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Preface

When in 2015, the first two volumes of our treatise on Fluid and Thermodynamics
(FTD) were submitted to the publisher, it was not certain whether we would still be
able to add a third volume. The aims were to add chapters on mixture and multi-
phase theories for the developments of which both of us had contributed, but not
enough to fill a complete volume. However, in combination with the thermody-
namic formulations of fluid materials exhibiting microstructure and/or anisotropy
effects, a book on FTD of structured and mixture materials could be designed and
we felt secure to be able to design a volume on advanced topics of FTD. This
simultaneously brought the advantage to extend the class of BOLTZMANN continua to
polar media, to naturally include two chapters on FTD of the kinematics and
dynamics of Cosserat continua and concepts of thermodynamics of these.

General accounts on these subjects are treated in Chaps. 21–23. It opened the
doors for a presentation of basic formulations of continuum theories of liquid
crystals, one of the most important applications of continua exhibiting spin
responses, introduced by ERICKSEN and LESLIE in the 1960s and 1970s by use of
directors (vector quantities identifying orientation) attached to the material particles.
Their elastic response was already mathematically described by Sir JAMES FRANK in
1958 and the restriction of the coefficients by thermodynamic ONSAGER relations is
due to PARODI in the 1970s (Chap. 25). This ELP-director theory has been extended
by introducing tensorial order parameters of second and higher rank in the 1980s
and later. These theories resolve the subgrid structure of the material better but must
necessarily also be in conformance with the angular momentum balance (Chap. 26).

Multiphase fluids are understood as mixtures of immiscible constituents. These
often occupy disjoint regions of space with impermeable material surfaces and/or
lines separating the different constituents; these are treated as flexible two- and
one-dimensional material objects, interacting with the higher dimensional neigh-
boring fluids of three or two dimensions. Derivation of an entropy principle for the
bulk, interface surfaces and contact lines is the topic of Chaps. 27 and 28. This
theoretical concept is presented for multiphase fluids within a BOLTZMANN-type
formulation.
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Whereas the chapters on multiphase media do not operate with additional
equations modeling the substructure through three-dimensional space, but employ
the concept of physical balance Laws on “singular regions” of lower dimensions,
Chaps. 29–31 are devoted to situations, in which the fluid substructure is described
by fields throughout the three-dimensional space. Granular materials as assem-
blages require the description of the temporal changes of the solid volume fraction
(generally the space filled by the grains). The original description of the variation of
this space is described by a scalar balance law, interpreted as a scalar momentum
equation, called equilibrated force balance. Application of the concept to the
entropy principle of MÜLLER–LIU and CLAUSIUS–DUHEM, respectively, generates
distinct results and demonstrates that the ultimate form of the second law is still not
found. Chapter 30 extends the concepts applied to a single constituent assemblage
to a mixture of different grains; here, each grain constituent is modeled by postu-
lating its own equilibrated force balance. The thermodynamic model is analogous to
that of a single granular assemblage of distinct grains, but more complicated in
detail.

Granular systems are often capable of performing slow and smooth—laminar—
flows and rapid and fluctuating—turbulent—motions. When performing an ergodic
(REYNOLDS) average of the basic equations, then equations for the mean motion
emerge, that are complemented by turbulent correlation terms and additional bal-
ance laws for the classical and configurational turbulent kinetic energies and dis-
sipation rates. These play analogous roles as the additional balance laws play in
other theories where substructure processes are accounted for. So, the turbulent
closure schemes can be interpreted as describing the microstructure effects of a
hypothetical medium that performs the mean motion.

In the subsequent pages, the contents of the three volumes will be summarized.

Fluid and Thermodynamics—Volume 1: Basic Fluid Mechanics

This volume consists of 10 chapters and begins in an introductory Chap. 1 with
some historical facts, definition of the subject field and lists the most important
properties of liquids.

This descriptive account is then followed in Chap. 2 by the simple mathematical
description of the fundamental hydrostatic equation and its use in analyses of
equilibrium of fluid systems and stability of floating bodies, the derivation of the
ARCHIMEDEan principle and determination of the pressure distribution in the
atmosphere.

Chapter 3 deals with hydrodynamics of ideal incompressible (density pre-
serving) fluids. Streamlines, trajectories, and streaklines are defined. A careful
derivation of the balances of mass and linear momentum is given and it is shown
how the BERNOULLI equation is derived from the balance law of momentum and how
it is used in applications. In one-dimensional smooth flow problems, the momentum
and BERNOULLI equations are equivalent. For discontinuous processes with jumps,
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this is not so. Nevertheless, the BERNOULLI equation is a very useful equation in
many engineering applications. This chapter ends with the balance law of moment
of momentum and its application for EULER’s turbine equation.

The conservation law of angular momentum, presented in Chap. 4, provides the
occasion to define circulation and vorticity and the vorticity theorems, among them
those of HELMHOLTZ and ERTEL. The goal of this chapter is to build a fundamental
understanding of vorticity.

In Chap. 5, a collection of simple flow problems in ideal fluids is presented. It is
shown how vector analytical methods are used to demonstrate the differential
geometric properties of vortex free flow fields and to evaluate the motion-induced
force on a body in a potential field. The concept of virtual mass is defined and
two-dimensional fluid potential flow is outlined.

This almanac of flows of ideal fluids is complemented in Chap. 6 by the pre-
sentation of the solution techniques of two-dimensional potential flows by
complex-valued function theoretical methods using conformal mappings. Potential
flows around two-dimensional air foils, laminar free jets, and the SCHWARZ–

CHRYSTOFFEL transformations are employed to construct the mathematical descrip-
tions of such flows through a slit or several slits, around air wings, free jets, and in
ducts bounding an ideal fluid.

The mathematical physical study of viscous flows starts in Chap. 7 with the
derivation of the general stress–strain rate relation of viscous fluids, in particular
NAVIER–STOKES fluids and more generally, non-NEWTONian fluids. Application
of these equations to viscometric flows, liquid films, POISEUILLE flow, and the slide
bearing theory due to REYNOLDS and SOMMERFELD demonstrate their use in an
engineering context. Creeping flow for a pseudo-plastic fluid with free surface then
shows the application in the glaciological–geological context.

Chapter 8 continues with the study of two-dimensional and three-dimensional
simple flows of the NAVIER–STOKES equations. HAGEN–POISEUILLE flow and the
EKMAN theory of the wall-near wall-parallel flow on a rotating frame (Earth) and its
generalization are presented as solutions of the NAVIER–STOKES equations in the
half-space above an oscillating wall and that of a stationary axisymmetric laminar
jet. This then leads to the presentation of PRANDTL’s boundary layer theory with
flows around wedges and the BLASIUS boundary layer and others.

In Chap. 9, two- and three-dimensional boundary layer flows in the vicinity of a
stagnation point are studied as are flows around wedges and along wedge sidewalls.
The flow, induced in the half plane above a rotating plane, is also determined. The
technique of the boundary layer approach is commenced with the BLASIUS flow, but
more importantly, the boundary layer solution technique for the NAVIER–STOKES
equations is explained by use of the method of matched asymptotic expansions.
Moreover, the global laws of the steady boundary layer theory are explained with
the aid of the HOLSTEIN–BOHLEN procedure. The chapter ends with a brief study of
nonstationary boundary layers, in which, e. g., an impulsive start from rest, flows in
the vicinity of a pulsating body, oscillation induced drift currents, and nonstationary
plate boundary layers are studied.

Preface vii

https://doi.org/10.1007/978-3-319-33633-6_4
https://doi.org/10.1007/978-3-319-33633-6_5
https://doi.org/10.1007/978-3-319-33633-6_6
https://doi.org/10.1007/978-3-319-33633-6_7
https://doi.org/10.1007/978-3-319-33633-6_8
https://doi.org/10.1007/978-3-319-33633-6_9


In Chap. 10, pipe flow is studied for laminar (HAGEN–POISEUILLE) as well as for
turbulent flows; this situation culminates via a dimensional analysis to the
well-known MOODY diagram. The volume ends in this chapter with the plane
boundary layer flow along a wall due to PRANDTL and VON KÁRMÁN with the famous
logarithmic velocity profile. This last problem is later reanalyzed as the contro-
versies between a power and logarithmic velocity profile near walls are still
ongoing research today.

Fluid and Thermodynamics—Volume 2: Advanced Fluid
Mechanics and Thermodynamic Fundamentals

This volume consists of 10 chapters and commences in Chap. 11 with the deter-
mination of the creeping motion around spheres at rest in a NEWTONian fluid. This is
a classical problem of singular perturbations in the form of matched asymptotic
expansions. For creeping flows, the acceleration terms in NEWTON’s law can be
ignored to approximately calculate flows around the sphere by this so-called STOKES
approximation. It turns out that far away from the sphere, the acceleration terms
become larger than those in the STOKES solution, so that the latter solution violates
the boundary conditions at infinity. This lowest order correction of the flow around
the sphere is due to OSEEN (1910). In a systematic perturbation expansion, the outer
—OSEEN—series and the inner—STOKES—series with the small REYNOLDS number
as perturbation parameter must be matched together to determine all boundary and
transition conditions of inner and outer expansions. This procedure is rather tricky,
i.e., not easy to understand for beginners. This theory, originally due KAPLUN and to
LAGERSTRÖM has been extended, and the drag coefficient for the sphere, which also
can be measured is expressible in terms of a series expansion of powers of the
REYNOLDS number. However, for REYNOLDS numbers larger than unity, convergence
to measured values is poor. About 20–30 years ago, a new mathematical approach
was designed—the so-called Homotopy Analysis Method; it is based on an entirely
different expansion technique, and results for the drag coefficient lie much closer to
the experimental values than values obtained with the “classical” matched
asymptotic expansion, as shown, e.g., in Fig. 11.11. Incidentally, the laminar flow
of a viscous fluid around a cylinder can analogously be treated, but is not contained
in this treatise.

Chapter 12 is devoted to the approximate determination of the velocity field in a
shallow layer of ice or granular soil, treated as a non-NEWTONian material flowing
under the action of its own weight and assuming its velocity to be so small that
STOKES flow can be assumed. Two limiting cases can be analyzed: (i) In the first, the
flowing material on a steep slope (which is the case for creeping landslides or snow
on mountain topographies with inclination angles that are large). (ii) In the second
case, the inclination angles are small. Situation (ii) is apt to ice flow in large ice
sheets such as Greenland and Antarctica, important in climate scenarios in a
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warming atmosphere. We derive perturbation schemes in terms of a shallowness
parameter in the two situations and discuss applications under real-world
conditions.

In shallow rapid gravity driven free surface flows, the acceleration terms in
Newton’s law are no longer negligible. Chapter 13 is devoted to such granular
flows in an attempt to introduce the reader to the challenging theory of the
dynamical behavior of fluidized cohesionless granular materials in avalanches of
snow, debris, mud, etc. The theoretical description of moving layers of granular
assemblies begins with the one-dimensional depth integrated MOHR–COULOMB

plastic layer flows down inclines—the so-called SAVAGE–HUTTER theory, but then
continues with the general formulation of the model equations referred to topog-
raphy following curvilinear coordinates with all its peculiarities in the theory and
the use of shock-capturing numerical integration techniques.

Chapter 14 on uniqueness and stability provides a first flavor into the subject of
laminar-turbulent transition. Two different theoretical concepts are in use and both
assume that the laminar-turbulent transition is a question of loss of stability of the
laminar motion. With the use of the energy method, one tries to find upper bound
conditions for the laminar flow to be stable. More successful for pinpointing, the
laminar-turbulent transition has been the method of linear instability analysis, in
which a lowest bound is searched for, at which the onset of deviations from the
laminar flow is taking place.

In Chap. 15, a detailed introduction to the modeling of turbulence is given.
Filter operations are introduced to separate the physical balance laws into evolution
equations for the averaged fields on the one hand, and into fluctuating or pulsating
fields on the other hand. This procedure generates averages of products of fluctu-
ating quantities, for which closure relations must be formulated. Depending upon
the complexity of these closure relations, so-called zeroth, first and higher order
turbulence models are obtained: simple algebraic gradient-type relations for the flux
terms, one or two equation models, e.g., k-e, k-x, in which evolution equations for
the averaged correlation products are formulated, etc. This is done for density
preserving fluids as well as so-called BOUSSINESQ fluids and convection fluids on a
rotating frame (Earth), which are important models to describe atmospheric and
oceanic flows.

Chapter 16 goes back one step by scrutinizing the early zeroth order closure
relations as proposed by PRANDTL, VON KÁRMÁN and collaborators. The basis is
BOSSINESQ’s (1872) ansatz for the shear stress in plane parallel flow, ¿12, which is
expressed to be proportional to the corresponding averaged shear rate @�v1=@x2 with
coefficient of proportionality qe, where q is the density and e a kinematic turbulent
viscosity or turbulent diffusivity ½m2s�1�. In turbulence theory, the flux terms of
momentum, heat, and suspended mass are all parameterized as gradient-type rela-
tions with turbulent diffusivities treated as constants. PRANDTL realized from data
collected in his institute that e was not a constant but depended on his mixing length
squared and the magnitude of the shear rate (PRANDTL 1925). This proposal was
later improved (PRANDTL 1942) to amend the unsatisfactory agreement at positions
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where shear rates disappeared. The 1942-law is still local, which means that the
REYNOLDS stress tensor at a spatial point depends on spatial velocity derivatives at
the same position. PRANDTL in a second proposal of his 1942-paper suggested that
the turbulent diffusivity should depend on the velocity difference at the points where
the velocity of the turbulent path assumes maximum and minimum values. This
proposal introduces some nonlocality, yielded better agreement with data, but
PRANDTL left the gradient-type dependence in order to stay in conformity with
BOUSSINESQ. It does neither become apparent or clear that PRANDTL or the modelers
at that time would have realized that nonlocal effects would be the cause for better
agreement of the theoretical formulations with data. The proposal of com-
plete nonlocal behavior of the REYNOLDS stress parameterization came in 1991 by
P. EGOLF and subsequent research articles during*20 years, in which also the local
strain rate (= local velocity gradient) is replaced by a difference quotient. We
motivate and explain the proposed difference quotient turbulence model (DQTM)
and demonstrate that for standard two-dimensional configurations analyzed in this
chapter its performance is superior to other zeroth order models.

The next two chapters are devoted to thermodynamics; first, fundamentals are
attacked and, second a field formulation is presented and explored.

Class experience has taught us that thermodynamic fundamentals (Chap. 17) are
difficult to understand for novel readers. Utmost caution is therefore exercised
to precisely introduce terminology such as “states”, “processes”, “extensive”,
“intensive”, and “molar state variables” as well as concepts like “adiabatic”, and
“diathermal walls”, “empirical” and “absolute temperature”, “equations of state”,
and “reversible” and “irreversible processes”. The core of this chapter is, however,
the presentation of the First and Second Laws of Thermodynamics. The first law
balances the energies. It states that the time rate of change of the kinetic plus
internal energies are balanced by the mechanical power of the stresses and the body
forces plus the thermal analogies, which are the flux of heat through the boundary
plus the specific radiation also referred to as energy supply. This conservation law
then leads to the definitions of the caloric equations of state and the definitions of
specific heats. The Second Law of thermodynamics is likely the most difficult to
understand and it is introduced here as a balance law for the entropy and states that
all physical processes are irreversible. We motivate this law by going from easy and
simple systems to more complex systems by generalization and culminate in this
tour with the Second Law as the statement that entropy production rate cannot be
negative. Examples illustrate the implications in simple physical systems and show
where the two variants of entropy principles may lead to different answers.

Chapter 18 extends and applies the above concepts to continuous material
systems. The Second Law is written in global form as a balance law of entropy with
flux, supply, and production quantities, which can be written in local form as a
differential statement. The particular form of the Second Law then depends upon,
which postulates the individual terms in the entropy balance are subjected to. When
the entropy flux equals heat flux divided by absolute temperature and the entropy
production rate density is requested to be nonnegative, the entropy balance law
appears as the CLAUSIUS–DUHEM inequality and its exploitation follows the axiomatic
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procedure of open systems thermodynamics as introduced by COLEMAN and NOLL.
When the entropy flux is left arbitrary but is of the same function class as the other
constitutive relations and the entropy supply rate density is identically zero, then the
entropy inequality appears in the form of MÜLLER. In both cases, the Second Law is
expressed by the requirement that the entropy production rate density must be
nonnegative, but details of the exploitation of the Second Law in the two cases are
subtly different from one another. For standard media such as elastic and/or viscous
fluids the results are the same. However, for complex media they may well differ
from one another. Examples will illustrate the procedures and results.

Chapter 19 on gas dynamics illustrates a technically important example of a
fluid field theory, where the information deduced by the Second Law of
Thermodynamics delivers important properties, expressed, e.g., by the thermal and
caloric equations of state of, say, ideal and real gases. We briefly touch problems of
acoustics, steady isentropic flow processes, and their stream filament theory. The
description of the propagation of small perturbations in a gas serves in its
one-dimensional form ideally as a model for the propagation of sound, e.g., in a
flute or organ pipe, and it can be used to explain the DOPPLER shift occurring when
the sound source is moving relative to the receiver. Moreover, with the stream
filament theory the sub- and supersonic flows through a nozzle can be explained. In
a final section the three-dimensional theory of shocks is derived as the set of jump
conditions on surfaces for the balance laws of mass, momentum, energy and
entropy. Their exploitation is illustrated for steady surfaces for simple fluids under
adiabatic flow conditions. These problems are classics; gas dynamics, indeed forms
an important advanced technical field that was developed in the 20th century as a
subject of aerodynamics and astronautics and important specialties of mechanical
engineering.

Chapter 20 is devoted to the subjects “Dimensional analysis, similitude and
physical experimentation at laboratory scale”, topics often not systematically taught
at higher technical education. However, no insider would deny their usefulness.
Books treating these subjects separately and in sufficient detail have appeared since
the mid 20th century. We give an account of Dimensional analysis, define
dimensional homogeneity of functions of mathematical physics, the properties of
which culminate in BUCKINGHAM’s theorem (which is proved in an appendix to the
chapter); its use is illustrated by a diversity of problems from general fluid
dynamics, gas dynamics and thermal sciences, e.g., propagation of a shock from a
point source, rising gas bubbles, RAYLEIGH–BÉNARD instability, etc. The theory of
physical models develops rules, how to down- or upscale physical processes from
the size of a prototype to the size of the model. The theory shows that in general
such scaling transformations are practically never exactly possible, so that scale
effects enter in these cases, which distort the model results in comparison to those in
the prototype. In hydraulic applications, this leads to the so-called FROUDE and
REYNOLDS models, in which either the FROUDE or REYNOLDS number, respectively,
remains a mapping invariant but not the other. Application on sediment transport in
rivers, heat transfer in forced convection, etc. illustrate the difficulties. The chapter
ends with the characterization of dimensional homogeneity of the equations
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describing physical processes by their governing differential equations. The
NAVIER–STOKES-FOURIER–FICK fluid equations serve as illustration.

Fluid and Thermodynamics—Volume 3: Structured
and Multiphase Fluids

In Chap. 21, the fundamental assumption of continuous systems in classical
physics is the conjecture that the physical space is densely filled with matter. This
hypothesis is applied to single and multiphase continua as well as mixtures con-
sisting of a finite number of constituents. Three classes of mixtures are defined: In
the most complex case, class III, balance laws of mass, momenta, energy are
formulated for each constituent, which possess their own mass, momenta, energy
(and, therefore temperature). In class II mixtures, all components possess the same
temperature, but the constituents possess their individual momenta and masses.
Finally, in class I mixtures, the constituents do have the same temperature and
common velocity—there is no slip between them—but each component has its own
mass.

The modern theories of continuous bodies differentiate between BOLTZMANN and
polar continua. In the former, the balance of angular momentum is applied as
moment of momentum. In such continua, the CAUCHY stress tensor of the mixture is
symmetric. In the latter, angular momentum is expressed as moment of momentum
plus spin with all its peculiar consequences. The balance laws of mass, momenta,
and energy are formulated for the constituents for both cases in global and local
forms in detail. The results for BOLTZMANN continua are well known. However, for
polar media, different sub-theories emerge, depending upon how the specific spin is
parameterized. In COSSERAT continua, the specific spin is motivated by rigid body
dynamics as the “product of the tensor moment of inertia times angular velocity”,
see (21.32). If the micromotion is a pure rotation of the particles, i.e., the tensor of
moments of inertia of the constituents do not change under motion, the mixture is
called micro-polar, else micro-morphic.

The chapter is closed by formulating the physical balance laws of the mixture as
a whole and stating the relations of the physical variables of the mixture in terms of
those of the constituents.

The aim of Chap. 22 is the presentation of the kinematics of classical
(BOLTZMANN) and polar (COSSERAT) continuous mixtures. The motions of material
points of constituent a are first mathematically introduced for a classical mixture as
mappings from separate constituent points onto a single point in the present con-
figuration, Fig. 22.3. This guarantees that material points in physical space are a
merger of all constituents. This motion function then yields through spatial and
temporal differentiations the well-known definitions of the classical deformation
measures: deformation gradient, right and left CAUCHY–GREEN deformation tensors,
EULER–LAGRANGE strains and associated strain rates. Of importance is the polar
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decomposition, which splits the deformation gradient into a sequence of pure strain
and rotation or vice versa.

Whereas the classical stretch and stretching measures are obtained by inner
products of the constituent vectorial line element with itself, deformation measures
of COSSERAT kinematics are generated by inner products between vectorial material
line increments and the directors. The mappings of the latter between the reference
and present configurations are postulated to be pure rotations (Fig. 22.5). This then
yields the various COSSERAT strain measures, which are analogous to, but not the
same as those of the classical theory.

The kinematically independent rotation of the directors gives rise to the intro-
duction of skew symmetric rank-3 and full rank-2 curvature tensors, quasi as
measures of the spatial variation of the microrotation. Analogous to the additive
decomposition of the velocity gradient into stretching and vorticity tensors in the
classical formulation, two additional decompositions of the velocity gradient are
introduced using the polar decomposition and leads to nonsymmetric strain rate and
the so-called gyration tensors, and objective time derivatives of the COSSERAT

version of the ALMANSI tensor and the curvature tensors. All these quantities are also
written relative to the natural basis system.

The chapter ends with the presentation of the balance law of micro-inertia. It is
based on the assumption that material points of micro-polar continua move like
rigid bodies.

In Chap. 23, two versions of mixtures of BOLTZMANN-type continua are subject
to thermodynamic analyses for viscous fluids. Of the two forms of the Second Law
that were introduced—the CLAUSIUS–DUHEM inequality applied to open systems and
the entropy principle of I. MÜLLER—the latter principle is employed in the process
of deduction of the implications revealed by the particular Second Law. The goal in
the two parts of the chapter is to derive the ultimate forms of the governing
equations, which describe the thermomechanical response of the postulated con-
stitutive behavior without violation of the Second Law of thermodynamics. The
versions of mixtures which are analyzed are

• Diffusion of tracers in a classical fluid: The conceptual prerequisites of this type
of processes are mixtures of class I, in which the major component is the bearer
fluid within which a finite number of constituents with minute concentration are
suspended or solved in the bearer fluid. The motion of these tracers is described
by the difference of the constituent velocities relative to the barycentric velocity
of the mixture as a whole. For the dissipative constitutive class applied to the
entropy principle, the existence of the KELVIN temperature is proved, the form
of the GIBBS relation could be determined as could the conditions of thermo-
dynamic equilibrium and the constitutive behavior in its vicinity.

• Thermodynamics of a saturated mixture of nonpolar solid–fluid constituents:
Conceptually, these systems are treated as classical mixtures of class II, in which
the individual motions of the constituents are separately accounted for by their
own balances of mass and momentum, but subject to a common temperature.
The analysis of the dissipation inequality is performed subject to the assumption

Preface xiii



of constant true density of all constituents and the supposition of saturation
of the mixture. The constitutive relations are postulated for a mixture of viscous
heat conducting fluids. The explanation of the entropy principle is structurally
analogous to that of the class I-diffusion theory, but is analytically much more
complex. Unfortunately, intermediate ad hoc assumptions must be introduced to
deduce concrete results that will lead to fully identifiable fluid dynamical
equations, which are in conformity with the Second Law for the presented type
of mixtures.

Chapter 24 demonstrates how complex it is to deduce a saturated binary solid–
fluid COSSERAT mixture model that is in conformity with the second law of ther-
modynamics and sufficiently detailed to be ready for application in fluid dynamics.
The second law is formulated for open systems using the CLAUSIUS–DUHEM

inequality without mass and energy production under phase change for class II
mixtures of elastic solids and viscoelastic fluids. It turns out that even with all these
restrictions, the detailed exploitation of the entropy inequality is a rather involved
endeavor. Inferences pertain to extensive functional restrictions of the fluid and
solid free energies and allow determination of the constitutive quantities in terms
of the latter in thermodynamic equilibrium and small deviations from it. The theory
is presented for four models of compressible–incompressible fluid-solid con-
stituents. Finally, explicit representations are given for the free energies and for the
constitutive quantities that are obtained from them via differentiation processes.

Chapter 25 presents a continuum approach to liquid crystals. Liquid crystals
(LCs) are likely the most typical example of a polar medium of classical physics, in
which the balance of angular momentum is a generic property, not simply
expressed as a symmetry requirement of the CAUCHY stress tensor. They were
discovered in the second half of the nineteenth century. Liquid crystals are mate-
rials, which exhibit fluid properties, i.e., they possess high fluidity, but simulta-
neously exhibit crystalline anisotropy in various structural forms. We present an
early phenomenological view of the behavior of these materials, which conquered a
tremendous industrial significance in the second half of the twentieth century as
liquid crystal devices (LCD) (Sect. 25.1). The theoretical foundation as a continuum
of polar structure was laid in the late 1950s to 1990s by ERICKSEN, LESLIE, FRANK
and PARODI, primarily for nematic LCs by postulating their general physical con-
servation laws, hydrostatics and hydrodynamics, thus, illustrating their connection
with nontrivial balance laws of angular momentum (Sect. 25.2). This is all done by
treating nematics as material continua equipped with continuous directors (long
molecules), which by their orientation induce a natural anisotropy. The thermo-
dynamic embedding (Sect. 25.3) is performed by employing an entropy balance law
with nonclassical entropy flux and the requirement of EUCLIDIan invariance of the
constitutive quantities, which are assumed to be objective functions of the density,
director, its gradient and velocity, as well as stretching, vorticity, temperature, and
temperature gradient. This is specialized for an incompressible LC with directors of
constant length (Sect. 25.4). Constitutive parameterizations with an explicit pro-
posal of the free energy as a quadratic polynomial of the director and its gradient
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(according to FRANK) are reduced to obey objectivity. Based on this, the objective
form of the free energy is derived (Appendix 25.A), as are the linear dissipative
CAUCHY stress, director stress and heat flux vector for the cases that the ONSAGER

relations are fulfilled. The chapter ends with the presentation of shear flow solutions
in a two-dimensional half-space and in a two-dimensional channel.

Chapter 26 goes beyond the ELP-theory of LCs by modeling the microstructure
of the liquid by a number of rank-i tensors (i = 1,…, n) (generally just one) with
vanishing trace. These tensors are called alignment tensors or order parameters.
When formed as exterior products of the director vector and weighted with a scalar
and restricted to just one rank-2 tensor the resulting mathematical model describes
uniaxial LCs. The simplest extensions of the ELP-model are theories, for which the
number of independent constitutive variables are complemented by a constant or
variable order parameter S and its gradient grad S, paired with an evolution equation
for it. We provide a review of the recent literature.

Two different approaches to deduce LC-models exist; they may be coined the
balance equations models, outlined already in Chap. 25 for the ELP model, and the
variational LAGRANGE potential models, which, following an idea by LORD

RAYLEIGH, are extended by a dissipation potential. The two different approaches
may lead to distinct anisotropic fluid descriptions. Moreover, it is not automatically
guaranteed in either description that the balance law of angular momentum is
identically satisfied. The answers to these questions cover an important part of the
mathematical efforts in both model classes.

A significant conceptual difficulty in the two distinct theoretical concepts are the
postulations of explicit forms of the elastic energy W and dissipation function R.
Depending upon, how W and R are parameterized, different particular models
emerge. Conditions are formulated especially for uniaxial models, which guarantee
that the two model classes reduce to exactly corresponding mathematical models.

In Chap. 27, a general continuum description for thermodynamic immiscible
multiphase flows is presented with intersecting dividing surfaces, and three-phase
common contact line, taking the contribution of the excess surface and line ther-
modynamic quantities into account. Starting with the standard postulates of con-
tinuum mechanics and the general global balance statement for an arbitrary physical
quantity in a physical domain of three bulk phases including singular material or
nonmaterial phase interfaces and a three-phase contact line, the local conservation
equations on the phase interfaces and at the contact line are derived, in addition to
the classical local balance equations for each bulk phase. Then, these general
additional interface and line balance laws are specified for excess surface and line
physical quantities, e.g., excess mass, momentum, angular momentum, energy and
entropy, respectively. Some simplified forms of these balance laws are also pre-
sented and discussed. In particular, for the massless phase interfaces and contact
line, these balance laws reduce to the well-known jump conditions.

In Chap. 28, a thermodynamic analysis, based on the MÜLLER–LIU thermody-
namic approach of the second law of thermodynamics, is performed to derive the
expressions of the constitutive variables in thermodynamic equilibrium.
Nonequilibrium responses are proposed by use of a quasi-linear theory. A set of
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constitutive equations for the surface and line constitutive quantities is postulated.
Some restrictions for the emerging material parameters are derived by means of the
minimum conditions of the surface and line entropy productions in thermodynamic
equilibrium. Hence, a complete continuum mechanical model to describe excess
surface and line physical quantities is formulated.

Technically, in the exploitation of the entropy inequality, all field equations are
incorporated with LAGRANGE parameters into the entropy inequality. In the process
of its exploitation the LAGRANGE parameter of the energy balance is identified with
the inverse of the absolute temperature in the bulk, the phase interface and in the
three-phase contact line. Interesting results, among many others, are the GIBBS

relations, which are formally the same in the bulk, on the interface and along the
contact line, with the pressure in the compressible bulk replaced by the surface
tension on the interface and by the line tension along the contact line, see (28.45
and 28.87).

Chapter 29 presents a continuum theory of a dry cohesionless granular material
proposed by GOODMAN and COWIN (1972) in which the solid volume fraction m is
treated as an independent kinematic field for which an additional balance law of
equilibrated forces is postulated. They motivated this additional balance law as an
equation describing the kinematics of the microstructure and employed a variational
formulation for its derivation. By adopting the MÜLLER–LIU approach to the
exploitation of the entropy inequality, we show that in a constitutive model con-
taining m; _m and gradm as independent variables, results agree with the classical
COLEMAN–NOLL approach only, provided the HELMHOLTZ free energy does not
depend on _m, for which the GOODMAN–COWIN equations are reproduced. This
reduced theory is then applied to the analyses of steady fully developed horizontal
shearing flows and gravity flows of granular materials down an inclined plane and
between parallel plates. It is demonstrated that the equations and numerical results
presented by PASSMAN et al. (1980) are false, and they are corrected. The results
show that the dynamical behavior of these materials is quite different from that of a
viscous fluid. In some cases, the dilatant shearing layers exist only in the narrow
zones near the boundaries. They motivated this additional balance law as an
equation describing the kinematics of the microstructure and employed a variational
formulation for its derivation. In an appendix, we present a variational formulation,
treating the translational velocity and solid volume fraction as generalized coor-
dinates of a LAGRANGEan formulation.

In Chap. 30, a continuum theory of a granular mixture is formulated. In the
basic balance laws, we introduce an additional balance of equilibrated forces to
describe the microstructural response according to GOODMAN & COWIN and PASSMAN

et al. for each constituent. Based on the MÜLLER–LIU form of the second law
of thermodynamics, a set of constitutive equations for a viscous solid–fluid mixture
with microstructure is derived. These relatively general equations are then reduced
to a system of ordinary differential equations describing a steady flow of the solid–
fluid mixture between two horizontal plates. The resulting boundary value problem
is solved numerically and results are presented for various values of parameters and
boundary conditions. It is shown that simple shearing generally does not occur.
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Typically, for the solid phase, in the vicinity of a boundary, if the solid volume
fraction is small, a layer of high shear rate occurs, whose thickness is nearly
between 5 and 15 grain diameters, while if the solid volume fraction is high, an
interlock phenomenon occurs. The fluid velocity depends largely on the drag force
between the constituents. If the drag coefficient is sufficiently large, the fluid flow is
nearly the same as that of the solid, while for a small drag coefficient, the fluid
shearing flow largely decouples from that of the solid in the entire flow region.
Apart from this, there is a tendency for solid particles to accumulate in regions of
low shear rate.

Chapter 31 is devoted to a phenomenological theory of granular materials
subjected to slow frictional as well as rapid flows with intense collisional interac-
tions. The microstructure of the material is taken into account by considering the
solid volume fraction as a basic field. This variable enters the formulation via the
balance law of configurational momentum, including corresponding contributions
to the energy balance, as originally proposed by GOODMAN and COWIN, but modified
here by adequately introducing an internal length. The subgrid motion is interpreted
as volume fraction variation in relatively moderate laminar variation and rapid
fluctuations, which manifest themselves in correspondingly filtered equations in
terms of correlation products as in turbulence theories. We apply an ergodic
(REYNOLDS) filter to these equations as in classical turbulent RANS-modeling and
deduce averaged balances of mass, linear and configurational momenta, energy,
turbulent, and configurational kinetic energy. Moreover, we postulate balance laws
for the dissipation rates of the turbulent kinetic energy. All these comprise 10
evolution equations for a larger number of field variables. Closure relations are
formulated for the laminar constitutive quantities and the correlation terms, all
postulated to obey the material objectivity rules. To apply the entropy principle,
three coldness measures are introduced for capturing material, configurational and
turbulent dissipative quantities, they simplify the analysis of MÜLLER’s entropy
principle. The thermodynamic analysis delivers equilibrium properties of the con-
stitutive quantities and linear expressions for the nonequilibrium closure relations.

The intention of this treatise is, apart from presenting its addressed subjects, a
clear, detailed, and somewhat rigorous mathematical presentation of FTD on the
basis of limited knowledge as a prerequisite. Calculus or analysis of functions of a
single or several variables, linear algebra and the basics of ordinary and partial
differential equations are assumed to be known, as is Cartesian tensor calculus. The
latter is not universally taught in engineering curricula of universities; we believe
that readers not equipped with the theory of complex functions can easily famil-
iarize themselves with its basics in a few weeks reading effort.

The books have been jointly drafted by us from notes that accumulated during
years. As mentioned before, the Chaps. 1–3, 5, 7, 10, 17–20 are translated (and
partly revised) from “Fluid- und Thermodynamik—eine Einführung”. Many of the
other chapters in Vols. 1 & 2 were composed in handwriting and typed by K. H.
and substantially revised and transformed to LATEX by Y. W. Volume 3 contains
chapters that were newly designed from our own papers or papers of other scientists
in the recent literature. The authors share equal responsibility for the content and the
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errors that still remain. Figures, which are taken from others, are reproduced and
mostly redrawn, but mentioned in the figure captions. Nevertheless, a substantial
number of figures have been designed by us. However, we received help for their
electronic production: Mr: Andreas Schlump, from the Laboratory of Hydraulics,
Hydrology and Glaciology at ETH Zurich designed all these figures.

Volumes 1 and 2 of this treatise have been subjected to critical reviews by
experts. This has also been done for this third volume. Such reviewing criticisms
are in general hard to find, because of the extensive labor that is connected with
such work. Nonetheless, this burden was taken up by two emeriti, Dr.-Ing. PETER
HAUPT, Professor of Mechanics at the University Kassel, Germany and Dr. rer. nat.
WOLFGANG MUSCHIK, Professor of Theoretical Physics at the Technical University
Berlin, Germany. We thoroughly thank these colleagues for their extensive
help. Their criticisms and recommendations have been taken into consideration and
gratefully incorporated in the final manuscript wherever possible. We have, of
course, amended detected misprints and errors, but are nearly certain that, despite
our last and careful own reading, there will remain some undetected ones. We now
finish—no abandon—this treatise and kindly invite the readers to inform us of such
fallacies, whenever they find them.

K. H. wishes to express his sincere thanks to ETH Zurich and in particular Prof.
Dr. R. BOES for the allowance to share a desk as an Emeritus Professor from
Darmstadt at the Laboratory of Hydraulics, Hydrology and Glaciology at ETH
Zurich and he equally thanks Prof. MARTIN FUNK of the Laboratory, for the support.
Y. W. would like to express his thanks to Prof. Dr. MARTIN OBERLACK for the
constructive collaboration in the fluid dynamic working unit at Technische
Universität Darmstadt.

Finally, we thank Springer Verlag, and in particular Dr. ANNETT BUETTNER for the
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Chapter 21
Balance Laws of Continuous System

Abstract The fundamental assumption of continuous systems in classical physics
is the conjecture that the physical space is densely filled with matter. This hypothesis
is applied to single and multiphase continua as well as mixtures consisting of a
finite number of constituents. Three classes of mixtures are defined: In the most
complex case, class III, balance laws of mass, momenta, energy are formulated for
each constituent, which possess their own mass, momenta, energy (and, therefore
temperature). In class II mixtures, all components possess the same temperature,
but the constituents possess their individual momenta and masses. Finally, in class
I mixtures, the constituents do have the same temperature and common velocity—
there is no slip between them—but each component has its own mass. The modern
theories of continuous bodies differentiate betweenBoltzmann and polar continua.
In the former, the balance of angular momentum is applied asmoment of momentum.
In such continua, the Cauchy stress tensor of the mixture is symmetric. In the
latter, angular momentum is expressed as moment of momentum plus spin with
all its peculiar consequences. The balance laws of mass, momenta, and energy are
formulated for the constituents for both cases in global and local forms in detail. The
results forBoltzmann continua are well known. However, for polarmedia, different
sub-theories emerge, depending upon how the specific spin is parameterized. In
Cosserat continua, the specific spin is motivated by rigid body dynamics as the
“product of the tensor moment of inertia times angular velocity”, see (21.32). If the
micromotion is a pure rotation of the particles, i.e., the tensors of moments of inertia
of the constituents do not change under motion, the mixture is called micro-polar,
else micro-morphic. The chapter is closed by formulating the physical balance laws
of the mixture as a whole and stating the relations of the physical variables of the
mixture in terms of those of the constituents.

Keywords Multiphase continua · Class I, II, III mixtures · Boltzmann,
Cosserat continua · Balance laws · Local balance laws
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2 21 Balance Laws of Continuous System

List of Symbols

Roman Symbols

cα Mass production of density of constituent α
DC Angular momentum of a finite body with respect to C
da Surface increment
dv Volume element
eα Specific production of energy of constituent α per unit volume.
eαEuclid Euclidean-invariant energy production of constituent α
F Force
f Specific body force
kα Specific spin production of constituent α
kα
Euclid Euclidean-invariant spin production of constituent α

(see Eq. (21.22))
�, �α Specific body couple—of constituent α
M Moment, acting on a body
m,mα Specific couple stress tensor—of constituent α
mα Specific momentum production of constituent α, or interaction

force of constituent α with the other constituents
mα

Euclid Euclidean-invariant momentum production of constituent α
n, ns Unit normal vector (on singular surface s)
P Surface production per unit area of a physical quantity
Psα

Surface production of entropy sα

q Energy (heat) flux vector of the mixture
rα Energy supply (radiation) per unit mass of constituent α
s, sα Entropy density—of constituent α
s, sα Self angular momentum or specific spin—of constituent α
Sα Micro-morphic spin production of constituent α
t, tα Cauchy stress tensor—of constituent α
u, us Velocity of propagation of the surface s
v, vα Barycentric velocity of a mixture particle—of constituent α
W Skew-symmetric rank-2 tensor
uα = vα − v Diffusion velocity of constituent α
w = dualW Axial vector, isomorphic to W . wi =̂ (dualW)i =̂ 1

2 εi jkW jk .
ẋO Velocity of the point O

Greek Symbols

α Identifier for a constituent
γα Unspecified physical quantity of constituent α
Δωα − ω Diffusive angular velocity of constituent α
εα Specific production of energy of constituent α per unit area
εα Specific internal energy of constituent α
ζα Supply rate of γ for constituent α
ηsα

Supply rate of entropy of constituent α
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Θ,
ˆ̂

ΘC Tensor of inertia of a finite body.
Θα Specific tensor of inertia of constituent α
Θ Specific tensor of inertia of the mixture, Θ = ∑N

α=1 ξαΘα

μα Surface mass production of constituent α
ξα = ρα/ρ Mass concentration of constituent α
πα Production rate of γα

ρ, ρα Mass density of mixture and constituent α
σα Specific surface production of constituent α
τα Specific surface momentum production of constituent α
φα Flux of γα of constituent α
φsα

Flux of sα

ω Material volume
ω,ωα Angular velocity of the mixture—of constituent α

Miscellaneous Symbols

curl v Rotation of the differentiable field v

div v Divergence of the differentiable field v

grad v Gradient of the differentiable field v
d
dt Total time derivative holding the particle fixed
dα(·)
dt ≡ (·)′α Material time derivative following the motion of constituent α

[[ f ]] Jump of f across a surface s into the positive side of s, [[ f ]] =
f + − f −

∂ω Boundary of ω
ω Material volume
dαΘα

dt = 0 ←→ micro-polar ←→ Sα = 0
dαΘα

dt �= 0 ←→ micro-morphic ←→ Sα �= 0.

21.1 Classification of Continuous Systems

The most common treatment of physical systems is probably their basis on the
assumption of continuity, i.e., that matter is continuously distributed in domains of
the existence of mass. Otherwise stated, it is assumed that in a body of certain extent
every spatial point is occupied by mass.1 This assumption is in conflict with the
atomistic structure of matter as it has undoubtedly been proved to be the realistic
view of matter. For many problems of classical physics as it was developed before
the 20th century, quantum mechanics has disproved the continuity assumption on
the atomic and molecular scale. For a large class of physical problems of classical
physics at the super-atomic and super-molecular scale, the continuity assumption
may be viewed in the spirit of spatial averaging of physical properties over so-called

1This metaphysical principle was first spelled out by Clifford Ambrose Truesdell (1919–
2000) [21] and forms the basis of all physical systems whose significant length scales are substan-
tially larger than those of atomic and molecular systems.
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Fig. 21.1 Mass density of a
specimen of a material body
plotted against the logarithm
of λ = 3

√
RV E . Below a

critical length λ < λcrit the
continuity assumption breaks
down

representative volume elements (RVE), whose size lengths are large in comparison
to the corresponding length scales of the entities making up the body on the size of
its RVE. This situation is pictured in Fig. 21.1 for the mass density of a specimen of
a body, which is plotted against a typical length scale λ = 3

√
RV E . As this length

scale decreases and becomes small, the smooth and (roughly) constant value of the
density starts to vary, then to fluctuate until it eventually will become discontinuous.
At such short typical values of λ, the continuity assumption will break down.

In ancientGreek philosophy, theword “atom”was used to describe the smallest bit
of matter; this fundamental particle was used to characterize it as being “indivisible”
or “indestructible”. The atomistic concept as a basis of Natural Philosophy goes
back to the Greek philosopher Democritus (∼460 BC to ∼370 BC) from Abdera

and his teacher Leucriptos. The continuum assumption of nature with its arbitrary
divisibility of matter was kept in Natural Philosophy until the beginning of the 20th
century, when quantum mechanics was born. Despite this, for length scales much
larger than atomic or molecular dimensions, it has proven to function as basis of
the description of processes of matter for a wealth of circumstances. Only since the
electronic computation has conquered the physical description of large assemblages
ofmatter, the concept of indivisible elements has regainedmomentum, nowmuch like
“continuity” as a method of approximation concept. Indeed, since large electronic
computations have become feasible, the continuousmethods of the physical behavior
of classical systems have become competitors in the discrete or distinct element
method (DEM). This is in particular so, e.g., in granular and porous systems. Bulk
behavior for such systems can be described by employing the classical physical laws
to the individual grains or particles and analyzing the processes of encounter actions
when particles interact in collisions. This particular view has become possible as
modern computations can be conducted for systems consisting of many thousands
of particles or element entities forming the material system in focus.

21.1.1 Balance Laws

It will be assumed in the ensuing developments that the artificial constructs of con-
tinuous bodies satisfy the basic principles of classical physics, i.e., the conservation
laws of mass, linear and angular momentum, as well as energy and balance law of
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entropy. Here, a balance law is a statement for a quantity occupying a certain region
in space; it says that the time rate of change of the quantity Ψ is balanced by its
supply rate from the outside of the body, ω, ΣΨ , plus its flux rate into the body
through its boundary FΨ , ∂ω, plus its production within the body, ΠΨ . In short:

{
Time rate of change
of a quantity Ψ in ω

}

=
⎧
⎨

⎩

Flux (rate) of Ψ , FΨ through the boundary ∂ω of ω
+Supply (rate) of Ψ , ΣΨ within ω
+Production (rate) of Ψ , ΠΨ within ω

⎫
⎬

⎭
(21.1)

A balance law for Ψ reduces formally to a conservation law if its production rate
vanishes for all time, ΠΨ = 0.

Balance laws have already been discussed in Vol. 1 of this treatise and so, it may
suffice to illustrate the principle by a simple example.

Example 21.1 Consider a herd of reindeers on a large Arctic island. The living
animals may be identified by Ψ , the island by ω and the shoreline by ∂ω. Reindeers
swimming from the island to neighboring land or arriving on the island along its shore
from the surroundingwater form the fluxFΨ along ∂ω. Female reindeers giving birth
to calves and reindeers being shot or naturally dying, form the production rate ΠΨ

within ω. A natural supply rate of reindeers does not exist, however, if reindeers
should be brought to the island by helicopter, they would form ΣΨ within ω. •

21.1.2 Single Constituent Systems

Single-constituent material systems comprise bodies, which are assumed to be
formed of one sort of matter or matter whose distinct physical or chemical ele-
ments need not be differentiated. Oxygen, O , and hydrogen, H2, are single chemical
elements, butwater, H2O is amolecule ofO and H2. The flowofwater in our environ-
ment can be described by the physical laws without having to differentiate between
the two gases H2 and O . Similarly, many processes of the air in the atmosphere, in
particular the mere physical motion of air as a compound of several chemical sub-
stances in meteorological flows can be treated as if air would be a single constituent
medium. When cloud formations are in focus, then the water vapor, which is invisi-
ble, i.e., transparent, forms that constituent, which is part of the water saturated air.
The clouds, on the other hand, are a suspended tracer within the saturated air, which
consists of a large number of small water “particles”; their concentration grows or
decreases according to whether the water in the cloud droplets evaporates to water
vapor, or water vapor condensates at the droplets of the cloud, and eventually forms
the rain. These examples show that the decision whether a body may be treated as
a single constituent body or a kind of mingling of constituents depends also on the
physical situation in focus.
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21.1.3 Multiphase Continua and Mixtures

The denotations of multiphase continua and mixtures are not clearly differentiated
in the literature. In large parts they mean the same, namely continua consisting of
several distinguishable constituents, components, or phases, which all characterize
the different entities, which make up the mixture. Occasionally, separable and un-
separable mixtures or miscible and immiscible components are distinguished. Water
saturated soil is a separable mixture of water and grains or soil particles. Ocean water
is a miscible compound of pure water and salts; here the miscibility is due to the fact
that the salt is in solution within the water.

As is the case for single-constituent bodies, the continuity idealization will also be
introduced for mixtures: It reads here: Each spatial point is simultaneously occupied
by material of all constituents. This postulate is a bit stronger than the analogous
statement for single-constituent bodies, because it is assumed that every point in the
body is occupied by all constituents. This, strictly, means that a body consisting of
disjoint regions with different numbers of constituents must be subdivided into sub-
bodies and a singular surface which separates the regions with different numbers of
constituents.

It will be assumed as itwas done for single-constituent bodies that the balance laws
formass, linear and angularmomenta, energy and entropy also hold for the individual
constituents, but for these, the production terms do not necessarily vanish. This
generalization is natural, because the various components can in principle exchange
mass, momenta and energy. So, these laws are not necessarily conservation laws.

Quite naturally, it will be assumed that the mixture as a whole, i.e., the response
of the sum of all constituents together will behave as a single constituent material.
This corresponds to the request that the sum of the production terms of mass, linear,
and angular momenta and energy add up to zero.

In applications, full mixture theories, in which all the possible balance laws are
employed, are very seldom used. For instance, if water percolates through the firn of a
snow cover, it is necessary to differentiate between the temperatures of the water and
the snow. This requires that two energy balance equations must be used. On the other
hand, water flows in temperate ice at the common temperature. In this case, it suffices
to formulate one energy conservation law for the mixture as a whole. Alternatively,
for the description of the diffusive motion of a substance at very small concentration
in a fluid, it may be sufficient to just describe the dynamic motion of the mixture
(fluid + tracers) as a whole and the diffusive mass flow of the constituents relative to
this. It is evident, such simplifications lead to a hierarchy of mixture theories. The
most important models possess the following structure, [15, 16]:

• Class I: Here, the balance laws of mass of all constituents are used, however,
only the momentum and energy balances of the mixture as a whole are employed.
Often considerations of energy are left untouched, because onlymechanical and no
thermodynamic processes are in focus. Thesemodels are typical for the description
of the diffusive motion of any particulate substance, which exists as a pollutant or
tracer in another substance. The equations possess advective, diffuse, and possibly
reactive structure. Examples are the salinity content in the water, the distribution
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of a nutrient (phosphate) or a chemical element (O2,CO2) in the water of a lake
or in the ocean and many others.
A typical but complex example of class I mixture is the atmosphere with up to
40 reacting and interacting chemical tracers, one of which is ozone, O3, in which
the various reactions including radiation processes are combined to determine the
spatial and temporal evolution of the ozone concentration around the Earth.

• Class II: These mixture theories are appropriate, if the interpenetrating con-
stituents possess comparable concentrations of mass or specific momentum and
move with different velocities. They are also known asmultiphase theories. In this
class, the balance laws of mass, momentum, and angular momentum are formu-
lated for all constituents, but only one energy balance is used for the mixture as
a whole. In other words, the individual constituents possess sufficiently distinct
specific masses and momenta but the same temperature, so that to account for the
thermodynamic effects the formulation of a single energy balance for the mixture
as a whole suffices. These models go beyond the classical diffusion models which
are only able to describe a dilution of a tracer substance, and no growth. The
interaction forces that are active between the constituents are important and make
it possible that the phase separation between the individual constituents can take
place.
Examples of theories of this class are practically all soil mechanics theories, which
describe the interaction between the granular matrix and the water. For instance,
Darcy’s law is nothing else than a mathematical ansatz for the interaction force
between the granulate and the pore water. Members of this class are also all
mechanical models of multiphase suspension flows. In the geophysical context
these are powder snow avalanches, of which the constituents are air and snow. In
general, a diffusion model does not suffice to describe their dynamics, because,
first, snow of the snow cover is entrained into the avalanche and, second, snow is
deposited in the run-out zone. Both processes lead to an increase in the particle
concentration. Other geophysical examples are turbidity currents, i.e., subaquatic
slopemotions similar to the powder snow avalanches, of which the constituents are
soil and water, or sturzstroms and mud flows, mixtures of water and gravel or soil
which move down a mountain slope, and finally pyroclastic flows, i.e., suspension
flows of volcanic dust and air.

• Class III: The next level is occupied by the full thermodynamicmixture theories, in
which the balance laws of mass, (linear and angular) momentum, and energy of all
constituents must be formulated. Plasmas belong to this class; in the geophysical
context there exist, however, equally a multitude of mixture concepts, which can
be assigned to this class. For instance, the creeping deformation of cold firn in the
uppermost layers of an ice sheet under the influence of the percolation flow of the
melt water can be described by a mixture model of this complexity: Water and
snow have distinct specific masses, velocities, and temperatures, and apart from
these complexities, there may occur phase changes between the two constituents.
Problems of geothermics also belong to this class of mixtures.
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These classes may also occur in a mixed form. For instance, a saturated soil, which
is contaminated by chemicals and/or oil, can well be regarded as a binary mixture of
pure granules plus ground water with suspended chemicals. This would be a class II
binary solid–fluid continuum, in which the fluid is itself also a class I mixture.

This classification should not be left without mentioning a somewhat peripheral
case, which could also be categorized as a mixture. What is meant is rapid flow of
cohesionless dense dry granular materials in air. Under such situations, the material
body is a compound of a granular assemblage and interstitial air, which, dynamically,
is negligible because its mass is very small. In this limiting and not completely
realistic situation, the moving body consists of the granules and the interstitial empty
space, of which the volume fraction is not constant, but varies in space and time.
This body may structurally be categorized as a mixture but it is not of any one of the
above classes, because the pore space has no mass; so, mass balance of the empty
pore space is an empty statement. Nevertheless, this interstitial pore space certainly
plays some dynamical role of the moving compound. It is the custom in the literature
to account for its role by an “abstract” balance law, and the literature knows several
variants of this balance law, [4, 9–14, 23]. Even though a connection of these models
with mixture concepts seems natural, these granular systems are not viewed as limits
of mixture theories.

21.1.4 Boltzmann and Polar Continua

We assume here that the reader is familiar with the classical statement derived in
statics that the Cauchy stress tensor is symmetric. This can be proved by apply-
ing the moment equilibrium condition on an infinitesimal cube. If one writes down
the balance of moment of momentum over a body, then one may conclude that the
Cauchy stress tensor is also symmetricwhen the continuous body is inmotion.Lud-
wig Boltzmann

2 has in his lecture notes ‘Über die Grundprinzipien und Grund-
gleichungen der Mechanik’ [3] (“On the fundamental principles and fundamental
equations of mechanics”) emphasized the fact that the conjecture of the symmetry of
the Cauchy stress tensor possesses axiomatic character. Today, the symmetry of the
Cauchy stress tensor is unquestioned and adopted within the classical continuum
theories, and indeed, the theory has proven its usefulness over and over again. To
distinguish this classical formulation of continuum mechanics from more general
formulations, e.g., polar continua, the symmetry requirement of the Cauchy stress
tensor is sometimes referred to as Boltzmann hypothesis, and the symmetry of the
Cauchy stress is then called the Boltzmann axiom.

2For a biographical sketch of Ludwig Boltzmann, see Vol. 2 of this treatise [18], Fig. 17.11 on
p. 336.

http://dx.doi.org/10.1007/978-3-319-33636-7_17
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Fig. 21.2 François Nicolas Cosserat (26. Oct. 1852–22. March 1914) (left), Eugène
Cosserat (4. March 1866–31. May 1931) (right)

François Nicolas Cosserat was a French civil engineer who had studied at École
Plolytecchnique (1870–1872), but finished his studies at École Nationale des Ponts et
Chaussées with graduation in 1875. He subsequently worked as a railroad engineer
being involved in the construction of railroad lines, bridges and tunnels in North and
East France.
Besides his practical work as an engineer heworked intensely with his youngest brother
Eugène, a trainedmathematician and astronomer at the University of Toulouse, on elas-
ticity. They together developed the Cosserat continuum in their now famous memoir
of 1909 [6]. In 1893, François became a regular member of the Académie des Sciences
and in 1913 president of the French Association of Mathematics. He also worked as
an interpreter and as such translated Josiah Willard Gibbs ‘Statistical Mechanics’
into French.
Eugène Cosserat took at the age of 17 the competitive entrance examinations for
École Polytechnique and École Normale Supérieure and was offered a place at both. He
entered the latter school in 1883 and studiedmathematics until 1886, when hewas, after
a brief intermission at Lucéé de Rennes, appointed as assistant astronomer to Édouard
Benjamin Baillart (1848–1934). There, he performed a systematic study of 3112
binary stars andworked simultaneously on his doctorate ‘Sur le cercle considéré comme
élément générateur de l’espace’ with degree in 1889. Subsequently, he started to teach
at the Faculty of Science at Toulouse and became professor of differential and integral
calculus in 1896, replacing Thomas Stieltjes who had died on December 31, 1894.
In 1908, he was appointed to the chair of Astronomy at Toulouse. Eugène became a
full member of the Académie des Sciences in 1919 at Toulouse University, where he
was a leading faculty member for 35 years.
The Cosserat brothers Eugène and François started to work together in 1896 with
their joint publication “Théorie de l’élasticité”, which was a study relating to the foun-
dations of mechanics. They published more than 21 memories on the kinematics of
continuous bodies and the foundation of mechanics, which culminated in 1909 in their
book “Théorie des corps deformables” [6]. This innovative work ended with François
Cosserat’s death in 1914, after which time his brother Eugène Cosserat published
nothing further on the topic.

The text is based on www.wikipedia.org

www.wikipedia.org
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One way of motivating the generalization of Boltzmann continua3 is to recall
the balance laws of linear and angular momenta for rigid bodies. The resultant of all
the forces andmomentswith respect to the center ofmassO of the body is expressible
in terms of an ordered pair at O of a force and a moment: {F, M}; this ordered pair
of force and moment is sometimes called a motor [22]. The equations of motion of
a rigid body relative to O can be expressed as a dynamical equation of the form

{(m ẋO)·, (Θω)·} = {F, M}, (21.2)

in which m ẋO is the body’s momentum relative toO, m being the mass of the body
and ẋO the translational velocity; analogously, Θ ω is the body’s (self) angular
momentum or specific spin, Θ being the tensor of inertia with respect to O and ω
the angular velocity of the body, which is independent of the translational velocity.
Equation (21.2) summarizesNewton’s second law and Euler’s law of conservation
of angular momentum.

If we now imagine the rigid body of the above equation to be replaced by an
infinitesimal deformable cube, we replace (21.2) by

{(ρẋ)·, (ρs)·} = {ρ f , ρ�}; (21.3)

ρẋ and ρs are the specific translational momentum and specific angular momentum,
while ρ f and ρ� are the specific body force and specific body couple, respectively,
all per unit volume. Equation (21.3) is short of an important additional term. Recall
that the momentum equation of a classical continuum contains also a stress tensor
term, div t . The analogue term in the balance of angular momentum must have the
form divm, where m is called couple stress. So, for a continuous system the proper

3The first attempt of generalizing Boltzmann continua to include a nontrivial angular momentum
or spin balance was made by the brothers Eugène and François Cosserat between the years
1896 and 1914 when the latter died, see Fig. 21.2 on brief biographies. They published together
Théorie de l’ élasticité [5] and, apart from 21 brief scattered communications, the seminal work
Théorie des corps déformables [6] appeared. Their model is now called “Cosserat continuum”
or “polar continuum”, the first version of a theory of deformable continua with microstructure
[8], which primarily were developed in the second half of the 20th century. An accurate historical
account “about the Cosserats’ Book of 1909” is provided by G.A. Maugin in Chap.8 in his
book “Continuum Mechanics Through the 18–19th Century” [19], which contains 77 additional
references.

There are several approaches to derive the governing equations of Cosserat continua, which
differ from the approaches of the Cosserat brothers. Essentially two principal steps beyond a
classicalBoltzmann continuum have to be performed, a generalization of the dynamical principles
and another one on kinematic principles; they are introduced in this book as in this chapter and
Chap.22, respectively. The method of generalization starts with rigid body dynamics, assumed to
be known by first and second year undergraduate students. One of us (KH) still recalls how the
concepts of “Kinemate” and “Dyname” (both German words with no English counterparts), defined
as the left- and right-hand sides of Eq. (21.2) in the early 60’. The “projection” of this statement
from a rigid finite body to an infinitesimal element of a deformable continuum essentially forms the
step needed to obtain a polar continuum. This projection can be done on less than a page, is very
imaginative and summarizes the essentials of the Cosserat continuum in a nutshell.

https://doi.org/10.1007/978-3-319-77745-0_22
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equation replacing (21.3) is4

{(ρẋ)·, (ρs)·} = {div t, divm} + {ρ f , ρ�}. (21.4)

Spin s, couple stress m and body couple � are all new elements, which characterize
polar continua. In (21.3), the spin s is not specially parameterized. Micro-polar or
Cosserat continua assume s = Θ ω with a tensor of inertia,Θ which can indepen-
dently rotate but not deform. In a deformable body Θ may, however, change with
strain in time and space. Those theoretical formulations are called micro-morphic.

21.2 General Balance Laws for the Constituents

We present in this section the balance laws for the constituents of a polar mixture in
the Eulerian description. Constituents are identified by Greek indices from α = 1
to α = N . At first, a master balance law is presented for some physical quantity, its
production, supply, and flux rates. It is assumed that all these quantities are additive.
The mixture specific form of this general balance law is given by

dα

dt

∫

ω

γα(x, t)dv =
∫

ω

(πα(x, t) + ςα(x, t)) dv −
∫

∂ω

φα(x, t) · n da, (21.5)

with the following local counterparts

∂γα

∂t
+ div (γαvα) = −div φα + πα + ςα, (21.6)

[[
γα((v − u) · ns)

]] − [[
φα · ns

]] = Pα. (21.7)

In these equations, γα, πα, ςα, and φα denote an unspecified physical quantity of
the constituent α, its production in, and its supply to ω as well as the flux across
the boundary ∂ω ; d/dt is the material time derivative of the constituent α, i.e., the
time derivative if one follows the motion of constituent α, and vα is the velocity
vector of constituent α. If γα is a vectorial field, then γαvα must be interpreted as
a dyadic product: γα ⊗ vα. In the jump condition (21.7), ns denotes the unit vector
perpendicular to the singular surface, P is the surface production of the constituent
physical quantity γα, and u is the velocity with which the surface moves; it must
not coincide with any of the constituents’ particle velocity instantaneously sitting

4The divergence terms on the right-hand side of (21.4) can be justified as follows: Note that in
elementary statics, the {force, couple}-motor is the resultant motor in the center of mass O of
the body of all forces, the volume, and surface forces. When applying this same principle to an
infinitesimal cube, the forces and couples are separately introduced as body and surface forces and
couples. It is a straightforward exercise to see that the surface stress traction and surface couple
stress tractions contribute to (21.4) by the motor {div t, divm}.
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upon the surface. Finally, [[ f ]] = f + − f − is the difference of the values of f on the
positive and negative sides of the singular surface. The derivation of the local state-
ments (21.6) and (21.7) from the global law (21.5) is not entirely straightforward.
The interested reader may consult the appendix to this chapter. A further extension
of the jump condition (21.7), taking the contribution of the excess surface thermo-
dynamic quantities into account, can be found in Chap.27. In this case, the jump
condition will be extended to the corresponding interfacial balance equation.

The various interpretations of the fields for the different physical balances are
summarized in Table 21.1. In the balance law of mass for constituent α flux and
supply vanish as they do for a single constituent material; however, there can arise
a nontrivial production of mass for constituent α, cα; this is, e.g., the case if mass
of constituent α is produced by chemical reactions or phase changes. Likewise, it is
so that mass of a constituent can be generated on a singular surface, if phase change
processes arise there. This is described as surface mass production μα.

In thebalance lawof linearmomentum, themomentumdensityραvα is balanced
by the volume forcesρα f α and the partial stress tα; to these contributions, also arising
in a one-component material, one must add a density of momentum production or
interaction force mα. This is the force that is exerted on constituent α by all other
constituents 1, 2, . . . , N (without α). In Table21.1, we also list a surface momentum
production τ α, which is for instance necessary when a singular surface separates
two mixtures with different numbers of constituents.

