of link i in state .li ; ki / and the
probability that the system is in state .li ; ki /.
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• The average packet delay of link i can then be calculated according to Little’s
Law as

Di D Qi =T i ; (4.32)

which is the average amount of time between the arrival and departure of a packet
for link i . Note that the mean throughput T i equals the effective arrival rate of
link i , which is the average rate at which the packets enter queue i .

• Let Bi
li ;ki

be the random variable which represents the number of dropped packets

of link i when Hi;t D li and Qi;t D ki . Since KCb D Ai;t CmaxŒ0; k	b ri;t �T

B
c�,

where b is the number of packets dropped during the t -th slot,

Pr:.Bi
li ;ki

D b/ D Pr:.Ai;t D K C b 	 maxŒ0; ki 	 bri;t �T

B
c�/: (4.33)

Then, the packet dropping probability pi
d of link i can be estimated as

pi
d D Average # of packets dropped in a time slot

Average # of packets arrived in a time slot

D
PL

li D1

PK
ki D0

P1
bD0 bPr:.Bli ;ki D b/�i

li ;ki

�i �T
: (4.34)

4.5 Numerical Results

In this section, we verify our analytical model under different interference condi-
tions by tuning the length of the potential interfering links as shown in Fig. 4.6. We
consider the path loss channel model 28 C 40 log10 d [25] for all the D2D links
and potential interfering links, where d is the distance between the transmitter and
receiver in meter. We normalize the distance between a transmitter and a receiver
with mean SNR equals 0 dB to be 1. The distance between a transmitter and a
receiver of a link is denoted as ˛. Note that we do not require the length of the links
to be the same in our analytical model, and this assumption in our network topology
is only to facilitate us to focus on the variation of the potential interfering link
length. Assume that the distances between the pair of transmitters (resp. receivers)
of link i and i C 1 are ˇ C �ˇ.i 	 1/ (i D 1; : : : ; D 	 1). Therefore, the length
of the potential interfering link Iji of link i , where j > i (resp. j < i ), isq

˛2 C � Pj �1

kDi .ˇ C �ˇ.k 	 1//
�2

(resp.
q

˛2 C � Pi�1
kDj .ˇ C �ˇ.k 	 1//

�2
). In

this way, we can increase (resp. decrease) the length of all the potential interfering
links of link i by increase (resp. decrease) the value of ˇ. We add �ˇ.i 	 1/ to
ˇ in the distance between the transmitters of link i and i C 1 to ensure that the
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Fig. 4.6 The network
topology. The distance
between the transmitter and
receiver of a link is denoted
as ˛. The distance between
the pair of transmitters (resp.
receivers) of link i and i C 1

is ˇ C �ˇ.i � 1/

Table 4.2 State space, iterations, and runtime with different number of
D2D links

State space Runtime (s)

D Original Decomposed Iters Numerics Simulation

2 1:632e3 816 4 18 334 (� D 1 k)

970 (� D 100 k)

3 1:332e6 816 4 25 657 (� D 1 k)

1;738 (� D 100 k)

4 1:086e9 816 5 34 1136 (� D 1 k)

2;400 (� D 100 k)

mean virtual SNR values N	ji and N	ki of any two potential interfering links Iji and Iki

(k ¤ j 2 Dnfig) of link i are different, as required in (4.36).
The FSMC model has 16 states in total, and the SINR thresholds and the

corresponding transmission rates in 1:4 MHz bandwidth for each service process
are given in Table 4.1 as defined in the LTE system. The carrier frequency f and
the time slot duration �T are set to 2 GHz and 1 ms, respectively. The velocity of
the terminals is set to be 3 km/h so that the Doppler frequency becomes 5:56 Hz. We
let the buffer size K D 50 packets, where the packet length B D 50 bits.

We numerically solve the decomposed Markov model using fixed point iteration
and compare the performance measures with those obtained by discrete-event
simulations of a D2D communications system with dynamic packet arrivals and
full frequency reuse between D2D links. Both numeric method and simulation are
implemented in Matlab and all experiments are run on 1:93 GHz PC with 1:87 GHz
RAM. We increase the link number D from 2 to 4 and the state space of Markov
models before and after decomposition are shown in Table 4.2. In the simulation,
we generate Rayleigh fading channels by the Jakes Model using a U-shape Doppler
power spectrum [26] for every pair of transmitter and receiver. In each simulated
time slot, packets arrive to every queue according to Poisson distribution with mean
��T . For those D2D links with non-empty queues, we derive their respective SINR
values in this time slot according to (4.2), where the channel gains of the D2D
links and interfering links are generated by the Jakes Model. The corresponding
transmission rates for the derived SINR values in this time slot can thus be derived
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a b

dc

Fig. 4.7 Performance metrics versus packet arrival rate for D2D communications systems con-
sisting of different numbers D of D2D links (˛ D 0:5, ˇ D 0:3, and �ˇ D 0:01). (a) Mean queue
length, (b) mean throughput (packets/s), (c) mean delay (ms), (d) dropping probability

according to Table 4.1. The simulations are run over 105 time slots and the time-
average performance measures of every D2D link are obtained. The simulation
runtime is given in Table 4.2 which varies with both packet arrival rate � and D2D
link number D. In the numerical method, we set the initial steady-state probability
vector � i of every link i to be f 1

.KC1/�L
; : : : ; 1

.KC1/�L
g, and the initial vector of

iteration variables fx0
1; : : : ; x0

Dg can be derived from (4.27). The number of iterations
and runtime for convergence are given in Table 4.2. It can be observed that the
runtime for the iterative numerics is much shorter than the simulation runtime.

Figure 4.7a–d show the mean queue length, mean throughput, mean delay and
dropping probability averaged over all D2D links with varying arrival rates for D2D
communications systems consisting of different numbers of links D, respectively.
We choose ˛ D 0:5, ˇ D 0:3 and �ˇ D 0:01. It can be seen that the numerical
results match well with the simulation results under every configuration. As
expected, the system performance in terms of all the above four measures degrade
with the increasing number of links due to the growing amount of interference to
every link. Figure 4.7a reveals that the mean queue length increases with the packet
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arrival rate and reaches the maximum buffer size 50 when the arrival rate reaches
100k packets/s. The variations of the mean throughput and dropping probability
have a similar trend. Figure 4.7b shows that the difference in mean throughput
when the numbers of links D are different grows larger with the increasing arrival
rate. This is because the chances that the potential interfering links have data to
transmit grow larger and thus the interference opportunities are increased for every
link. The increase in mean throughput becomes insignificant when the arrival rate
reaches 100k packets/s for every D. This is not surprising since it has almost reached
the maximum transmission capacity of the system and the increasing arrival rate
only results in increasing dropping probability. In Fig. 4.7d, it can be observed that
the dropping probability is related to the maximum transmission capability of the
system. Take D D 4 for example, the dropping probability reaches approximately
84 % when the arrival rate is 100k packets/s, which means the system is overload
by a factor of 5.2 (i.e., dropping probability/(1-dropping probability)). On the other
hand, Fig. 4.7b shows that the maximum transmission capability or the maximum
mean throughput is 16k packets/s when D D 4, and 100k packets/s is indeed 5.2
times more than the maximum transmission capability of the system. Note that
even in this saturated case, the amount of instantaneous interference received by
a link can still be smaller than that under the infinite backlog traffic model, since
the probability that the queue of any other link being empty cannot be zero as the
Markov chain underlying the queuing system is irreducible. Figure 4.7c shows that
the delay increases sharply when arrival rate increases from 1 to 20k packets/s,
and then remains roughly the same when the arrival rate further increases. This
is because when the arrival rate becomes larger than the maximum transmission
capability of the system as discussed above, the system would have become overload
if not for the packet dropping mechanism. Therefore, both the mean queue length
and the mean throughput quickly reach their respective maximum values as revealed
by Fig. 4.7a, b. By Little’s Law, the mean delay also remains the same after that.

Figure 4.8a–d show the performance metrics with varying interference link
length, where ˇ ranges from 0.1 to 0.7 and the values of ˛ and �ˇ remain the
same as above. The arrival rate is assumed to be 20K packets/s. The analytical
results and the simulation results are very close, both of which improve with the
increasing interference link length and decreasing interference from the other links.
Note that when the interference link length is large, the performance gap between
the scenarios with different numbers of links become small, since the difference in
the amount of received interference is small in these topologies.

In the above numerical and simulation experiments, we assume that the packets
arrive one at a time (as opposed to arriving in batches) following the Poisson
process. However, we can extend the presented queuing model with the Batch
Bernoulli arrival process by setting Pr:.Ai;t D a/ in (4.4) to be the probability
mass function of a Binomial distribution. We illustrate the numerical and simulation
results with respect to dropping probability for D2D communications systems
consisting of different numbers D of D2D links under Batch Bernoulli arrival
process in Fig. 4.9 with varying mean packet arrival rate and in Fig. 4.10 with
varying interference link length. We observe that the numerical results match well
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a b

dc

Fig. 4.8 Performance metrics versus interference link length for D2D communications systems
consisting of different numbers D of D2D links (˛ D 0:5, �ˇ D 0:01, mean arrival rate is 20K
packets/s. Since the length of the potential interfering link Iji of link i , where j > i (resp. j < i )

and i; j 2 D, is
q

˛2 C � Pj �1

kDi .ˇ C �ˇ.k � 1//
�2

(resp.
q

˛2 C � Pi�1
kDj .ˇ C �ˇ.k � 1//

�2
),

the interference link length varies with ˇ on the x-axis). (a) Mean queue length, (b) mean
throughput (packets/s), (c) mean delay (ms), (d) dropping probability

with the simulation results. Moreover, comparisons between Figs. 4.9 and 4.7d and
between Figs. 4.10 and 4.8d show that the dropping probability under Poisson arrival
process and Batch Bernoulli arrival process are quite similar.

