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Preface

Robust speech systems in mobile environment have gained a special interest in
recent years in order to enable access to remote voice-activated services. In this
context, three major challenges that need to be considered are: varying background
conditions, speech coding, and transmission channel errors. In this book, we focus
on improving the recognition performance of speech systems in the presence of
speech coding and background noise conditions by using vowel onset points (VOPs)
as anchor points. VOP is an important event in speech production, and it is defined
as the instant at which the onset of vowel takes place. Speech coders considered in
this work are GSM full rate (ETSI 06.10), GSM enhanced full rate (ETSI 06.60),
CELP (FS-1016), and MELP (TI 2.4 kbps).
The major works presented in this book are:

• Methods are proposed for the detection of VOPs in the presence of speech coding
and background noise conditions.

• A two-stage hybrid approach based on hidden Markov models (HMMs) and
support vector machines (SVMs) is proposed for improving the performance of
consonant-vowel (CV) recognition system.

• Two-stage VOP detection method is proposed for spotting CV units from
continuous speech.

• Combined temporal and spectral preprocessing methods are explored to improve
the performance of CV recognition system under background noise.

• A method based on VOPs is proposed to improve the performance of speaker
identification (SI) system in the presence of coding.

• A method is proposed for nonuniform time scale modification using VOPs and
instants of significant excitation.

Some important conclusions drawn out of this work are: (i) Performance of the
proposed VOP detection method based on spectral energy in the glottal closure
region is found to be better compared to existing methods under clean, coded and
noisy conditions. (ii) Performance of the proposed two-stage hybrid CV recognition
approach has shown significant improvement compared to other approaches, under
clean, coded, and noisy conditions. (iii) Performance of CV recognition system
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under background noise is improved by using combined temporal and spectral
processing-based preprocessing method. (iv) Proposed two-stage VOP detection
method used for spotting CV segments from continuous speech has found to be
efficient in minimizing the missing and spurious VOPs. (v) In the presence of
coding, performance of SI system is improved by using features extracted from
steady vowel speech segments. Improvement in SI system performance is mainly
due to the presence of crucial speaker-specific information in the steady vowel
segments of speech, even after coding. (vi) Performance of the proposed time
scale modification method is superior compared to existing methods. The superior
performance of the proposed method is due to the nonuniform modification of
different speech segments and accurate detection of various speech segments with
the help of instants of significant excitation and VOPs.

This book is mainly intended for researchers working on building robust speech
systems in mobile environment. This book is also useful for the young researchers,
who want to pursue the research in speech processing. Hence, this may be
recommended as the text or reference book for the postgraduate level advanced
speech processing course.

Many people have helped us during the course of preparation of this book. We
would especially like to thank all professors of G.S. Sanyal School of Telecom-
munication and School of Information Technology, IIT Kharagpur for their moral
encouragement and technical discussions during the course of editing and orga-
nization of the book. Special thanks to our colleagues at IIT Kharagpur for their
cooperation and coordination to carry out the work. Finally, we thank all our friends
and well-wishers.

West Bengal, India K. Sreenivasa Rao
Hyderabad, India Anil Kumar Vuppala
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Chapter 1
Introduction

Abstract The rapid growth of mobile users is creating great deal of interest in
the development of robust speech systems in mobile environment. Some of the
new and exciting services enabled by speech systems in mobile environment are:
speech interface to the mobile devices, information retrieval through mobile devices,
voice-based person authentication, and forensic investigation. Issues involved in
adapting the present speech processing technology to mobile systems are: effect
of varying background noise, degradations introduced by the speech coders, and
errors introduced due to transmission impairments. In this work, the major focus is
on improving the recognition performance of speech systems in the presence of
speech coding and background noise by using vowel onset points (VOPs). This
chapter provides the overall objective of the present work and scope of the book.
The chapter-wise organization and evolution of ideas related to present work are
given at the end of this chapter.

1.1 Introduction

Speech is produced as a sequence of changes and those are known as events. For
example, in speech there are phonetic events and acoustic events. Any change
which can be attributed to the activity of the speech organs is a phonetic event.
For example, voicing and closure are phonetic events [1–3]. Any feature which is
present in the acoustic signal is an acoustic event. For example, burst, friction, and
voice onset time (VOT) are acoustic events. From the perception point of view,
events and regions around them are known to contain important information [4].
Conventional block processing approach uses fixed frame size (20–30 ms) to extract
information, and it does not use knowledge of events. Vowel onset point (VOP) is
one of the important event in speech production. The VOP is defined as the instant at
which the onset of vowel takes place in the speech signal. The significance of VOP
can be observed in speech applications like (1) recognition of Consonant-Vowel
(CV) units, (2) spotting CV segments in continuous speech, (3) speaker recognition,

K.S. Rao and A.K. Vuppala, Speech Processing in Mobile Environments, SpringerBriefs
in Electrical and Computer Engineering, DOI 10.1007/978-3-319-03116-3__1,
© Springer International Publishing Switzerland 2014
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2 1 Introduction

(4) speech rate manipulation, and (v) enhancement of speech [4–6]. Accuracy in the
detection of VOP is vital for these applications. Therefore in this work, we propose
accurate VOP detection methods under clean and degraded environments.

1.2 Objective of the Book

At the signal level, robust information is present in speech around glottal closure
and VOP events [4]. The objective of this work is to illustrate the significance of
accurate VOP detection for speech processing in mobile environment. Existing VOP
detection methods are suffering with poor detection accuracy. Speech signal during
glottal closure regions exhibits high signal-to-noise ratio (SNR) characteristics.
Hence, processing glottal closure regions may be useful for accurate detection of
VOPs under clean and degraded conditions. The knowledge of VOP events is used
in the following studies:

• Recognition of CV units in the presence of speech coding and background noise.
• Spotting and recognition of CV units from continuous speech.
• Speaker identification (SI) in the presence of coding.
• Nonuniform time scale modification (TSM)

1.3 Organization of the Book

The evaluation of ideas presented in this book are listed in Table 1.1. The rest of the
book is organized as follows:

Chapter 2: Background and Literature Survey—discusses the state-of-the-art
methods for VOP detection and speech systems in mobile environment. Exist-
ing approaches for CV recognition in Indian languages and time scale modification
are also discussed in this chapter.

Chapter 3: Vowel Onset Point Detection from Coded and Noisy Speech—
presents the proposed VOP detection methods for coded and noisy speech. Perfor-
mance of the proposed VOP detection methods is compared with existing method
which uses the combination of evidences from excitation source, spectral peaks, and
modulation spectrum.

Chapter 4: Consonant-Vowel Recognition in the Presence of Coding and
Background Noise—presents the recognition performance of the CV units in the
presence of coding and background noise by using proposed two-stage hybrid
approach. Proposed CV recognition approach uses the combination of complimen-
tary evidences from support vector machine (SVM) and hidden Markov model
(HMM) to improve recognition performance. Impact of accuracy in the proposed
VOP detection method is studied on recognition performance of CV units by
using proposed CV recognition approach in the presence of coding. Further,
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Table 1.1 Evolution of ideas presented in the book

• Speech systems in mobile environment has become popular in recent years
• The major issues in mobile environment are background noise, speech coding, and channel

errors
• Information present around VOP can be useful for speech processing in mobile environment
• Existing VOP detection methods are suffering with poor accuracy. Hence, there is a need to

develop accurate VOP detection methods for both clean and degraded conditions
• Glottal closure regions are known to be high SNR regions in speech. Therefore, spectral

energy of the speech signal present in the glottal closure region can be explored for the
detection of VOPs in the presence of coding and background noise

• Crucial information of CV unit is present around VOP, and hence VOP can be used as an
anchor point for deriving the relevant information for CV recognition

• As the number of CV classes are more, multistage acoustic models may perform better
compared to single stage acoustic models. Hence, we explored a two-stage hybrid approach
for improving the recognition performance of CV units

• HMMs and SVMs are trained using different modalities, hence they can provide com-
plementary evidence. Therefore, at each stage of the proposed CV recognition method,
complementary evidences from SVM and HMM are combined for enhancing the CV units
recognition performance

• Combined TSP methods are known to be useful for improving the performance in speech
enhancement and speaker recognition tasks. In this work, we explored its usefulness in
speech recognition task

• VOPs can be used for spotting CV units from continuous speech. Hence, two-stage
accurate VOP detection method is proposed for spotting and recognition of CV units from
continuous speech

• Since speaker-specific characteristics are preserved in steady vowel segments of speech
even after coding, the features extracted from these steady vowel regions can be used to
improve the SI performance in the presence of coding. Hence, a method is proposed to
determine the steady vowel region from the speech signal by using VOPs and epochs

• Due to unique articulatory and production constraints associated with each type of vowel
during slow and fast speech, vowel segments are expanded and compressed nonuniformly
based on the type of vowel. Therefore, a nonuniform TSM method is proposed by using
VOPs and epochs

combined temporal spectral processing (TSP)-based preprocessing methods are
used to improve the recognition performance of CV units under background noise.

Chapter 5: Spotting and Recognition of Consonant-Vowel Units from Con-
tinuous Speech—discusses about the need for accuracy in the detection of VOP for
CV recognition in continuous speech. Proposed two-stage VOP detection method to
reduce the spurious VOPs and improve the accuracy of genuine VOPs is presented
in this chapter.

Chapter 6: Speaker Identification and Time Scale Modification Using
VOPs—focuses on the application of proposed VOP detection methods for improv-
ing the SI performance in the presence of coding, and nonuniform time scale
modification (TSM). Proposed speaker identification system is developed using
features extracted from steady vowel region. Steady vowel regions are determined
by using vowel onset points and epochs. Further, proposed nonuniform TSM method
is presented for slow down and speed up the speech.

Chapter 7: Conclusions—summarize the contributions of the book and discuss
the scope for future investigation.



Chapter 2
Background and Literature Review

Abstract This chapter provides the systematic review of the existing approaches
for vowel onset point detection, speech systems in mobile environment, Consonant-
Vowel (CV) recognition in Indian languages, and time scale modification (TSM).
In addition to providing the review of above-mentioned topics, authors have
discussed about the short comings present in the existing approaches and derived
the motivation and scope of the present work.

This chapter discusses about the state of the art related to the contents of this book.
Authors have provided detailed explanation for the existing VOP detection methods,
CV recognition systems, and time scale modification methods, which are later used
for comparing the performance with the proposed methods and systems. The chapter
is organized as follows: Sect. 2.1 reviews existing methods for VOP detection.
Section 2.2 briefly reviews the state-of-the-art speech and speaker recognition
systems in mobile environment. Section 2.3 presents the review of CV recognition in
Indian languages. Section 2.4 reviews the existing approaches for TSM. Section 2.5
summarizes the review and the major issues addressed in this book.

2.1 Approaches for Detection of Vowel Onset Points

There are various methods available in literature for the detection of VOPs [7–17].
The method presented in [7] detects VOPs based on rapid increase in the vowel
strength. The vowel strength is calculated using the difference in the energy of
the peaks and their corresponding valleys in the amplitude spectrum. This method
requires detection of unvoiced and voiced regions in a speech signal. The method
for VOP detection presented in [8] uses a product function generated by using
wavelets. The values of product function for vowel regions are much larger than
consonant regions. The methods presented in [9–11] use a hierarchical neural
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6 2 Background and Literature Review

network, multilayer feed-forward neural network (MLFFNN), and auto-associative
neural network (AANN) models, respectively, for the detection of VOPs. These
models are trained by using the trends in the speech signal parameters at the
VOPs. The VOP detection using Hilbert envelope of excitation source information
is presented in [12]. The acoustic cues such as formant transition, epoch intervals,
strength of instants, symmetric Itkura distance, and ratio of signal energy to residual
energy are explored in [4, 5] for the detection of VOP events in different categories
of CV units.

The voice onset time (VOT) is the time delay between the burst onset and the
start of periodicity, when it is followed by a voiced sound. In [13], automatic VOT
is detected using phone model-based methods with forced alignment. VOT detection
using reassignment spectra is presented in [14]. In [18], voice onset time detection
method is presented for unvoiced stops (/p/, /t/ and /k/) using the nonlinear energy
tracking algorithm (Teager energy operator). In [19], Bessel features are used for
determining the voice onset time for stop consonant vowel units such as /ka/, /Ta/,
/ta/, and /pa/.

Combination of the evidence from excitation source, spectral peaks, and modu-
lation spectrum (COMB-ESM) has been explored in [15] for the detection of VOPs.
Each of these evidence carries complementary information with respect to VOPs.
The performance of COMB-ESM method is superior compared to existing methods.
Hence, in this book COMB-ESM method is used for comparing the performance of
the proposed VOP detection methods. Following subsection describes the details of
the COMB-ESM method for VOP detection [15].

2.1.1 VOP Detection Using Excitation Source, Spectral Peaks,
Modulation Spectrum, and Their Combination

2.1.1.1 VOP Detection Using Excitation Source Information

VOP detection using excitation source information is carried out in the following
sequence of steps. Determine the Hilbert envelope (HE) of linear prediction (LP)
residual (also known as excitation source) of speech signal. Smooth the HE of the
LP residual by convolving with a Hamming window of size 50 ms. The change
at the VOP present in the smoothed HE of the LP residual is further enhanced
by computing its slope using first-order difference (FOD). These enhanced values
are convolved with the first order Gaussian difference (FOGD) operator, and the
convolved output is the VOP evidence using excitation source. VOP evidence using
excitation source for speech signal /“Don’t ask me to carry an”/ is shown in
Fig. 2.1b.
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Fig. 2.1 VOP detection using combination of three evidences for a speech utterance /“Don’t ask
me to carry an”/. (a) speech signal, VOP evidence plots for (b) excitation source, (c) spectral
peaks, (d) modulation spectrum, and (e) COMB-ESM method

2.1.1.2 VOP Detection Using Spectral Peaks Energy

VOP detection using the spectral peaks energy is carried out in the following
sequence of steps. The speech signal is processed in blocks of 20 ms with a shift of
10 ms. For each block, a 256-point discrete Fourier transform (DFT) is computed,
and the ten largest peaks are selected from the first 128 points. The sum of these
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spectral peaks is plotted as a function of time. The change at the VOP available in
the spectral peaks energy is further enhanced by computing its slope using FOD.
These enhanced values are convolved with FOGD operator. The convolved output
is the VOP evidence using spectral peaks energy. VOP evidence plot using spectral
peaks energy for speech signal /“Don’t ask me to carry an”/ is shown in Fig. 2.1c.

2.1.1.3 VOP Detection Using Modulation Spectrum Energy

Slowly varying temporal envelope of speech signal can be represented by using
modulation spectrum. VOP detection using modulation spectrum energy is carried
out in the following sequence of steps. The temporal envelope of speech is
dominated by low-frequency components. The VOP evidence due to modulation
spectrum is derived by passing the speech signal through a set of critical band pass
filters and summing the components corresponding to 4–16 Hz. The change at the
VOP available in the modulation spectrum energy is further enhanced by computing
its slope using FOD. These enhanced values are convolved with FOGD operator and
the convolved output is the VOP evidence using modulation spectrum energy. VOP
evidence using modulation spectrum energy for speech signal /“Don’t ask me to
carry an”/ is shown in Fig. 2.1d.

2.1.1.4 VOP Detection Using COMB-ESM Method

Each of the above three methods uses complementary information about the VOP,
and hence they are combined for the enhancement of VOP detection performance.
In combined method, the evidences from excitation source, spectral peaks, and
modulation spectrum energies are added sample by sample. VOP detection using
individual and combination of all three evidences for speech signal /“Don’t ask me
to carry an”/ is shown in Fig. 2.1.

Figure 2.1a shows the speech signal with manually marked VOPs for an utterance
/“Don’t ask me to carry an”/. Figure 2.1b–d shows the VOP evidence correspond-
ing to excitation source, spectral peaks, and modulation spectrum, respectively.
Figure 2.1e shows the VOP evidence by combining the evidence. The peaks in the
combined VOP evidence signal (Fig. 2.1e) are marked as the VOPs obtained from
COMB-ESM method. From Fig. 2.1, it is observed that a spurious VOP is present in
third position in all VOP evidence plots. The performance of COMB-ESM method
for VOP detection is around 96 % within 40 ms deviation and only 45 % within
10 ms deviation [15]. A summary of the discussion related to the detection of VOP
is given in Table 2.1.
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Table 2.1 Summary of the review of VOP detection methods

• Existing methods for VOP detection have low accuracy
• Most of the existing VOP detection methods are based on block processing of speech signals
• Information present in glottal closure regions may also be used for the detection of the VOP

events in the presence of degradations such as coding and background noise

Fig. 2.2 Block diagram for network-based speech system

2.2 Speech Processing in Mobile Environment

In mobile environment, speech systems are developed in three different con-
figurations. They are: (1) embedded speech systems (client-based), (2) network
speech systems (server-based), and (3) distributed speech systems (client-server-
based) [20–24]. These configurations are characterized according to the location
where processing is taking place. In embedded speech systems, the speech task is
performed in the terminal device itself. Due to cost-sensitive nature of the terminal
device, constraints are imposed on computational and memory resources. Therefore,
this approach is aimed to limited vocabulary applications. In network speech
systems, speech is transmitted to remote server over a communication channel,
and speech task is performed at the server. In distributed speech systems, features
required for speech task are extracted from the speech at the client side, and task is
performed at the remote server. The applications such as large continuous speech
recognition in mobile environment is possible through network and distributed
based speech systems. In this book, network-based configuration is considered for
analyzing the proposed methods for speech and speaker recognition. The block
diagram for network-based speech system is shown in Fig. 2.2. Survey of speech
recognition techniques for mobile devices is presented in [20–23, 25].

There are three major challenges in speech processing in mobile environment
[21–23, 25]: (1) Degradations due to different speech coders used for speech
transmission. Speech coding is a compact way of representing speech by exploiting
speech production and perception characteristics. In the process of speech cod-
ing, speech and speaker-specific information present in speech will be degraded.
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(2) Effect of varying background conditions in mobile environment on the perfor-
mance of speech systems. Background conditions like crowd of people, vehicle,
restaurant, street, etc. are common in mobile environment, and they will degrade the
performance of speech systems. (3) Effect of wireless channels on the performance
of speech systems. Due to unreliable nature of radio-frequency channel, transmis-
sion errors will affect the performance of speech systems. Distortions due to speech
coding and channel errors like packet loss are also common issues in voice over
internet protocol (VoIP). In addition to these distortions, jitter is an issue in VoIP
technology.

Currently speech coders are coming in two different versions. The basic version,
also called narrowband, which is mainly intended for use by GSM, and wideband
(for example AMR-WB), which is mainly intended for use by Universal Mobile
Telecommunications System (UMTS). UMTS is one of the third generation (3G)
mobile telecommunications systems. Wideband coders uses a speech bandwidth
of 50–7,000 Hz, whereas the bandwidth of narrowband AMR is 300–3,400 Hz.
This gives wideband AMR a more natural speech quality. We consider different
narrowband speech coders to observe coding effect on the performance of speech
systems. In this work, issues related to speech and speaker recognition under
coding and speech recognition under background noise are addressed. Following
subsections discuss the background work related to those issues.

2.2.1 Speech and Speaker Recognition Under Coding

Speech recognition is the process of converting spoken words to a machine readable
input (text). The effect of speech coders such as GSM and CELP coders on digit
recognition performance by using HMM models has been discussed in [26, 27].
Juan Huerta has presented weighted acoustic models to reduce the effect of GSM
full rate coder on the speech recognition performance [22]. From his study it is
evident that all phonemes in a GSM-coded speech corpus are not distorted to the
same extent due to coding. Alternative front-end for speech recognition in GSM
networks is presented in [28]. In this approach features are extracted directly from
the encoded speech to avoid source coding distortion.

Speaker recognition is the process of automatically recognizing the identity of
speaker from speech. Speaker recognition can be divided into speaker identification
and speaker verification. In speaker identification, the task is to identify the speaker
from the speech signal. The task of a speaker verification system is to authenticate
the claim of a speaker based on the test speech. In literature the effect of coding
on speaker recognition performance was analyzed in two ways. In the first case
features required for speaker recognition are extracted from resynthesized speech
[29–31], and in the second case features are extracted directly from the codec
parameters [29]. The effect of GSM (12.2 kbps), G.729 (8 kbps), and G.723.1
(5.3 kbps) coders on speaker recognition is studied in [29]. This study indicated
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Table 2.2 Summary of the review of speech systems in mobile environment

• There is no systematic study carried out on speech recognition for Indian languages in
mobile environment

• Combined temporal and spectral preprocessing techniques can be used for speech recogni-
tion under background noise

• Information present around VOPs may be used for improving the performance of speech
systems in mobile environment

that the performance of recognition system decreases with decreasing coding rate.
The effect of speech coding on automatic speaker recognition is presented in [30]
with matched and mismatched training and testing conditions. Matched condition
(training and testing with the same coder) shows increase in the recognition
performance. In [31], performance of speaker recognition under coding is improved
using score normalization. The effect of GSM-EFR coder on the performance of
speaker identification is presented in [32]. In [33], SVM-based text-independent
speaker identification using a linear GMM supervector kernel was presented for
coded speech.

2.2.2 Speech Recognition Under Background Noise

In practical applications of automatic speech recognition, speech is often distorted
by a background noise. Because of this distortion, speech features are distorted,
and therefore there is a mismatch between the training (clean) and testing (noisy)
conditions. This mismatch severely degrades the performance of speech recognizers
[34, 35]. Various methods have been presented in the literature to overcome the
effect of noise on speech recognition. These methods can be grouped under three
categories based on (1) compensation of noise, (2) robust feature extraction, and
(3) adaptation of models. Methods based on compensation of noise aim to enhance
the noisy speech signals before feature extraction [34–39]. Such methods include
spectral subtraction, minimum mean square error (MMSE), and subspace-based
speech enhancement techniques [36–39]. Methods based on robustness at the feature
level are designed in such a way that the proposed features are less sensitive to the
noisy degraded conditions [40–46], e.g., RASTA filter [40], feature normalization
[41], MMSE-based mel-frequency cepstra [42], and histogram equalization [44–
46], etc. In case of model adaptation approach, the parameters of the model are
modified according to the characteristics of the background noise [47–53]. Some
of the popular model adaptation methods include code book mapping [47], parallel
model compensation [48], noise adaptive training [51, 52], etc. A summary of the
discussion related to the speech systems in mobile environment is given in Table 2.2.
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2.3 Recognition of CV Units of Speech in Indian Languages

Phones, diphones, and triphones are widely used subword units for speech recogni-
tion. But recent studies reveal that syllables are the suitable subword units for speech
recognition [54,55] in Indian languages. In general, the syllable-like units are of type
C mVC n, where C refers to consonant, V refers to a vowel, and m and n refer to
the number of consonants preceding and following the vowel in a syllable. Among
these units, the CV units are the most frequently (around 90 %) occurring units [9]
in Indian languages. Different regions of significant events in the production of the
CV unit =ka= are shown in Fig. 2.3. The major issues involved in the recognition
of CV units are the large number of classes and high similarity among those classes
[54–57].

Hidden Markov models (HMMs) are the commonly used classification models
in speech recognition, but in [54, 55, 57] authors have reported that MLFFNNs
and support vector machines (SVMs) work better for recognition of CV units in
Indian languages compared to HMM. In [55], modular neural networks are used
for recognition of stop consonant-vowel (SCV) units. Separate neural networks
(subnets) are trained for subgroups of classes. It has been reported in [55] that
the performance of the conventional modular networks is poor, and a constraint
satisfaction model (CSM) is presented to improve the recognition performance of
SCV units. In CSM the outputs of the subnets are combined using the constraints
that represent the similarities among the SCV classes. The constraints are derived
from the acoustic phonetic knowledge of the classes and the performance of the
subnets. In [54], constraint satisfaction neural network models are extended for
recognition of isolated CV units that correspond to all categories of consonants.
Features extracted around VOPs are used for recognition of CV units. In their study,
VOPs are detected using AANNs and dynamic time warping (DTW)-based methods
[54]. Further, CV units are recognized from continuous speech by using SVMs.
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Fig. 2.3 Regions of significant events in the production of the CV unit =ka=
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Table 2.3 Summary of the review of CV recognition in Indian languages

• VOP detection methods used in existing CV recognition systems are suffering with low
accuracy

• Accurate VOP detection may improve the CV recognition performance
• The recognition performance of CV units by using single level hybrid approach presented

in [58] can be improved by using multi-level hybrid approach

An approach based on combination of SVM and HMM evidences for enhancing
the CV recognition performance is presented in [58]. A summary of the discussion
related to CV recognition is given in Table 2.3.