The balance of angular momentum in Table21.1 is formulated for a so-called
polar continuum; more specifically, each entry in the line “Angular momentum” in
Table21.1 consists of two contributions for γα, an intrinsic angular momentum ραsα,
called spin and amoment of momentum x × ραvα. Both are obviously axial vectors.5

In much the same way, the supply of angular momentum consists of an external
specific couple ρα�α and themoment of the specific exterior volume force x × ρα f α;
and the flux of angular momentum is obtained as the sum of the (negative) couple
stresses −mα and the moment of the (negative) partial Cauchy stresses −x × tα.
Likewise the angular momentum production is composed of two contributions, the
production of the specific spin kα and the moment of the momentum production
x × mα. Finally, onemay also compose the surface production of angularmomentum
in this way; however, we shall not do this here, because we see no advantages by
doing so; we call σα the surface production of angular momentum of constituent α.

The physical quantity in the balance of energy, the first law of thermodynamics,
is the specific energy density, which is composed of the kinetic energy (of translation
and rotation), 1

2ρ
α(vα · vα + sα · ωα) plus the internal energy, ραεα. These are the

kinetic and thermodynamic contributions; vα is the velocity of constituent α, andωα

is its angular velocity; the latter is in no way related to the velocity vα. Since sα and
ωα are both axial vectors, sα · ωα is a scalar. Likewise, the energy supply and energy
flux are composed of such contributions. For instance, the energy supply is given by
the power of working of the specific volume forces vα · ρα f α and specific volume
couples ραlα · ωα plus the specific radiation ραrα, all for constituent α. Similarly

5A vector is called axial, if it changes its sign when the orientation of the basis changes.

https://doi.org/10.1007/978-3-319-77745-0_27
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the flux of the energy of constituent α is composed of the power of working of the
negative partial stresses −vα tα, and the couple stresses −ωαmα plus the partial heat
flux qα of constituent α. The production terms of energy are given by eα and εα and
denote specific quantities per unit volume and surface, respectively.

The individual quantities in the entropy balance are not specifically identified in
Table21.1 except that the quantities carry the superscript sα.

With the identifications of Table21.1 the local balance laws (21.6) and (21.7) take
the following forms:
Mass:

∂ρα

∂t
+ div (ραvα) = cα,

[[
ρα(vα − u) · ns)

]] = μα,

(21.8)

Momentum:

∂

∂t
(ραvα) + div (ραvα ⊗ vα − tα) = ρα f α + mα,

[[
ραvα ⊗ (vα − u) · ns

]] + [[
tαns

]] = τα,

(21.9)

Angular Momentum:

∂

∂t
(ραsα + xα × ραvα) + div

(
(ραsα + x × ραvα) ⊗ vα

− mα − x × tα
)

= ρα�α + x × ρα f α + kα + x × mα,

[[(ραsα + xα × ραvα)(vα − u) · ns]] + [[mα + x × tα]] · ns = σα,

(21.10)

Energy:

∂

∂t

(
1
2ρ

αvα · vα + 1
2ρ

αsα · ωα + ραεα
) + div

(
( 12ρ

αvα · vα

+ 1
2ρ

αsα · ωα + ραεα)vα − vα tα − ωαmα + qα
)

= eα + vα · ρα f α + ωα · ρα�α + ραrα,

[[
( 12ρ

αvα · vα + 1
2ρ

αsα · ωα + ραεα)(vα − u) · ns

]]

− [[
vα tα + ωαmα − qα

]] · ns = εα,

(21.11)

Entropy:

∂

∂t
(ραsα) + div

(
ραsαvα + φsα) = ραηsα + ραπsα

,

[[
ραsα(vα − u) · ns

]] − [[
φsα]] · ns = Psα

.

(21.12)
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These laws can be further simplified, however, they then no longer appear in
the classical divergence form. To this end we use the material time derivative of
constituent α

(·)′α := dα (·)
dt

:= ∂ (·)
∂t

+ (
grad (·) )

vα. (21.13)

Example:
Mass:

∂ρα

∂t
+ ραdiv vα + vα · grad ρα = cα,

or
dαρα

dt
+ ραdiv vα = cα.

Introducing this in the above Eqs. (21.8)–(21.12) and sequentially using the results
of the previous equations, it can be shown that the following alternative forms hold:

Momentum:

ρα d
αvα

dt
= div tα + ρα f α + (mα − cαvα) ,

[[
ραvα ⊗ (vα − u) · ns

]] + [[
tαns

]] = τ α,

(21.14)

Angular Momentum or Spin:

ρα d
αsα

dt
= divmα + ρα�α − dual

(
tα − (tα)T

) + (kα − cαsα) ,

[[
ραsα ((vα − u) · ns)

]] + [[
mαns

]] = σα,

(21.15)

Energy:

ρα d
αεα

dt
= −div qα + ωα · (

dual
(
tα − (tα)T

))

+ (
grad vα · (tα)T

) + (
gradωα · (mα)T

)

+ 1
2ρ

α

(

ωα · d
αsα

dt
− sα · d

αωα

dt

)

+ ραrα

+ (
eα − cα

(
εα + 1

2v
α · vα + 1

2 s
α · ωα

)

− (mα − cαvα) · vα − (kα − cαsα) · ωα
)
,

[[
( 12ρ

αvα · vα + 1
2ρ

αsα · ωα + ραεα)(vα − u) · ns

]]

− [[
vα tα + ωαmα − qα

]] · ns = εα .

(21.16)
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Entropy:

ρα d
αsα

dt
= −divφsα + ραηsα + ραπsα

with πsα ≥ 0,
[[
ραsα(vα − u) · ns

]] − [[
φsα]] · ns = Psα

.

(21.17)

Let us demonstrate the above claim:

• For instance, employing product differentiation in (21.9) and collecting terms
accordingly yields

(
∂ρα

∂t
+ div (ραvα)

)

︸ ︷︷ ︸
=cα (mass balance (21.8)1)

vα + ρα

(
∂vα

∂t
+ (grad vα) vα

)

︸ ︷︷ ︸
dαvα

dt (definition)

−div tα

= ρα f α + mα, (21.18)

which agrees with (21.14).
• The left-hand side of the angular momentum equation (21.10)1 can be written as

∂

∂t
(ραsα) + ∂

∂t
(x × ραvα) + div (ραsα ⊗ vα) + div ((x × ραvα) ⊗ vα)

−div (mα) − div (x × tα)

= ∂

∂t
(ραsα) + div (ραsα ⊗ vα) − div (mα)

+x ×
{

∂

∂t
(ραvα) + div (ραvα ⊗ vα) − div (tα)

}

− dual
(
tα − (tα)T

)
.

Combining this with the right-hand side of (21.10)1 leads to the statement

x ×
{

∂

∂t
(ραvα) + div (ραvα ⊗ vα) − div (tα) − ρα f α − mα

}

+ ∂

∂t
(ραsα) + div (ραsα ⊗ vα) − div (mα)

−ρα�α − kα + dual
(
tα − (tα)T

) = 0. (21.19)

The expression in the first line vanishes, as it is the cross product of x with the
momentum balance, written as M = 0. Moreover, use was made of
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(i) div (x × ραvα ⊗ vα) = (
εi jk x jρ

α(vα
k vα

l )
)
,l

= εi jkρ
αvα

k vα
l︸ ︷︷ ︸

=0

+ εi jk x jρ
αvα

k,lv
α
l + εi jk x jv

α
k (ραvα

l ),l
︸ ︷︷ ︸

εi jk x j (v
α
k ραvα

l ),l

=̂x × div (ραvα ⊗ vα) ,

(ii) div (x × tα) =̂ (
εi jk x j t

α
kl

)
,l = εi jkδ jl t

α
kl + εi jk x j t

α
kl,l

=̂x × div tα + εi jk t
α
k j =̂x × div tα − dual

(
tα − (tα)T

)
,

in which dual (W) is the dual vector of the skew-symmetric tensor W . It follows
from the above Eq. (21.19) that the local form of the angular momentum balance
reduces to the spin balance

∂(ραsα)

∂t
+ div (ραsα ⊗ vα)

= div (mα) − ρα�α − kα + dual
(
tα − (tα)T

)
. (21.20)

In this form, this balance occurs in mathematical conservative form. By applying
product differentiation of the terms on the left-hand side, it can easily be reduced
to the nonconservative form (21.15)1.

• In a similar way, the energy equation can be handled, but the related computations
are relatively complicated.However, if the nonconservative internal energybalance
(21.16) is accepted, a conservative form of the internal energy balance can be
deduced by combining the left-hand side of (21.16) with the mass balance as
follows:

ρα

(
∂εα

∂t
+ (grad εα) vα

)

+ εα

(
∂ρα

∂t
+ div (ραvα)

)

︸ ︷︷ ︸
cα

= ∂ (ραεα)

∂t
+ div (ραεαvα) = ρα dε

α

dt
+ εαcα. (21.21)

Thus, replacing ραdεα/dt in (21.16) by the relation from (21.21) yields a conser-
vative law for εα.

Remarks:

• The balance law of momentum is a vector equation. So tα is a second-order tensor,
called Cauchy stress tensor of constituent α, but it is not necessarily symmetric.
The vectors are polar vectors.

• The balance law of angular momentum orspin balance is also a vector equation in
this form, but sα, �α, kα are axial vectors as is dual

(
tα − (tα)T

)
. Dual vectors w

are isomorphic to skew-symmetric tensors W as follows:

wi := 1
2 εi jkW jk −→ Wi j = εi jkwk .
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So, angular momentum is often in the literature expressed as skew-symmetric
tensor equations, e.g.,

εi jk x jρvk
︸ ︷︷ ︸
axial vector

←→ x jρvk − xkρv j
︸ ︷︷ ︸
skew sym. tensor

.

• The above balance laws (21.14)–(21.17) or (21.8), (21.18), (21.20) with the sub-
stitution of (21.21) are not as convenient from a numerical point of view as (21.8)–
(21.12) are not in conservative form. But they suggest new production quantities.
These quantities are non-convective so-called intrinsic production densities of
momentum, angular momentum and energy as follows:

mα
Euclid := mα − cαvα,

kα
Euclid := kα − cαsα,

eαEuclid := eα − cα
(
εα + 1

2v
α · vα + 1

2 s
α · ωα

)

−(mα − cαvα) · vα − (kα − cαsα) · ωα.

(21.22)

These are so defined that the combination of all production terms in (21.14)–
(21.16) reduce tomα

Euclid (momentum), kα
Euclid (spin) and ραeαEuclid (energy). How-

ever, the choices (21.22) can also be physically motivated. Accordingly, the spe-
cific momentum production mα is given by the intrinsic (i.e., non-convective)
production mα

Euclid plus the convective momentum of the specific mass produc-
tion, cαvα. Likewise, the spin production kα is given as the sum of the intrinsic
(non-convective) spin production kα

Euclid plus the spin of the mass production. Both
are quite natural definitions, and the same holds true for the energy production eα.
This is additively composed of the intrinsic contribution, eαEuclid, the production of
internal energy due to themass production, cαεα, the kinetic energies of translation
and rotation due to the mass production, 1

2 c
αvα · vα and 1

2 c
αsα · ωα, respectively,

plus the powers of working of the intrinsic productions of momentum and spin,
(mα

Euclid · vα) and (kα
Euclid · ωα), respectively.

In addition, one can show that mα
Euclid, k

α
Euclid and eαEuclid are objective quanti-

ties under Euclidian transformations butmα, kα and eα are not. They transform,
respectively, as a polar and axial vector and as a scalar, respectively. These remarks
are important as constitutive equations must be formulated for these Euclidian
objective quantities. For proofs of these facts, see [17].

• The above balance laws hold for polar continua with nontrivial spin balances.
Such continua have independent degrees of freedom for translation and rotation;
vα, ωα are kinematically independent fields. The independent rotations give rise
to nontrivial fields sα, mα, �α. If these vanish,

sα = 0, mα = 0, �α = 0, (21.23)
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the Cauchy stress must satisfy the relation

dual
(
tα − (tα)T

) = kα
Euclid. (21.24)

A continuum, for which (21.23) holds, is a classical continuum, also called a non-
polar continuum. In such a continuum, the Cauchy stress tα of constituent α is
only symmetric if the spin production rate density vanishes.

Remark: In a granular material with particle collisions k is not zero, since rota-
tions of the particles change under collisions. So, such materials are actually polar
continua. This may also hold for snow in flow and powder snow avalanches.

This result sheds some light on Boltzmann’s statement that the symmetry of
the Cauchy stress tensor in a non-mixture body constitutes an axiom. Indeed, in
such a solid continuum, the symmetry of the Cauchy stress tensor requires that
kα
Euclid = 0, which cannot strictly be proved in a dynamic situation, but must be
assumed.

• For a one-constituent medium, the polar continuum has been proposed by the
Cosserat brothers (1909) [6] in Paris. In that case, the index α is dropped in
Eqs. (21.8)–(21.12) or (21.14)–(21.17) and production terms vanish. This then
yields

c = 0, m = 0, k = 0, e = 0, (21.25)

• ∂ρ

∂t
+ div (ρv) = 0,

• ∂

∂t
(ρv) + div (ρv ⊗ v − t) = ρ f ,

• ∂

∂t
(ρs + x × ρv) + div ((ρs + x × ρv) ⊗ v − x × t − m)

= ρ� + x × ρ f , (21.26)

• ∂

∂t

(
1
2ρv · v + 1

2ρs · ω + ρε
)

+div
((

1
2ρv · v + 1

2ρs · ω + ρε
)
v − v t − ωm + q

)

= v · ρ f + ω · ρ� + ρr,

• ∂

∂t
(ρs) + div

(
ρsv + φs) = ρηs + ρπs,

or
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• ∂ρ

∂t
+ div (ρv) = 0,

• ∂

∂t
(ρv) + div (ρv ⊗ v − t) = ρ f ,

• ∂

∂t
(ρs) + div (ρs ⊗ v − m) = ρ� + dual

(
t − tT

)
, (21.27)

• ∂

∂t
(ρε) + div (ρεv) = −div q + ω · (

dual(t − tT )
)

+(grad v · tT ) + (gradω · mT ) + 1
2ρ

(

ω · ds
dt

− s · dω
dt

)

+ ρr,

• ∂

∂t
(ρs) + div

(
ρsv + φs) = ρηs + ρπs,

or

• dρ

dt
+ ρdiv v = 0,

• ρ
dv

dt
= div t + ρ f ,

• ρ
ds
dt

= divm + ρ� + dual
(
t − tT

)
, (21.28)

• ρ
dε

dt
= −div q + ω · (

dual(t − tT )
)

+(grad v · tT ) + (gradω · mT ) + 1
2ρ

(

ω · ds
dt

− s · dω
dt

)

+ ρr,

• ρ
ds

dt
= −divφs + ρηs + ρπs .

The jump conditions are not changed.
A component of a mixture or a continuum for which relations (21.23) are fulfilled

is called a nonpolar or a-polar continuum. One concludes from (21.24) that in non-
polar mixtures the partial Cauchy stress tα is only symmetric if the corresponding
intrinsic spin production vanishes.

The local equation (21.15) for the spin is a balance equation that allows the
following interpretations:

• Flux of spin ≡ −mα (negative couple stresses),
• Supply of spin ≡ ρα�α (externally applied body couple),
• Production of spin ≡ − dual(tα − (tα)T ) + kα

Euclid.

Likewise, the equation for the internal energy of constituent α has the form of a
balance law with the interpretations

• Flux of internal energy ≡ qα (heat flux),
• Supply of internal energy ≡ ραrα (radiation),
• Production of internal energy
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≡ (
grad vα · (tα)T

) + ωα · (
dual(tα − (tα)T )

) + (
gradωα · (mα)T

)

+eαEuclid + 1
2ρ

α

(

ωα · d
αsα

dt
− sα · d

αωα

dt

)

.
(21.29)

Apart from the well-known term for the power of working of nonpolar continua
(grad vα · (tα)T ), this formula contains an analogous term of the spinmotion, namely
ωα · (dual(tα − (tα)T )) + (gradωα · (mα)T ) plus a further term, newby its structure
and given by

Sα = 1
2ρ

α

(

ωα · d
αsα

dt
− sα · d

αωα

dt

)

. (21.30)

It may be called the micro-morphic spin production of constituent α. To fathom the
significance of this term, let us be guided by rigid body dynamics of a solid body;
its moment of momentum relative to its center of mass c is given by

Dc = Θ̂cω, Θ̂c = Θ̂
T

c , (21.31)

in which Θ̂c denotes the tensor of moment of inertia, a symmetric second rank tensor.
Being inspired by this, we now postulate the spin of constituent α to be given by

sα = Θαωα, Θα = (Θα)T , (21.32)

where Θα is a symmetric second rank tensor, called the tensor of specific inertia of
constituent α. It is a measure for the distribution of mass of constituent α in a region
of influence of a particle at position x. In general, this distribution changes with
time for any material particle, so that dαΘα/dt �= 0. If the rotations are small for a
particular deformation of the body, then the time rate of change of the distribution of
mass of constituent α about the particle at position x may be ignored. One, therefore,
distinguishes materials as follows:

• A constituent α is called micro-polar (hyphened here for emphasis) if the specific
tensor of inertia is materially constant for that constituent,

dαΘα

dt
= 0 ⇐⇒ micro-polar.

• A constituentα is calledmicro-morphic (hyphened here for emphasis) if the tensor
of inertia may vary with time,

dαΘα

dt
�= 0 ⇐⇒ micro-morphic.

With these definitions and the representation (21.32) for the spin density, it follows
thatSα vanishes for micro-polar continua, but may be different from zero for micro-
morphic continua.
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21.3 Balance Laws for the Mixture as a Whole

If the balance laws of mass, linear, and angular momenta and energy are summed
over all constituents, one obtains the corresponding balance laws for the mixture
as a whole. If one views the body as an entity it seems plausible to assume that an
observer, who looks at the body as a whole and is not aware that it may be composed
of a number of constituents, will recognize this body as a one-component material
and impose the postulates of a one-component continuum. This suggests that the
balance laws of mass, momentum, angular momentum and energy for the mixture
as a whole must be conservation laws. If so, the sum of the production terms over
all constituents of mass, momentum, angular momentum and energy must vanish,
implying that

N∑

α=1

cα = 0,
N∑

α=1

mα = 0,
N∑

α=1

kα = 0,
N∑

α=1

eα = 0. (21.33)

Notice that these statements are required for the production terms of the original
balance laws and not their Euclidian invariant partners defined in (21.22).

If we request that the balance laws of the mixture as a whole are obtained as the
sum of the partial balances, it is only natural if we also request that these balance
laws coincide with the balance laws of a one-constituent continuum. In order to draw
the inferences to this principle, which goes back to Truesdell and Toupin [21], it
is necessary that variables for the mixture as a whole are related to the variables of
the constituents. Summing (21.6) over all constituents yields

N∑

α=1

∂γα

∂t
+

N∑

α=1

div (γαvα) = −
N∑

α=1

divφα +
N∑

α=1

(πα + ςα). (21.34)

The second termon the left-hand side in this equation contains products of constituent
quantities, γαvα. This is inconvenient; if we therefore introduce a mixture velocity
v—at the present state of the knowledge it is not clear how to specify it—by simply
writing vα = vα − v + v, then we may write

N∑

α=1

γαvα =
N∑

α=1

γα
(
v + (vα − v)

︸ ︷︷ ︸
uα

)
=

N∑

α=1

γαuα +
(

N∑

α=1

γα

)

v. (21.35)

The quantity uα is called diffusion velocity of constituent α relative to the mixture
velocity. Introducing, moreover, the definitions

γ =
N∑

α=1

γα, π =
N∑

α=1

πα, ς =
N∑

α=1

ςα, φ =
N∑

α=1

(φα + γαuα) (21.36)
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and, thus, defining the physical quantity γ of the mixture, its production π, supply ς
and flux φ, respectively, one obtains from (21.34) the new balance law

∂γ

∂t
+ div (γv) = −divφ + π + ς. (21.37)

To guarantee that the balance law for the mixture takes the form of a balance law
for a single constituent body, two things have necessarily to be satisfied. First, the
physical quantity γ characterizing the mixture as a whole, its production π and its
supply ς are given as the sum of the respective constituent quantities. Second, the flux
φ for the mixture is given as the sum of the constituent fluxes φα plus the diffusive
fluxes γαuα.

Above, the mixture velocity v and the diffusion velocity of constituent α, uα =
vα − v were introduced, but not defined. Their exact definition follows from the
balance law of mass. With γα = ρα, γ = ρ, π = 0, ς = 0 and φα

Mass = 0 for all α,
the mass flux of the mixture (21.36)4 is given by

φMass =
N∑

α=1

ραuα,

which ought to vanish, if the balance law of mass for the mixture as a whole should
be formally the same as the balance law of mass for a single constituent material.
One, therefore, must request

N∑

α=1

ραuα = 0 ⇐⇒ ρv =
N∑

α=1

ραvα. (21.38)

This conditiondefines themixture velocity, andonlywith this choice themass balance
for the mixture takes the form

∂ρ

∂t
+ div (ρv) = 0. (21.39)

The mixture velocity defined by (21.38) is called the barycentric velocity because
it represents the averaged velocity, using the constituent densities as weights. Occa-
sionally, it is also written as

v =
N∑

α=1

ξαvα, ξα = ρα

ρ
, (21.40)

where ξα is the mass concentration of constituent α.
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For the momentum balance, one defines

γ = ρv =
N∑

α=1

ραvα, ς = ρ f =
N∑

α=1

ρα f α, π = 0,

φ = −t = −
N∑

α=1

(tα − ραvα ⊗ uα) = −
N∑

α=1

(tα − ραuα ⊗ uα) ,

(21.41)

where
N∑

α=1

ραv ⊗ uα = v ⊗
(

N∑

α=1

ραuα

)

︸ ︷︷ ︸
0

= 0 has dropped out.

While the specific momentum and the specific body force of the mixture are
given as the sums of the specific partial momenta and specific body forces of the
constituents, the stress tensor for the mixture is composed of two contributions, the
sum of the partial stress tensors over all constituents

∑
tα minus the diffusive fluxes

of the partial momenta
∑

(ραuα) ⊗ uα. With these identifications, the balance of
momentum for the mixture as a whole takes the classical form

∂(ρv)

∂t
+ div (ρv ⊗ v) = div t + ρ f . (21.42)

Often, in mixture theory contexts, the mixture stress is given as the sum of the partial
stresses without accounting for the diffusive contribution as stated in (21.41)4. It is
straightforward to show that this is only justified, if the convective contributions to
the acceleration are negligible, viz.,

dvα

dt
≈ ∂vα

∂t
∀α ⇐⇒ t ≈

N∑

α=1

tα. (21.43)

Next, let us consider the balance law of angular momentum, and define

γ =
N∑

α=1

(ραsα + x × ραvα) =
N∑

α=1

ραsα

︸ ︷︷ ︸
ρs

+x ×
N∑

α=1

ραvα = ρs + x × ρv,

ς =
N∑

α=1

(ρα�α + x × ρα f α) =
N∑

α=1

ρα�α

︸ ︷︷ ︸
ρ�

+x ×
N∑

α=1

ρα f α = ρ� + x × ρ f ,

π = 0, (21.44)

φ =
N∑

α=1

(−mα − x × tα + (ραsα + x × ραvα) ⊗ uα)
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= −
N∑

α=1

(mα − ραsα ⊗ uα)

︸ ︷︷ ︸
m

−x ×
N∑

α=1

(tα − ραuα ⊗ uα)

︸ ︷︷ ︸
t

= −m − x × t.

in which x ×
N∑

α=1

ραv ⊗ uα = x × v ⊗
N∑

α=1

ραuα

︸ ︷︷ ︸
0

= 0 has again dropped out.

Accordingly, the specific density of the angular momentum of the mixture is com-
posed of the sum of the spin densities of the constituents and the moment of the
linear momentum of the mixture; the supply of angular momentum is the sum of the
specific body couples of the constituents and the moment of the body forces, and the
flux of angular momentum of the mixture is given as the negative sum of the couple
stresses of the constituents minus the sum of the diffusive spins of the constituents,
minus the moment of the stress of the mixture. As was the case for the stress tensor
of the mixture, the couple stress for the mixture is composed of the couple stresses
of the constituents minus the diffusive fluxes of the specific spins of the constituents.
With (21.44), therefore, the balance law of angular momentum for the mixture as a
whole takes the form

∂

∂t
(ρs + x × ρv) + div ((ρs + x × ρv) ⊗ v)

= div (m + x × t) + ρ� + x × ρ f .
(21.45)

Straightforward calculation shows that this equationmay alternatively also bewritten
as

∂

∂t
(ρs) + div (ρs ⊗ v) = divm + dual(t − tT ) + ρ�, (21.46)

which is the local spin balance. From this equation, it is directly evident that for
s = 0, m = 0 and l = 0 the Cauchy stress tensor must be symmetric.

It is worth mentioning that in the above derivation of the balance of angular
momentum for the mixture the kinematic variable associated with the spin does not
arise; an angular velocity for the mixture was not defined and did not need to be
defined. This can nevertheless be done by connecting the constituent spin density sα

with the constituent angular velocity ωα, as done in (21.32) via sα = Θαωα, where
Θα is the tensor of constituent specific moment of inertia. If one writes now

ωα = ω + (ωα − ω)
︸ ︷︷ ︸

Δωα

= ω + Δωα,
(21.47)
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whereΔωα may be called diffusive angular velocity of constituent α, one obtains

ρs =
N∑

α=1

ραsα =
N∑

α=1

ραΘα(ω + Δωα)

=
( N∑

α=1

ραΘα
)

︸ ︷︷ ︸
ρΘ

ω +
N∑

α=1

ραΘαΔωα

︸ ︷︷ ︸
Δsα

.
(21.48)

One may now define the angular velocity of the mixture by requiring

N∑

α=1

Δsα :=
N∑

α=1

ραΘαΔωα = 0 ⇐⇒ ρΘω =
N∑

α=1

ραΘαωα, (21.49)

in which

ρΘ :=
N∑

α=1

ραΘα (21.50)

can be called the barycentric specific moment of inertia. With these specifications,
the mixture density of spin takes the form

ρs = ρΘω. (21.51)

Of course, different definitions of themixture angular velocity are thinkable, however,
the above one seems to be particularly natural.

For the derivation of the balance law of energy for the mixture, we write

γ =
N∑

α=1

(
1
2ρ

αvα · vα + 1
2ρ

αsα · ωα + ραεα
)

=
N∑

α=1

1
2ρ

α
(
v · v + uα · v + v · uα + uα · uα

)

+
N∑

α=1

1
2ρ

αΘα(ω + Δωα) · (ω + Δωα) +
N∑

α=1

ραεα (21.52)

= 1
2ρv · v + 1

2ρs · ω

+
N∑

α=1

(
ραεα + 1

2ρ
αuα · uα + 1

2ρ
αΘαΔωα · Δωα

)

︸ ︷︷ ︸
ρε

,
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ς =
N∑

α=1

(
vα · ρα f α + ωα · ρα�α + ραrα

)

=
N∑

α=1

(
(v + uα) · ρα f α + (ω + Δωα) · ρα�α + ραrα

)

= v · ρ f + ω · ρ�

+
N∑

α=1

(
ραrα + uα · ρα f α + Δωα · ρα�α

)

︸ ︷︷ ︸
ρr

.

(21.53)

Thus, the specific energy of the mixture, ρε is given as the sum of the partial internal
plus translational and rotational kinetic energies formed with the diffusion velocities
of the constituent motions, uα and Δωα, respectively. Likewise, the energy supply
of the mixture, ρr is the sum of the partial supplies, ραrα plus the power of working
of the volume forces and body couples on the diffuse motion of the constituents.

The mixture energy flux is given by

φ =
N∑

α=1

[
−(vα tα + ωαmα − qα)

+ ( 12ρ
αvα · vα + 1

2ρ
αsα · ωα + ραεα)uα

]
.

(21.54)

A simple but somewhat long calculation shows that it can be written as

φ = −v t − ωm + q,

where

q :=
N∑

α=1

[
qα − uα tα − Δωαmα

+
(
ραεα + 1

2ρ
αuα · uα + 1

2ρ
αsα · (Δωα − ω)

)
uα

]
.

(21.55)

As this formula shows, the vector q cannot be interpreted as heat flux alone; energy
flux is the better terminology. Evidently, the energy flux vector of the mixture is
composed of the constituent heat flux vectors qα, the powers of working of the
stresses and couple stresses on the diffusemotion and the convective energy transport
on the diffuse motion. Consequently, the balance law of energy for the mixture as a
whole takes the form



28 21 Balance Laws of Continuous System

∂

∂t

(
ρε + 1

2ρv · v + 1
2ρs · ω

) + div
(
(ρε + 1

2ρv · v + 1
2ρs · ω)v

)

= div (v t + ωm − q) + v · ρ f + ω · ρ� + ρr

(21.56)

and reduces for a nonpolar continuum with s = 0, ω = 0, � = 0 to the classical
energy balance

∂

∂t

(
ρ

(
ε + 1

2v · v
)) + div

(
ρ

(
ε + 1

2v · v
)
v
)

= div (v t − q) + v · ρ f + ρr. (21.57)

Incidentally, it is interesting to see that the energy flux q contains a term proportional
to ω which cannot be eliminated; indeed, q can be written in the form

q =
N∑

α=1

{

qα − uα tα − Δωαmα +
(

ραεα + 1

2
εαuα · uα (21.58)

+1

2
Δsα · Δωα

)

uα

}

+ s
N∑

α=1

1

2
ραΔωα ⊗ uα − ω

N∑

α=1

1

2
ραΔsα ⊗ uα,

in which the two terms that involve s and ω do in general not cancel each other.
The translational and rotational components of the motion have therefore a different
effect on the mixture energy flux.

Finally, by summing the constituent entropybalance laws (21.12), onemaydeduce
the relation

∂

∂t
(ρs) + div (ρsv + φη) − ρηs = ρπη ≥ 0, (21.59)

in which

ρs =
∑

α

ραsα, ρηs =
∑

α

ραηsα

, ρπs =
∑

α

ρπsα

,

(21.60)

φs =
∑

α

(
φsα + sαuα

)
,

as anticipated already in (21.36).
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21.4 Summary

The local balance laws of mass, momentum, angular momentum, energy and entropy
for the mixture as a whole take the forms

∂ρ

∂t
+ div (ρv) = 0,

∂(ρv)

∂t
+ div (ρv ⊗ v) = div t + ρ f ,

∂

∂t
(ρs + x × ρv) + div ((ρs + x × ρv) ⊗ v)

= div (m + x × t) + ρ� + x × ρ f ,

∂

∂t

(
ρε + 1

2ρv · v + 1
2ρs · ω

) + div
(
(ρε + 1

2ρv · v + 1
2ρs · ω) · v

)

= div (v t + ωm − q) + v · ρ f + ω · ρ� + ρr,

∂

∂t
(ρs) + div (ρsv) = −divφs + ρηs + ρπs,

(21.61)

in which the field quantities of the mixture (without index α) are related to those of
the constituents (with index α) according to

ρ =
N∑

α=1

ρα, ρv =
N∑

α=1

ραvα,

ρΘ =
N∑

α=1

ραΘα, ρΘω =
N∑

α=1

ραΘαωα, (21.62)

uα = vα − v, Δωα = (ωα − ω),

t =
N∑

α=1

(
tα − ραuα ⊗ uα

)
, ρ f =

N∑

α=1

ρα f α, (21.63)

ρs =
N∑

α=1

ραsα, ρ� =
N∑

α=1

ρα�α,

m =
N∑

α=1

(
mα − ραsα ⊗ uα

)
, (21.64)

ρs =
N∑

α=1

ραsα, ρς =
N∑

α=1

ραηsα

, ρπ =
N∑

α=1

ραπsα

, (21.65)

φs =
N∑

α=1

(
φsα + sαuα

)
,
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ρε =
N∑

α=1

(
ραεα + 1

2ρ
αuα · uα + 1

2ρ
αsα · Δωα

)
,

ρr =
N∑

α=1

(
ραrα + uα · ρα f α + Δωα · ρα�α

)
,

q =
N∑

α=1

[
qα − uα tα − Δωαmα

+
(
ραεα + 1

2ρ
αuα · uα + 1

2ρ
αsα(Δωα − ω)

)
uα

]
.

(21.66)

All these quantities were already previously defined and are repeated here for con-
venience. Simple computations, using product differentiation lead to the following
alternative representations:

∂ρ

∂t
+ div (ρv) = 0,

∂

∂t
(ρv) + div (ρv ⊗ v) = div t + ρ f ,

∂

∂t
(ρs) + div (ρs ⊗ v) = divm − dual(t − tT ) + ρ�, (21.67)

∂

∂t
(ρε) + div (ρεv) = −div q + ω · dual(t − tT ) + (grad v) · tT

+(gradω) · mT + ρr,

∂

∂t
(ρs) + div (ρsv) = −divφs + ρηs + ρπs .

or

dρ

dt
+ ρdiv v = 0,

ρ
dv

dt
= div t + ρ f ,

ρ
ds
dt

= divm − dual(t − tT ) + ρ�, (21.68)

ρ
dε

dt
= −div q + ω · dual(t − tT ) + (grad v) · tT + (gradω) · mT + ρr,

ρ
ds

dt
= −divφs + ρηs + ρπs .

In the above forms, these equations hold for polar continua. In exactly the same
fashion as done for the constituent balance laws, amixture is defined to be nonpolar if

s = 0, m = 0, � = 0, (21.69)
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so that

t = tT . (21.70)

The Cauchy stress tensor of a nonpolar mixture is automatically symmetric. This
conclusion also holds true if the partial Cauchy stress tensors should possess skew
symmetric contributions, compare Eqs. (21.23) and (21.24).

The jump conditions, which hold across singular surfaces s are

[[ρ(w − v) · ns]] = 0,

[[ρv(w − v) · ns]] + [[tns]] = 0,

[[ρs(w − v) · ns]] + [[mns]] = 0, (21.71)
[[
ρ(ε + 1

2v
2 + 1

2ω · s)(w − v) · ns

]] + [[
v t + ωm − q

]] · ns = 0,
[[
ρs(w − v) − φs]] · ns = −Ps

s,

in which w is the velocity of the singular surface.
A further balance law of micro-inertia, formulated by Eringen in 1964 [8] is

concerned with evolution equations for the tensor of inertia of the constituents, Θ̄α.
These balance laws are better presented when the kinematics of Cosserat continua
will have been introduced, see Chap.22.

21.5 Discussion

The aim of this chapter has been the construction of the governing physical
equations—balance laws ofmass, linearmomentum, angularmomentum, energy and
entropy—on the basic assumption that matter fills the physical space
continuously. This was done for a mixture of a finite number of constituents or com-
ponents and the tacit assumption that the principles of classical physics in continuous
systems possess the structure of balance laws and field quantities are additive. The
physical laws are expressible as local differential equations in interior body points
where the field quantities are differentiable and as so-called jump conditions of fields
between the two adjoining sides of singular surfaces.

The physical balance laws have been presented for polar, or so-called Cosserat,
continua; their basic assumption is existence of a nontrivial spin balance. It entails
kinematically separate descriptions, i.e., formal independence of the translational
and rotational motion of the fluid particles. The governing dynamical equations have
here been motivated by analogy to the equations of rigid body dynamics, Newton’s
second law and Euler’s description of the angular momentum balance equation,
which were condensed in a single statement of motor calculus. Its transformation
to a continuous three-dimensional deformable body required definitions of specific
spin density, ρs, couple stress tensor m and specific body couples, ρ�, summarized
in the motor-type Eq. (21.4). This equation and all its applications to the physical

https://doi.org/10.1007/978-3-319-77745-0_22


32 21 Balance Laws of Continuous System

balance laws for the constituents α (α = 1, 2, . . . , N ) and for the mixture as a whole
form evolution equations for dynamical quantities, but also involve kinematic quan-
tities, the velocity fields vα and the angular velocities ωα of the constituents. The
former couple the velocity fields with the specific momenta, ρvα; the latter are new
and here specialized for a particular description of the micro-deformation, rotations
accompanying the constituent moving fluid particles as stated in Eq. (21.32). Thus,
the dynamical equations, derived in this chapter, are coupled with the principal kine-
matic fields vα andωα through the definitions of specific linearmomentum, ραvα and
specific spin ραsα, both of constituent α, (α = 1, 2, . . . , N ). The suggested parame-
terization (21.32) led to themicro-polar and micro-morphic continua, originally due
to the Cosserat brothers, but can be generalized if desired to describe more general
substructural behavior.

Appendix 21.A Derivation of the Local Balance Law
and Jump Condition

In this Appendix, the local statements (21.6) and (21.7) will be derived from (21.5)
by assuming that all fields are additive quantities over their domains of definition.
Notation will also be simplified by omitting the counting index α, because in the
ensuing analysis only a single component is looked at.

Figure21.3 shows the material body in its reference and present configurations,
but split into two parts ω±. It is assumed that the fields γ,π, ζ,φ are continuous
and differentiable in the two subregions ω±, but suffer a jump across an orientable
nonmaterial surface, denoted asS and s in the reference and present configurations,
respectively.

The two underlined terms in the balance law

d

dt

∫

ω

γ(x, t)dv =
∫

ω

(π(x, t) + ζ(x, t)) dv −
∫

∂ω

φ(x, t) · nda (21.72)

are critical, because the classical Reynolds transport theorem and the Divergence
theorem are not valid over ω and ∂ω, respectively, if a singular surface is present.

For this reason, the body is divided in twoparts as shown inFig. 21.3. The left-hand
side of (21.72) is thus written as

d

dt

∫

ω

γdv = d

dt

∫

ω+
γdv + d

dt

∫

ω−
γdv. (21.73)

It is assumed that the singular surfacemoveswith velocity u andReynolds’ transport
theorem applied to the two parts. This yields
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U

U

u

u

Fig. 21.3 Material body (actually here one component of amixture)with interior singular surface in
the present and reference configurations. The body is separated in two parts by the singular surface
which are indicated by + and −. The boundary surfaces ∂Ω±, ∂ω± are the outer boundaries
governed by the mantle surface plus the singular surfaces of the body in the two configurations.S
and s indicate the singular surfaces, NS and ns represent the unit normal vectors and, finally U±
it or u it the velocities of these surfaces in the two different configurations

d

dt

∫

ω+
γdv =

∫

ω+

∂γ

∂t
dv +

∫

∂ω+\s
γv · nda −

∫

s

γ+ (u · ns) da
(21.74)

d

dt

∫

ω−
γdv =

∫

ω−

∂γ

∂t
dv +

∫

∂ω−\s
γv · nda +

∫

s

γ− (u · ns) da,

in which u is the velocity of the singular surface and ns is pointing into the positive
side of the partitioned body.At this state of the analysis, conditions of the applicability
of the Divergence Theorem are not satisfied, but they can be artificially incorporated
as follows:
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d

dt

∫

ω+
γdv =

∫

ω+

∂γ

∂t
dv +

∫

∂ω+\s
γv · nda −

∫

s

γv+ · nsda

︸ ︷︷ ︸
∫
∂ω+ div (γv)dv

+
∫

s

γ
(
v+ · ns

)
da −

∫

s

γ+ (u · ns) da (21.75)

d

dt

∫

ω−
γdv =

∫

ω−

∂γ

∂t
dv +

∫

∂ω−\s
γv · nda +

∫

s

γv− · nsda

︸ ︷︷ ︸
∫
ω− div (γv)dv

−
∫

s

γv− · nsda +
∫

s

γ− (u · ns) da. (21.76)

Note that ns is for ω+ a surface vector pointing into ω+. Combining (21.74)1,2 leads
to

d

dt

∫

ω

γdv =
∫

ω+

(
∂γ

∂t
+ div (γv)

)

dv +
∫

ω−

(
∂γ

∂t
+ div (γv)

)

dv

−
∫

s

[[γ(u − v) · ns]] da, (21.77)

where the last two terms in (21.74) have been combined to the jump term in (21.77).
Next, adding Eq. (21.74) together and observing that (∂ω+\s) ∪ (∂ω−\s) = ∂ω,

one obtains

d

dt

∫

ω

γdv =
∫

ω

∂γ

∂t
dv +

∫

∂ω

γ (v · n) da −
∫

s

[[γ (u · ns)]] da. (21.78)

Comparing this result with (21.77) yields

∫

∂ω

γ (v · n) da =
∫

ω

div (γv) dv +
∫

s

[[γ (v · ns)]] da. (21.79)

The expressions (21.77) and (21.79) are the generalized Reynolds and Divergence
Theorems for bodily regions with singular surface.

Substituting (21.77) and (21.79) for [γv = φ] into the underlined terms in (21.72)
yields

∫

ω

(
∂γ

∂t
+ div (γv)

)

dv −
∫

s

[[γ(v − u) · ns]] da

=
∫

ω

(π + ζ) (x, t)dv −
∫

ω

div (φ)dv −
∫

s

[[φ · ns]] da. (21.80)

In the above analysis, it was consistently assumed that the singular surface was not
equipped with substance; in (21.80) it only participates passively on the processes in
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the immediate neighborhood of the surface on parts ω+ and ω−. In the most general
case it is, however, thinkable that the singular surface is equipped with physical
surface quantities, for which a surface balance lawmay hold [1]. Themost significant
contribution is often the surface production termP; it represents a surface density of
the production of the physical quantity. Here, this production term

∫
s Pda is the only

contribution that will be accounted for.6 Therefore, (21.80) will now and henceforth
be replaced by

∫

ω

(
∂γ

∂t
+ div (γv)

)

dv −
∫

s

[[γ(v − u) · ns]] da

=
∫

ω

(π + ζ) (x, t)dv −
∫

ω

div (φ)dv −
∫

s

[[φ · ns]] da

−
∫

s

Pda (21.81)

If ω is a region not involving any singular surface, then (21.81) reduces to

∫

ω

{(
∂γ

∂t
+ div (γv)

)

+ div (φ) − (π + ζ)

}

(x, t)dv = 0,

for all such ω so that
{

∂γ

∂t
+ div (γv) + div (φ) − (π + ζ)

}

(x, t) = 0, (21.82)

which agrees with (21.5).
Alternatively, taking for ω a small pillbox with height ε, of which the lid and

bottom surfaces are very close and parallel to s but on the + and − sides of it,
respectively, and letting ε → 0, relation (21.81) leads to

∫

s

{[[γ(v − u) · ns]] − [[φ · ns]] − P} (x, t)da = 0,

from which, because of additivity,

[[γ(v − u) · ns]] − [[φ · ns]] = P, (21.83)

which agrees with (21.7) in the main text.

6Such production terms can, e. g., be the melting/freezing rate (a mass production or loss) between
water and ice and the energy production/annihilation (surface energy release/consumption) associ-
ated with this phase change process.
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Chapter 22
Kinematics of Classical and Cosserat
Continua

Abstract The aim of this chapter is the presentation of the kinematics of classical
(Boltzmann) and polar (Cosserat) continuous mixtures. The motions of material
points of constituent α are first mathematically introduced for a classical mixture
as mappings from separate constituent points onto a single point in the present con-
figuration, Fig. 22.3. This guarantees that material points in physical space are a
merger of all constituents. This motion function then yields through spatial and
temporal differentiations the well-known definitions of the classical deformation
measures: deformation gradient, right and left Cauchy–Green deformation ten-
sors, Euler–Lagrange strains, and associated strain rates. Of importance is the
polar decomposition, which splits the deformation gradient into a sequence of pure
strain and rotation or vice versa. Whereas the classical stretch and stretching mea-
sures are obtained by inner products of the constituent vectorial line element with
itself, deformation measures of Cosserat kinematics are generated by inner prod-
ucts between vectorial material line increments and the directors. The mappings of
the latter between the reference and present configurations are postulated to be pure
rotations (Fig. 22.5). This then yields the various Cosserat strain measures, which
are analogous to, but not the same as those of the classical theory. The kinematically
independent rotation of the directors gives rise to the introduction of skew-symmetric
rank-3 and full rank-2 curvature tensors, quasi as measures of the spatial variation
of the micro rotation. Analogous to the additive decomposition of the velocity gra-
dient into stretching and vorticity tensors in the classical formulation, two additional
decompositions of the velocity gradient are introduced using the polar decomposi-
tion and leads to non-symmetric strain rate and the so-called gyration tensors, and
objective time derivatives of the Cosserat version of the Almansi tensor and the
curvature tensors. All these quantities are also written relative to the natural basis
system. The chapter ends with the presentation of the balance law of micro-inertia.
It is based on the assumption that material points of micro-polar continua move like
rigid bodies.

Keywords Classical and extended deformation measures · Curvature tensor ·
Velocity gradient and gyration tensor · Cosserat deformation tensor · Balance of
micro-inertia · Cosserats’ book 100 app. years later
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List of Symbols

All quantities carrying a sub(super)script α are thought to be written for constituent
α of a mixture. “Classical” theory means “Boltzmann” continuum

Roman Symbols

Aα
Euler–Almansi strain tensor of the classical theory, Aα =
1
2

(
I − (Bα)−1

)

(Aα)Δ
α

Lie or Oldroyd derivative of Aα

Ā
α

Cosserat Almansi strain tensor, Ā
α = I − (V̄

α
)−1

(aα)i Basis vectors in the present configuration, i = 1, 2, 3
(aα)i Basis vector dual to (aα)i , i = 1, 2, 3
Bα = Vα(Vα)T Left Cauchy–Green deformation tensor expressed as classical

stretch measure
Bα = V̄

α
(V̄

α
)T Left Cauchy–Green deformation tensor expressed as Cosserat

stretch measure
Cα = (Uα)TUα RightCauchy–Green deformation tensor expressed as right clas-

sical stretch measure
Cα = (Ū

α
)T Ū

α
Right Cauchy–Green deformation tensor expressed as right
Cosserat stretch measure

Dα Stretching (strain rate) tensor, Dα = symLα

Eα
Green–Lagrange strain tensor of classical theory, Eα= 1

2 (C
α−I)

Ē
α

Cosserat–Green strain tensor, Ē
α = Ū

α − I

(
3
E)ABC Epsilon tensor, (

3
E)ABC = εABC

Fα Deformation gradient, Fα = Gradαx
(Fα)−1 Inverse deformation gradient, (Fα)−1 = grad αXα

(hα)i Basis vector in the reference configuration, i = 1, 2, 3
(hα)i Basis vector dual to (hα)i , i = 1, 2, 3
Lα Spatial velocity gradient, Lα = grad vα

Lα = Dα + Wα Decomposition of Lα into classical stretch and vorticity tensor
Lα = Δα + Ωα Decomposition of Lα into strain Δα and gyration tensor Ωα

Rα Rotation tensor of the classical theory
R̄

α
rotation matrix for the map ξα = R̄

α
Ξα

(Rα)∗, ∗Rα Compositions of classical and Cosserat rotations, (Rα)∗ = R̄
T

Rα, ∗Rα = (R̄
α
)T Rα

R̄ Microrotation tensor in convected coordinates, R̄ = (R̄α)ij (a
α)i ⊗

(hα) j

sα Spin density of constituent α
uα Displacement vector, uα = x − Xα

uα Diffusion velocity of constituent α
Uα Right stretch tensor of the classical theory (symmetric)
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Ū
α

Right Cosserat stretch tensor, Ū
α = R̄

T
Fα �= (Ū

α
)T

v mixture (barycentric) velocity
vα(x, t) Velocity of constituent α at x, referred to the present configuration
(vα)′α (x, t) Acceleration of constituent α at x, referred to the present config-

uration
Vα Left stretch tensor of the classical theory (symmetric)
V̄

α
Left Cosserat stretch tensor, V̄

α = Fα R̄
α �= (V̄

α
)T

Wα Vorticity tensor, Wα = skwLα

x Position of a material point in the present configuration
Xα Placement of a material point of constituent α in the reference

configuration
x′α Velocity of constituent particle α at time t
x′′α Acceleration of constituent particle α at time t

Greek Symbols

α Identifier of a non-specified constituent
Δα Non-symmetric rank-2 classical strain rate tensor,Δα = Rα(Uα)′α

(Uα)−1(Rα)T

Δ̄
α

Non-symmetric rank-2 Cosserat strain rate tensor in the present
configuration, Δ̄

α = R̄
α
(Ū

α
)′α(Ū

α
)−1(R̄

α
)T = Lα − Ω̄

α

Θα
i Coordinate lines in a convected system, i = 1, 2, 3

Θ̄
α

Moment of inertia of constituent α
Θ̂

m
Production of micro-inertia of a mixture, Θ̂

m =∑α
(
cαΘ̄

α
Ωα
)

(Θ̄
α
) Green–Naghdi derivative (see (22.99))

R
2
Kα Rank-2 Cosserat curvature tensor, referred to the reference con-

figuration, R
2
Kα = − 1

2

(
3
E R

3
Kα

)2

2
Kα Rank-2 curvature tensor, referred to the present configuration,

2
Kα = − 1

2

(
3
E

3
Kα

)2

R
3
Kα Rank-3 curvature tensor, a second Cosserat deformation tensor

referred to the reference configuration, R
3
Kα = ((R̄α

)TGradR̄
α)3

3
Kα Rank-3 curvature tensor, referred to the present configuration,

3
Kα =

⎡

⎣
(
(
grad R̄

α)
23
T
R̄

α

)3
⎤

⎦

23
T

Ξα Director attached to a constituent particle α in its reference con-
figuration
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ξα Director, attached to a constituent particle α in its present config-
uration, ξα = R̄

α
Ξα

φΘ Flux of micro-inertia of a mixture, φΘ = −∑α ραΘ̄
α ⊗ uα

χα Motion function of constituent α
(ψα)′β(x, t) Time rate of change of ψα following the motion of constituent β
Ωα Gyration tensor, Ωα = (Rα)′α (Rα)T

Ω̄
α

Micro-polar gyration tensor, Ω̄
α = (R̄

α
)′α(Rα)T

ωα Vorticity tensor, ωα = 1
2 curl v

α

ωα Vector of angular velocity of the micromotion

Miscellaneous Symbols

curl v Rotation of the differentiable field v

div v Divergence of the differentiable field v

grad v Gradient of the differentiable field v
d
dt Total time derivative holding the particle fixed.

22.1 Preamble

In this chapter, we will present the continuum mechanical approach to kinematics
of the classical continuum theory of Boltzmann continua and will then proceed
to generalize the kinematic concepts to polar, i.e., Cosserat continua. We shall
do this in the context of mixture theory formulations. This does not complicate the
mathematics, but it makes formulas a bit heavier, as variables now carry identifiers
for the individual constituents. This approach has the advantage that specializations
to single constituent media can be easily obtained by dropping the identifiers, but
it freely delivers the formalism, when mixtures are considered, which is often the
situation, as one encounters in geophysical and geotechnical applications.

Kinematics of classical continua is adequately treated in any book dealingwith the
subject in today’s modern approach, since the appearance of the article “Nonlinear
Field Theories of Mechanics” in the “Handbook of Physics” by Truesdell

1 and
Noll [30]. We generally refer to our own book, Hutter and Joehnk: “Continuum
Methods of Physical Modeling” [16], which contains in chap. 7 an introduction into
mixture theories.

On polar theories, a number of books do exist, notably those by Eringen [11].
We, however, base this chapter on Diebels’ Habilitation Thesis, ‘Mikropolare
Zweiphasenmodelle: Formulierung auf der Basis der porösen Medien’ [4] and lit-
erature, which is referenced there, but give the text our own flavor, when we find it
appropriate. Additional references are inserted in the text as they are felt necessary.

1For a brief biography of Clifford Ambrose Truesdell, see Fig. 22.1.
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Fig. 22.1 Clifford Ambrose Truesdell III (18. Feb. 1919–14. Jan. 2000)

Clifford Ambrose Truesdell III was an American mathematician, natu-
ral philosopher, and historian of science. Truesdell was born in Los Angeles,
California. After high school, he spent two years in Europe learning French, Ger-
man, and Italian, and improving his Latin and Greek. His linguistic skills stood
him in good stead in his later historical investigations. At Caltech, he was deeply
influenced by the teaching of Harry Bateman. In particular, a course in par-
tial differential equations “taught me the difference between an ordinary good
teacher and a great mathematician, and after that I never cared what grade I got
in anything.” He obtained a B.Sc. in mathematics and physics in 1941, and a
MSc. in mathematics in 1942. In 1943, he completed a Ph.D. in mathematics at
Princeton University. For the rest of the decade, the U.S. Navy employed him to
do mechanics research.
Truesdell taught at Indiana University 1950–61, where his students included
James Serrin, Jerald Ericksen, and Walter Noll. From 1961 until his
retirement in 1989, Truesdell was Professor of Rational Mechanics at Johns
Hopkins University. He and Noll contributed to foundational rational mechan-
ics, whose aim is to construct a mathematical model for treating (continuous)
mechanical phenomena.
Truesdellwas the founder and editor-in-chief of the journals Archive for Ratio-
nalMechanics andAnalysis andArchive forHistory of Exact Sciences, whichwere
unusual in several ways. Following Truesdell’s criticisms of awkward style in
scientific writing, the journal accepted papers in English, French, German, and
Latin.
In addition to his original work inmechanics,Truesdellwas amajor historian of
science and mathematics, editing or coediting six volumes of the collected works
of Leonhard Euler. He received several awards for his achievements. Among these
are: The Euler Medal of the USSR Academy of Sciences, 1958 and 1983; the
Bingham Medal of the Society of Rheology, 1963; the Birkhoff Prize of the
American Mathematical Society and Society for Industrial and Applied Mathe-
matics, 1978; the Theodore von KármánMedal, 1996. Some of his scientific
treatizes are [23, 28–42].

The text is based on www.wikipedia.org

www.wikipedia.org
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22.2 Classical Motion

Consider mixtures of constituents ϕα and associate with each component a sepa-
rate reference configuration, which is mapped onto a single present configuration,
Fig. 22.2.

The motion is defined as the smooth mapping

x = χα(Xα, t), (α = 1, 2, ..., ν). (22.1)

Note that Xα = χα(Xα, t0), where t0 is a fixed time. It is customary to select t0 = 0.
At time t > t0, all material points Xα occupy the same placement x in the present
configuration. Velocity and acceleration of the particles are

x′α = ∂χα(Xα, t)

∂t
, x′′α = ∂2χα(Xα, t)

∂t2
. (22.2)

These are first and second time derivatives of the motion functions with the particle
reference position held constant.

Because the motion of constituent α is assumed to be smooth, (22.1) can be
inverted, at least in principle:

Xα = (χα)−1(x, t). (22.3)

With this function, velocity and acceleration can be referred to the present configu-
ration,

vα(x, t) = x′α ((χα)−1(x, t), t
)
,

(vα)′α(x, t) = x′′α ((χα)−1(x, t), t)
)
.

(22.4)

α1

1 1 N

N

Nαα

Fig. 22.2 Separate reference configurations of all constituents and common present configuration
of all constituents
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Here, the symbol (·)′α is the material time derivative following constituent α. It is
obvious that the following chain rule of differentiation must hold:

dα

d t
� (x(Xα, t), t) = � ′α(x, t) = ∂�

∂t
+ (grad�) · vα. (22.5)

Examples:

•(vα)′α = ∂vα

∂t
+ (grad vα)vα,

•(ψα)′β = ∂ψα

∂t
+ (gradψα)vβ .

(22.6)

Differentiation of the motion function with respect to Xα yields the deformation
gradient

Fα = ∂χα(Xα, t)

∂Xα = Gradχα = Gradαx. (22.7)

Similarly, the inverse deformation gradient (χα)−1(x, t) [note, it exists since det Fα

�= 0] yields

(Fα)−1 = ∂(χα)−1(x, t)

∂x
= grad (χα)−1 = grad Xα. (22.8)

Note the differences in the definitions of the operators Grad and grad .
In applications, the reference and present configurations are referred to the same

basic frame in the initial configuration. Then, the displacement vectors uα may be
defined as

uα = x − Xα, (22.9)

from which we easily deduce

Fα = Gradα (Xα + uα) = I + Gradαuα,

(22.10)

(Fα)−1 = grad (x − uα) = I − grad uα.

The deformation gradient maps material vectorial line elements dX onto line ele-
ments dx:

dx = Gradα (x(Xα, t)) dXα = FαdXα. (22.11)

Similarly, for the inverse mapping:

dXα = (Fα)−1dx. (22.12)
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α α

α

α

Fig. 22.3 Material line in the reference and present configurations and tangential increments in a
material point on these lines

Figure22.3 explains how the formulas can be interpreted. dXα can be thought of
being tangential to a material line at the location Xα of the reference configuration.
Then, dx is tangential to the image of the material line at the placement x of the
present configuration.

22.3 Classical Deformation Measures

We know from algebra or classical continuum mechanics, that any positive definite
3 × 3 matrix (rank-2 tensor over R3) possesses two polar decompositions, e.g., for
the deformation tensor Fα,

Fα = RαUα = VαRα, Uα(Vα) right (left) stretch tensors,
(Rα)T Rα = I, Rα rotation tensor,
Uα = (Uα)T , Vα = (Vα)T , positive definite,
Uα = √

Cα = √(Fα)T Fα,

by spectral decomposition.
Vα = √

Bα = √Fα(Fα)T ,

(22.13)

Figure22.4 explains the rotation and stretch operations geometrically. For the proof
of all these statements, see, e.g., [16].

With (22.13)1, we easily show

Uα = (Rα)TVαRα, Vα = RαUα(Rα)T . (22.14)

Remark

• ds2 = dx · dx = FαdXα · FαdXα = dXα · (Fα)T FαdXα

= dXα · CαdXα, Cα = (Fα)T Fα, (22.15)

Cα = right Cauchy–Green de f ormation tensor.
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Fig. 22.4 Polar decomposition of the deformation gradient, interpreted as the composition process
of stretch, followed by rotation or vice versa, from Hutter–Jöhnk p. 28 [16]

• d(Sα)2 = dXα · dXα = (Fα)−1dx · (Fα)−1dx = dx · (Fα)−T (Fα)−1dx

= dx · (Bα)−1dx, Bα = Fα(Fα)T , (22.16)

Bα = le f t Cauchy–Green de f ormation tensor.

• Cα = (Fα)T Fα = (RαUα)T (RαUα)

= (Uα)T
(
(Rα)T Rα

)
Uα = (Uα)TUα = (Uα)2,

Bα = Fα(Fα)T = Vα(Rα(Rα)T )(Vα)T = (Vα)2.

• ds2 − d(Sα)2 = dx · dx − dXα · dXα = dXα · (Cα − I) dXα,

Eα = 1
2 (Cα − I) , (22.17)

Eα = Green orGreen–Lagrange strain tensor.

• ds2 − d(Sα)2 = dx · dx − (Fα)−1dx · (Fα)−1dx

= dx · (I − (Fα)−T (Fα)−1
)
dx

= dx · (I − (Bα)−1
)
dx

= dx · 2Aαdx, Aα = 1
2

(
I − (Bα)−1

)
, (22.18)

Aα = Almansi orEuler–Almansi strain tensor.

In these– expressions, the notation (Fα)−T ≡ ((Fα)−1)T = ((Fα)T )−1 was
employed as is customary in the continuum mechanics literature.

• It is easy to see that Eα is a second-order tensor in the reference configuration
and, thus, has the Cartesian tensor representation (Eα)AB . On the other hand,
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Aα is referred to the present configuration and has the Cartesian components
(Aα)i j . Here, we have used upper (lower) case letters to indicate components
in the reference (present) configuration. Somewhat colloquial we may say that
“Eα(Aα) has both legs in the reference (present) configuration”.2 It follows that
these two strain measures are related to one another. Indeed,

(Fα)T AαFα = 1
2 (F

α)T
(
I − (Bα)−1

)
Fα

= 1
2

(
(Fα)T Fα − (Fα)T ((Fα)−T (Fα)−1)Fα

)

= 1
2 (Cα − I)

de f= Eα, � (22.19)

(Fα)−T Eα(Fα)−1 = 1
2 (F

α)−T
(
(Fα)T Fα − I

)
(Fα)−1

= 1
2

(
I − (Fα)−T (Fα)−1

)

= 1
2

(
I − (Bα)−1

) de f= Aα, � (22.20)

• Rα = Fα(Uα)−1 = (Vα)−1Fα. (22.21)

Result: The strain and rotation matrices are known, once the motion function
χα(Xα, t) is determined. In fact, when Fα is known, so are Uα, Vα and Rα. This is
not so for Cosserat continua, as we shall see right now.

22.4 Micromotion

In the micropolar Cosserat theory, the material points are treated as rigid bodies.
In these, the additional rotational degrees of freedom are represented by vectors—
so-called directors—which are attached to the material points and move with these,
but perform independent rotations. In a micropolar theory, these directors perform
rotations, which can be expressed by a proper orthogonal rank-2 tensor R̄

α
(note the

bar!), characteristic for the microrotation, which differs from the classical rotation
tensor Rα (without the bar!).We take the position that theCosserat tensorR̄

α
rotates

the directors Ξα from their reference configuration into the present configuration as
follows:

ξα = R̄
α
(Xα, t)Ξα. (22.22)

Obviously, the proper orthogonal tensor R̄ has the properties

(R̄
α
)TR̄

α = I, (R̄
α
)−1 = (R̄

α
)T , det R̄ = +1, Ξα = (R̄

α
)T ξα. (22.23)

2In this spirit, it is easily seen that Rα is a two-point tensorwith its first leg in the present configuration
and the second leg in the reference configuration. We will henceforth use this somewhat colloquial
way of identifying the spaces in which the tensors “live”.
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Note, the formal analogy between (22.22), (22.23) and (22.11), (22.12).
It should be remarked that micro deformations more general than (22.22) could

be postulated. One possibility is to write

ξα = ¯̄Fα
(Xα, t)Ξα = ¯̄Rα

(Xα, t) ¯̄Uα
Ξα = ¯̄Vα ¯̄Rα

(Xα, t)Ξα,

in which ¯̄Fα is a “micro-deformation gradient” and ¯̄Uα and ¯̄Vα are “micro-stretch”
tensors. Double bars are used here to differentiate these from F̄

α
and Ū

α
, V̄

α
, which

would be associated with the micropolar formulation.
The concept of directors was originally introduced by the Cosserat brothers,

but the concept of extended deformation measures has largely been developed much
later. An account on the Cosserats approach to derive the governing equations for
micropolar continua is given in Sect. 22.12 “Cosserats book of 1909, its reception
and influence on the 20th century and beyond”. It may be advantageous to glance
through Sect. 22.12 first.

22.5 Extended Deformation Measures

In Cosserat continua, material particles are envisaged to constitute tiny particles,
which, apart from their classical motion, are able to perform their independent
(micro)-rotation. Figure22.5 illustrates this graphically. The translational motion
at a material point of constituent α is illustrated as in classical continua by a mate-
rial vectorial increment dXα (in the reference configuration). It is mapped by the
motion function x = χα(Xα, t) to the corresponding placement in the reference
configuration as the increment dx. Analogously, a vectorial element Ξα in the refer-
ence configuration, participating in the deformation (here restricted to a rotation) of
constituent α is independently mapped by a rotation R̄

α
to ξα in the present config-

uration: ξα = R̄
α
Ξα. Since the length of Ξα is not relevant, but only its direction,

these vectorial elements Ξα(ξα) are called directors in the reference and present
configurations, respectively. At this state of the development of the theory, this trans-
formation satisfies orthogonality and continuity, i.e.,

R̄
α
(R̄

α
)T = 1, (R̄

α
)−1 = (R̄

α
)T , detR̄

α = +1,

but is not yet specified.
The deformation tensors of the standard continuum mechanical formulation are

defined by combinations of squared line elements in the reference and present con-
figurations. By contrast, the deformation tensors in the Cosserat continuum are
based on scalar products of directors and line elements in the reference and present
configurations, respectively.
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Fig. 22.5 Reference and present configurations of the component α of a mixture body isolating
an initial and present placement of the particle α. dXα is a material vectorial length increment of
constituent α in the reference configuration that is mapped by the motion function x = χ(Xα, t)
onto dx in the present configuration. Analogously, a director Ξα in the reference configuration is
mapped by R̄

α
into the present configuration, ξα

Examples of Computations

Recall that the overbar will be used to identify quantities of the Cosserat theory,
which have their analogues in the classical theory (without overbar).