4.6 Summary

In this chapter, we have developed a numerical method to investigate the per-
formance of D2D communications with frequency reuse between D2D links and
dynamic data arrival with finite-length queuing. The system behavior is formulated
by a coupled processor queuing model, where the service process is characterized by
a FSMC with each state corresponding to a certain SINR interval. We first construct
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Fig. 4.9 Dropping probability versus packet arrival rate for D2D communications systems
consisting of different numbers D of D2D links under Batch Bernoulli arrival process (˛ D 0:5,
ˇ D 0:3, and �ˇ D 0:01)

Fig. 4.10 Dropping probability versus interference link length for D2D communications systems
consisting of different numbers D of D2D links under Batch Bernoulli arrival process (˛ D 0:5,
�ˇ D 0:01, mean arrival rate is 20K packets/s. Since the length of the potential interfering link

Iji of link i , where j > i (resp. j < i ) and i; j 2 D, is
q

˛2 C � Pj �1

kDi .ˇ C �ˇ.k � 1//
�2

(resp.q
˛2 C � Pi�1

kDj .ˇ C �ˇ.k � 1//
�2

), the interference link length varies with ˇ on the x-axis)
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the underlying DTMC of the queuing model and compute the state transition
probabilities of the DTMC to derive its steady-state distribution. Since the state
space of the DTMC grows exponentially with link number, we next formulate
a DSPN model of the queueing system and use the model decomposition and
iteration techniques in SPN to derive the approximate steady-sate distribution of the
DTMC with low complexity. Finally, we obtain the performance metrics of the D2D
communications from the steady-state distribution of the DTMC, whose accuracy
has been verified by simulation results.

Appendix 1: Calculation of the Integration in (4.20)

Given f O‚j gj 2Dnfig D �v , f‚j gj 2Dnfig D �w and v ¤ w, we define Iv
i WD fIjijj 2

Dnfig W O‚j D 1g as the subset of interfering links Iji with O‚j D 1, and Iw
i WD

fIjijj 2 Dnfig W ‚j D 1g as the subset of interfering links Iji with ‚j D 1.
Furthermore, we define Ivw

i WD Iv
i

T Iw
i , which could be an empty set ;. Finally,

we define Iv Nw
i WD Iv

i nIvw
i and I Nvw

i WD Iw
i nIvw

i , which are the difference of subsets
Iv

i and Iw
i and the difference of subsets Iw

i and Iv
i , respectively. Since Iv

i ¤ Iw
i ,

the relationship between Iv
i and Iw

i can be divided into the following four mutually
exclusive and exhaustive cases, as shown in Fig. 4.11:

(a) Iv
i D ; or Iw

i D ;, and in both subcases, Ivw
i D ;; in the former subcase, we

have Iv Nw
i D ;, while in the latter subcase, we have I Nvw

i D ;; in the following
three cases, we implicitly assume that Iv

i ¤ ; and Iw
i ¤ ;;

(b) Iv
i � Iw

i or Iw
i � Iv

i , and in the former subcase, we have Ivw
i D Iv

i , Iv Nw
i D ;,

while in the latter subcase, we have Ivw
i D Iw

i , I Nvw
i D ;;

(c) Iv
i

T Iw
i D Ivw

i D ;, and in this case, we have Iv Nw
i D Iv

i and I Nvw
i D Iw

i ;
(d) Iv

i 6� Iw
i , Iw

i 6� Iv
i , and Ivw

i ¤ ;, and in this case, we have Iv Nw
i ¤ ; and

I Nvw
i ¤ ;.

Denote the index set of Ivw
i as J 1, i.e., Ivw

i D fIjigj 2J 1 . Similarly, denote the
index sets of Iv Nw

i and I Nvw
i as J 2 and J 3, respectively. In (4.19), the integration

region of E	i needs to obey the following constraints.


.li �1/ � 	ii

1 C P
j 2J 1 	ji C P

j 2J 2 	ji
< 
li ; (4.35)


.ni �1/ � 	ii

1 C P
j 2J 1 	ji C P

j 2J 3 	ji
< 
ni ;

E	i � 0:

Let 	s1 WD P
j 2J 1 	ji, 	s2 WD P

j 2J 2 	ji, and 	s3 WD P
j 2J 3 	ji, which are all

sum of independent exponential random variables. The pdf of 	sid; id D 1; 2; 3 has
closed form expression as
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Fig. 4.11 The interfering link set

f	sid .x/ D Œ
Y

j 2J id

1

N	ji
�

X
j 2J id

exp.	x= N	ji/Q
k2J idnfj g.1= N	ki 	 1= N	ji/

; (4.36)

if f	jigj 2J id have pairwise distinct mean N	ji.

Remark 4.1. Since the D2D terminals are randomly distributed in the cell in
practical communications system, the probability that two D2D links have exactly
the same mean SNR value is small. Therefore, the assumption that f	jigj 2J id have
pairwise distinct mean N	ji is reasonable. Even if two D2D links do have the same
mean SNR, we can add a very small number to one of the SNR to make the two
values different, which will not have much impact on the performance evaluation
results.

Now we try to calculate the integration in (4.20) under each of the four cases
listed above.

1. Case 1: We consider that Iv
i D ;, while the subcase of Iw

i D ; can be dealt with
by a similar method. In this case, the polyhedron in (4.35) is equivalent to


.li �1/ �	ii < 
li ; (4.37)


.ni �1/ � 	ii

1 C 	s3

< 
ni ;

	ii � 0; 	s3 � 0:
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which in turn is equivalent to


.li �1/ �	ii < 
li ; (4.38)

maxf0;
	ii


ni

	 1g �	s3 <
	ii


.ni �1/

	 1:

2. Case 2: We consider that Iv
i � Iw

i , while the subcase of Iw
i � Iv

i can be dealt
with by a similar method. In this case, the polyhedron in (4.35) is equivalent to


.li �1/ � 	ii

1 C 	s1

< 
li ; (4.39)


.ni �1/ � 	ii

1 C 	s1 C 	s3

< 
ni ;

	ii � 0; 	s1 � 0; 	s3 � 0:

which in turn is equivalent to


.li �1/ �	ii; (4.40)

maxf0;
	ii


li

	 1g �	s1 <
	ii


.li �1/

	 1;

maxf0;
	ii


ni

	 	s1 	 1g �	s3 <
	ii


.ni �1/

	 	s1 	 1:

3. Case 3: In this case, the polyhedron in (4.35) is equivalent to


.li �1/ � 	ii

1 C 	s2

< 
li ; (4.41)


.ni �1/ � 	ii

1 C 	s3

< 
ni ;

	ii � 0; 	s2 � 0; 	s3 � 0:

which in turn is equivalent to

maxf
.li �1/; 
.ni �1/g �	ii; (4.42)

maxf0;
	ii


li

	 1g �	s2 <
	ii


.li �1/

	 1;

maxf0;
	ii


ni

	 1g �	s3 <
	ii


.ni �1/

	 1:
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4. Case 4: In this case, the polyhedron in (4.35) is equivalent to


.li �1/ � 	ii

1 C 	s1 C 	s2

< 
li ;


.ni �1/ � 	ii

1 C 	s1 C 	s3

< 
ni ;

	ii � 0; 	s1 � 0; 	s2 � 0; 	s3 � 0: (4.43)

which in turn is equivalent to

maxf
.li �1/; 
.ni �1/g �	ii;

maxf0;
	ii


li

	 	s1 	 1g �	s2 <
	ii


.li �1/

	 	s1 	 1;

maxf0;
	ii


ni

	 	s1 	 1g �	s3 <
	ii


.ni �1/

	 	s1 	 1;

0 �	s1 < minf 	ii


.li �1/

	 1;
	ii


.ni �1/

	 1g: (4.44)

In all the above cases, we try to have the integration limits of 	ii, 	s1, 	s2, and
	s3 as affine functions. Since Case 4 is the most complex one and the other cases
can be considered as special circumstances of Case 4, we will only discuss the
integration of (4.20) under Case 4 in details due to space limitation.