2.4 Time Scale Modification

The purpose of time scale modification (TSM) is to change the rate of speech
while preserving the characteristics of the original speech such as formant structure
and pitch periods. There are various applications of time scale modification. For
example, time scale compression can be used at the input side of the speech coder
and transmission, followed by time scale expansion at the receiver to get back the
original speech [59]. In some other applications, time scale expansion can be used to
enhance the intelligibility of rapid or degraded speech [60]. Time scale compression
is also useful in message playback systems for fast scanning of recorded messages
[61]. Recently, adaptive TSM is used in VoIP applications for handling the network
congestion [62]. Pitch and time scale modification was attempted in real time by
focusing on processing only voiced regions of speech utterance [63].

There are number of approaches available in the literature for time scale
modification. Some of them use sinusoidal model, pitch synchronous overlap
and add (PSOLA), and phase vocoders [60, 64, 65]. In [59], the authors have
presented an epoch-based time scale modification method, where the duration of
speech signal is modified using the knowledge of epochs. In this method, TSM
is performed in residual domain. Linear prediction pitch synchronous overlap and
add (LP-PSOLA) approach also performs TSM in the residual domain similar to
the epoch-based method [66]. The approaches mentioned above basically perform
time scale modification uniformly, for entire speech signal. But, fast or slow speech
produced by humans may not vary uniformly across all the speech segments. In [16],
fast and slow speech produced by human beings was analyzed, and observed that
durations of consonant and transition regions remain the same in fast or slow speech,
and only the vowel and pause regions will vary according to speech rate. Based
on this observation, authors have presented a nonuniform time scale modification
method, where consonant and transition regions of speech are kept unaltered, and
only vowel and pause segments are modified according to desired speaking rate [16].
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Table 2.4 Summary of the review of TSM methods

• Majority of the existing TSM methods modify all speech segments with same modification
factors

• Modifying different speech segments with different modification factors based on their
production and articulatory constraints may improve the quality of speech

Attempts to incorporate nonuniform duration modification are reported in the
literature [64, 67, 68]. Speech adaptive TSM method presented in [64] modify the
speech rate based on voicing probability derived from sinusoidal pitch estimator.
The voicing probability is close to unity during steady voicing, decreases during
transition, and close to zero during unvoiced speech and pauses. The assumption
is that changes in speaking rate for compression or expansion do not take place in
sounds which are not voiced, but they occur mostly in voiced sounds. A nonuniform
time scaling method has been developed along with spectral shape and pitch
modification for automatic morphing of one sound to another sound [67]. Another
method for speech adaptive TSM is presented, which allows slowing down the
speech without compromising the quality or naturalness of the slowed speech [68].
In this method, different scaling factors are applied to different types of speech
segments. Transient detection in music and audio signals has been studied for
different applications such as segmentation and editing of audio recordings [69]
and improving audio effects [70] through TSM [71–73]. Different methods use
different cues of audio signal for the detection of transient audio segments. Sum
of significant spectral peaks is used in [74] for discriminating the transients from
steady segments. Variance of the spectrum and time offset of the center of gravity
are used in [75] for classifying the transients. In most of the studies, transient
detection was used to improve the quality of audio for different speaking rates.
Bonada has proposed a frequency domain method for processing the fast changes
in the signal in a different way compared to other components [71]. Roebel has
proposed a new approach for processing transients in the phase vocoder, where
transient peaks are preserved during stretching [73]. Recently, a nonuniform TSM
method based on waveform similarity overlap-and-add (WSOLA) technique is
presented for time scale modification of music signals [76]. In this approach, the
perceptually significant transient sections (PSTs) such as temporal envelope changes
and significant spectral transitions will be preserved from modification. A summary
of existing approaches for TSM is given in Table 2.4.

2.5 Summary

In this chapter, we have reviewed some of the existing methods for VOP detection,
speech systems in mobile environment, CV recognition in Indian languages, and
time scale modification. Existing methods for VOP detection are suffering with
poor detection accuracy. Therefore, accuracy issues in the detection of VOP
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are the main focus in this work. In contrast to the existing block processing
approaches, the methods proposed in this work enhance VOP detection performance
by exploiting the spectral energy in glottal closure regions. The goal of this book
is to demonstrate the significance of accurate VOP detection for CV recognition,
speaker identification, and nonuniform time scale modification.



Chapter 3
Vowel Onset Point Detection from Coded
and Noisy Speech

Abstract Most of the existing vowel onset point (VOP) detection methods are
developed for clean speech. In this chapter, we propose methods for detection of
VOPs in the presence of speech coding and background noise conditions. VOP
detection method for coded speech is based on the spectral energy between 500
and 2,500 Hz frequency band of the speech segments present in glottal closure
region. In case of noisy speech, the proposed VOP detection method exploits the
spectral energy at the formant locations of the speech segments present in glottal
closure region. The proposed VOP detection methods are evaluated using objective
measures and consonant vowel (CV) unit recognition experiments.

This chapter discusses about the recently proposed robust vowel onset point
(VOP) detection methods in the presence of speech coding and background noisy
environments. The proposed VOP detection methods are thoroughly evaluated using
isolated consonant vowel utterances and spotting CV units from continuous speech.
This chapter is organized as follows: Speech databases used for the evaluation of
VOP detection methods are described in Sect. 3.1. Section 3.2 discusses the VOP
detection method for coded speech. Performance of the VOP detection methods in
the presence of coding is presented in Sect. 3.3. Section 3.4 presents the VOP detec-
tion method for noisy speech. In Sect. 3.5, performance of the VOP detection meth-
ods is evaluated in the presence of noisy conditions. Finally Sect. 3.6 summarizes
the performance of VOP detection methods in the presence of coding and noise.

3.1 Speech Databases for VOP Detection

In this work, VOP detection methods are evaluated using TIMIT database and
Telugu broadcast news database. Details of the databases are briefly described in
the following subsections.
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3.1.1 TIMIT Database

The TIMIT database is collected from American English speakers, divided into
eight accent regions including speakers who do not have strong regional accents
[77]. The database contains data from 630 speakers, of which 438 are males (70%)
and 192 are females (30%). The text material in the TIMIT prompts (found in the
file “prompts.doc”) consists of phonetically compact sentences designed at MIT and
phonetically diverse sentences selected at TI. The phonetically compact sentences
were designed to provide a good coverage of pairs of phones, with extra occurrences
of phonetic contexts thought to be either difficult or of particular interest. The
phonetically diverse sentences were selected to add diversity in sentence types and
phonetic contexts. Each speaker has contributed ten sentences of approximately 3 s
each. The speech was recorded using a high quality microphone in sound proof
booth with no session interval between recordings. The TIMIT database contains
speech files with manually marked phoneme boundaries, and these phoneme
boundaries are used for marking the reference VOPs. The VOPs hypothesized by
an automatic method may be compared with reference VOPs to find the deviations,
spurious VOPs, and missed VOPs.

3.1.2 Broadcast News Database

Broadcast news database was developed at speech and vision lab, Indian Institute
of Technology, Madras, India [16, 54–56, 78–82]. This database has been exten-
sively used for developing various speech systems and analyzing the speech data
for various speech applications in the context of Indian languages [54, 83–86].
Broadcast news corpus is recorded for four Indian languages, namely Telugu, Tamil,
Kannada, and Hindi. Among four languages, we consider Telugu language news
database for this work. Duration of Telugu broadcast database is about 5 h, collected
over 20 bulletins by 11 male speakers and 9 female speakers. Database is transcribed
manually at phrase, word, and syllable levels. Manually marked syllable boundaries
are used for picking the CV units from continuous speech utterances. In this work,
95 CV classes whose frequency of occurrence in the database is more than 50 are
considered for the analysis, and their contribution is more than 95% of CV units
present in the database.

3.2 VOP Detection Method for Coded Speech

The major motivation for the proposed VOP detection method is the retention of
spectral characteristics of speech signals by the low-bit rate speech coders. Proposed
VOP detection method uses the spectral energies of speech segments present in the
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glottal closure regions of voiced speech [87]. In the existing spectral energy-based
VOP detection method, spectrum is derived using conventional block processing
with a frame size of 20 ms and frame shift of 10 ms [15]. In general, we assume
that speech signal in voiced region is stationary within 20–30 ms, but there exists
a non-stationary behavior even in between two consecutive pitch cycles [6, 88, 89].
Therefore, spectrum estimated from 20 ms frame corresponds to the average spectral
characteristics of multiple pitch cycles present in the frame.

A pitch cycle (glottal cycle) is a combination of glottal closure and glottal open
phases. During glottal closure phase, vocal tract is completely isolated from trachea
and lungs. Spectrum estimation during glottal closure phase will be more accurate
because true vocal tract (oral cavity) resonances will be present during that phase,
whereas in glottal open phase the spectrum refers to the combination of oral cavity,
trachea, and lungs cavity. This is due to coupling of oral cavity with trachea and
lungs during open phase of vocal folds. Therefore, the spectrum derived from the
block processing consists of a mixture of vocal tract resonances and resonances
due to oral, trachea, and lung cavities together. In the present work, for detecting
the VOPs, spectral energy at the glottal closure region is used as evidence. Glottal
closure instant (GCI) indicates starting of glottal closure phase. Therefore, speech
segment considered in this work for estimating the spectrum is 30% of glottal cycle
(pitch period) starting from the glottal closure instant. The reason for choosing 30%
of glottal cycle is to ensure that the chosen speech segment should generate during
glottal closure phase. It is also known that speech signal during glottal closure phase
has high signal-to-noise ratio compared to other regions. Therefore, the spectral
energy in glottal closure region is high compared to glottal open region [6, 88].
To identify the glottal closure region, we use glottal closure instant as the beginning
of glottal closure phase.

The glottal closure instants are also known as instants of significant excitation or
epochs. Among various existing methods to determine the epoch locations [90–92],
in this work zero frequency filter (ZFF) method has been used for estimating the
epoch locations [92]. ZFF method will give accurate GCI locations during voiced
speech and random locations for unvoiced speech. ZFF method for epoch extraction
provides 99% of accuracy for clean speech and its performance is also robust to
noisy conditions [92]. The effect of speech coding on epoch extraction is reported
in [93]. The performance of ZFF method is superior among existing methods,
and hence it is used in this work for extracting epoch locations under both clean and
degraded conditions. In Sect. 3.2.1, sequence of steps for the extraction of glottal
closure instants (epoch locations) using ZFF method is described. Sequence of
steps in the proposed VOP detection method is presented in Sect. 3.2.2. The choice
of frame size used in the proposed method is analyzed in Sect. 3.2.3. The choice of
500–2,500 Hz frequency band for deriving the spectral energy in the proposed VOP
detection method is justified in Sect. 3.2.4.
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3.2.1 Extraction of Glottal Closure Instants Using
ZFF Method

Among the existing epoch extraction methods, ZFF method determines the epoch
locations with highest accuracy [92]. ZFF exploits the discontinuities due to impulse
excitation reflected across all the frequencies including the zero frequency. The
influence of vocal tract system is negligible at zero frequency. Therefore, zero
frequency filtered speech signal carries excitation source information, which is
used for extracting the epoch locations. The ZFF method consists of the following
sequence of steps:

• Difference the input speech signal to remove any time-varying low frequency
bias in the signal

x.n/ D s.n/ � s.n � 1/ (3.1)

• Compute the output of cascade of two ideal digital resonators at 0 Hz, i.e.,

y.n/ D
4X

kD1

aky.n � k/ C x.n/ (3.2)

where a1 D C4, a2 D �6, a3 D C4, a4 D �1. Note that this is equivalent to
passing the signal x.n/ through a digital filter given by

H.z/ D 1

.1 � z�1/4
(3.3)

• Remove the trend, i.e.,

Oy.n/ D y.n/ � Ny.n/ (3.4)

where

Ny.n/ D 1

2N C 1

NX

nD�N

y.n/ (3.5)

Here 2N C 1 corresponds to the size of the window used for computing the local
mean, which is typically the average pitch period computed over a long segment
of speech.

• The trend removed signal Oy.n/ is termed as zero frequency filtered (ZFF) signal.
Positive zero-crossings in the ZFF signal correspond to the epoch locations.

Epoch extraction for the segment of voiced speech using ZFF method is shown
in Fig. 3.1. Figure 3.1a shows the differenced electro-glottograph (EGG) signal
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Fig. 3.1 Epoch (GCI) extraction using zero frequency filtering method. (a) Differenced EGG
signal, (b) speech signal, (c) zero frequency filtering signal, and (d) epochs (GCIs) derived from
zero frequency filtered signal

of voiced speech segment shown in Fig. 3.1b. ZFF signal and the derived epoch
locations are shown in Fig. 3.1c, d, respectively. From Fig. 3.1a, d, it is evident that
the epochs extracted using ZFF method almost coincide with the negative peaks of
differenced EGG signal, which indicate the instants of glottal closure.

3.2.2 Sequence of Steps in the Proposed VOP
Detection Method

1. Determine the epoch locations (glottal closure instants) by using ZFF method.
2. Compute discrete Fourier transform (DFT) for the window (W) of speech

samples present in 30% of glottal cycle starting from the GCI. Window W is
computed by using below equations:

GC D Œgci.i C 1/ � gci.i/� (3.6)

Where GC is glottal cycle, gci.i C 1/ and gci.i ) are glottal closure instants at
i and i C 1 locations.
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W L D int.0:30 � GC / (3.7)

where W L is window length.

W D Œs.gci.i//; s.gci.i/ C 1/; : : : ; s.gci.i/ C W L � 1/� (3.8)

where W is window and s is speech samples.
3. Determine the spectral energy within the frequency band of 500–2,500 Hz. Here

spectral energy in 500–2,500 Hz band is considered, where energy of the vowel
is much higher than the consonant.

4. Spectral energy is plotted as a function of time. Fluctuations in the spectral
energy contour are smoothed by using mean smoothing with 50 ms window.

5. The change at the VOP present in the smoothed spectral energy of the speech
signal is enhanced by computing its slope using first-order difference (FOD).
FOD of x.n/ is given by

xd .n/ D x.n/ � x.n � 1/ (3.9)

The finer details involved in the enhancement of VOP evidence are illustrated
by using Fig. 3.2. Figure 3.2a shows the speech utterance. Smoothed spectral
energy in 500–2,500 Hz band around each epoch is shown in Fig. 3.2b. The
FOD signal of smoothed spectral energy is shown in Fig. 3.2c. Since FOD values
corresponding to slopes, positive to negative zero crossings of slopes correspond
to local peaks in the smoothed spectral energy signal. These local peaks are
shown by star (*) symbols in Fig. 3.2b. The unwanted peaks in Fig. 3.2b are
eliminated by using the sum of slope values within 10 ms window centered at
each peak. Figure 3.2d shows the sum of slope values within 10 ms around
each peak. The peaks with the lower sum of slope values are eliminated with
a threshold set to 0.5 times the mean value of the sum of slopes. This threshold
is determined empirically. Further, if two successive peaks present within 50 ms,
then the lower peak among the two will be eliminated, based on the assumption
that two VOPs won’t present within 50 ms interval. The desired peak locations
are shown in Fig. 3.2e with star (*) symbol after eliminating the unwanted peaks.
At each local peak location, the nearest negative to positive zero crossing points
(see Fig. 3.2c) on either side are identified and marked by circles on Fig. 3.2e.
The regions bounded by negative to positive zero crossing points are enhanced by
normalization process shown in Fig. 3.2f. Here, normalized values are computed
by using the below equation:

N.i/ D x.i/ � min

max � min
(3.10)

where N.i/ is normalized value of input x(i); min and max are local minimum
and maximum.

6. Significant changes in spectral characteristics present in the enhanced version
of the smoothed spectral energy are detected by convolving with first order



3.2 VOP Detection Method for Coded Speech 23

a

b

c

d

e

f

Fig. 3.2 Enhancement of VOP evidence for a speech utterance /“Don’t ask me to carry an”/. (a)
Speech signal, (b) smoothed spectral energy in 500–2,500 Hz band around each epoch, (c) FOD
values, (d) sum of slope values computed at each peak locations, (e) smoothed spectral energy plot
with peak locations, and (f) enhanced values

Gaussian difference (FOGD) operator of length 100 ms. A Gaussian window
g.n/ of length L is given by

g.n/ D 1p
2��

e
�

n2

2�2

; n D 1; 2; : : : ; L (3.11)

where � is standard deviation. In this work, � value of 200 is considered.
The choice of length of Gaussian window (L) is based on an assumption that the
VOP occurs as gross level changes at intervals of about 100 ms [12, 15]. FOGD
is given by gd .n/, and it is shown in Fig. 3.3.

gd .n/ D g.n/ � g.n � 1/ (3.12)

The convolved output is the proposed VOP evidence plot.
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Fig. 3.3 FOGD operator with L D 800, and � D 200

7. Positive peaks in the VOP evidence plot represent the VOP locations. The flow
diagram of the proposed VOP detection method is shown in Fig. 3.4.

Output of each step in the proposed method is shown in Fig. 3.5 by using speech
utterance /“Don’t ask me to carry an”/. Figure 3.5a shows the speech signal with
manually marked VOPs. Spectral energy in 500–2,500 Hz band and its smoothed
signal are shown in Fig. 3.5b, c respectively. Figure 3.5d shows the enhanced signal
correspond to the signal present in Fig. 3.5c. Figure 3.5e shows the VOP evidence
signal obtained by convolving the enhanced spectral energy signal with FOGD. We
can observe that manual VOPs marked in Fig. 3.5a and detected VOPs marked in
Fig. 3.5e are close to each other.

VOP detection using proposed and existing methods is shown in Fig. 3.6.
Figure 3.6a shows the speech segment for the utterance /“Don’t ask me to carry
an”/. VOP evidence plots for the speech signal shown in Fig. 3.6a using excitation
source, spectral peaks, modulation spectrum, COMB-ESM, and proposed methods
are shown in Fig. 3.6b–f respectively. In Fig. 3.6 it is observed that spurious VOP
(third one) present in COMB-ESM and individual methods is eliminated in proposed
method.

3.2.3 Choice of Frame Size

In the proposed VOP detection method, the size of speech frame to be considered
at each epoch should fall within the glottal closure interval. But determining the
glottal closure region precisely within each glottal cycle is difficult. Therefore, we
have analyzed various frame durations varying from 10% to 60% of pitch period
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Fig. 3.4 Flow diagram of the proposed VOP detection method for coded speech

for choosing the appropriate frame size to represent the glottal closure region.
For analyzing the effect of frame size on VOP detection, 110 sentences from
TIMIT database are considered. Table 3.1 shows the performance of VOP detection
using proposed method by considering different durations of speech frames in
the glottal cycle. Column-1 indicates different durations of glottal closure speech
segments considered for calculating the spectral energy. Column-2 indicates the
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Fig. 3.5 VOP detection using proposed method for a speech utterance /“Don’t ask me to carry
an”/. (a) Speech signal with manually marked VOPs, (b) spectral energy in 500–2,500 Hz band
around each epoch, (c) mean smoothed spectral energy, (d) enhanced spectral energy signal, and
(e) proposed VOP evidence signal

percentage of VOPs detected within 40 ms deviation. In this study 40 ms is the
maximum deviation considered between reference and detected VOPs. Column-3
indicates the percentage of missed VOPs.

From the results presented in Table 3.1, it is observed that accuracy in the
detection of VOPs is optimal by using 30% of glottal cycle as frame size in the
proposed method compared to other segment durations. Hence, 30% of glottal
cycle is considered in the proposed method for determining the VOPs. Robustness
of the proposed VOP detection method is analyzed by using speech utterances
with different average pitch periods. For performing this study, we considered
three sets of utterances with pitch periods varying from 2.5–5, 5–7, and 7–10 ms.
Thirty utterances are recorded from children (in age group of 6–10 years) to cover
2.5–5 ms pitch periods. Utterances having 5–7 and 7–10 ms pitch periods are taken
from TIMIT database, and each set contains 30 utterances. In this study, 30% of



3.2 VOP Detection Method for Coded Speech 27

a

b

c

d

e

f

Fig. 3.6 VOP detection using existing and proposed VOP detection methods for a speech
utterance /“Don’t ask me to carry an”/. (a) Speech signal, VOP evidence plots for (b) excitation
source, (c) spectral peaks, (d) modulation spectrum, (e) COMB-ESM method, and (f) proposed
method

pitch period is used for processing the speech segments in glottal closure region.
Table 3.2 shows the performance of VOP detection for speech utterances having
different average pitch periods. Column-1 indicates range of average pitch periods,
and column-2 indicates corresponding F0 values. Column-3 indicates the percentage
of VOPs detected within the 40 ms deviation. Column-4 indicates the percentage of
missed VOPs. From the results, it is observed that proposed VOP detection method
is robust to speech signals with different pitch periods.

3.2.4 Choice of Frequency Band

In this work, VOP evidence is derived by computing spectral energy of speech
segment at each epoch. If the epoch is happened to be GCI in the vowel region,
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Table 3.1 Performance of
the proposed VOP detection
method for different frame
sizes considered at GCIs

Percentage of VOP detection (%) Missing
pitch period with 40 ms deviation rate

10 93.61 6.39
20 93.94 6.06
30 95.3 4.5
40 94.52 5.48
50 94.16 5.84
60 93.92 6.08

Table 3.2 Performance of the proposed VOP detection method for
speech utterances with different average pitch periods

Avg. pitch F0 values VOP detection (%) Missing (%)
period (ms) (Hz) with 40 ms deviation rate

2.5–5 201–400 95.21 4.79
5–7 143–200 95.44 4.56
7–10 100–143 95.31 4.69

the spectral energy within 500–2,500 Hz band is very high compared to consonant
and nonspeech regions. For voiced consonants or nasals most of the spectral
energy is present below 500 Hz. For unvoiced consonants, fricatives, and other
sound units, most of the spectral energy is present beyond 3,000 Hz. Therefore,
the spectral energy in frequency band 500–2,500 Hz will provide accurate VOP
evidence compared to sum of 10 spectral peaks used in the existing methods.

VOP detection using proposed method by considering spectral energy in different
frequency bands for a speech utterance /“Don’t ask me to carry an”/ is shown in
Fig. 3.7. Figure 3.7a shows the speech signal. VOP evidence plots using proposed
method by considering spectral energy in 0–4,000 Hz, 750–2,500 Hz, 500–2,500 Hz,
1,000–4,000 Hz, and 2,500–4,000 Hz bands are shown in Fig. 3.7b–f, respectively.
In Fig. 3.7c, it is observed that third VOP is missed. In Fig. 3.7e, f, spurious VOPs
can be observed (VOPs indicated in bold). In Fig. 3.7b, d only genuine VOPs
are observed. Choice of 500–2,500 Hz band in the proposed method is extensively
studied by considering different frequency bands. Table 3.3 shows the performance
of VOP detection for consonant-vowel (CV) units from Telugu broadcast news
speech corpus using proposed method by considering spectral energy at different
frequency bands. Various frequency bands are considered in 0–4,000 Hz range. For
evaluation, 950 (10 utterances from each 95 most frequently occurred CV units)
CV utterances are considered to cover various consonant and vowel combinations.
Therefore, this evaluation also ensures the robustness of the chosen frequency
band in the proposed VOP detection method for different classes of CV speech
segments. Column-1 indicates different frequency bands considered for calculating
the spectral energy. Column-2 indicates the percentage of VOPs detected within
the 40 ms deviation. Column-3 indicates the percentage of missed VOPs. Column-4
indicates the average deviation (in ms) with respect to the manual marked VOPs.
From Table 3.3, it is observed that accuracy in the detection of VOPs is better
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Fig. 3.7 VOP detection using proposed method for different frequency bands on a speech
utterance /“Don’t ask me to carry an”/. (a) Speech signal, VOP evidence plot by considering
spectral energy from (b) 0–4,000 Hz, (c) 750–2,500 Hz, (d) 500–2,500 Hz, (e) 1,000–4,000 Hz,
and (f) 2,500–4,000 Hz

Table 3.3 Performance of the proposed VOP detection method for
consonant-vowel (CV) units from Telugu broadcast news speech cor-
pus by considering spectral energy at different frequency bands

Frequency VOP detection (%) Missing Average
band with 40 ms deviation rate (%) deviation (ms)

0–4,000 95.6 4.4 12.87
0–2,500 96.5 3.5 13.23
0–2,000 96.56 3.44 13.23
250–4,000 96.56 3.44 12.67
250–3,750 96.11 3.89 12.87
250–3,250 96.56 3.44 12.69
250–2,500 97.19 2.81 12.99
500–2,750 96.88 3.12 12.25
500–2,500 97.5 2.5 11.22
500–4,000 96.88 3.12 12.88
750–2,500 93.44 6.56 14.70
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by using 500–2,500 Hz frequency band in the proposed method compared to other
bands. Hence, in our further studies 500–2,500 Hz frequency band is used in the
proposed method for determining the VOPs.