1.

ξα · dx = R̄
α
Ξα · FαdXα = Ξα · (R̄

α
)T FαdXα

= Ξα · Ūα
dXα, Ū

α = (R̄
α
)T Fα.

(22.24)

Note that the overbar indicates that this first Cosserat deformation tensor is,
in general, different from Uα of the classical theory. Note, moreover, that Ū

α �=
(Ū

α
)T , in general; this follows immediately from (22.24).

2.

Ξα · dXα = (R̄
α
)T ξα · (Fα)−1dx = ξα · (R̄α

(Fα)−1
)

︸ ︷︷ ︸
(V̄

α
)−1

dx

(22.25)

= ξα · (V̄
α
)−1dx, V̄

α = Fα(R̄
α
)T .

Note the similarities of the formulae (22.24)1 and (22.25) with (22.13).
3. Solving (22.24)4 and (22.25)4 for Fα gives

Fα = R̄
α
Ū

α = V̄
α
R̄

α
. (22.26)

Remark

• (22.26) is similar to the polar decompositions (22.13), but R̄
α
is defined inde-

pendently of the translational motion.
• Ū

α
and V̄

α
are not symmetric, they have in general both nontrivial symmetric

and skew-symmetric components.
• Ū

α
and V̄

α
are called the first Cosserat stretch tensors.
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4. One can also derive formal analogues to (22.14)

Ū
α = (R̄

α
)T Fα = (R̄

α
)T V̄

α
R̄

α
,

(22.27)

V̄
α = Fα(R̄

α
)T = R̄

α
Ū

α
(R̄

α
)T .

5. From Fα = RαUα = Vα, Rα we obtain

Ū
α = (R̄

α
)T Fα = ((R̄α

)T Rα
)

︸ ︷︷ ︸
(Rα)∗

Uα = ((Rα)∗
)
Uα,

(22.28)

V̄
α = Fα(R̄

α
)T = Vα

(
Rα(R̄

α
)T
)

︸ ︷︷ ︸
∗Rα

= Vα
(∗Rα

)
.

It is easy to derive from these relations the formulae

(
(Rα)∗

) = (R̄
α
)T
(∗Rα

)
R̄

α
,
(∗Rα

) = R̄
α (

(Rα)∗
)
(R̄

α
)T . (22.29)

These formulae show that the Cosserat stretch tensors Ū
α
and V̄

α
are compo-

sitions of classical stretch tensors with rotations, see (22.28), and the rotations
∗Rα and (Rα)∗ themselves are compositions of Rα and R̄

α
.

6. Now take (22.28)1 and (22.26) and compute the right Cauchy–Green deforma-
tion tensor as follows:

Cα = (Fα)T Fα = (R̄α
Ū

α)T (
R̄

α
Ū

α)

= (Ū
α
)T
(
(R̄

α
)TR̄

α)
Ū

α = (Ū
α
)T Ū

α = C̄
α
. (22.30)

Similarly for Bα:

Bα = Fα(Fα)T = V̄
α (
R̄

α
(R̄

α
)T
)
(V̄

α
)T ,

= V̄
α
(V̄

α
)T = B̄

α
. (22.31)

Note that the positions of the transposed tensors in (22.30) and (22.31) are impor-
tant, because the tensors Ū

α
and V̄

α
are not symmetric. Furthermore, it is inter-

esting that the classical Cauchy–Green deformation tensors are expressible in
the Cosserat stretch tensors.
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7.

ξα · dx − Ξα · dXα = Ξα · (R̄
α
)T Fα

︸ ︷︷ ︸
Ū

α
,(22.27)

dXα − Ξα · dXα

= Ξα · (Ūα − I
)

︸ ︷︷ ︸
Ē

α

dXα, (22.32)

Ē
α = (Ūα − I

)
compare with (22.17), (22.33)

ξα · dx − Ξα · dXα = ξα · dx − (R̄
α
)T ξα · (Fα)−1dx

= ξα ·
⎛

⎜
⎝I − (R̄

−T
(Fα)−1)︸ ︷︷ ︸

(V̄
α
)−1

⎞

⎟
⎠ dx = ξα · Āα

dx, (22.34)

Ā
α = (I − (V̄

α
)−1
)

compare with (22.18). (22.35)

Remark

(i) Ē
α
and Ā

α
do not contain a factor 1

2 . This is so, because they are defined
with Ū

α
and (V̄

α
)−1, not with C̄

α
and (B̄

α
)−1. These overbarred quantities

are not even defined.
(ii) Ē

α
is a strain measure of Green–Lagrange type; it has both “legs in the

reference frame”. Alternatively Ā
α
is a rank-2 tensor of Almansi–Euler

type with both “legs in the present configuration”.

8. The following transformation formulae for Ē
α
and Ā

α
are easily verified with

the formulae (22.32) and (22.34):

Ē
α = (R̄

α
)T Ā

α
Fα, (22.36)

Ā
α = R̄

α
Ē

α
(Fα)−1. (22.37)

Indeed, consider (22.37)

Ā
α ?= R̄

α
Ē

α
(Fα)−1 (22.32)= R̄

α (
Ū

α − I
)
(Fα)−1

(22.24)= R̄
α (

(R̄
α
)T Fα − I

)
(Fα)−1

= I − R̄
α
(Fα)−1 (22.26)= I − R̄

α
(R̄

α
)−1(V̄

α
)−1

= (
I − (V̄

α
)−1
) (22.35)= Ā

α
,

which proves (22.37). With this result, Eq. (22.36) is now evident. Formulae
(22.36), (22.37) are expressions of pullback and push-forward operations.3

3‘Pullback’ and ‘push-forward’ operations mean mappings of a quantity from the present to the
reference configuration and vice versa, e.g., dXα = (Fα)−1dx and dx = FαdXα (no sum over α).
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22.6 Curvature Tensors

Apart from Ū
α
and V̄

α
, another deformation measure is important in the description

of the spatial change of the micromotion. The relevant quantity is the following third
rank tensor:

R
3
Kα = ((R̄α

)TGradR̄
α)3

(22.38)

This tensor is called curvature tensor or second Cosserat deformation tensor. The

left upper R on the left-hand side is a reminder that R
3
Kα has all legs in the reference

configuration, and the superscripted ‘3’ tells us that it is third order, as does the ‘3’
index on the right-hand side. So, we get the Cartesian index representation

(
R

3
Kα

)

ABC

= (R̄α)i A(R̄
α)i B,C . (22.39)

By using the identity

Gradα
(
(R̄

α
)TR̄

α) = 3
0, (22.40)

it can be shown that R
3
Kα is skew-symmetric with respect to the first two indices of

the basis system,

R
3
Kα = −

(
R

3
Kα

)12
T

. (22.41)

The symbol (·)
12
T indicates that of the Cartesian components, the first and second

indices are interchanged. Because of the skew-symmetry of R
3
Kα only 9 of its 27

Fig. 22.6 The Cartesian components of a rank-3 tensor can be represented by the 27 elements of
a 3 × 3 × 3 cube. If the tensor is skew-symmetric with respect to its 1−2 elements, it has in each
of the three (1−2)-planes three independent elements, thus a total of nine independent elements,
which can be arranged in a 3 × 3 rank-2 tensor
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components are independent, as explained in Fig. 22.6. This suggests that a second-

order curvature tensor can be constructed. Indeed, with the permutation tensor4
3
E,

the following rank-2 curvature tensor may be defined,

R
2
Kα = −1

2

(
3
E R

3
Kα

)2

,

(22.42)
(

R
2
Kα

)

AB

= 1

2
εAMN

RKMNB,

which shows its representation in symbolic and in Cartesian index notation. This
tensor no longer exhibits symmetry properties, and it has ‘both legs in the reference
basis’.

To prove (22.41), we start from

(
(
R̄α)i A(R̄

α)i B
)
,C = 0

or (
(
R̄α)i A

)
,C (R̄α)i B + (R̄α)i A

(
R̄α
)
i B,C = 0

=⇒ (R̄α)i A(R̄
α)i B,C︸ ︷︷ ︸

(
R

3
Kα

)

AB,C

= −(R̄α)i A,C(R̄α)i B = − (R̄α)i B)(R̄α)i A,C︸ ︷︷ ︸
(

R
3
Kα

)

BA,C

which proves the statement.
Another curvature tensor, which is referred to the present configuration, is

3
Kα =

⎡

⎣

(
(
grad R̄

α)
23
T
R̄

α

)3
⎤

⎦

23
T

(2)= − (R̄α
grad (R̄

α
)T
)3

, (22.43)

in which the step
(2)= follows by use of

grad
(
R̄

α
(R̄

α
)T
) = 3

0.

The tensor (22.43) is also skew-symmetric with only nine independent components.
The associated rank-2 curvature tensor is constructible by

2
Kα = −1

2

(
3
E

3
Kα

)2

(22.44)

4This is the same as the so-called ε-tensor or Levi-Cività tensor with the Cartesian components
given by

(
3
E
)

ABC
= εABC =

⎧
⎨

⎩

1 for an even perturbation of ABC,

0 for no permutation of ABC,

−1 for an odd permutation of ABC.
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and “has both legs in the present configuration”. It is customary to omit the super-
scripts for the second-order curvature tensor:

R
2
Kα ≡ RK̄α

,
2
Kα ≡ K̄α

.

It can be shown, see later, that

K̄α = R̄
α
(
RK̄α

)
(Fα)−1, RK̄α = (R̄

α
)T
(
K̄α
)
F

α

(22.45)

can be transformed into one another with the indicated push-forward and pullback
operations. These curvature measures go back to Eringen andKafadar (1976) [9].
Other curvature measures have also been suggested; their “legs lie in intermediate
configurations” and are needed in plasticity formulations (see Steinmann [25] and
Volk [43]).

22.7 Velocity Gradient and Gyration Tensor

We commence with the presentation of the classical expressions of rate quantities.
The spatial velocity gradient grad vα = Lα can be related to Fα as follows:

dx′α = (Fα)′αdXα = (Fα)′α(Fα)−1dx = Lαdx,

Lα = (Fα)′α(Fα)−1. (22.46)

Alternatively, the material velocity gradient is defined as

(Fα)′α = Gradαx′α (22.47)

and Lα follows from this by a push-forward operation. Neither Lα nor (Fα)′α has
symmetry properties. For the spatial velocity gradient, we write

Lα = Dα + Wα,

Dα = 1
2

(
Lα + (Lα)T

) = symLα, (22.48)

Wα = 1
2

(
Lα − (Lα)T

) = skwLα.

Lα is split into the symmetric stretching tensor (strain rate tensor) and the skew-
symmetric vorticity tensor. Note,

ωα = 1
2

3
E(Wα)T = 1

2 curlv
α. (22.49)
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Properties

•
(dx · dx)′α = Lαdx · dx + dx · Lαdx = dx · 2Dαdx.

• Apart from the decomposition (22.48), the spatial velocity gradient possesses a
second additive decomposition, namely

Lα = Δα + Ωα,

Δα = Rα (Uα)
′α (Uα)−1(Rα)T , (22.50)

Ωα = (Rα)
′α (Rα)T . Gyration tensor

Remark

1. Δα is not symmetric, it has symmetric and skew-symmetric components, but Ωα

is skew-symmetric. Note also that Δα and Ωα are both expressed in terms of the
classical deformation measures (no overbars!). Of course, similar quantities can
also be defined with the Cosserat variables R̄

α
and Ū

α
and are then written as

Δ̄
α
andΩ̄

α
.

Lα = Δ̄
α + Ω̄

α
,

Δ̄
α = R̄

α (
Ū

α)′α
(Ū

α
)−1(R̄

α
)T , (22.51)

Ω̄
α = (

R̄
α)′α

(R̄
α
)T .

2. It can be shown that

Dα = symΔα = 1
2

(
Δα + (Δα)T

)
,

Wα = Ωα + 1
2

(
Δα − (Δα)T

)
. (22.52)

The advantage of this decomposition will become apparent in connection with
the micropolar formulation of the material theory. The proof of (22.52) simply
follows by taking symLα and skwLα from (22.50)1.

• The Green–Lagrange strain tensor Eα allows definition of a stretching tensor
in the reference configuration,

(Eα)
′α

Lagrangean stretching tensor. (22.53)

This is an objective rank-2 tensor, which transforms as nine scalars. It is easy to
show that the push-forward operation into the present configuration generates

Dα = (Fα)−T (Eα)
′α (Fα)−1 (22.54)

and thus defines the classical Eulerian stretching tensor; indeed,
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(Fα)−T
(
1
2

(
(Fα)T Fα − I

)′α)
(Fα)−1

= 1

2

⎧
⎪⎨

⎪⎩
(Fα)−T

⎛

⎜
⎝
(
(Fα)T

)′α
︸ ︷︷ ︸
(Fα)T (Lα)T

Fα + (Fα)T (Fα)
′α

︸ ︷︷ ︸
LαFα

⎞

⎟
⎠ (Fα)−1

⎫
⎪⎬

⎪⎭

= 1

2

⎧
⎨

⎩
(Fα)−T (Fα)T︸ ︷︷ ︸

I

(Lα)T Fα(Fα)−1

︸ ︷︷ ︸
I

+ (Fα)−T (Fα)T︸ ︷︷ ︸
I

Lα Fα(Fα)−1

︸ ︷︷ ︸
I

⎫
⎬

⎭

= 1

2

(
(Lα)T + Lα

)
, �

• A different Lagrangean type representation of strain rate can be evaluated as
follows:

(
Ē

α)′α (22.33)= (
Ū

α)′α (22.27)1= (
(R̄

α
)T Fα

)′α

= (
(R̄

α
)T
)′α

︸ ︷︷ ︸
(R̄

α
)T (Ω̄

α
)T , see (22.50)

Fα + ((R̄α
)T
)
(Fα)

′α
︸ ︷︷ ︸
LαFα

= (R̄
α
)T
(
Lα −Ω̄

α
)

︸ ︷︷ ︸
Δ̄

α

Fα (22.55)

= (R̄
α
)T Δ̄

α
Fα. (22.56)

Δ̄
α
, formally defined in (22.57), is in the material theory of viscous micropolar

materials an important quantity and replaces Dα from the classical theory. How-
ever, Δ̄

α
is not symmetric as we have already seen.

• With the definition

Δ̄
α = Lα −Ω̄

α
, (22.57)

from (22.55), (22.56), we now have two additional additive decompositions of
Lα:

Lα = Dα + Wα

︸ ︷︷ ︸
standard

= Δα + Ωα

︸ ︷︷ ︸
(1)

= Δ̄
α +Ω̄

α

︸ ︷︷ ︸
(2)

. (22.58)

The standard decomposition is that of classical continuum mechanics; that of (1)
is based on (22.50) and (2) is analogous to (22.50)1, but with overbars, as shown
in (22.57).

• Dα can also be expressed by the objective Lie or Oldroyd derivative of the
Almansi strain tensor. The relation is

Dα = (Aα)
	α := (Aα)

′α + (Lα)T Aα + AαLα. (22.59)
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(·)	α
is called Lie or Oldroyd derivative, here of the rank-2 tensor Aα.

Proof We start with

(Aα)′α = 1
2

(
I − (Bα)−1

)′α = − 1
2

(
(Bα)−1

)′α = − 1
2

(
(Fα)−T (Fα)−1

)′α

= − 1
2

{ (
(Fα)−T

)′α
︸ ︷︷ ︸

(1)

(Fα)−1 + (Fα)−T
(
(Fα)−1

)′α
︸ ︷︷ ︸

(2)

}
. (22.60)

The underbraced quantities can be obtained as follows: Take

(
Fα(Fα)−1

)′α = (Fα)′α(Fα)−1 + Fα
(
(Fα)−1

)′α = 0,

Fα
(
(Fα)−1

)′α = −(Fα)′α(Fα)−1,
(
(Fα)−1)′α = −(Fα)−1(Fα)′α(Fα)−1 ≡ (2).

Taking the transpose expression of (2) yields

(
(Fα)−T

)′α = −(Fα)−T
(
(Fα)T

)′α
(Fα)−T ≡ (1).

Substituting the above expressions (1) and (2) into (22.60) yields

(Aα)′α = 1
2

{
(Fα)−T

(
(Fα)T

)′α
︸ ︷︷ ︸

(Fα)T (Lα)T , see (22.46)
︸ ︷︷ ︸

(Lα)T

(Fα)−T (Fα)−1

+(Fα)−T (Fα)−1 (Fα)′α︸ ︷︷ ︸
LαFα

(Fα)−1

︸ ︷︷ ︸
Lα

}

= 1
2

{
(Lα)T

(
(Fα)−T (Fα)−1

)

︸ ︷︷ ︸
(Bα)−1

+ ((Fα)−T (Fα)−1
)

︸ ︷︷ ︸
(Bα)−1

Lα

}

= 1
2

(
(Lα)T (Bα)−1 + (Bα)−1Lα

)
, or since (Bα)−1 = I − 2Aα

= 1
2

(−2(Lα)T Aα + (Lα)T + Lα − 2AαLα
)
.

Thus,

(Aα)′α = Dα − (Lα)T Aα − AαLα, (22.61)

which proves (22.59).
• The transformation (22.22)maps the directorsΞα to the directorsξα by the rotation
matrix R̄

α
. Its time rate of change is given by
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(ξα)
′α = ((R̄α

)′α
)
Ξα =:Ω̄α

R̄
α
Ξα. (22.62)

The rank-2 tensorΩ̄
α
is called themicropolar gyration tensor. Its skew-symmetry

follows from the obvious identity

(
(R̄

α
)TR̄

α)′α = 0,

=⇒ (
(R̄

α
)T
)′α

︸ ︷︷ ︸
(R̄

α
)T (Ω̄

α
)T

R̄
α + ((R̄α

)T
) (
R̄

α)′α
︸ ︷︷ ︸
Ω̄

α
R̄

α

= 0,

=⇒ (R̄
α
)T (Ω̄

α
)TR̄

α + (R̄
α
)TΩ̄

α
R̄

α = 0,

=⇒ (R̄
α
)T
(
(Ω̄

α
)T +Ω̄

α
)
R̄

α = 0,

=⇒ Ω̄
α = −(Ω̄

α
)T . (22.63)

The dual axial vector toΩ̄
α
is given by

ω̄α = 1
2

3
E(Ω̄

α
)T =⇒ (ω̄α)m = 1

2εmpq(Ω̄
α
)pq (22.64)

• In (22.56), thematerial timederivative of Ē
α
corresponds to the pullbackof Δ̄

α
into

the reference configuration. If one demands in analogy to the classical continuum
that a generalized Lie or Oldroyd derivative exists for the micropolar strain
tensor Ā

α
(in its present configuration), and that this agrees with the generalized

deformation strain rate Δ̄
α
, then one may write

(
Ā

α
)�α

:= R̄
α (

Ē
α)′α

(Fα)−1 = Δ̄
α
. (22.65)

Comparison of the material time derivative of Ā
α
with (22.65) yields the rule of

calculation for the generalized Lie derivative

(
Ā

α
)�α

=
(
Ā

α
)′α + (Ω̄

α
)T Ā

α + Ā
α
Lα. (22.66)

Compare this with the classical Lie derivative (22.59); here, the micropolar gyra-
tion tensor (Ω̄

α
)T arises in the middle term (instead of (Lα)T ). This difference is

consistent with the different transport properties between the present and refer-
ence configurations, since in one of them the basic system is transported with Fα,
whereas the other basic system is transported with R̄

α
. This justifies the different

notations for (·)	α
and (·)�α

.

To prove (22.66), take

Ā
α (22.35)= (

I − (V̄
α
)−1
) (22.28)= (

I − (Fα(R̄
α
)T )−1

)

= (
I − (R̄

α
)−T (Fα)−1) = (I − R̄

α
(Fα)−1) ,
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( Ā
α
)′α = − (R̄α

(Fα)−1)′α = − (R̄
α
)′α︸ ︷︷ ︸(F

α)−1 − R̄
α

((Fα)−1)′α︸ ︷︷ ︸ .

In this expression, the underbraced terms must be accordingly transformed. To
this end, we employ (Fα(Fα)−1)′α = 0 and deduce

(
(Fα)−1

)′α = −(Fα)−1Lα.

Moreover, we know from (22.51)3 that

(
R̄

α)′α =Ω̄
α
R̄

α
.

Substituting these two results into the last equation, we obtain

( Ā
α
)′α = − (R̄α)′α

(Fα)−1 + R̄
α
(Fα)−1

︸ ︷︷ ︸
I− Ā

α

Lα

= − (R̄α)′α
︸ ︷︷ ︸
Ω̄

α
R̄

α

(Fα)−1

︸ ︷︷ ︸
Ω̄

α
(I− Ā

α
)

− Ā
α
Lα + Lα

= −(Ω̄
α
)T Ā

α − Ā
α
Lα + Lα − Ω̄

α

︸ ︷︷ ︸
Δ̄

α

.

The expression in the underbrace of the first line has been obtained with the aid
of (22.35) and then (22.34). The remaining expressions follow immediately and
from a combination of (22.51)1 and (22.51)3. Therefore,

( Ā
α
)′α + (Ω̄

α
)T Ā

α + Ā
α
Lα

︸ ︷︷ ︸
(Aα)�α

= Δ̄
α
, �

• In the constitutive theory of viscoelastic Cosserat continua, one also needs time
derivatives of the curvature tensors. For the rank-3 curvature tensor in the reference
configuration, Diebels [4] states, on using (22.43),

(
R

3

Kα

)′α
=
{[

(R̄
α
)T
( (

GradΩ̄
α
)23
T
R̄

α
)3]

23
T}3

, (22.67)

in which Ω̄
α = (R̄α)′α

(R̄
α
)T . Similarly, he states for the second rank curvature

tensor

(
R

2
Kα

)′α
= (R̄

α
)T (grad ω̄α) Fα. (22.68)
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The Cartesian index notations for (22.67) and (22.68) are

[(
R

3
Kα

)′α]

ABC

= (R̄α)i A(Ω
α)i j,C(R̄α) j B,

[(
R

2
Kα

)′α]

AB

= (
R̄α
)
i A (ω̄α)i,k(F

α)kB,

in which

(ω̄α)i = 1
2εi jk(Ω̄

α)k j .

The corroboration of these expressions is left to the reader.

22.8 Natural Basis System

It is often5 useful to introduce convective coordinates. These are body-fixed coordi-
nates, which move like material lines with the body. The coordinate lines are given
by three parameters Θα

i , i = 1, 2, 3, and each constituent can have its own parame-
terization. Generally, we have

Xα = Xα
(
Θα

1 ,Θα
2 ,Θα

3

)
, (22.69)

which is assumed to be one-to-one and onto (bijective), so that the inverse relations
do also exist:

Θα
i = Θα

i (Xα), i = 1, 2, 3. (22.70)

Differential geometric properties

• Basis Vectors
In the reference configuration:

(hα)i = ∂Xα(Θα
1 ,Θα

2 ,Θα
3 )

∂Θα
i

; (22.71)

in the present configuration:

(aα)i = ∂x(Θα
1 ,Θα

2 ,Θα
3 )

∂Θα
i

. (22.72)

5In Sect. 22.8, the general tensor calculus is used. So far, we have restricted analyses to Cartesian
tensor notation. More general presentations are given, e.g., in Bowen and Wang [2].
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Obviously, by chain rule of differentiation,

(aα)i = ∂x
∂Xα

∂Xα

∂Θα
i

= Fα(hα)i . (22.73)

The transformation (22.73) is analogous to dx = FαdXα. (hα)i and (aα)i , i =
1, 2, 3, are tangential vectors to the coordinate lines in their systems. They are
covariant vectors, since dΘα

i are introduced as contravariant quantities.
• Dual basis vectors
These are contravariant and are defined by the following scalar products:

(hα) j · (hα)i = δij ,

(22.74)

(aα) j · (aα)i = δij ,

where δij is the Kronecker Delta, δij = 1 if i = j , else δij = 0. It follows imme-
diately from (22.71), (22.72), and (22.74)

(hα)i = ∂Θα
i

∂Xα ,

(22.75)

(aα)i = ∂Θα
i

∂x
,

• The metric tensors (hα)i j , (hα)i j , (aα)i j , (aα)i j allow transformations from co- to
contravariant tensor components and vice versa. They are defined as

(hα)i j = (hα)i · (hα) j ,

(hα)i j = (hα)i · (hα) j ,

(aα)i j = (aα)i · (aα) j ,

(aα)i j = (aα)i · (aα) j ,

(22.76)

with the aid of which one obtains

(hα)i = (hα)i j (h
α) j ,

(hα)i = (hα)i j (hα) j ,

(aα)i = (aα)i j (aα) j ,

(aα)i = (aα)i j (aα) j .

(22.77)

The downward and upward arrows in Fig. 22.7 illustrate these mappings.
The rank-2 unit tensor now becomes

I = δ
j
i (h

α)i ⊗ (hα) j = δij (h
α)i ⊗ (hα) j (22.78)

= (hα)i j (h
α)i ⊗ (hα) j = (hα)i j (hα)i ⊗ (hα) j
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and similarly in the present configuration with the (aα)’s,

I = δ
j
i (a

α)i ⊗ (aα) j = δij (a
α)i ⊗ (aα) j

(22.79)

= (aα)i j (aα)i ⊗ (aα) j = (aα)i j (aα)i ⊗ (aα) j .

22.9 Deformation Measures Referred to the Natural Basis

If the natural basis vectors (hα)i and (aα)i are interpreted as spatial line elements
in the reference and present configurations, respectively, the deformation tensor can
easily be expressed in terms of the basis vectors.

• For Fα:

Fα = ∂x
∂Θα

i

∂Θα
i

∂Xα = (aα)i ⊗ (hα)i , (22.80)

• For (Fα)−1:

(Fα)−1 = ∂Xα

∂(Θα)i

∂(Θα)i

∂x
= (hα)i ⊗ (aα)i . (22.81)

These representations show explicitly that Fα and (Fα)−1 have both “one leg in
the present configuration and the other leg in the reference configuration”, but the
order is different. So, Fα and (Fα)−1 are two-field tensors. For example, (22.80) and
(22.81) imply

• Fα(hα)i =
(
(aα) j ⊗ (hα) j

)
(hα)i

︸ ︷︷ ︸
δ
j
i

= (aα)i ,

• (Fα)−1(aα)i =
(
(hα) j ⊗ (aα) j

)
(aα)i

︸ ︷︷ ︸
δ
j
i

= (hα)i ,

(22.82)

• (Fα)−T (hα)i =
(
(aα) j ⊗ (hα) j

)
(hα)i

︸ ︷︷ ︸
δij

= (aα)i ,

• (Fα)T (aα)i =
(
(hα) j ⊗ (aα) j

)
(aα)i

︸ ︷︷ ︸
δij

= (hα)i .

These mappings are illustrated in Fig. 22.7 by the horizontal arrows. With the use
of (22.80), it is now also straightforward to write down expressions for theCauchy–
Green deformation tensors as follows:
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Fig. 22.7 Deformation
gradient and its action in
transformations of natural
bases

• For Cα,

Cα = (Fα)T Fα =
⎛

⎜
⎝(hα) j ⊗ (aα) j (aα)k︸ ︷︷ ︸

(aα) jk

⊗(hα)k

⎞

⎟
⎠

= (aα) jk(h
α) j ⊗ (hα)k (22.83)

doubly contravariant in the reference configuration

• For Bα,

Bα = Fα(Fα)T =
⎛

⎜
⎝(aα) j ⊗ (hα) j (hα)k︸ ︷︷ ︸

(hα) jk

⊗(aα)k

⎞

⎟
⎠

= (hα) jk(aα) j ⊗ (aα)k (22.84)

doubly covariant in the present configuration

• For Eα and Aα, we obtain with the aid of (22.83) and (22.78) and (22.84) and
(22.78) the following formulae:

Eα = 1
2 (Cα − I) = 1

2

(
(aα)i j − (hα)i j

)
(hα)i ⊗ (hα) j ,

(22.85)

Aα = 1
2

(
I − (Bα)−1

) = 1
2

(
(aα)i j − (hα)i j

)
(aα)i ⊗ (aα) j .

Remark The numerical values of the components of Eα and Aα are the same, only
the basis changes!

• The property just stated makes it very easy to verify the relations between Eα and
Aα. Indeed, with the help of the diagram in Fig. 22.7, one obtains

Eα = 1
2

(
(aα)i j − (hα)i j

)
(Fα)T (aα)i ⊗ (Fα)T (aα) j
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= 1
2

(
(aα)i j − (hα)i j

) [
(Fα)T (aα)

]i ⊗
[
(aα)Fα

] j

= (Fα)T AαFα, (22.86)

Aα = 1
2

(
(aα)i j − (hα)i j

)
(Fα)−T (hα)i ⊗ (Fα)−T (hα) j

= 1
2

(
(aα)i j − (hα)i j

) [
(Fα)−T (hα)i ⊗ (hα) j (Fα)−1

]

= (Fα)−T Eα(Fα)−1. (22.87)

Compare these results with (22.36) and (22.37).

22.10 Cosserat Deformation Tensors and Natural Bases

The microrotation tensor R̄
α
maps directors from the reference configuration onto

the present configuration. It is therefore a two-field tensor; consequently, its repre-
sentation in the bases (aα)i and (hα) j is of the form

R̄
α = (R̄α)i

j (a
α)i ⊗ (hα) j . (22.88)

The coefficient matrix “(R̄α)ij” can without restriction of the generality be collected
with the basis in the reference configuration by summing over j . This leads to the
new basis vectors (h̄

α
)i , defined by

(h̄
α
)i = (R̄α)ij (h

α) j , (22.89)

so that the microrotation (22.88) can also be written as

R̄
α = (aα)i ⊗ (h̄

α
)i . (22.90)

This is the basis representation of R̄
α
.

An equivalent representation of (22.88) also exists, if one introduces the new basis
in the present configuration by

(āα) j = (R̄α)ij (a
α)i , (22.91)

so that

R̄
α = (āα)i ⊗ (hα)i . (22.92)

The covariant basis vectors (h̄
α
) j and contravariant basis vectors (āα) j are obviously

defined by

(h̄
α
)i · (h̄

α
) j = δij , (āα)i · (āα) j = δij . (22.93)
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We emphasize that the new basis vectors are not tangential to the parameter lines,
defined by {(Θα)i , i = 1, 2, 3}. This implies a loss of symmetry of the Christoffel
symbols.

Next, let us form R̄
α
(h̄

α
)i with (22.90) and R̄

α
(hα)i with (22.92), respectively

R̄
α
(h̄

α
)i

(22.90)= (aα)k ⊗ (h̄
α
)k(h̄

α
)i︸ ︷︷ ︸

δki

= (aα)i ,

R̄
α
(hα)i

(22.92)= (āα)k ⊗ (hα)k(hα)i︸ ︷︷ ︸
δki

= (āα)i .

So, we have the two equivalent forms

(aα)i = R̄
α
(h̄

α
)i , (āα)i = R̄

α
(hα)i . (22.94)

Compare these representations with ξα = R̄
α
Ξα, (22.22). In (22.94)1, (aα)i may

be compared with ξα in (22.22). If this is done, (h̄
α
)i are then to be interpreted as

reference directors. Because the microrotation R̄
α
is a pure rotation and the basis

vectors (aα)i of the present configuration change their length, the reference directors
Ξα = (h̄

α
)i also change their lengths. This must be accounted for in the compu-

tation of the gyration tensor Ω̄
α
in the present configuration. This complicates the

computation ofΩ̄
α
.

The second choice identifies the directors of the reference configuration with
(hα)i . In this case, the reference directors are temporarily constant. The directors in
the present configuration ξα are then to be identified with the basis vectors (āα)i .

Obviously, apart from the reference and present configurations, two further con-
figurations can be introduced on the basis that (22.89) and (22.91) are defined.

Choice (22.89) (see Fig. 22.8):

The reference directors are Ξα = (h̄
α
)i . They are elements of the so-called back-

rotated Cosserat configuration and by (22.94)1, they are mapped by R̄
α
onto the

present configuration. It is almost obvious and can be shown that the back-rotated
Cosserat configuration possesses the geometry of the present configuration. This is
explicitly demonstrated by the fact that the two configurations have the same metric,

(aα)i j = (h̄α)i j (22.95)

For the directors, the back-rotated Cosserat configuration must be interpreted as a
reference configuration, so that Ū

α
as a two-field tensor also possesses the property

of a quantity in the reference configuration.

Choice (22.91)2 (see Fig. 22.8):

The directors in the present configuration, ξα are here to be identified with (āα)i .
Thus, ξα = (āα)i ; these are elements of the pre-rotatedCosserat configuration and
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α
~ ~

~

~

~

α

α

αα

Fig. 22.8 Cosserat configurations (for details see main text)

are obtained as mappings of the reference basis vectors with the aid of (22.94)2. In
this case, the geometry of the body in the reference configuration agrees with that of
the pre-rotated Cosserat configuration, so that the metrics agree,

(āα)i j = (hα)i j . (22.96)

For the directors, the pre-rotated Cosserat configuration is identical to the present
configuration.

Note also

Ū
α = (aα)i j (h̄

α
)i ⊗ (hα) j = (h̄

α
)i ⊗ (hα)i , (22.97)

V̄
α = (hα)i j (aα)i ⊗ (āα) j = (aα)i ⊗ (āα)i .

Ū
α
maps the basis vectors (hα)i of the reference configuration to the basis vectors

(h̄
α
)i of the back-rotated Cosserat configuration.
V̄

α
maps the directors (āα of the pre-rotated Cosserat configuration onto the

basis vectors (aα)i of the present configuration.

22.11 Balance of Micro-Inertia

In this last section, the balance laws of micro inertia will be presented. They belong
structurally into Chap. 21, but were postponed, as they do not form a physical law
and make use of kinematic concepts, which were introduced in this chapter.

In polar continua, we expressed the specific spins sα of constituent α as

sα = Θ̄
α

ωα, (22.98)

https://doi.org/10.1007/978-3-319-77745-0_21
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where ωα is the vector of angular velocity of the microrotation and Θ̄
α
is the tensor

of volumetric inertia, a symmetric positive definite tensor of rank-2. Eringen6 in
1964 [12] formulated a balance law for this tensor, but this is not a physical axiom;
the evolution equation is a consequence of the tacit assumption that material points
of micropolar continua behave like microscopic rigid bodies, or more precisely,
the moment of inertia at a material point experiences only rotations but no strains.
This is the reason why an overbar is used. For micro-morphic media, the possible
transformations of the tensor of inertia can be more general and even more complex
micro-deformation fields are possible. It follows that for micropolar media the tensor
Θ̄

α
changes its orientationwith themotion, but does not change its principal values in

the co-moving frame. Otherwise stated, the tensor of volume inertia remains constant
in this frame. This fact can be expressed by the statement that the (objective)Green–
Naghdi derivative vanishes, viz.,

(Θ̄
α
) ≡ dα

d t
(Θ̄

α
) − Ω̄

α
Θ̄

α − Θ̄
α
(Ω̄

α
)T

!≡ 0, (22.99)

in which Ω̄
α
is the dual tensor to the axial vector ω̄α.

Pulling back the tensor Θ̄
α
to the reference frame, the statement is equivalent to

the statement

(
(R̄

α
)T Θ̄

α
R̄

α
)

= const. −→
(
(R̄

α
)T Θ̄

α
R̄

α
)′α = 0. (22.100)

Here we have defined (·)′α as the total time derivative following the motion of con-
stituent α. Product differentiation of the term on the right-hand side of the equation
yields

(
(R̄

α
)T
)′α

Θ̄
α
R̄

α + (R̄
α
)T (Θ̄

α
)′α R̄α + (R̄

α
)T Θ̄

α
(R̄

α
)′α = 0.

Multiplying this equation from the left by R̄
α
(·) and from the right by (R̄

α
)T yields

the equation

R̄
α (

(R̄
α
)T
)′α

Θ̄
α
R̄

α
(R̄

α
)T︸ ︷︷ ︸

I

+ R̄
α
(R̄

α
)T︸ ︷︷ ︸

I

(Θ̄
α
)′α R̄

α
(R̄

α
)T︸ ︷︷ ︸

I

+ R̄
α
(R̄

α
)T︸ ︷︷ ︸

I

Θ̄
α
(R̄

α
)′α(R̄

α
)T = 0,

6For a brief biography of Ahmed Cemal Eringen, see Fig. 22.9.
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Fig. 22.9 Ahmed Cemal Eringen (15. Feb. 1921–7. Dec. 2009)

Ahmed Cemal Eringen was a Turkish-American engineering scientist. He was
a Professor at PrincetonUniversity. The EringenMedal is named in his honor. Erin-
gen studied at the Technical University of Istanbul and graduated with a diploma
degree in 1943 and thenworked for the TurkishAircraft Co. until 1944. In 1944/45,
he was a trainee at the Glenn L. Martin Company and in 1945 was group leader
at the Turkish Air League Company. He continued his studies at the Polytechnic
Institute of Brooklyn in New York City where he received his doctorate in applied
mechanics in 1948 under the supervision of Nicholas J. Hoff.
He became Assistant Professor at the Illinois Institute of Technology in 1948,
Associate Professor in 1953, and Professor in 1955 at Purdue University. He was
appointed as Professor of Aerospace and Mechanical Engineering at Princeton
University in 1966. He became Professor of Continuum Mechanics in the Depart-
ments of Civil and Geological Engineering and the program in applied and com-
putational mathematics at Princeton University. He is the founder of the Int. J.
Eng. Sci. and the associated society. He retired in 1991 as the Dean of the School
of Engineering and Applied Science at Princeton University and died in 2009.
Eringen had been married since 1949 and had four children.
Eringen was a very influential educator, scientist and prolific scientific writer
on general continuum mechanics, in particular micropolar and micromorphic and
nonlocal field theories. Apart from his numerous papers with/without coauthors,
his most significant books are
• Nonlocal Continuum Field Theories, Springer Verlag 2002
• Microcontinuum Field Theories, 2 volumes, Springer Verlag 1999
• with GérardMaugin: Electrodynamics of Continua, 2 Volumes, Springer Verlag

1990
• with Erhan Kiral: Constitutive Equations of Nonlinear Electromagnetic-Elastic

Crystals, Springer Verlag 1990
• (Editor): Continuum Physics, 4 volumes, Academic Press, 1974–1976
• with Erdogan S. Suhubi: Elastodynamics, Academic Press 1974
• Mechanics of Continua, Wiley 1967
• Nonlinear Theory of Continuous Media, McGraw Hill 1962

The text is based on www.wikipedia.org

www.wikipedia.org
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or when solving for (Θ̄
α
)′α,

(Θ̄
α
)′α = −R̄

α
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α
)T )′α︸ ︷︷ ︸
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α
)T skew-symmetry of Ω̄

α

= Ω̄
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Θ̄

α + (Θ̄
α
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α
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Θ̄

α + (Ω̄
α
Θ̄

α
)T symmetry of Θ̄
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= 2sym(Ω̄
α
Θ̄

α
), (22.101)

in which (22.51) has been used. With

(ραΘ̄
α
)′α = (ρα)′αΘ̄

α + ρα(Θ̄
α
)′α (22.102)

and

(ρα)′α + ραdiv (x′α) = cα, (22.103)

and substitution of (22.103) into (22.102) yields

(ραΘ̄
α
)′α + ραΘ̄

α
div (x′α) = 2sym(ραΩ̄

α
Θ̄

α
) + cαΘ̄

α
. (22.104)

This law has the form of a balance law with vanishing flux term.
From Eq. (22.104) follows also the balance of micro-inertia for the mixture as a

whole. We define

ρΘ̄ =
α∑

ραΘ̄
α
, (second rank tensor),

�Θ = −
α∑

ραΘ̄
α ⊗ uα, (third rank tensor),

σΘ =
α∑

2sym(ραΘ̄
α
Ω̄

α
) (second rank tensor),

Θ̂
m =

α∑
cαΘ̄

α
, (second rank tensor).

(22.105)

in which

uα = vα − v (ρv =
α∑

ραvα)

is the diffusion velocity. The balance law of micro-inertia, thus, takes the form

(ρΘ̄)· + ρΘ̄div ẋ = div�Θ + σΘ + Θ̂
m
, (22.106)
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in which the terms on the right-hand side are given by (22.105) in terms of the
correspondingquantities of the constituents.Note also that Θ̂

m = 0, if all the particles
have the same moment of micro-inertia, then Θ̂

m ≡ 0, since
∑

α c
α = 0.

Note: In the literature σΘ is called a supply, but this is actually not appropriate,
because (22.105) contains no external fields. So, σΘ is better called a contribution
to the production of micro-inertia. Similarly, Θ̂ is a production of micro-inertia due
to mass production. Also, this production term does not need to vanish.

22.12 Cosserats Book of 1909, Its Reception and Influence
on the 20th Century and Beyond

In Chap.21 of this volume of fluid and thermodynamics, the field equations of a polar
continuum were presented in a suggestive form, starting from the basic equations of
rigid body dynamics: linear and angular momentum. In the formulation of motor cal-
culus, Newton’s second law and Euler’s law of angular momentum were formally
written as amotor equation, inwhich the kinematicmotorwith respect to a body point
is balanced by a corresponding dynamicmotor. This concept was then “transformed
and extended” to a deformable continuous body and applied to a volume element of
the body. Ingredients, new as compared to a Boltzmann continuum, are

• a specific spin density, expressed as s = Θω, Θ = ΘT ,
• a spin flux—couple stress tensor, m,
• a specific body couple ρ�.

In this motivation, the dynamical spin density s was conjectured to be related to the
finite body counterpart as “specific moment of inertia Θ times angular velocity ω of
the body element”, but nothing specific was expressed about the detailed properties
of the spin parameterization s = Θω, except its motivation by rigid body dynamics.

It is emphasized that this is not how the Cosserat brothers formulated their
mechanics of deformable bodies. According to G.A. Maugin [19]:

The best analysis of the book remains the original review,written byWilson [44] fromM.I.T.
[...], who had the right state of mind to capture the essential arguments of the Cosserats. First,
he considers the book as a contribution to the analytical mechanics of continua, and this is
spot on. In effect, the very object of the book is the deduction of what we now call ‘field
equations’ of continua of one, two or three dimensions, from a Lagrangean–Hamiltonian
principle of the general form

δ

∫

T

∫

V

W dvdt = 0, (22.107)

where T is a time interval, V is a bounded volume in the considered physical space, and
W is a known function of well chosen arguments. In standard variational mechanics W is
made explicit in terms of an identified kinetic energy and a potential energy, so thatW is the
‘volume’ [...] density, where the notion of mass (here density) is a basic one [...].

https://doi.org/10.1007/978-3-319-77745-0_21
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[...] TheCosserats’ presentation is their initial remark that the action (energy multiplied by
time) [...] is invariant under the group of Euclidian displacements. This requirement, sys-
tematically applied to (22.107) provides the notion of Euclidian action in the Cosserats’
formulation. From this should be deduced the basic local balance laws of linear momentum,
angular momentum and energy, corresponding to the seven parameters (spatial translation,

rotation, time translation) of the Euclidian group in
3
E [...]. What the Cosserats do is to

implement this approach in a well temperate manner with the successive examination of
one, two and three-dimensional bodies, [...] with the possible extension to true dynamics
[...]. As remarked by Wilson [44], p. 242, the Cosserats’ book may have proposed ‘the
most general and unifying theory of mechanics’ so far (as of (1909)). Probably under the
influence of Darboux, the Cosserats considered that the ‘fundamental geometric element
in their system is not the point, but the point carrying a system of rectangular axes, that is,
the tri-rectangular triedal angle’. In this case the function W should be ‘a function of the
coordinates of the vertex but also a function of the nine direction cosines of the edges of the
angle, and of the first derivatives of these coordinates and direction cosines with respect to
time’ (in the dynamical case) or the arc length in the case of the elastic filament. All these
are Wilson’s words [...].

[...] The enforcement of the Euclidian group structure leads the Cosserats to consider on
an equal footing invariance under spatial translations and spatial rotations. That is how they
are led to considering non-symmetric stress tensors and the presence of body couples and of
a new internal force, called couple stress tensor in modern jargon.

So much forMaugin’s text [19]. He states that it is not worth to “dwell in detail
with the Cosserats’ treatment, which is somewhat repetitive and not very attractive
inmodern terms”.He suggests looking into pp. 157–172of [3], calling this unpleasant
aspect tomodern eyes, a “fantastic and frightening aspect of the individual component
equations”, which are now elegantly written in symbolic tensor notation as

div t + ρ f = ρv̇, divm − dual(t − tT ) + ρ� = ρṡ, (22.108)

written in this form in (21.68)2,3 of Chap.21. These equations remained essentially
dormant through the first half of the twentieth century until theywere “resurrected” in
the 1950s–1970s.What, however, theCosseratbrothers else achievedwere a revival
of a general viewpoint of mathematical physics in the use of variational principles
and group theoretical arguments before Emmy Noether [22] had formulated her
famous theorem. As quoted by Maugin [19] “Wilson [44] emphasized that an
advantage of the Cosserat approach is the association it provides with the transfer
of any deductive-intuitional physical science to the corresponding formal deductive
mathematical discipline”.

As for applications, the Cosserat brothers did, apart from very general formulae
for the W function, not provide any specific information on possible constitutive
equations. Apparently, they were not so much interested in problem solutions. In
their memoir [3], only one- and two-dimensional models are close to engineering
concepts, who model rods, plates, and shells as stated by Ericksen and Truesdell
[7]. These are amply known to civil and mechanical engineers via the Bernoulli–
Navier, respectively Timoshenko beam theories and Kirchhoff–Love, respec-
tively Reissner–Mindlin plate bending theories in the eighteenth to twentieth cen-
turies.

https://doi.org/10.1007/978-3-319-77745-0_21
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Apart from the singled-out review of Wilson [44] light to the “first half of the
20th Cosserat-dark century” was—following Maugin [19]—brought by Heun

[15] andHellinger [14], and, in particular by the work of Joachim Sudria (1875–
1950) [26, 27].Maugin states, quoting [1], thatTruesdell found Sudria’s memoir
of 1935 “while perusing work of the 1930s in continuum mechanics” and, thus
uncovered the Cosserat book of 1909, a study that led Truesdell to state that “the
Cosserat’s Masterpiece stands as a tower in the field” [38].

The true rebirth of structured continua started in the second half of the twentieth
century with pioneering work of the Germans GÜNTHER [13], Neuber [21] and
Schäfer [24], and in the United States by work of Ericksen and others [6, 7], where
the use of “directors”, the set of unit vectors attached to each material point in the
line ofDuhem and theCosserats, reappeared first again since theCosserats time.
Three mutually orthogonal directors which follow a material point and perform as a
unit their independent rotationalmotion, tomodel themicrorotation of theCosserat
or micropolar continuum of this chapter. This concept was likely first generalized
by Eringen and Shuhubi [10]. “It is equivalent to a Duhem kind of kinematic
description with three deformable ‘directors’ and relative angle changes between
these directors in the course of deformation: the microstructure itself is deformable
and is in fact subjected to a homogeneous micro-deformation (represented by six
additional internal degrees of freedom”, [19]. Into this realm also belongsMindlins
[20] paper on microstructure in elasticity.

The elegant derivation ofmicropolar strainmeasures from inner products of direc-
tors and displacement increments culminates in the works ofEringen andKafadar
[9] and a bit earlier by Kafadar [17, 18].

The last decades have not only brought uncountable contributions to solidmechan-
ics: (i) theories of rods and shells, but equally also (ii) micro-continuum fluid field
theories [11], (iii) “reduced” formulations, such as Ericksens liquid crystal theory,
in which fluid particles are “only” equipped with a single director [5, 8], (iv) microp-
olar two-phase formulations on the basis of porous media by Diebels [4], and (v)
formulations of localization behavior in plastic porous media by Volk [43].
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Chapter 23
Thermodynamics of Class I and Class II
Classical Mixtures

Abstract In this chapter, two versions ofmixtures ofBoltzmann-type continua are
subject to thermodynamic analyses for viscous fluids. Of the two forms of the Sec-
ond Law that were introduced—the Clausius–Duhem inequality applied to open
systems and the entropy principle of MÜLLER—the latter principle is employed in
the process of deduction of the implications revealed by the particular Second Law.
The goal in the two parts of the chapter is to derive the ultimate forms of the gov-
erning equations, which describe the thermomechanical response of the postulated
constitutive behavior without violation of the Second Law of thermodynamics. The
versions of mixtures which are analyzed are

• Diffusion of tracers in a classical fluid: The conceptual prerequisites of this type
of processes are mixtures of class I, in which the major component is the bearer
fluid within which a finite number of constituents with minute concentration are
suspended or solved in the bearer fluid. The motion of these tracers is described
by the difference of the constituent velocities relative to the barycentric velocity
of the mixture as a whole. For the dissipative constitutive class applied to the
entropy principle, the existence of the Kelvin temperature is proved, the form of
theGibbs relation could be determined as could the conditions of thermodynamic
equilibrium and the constitutive behavior in its vicinity.

• Thermodynamics of a saturated mixture of nonpolar solid–fluid constituents: Con-
ceptually these systems are treated as classical mixtures of class II, in which the
individual motions of the constituents are separately accounted for by their own
balances of mass and momentum, but subject to a common temperature. The anal-
ysis of the dissipation inequality is performed subject to the assumption of constant
true density of all constituents and the supposition of saturation of the mixture.
The constitutive relations are postulated for a mixture of viscous heat conducting
fluids. The explanation of the entropy principle is structurally analogous to that

This chapter is a revised and somewhat extended version of Chap.7 “Theory of Mixtures” of [20],
whichwas fraught with a number of slips and computational errors. The text is also pruned in certain
places and extended in others.
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of the class I-diffusion theory, but is analytically much more complex. Unfortu-
nately, intermediate ad hoc assumptions must be introduced to deduce concrete
results that will lead to fully identifiable fluid dynamical equations, which are in
conformity with the Second Law for the presented type of mixtures.

Keywords Diffusion of classical fluid mixtures · MÜLLER-type thermodynamics ·
Thermodynamic equilibrium and nonequilibrium · Classical saturated solid–fluid
mixtures

List of Symbols

All quantities carrying a sub(super)script α are thought to be written for constituent
α of a mixture. “Classical” theory means “Boltzmann” continuum

Roman Symbols

c∗ Translation vector in Euclidian transformations
cα Specific mass production of constituent α
Cαβ
i j Coefficients of a quadratic nonequilibrium representation of the

dissipation potential, see (23.71)
D Strain rate or stretching tensor, D = sym(grad v)

Dα Constituent symmetrized relative deformation rate tensor, Dα =
symUα = sym(grad v)α)

Dα
T , Dα

ξγ Mass flux coefficients for jα

dF Total differential of a function
f Vector of body force
F xi Auxiliary variable, see (23.100)2
g Integrating denominator of a total differential dF
jα Diffusive mass flux vector of consistent α
k Extra entropy flux vector, see (23.61)1
kα Specific spin production of constituent α
�α Specific couple, spin supply of constituent α
mα Couple stress tensor of constituent α
mα Interaction force of constituent α
N Number of constituents
nα = cα/ρ̂α Production rate of specific volume of constituent α
O∗ Orthogonal 3 × 3 transformation matrix, O∗O∗ T = O∗ T O∗ =

I
p = −(Λρ/Λε)ρ Pressure, thermodynamic pressure
P xi Auxiliary variable, see (23.100)1
q Heat flux vector of the mixture
qα Heat flux vector of constituent α
r Specific energy supply rate density, radiation
s Entropy density of the mixture
sα Specific spin density of constituent α
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t Mixture Cauchy stress tensor (t = tT )
tα Constituent Cauchy stress tensor
T Absolute (Kelvin) temperature, T = 1/(Λε(θ))
uα Diffusion velocity of constituent α, uα := vα − v

Uα Relative (nonsymmetric) deformation,Uα := grad vα − W rate
tensor

v Barycentric velocity
vα Constituent velocity vector
v∗ Obtained by a Euclidian transformation from v

W Vorticity tensor of the barycentric velocity field,W = skwgrad v

Wα Relative vorticity tensor of constituent α, Wα = skw(Uα) =
skw(grad vα) − W

X Independent constitutive variables out of the thermodynamic
equilibrium

x∗, y∗, z∗ Rotated and shifted coordinates of x, y, z.

Greek Symbols

α,β, γ Counting indices of constituents (= 1, . . . , N − 1)
α(Ξ) Vector of Liu identities
β Vector of derivatives of the independent constitutive variables
Γ (Ξ) � 0 Reduced entropy inequality
δ Small positive real quantity
δi j Kronecker delta (δi j = 1 for i = j ; δi j = 0 for i �= j)
ε Internal energy of the mixture, small positive parameter
εI Inner internal energy
εD Diffusive internal energy
ηs Specific entropy supply
θ Empirical temperature
Θ(θ) Absolute temperature as a function of θ
κT ,κξα Thermal conductivity coefficients
Λρ

Lagrange parameter of the mixture mass balance
Λξα

Lagrange parameter of the specific mass balance of constituent
α

Λv
Lagrange parameter of the mixture momentum balance

Λε
Lagrange parameter of the mixture internal energy

λ Integrating factor of a Pfaffian differential form
μξα

Chemical potential of constituent α
να Volume fractions of constituent α
Ξ Symbol for independent constitutive variables
ξα Constituent mass ratio or mass concentration
πs Specific entropy production
ρ Density of the mixture
ρα Constituent mass density
φ,φs Entropy flux
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φ Entropy flux of the diffusive theory, see (23.61)2, φ = 1
T(

q − μξα
jα
)
, (α = 1, . . . , N )

χ(X, t) Motion function of a fluid mixture particle from position X in the
reference configuration.

Ψ Symbol for the dependent constitutive variables
ψ = ε − T s Mixture Helmholtz free energy
ψD Dissipation potential
ψI Internal Helmholtz free energy of the mixture
ψD Diffusive part of the Helmholtz free energy, ψD = 1

2

∑N
α=1

ραuα · uα

Miscellaneous Symbols

grad Gradient operator with respect to the present coordinates
div Divergence operator with respect to the present coordinates
curl Curl operator with respect to the present coordinates
grdμξα

Gradient of μξα
reduced by its temperature gradient, grdμξα =(

∂ ˆ̂μξα

∂ξβ grad ξβ − ∂μ̂ξα

∂T grad T

)
.

23.1 General Introduction

The concept of diffusion is an ubiquitous phenomenon of processes occurring in
physics, chemistry, biology, sociology, finance, etc. In each case, the object—atoms,
molecules, aerosols, tracers, ideas—that is undergoing diffusion is “spreading out”
from a source location at which there is higher concentration of the object under con-
sideration, to locations of smaller concentration. Diffusion is generally introduced in
two different ways: first, phenomenologically starting with Fick’s law of diffusion,
in which the flux of matter from the object is assumed proportional to the gradient
from higher concentration to lower ones, or, second, by random walk of the objects.
We shall here exclusively be concerned with the first phenomenological approach.
Diffusion, interpreted as movement of heat from higher levels of molecular oscil-
lations to lower ones, is expressed in Fourier’s heat law as heat flux from higher
temperatures to lower ones. It is thus nearly obvious that for diffusion of matter or
heat, the same thermodynamic concepts apply.

In modern science, the first experimental study of diffusion was performed by
Thomas Graham (1805–1869). He studied diffusion in gases that he described
between 1831–1833 as follows: “…gases of different nature, when brought into
contact, do not arrange themselves according to their density, the heaviest undermost,
and the lighter uppermost, but they spontaneously diffuse, mutually and equally,
through each other, and so remain in the intimate state of mixture for any length of
time”.
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Fig. 23.1 Thomas Graham (20 Dec. 1805–16 Sept. 1869)

Thomas Graham, born in Glasgow, should, according to the desire of his
father (a successful textile manufacturer), have become a priest at the church
of Scotland, but studied chemistry at the University of Glasgow under the
supervision of Professor Thomas Thomson and received his M.A. in 1824.
Later, he studied medicine at the University of Edinburgh and, lacking further
support fromhis father, occupied several positions as a chemist andprofessorial
assignments in numerous colleges, including the University of Strathclyde in
Glasgow, the Royal College of Science and Technology and the University
of London. In 1828, at the age of only 23years, he was elected an Honorary
Fellow of the Royal Society of Edinburgh and won its Keith Medal for the
period of 1831–1833. He founded the Chemical Society of London in 1841
and was, in 1866, elected a foreign member of the Royal Swedish Academy of
Sciences. His final position was as Master of the Mint from 1855 to his death
in 1869 (once occupied by Isaac Newton). He is buried in the family grave
at the Glasgow Cathedral.

Thomas Graham was elected a Fellow of the Edinburgh Royal Society in
1828 andof theRoyal Society in 1836, fromwhich he received theRoyalMedal
in 1837 and 1863 and the Copley Medal in 1862. He obtained an Honorary
Doctorate from Oxford University in 1853 and the Prix Jecker of the Paris
Academy of Sciences in 1862. A statue of Graham, sculpted by William

Brodie inGeorge Square (see Fig. above) inGlasgowwas erected in 1872, and
the University of Strathclyde has named the building housing the Chemistry
Department the Thomas Graham Building.

These signs of an outstanding science career of Thomas Graham are based
on his studies of the behavior of gases, which resulted primarily in relations
known as the two “Grahams laws” regarding gas diffusion and gas effusion.
For “diffusion”,Graham found by repeatedly measuring under the same con-
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ditions of pressure and temperature, that the rate of diffusive mixing of a gas is
inversely proportional to the square root of its density (or alternatively itsmolar
mass). A similar relation was also deduced by him for effusion. Graham also
made fundamental discoveries to dialysis and colloids that led to the ability
of separating colloids and crystalloids using the “dialyser” technology, which
he invented and for which he became famous. His book on colloid chemistry
was a “best runner” for decades in the nineteenth century.

The text is based on www.wikipedia.org

Themeasurements ofGraham1 contributed to James Clerk Maxwell (1831–
1879) deriving, in 1867, the coefficient of diffusion of CO2 in air. Adolf Fick

(1829–1901) proposed his law of diffusion in 1855 at the age of 26, moreover,
Fouriers (1768–1830) law of heat conduction was presented in 1822, and Ohms
(1798–1854) law for the electric current was proposed in 1827. All these laws express
a flux quantity with a concentration gradient of a “driving” quantity (see https://en.
wikipedia.org/wiki/Diffusion).

The first two chapters in this volume are devoted to the derivation of the funda-
mental physical laws of mixtures of a finite number of constituents with micro-polar
structure and the associated kinematic peculiarities of the description of their defor-
mation. The dynamical laws of classical physics are in this case the balance laws
of mass, linear and angular momenta, energy, and entropy. Such microstructural or
Cosserat continua are fraught with a nontrivial form of the angular momentum
balance, i.e., a spin balance for each constituent. It was shown in these introduc-
tory chapters also that when spin density, couple stress tensor, and body couple
of all constituents vanish—these are the conditions of constituents with Boltz-

mann structure, called here classical mixtures—the skew-symmetric parts of the
constituent stress tensors are related to the Euclidian invariant constituent spin pro-
ductions, see (21.24). If a particular such spin production vanishes, then the stress
tensor of that constituent is symmetric. Often, it is assumed that all constituent stress
tensors are symmetric; this is then tantamount to the statement that the Euclidian
spin productions of all constituents vanish.

In the first two chapters of this volume, no attempt was made to formulate consti-
tutive equations to characterize the material behavior of the mixture bodies in focus.
This will be done in this and in ensuing chapters for particular types of mixtures,
which may be deduced by simplifications from the general equations. In this chapter,
classical mixtures of class I and II will be looked at. Cosserat effects of polarity

1For biographies of

• Thomas Graham, see Fig. 23.1;
• James Clerk Maxwell, see Fig. 17.10, Vol. 2 of this treatise, p. 334 [22];
• Adolf Eugen Fick, see Fig. 17.31, Vol. 2 of this treatise, p. 365 [22];
• Jean Baptiste Joseph Fourier, see Fig. 18.1, Vol. 2 of this treatise p. 439 [22].

www.wikipedia.org
https://en.wikipedia.org/wiki/Diffusion
https://en.wikipedia.org/wiki/Diffusion


23.1 General Introduction 81

will all be ignored. In particular, a mixture of nonpolar constituents will be looked
at, for which

sα = 0 , mα = 0 , �α = 0 , kα = 0 , (α = 1, 2, . . . , N ). (23.1)

These assumptions will be maintained in this chapter and applied to diffusive trac-
ers in a fluid (class I) mixture and a saturated (class II) mixture of solid and fluid
constituents.

23.2 Diffusion of Tracers in a Classical Fluid

23.2.1 Basic Assumptions

It is assumed that this mixture consists of a fluid and N − 1 substances in suspension
or solution, called tracers, which, in comparison to the main fluid, arise only in small
concentrations. Examples of such fluid mixtures are all waters on Earth (rivers,
lakes, the ocean), which contain minerals, salts and pollutants, but also nutrients
(for instance phosphate and the plankton) in solved or particulate form. Another
example is the atmosphere—primarily the troposphere and stratosphere2 —of which
the chemical composition varies spatially and temporally, and which is loaded by
aerosols, i.e., suspended particles (dust and industrial waste).

If the masses of the tracers are small in comparison to the mass of the main fluid,
it may be assumed that the tracer particles are carried by the main fluid and therefore
possess the same or nearly the same velocity as the main fluid. Likewise, one may
generally assume that the tracer particles have the same temperature as the fluid
particle at the same location. Consequently, the prerequisites of a mixture theory of
class I are here given, for which the differences of the momenta and internal energies
of the individual components are dynamically and thermodynamically not important;
it therefore suffices to model only the momentum and internal energy of the mixture
as a whole, but to follow in detail the mass evolution of each constituent.3

It is customary to write down the balance laws of mass, momentum, and energy
for the mixture as a whole and to complement these by the mass balance laws for
the N − 1 tracers. Because of the simplifying prerequisites (23.1), one obtains

dρ

dt
+ ρdiv v = 0, (23.2)

ρ
dξα

dt
= div jα + c, (α = 1, 2, 3, . . . , N − 1), (23.3)

2The troposphere is the lowest layer of the atmosphere, approximately 8–10km thick. The strato-
sphere is the atmosphere layer immediately above the troposphere and extends about to 50km above
the Earth’s surface.
3In counting the constituents, the index α = N will be reserved to the main fluid, so that α =
1, 2, 3, . . . , N − 1 will be used for the tracers. This convention will be retained in the sequel.
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ρ
dv

dt
= div t + ρ f , (t = tT ), (23.4)

ρ
dε

dt
= −div q + (grad v · tT ) + ρr, (23.5)

in which v denotes the barycentric velocity and

ξα := ρα

ρ
, jα := ρξα(vα − v), (α = 1, 2, 3, . . . , N − 1) (23.6)

are the mass ratio or concentration and the so-called diffusive fluxes of the con-
stituents α. The first variable, ξα, gives the ratio of the mass of constituent α to that
of the mixture as a whole, the second describes the flux of mass of constituent α
relative to the barycentric motion. Equations (23.2), (23.4) and (23.5) are derivable
from (21.61).