1) If li D ni ,

• and if 
.li �1/ � 	ii < 
li , we have A1 equals

Z 
li


.li �1/

f .	ii/d	ii

Z 	ii

.li �1/

�1

0

f	s1.	s1/d	s1

Z 	ii

.li �1/

�	s1�1

0

f	s2.	s2/d	s2

Z 	ii

.li �1/

�	s1�1

0

f	s3.	s3/d	s3; (4.45)

• and if 	ii � 
li , 	s1 � 	ii

li

	 1, we have A2 equals

Z 1


li

f .	ii/d	ii

Z 	ii

.li �1/

�1

	ii

li

�1

f	s1.	s1/d	s1

Z 	ii
.
li �1/

�	s1�1

0

f	s2.	s2/d	s2

Z 	ii
.
li �1/

�	s1�1

0

f	s3.	s3/d	s3; (4.46)

• else if 	ii � 
li , 	s1 <
	ii

li

	 1, we have A3 equals
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Z 1


li

f .	ii/d	ii

Z 	ii

li

�1

0

f	s1.	s1/d	s1

Z 	ii

li

�	s1�1

	ii

li

�	s1�1

f	s2.	s2/d	s2

Z 	ii

li

�	s1�1

	ii

li

�	s1�1

f	s3.	s3/d	s3: (4.47)

2) If li > ni ,

• and if 
.li �1/ � 	ii < 
li , we have A1 equals

Z 
li


.li �1/

f .	ii/d	ii

Z 	ii

.li �1/

�1

0

f	s1.	s1/d	s1

Z 	ii

.li �1/

�	s1�1

0

f	s2.	s2/d	s2

Z 	ii

.ni �1/

�	s1�1

	ii

ni

�	s1�1

f	s3.	s3/d	s3; (4.48)

• and if 	ii � 
li , 	s1 � 	ii

li

	 1, we have A2 equals

Z 1


li

f .	ii/d	ii

Z 	ii

.li �1/

�1

	ii

li

�1

f	s1.	s1/d	s1

Z 	ii

.li �1/

�	s1�1

0

f	s2.	s2/d	s2

Z 	ii

.ni �1/

�	s1�1

	ii

ni

�	s1�1

f	s3.	s3/d	s3; (4.49)

• else if 	ii � 
li , 	s1 <
	ii

li

	 1, we have A3 equals

Z 1


li

f .	ii/d	ii

Z 	ii

li

�1

0

f	s1.	s1/d	s1

Z 	ii

.li �1/

�	s1�1

	ii

li

�	s1�1

f	s2.	s2/d	s2

Z 	ii

.ni �1/

�	s1�1

	ii

ni

�	s1�1

f	s3.	s3/d	s3: (4.50)

3) If li < ni ,

• and if 
.ni �1/ � 	ii < 
ni , we have A1 equals

Z 
ni


.ni �1/

f .	ii/d	ii

Z 	ii

.ni �1/

�1

0

f	s1.	s1/d	s1

Z 	ii

.li �1/

�	s1�1

	ii

li

�	s1�1

f	s2.	s2/d	s2

Z 	ii

.ni �1/

�	s1�1

0

f	s3.	s3/d	s3; (4.51)
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• and if 	ii � 
ni , 	s1 � 	ii

ni

	 1, we have A2 equals

Z 1


ni

f .	ii/d	ii

Z 	ii

.ni �1/

�1

	ii

ni

�1

f	s1.	s1/d	s1

Z 	ii

.li �1/

�	s1�1

	ii

li

�	s1�1

f	s2.	s2/d	s2

Z 	ii

.ni �1/

�	s1�1

0

f	s3.	s3/d	s3; (4.52)

• else if 	ii � 
ni , 	s1 <
	ii

ni

	 1, we have A3 equals

Z 1


ni

f .	ii/d	ii

Z 	ii

ni

�1

0

f	s1.	s1/d	s1

Z 	ii

.li �1/

�	s1�1

	ii

li

�	s1�1

f	s2.	s2/d	s2

Z 	ii

.ni �1/

�	s1�1

	ii

ni

�	s1�1

f	s3.	s3/d	s3: (4.53)

Therefore, Opli C1;ni

.�v;�w/ D A1 C A2 C A3 when li D ni , li > ni , and li < ni ,
respectively. Combining (4.36) with the above integrations, and after mathematical
manipulation, we have:

1) if li D ni ,

Opli ;ni

.�v;�w/ D 1

N	ii
Œ

Y
j 2J 1

1

N	ji
�Œ

Y
j 02J 2

1

N	j 0i

�Œ
Y

j 002J 3

1

N	j 00i

�
X

j 2J 1

X
j 02J 2

X
j 002J 3

N	j 0i N	j 00i .F .
.li �1// 	 F.
li //Y
k2J 1nfj g

Œ
1

N	ki
	 1

N	ji
�

Y
k02J 2nfj 0g

Œ
1

N	k0i

	 1

N	j 0i

�

1
Y

k002J 3nfj 00g
Œ

1

N	k00i

	 1

N	j 00i

�

; (4.54)

where

F.a/ D
exp. �a

N	ii
/ N	4

ii N	ji.2a N	j 0i N	j 00i C N	ii. N	j 0i C N	j 00i //

. N	ii C a N	ji/. N	ii C a N	j 0i /. N	ii C a N	j 00i /

� 1

.a N	j 0i N	j 00i C N	ii. N	j 0i C N	j 00i //
: (4.55)

2) if li > ni ,

Opli ;ni

.�v ;�w/ D 1

N	ii
Œ

Y
j 2J 1

1

N	ji
�Œ

Y
j 02J 2

1

N	j 0i

�Œ
Y

j 002J 3

1

N	j 00i

�
X

j 2J 1

X
j 02J 2

X
j 002J 3
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N	j 0i N	j 00i exp. 1
N	j 00i

/

Y
k2J 1nfj g

Œ
1

N	ki
	 1

N	ji
�

Y
k02J 2nfj 0g

Œ
1

N	k0i

	 1

N	j 0i

�

1
Y

k002J 3nfj 00g
Œ

1

N	k00i

	 1

N	j 00i

�

.F 0.
ni ; 
.li �1// 	 F 0.
.ni �1/; 
.li �1// 	 F 0.
ni ; 
li / C F 0.
.ni �1/; 
li //;

(4.56)

where

F 0.a; b/ D
exp.	b. 1

a N	j 00 i
C 1

N	ii
//a3 N	3

ii N	ji N	3
j 00i

. N	ii C a N	j 00i /.a N	ii N	j 00i C b N	j 0i . N	ii C a N	j 00i //

� 1

.b N	ii N	ji C a.b N	ji N	j 00i C N	ii. N	j 00i 	 N	ji///
: (4.57)

3) if li < ni , Opli ;ni

.�v;�w/ can be derived according to (4.56) except that 
.ni �1/ (resp.

ni ) and 
.li �1/ (resp. 
li ) switch places with each other.

Although we will not discuss the integration of (4.20) in case 1, 2 and 3 in detail,
we will prove the following Lemma, which will be used in Appendix 2 for the prove
of Theorem 4.3.

Lemma 4.1. In Case 1 and Case 2, Opli ;ni

.�v;�w/ > 0 for any li ; ni 2 f1; : : : ; Lg
satisfying li � ni (resp. li � ni / when Iv

i � Iw
i (resp. Iw

i � Iv
i /; In Case 3

and Case 4, Opli ;ni

.�v;�w/ > 0 for any li ; ni 2 f1; : : : ; Lg.

Proof. In order to prove Opli ;ni

.�v;�w/ > 0, we need to show that the integration region
‡li

T
‡ni is non-empty according to (4.20).

• In case 1, since (4.38) defines the integration region when Iv
i � Iw

i , we
need to verify that for any li ; ni 2 f1; : : : ; Lg satisfying li � ni , the upper
limit of integration for 	s3 is not always smaller than its lower limits when
	ii 2 Œ
.li �1/; 
li /. In (4.38), if li � ni , we have 	ii � 
.li �1/ � 
.ni �1/.
Therefore, the upper limits of integration for 	s3, i.e., 	ii


.ni �1/
	 1 is larger than

zero when 	ii > 
.ni �1/, and thus larger than the lower limits of integration for
	s3, i.e., maxf0;

	ii

ni

	 1g. The scenario when Iw
i � Iv

i can be proved in a similar
way.

• In case 2, since (4.40) defines the integration region when Iv
i � Iw

i , we need
to verify that for any li ; ni 2 f1; : : : ; Lg satisfying li � ni , the upper limits of
integration for 	s1 and 	s3 are not always smaller than their corresponding lower
limits when 	ii 2 Œ
.li �1/; 1/. In (4.40), the upper limit of 	s1, i.e, 	ii


.li �1/
	 1

is larger than zero when 	ii > 
.li �1/, and thus larger than the lower limits of
integration for 	s1, i.e., maxf0;

	ii

li

	 1g. Furthermore, since li � ni and 	s1 <
	ii


.li �1/
	1, the upper limits of integration for 	s3, i.e., 	ii


.ni �1/
		s1	1 is larger than
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zero, and thus larger than the lower limits of integration for 	s3, i.e., maxf0;
	ii

ni

	
	s1 	 1g. The scenario when Iw

i � Iv
i can be proved in a similar way.

• In case 3, since (4.42) defines the integration region, we need to verify that
for any li ; ni 2 f1; : : : ; Lg, the upper limits of integration for 	s2 and 	s3

are not always smaller than their corresponding lower limits when 	ii 2
Œmaxf
.li �1/; 
.ni �1/g; 1/. In (4.42), the upper limits of integration for 	s2

and 	s3, i.e, 	ii

.li �1/

	 1 and 	ii

.ni �1/

	 1 are larger than zero when 	ii >

maxf
.li �1/; 
.ni �1/g, and thus larger than their corresponding lower limits of
integration, i.e., maxf0;

	ii

li

	 1g and maxf0;
	ii

ni

	 1g.

• In case 4, since A1, A2 and A3 are all larger than zero when li > ni , li < ni and
li D ni , Opli ;ni

.�v;�w/ D A1 C A2 C A3 > 0 for any li ; ni 2 f1; : : : ; Lg.

Appendix 2: Proof of Theorem 4.3

We first prove the following lemmas.