3.3 Performance of the VOP Detection Method
in the Presence of Speech Coding

In this section performance of the proposed VOP detection method is compared
with COMB-ESM method (described in Sect. 2.1) which uses the combination
of evidences from excitation source (EXC), spectral peaks (SP), and modulation
spectrum (MOD). VOP detection methods are evaluated on continuous speech and
CV units from broadcast speech. Speech coders considered in this work are GSM
full rate (ETSI 06.10), GSM enhanced full rate (ETSI 06.60), CELP (FS-1016), and
MELP (TI 2.4 kbps). GSM full rate coder provides 13 kbps bit rate using regular
pulse excitation and long-term prediction (RPE-LTP) technique. GSM enhanced
full rate (EFR) coder is designed to improve GSM full rate coder under channel
error conditions. GSM EFR coder provides 12.2 kbps bit rate by using algebraic
code excited linear prediction (ACELP) scheme. CELP coder provides 4.8 kbps bit
rate using code excited linear prediction technique. MELP coder provides 2.4 kbps
bit rate using mixed excitation linear prediction technique. Brief details about the
speech coders considered in this work are given in Appendix B.

3.3.1 VOP Detection from Continuous Speech Under Coding

VOP detection studies are conducted on TIMIT database [77] for analyzing the
performance of VOP detection methods. Coded speech data is prepared by passing
clean speech data through encoder and decoder of the standard coders. GSM full
rate (FR), GSM enhanced full rate (EFR), CELP, and MELP speech coders are
considered in this study. About 110 sentences (60 sentences spoken by female
speakers and 50 sentences are spoken by male speakers) having 1,197 manually
marked VOPs are considered for analyzing the performance of the proposed VOP
detection method. Among 1,197 VOPs, 534 VOPs correspond to the utterances
spoken by male speakers, and the rest 663 VOPs correspond to the utterances spoken
by female speakers.

Performance of different VOP detection methods is compared using parameters
like average deviation, missing rate, and spurious rate. VOPs detected within 40 ms
deviation to the reference VOPs are considered as genuine VOPs. The ratio (in
%) of number of genuine VOPs detected to the total number of reference VOPs
is measured for different time resolutions (10–40 ms). Average deviation (in ms)
is calculated from the deviations of genuine detected VOPs. The ratio (in %) of
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Table 3.4 Performance of the VOP detection using excitation source (EXC), spectral
peaks (SP), modulation spectrum (MOD), COMB-ESM, and proposed methods on
TIMIT database (1,197 reference VOPs) in the presence of coding

VOP Hypothe- VOPs detected AVG MISS SPU
detection sized within ms (� %) dev. VOPs VOPs
method VOPs 10 20 30 40 (� ms) (� %) (� %)

Clean
EXC 1,176 34 49 59 94 20 6 4
SP 1,172 29 48 70 93 21 7 5
MOD 1,126 33 50 73 92 18 8 2
COMB-ESM 1,173 51 59 70 95 16 5 3
Proposed 1,162 65 83 91 95 12 5 2

GSM FR
EXC 1,162 31 47 57 91 21 9 6
SP 1,159 28 47 68 92 21 8 5
MOD 1,066 27 45 65 85 20 15 4
COMB-ESM 1,114 45 51 65 90 18 10 3
Proposed 1,164 63 81 88 94 13 6 3

GSM EFR
EXC 1,163 32 48 57 92 20 8 5
SP 1,160 28 46 69 92 20 8 5
MOD 1,088 29 47 67 88 19 12 3
COMB-ESM 1,136 47 55 68 92 17 8 3
Proposed 1,152 63 82 89 94 13 6 2

CELP
EXC 1,103 25 40 50 84 23 16 8
SP 1,114 26 42 64 87 22 13 6
MOD 1,089 24 41 62 85 21 15 6
COMB-ESM 1,102 34 46 59 86 20 14 6
Proposed 1,126 39 67 80 88 17 12 6

MELP
EXC 1,112 26 42 52 86 22 14 7
SP 1,125 28 46 65 89 21 11 5
MOD 1,054 26 44 64 84 20 16 4
COMB-ESM 1,090 38 48 59 87 19 13 4
Proposed 1,138 52 72 84 91 15 9 4

undetected VOPs to the total number of reference VOPs is termed as missing rate
(MISS). VOPs detected other than genuine VOPs are termed as spurious VOPs. The
ratio of spurious VOPs (in %) detected to the number of reference VOPs is termed
as spurious rate (SPU).

Table 3.4 shows the accuracy in the detection of VOPs using different methods
in the presence of various coders. Column-1 indicates different methods considered
in the analysis for detecting the VOPs. Column-2 indicates the total number
of VOPs detected by various methods. Columns 3–6 indicate the percentage of
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VOPs detected within the specified deviations. Column-7 indicates the average
deviation (in ms) with respect to the manual marked VOPs. Columns 8 and 9
indicate the percentage of missed and spurious VOPs, respectively. From the results,
it is observed that coding has significant effect on VOP detection performance.
Spurious VOPs are observed to be increased due to coding. Accuracy in detection
of VOPs is observed to be superior using the proposed method under both clean
and coded cases, compared to existing methods. Average deviation has reduced
significantly, in case of proposed method compared to other methods. Average
deviation using proposed method is around 1 ms, 1 ms, 5 ms, and 3 ms higher
compared to clean case for GSM FR, GSM EFR, CELP, and MELP coders,
respectively.

VOP detection from CELP coded speech is observed to be less accurate
compared to MELP coder even though the bit rate provided by MELP coder is less
than CELP coder. The reason may be due to poor way of representation of excitation
signal in CELP coding technique. CELP coder uses the code book to represent the
excitation signal, which introduce more approximation compared to other coders.
From the results, it is observed that performance of VOP detection methods based
on the spectral energy is superior compared to the other methods in the presence of
coding. Among the methods based on spectral energy, performance of the proposed
method is better in all aspects. The improved performance of the proposed method is
due to exploiting the high SNR characteristics of speech signal present in the glottal
closure phase.

3.3.2 VOP Detection from CV Units Under Coding

CV units collected from Telugu broadcast news corpus are used for evaluation.
In this study, 95 CV classes are considered. From each CV class ten utterances
are considered, with this total number of VOPs used in this study is 950. In this
study, analysis of spurious VOPs is not applicable, since each utterance contains
only one VOP, and it is determined based on the peak in the VOP evidence signal.
VOP detection using proposed and COMB-ESM methods under different coding
cases, for a speech utterance =ba= is shown in Fig. 3.8. Figure 3.8a, d, g, j shows the
clean, GSM, CELP, and MELP-coded speech segments, respectively. Figure 3.8(b,
c),(e, f),(h, i), and (k, l) shows the COMB-ESM and proposed VOP evidence plots
for clean, GSM, CELP and MELP speech segments, respectively. From the Fig. 3.8,
it is observed that VOP detection accuracy using proposed method is superior
compared to COMB-ESM method.

Table 3.5 shows the accuracy of VOP detection for Telugu broadcast news data
using the proposed and existing methods. Column-1 indicates different methods
considered in the analysis for detecting the VOPs. Columns 2–5 indicate the
percentage of VOPs detected within the specified deviations. Column-6 indicates
the average deviation with respect to the manual marked VOPs. Column-7 indicates
the percentage of missed VOPs. From Table 3.5, it is observed that accuracy in
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Fig. 3.8 VOP detection using COMB-ESM and proposed methods for utterance =ba=. (a) Speech
signal. (b) and (c) are VOP evidence plots using COMB-ESM and proposed method, respectively,
for the speech signal shown in (a). (d) GSM-FR coded speech. (e) and (f) are VOP evidence
plots using COMB-ESM and proposed method, respectively, for the GSM-FR-coded speech signal
shown in (d). (g) CELP-coded speech. (h) and (i) are VOP evidence plots using COMB-ESM and
proposed method, respectively, for the CELP-coded speech signal shown in (g). (j) MELP-coded
speech. (k) and (l) are VOP evidence plots using COMB-ESM and proposed method, respectively,
for the MELP-coded speech signal shown in (j)
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Table 3.5 Performance of the VOP detection using excitation
source (EXC), spectral peaks (SP), modulation spectrum (MOD),
and COMB-ESM (COMB) methods on CV units from broadcast
news speech corpus (950 VOPs are considered) in the presence of
coding

VOP VOPs detected AVG MISS
detection within ms (� %) dev. VOPs
method 10 20 30 40 (� ms) (� %)

Clean
EXC 44 69 84 90 17 10

SP 48 78 92 95 13 5

MOD 36 50 74 92 20 8

COMB-ESM 50 74 89 95 15 5

Proposed 69 88 93 97 11 3

GSM FR
EXC 42 67 82 89 18 11

SP 46 75 90 94 14 6

MOD 32 44 67 87 21 13

COMB-ESM 45 72 86 91 17 9

Proposed 67 86 93 96 11 4

GSM EFR
EXC 42 68 83 90 17 10

SP 46 77 91 94 14 6

MOD 34 48 70 90 20 10

COMB-ESM 48 73 87 92 16 8

Proposed 67 87 93 96 11 4

CELP
EXC 28 55 76 86 24 14

SP 37 68 85 93 19 7

MOD 27 45 67 84 22 16

COMB-ESM 29 62 82 91 22 9

Proposed 41 72 88 92 16 8

MELP
EXC 29 53 73 85 22 15

SP 45 71 87 92 16 8

MOD 33 48 71 87 21 13

COMB-ESM 37 63 79 87 20 13

Proposed 54 75 84 92 12 8

detection of VOPs for the CV units is better in case of proposed method compared to
the existing methods. Average deviation using proposed method is around 5 ms and
1 ms higher compared to the clean case for CELP and MELP coders, respectively,
and for the GSM coders average deviation seems to be close to clean case (see
Table 3.5). In the presence of coding, proposed method and method based on
spectral peaks energy performing better, compared to other methods.
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3.4 VOP Detection Method for Noisy Speech

In real-time environment, noise is one of the major degradation. Hence in this work
we propose a method for robust detection of the vowel onset points (VOPs) under
noise. Proposed method uses spectral energy at formant frequencies of the speech
segments present in glottal closure region for the detection of VOPs [94]. Here we
considered spectral energy at formant frequencies instead of 500–2,500 Hz band
energy, because spectral energy in 500–2,500 Hz band may not be robust under
noise. In general, voiced regions contain most of the spectral energy. Within voiced
region, in each pitch cycle, speech energy is dominant in glottal closure phase
compared to glottal open phase. This is due to instant of significant excitation at
the instant of glottal closure. Within glottal closure region, most of the energy is
concentrated at the formant frequencies. Therefore in our proposed method, we have
focused on spectral energy at the formant frequencies of the speech signal present
in glottal closure region for the robust detection of VOPs. Formants in the glottal
closure region are extracted using group delay based method [95], and the details of
formant extraction method are described in the following subsection.

3.4.1 Formant Extraction Using Group Delay Function

Formant extraction from short segments of speech signal using group delay
functions presented in [95, 96] is used in this work. Short segmental analysis based
on conventional spectral methods suffer from the problem of poor resolution in the
frequency domain. Hence high resolution property of group delay can be used for
extracting formant frequencies from short segments of speech [95]. Group delay
(�g.!/) is defined as

�g.!/ D �d�.!/

d!
(3.13)

where �.!/ is phase function and ! is frequency variable. �g can be computed
directly from signal x.n/ as

�g.!/ D Xi .!/Xr
0

.!/ C Xr.!/Xi
0

.!/

Xr.!/2 C Xi .!/2
(3.14)

where Xi .!/ and Xr.!/ are the imaginary and real parts of Fourier transform of
x.n/, and Xi

0

.!/ and Xr
0

.!/ are their derivatives.

�g.!/ / jX.!/j2 (3.15)



36 3 Vowel Onset Point Detection from Coded and Noisy Speech

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

N
or

m
al

iz
ed

 g
(w

)

Fig. 3.9 Numerator g.!/ of
group delay function
computed for voiced speech
segment of 3 ms duration

It is known that group delay function �g.!/ of signal around resonant frequency
is proportional to square of the magnitude of Fourier transform jX.!/j2. Issues
associated with the calculation of group delay function are primarily due to
zeros present in the denominator term of Eq. (3.14). The denominator term corre-
sponds to the magnitude spectrum of the signal, which is typically large around the
formant locations, and hence it reduces the value of numerator around the formant
locations. Therefore, numerator (g.!/) of group delay function is considered for
the calculation of formants from short speech segments. Numerator of group delay
function g.!/ is

g.!/ D Xi .!/Xr

0

.!/ C Xr.!/Xi

0

.!/ (3.16)

g.!/ / jX.!/j4 (3.17)

At resonant frequencies g.!/ is proportional to jX.!/j4, so g.!/ gives sharper
peaks at resonances than �g.!/. Numerator g.!/ of group delay function computed
for a voiced speech segment of 3 ms duration is shown in Fig. 3.9. The peaks in the
g.!/ signal correspond to the formant locations.

If we synchronize the analysis windows with the GCIs, the variation in the
configuration of the vocal tract can be captured through the variation in the formant
frequencies from one pitch cycle to another [96]. Formant extraction using group
delay-based method is carried out with the following sequence of steps [95, 96]:

1. Consider a speech segment present in the glottal closure phase.
2. Filter the segment of the speech signal using a half Hanning window of length

less than pitch period.
3. Compute the g.!/ function.
4. Pick the largest N number of peaks in the computed g.!/ function.
5. Repeat steps (1–4) at all glottal closure instants.
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3.4.2 Sequence of Steps in the Proposed VOP Detection
Method for Noisy Speech

The sequence of steps in the proposed method are similar to the method described
in Sect. 3.2.2, and they are:

1. Determine the epoch locations (glottal closure instants) by using ZFF method.
2. Compute formants using group delay based method [95] for the speech samples

present in 30% of glottal cycle starting from the GCI.
3. Determine the sum of spectral energies present at first three formant frequencies.
4. Spectral energy computed in step 3 is plotted as a function of time. Fluctuations

in the spectral energy contour are smoothed by using mean smoothing with 50 ms
window.

5. The change at the VOP present in the smoothed spectral energy is enhanced by
computing its slope using a FOD.

6. The significant changes in the spectral characteristics present in the enhanced
version of the smoothed spectral energy are detected by convolving with FOGD
operator of length 100 ms.

7. Positive peaks in the proposed VOP evidence plot represent the VOP locations.

The output of each of the steps in the proposed VOP detection method is shown
in Fig. 3.10. Figure 3.10a shows the speech signal /“Don’t ask me to carry an oily
rag like that”/ with manually marked VOPs. Smoothed signal of spectral energy
at formant frequencies around epoch location is shown in Fig. 3.10b (step 4).
Figure 3.10c shows the enhanced plot of Fig. 3.10b (step 5). VOP evidence plot
obtained from the proposed method is shown in Fig. 3.10d (step 6). We can observe
that manual marked VOPs in Fig. 3.10a and detected VOPs marked in Fig. 3.10d
are close to each other.

3.5 Performance of the VOP Detection Method
in the Presence of Background Noise

In this work, white and vehicle noise samples from Noisex-92 [97] database
are considered for analysis. The noise samples are added to clean speech data
to generate noisy speech data at different signal-to-noise ratio (SNR) values.
Robustness of the proposed VOP detection method compared to COMB-ESM
method is illustrated in Fig. 3.11 by using white noise added (SNR of 10dB) speech
utterance /“Don’t ask me to carry an oily rag like that”/. Figure 3.11a shows the
speech signal with manually marked VOPs. VOP evidence plots for the speech
signal shown in Fig. 3.11a by using COMB-ESM and proposed methods are shown
in Fig. 3.11b, c, respectively. From the Fig. 3.11b, c, we can observe that four
spurious VOPs are detected in case of COMB-ESM VOP evidence plot, and only
one spurious VOP is detected in case of proposed VOP evidence plot.
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Fig. 3.10 VOP detection using proposed method for a speech utterance /“Don’t ask me to carry
an oily rag like that”/. (a) speech signal, (b) mean smoothed plot of spectral energy at formant
frequencies around each epoch, (c) enhanced spectral energy signal, (d) proposed VOP evidence
plot

3.5.1 VOP Detection from Continuous Speech Under Noise

Performance of the proposed VOP detection method for noisy speech is compared
with COMB-ESM method and proposed VOP detection method for coded (PROP-
COD) speech. Table 3.6 shows the performance of VOP detection methods on
TIMIT database under noise. Column-1 in Table 3.6 indicates the VOP detection
methods consider in this study. Columns 2–5 and 9–12 in Table 3.6 indicate
the percentage of VOPs detected in 10, 20, 30, and 40 ms deviation. Columns 6
and 13 indicate the average deviation with respect to the manual marked VOPs.
Similarly columns 7 and 8, and 14 and 15 in Table 3.6 show the percentage of miss
and spurious VOPs. Results indicate that performance of the proposed method is
superior compared to COMB-ESM and PROP-COD methods. From the results, it
can be observed that VOP detection performance is decreasing due to noise [98].
In case of COMB-ESM and PROP-COD methods, number of spurious detections
are very high due to noise at low SNR values (see Table 3.6). Poor performance
of PROP-COD method under noise indicates that spectral energy at 500–2,500 Hz



3.5 Performance of the VOP Detection Method in the Presence of Background Noise 39

a

b

c

Fig. 3.11 VOP detection using COMB-ESM and proposed VOP detection methods for the white
noise added (SNR of 10 dB) speech utterance /“Don’t ask me to carry an oily rag like that”/. (a)
speech signal with manually marked VOPs, (b) VOP evidence plot using COMB-ESM method,
and (c) VOP evidence plot using proposed method

band is not robust to noise. Spurious VOPs are reduced significantly in the presence
of noise by using proposed method. This is because of exploiting the high SNR
characteristics present at the formant frequencies in the glottal closure phase.

3.5.2 VOP Detection from CV Units Under Noise

Table 3.7 shows the detection accuracy of VOPs using the different VOP detection
methods [15] under noise by using CV units from broadcast news speech corpus
(950 VOPs are considered). From the results, it is observed that proposed method is
outperformed over COMB-ESM and PROP-COD methods in terms of accuracy in
VOP detection (time resolution and average deviation).
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Table 3.7 Performance of the VOP detection on CV units from Telugu broadcast news speech
corpus (950 VOPs are considered) using proposed, PROP-COD, and COMB-ESM VOP detection
methods under noise

VOPs detected AVG VOPs detected AVG

VOP within ms (� %) dev. within ms (� %) dev.

detection 10 20 30 40 (� ms) 10 20 30 40 (� ms)

method Clean Clean

COMB-ESM 50 74 89 95 15 50 74 89 95 15
PROP-COD 69 88 93 97 11 69 88 93 97 11
Proposed 69 89 92 97 11 69 89 92 97 11

White noise Vehicle noise
0 dB 0 dB

COMB-ESM 40 63 80 86 23 44 56 67 90 20
PROP-COD 38 60 78 84 23 42 55 64 88 21
Proposed 52 74 82 88 19 61 72 83 92 14

5 dB 5 dB
COMB-ESM 40 65 82 88 21 49 59 71 93 19
PROP-COD 39 62 81 86 21 47 56 70 92 19
Proposed 60 82 90 93 14 64 77 88 94 13

10 dB 10 dB
COMB-ESM 47 73 88 94 17 52 61 72 94 16
PROP-COD 45 72 86 92 17 51 60 71 92 16
Proposed 65 87 94 96 10 66 77 88 95 10

20 dB 20 dB
COMB-ESM 48 74 89 95 17 55 66 74 96 16
PROP-COD 45 72 86 92 17 51 60 71 92 16
Proposed 68 88 93 96 10 66 83 87 96 10

3.6 Summary

In this chapter, we have proposed methods for robust detection of VOPs in the
presence of speech coding and background noise conditions. Proposed methods
are based on spectral energies of the speech segments present in the glottal closure
region. The reasons for choosing the speech segments at the glottal closure region
for deriving the spectral energy are (1) speech signal during glottal closure phase
has high SNR characteristics, and (2) vocal tract resonances during glottal closure
phase are more accurate. These merits are exploited in the proposed VOP detection
methods by considering 30% of glottal cycle starting from glottal closure instant
instead of conventional 20 ms frame with block processing. From the results, it
is observed that performance of the proposed VOP detection methods is superior
compared to existing methods under clean, coded, and noisy conditions.

VOP detection performance under coding is studied for GSM FR, GSM EFR,
CELP, and MELP coding environments. From the results, it is observed that
reduction in VOP detection performance is not significant in case of GSM coders
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and significant in case of CELP and MELP coders. It is observed that VOP detection
performance from CELP-coded speech is decreased compared to MELP coder, even
though bit rate of MELP coder is less than CELP coder. As speech coders preserve
the characteristics of vocal tract system, VOP detection methods based on spectral
characteristics performed better compared to other methods. In case of both clean
and coded speech, proposed VOP detection method is giving improved performance
compared to excitation source, spectral peaks energy, modulation spectrum, and
COMB-ESM methods. Performance of the VOP detection under noise is severely
affected due to spurious VOPs at low SNR values. Spurious VOPs are reduced
significantly by using proposed method, which uses the spectral energy at first
three formants. It is also observed that performance of the proposed VOP detection
methods for coding and noise is nearly same for clean case.



Chapter 4
Consonant–Vowel Recognition in the Presence
of Coding and Background Noise

Abstract In this chapter, an approach for improving the recognition performance
of CV units under clean, coded, and noisy conditions is presented. Proposed CV
recognition method is carried out in two stages. In the first stage vowel category of
CV unit is recognized, and in the second stage consonant category is recognized.
At each stage of the proposed method, complementary evidences from support
vector machine (SVM) and hidden Markov models (HMM) are combined for
enhancing the recognition performance of CV units. In the proposed CV recognition
approach, VOP is used as an anchor point for extracting features from the CV unit.
Therefore, VOP detection methods presented in previous chapter are used for this
work. Performance of the proposed CV recognition method is demonstrated under
coding and noisy conditions. Recognition studies are carried out using isolated CV
and CV units from Telugu broadcast news databases. Further, performance of the
CV recognition system under background noise is improved by using combined
temporal and spectral processing-based preprocessing methods.

In Chap. 3, robust VOP detection methods are discussed, and their performance
is evaluated using isolated CV utterances and CV utterances continuous speech.
This chapter discusses about CV recognition applications based on vowel onset
points. Here, CV recognition performance is analyzed in the presence of coding and
background noisy environments. In each application, the impact of accuracy of VOP
detection on CV recognition performance is analyzed. This chapter is organized
as follows. In Sect. 4.1, speech databases and CV units considered in this work
are described. Section 4.2 presents the proposed CV recognition method. Impact
of the accuracy in VOP detection on CV recognition performance is discussed
in Sect. 4.3. In Sect. 4.4, performance of the proposed CV recognition approach
is analyzed under coding and compared with the existing methods. Performance
of the CV recognition system under background noise conditions is presented in
Sect. 4.5. In Sect. 4.6, combined temporal and spectral preprocessing technique

K.S. Rao and A.K. Vuppala, Speech Processing in Mobile Environments, SpringerBriefs
in Electrical and Computer Engineering, DOI 10.1007/978-3-319-03116-3__4,
© Springer International Publishing Switzerland 2014
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and its effectiveness for CV recognition under background noise conditions are
presented. Summary of the issues discussed in this chapter is given in Sect. 4.7.