To prove (23.3), let us start with the balance law of mass in the form

∂ρα

∂t
+ div (ραvα) = cα (23.7)

and use ρα = ξαρ. Product differentiation then yields

∂ρ

∂t
ξα + ρ

∂ξα

∂t
+ ξαdiv (ρvα) + (grad ξα) · ρvα = cα. (23.8)

Adding and subtracting on the left-hand side the terms ξαdiv (ρv) and (grad ξα) · ρv,
one obtains, upon combining the respective terms

(
∂ρ

∂t
+ div (ρv)

)

︸ ︷︷ ︸
=0

ξα + ρ

(
∂ξα

∂t
+ (grad ξα) vα

)

︸ ︷︷ ︸
dξα/dt

+div (ρ ξα (vα − v))︸ ︷︷ ︸
jα

= cα, (23.9)

where v = ∑
α ξαvα is the barycentric velocity. It follows that (23.9) implies

ρ
dξα

d t
= −div jα + cα, (α = 1, 2, . . . , N ), (23.10)

which is valid for all constituents and agrees with (23.3). Equations (23.2)–(23.5)
constitute [5 + (N − 1)] partial differential equations for the [15 + 5(N − 1)] field
variables

{ρ, ξα, v, jα, cα, t, ε, q, θ} , (α = 1, 2, . . . , N − 1). (23.11)



23.2 Diffusion of Tracers in a Classical Fluid 83

The exterior body force and the radiationρr are regarded as prescribedfield quantities.
Finally, it is emphasized oncemore that ξN , j N , and cN do not constitute independent
variables, since the relations

N∑

α=1

(ξα, jα, cα) = (1, 0, 0) (23.12)

must be satisfied, so that ξN , j N , and cN are expressible as

(
ξN , j N , cN

) =
(

1 −
N−1∑

α=1

ξα,−
N−1∑

α=1

jα,−
N−1∑

α=1

cα

)

(23.13)

and are thus given once these variables are prescribed for α = 1, 2, . . . , N − 1.

23.2.2 Material Theory for Diffusion Processes

Let us define the following variables as the [5 + (N − 1)] independent fields:

{ρ, ξα, v, θ} , (α = 1, 2, . . . , N − 1). (23.14)

This implies that, consequently,

Ψ := { jα, cα, t, ε, q, } , (α = 1, 2, . . . , N − 1) (23.15)

are the [10 + 4(N − 1)] field variables for which constitutive relations must be for-
mulated in order to close the system (23.2)–(23.5) and (23.15). The intention is to
consider the most simple form of a mixture theory that is capable of describing the
dispersion of a number of tracers in a fluid; to this end, let us propose a theory of diffu-
sion of a heat conducting viscous fluid with constitutive equations for the dependent
field quantities (23.15) of the complexity

Ψ = Ψ̂ (ρ, ξα, v, θ, grad v, grad ξα, grad θ), (23.16)

in which α ∈ [1, . . . , N − 1]. The independent variables involve the fields (23.14)
and the gradients of v, ξα, and θ. The gradient of ρ need not be incorporated, since
it is already accounted for by all grad ξα.
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Because all variables listed in (23.15) are objective scalars, vectors, and tensors,
and since it is requested that the constitutive relations (23.16) obey the rule ofmaterial
frame indifference, it follows that Ψ̂ (·) in (23.16) cannot explicitly depend on v;
furthermore, Ψ̂ (·) can depend on grad v only via its symmetric part, sym(grad v) =:
D.4 Therefore, for the considered constitutive class the material relations (23.16)
reduce to

Ψ = Ψ̂ (Ξ), Ξ := (ρ, ξα, θ, grad ξα, D, grad θ). (23.20)

The material relations (23.20) must be in conformity with the second law of ther-
modynamics. The intention is to explore this requirement with the entropy principle
ofMÜLLER. Accordingly, there exists an additive quantity, the entropy of themixture,
which obeys the balance law

ρ
ds

dt
+ divφs + ρηs = ρπs, (23.21)

in which φs, ηs and πs are the entropy flux, the entropy supply and entropy produc-
tion of the mixture. According to the Second Law of Thermodynamics the entropy
production must not be negative for any thermodynamic process; in other words, the
inequality

ρπs � 0 (23.22)

must hold for all thermodynamic processes, i.e., all solutions of (23.2)–(23.5) and
all constitutive relations of the form (23.20) for the field variables (23.15). Liu has
shown that instead of satisfying (23.22) for all fields which simultaneously also
satisfy the field equations (23.2)–(23.5), (23.15), (23.20) one may also proceed as

4To prove this, consider the Euclidian transformation

x∗ = O∗(t)x + c∗(t), O∗O∗ T = O∗ T O∗ = I, (23.17)

with the aid of which one obtains

v∗ = O∗v + Ȯ
∗
x + ċ∗,

grad ∗v∗ = O∗(grad v)O∗ T + Ȯ
∗
O∗ T .

(23.18)

It follows that neither v nor grad v are objective quantities under Euclidian transformations. How-
ever, since Ȯ

∗
O∗ T is skew-symmetric, one obtains

sym grad∗v∗ := D∗ = O∗DO∗ T ,

skw grad v∗ := W∗ = O∗W∗O∗ T + Ȯ
∗
O∗ T .

(23.19)

.
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follows: One subtracts (or adds, which only changes the signs of the Lagrange

parameters) on the left-hand side of (23.22) the scalar products of the field equations
with the appropriate Lagrange parameters, viz.,

ρ
dŝ

dt
+ div φ̂s − ρηs

−Λρ

(
dρ

dt
+ ρdiv v

)
− Λξα

(
ρ
dξα

dt
+ div ĵ

α − ĉα
)

−Λv ·
(

ρ
dv

dt
− div t̂ − ρ f

)
− Λε

(
ρ
dε̂

dt
+ div q̂ − D · t̂ − ρr

)
� 0 (23.23)

and satisfies this extended inequality now for arbitrary, unconstrainedfields.Λρ,Λξα
,

Λv , and Λε are Lagrange parameters, which must be determined along with the
exploitation of the inequality (23.23). In this formula, summationmust be understood
over the doubly arising index α = 1, 2, 3, . . . , N − 1. The dot in the expression
Λv · (. . .) is to be understood as the scalar product inR3, and all constitutive relations
are thought to be substituted, a fact which we made visible by using the hat, ˆ(·), in
all dependent constitutive variables. The supplies or sources ρηs, ρ f , and ρr are
prescribable with any value we please.

If the constitutive relations for s, jα, ξα, t, ε, and q (α = 1, 2, . . . , N − 1) are
substituted in (23.23) and the required differentiations are performed according to
the chain rule of differentiation, one obtains after lengthy calculations an expression
of the form

α(Ξ) · β + Γ (Ξ) − (
ρηs − Λv · ρ f − Λερr

)
� 0. (23.24)

Here, Ξ is defined in (23.20), and α as well as β are vectors with the same number
of components (so that the scalar product is meaningful), and β is given by

β =
(
dvi
dt

; ρ̇; ξ̇α; θ̇; (ξ
β
,k)

·; Ḋkl; (θ,k)
·; ξ

β
,i j ; Dkl, j ; θ,k j ; ρ,i

)
, (23.25)

in which Cartesian index notation has been used. The inequality (23.24) is linear in
the vectorial variable β; i.e., none of the variables that define β is contained in Ξ .
The inequality (23.24) contains in its third braced term also the sources, and it is
equally linear in these source terms, if Λε and Λv are independent of these, a fact
that we will provisionally assume but corroborate lateron.5

5It is strongly recommended that the inexperienced reader tries to perform the computations leading
to (23.24) (at least once) with β given by (23.25) and α and Γ given by (23.31)–(23.34). These
computations are not difficult, but long and tedious.
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It is plausible to request that the constitutive relations be independent of the
sources, to which the material is subjected in a thermodynamic process. Since in
(23.24), only the first two terms on the left-hand side are independent of the sources
but not the third, the latter must identically vanish, so that

ηs = Λεr + Λv · f . (23.26)

The entropy supply is therefore known once the Lagrange parameters Λε and
Λv are determined. It is a linear combination of the energy supply (radiation) and
momentum supply (external body forces). With (23.26), inequality (23.24) reduces
to

α(Ξ) · β + Γ (Ξ) � 0. (23.27)

This inequality must hold for all values of Ξ and β. Necessary and sufficient condi-
tions for this are the requirements6

α(Ξ) = 0 and Γ (Ξ) � 0. (23.28)

To prove these, we see that sufficiency is obviously satisfied by (23.28). To prove
necessity, note thatα and Γ are independent ofβ andβ can assume arbitrary values.
These conditions suffice to demonstrate that necessarily α = 0. To this end, assume
that α �= 0 with αs �= 0 and all α j = 0 for j �= s. Then, one may write α = (α̂,αs)

and β = (β̂,βs), in which α̂ and β̂ do involve α,β without αs and βs . With this
notation, inequality (23.27) may be written as

α̂ · β̂ + αsβs + Γ � 0. (23.29)

Now, since βs can freely be selected, we choose

βs = −
[
Γ + α̂ · β̂ + ε

] /
αs, ε > 0, (23.30)

which is admissible since αs �= 0. Substituting (23.30) into (23.29) yields −ε � 0, a
contradiction to the assignment that ε is positive. Thus,αs must vanish. This argument
can be repeated for all components of α, which proves (23.28) to be correct. �

Explicitly, the identities (23.28)1 read

Λv ≡ 0, (23.31)

and

6The equations α(Ξ) = 0 are frequently called the Liu equations and Γ (Ξ) � 0 is the residual
entropy inequality.
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∂ŝ

∂ρ
− Λε ∂ε̂

∂ρ
− Λρ

ρ
≡ 0,

∂ŝ

∂ξα
− Λε ∂ε̂

∂ξα
−Λξα ≡ 0, (α = 1, 2, 3, . . . , N − 1),

∂ŝ

∂θ
− Λε ∂ε̂

∂θ
≡ 0,

∂ŝ

∂ξ
β
,k

− Λε ∂ε̂

∂ξ
β
,k

≡ 0, (β = 1, 2, . . . , N − 1),

∂ŝ

∂Dkl
− Λε ∂ε̂

∂Dkl
≡ 0,

∂ŝ

∂θ,k
− Λε ∂ε̂

∂θ,k
≡ 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23.32)

∂φ(i

∂ξ
β
, j)

− Λε ∂q(i

∂ξ
β
, j)

− Λξα ∂ jα(i

∂ξ
β
, j)

≡ 0, (β = 1, 2, . . . , N − 1),

∂φi

∂Dkl
− Λε ∂qi

∂Dkl
− Λξα ∂ jαi

∂Dkl
≡ 0,

∂φ(k

∂θ, j)
− Λε ∂q(k

∂θ, j)
− Λξα ∂ jα(k

∂θ, j)
≡ 0,

∂φi

∂ρ
− Λε ∂qi

∂ρ
− Λξα ∂ jαi

∂ρ
≡ 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23.33)

as well as

Γ ≡
{

∂φi

∂ξβ
− Λε ∂qi

∂ξβ
− Λξα ∂ jαi

∂ξβ

}
ξ

β
,i +

{
∂φi

∂θ
− Λε ∂qi

∂θ
− Λξα ∂ jαi

∂θ

}
θ,i

+Λξα
cα + Λε

{
ti j − Λρ

Λε
ρδi j

}
Di j � 0, (23.34)

in which indexed round brackets denote symmetrization and the summation is from
α = 1 to α = N − 1; similarly for β. Our next goal is to draw all inferences from
these identities.

Incidentally, it is easy to see that Λv must vanish; this inference follows from
(23.23) by recognizing thatΛv · ρ(dv/dt) is the only inner product of the entire imbal-
ance involving the vector ρdv/dt . Since (dv/dt) may have any arbitrarily assigned
value, there follows thatΛv ≡ 0. This result means physically thatNewton’s second
law does not affect the second law of thermodynamics and makes explicit computa-
tions mentioned in the last footnote somewhat simpler.

One may regard the identities (23.32)–(23.33) as equations for the determination
of the Lagrange parametersΛε,Λρ,Λξα

and one concludes from this, thatΛε,Λρ,
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Λξα
can only depend on the variablesΞ . This is the a posteriori proof of the indepen-

dence of the Lagrange parameters of the external source terms, that was assumed
above. Indeed without such an assumption (23.31)–(23.34) would still follow and
the independence of the Λ’s of the sources would follow in exactly the same way.
However, additional deductions are possible; with the identities (23.33) it is namely
possible to demonstrate that Λε is only a function of the empirical temperature,

Λε = Λε(θ), Θ = 1

Λε(θ)
. (23.35)

This proof is long and rather involved.7 Because of the above property, Λε is
calledcoldness function and its inverse is called the absolute temperature Θ; the
latter agrees with the Kelvin temperature, a fact that we shall corroborate.

With the universality of the absolute temperature (23.35) and the earlier result
that the Lagrange parameter Λv vanishes (see (23.31)), conditions of the second
law of thermodynamics in the form of theClausius–Duhem inequality are reached.
It follows that the subsequent inferences are identical to analogous deductions from
the simpler entropy inequality in the form of the Clausius–Duhem inequality.

Therefore, if one starts from (23.35) as an assumption, one obtains from (23.32)3,4
by cross differentiation

∂2ŝ

∂ξ
β
,k∂θ

− Λε ∂2ε̂

∂ξ
β
,k∂θ

≡ ∂2ŝ

∂θ∂ξ
β
,k

− Λε ∂2ε̂

∂θ∂ξ
β
,k

− ∂Λε

∂θ

∂ε̂

∂ξ
β
,k

, (23.36)

from which one concludes, since ∂Λε/∂θ �= 0 that ∂ε̂/∂ξ
β
,k = 0 and, in view of

(23.32)4, also ∂ŝ/∂ξ
β
,k = 0. Thus, internal energy and entropy cannot depend on ξ

β
,k.

In much the same way, one may equally show by using (23.32)3,5,6 that ε̂ and ŝ can
neither depend on D nor on grad θ, so that the identities (23.32) lead to the reduced
statements

ε = ε̂(ρ, ξβ, θ),

s = ŝ(ρ, ξβ, θ),

Λρ = ρ

(
∂ŝ

∂ρ
− Λε ∂ε̂

∂ρ

)
= Λρ(ρ, ξβ, θ),

Λξα =
(

∂ŝ

∂ξα
− Λε ∂ε̂

∂ξα

)
= Λξα

(ρ, ξβ, θ).

(23.37)

The last two of these statements, together with (23.32)3 may also be written as

7The interested reader is referred to the book by MÜLLER [24] for the explicit demonstration. One
essential ingredient of the proof is that φ, q, and jα are isotropic functions of their arguments. In
this particular case, this is not a restriction because the chosen constitutive class (23.20) does not
permit anisotropic behavior.
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∂ŝ

∂θ
= Λε ∂ε̂

∂θ
,

∂ŝ

∂ρ
= Λε ∂ε̂

∂ρ
+ 1

ρ
Λρ = Λε

(
∂ε̂

∂ρ
− p̂

ρ2

)
, p := −Λρ

Λε
ρ,

∂ŝ

∂ξα
= Λε ∂ε̂

∂ξα
+ Λξα = Λε

(
∂ε̂

∂ξα
− μξα

)
, μξα := −Λξα

Λε
,

(23.38)

from which the total differential of the entropy is seen to be expressible as

ds = Λε

{
∂ε̂

∂θ
dθ +

(
∂ε̂

∂ρ
+ Λρ

Λε

1

ρ

)
dρ +

(
∂ε̂

∂ξα
+ Λξα

Λε

)
dξα

}

= Λε

{
dε + p d

(
1

ρ

)
− μξα

dξα

}
. (23.39)

This is the so-called Gibbs relation,8 which connects the total differential of the
entropy with the product of the inverse of the absolute temperature Θ−1 = Λε(θ)
and the total differential of the internal energy plus the additional contributions

Λρ

ρΛε
dρ,

Λξα

Λε
dξα,

which with the definitions for p and μξα
become

− p

ρ2
dρ = pd

(
1

ρ

)
= Λρ

ρΛε
dρ, −μξα

dξα = Λξα

Λε
dξα (23.40)

so that

ds = 1

Θ

{
dε + pd(1/ρ) − μξα

dξα
}

, (23.41)

in which p is called the thermodynamic pressure, μξα
is the chemical potential of

constituent α.9 The latter identification must, however, still be demonstrated.

8For a brief biographical sketch of Josiah Willard Gibbs (1839–1903), see Fig. 17.12 in Vol. 2,
p. 338 of this treatise on Fluid and Thermodynamics [22].
9If we would have written down themass balance (23.3) for all constituents and if the mass fractions
ξα(α = 1, 2, . . . , N ) for all constituentswouldhavebeenused as independent constitutive variables,
then instead of (23.39) one would have obtained

ds = 1

Θ

{

dε + pd(1/ρ) −
N∑

α=1

μ̄ξα
dξα

}

= 1

Θ

{

dε + pd(1/ρ) −
N−1∑

α=1

(
μ̄ξα − μ̄ξN

)
dξα

} (23.42)
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The Gibbs equation must satisfy integrability conditions, which are deduced
from (23.38) by performing the respective cross differentiations; for instance, from
(23.38)1,2 one obtains

∂2ŝ

∂ρ∂θ
= Λε ∂2ε̂

∂ρ∂θ

and

∂2ŝ

∂θ∂ρ
= Λε ∂2ε̂

∂θ∂ρ
+ ∂Λε

∂θ

(
∂ε̂

∂ρ
− p̂

ρ2

)
− Λε ∂ p̂

∂θ

1

ρ2
.

Because the mixed derivatives ∂2 f /(∂ρ∂θ) = ∂2 f /(∂θ∂ρ) must be equal if f is a
unique function of its arguments, then the above two equations imply

1

Λε

dΛε

dθ
= ∂ p̂/∂θ

(∂ε̂/∂ρ)ρ2 − p̂
. (23.44)

Analogously, one can take (23.38)1,3 to form

∂2ŝ

∂ξα∂ρ
= Λε ∂2ε̂

∂ξα∂ρ
− ∂

∂ξα

(
Λε p

ρ2

)
, and

∂2ŝ

∂ρ∂ξα
= Λε ∂2ε̂

∂ρ∂ξα
− Λε ∂μξα

∂ρ
,

which yields, upon combination,

∂μξα

∂ρ
= ∂

∂ξα

(
p

ρ2

)
, ∀α ∈ [1, 2, . . . , N − 1]. (23.45)

Similarly, from (23.38)3 one may deduce by cross differentiations ∂2/(∂ξα∂ξβ) =
∂2/(∂ξβ∂ξα),

∂μξα

∂ξβ
= ∂μξβ

∂ξα
. (23.46)

with new functions μ̄ξα
; in the above expression (23.42)2, the relation

∑N
α=1 ξα = 1 was used.

Thus, one necessarily has

μξα :=
(
μ̄ξα − μ̄ξN

)
|ξN=1−∑N−1

α=1 ξα , (23.43)

where the subscript in (23.43) indicates that ξN is replaced by (1 − ∑N−1
α=1 ξα). The variable μξα

is

therefore the difference of the chemical potentials
(
μ̄ξα − μ̄ξN

)
, which, however, are functions of

all ξα (α = 1, 2, . . . , N ).
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Finally, from (23.38)1,3 one may deduce

∂2ŝ

∂ξα∂θ
= Λε ∂2ε̂

∂ξα∂θ
and

∂2ŝ

∂θ∂ξα
= dΛε

d θ

(
∂ε̂

∂ξα
− μ̂ξα

)
+ Λε

(
∂2ε̂

∂θ∂ξα
− ∂μ̂ξα

∂θ

)
,

from which

1

Λε

dΛε

d θ
= ∂μ̂ξα

/∂θ

∂ε̂/∂ξα − μ̂ξα . (23.47)

The results (23.44)–(23.47) can be summarized as

d(lnΛε)

dθ
= 1

Λε

dΛε

dθ
= ∂ p̂/∂θ

(∂ε̂/∂ρ)ρ2 − p̂

= ∂μ̂ξα
/∂θ

∂ε̂/∂ξα − μ̂ξα , (α = 1, 2, . . . , N − 1) (23.48)

as well as

∂μ̂ξα

∂ξβ
= ∂μ̂ξβ

∂ξα
,

∂μ̂ξα

∂ρ
= ∂

∂ξα

(
p̂

ρ2

)
, (α = 1, 2, . . . , N − 1). (23.49)

The identities (23.48) state that the pressure, chemical potentials, and the internal
energymust be constitutive equations of such a form that the N − 1 different fractions
(23.48) are the same function of the empirical temperature only. Equations (23.49),
on the other hand, indicate that the pressure, chemical potentials (and entropy) are
themselves derivable from a potential; this shall be ascertained shortly. Before, let
us, however, integrate (23.48)1 to obtain

ln
Λε

Λε
0

= − ln
Θ

Θ0
=

∫ θ

θ0

∂ p̂/∂θ
(
(∂ε̂/∂ρ)ρ2 − p̂

)d θ̄,

where Θ(θ) = 1/Λε, or

Θ

Θ0
= exp

{

−
∫ θ

θ0

∂ p̂/∂θ
(
(∂ε̂/∂ρ)ρ2 − p̂

)d θ̄

}

. (23.50)

For an ideal gas with the thermal and caloric equations of state

p̂ = RΘ(θ)ρ, ε̂ = ε̂(θ), (23.51)
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in which R is the ideal gas constant. Equation (23.50) leads to an identity Θ(θ) ≡
Θ(θ). This can be taken as motivation to identify the empirical temperature θ with
the temperature T of ideal gases (a special empirical temperature) and to request
that

Θ(θ) =: T . (23.52)

Because of the monotonicity of Θ(θ) as a function of θ, one even may use T as
a measure of temperature; from now on this will be our choice. So, the tempera-
ture is now uniquely defined, and therefore the identities (23.48) become constraint
equations for the experimenter, which he must fulfill, if he determines p, μξα

and ε
as functions of their variables by experiment. Thus, the chosen temperature is the
absolute temperature or the Kelvin temperature.

The integrability conditions (23.48) and (23.49) can be satisfied identically, if the
Helmholtz free energy

ψ = ε − T s = ψ̂(ρ, ξα, T ) (23.53)

is introduced. Computing with (23.53), the total differential of the internal energy

dε = dψ + T ds + sdT (23.54)

and substituting this result into the Gibbs relation (23.41) yields

(
∂ψ̂

∂ρ
− p̂

ρ2

)

dρ +
(

∂ψ̂

∂ξα
− μ̂ξα

)

dξα +
(

∂ψ̂

∂T
+ ŝ

)

dT ≡ 0, (23.55)

which, as an identity, can only be satisfied, provided the following relations hold:

p̂

ρ2
= ∂ψ̂

∂ρ
, μ̂ξα = ∂ψ̂

∂ξα
, (α = 1, 2, . . . , N − 1) , ŝ = −∂ψ̂

∂T
. (23.56)

Accordingly, the pressure, the chemical potentials, and the entropy are obtained from
the Helmholtz free energy by “taking the gradient” with respect to its independent
variables.With the choice of ψ̂(·) and the relations (23.56) the integrability conditions
(23.48) and (23.49) are automatically satisfied. With these statements, all inferences
deducible from (23.32) are duly explored.

Next, let us closely analyze the identities (23.33). They suggest the choice

φ = Λεq + k = 1

T
q + k, (23.57)

where (23.35) and (23.52) have been used. It is evident that the extra entropy flux
vector, k describes that part of the entropy flux which may not be collinear to the
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heat flux. Incidentally, the choice (23.57) does not amount to a restriction. If we,
furthermore, introduce

F = k + μξα
jα

T
= k − Λξα

jα , (23.58)

then the identities (23.33) can equally be written as

∂F(i

∂ξ
β
, j)

= 0,
∂Fi

∂Dkl
= 0,

∂F(i

∂T, j)
= 0,

∂Fi

∂ρ
= 1

T

∂μ̂ξα

∂ρ
jαi . (23.59)

These equations can be satisfied by the trial solution

F = 0, ψ̂ = ψ1(ρ, T ) + ψ2(ξ
α, T ) , (23.60)

which automatically satisfies ∂μ̂ξα
/∂ρ = 0, owing to (23.56). Equation (23.60) is

not the most general solution of (23.59), however if one chooses it one obtains with
(23.57) and (23.40)

k = −μξα
jα

T
⇒ φ = q − μξα

jα

T
. (23.61)

The entropy flux (multiplied with the absolute temperature) deviates from the heat
flux via a vector, which is a linear combination of the diffusive fluxes; the weights
of the individual diffusive fluxes are the chemical potentials of the corresponding
constituents.

If the results (23.40), (23.52) and (23.61) are substituted into inequality (23.34),
one obtains

πs = −q − μξα
jα

T 2
· grad T − jα · grdμξα

T

+ (t + p1) · D
T

− μξα
cα

T
� 0 , (23.62)

in which grdμξα
denotes the reduced gradient of grad μξα

, in which the density is
regarded as constant (sometimes called a process with frozen density), i.e.,

grdμξα := ∂μ̂ξα

∂ξβ
grad ξβ + ∂μ̂ξα

∂T
grad T . (23.63)

In evaluating (23.62), the fact was also used that the absolute temperature is a strictly
positive function.10 Inequality (23.62) suggests that entropy is produced by the inner
product of the entropy flux with the temperature gradient, the diffusive fluxes with

10Incidentally, the same result is also obtained, if the Gibbs equation
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the reduced gradients of the chemical potentials, the extra stresses with the rates of
deformation, and by the product of themass productionswith the chemical potentials.

The essential result that has been reached so far is the fact that the pressure, the
chemical potentials, and the entropy density must be derived from the Helmholtz
free energy ψ̂ according to the rules (23.56). It is this quantity that has to be pos-
tulated in a particular diffusion model that is in harmony with thermodynamics.
However, there is more, namely the satisfaction of the imbalance (23.62), which will
be attacked now.

Thermostatic equilibrium is defined as a process which does not produce any
entropy. Inequality (23.62) shows then together with the definition of the reduced
gradient of the chemical potentials, (23.63), that a thermostatic equilibrium process
must fulfill the conditions

grad T = 0; D = 0,
grad ξβ = 0, cβ = 0, (β = 1, 2, . . . , N − 1).

(23.66)

Thus, the temperature and concentration fields must be homogeneous, the mass
productions of all constituents must vanish—there are no chemical reactions and no
phase change processes—and the barycentric velocity field is a rigid body field (or a
rest field). Simultaneously, since the entropy production cannot take negative values,
it assumes its minimum value, namely zero, in equilibrium. Of necessity then

∂πs

∂X

∣∣∣
E

= 0, X := {
grad ξβ, grad T, D

}
,

∣∣∣
∂πs

∂X∂X

∣∣∣
E

is positive semidefinite, (23.67)

where the index (·)|E is a reminder that the so indexed quantity must be evaluated in
thermostatic equilibrium.

If the differentiations indicated in (23.67)1 are performed, one obtains

t|E = −p1, q|E = 0, jα|E = 0, and cα|E = 0 (23.68)

forα = 1, 2, . . . , N − 1.Hence, the stress tensor in thermostatic equilibrium is given
by the thermodynamic pressure, which itself is determined by the Helmholtz free
energy, see (23.56)1. This relation now corroborates a posteriori the interpretation

ṡ = 1

T

{
ε̇ − p

ρ2
ρ̇ − μξα

ξ̇α

}
(23.64)

is used and the rates ρ̇ and ξ̇α are eliminated with the aid of the balance equations (23.2), (23.3);
one then obtains

ρṡ = −div

(
q − μξα

jα

T

)

+ πs , (23.65)

in which πs is given in (23.62).
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of the Lagrange parameter as the negative thermodynamic pressure according to
(23.40)1, −Λρ = Λε p/ρ. The heat flux and the diffusive fluxes of all tracers vanish
in thermostatic equilibrium as one would expect. Finally, also all production rates of
masses of the constituents must vanish.

Let us next scrutinize the second of relations (23.67). To exploit it, consider here
the simplest possible forms for the constitutive relations for jα, q and tE = t + p1;
furthermore, ignore chemical reactions: cβ = 0; β = 1, 2, . . . , N − 1. To exploit
the inequality (23.62), it shall also be assumed that the thermodynamic “fluxes”

1

T

(
q − μξα

jα
)

and
jα

T
(23.69)

are derivable from a dissipation potentialΨD which is expressible as a quadratic form
of the corresponding thermodynamic “forces”

1

T
grad T, grad μξα

(23.70)

according to

ΨD = 1

2
Cαβ
11

(
grdμξα) ·

(
grdμξβ

)
+ Cα

12 (grdμξα

) · grad T
T

+1

2
C22

(
grad T

T

)
·
(
grad T

T

)
, (23.71)

in which Cαβ
11 = Cβα

11 is symmetric in the indices αβ and where summation from 1
to N − 1 is understood over doubly repeated Greek indices. If one requests that

jα

T
= − ∂ΨD

∂grdμξα ,
1

T

(
q − μξα

jα
) = − ∂ΨD

∂ (grad T/T )
, (23.72)

(which gives ΨD the desired property of a potential), and if Newtonian behavior11

t + p1 = ζ(tr D)1 + 2μD′, D′ = D − 1
3 (trD) I,

⇒ � = (t + p1) · D = ζ(tr D)2 + 2μD′ · D′, (23.73)

is assumed, then for cα = 0 inequality (23.62) takes

πs = 2ΨD + �

T
� 0, (23.74)

a form of πs , which is easily obtained by employing (23.71) and (23.72). In other
words, ΨD and � are positive semidefinite quadratic forms. Therefore,

11ζ and μ are the bulk and shear viscosities.
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(
Cαβ
11 Cα

12

CαT
12 C22

)

is a positive semidefiniteN × N matrix,

ζ � 0, μ � 0. (23.75)

The diffusive fluxes jα and the entropy flux (q − μξα
jα) are given by

(
jα

q − μξα
jα

)
= −

(
Cαβ
11 T Cα

12

Cβ
12T C22

)(
grdμξβ

grad T

)

, (23.76)

which can easily be deduced from (23.71) and (23.72).
With the equation of state μξβ = μ̂ξβ

(ρ, ξγ, T ) for the chemical potentials and the
aid of (23.63) as well as (23.76), one may deduce the formulae

q = −κT grad T − κξγgrad ξγ ,

jα = −Dα
T grad T − Dα

ξγgrad ξγ ,
(23.77)

in which

κT := μξα

(

Cαβ
11 T

∂μξβ

∂T
+ Cα

12

)

+
(

Cβ
12T

∂μξβ

∂T
+ C22

)

,

κξγ := Cαβ
11 Tμξα ∂μξβ

∂ξγ
+ Cβ

12T
∂μξβ

∂ξγ
,

Dα
ξγ := Cαβ

11 T
∂μξβ

∂ξγ
,

Dα
T := Cαβ

11 T
∂μξβ

∂T
+ Cα

12.

(23.78)

κT is the coefficient of heat conduction, and Dα
ξγ represent the matrices of mass

diffusivities; κξγ and Dα
T are coupling coefficients and their presence in (23.77) is

known in a special case as Ludwig–Soret effect.12 It describes a particular tracer
diffusive transport in a gas or liquid that is induced by a temperature difference, which
leads to a partial demixing of the tracer substance. If such a temperature difference
exists in a gas, the lighter components will accumulate in the hot region and the
heavier ones in the cold region.13

12For brief biographical sketches of Carl Ludwig (1816–1895) and Charles Soret (1854–
1904), see Fig. 23.2.
13The phenomenon is called Thermophoresis or thermodiffusion and describes the motion of sus-
pended particles in a mixture against the temperature gradient. It can, for instance, be observed
when the hot rod of an electric heater is surrounded by tobacco smoke: the smoke goes away from
the immediate vicinity of the hot rod.
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Fig. 23.2 Carl Ludwig (29 Dec.1816–23 April 1895) (left), the famous Physiologiocal
Institute in Leipzig, founded by Ludwig in 1869 (middle), Charles Soret (23 Sept.
1854–04 April 1904 (right)

Carl Ludwigwas aGermanphysician andphysiologist.He studiedmedicine
in Marburg, starting in 1834, where he habilitated in 1842 on the mechanism
of discharge of urine. On the recommendation of Franz–Ludwig Frick, the
older brother of Adolf Fick, he received a position at the medical school in
Marburg and, in 1846, the associate professorship of comparative anatomy.
He was affected by the political turmoils in the 1848s and “escaped” in 1849
to the University of Zurich as a Full Professor of Physiology and Anatomy.
In 1855, he was called as Full Professor of Physiology and Zoology at the
Medical Chirurgical Military Academy in Vienna, where he and his many
students were active in blood pressure, urinary excretion and anesthesia. In
1856, he discovered thermodiffusion [23], later denoted the Ludwig–Soret
effect, after him and Charles Soret. In May 1865 Ludwig, became Full
Professor of Physiology at the University of Leipzig, where he worked beyond
the retirement age until his death in 1895. Here, he founded the (instantly
famous) Physiological Institute in 1865, received the Copley Medal in 1884,
and was elected a member of the Swedish Academy of Sciences in 1869.

Charles Soretwas a Swissmineralogist and physicist who lived in Geneva.
In 1872, he graduated from an art college in Geneva and, 2 years later, he added
a degree in mathematics and consulted additional courses in physics and the
sciences. He also received an MS degree in mathematics from the Sorbonne
in 1876. He felt that mathematics was the fundament for the sciences. So, he
added an MS degree also in physics in 1878. Soon hereafter he was offered
a position at the University of Geneva in the Department of Crystallography
andMineralogy, where he became lecturer in 1879 and Full Professor in 1881.
In 1879, he published his significant paper on thermodiffusion [26] on the
basis of experiments with solutions of NaCl and KNO3 in pipes with heated or
cooled ends. He noticed higher concentration at the cooled end of the pipe. His
experiments confirmed the results of Carl Ludwig (published 20 years ear-
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lier) of which Soret probably did not know. In 1898, he became rector of the
University of Geneva. He died a few days after a successful operation.

The text is based on www.wikipedia.org

A significant simplification of the formulae (23.78) is achieved by further special-
ization. If, for instance, it is assumed that Cαβ

11 only contains nonvanishing entries in
the diagonal, i.e., if Cαβ

11 = 0 for α �= β and if it is simultaneously assumed that also
the interaction terms Cα

12 vanish, then one obtains

ΨD =
∑

α

1

2
Cαα
11

(
grdμξα) · (grdμξα)

+1

2
C22

(
grad T

T

)
·
(
grad T

T

)
. (23.79)

Assuming, furthermore, the Helmholtz free energy (23.60) in the special form

ψ̂ = ψ1(ρ, T ) +
N−1∑

α=1

ψα
2 (ξα, T ), (23.80)

then one may show that q and jα take the forms

q = −κT grad T −
γ−1∑

α=1

κξαgrad ξα,

jα = −Dα
T grad T − Dα

ξαgrad ξα, (no summation over α)

with the coefficients

κT = C22 +
N−1∑

α=1

(
∂ψα

2

∂ξα
Cαα
11 T

∂2ψα
2

∂ξα∂T

)
, Dα

ξα = Cαα
11 T

∂2ψα
2

∂ξα2 ,

κξα =
N−1∑

α=1

Cαα
11 T

∂ψα
2

∂ξα

∂2ψα
2

∂ξα2 , Dα
T = Cαα

11 T
∂2ψα

2

∂ξα∂T
.

(23.81)

These formulae permit significant qualitative inferences. As the temperature depen-
dence of the chemical potentials is generally weak, one may ignore the coefficients
involving the factor ∂2ψα

2 /(∂ξα∂T ). Then (23.81) implies

κT ∼ C22, Dα
T ∼ 0,

while κξα and Dαα
ξα are still given by (23.81). In this approximation the influence of

the temperature gradient on themass fluxes jα is ignored but that of the concentration

www.wikipedia.org
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gradients on the heat flux is maintained. This is the approximation usually referred
to as the Ludwig–Soret effect.

Remark In the theory derived above, the density of the mixture and the mass concen-
trations of the tracers ξα(α = 1, 2, . . . , N − 1) were regarded as independent fields.
Furthermore, the mass balance of the main fluid was not considered as a field equa-
tion and neither was the mass concentration of this fluid regarded as an independent
constitutive variable. This was done so since ξα 
 1, α = 1, 2, . . . , N − 1, and
|ξN − 1| 
 1 were assumed; in other words the mass of the main fluid was assumed
so much greater than the masses of the tracers that the dynamics of the mixture could
be regarded as essentially indistinguishable from that of the main fluid. For many
situations in environmental physics this is the case. However, for mixtures of gases,
this need not be so. In such circumstances, it may be advantageous also to incorporate
ξN as an independent variable in the constitutive relations; if this is done, however,
one must account for the fact that ξN = 1 − ∑N−1

α=1 ξα. This identity may be taken
care of by considering

∑N
α=1 ξα = 1 as a constraint equation in the exploitation of the

entropy principle. In such a formulation, ξN is then treated as an independent field.
It is clear that such a formulation of the model equations must yield a theory that is
identical to that just derived; this is so but certain variables must be transformed to
achieve this one-to-one correspondence. For details, see the footnote 9 on p. 89.

Summarizing this presentationof the general thermodynamic formulationof diffu-
sive processes of reacting tracers in a viscous fluid shows that the ultimate form of the
fluid mechanical equations depends chiefly on the proper exploitation of the second
law of thermodynamics. This fact is explicit demonstration that these two scientific
fields are interwoven with one another. In fact, the ultimate form of the governing
fluidmechanical equations is dictated by proper exploitation of the entropy principle.
This exploitation delivers results of two different physical qualities. They are stated
in two sets of identities, namely (23.32), (23.33), and the residual inequality (23.34).
The former, often calledLiu identities, allow determination of theLagrange param-
eters and the derivation of the Gibbs relation (23.39) or (23.41) and restrictions of
assumed constitutive relations for pressure, chemical potentials, and entropy via
the definition of the Helmholtz free energy, see (23.56). Moreover, they yield an
explicit expression for the entropy flux as stated in (23.61) and, above all in this
case, allow to prove that Λε is only a function of the empirical temperature,14 so
that Λε(θ) ≡ 1/T , where T is the absolute temperature. On the other hand, with all
these intermediate results being given, the entropy production πs for the constitutive
class (23.20) is expressible in the form (23.62). The exploitation of this inequality
has been proposed for linear deviations of the heat flux vector q and the mass flux
vectors jα (α = 1, 2, . . . , N − 1) from a quadratic dissipation potentialΨD , defined
in (23.71). It yields explicit constitutive forms for the heat flux vector, the mixture
stress tensor, and the constituent mass flux vectors as stated in (23.73), (23.77), and
(23.78).

14This proof was not given here; it was only referred to [24], where this proof is given.
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23.3 Saturated Mixture of Nonpolar Solid and Fluid
Constituents

23.3.1 Motivation

There15 exists a large number of heterogeneous materials, which constitute of both
solid and fluid components. In porous media, the solid component consists of a
connected coherent material or a number of such materials, and the so-called pore
space is filled with the fluid constituents, usually fluids and/or gases. This pore
space can by itself be connected, or it consists of isolated inclusions or may possess
both isolated and connected pores. In granular media, the solid component consists
of individual grains, which would fall apart, if they were not held together by an
ambient pressure. Thus a granular heap can, in general, only assume special, distinct
rest positions. Sand, soil, and snow belong to this class. If the pore space is partly
or completely connected, then the pore fluid may move under the action of gravity
or pressure differences. Displacements of fluid particles may then be several orders
of magnitude larger than those of the solid constituents. This is the case e.g. in
foams, that are used as acoustic insulators, or in the so-called “wind pumping” of
the upper most snow layer in snow depositions, through which air percolates, under
heavy storms sometimes with surprisingly large seepage velocities. It arises also
in groundwater flows. However, if the groundwater current in the saturated soil is
too strong, rapid earth movements may arise, which are known as debris flows,
sturzstroms and mudflows in which the granular component also moves as a fluid.
The transition from a groundwater flow in practically silent sand to the catastrophic
flow of a sand water mixture is almost always very abrupt and is for this reason in
geotechnique and geology called an instability; the phenomenon is, however, also
called “quick sand”.

If the differential lengths of the governing processes extend over several charac-
teristic diameters of the grains, pores, and typical curvatures or twists of the com-
posites, one may well apply a mixture concept with field variables that are thought to
be homogenized over these differential lengths. In other words, within a volume of
influence of a spatial point—this is called a Representative Element Volume, REV—
all field variables are regarded as averaged quantities of true micro fields, and it is
anticipated that these averaged quantities interact with each other such that balance
laws ofmixtures apply to them.Of course this is an assumption,which can be checked
for correctness by more detailed averaging procedures; this we will, however, not do
here. At last, the correctness of the procedure can be obtained by testing the complete
theory against observations.

15Whereas the text of this section has independently been drafted by K. Hutter, many of the
detailed arguments have been influenced by the dissertation ofG. Bauer [2]. We wish to acknowl-
edge this source, as it has also streamlined and clarified the writings at other places of this book,
even though its influence may only here directly be seen.
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The applications in focus above are taken from the special fields of geotechnique,
geology, geophysics, and environmental physics; industrial applications from chem-
ical process engineering, chemistry, civil and mechanical engineering could equally
be given. Our intention is the derivation of the governing equations of a solid–fluid–
interaction theory from first thermodynamic principles by using the second law of
thermodynamics and exploiting it. A thermodynamic view is also necessary for the
derivation of the equations describing purelymechanical processes forwhich the evo-
lution of the temperature as a variable is not pursued. This is so, because the particular
formulation of the equilibrium conditions, especially with regard to the equilibrium
pressure and the Darcy interaction force in saturated or unsaturated soil, directly
depends on the postulated constitutive equations, i.e., the material complexity and
the second law of thermodynamics.

As is transparent from this discussion, the physical circumstances in focus are
here mixtures of (partly) immiscible constituents, which is quite contrary to the
situation dealt with in Sect. 23.2, where the diffusion processes in a mixture of
miscible constituents were studied. Furthermore, at least one of the constituents is
here a solid. The prerequisites of the assumption that material of each constituent
may occupy each point of the body is therefore less convincing than for miscible
mixtures. Differential lengths are certainly larger and microstructural effects i.e.,
effects at the scale within an REV might have to be accounted for by formulating
additional relations that describe the effects of the microstructure at the macro-level.
Such equations may be additional balance laws for the volume fractions occupied
by the individual constituents.

The concepts of mixture theory including Truesdell’s metaphysical principles
remain valid guidelines and so Truesdell [28–30] and MÜLLER [24] are the perti-
nent references that should be mentioned. Early concepts of the dynamics of porous
media are byBiot [3, 4] and, within the context of continuummechanics, byBowen

[6, 7]. Additional balance laws for variables describing the effects of the porous or
granular structure have, e.g., been introduced by Goodman and Cowin [13] and
Passman, Nunziato, and others (see, e.g., the article “A theory of multiphase mix-
tures” by Passman et al. in Appendix 5C of Truesdell [30], or Drew and
Passman [10] where a large number of references are stated).

In the abovementioned references, a postulational approach toward the formu-
lation of the mixture balance laws is taken. Derivations of the balance relations by
using an averaging procedure to arrive from physical statements at the micro-scale to
relations of the macroscale have been given by Hassaniazadeh and Gray [17–19]
and Gray [14] an approach that is also followed by Ehlers [11, 12] and Bluhm

[5]. Further summaries of more general focus are by Schneider andHutter [25] and
Gray and Miller [15] as well as Wilmanski [31] and Albers and Wilmanski

[1]. The history of the developments from the very early stages to present is given
by De Boer [9].

We consider again a mixture of nonpolar constituents so that

sα = 0, mα = 0, lα = 0, kα = 0 (α = 1, 2, . . . , N ). (23.82)

Moreover, we shall assume that the individual constituents perform distinct motions,
but that these motions are slow on the time scales of thermal relaxation, so that all
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constituents may be assumed to possess the same temperature. It follows that the
prerequisites of amixture of class II are fulfilled, for which the mass and momentum
balance laws for all constituents must be formulated, but only the energy balance for
the mixture as a whole is relevant. Consequently, the following balance laws define
this mixture theory:

∂ρα

∂t
+ div (ραvα) = cα, (α = 1, 2, . . . , N ) ,

∂ραvα

∂t
+ div (ραvα ⊗ vα) = div tα + ρα f α + mα, (α = 1, 2, . . . , N ) ,

∂ρε

∂t
+ div (ρεv) = −div q + grad v · tT + ρr , (23.83)

∂ρs

∂t
+ div (ρsv + φρs) − ρηρs � 0.

These comprise the balance laws of mass and momentum for the constituents
(23.83)1,2, those of the internal energy of the mixture (23.83)3 and of the entropy
(23.83)4. Because of the assumption (23.82), as follows from (21.24), the partial
Cauchy stress tensors tα are symmetric, tα = tαT ; furthermore, the mixture vari-
ables are defined in (21.62)–(21.66) and could easily bewritten down in the simplified
forms appropriate for the specification (23.82).

The goal in this section is not to derive a general theory of mixtures of class II,
but rather to present an example of such a theory. For this reason, the following
simplifying assumptions are introduced.

Assumption of Constant True Densities It shall be assumed that solid and fluid
constituents are such that the density preserving property may be imposed. We shall
thus assume that all constituents possess constant true densities.16 The true indepen-
dent variables are then not the mass densities ρα but the constituent volume fractions
να, which connect the partial densities ρα with the true densities ρ̂α according to

ρα = ναρ̂α, ρ̂α = constant, (α = 1, 2, 3, . . . , N ). (23.84)

The assumption of constant ρ̂α means that the materials of which the individual
constituents are made are density preserving.

If one substitutes (23.84) into the mass balance (23.83), then, after division by
ρ̂α, one obtains

∂να

∂t
+ div (ναvα) = 1

ρ̂α
cα =: nα, (α = 1, 2, . . . , N ) , (23.85)

which is an equation for the volume fractions να; in other words, in this simple
theory, the volume fractions replace the partial densities as independent variables.

16The true density of constituent α is the mass of constituent α per unit volume of this constituent
(and not that of the mixture). Sometimes this is also called the apparent density.
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Assumption of Saturation of the Mixture We also wish to suppose that the con-
sidered mixture does not have any cavities or empty spaces; in other words, the sum
of the volume fractions fills the entire space at all positions and at all times within
the body, i.e.,

N∑

α=1

να = 1. (23.86)

This equation implies: of the N volume fraction variables only (N − 1) are indepen-
dent. One particular να can be replaced by (1 − ∑

β �=α νβ); we shall do this in the
sequel for the variable νN .

If a function f = f (ν1, . . . , νN ) depends on all ν1, . . . , νN , then, upon elimina-
tion of νN = (1 − ∑

β �=N νβ) one may write

f̃ (ν1, . . . , νN−1) = f

⎛

⎝ν1, . . . , νN−1, 1 −
N−1∑

β=1

νβ

⎞

⎠ . (23.87)

If one must differentiate this function with respect to time or space—this will be
expressed by ∂—then one obtains

∂ f =
N−1∑

α=1

∂ f̃

∂να
∂να =

N−1∑

α=1

(
∂ f

∂να
− ∂ f

∂νN

)
∂να. (23.88)

It follows that one must always be aware which independent variables one wants
to use as field variables, either the first N − 1 volume fractions as for f̃ , or the
N volume fractions as for f . It should also be observed that the balance law for
the dependent volume fraction still constitutes an independent equation. In fact, the
volume balance (23.85) can, for α = N , be written as

−
⎧
⎨

⎩

N−1∑

β=1

∂νβ

∂t

⎫
⎬

⎭
+
⎧
⎨

⎩
div

⎡

⎣

⎛

⎝1−
N−1∑

β=1

νβ

⎞

⎠ vN

⎤

⎦

⎫
⎬

⎭
= − 1

ρ̂N

⎛

⎝
N−1∑

γ=1

cγ

⎞

⎠=: nN , (23.89)

where the saturation condition (23.86) and
∑N

α=1 c
α = 0 have been used. This equa-

tion is independent of the other volume balances. The saturation condition must
be interpreted as a constraint condition, which is the cause for the fact that in the
resulting equations there will be an independent equation in excess to the number of
independent variables. This will lead to the introduction of an additional constraint
stress, the so-called saturation pressure.



104 23 Thermodynamics of Class I and Class II Classical Mixtures

23.3.2 Choice of the Material Class and Material Theory

The balance laws (23.83)2,3 and themass balance equations for the density preserving
constituents in the form (23.85) constitute together 4N + 1 equations for the N − 1
volume fractions να, 3N velocity components of the constituents vα, as well as the
temperature θ, i.e., 4N variables. They must be complemented by phenomenological
relations for the constitutive quantities

Ψ = {
cα,mα, tα, ε, s, qα,φρs

}
, (23.90)

which, according to the principle of equipresence, all are postulated to depend on
the following set of constitutive variables:

Ξ = {
ν1, . . . , νN−1, θ, grad ν1, . . . , grad νN−1,

v1, . . . , vN , grad v1, . . . , grad vN , grad θ
}
. (23.91)

The chosen material class is therefore a mixture of viscous, heat conducting con-
stituents which principally possess fluid character as will become apparent in due
course with the developments. Elasticity effects are left out of consideration merely
for reasons of mathematical simplicity. Such effects are important to be included
for the solid constituent when rest positions are important for the physical processes
under consideration. For such cases, one must add the deformation gradient Fs as
an additional variable in (23.91), see, e.g., Svendsen and Hutter [27] and, in par-
ticular, Schneider and Hutter [25]. Thus, the postulate (23.91) is appropriate for
modeling debris flows or mud flows where fluid and solid constituents are moving
very much like fluids. Notice, moreover, that only (N − 1) volume fractions are
taken into account in (23.91), because the N th volume fraction in a saturated mix-
ture is determined by the other (N − 1) constituent volume fractions. Furthermore,
the grad να-terms account for the fact that the momentum productions or interaction
forces mα may also depend on the distribution of the constituents; such a theory is
also known as a gradient theory, in any case it does have non-simple character.17

We also request that the constitutive relationsΨ = Ψ̂ (Ξ) obey the rule ofmaterial
objectivity, which requires that Ψ̂ (·) satisfies the equation

Ψ̂
(
. . . , v1, . . . , vN , grad v1, . . . , grad vN , . . .

)

= Ψ̂
(
. . . , v1 + a1, . . . , vN + aN , grad v1 + �1, .., grad vN + �N , . . .

)
(23.92)

as an identity for any vector aα and any skew-symmetric tensor �α (α = 1, 2, . . . ,
N ). This requirement implies that Ψ̂ cannot depend upon the constituent velocities

17In classical continuum mechanics, a non-simple material is defined as a medium in which higher
gradients of the motion χ(X, t) may arise as independent constitutive variables. This is the case,
if grad ρ is an independent constitutive variable, because ρ = ρ0/ det F and therefore grad ρ =
ρ0grad det F−1.
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and velocity gradients themselves, but only upon the differences

uα := vα − v, v :=
N∑

α=1

ξαvα,

Uα := grad vα − W , W := skwgrad v, (23.93)

in which uα are the diffusion velocities relative to the barycentric velocity v and Uα

the relative deformation rate tensors. The quantities uα and Uα are objective vectors
and objective rank-2 tensors. The proof follows easily from the fact that vα, v, grad v,
and W apply at the same position x of constituent α, and the transformation rules
(23.17)–(23.18) under Euclidian transformations.18 With the above restrictions, the
constitutive postulate (23.91) may also be written as

Ψ = Ψ̂
(
ν1, . . . , νN−1, θ, grad ν1, . . . , grad νN−1,

u1, . . . ,uN ,U1, . . . ,U N , grad θ
)
. (23.94)

In performing the explicit calculations, it has been seen, however, that it is more
convenient to perform the calculations with the variables (23.91) rather than (23.94)
and to incorporate the specialization (23.93) afterwards. This requires then that dif-
ferentiations with respect to uα and Uα must be executed with care. For instance,
the following definitions and rules of differentiation apply. For their proofs, see
Appendix23.C in this chapter.

grad v =
N∑

γ=1

[
ξγgrad vγ + vγ ⊗ grad ξγ

]
,

D =
N∑

γ=1

[
ξγ Dγ + sym(vγ ⊗ grad ξγ)

]
,

W =
N∑

γ=1

[
ξγWγ + skw(vγ ⊗ grad ξγ)

]
,

∂uβ

∂vα
= (

δαβ − ξα
)
1, (23.95)

∂Uβ

∂Wα = (
δαβ − ξα

)
14,

18Uα contains symmetric and skew-symmetric contributions which can be separated into

Dα = symUα = sym(grad vα), Wα = skwUα = skw(grad vα) − W .

Dα and Wα are relative stretching and relative vorticity tensors.
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∂ f

∂vα
= ∂ f

∂uα
− ξα

N∑

γ=1

∂ f

∂uγ
,

∂ f

∂Wα = ∂ f

∂Uα − ξα
N∑

γ=1

∂ f

∂Uγ ,

∂ f

∂grad vα
= ∂ f

∂Dα + ∂ f

∂Uα − ξα
N∑

γ=1

∂ f

∂Uγ ,

in which 14 denotes the fourth-order unit tensor and δαβ the N -dimensional Kro-
necker delta. Formula (23.95)6 must, e.g., be applied if the internal energy of the
mixture must be differentiated with respect to vα:

ρε =
N∑

α=1

ραεα

︸ ︷︷ ︸
ρεI

+
N∑

α=1

ρα

2
uα · uα

︸ ︷︷ ︸
ρεD

= ρεI + ρεD,

∂(ρεD)

∂vα
= ραuα − ξα

N∑

γ=1

ργuγ

︸ ︷︷ ︸
0

= ραuα, (23.96)

∂(ρε)

∂vα
= ∂(ρεI )

∂vα
+ ραuα = ∂(ρεI )

∂uα
− ξα

N∑

γ=1

∂(ρεI )

∂uγ
+ ραuα.

Thequantities εI and εD are called inner internal energy anddiffusive internal energy,
respectively.

A thermodynamic process is in this section a set of field variables να (α =
1, 2, . . . , N − 1), v1, . . . , vN , θ which obeys the balance laws of momenta and
energy (23.83)2,3, the volume balances (23.85) for α = 1, . . . , N − 1, and (23.89)
for α = N as well as the constitutive equations Ψ = Ψ (Ξ) given in (23.91) or
(23.94). If we now request, as usual, that the entropy inequality (23.83)4 be satisfied
for all thermodynamic processes, then the equations just mentioned play the role
of constraint conditions for the entropy inequality. According to the procedure of
Liu, this requirement can be fulfilled as follows: One subtracts the scalar products
of these equations with the so-called Lagrange parameters (or adds them which
only changes the signs of the Lagrange parameters) from the entropy inequality
and satisfies this extended inequality for unrestricted fields. This extended inequality
reads
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∂(ρŝ)

∂t
+ div

(
φ̂

ρs + ρŝv
)

− ηρs −
N−1∑

α=1

Λνα

(
∂να

∂t
+ div (ναvα) − n̂α

)

− ΛνN

⎛

⎝−
{ N−1∑

α=1

∂νβ

∂t

}
+

{
1 −

N−1∑

β=1

νβ
}

· div vN −
{ N−1∑

β=1

grad νβ
}

· vN − n̂N

⎞

⎠

−
N∑

α=1

Λvα ·
(

∂(ραvα)

∂t
− div ( t̂

α − ραvα ⊗ vα) − m̂
α − ρα f α

)

− Λε

(
∂(ρε̂)

∂t
+ div (q̂ + ρε̂v) − tr ( t̂ D) − ρr

)
� 0, (23.97)

in which the materially dependent variables are thought to be substituted by their
constitutive relations, a fact which we have made visible by writing a hat for such
variables, ˆ(·). In (23.97), the balance laws for the volume fractions appear multiplied
with the Lagrangemultiplier Λνα

; the momentum balances are scalarly multiplied
with Λvα

and the balance of internal energy appears multiplied with the factor Λε.
Apart from the supply terms of entropy ηρs , of momentum ρα f α and of energy ρr,
inequality (23.97) depends explicitly (and implicitly via the constitutive quantities)
upon the independent fields and or spatial and temporal derivatives of these. Hence,
the Lagrange multipliers are in general also functionals of these quantities.19

A first step in the exploitation of inequality (23.97) consists in the requirement
that the constitutive response of a body, since it describes the material behavior, does
not depend upon the source terms that are applied to the body from its outside. The
sum of the external supply terms in (23.97) must therefore add up to zero, so that

ηρs = Λερ r +
N∑

α=1

(Λvα · ρα f α) ; (23.98)

consequently, the entropy supply is a linear combination of the energy supply (radia-
tion) and the momentum supplies (external forces) and is fixed once the Lagrange
parameters Λε and Λvα

are determined.
The further procedure in exploiting inequality (23.97), shortened by (23.98), con-

sists now in the following steps: all differentiations are performed using the chain
rule of differentiation where needed; the chain rule must, in particular, be used where
a constitutive quantity is differentiated with respect to time or space. The inequal-
ity thus obtained is sorted and rearranged according to the independent constitutive
variables (and their higher order derivatives). If this is done—a relatively lengthy
procedure—one recognizes that the emerging inequality can be considerably con-

19It might be worth mentioning that most authors of papers dealing with thermodynamics of solid–
fluid mixtures of porous or granular materials use the second law of thermodynamics in a form akin
to the Clausius–Duhem inequality with an exploitation following the Coleman–Noll procedure
of exploitation. In these approaches, the balance laws of peculiarmomenta and energy are associated
with arbitrary source terms.
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densed, if the following one-forms20 are defined:

P := d(ρs) − Λεd(ρε), F := dφρs − Λεdq +
N∑

α=1

Λvα

(dtα), (23.99)

with the coefficients

Pxi := ∂(ρŝ)

∂xi
− Λε ∂(ρε̂)

∂xi
, F xi := ∂φ̂

ρs

∂xi
− Λε ∂q̂

∂xi
+

N∑

α=1

Λvα ∂ t̂
α

∂xi
, (23.100)

so that21

P = Pxidxi and F = Fxidxi . (23.101)

Furthermore, we use the abbreviation

Oxi = v ⊗ Pxi + Fxi . (23.102)

With these notations, the extended entropy inequality can be written in the following
form22:

Pθ
∂θ

∂t
+ Pgrad θ · ∂(grad θ)

∂t

+
N∑

α=1

{
(Pνα − PνN ) − (Λνα − ΛνN

) − (ρ̂αΛvα · vα − ρ̂NΛvN · vN )
}∂να

∂t

+
N−1∑

α=1

{Pgrad να − Pgrad νN

} · ∂(grad να)

∂t

+
N∑

α=1

(Pvα − ραΛvα) · ∂vα

∂t
+

N∑

α=1

Pgrad vα · ∂grad vα

∂t

+
N−1∑

α=1

{Ograd να − Ograd νN

} · grad (grad να)

20One-form is a linear functional F (as a special case of multilinear functionals), in which F =∑
a jdx j is a sum of finite coefficients a j multiplied with differentials dx j .

21Notice that Pxi and Fxi do not represent derivatives of P and F , since Λε in (23.100) cannot be
pulled into the differential of ρε. So, neither P nor F are complete differentials.
22The derivation of this formidably looking inequality is not difficult, however it is lengthy and
time consuming, and its derivation is susceptible to error. For this text, it was derived several times
and has multiply been checked.
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+
N∑

α=1

(Ograd vα) · grad (grad vα) + (Ograd θ) · (grad (grad θ))

+Oθ · grad θ

+
N−1∑

α=1

{
Oνα − OνN − (Λνα

vα − Λνα

vN ) + Λε t
ρ
(ρ̂αuα − ρ̂NuN )

− (ρ̂αΛvα · vα ⊗ vα − ρ̂NΛv · vN ⊗ vN )

+ (s − Λεε)(ρ̂αuα − ρ̂NuN )
}

· grad να

+
N∑

α=1

{
Ovα + ρα(s − Λεε)1 + Λε ρα

ρ
t − (Λνα

να + ραΛvα · vα)1

− ρα(Λvα ⊗ vα)
}

· grad vα +
N∑

α=1

{
Λνα

nα + Λvα · mα
}

� 0. (23.103)

This still rather formidably looking inequality is written in two blocks which are
separated fromone another by an empty line. The block above this empty line consists
of a sum of products of two factors α · β where

β =
{
grad (grad ζ),

∂grad ζ

∂t
,
∂ζ

∂t

}
, ζ = (θ, να, vα) (23.104)

and the prefactors ofβ are collected in the second vectorαwith the same dimension;
α only depends upon the independent constitutive variables and upon vα. The upper
block of inequality (23.103) is therefore linear inβ. The lower block in (23.103) does
not contain variables from β and only depends upon the independent constitutive
variables and vα (α = 1, 2, . . . , N ) and v; let it be collected in the scalar Γ . In
summary, inequality (23.103) has the form

α · β + Γ � 0 (23.105)

and is linear in β.
It is relatively easy to become convinced that to any chosen β in a neighborhood

of a material point, there exists (at least) one admissible thermodynamic process
(which satisfies the balance equations and constitutive relations). A fortiori, since
the balance laws are accounted for in inequality (23.103) via the terms involving
the Lagrange parameters, β may assume any value we please; of necessity then,
(23.105) is satisfied if and only if

α = 0 and Γ � 0. (23.106)

The proof of (23.106) is outlined in this chapter after the analogous statements
(23.28). The first equations comprise the Liu equations, the latter is the residual
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entropy inequality. The statement α = 0 corresponds in (23.103) to the following
conditions, which must be satisfied as identities:23

Pθ = 0,
Pgrad θ = 0 ,

(Pνα − PνN ) − (Λνα − ΛνN
) − (ρ̂αΛvα · vα − ρ̂NΛvN · vN ) = 0,

(α = 1, 2, . . . , N − 1),
(Pgrad να − Pgrad νN ) = 0, (α = 1, 2, . . . , N − 1),
(Pvα − ραΛvα

) = 0, (α = 1, 2, . . . , N ),

Pgrad vα = 0, (α = 1, 2, . . . , N ),

(Fgrad να − Fgrad νN )sym = 0, (α = 1, 2, . . . , N − 1),
(Fgrad vα)sym = 0, (α = 1, 2, . . . , N )

(Fgrad θ)sym = 0 .

(23.107)

Thefirst six statements of (23.107) followdirectly from thefirst four lines of (23.103),
since

∂

∂t
{θ; grad θ; (να, grad να), α = 1, . . . , N − 1; (vα, grad vα), α = 1, . . . , N }

can all freely assume any value. In the three last identities, the results (23.107)2,4,6
were used. The residual inequality now only consists of the last block in (23.103).