Lemma 4.2. The Markov chain . EHt ; EQt / is irreducible, if K � RL�T .

Proof. We can prove Lemma 4.2 by showing that for each transition from state
.El ; Ek/ to .En; Eh/, there exists a multi-transition path with non-zero probability, which
is denoted as .El ; Ek/ 	! .En; Eh/. Now we shall verify the following cases:

1) .El ; Ek/ 	! .El�; Ek/, for any El� D fl�
i 2 f1; : : : ; Lg W Rl�

i
�T � ki gi2D.

• First, we will prove that p
fli C1gi2D
.El ;Ek;Ek/

> 0, p
fli �1gi2D
.El ;Ek;Ek/

> 0 and p
El
.El ;Ek;Ek/

> 0.

From (4.23), we only need to prove that p
.li C1/

.li ;Ek;Ek/
> 0, p

.li �1/

.li ;Ek;Ek/
> 0, and

p
li

.li ;Ek;Ek/
> 0. According to Theorem 4.1, this is equivalent to proving that

p
.li C1/

.li ;�v ;�v/ > 0, p
.li �1/

.li ;�v ;�v/ > 0, and p
li
.li ;�v ;�v/ > 0, where Ek 2 SQi � S Ni

�v
. This is

true from (4.6), since p
li
�v

> 0, and we have p
.li ;li C1/

.�v;�v/ > 0, p
.li ;li �1/

.�v;�v/ > 0, and

p
.li ;li /

.�v;�v/ > 0 based on (4.16).

• Then, we will prove that p
Ek
El ;Ek > 0. Since Ai;t D ki 	maxŒ0; ki 	Rli �T � � 0,

we have p
ki

li ;ki
> 0 from (4.4) and p

Ek
El ;Ek > 0 from (4.5).

• Therefore, we have p
.fli C1gi2D ;Ek/

.El ;Ek/
> 0, p

.fli �1gi2D ;Ek/

.El ;Ek/
> 0 and p

.El ;Ek/

.El ;Ek/
> 0

from (4.3), and there exists a multi-transition path from .El ; Ek/ to .El�; Ek/

as .El ; Ek/ ! .fli C 1gi2D; Ek/ ! : : : ! .fl�
i 	 1gi2D; Ek/ ! .El�; Ek/ or

.El ; Ek/ ! .fli 	 1gi2D; Ek/ ! : : : ! .fl�
i C 1gi2D; Ek/ ! .El�; Ek/, where

the probability of each transition is non-zero.

2) .El�; Ek/ 	! .El�; Eh/.
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• First, we will prove that p
Eh
El�;Ek > 0. Since Ai;t D hi 	maxŒ0; ki 	Rl�

i
�T � � 0

when Rl�

i
�T � ki , we have p

hi

l�

i ;ki
> 0 from (4.4) and p

Eh
El�;Ek > 0 from (4.5).

• Then, we will prove that p
El�

El�;Ek;Eh > 0. From (4.23), we only need to prove that

p
l�

i

.l�

i ;Ek;Eh/
> 0. According to Theorem 4.1, this is equivalent to proving that

p
l�

i

.l�

i ;�v ;�w/
> 0, where Ek 2 SQi � S Ni

�v
and Eh 2 SQi � S Ni

�w
. Since �l�

i j�v
> 0

and from (4.6), we need to prove that p
l�

i ;l�

i

.�v ;�w/ > 0. According to (4.17), since

we have proved that p
.l�

i ;l�

i C1/

.�v;�v/ > 0, p
.l�

i ;l�

i �1/

.�v;�v/ > 0, and p
.l�

i ;l�

i /

.�v;�v/ > 0 in the
above discussion, we only need to show that at least one of three probabilities

Opli
.l�

i C1;�v;�w/
, Opl�

i

.l�

i �1;�v;�w/
, and Opl�

i

.l�

i ;�v ;�w/
is non-zero. From Lemma 4.1, we

have Opl�

i

.l�

i ;�v ;�w/
is always non-zero irrespective of the relationship between �v

and �w. Therefore, we can prove that p
El�

El�;Ek;Eh > 0.

• Therefore, the transition from .El�; Ek/ to .El�; Eh/ has non-zero probability
from (4.3).

3) .El�; Eh/ 	! .En; Eh/. The proof is the same with (1).

Combining (1), (2) and (3), we can prove that there exits a multi-transition path
with non-zero probability from state .El ; Ek/ to .En; Eh/, i.e, .El ; Ek/ 	! .El�; Ek/ !
.El�; Eh/ 	! .En; Eh/, where Rl�

i
�T � ki . Since K � RL�T , there always exists

such l�
i that satisfies this condition.

Lemma 4.3. The Markov chain . EHt ; EQt / is homogeneous and positive recurrent, if
K � RL�T .

Proof. Since the transition probability matrix P is independent of the time slot t , the
Markov chain is homogeneous [27]. From Theorem 3.3 in [27], . EHt ; EQt / is positive
recurrent, since it has finite state space .L � .K C 1//D and is irreducible from
Lemma 4.2.

From Theorem 3.1 in [27], Theorem 4.3 is valid if and only if the Markov
chain . EHt ; EQt / is irreducible, homogeneous and positive recurrent, which have been
proved in Lemma 4.2 and Lemma 4.3.
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Chapter 5
Packet Level Wireless Channel Model
for OFDM System Using SHLPNs

In Chap. 2, we have introduced the SHLPNs and the compound marking technique
for model aggregation. In this chapter, we adopt this technique to form a wireless
channel model for OFDM systems in order to simplify the cross-layer performance
analysis of modern wireless systems [1]. Compared with existing FSMC model
whose state space grows exponentially with the number of OFDM subchannels,
our proposed SHLPN model uses state aggregation technique to deal with this
problem. Closed-form expressions to calculate the transition probabilities among
the compound markings of the SHLPN model are provided. When applied to derive
the performance measures for OFDM system in terms of the average throughput,
average delay, and packet dropping probability, the SHLPN model can accurately
capture the correlated time-varying nature of wireless channels. Simulation is
performed to show that the numerical results offered by the proposed model are
more accurate compared with other simplified channel models for avoiding state
space complexity.

5.1 Packet Level Wireless Channel Model

Compared with wireline networks, the nature of wireless systems is dominated by
the channel between antennas. It is critical for networking researchers and engineers
to capture the channel characteristics in their cross-layer performance model,
which are subject to complex phenomena such as multipath fading, Doppler, and
time-dispersive effects introduced by the wireless propagation. Although wireless
channel modeling for physical layer has been a very active area [2, 3], it is too
complex to be incorporated into the cross-layer models for performance analysis
and optimization.

As a link between the physical layer and higher layers, the wireless channel can
be modeled as a first-order FSMC, which is suitable to be integrated into the cross-
layer performance models. The FSMC modeling of flat-fading channels has been

© The Author(s) 2015
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studied for more than half a decade, ranging from the simple two-state GE channel
to the more complex finite-state Markov channel [4]. Specifically, the SNR region
is divided into multiple non-overlapping consecutive regions for a FSMC, and the
channel of any wireless link is in a certain state if its received SNR falls in the
corresponding region. The steady-state probability of each state can be derived by
integrating the pdf of the SNR over the corresponding region. When the rate of
temporal channel variations is relatively slow and the number of states is not so
high, the state transition probability can be approximated by Level-Crossing Rate
(LCR), which assumes that the channel state either stays in the same state or it
transits to its immediate neighboring states from two consecutive time slots. The
FSMC model is widely adopted in the cross-layer performance analysis of narrow-
band wireless systems using AMC scheme [5–10], where the service process can
be modeled as a MMDP. For example, an analytical framework is presented in [5],
which constructs a two-dimensional Discrete Time Markov Chain containing both
the queue and channel states to analyze the joint effects of finite-length queuing and
AMC schemes on several QoS metrics.

The wireless channels of the next-generation wireless networks are wideband
and frequency-selective. For example, the maximum bandwidth supported by 3GPP
LTE and LTE-Advanced systems are 20 and 100 MHz, respectively. The frequency-
selective fading channels can be turned into multiple parallel flat fading channels by
OFDM, which is a physical-layer multi-carrier technology for effectively combating
Inter-Symbol Interference (ISI). Therefore, the FSMC model for OFDM system can
be represented as multiple parallel first-order sub-FSMCs, which may be correlated
or independent from each other depending on the correlated bandwidth. In [11], an
FSMC model for OFDM systems over Nakagami-m fading channel is introduced,
where the correlation between different subbands are modeled by the LCR of
frequency response in frequency domain. Although it is theoretically feasible to
expand the analytical framework in [5] using such an FSMC model for cross-layer
performance analysis of OFDM system, the exponential growth of the state space
with the number of subchannels forbids its practical application.