4.1 Consonant–Vowel Unit Databases

In this work, two CV unit databases are used for analyzing the performance of CV
recognition system. Database-1 consists of isolated CV utterances in Indian lan-
guages collected by International Institute of Information Technology, Hyderabad,
India [99]. Among different CV units present in the Database-1, 145 most frequently
occurred CV units are considered for this study and they are shown in Table 4.1. It is

Table 4.1 List of 145 CV
units Manner of

articulation
Place of
articulation

Vowel

/a/ /i/ /u/ /e/ /o/

Unvoiced Velar ka ki ku ke ko
Unaspirated Palatal cha chi chu che cho
(UVUA) Alveolar Ta Ti Tu Te To

Dental ta ti tu te to
Bilabial pa pi pu pe po

Unvoiced Velar kha khi khu khe kho
aspirated Palatal Cha Chi Chu Che Cho
(UVA) Alveolar Tha Thi Thu The Tho

Dental tha thi thu the tho
Bilabial pha phi phu phe pho

voiced Velar ga gi gu ge go
Unaspirated Palatal ja ji ju je jo
(VUA) Alveolar Da Di Du De Do

Dental da di du de do
Bilabial ba bi bu be bo

voiced Velar gha ghi ghu ghe gho
aspirated Palatal jha jhi jhu jhe jho
(VA) Alveolar Dha Dhi Dhu Dhe Dho

Dental dha dhi dhu dhe dho
Bilabial bha bhi bhu bhe bho

Nasals Dental na ni nu ne no
Bilabial ma mi mu me mo

Semivowels Palatal ya yi yu ye yo
Alveolar ra ri ru re ro
Dental la li lu le lo
Bilabial va vi vu ve vo

Fricatives Velar ha hi hu he ho
Alveolar sha shi shu she sho
Dental sa si su se so
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difficult to recognize short and long vowels in the continuous speech. Hence, both
short and long vowels are considered as one vowel only. Simple language model will
take care of short and long vowels during speech recognition. Database-1 contains
utterances of 25 males and 25 females from different parts of India, in four different
sessions. For each CV unit around 400 utterances are available in the database.
In that 322 utterances are used for training and 78 utterances are used for testing.

Database-2 is Telugu broadcast news corpus described in Sect. 3.1.2. Among
20 news bulletins available in the database, 15 bulletins (8 males C 7 females) are
used for training and 5 bulletins (3 males C 2 females) are used for testing. Manual
marked syllable boundaries are available in Database-2. In this work, among 145
prominent CV classes, 95 CV classes (see bold ones in Table 4.1) whose frequency
of occurrence more than 50 are considered for the analysis. Total number of CV
utterances considered in this study are 52,703 (38,729 are used for training and
13,974 are used for testing), and their contribution is more than 95% of CV units
present in the Database-2.

4.2 Two-Stage CV Recognition System

High similarity and large number of CV classes are the major issues involved
in CV recognition. In this work, we proposed two-stage CV recognition method
for the recognition of CV units in Indian languages. In the first stage vowel will
be recognized, and in the second stage consonant will be recognized. In both
stages, evidences from HMM and SVM models are combined with appropriate
weights [100]. In Sect. 4.2.1, the motivations for the proposed method are described.
Proposed approach for CV recognition is presented in Sect. 4.2.2. The framework
used to carry out CV recognition studies is described in Sect. 4.2.3. In Sect. 4.2.4,
we analyzed the performance of proposed CV recognition approach.

4.2.1 Motivations for the Proposed CV Recognition Approach

• Single-stage models may not be appropriate for classification of large number
and highly confusable CV classes. Therefore, two-stage approach is proposed.
In the proposed approach, 145 classes are divided into 5 subgroups based on
vowel category (columns 3–7 of Table 4.1).

• For enhancing the recognition performance, hybrid models are explored at each
stage to capture the CV characteristics in different ways. In this work the
hybrid model consists of combination of HMM and SVM. It is known that
HMMs capture distribution and sequential knowledge from the feature vectors of
the specific class. SVMs are known for capturing discriminative characteristics
between the desired class and rest of the classes by using positive and negative
examples from the desired class and rest of the classes, respectively. Since HMM
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Fig. 4.1 Two-stage CV recognition system using HMM and SVM

and SVM models capture the class-specific knowledge based on different modal-
ities, combining the evidence from these models may improve the recognition
performance.

• In the existed multilayer CV recognition approach [54], same features extracted
around VOP are used at each stage for developing the acoustic models. But, in
the proposed approach different features are used at each stage by using VOP
as an anchor point. Recognition performance of the proposed method depends
on the accuracy of the feature extraction associated with vowel, consonant,
and transition regions of CV units. Therefore, we used proposed accurate VOP
detection methods described in Chap. 3 for determining different regions of
CV units.

4.2.2 Proposed CV Recognition Approach

Proposed two-stage CV recognition model is shown in Fig. 4.1. In the proposed
method, at each stage decision is taken by combining evidences from SVM and
HMM using below equation.

C.X/ D arg maxi .w1 � Si .X/ C w2 � Hi .X// (4.1)

where Si .X/ and Hi .X/ correspond to normalized evidence scores from the SVM
and HMM models, respectively, for test utterance X and i is the class identity. C is
hypothesized class. w1 and w2 (w2 D 1 � w1) are the weights given for SVM and
HMM evidence scores, respectively. In our study, w1 is varied in steps of 0.02 from
0 to 1.
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4.2.3 Framework

Mel-Frequency Cepstral Coefficients (MFCC) [101] extracted from every 20 ms of
CV segment with 5 ms frame shift are used for developing the acoustic models. The
steps involved in extraction of MFCC features from speech signals are described
in Appendix A. In the proposed CV recognition approach different features are
used at each stage by using VOP as an anchor point. At the first stage, vowel
recognition models are developed by extracting features from VOP to end of the
CV segment (i.e., only vowel region), and at the second stage consonant models
are developed using features extracted from beginning of the CV segment to the
transition region. In this study 40 ms speech segment following VOP is considered
as transition region [99]. VOP detection methods proposed in previous chapter are
used to carry out this study.

HMM is a stochastic signal model with finite set of states, each of which is
associated with a probability distribution. Transitions among the states are governed
by a set of probabilities known as transition probabilities. In a particular state an
outcome or observation can be generated, according to the associated probability
distribution (more details are given in Sect. C.1). In this study, HMM models are
trained by using maximum likelihood approach. HMM Tool Kit (HTK) [102] is used
for developing the HMM models. MFCC feature vectors of size 39 dimension (13
MFCC C delta C delta–delta coefficients) are used for developing HMM models.
In the proposed CV recognition approach, vowel and consonant HMM models are
developed by using 3 states and 64 mixers per state. Performance of proposed
method is compared with single-stage HMM models which are built using 4 states
and 64 mixtures.

SVMs are designed for binary classification. Multi-class (n-class) classification
issues can be solved by using combination of binary support vector machines.
One-against-the-rest approach is used for decomposing the n-class classification
problem into binary classification problems (more details are given in Sect. C.2).
Open source SVMTorch [103] is used for developing the SVM models. Fixed
pattern length (PL) of 10 and Gaussian kernel of width 40 are used to build SVM
models for proposed CV recognition approach and single-stage SVM approach.
Fixed pattern length PL is obtained from variable segment length (SL) utterances.
If segment length SL is greater than PL, few frames of the segment are omitted.
If the segment length SL is smaller than PL, few frames of the segment are
repeated. The dimension of feature vector extracted from each utterance for
developing the SVM models is 390 (10 � 39 MFCCs per frame).

4.2.4 Performance of the CV Recognition System

The effectiveness of proposed CV recognition approach is evaluated by performing
experiments using isolated CV units from Database-1. In Fig. 4.2 different evidences
for test utterance from class 26 (=t= class) are shown for the recognition of
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Fig. 4.2 Evidence plots for test utterance =t= (a) SVM evidence. (b) HMM evidence.
(c) HMM+SVM evidence

consonant from =a= subclass. Evidences for SVM, HMM, and SVM+HMM models
for the utterance =t= are shown in Fig. 4.2a–c, respectively. From Fig. 4.2, it is
observed that highest evidences have occurred for the classes 22 and 24 from SVM
and HMM models, respectively, for class 26 test utterance. It is seen that class 26
has the largest evidence from combination of HMM and SVM evidences. Hence
this behavior of combination of complimentary evidences from HMM and SVM
may improve the recognition performance of CV units.

In the proposed approach, the evidences of SVM and HMM are combined using
the weighting rule. The weighting factor of SVM evidence w1 is varied from 0 to 1,
in steps of 0.02. With this we get a total of 51 combinations of weighting factors. The
vowel recognition performance of the combined system for various combinations of
the weighting factors is shown in Fig. 4.3. It is observed that the best recognition
performance is about 97 % for the weighting factors 0.64 and 0.36 for the confidence
scores of SVM and HMM, respectively (see Fig. 4.3).

Figure 4.4 shows the recognition performance of consonants of =a= vowel
subgroup using proposed method by combining SVM and HMM evidences with
different weights between 0 and 1, in steps of 0.02. Highest recognition performance
of about 74 % is observed for the weighting factors 0.38 and 0.62 for the confidence
scores of SVM and HMM, respectively (see Fig. 4.4).
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Fig. 4.3 Recognition performance of vowel with different values of weight w1
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Fig. 4.4 Recognition
performance of =a= vowel
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different values of weight w1

Table 4.2 shows the vowel and consonant recognition performance of HMM,
SVM, and SVM+HMM models using isolated CV units. From the results, it is
observed that the performance of HMM models seems to be slightly superior
compared to SVM models for vowel recognition. This is due to the fact that,
HMMs are good at capturing the state sequence corresponding to the sequence
of vocal tract shapes. The sequences of vocal tract shapes are distinct for each
vowel. From the results, it is also observed that the performance of SVM models
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Table 4.2 Recognition performance of vowel and consonant from
isolated CV units using SVM, HMM, and SVM+HMM acoustic
models

Recognition system Vowel recognition performance (%)

SVM 90.22
HMM 94.6
SVM+HMM 97

Consonant recognition performance (%)

SVM 58.72
HMM 50.82
SVM+HMM 70.9

Table 4.3 Recognition performance of 145 CV units using single-stage
SVM, HMM, SVMCHMM, two-stage SVM, HMM, and proposed
approaches

Recognition system Recognition performance (� %)

Single-stage SVM 46.19
Single-stage HMM 37.42
Single-stage SVM+HMM 53.22

Two-stage SVM 52.98
Two-stage HMM 48.07
Proposed (Two-stage SVM+HMM) 68.77

seems to be superior compared to HMM models for consonant recognition. This
is because SVM models are trained using one-against-rest-approach to capture
the discriminative information present in highly similar and confusable consonant
classes. There is an improvement of around 4% for vowel recognition and 11% for
consonant recognition by using proposed approach.

Performance of the proposed two-stage CV recognition method is compared with
different single- and two-stage HMM and SVM models, and results are shown in
Table 4.3. From the results, it is observed that the performance of CV recognition
using proposed two-stage approach is superior compared to other approaches. From
this study, it is observed that performance of two-stage models is superior compared
to single-stage models. Combination of SVM and HMM evidences in both single-
stage and proposed CV recognition methods has shown significant improvement in
the recognition performance (see rows 4 and 7 in Table 4.3).

4.3 Impact of Accuracy in VOP Detection on CV Recognition

Impact of accuracy in VOP detection on proposed CV recognition system is
analyzed by performing studies on recognition of CV units from Telugu broadcast
database in the presence of coding. Table 4.4 shows the recognition performance
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Table 4.4 Recognition performance of CV units by the proposed CV
recognition method using COMB-ESM and proposed VOP detection
methods

Vowel recognition performance (%)

VOP method Clean GSM FR GSM EFR CELP MELP

COMB-ESM 91.48 90.21 90.61 88.42 89.91
Proposed VOP 91.92 90.42 91.02 89.54 90.22

Consonant recognition performance (%)

COMB-ESM 70.41 68.97 69.22 61.82 60.47
Proposed VOP 72.58 71.44 71.66 66.27 64.19

CV recognition performance (%)

COMB-ESM 64.41 62.22 62.72 54.66 54.37
Proposed VOP 66.72 64.6 65.22 59.34 57.92

of vowels, consonants, and CV units for the proposed CV recognition method by
using COMB-ESM (described in Sect. 2.1) and proposed (described in Sect. 3.2)
VOP detection methods [15, 87, 94, 104]. In Table 4.4, column-1 indicates the
VOP detection method. Columns 2–6 indicate recognition performance for clean,
GSM FR, GSM EFR, CELP, and MELP coders under matched condition (trained
and tested under the similar condition). From the results, it is observed that
recognition performance of CV units is increased (up to 5%) by using proposed VOP
detection method compared to COMB-ESM method. Improvement in performance
is more significant (around 5%) in case of CELP coding. Impact of accuracy of
VOP detection is significant in case of consonant recognition compared to vowel
recognition.

4.4 Performance of CV Recognition System Under Coding

4.4.1 Isolated CV Units Recognition Under Coding

Table 4.5 shows the vowel and consonant recognition performance of HMM, SVM,
and SVM+HMM models under clean and coded conditions using isolated CV units.
In Table 4.5, column-1 indicates the acoustic model used for developing the system.
Columns 2–6 indicate the recognition performance for clean GSM FR, GSM EFR,
CELP, and MELP cases, respectively, using acoustic models trained with clean
speech. Columns 7–10 show the recognition performance under matched condition
(trained and tested with corresponding speech) for GSM FR, GSM EFR CELP and
MELP coded cases, respectively. From the results, it is observed that the combina-
tion of evidences has shown improvement over individual evidences. Recognition
performance has improved by 5 % and 14 % for vowel and consonant recognition,
respectively. From Table 4.5, we can observe that the coding effect on vowel and
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Table 4.5 Recognition performance of vowel and consonant from isolated CV units using SVM,
HMM, and SVM+HMM acoustic models under different coders

Vowel recognition performance (%)

Recognition
system

Clean training Matched training

Clean GSM FR GSM EFR CELP MELP GSM FR GSM EFR CELP MELP

SVM 90.22 84 87.2 83.4 82.6 89.2 89.6 86.8 87.6
HMM 94.6 92 92.4 87.2 91.6 93.2 93.6 91 92.2
SVM+HMM 97 92.8 94.2 91.6 93 96.6 96.6 95 97

Consonant recognition performance (%)

SVM 58.72 52.75 55.17 41.75 39.81 56.85 57.14 53.69 50.34
HMM 50.82 46.85 47.32 36.81 30.8 48.75 48.77 43.35 40.34
SVM+HMM 70.9 66.75 67.14 53.6 51.7 69.12 69.16 64.47 60.2

Table 4.6 Recognition performance of 145 CV units using single- and two-stage approaches
under different coders

Recognition performance (%)

Recognition
system

PCM (clean) training Matched training

PCM GSM FR GSM EFR CELP MELP GSM FR GSM EFR CELP MELP

Single-stage
SVM

46.19 34.92 37.44 26.54 29.06 39.12 41.02 36.21 38.54

Single-stage
HMM

37.42 28.34 29.85 21.06 22.61 33.86 34.65 30.12 31.17

Single-stage
SVM
+HMM

53.22 42.36 43.91 33.42 36.13 50.03 50.86 44.16 46.24

Two-stage
SVM

52.98 44.31 48.11 34.82 32.88 50.71 51.19 46.60 44.09

Two-stage
HMM

48.07 43.10 43.72 32.09 28.21 45.43 45.65 39.45 37.19

Proposed 68.77 61.94 63.25 49.09 48.08 66.77 66.81 61.25 58.4

consonant recognition is minimized by using hybrid (SVM+HMM) models under
matched condition. The effect of GSM coders on recognition performance is almost
nullified using the proposed method under matched condition. In the case of CELP
and MELP coders also, the performance is significantly improved by using proposed
method under matched condition.

Performance of the proposed two-stage CV recognition method is compared with
different single- and two-stage HMM and SVM models, and results are shown in
Table 4.6. From the results, it is observed that the performance of CV recognition
using proposed two-stage approach is superior compared to other approaches. From
this study, it is observed that performance of two-stage models is superior compared
to single-stage models. Combination of SVM and HMM evidences in both single-
stage and proposed CV recognition methods has shown significant improvement
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Table 4.7 Recognition performance of vowel and consonants of CV units from Telugu broadcast
news database using SVM, HMM, and SVM+HMM acoustic models under different coders

Vowel recognition performance (%)

Recognition
system

PCM (clean) training Matched training

PCM GSM FR GSM EFR CELP MELP GSM FR GSM EFR CELP MELP

SVM 86.22 82.66 83.23 73.42 69.11 83.61 84.14 84.82 85.41
HMM 87.41 82.82 84.08 76.66 73.08 86.42 86.91 85.12 86.12
SVM+HMM 91.92 86.69 88.41 80.46 78.14 90.42 91.02 89.54 90.22

Consonant recognition performance (%)

SVM 66.42 55.17 59.32 35.75 33.23 65.06 65.22 56.46 55.23
HMM 58.34 48.46 51.92 33.39 31.20 57.96 58.01 51.17 50.75
SVM+HMM 72.58 62.41 65.54 41.43 39.43 71.44 71.66 66.27 64.19

in the recognition performance (see rows 6 and 9 in Table 4.6). Results are also
indicating that the effect of coding on CV recognition performance is significant in
case of models trained with clean speech. The effect of coding is reduced drastically
by using proposed CV recognition approach under matched condition.

4.4.2 CV Units Recognition from Continuous Speech
in the Presence of Coding

Performance of proposed CV recognition approach is evaluated by using CV
units considered from Telugu broadcast database. In this work, 95 CV classes
are considered (see bold font ones in Table 4.1). Table 4.7 shows the vowel and
consonant recognition performance using HMM, SVM, and SVM+HMM models
under clean and coded conditions. From the results (see Table 4.7), it is observed that
the combination of evidences has shown the improvement over individual evidences.
Performance improvement is around 4–5 % for vowel recognition and 6–10 % for
consonant recognition. From Table 4.7, we can observe that the coding effect on
vowel and consonant recognition is minimized by using proposed approach under
matched condition.

Recognition performance of CV units using different approaches under coding is
shown in Table 4.8. From the results, it is observed that the performance of CV
recognition using proposed approach is superior compared to other approaches.
Effect of coding on recognition of CV units from continuous speech is observed
to be high compared to isolated CV units. Effect of coding is reduced by proposed
approach under matched condition.
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Table 4.8 Recognition performance of 95 CV units from Telugu broadcast news database using
single- and two-stage approaches under different coders

Recognition performance (%)

Recognition
system

PCM (clean) training Matched training

PCM GSM FR GSM EFR CELP MELP GSM FR GSM EFR CELP MELP

Single-stage
SVM

53.7 39.45 43.66 16.27 19.27 50.35 51.16 34.81 42.55

Single-stage
HMM

44.27 33.45 38.02 19.45 23.55 42.34 42.87 35.96 40.55

Single-stage
SVM
+HMM

59.26 47.42 51.24 23.85 27.26 57.62 58.11 45.22 48.22

Two-stage
SVM

57.27 45.60 49.37 26.25 22.97 54.39 54.88 47.89 47.17

Two-stage
HMM

50.99 40.13 43.65 25.59 22.80 50.08 50.42 43.55 43.71

Proposed 66.72 54.11 57.94 33.34 30.81 64.6 65.22 59.34 57.92

4.5 Performance of CV Recognition System in the Presence
of Background Noise

Effectiveness of proposed two-stage CV recognition approach is evaluated by using
Telugu broadcast news database at different signal-to-noise ratios (SNRs) for two
different noise types. In this work, white and vehicle noises from NOISEX-92
database are considered. Table 4.9 shows the vowel and consonant recognition
performance under noisy environments. For this study classification models are
trained with clean speech and tested with noisy speech. From the results, it is
observed that the recognition performance has reduced significantly due to noise,
and degradation is prominent at low SNR values. Among the two noises considered,
effect of white noise is higher compared to vehicle noise. It is due to the fact that
white noise affects entire speech spectrum, whereas vehicle noise effects only at low
frequencies. From the results, it is observed that vowel and consonant recognition
performance under noise has improved by combining the evidences from HMM and
SVM models. The observed improvement in case of vowel recognition is 3–5 %, and
2–10 % in case of consonant recognition.

Performance of the proposed CV recognition system in the presence of noise
is compared using existing single-stage and two-stage methods and results are
shown in Table 4.10. From the results, it is observed that proposed two-stage
CV recognition approach has outperformed other approaches, except at low SNR
values of white noise (see rows 5–8 in Table 4.10). In the presence of noise
also, combination of complimentary evidences from HMM and SVM has shown
improvement in the CV recognition performance. Recognition performance of
CV units is improved up to 13 % by using proposed method compared to other
approaches.
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Table 4.9 Recognition performance of vowel and consonants from CV
units using SVM, HMM, and SVM+HMM acoustic models under differ-
ent background noise cases

Recognition
system

White noise (SNR levels in dB)

Clean 0 dB 5 dB 10 dB 20 dB 30 dB

Vowel recognition performance (%)
SVM 86.22 20.32 28.81 36.72 72.86 80.11
HMM 87.41 21.41 33.82 44.22 77.12 81.72
SVM+HMM 91.92 24.42 37.66 48.11 80.31 86.52

Vehicle noise

SVM 86.22 69.34 73.66 80.88 82.66 84.96
HMM 87.41 72.82 77.66 81.72 83.12 85.82
SVM+HMM 91.92 77.46 81.88 85.72 85.66 89.12

Consonant recognition performance (%)

White noise
SVM 66.42 16.20 21.12 27.66 39.41 45.20
HMM 58.34 9.81 16.46 24.06 37.17 42.67
SVM+HMM 72.58 18.91 23.69 32.09 46.85 51.57

Vehicle noise

SVM 66.42 28.34 37.06 45.20 54.75 58.52
HMM 58.34 27.96 35.17 41.88 50.39 53.72
SVM+HMM 72.58 33.65 42.55 50.85 63.58 68.23

Table 4.10 Overall CV recognition using different acoustic models under
different background noise cases

Recognition performance (%)

Recognition
system

White noise (SNR levels in dB)

Clean 0 dB 5 dB 10 dB 20 dB 30 dB

Single-stage SVM 53.70 5:85 10:12 15 28.36 41.97
Single-stage HMM 44.27 7:11 14:42 16.52 24.66 33.17
Single-stage SVM+HMM 59.26 10:24 18:07 22.12 32.52 43.08

Two-stage SVM 57.27 3:29 6:09 10.16 28.71 36.21
Two-stage HMM 50.99 2:10 5:56 10.63 28.66 34.86
Proposed 66.72 4.62 8.92 15.44 37.63 44.62

Vehicle noise

Single-stage SVM 53.70 15:13 23:52 32.20 43.72 47.50
Single-stage HMM 44.27 13:18 22:52 27.44 34.63 38.06
Single-stage SVM+HMM 59.26 21:36 26:36 35.17 47.62 51.12

Two-stage SVM 57.27 19:65 27:29 36.56 45.26 49.72
Two-stage HMM 50.99 20:36 27:31 34.22 41.88 46.10
Proposed 66.72 26.07 34.84 43.59 54.46 60.81
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4.6 Application of Combined Temporal and Spectral
Processing Methods for CV Units Recognition Under
Background Noise

In this section, we demonstrate the effectiveness of speech enhancement technique
proposed in [105] for speech recognition task in noisy environment. Section 4.6.1
describes the combined temporal and spectral processing (TSP) technique for
enhancement of noisy speech. Section 4.6.2 presents the recognition performance
of CV units under noise by using different preprocessing techniques.

4.6.1 Combined TSP Method for Enhancement
of Noisy Speech

Methods developed in literature for the enhancement of noisy speech are grouped
into spectral processing and temporal processing. Spectral processing methods are
based on the fact that spectral values of noisy speech will have both speech and
noise components [106–108]. The spectral characteristics of noise are therefore
estimated and removed to obtain the enhancement. Spectral processing methods
are popular due to simplicity and effectiveness. The demerit of spectral processing
methods is the need for explicit modeling of spectral characteristics of noise. This is
difficult for highly non-stationary noise cases. Temporal processing methods are
based on identifying and enhancing the speech-specific regions of noisy speech
[109–111]. The merit of temporal processing is in the enhancement of speech-
specific regions and does not require any explicit modeling of degradation. The
demerit may be the ineffectiveness in minimizing the degrading component, since
it is not explicitly modeled. It may be possible that one domain of processing
may aid other domain of processing in minimizing the demerit. Therefore, one
can effectively combine temporal and spectral processing approaches to achieve
improved performance [105].