The identities (23.107) allow a number of inferences, of which the most simple
ones are presented now. First, it follows from the first six identities (23.107) plus the
definitions (23.99) that the generalized Gibbs

24 relation

d(ρŝ) = Λεd(ρε̂)

+
N−1∑

α=1

{
(Λνα − ΛνN

) + (ρ̂αΛvα · vα − ρ̂NΛvN · vN )
}
dνα

+
N∑

α=1

ραΛvα · dvα (23.108)

must hold. It can equally be written as

23With regard to the terms Pνα ,Pgrad να , and Fνα , the identities (23.107)3,4,7 are to be understood

in the sense of Eq. (23.88). If dνN should not be replaced by −∑N−1
α=1 dνα as in (23.103), then the

following substitutions should be made:

Pνα − PνN −→ Pνα ,

Pgrad να − Pgrad νN −→ Pgrad να ,

Fgrad να − Fgrad νN −→ Fgrad να ,

(later in (23.122)–(23.128) this is done so).
24For a brief biographical sketch of Johann Friedrich Pfaff (1765–1825), see Fig. 17.46 in
Vol. 2, p. 401 of this treatise on Fluid and Thermodynamics [22].
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d(ρŝ) = Λε

{
d(ρε̂)

+
N−1∑

α=1

{
(Λ̃να − Λ̃νN

) + (ρ̂αΛ̃
vα

· vα − ρ̂N Λ̃
vα

· vN )
}
dνα

+
N∑

α=1

ραΛ̃
vα

· dvα

}
, (23.109)

in which

Λ̃να = Λνα

Λε
, Λ̃

vα

= Λvα

Λε
(α = 1, 2, . . . , N ). (23.110)

The total differential of the entropy is thus given by the total differential of the
internal energy plus additional incremental “corrections” multiplied with Λε. These
additional terms are necessary to allow the differential d(ρŝ) to become total. If one
uses also the representation

d(ρε̂) = d(ρε̂I ) + d

(
N∑

α=1

ρα

2
uα · uα

)

= d(ρε̂I ) +
N∑

α=1

(
ραuα · duα + 1

2u
α · uαdρα

)
(23.111)

= d(ρε̂I ) +
N∑

α=1

ραuα · dvα + 1
2

N∑

α=1

ρ̂αuα · uαdνα,

then one may write (23.109) also in the form

d(ρŝ) = Λε

{

d(ρε̂I ) +
N−1∑

α=1

{
(Λ̃να − Λ̃νN

) + ρ̂α
(
Λ̃

vα

· vα + 1
2u

α · uα
)

−ρ̂N (Λ̃vα · vN )
}
dνα + 1

2u
N · uNdνN

+
N∑

α=1

ρα(Λ̃
vα

+ uα) · duα

}

. (23.112)

This form of the generalized Gibbs relation suggests that for reasons of simplicity

one should take Λ̃
vα

= −uα, a choice which we shall make lateron. This choice is
also supported by the identity (23.107)5 which after summation over all constituents
leads to the equation



112 23 Thermodynamics of Class I and Class II Classical Mixtures

N∑

α=1

ραΛvα =
N∑

α=1

Pvα =
N∑

α=1

{
∂(ρŝ)

∂vα
− Λε ∂(ρε̂)

∂vα

}

(23.95)6=
N∑

α=1

(∂(ρŝ)

∂uα
− Λε ∂(ρε̂)

∂uα

)

−
( N∑

α=1

ξα
)

︸ ︷︷ ︸
=1

N∑

γ=1

(∂(ρŝ)

∂uγ
− Λε ∂(ρε̂)

∂uγ

)
= 0 , (23.113)

which is automatically and identically satisfied if Λvα = −Λεuα is chosen.

23.3.3 Some Properties of Differential (Pfaffian) Forms

The generalized Gibbs equation (23.108), (23.109) or (23.112) is mathematically of
the form of a Pfaffian differential equation25

dF =
N∑

i=1

Xi (x j )dxi = X(x) · dx, (23.114)

in which the coefficient functions Xi depend continuously and differentiably upon
the arguments x j of the so-called phase space. If one writes Eq. (23.114) in its homo-
geneous form dF = 0, then it is evident that the functions Xi define a normal field
that stays perpendicularly on the hypersurface,26 on which the value of F does not
change. Solutions of the equation dF = 0 are hypersurfaces on which the value of
F equals a constant.

Locally, such a surface can always be determined; however, it may perhaps not
possess the maximum possible dimension (N − 1); if it does, one says that the
equation is completely integrable. Beginning at a particular point in phase space, it
is in this case possible to construct a surface (this is the (N − 1) dimensional hyper-
surface) within which every arbitrary integration of the right-hand side of (23.114)
furnishes the zero value. In this way, one succeeds to cover the entire phase space
with “shells” on which dF = 0, and which do not mutually intersect nor touch each
other. It is now possible to assign to each “shell” a value—the so-called potential
value—furthermore, one can see to it that an integration of the differential between
the different shells always delivers the difference of these potential values, indepen-
dent upon, where between these shells this integration is performed. This procedure

25For a brief biographical sketch of Josiah Willard Gibbs (1839–1903), see Fig. 17.12 in Vol. 2,
p. 338 of this treatise on Fluid and Thermodynamics [22].
26In an n-dimensional space, manifolds with the dimension n − 1 or smaller are called hypersur-
faces.
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accounts for the fact that the “distance” of two neighboring shells depends on the
location within the phase space. However, once the shells are constructed and once
adequate potential values are assigned to the shells, then these define uniquely a
function, the integrating factor, with which the right-hand side of (23.114) must be
multiplied to achieve the correct “distance” between the equipotential surfaces and
to construct the desired connection between the differential dF and the potential,
provided it is not already a priori given.

This construction indicates that there exists a certain arbitrariness in assigning
potential values to the shells. However, except for this freedom, it is nevertheless
possible in this way, to construct for each vector field X(x), that allows at every point
in phase space to locally find an equipotential surface, an integrating functionwith the
aid of which the vector field can be globally derived from a potential. The differential
dF = X · dx becomes total or complete and, consequently, integrals between two
fixed points in phase space assume a unique single value irrespective of the chosen
path along which the integration is performed. In this sense, the Pfaffian form is
then called completely integrable. The question, how a differential expression of the
form (23.114) must look like that, one can decide whether it is completely integrable
or may be put into completely integrable form by multiplying it with a factor, is
the subject of the theory of differential forms and is answered by the Theorem of
Poincaré and the Condition of Frobenius. In the language of analysis, these two
statements read (see, e.g., Bowen and Wang [8]):

Theorem of Poincaré27 A Pfaffian form dF = ∑n
i=1 Xi (x j )dxi is total and can

be derived from a potential if and only if the coefficient functions Xi , after a further
differentiation, are crosswise equal, viz.,

∂Xi

∂x j
= ∂X j

∂xi
, (i, j = 1, 2, . . . , n). (23.115)

�
The reader may recall from analysis of functions of several variables that for a

differentiable function F(xi ) the order of differentiation is irrelevant,

∂2F

∂xi∂x j
= ∂2F

∂x j∂xi
(i, j = 1, 2, . . . , n). (23.116)

Conversely, if a twice differentiable function is constructed from its first deriva-
tives ∂F/∂xi = Xi (xi ), it is only uniquely determined, if (23.116) is fulfilled i.e., if
(23.115) holds.

27For a brief biographical sketch of Jules Heri Poincaré (1854–1912), see Fig. 23.3.
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Fig. 23.3 Herni Poincaré (29 April 1854–17 July 1912) (left), Torus shown to explain the
Poincaré conjecture: The two colored loops cannot be reduced to a single point (middle),
House of birth, Hôtel de Martigny ©CCBY-SA30 (right)

Jules Henri Poincaré (April 29, 1854–July 17, 1912) was a French mathematician,
theoretical physicist, engineer, and philosopher of science. He is often described as a
polymath, and in mathematics as The Last Universalist since he excelled in all fields
of the discipline as it existed during his lifetime.
In 1862,Henri entered the Lycée in Nancy (now renamed the LycéeHenri Poincaré
in his honor, along with the University of Nancy. During this time, he proved to be
one of the top students in every topic he studied. He won first prizes in the concours
général, a competition between the top pupils from all the Lycées across France. He
graduated from the Lycée in 1871 with a bachelor’s degree in letters and sciences.
Poincaré entered the École Polytechnique in 1873 and graduated in 1875. There, he
studied mathematics as a student ofCharles Hermite. FromNovember 1875 to June
1878 he studied at the École des Mines, while continuing the study of mathematics in
addition to themining engineering syllabus, and received the degree of ordinarymining
engineer in March 1879. At the same time, Poincaré was preparing for his Doctorate
in Science in mathematics under the supervision of Charles Hermite. His doctoral
thesis was in the field of differential equations. He graduated from the University of
Paris in 1879.
As a mathematician and physicist, he made many original fundamental contributions to
pure and applied mathematics, mathematical physics, and celestial mechanics. He was
responsible for formulating the Poincaré conjecture, which was solved during 2002–
2003 by Grigori Perelman. In his research on the three-body problem, Poincaré
became the first person to discover a chaotic deterministic system which laid the foun-
dations of modern chaos theory. He is also considered to be one of the founders of the
field of topology.
Poincaré made clear the importance of paying attention to the invariance of laws
of physics under different transformations, and was the first to present the Lorentz
transformations in theirmodern symmetrical form. Poincaré discovered the remaining
relativistic velocity transformations and recorded them in a letter to Dutch physicist
Hendrik Lorentz (1853–1928) in 1905. Thus, he obtained perfect invariance of all
of Maxwell’s equations, an important step in the formulation of the theory of special
relativity. In 1905, Poincaré first proposed gravitational waves emanating from a body
and propagating at the speed of light as being required by theLorentz transformations.

The text is based on wikipedia, where detailed descriptions on Poincaré’s achieve-
ments can be found in English, French, German, and other languages.
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If the prerequisites of the Theorem of Poincaré are not fulfilled for a differential
form dF = Xidxi , one may ask whether such a form can be reached by multiplying
this form by an integrating factor. The answer to this question may Frobenius be
given by the

Condition of Frobenius28 LetdF = Xi (x j )dxi be a differential formwhich does not
satisfy the conditions (23.115) of the Theorem of Poincaré. Then this differential
can be made a total or complete differential by multiplying it with an integrating
factor, if and only if

∑

i, j,k

εi jk

(
∂Xi

∂x j

)
Xk = 0, (23.117)

holds, in which the sum is taken over all possible combinations of the indices i, j, k
and where εi jk denotes the completely antisymmetric tensor of rank three. �

Notice that in (23.117) the order of the indices (i, j, k) is irrelevant. Some
details on the Poincaré theorem and the condition of Frobenius are given in
Appendix23.A to this chapter. In particular, with respect to the complexity of the
results, the dimensionality of the phase space is significant: In two dimensions, a
differential can always be made total, in higher dimensions this may or may not be
possible.

23.3.4 The Differential of the Entropy

The ultimate goal in dealing with differential forms in the last section was to identify
properties of the differential of the entropy as presented for instance in (23.108),
(23.109) and (23.112). If one accounts in (23.108) for the fact that, because of the
saturation condition, one has dνN = −∑N−1

α=1 dν
α, then (23.108) may equally be

written as

d(ρs) = Λεd(ρε) +
N∑

α=1

(Λνα

dνα + Λvα · d(ραvα)), (23.118)

where now ν1, . . . , νN must be regarded as the independent variables and not
ν1, . . . , νN−1. The differential for the entropy, (23.118) is very simple; it identi-
fies on the right-hand side in a particularly transparent way the variables upon which
the entropy depends. These are the specific energy ρε, the specific volume fractions
να (or the specific mass fractions (ρ̂ανα) which would only change the Lagrange
multiplier Λνα → Λνα

/ρ̂α), and the specific partial momenta, according to the bal-
ance laws of energy, masses and momenta. A dependence on the chosen constitutive

28For a brief biographical sketch of Ferdinand Georg Frobenius (1849–1917), see Fig. 7.31
in Vol. 1, p. 417 of this treatise on Fluid and Thermodynamics [21].
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variables only arises if the free energy is assumed as a function of such variables.
One could for instance easily dispense with the dependence of the internal energy
upon the empirical temperature and introduce the internal energy as a measure of
the coldness of the body as it is essentially customary in the kinetic theory. On the
other hand, the constitutive variables (e.g., (23.91)) enter the differential for the inter-
nal energy only implicitly. Consequently, the entropy depends in fact only upon the
variables which are contained in the quantities να, (ραvα) and (ρε).

With regard to theLagrangemultipliersΛε,Λvα

andΛνα
, wemay state that they

cannot be constrained any further by only using theGibbs relation, since according to
it, they are anyhow only determined to within an unspecified function of the entropy.
Proof of this is given in Appendix23.B at the end of this chapter. A set of Lagrange
multipliers, which makes the differential for the entropy complete, can always be
multiplied with a suitable, but arbitrary differentiable function of the entropy without
loosing the property of a complete differential. Thus, there follows the important
conclusion: With the tools of the integrability conditions it is not possible to reduce
the constitutive dependence of the Lagrange multipliers without a simultaneous
reduction of the constitutive dependence of the entropy and the internal energy [2].

With the above considerations, it was not possible to decide whether the dif-
ferential (23.118) is complete or not. Only when we succeed in demonstrating this
property, the entropywill serve as a thermodynamic potential.And even, if this should
be successful, a unique definition of the entropy is mathematically not possible, since
there exists an arbitrary number of factors with which (23.118) may be multiplied,
so that the resulting differential is complete. If one requires that the right-hand side
of (23.118) with the given Λε,Λνα

, and Λvα

satisfies the Frobenius condition, then
one guarantees thereby that the differential can be made complete at least after mul-
tiplication with another multiplier ΛT . This last multiplication corresponds to the
replacement Λε ↔ ΛTΛε,Λνα ↔ ΛTΛνα

andΛvα ↔ ΛTΛvα

, so that one now has

d(ρs) = ΛT

{

Λεd(ρε) +
N∑

α=1

(Λνα

dνα + Λvα

d(ρvα))

}

, (23.119)

in other words, ΛT could simply be absorbed into the other Lagrange multipliers.
TheFrobenius condition (23.117) now requires for instance that theΛ′smust satisfy
the identities

(
∂Λε

∂να
− ∂Λνα

∂(ρε)

)
(Λvβ

)i +
(

∂Λνα

∂(ρνβ)i
− ∂(Λvβ

)i

∂να

)

Λε

+
(

∂(Λvβ

)i

∂(ρε)
− ∂Λε

∂(ρνβ)i

)

Λνα = 0. (23.120)

This is only one of many such relations, which can be obtained by varying α,β(=
1, 2, . . . , N ) and i(= 1, 2, 3). Once all equations of the form (23.120) are satisfied,
the Poincaré theorem must still be fulfilled; this yields equations of the form
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∂(ΛTΛε)

∂να
= ∂(ΛTΛνα

)

∂(ρε)
(23.121)

or

ΛT

(
∂Λε

∂να
− ∂(Λνα

)

∂(ρε)

)
= Λνα ∂ΛT

∂(ρε)
− Λε ∂ΛT

∂να
, etc.

All these equations can easily be satisfied, namely by choosing constantΛ’s. Despite
its triviality, this result is helpful, because it demonstrates the existence of one single
potential (and thereforemany others); else, it does not have any physical significance.

The above analysis shows that pure mathematical considerations have not led to
any constraints for the Lagrange parameters. To determine or to constrain their
dependence one must rely upon assumptions and physical principles. Such rules may
be material objectivity, considerations of symmetry and other postulates as, e.g., the
expression of extremity of the entropy production.

In the above analysis, it should have become apparent that the functional depen-
dence of the Lagrange multipliers is dictated by that of the internal energy, so
that functional restrictions of the Λ’s can be obtained by restricting the functional
dependence of the internal energy and vice versa. If one starts with the independent
constitutive variables (23.91) and writes ρε = ρε̂(Ξ), then the necessary require-
ments are obtained by satisfying the Theorem of Poincaré; the identities which
follow from (23.107)1−6 after simple but somewhat lengthy manipulations are

∂Pθ

∂να
≡ ∂Pνα

∂θ
− ∂

∂θ

{
(Λνα − ΛνN

) + (ρ̂αΛvα · vα − ρ̂NΛvN · vN )
}

, (23.122)

∂Pθ

∂xi
≡ ∂Pxi

∂θ
,

∂Pxi

∂x j
≡ ∂Px j

∂xi
, (23.123)

∂Pxi

∂vβ
≡ ∂Pvβ

∂xi
− ∂

∂xi
(ρβΛvβ

), (23.124)

∂Pνα

∂xi
− ∂

∂xi

{(
Λνα − ΛνN

)
+

(
ρ̂αΛvα · vα − ΛνN

ΛvN · vN
)}

≡ ∂Pxi

∂να
, (23.125)

∂Pθ

∂vβ
≡ ∂Pvβ

∂θ
− ρβ ∂Λvβ

∂θ
(23.126)

∂Pνα

∂vβ
− ∂

∂vβ

(
(Λνα − ΛνN

) + (ρ̂αΛvα · vα − ρ̂NΛvN · uN )
)

≡ ∂Pvβ

∂νβ
− ∂

∂να
(ρβΛvβ

) (23.127)
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∂Pνα

∂νγ
− ∂

∂νγ

(
(Λνα − ΛνN

) + (ρ̂αΛvα · vα − ρ̂NΛvN · vN )
)

≡ ∂Pνγ

∂να
− ∂

∂να

(
(Λνγ − ΛνN

) + (ρ̂γΛvγ · vγ − ρ̂NΛvN · vN )
)
, (23.128)

∂Pvβ

∂vδ
− ∂

∂vδ

(
ρβΛvβ

)
≡ ∂Pvδ

∂vβ
− ∂

∂vβ

(
ρδΛv

δ

)
, (23.129)

in which (xi , x j ) ∈ {
grad θ, grad να, grad vβ

}
and (α, γ) = 1, 2, . . . , N − 1 and

(β, δ) = 1, 2, . . . , N . These identities pose a considerable number of conditions
which constrain the functional dependence of the free energy and the Lagrange

multipliers. The following propositions are helpful.

Proposition 23.1 Assume—in explicit violation of the rule of equipresence—that
the internal energy does not depend on the variables grad θ, grad να and grad vβ ,
viz.,

ρε = ρε̂(θ, να, vβ) ; (23.130)

then the Lagrange multipliers take the form

Λε = Λ̂ε(θ, να, vβ),

λνα := (Λνα − ΛνN
) = λ̂να

(θ, να, vβ), (23.131)

Λvβ = Λ̂
vβ

(θ, να, vβ).

In other words, if the internal energy does not depend on grad θ, grad να and grad vβ

then the Lagrange multipliers can neither be functions of these variables. �

Proposition 23.2 Conversely, if Λε does not depend on grad θ, grad να and grad vβ

then ρε,Λvβ

and λνα
can neither depend on them.29 �

Proposition 23.3 If the internal energy depends on grad θ, grad να and grad vβ ,
then also Λε must depend on these variables and vice versa. �

Proof We shall only present a sketch of a proof, which reads as follows: With the
definitions (23.100)1 of Pxi one may deduce from (23.123)1, that

∂Λ̂ε

∂θ

∂(ρε̂)

∂xi
− ∂Λ̂ε

∂xi

∂(ρε̂)

∂θ
≡ 0. (23.132)

29Of the Lagrange multipliers Λνα
, only the difference λνα := Λνα − λνN

can be determined.
λνN

remains undetermined and forms an independent variable of the theory.
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Provided Λ̂ε and ρε̂ are nontrivial functions30 of θ, this necessarily leads to the
statement

∂(ρε̂)

∂xi
= 0 ⇔ ∂Λ̂ε

∂xi
= 0. (23.133)

Therefore, the assumption that ρε̂ is not a function of xi necessarily leads to the
result that Λ̂ε can neither depend on xi and vice versa. With (23.132) and (23.133)
the identities (23.123)2 are now trivially satisfied, and (23.124) takes the form

∂

∂xi

(
ρβΛ̂

vβ
)

= 0. (23.134)

Hence, neither Λ̂
vβ

can be functions of xi . Substitution of the results (23.132) and
(23.133) in (23.125) then yields

∂

∂xi

(
λ̂να

)
= 0, (23.135)

which completes the proof of Proposition 23.1.
To prove Proposition 23.2, one starts from (23.132) and assumes that Λ̂ε is inde-

pendent of xi and then deduces from (23.132) that ρε̂ can neither depend on xi ,
which then leads to statement (23.134). Finally, Proposition 23.3 is clear, since no
simplification emerges from (23.132) if either a dependence on xi is assumed for the
internal energy or the Lagrange multiplier Λε. �

It is clear that one would wish Λ̂ε to be a function of the empirical tempera-
ture alone whose inverse may be identifiable with the absolute temperature. This
interpretation is supported if the Helmholtz free energy

ψ := ε − s

Λε
(23.136)

is introduced, and this energy is split according to

ρψ = ρψI + 1

2

N∑

α=1

ραuα · uα (23.137)

into an inner contribution ψI , the innerHelmholtz free energy, and a diffusive part.
With (23.136) and (23.137), the identities (23.107)3,5 become

30This is a very natural assumption, because earlier experience has shown us that 1/Λε has the
meaning of absolute temperature.
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−∂ρψI

∂vα
− 1

(Λε)2

∂Λε

∂vα
ρs = −ρα

(
Λvα

Λε
+ uα

)

, (23.138)

−∂ρψI

∂να
+ ∂ρψI

∂νN
+ 1

(Λε)2

(
∂Λε

∂να
− ∂Λε

∂νN

)
ρs

= 1

Λε

{
λνα +

(
ρ̂αΛvα · vα − ρ̂NΛvN · vN

)}
, (23.139)

in the derivation of which also (23.95)6 was used. These formulas are massively
simplified, if one requests that Λε is merely a function of the temperature,

Λε = Λε(θ). (23.140)

If, furthermore, it is also requested that

Λvα = −Λε(θ)uα, (23.141)

one recognizes that the inner part ψI of the Helmholtz free energy cannot be a
function of vα (α = 1, 2, . . . , N ) as deduced from (23.138). Finally, it follows with
(23.140) and (23.141) from (23.139), that the Lagrange multipliers λνα

are given
by

λνα (23.131):= Λνα − ΛνN = −Λε(θ)
{(

∂ρψI

∂να
− ∂ρψI

∂νN

)

+ (ρ̂αuα · vα − ρ̂NuN · vN )
}

(α = 1, 2, . . . , N − 1). (23.142)

With this result and with Λε = Λ̂ε(θ), all Lagrange multipliers are determined
except λνN

. Conversely, with the postulated or established results (23.140)–(23.142),
it is straightforward to demonstrate that the remaining integrability conditions
(23.122)–(23.129) are identically satisfied.

As last assumption we will now relate Λε(θ) to the absolute temperature and
identify it with the Kelvin temperature

Λε(θ) = 1

T
. (23.143)

With this choice, one obtains from (23.107)1 and (23.136)

s = −∂ψI

∂T
, → s = ŝ(T, να), (23.144)

whence the classical relation, which one would have expected.
The above analysis shows that all restrictions on the constitutive relations of ε, s,

andψ are at last tied to two basic assumptions, first the hypothesis that theLagrange
multiplier for the internal energy,Λε, is only a function of the empirical temperature
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and second, that the inner part of the Helmholtz free energy ψI is not a function
of the velocities. With these two assumptions, all Lagrangean multipliers could be
determined with the exception of ΛνN

, which will play the role of an independent
variable and which represents the constraint variable for the saturation condition.
Since, moreover, we succeeded with the help of (23.140)–(23.142) to satisfy all
conditions of the Poincaré theorem, the differential of the entropy, as given by the
Gibbs relation is complete and the entropy therefore a thermodynamic potential.
Alternatively, one also knows (see Appendix23.B) that one may multiply the right-
hand side of the Gibbs relation with an arbitrary differentiable function ΛT (ρs) and
that this new differential may also represent a possible entropy function.Wenowwish
to declare that only those functions be used as thermodynamic entropy functionwhich
depend merely upon the empirical temperature. This corresponds to the selection of
the Lagrangemultiplier Λε(θ), its identification with the coldness function and its
inverse with the absolute temperature according to (23.143).

Of the identities (23.107) there still remain the identities (23.107)7−9, which con-
cern the entropy flux. If one introduces the extra entropy flux vector according to

k := Λεq −
N∑

α=1

Λvα

tα − φρs, (23.145)

then the identities (23.107)7−9 take the forms

(
∂k

∂grad T

)

sym

= 0,

(
∂k

∂grad να
− ∂k

∂grad νN

)

sym

= 0, (23.146)

(
∂k

∂grad vβ

)

sym(1,3)

= 0,

in which use has been made of (23.140). In simpler theories, one can start from
isotropic representations for q and φρs and prove with such representations from
(23.107)7−9 that Λε can only be a function of θ. The identities (23.107)7−9 therefore
provide for such materials restrictions to the Lagrange multiplier Λε, which were
introduced above as an assumption. For the present constitutive class, the correspond-
ing analysis is so complex that we were unable to deduce the result Λε = Λ̂ε(θ). If
this is introduced now as an assumption, there still remain the identities (23.146) to
be fulfilled, which could identically be satisfied by k = 0which, however, we do not
wish to select for reasons that will become apparent below.

Of inequality (23.103) the upper block is now identically zero, when all conditions
derived above are fulfilled. There still remains the lower block, which comprises
what commonly is called the residual entropy inequality. If the definitions (23.100),
(23.102), (23.145) and the results (23.107) are substituted and if vα is replaced by
v + uα wherever possible and Λε is replaced by 1/T , then this residual entropy
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inequality takes the following form:

πs = −
{

∂k

∂T
+ 1

T 2

(

q +
N∑

α=1

uα · tα
)}

· grad T

+
N−1∑

α=1

{(
ΛνN

uN − Λνα

uα
)

+ 1

T

(
ρ̂α (uα · vα) uα

−ρ̂N
(
uN · vN

)
uN

)
−

(
∂k

∂να
− ∂k

∂νN

)

+ 1

ρT

(
ρ̂NuN − ρ̂αuα

)
⎛

⎝
N∑

β=1

ρβ
(
uβ ⊗ uβ

) + ρψ1

⎞

⎠

⎫
⎬

⎭
· grad να

+
N∑

α=1

{
− ∂k

∂vα
+ 1

T
tα + ρα

T
(uα ⊗ vα − v ⊗ uα)

−
(

ρα

T
ψ + Λνα

να − ρα

T
(uα · vα)

)
1

−ρα

T

N∑

β=1

ρβ
(
uβ ⊗ uβ

) } · grad vα

+
N∑

α=1

{
Λνα

nα − 1

T
uα · mα

}
� 0. (23.147)

This formidably looking inequality must be identically satisfied for all constitutive
equations for k, q,mα, tα, and ψ, and thus constrains them, but because of its
complexity this must be done for a restricted class of processes only, namely those
describing thermodynamic equilibrium and processes in its neighborhood. This will
be our next task.

23.3.5 Thermodynamic Equilibrium

Thermodynamic equilibrium is a process for which the entropy production is a mini-
mum, namely zero. According to (23.147) this is the case, if the constituent velocities
vα (or, equivalently, v and all uα), their gradients, grad vα, the temperature gradient
grad T , and the volume exchange terms nα vanish identically for all α = 1, . . . , N .
Under such conditions, of all the terms in the inequality (23.147) only the derivatives
of k with respect to να remain, (∂k/∂να − ∂k/∂νN ). To assure that these terms
also vanish in equilibrium, the functional form of k must be determined. It can be
shown that close to equilibrium,
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k =
N∑

α=1

(
∂k

∂vα

)equil

vα =
N∑

α=1

(
∂k

∂uα

)equil

uα, (23.148)

which indeed vanishes in equilibrium. The proof of (23.148) is nontrivial and rela-
tively lengthy and makes use of the identities (23.146). It may also be mentioned that
the first of (23.148) is the result of this proof when the rule of material objectivity is
not enforced; the second is its objective counterpart. This proof follows an argument
by Gurtin [16] as presented by Bauer [2] and is also given in [20]. It guaranties
that (∂k/∂να)equil = 0 for all α = 1, . . . , N .31

The left-hand side of (23.147) represents the entropy production πs , and we just
explained above that πs as a function of the nonequilibrium variables grad T , vα and
grad vα assumes itsminimum in equilibrium, (πs)equil = 0. Sinceπs is a continuously
differentiable function of these variables, of necessity then

(
∂πs

∂X

)equil

= 0, X = {grad T, vα, grad vα} ,

(23.149)
(

∂2πs

∂X ∂X

)equil

, is positive semidefinite.

We shall first draw the inferences implied by the first of (23.149).
If one evaluates ∂πs/∂grad T in thermodynamic equilibrium and sets the result

equal to zero one obtains

⎧
⎨

⎩
∂k

∂T
+ 1

T 2

⎛

⎝q +
N∑

α=1

uα · tα︸ ︷︷ ︸
=0

⎞

⎠

⎫
⎬

⎭

equil

− ∂

∂grad T

(
N∑

α=1

Λνα

nα

)equil

= 0. (23.150)

Now, in view of (23.148),

(
∂k

∂T

)equil

=
(

N∑

α=1

∂2k

∂T∂uα
uα

)equil

= 0.

Moreover, since, according to (23.131), Λνα
is not a function of grad T , Λνα

can be
pulled out of the differentiation sign in (23.150), which, thus, reduces to

qequil = T 2
N∑

α=1

Λνα

(
∂nα

∂grad T

)equil

= 0. (23.151)

31The reader may recall (23.88), which explains the peculiarities when differentiating functions
(here k) of ν1, . . . , νN−1, and ν1, . . . , νN , respectively.
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To prove this, consider the volume exchange terms more closely. It will be assumed
that the thermodynamic equilibrium under consideration is distant from any phase
(change) equilibrium of the constituents. A small deviation of the temperature from
this equilibrium will then not cause melting or evaporation processes of any con-
stituent.32 If such a situation prevails all derivatives of nα as well as nα itself must
vanish throughout the entire domain where the thermodynamic equilibrium exists.
This is obvious, since nα must vanish according to (23.85) everywhere in the domain;
so it is the zero function over a region with nonvanishing measure, implying that also
its derivatives are zero. Thus we have in particular

(
∂nα

∂grad T

)equil

= 0 for α = 1, . . . , N . (23.152)

Themixture heat flux thus vanishes in thermodynamic equilibrium.Bauer [2] proves
this to hold true also in the case when phase changes do occur.

Next we evaluate the inferences that are implied by ∂πs/∂vα = 0. The reader may
deduce the validity of the following N − 1 relations for the equilibrium interaction
forces:

(mα)
equil =

N−1∑

β=1

{
TΛνN

(δNα − ξα) − TΛνβ (
δαβ − ξα

)

−T

(
∂

∂νβ
− ∂

∂νN

)(
∂k

∂vα

)equil

−ψ1
[
ρ̂β

(
δβα − ξα

) − ρ̂N (δNα − ξα)
] }

grad νβ

+T
N∑

β=1

Λνβ

(
∂nβ

∂vα

)equil

︸ ︷︷ ︸
0

, (23.153)

in the derivation of which δαβ , δNα are delta functions; moreover, excessive use
of (23.95)4 was made, and where (∂nβ/∂vα)equil vanishes for the same reason as
(23.152) was found to be true. The relations (23.153) hold for the N − 1 first inter-
action forces mα;mN is obtained via the condition

∑N
α=1 m

α = 0.
It is worth pointing out that the above expressions involve a term that depends on

the extra entropy flux k. It will be interesting to see how this term combines with the
divergence of the stress term div tα.

If the term (∂πs/∂grad vα)equil = 0 is evaluated the partial equilibrium stress is
obtained,

32This, for instance, excludes the situation of simultaneous existence of ice and water and mass
exchanges between these two constituents as it occurs, e.g., in temperate ice. Solidification of rock
or the mushy behavior of the interior core of the Earth would also be examples where such phase
changes occur. This more general case is treated by Bauer [2].
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(tα)equil = (
ραψ + TΛνα

να
)
1

+
N−1∑

β=1

{

T

(
∂

∂νβ
− ∂

∂νN

)(
∂k

∂grad vα

)equil
}

grad νβ

+T

(
∂k

∂vα

)equil

− T
N∑

β=1

Λνβ

(
∂nβ

∂grad vα

)equil

︸ ︷︷ ︸
0

, (23.154)

where we have not yet accounted for the fact that the partial stress tα is symmetric.
Neither are the requirements of objectivity yet inserted. Furthermore, the last term in
(23.154) vanishes for the same reason as (23.152) does; and the term that ismultiplied
with grad νβ vanishes since in view of (23.148) close to equilibrium

∂

∂νβ

(
∂k

∂grad vα

)∣∣
∣∣
equil

= ∂2

∂νβ ∂grad vα

⎛

⎝
N∑

γ=1

(
∂k

∂vγ

)equil

vγ

⎞

⎠

∣∣∣
∣∣∣
equil

= 0,

in which use was also made of (23.88). Therefore,

(tα)
equil = (

ραψ + TΛνα

να
)
1 + T

(
∂k

∂vα

)equil

. (23.155)

The constituent stress tensor tα in thermodynamic equilibrium contains a term that
depends on the extra entropy flux k. In the local balance law of momentum for the
constituent α, the stress and the interaction force contribute with the combination
div tα + mα. It is easy to show by means of (23.153), (23.155) that

k−dependent term {div tα + mα} = 0 ;

so, the entropy-flux-dependent terms in the local balance of the linear momentum
of the constituents in thermodynamic equilibrium cancel out. They can enter the
momentum balance at most through the stress boundary conditions.

The above four Eqs. (23.151)–(23.153) and (23.155) exhaust the thermodynamic
equilibrium conditions as far as the first derivatives (23.149)1 are concerned. Since
πs = πs(X E , XNE ), where X E = {T, να, grad να}, XNE = {grad T, vα, grad vα}
and

πs(X E , XNE = 0) = 0, for all X E ,

one necessarily also has

(
∂πs

∂X E

)equil

= 0,
(

∂2πs

∂X E ∂X E

)equil

= 0, etc. (23.156)
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or, according to (23.147),

{
N∑

α=1

Λνα ∂nα

∂T

}equil

= 0,

⎧
⎨

⎩

N∑

β=1

Λνβ ∂nβ

∂να

⎫
⎬

⎭

equil

= 0, α = 1, . . . , N − 1, (23.157)

⎧
⎨

⎩

N∑

β=1

Λνβ ∂nβ

∂grad να

⎫
⎬

⎭

equil

= 0, α = 1, . . . , N − 1.

Similar expressions also hold for all higher derivative expressions. They do not
express any particularly interesting fact other than if a function is identically zero,
so are all its derivatives.

In a theory as complicated as this one, it is generally very difficult to exploit the
conditions (23.149)2, saying that the Hessian matrix of the second derivatives of
πs is positive semidefinite. A quadratic form for the symmetric matrix A = At of
dimension m × m is positive semidefinite, x · Ax � 0 for all x, if and only if all
its principal minors are nonnegative. These principal minors are all determinants of
submatrices, two corners of which are positioned on the principal diagonal as shown
here:

m

m

i1 ip
i1

ip

(23.158)

The diagonal elements are also principal minors, and they correspond in our case
to the non-mixed second derivatives of πs . We shall not derive these relations here,
but refer for some detailed results to Bauer [2]. One diagonal element of the matrix
(23.158) is

(
∂2πs

∂(grad T )2

)equil

� 0 =⇒ − 2

T 2

(
∂q

∂grad T

)equil

� 0, (23.159)

which allows the easy interpretation, namely,
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(
∂q

∂grad T

)equil

≤ 0. (23.160)

If one assumes close to thermodynamic equilibrium a linear relation between the heat
flux of the mixture, q, and the temperature gradient, grad T , then q = −κgrad T ,
and κ must be a positive semidefinite matrix. The heat flux is in this case directed
toward falling temperature.

It is advisable in most cases to await satisfaction of the positive semidefiniteness
of the principal minors of (23.149)2 until explicit constitutive relations are formu-
lated for a concrete case. These are usually much simpler so that thermodynamic
compatibility with (23.149)2 becomes equally somewhat easier.

23.3.6 Extension to Nonequilibrium States

The ultimate goal is the determination of nonequilibrium states. We shall subse-
quently propose a first possibility to extend the constitutive relations valid in ther-
modynamic equilibrium to nonequilibrium. Such an extension cannot be justified in
all details but must be regarded as an approximation. Furthermore, explicit expres-
sions of nonequilibrium constitutive relations are always proposed with a certain
application of the emerging theory in mind. Of course, this application is already
anticipated in (23.91) which shows that the present model gives rise to heat con-
duction and viscous effects but no elasticity and may therefore be approximate in
describing the viscous motion under isothermal or non-isothermal conditions. Such
conditions prevail for instance in debris and mud flows of a gravel water mixture.
In what follows, only the most simple extensions of the equilibrium expressions to
nonequilibrium are presented.

For the heat flux qα of constituent α, a Fourier type relation

qα = −cα
q grad T (23.161)

is suggested for which (21.55) yields

q = −
N∑

α=1

{
cα
q grad T + uα tα − ρα

(
ε + 1

2
uα · uα

)
uα

}
. (23.162)

The interaction forcesmα are extended by terms which depend upon the difference
velocities to the other constituents of themixture. In so doing, it must be remembered
thatmα in nonequilibrium is not a Euclidian objective vector valued variable; such
a variable is, however, mα

Euclid defined by (21.24)1. Thus, we may set
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mα
Euclid = mα − ραnαvα = (mα)equil +

N∑

β �=α

cαβ
v (vβ − vα),

cαβ
v = cβα

v . (23.163)

The last term in this expression is linear in the difference velocities, if cαβ
v are inde-

pendent of |vβ · vα|. In that form, this summation term is then reminiscent ofDarcy’s
law33 and cαβ

v are permeabilities, but obviously, this analogy is complete only for
a binary mixture. It is also natural to assume that cαβ

v = cβα
v , for in that case the

“Darcy term” satisfies the condition

N∑

α=1

N∑

β �=α

cαβ
v (vβ − vα) = 0,

which must necessarily hold, if
∑N

α=1 m
α = 0. Furthermore the “Darcy term” is

not restricted to a linear dependence in the difference velocities. The coefficients
cαβ
v may well depend upon scalar variables such as |vβ − vα|. In groundwater flow
a quadratic dependence of the “Darcy term” is known as Forchheimer law; it is
known to better approximate the viscous effects of the flow of water through the pore
space of soil if this flow is turbulent, and it is believed that this quadratic dependence
also models somewhat the tortuosity effects of the pore space. This is plausible as
the tortuosity enhances the onset of turbulence in the flow of the interstitial fluid.

For a mixture of viscous constituents, objective tensor variables with the notion
of viscous behavior and deducible from (23.91) are

Dα = sym grad vα, Wα = skw grad vα − W , Vαβ = uα ⊗ uβ, (23.164)

where W = skw grad v. So, the nonequilibrium stress tα may be assumed in the
form

tα − (tα)equil = tαNE (·, Dα,Wα, Vαβ). (23.165)

The dot in the argument of tαNE indicates additional dependences of (23.91) not
explicitly stated in (23.165). It is thought that the dominant dependence of tα on the
variables (23.164) is through Dα, and so a first “guess” may have the form

tαNE = a1 + bDα + c(Dα)2, (23.166)

in which a, b, c may depend on the invariants of Dα (and other scalar variables if
needed). Nevertheless, the ansatz (23.166) is usually thought to be too complicated.
A popular relation is a reduced version of the form

33For a brief biographical sketch of Henry Philibert Gaspard Darcy (1803–1858), see
Fig. 10.9 in Vol. 1, p. 594 of this treatise on Fluid and Thermodynamics [21].
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tαNE = cα
t (IIDα) Dα, IIDα = 1

2 tr
(
(Dα)2

)
. (23.167)

If

cα
t = (IIDα)m , 0 < m < 1, (23.168)

then (23.167) is called a power law and the constituent body a power law material.
Other denotations are Glen’s flow law (glaciology), Norton’s law (metallurgy), or
Oswald- de Waele flow law (rheology). In a binary mixture of soil and water cts
for the solid is nonzero while ctw for the water is often set to zero.

Apart from the above representations, a complete postulation of the constitutive
relations also requires the postulation of an expression of the internal energy εα (it is
needed in the parameterization of the heat flux vector). Themost common assumption
is

εα = εα
0 +

∫ T

T0

cα
ε (θ)dθ = εα

0 + cα
ε (T − T0), (23.169)

where the second formula applies if cα
ε may be considered to be constant. Finally,

an expression for the inner free energy ψI is needed. Since ψI = ψ̂I (T, να) —a
dependence on vα has been excluded—we may choose as the simplest possibility
for the internal Helmholtz free energy

ψI = ψ0(ν
α) + c1ψ(T − T0) + 1

2c
2
ψ(T − T0)2, (23.170)

implying that

s = −∂ψI

∂T
= c1ψ + c2ψ(T − T0),

(23.171)

ρεI =
N∑

α=1

ραεα
0 +

N∑

α=1

ραcα
ε (T − T0) = ρ(ψI − sT ),

the second of which imposes restrictions on the coefficients cα
ε , c

1,2
ψ .

This completes the formulation of the model equations in one case, namely when
the constitutive relations are chosen as suggested above. The next step would now
be the numerical determination of all the parameters. This step is called parameter
identification and involves performing experiments for typical deformation fields and
their optimal imitationwith the corresponding boundary value problemof this theory.
This is generally a similarly difficult problem as the derivation of the thermodynamic
model equations itself.

One particular problem in this process is the selection of the extra entropy flux
vector k, which we know vanishes in equilibrium with many of its derivatives. In
fact its form close to thermodynamic equilibrium is given by (23.148). In the local
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balance laws of the constituent momenta in equilibrium, it has been shown that its
contribution equally vanishes, and so does it in nonequilibrium with the choices of
the nonequilibrium stresses tαNE and the interaction forcesm

α as selected in (23.163),
(23.166) or (23.167). Thus, as far as purely mechanical equations are concerned, a
nontrivial k manifests itself only in the boundary conditions, and if so, in dynamical
processes. All these reasons may serve as motivation to select

k = 0. (23.172)

This then yields, on using (23.145),

φρs = 1

T

(

q +
N∑

α=1

uα tα
)

, (23.173)

the classical expression in mixture theory. Compare this expression with the entropy
flux of the diffusion theory, (23.61).

23.4 Discussion

Summarizing the essential findings of the thermodynamic theory of a saturated
mixture of nonpolar constituents as a second class classical mixture, the reader is
reminded that the inferences were drawn for the entropy principle as proposed by
MÜLLER under the specializations that

• all constituents have constant true densities, so that the constituent volume fractions
are the pertinent descriptions of their concentration,

• the mixture is saturated, i.e., all constituents fill together the entire space of the
body. Stated differently, this is tantamount to the nonexistence of empty pores
within the body.

Thermodynamic theories of porous media, in which these two assumptions do not
hold, are more complicated.

The choice of the material class has been so selected that elasticity effects have
been ignored. For a fluid mixture of density preserving components, ignoring elastic-
ity effects is compelling, because their inclusion would include the compressibility
of the constituent materials. Thus, the independent constitutive variables, stated in
(23.91), are the empirical temperature, the constituent volume fractions, the con-
stituent velocities and their gradients. Requiring material objectivity of the constitu-
tive relations thendemands the introduction of the diffusion andbarycentric velocities
for these variables as well as the relative deformation rates as stated in (23.93). This
process then yields the Euclidian objective form of the constitutive relations (23.94)
for the materially dependent variables (23.90).
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Satisfaction of the entropy inequality subject to all relevant field equations and
constraint conditions in the spirit of I. Müller can be achieved by subtracting from
this inequality

• N − 1 mass balances weighted with the Lagrangean scalars Λνα
,

• the saturation condition weighted with the Lagrange parameter Λν
N ,• the N momentum balances weighted with with the vectorial Lagrange parameter

Λvα

,
• the energy balance weighted with the scalar Lagrange parameter Λε

as explicitly indicated by (23.97).
Exploitation of this extended entropy inequality has been quite an analytically

challenging set of transformations until its ultimate form (23.105) was reached,
from which the two statements (23.106), which comprise the Liu identities α = 0
and the residual inequality Γ � 0, stated explicitly as (23.107) and (23.147). The
Liu identities allow derivation of the explicit form of the Gibbs relation, but not of
all the Lagrange parameters , which are involved. The differential of the specific
entropy, d(ρs), could in this process be written as a total differential of a number of
terms, which are pre-multiplied by the Lagrange parameter of the energy, Λε. This
parameter can be proved to be equal to the inverse absolute temperature, Λε = 1/T ,
but this proof was not demonstrated, see, however, [24]. With it, the remaining
Lagrange parameters are given by (23.141) and (23.142), in which Λν

N remains
undetermined as an independent variable for the saturation condition, thus forming
the saturation pressure.

The reduced entropy inequality (23.147) is primarily employed to deduce infer-
ences at thermodynamic equilibrium and in its immediate vicinity via the statements
(23.149). Exploitation of the former allows determination of the equilibrium expres-
sions for the interaction forces (23.153) and the partial pressures (23.155). Their
analytic forms are such that the extra entropy flux, k, defined in (23.145) does not
enter the momentum equation and, therefore, will only be “visible” through the
boundary conditions. The chapter ends with a few presentations of the forms of the
heat flux (23.162), interaction forces (23.163), partial stress tensors (23.167), and
entropy and internal energy (23.169)–(23.171).

Appendix 23.A Some Details on the Poincaré Theorem and
the Condition of Frobenius

In this appendix, we shall prove the correctness of the following statements:

Proposition 23.4 (i) In the one-dimensional case (n = 1) every total differential
is complete.

(ii) In two dimensions (n = 2), every differential can be transformed into a total
differential by multiplying it with an integrating factor.
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Fig. 23.4 Explaining the
path independence of the
integration of a differential in
two dimensions

(iii) In three-dimensional space (n = 3), the condition that an arbitrary differential
dF = Xidxi can be made complete is the requirement that the vector field X
stays perpendicular to its vorticity, curl X . �

Proof (i) In the one-dimensional case, there is no possibility to select between
different paths of integration between two points to reach point b from point a.
Every Riemann integral from a to a certainly vanishes.

(ii) In two dimensions, one has dF = X1dx1 + X2dx2. IfPoincaré’s theoremholds,
then

∂X1

∂x2
= ∂X2

∂x1
(23.174)

and F is a potential such that

X1 = ∂F

∂x1
, X2 = ∂F

∂x2

(23.147)=⇒ ∂2F

∂x2∂x1
= ∂2F

∂x1∂x2
. (23.175)

The value F(x) can be determined by integrating from x0 to x along any con-
tinuous curve,

F(x) =
∫ x

x0
(X1(x1, x2)dx1 + X2(x1, x2)dx2) . (23.176)

It follows that the integral along any curve from a to b yields

∫ b

a
(X1(x1, x2)dx1 + X2(x1, x2)dx2) =

∫ b

a
dF = F(b) − F(a) (23.177)

and is independent of the path chosen between a and b, see Fig. 23.4.

If the Poincaré theorem is not fulfilled, one may try its satisfaction by an inte-
grating factor. In that case, one writes

dFλ = λ X1dx1 + λ X2dx2. (23.178)
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Satisfaction of the Poincaré theorem for this differential requires

∂(λ X1)

∂x2
= ∂(λ X2)

∂x1
, or (23.179)

λ

(
∂X1

∂x2
− ∂X2

∂x1

)

︸ ︷︷ ︸
�=0

= ∂λ

∂x1
X2 − ∂λ

∂x2
X1, (23.180)

in which the underbraced term differs from zero since the starting equation does not
satisfy the Poincaré condition. Evidently, λ = const. is not a possible integrating
factor. However, the determination of a nonconstant integrating factor is not unique.

• If X2 �= 0, one may, for instance, select λ = λ1(x1); then it follows from (23.180)
that

dλ1

dx1
− 1

X2

(
∂X1

∂x2
− ∂X2

∂x1

)
λ1 = 0, with the solution

=⇒ λ1 = exp

{∫ x1

0

(
1

X2

(
∂X1

∂x2
− ∂X2

∂ x̄1

))
(x̄1, x2)dx̄1

}
. (23.181)

This formula shows that λ1 is a function of x1 alone only, if the integrand function
is independent of x2

• If X1 �= 0 and λ = λ2(x2) is assumed, the analogous procedure leads to

=⇒ λ2 = exp

{∫ x2

0

(
− 1

X2

(
∂X1

∂ x̄2
− ∂X2

∂x1

))
(x1, x̄2)dx̄2

}
, (23.182)

which shows that λ = λ2(x2) is only a function of x2, if the integrand function
does not depend on x1.

• In all other cases, λmust be determined by solving the partial differential equation
(23.180).

(iii) In the three-dimensional case, it is known that a vector field X can be writ-
ten as the gradient of a scalar potential field only, if curl X = 0. In Cartesian
component form, this then yields the Poincaré condition

∂Xi

∂x j
− ∂X j

∂xi
= 0, (i, j = 1, 2, 3).

If curl X �= 0, one may try to construct a total differential

dFλ = λX1dx1 + λX2dx2 + λX3dx3, (23.183)

by multiplying dF with an integrating factor. The condition for this to be suc-
cessful is
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0 != curl (λX) = λ(curl X) + (grad λ) × X . (23.184)

Multiplying this equation scalarly with X yields

curl X · X = 0, if λ �= 0. (23.185)

Thus, X and curl X are perpendicular to one another; in Cartesian components,
this reads

εi jkXk, j Xi = 0, (23.186)

which is nothing else than the Frobenius condition.

For a plane vector field, condition (23.185) is always satisfied; a fact that corrob-
orates the statement that in two dimensions an integrating factor always exists.

Appendix 23.B Proof of a Statement About a Complete
Differential

In this Appendix, the following statement is proved:
Let d f be an incomplete differential of the variables xi (i = 1, . . . , n).Let, moreover,
g �= 0 be an integrating denominator, which makes

dF := d f

g
(23.187)

a total (complete) differential. Then,

dH = G(F)
d f

g
(23.188)

is equally complete.

Proof In long-hand notation, dH is written as

dH = G(F)

g

{
· · · + ∂ f

∂xi
dxi + · · · + ∂ f

∂x j
dx j + · · ·

}
. (23.189)

Hence,

∂H

∂xi
= G(F)

g

∂ f

∂xi
,

∂H

∂x j
= G(F)

g

∂ f

∂x j
. (23.190)
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Testing Poincaré’s theorem, one deduces,

∂2H

∂x j∂xi
=

{
∂G

∂F

∂F

∂x j

1

g

∂ f

∂xi
+ G(F)

∂

∂x j

(
1

g

∂ f

∂xi

)}
,

(23.191)
∂2H

∂xi∂x j
=

{
∂G

∂F

∂F

∂xi

1

g

∂ f

∂x j
+ G(F)

∂

∂xi

(
1

g

∂ f

∂x j

)}
.

In these expressions, the second terms are equal, because, by prerequisite, d f/g is a
complete differential (Poincaré theorem). This is also true for the first term, since
according to (23.187)

∂G

∂F

∂F

∂x j

∂F

∂xi
= ∂G

∂F

∂F

∂xi

∂F

∂x j
. (23.192)

It has, therefore, been proved that the two mixed derivatives (23.191) have the same
value. It follows that dH is necessarily a complete differential, if dF is one.

Appendix 23.C Proof of Some Rules of Differentiation

(i) The formulae (23.95)1,2,3 follow from the definition of the barycentric velocity,
v = ∑N

γ=1 ξγvγ by applying the product rule of differentiation. For instance,

grad v =
N∑

γ=1

{ξγgrad vγ + vγ ⊗ grad ξγ} , (23.193)

from which expressions for D andW may be derived by applying the operators
“sym” and “skw”,

D =
N∑

γ=1

{ξγ Dγ + sym (vγ ⊗ grad ξγ)} ,

(23.194)

W =
N∑

γ=1

{ξγWγ + skw (vγ ⊗ grad ξγ)} .

(ii) From the definition of the diffusion velocity, there follows

∂uβ

∂vα
= ∂

∂vα

⎛

⎝vβ −
N∑

γ=1

ξγvγ

⎞

⎠ = δαβ I − ξα I = (
δαβ − ξα

)
I, (23.195)

in which I is the 3 × 3 unit rank-2 tensor.
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Similarly,

∂Uβ

∂Wα = ∂

∂Wα

⎧
⎨

⎩
grad vβ −

N∑

γ=1

(ξγWγ + skw (vγ ⊗ grad ξγ))

⎫
⎬

⎭

= δαβ I4 − ξα I4 = (
δαβ − ξα

)
I4, (23.196)

in which I4 is the unit rank-4 tensor with (I4)i jkl = δi jδkl .
(iii) With the results (23.195) and (23.196), we may now deduce

∂ f

∂vα
=

∑

β

∂ f

∂uβ

∂uβ

∂vα
=

∑

β

∂ f

∂uβ

(
δαβ − ξα

)
I

= ∂ f

∂uα
− ξα

∑

β

∂ f

∂uβ
, (23.197)

∂ f

∂Wα =
∑

β

∂ f

∂Uβ

∂Uβ

∂Wα =
∑

β

∂ f

∂Uβ

(
δαβ − ξα

)
I4

= ∂ f

∂Uα − ξα
∑

β

∂ f

∂Uβ
. (23.198)

This result can now be used in the evolution of ∂ f/∂grad vα

∂ f

∂grad vα
= ∂ f

∂Dα + ∂ f

∂Wα

(23.198)= ∂ f

∂Dα + ∂ f

∂Uα − ξα
∑

β

∂ f

∂Uβ
, (23.199)

where grad vα = Dα + Wα has been used.
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Chapter 24
Thermodynamics of Binary Solid–Fluid
Cosserat Mixtures

Abstract It is demonstrated in this chapter, how complex it is to deduce a saturated
binary solid–fluid Cosserat mixture model that is in conformity with the second
law of thermodynamics and sufficiently detailed to be ready for application in fluid
dynamics. The second law is formulated for open systems using the Clausius–
Duhem inequality without mass and energy production under phase change for class
II mixtures of elastic solids and viscoelastic fluids. It turns out that even with all these
restrictions the detailed exploitation of the entropy inequality is a rather involved
endeavor. Inferences pertain to extensive functional restrictions of the fluid- and
solid- free energies and allow determination of the constitutive quantities in terms of
the latter in thermodynamic equilibrium and small deviations from it. The theory is
presented for four models of compressible–incompressible fluid–solid constituents.
Finally, explicit representations are given for the free energies and for the constitutive
quantities that are obtained from them via differentiation processes

Keywords Open systems thermodynamics · Clausius–Duhem exploitation of
the entropy principle · Elastic solids + viscoelastic fluids · Volume fraction
parameterization · Alternative viscoelastic compressible/incompressible models

List of Symbols

Roman Symbols

A Rank-2 tensor
2×2
A i j ,

4×4
A i jkl Rank-2, rank-4 general material tensors (conductivities, vis-

cosities, etc.)
a(Y) Vector-valued quantity formed with constitutive quantities Y ,

see (24.46)
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(a)0 Initial value of the quantity a, its value in the reference config-
uration

(a∗) Constant scaling value of a in a particular 3D spatial direction,
see (24.75), a = ι(a∗)

B (C) Left (right) Cauchy–Green deformation tensor.
4×4
C Rank-4 ‘viscosity tensor’ of the fluid constituent,

4×4
C =

(∂ tF/∂Δ̄
F
)0

cα Specific mass production rate of constituent α
{{CT}} Linear positive operator on C, see (24.85)
dα Diffusion velocity of the velocity of constituent α minus the

barycentric velocity, dα = vα − v = vα −
(∑

β(ρβ/ρ)vβ
)

dS Barycentric diffusion velocity of the solid constituent, dS =
−(ρF/ρ)wF

dF Barycentric diffusion velocity of the fluid constituent, dF =(
ρS/ρ

)
wF

D (� 0) Residual entropy inequality
EF
C ‘Young’s’ modulus for the fluid quantity C, see (24.114)

Eα Internal energy production rate density of constituent α, see
(24.10)

eα Specific production rate density of the energy of constituent α
due to phase change

Fα Deformation gradient of constituent α
f α Specific body force of constituent α
f (ϑ) Temperature-dependent function describing the dependence of

ψS
2 on ρ̂F , see (24.129)

gi j (ϑ), i, j = 1, 2 Temperature-dependent functions describing the dependences

of ψF
2 on Ū

S
and RK̄S

g(ϑ)δi j Isotropic reduction of gi j (ϑ)

I Three-dimensional unit tensor
IA, IIA, IIIA Classical invariants of the symmetric rank-2 tensor A
I B̂, II B̂, III B̂ Alternative invariants of the rank-2 leftCauchy–Green defor-

mation tensor B, see (24.181)
J = (IIIB)1/2 Volumetric strain of B or F
K Coefficient in the parameterizations of U�, � = 3, 4, 5, 6, 7, 8,

see Table 24.4
kFC Bulk coefficient of the fluid quantity C
RK̄S

Lagrange curvature tensor of the solid constituent
kFC Bulk coefficient of the fluid quantity C
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kα, kF Specific interaction couple of the constituentα or the fluid phase
[KS,F |E ] Symmetric 9× 9 or 3× 3 matrix for the nonlinear equilibrium

free energies of the solid and fluid, see (24.71), (24.72)
Lα = grad vα Velocity gradient tensor of constituent α
�α Specific body couple of constituent α
2×2
M Viscosity of the Cosserat fluid interaction couple,

2×2
M=(

(∂kF )/(∂ν̄F )
)
0

4×4
M Rank-4 fluid rotational viscosity tensor,

4×4
M=(

(∂mF )/(∂grad ω̄F )
)
0

mα (Cauchy) couple stress tensor of constituent α
mα,F Specific interaction force of constituent α or fluid constituent
P Pressure-typeLagrangeparameter for theHMIand IMmodels
pc Configuration pressure
pF
th Thermodynamic pressure of the fluid constituent

pF
R Pore-fluid pressure

2×2
P Viscosity of the Cosserat interaction couple,

2×2
P = (

(∂mF )/

(∂wF )
)
0

Psα
Surface production rate density of the entropy of constituent α

qα Heat flux vector of constituent α
q I = qS + qF Inner heat flux vector
2×2
Q Heat conductivity tensor,

2×2
Q = ((∂q I )/(∂grad ϑ)

)
0

Rα Rotation tensor of constituent α, Rα = Fα
(
Ū

α)−1

R̄
S

Cosserat rotation tensor of the solid constituent
R Set of constitutive response functions
rα Specific radiation of constituent α
S Phase space
sα Specific entropy of constituent α
Sα Microscopic spinproductiondensity of constituentα, see (21.30)
{T} {T} = {tF ,mF ,mF , kF , q I }
tα Cauchy stress tensor of constituent α, tF , t S for α = F, S
telast = Jσelast J -weighted Cauchy stress tensor
Uα Right stretch (deformation) tensor of constituent α
Ū

α = (Rα)T Fα Right Cosserat stretch (deformation) tensor of constituent α
V Left stretch (deformation) tensor of constituent α
V̄

α = Fα(R̄
α
)T Left Cosserat stretch (deformation) tensor of constituent α

vα Velocity vector of constituent α
v Barycentric velocity of the mixture, v =∑(ραvα)/(

∑
ρα)

{v} {v} = { ĀF
, grad ω̄F ,wF , νF , grad ϑ}

W, W̄ , W̃ , Ŵ Free energy functions
Ŵ = Wisochor Free energy function describing isochoric deformations
wF = vF − vS Difference velocity of the fluid minus solid constituents
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X Vector-valued quantity of the differentiated variables in the long
entropy inequality (24.46)

Y State variables
zS Constitutive variable accounting for the dynamics of the pore

space.

Greek Symbols

α,β, γ Constituent identifiers
Δ̄

α
, Δ̄

F
NonsymmetricCosserat stretching tensor of constituentα, see
(22.51)

Δα,ΔF Nonsymmetric stretching tensor of constituent α, – of the fluid
δ̄

α
Angular (Cosserat) diffusion velocity of constituent α, δ̄

α =
ω̄α − ω̄

δ̄
F

Angular diffusion velocity of the fluid constituent, δ̄
F =(

(ρS)/ρ
)
ν̄F

δ̄
S = −(ρS/ρ)ν̄F Angular diffusion velocity of the solid constituent

εα Specific internal energy of constituent α
Θα Specific tensor of inertia of a body element of constituent α
ϑα Absolute temperature of constituent α
ι Intensity parameter
λ1,λ2,λ3 Eigenvalues of the left (or right) Cauchy–Green deformation

tensor
λF
C ,μF

C ‘LAMÉ’ constants of the fluid rank-2 tensor quantity C

νF,S, ν̄F,S (Cosserat) volume fractions of the fluid and solid constituents
(νS)′α Total derivative of νS following the motion of constituent α
ν̄ Cosserat difference of the angular velocities of the fluid and

solid constituents, ν̄ = ω̄F − ω̄S

πsα
Production rate density of the entropy of constituent α

πs Production rate density of the entropy of the mixture
ρα Partial density of constituent α
ρ̂S,F True (effective) mass density of the solid and fluid constituents,

respectively
ρ̂F
0 True fluid density in the reference configuration

σelast Elastic Cauchy stress tensor
φs Entropy flux vector of the mixture
ϕ0,ϕ1,ϕ2 Coefficients of the general representation of telast in terms of B,

see (24.186)
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ϕ̄0, ϕ̄1, ϕ̄2 Coefficients of the general representation of telast in terms of B̂,
see (24.187)

ψα
Helmholtz free energy density of constituent α, ψα = εα −
sαϑα

ψS,F
Helmholtz free energy density of the solid and fluid con-
stituents

Ωα Gyration tensor of constituent α, Ωα = (Rα)′α(Rα)T

Ω̄
α

Cosserat gyration tensor of constituent α
ω Angular velocity of the mixture
ω̄α

Cosserat angular velocity of the director of constituent α

Miscellaneous Symbols

(·)′α Material derivative of (·) following constituent α
∇ Nabla operator
AT Transpose of A
A−T = (AT )−1 = (A−1)T

‖b‖ Norm of b
CM Compressible Model for solid and fluid
HMI Hybrid Model I
HMII Hybrid Model II

24.1 Introductory Remarks

Chapter 21 in this third volume of Fluid and Thermodynamics (FTD) was devoted
to the dynamical equations of classical (Boltzmann) and polar (Cosserat) contin-
uous mixtures of an arbitrary but finite number of constituents. The focus was laid
upon the structure of the balances of mass, linear and angular momenta, energy, and
entropy and less upon the kinematic description of the processes. This was done in
Chap. 22 of this volume, in which the kinematic fields of the constituent material
particles are independent translations and rotations. No specific constitutive proper-
ties were introduced to combine the dynamic and kinematic statements to a set of
governing equations for general processes under applied external fields.

This step is done with the aid of the Second Law of Thermodynamics—here the
entropy principle. InChaps. 17 and 18 ofVol. 2 of this treatise onFTD [42] the Second
Law is introduced and formulated as an entropy balance, for which the production
rate needs for all thermodynamic processes to be nonnegative, if such processes are to
be physically realizable. The analytical exploitation of this requirement is for simple
systems straightforward, but for mixtures of solid–fluid constituents, it is complex
and often mathematically cumbersome. The reader can easily recognize this when
recalling Chap. 23 of this volume, where heavy algebraic computations were needed
for the exploitation of the entropy principle.
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Recall that in Chaps. 17 and 18 of Vol. 2 of FTD two different forms of the
exploitation of the entropy principle were presented.

1. the Clausius–Duhem inequality with the treatment of Coleman–Noll to han-
dle open systems thermodynamics and

2. the general entropy inequality due to MÜLLER with arbitrary (i.e., unspecified)
entropy flux for closed systems thermodynamics and the Lagrange parameter
method of its exploitation by Liu.