Due to the complexity of the state space, existing research in cross-layer
performance analysis and optimization generally makes some types of simplified
assumptions when dealing with OFDM system. In the first type of simplification,
the two-state ON-OFF channel model is used instead of the FSMC model with
multiple states, which cannot accurately reflect the AMC scheme in practical
wireless systems [12–14]. In the second type of simplification, the first-order and
sometimes second-order statistics of the service process are used so that there is no
need to calculate the transition probabilities of the FSMC. For example, the OFDM-
Time Division Multiple Access (TDMA) and OFDMA systems are formulated
as M/G/1 queuing models for packet-level performance analysis in [15], where
only up to the second moments of the service process are needed to derive the
average packet delay. However, more accurate analysis can be achieved if the service
process is modeled as MMDP instead of general distribution. In the flow-level
model, it is shown that an approximate analysis can be performed in a time-scale
decomposable regime, where the time scale of the data file transmission time is
much longer than that of the service process fluctuation [16]. In this case, the random
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fluctuations in the service rate become negligible, and a simple constant-rate service
process can be applied. However, this simplification causes much inaccuracy for
packet-level model, where channel fluctuations give rise to random time-varying
service rates. In the third type of simplification, it is assumed that the channel
state changes independently in consecutive time slots, where the state transition
probability reduces to the steady-state probability [17, 18]. However, as the fading
channel amplitude varies with time in a correlated manner, this simplification will
cause some inaccuracy.

In this chapter, we first present a SPN model for OFDM wireless channel which
is isomorphic with the FSMC model and can accurately capture the correlated
time-varying nature of wireless channels. Moreover, we use the SHLPN formalism
introduced in Sect. 2.3 for state aggregation to deal with the state space explosion
problem. Specifically, we assume that the multiple parallel flat fading channels
of the OFDM systems are stochastically identical and independent from each
other, which is a reasonable assumption when the channel width is larger than
the coherence bandwidth of the environment and has been widely adopted in
related research work [12, 17, 18]. Therefore, the corresponding SPN model is
a homogeneous system with subsets of equivalent states, which can be grouped
together in such a way that the SHLPN model of the system with compound
markings contains only one compound state for each group of individual states in the
original SPN model. In this case an equivalence relation exists among the SHLPN
model with compound markings and the original SPN model, while the SHLPN
model has a lower number of states. We also derive the closed-form expressions for
state transition probabilities and steady-state probabilities of the compound states
of the SHLPN model. In [19], it is proposed to use lumpable FSMC to reduce the
expanded Markov channel of OFDM system to multiple smaller Markov channels
while maintaining similar behavior. Although the concept of lumpable FSMC in
[19] is similar to state aggregation by SHLPN in this chapter, it suffers from the
following shortcomings. First, it is assumed that the channel state of at most one
subchannel can be changed in a time slot, which is not true since the channel states of
different subchannels change independently over time. Second, it does not provide
closed-form expressions for state transition probabilities of the lumpable FSMC.
Therefore, the state transition probabilities of the original expanded Markov channel
have to be derived first, which is still limited by the exponentially increased state
space.

5.2 SHLPN Model of OFDM Wireless Channel

5.2.1 SPN Model

We first consider a Rayleigh flat fading channel, which can be approximated by
a FSMC model. Specifically, the SNR values are divided into L non-overlapping
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consecutive regions. For any l 2 f1; : : : ; Lg, the channel of a wireless link is in state
l if its instantaneous SNR value 	 falls within the l-th region Œl�1; l /. Obviously,
0 D 0 and L D 1. We assume that time is slotted and each time slot has an equal
length �T . Moreover, we assume that the channel state remains constant within a
time slot and the channel state at time slot t only depends on the channel state at
time slot t 	1. Therefore, the wireless channel can be represented by a FSMC fHt g,
t D 0; 1; 2; : : :, where Ht 2 f1; : : : ; Lg.

The steady-state probability �l of each state l can be derived by integrating
the pdf of the SNR over the corresponding region Œl�1; l /. The state transition
probability pl;n WD Pr:fH.tC1/ D njHt D lg can be approximated by LCR, which
assumes that from time slot t to t C 1, the FSMC either stays in the same state or
it transits to its immediate neighboring states. For Rayleigh fading channel, �l and
pl;n can be derived from (3.35)–(3.40).

Now consider the more complex case of Rayleigh frequency-selective fading
channel in OFDM system with NF subchannels. In this case, since every subchannel
of a wireless link is Rayleigh flat fading channel, the FSMC state for an OFDM
wireless channel can be represented by a tuple Ht D fH .m/

t jm 2 f1; : : : ; NFgg,
where H

.m/
t 2 f1; : : : ; Lg denotes the local channel state of the wireless link on

subchannel m. Specifically for any l 2 f1; : : : ; Lg, H
.m/
t D l if the instantaneous

SNR value on subchannel m falls within the l-th region Œl�1; l /. Assume
that H

.1/
t ; H

.2/
t ; : : : ; H

.NF/
t are i.i.d. random variables. Therefore, the steady-state

probability �El of each state El WD fl .1/; : : : ; l .NF/g can be derived as �El D QNF
mD1 �l.m/ ,

where l .m/ 2 f1; : : : ; Lg denotes the local channel state of subchannel m and
�l.m/ can be derived by (3.39). Moreover, the state transition probability pEl ;En WD
Pr:fH.tC1/ D EnjHt D Elg can be derived as pEl ;En D QNF

mD1 pl.m/;n.m/ , where pl.m/;n.m/

denotes the local channel state transition probability of subchannel m and can
be derived according to (3.35)–(3.40). Note that the above model also applies to
the more general Nakagami-m frequency-selective fading channel, where every
subchannel is a Nakagami-q (Hoyt) flat fading channel [20], whose analytical pdf
and LCR are available to derive the corresponding steady-state probabilities and
state transition probabilities as in (3.35)–(3.40). Moreover, the FSMC can also be
extended to channel models which include the shadowing effect as well as the small-
scale fading effect. For example, we can use the Nakagami-lognormal model in
[21], where the analytical pdf and LCR in [21] for Nakagami-lognormal channels
will then be used to establish the channel steady-state probability matrix and state
transition probability matrix. Since the focus of this chapter is on how to reduce
the state space of the FSMC model for OFDM system, which is not impacted by the
considered physical layer channel model, we adopt the Rayleigh fading channel due
to its simplicity.

DTSPN model of OFDM wireless channel is shown in Fig. 5.1, which is
isomorphic with the FSMC model and composed of NF identical subnets. The
m-th subnet for any m 2 f1; : : : ; NFg includes places fph

.m/

l gL
lD1 and transitions

ft .m/

.lC1/lgL�1
lD1 and ft .m/

l.lC1/gL�1
lD1 . ph.m/

l is a place for the local channel state l of
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...

...

m=1, ..., NF

ph1
(m) t12 ph2

(m)
(m)

phL
(m)

(m)

t21
(m)

t (L−1)L

(m)tL (L−1)

Fig. 5.1 The discrete time SPN model for OFDM wireless channel

subchannel m of the FSMC model, i.e., M.ph.m/

l / D 1 if H
.m/
t D l . ft .m/

.lC1/lgL�1
lD1

and ft .m/

l.lC1/gL�1
lD1 are geometrically-distributed timed transitions for local channel

state transitions of subchannel m. The firing probability of t
.m/

.lC1/l (resp. t
.m/

l.lC1/)

equals p
.m/

.lC1/;l (resp. p
.m/

l;.lC1/). When t
.m/

.lC1/l (resp. t
.m/

l.lC1/) fires, the local channel
state of subchannel m transits from .l C 1/ (resp. l) to l (resp. .l C 1/). Note that
different from the SPN model which is isomorphic with a CTMC, the discrete time
SPN model allows multiple firings at any time step. Specifically, N firings in a time
step in our DTSPN model means that there are N subchannels with channel state
transitions in this time step.

5.2.2 SHLPN Model

Although the above FSMC model or DTSPN model can be used to characterize
the OFDM wireless channel, the cardinality of their state spaces are both LNF ,
which grows exponentially with the number of subchannels. The complexity of
state space makes the above models hard to solve in practice. For example, there
are 100 subchannels (when a subchannel corresponds to a resource block composed
of 12 successive subcarriers) in an LTE system with 20 MHz bandwidth. Assume
that there are 5 local channel states in total for each subchannel (i.e., L D 5), the
set of markings in the DTSPN model consists of 5100 states, which is intractable by
any MC solver [22].

In this section, we formulate the discrete time SHLPN model for the OFDM
wireless channel as shown in Fig. 5.2, which is a scaled down version of the SPN
model and has a smaller number of places, transitions and states as introduced in
Sect. 2.3. In the SHLPN model each place and each transition stands for a set of
places or transitions in the SPN model. The number of places is reduced to from
L � NF to L irrespective of the number of subchannels. For any l 2 f1; : : : ; Lg,
the place phl stands for the set fph

.m/

l jm D 1; : : : ; NFg. Therefore, the number
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Fig. 5.2 The discrete time
SHLPN model for OFDM
wireless channel ...

...

ph1 ph2 phL

t12

t21

t(L−1)L

tL(L−1)

.........

of tokens in place phl represents the number of subchannels with local channel
state l , i.e., M.phl/ D PNF

mD1 M.ph.m/

l / D PNF
mD1 1.H

.m/
t D l/. The number of

transitions is reduced from 2.L 	 1/ � NF to 2.L 	 1/ irrespective of the number of
subchannels. For any l 2 f1; : : : ; L 	 1g, the transition tl.lC1/ (resp. t.lC1/l ) stands

for the set ft .m/

l.lC1/jm D 1; : : : ; NFg (resp. ft .m/

.lC1/l jm D 1; : : : ; NFg). The transition
probability associated with every transition is related to the markings which enable
that particular transition.