In the temporal and spectral processing methods the enhancement is achieved by
identifying and enhancing speech-specific features from the noisy speech present
both in the temporal and in the spectral domains. The temporal processing involves
identifying and enhancing the speech-specific features present at the gross and fine
temporal levels. The main objective of the gross level processing is to identify
and enhance the speech components at the sound units (100–300 ms) level and
the objective of the fine level processing is to identify and enhance the speech-
specific features at the segmental (10–30 ms) level. The high SNR speech regions at
gross level are determined using speech-specific parameters like sum of 10 largest
peaks in the discrete Fourier transform (DFT) spectrum, smoothed Hilbert envelope
of the LP residual and modulation spectrum values from the noisy speech signal.
The motivation behind using these three parameters is that they represent different
aspects of the speech production mechanism. The sum of the peaks in the DFT
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Fig. 4.5 Computation of gross weight function: (a) noisy speech, (b) sum of peaks in the DFT
spectrum, (c) smoothed Hilbert envelope of LP residual, (d) modulation spectrum, (e) enhanced
DFT spectrum values, (f) enhanced smoothed Hilbert envelope values, (g) enhanced modulation
spectrum values, (h) normalized sum of (e), (f), and (g); and (i) gross weight function

spectrum represents predominantly the vocal tract information of speech production.
The smoothed Hilbert envelope of the LP residual represents predominantly the
excitation source information of speech production. The modulation spectrum
represents the long-term (supra segmental) information of speech production. Since
the origin of these three parameters is different, combining them may improve the
robustness and also the detection accuracy as compared to any one of them.

Figure 4.5 shows the computation process of gross weight function. Figure 4.5a
indicates the noisy speech signal. Figure 4.5b–d indicate the evidences derived
from spectral peaks of the DFT spectrum, Hilbert envelope of the LP residual, and
modulation spectrum. Figure 4.5e–g indicate the enhanced evidences of Fig. 4.5b–
d. Combination of enhanced evidence of Fig. 4.5e–g is shown in Fig. 4.5h. The final
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Fig. 4.6 Computation of fine weight function: (a) degraded LP residual, (b) instants of significant
excitation, (c) fine weight function, and (d) enhanced LP residual

gross weight function shown in Fig. 4.5i is derived from Fig. 4.5h by applying the
sigmoid nonlinear function. The gross weight function indicates the higher value
during speech regions and low values during nonspeech regions. By modifying the
noisy speech LP residual with the gross weight function will enhance the residual
by deemphasizing the nonspeech or noisy regions.

The high SNR speech-specific features at the fine level are identified by using
the knowledge of the instants of significant excitation. In this work, instants of sig-
nificant excitation (epochs) are determined using zero frequency filter (ZFF)-based
method [92] (see Sect. 3.2.1). The basis for the fine level temporal enhancement is
that the voiced speech is produced as a result of excitation of quasi-periodic glottal
pulses and unvoiced speech is produced as a result of excitation of onset of events
like burst and frication. The significant excitation in each glottal cycle takes place
at the instant of glottal closure. By locating the instants of significant excitation, it
is possible to enhance speech around the instants relative to other regions. A weight
function is derived for the LP residual from the instants of significant excitation to
enhance the excitation source information around these instants relative to other
regions. A final weight function is derived by combining gross and fine weight
functions, which is then multiplied with the LP residual of the noisy speech signal
to enhance the speech-specific features in the temporal domain.

Computation of fine weight function is shown in Fig. 4.6. Figure 4.6a shows
the LP residual for a noisy speech segment. Figure 4.6b, c indicates the instants of
significant excitation and fine weight function, respectively, for the noisy speech
segment shown in Fig. 4.6a. Figure 4.6d shows the enhanced LP residual after
applying the fine weight function over noisy LP residual shown in Fig. 4.6a. The
overall temporal processing method for enhancing the speech is shown in Fig. 4.7.
Figure 4.7a shows the segment of noisy LP residual. The gross weight function
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Fig. 4.7 Overall temporal processing (a) degraded LP residual, (b) gross weight function, (c) final
weight function, and (d) enhanced LP residual

corresponds to the noisy LP residual shown in Fig. 4.7a is given in Fig. 4.7b.
Figure 4.7c indicate the final weight function consisting of combination of gross and
fine weight function. Figure 4.7d shows the enhanced LP residual after applying the
final weight function. From the enhanced LP residual, it is observed that LP residual
is enhanced at both gross level and final level.

The temporally processed speech sounds to be perceptually enhanced. This is
mainly due to the enhancement of speech-specific regions in the noisy speech signal.
This includes high SNR regions at gross level and regions around the instants of
significant excitation. This is achieved by multiplying the LP residual of the noisy
speech signal by the weight function. Even though the speech-specific regions are
emphasized in the temporally processed speech, the noise suppression is minimal
mainly due to the use of all-pole filters derived from the noisy speech. To further
improve the enhancement level, the speech-specific features corresponding to
the all-pole filter are enhanced subjected to spectral processing. To improve the
vocal tract response characteristics at the spectral level, the spectral processing is
performed on the temporally processed speech. Spectral enhancement is performed
using conventional spectral subtraction [106] or minimum mean square error
and short time spectral amplitude (MMSE-STSA) [108]-based methods. Spectral
subtraction-based speech enhancement is performed by subtracting the average
magnitude of the noise spectrum from the spectrum of the noisy speech [106].
In this method noise is assumed to be uncorrelated and additive to the speech signal.
The noise estimation is obtained based on the assumption that the noise is locally
stationary, so that the noise characteristics computed during the speech pauses are a
good approximation to the noise characteristics.

ˇ̌
ˇ bS.k/

ˇ̌
ˇ D jY.k/j �

ˇ̌
ˇ1D.k/

ˇ̌
ˇ ; (4.2)
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Fig. 4.8 (a,b) clean speech and its spectrogram; (c,d) white noise and its spectrogram; (e,f) white
noise speech (SNR 10 dB) and its spectrogram; (g,h) vehicle noise and its spectrogram; and (i,j)
vehicle noise speech (SNR 10 dB) and its spectrogram

where OD.k/ is the average magnitude of the noise spectrum, Y.k/ is the spectrum
of noisy speech signal, and OS.k/ is the estimated enhanced speech signal spectrum.
The MMSE-STSA for speech enhancement aims to minimize the mean square
error between the short time spectral magnitude of the clean and enhanced speech
signal [108]. This method assumes that each of the Fourier expansion coefficients
of the speech and of the noise process can be modeled as independent, zero-mean
and Gaussian random variables.

The temporal and spectral details of clean speech, noisy speech, and enhanced
speech by the proposed temporal and spectral processing method are shown in
Figs. 4.8 and 4.9. Figure 4.8 shows the time and frequency domain details of
clean speech, noise segments, and noisy speech signals. From spectrogram plot
of Fig. 4.8d it is observed that, in the case of white noise, noise is present at all
frequencies (0–4 KHz) in the uniform manner. From Fig. 4.8h, it indicates that the
vehicle noise is dominant at low frequencies (i.e., less than 1 KHz), and at higher
frequencies (i.e., beyond 1 KHz) its effect is less. Therefore, addition of the noises
to clean speech affects more in case of white noise compared to vehicle noise. This
is clearly observed from the spectrograms of noisy speech (see Fig. 4.8f, j).
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Fig. 4.9 Noisy speech enhancement through combined TSP: (a,b) clean speech and its spectro-
gram; (c,d) white noisy (SNR of 10 dB) speech and its spectrogram; (e,f) white noisy speech
processed by temporal processing (TP) and its spectrogram; (g,h) white noisy speech processed
by spectral subtraction (SS) method and its spectrogram; (i,j) white noisy speech processed by
MMSE method and its spectrogram; (k,l) white noisy speech processed by combining TP and
SS methods, and its spectrogram; and (m,n) white noisy speech processed by combining TP and
MMSE methods, and its spectrogram

Figure 4.9 shows noisy and enhanced speech signals and their respective
spectrograms. In this case noisy speech is derived by adding the clean speech with
white noise (SNR of 10 dB). By applying the temporal enhancement, speech regions
are enhanced by deemphasizing the nonspeech regions. It is observed from Fig. 4.9f
that, since speech regions are preserved during temporal processing, the noise also
remains along with speech components, whereas nonspeech regions are completely
cleaned up because of deemphasizing the nonspeech regions. Spectral processing
methods attempt to remove the noise spectral components from noisy speech.
Therefore, the spectrograms of the spectrally enhanced speech (see Fig. 4.9h, j)
indicate the enhanced noisy speech. In combined temporal and spectral processing
methods the merits of individual methods are combined, and hence in Fig. 4.9l, n
we can observe the better enhancement compared to individual methods.
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Table 4.11 Overall CV
recognition using proposed
CV recognition method under
background noise cases using
different preprocessing
techniques. DEG, SS,
MMSE, TP, TSP1, and TSP2
refer to degraded speech,
multi-band spectral
subtraction, MMSE-STSA
estimator, temporal
processing, combined
temporal and multi-band
spectral subtraction and
combined temporal and
MMSE-STSA estimator,
respectively

Recognition performance (%)

Enhancement
method

White noise (SNR levels in dB)

0 dB 5 dB 10 dB 20 dB 30 dB

DEG 4:62 8:92 15.44 37.63 44.62
MMSE 26:81 32:20 38.42 46.06 54.76
TP 7:33 10:52 22.66 41.32 47.41
TSP1 27.46 36.39 40.43 48.38 57.16
TSP2 29.72 35.31 41.10 49.12 57.71

Vehicle noise

DEG 26:07 34:84 43.59 54.46 60.81
SS 34:23 41:34 47.81 56.20 62.21
MMSE 36:07 42:59 49.75 58.31 62.08
TP 26:08 35:12 44.57 55.12 60.88
TSP1 37.24 45.46 52.39 59.24 63.06
TSP2 38.59 47.52 54.20 61.72 63.91

4.6.2 CV Units Recognition Under Different Background
Noise Cases Using Temporal and Spectral Preprocessing
Techniques

Effectiveness of preprocessing techniques on CV recognition performance in noisy
environments is evaluated using CV units from Telugu broadcast corpus [112].
Framework described in Sect. 4.2.3 is considered to carry out this study. Table 4.11
shows the overall CV recognition performance using proposed CV recognition
method under different background noise cases using temporal and spectral prepro-
cessing techniques. In Table 4.11 abbreviations DEG, SS, MMSE, TP, TSP1, and
TSP2 refer to degraded speech, multi-band spectral subtraction, MMSE-STSA esti-
mator, temporal processing, combined temporal and multi-band spectral subtraction,
and combined temporal and MMSE-STSA estimator, respectively. From Table 4.11,
it is observed that spectral processing methods provided much better improvement
in the recognition performance compared to temporal processing method. This
is because spectral methods enhance the noisy speech by filtering out the noise
spectrum. Hence, the enhanced spectrum mostly contains speech characteristics,
whereas temporal processing methods enhance the speech by processing high SNR
speech regions and attenuate all other regions. With this effect, the noisy speech
is perceptually enhanced, but the presence of noise within speech regions will
significantly degrade the performance. Hence, in our study we have observed an
improvement of 2–7 % and 4–22 % in the recognition performance using temporal
method and spectral methods, respectively. From the results it is also evident
that combined temporal and spectral processing techniques have shown better
performance compared to individual enhancement methods. Because merits of both
temporal and spectral methods are combined in combined TSP.
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4.7 Summary

The aim of this chapter is to analyze the performance of CV recognition system in
the presence of speech coding and background noise conditions. We have proposed
a two-stage hybrid approach for developing the robust CV recognition system.
In the first stage of the proposed CV recognition approach vowel was recognized
and in the second stage consonant was recognized. Proposed CV recognition
approach uses the combination of complimentary evidences from SVM and HMM
to improve recognition performance. VOP plays a crucial role in the proposed
two-stage CV recognition. Therefore, in this work we used robust and accurate
VOP detection methods proposed in Chap. 3. Performance of the proposed CV
recognition method is evaluated using CV utterances from isolated CV database and
Telugu broadcast database. Performance of the proposed CV recognition approach
is compared with single- and two-stage SVM, HMM, and single-stage SVM +
HMM-based systems. The proposed CV recognition approach has shown significant
improvement compared to other approaches, in the presence of clean, coded, and
noisy conditions. The improved performance of the proposed method may be due
to the following reasons: (1) combination of complimentary evidences from HMM
and SVM and (2) accurate VOP detection method for selection of different features.

The effect of speech coding on recognition of CV units is studied for GSM FR,
GSM EFR, CELP, and MELP coding techniques. From the results it is observed that
the effect of GSM coders on CV recognition performance is almost minimized by
using the proposed method under matched condition. Performance is significantly
improved by using proposed method in case of CELP and MELP coders. Further,
we studied the effect of background noise on CV recognition performance at
different SNR levels. From this study, we observed that noise has severe effect
on CV recognition at low SNR values. The performance of CV recognition
system under background noise is improved by using combined temporal and
spectral preprocessing methods. The recognition results show that combined TSP
methods provide relatively higher recognition performance compared to individual
methods. Future research may be carried out to study the combination of combined
TSP preprocessing methods with conventional feature compensation and model
adaptation methods.



Chapter 5
Spotting and Recognition of Consonant–Vowel
Units from Continuous Speech

Abstract Automatic speech recognition is the process of converting speech into
text. It is carried out by transforming speech signal into a sequence of symbols by
using acoustic models, and converting this sequence of symbols into text by using
a language model. Two approaches are commonly used for speech recognition. The
first approach is based on word-level matching using word models, and then using a
language model. The major drawback of this approach is to develop word models for
all words of a language. In a language generally the number of words will be of order
105–106. The second approach is based on segmenting speech into subword units,
and labeling them using a subword unit recognizer. The limitation of this approach
lies in accurate segmentation of speech into subword units of varying durations.
An approach to continuous speech recognition by spotting consonant–vowel (CV)
units is presented in literature in the context of Indian languages. This approach
is based on the detection of vowel onset points (VOPs) and labeling the segments
around the VOPs using a CV recognizer. The major issues in this approach are
accurate detection of VOPs and labeling the regions around these VOPs. In literature
AANN models are used for the detection of VOPs with 30% and 6% missed and
spurious rates, respectively. The performance of CV spotting and recognition using
AANN models is significantly low due to inaccurate detection of VOPs. In this
chapter, we propose an approach for spotting and recognition of CV units from
continuous speech using accurate VOPs. Here, VOPs are determined using two-
stage approach. In stage-1, VOPs are determined using the evidences from excitation
source, spectral energy, and modulation spectrum of the speech segments. In stage-
2, VOPs determined in stage-1 are verified and the genuine VOPs are positioned
accurately using the deviation between successive epoch intervals.

In this work, VOPs are used for spotting the CV units, and the proposed two-stage
CV recognition approach presented in Sect. 4.2 is used for recognition of spotted
CV units. Here, VOPs are accurately determined using two-stage approach. Based
on the knowledge of VOP, boundaries of vowel and consonant segments of CV
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units are determined. After determining the boundaries of C and V, first recognition
of vowel segment is carried out, and then consonant segment is recognized by
performing the classification within the group of CV units corresponding to the
vowel class recognized in stage-1. This chapter is organized as follows: In Sect. 5.1,
proposed two-stage method for the accurate detection of VOPs is presented. Results
of spotting and recognition of CV segments in continuous speech are discussed
in Sect. 5.2. Spotting and recognition of CV units from coded and noisy speech are
presented in Sects. 5.3 and 5.4, respectively. Summary of the findings of this chapter
is presented in Sect. 5.5.

5.1 Two-Stage Approach for Detection of Vowel Onset Points

The proposed method for VOP detection is carried out in two stages. At the first
stage, VOPs are detected by combining the evidence from excitation source, spectral
peaks, and modulation spectrum (described in Sect. 2.1). Its accuracy of VOP
detection is about 96% within a deviation less than 40 ms, and only 45% within
10 ms deviation [15]. But, applications like CV unit recognition require the VOP
detection with high accuracy for their better performance. Therefore at the second
stage, the VOPs detected in the first stage are verified (as genuine or spurious) and
their locations are corrected by using the uniform epoch intervals present in the
vowel regions [104].

The epoch interval corresponds to the time interval between two successive
epochs. In a voiced region the epoch intervals correspond to the durations of
the pitch cycles. The point at which the uniform epoch intervals start can be
considered as the location of VOP [5]. Here, uniform epoch intervals correspond
to the successive epoch intervals being approximately the same. Epoch intervals
in a vowel region are uniform, whereas epoch intervals in an unvoiced region are
nonuniform. This nature of epoch intervals in vowel regions is used in the second
stage of proposed method for verification and correction of VOPs hypothesized
in the first stage. Zero frequency filter method is used for determining the epoch
locations and epoch intervals. In Sect. 5.1.1, sequence of steps in the proposed two-
stage VOP detection method are described. Uniformity in the epoch intervals is
analyzed in Sect. 5.1.2. In Sect. 5.1.3, the performance of proposed VOP detection
method is compared with existing methods by using TIMIT database.

5.1.1 Sequence of Steps in the Proposed VOP
Detection Method

The proposed two-stage method for VOP detection is carried out with the following
sequence of steps:
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Stage-1

• Detect the VOPs by using the COMB-ESM method.

Stage-2

• Consider the epoch locations within 40 ms on both sides of each of the detected
VOPs, i.e., 80 ms window around the detected VOP.

• Determine the epoch intervals within the window by calculating the difference
of successive epoch locations.

• The detected VOPs are verified (as genuine or spurious) by analyzing the
uniformity in the epoch intervals present in the window. The uniformity of the
epoch intervals is determined by using the difference between successive epoch
intervals. A threshold of 0.5 ms on the difference between successive epoch inter-
vals is used as the upper limit for verification of a detected VOP. If a detected
VOP is genuine, then there should be at least two successive epoch intervals
whose difference is less than or equal to 0.5 ms.

• After deciding a detected VOP as genuine, the location of the VOP is decided
based on the beginning of the uniformity in the sequence of epoch intervals.
For this purpose, the values of differences between the epoch intervals are
scanned from right to left side of the specified window. The location of a VOP is
identified wherever the differences between the epoch intervals cross beyond the
threshold. Threshold for detecting the uniformity in epoch intervals to correct the
genuine VOP is determined empirically.

The proposed method for VOP detection is illustrated in Fig. 5.1 using a
continuous speech utterance for the phrase “Don’t ask.” Figure 5.1a, b show the
speech signal waveform and the manually marked VOPs, respectively. The VOP
evidence plot and the detected VOPs obtained using the COMB-ESM method
are shown in Fig. 5.1c, d, respectively. Figure 5.1e, f show the epoch locations
and epoch intervals, respectively. Figure 5.1g shows the final locations of VOPs
obtained using the proposed method. A spurious VOP at about sample number
8,300 (marked in bold in Fig. 5.1d) hypothesized by the COMB-ESM method is
eliminated by the proposed method based on nonuniform epoch intervals around
the spurious VOP (see Fig. 5.1d–f). It is also observed that the locations of genuine
VOPs are corrected such that their deviations are reduced. The final VOPs detected
by the proposed method are observed to be very close to the manually marked VOPs.

5.1.2 Choice of Deviation Threshold for Determining
the Uniformity in the Epoch Intervals

In the proposed method, for identifying the uniformity in the epoch intervals, the
difference between the successive epoch intervals is analyzed in steps of 0.125 ms
(i.e., the sampling interval) from 0 to 1 ms. In a vowel region the durations of
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Fig. 5.1 VOP detection for a continuous speech utterance “Don’t ask” using proposed method. (a)
speech signal waveform, (b) manually marked VOPs, (c) COMB-ESM VOP evidence, (d) VOPs
detected using COMB-ESM method, (e) epoch locations of speech signal shown in (a), (f) epoch
intervals of speech signal shown in (a), and (g) VOPs detected using the proposed method

the successive pitch cycles are approximately the same, and the deviation is very
small. In this work, the desired uniformity in the epoch intervals required for
the elimination of spurious VOPs is analyzed by conducting the experiments on
TIMIT database [77] by considering 2,407 reference VOPs. Table 5.1 shows the
performance of the proposed method for detection of VOPs using different values of
difference threshold used in determining the uniformity in epoch intervals. The first
column shows the value of threshold on the difference between successive epoch
intervals. Columns 2–4 show the number of detected VOPs, the percentage of
missed VOPs, and the percentage of spurious VOPs, respectively, for each value
of the threshold considered for detecting the uniformity in the epoch intervals.
From Table 5.1, it is observed that for a threshold less than or equal to 0.25 ms,
the percentage of missed VOPs is high and percentage of spurious VOPs is zero.
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Table 5.1 Performance of the proposed VOP detection method on
TIMIT database for different values of threshold on difference between
successive epoch intervals

Deviation No. of Detected Missed Spurious
Threshold (in ms) VOPs VOPs (in %) VOPs (in %)

0 2,046 15 Nil
0.125 2,118 11.92 0
0.25 2,167 10.12 0
0.375 2,253 6.72 0.6
0.5 2,336 3.98 0.92
0.675 2,359 3.98 1.96
0.75 2,366 3.98 2.32
0.875 2,375 3.98 2.74
1 2,380 3.98 2.91

For a threshold higher than 0.5 ms, the percentage of spurious VOPs has increased
and the missing VOP rate is 3.98%. Therefore, we have chosen the threshold as
0.5 ms for determining the uniformity in epoch intervals, and it provides the best
performance of VOP detection.

5.1.3 Performance of the Proposed Two-Stage
VOP Detection Method

Experiments are conducted on TIMIT database [77] for analyzing the performance
of the proposed two-stage VOP detection method. The speech data of 220 sentences
(120 sentences are spoken by female speakers and 100 sentences are spoken by
male speakers) having 2,407 manually marked VOPs is considered. Among 2,407
VOPs, 1,013 VOPs correspond to the utterances spoken by male speakers, and the
remaining 1,394 VOPs correspond to the utterances spoken by female speakers.
Table 5.2 shows the accuracy in detection of VOPs using different methods.
Column-1 indicates different methods considered for detecting the VOPs. Column-
2 indicates the total number of VOPs detected using various methods. Columns 3–6
show the percentage of VOPs detected for 4 different values of deviation. Column-7
shows the average deviation (in ms) with respect to the manually marked VOPs.
Columns 8 and 9 show the percentages of missed and spurious VOPs, respectively.

From the results, it is evident that accuracy in detection of VOP using the
proposed method is observed to be superior compared to the existing methods.
It is observed that about 30% more VOPs are detected within 10, 20, and 30 ms
deviations using the proposed method (see columns 3–5 in last two rows of
Table 5.2). Average deviation is reduced significantly in the proposed method.
The percentage of spurious VOPs is also drastically reduced in the proposed method.
Accuracy of the proposed method is more significant for a deviation of 20 ms.
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Table 5.2 Performance of the VOP detection using excitation source (EXC), spectral peaks (SP),
modulation spectrum (MOD), COMB-ESM (COMB), and proposed methods on TIMIT database

VOP
detection
method

Number of
Detected
VOPs

VOPs detected
within ms (in � %)

Avg.
dev.
(in � ms)

Missing
VOPs
(in � %)

Spu.
VOPs
(in � %)10 20 30 40

EXC 2,383 35 54 60 95 20 5 4
SP 2,384 26 46 70 94 21 6 5
MOD 2,264 36 50 74 93 18 7 2
COMB-ESM 2,386 52 60 71 96 16 4 3
Proposed 2,336 84 95 96 96 7 4 1

Fig. 5.2 Block diagram of CV recognition system based on spotting CV units using VOPs

The performance of the proposed method for a deviation of 10 ms is limited due
to the presence of voiced consonants before the vowel onset points.