The concepts of balance laws of mass, linear and angular momenta, energy, entropy,
and micro-inertia of ν-component mixtures of polar constituents and kinematics of
Cosserat continua are assumed to be known. We shall base our thermodynamic
analysis on the Clausius–Duhem postulate. We are guided to do so by the expe-
rience gained in the last chapter, in which of the two forms of the entropy princi-
ple, exploitation of the analytically more complex one due to MÜLLER, applied to
a classical mixture, led, apart from a wealth of inferences to rather complex and
cumbersome computations. For a polar mixture of n � 2 constituents with a larger
number of physical conservation laws than for a classical fluid and with independent
translational and rotational kinematic variables that also imply a larger number of
constitutive quantities, the corresponding computations of the exploitation are sub-
stantially more complex, implying, perhaps, unsurmountable difficulties. We shall,
therefore, base the thermodynamic analysis on the Clausius–Duhem postulate and
will apply the exploitation of the entropy inequality, formulated for a binary mixture
model of an elastic solid and viscoelastic fluid. In so doing, we shall treat the linear
and angular momentum and energy equations as open equations, in which the supply
terms can assume arbitrarily assigned values, as first systematically introduced by
Coleman

1 and Noll
2 in 1964 [10].3 We will demonstrate that the resulting con-

stitutive theory will be substantially simplified as compared to a completely closed
system of equations (with no supply terms). Finally, as customary with the Clau-
sius–Duhem inequality, the entropy flux and entropy supply terms of the constituents
are postulated with the Duhem (1886) [17] and Truesdell (1957) [77] proposals
stated in the relations (24.1) below.

1For a brief biographical sketch of Bernard D. Coleman (1930–2018), see Fig. 24.1.
2For a brief biographical sketch ofWalter Noll (1925–2017), see Fig. 24.2.
3For brief biographies of

• Rudolf Julius Emanuel Clausius, see Fig. 17.8, Vol. 2 of this treatise, p. 330 [42];
• Pierre Maurice Marie Duhem, see Fig. 17.16, Vol. 2 of this treatise, p. 343 [42];
• Walter Noll, see [43];
• Clifford Ambrose Truesdell, see Fig. 22.1, this volume, p. 40.
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Fig. 24.1 Bernard D. Coleman (5 July 1930–2018)

Bernard Coleman received his B.S. from IndianaUniversity in 1951 and the
M.S. and Ph.D. at Yale University in 1952 and 1954, respectively. He worked
as a research chemist at the Carothers Research Laboratory of the du Pont
Company, 1954–1957 and as Senior Fellow of the Mellon Institute, Pittsburgh
1957–1988. He was Professor of Mathematics 1967–1988, of Biology 1974–
1988, and Chemistry 1984–1988, all at the Carnegie Mellon University in
Pittsburgh. He is the J. Willard Gibbs Professor of Thermomechanics at
Rutgers University since 1988.

Professor Coleman had many visiting and short-term research and teaching
appointments, is recipient of the BinghamMedal of the Society of Rheology,
1984, holds an honorary doctorate of the University of Roma (II) (1993), and
was elected to the College of Fellows of the American Institute of Medical and
Biological Engineering, among others. Coleman has been a member of the
Editorial Board of the Archives for Rational Mechanics and Analysis, 1962–
2000. He was Editor-in-Chief of the Springer Tracts in Natural Philosophy and
served in many positions of professional scientific organizations.

His research interests are/were in the mathematical sciences with emphasis
on functional analysis in continuum mechanics and thermodynamics, mate-
rial sciences, biophysics as DNA topology and DNA–protein interactions.
In the fields of Continuum Mechanics and Thermodynamics, he wrote ∼20
papers with Walter Noll (and many more alone and with others includ-
ing 190 works and two books, not including the many invited lecture and
course notes) on the use of the Second Law of Thermodynamics and the (now)
Coleman–Noll procedure to exploit the Clausius–Duhem inequality as an
open physical system. These papers had a dominant effect on twentieth cen-
tury’s thermodynamics.
This text is based on a tabular vita ofB.D. Coleman himself from the Internet.
Additional information see [74]
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Fig. 24.2 Walter Noll (January 7, 1925 in Berlin–June 6, 2017)

Professor Walter Noll was a German-American mathematician who, in
particular, devoted his scientific activities to the foundations of continuum
mechanics and thermodynamics. He started his studies of mathematics in 1946
at the Tech. University Berlin, but also visited courses at the Free University
and the Humboldt University, both equally at Berlin, and at the University in
Paris. In 1951, he received his Diploma degree in mathematics at TU Berlin
and assumed there the position as Assistant working with the Profs. Hamel
and Szabo. In 1953, he entered the graduate school at Indiana University, was
associatedwith Prof.Truesdell (see Fig. 22.1, this volume), where he earned,
in 1954, his Ph.D. degree in applied mathematics. Thereafter, he returned to
Berlin, but moved in1955 again to the USA to the University of Southern
California and, starting in 1956 as Associate Professor at the Carnegie Insti-
tute of Technology, later the Carnegie Mellon University, where he assumed
emeritus status in 1993. Professor Noll had visiting positions at the Johns
Hopkins University, the Karlsruhe University, the Israel University of Tech-
nology, École Polytéchnique in Nancy, the Universities at Pisa, Pavia, and
Oxford. He was a fellow of the American Mathematical Society.

Starting in the mid-1950s, he began his collaboration with Clifford Trues-

dell on the Nonlinear Field Theories of Mechanics [78], which became in
1965 part of the Handbuch der Physik. Apart from this, Walter Noll

was single author of fundamental work in the mathematical formulation of
mechanical principles [55], created in several papers primarily with Professor
Bernard Coleman and others the now standard method of the exploitation
of the second law of thermodynamics in the form of the Clausius–Duhem
inequality [10] andwas alsowell known for his creativemathematical writings.
His work up to 1974 is reprinted in [55], see also [56].

A large professional and personal biography is given by Ignatieff [43]
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One particular point on the Second Law of Thermodynamics applied to mixtures
should be emphasized. This point concerns the application of the entropy principle.
Even though we presented in Chap. 21 of this volume entropy balance laws for each
constituent of the mixture, the imbalance statement that the entropy production must
be positive is not required for each constituent individually, but for the sum of all
constituent entropy productions together. This statement is weaker than if it would
be applied to each constituent entropy production and gives the constitutive relations
more flexibility, when reducing them to a physically realizable form.

Our text follows closely Diebels [13], pp. 73–135.

24.2 Thermodynamics of an Elastic Solid Plus a
Viscoelastic Fluid

In the Clausius–Duhem–Coleman–Noll procedure to the entropy balance laws
of constituent α one employs the following postulates:

(i) Entropy flux of constituentα = qα

ϑα
,

(24.1)

(i i) Entropy supply of constituentα = ραrα

ϑα
.

In the above expressions, qα is the heat flux vector, rα the heat supply,ϑα the absolute
temperature, all of constituent α. With these expressions, the entropy balance of
constituent α takes the form

ρα(sα)′α = −div

(
qα

ϑα

)
+ ραrα

ϑα
+ πsα − cαsα. (24.2)

In this equation, sα is the entropy density of constituentα, πsα
the entropy production

density, and cα the mass production density, both of constituent α.
It is convenient to introduce the Helmholtz free energy of constituent α, ψα :=

εα − sαϑα. From this expression, we deduce

(ψα)′α = (εα)′α − (sα)′αϑα − sα(ϑα)′α,

sα = (εα − ψα)

ϑα
, (24.3)

(sα)′α = 1

ϑα

(
(εα)′α − (ψα)′α

)− sα

ϑα
(ϑα)′α.

With (24.3), Eq. (24.2) becomes
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1

ϑα
ρα
(
(εα)′α − (ψα)′α

)− ραsα

ϑα
(ϑα)′α

= −div

(
qα

ϑα

)
+ ραrα

ϑα
+ πsα − cαsα. (24.4)

To eliminate from this entropy balance the time rate of change of the internal
energy, (εα)′α, we start from the constituent energy balance of Chap. 21, which we
write in the form

∂

∂t

{
ραεα + 1

2ρ
αvα · vα + 1

2ρ
αΘαω̄α · ω̄α

}

+ div
{[

ραεα + 1
2ρ

αvα · vα + 1
2ρ

αΘαω̄α · ω̄α
]
vα
}

= div
(
(tα)T vα + (mα)T ω̄α − qα

)+ ρα f α · vα + ρα�α · ω̄α

+ ραrα + eα. (24.5)

For notation, see Chap. 21. This equation is now transformed to a balance law of
internal energy. This was already done in Chap. 21, but here we now wish to write
this balance equation in terms of the Cosserat kinematic quantities introduced in
Chap. 22. The procedure is to employ in (24.5) the product rule of differentiation and
then to use the information from the balances of mass, momenta and the kinematic
statements of the Cosserat formulation.

Consider first the left-hand side of (24.5): Employing the product rule of differ-
entiation, we may easily demonstrate that

∂

∂t
(ραεα) + div (ραεαvα) = ρα(εα)′α + cαεα,

∂

∂t

(
1
2ρ

αvα · vα
)+ div

((
1
2ρ

αvα · vα
)
vα
)

= cα 1
2 (vα · vα) + (ρα(vα)′α

) · vα, (24.6)

∂

∂t

(
1
2ρ

αΘαω̄α · ω̄α
)+ div

((
1
2ρ

αΘαω̄α · ω̄α
) · vα

)

= 1
2 c

αΘαω̄α · ω̄α + (ραΘα(ω̄α)′α
) · ω̄α + 1

2ρ
αω̄α · (Θα)′αω̄α

= 1
2 c

αΘαω̄α · ω̄α + (ραΘα(ω̄α)′α
) · ω̄α + ω̄α ·

[
sym

(
ραΩ̄

α
Θα
)

ω̄α
]
.

In the derivation of (24.6)3 use wasmade of the symmetry of themicro-inertia tensor,
Θα = (Θα)T and the fact that forCosserat continua (22.101) holds true.Moreover,
in the above, the momentum and spin balances are

ρα(vα)′α = div tα + ρα f α + mα,

(24.7)
ραΘαω̄′α = divmα + ρα�α + kα.

Here, mα, kα are the corresponding specific constituent momentum and spin pro-
duction rates, respectively, which are substituted in the expression (24.6)2,3.

The expression on the right-hand side (RHS) of (24.5) can be written as
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RHS (24.5) = vα · div tα + tαT · Lα + ω̄α · divmα + (mα)T · grad ω̄α

−div qα + vα · ρα f α + ω̄α · ρα�α + ραrα + eα. (24.8)

If (24.6)–(24.8) are substituted into (24.5) a great number of terms drop out, and
the balance law for εα takes the form

ρα(εα)′α = tα · Δ̄α + mα · grad ω̄α − div qα + ραrα + Eα

+ ω̄α ·
[
sym(ραΩ̄

α
Θα)ω̄α

]
, (24.9)

with

Eα = eα − cαεα − 1
2 c

αvα · vα − 1
2 c

αΘαω̄α · ω̄α − mα · vα − kα · ω̄α. (24.10)

In this equation, cα, mα, kα, and eα are specific production rate densities of mass,
momentum, angular momentum, and energy. Substitution into (24.4) gives, after
some routine calculation,

− ρα

ϑα
(ψα)′α − ραsα

ϑα
(ϑα)′α

= − 1

ϑα

{
tα · Δ̄α + mα · grad ω̄α

}
+ grad ϑα · qα

(ϑα)2
+ πsα

− 1

ϑα

{
Eα − cαϑαsα + ω̄α ·

[
sym(ραΩ̄

α
Θα)ω̄α

]}
. (24.11)

Note, in this expression the very last term vanishes if Θα = Θα I , since Ω̄
α
is

skew-symmetric.
Let us now specialize for a binary mixture as follows:

• Θα = Θα I isotropic moment of inertia.
• cα = 0 no phase change, no mass production of the constituents.
• eα = 0 no energy production due to phase change.
• ϑα = ϑ common (Kelvin) temperature for the constituents.

The assumption of an isotropicmoment of inertia supposes themicrostructure to pos-
sess isotropic spin orientation; on the other hand, to assume a common temperature
means that energy exchanges between the constituents are ideally instantaneous.

With these assumptions (24.11) can be put into the following form:

− ρα(ψα)′α − ραsαϑ′α = −
(
tα · Δ̄α + mα · grad ω̄α

)
+ grad ϑ · qα

ϑ

+ϑπsα − (mα · vα + kα · ω̄α) . (24.12)

For the derivation of this expression, all quantities in (24.11) involving eα and cα

dropped out as did the term involving sym(ραΩ̄
α
Θα). The entropy inequality is now

obtained by summing the expressions (24.12) over the solid and fluid constituents:
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−
∑

α

ρα(ψα)′α +
∑

α

(
tα · Δ̄

α + mα · grad ω̄α
)

−
∑

α

ραsαϑ′α

−grad ϑ ·∑α qα

ϑ
+
∑

α

mα · vα +
∑

α

kα · ω̄α

= ϑ
∑

α

πsα = ϑπs !
> 0. (24.13)

At this stage, four transformations need to be implemented in this expression. These
are as follows:

•
∑

α

ραsαϑ′α =
∑

α

ραsα

{
∂ϑ

∂t
+ grad ϑ · (vα + v − v)

}

=
∑

α

ραsα

︸ ︷︷ ︸
ρs

{
∂ϑ

∂t
+ (grad ϑ) · v

}
+
∑

α

ραsαgrad ϑ · (vα − v)︸ ︷︷ ︸
dα

= ρs
dϑ

d t
+
∑

α

ραsαdα · grad ϑ,

• − grad ϑ ·∑α qα

ϑ
−
∑

α

ραsαdα · grad ϑ = −
∑

α

(
qα

ϑ
+ ραsαdα

)

︸ ︷︷ ︸
ϕs

·grad ϑ,

•
∑

α

mα · vα = mF · vF − mF · vS = mF · (vF − vS) = mF · wF ,

•
∑

α

kα · ω̄α = kF · ω̄F − kF · ω̄S = kF · (ω̄F − ω̄S)︸ ︷︷ ︸
ν̄F

= kF · ν̄F .

Substituting these expressions into (24.13) yields

−
∑

α

ρα(ψα)′α +
∑

α

(
tα ·Δ̄α + mα · grad ω̄α

)
− ρsϑ̇

−ϕs · grad ϑ + mF · wF + kF · ν̂F � 0. (24.14)

In the above analysis, we introduced two new quantities,

dα ≡ vα − v, and δ̄
α ≡ ω̄α − ω̄,

the barycentric diffusion velocity dα and the barycentric micro-rotation diffusion
angular velocity δ̄

α
. They are also given by
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dα = vα −
∑

β

ρβ

ρ
vβ, δ̄

α = ω̄α −
∑

β

ρβ

ρ
ω̄β, ρ =

∑
β

ρβ .

For a binary solid–fluid mixture, they are obtained as

dS = ρF

ρ

(
vS − vF

) = −ρF

ρ
wF , dF = ρS

ρ
wF , wF = vF − vS,

δ̄
S = ρF

ρ

(
ω̄S − ω̄F

) = −ρF

ρ
ν̄F , δ̄

F = ρS

ρ
ν̄F , ν̄F = ω̄F − ω̄S.

Remark: The diffusion velocities dα and δ̄
α
only occur in the subsequent analysis in

a peripheral manner. Because the solid skeleton imprints the structure to the porous
body, the solid constituent motion is regarded as the reference motion, so that the
replacement of dα and δ̄

α
by wα and ν̄α is a natural consequence.

24.3 Evolution Equations for the Volume Fractions

We do not follow here Goodman and Cowin [36], or Wilmanski [81] or Fang
et al. [31], who all formulate different balance laws for the volume fractions.4 We
rather follow Diebels [13] who starts with the production-free solid mass balance
equation

(ρS)′S + ρSdiv vS = 0. (24.15)

With ρS = νS ρ̂S , [νS = solid volume fraction; ρ̂S = effective density, true density],
relation (24.15) can also be written as

ρ̂S
[
(νS)′S + zSνSdiv vS

]

+ νS
[
(ρ̂S)′S + (1 − zS)ρ̂Sdiv vS

] = 0, (24.16)

where zS ∈ [0, 1] is a new internal variable forwhich, however, no evolution equation
is written down; rather, its introduction allows us to treat νS and ρ̂S as independent
process variables, so that (24.16) can be split into two equations

(νS)′S + zSνSdiv vS = 0,

(24.17)
(ρ̂S)′S + (1 − zS)ρ̂Sdiv vS = 0.

The evolution equation for νF follows from the differentiated saturation condition
νS + νF = 1, namely

4A separate thermodynamic formulation on granular-fluid continua will be given in Chap. 30.
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(νF )′F + (νS)′F = 0,

(νF )′F +
⎧⎨
⎩

∂νS

∂t
+ (grad νS) ·

⎛
⎝vF − vS︸ ︷︷ ︸

wF

+vS

⎞
⎠
⎫⎬
⎭ = 0,

(νF )′F + (νS)′S + (grad νS) · wF = 0,

or with (24.17)

(νF )′F = zS νSdiv vS − (grad νS) · wF = 0. (24.18)

This procedure shows that the porosity, i.e., the volume fraction of the fluid is pri-
marily governed by the solid constituent motion.

In the above, zS is a new variable, which likely serves as a constitutive quantity.
We will see that its selection as such may, however, be very special. For instance,
as seen in (24.17)2 a density-preserving solid requires zS ≡ 1. This property makes
Diebels’ proposal of an additional variable zS a bit suspicious as it primarily operates
as a ‘deus ex machina’ that simplifies the implications in the exploitation process
of the entropy inequality and rather not as a physical variable accounting for the
granular structure of the solid–fluid mixture.

24.4 Process Variables and Constitutive Functions

In our search for a viscoelastic Cosserat solid–fluid binary mixture, we have not
found a thermodynamic model, in which both solid and fluid constituents would be
treated as elastic and viscous. Modelers seem to be primarily interested in elastic or
elastoplastic solids and ideal, perhaps viscous fluids.

• Neff [53] presents a one-constituent constitutive model, in which only Cosserat
rotations exhibit a viscoelastic response,whilst the translational degrees of freedom
are elastoplastic.

• Volk [80] models a granular or porous material as an elastoplastic continuum, in
which the translational and rotational motions exhibit elastoplastic behavior.

• Diebels [13] formulates a thermodynamic theory for a binary solid–fluid model,
in which the solid constituent is treated elastically, while the fluid is viscoelastic.

In what follows, our ultimate aim is to design a constitutive model for a binary
mixture, in which both constituents are viscoelastic as is the rotary motion. Such
a generality is needed for instance for a solid–fluid mixture under rapid avalanch-
ing motion. Before presenting Diebels’ model and perhaps an extension of it, we
mention that in the formulation of any constitutive model, we employ the rule of
equipresence; it states that all dependent constitutive variables should in a given
constitutive class depend on the same numbers of independent constitutive variables.
Reduction of certain independent constitutive variables in some dependent consti-
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tutive equation should be proven, not assumed. In mixture theories, maintenance of
the rule of aequipresence is very often not kept, but replaced by the so-called rule of
phase separation, which states that with the exception of production rate terms (these
are constituent interaction terms), constitutive variables of constituent α should not
depend on variables of constituent β 	= α, see Bowen [6, 8], Passman et al. [60].
This postulate simplifies the mathematical analysis considerably, but also eliminates
certain physical process behaviors. Most early mixture models were based on the
rule of phase separation, rather than aequipresence.

The independent constitutive variables are called process variables, and the space
spanned by these variables is called the phase space S. A ‘wordy’ version of S as
chosen by Diebels may be expressed as

S =
{
[elastic solid], [elastic fluid], [viscous fluid],
[interaction terms], [porosity], [temperature]

}
. (24.19)

This equationwants to say that the properties contained in bracketsmust be expressed
in terms of variables, which are representative for responses [elastic solids], [elastic
fluids], etc. In terms of the kinematic and dynamic quantities of a Cosserat binary
mixture the bracketed properties of S above take the forms

[elastic solid] = [Ū S
,∇Ū

S
, RKS,∇RKS],

[elastic fluid] = [ρ̂F ,∇ρ̂F ],
[viscous fluid] = [Δ̄F

, grad ω̄F ],
[constituent interaction] = [wF , ν̄F ],
[influence of porosity] = [νS, grad νS],
[temperature effect] = [ϑ, grad ϑ],

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(24.20)

in which the notation ∇(. . .) = Grad(. . .) has been employed. In (24.20) the elastic
behavior of the solid is expressed by the Cosserat deformation tensor Ū

S
, and the

curvature tensor RKS and their gradients ∇Ū
S
, ∇ RKS; these gradients are present

in (24.20)1 because in mixtures (which are not simple) such dependences are known
to be needed for consistency (see Bowen 1969 [4], 1976 [5]; MÜLLER 1968 [52]).

The list (24.20) is incomplete with regard to viscous behavior of the solid con-
stituent. Such solid viscous behavior should not be ignored in slow and rapid flows
of landslides and snow avalanches and any other rapid flows of granular assemblies.
This viscous solid behavior would be described by

[viscous solid] = [Δ̄S
, grad ω̄S]. (24.21)

Consideration of these terms, however, can likely be omitted in consolidation and
groundwater hydraulic contexts, where the dominant contribution of dissipation is
caused by the water motion in the pore space, expressed by (24.20)3,4 and quantified

by the Cosserat translational stretching Δ̄
F
, diffusion of angular velocity grad ω̄F
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and Darcy-type translational and rotational difference velocities wF and angular
velocities ν̄F in (24.20)3,4. The influence of the porosity in (24.20)5 is analogous to
that of the fluid partial density in (24.20)2. It is known in mixture theories that the
latter gives rise to the partial (pore-fluid) pressure; so the former, due to the porosity
dependence in (24.20)5, will lead to the so-called configurational pressure. At last,
(24.20)6 describes the usual heat-conducting property of the mixture.

The variables listed in (24.20) are the independent variables for the following
constitutive response functions

R(S) = {sα,ϕs,ψ
α, tα,mα,mF , kF , (νS)′α

}
. (24.22)

Note, there is no need to includemS , kS , as these quantities are given by the fact that∑
α m

α = 0,
∑

α k
α = 0. We, however, request a constitutive relation for (νS)′S ,

because this will fix zS . [We could alternatively, also request an equation for zS ,
instead.]

24.5 Handling of the Entropy Inequality

The entropy inequality (24.14) will be exploited in the sense of Coleman–Noll,
i.e., as an open system. This means:

• The balance laws of linear and angular momenta and the energy equation are
assumed to have external source terms, which can be assigned arbitrarily. So, they
do not form constraint conditions for the entropy inequality.

• When the differentiations are performed in the exploitation of the entropy inequal-
ity, derivatives in the solid quantities are expressed in terms of the solid motion,
those of the fluid in terms of the fluid motion; derivatives of the temperature are,
however, expressed in terms of the barycentric velocity.

• In the exploitation process of the entropy inequality, the question arises, whether
the saturation condition must enter the entropy inequality (24.14) as a con-
straint condition. This would be done by extending the entropy inequality with
the Lagrange parameter multiplied with the saturation equation. This need not
be done here, as explained by Diebels [13], because in the present constitutive
approach, the saturation condition is automatically satisfied by the evolution equa-
tions chosen for the volume fractions νS and νF , (24.17)1 and (24.18) paired with
a selection of a constitutive quantity for (νS)′S or zS .

• The reader may also ask why the balance of mass is not treated as a constraint
condition in the exploitation of the entropy inequality, a procedure, required in fluid
dynamics. The reason is that with the evolutions of the volume fractions according
to (24.17)1 and (24.18) the mixture density ρ = νS ρ̂S + νF ρ̂F can automatically
be updated, once νS , νF , ρ̂S , ρ̂F are known.

The imbalance (24.14) must be executed subject to the conditions that the balance
laws of linear and angular momenta and energy, as well as the equations of solid
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and fluid volume fractions. and the balance of mixture mass are simultaneously
satisfied. Themajor advantage of theClausius–Duhem approach for an open system
introduced above is the fact that none of these equations need to be incorporated in
this evaluation process, because

(i) the balance laws of linear and angular momenta and energy are equipped with
freely assignable supply terms,

(ii) the evolution equations for the volume fractions are so chosen that the saturation
condition is automatically satisfied, and

(iii) the conservation of mixture mass is automatically fulfilled by updating the
volume fraction expressions (24.17)1 and (24.18).

This is the computational advantage of the Clausius–Duhem inequality, coupled
with theColeman–Noll approach of its exploitation and the introduction of variable
zS . In this case, this procedure implies that no side conditions need to be incorporated
in the analysis when exploiting imbalance (24.14). For a phase space involving the
variables (24.20), computations are nevertheless a respectful endeavor by executing
the differentiations involving the chain rule of differentiation. These long computa-
tions yield the following extended inequality

Δ̄
S ·
[
t S − R̄

S
(

ρS ∂ψS

∂Ū
S + ρF ∂ψF

∂Ū
S

)
(FS)T

+ zSνS

(
ρS ∂ψS

∂νS
+ ρF ∂ψF

∂νS

)
I (24.23)

+ zSνS

(
ρS ρ̂F

νF

∂ψS

∂ρ̂F
+ ρF ρ̂F

νF

∂ψF

∂ρ̂F

)
I
]

+

(∇Ū
S
)′S ·

[
−ρS ∂ψS

∂∇Ū
S − ρF ∂ψF

∂∇Ū
S

]
+ (24.24)

∇∇Ū
S ·
[
−ρF ∂ψF

∂∇Ū
S ⊗ (FS)−1wF

]
+ (24.25)

grad ω̄S ·
[
mS − R̄

S
(

ρS ∂ψS

∂RK̄S + ρF ∂ψF

∂RK̄S

)
(FS)T

]
+ (24.26)

(
∇RK̄S

)′S ·
[
−ρS ∂ψS

∂∇RK̄S − ρF ∂ψF

∂∇RK̄S

]
+ (24.27)

∇∇RK̄S ·
[
−ρF ∂ψF

∂∇RK̄S ⊗ (FS)−1wF

]
+ (24.28)

(
grad ρ̂F

)′F ·
[
−ρS ∂ψS

∂grad ρ̂F
− ρF ∂ψF

∂grad ρ̂F

]
+ (24.29)

grad grad ρ̂F ·
[
ρS ∂ψS

∂grad ρ̂F
⊗ wF

]
+ (24.30)

(
Δ̄

F
)′F ·

[
−ρS ∂ψS

∂Δ̄
F − ρF ∂ψF

∂Δ̄
F

]
+ (24.31)
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grad Δ̄
F ·

[
ρS ∂ψS

∂Δ̄
F ⊗ wF

]
+ (24.32)

(
grad ω̄F

)′F ·
[
−ρS ∂ψS

∂grad ω̄F − ρF ∂ψF

∂grad ω̄F

]
+ (24.33)

grad grad ω̄F ·
[
ρS ∂ψS

∂grad ω̄F ⊗ wF

]
+ (24.34)

(
(xF )′′ − (xS)′′

) ·
[
−ρS ∂ψS

∂wF
− ρF ∂ψF

∂wF

]
(24.35)

grad x′F ·ρS ∂ψS

∂wF
⊗ wF + grad x′S · ρF ∂ψF

∂wF
⊗ wF + (24.36)

((ω̄F )′F − (ω̄S)′S) ·
[
−ρS ∂ψS

∂ν̄F − ρF ∂ψF

∂ν̄F

]
+ (24.37)

grad ω̄F ·ρS ∂ψS

∂ν̄F ⊗ wF + gradωS · ρF ∂ψF

∂ν̄F ⊗ wF + (24.38)

(
grad νS

)′S ·
[
−ρS ∂ψS

∂grad νS
− ρF ∂ψF

∂grad νS

]
+ (24.39)

grad grad νS ·
[
−ρF ∂ψF

∂grad νS
⊗ wF

]
+ (24.40)

ϑ̇ ·
[
−ρs − ρS ∂ψS

∂ϑ
− ρF ∂ψF

∂ϑ

]
+ (24.41)

(grad ϑ)· ·
[
−ρS ∂ψS

∂grad ϑ
− ρF ∂ψF

∂grad ϑ

]
+ (24.42)

grad grad ϑ ·
[
−ρS ∂ψS

∂grad ϑ
⊗ dS − ρF ∂ψF

∂grad ϑ
⊗ dF

]
+ (24.43)

D � 0. (24.44)

It will be shown below that (24.23)–(24.43) will identically vanish. Then, it follows
that D by itself must be nonnegative; D is the so-called residual entropy inequality,
given by

D = Δ̄
F ·
[
tF + ρS ρ̂F ∂ψS

∂ρ̂F
I + ρF ρ̂F ∂ψF

∂ρ̂F
I + ρS ∂ψS

∂wF
⊗ wF

]
+

grad ω̄F ·
[
mF + ρS ∂ψS

∂ν̄F ⊗ wF

]
− mF · wF − kF · ν̄F −

grad ϑ ·
[
ϕs + ρS ∂ψS

∂ϑ
dS + ρF ∂ψF

∂ϑ
dF

]
−

wF ·
[
ρS ρ̂F

νF

∂ψS

∂ρ̂F
+ ρF ρ̂F

νF

∂ψF

∂ρ̂F
+ ρF ∂ψF

∂νS

]
grad νS −
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ρF ∂ψF

∂Ū
S · ∇Ū

S
(FS)−1wF − ρF ∂ψF

∂RK̄S · ∇RK̄S
(FS)−1wF +

wF · ρS ∂ψS

∂ρ̂F
grad ρ̂F � 0. (24.45)

Note that every line in the above extended entropy inequality bears its own number
of identification. These results agree with those of Diebels as obtained by him in
2000 [13].

We shall prove below that (24.23)–(24.43) together all vanish as a global state-
ment, so that at last only the imbalance D � 0 must be fulfilled. This vanishing
of (24.23)–(24.43) will imply a large number of inferences, which, in particular,
will reduce the number of independent variables in the constituent Helmholtz free
energies.

Note that the expressions (24.23)–(24.43) in the long version of the entropy
inequality are linear in the time and space derivatives of the process variables. On
the contrary, the residual inequality (24.45) contains only process variables, and the
expression in (24.45) is nonlinear in these variables. Because the entropy inequality
must hold for all thermodynamic processes for which the derivatives of the process
variables may have any assigned value, it follows that (24.23)–(24.43) must vanish.
[The proof of this fact has been given at several places in Chap. 23 of this volume
for a diffusive mixture. It is easily seen that this proof can readily be extended to the
present situation]. We conclude that the residual inequality must be the imbalance
D � 0.

24.6 Detailed Exploitation of (24.23)–(24.43)

A short way of writing the long entropy inequality is as follows:

X · a(Y) + D(Y) � 0, (24.46)

in which X are the terms in (24.23)–(24.43), which are expressed as some space
and time derivatives of the state variables Y or other variables arising in the field
equations; a is the shorthand notation for the collection of the expressions in braces
in (24.23)–(24.43), and the dot, ) · (, is the symbol of the inner products between
the components of X and a. The main theorem of the exploitation of the entropy
inequality states that

∑
ν Xν · aν = 0 for ν corresponding to each line in (24.23)–

(24.43). The statements following from this requirement are sometimes called the
Liu-identities: In this case the following inferences can be drawn.

• Equation (24.23): Because Δ̄
S
is a full rank-2 tensor, we have [·](24.23) = 0, or
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t S = R̄
S
[
ρS ∂ψS

∂Ū
S + ρF ∂ψF

∂Ū
S

]
(FS)T

− zSνS

[
ρS ρ̂F

νF

∂ψS

∂ρ̂F
+ ρF ρ̂F

νF

∂ψF

∂ρ̂F
+ ρS ∂ψS

∂νS
+ ρF ∂ψF

∂νS

]
I . (24.47)

The solid partial stress tensor t S is fully determined, if the free energies ψS,ψF

and ρS, ρF , νS, νF , and zS are known. It consists of a contribution, directly related
to the Cosserat strains

R̄
S
[
ρS ∂ψS

∂Ū
S + ρF ∂ψF

∂Ū
S

]
(FS)T

(first line in (24.47)), which is nonsymmetric, and a pressure term (second line in
(24.47)), which may be split into

pc = zSνS

[
ρS ∂ψS

∂νS
+ ρF ∂ψF

∂νS

]
configurational pressure,

pth = zSνS

[
ρS ρ̂F

νF

∂ψS

∂ρ̂F
+ ρF ρ̂F

νF

∂ψF

∂ρ̂F

]
thermodynamic pressure.

(24.48)

• Equation (24.26): Here, grad ω̄S is a full rank-2 tensor, so that [·](24.46) = 0, imply-
ing

mS = R̄
S
[
ρS ∂ψS

∂RK̄S + ρF ∂ψF

∂RK̄S

]
(FS)T (24.49)

for the nonsymmetric couple stress tensor, in which quantities in braces in (24.47)
and (24.49) are referred to the reference configuration and back rotatedCosserat
configuration, respectively, which are pushed forward by the forward transport
into the present configuration.

• Equation (24.41): Since ϑ̇ is a scalar, [·](24.41) = 0 implies

ρs = −ρS ∂ψS

∂ϑ
− ρF ∂ψF

∂ϑ
. (24.50)

So, the mixture entropy is given by −∑α ρα(∂ψα/∂ϑ), as one would expect.
The results (24.47), (24.49), and (24.50) reflect the expected properties that are
revealed by the Legendre transformation on ψS and ψF .

• Equations (24.24), (24.25): As∇ ∇Ū
S
is a full rank-4 tensor, [·](24.25) = 0 implies

that

ρF ∂ψF

∂∇Ū
S ⊗ (FS)−1wF = 0, ∀(FS)−1wF =⇒ ∂ψF

∂∇Ū
S = 0, ∀∇Ū

S
.
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Using this result in the expression [·](24.24) = 0 then yields also ∂ψS/∂∇ Ū
S = 0.

Thus,

∂ψS

∂∇ Ū
S = ∂ψF

∂∇ Ū
S = 0. (24.51)

The free energies ψS and ψF cannot depend on ∇Ū
S
.

• Equations (24.27), (24.28): The inferences here are analogous to the above ones;
so,

∂ψS

∂∇ RK̄S = ∂ψF

∂∇ RK̄S = 0. (24.52)

Hence, the free energies ψS and ψF can neither depend on ∇RK̄S
.

The inferences (24.51) and (24.52) have been obtained with the tacit assumption
that these relations, (24.51) and (24.52), also hold when wF goes through a zero
value. This result is based upon the natural ‘principle of continuity’, namely that
a continuous transition of wF through zero will not reveal a discontinuity of the
quantities (24.51) and (24.52).

• Equations (24.31), (24.32): Here, the situation is analogous to (24.51) and (24.52).

More specifically, (24.32) implies, sincewF may have any value, that ∂ψS/∂Δ̄
F =

0. Thus,

∂ψS

∂Δ̄
F = ∂ψF

∂Δ̄
F = 0. (24.53)

The free energies ψS and ψF cannot depend on Δ̄
S
.

• Equations (24.33), (24.34): analogous arguments imply here

∂ψS

∂grad ω̄F = ∂ψF

∂grad ω̄F = 0. (24.54)

So, ψS and ψF cannot depend on grad ω̄F either.
• Equations (24.35), (24.36): These two lines are a bit more difficult to analyze. Line
(24.36) can also be written as

grad
(
x′F − x′S)

︸ ︷︷ ︸
gradwF

[
ρS ∂ψS

∂wF
⊗ wF

]

+ grad vS ·
{
ρS ∂ψS

∂wF
⊗ wF + ρF ∂ψF

∂wF
⊗ wF

}
= 0. (24.55)

Because gradwF is not a process variable, the first line of this expression is linear in
gradwF , so that ∂ψS/∂wF = 0. With this inference, [·](24.35) vanishes identically.
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Therefore,

∂ψS

∂wF
= ∂ψF

∂wF
= 0. (24.56)

• Equations (24.37), (24.38): These two lines are analogous to (24.35) and (24.36).
By the same method as above, we may show that

∂ψS

∂ν̄F = ∂ψF

∂ν̄F = 0. (24.57)

The free energies are also independent of ν̄F .
• Equations (24.29), (24.39), (24.42): The expressions on these lines are linear func-
tionals of

[grad (ρ̂F )]′, [grad (νS)]′S, [grad (ϑ)]· (24.58)

so that the corresponding brackets [·] must vanish. This yields

ρS ∂ψS

∂grad ρ̂F
+ ρF ∂ψF

∂grad ρ̂F
= 0,

ρS ∂ψS

∂grad νS
+ ρF ∂ψF

∂grad νS
= 0,

ρS ∂ψS

∂grad ϑ
+ ρF ∂ψF

∂grad ϑ
= 0.

(24.59)

• Equations (24.30), (24.40), (24.43): Because in these statements the prefactors of
the braces [·] are the grad grad -operators, their inner products with [·] implies that
[·] need to be skew-symmetric, so that

ρS ∂ψS

∂grad ρ̂F
⊗ wF = −wF ⊗ ρS ∂ψS

∂grad ρ̂F

ρF ∂ψF

∂grad νS
⊗ wF = −wF ⊗ ρS ∂ψS

∂grad νS
,

ρS ∂ψS

∂grad ϑ
⊗ wF = −wF ⊗ ρS ∂ψS

∂grad ϑ
.

(24.60)

The statements (24.47)–(24.60) summarize all the inferences that could be drawn
from the (long) entropy inequality. They imply that the state variables can be grouped
into two disjoint sets
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{
Ū

S
, RKS, ρ̂F , grad ρ̂F , νS, grad νS,ϑ, grad ϑ

}
(set I),

(24.61){
∇Ū

S
,∇RKS, Δ̄

F
, grad ω̄,wF , ν̄F

}
(set II).

We demonstrated that the free energies ψS and ψF can only depend on the variables
of the first set but not on those of the second set, viz.,

ψα = ψα
{
Ū

S
, RKS, ρ̂F , grad ρ̂F , νS, grad νS,ϑ, grad ϑ

}
, α = S, F. (24.62)

We proved that the solid stress, t S , solid couple stress, mS , and the entropy, s, only
depend on certain derivatives of theHelmholtz free energiesψS andψF , as demon-
strated in (24.47), (24.49), and (24.50).Moreover, (24.3)1, togetherwith the definition
sα = −∂ψα/∂ϑ implies

εα = ψα + sαϑ = ψα − ϑ
∂ψα

∂ϑ
= −ϑ2 ∂

∂ϑ

(
ψα

ϑ

)
,

so that the Helmholtz free energy of constituent α also determines the internal
energy of constituent α. Within the function class (24.62) the functions ψα are,
however, not completely free; they must satisfy the constraints (24.59) and (24.60).

24.7 Behavior at and Near Thermodynamic Equilibrium

Our next task is to draw further inferences from the residual inequality (24.45) close
to thermodynamic equilibrium. The latter is defined by the request that in such an
equilibrium process no entropy is produced. Thus, D � 0 reduces in equilibrium to
D|E = 0, in which the subscript (·)|E identifies this equilibrium. It follows that D
assumes its minimum in equilibrium. Introducing the inner heat flux vector

q I :=
∑

α

qα = qS + qF (24.63)

and

ϕs =
∑

α

(
qα

ϑ
+ ραsαdα

)
=
∑

α

(
qα

ϑ
− ρα ∂ψα

∂ϑ
dα

)
,

ϕs +
∑

α

ρα ∂ψα

∂ϑ
dα =

∑
α

qα

ϑ
, (24.64)

the residual inequality takes the form
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D = Δ̄
F ·
[
tF + ρS ρ̂F ∂ψS

∂ρ̂F
I + ρF ρ̂F ∂ψF

∂ρ̂F
I
]

+

mF · grad ω̄F − mF · wF − kF · ν̄F − 1

ϑ
grad ϑ · q I −

wF ·
[
ρS ρ̂F

νF

∂ψS

∂ρ̂F
+ ρF ρ̂F

νF

∂ψF

∂ρ̂F
+ ρF ∂ψF

∂νS

]
grad νS −

ρF ∂ψF

∂Ū
S · ∇Ū

S
(FS)−1wF − ρF ∂ψF

∂RK̄S · ∇RK̄S
(FS)−1wF +

ρS ∂ψS

∂ρ̂F
grad ρ̂F · wF � 0. (24.65)

D vanishes, and, thus assumes its minimum, when the non-equilibrium variables

Δ̄
F
, grad ω̄F , wF , ν̄F , and grad ϑ vanish:

Δ̄
F = 0

grad ω̄F = 0
wF = 0
ν̄F = 0
grad ϑ = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

at thermodynamic equilibrium. (24.66)

24.7.1 Equilibrium Helmholtz Free Energies

Before drawing the inferences implied by relations (24.66), let us return to the iden-
tities (24.59) and (24.60), which must be fulfilled by the free energies ψS,F . When
evaluating (24.60) at equilibrium, one merely deduces three times the trivial state-
ments 0 = 0. Following an idea byEhlers (1989) [18], onemay differentiate (24.60)
with respect to wF and then take the equilibrium limit of the resulting relations. For
(24.60)3 this step yields

ρS ∂2ψS

∂grad ϑ ⊗ ∂wF
⊗ wF + ρS ∂ψS

∂grad ϑ
⊗ I

= −I ⊗ ρS ∂ψS

∂grad ϑ
− wF ⊗ ρS ∂2ψS

∂grad ϑ ⊗ ∂wF
, (24.67)

and for wF = 0 in equilibrium

∂ψS

∂grad ϑ

∣∣∣
E

= 0
(24.59)3=⇒ ∂ψF

∂grad ϑ

∣∣∣
E

= 0. (24.68)

Analogous results can be derived for (24.60)1,2 and (24.59)1,2 (the method of deriva-
tion is the same). In summary, these considerations yield
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∂ψS

∂grad ϑ

∣∣∣
E

= ∂ψF

∂grad ϑ

∣∣∣
E

= 0,

∂ψS

∂grad νS

∣∣∣
E

= ∂ψF

∂grad νS

∣∣∣
E

= 0,

∂ψS

∂grad ρ̂F

∣∣∣
E

= ∂ψF

∂grad ρ̂F

∣∣∣
E

= 0.

in thermodynamic equilibrium. It follows that the Helmholtz free energies have
the functional form

ψS,F |E = ψS,F |E
(
Ū

S
, RK̄S

, ρ̂F , νS,ϑ
)

. (24.69)

This function class is a considerably simplified class implied by the Liu-relations,
see (24.62). The extension of the free energies ψS,F to nonequilibrium must be at
least quadratic in the variables grad θ, grad νS , grad ρ̂F and can be written as

ψS,F = (ψS,F )|E
(
Ū

S
, RK̄S

, ρ̂F , νS,ϑ
)

+ 1
2 x ·

[
KS,F |E

(
Ū

S
, RK̄S

, ρ̂F , νS,ϑ
)]

x, (24.70)

x = (
grad ϑ, grad νS, grad ρ̂F

)
, (24.71)

[KS,F |E
] =

⎛
⎜⎜⎜⎝

KS,F
ϑϑ KS,F

ϑνS KS,F
ϑρ̂F

KS,F
νSϑ

KF,S
νSνS KS,F

νS ρ̂F

KF,S
ρ̂Fϑ

KS,F
ρ̂FνS KS,F

ρ̂F ρ̂F

⎞
⎟⎟⎟⎠ . (24.72)

[KS,F |E
]
is a symmetric 9 × 9 matrix and each of the 3 × 3 submatrices is equally

symmetric. Moreover, each may be a function of the equilibrium variables. In total,
they comprise 54 coefficients, which are unlikely to be completely identifiable by
experiments. Simplifications are called for, of which a drastic one is

[
KS,F

ϑ ϑ

]
= 1

2KS,F
ϑϑ I,

[
KS,F

νSνS

]
= 1

2KS,F
νSνS I, (24.73)

[
KS,F

ρ̂F ρ̂F

]
= 1

2KS,F
ρ̂F ρ̂F I

with all off-diagonal elements in (24.72) equal to zero. In this restricted case, the
free energies ψS,F can also be written as

ψS,F = (ψS,F )|E
(
Ū

S
, RK̄S

, ρ̂F , νS,ϑ
)

+ 1
2KS,F

ϑϑ |E‖grad ϑ‖2

+ 1
2KS,F

νSνS |E‖grad νS‖2 + 1
2KS,F

ρ̂F ρ̂F |E‖grad ρ̂F‖2, (24.74)
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which has at most 6 different coefficients. It is customary in the current literature to
set all nonequilibrium terms inψS,F equal to zero. The free energy in nonequilibrium
is then equal to the equilibrium energy ‘frozen’ to the nonequilibrium process.

24.7.2 Equilibrium Implications

Let us now return to (24.65) and exploit it in the neighborhood of thermodynamic
equilibrium. To this end, we write the nonequilibrium variables as

Δ̄
F = ι(Δ̄

F
)∗,

grad ω̄F = ιgrad (ω̄F )∗,
wF = ι(wF )∗, (24.75)

ν̄F = ι(ν̄F )∗,
grad ϑ = ιgrad ϑ∗.

The quantities with asterisks are constants, which determine the direction of the
process and ι measures their intensities. In the limit as ι → 0, the equilibrium,
D|E = 0, is reached. Because in this equilibrium D assumes its minimum, one
necessarily has for smooth processes

∂D
∂ι

∣∣∣
ι=0

= 0,
∂2D
∂ι2

∣∣∣
ι=0

> 0, (24.76)

If we substitute (24.75) into (24.65) and then perform the differentiations (24.76)1,
we obtain

(Δ̄
F
)∗ ·

[
(tF )0 + ρS ρ̂F ∂ψS

∂ρ̂F
I + ρF ρ̂F ∂ψF

∂ρ̂F
I
]

+
grad (ω̄F )∗ ·(mF )0 +

(wF )∗ ·
[
−
(

ρS ρ̂F

νF

∂ψS

∂ρ̂F
+ ρF ρ̂F

νF

∂ψF

∂ρ̂F
+ ρF ∂ψF

∂νS

)
grad νS

−ρF (FS)−T

(
∂ψF

∂Ū
S ∇Ū

S
)1

− ρF (FS)−T

(
∂ψF

∂RK̄S ∇RK̄S
)1

−(mF )0 + ρS ∂ψS

∂ρ̂F
grad ρ̂F

]
+

(ν̄F )∗ · (−kF
)+

grad ϑ∗ ·
(

− 1

ϑ
· (q I )0

)
= ∂D

∂ι

∣∣∣
ι=0

= 0, (24.77)

∀ (·)∗-variables in (24.75),
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in which the quantities indexed by (·)0 are equilibrium quantities. Equation (24.77)
as an identity must be valid for any values of the (·)∗-indexed quantities, which
may have arbitrarily assigned values. Therefore, all terms to the right of the scalar
multiplication signs must vanish, implying

(tF )0 = −ρS ρ̂F ∂ψS

∂ρ̂F
I − ρF ρ̂F ∂ψF

∂ρ̂F
I =: −νF pF

R I, (24.78)

pF
R = (ρ̂F )2

∂ψF

∂ρ̂F
+ ρS ρ̂F

νF

∂ψS

∂ρ̂F
, (24.79)

(mF )0 = −
(
pF
R + ρF ∂ψF

∂νS

)
grad νS + ρS ∂ψS

∂ρ̂F
grad ρ̂F

−ρF (FS)−T

(
∂ψF

∂Ū
S ∇Ū

S
)1

−ρF (FS)−T

(
∂ψF

∂RK̄S ∇RK̄S
)1

, (24.80)

(mF )0 = 0, (24.81)

(kF )0 = 0, (24.82)
q I
0 = 0. (24.83)

The equilibrium fluid stress is a pressure. It is determined by the free energies
ψF,S . This typically characterizes the compressibility of the fluid and the solid. The
fluid equilibrium interaction force (fluid momentum production), (mF )0, the equi-
librium fluid couple stresses, (mF )0, fluid equilibrium interaction couple, (kF )0 , and
the equilibrium inner heat flux vector, q I

0, are all given by (24.78) to (24.83). They
are determined once functional expressions for the free energies are chosen. These
formulae are important, because they could not be guessed without the exploita-
tion of the entropy inequality. This remains so even in isothermal processes, which
seemingly do not reflect thermodynamic considerations.

24.7.3 Exploitation of the Entropy Inequality in the
Neighborhood of the Equilibrium

In the above, the equilibrium conditions (24.76)1 were exploited, which led to the
expressions (24.78)–(24.83). We now introduce the shorthand notations

{T} = {
tF ,mF ,mF , kF , q I

}
,

(24.84)

{v} =
{
Δ̄

F
, grad ω̄F ,wF , ν̄F , grad ϑ

}
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and wish to express the near equilibrium response by the linear relation

{T} := {T0} + {{CT}} {v} . (24.85)

{T0} collects the equilibrium values of {T}. Moreover, the term {{CT}} is a linear
and positive definite operator on {v} and can readily be evaluated by the following
expansions:

tF = (tF )0 +
(

∂ tF

∂Δ̄
F

)

0

Δ̄
F +

(
∂ tF

∂grad ω̄F

)

0

grad ω̄F

+
(

∂ tF

∂wF

)

0

wF +
(

∂ tF

∂ν̄F

)

0

ν̄F +
(

∂ tF

∂grad ϑ

)

0

grad ϑ, (24.86)

mF =
(

∂mF

∂Δ̄
F

)

0

Δ̄
F +

(
∂mF

∂grad ω̄F

)

0

grad ω̄F

+
(

∂mF

∂wF

)

0

wF +
(

∂mF

∂ν̄F

)

0

ν̄F +
(

∂mF

∂grad ϑ

)

0

grad ϑ, (24.87)

mF = (mF )0 +
(

∂mF

∂Δ̄
F

)

0

Δ̄
F +

(
∂mF

∂grad ω̄F

)

0

grad ω̄F

+
(

∂mF

∂wF

)

0

wF +
(

∂mF

∂ν̄F

)

0

ν̄F +
(

∂mF

∂grad ϑ

)

0

grad ϑ, (24.88)

kF =
(

∂kF

∂Δ̄
F

)

0

Δ̄
F +

(
∂kF

∂grad ω̄F

)

0

grad ω̄F

+
(

∂kF

∂wF

)

0

wF +
(

∂kF

∂ν̄F

)

0

ν̄F +
(

∂kF

∂grad ϑ

)

0

grad ϑ, (24.89)

q I =
(

∂q I

∂Δ̄
F

)

0

Δ̄
F +

(
∂q I

∂grad ω̄F

)

0

grad ω̄F

+
(

∂q I

∂wF

)

0

wF +
(

∂q I

∂ν̄F

)

0

ν̄F +
(

∂q I

∂grad ϑ

)

0

grad ϑ, (24.90)

in which the index (·)0 indicates evaluation of (·) in thermodynamic equilibrium.
Substitution of (24.86)–(24.90) into the residual inequality (24.65) yields

Δ̄
F ·

[(
∂ tF

∂Δ̄
F

)

0

Δ̄
F +

(
∂ tF

∂grad ω̄F

)

0

grad ω̄F

+
(

∂ tF

∂wF

)

0

wF +
(

∂ tF

∂ν̄F

)

0

ν̄F +
(

∂ tF

∂grad ϑ

)

0

grad ϑ

]
+

grad ω̄F ·
[(

∂mF

∂Δ̄
F

)

0

Δ̄
F +

(
∂mF

∂grad ω̄F

)

0

grad ω̄F
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+
(

∂mF

∂wF

)

0

wF +
(

∂mF

∂ν̄F

)

0

ν̄F +
(

∂mF

∂grad ϑ

)

0

grad ϑ

]
−

wF ·
[(

∂mF

∂Δ̄
F

)

0

Δ̄
F +

(
∂mF

∂grad ω̄F

)

0

grad ω̄F

+
(

∂mF

∂wF

)

0

wF +
(

∂mF

∂ν̄F

)

0

ν̄F +
(

∂mF

∂grad ϑ

)

0

grad ϑ

]
−

ν̄F ·
[(

∂kF

∂Δ̄
F

)

0

Δ̄
F +

(
∂kF

∂grad ω̄F

)

0

grad ω̄F

+
(

∂kF

∂wF

)

0

wF +
(

∂kF

∂ν̄F

)

0

ν̄F +
(

∂kF

∂grad ϑ

)

0

grad ϑ

]
−

grad ϑ ·
[(

∂q I

∂Δ̄
F

)

0

Δ̄
F +

(
∂q I

∂grad ω̄F

)

0

grad ω̄F

+
(

∂q I

∂wF

)

0

wF +
(

∂q I

∂ν̄F

)

0

ν̄F +
(

∂q I

∂grad ϑ

)

0

grad ϑ

]

� 0. (24.91)

This inequality is a quadratic form of the nonequilibrium phase space variables.
Because the nonequilibrium variables may independently assume arbitrary values,
this positivity is fulfilled provided the following rank-2 and rank-4 tensors, evaluated
in thermodynamic equilibrium, are positive definite:

∂ tF

∂Δ̄
F ,

∂mF

∂grad ω̄F

︸ ︷︷ ︸
rank−4

, −∂mF

∂wF
, − ∂kF

∂ν̄F , − ∂q I

∂grad ϑ︸ ︷︷ ︸
rank−2

. (24.92)

Besides (24.92) further criteria must be fulfilled to guarantee positive semidef-
initeness of (24.91). To this end, sufficiency can be achieved by requiring that the
remaining mixed terms of (24.91) vanish. For instance, two such terms are

Δ̄
F ·
[
· · ·
(

∂ tF

∂grad ω̄F

)

0

gradωF

]
+ · · · grad ω̄F ·

[(
∂mF

∂Δ̄
F

)

0

· · ·
]

Δ̄
F
,

or in Cartesian component notation

(Δ̄F )i j
∂(tF )i j

∂(ω̄F )k,�
ω̄F
k,� + · · · + ω̄F

i, j

∂(mF )i j

∂Δ̄F
k,�

Δ̄k� + · · ·

= (Δ̄F )i j
∂(tF )i j

∂(ω̄F )k,�
ω̄F
k,� + · · · + Δ̄i j

∂mF
k�

∂(Δ̄F )i j
ω̄F
k,� + · · ·
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= (Δ̄F )i j

{
∂(tF )i j

∂(ω̄F )k,�
+ ∂mF

k�

∂(Δ̄F )i j

}
ω̄F
k,�

!= 0,

=⇒ ∂(tF )i j

∂(ω̄F )k,�
= − ∂mF

k�

∂(Δ̄F )i j

and again written in symbolic notation

(
∂ tF

∂gradωF

)

0

= −
(

∂mF

∂Δ̄
F

)T

0

, (24.93)

In an analogous manner, we may select

Δ̄
F ·
[
· · ·
(

∂ tF

∂w̄F

)

0

]
wF + · · · − wF ·

[(
∂mF

∂Δ̄
F

)

0

]
Δ̄

F
,

or in Cartesian notation

Δ̄i j

(
∂t Fi j
∂wF

m

)

0

wF
m + · · · − wF

i

(
∂mF

i

∂Δ̄F
k�

)

0

Δ̄F
k�

= Δ̄F
i j

{(
∂t Fi j
∂wF

m

)

0

−
(

∂mF
m

∂Δ̄F
i j

)

0

}
wF

m

= Δ̄F
i j

⎧⎪⎨
⎪⎩

∂t Fi j
∂wF

m

−
⎡
⎢⎣
(

∂mF
j

∂Δ̄F
im

)13
T
⎤
⎥⎦

⎫⎪⎬
⎪⎭

wF
m

= Δ̄F
i j

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t Fi j
∂wF

m

−
⎡
⎢⎣
(

∂mF
i

∂Δ̄F
jm

)13
T
⎤
⎥⎦

12
T
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

wF
m = 0.

Because Δ̄F
i j and wF

m may have any value the expression in braces must vanish. In
symbolic notation, we therefore have

(
∂ tF

∂wF

)

0

=
⎛
⎝
(

∂mF

∂Δ̄F

)13
T
⎞
⎠

12
T

. (24.94)
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All mixed terms in (24.91) are of the structure (24.93) and (24.94). The reader may
easily check that the following symmetry conditions are obtained:

(
∂ tF

∂grad ω̄F

)

0

= −
(

∂mF

∂Δ̄
F

)T

0

, (24.95)

(
∂ tF

∂wF

)

0

=
⎛
⎝
(

∂mF

∂Δ̄
F

)13
T

0

⎞
⎠

12
T

, (24.96)

(
∂ tF

∂ν̄F

)

0

=
⎛
⎜⎝
(

∂kF

∂Δ̄
F

)13
T

0

⎞
⎟⎠

12
T

, (24.97)

(
∂ tF

∂grad ϑ

)

0

=
⎛
⎝
(

∂q I

∂Δ̄
F

)13
T

0

⎞
⎠

12
T

, (24.98)

(
∂mF

∂wF

)

0

=
⎛
⎝
(

∂mF

∂grad ω̄F

)13
T

0

⎞
⎠

12
T

, (24.99)

(
∂mF

∂ν̄F

)

0

=
⎛
⎜⎝
(

∂kF

∂grad ω̄F

)13
T

0

⎞
⎟⎠

12
T

, (24.100)

(
∂mF

∂grad ϑ

)

0

=
⎛
⎜⎝
(

∂q̂ I

∂grad ω̄F

)13
T

0

⎞
⎟⎠

12
T

, (24.101)

(
∂mF

∂ν̄F

)

0

= −
(

∂kF

∂wF

)T

0

, (24.102)

(
∂mF

∂grad ϑ

)

0

= −
(

∂q I

∂wF

)T

0

, (24.103)

(
∂kF

∂grad ϑ

)

0

= −
(

∂q I

∂ν̄F

)T

0

. (24.104)

With the assumptions (24.95)–(24.104) the imbalance (24.91) reduces to



170 24 Thermodynamics of Binary Solid–Fluid Cosserat Mixtures

Δ̄
F ·
(

∂ tF

∂Δ̄
F

)

0

Δ̄
F + grad ω̄F ·

(
∂mF

∂grad ω̄F

)

0

grad ω̄F

+wF

(
∂mF

∂wF

)

0

wF + ν̄F

(
∂kF

∂ν̄F

)

0

ν̄F

+ grad ϑ ·
(

∂q I

∂grad ϑ

)

0

grad ϑ � 0. (24.105)

This imbalance shows very clearly that, since the nonequilibrium variables may
independently assume arbitrary values, the expression (24.105) is nonnegative, if
and only if the tensors (24.92), evaluated in equilibrium, are positive semidefinite.
Together with (24.78)–(24.83) and the expressions (24.86)–(24.90) [reduced accord-
ing to (24.105)], the following near equilibrium expressions can be deduced:

Fluid and solid stresses:

•

tF
(24.78)= −νF pF

R I+
4×4
C Δ̄

F
,

pF
R , effective fluid pressure given in (24.79),

4×4
C ≡

(
∂ tF

∂Δ̄
F

)

0

positive definite ‘viscosity’ tensor.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(24.106)

•

t S
(24.47)= R̄

S
{
ρS ∂ψS

∂Ū
S + ρF ∂ψF

∂Ū
S

} (
FS
)T − (pc + pth) I,

pc = zSνS

{
ρS ∂ψS

∂νS
+ ρF ∂ψF

∂νS

}

configurational pressure

pth = zSνS

{
ρS ρ̂F

νF

∂ψS

∂ρ̂F
+ ρF ρ̂F

νF

∂ψF

∂ρ̂F

}

thermodynamic pressure

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24.107)

Fluid and solid couple stresses:

• mF =4×4
M grad ω̄F ,

4×4
M =

(
∂mF

∂grad ω̄F

)

0

, positive semidefinite

• mS (24.49)= R̄
S
{
ρS ∂ψS

∂RK̄S + ρF ∂ψF

∂RK̄S

} (
FS
)T

,

⎫⎪⎪⎬
⎪⎪⎭

(24.108)

Interaction force and interaction couple:
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• mF (24.80)= −
(
pF
R + ρF ∂ψF

∂νS

)
grad νS + ρS ∂ψS

∂ρ̂F
grad ρ̂F

−ρF
(
FS
)−T

(
∂ψF

∂Ū
S ∇Ū

S
)1

−ρF
(
FS
)−T

(
∂ψF

∂RK̄S ∇ RK̄S
)1

+ 2×2
P wF ,

− 2×2
P = −

(
∂mF

∂wF

)
positive semidefinite

• kF = 2×2
M ν̄F , − 2×2

M= −
(

∂kF

∂ν̄F

)

0

,

positive semidefinite

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24.109)

Entropy and inner heat flux:

• ρ s
(24.50)= −ρF ∂ψS

∂ϑ
− ρF ∂ψF

∂ϑ
, mixture entropy,

• q I = 2×2
Q grad ϑ, − 2×2

Q = −
(

∂q I

∂grad ϑ

)

0

,

positive semidefinite.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(24.110)

The above expressions for the fluid and solid stresses, couple stresses, interaction
forces, interaction couples, and entropy are known once the free energies ψS,F are
known as functions of their variables (24.62) and the coefficient functions

4×4
C ,

4×4
M,

2×2
P ,

2×2
M, and

2×2
Q (24.111)

are prescribed. The statements, compiled in Eqs. (24.106)–(24.110) as inferences
of the entropy inequality in the form of Clausius–Duhem, summarize the explicit
forms for the field variables t S,F , mS,F , mF , k and s in terms of the kinematic and
thermal variables, stated in Eq. (24.61). The allowable processes are restricted to
near thermodynamic equilibria, i.e., field formulations, in which the variables of set
II in (24.61) only arise in the governing field equations in linear form. The formulae
(24.106)–(24.110) merely state possible forms of the satisfaction of the Second Law;
for applications of these in solid–fluid flow problems, theymust bemade concrete. To
this end, it is advantageous to introduce further simplifications. This will be done in
the next subsection. Here we focus on isotropic variants of the coefficients (24.111).

For isotropic response, the second and fourth order material tensors (24.111) have
the form

2×2
A i j= −kAδi j ,

4×4
A i jkl= λAδi jδkl + μA

(
δikδ jl + δilδ jk

)
. (24.112)

It is shown in the material theory—suggested by the linear theory of elasticity – that
the coefficients λC and μC can, alternatively, be replaced by
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EF
C := μF

C
(
3λF

C + 2μF
C
)

λF
C + μF

C
, kFC := λF

C + 2

3
μF
C , (24.113)

see [40]. The coefficients λF
C , μ

F
C , E

F
C , k

F
C are, in elasticity theory called the LAMÉ

constants,Young’s modulus, and the bulk modulus. Here, they have the meaning of
Cosserat viscosities: μF

C , is the Cosserat shear viscosity of the fluid constituent
and kFC is the Cosserat bulk viscosity. Analogously, λF

M, μF
M, EF

M, kFM are corre-

sponding couple stress viscosities. The second order isotropic tensors
2×2
P and

2×2
M are

expressible in the form (24.112)1. All these coefficients are positive and meant here
to apply for the fluid constitutive parameterizations. Thus,

EF
A > 0, kFA > 0 for A ∈ [C,M]. (24.114)

By contrast, the solid stress consists only of equilibrium contributions; this is in
conformity with our expectation, as the strain rate tensor was not assumed to act
as an independent constitutive variable. Its elastic response has a pure pressure-
dependent part due to the configurational and thermodynamic pressures; the former
is a response of the mixture to the solid volume fraction [or its complement, the
pore volume], the latter is due to the compressibility of the grains. The first term in
(24.107) expresses the fact that the solid elastic response for the solid stress t S may
sustain bulk and shear deformations with bulk and shear moduli. The form of this
term is interesting as ψF depends on Ū

S
and generates only an elastic solid stress

contribution, if ψF indeed has a Ū
S
-dependence. When the rule of phase separation

is applied, according to which constitutive quantities of phase α cannot depend on
variables of phaseβ (α 	= β) this term is absent, except for interaction terms (Bowen

1980, 1982 [6, 8]). For swelling of clay or deformation of hydrophilic polymers5

maintaining the rule of aequipresence is significant (Diebels [13]).
The fluid couple stress possesses in this formulation only a nonvanishing nonequi-

librium response linear in gradωF , see (24.108). This contribution may be called
a rotational viscous response with a rank-4 rotational viscosity tensor. In thermo-
dynamic equilibrium, the fluid couple stress vanishes. By contrast, the solid couple
stress possesses only an equilibrium contribution that is ‘frozen’ to the particle in
question and is only nontrivial if the free energies depend on the solid curvature
tensor in the reference system. This term is analogous to the corresponding term of
t S .