It is straightforward to see that there are a total of NF tokens in the above SHLPN
model, where each of the L places can contain 0; 1; : : : ; NF tokens. A compound
marking (see Definition 2.1 of Sect. 2.3) can be represented as fk1; k2; : : : ; kLg
with kl D M.phl / 2 f0; 1; : : : ; NFg, i.e., kl represents the number of tokens in
place phl , and

PL
lD1 kl D NF. Therefore, the total number of compound markings

(states) in the state space is .LCNF�1/Š

NFŠ.L�1/Š
, which grows much slower with the number

of subchannels NF compared with the exponentially increased state space size of
the SPN model. The numbers of compound markings and individual markings with
increasing values of NF under different values of L are illustrated in Fig. 5.3. We
define the mapping function from a compound marking to its index in the state space
by fid.�/, i.e., Ol D fid.fk1; k2; : : : ; kLg/, Ol 2 f1; : : : ;

.LCNF�1/Š

NFŠ.L�1/Š
g. Let f OHt gtD0;1;2;:::

be the underlying FSMC of the SHLPN, whose state equals the marking index, i.e.,
OHt D Ol 2 f1; : : : ;

.LCNF�1/Š

NFŠ.L�1/Š
g.

Since each compound marking corresponds to a subset of individual markings in
the original SPN model, let L D fset. Ol/ represent the subset of individual markings
corresponding to the compound marking with index Ol , where fset.�/ is the mapping
function from the compound marking index to the subset of individual markings.
As an example, the compound marking (state) table of the SHLPN model and the
corresponding individual markings in the SPN model is shown in Table 5.1, where
there are 2 subchannels (NF D 2) and 3 local channel states per subchannel (L D 3).
There are 9 individual markings in the SPN model, which can be aggregated into
6 compound markings in the SHLPN model. Note that an individual marking
represented as fM.ph.m/

l /jl D 1; : : : ; LI m D 1; : : : ; NFg is equivalent with a

state El D fl .m/jm D 1; : : : ; NFg of the FSMC fHt gtD0;1;2;:::. For example, the
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Fig. 5.3 The numbers of compound markings and individual markings with increasing number of
subchannels NF when L D 6 and L D 15, respectively

individual marking f1; 0; 0; 1; 0; 0g in Table 5.1 is equivalent with state f1; 1g of
FSMC fHt gtD0;1;2;:::.

Since the compound marking fk1; k2; : : : ; kLg means that there are currently kl

subchannels in local channel state l 2 f1; : : : ; Lg, and also because there are a
total of NF subchannels and the local channel states of all subchannels are i.i.d.,
the steady-state probability �Ol WD limt!1 Pr:. OHt D Ol/ of any compound marking

fk1; k2; : : : ; kLg with index Ol can be derived as

�Ol D
LY

lD1

C
kl

.NF�Pl�1
l0D1 kl0 /

.�l /
kl : (5.1)

Based on (5.1), the steady-state probabilities of the compound markings of
Table 5.1 is given in Table 5.2.

Theorem 5.1. Denote by pOl ; On the probability of a transition from the compound

marking with index OHt D Ol to the compound marking with index OH.tC1/ D On. The

subset of individual markings corresponding to compound markings with indexes Ol
and On are L D fset. Ol/ and N D fset. On/, respectively. Let pEl ;En be the probability

of a transition from the individual marking Ht D El to the individual marking
H.tC1/ D En, where El 2 L and En 2 N . By applying (2.3) in Sect. 2.3, we can
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Table 5.2 The steady-state probabilities of compound markings

Compound
markings

1.f2; 0; 0g/ 2.f0; 2; 0g/ 3.f0; 0; 2g/ 4.f1; 1; 0g/ 5.f1; 0; 1g/ 6.f0; 1; 1g/

Steady-
state
probabilities

.�1/2 .�2/2 .�3/2 2�1�2 2�1�3 2�2�3

get the relation between the transition probability of compound markings and the
transition probability of individual markings is:

pOl ; On D
X
En2N

pEl ;En; 8El 2 L: (5.2)

Based on Theorem 5.1, the transition probabilities among the compound mark-
ings of Table 5.1 is given in Table 5.3. The value of pl;n can be derived according
to (3.35)–(3.40). Since we assume that only state transitions among adjacent states
are possible, the terms with underline equal 0 in Table 5.3.

Although Theorem 5.1 provides a way to calculate the transition probabilities
among the compound markings, it is not convenient especially for large numbers
of subchannels and local states. This is because all the individual states belonging
to every compound state have to be enumerated and the transition probabilities
between the individual states have to be calculated. In order to solve this problem,
the following Lemma 5.1 provides the closed-form expression to directly calculate
the transition probabilities among the compound markings of the SHLPN model for
OFDM wireless channel.

Lemma 5.1. Assume there are NF subchannels and L local channel states per
subchannel in the SHLPN model. The transition probability from compound
marking fk1; k2; : : : ; kLg to compound marking fk0

1; k0
2; : : : ; k0

Lg, where Ol D
fid.fk1; k2; : : : ; kLg/ and On D fid.fk0

1; k0
2; : : : ; k0

Lg/, can be calculated as

pOl ; On D
ub1;2X

a1;2Dlb1;2

� � �
ub.L�1/;LX

a.L�1/;LDlb.L�1/;L

LY
lD1

C
al;.l�1/

kl
.pl;.l�1//

al;.l�1/

C
al;.lC1/

.kl �al;.l�1//
.pl;.lC1//

al;.lC1/ .pl;l /
.kl �al;.l�1/�al;.lC1//; (5.3)

where 8 l 2 f1; : : : ; L 	 1g

lbl;.lC1/ D maxŒ0; .

lX
iD1

.ki 	 k0
i //�; (5.4)

ubl;.lC1/ D minŒ.kl 	 al;.l�1//; .

lC1X
iD1

ki 	
lX

iD1

k0
i /; k0

.lC1/�; (5.5)
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and

a.lC1/;l D
lX

iD1

.k0
l 	 kl / C al;.lC1/: (5.6)

Moreover, a1;0 D aL;.LC1/ D 0 and p1;0 D pL;.LC1/ D 0.

The proof of Lemma 5.1 is given in the Appendix.

5.3 Example Application to Cross-Layer Performance
Analysis of Cellular Downlink

5.3.1 Model Description

In this section, we show how the proposed SHLPN model for OFDM wireless
channel can be applied to the cross-layer performance analysis of cellular downlink.
Consider the downlink of a single-cell OFDM system, where a BS transmits data1

to multiple mobile users. Note that if applied to multi-cell scenario and when inter-
cell interference is not negligible due to frequency reuse between neighboring cells,
the analytical pdf and LCR in Sect. 3.3.1 to derive the channel state transition
probability matrix of every subchannel should be in terms of SINR instead of SNR.
As long as the interference on all the subchannels or a group of subchannels are
stochastically identical, our SHLPN model for state aggregation is still applicable.
The derivation of the analytical pdf and LCR in terms of SINR shall be an interesting
and challenging problem, which depends on the topology (e.g., femto, pico, relay)
and inter-cell interference coordination mechanism. However, this problem is out of
scope of this chapter.

The wireless channel is wideband and frequency-selective. We consider that each
mobile user is assigned a fixed number of subchannels which remain unchanged
during its service. Therefore, the service process of each mobile user depends only
on its current channel and queue state, which makes it possible to separate the
queuing dynamics of each user [18, 20]. This static scheduling policy is feasible for
scenarios of best-effort users with no minimum QoS requirements. For other more
general scenarios, it is interesting to study the performance of more sophisticated
channel- and queue-aware multi-channel scheduling algorithms with the SHLPN
model, e.g., using the technique of calculating the distribution of the maximum
of a multi-dimensional Markov chain [23]. In the following discussion, we only
focus on the queuing dynamics of one mobile user served by NF subchannels,
which can be applicable to others. The BS maintains a data buffer for the mobile

1The data can take units of bits or packets. The latter is appropriate when all the packets have fixed
length.
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user with a finite capacity of NQ < 1. We assume that the data arrival process
is i.i.d. over time slots following general distribution with average arrival rate
EŒAt � D �, where Pr:.Ac D arr/ > 0 if arr � 02. The transmission in the
time is slot-by-slot based and each slot has an equal length �T . It is assumed
that all channel conditions on every subchannel are available at the BS so that
the AMC scheme can be applied. Specifically, the SNR values are divided into L

non-overlapping consecutive regions. For any l 2 f1; : : : ; Lg, if the instantaneous
SNR value 	

.m/
t on subchannel m during time slot t falls within the l-th region

Œl�1; l /, the corresponding instantaneous data rate3 r
.m/
t on subchannel m is a

fixed value Rl according to the selected modulation and coding scheme in this
state, i.e., r

.m/
t D Rl; if 	

.m/
t 2 Œl�1; l /. The total instantaneous data rate of

the wireless channel is the sum of the instantaneous data rate on every subchannel,
i.e., rt D PNF

mD1 r
.m/
t .

The described system model can be formulated by the following queuing
system, which consists of one queue fed with an arrival process that is i.i.d. over
time slots following general distribution and one server. There is a FSMC OHt

with total .LCNF�1/Š

NFŠ.L�1/Š
channel states. For any Ol 2 f1; : : : ;

.LCNF�1/Š

NFŠ.L�1/Š
g, if OHt D

Ol D fid.fk1; k2; : : : ; kLg/, the queue is served at a deterministic service rate
rOl D PL

lD1 klRl , which is a non-negative integer. Therefore, the queue is served

according to an .LCNF�1/Š

NFŠ.L�1/Š
-state MMDP.