5.2 Performance of Spotting and Recognition of CV Units
in Continuous Speech

The block diagram of CV recognition system based on spotting CV units from
continuous speech is shown in Fig. 5.2. Initially, the VOPs are detected in
continuous speech, and then the patterns extracted using the VOP locations as
anchor points are used to recognize CV segments [113]. The proposed two-stage
VOP detection method is used for the detection of VOPs. The CV recognition is
performed using the proposed CV recognizer developed in Sect. 4.2. For evaluating
the spotting and recognition of CV units from continuous speech, 500 sentences
are randomly chosen from test data of Telugu broadcast news speech corpus. These
500 sentences contain 6,477 CV units. For performing the recognition of CV units
from these 500 sentences, first the CV units need to be spotted. For spotting the
CV units, the proposed two-stage VOP detection method is used. Performance of
the proposed VOP detection method is compared with AANN [54, 78] and COMB-
ESM methods [15].

In [54, 78], the AANN models are used for detection of VOPs from continuous
speech. A five-layer AANN model having structure of 39L 60N 4N 60N 39L
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Table 5.3 Performance of spotting CV units using the AANN, COMB-
ESM, and proposed two-stage VOP detection methods (6,477 VOPs from 500
sentences are considered)

VOP detection Number of Number of Number of
method matched VOPs missing VOPs spurious VOPs

AANN [54, 78] 4,436 2,041 389
COMB-ESM[15] 4,793 1,684 194
Proposed two-stage 6,091 386 62

is used for capturing the distributions of feature vectors. Here L refers to linear
units and N refers to nonlinear units. The activation function for the nonlinear
units is a hyperbolic tangent function. The AANN models are developed using
39-dimensional feature vectors (13 MFCCC delta C delta–delta coefficients). For
each CV class, two AANN models corresponding to the vowel and consonant
regions are developed. For detection of VOPs in continuous speech, a feature vector
is extracted from every 20 ms with 5 ms frame shift, and is given as input to the
pairs of AANN models of all the CV classes. The two AANN models of each of
these CV classes hypothesize the current frame as a consonant or vowel frame.
Then, the current frame is labeled as consonant region or vowel region based on the
majority of hypotheses from the AANN models. In this way, a sequence of labels
can be obtained to a sequence of frames in continuous speech. The VOP frames are
identified as those frames, at which there is a change of label from consonant to
vowel [78].

Performance of the VOP detection using the AANN, COMB-ESM, and proposed
two-stage VOP detection methods is shown in Table 5.3. Columns 2–4 indicate the
number of matched, missed, and spurious VOPs, respectively, for different VOP
detection methods. The VOPs hypothesized with a deviation less than 25 ms from
actual VOPs are considered as the matched VOPs. If there are no hypothesized
VOPs within 25 ms from actual VOPs, then those are considered as missed VOPs.
Hypothesized VOPs beyond 25 ms around the actual VOPs are considered as
spurious ones. It is seen that the proposed method for VOP detection gives an
improvement of about 20% and 26% in the number of matched VOPs compared
to the COMB-ESM and AANN-based VOP detection methods, respectively (see
Table 5.3). The number of missing and spurious VOPs is also reduced significantly
using the proposed VOP detection method. Effectiveness of the proposed VOP
detection method is illustrated in Fig. 5.3 for a speech utterance “toli jabita” from
Telugu broadcast database. The spurious VOP (third one in Fig. 5.3e) detected by
the COMB-ESM method is eliminated by the proposed VOP detection method (see
Fig. 5.3e, g).

After detection of VOPs using the proposed VOP detection method, patterns
are extracted by using VOPs as anchor points for performing CV recognition.
Patterns are extracted from different regions of a CV segment using the VOP
as an anchor point for recognizing the vowel and consonant categories. Vowel
region is determined by using the differences of epoch intervals starting from VOP.
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Fig. 5.3 VOP detection for a continuous speech utterance “toli jabita” using proposed two-stage
method: (a) speech signal waveform with manually marked VOPs for an utterance “toli jabita,” (b)
VOP evidence from excitation source, (c) VOP evidence from spectral peaks, (d) VOP evidence
from modulation spectrum, (e) VOP evidence derived by combining the evidence from excitation
source, spectral peaks, and modulation spectrum [(b)+(c)+(d)], (f) epoch intervals of speech signal
shown in figure (a), and (g) VOPs detected using the proposed method

Starting from the VOP to the end of uniform epoch intervals is considered as the
vowel region. Uniformity in epoch intervals is determined by using same procedure
described in Sect. 5.1.2. In some cases such as the following consonant of a CV
unit being voiced, nasal or semivowel, uniformity in the epoch intervals continues
till the following VOP. In this case, ending of the vowel region is marked using the
knowledge of the consonant region of the following VOP, i.e., vowel boundary of
the present CV unit is marked as the instant that is 40 ms before the following VOP.
Patterns extracted from hypothesized vowel regions are used for vowel recognition.
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Similarly, patterns extracted from the speech signal of 40 ms duration either side of
a VOP are used for consonant recognition. CV recognition framework presented in
Sect. 4.2.3 is used for this study. CV units correspond to matched VOPs detected
using two-stage VOP detection method from 500 utterances are tested using the
two-stage CV recognition system described in Sect. 4.2. About 63.26 % of CV
segments have been correctly recognized out of 6,091 spotted CV units using
matched VOPs. Overall performance of spotting and recognition of 6,477 CV units
from 500 utterances is 59.48 %.

5.3 Spotting and Recognition of CV Units
from Coded Speech

In this section, proposed two-stage VOP detection method is extended for spotting
CV units from coded speech. From the studies, it is observed that uniformity in
epoch intervals during vowel region is present even after coding. Therefore, the
proposed two-stage VOP detection method can be used for accurate detection of
VOPs from the coded speech. Here, two-stage VOP detection method consists of
VOP detection method developed for coded speech (Sect. 3.2) in first stage for
hypothesizing the VOPs. In second stage, uniformity in epoch intervals is used for
removing the spurious VOPs and correcting the genuine VOPs.

Table 5.4 shows the performance of spotting CV units from coded speech using
proposed two-stage VOP detection method. Spotting and recognition studies are
carried out in the similar framework discussed in Sect. 5.2. From the results it is

Table 5.4 Performance of spotting CV units from coded speech using the COMB-ESM and
proposed two-stage VOP detection methods (6,477 VOPs from 500 sentences are considered)

VOP detection Percentage of Percentage of Percentage of
method matched VOPs (� %) missing VOPs (� %) spurious VOPs (� %)

Clean
COMB-ESM 74 26 3
Proposed 94 6 1

GSM FR
COMB-ESM 63 37 3
Proposed 90 10 1

GSM EFR
COMB-ESM 64 36 3
Proposed 90 10 1

CELP
COMB-ESM 55 45 6
Proposed 85 15 2

MELP
COMB-ESM 57 43 4
Proposed 87 13 1
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Table 5.5 Recognition performance of spotted CV units from coded
speech using the proposed CV recognition system under matched con-
dition (trained and tested under similar coded condition)

Recognition performance (%) Overall recognition
Coder by using matched VOPs a performance (%)

PCM (clean) 63.26 59.48
GSM FR 60.92 54.83
GSM EFR 61.34 55.20
CELP 56.72 48.21
MELP 55.68 48.44

observed that performance of the proposed method is superior compared to COMB-
ESM method. Spurious VOPs are reduced significantly by using proposed method
under both clean and coded conditions. CV units correspond to matched VOPs are
recognized using the two-stage CV recognition system discussed in Sect. 4.2.

Table 5.5 shows the recognition performance of CV units spotted from coded
speech. Column-1 indicates the different coding techniques. Column-2 shows
the recognition performance of spotted CV units using two-stage VOP detection
method. Column-3 indicates the overall spotting and recognition of 6,477 CV units
from 500 sentences. From the results, it is observed that recognition performance
of CV units spotted using match VOPs is close to recognition performance of CV
units using manually marked boundaries (see Tables 5.5 and 4.8).

5.4 Spotting and Recognition of CV Units from Noisy Speech

In this section, performance of spotting and recognition of CV units from noisy
speech are presented. This study is carried out by adding white and vehicle noise
samples from Noisex-92 [97] database to the clean speech signals at different
SNR levels. Uniformity in epoch intervals during vowel region is found to be
disturbed due to noise at low SNR values. Hence, it is observed that two-stage
approach is not useful to enhance the performance of VOP detection. There-
fore, proposed VOP detection method for noisy speech described in Sect. 3.4 is
used for spotting CV units from noisy speech. Spotting and recognition studies are
carried out in similar framework discussed in Sect. 5.2.

Table 5.6 shows the performance of spotting CV units from noisy speech using
the COMB-ESM and proposed formant-based VOP detection methods. From the
results it is observed that, performance of the formant based method is superior
compared to COMB-ESM method for detecting the VOP from noisy speech. Spot-
ted CV units corresponding to matched VOPs are recognized using the two-stage
CV recognition system. Table 5.7 shows the recognition performance of CV units
spotted from noisy speech. From the results, it is observed that recognition perfor-
mance of CV units spotted using match VOPs is close to recognition performance
of CV units using manually marked boundaries (see Tables 5.5 and 4.10).
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Table 5.6 Performance of spotting CV units from noisy speech using the COMB-ESM and
proposed formant-based VOP detection methods (6,477 VOPs from 500 sentences are considered)

Matched Missed SPU Matched MISS SPU
VOPs(%) VOPs (%) VOPs (%) VOPs (%) VOPs (%) VOPs (%)

VOP detection
method

White noise Vehicle noise

0 dB 0 dB

COMB-ESM 59 41 35 62 38 30
Proposed 81 19 7 82 18 6

5 dB 5 dB
COMB-ESM 61 39 29 63 37 26
Proposed 82 18 4 83 17 4

10 dB 10 dB
COMB-ESM 62 38 29 66 34 24
Proposed 82 18 3 83 17 4

20 dB 20 dB
COMB-ESM 66 34 16 67 33 17
Proposed 82 18 2 84 16 2

Table 5.7 Recognition performance of spotted CV units from contin-
uous speech using proposed CV recognition system under noise

Recognition performance (%)

White noise
0 dB 5 dB 10 dB 20 dB

Recog. using matched VOPs 4.81 8.96 15.31 36.92
Overall recognition 3.89 7.35 12.55 30.27

Vehicle noise
Recog. using matched VOPs 25.19 32.62 42.22 52.37
Overall recognition 20.66 27.07 35.04 43.99

5.5 Summary

In this chapter, the performance of spotting and recognition of CV units in
continuous speech has been improved by using the proposed two-stage VOP
detection and two-stage CV recognition methods. The proposed VOP detection
method is carried out in two stages. At the first stage, VOPs are detected by
combining the evidence from excitation source, spectral peaks, and modulation
spectrum. At the second stage, the detected VOPs at the first stage are verified
and corrected using the uniform epoch intervals present in the vowel region. The
proposed VOP detection method is shown to be effective in reducing the number
of missing and spurious VOPs. There is an improvement of more than 20% in the
matched VOPs by using the proposed method compared to the existing methods.
Spotted CV units are recognized using the proposed two-stage CV recognition
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system. Studies on spotting and recognition of CV units are extended for coded
and noisy speech. From the results, we observed that the proposed two-stage VOP
detection approach is giving better performance, even under coding for spotting CV
units. Further, methods need to be explored for minimizing the missing VOPs in
case of CELP and MELP coders.



Chapter 6
Speaker Identification and Time Scale
Modification Using VOPs

Abstract In this chapter, the proposed two-stage VOP detection method is used for
improving the Speaker Identification (SI) performance in the presence of coding.
With the help of VOPs, the crucial regions of speech segments which mainly
characterize speaker-specific information are determined. Features extracted from
these crucial speech segments are used for speaker identification task for improving
the recognition accuracy. The accurate VOPs determined from the proposed method
are also explored for nonuniform time scale modification. The proposed nonuniform
time scale modification method provides high quality speech while varying speech
rate. In this method, vowel regions are modified nonuniformly based on the type of
vowel, and consonant and transition regions are unaltered irrespective of speaking
rate. Here, vowel onset points are used to determine consonant, vowel, and transition
regions.

In this chapter, two speech applications, namely speaker identification and speech
rate modification based on vowel onset point (VOP) are discussed. In speaker
identification task, VOPs are used to determine the important regions in speech
segments where crucial speaker-specific information is present. In case of speaking
rate modification, instead of modifying the entire speech signal uniformly, only
vowel segments are modified according to the type of vowel and consonant and
transition segments are preserved from modification. This chapter is organized as
follows: In Sect. 6.2, proposed nonuniform TSM method is presented for slow down
and speed up the speech. Summary of the findings of this chapter is presented in
Sect. 6.3.
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6.1 Speaker Identification in the Presence of Coding Using
Vowel Onset Points

In this work, initially the performance of SI system is studied with coded and
cellular speech using AANN models. Later, the performance of SI system in
coding environment is improved by proposing the features from steady vowel region
[114,115]. Steady vowel regions are determined by using proposed method based on
vowel onset points and epochs. Databases used to carry out this study are described
in Sect. 6.1.1. The experimental framework used to develop SI system is presented
in Sect. 6.1.2. The effect of speech coding on SI system is discussed in Sect. 6.1.3.
Proposed approach for improving the performance of SI in mobile environment is
presented in Sect. 6.1.4. In Sect. 6.1.5, the performance of SI systems developed
using features extracted from steady vowel region and entire voiced region is
compared.

6.1.1 Speech Databases

Two speech databases are recorded for analyzing the performance of SI system
in mobile environment. Databases 1 and 2 were recorded simultaneously using
microphone and mobile phone receiver, respectively [116]. Database-1 contains the
speech corpus recorded by 100 speakers using microphone, and it is considered as
clean speech. The duration of speech by each speaker is about 10 min. Coded speech
corpus is simulated by passing the speech of Database-1 through standard encoder
and decoder of GSM FR, GSM EFR, CELP, and MELP coders. Database-2 contains
the speech corpus by 100 speakers recorded using mobile phone. For realizing the
effects of speech coding and wireless channels, the database-2 is recorded at the
receiving end of the mobile phone located at remote place. The sequence of steps for
recording the database-2 is as follows: (1) The connection between speaker’s mobile
phone and destination mobile phone has to be established and (2) speaker’s voice
will be recorded at the destination mobile phone.

6.1.2 SI System Using AANN Models

Auto-associative neural network models are used to capture the speaker-specific
information from speech signal. Speech signal contains information regarding the
message, the speaker’s identity, the language identity, the emotional state of the
speaker, and the gender of the speaker. The uniqueness in the voice of a speaker is
due to several factors such as the shape and size of the vocal tract, the dynamics
of the articulators, the rate of vibration of the vocal folds, the accent imposed by
the speaker, and the speaking rate. These unique characteristics are represented by
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speech features derived from segmental, sub-segmental, and supra-segmental levels.
In this work, shape and size of the vocal tract specific to speaker is used to represent
the speaker model. These speaker-specific vocal tract characteristics are represented
by spectral parameters. In this work, Mel Frequency Cepstral Coefficients (MFCCs)
and their velocity (delta) and acceleration (delta delta) coefficients are concatenated
to form a 39-dimensional feature vectors to represent the vocal tract characteristics
of a speaker. MFCC features are extracted from speech signal using frame size of
20 ms with shift of 10 ms.

Auto-associative neural networks are feedforward neural networks performing
an identity mapping of the input space and are used to capture the distribution of
the input data. Brief details of the AANN models are given in Appendix Sect. C.3.
In this work, a five-layer AANN model [117, 118] as shown in Fig. 6.1 is used
to capture the distribution of the feature vectors. The input and output (first and
fifth) layers have same number of units. The second and fourth layers of the
network have more units than the input layer. The third layer has fewer units
than the input or output layers. All the input and output features are normalized
to the range [�1, +1] before presenting them to the neural network. The standard
back-propagation learning algorithm is used to adjust the weights of the network to
minimize the mean square error for each feature vector [117, 118].

Several neural network structures are experimented, and the final structure
chosen for this study is 39L 60N 20N 60N 39L. Here, L and N indicate linear and
nonlinear units. The nonlinear units use tanh.s/ as the activation function, where
s is the activation value of that unit. SI system consists of 100 speaker models.
Each speaker model is developed using auto-associative neural network. The block
diagram of the SI system using AANN models is shown in Fig. 6.2. For evaluating
the performance of the SI system, the feature vectors derived from the test speech
utterances are given as input to all speaker models. The output of the each model is
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Fig. 6.2 Speaker identification system using AANN models

compared with the input to compute the normalized squared error. The normalized
squared error (e) for the feature vector y is given by

e D jjy � o/jj2=jjyjj2; (6.1)

where “o” is the output vector given by the model. The error e is transformed
into a confidence score (c) using c D exp.�e/. The average confidence score
is calculated for each model. The identity of the speaker is decided based on the
highest confidence score.

6.1.3 Effect of Speech Coding on Speaker Identification

In this section effect of speech coding on SI is analyzed by using databases described
in Sect. 6.1.1. From databases 1 and 2, 5 min of speech data is used for training and
2 min of speech is used for testing. Two minutes of test speech of each speaker is
divided into 24 segments, where each segment duration is about 5 s. This provides
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Table 6.1 Performance of
the speaker identification
system under coding

Recognition performance (%)

Coders Clean training Matched training

Clean 97.12 –
GSM FR 85.22 92.33
GSM EFR 88.46 93.89
CELP 74.36 83.67
MELP 81.25 86.78
Cellular 86.46 94.42

2,400 (24 segments�100 speakers) test cases for validating the speaker models
developed using databases 1 and 2.

Table 6.1 shows the performance of SI system tested with different coded and
cellular speech segments. In Table 6.1, column-1 indicates the coding techniques
used for testing; column-2 indicates the performance of SI models trained using
clean speech and tested by speech segments derived from different coding schemes;
and column-3 indicates the performance of SI models trained and tested with the
corresponding speech i.e., matched condition. Results indicating that performance
of the SI system is decreasing as coding rate decreases. An improvement in SI
performance is observed when training and testing conditions are matched. Under
matched condition, a decrement of 5, 4, 14, 11, and 3% is observed in performance
of SI due to GSM FR, GSM EFR, CELP, MELP, and cellular speech, respectively.
Results also indicating that SI performance is better in case of MELP compared to
CELP coder, even though bit rate of MELP coder is less than CELP coder [119]. It is
due to the representation of excitation signal in case of CELP coder. CELP coder
uses code book to code the excitation signal approximately, whereas MELP coder
uses mixed periodic and aperiodic excitations to code excitation signal effectively.
So MELP preserves speaker-specific characteristics effectively compared to CELP.
From the results it is evident that coding has significant effect on the performance of
SI system, and hence there is a need to develop methods to improve the performance.

SI performance under coding is analyzed by computing the Pearson’s correlation
between clean and coded feature vectors. The Pearson’s correlation coefficient rxy

for two variables x and y is a measure of the correlation between them [120, 121].
In this work, squared correlation r2

xy is used for analyzing the correlation between
different feature vectors. Figure 6.3 shows the average squared correlation plot
between MFCC features extracted from coded speech and clean speech signals.
From the Fig. 6.3, it is observed that the correlation is high at lower order MFCC
coefficients and gradually decreases as order of MFCC increases. Among the coders
considered in this study, MFCC features derived from GSM coded speech have
high correlations with the MFCCs derived from clean speech. MFCCs derived
from CELP coded speech are least correlated with clean MFCCs. Similar trend is
observed in the performance of SI system under coding (see Table 6.1).
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Fig. 6.3 Correlation plots between MFCC features derived for clean and coded speech

6.1.4 Proposed Speaker Identification Method

In general most of the commercial speech coders use linear predictive (LP)
coefficients for coding the vocal tract information. In the LP analysis, estimation
of LP coefficients is more accurate and reliable in case of steady vowel segments of
speech compared to other speech segments. This is because in steady vowel speech
segments the speech samples have maximum correlation, and hence the prediction
error in the LP analysis is minimum. From this observation, we can hypothesize
that steady vowel segments of speech are not much affected with coding, and
hence the speaker-specific characteristics may be preserved in the steady vowel
segments of speech even after coding. After coding, speech segments other than
steady vowel region may not retain the speaker-specific characteristics, and hence
the performance of SI system using the features derived from the entire speech has
affected (see Table 6.1). Therefore in this work we are proposing the features only
from steady vowel speech segments for carrying out the SI in case of coded and
cellular speech.

Steady vowel speech segment regions are determined using the knowledge of
vowel onset points and epochs similar to the proposed two-level VOP detection
method presented in Sect. 5.1. Proposed method for determining steady vowel
region is carried out with the following sequence of steps. (1) Detect the VOPs
using proposed two-stage method described in previous chapter. (2) At each genuine
hypothesized VOP, the position of the starting of steady vowel region is marked
as the epoch location, where the uniform epoch intervals have started. (3) The
end position of steady vowel region is marked as the epoch location, where the
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Fig. 6.4 Proposed method for determining the steady vowel regions from continuous speech.
(a) speech signal, (b) manually marked VOPs, (c) combined VOP evidence plot, (d) VOPs detected
using combined method, (e) epoch locations of speech signal shown in figure (a) using ZFF
method, (f) epoch intervals of speech signal shown in figure (a) and (g) steady vowel region
determined using proposed method

uniform epoch intervals have ended. Threshold for detecting the uniformity in epoch
intervals is determined empirically as 0.5 ms. Method used for determining the
steady vowel speech segments is illustrated by using Fig. 6.4.

In Fig. 6.4, speech signal and the manually marked reference VOPs are shown
in Fig. 6.4a, b, respectively. VOP evidence plot and the detected VOPs using the
COMB-ESM method are shown in Fig. 6.4c, d, respectively. Figure 6.4e, f indicate
the epoch locations and epoch intervals derived from ZFF method. Figure 6.4g
shows the steady vowel region (rectangular box) determined by the proposed
method.
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Table 6.2 Performance of SI system tested with varying coders using proposed
approach

GSM GSM
Clean FR EFR CELP MELP Cellular

Features used Recognition performance (%)

for testing SI system trained with clean speech data

Entire voiced 97.12 85.22 88.46 74.36 81.25 86.46
Steady vowel 98.03 87.27 90.22 79.54 84.56 89.33

SI system trained with matched speech data

Entire voiced 97.12 92.33 93.89 83.67 86.78 94.42
Steady vowel 98.03 94.53 95.14 87.44 89.24 96.37

6.1.5 Performance of the Speaker Identification System Using
Features Extracted from Steady Vowel Regions

In this section, performance of SI system developed with features extracted from
steady vowel region is compared with SI system developed with whole voiced
speech. While extracting the steady vowel speech segments using the proposed
method, it is observed that around 77 % of the voiced speech is occupied by the
steady vowel speech segments. Table 6.2 shows the performance of SI system
tested with different coded and cellular speech segments by using proposed method.
In Table 6.2, rows 3 and 4 indicate the performance of SI system trained using
clean speech and tested by different coded and cellular speech segments by using
features extracted from entire voiced speech and steady vowel regions, respectively.
Similarly, rows 6 and 7 indicate the performance of SI models trained and tested
with the corresponding speech (i.e., matched condition). From the results shown in
Table 6.2, we can observe that performance of SI system is increased by 3–4 % in
case of coded and cellular speech by using proposed method. Slight improvement
is observed in clean case as well by using proposed method. By using proposed
method under matched condition, performance of SI system in case of GSM coded
and cellular speech is comparable with clean speech case (see columns 3, 4, and 7 of
Table 6.2). Significant improvement is observed in the performance of SI system in
case of CELP and MELP coded speech (see columns 5 and 6 of Table 6.2) by using
proposed method. From this study, it is observed that speaker-specific information
present in steady vowel segments of speech is not much affected with coding.

6.2 Nonuniform Time Scale Modification Using Instants
of Significant Excitation and Vowel Onset Points

The task of time scale modification (TSM) is to change the rate of speech as per
requirement. In [16], authors have presented a nonuniform time scale modification
method, where consonant and transition regions of speech are kept unaltered, and
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only vowel and pause segments are modified according to desired speaking rate [16].
In this method, vowel and pause regions are modified uniformly for fast speech
as well as slow speech. In view of the production constraints of different vowel
segments, all types of vowel segments may not expand or compress uniformly for
different speaking rates. Therefore, in this work duration analysis is carried out
for five basic vowel segments (a, i, e, u, and o) in the context of fast and slow
speech [17].