We summarize the remaining constitutive quantities at one single place as follows:

• Stresses:

(tF )0
(24.78),(24.79)= −νF pF

R I, (24.115)

pF
R = (ρ̂F )2

∂ψF

∂ρ̂F
+ ρS ρ̂F

νF

∂ψS

∂ρ̂F
,

5Hydrophilic polymers swell under water (vapor) adsorption.
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t S
(24.47),(24.48)= R̄

S
{
ρS ∂ψS

∂Ū
S + ρF ∂ψF

∂Ū
S

}
(FS)T − (pc + pth)I, (24.116)

pc = zSνS

{
ρS ∂ψS

∂νS
+ ρF ∂ψF

∂νS

}
,

pth = zSνS

{
ρS ρ̂F

νF

∂ψS

∂ρ̂F
+ ρF ρ̂F

νF︸ ︷︷ ︸
(ρ̂F )2

∂ψF

∂ρ̂F

}
.

• Couple stresses:

(mF )0 = 0,

(24.117)

mS (24.49)= R̄
S
{
ρS ∂ψS

∂RK̄S + ρF ∂ψF

∂RK̄S

} (
FS
)T

.

• Interaction force and interaction couple:

(mF )0
(24.80)= −

(
pF
R + ρF ∂ψF

∂νS

)
grad νS + ρS ∂ψS

∂ρ̂F
grad ρ̂F

−ρF
(
FS
)−T

((
∂ψF

∂Ū
S ∇Ū

S
)1

(24.118)

+
(

∂ψF

∂RK̄S ∇RK̄S
)1
)

,

(kF )0 = 0.

• Heat flux vector:

q I = −Q grad θ, Q > 0. (24.119)

Quantities (·)0 are values of (·) at thermodynamic equilibrium, which are in nonequi-
librium complemented by linear dissipative terms; quantities (·) without a subscript
apply in equilibrium as well as in non-equilibrium. In this spirit, the expressions
(24.115)–(24.119) complete the exploitation of the Second Law of Thermodynam-
ics for this model of a binary solid–fluid Cosserat mixture. However, the work is
not yet completed. Indeed, fluid mechanicians can still not even formulate a math-
ematical fluid flow problem as long as explicit expressions for the free energies are
not proposed. In the generality expressed by (24.115)–(24.119) such explicit expres-
sions are very difficult to guess. Simplifications are called for. Diebels [13], e.g.,
supposes that

1. ψF does not depend upon Ū
S
and RK̄S → ψF = ψF

1

(
ρ̂F , νF ,ϑ,

)
,
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2. ψS does not depend upon ρ̂F → ψS = ψS
1

(
Ū

S
, RK̄S

, νS,ϑ
)
, but

3. ψS,F depend both upon νS which is consequential in view of the saturation con-
dition νF + νS = 1.

It is straightforward to show with the aid of (24.115)–(24.118) that in this reduced
case the following results are obtained6:

• Stresses:

(tF )01 = −νF pF
R I = −νF (ρ̂F )2

∂ψF
1

∂ρ̂F
I, (24.120)

(t S)1 = R̄
S
{
ρS ∂ψS

1

∂Ū
S

} (
FS
)T − (pc + pth)I, (24.121)

pc = zSνS

{
ρS ∂ψS

1

∂νS
+ ρF ∂ψF

1

∂νS

}
,

pth = zSνS

{(
ρ̂F
)2 ∂ψF

1

∂ρ̂F

}
.

• Couple stresses:

(mF )01 = 0,

(24.122)

(mS)1 = R̄
S
{
ρS ∂ψS

1

∂RK̄S

} (
FS
)T

.

• Interaction force and interaction couple:

(mF )1 = −
(
pF
R + ρF ∂ψF

1

∂νS

)
grad νS,

(24.123)

(mS)1 = −(mF )1.

The two specifications for ψF,S above abandon the rule of aequipresence in favor
of the rule of phase separation. As already indicated earlier, this latter assumption
may be too restrictive. To rescue the results (24.120)–(24.123) in the spirit of the
enumeration above, we additively compose the free energies ψF,S as follows:

ψS = ψS
1

(
Ū

S
, RK̄S

, νS,ϑ
)

+ ψS
2

(
ρ̂F ,ϑ

)
,

(24.124)

ψF = ψF
1

(
ρ̂F , νS,ϑ

)+ ψF
2

(
Ū

S
, RK̄S

,ϑ
)

.

6In the formulae (24.120)–(24.123), a subscript (·)1 has been introduced to identify that the so
subscripted quantities are based on the rule of phase separation rather than the rule of aequipresence.
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Here, the functions ψF,S , which led to (24.120)–(24.123) are to be interpreted as
the functions (·)1. Alternatively, the functions ψ2, deliver, with the aid of (24.115)–
(24.118), the following results:

• Additional stresses:

(tF )02 = −ρS ρ̂F ∂ψS
2

∂ρ̂F
I,

(24.125)

(t S)2 = −(pth)2 = −zSνS

{
ρS ρ̂F

νF

∂ψS
2

∂ρ̂F

}
I .

• Additional couple stresses:

(mF )02 = 0,

(24.126)

(mS)2 = R̄
S
{
ρF ∂ψF

2

∂RK̄S

}
(FS)T .

• Additional interaction force & interaction couple:

(mF )2 = ρS ∂ψS
2

∂ρ̂F
grad ρ̂F

−
(

ρF (FS)−T

(
∂ψF

2

∂Ū
S ∇Ū

S + ∂ψF
2

∂RK̄S ∇ RK̄S
))

, (24.127)

(mS)2 = 0.

With these results, we obtain

Y = Y1 + Y2, where

(24.128)

Y1 + Y2 = {tF01 + tF02, t
S
1 + t S2 ,m

F
01 + mF

02,m
S
1 + mS

2 ,m
F
1 + mF

2

}
.

The functions ψF,S
2 are selected as follows:

ψS
2 = 1

2 f (ϑ)
(
ρ̂F − ρ̂F

0

)2
,

ψF
2 =

(
Ū

S
, RK̄S

) 1

2

(
g11(ϑ) g12(ϑ)

g21(ϑ) g22(ϑ)

)(
Ū

S

RK̄S

)
(24.129)

= 1
2g11(ϑ)Ū

S · Ū S + 1
2

(
g12(ϑ)Ū

S · RK̄S + g21(ϑ)RK̄S · Ū S
)

+ 1
2g22(ϑ)RK̄S · RK̄S

.
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Here, f (ϑ) and gαβ, α,β = 1, 2 are scalar coefficients,7 possibly dependent on
the temperature, which, in a first attempt may be taken as constants; ρ̂F

0 is the fluid
density in the reference configuration (usually a constant for a liquid). With the
parameterizations (24.129) one obtains from (24.125)–(24.127):

• Particular additional stresses:

(tF )02 = −ρS ρ̂F f (ϑ)
(
ρ̂F − ρ̂F

0

)
I,

(24.130)

(t S)2 = −zSνS

{
ρS ρ̂F

νF
f (ϑ)

(
ρ̂F − ρ̂F

0

)}
I .

• Particular additional couple stresses:

(mF )02 = 0,

(24.131)

(mS)2 = ρF R̄
S
{
1
2 (g12(ϑ) + g21(ϑ)) Ū

S + g22(ϑ) RK̄S
} (

FS
)T

.

• Particular additional interaction forces:

(
mF
)
2 = ρS f (ϑ)

(
ρ̂F − ρ̂F

0

)
grad ρ̂F

−ρF
(
FS
)−T

{
g11(ϑ)Ū

S + 1
2 (g12(ϑ) + g21(ϑ)) RK̄S

}
∇Ū

S

(24.132)

−ρF
(
FS
)−T

{
1
2 (g12(ϑ) + g21(ϑ)) Ū

S + g22(ϑ) RK̄S
}

∇ RK̄S
,

(
mS
)
2 = 0,

or in Cartesian tensor notation

((
mF
)
2

)
i
= ρS f (ϑ)

(
ρ̂F − ρ̂F

0

)
ρ̂F

,i

−ρF
(
FS
)−1

Di

{
g11(ϑ)Ū S

DC + 1
2 (g12(ϑ) + g21(ϑ))R K̄S

DC

}
Ū S

CM,M (24.133)

−ρF
(
FS
)−1

Di

{
1
2 (g12(ϑ) + g21(ϑ)) Ū S

DC + g22(ϑ) RK̄S
DC

}
RK̄S

CM,M .

Here, lower (upper) case indices denote components with respect to the present
(reference) coordinates.

The parameterization (24.129) with the five coefficient functions f, gαβ (α,β =
1, 2) can be simplified, if gαβ = gδαβ is chosen. Then, one obtains,

7In the most general case of (24.129) the g-functions are fourth-order tensors over R3. Here, by
assuming the simplest representation of isotropy, they are merely scalars.
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(
mS
)reduced
2 = ρFg(ϑ)R̄

S
(
Ū

S + RK̄S
) (

FS
)T

,

(
mF
)reduced
2 = ρS f (ϑ)

(
ρ̂F − ρ̂F

0

)
grad ρ̂F (24.134)

−ρF
(
FS
)−T

g(ϑ)Ū
S∇Ū

S − ρF
(
FS
)−T

g(ϑ)RK̄∇RK̄S
.

The complete constitutive functions (24.128) are now obtained by adding Y1 and
Y2, given in (24.120)–(24.123) and (24.130)–(24.132) [or their reduced versions
(24.134)].

24.8 On Classes of Alternative Models

The inferences drawn from the entropy principle in theClausius–Duhem inequality
deduced in the preceding analysis were obtained under the bold assumptions that

1. the solid and fluid constituents of the binary mixture are both elastic (and in
particular compressible),

2. the fluid is dissipative, but the solid is not [see (24.20)],
3. the rule of aequipresence is applied, i. e., the constitutive variables of any con-

stituent phase may depend on the independent constitutive variables of all phases.
This generality is in harmony with Diebels [13]. The rule of aequipresence is
more general than the rule of phase separation, which is used by most authors
of mixture models (of Boltzmann structure), e.g., Bowen (1980/1982) [7, 8],
Ehlers (1989/1993) [18–20], and Passman et al. (1984) [60].

4. Owing to the maintenance of the existence of the saturation condition, i.e., νF +
νS = 1, the sum of the volume fractions of the solid and fluid add up to unity, or
the fluid and solid fill up the whole space (no empty holes).

The prerequisites of the existence of general elastic deformations of the solid and
fluid constituents, and the saturation condition give rise through the exploitation of
the entropy principle to three different types of pressures:

(i) the thermodynamic pressure of the fluid pF
th, (24.120),

(ii) the thermodynamic pressure of the solid pS
th, (24.121)3,

(iii) the configurational pressure pc, (24.121)2.

Within the class of saturated binary mixtures, these prerequisites, (i)–(iii), comprise
most general constituting material properties. Limiting situations are, where either
the solid or the fluid or both are compressible/incompressible as shown inTable 24.1.
Diebels [13] presents the compressible model in all details as we have done in the
previous pages of this chapter. In what follows, we shall comment on results obtained
for the hybrid models and the incompressible model.
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Table 24.1 Classes of binary solid–fluid Cosserat models treated in this chapter

Fluid Solid References for Boltzmann
models

Denotation, acronym remarks

Compressible Compressible [1–3] Compressible model (CM)

Incompressible Compressible [19, 20] Hybrid model I (HMI)

Compressible Incompressible [1–3] Hybrid model II (HMII)

Incompressible Incompressible [7, 12, 14, 15, 18, 21, 23] Incompressible model (IM)

(see also add. references in [13])

24.8.1 The Hybrid Model I (HMI)

If the true or effective density of the fluid, ρ̂F , is constant, then the ‘pore’-fluid
is called microscopically incompressible or microscopically density preserving, for
which

∂ψα

∂ρ̂F
= 0, α = F, S (ρ̂F = const.) (24.135)

in all previous formulae. In view of the relation ρF = νF ρ̂F , the balance law for the
fluid constituent takes the form

(νF )′F + νFdiv (vF ) = 0, (24.136)

which is in conformity with the saturation condition, provided that [see (24.18)]

(νF )′F − zSνSdiv (vS) + (grad νS) · wF = 0. (24.137)

With the fluid mass balance

(νF )′F + νFdiv (vF ) = 0

and div (vF,S) = Δ̄
F,S · I [see Chap.22. Eqs. (22.57), (22.63)], Eq. (24.137) may

also be written as

− νFΔ̄
F · I − zSνSΔ̄

S · I + (grad νS) · wF = 0. (24.138)

This condition was automatically satisfied by the compressible model CM, but must
here be incorporated in the entropy inequality, multiplied with a Lagrange param-
eter P . It follows that to the long entropy inequality, stated as (24.23)–(24.45), the
following terms must be added:
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• +P νFΔ̄ · I in line 1 of (4.45),

• +P zSνSΔ̄
S · I in line 1 of (4.23),

• −P grad νS in line 4 of (4.45).
(24.139)

If,moreover, in the long inequality extendedby these terms all variables differentiated
with respect to ρ̂F and some of its derivatives are dropped (because these expressions
vanish owing to the constancy of ρ̂F ) and the analogous inferences are drawn as in
Sects. 24.6 and 24.7, then the following results are obtained:•

t S = R̄
S
{
ρS ∂ψS

∂Ū
S + ρF ∂ψF

∂Ū
S

}
(FS)T

−zSνS

{
P + ρS ∂ψS

∂νS
+ ρF ∂ψF

∂νS

}
I . (24.140)

Compare this result with (24.47) and note that P takes now the role of the ther-
modynamic pressure (24.48).•

(tF )0 = −P νF I, (24.141)

which corresponds to (24.106) or (24.78) of the CM. The constraint pressure
corresponds here also to the fluid part of the thermodynamic pressure.

• The couple stresses in thermodynamic nonequilibrium, (24.48) and in equilibrium
remain the same as for the CM,

mS = R̄
S
{
ρS ∂ψS

∂RK̄S + ρF ∂ψF

∂RK̄S

}
(FS)T ,

(24.142)

(mF )0 = 0.

• The interaction forces and couples in thermodynamic equilibrium take the forms

(mF )0 = −P grad νS − ρF (FS)−T

(
∂ψF

∂Ū
S ∇Ū

S
)1

−ρF (FS)−T

(
∂ψF

∂RK̄S ∇RK̄S
)1

, (24.143)

(kF )0 = 0.

These relations correspond in the CM to (24.81) and (24.82) and can be deduced
from (24.76), if the terms involving∂(·)/∂ρ̂F are dropped and (wF )∗·(−P)grad νS

is added to (24.77). As before, the constraint pressure term−Pgrad νS in (24.127)1
is replacing the thermodynamic fluid pressure.

• The internal heat flux in the equilibrium vanishes,

(qI)0 = 0. (24.144)
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The constraint pressure P , which agrees with the Lagrange parameter of equation
(24.138) is for HMI an independent field variable that is only determined by solving
a concrete boundary value problem. In this regard, P corresponds to the pressure
in an incompressible fluid. Further reaching analyses of the model have, e.g., been
presented by Bluhm [1–3].

The HMI assumes to consist of a compressible solid component, but an incom-
pressible fluid component and is for this reason severely restricted. It is certainly
inappropriate as a model for a grain–air mixture, such as for a dry soil or the upper
firn-ice layer of glaciers and ice sheets. However, it may be adequate for water-
saturated soft foodstuff.

24.8.2 The Hybrid Model II (HMII)

According to Table 24.1, this model consists of an incompressible solid constituent
that is saturated by a compressible fluid. The true density of the solid component is
set to a constant,

ρ̂S = const, (24.145)

which implies that the mass balance equation for the solid volume fraction takes the
form

∂νS

∂t
+ νSdiv (vS) = 0, (24.146)

which is only consistent with (24.17)2, provided that

zS = 1. (24.147)

The volume balance (24.146) can straightaway be integrated. With the initial solid
volume fraction νS

0 in the reference configuration, one obtains8

νS = νS
0 det

(
(FS)−1

) = νS
0 det(Ū)−1, (24.148)

owing to FS = R̄
S
Ū

S
[see this volume, Chap. 22, Eq. (22.26)] and the orthogonality

of R̄
S
. The solid volume fraction in the present configuration can, thus directly be

evaluated from the determinant of theCosserat stretch tensor of the solid constituent
by successive updating. Consequently, νS is no longer an independent constitutive
variable (provided Ū

S
is such a variable) and ψα, α = F, S, can be assumed as

functions of the form

8See e.g., [40], Chap. 1, homework 8, p. 43.
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ψα = ψα
(
Ū

S
, RK̄S

, ρ̂F ,ϑ
)

, α = F, S. (24.149)

It transpires that in the HMII, no additional constraint condition enters the exploita-
tion of the entropy principle. The constitutive quantities can be obtained from those
of the CM simply by omitting all terms of the form ∂(·)/∂ρ̂S and ∂(·)/∂νS , (since
νS is no longer an independent constitutive variable).

• The solid stress in equilibrium and the fluid stress in thermodynamic equilibrium,
stated in (24.47) and (24.77), respectively, take the forms

t S = R̄
S
{
ρS ∂ψS

∂Ū
S + ρF ∂ψF

∂Ū
S

}
(FS)T

−νS

{
ρS ρ̂F

νF

∂ψS

∂ρ̂F
+ (ρ̂F

)2 ∂ψF

∂ρ̂F

}
,

(24.150)
(
tF
)
0 = −

{
ρS ρ̂F ∂ψS

∂ρ̂F
+ (ρ̂F

)2
νF ∂ψF

∂ρ̂F

}
I = −νF pF

R I,

pF
R := ρS ρ̂F

νF

∂ψS

∂ρ̂F
+ (ρ̂F

)2 ∂ψF

∂ρ̂F
.

These expressions agree with those of the CM.
• The couple stresses of the solid and fluid assume for this HMII the form [compare
(24.49) and (24.81)]:

mS = R̄
S
{
ρS ∂ψS

∂RK̄S + ρF ∂ψF

∂RK̄S

}
(FS)T ,

(24.151)

(mF ) = 0.

These expressions equally agree with those of the CM.
• For the interaction force (mF )0 and the interaction couple (k)0 in thermodynamic
equilibrium, given for theCMby (24.80) and (24.82),we obtainwith∂(·)/∂νS = 0
[since νS is not an independent constitutive variable]

(
mF
)
0 = −

{
ρS ρ̂F

νF

∂ψS

∂ρ̂F
+ (ρ̂F

)2 ∂ψF

∂ρ̂F

}
grad νS + ρS ∂ψS

∂ρ̂F
grad ρ̂F

−ρF
(
FS
)−T

(
∂ψF

∂Ū
S ∇Ū

S
)1

(24.152)

−ρF
(
FS
)−T

(
∂ψF

∂RK̄S ∇RK̄S
)1

,

(k)0 = 0.
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• Finally, the equilibrium inner heat flux vector in thermodynamic equilibrium van-
ishes:

(
qI
)
0 = 0. (24.153)

24.8.3 The Incompressible Model (IM)

For Boltzmann continua, the incompressible model for binary mixtures has often
been presented in the literature, see e.g., Bowen (1980) [7], De Boer and Ehlers

(1986) [12] and Ehlers (1989) [18]. It is also popular in multiphase fluids and in
consolidation theories.

Because the true densities are constant,

ρ̂α = const., α = 1, 2, (24.154)

the mass balances for the solid and fluid can be written as balances for the volume
fractions,

(να)
′α + ναdiv (vα) = 0. (24.155)

For the solid, conformity of (24.155) with (24.17) requires zS = 1; for the fluid, the
saturation condition implies the balance (24.137) (as for the HMI, which serves also
for this IM as a constraint condition). With the Lagrange parameter P , the terms
(24.139) must also here be added to the long entropy inequality (24.23)–(24.45). The
inferences due to the exploitation of this extended inequality must then be the same
as for the HMI, but the terms ∂(·)/∂ρ̂S must be dropped. Thus, one obtains from
(24.140)–(24.143)

• t S = R̄
S
{
ρS ∂ψS

∂Ū
S + ρF ∂ψF

∂Ū
S

}
(FS)T − PνS I, (24.156)

• (
tF
)
0 = −PνF I, (24.157)

• mS = R̄
S
{
ρS ∂ψS

∂RK̄S + ρF ∂ψF

∂RK̄S

}
(FS)T ,

(24.158)

(mF )0 = 0,

• (
mF
)
0 = −P grad νS − ρF (FS)−T

(
∂ψF

∂Ū
S ∇ Ū

S
)1

−ρF (FS)−T

(
∂ψF

∂RK̄S ∇ RK̄S
)1

, (24.159)

(
kF
)
0 = 0.
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Evidently, only the stresses (24.156), (24.157), and the interaction force (24.159)1
are directly influenced by the constraint parameter P .

24.9 Specification of the Material Behavior

24.9.1 Rules of Aequipresence and Phase Separation and
Their Approximate use for a Binary Mixture

In Sect. 24.7.1 formula (24.69) was proved to be the permissible thermodynamic
functional relation of theHelmholtz free energies of the solid and fluid constituents
for a binary saturated mixture of the class (24.20), if the rule of aequipresence was
observed as a principal basis. In Sect. 24.7.3, following Diebels (2000) [13], this
constitutive postulate was then simplified by replacing the rule of aequipresence by
the rule of phase separation, which led to

ψS = ψS
(
Ū

S
, RK̄S

, νS,ϑ
)

, ψF = ψF
(
ρ̂F ,ϑ

)
,

and the consequential stress, couple stress, and interaction force and couple for-
mulae (24.120)–(24.123). Limitation to the rule of phase separation means that the
derived quantities for the stresses, couple stresses are functionally the same as for
a single- constituent solid or single-constituent fluid without a solid–fluid interac-
tion. The influence of the rule of aequipresence can then at least approximately be
recovered by the additive decomposition of the functions ψS,F

2 given in (24.124).
The stress, couple stress, and interaction force and couple are then equally given by
the respective additions of the expressions (24.120)–(24.123) and (24.125)–(24.127),
respectively. An example for a weak (linear) contribution of the ‘aequipresence’ term
is suggested in (24.129) with consequential additions for the stresses, couple stresses
and interaction force and couple in (24.130)–(24.134).

In the following subsections, the intention is to present explicit forms of the
solid and fluid Helmholtz free energies that may serve as master functions when
attempting the formulation and solution of initial boundary value problems for the
type of binary solid–fluid mixtures of the constituents dealt with in this chapter.
Explicit forms of the free energies are known for Boltzmann continua of single-
constituentmedia; they provide a guidance in our attempt to invent explicit functional
forms for ψS,F of the solid and fluid, respectively. For this reason, it is certainly
helpful, if proposals for single-constituent models are presented, before proposals
for binary solid–fluid mixtures are suggested. This is all the more justified in view
of the fact that with the assumption of phase separation the free energies ψS,F



184 24 Thermodynamics of Binary Solid–Fluid Cosserat Mixtures

[see in (24.124) the functions ψS,F
1 ] are formally such as if they were formulated for

a single- constituent body.

24.9.2 A Linear Model of Thermoelasticity of a Cosserat
Single-Constituent Body

Early elasticitymodels forCosserat solidswere developed byEringen andSuhubi
[30, 73], Nowacki [57, 58].9 They concern linear and nonlinear constitutive mod-
eling, consistent with the Second Law. Below, the linear thermoelastic model due
to Nowacki [58] is presented that is based on consequential linearization using the
Clausius–Duhem–Coleman–Noll procedure. Nowacki presents his model in
the Euler description, using Cartesian tensor notation. Central kinematic quantities
are, therefore, the asymmetric strain tensor, γi j and the torsion tensor, κi j , defined
by

γi j = ui, j + εi jkφk, κi j = φ j,i . (24.160)

Balances of internal energy, ε, and entropy, s, are given by

ρε̇ = σi j γ̇i j + mi j κ̇i j − qi,i + ρr,

(24.161)

ρṡ = −qi,i
T

+ qkT,k

T 2
+ ρr

T
+ ρηs,

in which σi j andmi j are theCauchy stress and couple stress tensors; qi , r and ηs are
the heat flux vector, the specific energy supply, and the specific entropy production
rate, while T > 0 is the absolute temperature. Eliminating between (24.161)1,2 the
energy supply rate density, r, and introducing the Helmholtz free energy ψ =
ε − T s, leads to

ψ̇ = σi j γ̇i j + mi j κ̇i j − sṪ − T

(
ρηs + qkT,k

T

)
. (24.162)

At this point, constitutive relations of the form

C = C (γi j ,κi j , T, T,k
)
, C = {ψ, qk} (24.163)

are assumed; materials of this class are called thermoelastic Cosserat solids. With
these, and the use of the chain rule of differentiation, (24.162) takes the form

9Pertinent early memoirs are as well by Eringen [28, 29],Grioli [38, 39],Mindlin and Tiersten
[50],Neuber [54], Schäfer [63, 64], [65], Smith [69, 70], Soos [71, 72], Toupin [76],Wozniak

[82], Wyrwinski [83], and many others, see e.g., [58].
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−
(

∂ψ

∂γi j
− σi j

)
γ̇i j −

(
∂ψ

∂κi j
− mi j

)
κ̇i j −

(
∂ψ

∂T
+ s

)
Ṫ − ∂ψ

∂T,k
Ṫ,k

−qkT,k

T
= Tρηs

!
� 0, (24.164)

inwhich theSecondLaw implies that ηs � 0.Because the above inequality is linear in
the quantities {γ̇i j , κ̇i j , Ṫ , Ṫ,k} andmust hold for arbitrary values of {γ̇i j , κ̇i j , Ṫ , Ṫ,k},
we necessarily have10

σi j = ∂ψ

∂γi j
, mi j = ∂ψ

∂κi j
, s = −∂ψ

∂T
, ψ 	= ψ(·, T,k), (24.165)

as well as

− qkT,k = Tρηs � 0
Tρ>0−→ qkT,k � 0. (24.166)

With the Fourier law of heat conduction, qk = −KT,k , this implies K � 0. The
heat conductivity is nonnegative.

In an isotropic, homogeneous and centrosymmetric11 body and in a formally linear
thermoelastic body, the free energy ρψ has the following quadratic expansion [58],

ρψ = μ + α

2
γi jγi j + μ − α

2
γi jγ j i + λ

2
γkkγnn + ξ + ε

2
κi jκi j

+ ξ − ε

2
κi jκ j i + β

2
κkkκnn − νγkkθ − χκkkθ + G(θ). (24.167)

Here, μ,α,λ, ξ, ε,β, ν and χ are constants, while θ = T − T0, where T0 is a
constant reference temperature at zero deformation. Thus, θ is the small temperature
difference above a constant base temperature andG(θ) is a smooth integrable function
of θ = T − T0. The quadratic representation (24.167) does not involve mixed terms
γi jκi j , γi jκ j i , the reason being that, according to (24.160), the terms γi jκi j , γi jκ j i

are not invariant under rotations reflecting central symmetry; [take e.g., a rotation by
180◦, which changes the sign of γi jκi j]. As noted also by Diebels [13], this makes
some models violating centro symmetry, [47, 48], which is regarded as unphysical.

In general, ψ as a scalar quantity is an isotropic tensor function of the invariants
γi j and κi j , namely,

γi jγi j , γi jγ j i , γkkγnn; κi jκi j , κi jκ j i , κkkκnn, (24.168)

among others (of higher than quadratic dependences). With the restrictions (24.168)

10A detailed explanation of these arguments is given in Vol. 2 Chap. 18 ‘Thermodynamics – Field
Formulation’ of this treatise [42].
11This means, constitutive equations are invariant with respect to arbitrary rotations.
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the coefficients {μ,α,λ, ξ, ε,β, ν,χ} must be treated as constants. Relations
(24.165) then yield

σi j = (μ + α)γi j + (μ − α)γ j i + (λγkk − νθ)δi j ,

mi j = (ξ + ε)κi j + (ξ − ε)κ j i + (βκkk + νθ)δi j , (24.169)

s = νγkk + χκkkθ − ∂G(θ)

∂T
.

These can also be written as

σi j = 2μγ(i j) + 2αγ[i j] + (λγkk − νθ)δi j ,

mi j = 2ξκ(i j) + 2εκ[i j] + (λκkk + νθ)δi j , (24.170)

s = νγkk + χκkkθ − ∂G(θ)

∂T
.

The coefficients μ and λ are LAMÉ constants, while α,β, ξ, ε are new Cosserat

elasticity constants. These are the constants of isothermal elasticity, whereas ν and
χ depend on both, the mechanical and thermal processes of the body.Nowacki [58]
derived the inverse relations to (24.169) as follows:

γi j = αtθδi j + 2μ′σ(i j) + 2α′σ[i j] + λ′σkkδi j ,

(24.171)

κi j = βtθδi j + 2ξ′m(i j) + 2ε′m[i j] + β′mkkδi j ,

with new constant parameters αt ,βt ,μ
′, ξ′,α′, ε′,β′. By substituting (24.171) into

(24.170) and requesting the emerging equations to be identities, the following cor-
respondences are obtained:

2μ′ = 1

2μ
, 2α′ = 1

2α
, λ′ = λ

6μK
, αt = ν

3K
,

2ξ′ = 1

2ξ
, 2ε′ = 1

2ε
, β′ = β

6ξΩ
βt = χ

3Ω
, (24.172)

with K = λ + 2

3
μ, Ω = β + 2

3
ξ.

Next, let us consider Eq. (24.171) for stress and couple stress free conditions. Then,

γi j = αtθδi j and κi j = βtθδi j . (24.173)

Because an isotropic solid cannot generate a rotation dependent deformation, as
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noted by Nowacki [57], (24.173)2 requires that

βt ≡ 0
(24.172)=⇒ χ = 0, (24.174)

so that, finally,

σi j = 2μγ(i j) + 2αγ[i j] + (λγkk − νθ)δi j ,

mi j = 2ξκ(i j) + 2εκ[i j] + βκkkδi j , (24.175)

s = νγkk − ∂G(θ)

∂T

is obtained. [In plane deformation, the terms involving ξ and β in (24.175)2 drop
out.] More generally, in three dimensions (24.175)3 implies

ds = νdγkk − ∂2G(θ)

∂T 2
dT . (24.176)

With the specific heat cε at constant deformation, we have

cε = T

(
∂s

∂T

)

γ,κ

= −∂2G

∂T 2
T .

Integration yields

G(θ) = −
∫ T

T0

dT ′
∫ T ′

T0

cεdT ′′

T ′′ = −
∫ T

T0

cε ln

(
T ′

T0

)
dT ′

−→ −∂G(θ)

∂T
= cε ln

(
T

T0

)

=⇒ s = νγkk + cε ln

(
1 + θ

T0

)
= νγkk + cε

θ

T0
. (24.177)

This thermodynamic linearized thermoelastic model is due to Novachki [58]. The
model has subsequently been re-derived and/or used by Lakes [45] and for two
dimensional problems by De Borst [11], and Ehlers and Volk [24–26], as stated
by Diebels [13].

The results presented above have been derived for a single-constituent body, for
which the volume fraction has neither entered the balance relations nor the consti-
tutive modeling. For linearized thermoelasticity such an assumption is permissible
on the basis that the material compressibility is accounted for by the LAMÉ con-
stants. When large volumetric changes within a nonlinear theory are in focus and the
configurational porosity is large, such a simplification is no longer justified.
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As a preliminary step toward such an extended formulation, let us in the next
subsection provide a glimpse onto the nonlinear elasticity theory of isotropic solids,
first again for a single-constituent body of Boltzmann structure and by omitting
the porosity.

24.9.3 Elastic Energies for Isotropic Solid Boltzmann Bodies

As is well known, see Penn (1970) [61], Green and Zerna (1954) [37], Hutter
and Jöhnk (2004) [40] for any elastic material, it is customary to write the general
strain energy (Helmholtz free energy) function W as

W = W (IB, IIB, IIIB), (24.178)

where B = FFT is the left Cauchy–Green deformation tensor and IB , IIB , IIIB
are the invariants

IB = λ2
1 + λ2

2 + λ2
3,

IIB = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, (24.179)

IIIB = λ2
1λ

2
2λ

2
3 (= detB),

and λ1,λ2,λ3 are the principal stretches (the eigenvalues of
√
B).12

For compressible materials it is customary to separate the influence of the iso-
choric and dilatational deformations additively in the form

W = Ŵ +U, where Ŵ = Wisochor, U = Wdilat. (24.180)

To this end, combinations of the invariants IB , IIB , IIIB are introduced as follows
[61]

I B̂ = IB

III 1/3B

, II B̂ = IIB

III 2/3B

, III B̂ = IIIB =: J 2. (24.181)

For isotropic elastic bodies the functionW in (24.178) must be an isotropic function
that is invariant under orthogonal transformations. For pure dilatation λ1 = λ2 =
λ3 = λ, it is easy to show that

12Alternatively, (24.178) and (24.179) can also be formulated for the right Cauchy–Green
deformation tensor C = FT F; the eigenvalues λi (i = 1, 2, 3) are the same for

√
C as for

√
B,

see e.g., [40].
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I B̂ = 3λ2

λ2
= 3, II B̂ = 3λ4

λ4
= 3, III B̂ = λ2 =: J 2. (24.182)

The free energy W , given as a function of the principal invariants in (24.178) can,
also be formulated as a function of the alternative invariants (24.181) as

W = W̃ (I B̂, II B̂, III B̂) or W = W̄ (I B̂, II B̂, J ), (24.183)

which straightaway suggests the decomposition

W = Ŵ (I B̂, II B̂) +U (III B̂),= Ŵ (I B̂, II B̂) +U (J ), (24.184)

that separates the free energy into a purely isochoric part Ŵ [since I B̂ = II B̂ = 3 for
a pure dilatation, Ŵ is a constant for this motion (with value zero)] and a dilatational
part U accounting for the compressibility of the material.

It follows from the theory of hyperelastic continua that the Kirchhoff stress
tensor, the J -weighted Cauchy stress tensor, telast = Jσelast, is derivable from W
as follows:

telast = 2

(
∂W

∂B

)
B

[
= 2F

(
∂W

∂C

)
FT

]
. (24.185)

These two formulae can be obtained if the Second Law is exploited for an isotropic
elastic solid body. It is also straightforward to show that13

telast = 2ϕ0 I + 2ϕ1B + 2ϕ2BB, (24.186)

ϕ0 := 1

2
J

∂W

∂ J
,

ϕ1 :=
(

∂W

∂ IB
+ IB

∂W

∂ IIB

)
,

ϕ2 := − ∂W

∂ IIB
,

or in terms of W = W̄ (I B̂, II B̂, J ),

telast = 2ϕ̄0 I + 2ϕ̄1 B̂
D + 2ϕ̄2(B̂ B̂)D, (24.187)

ϕ̄0 := 1

2
J

∂W̄

∂ J
,

ϕ̄1 := ∂W̄

∂ I B̂
+ I B̂

∂W̄

∂ II B̂
,

13The representation (24.186), (24.187) as quadratic polynomial tensor relations of I, B, BB is a
consequence of the Cayley–Hamilton theorem for any smooth function.
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Table 24.2 Free energies for nonlinear elastic solids

W = 1
2μ (IB − 3) − μ ln J +U (J ) Neo-Hooke [51, 62]

W = 1
2μ (IB − 3) − μ ln J + 1

2� (ln J )2 Simo–Pister [66]

W = ( μ
2 − C1

) (
J−4/3 IIB − 3

)
−C1

(
J−2/3 IB − 3

)+ k
2 (J − 1)2 Mooney–Rivlina [51, 62]

W̄ = 1
2μ
(
I B̂ − 3

)+ 1
2 k (ln J )2 Flory

a [33]

[μ is a shear modulus and � or k are bulk moduli. C1 is a constant]
aFor short biographies of John Paul Flory and Ronald Samuel Rivlin, see Fig. 24.3

Table 24.3 Kirchhoff stress tensors telast evaluated from the free energies stated in Table 24.2
with the aid of the rules (24.186) and (24.187).

telast = μ(B − I) + J
∂U

∂ J
I Neo-Hooke [51, 62]

telast = μ(B − I) + (� ln J ) I Simo-Pister [22, 66]

telast =
{

−
(μ

2
− C1

) 4

3
J−4/3 + 2

3
C1 J

−2/3 IB + k J (J − 1)

}
I

+2
{(μ

2
− C1

)
J−4/3 IB − C1 J

−2/3
}
B

−2
{(μ

2
− C1

)
J−4/3

}
BB.

Mooney–Rivlin [22, 51, 62]

telast = μBD + (k ln J ) I Flory [22, 34]

[BD is the deviatoric part of B]

ϕ̄2 := − ∂W̄

∂ II B̂
,

in which B = B̂
(
J 2/3

)
, and the superscript D indicates that the superscripted

quantity is a deviator. For the relatively easy proofs of (24.186) and (24.187), see
Ehlers and Eipper (1998) [22].

Examples of popular nonlinear free energy functions are collected in Table 24.2
and correspondingKirchhoff stress formulae, evaluated with the rules (24.186) and
(24.187), are given in Table 24.3.
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Fig. 24.3 John Paul Flory (June 19, 1910–September 9, 1985) andRonald
Samuel Rivlin (May 6, 1915–October 4, 2005)

John Paul Flory (1910–1985)was anAmerican chemist andNobel laureate
(1974), known through his work on polymers and macromolecules. He was
Professor of Chemistry at Cornell (1948–1961), then Stanford universities. His
best known works are summarized in

• Principles of Polymere Chemistry (1953) [32],
• Statistical Mechanics of Macromolecules (1969), [34], and
• his Selected Works [35].

Ronald Samuel Rivlin (1915–2005) was a British-American physicist,
applied mathematician, rheologist, and noted specialist on rubber. He earned
his Ph.D. at Cambridge University in Mathematics. After a number of assign-
ments in the British rubber industry, he took posts at Brown University (1953–
1967) and Lehigh University (1967–1980), where he became Director of the
Center of theApplication ofMathematics. Professionally, hewas known for his
pioneering work on large elastic deformations and neo-Hooke andMooney–
Rivlin solids and nonNewtonian Fluids, where theRivlin–Ericksen tensors
play an important role. See also the biographical note onReiner–Riwlinfluids
in Vol. 1 of this treatise on fluid and thermodynamics on p. 355 [41].

The text is based on www.wikipedia.org

The Cauchy stress tensor, expressed in terms of the function W̄ in (24.183) and
(24.184) is given in [61] as

σelast = 2

III 1/2
B̂

{[
II B̂
3

∂W̃

∂ II B̂
− I B̂

3

∂W̃

∂ I B̂
+ III B̂

∂W̃

∂ III B̂

]
I

www.wikipedia.org
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+ 1

III 1/3
B̂

∂W̃

∂ I B̂
B − III 1/3

B̂

∂W̃

∂ II B̂
B−1

}

(24.184)= 2

III 1/2
B̂

{[
II B̂
3

∂Ŵ

∂ II B̂
− I B̂

3

∂Ŵ

∂ I B̂

]
I + 1

III 1/3
B̂

∂Ŵ

∂ I B̂
B

− III 1/3
B̂

∂Ŵ

∂ II B̂
B−1

}
+ 2

III 1/2
B̂

{
III B̂

∂U

∂ III B̂

}
I . (24.188)

In expression (24.188), the trace of the first curly bracket vanishes14; therefore, the
mean elastic pressure is

pmean
elast = −1

3
tr (σelast) = −2III 1/2

B̂

∂U (III B̂)

∂ III B̂
(24.182)3= −2 J

∂U (J )

∂ J

∂ J

∂ III B̂︸ ︷︷ ︸
1/(2J )

= −∂U (J )

∂ J
. (24.189)

For a stress-free reference configuration, it follows from (24.189) that
(∂U/∂ J )|J=1 = 0.

According to Penn (1970) [61] the decomposition (24.184) is not fully supported
by experiments (on a rubber specimen), and Diebels (2000) [13]—quoting Ehlers

14To prove this, take the trace of the term {·} in the first curly brackets of (24.188). This yields

II B̂
∂ Ŵ

∂ II B̂
− I B̂

∂ Ŵ

∂ I B̂
+ 1

III 1/3
B̂

∂ Ŵ

∂ I B̂
IB − III 1/3

B̂

∂ Ŵ

∂ II B̂
IB−1

def.= Q.

Owing to (24.181)1, the second and third term of this expression cancel each other. To conclude the
same for the remaining terms, IB−1 must be expressed in terms of the invariants of B. This follows
from the Cayley–Hamilton theorem

B3 − IB B2 + IIB B − IIIB I ≡ 0,

from which one easily deduces

B2 − IB B + IIB I − IIIB B−1 = 0,

=⇒ B−1 = 1

IIIB
B2 − IB

IIIB
B + IIB

IIIB
I .

Forming the trace of this equation yields

trB−1 ≡ IB−1 = 1

IIIB

⎧⎪⎨
⎪⎩
IB2 − (IB)2︸ ︷︷ ︸

−2IIB

+3IIB

⎫⎪⎬
⎪⎭

= IIB
IIIB

(24.181)2= II B̂ III
−1/3
B ,

which proves now that Q = 0.
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and Eipper (1998) [22]—states ‘that a full decoupling in the domain of large defor-
mations leads to questionable results’. Nevertheless, the decomposition is kept in
many articles; we shall do so here as well as a first step toward a quantification ofW
as a realistic functional solution of it.

The free energy function W must satisfy the following relations, which are pri-
marily motivated by requirements of physics [16]:

1. In a strainless initial state, the value of W should be zero,

Ŵ (3, 3) = 0, U (J = 1) = 0. (24.190)

2. It is assumed that the strainless state is stress free (no prestress!). Since I B̂ and
II B̂ are constant in this state, Ŵ does not contribute to the Cauchy stress so that
(24.186) implies for a stress-free reference state

∂U

∂ III B̂

∣∣∣∣
III B̂=1

= 0 −→ ∂U

∂ J

∣∣∣∣
J=1

= 0. (24.191)

3. The free energy function must be positive semidefinite, i.e., for any strained state

{
Ŵ (I B̂, II B̂) � 0

} ∪ {
Ŵ (3, 0) = 0

}
, U (J )|J 	=1 � 0. (24.192)

4. For infinitesimal strains the free energy function must coincide with the Saint

Venant–Kirchhoff strain energy, i.e.,

∂2U

∂ J 2

∣∣∣∣
J=1

> 0 → K > 0, (24.193)

where K is the bulk modulus.15

5. When a continuum element is compressed to a single point, the value of the
free energy must approach ∞, and the volumetric stress (i.e., the elastic negative
pressure) must approach the value −∞:

U (J → +0) → +∞,
∂U

∂ J

∣∣∣∣
J→+0

→ −∞. (24.194)

Physically, this requirement states that an infinitely large energy and equally
an infinitely large pressure are required to compress a material element to zero
volume.

6. Quite similarly, for an infinitely stretched continuum, the free energy, as well as
the associated stress should be infinitely large,

15In [16] also a condition on Ŵ is stated from which the shear modulus follows, but that condition
does not affect U .
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U (J → ∞) → +∞,
∂U

∂ J

∣∣∣∣
J→∞

→ +∞. (24.195)

7. To satisfy the requirement of polyconvexity, the volumetric part U of W must
satisfy the convexity condition

∂2U

∂ J 2
� 0, (24.196)

which is important in conjunction with existence proofs of solutions (see, e.g.,
Ciarlet (1988) [9]).

For the popular choice [66]

U (J ) = 1

4

[
(J − 1)2 + (ln J )2

]
,

−→ ∂U

∂ J
= 1

4

[
2(J − 1) + 2 ln J

J

]
, (24.197)

−→ ∂2U

∂ J 2
= 1

4

[
2 + 2

J 2
− 2

J 2
ln J

]
> 0, ∀J > 0,

one easily deduces

U |J=1 = 0,
∂U

∂ J

∣∣∣
J=1

= 0,
∂2U

∂ J 2

∣∣∣
J=1

= 1,

U |J→0+ → +∞,
∂U

∂ J

∣∣∣
J→0+

→ −∞,
∂2U

∂ J 2

∣∣∣
J→0+

→ +∞,

U |J→∞ → +∞,
∂U

∂ J

∣∣∣
J→∞

→ +∞,
∂2U

∂ J 2

∣∣∣
J→∞

→ 1

2
,

(24.198)

in agreement with (24.190)–(24.196). The function U above arises in Table 24.4 as
U3, scaled with K = 1.

Doll and Schweizerhof [16] discuss a number of volumetric strain energy
functions. Those, which fulfill all of the conditions (24.190)–(24.196) are stated in
Table24.4 (with the numbering of these authors). The functions U3 and U4 are very
popular in the finite element literature of elastic bodies subject to large deformations.
The functionsU6,U7,U8 are proposals byDoll and Schweizerhof (1999) [16].U6

allows via the parameters α and β to influence the shape of the function U6(J ) and
offers more flexible adjustment to experimental results than the others. All functions
Uα (α = 3, . . . , 8) have a common scaling factor, K , which can be interpreted as
a penalty parameter that enforces incompressibility (in numerical computations) if
large values are chosen; for details, see [16].
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Table 24.4 Volumetric strain energy functions, which fulfill the requirements (24.190)–(24.196)

U3(J ) = K

4

[
(J − 1)2 + (ln J )2

]
[13, 46, 66, 67, 79]

U4(J ) = K

θ2

[
θ ln J + J−θ − 1

]
, for θ < −1 [13, 44, 49, 59, 68]

U6(J ) = K

{[
J (α+1)

α + 1
+ J−(β−1)

β − 1

]
1

α + β
− 1

(α + β)(β − 1)

}

α > 0,β > 1

[16]

U7(J ) = K

2

[
exp(J − 1) − ln J − 1

]
[16]

U8(J ) = K

2
[(J − 1) ln J ] [16]

[For large values of K this parameter serves as a penalty for incompressibility. Its standard value is
K = 1 or the bulk elasticity on the unloaded material]

The above choices of the bulk part of the free energy, U , shows a dependence
on the volumetric invariant J only. For materials with moderately large pore space
a functional dependence on the solid volume fraction νS must be included: U =
U (J, νS). According toDiebels [13] the proposed free energies in Table 24.4 fail in
particular for materially incompressible solid constituents. In such cases a point of
compression exists, when all pores are closed. For such conditions the solid material
must behave macroscopically as incompressible. To this end, Ehlers and Eipper

[21, 22, 27] proposed the following alternative free energy

1

K
US
(
J S, νS

0

) = (1 − νS
0

)2 { J S − 1

1 − νS
0

− ln

(
J S − νS

0

1 − νS
0

)}

= (1 − νS
0

)2 { J S − 1

1 − νS
0

− ln
(
J S − νS

0

)+ ln
(
1 − νS

0

)}
, (24.199)

−→ 1

K

∂US

∂ J S
= (1 − νS

0

)2 { 1

1 − νS
0

− 1

J S − νS
0

}
, (24.200)

−→ 1

K

∂2US

∂(J S)2
= (1 − νS

0

)2
{

1(
J S − νS

0

)2
}

� 0, ∀J S ∈ [0,∞), (24.201)

in which νS
0 is the solid volume fraction at the point of compression. From (24.198)–

(24.201) one may deduce



196 24 Thermodynamics of Binary Solid–Fluid Cosserat Mixtures

1

K
US|J S=1 = 0,

1

K

∂US

∂ J S

∣∣∣
J S

= 0,
1

K

∂2US

∂(J S)2

∣∣∣
J S=1

= 1,

1

K
US|J S=νS

0
→+∞,

1

K

∂US

∂ J S

∣∣∣
J S=νS

0

→−∞,
1

K

∂2US

∂(J S)2

∣∣∣
J S=νS

0

→+∞,

1

K
US|J S→+∞→+∞,

1

K

∂US

∂ J S

∣∣∣
J S→+∞

→(
1 − νS

0

)
,
1

K

∂2US

∂(J S)2

∣∣∣
J S→+∞

= 0.

(24.202)

According to these results, the Kirchhoff stresses remain finite for J S → ∞;
moreover, neither the polyconvexity is satisfied in this limit.

A better proposal for US than (24.199) is obtained as a rather obvious extension
of the Simo–Pister [66] free energy as follows:

1

K
US
(
J S, νS

0

) = (1 − νS
0 )2

{
(J S − 1)2

(1 − νS
0 )2

−
(
ln

J S − νS
0

1 − νS
0

)2
}

= (1 − νS
0 )2
{

(J 2 − 1)2

(1 − νS
0 )2

− (ln (J S − νS
0

))2

+ 2 ln(1 − νS
0 ) ln

(
J S − νS

0

)− (ln(1 − νS
0 )
)2 }

, (24.203)

−→ 1

K

∂US

∂ J S
= (

1 − ν2
0

) {2(J S − 1)

(1 − νS
0 )2

− 2 ln(J S − νS
0 )

J S − νS
0

+ 2 ln(1 − νS
0 )

J S − νS
0

}
, (24.204)

−→ 1

K

∂2US

∂(J S)2
= (

1 − ν2
0

) { 2

(1 − νS
0 )2

− 2

(J S − νS
0 )2

+ 2 ln(J S − νS
0 )

(J S − ν0)2
− 2 ln(1 − νS

0 )

(J S − νS
0 )2

}
, (24.205)

which imply

1

K
US|J S=1 = 0,

1

K

∂US

∂ J S

∣∣∣
J S=1

= 0,
1

K

∂2US

∂(J S)2

∣∣∣
J S=1

= 0,

1

K
US|J S=(νS

0 )+ →+∞,
1

K

∂US

∂ J S

∣∣∣
J S=(νS

0 )+
→−∞,

1

K

∂2US

∂(J S)2

∣∣∣
J S=(νS

0 )+
→+∞,

1

K
US|J S→+∞ → +∞,

1

K

∂US

∂ J S

∣∣∣
J S→+∞

→ +∞,
1

K

∂2US

∂(J S)2

∣∣∣
J S→+∞

= 2,

(24.206)
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and it is easy to show by computation that the free energy (24.203) is positive definite
and that the condition of polyconvexity is satisfied for all values of J S ∈ (νS

0 ,∞).
Moreover the reference configuration is stress free and compression to the point of
compression requires an infinitely large pressure. Similarly, for an infinitely stretched
specimen the stress to achieve this configuration must be infinitely large.16

The above detailed analysis of the selection of an adequate Helmholtz free
energy function is only preliminary, as it applies to Boltzmann continua. It has
primarily been presented in such detail for educational purposes to learn how difficult
it is to adequately ‘guess’ proper free energy functions. How more difficult must it
be for Cosserat solids!

Let us summarize what has been achieved by the exploitation of the entropy
inequality.

1. The principal thermodynamic postulate that served as basis of the Second Law
of Thermodynamics was the assumption that in any process to which a material
is subjected, the production of the mixture entropy in any process is nonnegative.

2. This requirement was put into practice by transforming the individual con-
stituent entropy balances of the form (24.11). In this transformation process, the
Clausius–Duhem expressions for the constituent entropy fluxes and entropy
supply terms were employed and the constituent entropy balances were added to
form the entropy balance of the mixture as stated in (24.14).

3. This final entropy inequality was in further steps exploited by using the
Coleman–Noll approach. Explicitly, this means that all the balance laws of lin-
ear and angular momenta as well as the mixture energy balance law are subjected
to arbitrary external supply terms and, consequently, do not serve as constraint
equations in the exploitation process of the entropy inequality.

4. The inferences which follow from the application of the above ‘metaphysical’
principles were applied to a binary mixture of solid and fluid Cosserat con-
stituents, in which themicro-inertia tensor is isotropic, no phase change processes
occur (ρ̂ = 0) and all constituents have the same temperature ϑα = ϑ.

5. The evolution equations for the solid and fluid volume fractions are closed in such
a way that the saturation condition is automatically satisfied and the balance law
of mass of the mixture can be identically satisfied by forward integration steps.

6. In this process of exploitation the entropy inequality was transformed by applying
the chain rule of differentiation to the functionals of the constitutive relations and
divergence and time-differenced terms into

X · a(Y) + D(Y) � 0, ∀X , (24.207)

as shown in (24.46); this is an inequality, which is linear in X , implying that its
satisfaction requests

X · a ≡ 0 and D(Y) � 0, (24.208)

16This latter condition is not satisfied by the free energy function (24.199).
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statements, expressed in (24.23)–(24.43) and (24.44). The first identity,
(24.208)1, known as Liu identity, delivers a large number of restrictions to the
postulated constitutive relations:

• The solid stress tensor, solid couple stress tensor, andmixture entropy are com-
putable as certain differentiated expressions of theHelmholtz free energies,
ψS,F , see (24.47)–(24.50).

• The free energiesψS,F cannot dependon all variables stated in (24.20); they are
reduced in general to (24.61)1 and in thermodynamic equilibrium to (24.69).

7. Thermodynamic equilibrium is defined by all those processes for which D ≡ 0.
Thus, D assumes its minimum in thermodynamic equilibrium. If {v} denote the
nonequilibrium state variables, then

∂D
∂v

∣∣∣
E

= 0, and
∂2D
∂v2

∣∣∣
E

� 0. (24.209)

must hold in this equilibrium. Exploitation of the requirement (24.209) implies
the equilibrium expressions (24.78)–(24.83) for the constitutive quantities
(tF )0, (mF )0, (mF )0, (qF )0 and explicit expressions of the nonequilibrium
expressions for these constitutive quantities, which are linear in the nonequi-
librium constitutive variables. Moreover, the signs of the phenomenological
tensors, expressing the dissipative nature of such nonequilibrium processes
are constrained by (24.209)2.

In conclusion, these inferences are formidable.
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Chapter 25
A Continuum Approach to Liquid
Crystals—The Ericksen–Leslie–Parody
Formulation

Abstract Liquid crystals (LCs) are likely the most typical example of a polar
medium of classical physics, in which the balance of angular momentum is a generic
property, not simply expressed as a symmetry requirement of the Cauchy stress
tensor. They were discovered in the second half of the nineteenth century. Liquid
crystals are materials, which exhibit fluid properties, i.e., they possess high fluid-
ity, but simultaneously exhibit crystalline anisotropy in various structural forms. We
present an early phenomenological view of the behavior of these materials, which
conquered a tremendous industrial significance in the second half of the twentieth
century as liquid crystal devices (LCD) (Sect. 25.1). The theoretical foundation as
a continuum of polar structure was laid in the late 1950s to 1990s by Ericksen,
Leslie, Frank, and Parodi, primarily for nematic LCs by postulating their general
physical conservation laws, hydrostatics, and hydrodynamics, thus, illustrating their
connection with nontrivial balance laws of angular momentum (Sect. 25.2). This is
all done by treating nematics asmaterial continua equippedwith continuous directors
(longmolecules), which by their orientation induce a natural anisotropy. The thermo-
dynamic embedding (Sect. 25.3) is performed by employing an entropy balance law
with nonclassical entropy flux and the requirement of Euclidian invariance of the
constitutive quantities, which are assumed to be objective functions of the density,
director, its gradient, and velocity, as well as stretching, vorticity, temperature, and
temperature gradient. This is specialized for an incompressible LC with directors
of constant length (Sect. 25.4). Constitutive parameterizations with an explicit pro-
posal of the free energy as a quadratic polynomial of the director and its gradient
(according to Frank) are reduced to obey objectivity. Based on this, the objective
form of the free energy is derived (Appendix 25.A), as are the linear dissipative
Cauchy stress, director stress, and heat flux vector for the cases that the Onsager
relations are fulfilled. The chapter ends with the presentation of shear flow solutions
in a two-dimensional half-space and in a two-dimensional channel.
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Keywords Phenomenology · Balance laws · Hydrodynamics · Thermodynamics
of LCs · Directors · Nematics · Free energy · Parodi relation · Onsagerism
List of Symbols

Roman Symbols

A Rank-2 tensor¯̄A Dual tensor to the axial vector A
Ai j (= Di j ) Strain rate tensor, often used instead of Di j

a, c Constants of integration in isotropic nematic shear flows of an
incompressible liquid

a1, . . . , a6 Parameters characterizing the curvature of directors
a′
1, . . . , a′

6 Parameters characterizing the curvature of directors in rotated
coordinates

ai j = −a ji Instantaneous skew-symmetric tensor arising in an Euclidian
transformation

ai , bi , ci , di Quantities arising in the principle of virtual work
b1, b2 Parameters characterizing the “bend” contribution to the curva-

ture of L
B Open set of body particles
ci , c∗

i Translation vectors arising in Euclidian transformations
Di j Strain rate tensor, also called stretching or rate of strain tensor,

Di j = 1
2 (vi, j + v j,i )

Dii Trace of Di j , Dii = trD = vi,i

D′
i j Deviator of strain rate tensor Di j , D′

i j = Di j − 1
3 Dkkδi j

d̄i , di External director force per unit volume/per unit mass
dV Volume increment
dai Vectorial surface element
e Specific energy density (kinetic and internal), e = 1

2ρ(ẋi ẋi +
ṅi ṅi ) + ρε

ē, e Specific energy source density per unit volume/per unit mass
f (θ), g(θ) Functions arising in the simple shear solution for a nematic LC
f̄i , fi External body force per unit volume/per unit mass
Fθ2(θ) Auxiliary function in simple shear between parallel plates
Gi External specific director force per unit ρ1
G Torque exerted by the director on the fluid (= skw(tE )′)
¯̄G Dual rank-2 tensor to G
g(θ) See f (θ)
gi Intrinsic specific director force, specific gravity force per unit

mass
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g0i Equilibrium value to gi , not producing entropy
ĝi Extra intrinsic director force
g′

i Extra dissipative intrinsic director force
h Surface heat flow out of the volume
hi Flux density of the specific energy
hθ2(θ) Auxiliary function in simple shear between parallel plates
¯̄J i (or J i ) Thermodynamic force, see Eq. (25.178)

ki = πi j n
+
j Director surface traction

k̄i j , ki j Tensorial spin source density per unit volume/per unit mass
ki , ki j Parameter measures of the influence of the director curvatures

on the free energy (25.145)–(25.148) direction curvatures
L Unit vector (later identified with the director of constant length)
Lx ,Ly,Lz Cartesian components of L
�i , � Specific external + internal director force
Li j

pq.rs = L ji
pq.rs Onsager relations (25.179) for thermodynamic flux–force rela-

tions
M, M1, M2 Masses of the LC and the fluid
mi jk Flux of the tensorial spin density
ni Director, as a vector
ṅi Director velocity
n̈i Director acceleration
ni, j Director gradient
Ni = ṅi − ωi j n j Objective director velocity, see (25.60)
Ni j Objective director, velocity gradient, see (25.60), Ni j = [(ṅi ), j −

ωiknk, j ]
n∗

i Component of n in the rotated Cartesian system
n+

i Unit vector perpendicular to a surface
Ni See (25.112). Objective form of the director gradient see

(25.107), Ni = [ni n j, j − n j ni, j ]
O, o Order symbols
p0 Constant pressure in a shear flow of an incompressible fluid
pi Momentum density, specific entropy flux density
pi = ρẋi Momentum density of the fluid
Qi j Orthogonal transformation, rotation matrix
Q̇i j Time rate of change of Qi j

qi Heat flux vector, general vector valued variable
Ri j Rotationmatrix of a properEuclidian transformation (Rik R jk =

δi j , det Ri j = +1)
r or q Energy supply rate density per unit mass
s Entropy density per unit mass, scalar variable, see (25.81)
s1, s2 “Splay” contributions of the curvature tensor L, see (25.144)
si j Tensorial spin density, si j = −εi jksk

si Vectorial spin density, si = − 1
2εi jks jk

si j si j = ρ
(
x[i ẋ j]

)+ ρ1
(
n[i ṅ j]

)
[for compressible liquid ρ1 = ρ]
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s0, t0 Splays and twists making ψ̃ = 0 at the optimum, s0 = −k1/k11,
t0 = −k2/k22

T Absolute temperature
t1, t2 Twist variables, see (25.144)
ti j Cauchy stress tensor
t̃i j = t̃ j i Stress tensor defined in (25.75) (symmetric combination of t,π,

and g, see (25.124))
t E
i j Extra stress tensor (deviator)

t0i j Equilibrium value of ti j

(ti j )
′ Extra dissipative Cauchy stress

V Boundary velocity in simple shear flows between parallel plates
vi, j Material velocity gradient
x1, x2, x3; x, y, z Cartesian coordinates in three dimensional space
x∗, y∗z∗ Cartesian coordinates, rotated relative to x, y, z
ẋi = vi Velocity vector
ẍi = v̇i Acceleration vector ẍ, ÿ, z̈
¯̄Xi , Xi Thermodynamic forces, see Parodi relations (25.178)

Greek Symbols

α Rotation angle between two Cartesian coordinates
α Scalar coefficient in the isotropic representation of ϕi , see

(25.107), α = α(T, ni ni , ni Ni )

αi ,αi j Coefficients in the hemotropic representation of ϕ, the extra
entropy flux vector, see (25.106); quantities defined in (25.29)

β = μ3 + μ6 Parodi parameters
βik,βi jk Coefficients in the hemotropic representation of ϕi

γ Director tension, see (25.132)
γi Shorthand notation for quantities defined in (25.31)
γi jk, γi jkp Coefficients in the hemotropic representation ofϕi , see (25.106)
δ Variational symbol
δ(ρ,φ,ψ) Variation of ρ, φ and ψ
δi j Dirac tensor, = 1, if i = j and = 0 if i �= j
δni Variation of ni

δxi Variation of xi

Δ j = δn j + n j,iδxi

ε Density of internal energy
εi jk Levi- Cività tensor
ηapparent Apparent viscosity
θ Inclination angle of the director relative to the orientation of the

parallel liquid flow
κ,κ1,κ2 Heat conductivities, see (25.140), (25.163)
λ,λ′ Parameters measuring the length regime of a director, usually

λ ∈ [0, 1]; Lagrange parameter of the incompressibility con-
dition (=pressure)
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λ1,λ2 Dissipation parameters for g′
i , see (25.162), λ1 = μ2 −μ3, λ2 =

μ6 − μ5

μ Mass per unit length of a nematic LC ; dynamic viscosity
μ1, . . . ,μ6 Viscosity coefficients for nematic LCs in an anisotropic formu-

lation
μ2 + μ3 = μ6 − μ5 Parodi relation ifOnsager relations are valid in an isotropic

nematic LC, see (25.167)
μ1,μ4,λ1,λ2,β Parodi viscosity parameters
ν Unit vector, representative for a single director
Π Specific entropy production
πi j Director stress tensor; flux density of the director momentum

density ρni

π̂i j Extra director stress
ρ Mass density of the LC fluid, [M/L3]
ρ1 Mass density for the directors, [M/L]
φ = φi n

+
i Entropy flow out of the surface ∂V

ϕ also ψ Helmholtz free energy per unit mass
ϕi = qi − T φi Extra entropy flux vector, see (25.85)
χ Scalar potential for the fluid body forces; director force viscosity
ψ; (also ϕ) Helmholtz free energy per unit mass
ψ̃ Scaled free energy, see (25.156)
Ωi j Small rotation tensor, see (25.45); dual tensor of the angular

velocity of a rigid body rotation, Ωi j = −Ω j i = Q jk Q̇ik =
−Ω j i

ωi j Skew-symmetric angular velocity tensor, vorticity tensor
¯̄Ω Dual tensor to the axial rotation rate vector Ω
¯̄ω Dual rank-2 tensor to the axial vorticity vector ¯̄ωi j = 1

2 (vi, j −
v j,i )

Miscellaneous Symbols

d/dt Total time derivative (following an LC particle)
∂V Boundary of volume V
LC Liquid crystal
AT Transpose of A
A−T = (AT )−1 = (A−1)T

‖b‖ Norm of b
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25.1 A Phenomenological View of Liquid Crystals

“Liquid crystals1 (LCs) are a state ofmatter intermediate between that of a crystalline
solid and an isotropic liquid. They exhibit many of the mechanical properties of a
liquid, e.g., possess high fluidity, do not support shear at rest, and may form droplets.
Simultaneously, they exhibit crystalline anisotropic structure, primarily in their opti-
cal, electrical and magnetic properties” [72]. These properties were first observed by
the Austrian botanist Friedrich Reinitzer

2 (1857–1927) in 1888 [62]. He found
that cholesteryl benzonite does not melt in the same manner as other compounds, but
has twophase change points.At 145.5 ◦C, itmelts into a cloudy liquid, and at 178.5 ◦C
it melts again and the cloudy liquid becomes clear. The phenomenon is reversible.
Seeking help from a physicist on March 14, 1888, he wrote to Otto Lehmann

3

(1855–1922) in Aachen “…. Lehmann examined the intermediate cloudy fluid, and
reported seeing crystallites. Reinitzer’s Viennese colleague Von Zepharowich

also indicated that the intermediate “fluid” was crystalline. The exchange of letters
withLehmann ended onApril 24, 1988, withmany questions unanswered. Reinitzer
presented his results with credits toLehmann andVon Zepharowich, at a meeting
of the Viennese Chemical Society on May 3, 1888” (after [40]). Reinitzer did not
pursue studying LCs any further. The research was continued by Lehmann, how-
ever, but further study convinced him that with the “cloudy” fluid, he was actually
dealing with a solid. Reinitzer and Lehmann had discovered and described three
important features of (cholesteric) liquid crystals (the name was coined by Otto

Lehmann in 1904), [45]: (1) the existence of two melting points, (2) the reflection
of circularly polarized light, and (3) the ability to rotate the polarization direction
of light. They had acquired these results and Lehmann reported them at the end of
August 1889 in the Zeitschrift für Physikalische Chemie [44].