Let Qt denote the length of the queue at the beginning of time slot t . If Qt is
less than rt during time slot t , padding bits shall be transmitted along with the data.
Arriving data are placed in the queue throughout the time slot t and can only be
transmitted during the next time slot t C 1. If the queue length reached the buffer
capacity NQ, the subsequent arriving data will be dropped. According to the above
assumption, the queuing process evolves as follows:

QtC1 D min
�
NQ; maxŒ0; Qt 	 rt � C At

�
: (5.7)

The system behavior of the above queuing model can be accurately represented
by the two-dimensional Markov chain f OHt ; Qt gtD0;1;2;:::. Let p

.Ol ;q/;. On;h/
be the

transition probability from state . Ol ; q/ to state . On; h/ of the Markov chain. Then,

p
.Ol ;q/;. On;h/

D Pr:fQ.tC1/ D hj OHt D Ol ; Qt D qgpOl ; On D �
Ol
q;hpOl ; On; (5.8)

2The number of assigned subchannels, the data buffer capacity, and the average arrival rate can be
different across different mobile users.
3The instantaneous data rate can take units of bits/slot or packets/slot. The latter is appropriate
when all the packets have fixed length and the achievable data rates are constrained to integral
multiples of the packet size.
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where pOl ; On denotes the transition probability of the FSMC from state Ol to On and can
be calculated according to Lemma 5.1.

According to (5.7) we have,

�
Ol
q;h D

8̂
<̂
ˆ̂:

Pr:.At D h 	 q C rOl / q � rOl ; h ¤ NQ;

Pr:.At D h/ q < rOl ; h ¤ NQ;

Pr:.At � NQ 	 q C rOl / q � rOl ; h D NQ;

Pr:.At � NQ/ q < rOl ; h D NQ;

(5.9)

where Pr:.At D arr/ is known with mean �.
Define the state transition probability matrix P D Œp

.Ol ;q/;. On;h/
�. Define the

steady-state probability �Ol ;q 
 limt!1 Pr:f OHt D l; Qt D qg and the vector
� D .�1;0; : : : ; �1;NQ ; : : : ; � .LCNF�1/Š

NFŠ.L�1/Š ;0
; : : : ; � .LCNF�1/Š

NFŠ.L�1/Š ;NQ
/. Then, the stationary

distribution of the ergodic process f OHt ; Qt gtD0;1;::: can be uniquely determined from
the balance equations

� D �P; �e D 1; (5.10)

where e is the unity vector of dimension .LCNF�1/Š

NFŠ.L�1/Š
� .NQ C1/ and � can be derived

as the normalized left eigenvector of P corresponding to eigenvalue 1. Given �,
the performance metrics such as the average queue length, the mean throughput,
the average delay and the dropping probability can be derived similar to (14)–(19)
in [24].

5.3.2 Numerical Results

We consider a wireless network employing adaptive M -ary quadrature amplitude
modulation (M -QAM) with convolutional coding which has six channel states
for all transmission links. The SNR thresholds for the channel states are given
in Table II of [5]. We assume the Rayleigh fading channel and the number of
packets transmitted in a time slot under different channel states, i.e., Rl with
l D 1; 2; 3; 4; 5; 6 are set to 0, 1, 2, 3, 6, 9, respectively. The carrier frequency
and the time slot duration �T are set to 2 GHz and 1 ms, respectively. The velocity
of the terminals is set to be 3 km/h so that the Doppler frequency becomes 5:56 Hz.
The mean SNR is 0 dB. We let the buffer size K D 10 packets, where the packet
length B D 1080 bits.

We numerically solve the analytical model described in Sect. 5.3.1 and compare
the performance measures with those obtained by discrete-event simulations of a
downlink OFDM system. Moreover, we also perform numerical experiments which
replace the SHLPN channel model with two other simplified channel models widely
used in existing literature on OFDM system performance analysis [16, 17]:
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• Constant-rate model, where the wireless channel is assumed to transmit at
constant rate which equals to the expected channel transmission capability under
all channel states.

• Memoryless model, where the channel state is assumed to change independently
in consecutive time slots and the state transition probabilities reduces to the
steady-state probabilities.

All three numeric methods and simulation are implemented in Matlab. We
increase the subchannel number NF from 1 to 5. In the simulation, we generate
NF i.i.d Rayleigh fading channels by the Jakes Model using a U-shape Doppler
power spectrum [25] for every subchannel. In each simulated time slot, packets
arrive according to Poisson distribution with mean � D 4 packets/slot. If the
queue in the current time slot is non-empty, we derive the SNR values of every
subchannel according to the channel gains generated by the Jakes Model. The
corresponding transmission rates on every subchannel in this time slot can thus be
derived according to Table II of [5]. The simulations are run over 105 time slots
and the time-average performance measures are obtained. Figure 5.4 shows the

10
4.0

3.5

3.0

2.5

2.0

1.0

0.5

0.8

0.6

0.4

0.2

0.0

1.5

9

8

7

6

5

4

3

6

5

4

3

2

1

0

1 2 3 4 5

M
ea

n 
Q

ue
ue

 L
en

gt
h 

(p
ac

ke
ts

)
M

ea
n 

D
el

ay
(m

s)

D
ro

pp
in

g 
P

ro
ba

bi
lit

y
M

ea
n 

T
hr

ou
gh

pu
t (

pa
ck

et
s/

sl
ot

)

Number of Subchannels NF

1 2 3 4 5
Number of Subchannels NF

1 2 3 4 5
Number of Subchannels NF

1 2 3 4 5
Number of Subchannels NF

Simulation
Numerical-SHLPN
Numerical-Memoryless
Numerical-Constant Rate

Simulation

a b

c d

Numerical-SHLPN
Numerical-Memoryless
Numerical-Constant Rate

Simulation
Numerical-SHLPN
Numerical-Memoryless
Numerical-Constant Rate

Simulation

Numerical-SHLPN

Numerical-Memoryless

Numerical-Constant Rate

Fig. 5.4 Comparison of performance metrics between simulation result and three numerical
results based on SHLPN, memoryless, and constant rate channel models, respectively. (a) Mean
queue length, (b) mean throughput (packets/slot), (c) mean delay (ms), (d) dropping probability
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average queue length, average throughput, average delay, and dropping probability
obtained by the three numeric methods and simulation. It can be observed that the
numeric results using SHLPN channel model is very close to the simulation results,
while there are obvious differences between the numeric results using the two
simplified channel models and the simulation results. The estimated performance by
both Memoryless model and Constant-rate model are optimistic compared with the
simulation results and the estimated performance by the SHLPN model in terms of
average throughput, mean delay and dropping probability. The Memoryless model
represents the scenario where the fading speed is extremely fast so that the time-
correlation of the wireless channel between two consecutive time slots tends to
zero. Therefore, we can reasonably conjecture that higher fading speed improves
the average packet-level performance. Similar conclusions have been drawn for the
worst-case packet-level performance [26] and average flow-level performance [27].
Moreover, since the Constant-rate model provides the best performance among the
three numeric methods, we can see that the channel variation due to fast fading has
negative effects on the packet-level performance. It can also be observed that the
performance gaps between the three numeric methods increase with the number of
subchannels from 1 to 4. When the number of subchannels increases to 4, the mean
throughput of the Constant-rate server almost reaches 4 packets/slot, which equals
the mean arrival rate. Its dropping probability becomes almost zero at the same time.
Therefore, the mean throughput of the Constant-rate server stops increasing when
the subchannel number further increases to 5. Note that it takes 5 subchannels for the
Memoryless model to reach this saturated throughput and even more subchannels
for the SHLPN model.

5.4 Summary

In this chapter, we have developed a wireless channel model using SHLPN formal-
ism for the cross-layer performance analysis of OFDM system. The main reason
for adopting SHLPN in channel modeling is to deal with the state space explosion
problem of existing FSMC model by the state aggregation technique. Specifically,
there is an equivalence relation between the SHLPN model and the FSMC model,
while the former has a lower number of states. Closed-form expressions for state
transition probabilities and steady-state probabilities of the compound states of
the SHLPN model are derived. Finally, we apply the SHLPN model to cross-
layer performance analysis of a downlink OFDM system and obtain performance
measures such as average delay and dropping probability, etc.. The numerical results
are validated by simulation, and it is shown that performance analysis based on the
SHLPN model is more accurate compared to those based on the two simplified
channel models used in existing literature. Note that the main results in the chapter
are not restricted to OFDM systems, but can also be applied to other parallel
broadcast systems including Multiple-Input Multiple-Output (MIMO) and carrier
aggregation.
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Appendix: Proof of Lemma 5.1

According to Theorem 5.1, the transition probability pOl ; On from compound marking

fk1; k2; : : : ; kLg with index Ol to compound marking fk0
1; k0

2; : : : ; k0
Lg with index

On equals the sum of the transition probabilities from any one of the individual
markings El 2 L to all of the individual markings En 2 N . Given an individual
marking El 2 L, we not only know that there are kl subchannels in local channel
state l for any l 2 f1; : : : ; Lg, but also the specific subset of subchannels in each
local state l . In order to calculate pOl ; On, we need to enumerate all the events that
lead to the number of subchannels in local channel state l transited to k0

l for any
l 2 f1; : : : ; Lg.