In this section, the proposed nonuniform TSM method is discussed in detail.
The proposed method retains the salient features of [16] and further improves the
quality of speech by varying the durations of vowel segments in nonuniform manner.
The goal of the proposed method is to identify different speech segments (i.e.,
consonant, transition, vowel, and pause) and vary the duration of each segment as
per the requirements of slow and fast speaking rates of speech. Rest of the section
is organized as follows: Duration analysis of five basic vowel groups for fast and
slow speech is discussed in Sect. 6.2.1. Determination of different speech segments
using VOPs is discussed in Sect. 6.2.2. In Sect. 6.2.3, the proposed nonuniform
TSM method is described. Section 6.2.4 presents the performance of the proposed
nonuniform TSM.

6.2.1 Duration Analysis of Vowels in Fast and Slow Speech

In [16], authors have conducted the duration analysis for consonant, transition,
pause, and vowel segments for different speaking rates. The observations from
that study are (1) durations of vowel and pause segments vary with respect to
speaking rate and (2) durations of consonant and transition segments remain same
for different speaking rates. In this study durations of five basic vowel categories are
analyzed for fast and slow speech. Normal, fast, and slow speech data is recorded
by five male and five female professional radio artists of All India Radio (AIR)
station, Varanasi, India. Five Hindi sentences were chosen for recording, where the
number of vowel segments in each of the five basic categories (a, i, e, u, and o)
is approximately same. Speech data is collected in 5 different sessions. In each
session, speech data is collected in normal, fast and slow speaking modes by
each of the speakers. In this work, fast and slow speech corresponds to duration
modification factors of 0.5 and 2, respectively. Altogether, about 250 sentences
(5 sentences � 5 sessions � 10 speakers) are collected for each of the speaking
rates. Durations of the five basic vowels (a, i, e, u, and o) are analyzed manually,
for normal, fast, and slow speaking rates. The variation in the durations of vowels
with respect to fast and slow speaking rates is analyzed using deviation (Di ), given
by Di D xi �yi

yi
� 100, where, xi and yi indicate durations of vowel segments for

varying (fast or slow) and normal speaking rates, respectively. Table 6.3 shows the
variations in durations of different vowel categories from different speakers for fast
and slow speech with respect to normal speech. Column 1 indicates the speakers
considered in this study. Among 10 speakers, Spk1 to Spk5 are male speakers and
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Table 6.3 Percentage deviation in the durations of vowel regions under
fast and slow speaking rates

% Deviation from reference duration

Speaker Slow Fast

identity a i e u o a i e u o

Spk1 149 79 125 81 118 44 66 46 62 54
Spk2 140 71 130 75 112 39 72 42 61 52
Spk3 142 68 126 74 118 41 63 46 57 49
Spk4 153 69 120 80 116 37 62 47 56 49
Spk5 147 73 135 71 122 45 73 44 58 51
Spk6 149 66 132 81 110 44 68 46 61 48
Spk7 140 78 127 82 109 38 65 47 59 54
Spk8 155 76 131 81 121 42 61 44 63 55
Spk9 141 70 122 70 118 43 66 47 62 53
Spk10 150 71 121 74 112 45 72 44 64 51
Average 146 72 127 77 115 42 67 45 60 52
deviation

Spk6 to Spk10 are female speakers. Columns 2–6 and 7–11 show the deviations
in durations of vowel segments for slow and fast speaking rates, respectively. Last
row of the table indicates the average deviations in durations of vowel segments for
slow and fast speaking rates. The deviations for fast and slow speaking rates are
derived with reference to normal speaking rate. The +ve and �ve signed numbers
in columns 2–6 and 7–11 indicate expansion and compression of vowel segment
durations for slow and fast speaking rates with reference to normal speaking rate.

From the results, it is observed that the variation in durations of vowels is not
same across five categories. The variability in vowel duration does also depend
on speaker. While quantifying the speaker influence on the variability in vowel
duration, about 6.6 % and 4 % deviations from the mean are observed for slow
and fast speaking rates. From this limited study, we have not observed any specific
gender influence in the variation of vowel duration. Expansion or compression of
vowel depends on several factors such as (1) context (previous and following sound
units), (2) position of the vowel in the word, and (3) position of the word in the
phrase. In this study, we have noted the following observations: (1) among preceding
and following sound units, following sound unit has more influence on the vowel
duration during both expansion and compression of speech, (2) vowels at the final
position of the word have higher expansion and compression factors compared to
initial and middle positions, (3) vowels present in the initial words of the phrases
have higher expansion factors compared to final words of the phrases, (4) vowels
present in final words of the phrases have higher compression factors compared
to initial and middle words during compression of speech. These observations are
noted from the study on small database mentioned above, and they indicate the
need for further analysis on larger database, with sufficient number of speakers and
sentences to analyze the role of speaker variability, positional and contextual factors
mentioned above.
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For low speaking rates (slow speech), the vowels produced due to wide opening
of oral cavity (i.e., a, e, and o) have expanded more compared to vowels produced
due to narrow opening (i.e., i and u) of oral cavity (see column 2–6 of Table 6.3). On
the other hand for high speaking rates (fast speech), vowels produced due to narrow
opening of oral cavity have more compressed compared to the vowels produced
with wide opening of oral cavity (see column 7–11 of Table 6.3). The amount of
expansion or compression of the vowel is observed to be related to the amount of
opening of oral cavity for the production of that particular vowel. The results of the
above duration analysis are also seemed to be intuitive that the vowels with wide
opening of oral cavity need less effort for expansion of their duration compared to
their counterparts. Similarly, vowels with narrow opening of oral cavity need less
effort for their compression, compared to their counterparts. The above hypothesis
is more appropriate for the continuous speech having the sequence of simple CV
units. In case of syllables with consonant clusters (CCV, CCCV, CVC, CCVC,
and CCVCC), lot of coarticulation effects are involved in the variability of vowel
durations. In Indian context, most of the languages are dominated by simple CV
units [54], and hence the above hypothesis based on production constraints may be
valid. Therefore, for generating the high quality speech for different speaking rates,
the TSM method should modify different vowel segments by different modification
factors as observed in the above analysis.

6.2.2 Determination of Different Speech Segments

In the proposed method, time scale modification is performed using instants of
significant excitation. For performing nonuniform TSM, at the first step, the speech
signal is divided into different speech segments, such as consonant, transition,
vowel, and pause. In this work, VOPs and instants of significant excitation are used
for the detection of different speech segments. VOPs are determined using proposed
two-stage method (see Sect. 5.1), and ISE or epochs are extracted using ZFF method
(see Sect. 3.2.1).

In Indian languages most of the characters are of the type CV or CCV (where C
refers to consonant and V refers to vowel). Vowel onset point can be interpreted as
the junction point between the consonant and vowel of a CV unit. The region to the
left of the VOP is considered as the consonant region, and to the right of the VOP as
the vowel region. In the vowel portion, a small region following the VOP is treated
as transition region. After determining the vowel onset point, 30 ms to the left of
the VOP is marked as the consonant region, and 30 ms to the right of the VOP is
marked as the transition region. Here, we have chosen 30 ms for marking consonant
and transition segments based on our previous studies [16]. The beginning of the
steady vowel region is marked as 30 ms after the VOP (i.e., end point of transition
region). In the proposed TSM method, the durations of consonant and transition
regions are unaltered and vowel and pause regions are modified.
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6.2.3 Proposed Method for Time Scale Modification

In the proposed time scale modification (TSM) method vowel segments will be
modified by different modification factors based on their category, and pause
segments are modified by uniform manner based on expansion or compression of
speech. Consonant and transition segments of speech are unaltered during proposed
TSM. For identifying various speech regions, VOPs are used as anchor points. The
performance of the proposed TSM mainly depends on the accuracy of determining
different speech regions such as consonant, transition, vowel, and pause. With
accurate VOP locations, consonant and transition regions can be marked accurately.
In this study, consonant and transition regions are marked as 30 ms speech segments,
before and after each VOP, respectively. Vowel regions are marked by using VOPs
and epoch intervals. Beginning of the vowel can be marked by using VOP, with an
instant placed 30 ms after the VOP. End point of the vowel can be marked by using
the epoch intervals and the location of the following VOP. If the vowel is followed
by an unvoiced or pause segment, then end point of the vowel can be marked by
using the uniformity of successive epoch intervals. As long as vowel segment is
present, successive epoch intervals are uniform, and the moment vowel terminates
with pause or unvoiced segment, successive epoch intervals are nonuniform. The
end point of the vowel is marked as the epoch location, where uniformity in the
successive epoch intervals breaks down. If the vowel is followed by voiced speech
segment, uniformity of successive epoch intervals continues till the next VOP. In this
case end point of the vowel is marked as an instant 30 ms before the next VOP.
After marking vowel, consonant, and transition segments, the remaining segments
of speech are treated as pause segments. During pause segments, the energy is very
less and the epoch intervals are completely random.

After identifying different speech segments (i.e., vowel, pause, consonant, and
transition), vowel classification is performed for each of the vowel segments. In this
study, we have considered only five basic vowel classes (a, i, e, u, and o). Three state
hidden Markov models (HMMs) are used for the classification of vowel segments.
Mel-frequency cepstral coefficients are used as feature vectors. Performance of the
vowel classification system is observed to be more than 97 %. After identifying the
vowel category, the duration of the vowel is modified according to the observations
noted in Sect. 6.2 (see Table 6.3). For generating slow speech, vowels a, i, e, u,
and o need to modify by 2.46, 1.72, 2.27, 1.77, and 2.15 modification factors,
respectively, and for fast speech the modification factors will be 0.42, 0.67, 0.45,
0.60, and 0.52. The modification factors mentioned above correspond to slow and
fast speech, where the original duration of speech is approximately doubled and
halved, respectively. For the modification of speech by desired modification factor,
the vowel modification factors can be derived by scaling the above factors as per
the requirement. With the proposed nonuniform TSM method, slight deviation is
observed between the expected duration and the actual duration obtained after the
modification. This deviation is due to modification of different speech segments by
different factors and also depends on the frequency of occurrence of specific vowel
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Fig. 6.5 Block diagram of proposed nonuniform time scale modification system

segments. In the present study, the deviation between actual and expected durations
is found to be less than 3 %, with respect to expected duration. The block diagram
of the proposed nonuniform TSM system is shown in Fig. 6.5.

In this work, epoch-based method is used for modification of vowel and pause
durations [59,63]. The basic steps in epoch-based method are as follows: (1) Derive
the epoch sequence for the given vowel or pause segment. (2) Derive the new
epoch sequence according to the modification factor. (3) Modify the speech signal
according to the new epoch sequence. Here, each epoch is associated with time,
epoch interval and speech signal correspond to that epoch interval. For time scale
expansion, the new epoch sequence consists of insertion of some new epochs,
whereas for time scale compression the new epoch sequence consists of deletion
of some epochs from the original epoch sequence.

Generation of new epoch sequence for time scale modification is illustrated in
Fig. 6.6 for a duration increase by ˇ = 1.5 times, and in Fig. 6.7 for a duration
decrease by ˇ = 0.75 times. For generating the desired epoch interval plot for time
scale modification, the original epoch interval plot (solid lines in Figs. 6.6 and 6.7)
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Fig. 6.6 Generation of new sequence of epochs for the modification of duration by a factor 1.5

is resampled according to the desired modification factor. The desired epoch interval
plot is shown by the dotted curve. The modified (new) epoch sequence is generated
as follows. Starting with the point A in Fig. 6.6, the epoch interval value is obtained
from the dotted curve, and it is used to determine the next epoch instant B. The value
of the next epoch interval at B is obtained from the dotted curve, and this value is
used to mark the next new epoch C. The new epochs generated by this process
are marked as ‘�’ along the x-axis in Fig. 6.6. The new epochs are also marked
(‘�’) on the desired epoch interval plot along with the mapped original epochs (‘ı’).
Those mapped original epochs nearest to the new epochs are shown along the x-axis
by circles (‘ı’). In a similar manner, the new epochs are generated for the case of
decrease of duration and are shown in Fig. 6.7. Here, for describing the epoch-based
method, we have considered speech segment of 1,400 samples, with two voiced
segments (1–400 and 900–1,400 samples) and a pause segment (400–900 samples)
(see Figs. 6.6 and 6.7). It can be noted from Figs. 6.6 and 6.7 that epoch-based
method does not discriminate voiced and pause segments for performing TSM.

After obtaining the modified epoch sequence, the next step is to generate the
speech signal according to the modified epoch sequence. For this, the original epoch
(represented by a ‘ı’) closest to the modified epoch (‘�’) is determined from the
sequence of ‘ı’ and ‘�’ along the desired epoch interval curve (dotted curves in
each of the Figs. 6.6–6.7). As mentioned earlier, with each original epoch, i.e., the
circles (‘ı’) in the plots, there is an associated speech signal of length equal to the
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Fig. 6.7 Generation of new sequence of epochs for the modification of duration by a factor 0.75

Table 6.4 Steps for the proposed time scale modification method

1. Derive the epochs from speech signal using zero frequency filter method
2. Derive the vowel onset points from speech signal using multiple evidences derived

from Hilbert envelope of LP residual, spectral peaks, and modulation spectrum
3. Improve the accuracy of derived VOPs using the knowledge of epoch intervals

present in vowel region
4. Mark the consonant and transition regions as 30 ms speech segments before and

after the location of each VOP
5. Mark the vowel and pause segments using VOPs and epoch intervals
6. After detecting the vowel segments, classify them using hidden Markov models
7. Vowel segments are modified by specific modification factors, depending on their

category by using epoch-based method
8. Pause segments are modified using epoch-based method
9. Concatenate the unmodified consonant and transition segments and modified vowel and

pause segments in the sequence present in the original speech signal

value of the original epoch interval for that epoch. The speech samples are placed
starting from the corresponding new epoch. In this way, speech signal is generated
for the new epoch sequence corresponding to slow or fast speech. The sequence of
steps in the proposed TSM method is given in Table 6.4.
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Table 6.5 Ranking used for
judging the quality and
perceptual distortion of the
speech signal modified by
different modification factors

Rating Speech quality Level of perceptual distortion

1. Unsatisfactory Very annoying and objectionable
2. Poor Annoying but not objectionable
3. Fair Perceptible and slightly annoying
4. Good Just perceptible but not annoying
5. Excellent Imperceptible

6.2.4 Evaluation of the Proposed Nonuniform Time Scale
Modification Method

Performance of the proposed epoch-based time scale modification method is
compared with the well-known time-domain pitch synchronous overlap-and-
add (TD-PSOLA) method using perceptual evaluation. The reason for choosing
TD-PSOLA-based TSM method for comparison is that TD-PSOLA also performs
time scale modification directly on speech signal using pitch synchronous markers
similar to proposed method. In this work, performance of the proposed epoch-
based method and TD-PSOLA-based method is analyzed by carrying out TSM in
following manner: (1) uniform TSM (all speech segments are modified uniformly
according to desired modification factor), (2) nonuniform TSM-1 (vowel and
pause segments are modified uniformly as per the desired modification factor, and
consonant and transition regions are preserved from modification [16]), and (3)
nonuniform TSM-2 (vowel segments are modified by specific modification factors
based on their category, pause segments are modified by uniform manner, and
consonant and transition regions are preserved from modification). The main aim
of these studies is to analyze the effectiveness of the proposed nonuniform TSM
compared to uniform TSM using well-known TSM methods.

Perceptual evaluation was carried out by conducting subjective listening tests
with 30 research scholars in the age group of 25–40 years. The subjects have
sufficient speech knowledge for proper assessment of the speech signals, as all
of them have taken a full semester course on speech technology. Five sentences
were chosen to perform the test. Speech signals were derived for the fast and slow
speaking rates using the modification factors of 0.5, 0.75, 1.25, 1.5, 1.75, and 2.
Epoch and TD-PSOLA methods are used to modify the speech signals by the
above-mentioned modification factors using uniform and nonuniform modification
schemes. The tests were conducted in the laboratory environment by playing the
speech signals through headphones. Test speech samples are played to subjects in
a random fashion, by hiding the details of method of TSM. In the test, the subjects
were asked to judge the perceptual distortion and quality of the speech for fast
and slow speech samples. Subjects were asked to assess the quality and perceptual
distortion on a 5-point scale for each of the sentences obtained by both the methods.
The 5-point scale for representing the quality of speech and the distortion level is
given in Table 6.5 [122].
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The Mean Opinion Scores (MOSs) for fast and slow speech samples derived
from epoch and TD-PSOLA methods using uniform and nonuniform TSM schemes
are given in Table 6.6. The level of confidence (LOC) is computed for the
difference of each pair of MOSs [123] derived from epoch and TD-PSOLA methods
under different modification schemes. Results of perceptual evaluation show that
performance of epoch-based method is slightly better compared to TD-PSOLA
method under uniform and nonuniform modification schemes. This may be due
to retaining the original speech samples in each epoch interval (pitch cycle) as it
is during TSM in epoch-based method, whereas in case of TD-PSOLA, TSM is
performed by overlapping and adding the adjacent speech segments. During this
process sometimes phase mismatch between segments may result slight distortion.
But, the difference in the MOSs between the methods is not statistically significant.

From the observation of MOSs between uniform and nonuniform TSM schemes,
the performance of nonuniform schemes is found to be superior compared to
uniform TSM. Among nonuniform TSM schemes, performance of the proposed
nonuniform TSM (nonuniform TSM-2) is better compared to nonuniform TSM-1.
At lower modification rates both uniform and nonuniform schemes produce good
quality speech. When the modification factors are less than 0.75 for compression,
and more than 1.5 for expansion, nonuniform schemes produce better quality of
speech compared to uniform TSM scheme. At the extreme cases (modification
factor 2 for expansion and 0.5 for compression) proposed nonuniform TSM scheme
is better compared to nonuniform TSM-1 scheme. The above observations are also
verified by using hypothesis testing.

Table 6.7 shows the level of confidence for the significance of difference between
pairs of MOSs for the speech samples derived from epoch-based method with
uniform and nonuniform TSM schemes. Columns 2 and 3 indicate LOC values for
the pairs of MOSs obtained from uniform TSM and proposed nonuniform TSM
and nonuniform TSM-1 and proposed nonuniform TSM methods, respectively. It is
observed that LOC values in column 2 are highly compared to LOC values in
column 3. This shows that the improvement in the performance of the proposed
nonuniform TSM is more significant with respect to uniform TSM compared to
nonuniform TSM-1. On the whole, from the overall observation we can conclude
that the proposed nonuniform TSM method gives intelligible and better quality
speech. The superior performance of the proposed method is due to nonuniform
modification of different speech segments and accurate detection of various speech
segments with the help of ISE and VOPs.

6.3 Summary

In this chapter, we have addressed the problem of speaker identification in mobile
environment, paying attention to distortion due to speech coding. The effect of
speech coding on the performance of speaker identification system is studied
by using AANN models. The performance of speaker identification system was
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Table 6.7 Confidence values for fast and slow speech signals derived by epoch-based method
using uniform and nonuniform TSM schemes

Speaking rate Level of confidence in (%) for the significance of difference in MOSs

(modification factor) Uniform TSM Nonuniform TSM-1

Fast (0.5) > 99:5 > 99:5

Fast (0.75) > 97:5 > 95:0

Slow (1.25) > 95:0 < 90:0

Slow (1.5) > 97:5 > 95:0

Slow (1.75) > 99:5 > 97:5

Slow (2.0) > 99:5 < 99:0

evaluated using microphone, coded and cell phone speech data. From the results
it is evident that performance of speaker identification system is decreased with
speech coding, the performance is observed to be improving in matched condition.

Proposed speaker identification system developed by the features from steady
vowel speech segments has shown better performance compared to features from the
entire voiced speech. This is mainly due to the presence of crucial speaker-specific
information in the steady vowel segments of speech even after coding. Steady
vowel segments were determined by using the knowledge of vowel onset points and
epochs. From the results we observed that performance of speaker identification
system under GSM coders and cellular speech is comparable with clean speech by
using proposed method. Significant improvement in SI is observed in case of CELP
and MELP coders by using proposed method.

A nonuniform time scale modification method is proposed for producing more
intelligible and natural speech for different speaking rates. In this method, speech
signal is processed directly using instants of significant excitation for maintaining
the original pitch variations as well as varying the durations of different speech
segments in nonuniform manner. The knowledge of vowel onset points and instants
of significant excitation is used for detecting different speech segments as well
as modifying their durations by different modification factors. The effectiveness
of the proposed method depends mainly on the accuracy in detecting the instants
of significant excitation and the locations of the vowel onset points, because the
detection and modification of different speech segments are carried out using the
epochs and VOPs as anchor points. Subjective tests indicate that the performance of
the proposed nonuniform TSM method is superior compared to existing nonuniform
and uniform TSM methods. By exploiting the duration characteristics of various
speech units with respect to their linguistic context and production constraints at
different speaking rates may improve the quality of speech further, for different
speaking rates.



Chapter 7
Summary and Conclusions

Abstract This book discusses some important issues in speech processing in
the context of mobile environment. The major challenges in speech processing
in mobile environment are: varying background conditions, speech coding and
transmission channel errors. This book suggests signal processing methods to
determine some crucial events in speech, which are robust to above-said adverse
conditions. In this work, authors have proposed vowel onset points (VOPs) as
crucial events in speech, which are robust to speech coding and background noisy
environments. By using VOPs as anchor points, speech signals are processed in
the presence of coding and noisy environments for developing the speech systems
such as speech recognition, speaker recognition, and speaking rate modification.
From the results, it is grossly observed that the performance of developed speech
systems is superior compared to systems developed without using the knowledge
of VOPs. This chapter summarizes the findings of the present work, highlights the
major contributions, and flashlights on the directions for future work.

7.1 Summary of the Present Work

• VOP detection from coded speech: Existing VOP detection methods are suffering
with low detection accuracy [15,93,124]. Therefore, we have proposed a method
for accurate detection of VOP for clean and coded speech [87]. The proposed
VOP detection method is based on the spectral energy in 500–2,500 Hz frequency
band of the speech segments present in the glottal closure region. The reason for
choosing the spectral energy in the 500–2,500 Hz band is that the vowel energy
in this band is much higher than the consonant. Effect of speech coding on the
performance of VOP detection was studied for GSM FR, GSM EFR, CELP,
and MELP coding techniques. From this study we observed that reduction in
VOP detection performance was not significant in case of GSM coders, and
significant in case of CELP and MELP coders. VOP detection methods based
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on vocal tract system characteristics have performed better compared to other
methods in the presence of coding. This is because speech coders preserve the
vocal tract characteristics of the speech signal. From the performance evaluation,
we have observed that proposed VOP detection method was superior compared
to existing methods under both clean and coded conditions. It is also observed
that performance of proposed VOP detection method is degrading, as bit rate
of coders decreasing. But, this degradation is less in proposed VOP detection
method comparing to existing methods.

• VOP detection from noisy speech: Performance of the VOP detection methods
under background noise was studied by using white and vehicle noises at
different SNR values [98]. The performance of existing VOP detection methods
is significantly affected due to spurious VOPs at low SNR values. Therefore,
we have proposed a VOP detection method based on spectral energy at formant
frequencies of the speech segments present in glottal closure region [94]. Here,
we considered spectral energy at formant frequencies instead of 500–2,500 Hz
band energy, because spectral energy in 500–2,500 Hz band may not be robust
under noise. Performance of the proposed method was observed to be superior
compared to existing methods, and spurious VOPs were also reduced signifi-
cantly. The improved performance of the proposed method is due to exploiting
the high SNR characteristics of speech present at the formant frequencies in the
glottal closure phase.