As illustrated in Fig. 5.5, let al;.lC1/ and a.lC1/;l be the number of subchannels
that transit from local channel state l to .l C1/ and vice versa, respectively. With an
individual marking El 2 L, and assuming that the values of al;.lC1/ and a.lC1/;l are
known for all l 2 f1; : : : ; L 	 1g, the probability of this event can be derived as

LY
lD1

C
al;.l�1/

kl
.pl;.l�1//

al;.l�1/C
al;.lC1/

.kl �al;.l�1//
.pl;.lC1//

al;.lC1/ .pl;l /
.kl �al;.l�1/�al;.lC1//;

(5.11)
where we set a1;0 D a0;1 D aL;.LC1/ D a.LC1/;L D 0.

Therefore, in order to derive pOl ; On, we only need to find all the possible values
of al;.lC1/ and a.lC1/;l that result in kl transited to k0

l for every l 2 f1; : : : ; L 	 1g,
and calculate the sum probabilities of these events. For this purpose, the following
equation needs to be true for any l 2 f1; : : : ; L 	 1g:

kl 	 al;.l�1/ 	 al;.lC1/ C a.l�1/;l C a.lC1/;l D k0
l : (5.12)

Adding the first l equations of (5.12) together, we can get (5.6) in Lemma 5.1,
which establishes the relationship between al;.lC1/ and a.lC1/;l . Now, we only need
to find the upper and lower bounds of al;.lC1/.

kl k(l+1)
al,(l+1)

a(l+1),l

a(l-1),l

al,(l-1)

a(l+1),(l+2)

a(l+2),(l+1)
k1 kL......

a1,2

a2,1

a(L-1),L

aL,(L-1)

k'l k'(l+1)k'1 k'L

Fig. 5.5 Illustration of the state transition of compound markings from fk1; k2; : : : ; kLg to
fk0

1; k0

2; : : : ; k0

Lg. kl is the number of subchannels originally in local state l . al;.lC1/ and a.lC1/;l

are the number of subchannels that transit from local channel state l to .l C 1/ and vice versa,
respectively. After the transition, the number of subchannels in local state l becomes k0

l
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We first derive the upper bound of al;.lC1/. Since the number of subchannels
transited from state l to other states must not be larger than the number of
subchannels originally in state l , and the number of subchannels transited to state l

from other states must not be larger than the number of subchannels in state l after
the transition, the following four inequalities related to al;.lC1/ and a.lC1/;l must
hold:

8̂
ˆ̂<
ˆ̂̂:

al;.lC1/ C al;.l�1/ � kl ;

a.lC1/;l C a.lC1/;.lC2/ � k.lC1/;

a.lC1/;l C a.l�1/;l � k0
l ;

al;.lC1/ C a.lC2/;.lC1/ � k0
.lC1/:

(5.13)

Since we need to enumerate all the possible values of al;.lC1/ for every l 2
f1; : : : ; L	1g, we start from l D 1 and proceed to increasing values of l in sequence.
Therefore, when we set the upper bounds for al;.lC1/ and a.lC1/;l , we can assume
that the values of al;.l�1/ and a.l�1/;l are known, and ignore the values of a.lC1/;.lC2/

and a.lC2/;.lC1/ since the upper bounds of these two values will be set as a function
of the values of al;.lC1/ and a.lC1/;l . Combining with (5.6), we find that the first and
the third inequalities are equivalent. Therefore, the above four inequalities becomes:

8̂
<
:̂

al;.lC1/ � kl 	 al;.l�1/;

al;.lC1/ � P.lC1/
iD1 ki 	 P.l/

iD1 k0
i ;

al;.lC1/ � k0
.lC1/;

(5.14)

which establishes the upper bound of al;.lC1/ by taking the minimum value of the
right hand sides of the above three inequalities and results in (5.5) in Lemma 5.1.

Next, we derive the lower bound of al;.lC1/ from the fact that al;.lC1/ � 0 and
a.lC1/;l � 0. Therefore, we have

(
al;.lC1/ � 0;

al;.lC1/ � P.l/
iD1.ki 	 k0

i /;
(5.15)

which establishes the lower bound of al;.lC1/ by taking the maximum value of the
right hand sides of the above two inequalities and results in (5.4) in Lemma 5.1.

Now armed with the upper and lower bounds of al;.lC1/, we can enumerate all
the possible values of al;.lC1/ for every l 2 f1; : : : ; L 	 1g and calculate the sum
probabilities of these events, which results in (5.3) in Lemma 5.1 and completes the
proof.
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Chapter 6
Conclusions and Outlook

In the previous chapters, we have reviewed the background and state-of-art research
on using SPNs for performance modeling of wireless networks. In this chapter, we
summarize the key conclusions and suggest possible future research directions.

6.1 Conclusions

This book is devoted to introducing SPNs to more wireless networking researchers,
and sharing our experience on how to adopt this powerful high-level modeling
formalism to tackle the unsolved problems in performance evaluation of wireless
networks. The key conclusions are summarized as follows.

• In Chap. 1, we first showed that performance evaluation of wireless networks
needs to be based on stochastic models instead of the much simpler deterministic
models due to the stochastic nature of wireless channel conditions, traffic
arrivals and underlying geometry. Moreover, the performance models of wireless
networks can be broadly classified into packet level model and flow level model.
Then, we showed that SPNs are a powerful high-level modeling formalism that
have been widely adopted by researchers in computer science. Although the SPN
models tend to result in Markov processes which have a large number of states,
a rich theory of model decomposition and aggregation has been developed to
tackle this problem. Finally, we reviewed the state-of-art research on SPNs for
wireless networks.

• In Chap. 2, we introduced the basic background knowledge of SPNs and
discussed two important techniques to deal with the well-known state space
explosion problem—model decomposition and iteration and compound marking
in SHLPNs.

• In Chap. 3, we adopted the model decomposition and iteration technique to study
the performance of wireless opportunistic schedulers in multiuser systems under
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a dynamic data arrival setting. Analytical results demonstrated that the multiuser
diversity effect as observed in the infinite backlog scenario is only valid in the
heavy traffic regime. The performance of the CA opportunistic schedulers is
worse than that of the round robin scheduler in the light traffic regime.

• In Chap. 4, we adopted the model decomposition and iteration technique to study
the performance of D2D communications with full frequency reuse between
D2D links. The queuing behavior for such system can be modeled by a coupled-
processor server, where the service rate at each queue vary over time as governed
by the backlogged state of the other queues. The complex interaction between the
various queues renders an exact analysis intractable in general and steady-state
queue length distributions are known only for exponentially distributed service
in two-queue systems. We showed that this non-trivial problem can be solved by
using the model decomposition and iteration technique in SPNs.

• In Chap. 5, we adopted compound marking in SHLPNs to form a wireless chan-
nel model for OFDM systems in order to simplify the cross-layer performance
analysis of modern wireless systems. The state space of the SHLPNs-based
OFDM channel model no longer grows exponentially with the number of
subchannels as the existing FSMC model does. The proposed channel model
can be used for cross-layer performance analysis of OFDM systems.

6.2 Outlook

From the previous chapters, we know SPNs are an attractive modeling formalism
with user-friendly graphical orientation, powerful and flexible modeling tool and
solid mathematical basis. The example applications in this book only give a glimpse
of what SPNs may bring to the modeling and performance analysis of wireless
networks. As the future wireless networks, e.g., the 5G cellular networks, are
expected to be a mixture of network tiers of different sizes, transmit powers,
backhaul connections, different radio access technologies that are accessed by an
unprecedented number of smart and heterogeneous wireless devices, it is very
exciting to explore the development and application of SPNs to deal with the
unsolved problems arising from the increasing system complexity and performance
requirement. Several challenges and related potential future research directions are
identified as follows.

1. State space explosion problem in large-scale networks: The scale of the future
wireless networks will increase sharply in every dimension. For example, the
massive MIMO communications introduce a very large number of service
antennas; the M2M and D2D communications support many more connected
devices; the ultra-dense small cells mean massive growth in the number of BSs;
and the millimeter wave communications will utilize a very wide bandwidth.
In general, solving the Markovian model for such large-scale networks is an
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non-trivial problem as the state space grows exponentially with the system
dimension. Therefore, it is very interesting to utilize the existing rich set of
techniques in SPNs to deal with this problem.

2. Non-Markovian SPNs for diverse traffic patterns: Future wireless networks need
to support a diverse set of services, applications and users. By 2020 there
will be more than 30 times as much mobile internet traffic as there was in
2010. The traffic arrival patterns of many new applications differ from the
exponential assumption adopted in Markovian models. On the other hand, several
classes of non-Markovian SPNs have been developed which incorporate some
non-exponential characteristics in their definition [1]. Therefore, an interesting
research direction is to adopt these non-Markovian SPNs for the performance
analysis of new applications with non-exponential inter-arrival time.

3. Performance optimization based on SPN models: SPNs are a high-level modeling
formalism for performance evaluation of discrete event systems. The purpose
of performance evaluation is to examine whether a given system will satisfy the
performance requirements or not when its design is finished. On the other hand,
it is also very important for a system to be designed in a way to achieve the
optimal performance. For this purpose, SPNs can be combined with optimization
theories to make the modeling phase easier. For example, Markov Decision Petri
Nets (MDPNs) was proposed by Beccuti et al. in 2007 [2], which integrate SPNs
and Markov Decision Process (MDP) in order to model and analyze distributed
systems with probabilistic and non deterministic features. It is of great interest
to investigate how to apply the SPN-based optimization theories in wireless
networks.
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