• Recognition of CV units in the presence of coding: The effect of speech coding
on recognition of CV units was studied for GSM FR, GSM EFR, CELP, and
MELP coding techniques [99]. From this study, it was observed that coding has
significant effect on CV recognition performance. We have proposed a two-stage
hybrid SVM-HMM-based approach for developing the robust CV recognition
system [100]. In the first-stage of proposed CV recognition approach, vowel
was recognized, and in the second-stage, consonant was recognized. At both
the stages, the combination of complimentary evidences from SVM and HMM
was used to enhance the recognition performance. Performance of the proposed
CV recognition method was evaluated using CV utterances from isolated CV
database and Telugu broadcast database. Performance of the proposed CV
recognition approach was compared with existing single- and two-stage SVM,
HMM-based systems. Performance of the proposed CV recognition approach
has shown significant improvement compared to existing approaches in the
presence of both clean and coded conditions. The improved performance of the
proposed method may be due to (1) combination of complimentary evidences
from HMM and SVM and (2) accurate VOP locations derived from the proposed
method for selection of appropriate features for developing the CV recognition
system. From the results it was observed that the effect of GSM coders on CV
recognition performance was almost nullified by using the proposed method
under matched condition. In the case of CELP and MELP coders, the CV
recognition performance was significantly improved by using proposed method.
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• Recognition of CV units in the presence of background noise: The effect
of background noise on CV recognition was studied by using proposed CV
recognition system for white and vehicle noise cases [24]. Results indicate that
noise has significant effect on CV recognition performance. The proposed CV
recognition approach has shown improvement in the recognition performance
compared to existing methods [112]. Further, the performance of CV recognition
system under background noise was improved by using combined temporal
and spectral processing-based preprocessing methods. From this study, it was
observed that combined TSP method provides relatively better performance
compared to individual temporal or spectral methods. It is because of the fact
that merits of both temporal and spectral processing methods are combined in
combined TSP method.

• Spotting and recognition of CV units from continuous speech: The major issues
in continuous speech recognition by spotting CV units are accurate detection of
VOPs and labeling the regions around these VOPs. We have proposed two-stage
VOP detection method for the accurate detection of VOPs [104]. At the first stage
of the proposed method, VOPs were detected by combining the evidence from
excitation source, spectral peaks, and modulation spectrum. At the second stage
of the proposed method, the detected VOPs at the first stage were verified and
corrected using the uniform epoch intervals present in the vowel region. Proposed
VOP detection method has shown to be useful in reducing the number of missing
and spurious VOPs significantly, compared to existing methods. The spotted CV
units were recognized using a proposed two-stage CV recognition system. This
study was extended to coded and noisy speech, and observed the similar result
[113].

• Speaker identification in the presence of coding using VOPs: The effect of speech
coding on the performance of speaker identification system was studied by
using AANN models [116, 119]. The developed speaker identification system
was evaluated using microphone, coded and cell phone speech data. From the
results we have observed that coding has significant effect on SI performance.
Performance of SI system was improved by using the features from the steady
vowel speech segments [114, 115]. In this work, steady vowel segments were
identified using VOPs.

• Nonuniform time scale modification using instants of significant excitation and
vowel onset points: We have proposed a nonuniform time scale modification
method for producing more intelligible and natural speech using accurate ISE and
VOPs [17]. In the proposed TSM method, speech signal was processed directly
using ISE for maintaining the original pitch variations as well as varying the
durations of different speech segments in nonuniform manner. In the proposed
TSM method vowel segments were modified by different modification factors
based on their category, and pause segments were modified uniformly as per the
desired modification factor. The modification factors associated with different
vowel segments for slow and fast speech were based on their production and
articulatory constraints. Consonant and transition segments of speech were
unaltered during proposed TSM. Proposed two-stage VOP detection method
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was used for determining different segments of the speech [104]. From the
subjective tests we observed that the performance of the proposed nonuniform
TSM method was superior compared to existing nonuniform and uniform time
scale modification methods [17, 59, 63].

7.2 Contributions of the Present Work

The important contributions of the research work reported in this book are as given
below:

• Methods for the detection of VOPs for coded and noisy speech are proposed.
• Two-stage hybrid approach is proposed for recognition of CV units.
• Two-stage VOP detection method is proposed for spotting CV units from

continuous speech.
• Combined temporal and spectral preprocessing methods are explored to improve

the performance of CV recognition system under background noise.
• Improved speaker identification system in mobile environment is proposed using

VOPs.
• A nonuniform time scale modification method using VOPs and ISEs is proposed

for producing more intelligible and natural speech.

7.3 Directions for Future Work

• In this work, the effect of speech coding and noisy conditions is analyzed.
Further, the effect of channel impairments on speech systems needs to be studied.

• Speech coding in the presence of background noise imposes an additional
challenge to speech systems in mobile environments. The coding techniques
designed based on speech production characteristics may affect due to noise.
Therefore, the effect of coding in the presence of noise needs to be analyzed
critically for building robust speech systems in mobile environments.

• In the proposed CV recognition approach, CV units are divided into subgroups
based on vowel identity to improve the recognition performance of CV units.
Further division of CV units based on place of articulation and manner of
articulation may enhance the CV recognition performance. Hence, there is a need
to explore the characteristics of place and manner of articulations of sound units.

• In this work, we analyzed the effect of speech coding and background noise con-
ditions on consonant–vowel recognition. Further, analysis needs to be extended
for automatic speech recognition in Indian languages.

• Features extracted from steady vowel region may enhance the performance
of speaker identification under background noise. Hence, methods need to be
explored for the determination of steady vowel region from noisy speech.
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• In this work, we explored spectral (MFCC) features for building speech systems.
Combination of excitation or prosodic features with spectral features may
enhance the recognition performance of speech systems in adverse conditions.
Hence, analysis needs to be extended by using excitation source and prosodic
features.

• The effectiveness of proposed VOP detection and CV recognition methods needs
to be analyzed further for new and upcoming coding standards.

• The analysis of proposed methods needs to be extended for voice over IP
technology and Internet-based speech paradigm.

• The proposed nonuniform time scale modification modifies the vowel segments
based on their production and articulatory constraints. The performance may be
further improved by incorporating coarticulation and pause characteristics of fast
and slow speech.

• In this work, different regions of speech such as consonant and transition
segments are measured as fixed duration segments with respect to VOPs.
Appropriate methods need to be developed for accurate detection of consonant
and transition segments based on their characteristics.



Appendix A
MFCC Features

The MFCC feature extraction technique basically includes windowing the signal,
applying the DFT, taking the log of the magnitude, and then warping the frequencies
on a Mel scale, followed by applying the inverse DCT. The detailed description of
various steps involved in the MFCC feature extraction is explained below.

1. Pre-emphasis: Pre-emphasis refers to filtering that emphasizes the higher fre-
quencies. Its purpose is to balance the spectrum of voiced sounds that have a
steep roll-off in the high frequency region. For voiced sounds, the glottal source
has an approximately �12 dB/octave slope [101]. However, when the acoustic
energy radiates from the lips, this causes a roughly C6 dB/octave boost to the
spectrum. As a result, a speech signal when recorded with a microphone from a
distance has approximately a �6 dB/octave slope downward compared to the true
spectrum of the vocal tract. Therefore, pre-emphasis removes some of the glottal
effects from the vocal tract parameters. The most commonly used pre-emphasis
filter is given by the following transfer function:

H.z/ D 1 � bz�1 (A.1)

where the value of b controls the slope of the filter and is usually between 0.4
and 1.0 [101].

2. Frame blocking and windowing: The speech signal is a slowly time-varying or
quasi-stationary signal. For stable acoustic characteristics, speech needs to be
examined over a sufficiently short period of time. Therefore, speech analysis
must always be carried out on short segments across which the speech signal is
assumed to be stationary. Short-term spectral measurements are typically carried
out over 20 ms windows and advanced every 10 ms [125, 126]. Advancing the
time window every 10 ms enables the temporal characteristics of individual
speech sounds to be tracked and the 20 ms analysis window is usually sufficient
to provide good spectral resolution of these sounds, and at the same time
short enough to resolve significant temporal characteristics. The purpose of the
overlapping analysis is that each speech sound of the input sequence would be
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approximately centered at some frame. On each frame a window is applied to
taper the signal toward the frame boundaries. Generally, Hanning or Hamming
windows are used [101]. This is done to enhance the harmonics, smooth the
edges, and reduce the edge effect while taking the DFT on the signal.

3. DFT spectrum: Each windowed frame is converted into magnitude spectrum by
applying DFT.

X.k/ D
N �1X

nD0

x.n/e
�j 2�nk

N I 0 � k � N � 1 (A.2)

where N is the number of points used to compute the DFT.
4. Mel-spectrum: Mel-Spectrum is computed by passing the Fourier transformed

signal through a set of band-pass filters known as mel-filter bank. A mel is a unit
of measure based on the human ears perceived frequency. It does not correspond
linearly to the physical frequency of the tone, as the human auditory system
apparently does not perceive pitch linearly. The mel scale is approximately a
linear frequency spacing below 1 kHz, and a logarithmic spacing above 1 kHz
[127]. The approximation of mel from physical frequency can be expressed as

fmel D 2595 log10

�
1 C f

700

�
(A.3)

where f denotes the physical frequency in Hz, and fmel denotes the perceived
frequency [125].

Filter banks can be implemented in both time domain and frequency domain.
For MFCC computation, filter banks are generally implemented in frequency
domain. The center frequencies of the filters are normally evenly spaced on
the frequency axis. However, in order to mimic the human ears perception,
the warped axis according to the nonlinear function given in Eq. (A.3) is
implemented. The most commonly used filter shaper is triangular, and in some
cases the Hanning filter can be found [101]. The triangular filter banks with mel-
frequency warping is given in Fig. A.1.

The mel spectrum of the magnitude spectrum X.k/ is computed by multiply-
ing the magnitude spectrum by each of the triangular mel weighting filters.

s.m/ D
N �1X

kD0

h
jX.k/j2 Hm.k/

i
I 0 � m � M � 1 (A.4)

where M is the total number of triangular mel weighting filters [128,129]. Hm.k/

is the weight given to the kth energy spectrum bin contributing to the mth output
band and is expressed as:
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(A.5)

with m ranging from 0 to M � 1.
5. Discrete Cosine Transform (DCT): Since the vocal tract is smooth, the energy

levels in adjacent bands tend to be correlated. DCT applied to the transformed
mel frequency coefficients produces a set of cepstral coefficients. Prior to com-
puting DCT the mel spectrum is usually represented on a log scale. This results
in a signal in the cepstral domain with a que-frequency peak corresponding to
the pitch of the signal and a number of formants representing low que-frequency
peaks. Since most of the signal information is represented by the first few MFCC
coefficients, the system can be made robust by extracting only those coefficients
ignoring or truncating higher order DCT components [101]. Finally, MFCC is
calculated as [101]

c.n/ D
M�1X

mD0

log10 .s.m// cos

�
�n.m � 0:5/

M

�
I n D 0; 1; 2; : : : ; C � 1

(A.6)
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where c.n/ are the cepstral coefficients and C is the number of MFCCs.
Traditional MFCC systems use only 8–13 cepstral coefficients. The zeroth
coefficient is often excluded since it represents the average log-energy of the
input signal, which only carries little speaker-specific information.

6. Dynamic MFCC features: The cepstral coefficients are usually referred to as
static features, since they only contain information from a given frame. The extra
information about the temporal dynamics of the signal is obtained by computing
first and second derivatives of cepstral coefficients [130–132]. The first order
derivative is called delta coefficients, and the second order derivative is called
delta–delta coefficients. Delta coefficients tell about the speech rate, and delta–
delta coefficients provide information similar to acceleration of speech. The
commonly used definition for computing dynamic parameter is [130]

�cm.n/ D

TP
iD�T

ki cm.n C i/

TP
iD�T

ji j
(A.7)

where cm.n/ denotes the mth feature for the nth time frame, ki is the i th weight,
and T is the number of successive frames used for computation. Generally T

is taken as 2. The delta–delta coefficients are computed by taking the first order
derivative of the delta coefficients.



Appendix B
Speech Coders

B.1 Global System for Mobile Full Rate Coder
(ETSI GSM 06.10)

GSM full rate coder provides 13 kbps bit rate using regular pulse excitation and
long-term prediction (RPE-LTP) techniques. LTP captures the long-term correla-
tions present in the speech signal [133]. GSM full rate speech encoder takes its
input as a 13-bit uniform pulse code modulation (PCM) signal sampled at 8 kHz.
The input PCM signal is processed on a frame-by-frame basis, with a frame size of
20 ms (160 samples). Bits allocation of GSM full rate coder is shown in Table B.1.
Full rate GSM was the first digital speech coding standard used in the GSM digital
mobile phone system.

B.2 GSM Enhanced Full Rate Coder (ETSI GSM 06.60)

GSM enhanced full rate (EFR) coder is developed to improve the performance
of GSM full rate coder under severe error conditions. GSM EFR coder provides
12.2 kbps bit rate by using algebraic code excited linear prediction (ACELP)
scheme. It operates on 20 ms frames of speech, sampled at 8 kHz. GSM EFR coder
is compatible with highest adaptive multi-rate (AMR) coder. Bits allocation of GSM
EFR coder is shown in Table B.2.

B.3 Codebook Excited Linear Prediction (CELP FS-1016)

CELP is based on the concept of linear predictive coding (LPC). LPC estimates
the current speech sample by the linear combination of the past speech samples. In
CELP, a codebook of different excitation signals is maintained at the encoder and
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Table B.1 GSM FR (ETSI
GSM 06.10) bits allocation

Parameter to be encoded Number of bits

LPC 36
Pitch period 28
Long term gain D 8
Position 8
Peak magnitude 24
Sample amplitude 156
Total no. of bits per frame 260
Bit rate 13 kbps

Table B.2 GSM EFR (ETSI
GSM 06.60) bits allocation

Parameter to be encoded Number of bits

LPC 38
Pitch period 30
Adaptive code book gain 16
Algebraic code book index 140
Algebraic code book gain 20
Total no. of bits per frame 244
Bit rate 12.2 kbps

Table B.3 CELP (FS-1016)
bits allocation Parameter to be encoded Number of bits

LPC coefficients (10 LSP’s) 34
Pitch prediction 48
Code book 36
Gains 20
Synchronization 1
FEC 4
Frame expansion 1
Total no. of bits per frame 144
Bit rate 4.8 kbps

decoder. The encoder finds the most suitable excitation signal and sends its index to
the decoder, which then uses it to reproduce the signal [133, 134]. Hence the name
codebook excited is suggested to this coder. CELP FS-1016 operates at a bit rate of
4.8 kbps. CELP is a widely used speech coding algorithm, and one of the practical
application of it is in selective mode vocoder (SMV) for CDMA. Bits allocation for
CELP FS-1016 coder is shown in Table B.3.

B.4 Mixed Excited Linear Prediction (MELP TI 2.4 kbps)

MELP utilizes more sophisticated speech production model, with additional param-
eters to capture the underlying signal dynamics with improved accuracy. Excitation
signal is generated by combining the filtered periodic pulse sequence with the
filtered noise sequence [133]. MELP (TI 2.4 kbps) operates at a bit rate of 2.4 kbps.
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Table B.4 MELP (TI
2.4 kbps) bits allocation

Parameter to be encoded Number of bits

LPC coefficients (10 LSP’s) 34
Gain (2 per frame) 8
Pitch and overall voicing 7
Band-pass voicing 5-1
Aperiodic flag 1
Total no. of bits per frame 54
Bit rate 2.4 kbps

Table B.5 Comparison
of speech coders Algorithm

Bit-rate
(kbps) MOS

Complexity
(MIPS)

Frame size
(ms)

PCM 64 4.3 0.01 0
GSM FR 13 3.5–3.9 5–6 20
GSM EFR 12.2 3.8 14 20
CELP 4.8 3.2 16 30
MELP 2.4 3.2 40 22.5

MELP is used in military, satellite, and secure voice applications. Allocation of bits
for MELP coder is shown in Table B.4.

Comparison of speech coders considered in this study in terms of complexity
in million instructions per second (MIPS), mean opinion score (MOS), and input
frame size is shown in Table B.5. We can observe in Table B.5 that as coding rate
decreases complexity increases.

B.5 Degradation Measures

Degradation introduced by speech coding is measured using log-likelihood ratio,
weighted spectral slope measure, and log-spectral distance. They are defined as
follows.

• Log-likelihood ratio (LLR) [135]

LLR D log10

"
axRxaT

x

ayRyaT
y

#
(B.1)

where ax and ay are LP coefficient vectors of the original and coded (degraded)
speech. aT

x and aT
y are transpose of LP coefficient vectors of the original and

coded (degraded) speech. Rx and Ry are autocorrelation matrices of the original
and coded (degraded) speech.

• Weighted spectral slope (WSS) [135]
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Table B.6 Comparison of
quality measures for different
speech coders

Algorithm LLR WSS LSD

GSM FR (ETSI 06.10) 0.17 12.8 0.88
GSM EFR (ETSI 06.60) 0.16 11.9 0.84
CELP (FS1016) 0.54 51.2 1.27
MELP (TI 2.4 kbps) 0.33 37 1.12

The WSS measure is based on auditory model in which 36 overlapping filters
of progressively larger bandwidth are used to estimate the smoothed short-time
speech spectrum

W SS D Kspl .k � Ok/ C
36X

kD1

Wa.k/ŒS.k/ � OS.k/�2 (B.2)

where k, Ok are related to overall sound pressure level of the original and coded
(degraded) utterances. Kspl is a parameter which can be varied to increase overall
performance. Wa.k/ is the weight of each band. S.k/ and OS.k/ are the slopes in
each critical band k for the original and coded (degraded) speech utterances.

• Log-spectral distance (LSD) [135]

LSD D
vuut 1

2�

Z �

��

"
10 log10

P.!/

OP .!/

#2

d!: (B.3)

where P.!/ and OP .!/ are power spectrum of clean and coded (degraded)
speech.

Above quality measures are calculated for different speech utterances from
TIMIT database, and average measures are shown in Table B.6. In Table B.6
column-1 indicates different coders considered in this study; Columns 2–4 indi-
cate the average LLR, WSS, and LSD values, respectively, for different coders.
Results indicate that CELP coder introduces more degradation among the coders
considered.



Appendix C
Pattern Recognition Models

In this work hidden Markov model (HMM), support vector machine (SVM), and
auto-associative neural network (AANN) models are used to capture the pattern
present in features. HMMs are used to capture the sequential information present in
feature vectors for CV recognition. SVMs are used to capture the discriminative
information present in the feature vectors for CV recognition. AANN models
are used to capture the nonlinear relations among the feature vectors for speaker
identification. The following sections briefly describe the pattern recognition models
used in this study.

C.1 Hidden Markov Models

Hidden Markov models (HMMs) are the commonly used classification models in
speech recognition [136]. HMM is a stochastic signal model which is referred
to as Markov sources or probabilistic functions of Markov chains. This model is
an extension to the concept of Markov model which includes the case where the
observation is a probabilistic function of the state. HMM is a finite set of states,
each of which is associated with a probability distribution. Transitions among
the states are governed by a set of probabilities called transition probabilities. In
a particular state an outcome or observation can be generated, according to the
associated probability distribution. It is only the outcome is known and underlying
state sequence is hidden. Hence, it is called a hidden Markov model.

Following are the basic elements that define HMM:

1. N, The number of states in the model,
s D fs1; s2; : : : : : : :sN g

2. M, Number of distinct observation symbol per state,
v D fv1; v2; : : : :vM g
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3. State transition probability distribution A D faij g where

aij D P
�
qtC1 D sj jqt D si

�
; 1 � i; j � N (C.1)

4. Observation symbol probability distribution in state j,
B D f bj .k/ g where

bj .k/ D P
�
vk at t jqt D sj

�
1 � j � N; 1 � k � M (C.2)

5. Initial state distribution ˘ = {˘j } where

˘j D P Œq1 D si � 1 � i � N (C.3)

So, a complete specification of an HMM requires specification of two model
parameters (N and M) , specification of observation symbols, and the specification
of three probability measures A,B,˘ . Therefore HMM is indicated by the compact
notation

� D .A; B; ˘/

Given that state sequence q D .q1q2 : : : qT / is unknown, the probability of
observation sequence O D .o1o2 : : : oT / given the model � is obtained by summing
the probability of over all possible state sequences q as follows:

P.oj�/ D
X

q1;q2;:::;qT

�q1bq1.o1/aq1q2bq2.o2/ : : : saqT �1qT bqT .oT / (C.4)

where �q1 is the initial state probability of q1 and T is the length of observation
sequence.

C.2 Support Vector Machines

A notable characteristic of a support vector machine (SVM) is that the computa-
tional complexity is independent of the dimensionality of the kernel space, where
the input feature space is mapped. Thus, the curse-of-dimensionality is bypassed in
SVM. SVMs have been applied to number of different applications ranging from
handwritten digit recognition to person identification. The results shown in these
studies indicate that SVM classifiers exhibit enhanced generalization performance
[137]. However, intelligent design or choice of kernel function adds to the real
strength of support vector machines. SVMs are designed for two-class pattern
classification. Multiclass (n-class) pattern classification problems can be solved
using a combination of binary (2-class) support vector machines. One-against-the-
rest approach is used for decomposition of n-class pattern classification problem into

n two-class classification problems. The set of training examples
n
f.xi ; k/gNk

iD1

on

kD1



Appendix C Pattern Recognition Models 113
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Optimal hyperplane
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Fig. C.1 Classification
mechanism in support vector
machines

consists of Nk number of examples belonging to the kth class, where the class label
k 2 f1; 2; 3; : : : ; ng. All the training examples are used to construct the SVM for
a class. The SVM for the class k is constructed using the set of training examples

and their desired outputs,
n
f.xi ; yi /gNk

iD1

on

kD1
. The desired output yi for the training

example xi is defined as follows:

yi D
� C1 if xi 2 kth class

�1 otherwise

The examples with yi D C1 are called positive examples and those with yi D
�1 are negative ones. An optimal hyperplane is constructed to separate positive
examples from negative ones. The separating hyperplane (margin) is chosen in such
a way as to maximize its distance from the closest training examples of different
classes. Figure C.1 illustrates the geometric construction of hyperplane for two-
dimensional input space. The support vectors are those data points that lie closest to
the decision surface and therefore the most difficult to classify. They have a direct
bearing on the optimum location of the decision surface. For a given test pattern x,
the evidence Dk.x/ is obtained from each of the SVMs. In the decision logic, the
class label k associated with SVM, which gives maximum evidence, is hypothesized
as the class .C / of the test pattern, that is

C.x/ D argmax.Dk.x//

C.3 Auto-Associative Neural Network Models

AANN models are basically feed-forward neural network (FFNN) models, which
try to map an input vector onto itself, and hence the name auto-association or
identity mapping [117,118]. It consists of an input layer, an output layer, and one or
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more hidden layers. The number of units in the input and output layers is equal to
the dimension of the input feature vectors. The number of nodes in one of the hidden
layers is less than the number of units in either the input or the output layer. This
hidden layer is also known as dimension compression layer. The activation function
of the units in the input and output layers is linear, whereas in case of hidden layers
it is either linear or nonlinear.

A five-layer AANN model with the structure shown in Fig. 6.1 is used in this
study. The structure of network used to capture the higher order relations is 39L 60N
20N 60N 39L, where L refers to linear units and N to nonlinear units. The integer
value indicates the number of units present in that layer. Number of linear elements
at the input layer indicates size of the feature vectors used for developing the models.
The nonlinear units use tanh.s/ as the activation function, where s is the activation
value of that unit. The structure of the network was determined empirically. The
back-propagation learning algorithm is used for adjusting the weights of the network
to minimize the mean squared error. The performance of AANN models can be
interpreted as linear or nonlinear principal component analysis (PCA) or capturing
the distribution of input data [117, 118].

Determining the network structure is an optimization problem. At present there
are no formal methods for determining the optimal structure of a neural network.
The key factors that influence the neural network structure are learning ability of
a network and capacity to generalize the acquired knowledge. From the available
literature, it is observed that five-layer symmetric neural networks with three hidden
layers have been used for different speech tasks. The first and the third hidden
layers have more number of nodes than the input or output layer. Middle layer (also
known as dimension compression layer) contains less number of units. In this type
of network, generally the first and third hidden layers are expected to capture the
local information among the feature vectors and the middle hidden layer is meant
for capturing global information. The five-layer AANNs structure for their optimal
performance is N1L�N2N �N3N �N2N �N1L. Here N1, N2, and N3 indicate the
number of units in the first, second, and third layers, respectively, of the symmetric
five-layer AANN. Usually N2 and N3 are derived experimentally for achieving the
best performance in the given task. From the existing studies, it is observed that N2

is in the range of 1.3–2 times of N1 and N3 is in the range of 0.2–0.6 times of N1.
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