1General texts dealing with liquid crystals are ubiquitous and can easily be found via google or
wikipedia. Here we list the following works that were consulted by us:

• Phenomenology as presented in this section, can e.g., also be found fromCastellano [5],Gray
[33],

• Mechanics or Thermomechanics with internal microstructure is treated by Beris and Edwards

[2], Capriz [4],
• General physics, chemistry and mineralogy of liquid crystals is also given by Busch and Busch

[3],Chandrasekhar [6],Collings andHird [8],de Gennes [10, 11],de Gennes andProst
[12], Dierking [16], Doi [17], Dunmur and Slukin [19],

• Continuum mechanics of multipolar media is treated byGreen andRivlin [34],Green,Naghdi
and Rivlin [35],

• Hydrodynamics of Liquid Crystals is dealt with by Vertogen and Jeu [76], Müller [54].

2For a brief biography of Friedrich Reinitzer, see Fig. 25.1.
3For a brief biography of Otto Lehman see Fig. 25.2.
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Fig. 25.1 Friedrich Reinitzer (25. Feb. 1857, Prague–16 Feb. 1927, Graz)

Friedrich Reinitzer was an Austrian botanist and chemist, who discovered
phase change properties of cholesteryl benzoate, which led to the discovery of
what later was named a “liquid crystal”. He studied chemistry at the German
technical university in Prague; in 1883, he was habilitated there as a private
docent. During 1888–1910, he was Professor at the Karl Ferdinand University
and subsequently Professor at TH Graz. While at the university in Prague in
1888, he observed a strangebehavior of cholesteryl benzoate and askedViktor
Leopold Zepharovic in Prague and Otto Lehmann in Aachen for help. The
latter recognized that the intermediate “cloudy fluid” between the fluid and
solid phases was equally a separate phase, which shows double reflection. For
this phase, Lehmann coined in 1904 the name liquid crystal.
The text is based on www.wikipedia.org

Liquid crystals, which are obtained by melting a crystalline solid, are called
thermotropic. “Liquid crystalline behavior is also formed in certain colloidal solu-
tions and certain polymers …. This type of LCs is called lyotropic. For this class
of LCs concentration (and secondarily temperature) is the controllable parameter,
rather than temperature (and secondarily pressure) as in the thermotropic case, [72].
Research onLCswas generally kept at lowkey for approximately 80 years afterOtto
Lehmann’s significant contributions. In Germany Daniel VorlÄNDER (1867–
1941) kept it active from the 1920s until his retirement in 1935, see [65]. AfterWorld
War II, George William Gray

4 (1926–2013) and his group members researched
on the topic from the late 1940s for approximately 30 years, which is documented
in [33]. In the 1960s to 1980s interest in LCs acquired considerable momentum, in
particular because of the significance of the development of electronic Liquid Crystal
Devices (LCD), which conquered the present electronic hardware industry [5]” [72].

4For a brief biography of George William Gray, see Fig. 25.3.

www.wikipedia.org
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Fig. 25.2 Otto Lehmann (January 13, 1855, Konstanz–June 13, 1922, Karlsruhe)

Otto Lehmann studiedNatural Sciences from 1872 to 1877 at the University
of Strassburg and obtained his Ph.D. under crystallographer Paul Groth,
the founder of Zeitschrift für Mineralogie und Kristallographie. He started
his professional career as a “gymnasium teacher” of physics, mathematics,
and chemistry in Mülhausen (Alsace-Lorraine), but moved up as a university
teacher at what is now the RWTH Aachen, went to the Royal Saxon Polytech-
nical School in Dresden, but soon thereafter became successor ofHeinrich at
the TH Karlsruhe. He was an unsuccessful nominee for the Nobel Prize from
1913 to 1922.

Lehmann successfully used polarisers in a microscope to watch birefringence
in the process of crystallization. In 1888, Reinitzer had approached him for
help in the interpretation of the double-melting liquid mentioned in the main
text. As Dunmur and Slukin say [19]:

It wasLehmann’s jealously guarded and increasingly prestigiousmicroscope, not yet
available off the shelf, which had attracted Reinitzer’s attention. With Reinitzer’s
peculiar double-melting liquid, a problem in search of a scientist had met a scientist
in search of a problem.

The text is based on www.wikipedia.org

According to Stephen and Straley, [72], “the quintessential property of a liquid
crystal is its anisotropy …. Essentially no other assumptions about the nature of a
liquid crystal are necessary”.

“Liquid crystals are found among organic materials. Their molecules may be of
a variety of chemical types …. Certain structural features are often found in the
molecules forming LC phases, and they may be summarized as follows:

www.wikipedia.org
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Fig. 25.3 George William Gray (September 4, 1926–May 12, 2013)

George William Gray was Professor of Organic Chemistry at the Uni-
versity of Hull, who was instrumental in developing the materials making the
LCDs possible. Hewas educated at the University of Glasgow and obtained his
Ph.D. in 1953 at the University of Hull (then part of the University of London).
Continuing at this university his career, he was there Senior Lecturer in 1960,
Professor of Organic Chemistry in 1974 and Grant Professor of Chemistry in
1984 and, finally an Emeritus of the University of Hull. In 1990, he joined
the chemical company Merck, and in 1996 he was an independent consultant.
He is known for the demonstration that 4′ pentylbiphenyl possesses a stable
nematic phase at room temperature and for writing the first book on liquid
crystals [33].

The text is based on www.wikipedia.org

(a) The molecules are elongated. Liquid crystallinity is more likely to occur if the
molecules have flat segments, e.g., benzene rings.

(b) The fairly rigid backbone containing double bonds defines the long axis of the
molecule.

(c) The existence of strong dipoles and easily polarizable groups in the molecule
seems important.

(d) The groups attached to the extremities of the molecules are generally of lesser
importance.” [72]

It is customary to classify the different types of LCs as nematic LCs, cholesteric
LCs, and smectic LCs, see G. Friedel (1865–1933), [32].

(1) Nematic LCs: This is the most common LC phase. The word nematic derives
from ancient Greek, νήμα, which means “thread” and has been so coined because
of the elongated rod-like appearance, see Fig. 25.4a.Thread-like topological defects,
similar to dislocations in the theory of elasticity, are formally called disclinations,

www.wikipedia.org
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Fig. 25.4 Arrangements of liquid crystals formed from rod-likemolecules: a nematicLCs, arranged
close to a distinguished direction; b when the “elements” are stacked in layers; this arrangement
is called the smectic-A phase, in which the molecular rods are perpendicular to the layers; c in the
smectic-C phase, the molecules are tilted (0 < α < 90◦) relative to the orientation of their layers,
after [40]

as suggested by Frank [30, 31]. The nematic phase of LCs is characterized by
long-range oriental order, i. e., the long axes of the molecules tend to align along a
preferred direction. Most nematics are uniaxial, i.e., they have one axis that is longer
and preferred, with the other two being equivalent. They may, thus, be represented
as rods or elongated ellipses. However, there exist also biaxial nematics: they orient
primarily along the long axis and secondarily along an axis perpendicular to the
preferred long axis [50]. “The interesting phenomenology of nematic LCs involves
the geometry and dynamics of the preferred axis, and so it is useful to define a vector
field n(r) giving its local orientation. This vector is called the director. Since its
magnitude has no significance, its length is taken to be unity. The director field is
easily distorted and can be aligned bymagnetic and electric fields and surfaces, which
have been properly prepared” [72]. When nematic LCs are arranged in layers, they
are called smectic, see below and item (3) [72].

The positions of the centers of mass of the molecules of nematic LCs are not
ordered among the molecules. This is expressed as the absence of long-range order-
ing. The molecules, however, appear to be able to rotate about their long axes, and
they seem to have no preferential arrangement of the two ends of the molecules.
Thus, the sign of the director is of no physical significance [72].

(2) Cholesteric LCs: This phase was so called because it was first observed for
cholesterol derivatives. Phenomenologically, it might also be called chiral phase
because chirality (∼handedness) is the new distinctive feature of this phase. “Only
chiral molecules (i.e., those that have no internal plane of symmetry) can give rise to
such aphase” [40]. This phase differs from thenematic phase in that the director varies
in the direction throughout the medium in a regular way. Figure 25.5a, b illustrates
the situation: It shows the vertical twist axis and right and left screws, which indicate
the position of a nematic as one moves upward. The front arrow is seen in the two
arrangements to rotate clockwise (counterclockwise) for the left (right) handedness
of the arrangements of the figure. Since there is no physical preference of the front
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Fig. 25.5 The panels show a right- and left-handed helix, winding up a vertical twist axis. A nematic
director n (displayed in a and b at two initial positions) will rotate up the helix as it moves upward
(always remaining horizontal). In panel a [panel b], the rotation is counterclockwise [clockwise].
Panel c shows the helix within a pitch P where the rod performs a full rotation. Panel d indicates
how the series of projections of the rod is qualitatively seen in a vertical plane through the twist
axis. Since there is no difference between the front (red) and the rear (blue) ends of the elliptical
rods, the period of a cholesteric crystal is P/2

and rear ends of the molecule of a nematic LC, the chirality of the final arrangement
of the molecules is neutralized.

From the side, projected to a vertical plane through the twist axis, the arrangement
shows the rods as ellipses and their tips as red and blue bullets, Fig. 25.5d. This
secondary structure of the cholesteric LC is characterized by the distance measured
along the twist axis, over which the director rotates through a full circle. This distance
is called the pitch, P , of the cholesteric LC. Its periodicity length is actually only
half this distance, since n and −n are indistinguishable, [72], Fig. 25.5d. “A nematic
LC is just a cholesteric LC of infinite pitch, and is not really an independent case; in
particular:

• There is no phase transition between nematic and cholesteric phases in a given
material.

• NematicLCsdopedwith enantiomorphic (notmirror symmetric)materials become
cholesteric LCs of long (but finite pitch).

• Themolecules forming this phase are optically active, i.e., they have distinct right-
and left-handed forms and are distinct as shown in Fig. 25.5b.

• The pitch of the common cholesteric is of the order of several thousand angström
(1Å = 10−7 mm) and, thus, comparable with the wavelength of visible light. This
fact is responsible for the characteristic colors of cholesteric LCs in reflection”
[72].

• For a theory of flow alignment in nematics, see [29].

(3) Smectic LCs: The smectic phases are found at lower temperatures than the
nematic phases; they form well-defined layers that can slide over one another in a
manner similar to that of soap, Fig. 25.4b, c. This layering can also be interpreted
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Fig. 25.6 Chiral nematic
phase. P refers to the chiral
pitch, after [40]

as stratification. The word “smectic” originates from the Latin word “smecticus”,
meaning cleaning, or having soap-like properties. The molecules in this phase are
arranged in layers and exhibit some correlations in their positions in addition to the
orientational ordering. A number of classes of smectics have been recognized; they
are distinguished by capitals of the Roman alphabet, smectic-A, smectic-B, smectic-
C, D, E . . . [49]. In the smectic-A phase, the molecules are aligned perpendicular to
the layers with no crystalline order within the layers, Fig. 25.4b. In the smectic-C
phase, the preferredmolecule axis is inclinedwith respect to the layerwith inclination
angle α ∈ (0,π/2), Fig. 25.4c; this phase, thus, has biaxial symmetry [7, 15]. A
model for it has been given by de Gennes and Sarma in 1972 [13]. In this model,
the layers can slip one over the other but cannot rotate on each other. There are
also smectic-D and smectic-E phases. Stephen and Straley [72] state a number of
references prior to 1974.

There are yet other LC phases. “Blue phases are LC phases that appear in the
temperature range between a chiral nematic phase and an isotropic liquid phase.
They have a regular three-dimensional cubic structure of defects with lattice periods
of several hundred nanometers …. It was theoretically predicted in 1981 that these
phases can possess icosahedral symmetry (a polyhedron with 20 faces) similar to
quasi-crystals [43, 64]. Disk shaped LC molecules can orient themselves in layer-
like fashion, known as discotic nematic phase. If the disks pack into stacks, the phase
is called discotic columnar. Chiral discotic phases, similar to the chiral nematic phase
are also known” [40], see Fig. 25.6.

The above description of LCs suggests that nematics and cholesterics can be
modeled with the aid of directors, represented by the unit vector field n. If there is
no physical polarity along the director axis, n and −n are equivalent. Most LCs are
nonpolar. It follows that theoretical formulationsmust be invariant under replacement
of n by −n.

A further significant property of LCs is the fact that ensembles of nematics and
cholesterics are, in general, not exactly parallel-oriented and show some orientation
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Fig. 25.7 Nematic crystals
with unit vectors v(i),
(i = 1, 2, . . . , N )

(directors). The local nematic
director is given by the
spatial and temporal average
of the long molecular axes

deviations from a mean direction, see Fig. 25.7, in which the local nematic direction,
which is also the optical axis, is given by the spatial and temporal average of the long
molecular axes [40].

We can introduce the unit vector ν(α) of the i th molecule, which describes its
orientation. Because LCs possess a center of symmetry, the average of ν(α) over all
i ∈ [1, N ] vanishes. It is, thus, not possible to introduce a vector order parameter (as
the average over all molecules), since the molecules have no polarization [ν(α) and
(−ν(α)) are equivalent] [72]. Higher order tensors formed with the unit vectors ν(α)

must be introduced to measure the degree of disorder of the LCs on the mesoscale
of the continuum. A neutral order parameter to describe the degree of ordering in a
nematic or cholesteric LC is the second rank tensor

Si j (x) = 1

N

N∑

α=1

(
ν(α)

i ν(α)
j − 1

3δi j

)
, (25.1)

in which the summation is over all N (α = 1, 2, . . . , N ) molecules in a small but
macroscopic volume element [a representative volume element (RVE)] at position
x. The indices i, j = 1, 2, 3 define the Cartesian components in a laboratory fixed
coordinate system and δi j is the Kronecker delta. Higher rank tensors may also
be defined [21]. The order parameter (25.1) is a symmetric second rank deviator,
Si j = Sji , Sii = 0, in which summation is understood over doubly repeated indices.
Si j , thus, has five independent components. In an isotropic state, in which molecules
have random orientation, Si j vanishes.

There are also other definitions of order parameters. Saupe (1965) [63] defines

Si ′ j ′(x) = 〈cos θi ′ cos θ j ′ − 1
3δi ′ j ′

〉
, (25.2)

in which primes in xi ′ denote Cartesian coordinates fixed in the molecule, and θi ′

is the angle between the i ′ axis and the long molecular director axis; moreover, the
angular brackets, 〈·〉, indicate an average over the molecules [72].
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“In real LCs the molecules will be flexible. Different parts of the molecules would
then have to be described by different Si ′ j ′ tensors. It is then preferable, as suggested
byde Gennes [10], to define the amount of order in terms of amacroscopic property,
which is independent of assumptions about the rigidity of the molecules. Such a
definition of the order parameter is also preferable from a thermodynamic point of
view. The macroscopic property chosen by de Gennes to represent the amount of
order is the anisotropy in the diamagnetic susceptibility” [72]. Thus,

Qi j = χi j − 1
3χkkδi j , (25.3)

where χi j is the magnetic susceptibility tensor per unit volume. Qi j is again a sym-
metric traceless tensor of rank two, which has again five independent components
[72].

Order parameters are primarily important in the development of molecular field
theories of LCs. In continuum formulations of LCs at the meso- or macroscale,
the effects of a small oriental deviation of the nematics from the spatial–temporal
average over a representative volume element may be small, so that order parameters
may, in a first approximation of a thermodynamic formulation, be omitted. Such
a simplified formulation is the Ericksen–Leslie (EL) or the Ericksen–Leslie–
Parodi (ELP) theory [27]. General formulations of continuum theories for nematic
liquid crystals with tensorial order have been presented from the 70s of the twentieth
century onward, perhaps culminating with a paper on the continuum theory for
nematicLCswith tensorial order of rank-2, bySonnet et al. [69]with an intermediate
attempt by Ericksen [27]. This work and references to the significant literature will
be detailed in Chap. 26.

25.2 A Continuum Formulation of Nematic Liquid Crystals

In this5 section, a theory of nematic LCs will be given, in which all molecules
in the LC domain are strictly parallel-oriented. So, order parameters will not play
any role in this section and will be absent from the theory. First, balance laws for
nematics will be presented, followed by a continuum mechanical approach, using an
entropy principle based on an analogue of the Clausius–Duhem inequality. We try
to frame the developments in a concrete, physically based rigid rod model. This type
of formulation has been introduced in the 60s of the twentieth century by Ericksen6

(∗1924) in 1961 [23] andLeslie7 (1935–2000) in 1968 [47] complementedby follow-
up papers.

5We follow closely [23]. This paper contains a number of misprints which one only catches by
careful reading. We hope to have captured all.
6For a brief biography of Jerald LaVerne Ericksen, see Fig. 25.8.
7For a brief biography of Frank Mathews Leslie, see Fig. 25.9.
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Fig. 25.8 Jerald LaVerne Ericksen (December 20, 1924)
Jerald LaVerne Ericksen, an American mathematician specialized in contin-
uum mechanics, was born in Portland, Oregon. His father worked at a Portland
creamery and soon acquired a small creamery in Vancouver, Washington, where the
family moved; Jerald helped out in the creamery. Quite possible that this deter-
mined his professional love of rheology! In the fall of 1942, he entered Oregon
State College in Corvallis. At the age of 18, he entered the U.S. Navy and received
his training at the University of Idaho, Pascatello, USA and then was transferred to
ROTC at the University of Washington, Seattle. On active duty, he also served in the
Philippines. During his 85.5 weeks of duties, he also met his wife Marion Pook,
whom he married in 1946 and resigned from the service that summer.
Ericksen obtained his bachelor’s degree from the University of Washington; he
was a mathematics major and had a minor in Naval Science. His graduate schools
were Oregon State and then Indiana Universities. It was there where he met David
Gilbarg,Vaclav Hlavaty, Eberhard Hopf,Max Zorn, and above allClif-
ford Truesdell, who was at that time working on his critical reformulation of
continuummechanics. Ericksen obtained his Ph.D in 1951. Subsequently, he spent
a few years at the U.S. Naval Research Laboratory, where he worked on contin-
uum mechanics with Truesdell, Saenz, Toupin, and Rivlin. He also worked
at the National Bureau of Standards. In 1957, Ericksen joined Johns Hopkins

University in Baltimore in the Department of Mechanical Engineering; he and
Truesdell formed the continuum mechanics group. They conducted weekly sem-
inars on “properly invariant material theories” and attracted many top students and
researchers, such as Bernard Coleman, Morton Gurtin, C.C Wang, Con-
stantine Dafermos, Frank Leslie, Richard James, Romesh Batra, ingo
MÜLLER, and others. In 1982, Ericksen moved to the University of Minnesota,
Minneapolis, receiving a joint appointment in the School of Mathematics and the
Aerospace andMechanicsDepartment. In this period, hewrote his textbook on Intro-
duction to the Thermodynamics of Solids [28]. He received in 1988 the Dr.h.c. from
Heriot Watt University, Edinburgh. In 1968, he was already awarded the Bingham
Medal of the Society of Rheology, and in 1979 he received the TimoshenkoMedal
fromASME.He retired at the age of 65 andmovedwith hiswife to Florence, Oregon.
Adapted from https://en.wikipedia.org/wiki/Jerald_Ericksen. See also the Laudatio
of Roger Fosdick, J. Elasticity 14, 337–3412 (1984)

https://en.wikipedia.org/wiki/Jerald_Ericksen
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Fig. 25.9 Frank Mathews Leslie (March 8, 1935–June 15, 2000)

Frank Mathews Leslie was educated at the Harris Academy and Queen’s
College, Dundee, Scotland where he gained a First Class Honors in Mathe-
matics in 1957. He earned his Ph.D. in 1961 at the University of Manchester,
England. From 1961 until 1962, he spent a year at MIT, Cambridge, USA as
a Research Associate. It was there that he came across the work of Jerald
Ericksen on anisotropic liquids; this shaped his subsequent research career.
Hewas a lecturer of mathematics at the University of Newcastle, England from
1962 until 1968, spent a sabbatical 1966–1967 at Johns Hopkins University
Baltimore. It was there, where he first met Jerald Ericksen and started
research on liquid crystals. He accepted the position of Senior Lecturer at the
University of Strathclyde, Glasgow, Scotland in 1968, becoming a Reader in
1971 and a Professor in 1979. He held visiting positions at the Universities
of Tulane, Paderborn, Hokkaido, and Pisa, visited the main crystal research
groups throughout the world and influenced the LCD industry considerably.
The development of all LCD devices owes a great deal to him.
Frank Leslie gained many honors for his research. He was elected a Fellow
of the Royal Society of Edinburgh in 1980. He received the Annual Award of
theBritish Society of Rheology in 1982. In 1995, hewas elected a Fellow of the
Royal Society of London, in 1996 he was awarded the Sykes Gold Medal by
theUniversity of StAndrews for his DSc. Degree, and in 1997 hewas the proud
recipient of the George Gray Medal of the British Liquid Crystal Society.
As Professor David Sloan says, “it is impossible to estimate the profound
impact that Frank Leslie’s ideas have had on the worldwide activities in
nematics and smectic liquid crystals.”
Based on the memorial statement of Prof. David Sloan at Strathclide Uni-
versity, and www.wikipedia.org

www.wikipedia.org
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25.2.1 General Physical Conservation Laws

Let us start with the general global balance laws of a Cosserat continuum in the
Eulerian description. Cartesian tensor notation will be used. These laws are

d

dt

∫

V
ρ dV = 0, (25.4)

d

dt

∫

V
pidV =

∫

∂V
ti jda j +

∫

V
f̄idV, (25.5)

d

dt

∫

V
si jdV =

∫

∂V
mi jkdak +

∫

V
k̄i jdV, (25.6)

d

dt

∫

V
e dV =

∫

∂V
hidai +

∫

V
ē dV . (25.7)

Here, V denotes a material volume with boundary ∂V and dai is a vectorial surface
element directed outward of V . Moreover,8

• ρ, pi , si j , e are the densities of mass, momentum, angular momentum, and the
specific total energy (kinetic plus internal) per unit volume,

• ti j , mi jk, hi denote the Cauchy stress tensor, the dual third rank tensor of the
specific couple stress tensor, and the specific energy flux vector,

• f̄i , k̄i j , ē are the specific body force, the dual of the specific body couple, and the
specific energy supply, per unit volume.9

As noted by Ericksen [23], Eq. (25.5) only partially describes conservation of linear
momentum, as will be seen below.

The molecules arranged in a packet are idealized as rigid rods that are strictly
parallel-aligned, but the orientation may smoothly change from packet to packet;
they may have mass M which, per unit length, may not be uniform. A packet is then
represented by equations of the form

8In the above the balance law of angular momentum is written for an antisymmetric second rank ten-
sor si j rather than an axial vector si . The two are isomorphic to one another and the correspondence
relations are

si j = −εi jk sk , si = − 1
2 εi jk s jk ,

where εi jk is the Levi-Cività or epsilon tensor, whose value is +1 if the indices form an even
permutation,−1 if they form an odd permutation and 0, if they form no permutation, see [41]. Thus
we have

si = − 1
2 εi jk s jk ,

πi j = 1
2 εi jkmlk j ,

ki = − 1
2 εi jkk jk .

9Later, all these quantities (then without the overbar) are defined per unit mass.
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Fig. 25.10 a A director, drawn as an ellipse with its mathematical representation as an arrow. Any
point along this arrow can be described by Eq. (25.8), in which λ varies in a finite interval to embrace
the entire ellipse length. b If the director performs a pure rotation with angular velocity Ω about its
center, then obviously, ṅ = Ω × n

yi = yi (λ, t) = xi (t) + λni (t) (25.8)

in which yi denotes any point on the rod at time t . ni is a unit vector in the long
direction of the molecule and λ is a real parameter with values in a finite interval I ,
see Fig. 25.10. If μ(λ) denotes the mass density per unit length of the rod, then

M =
∫

I
μ(λ)dλ (25.9)

is its total mass. With no loss of generality, we may also assume

∫

I
λμ(λ)dλ = 0 and

∫

I
λ2μ(λ)dλ = M. (25.10)

If these are not satisfied for one choice of λ ∈ I , then they are satisfied for

λ′ = aλ + b =⇒ λ = 1

a

(
λ′ − b

) −→ dλ = 1

a
dλ′

for adequately selected a and b. Indeed, let

∫

I
λμ(λ)dλ = M1,

∫

I
λ2μ(λ)dλ = M2 (25.11)

with M1 �= 0, M2 �= 0. Then,

M1 = 1

a2

∫

I ′
λ′μ(λ′)dλ′

︸ ︷︷ ︸
=0

− b

a2

∫

I ′
μ(λ′)dλ′

︸ ︷︷ ︸
=M

, (25.12)

M2 = 1

a3

{∫

I ′
(λ′)2μ(λ′)dλ′

︸ ︷︷ ︸
=M

−2b
∫

I ′
λ′μ(λ′)dλ′

︸ ︷︷ ︸
=0

+b2
∫

I ′
μ(λ′)dλ′

︸ ︷︷ ︸
=M

}
,
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inwhich the underbraced quantities are so selected to enforce the identities analogous
to (25.10), now for λ′:

∫

I ′
λ′μ(λ′)dλ′ = 0 and

∫

I ′
(λ′)2μ(λ′)dλ′ = M. (25.13)

With these choices, (25.12) implies

M1

M
= − b

a2
,

M2

M
= 1 + b2

a3
= 1

a3
+ a

M2
1

M2
,

which are two nonlinear equations for a and b.
We now may return to (25.9) and (25.10). When these equations hold, we have

∫

I
μ(λ)yi (λ, t)dλ =

∫

I
μ(λ) [xi (t) + λni (t)] dλ

= xi (t)
∫

I
μ(λ)dλ

︸ ︷︷ ︸
=M

+ni (t)
∫

I
λμ(λ)dλ

︸ ︷︷ ︸
=0

= M xi (t), (25.14)

∫

I
λμ(λ)yi (λ, t)dλ =

∫

I
λμ(λ) [xi (t) + λni (t)] d˘

= xi (t)
∫

I
λμ(λ)dλ

︸ ︷︷ ︸
=0

+ni (t)
∫

I
λ2μ(λ)dλ

︸ ︷︷ ︸
=M

= M ni (t). (25.15)

Similarly,

∫

I
μ(λ)

∂yi

∂t
dλ =

∫

I
μ(λ) [ẋi (t) + λṅi (t)] dλ = Mẋ(t), (25.16)

1

2

∫

I
μ(λ)

∂yi

∂t

∂yi

∂t
dλ = 1

2

{∫

I
μ(λ) [ẋi ẋi + ṅi ṅi ] dλ

}

= 1

2
M (ẋi ẋi + ṅi ṅi ) , (25.17)

∫

I
μ(λ)y[i

∂y j]
∂t

dλ =
∫

I
μ(λ)

(
x[i ẋ j] + n[i ṅ j]

)
dλ

= M
(
x[i ẋ j] + n[i ṅ j]

)
, (25.18)

in which (·)[i j] = (·)i j − (·) j i and dots represent total time derivatives. These results
allow the following interpretations: Equation (25.14) states that xi (t) is the center
of mass of the packet. Equation (25.16) yields its total momentum, (25.17) its total
kinetic energy, and (25.18) its total dual of the angular momentum.

An interpretation of (25.15) is not obvious. It will later give rise to the introduction
of the director momentum.
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It is now tempting to assign the following identifications:

pi = ρẋi ,

si j = ρ
(
x[i ẋ j] + n[i ṅ j]

)
, (25.19)

e = 1
2ρ (ẋi ẋi + ṅi ṅi ) + ρε

with the specific momentum, dual of the angular momentum, and energy. The first of
these is the “classical” momentum, but the second contains in addition a contribution
due to the directors; itmaybe interpreted as the spin density of the directors. Similarly,
the density of the kinetic energy comprises the classical translational kinetic energy
and the rotational kinetic energy of the directors. These were already introduced by
Ericksen [22]. In that paper, he had postulated a director momentum equation of
the form

d

dt

∫

V
ρṅidV =

∫

V
�̄idV

to supplement equations (25.4)–(25.7), with an external director force �̄i , but this
equation is short of a flux term. So, in [23] Ericksen adopted the generalization

d

dt

∫

V
ρṅidV =

∫

∂V
πi jda j +

∫

V
�̄idV, (25.20)

in which πi j may be called the director stress or director flux and da j is the vectorial
surface element pointing out of V . Moreover, �̄i is the internal + external director
force per unit volume (later we shall use �i defined by �̄i = ρ�i ). An equation similar
to this was already employed by Oseen [58] as early as 1933 [see Fig. 11.8 in Vol. 2
of this treatise [42], p. 23 for his biography].

To find an estimate for the director force, Ericksen tested the gravitational field.
With the assumption that the gravitational field per unit mass is a constant, say g,
and ignoring all other forces, then we have

μ
∂2yi

∂t2
= μ gi .

With (25.14)–(25.17) one obtains

Mẍi =
∫

I
μ

∂2yi

∂t2
dλ = gi

∫

I
μdλ = M gi , (25.21)

Mn̈i =
∫

I
λμ

∂2yi

∂t2
dλ = gi

∫

I
λμdλ = 0,
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suggesting that this force contributes the usual term M gi to fi but nothing to the
vector �̄i in Eq. (25.20). This might be different for polarizable and magnetizable
materials.10

It is now evident that the global physical balance laws for liquid crystals are given
by (25.4)–(25.7) and (25.20).

25.2.2 Hydrostatics of Nematic Liquid Crystals

Ericksen based his hydrostatic theory on the assumption that the free energy per unit
volume, ψ, is a function of the unit vector ni and its gradient ni, j (being a quadratic
function of the gradient). Its variation is then

δ

∫

V
ψdV, (25.22)

where ni is varied, subject to the condition that its length be restricted to unity and
δ ni = 0 on the boundary. The free energy per unit mass, ϕ = ψ/ρ, is assumed a
function of the form

ϕ = ψ

ρ
= ϕ(ρ, ni , n j,k, T ). (25.23)

The variational (25.22) then takes the form

δ

∫

V
ρϕdV (25.24)

and will be conducted by varying ρ, xi and ni , subject to the constraint that local
mass is balanced

δρ + (ρδx j ), j = 0 ⇐⇒ δρ + ρ, jδx j + ρδx j, j = 0 (25.25)

is identically satisfied. We note, moreover, that

δn j,k + n j,kδxi = ( δn j + n j,iδxi︸ ︷︷ ︸
Def= Δ j

)
,k − n j,iδxi,k = Δ j,k − n j,iδxi,k . (25.26)

Next, we write

10This is so, because polarization gradients and magnetization gradients contribute to torques.
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δ

∫

V
ρϕdV =

∫

V
δ(ρϕ)dV +

∫

∂V
ρϕ δ(dV )︸ ︷︷ ︸

δxidai

∗=
∫

V

[
δ(ρϕ) + (ρϕδx j ), j

]
dV

=
∫

V

[
δ(ρϕ) + (ρϕ), jdx j + ρϕδx j, j

]
dV

=
∫

V

[
ρδϕ + ϕδρ + ρϕ, jδx j + ρ, jϕδx j + ρϕδx j, j

]
dV

=
∫

V

[
ϕ
(
δρ + ρ, jδx j

)

︸ ︷︷ ︸
=−ρδx j, j

+ρδϕ + ρϕ, jδx j + ρϕδx j, j
]
dV

=
∫

V

[
ρ(δϕ + ϕ, jδx j )

]
dV . (25.27)

In this chain of expressions, at step (
∗=) the divergence theorem was applied and the

underbraced term follows from (25.25). Furthermore, since ϕ is a function of class
(25.23), one obtains for isothermal processes, for which δT = 0,

ρ
(
δϕ + ϕ, jδx j

)

= ρ

[
∂ϕ

∂ρ

(
δρ + ρ, jδx j︸ ︷︷ ︸

(25.25)= −ρδx j, j

)+ ∂ϕ

∂ni

(
δni + ni, jδx j

)+ ∂ϕ

∂n j,k

(
δn j,k + n j,kiδxi

) ]

= ρ

[
− ρ

∂ϕ

∂ρ
δx j, j + ∂ϕ

∂ni︸︷︷︸
Def= γi /ρ

(
δni + ni, jδx j︸ ︷︷ ︸

=Δni

)+ ∂ϕ

∂n j,k

(
δn j,k + n j,kiδxi︸ ︷︷ ︸

=Δn j,k−n j,i δxi,k

)]

∗= ρ

[
− ρ

∂ϕ

∂ρ
δx j, j − γi

ρ
Δni + ∂ϕ

∂n j,k

(
Δn j,k − n j,iδxi,k

) ]

= αi,kδxi,k + β jkΔn j,k − γ jΔn j

= (αikδxi + β jkΔn j
)
,k

− αik,kδxi − (β jk,k − γ j
)
Δn j . (25.28)

Here, at step (
∗=), the definitions [23]

αik := −ρ2
∂ϕ

∂ρ
δik − ρ

∂ϕ

∂n�,k
n�,i , (25.29)

β jk := ρ
∂ϕ

∂n j,k
, (25.30)

γi := −ρ
∂ϕ

∂ni
(25.31)

were introduced. Back substituting the expression (25.28) into (25.27) yields
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δ

∫

V
ρϕdV =

∫

∂V

{
αi jδxi + βi jΔni

}
da j

−
∫

V

{
αi j, jδxi + (βi j, j + γi

)
Δni

}
dV . (25.32)

It is tempting to interpret the expressions (25.29)–(25.31), αi j ,β jk , and γi as quan-
tities determined by the free energy ϕ (25.23) as Cauchy stress, director stress, and
intrinsic director force. In the spirit of the classical principle of virtual work, the
variation expression (25.24) is equal to the virtual work of the volume and surface
forces. Based on the form of (25.32) it is natural, as Ericksen [23] says, to assume
a principle of virtual work of the form

δ

∫

V
ρϕdV =

∫

∂V
{aiδxi + biΔni } da +

∫

V
{ciδxi + diΔni } dV, (25.33)

in which ai , bi , ci , di represent generalized surface and volume forces of the fluid.
Comparison of (25.32) and (25.33) leads to

αi j, j + ci = 0, and βi j, j + γi + di = 0, x ∈ V (25.34)

as well as

αi jda j = aida, and βi jda j = bida, x ∈ ∂V . (25.35)

In a classical fluid, for which ni = 0, these reduce to αi j, j + ci = 0 ∈ V and
αi j n

+
j = ai ∈ ∂V , where n+

j is the unit normal vector pointing out of V . Hence, in
line with (25.4), (25.5), (25.20), we make the identifications

ti j = αi j , ρ fi = ci , (25.36)

πi j = βi j , ρki = ρ(γi + di ),

for liquid crystals in equilibrium.

25.2.3 Hydrodynamics of Nematic Liquid Crystals

The dynamical field equations for LCs must account for (25.16)–(25.18), (25.20),
and the identifications (25.19)1.

• Linear momentum
Conservation of linearmomentum is best postulated by the classical relation (25.5),
with pi given by (25.19)1, [26]:

d

dt

∫

V
ρẋidV =

∫

∂V
ti jda j +

∫

V
ρ fidV, (25.37)
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or locally, for smooth processes, as

ρẍi = ti j, j + ρ fi . (25.38)

However, these must be complemented by the director momentum equation
(25.20), which is adopted as a further balance law with smooth local form

ρn̈i = πi j, j + ρ�i , (25.39)

�i = gi + Gi , (25.40)

where gi represents an intrinsic part, reminiscent of a production, with values
gi = γi in equilibrium, and Gi represents an external supply term, which we
ignore.

• Balance of energy
The global conservation law of energy of a Boltzmann continuum is given by
the black-printed terms in

d

dt

∫

V
e dV

= d

dt

∫

V

[
ρε + ( 12ρẋi ẋi+ 1

2ρṅi ṅi
)]
dV

=
∫

∂V

[
ti j ẋ j+πi j ṅ j − qi

]

︸ ︷︷ ︸
hi

dai +
∫

V
ρ ( fi ẋi+gi ṅi + q)
︸ ︷︷ ︸

e

dV, (25.41)

in which hi is composed of the power of working of the stresses (ti j ẋ j ) plus the
heat flux (−qi ) into the body. Analogously, the energy supply is given by the power
of working of the body forces ( fi ẋi ) and the heat supply q. This law appears in
(25.41) in blackwriting. For LCs, further terms are added as natural extrapolations.
These are given in (25.41) in red printing. The kinetic energy of the directors has
been motivated by Eq. (25.17). The power of working of the director stress may
then be suggested as (πi j ṅi ) in analogy to the power of working of the Cauchy
stress. Moreover, the power of working of the intrinsic nonequilibrium director
force is given by (gi ṅi ). All these extensions seem to naturally suggest themselves.
The local form of (25.41) reads

ρε̇ = ti j ẋi j + πi j ṅi, j − q j, j − ρgi ṅi − ρq. (25.42)

For its derivation, the balance of mass, linear momentum, and director momentum
were used. Ericksen, in his formulation of anisotropic fluids used (25.42) with
πi j = 0, but gi �= 0 [22].

• Balance of angular momentum
Ericksen starts his analysis of the angular momentum conservation by requesting
that the free energy function must be invariant under Euclidian transformations;
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it is sufficient to draw the respective inferences by applying infinitesimal rotations.
Thus,

D ϕ = ϕ
(
ρ, n′

i , n′
j,k, T

)− ϕ(ρ, ni , n j,k, T ) = 0, (25.43)

n′
i = Ri j n j , n′

i, j = Rik R j�nk,�, (25.44)

where Ri j is an orthogonal transformation such that Ri j Rik = δ jk and det(Ri j ) =
+1. For an infinitesimal rotation, we have

Ri j = δi j + Ωi j , Ωi j = −Ω j i . (25.45)

For infinitesimal rotations, we shall neglect higher order products such as Ωi jΩkl .
It follows from (25.43) and (25.44) that

n′
i − ni = Ωi j n j ,

n′
i, j − ni, j = (δik + Ωik)(δ j� + Ω j�)nk� − ni, j (25.46)

= Ωiknk, j + Ω jkni,k + O(|Ω|2).

It then follows from (25.43) that

Dϕ = ϕ
(
ρ, (δi j + Ωi j )n j , (ni, j + Ωik)nk, j + Ω jkni,k, T

)

−ϕ(ρ, ni , ni, j , T ) (25.47)

∗=
{

∂ϕ

∂ni
n j + ∂ϕ

∂ni,k
n j,k + ∂ϕ

∂nk,i
nk, j

}
Ωi j + O(‖Ω‖2) = 0. (25.48)

At the step (
∗=), the first function on the right-hand side of (25.47) has been

expanded in aTaylor series of n′
i and n′

k, j , thereby dropping terms of higher order,
which we simply write as O(‖Ω‖2). Because Ωi j is skew-symmetric, the tensor
between braces in (25.48) must be symmetric; so, its skew-symmetric part must
vanish. Introducing then (25.29)–(25.31) for notational reasons, this requirement
implies

γ j ni − γi n j + βikn j,k − β jkni,k + αi j − α j i = 0.

Because this relation must also hold in equilibrium, we have

g j ni − gi n j + ti j − t ji + πikn j,k − π jkni,k = 0, (25.49)

in which (25.36) and (25.40) have been used. When πi j = 0 and gi = 0, this
equation reduces to ti j = t ji , the conventional statement that in a Boltzmann

continuum the Cauchy stress tensor is symmetric.
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From Eqs. (25.6) and (25.19)2, the local form of the angular momentum equation
can be written as

ρ
(
x[i ẍ j] + n[i n̈ j]

) = mi jk,k + ρki j . (25.50)

With the use of the local momentum equations (25.38) and (25.39) to eliminate ẍi

and n̈i , we obtain from (25.50)

ρx[i f j] + x[i t j]k,k + ρn[ig j] + n[iπ j]k,k = mi jk,k + ρki j . (25.51)

This equation can be put into a better interpretable form by employing the relations

x[i t j]k,k = 1
2

(
xi t jk,k − x j tik,k

) = 1
2

(
xi t jk − x j tik

)
,k

+ 1
2

(
ti j − t ji

)
, (25.52)

n[iπ j]k,k = 1
2

(
niπ jk − n jπik

)
,k + 1

2

(
n j,kπik − ni,kπ jk

)
.

Substituting these into (25.51) and using (25.40) and (25.49) yields

(
x[i t j]k,k + n[iπ j]k

)
,k + ρx[i f j] + ρn[ig j] = mi jk,k + ρki j , (25.53)

suggesting that

mi jk = x[i t j]k + n[iπ j]k, (25.54)

hi j = x[iρ f j] + n[iρg j].

These expressions have obvious interpretations. Indeed, vi jk can be interpreted as
the dual of the torque density due to the Cauchy stresses plus the director stresses,
while hi j is the torque due to the body force and the director force. The global angular
momentum balance (25.6) is therefore

d

dt

∫

V
ρ
(
x[i ẋ j] + n[i ṅ j]

)
dV

=
∫

∂V

(
x[i t j]k + n[iπ j]k

)
dak +

∫

V
ρ
(
x[i f j] + n[ig j]

)
dV . (25.55)

For convenience, we state in Table 25.1 the equations, where the final forms of the
physical conservation laws for liquid crystals can be found.

An alternative article to the hydrodynamics of nematics is also given by
Vertogen [75].
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Table 25.1 Balance laws for
liquid crystals

Law Global Local

Mass (25.4)

Classical momentum (25.37) (25.38)

Director momentum (25.20) (25.39)

Energy (25.41) (25.42)

Angular momentum (25.55) (25.50)

25.3 A Thermodynamic Theory for Nematic Liquid
Crystals

Since their discovery at the end of the nineteenth century, the materials best known
as liquid crystal displays (LCD) have conquered an incredible position in the indus-
trialized world. There are virtually no electrical–electronic gadgets without them
being parts of these. However, their victorious success is based on a rather complex
theoretical physical fundament.

While Duhem in 1893 [18], Oseen in 1933 [58]11 formulated static models for
LCs, it was Ericksen [22, 23] who presented the first robust set of balance laws for
LCs. Leslie [46] formulated constitutive equations similar to those discussed earlier
by Ericksen [22] and essentially recovered Ericksen’s theory of anisotropic flu-
ids. Following the Colemann–Noll procedure, he discussed the restrictions placed
upon these constitutive equations by the Clausius–Duhem inequality. In his 1968
paper [47], he made broader constitutive assumptions and obtained a formulation,
which, apart from minor differences, reduces statically to the theory discussed by
Ericksen [23]. One essential step toward this new formulation consisted in the adop-
tion of a generalization of the entropy inequality due to MÜLLER12 [53], in which the
entropy flux is not assumed to be equal to heat flux divided by absolute temperature,
but is of constitutive nature of the same class as the remaining constitutive equations
of the theory. In principle, Leslie found that the entropy flux differs in general from
“heat flux divided by absolute temperature.”

11For biographical sketches of Pierre Maurice Marie Duhem see Fig. 17.16 in Vol. 2 of this
treatise [42] p 343, and for those of Carl Wilhelm Oseen see Fig. 11.8 in Vol. 2 of this treatise [42],
p 23.
12This generalization of the entropy principle is different from Müller’s generalization treated
in volume 2 of this treatise [42]. Its exploitation follows the Coleman–Noll procedure of open
systems thermodynamics.
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In the ensuing developments, we follow Leslie’s 1968 paper [47] that is based
on Ericksen’s balance laws of LCs [23] and is now called the EL theory.

25.3.1 Kinematics

In what follows, we employ the Eulerian formulation and refer any field quantity
f to the coordinates xi in the laboratory frame and the present time t : f = f (xi , t).
The velocity vi will denote the total or substantive time derivative holding the fluid
particle fixed, vi = ẋi ,

vi = vi (x j , t) (25.56)

for xi ∈ V ∪ ∂V . The tensors

Di j = 1
2 (vi, j + v j,i ), ωi j = 1

2 (vi, j − v j,i ) (25.57)

will denote the stretching or strain rate or rate of strain tensor and the vorticity tensor,
respectively. Moreover, directors will be denoted by

ni = ni (x j , t) (25.58)

as before and their material or total time derivatives13 are

ṅi = ∂ni

∂x j
v j + ∂ni

∂t
. (25.59)

It is, however, convenient to introduce the Euclidian objective quantities

Ni = ṅi − ωi j n j , (25.60)

Ni j = ṅi, j − ωiknk, j .

Consider the Euclidian change of frame

x∗
i = c∗

i + Qi j (x j − c j ), (25.61)

n∗
i = Qi j n j ,

in which c∗
i , ci are time-dependent vectors and Qi j is a time-dependent orthogonal

transformation [Qik Q jk = δi j ]. It is a straightforward exercise to prove that

D∗
i j = Qip Q jq Dpq , ω∗

i j = Qip Q jqωpq + Ωi j ,

N ∗
i = Qip Np, N ∗

i j = Qip Q jq Npq ,
(25.62)

13We shall not use a separate symbol, say wi , for ṅi , as done by Leslie in [47].
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in which

Ωi j = −Ω j i = Q jk Q̇ik . (25.63)

Indeed, with the definition of the orthogonality of Qi j the expressions for D∗
i j and

ω∗
i j are almost obvious. For N ∗

i we then can write

N ∗
i = ṅ∗

i − ω∗
ikn∗

k = Qi j ṅ j + Q̇i j n j − [(Qip Qkqωpq + Ωik
)
(Qk�n�)

]

= Qi j ṅ j + Q̇i j n j − [Qipδq�ωpqn� + Ωik Qk�n�︸ ︷︷ ︸
Qkm Q̇im Qk�n�

]

= Qi j ṅ j + Q̇i j n j − [ Qipωpqnq︸ ︷︷ ︸
Qipωpj n j

+Q̇imnm
]

= Qi j ṅ j + Q̇i j n j − Qipωpj n j − Q̇imnm

= Qip
(
ṅ p − ωpj n j

) = Qip Np.

�
It is now straightforward also to verify (25.62)4; this is left as an exercise to the

reader.

25.3.2 Conservation Laws and Entropy Inequality

It would now be straightforward to copy the conservation laws of mass, momenta,
and energy fromSect. 25.2, see Table 25.1. In the 1960s it has, on the other hand, been
fashionable to discuss these laws in a more general context, namely the invariance
of the total energy balance and of the director momentum equation under Euclidian
transformations or superposition of rigid body motions (25.61). This was done by
Green, Naghdi and Rivlin [35], Beatty [1], Truesdell [73], and Truesdell

and Noll [74] in a general context. The procedure will now also be explained here,
mainly for educational reasons.

For amaterial volumeV , the energy balance and the directormomentumequations
are given as

d

dt

∫

V
ρ
{
1
2 (vivi + ṅi ṅi ) + ε

}
dV

=
∫

V
ρ {r + fivi + �i ṅi } dV +

∫

∂V
{tivi + mi ṅi − h} da, (25.64)

d

dt

∫

V
ρṅidV =

∫

V
ρ (�i + gi ) dV +

∫

∂V
ρkida. (25.65)

Here, ρ is the mass density and all remaining volume quantities are defined per unit
mass and unit volume element. ε is the specific internal energy. {r, fi , �i , gi } are the
energy supply, the external body force, the external director body force, the intrinsic
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director body force, all per unit mass. {ti , mi , h} are the surface traction, the director
surface traction and the energy flow out of the volume, and ki is the director surface
traction, all per unit area.

Note, it will now be postulated that the balance equations (25.64), (25.65) are
invariant under Euclidian transformations, but to set this requirement into practice,
it must be known, or postulated how the various field quantities transform under
Euclidian transformations. We will assume that

ρ∗ = ρ, ε∗ = ε, h∗ = h, r∗ = r,

t∗
i = Qi j t j , m∗

i = Qi j m j , g∗
i = Qi jg j , (25.66)

f ∗
i − (v∗

i )
· = Qi j ( fi − v̇i ) , �∗

i − (ṅi )
∗ = Qi j (�i − ṅi ) .

In these expressions, it is assumed that {ρ, ε, h, r} transform under Euclidian
changes of frames as objective scalars and the surface flux quantities {ti , mi , gi }
as objective vectors. By contrast, the external supply terms are postulated to behave
differently: Here, {( fi −v̇i ), (�−ṅi )} are assumed to behave objectively. This follows
the classical inertial behavior of the Euclidian invariance of ( fi − v̇i ) and carries
this over to the analogous terms of the director momentum behavior as evidenced by
(�i − ṅi ).

We now select two special transformations (25.61):
Choice 1: Simple temporal shift with the velocity aiτ :

c∗
i = aiτ , ci = 0, Qi j = δi j , (25.67)

where ai is an arbitrary, constant vector. From Eq. (25.61) we, thus, deduce v∗
i =

vi + ai and so (25.64) takes the form

d

dt

∫

V
ρ
{
1
2 (vi + ai ) (vi + ai ) + 1

2 ṅi ṅi + ε
}
dV

=
∫

V
ρ {r + fi (vi + ai ) + �i ṅi } dV

+
∫

∂V
{ti (vi + ai ) + mi ṅi − h} da. (25.68)

This equationmust hold for arbitrary values of ai . Subtracting, therefore from (25.68)
the same equation with ai = 0, one finds

d

dt

∫

V
ρ
{
vi ai + 1

2ai ai
}
dV =

∫

V
ρ fi aidV +

∫

∂V
ti aida, (25.69)

from which one deduces, since ai is arbitrary,

d

dt

∫

V
ρdV = 0,

d

dt

∫

V
ρvidV =

∫

V
ρ fidV +

∫

∂V
tida. (25.70)
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Fig. 25.11 Cauchy stress tensor To find the interpretation of theCauchy stress tensor we consider
an infinitesimal material tetrahedron with three triangular boundary surfaces perpendicular to the
coordinate lines and an inclined element with exterior unit normal vector n. On each surface
element, we have normal and shear stresses

These are the familiar global balance laws of mass and linear momentum. Sufficient
smoothness of the fields assumed, their local forms are

dρ

dt
+ ρvi,i = 0, ρ

dvi

dt
= ρ fi + ti j, j , ti = ti j n

+
j , (25.71)

in which ti j is the Cauchy stress tensor and n+
j a unit vector on a plane forming the

tetrahedron shown in Fig. 25.11.
Similarly, employing Cauchy’s lemma for the surface traction, ki = πi j n

+
j , the

global director momentum equation (25.65) takes the form

ρ
d

dt
(ṅi ) = ρ�i + ρgi + πi j, j , ki = πi j n

+
j , (25.72)

in which πi j are the components of the director surface force across the xi -planes. If
we also introduce the energy flux vector via

h = qi n
+
i , (25.73)

we can write the energy equation (25.64) in the form

d

dt

∫

V
ρ
{
1
2 (vivi + ṅi ṅi ) + ε

}
dV
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−
∫

V

{
ρ [r + fivi + �i ṅi ] + (ti jvi ), j + (πi j ṅi ), j − q j, j

}
dV = 0

∗=
∫

V

〈
ρ̇
{
1
2 (vivi + ṅi ṅi ) + ε

}+ ρ
{
vi v̇i + ṅi (ṅi )

· + ε̇
}

+ ρ
{
1
2 (vivi + ṅi ṅi ) + ε

}
vk,k − ρ [r + fivi + �i ṅi ]

− (ti jvi
)
, j − (πi j ṅi

)
, j + q j, j

〉
dV = 0

∗∗=
∫

V

〈(
ρ̇ + ρvk,k︸ ︷︷ ︸

=0

) {
1
2 (vivi + ṅi ṅi ) + ε

}

+ vi
{
ρv̇i − ρ fi − ti j, j︸ ︷︷ ︸

=0

}− ti jvi, j

+ ṅi
{
ρ(ṅi )

· − ρ�i − πi j, j︸ ︷︷ ︸
=gi

}− πi j (ṅi ), j

+ ρε̇ − ρr + qi,i − ti jvi, j − πi j (ṅi ), j + ṅigi

〉
dV = 0

∗∗∗=
∫

V

〈
ρε̇ − ρr + qi,i − ti j

(
Di j + ωi j

)

− πi j
(
Ni j + ωiknk, j

)+ gi
(
Ni + ωi j n j

) 〉
dV = 0

=
∫

V

〈
ρε̇ − ρr + qi,i − ti j Di j − πi j Ni j + gi Ni − t̃i jωi j

〉
dV = 0, (25.74)

where

t̃i j := ti j + πikn j,k − gi n j . (25.75)

In the second line of (25.74), the Gauss law has been employed. Furthermore, at
step (

∗=) we employed the property

d

dt

∫

V
ρ f dV =

∫

V

(
ρ̇ f + ρ ḟ + ρ f vk,k

)
dV

=
∫

V

{ (
ρ̇ + ρvk,k

)

︸ ︷︷ ︸
=0

f + ρ ḟ
}
dV =

∫

V
ρ ḟ dV

and at step (
∗∗=) the balance laws of mass and classical and director momenta have

been used, while at step (
∗∗∗= ) the objective vector Ni and second rank tensor Ni j ,

defined in (25.60), have been substituted. This, finally, led to the introduction of the
tensor t̃i j in (25.75). The energy balance law, thus, reduces to the statement

〈
ρε̇ − ρr + qi,i − ti j Di j − πi j Ni j + gi Ni − t̃i jωi j

〉 = 0. (25.76)

Choice 2: Following Leslie [48], we select as special transformation (25.61)
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c∗
i = ci = 0 Qi j = δi j , and Q̇i j = ai j , (25.77)

where ai j = −a ji is skew-symmetric. This transforms ωi j to ωi j + ai j [see (25.61)]
and leaves the energy equation unchanged except for the last term on the left-hand
side, which reads t̃i j (ωi j + ai j ). Because ai j is arbitrary among all rank-2 skew-
symmetric tensors, we have

t̃i j ai j = 0. (25.78)

It follows that t̃i j is necessarily symmetric,

t̃i j = t̃ j i . (25.79)

Thus, the energy equation takes the form

ρε̇ = −qi,i + ti j Di j + πi j Ni j − gi Ni + ρr. (25.80)

The governing physical balance laws are now given by the balances of mass and
linear momentum (25.71)1,2, the director momentum balance law (25.72), the energy
equation (25.76), and the symmetry relations for the tensor t̃i j (25.79).

We now complement these conservation laws by the entropy inequality, which
we take in the form

d

dt

∫

V
ρsdV +

∫

∂V
φda −

∫

V

ρr

T
dV � 0. (25.81)

Here, s denotes the entropy density per unit mass, φ is the entropy flow through
the boundary ∂V of V , and r/T is the entropy supply per unit mass. It has been
chosen above as the energy supply divided by the absolute temperature. Introducing
the entropy flux vector φi and noting Cauchy’s lemma, we write

φ = φi n
+
i . (25.82)

Substituting this into (25.81) and employing the divergence theorem then yields

∫

V

(
ρṡ + φi,i − ρr

T

)
dV � 0, (25.83)

or, when localized

ρṡ + φi,i − ρr

T
� 0. (25.84)

The Clausius–Duhem inequality has been generalized by selecting the entropy
flux vector as a vector of the constitutive class to be selected below. This follows
MÜLLER’s paper [53]. TheHelmholtz free energy and the extra entropy flux vector
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φi are defined by

ψ = ε − T s, ϕi = qi − T φi . (25.85)

Substituting these into (25.84) and eliminating ρr/T with the help of (25.76) yields
the entropy inequality, (in this form often called dissipation inequality) as

− ρ
(
ψ̇ + sṪ

)+ ti j Di j + πi j Ni j − gi Ni − φi T,i − ϕi,i � 0. (25.86)

Note that, if ϕi = 0, then φi = qi/T and (25.86) reduces to the Clausius–Duhem
inequality as used by Ericksen [22].

25.3.3 Constitutive Relations and Exploitation of the Entropy
Principle

The balance laws of mass, linear momentum, director momentum, and energy com-
prise eight differential relations for ρ, vi , ni , and T . They involve

{ε, s, qi ,ϕi , ti j ,πi j , gi } (25.87)

as field quantities, which must uniquely be expressed as constitutive relations in
terms of the independent constitutive variables. Our intention is to express these as
functions of14

{
ρ, ni , ni, j , ṅi , vi, j , T, T,i

}
. (25.88)

They comprise, via {ρ, ni , ni, j }, elasticity effects, via vi, j viscous effects and via
{T, T,i } heat conducting effects. Owing to (25.60), an alternative set of independent
variables can also be

{
ρ, ni , ni, j , Ni , Di j ,ωi j , T, T,i

}
. (25.89)

It has already been made clear that all variables in (25.89) are objective under
Euclidian transformations, except ωi j , which transforms as

ω∗
i j = Qip Q jqωpq + Ωi j , (25.90)

as already stated in (25.62);Ωi j is defined in (25.63). The occurrence ofΩi j in (25.90)
makes ω∗

i j non-objective under Euclidian transformations. If constitutive relations
are requested to be objective under such transformations ωi j is only allowed to arise

14A dependence on (ṅi ), j is in principle also possible, however, when it is thought that elongations
of directors are small, this stretching may be small as well.
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in combination with other independent constitutive variables, which are Euclidian
objective, such as Ni or Ni j ; so, (25.89) reduces to

{
ρ, ni , Ni , Di j , T, T,i

}
. (25.91)

Apart from the reduction of the independent constitutive relations to the class (25.91),
the exploitation of the entropy principle will be conducted, subject to the following
conditions:

• We restrict considerations to nematic LCs, so that constitutive relations are invari-
ant under reflections through planes containing the directors; this requirement
implies that constitutive equations are isotropic functions, so that the constitutive
variables are invariant under proper and improper orthogonal transformations Qi j ,
viz.,

for scalars : s∗ = s, {ε, ρ, T, s},
for vectors : q∗

i = Qipqp, {qi ,φi , gi , ni , Ti },
for rank-2 tensors : t∗

i j = Qip Q jq tpq , {ti j ,πi j , ni, j , Di j , . . .},
(25.92)

where the second column in this table shows the transformation rule for arbitrary
±Qi j and the third column lists the possible variables to which the transformation
in the second column applies.

• The assumption that ni and−ni are to be physically indistinguishable in the theory
requires that the change ni → −ni must imply the changes

ε → ε, s → s, qi → qi , φi → φi , (25.93)

ti j → ti j , πi j → −πi j , gi → −gi ,

provided that

ni, j → −ni, j , ṅi → −ṅi , Ni → −Ni . (25.94)

In these expressions, the invariance rules for πi j and gi follow from the invariance
of the director momentum equation (25.20) with (25.40); moreover, those for ṅi

and Ni are a consequence of (25.60).
• Of particular significance is the fact that the balance laws of mass (1), momenta
(6), and energy (1) form a set of eight equations. To arrive at an integrable system
of equations, constitutive relations are formulated for the quantities (25.87), but
these may not automatically satisfy the symmetry of the stress t̃i j , given in (25.75)
and (25.79). It must separately be guaranteed that this symmetry is automatically
satisfied.

• The dissipation inequality (25.86) will be exploited here in the spirit of
Coleman–Noll, see [42], Chap. 18, i.e., it is assumed that the balance laws
of classical and director momenta have external body and director forces fi and
�i , respectively, which may have any assigned values. This means that—whatever
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values the remaining fields or their time or space derivatives may have—there
exist forces fi and �i , which make the linear and director momentum equations
identically be satisfied. Similarly, the conservation law of energy (25.76) equally
contains an external source, r , which may have any arbitrary value. So, whatever
values the other variables arising in (25.76) may have, they can be thought to be
generated by a source ρr , which satisfies (25.76) identically. Therefore, the bal-
ance laws of momenta and energy do formally not serve as constraint conditions
when exploiting (25.86).
It is clear that the condition of arbitrarily assigned fields fi , �i , and r delivers
mathematically a considerable simplification of the entropy analysis, but whether
such an assumption is equally physically justified is a different matter. More on
this will be said below.

With the above-itemized provisos in mind, the entropy inequality (25.86) can now
be exploited. To this end, the following auxiliary computations are needed:

ϕi,i = ∂ϕi

∂ρ
ρ,i + ∂ϕi

∂n j
n j,i + ∂ϕi

∂n j,k
n j,ki + ∂ϕi

∂N j
N j,i

+ ∂ϕi

∂D jk
D jk,i + ∂ϕi

∂T
T,i + ∂ϕi

∂T, j
T,i j , (25.95)

in which (25.60) and the definition of ωik in (25.57) can be used to substitute

Ni, j = Ni j + ωik, j nk = Ni j + Dik, j nk − Dk j,i nk, (25.96)

so that (25.95) takes the form

ϕi,i = ∂ϕi

∂ρ
ρ,i + ∂ϕi

∂T
T,i + ∂ϕi

∂T, j
T,i j + ∂ϕi

∂n j,k
n j,ik + ∂ϕi

∂N j
Ni j

+
(

∂ϕi

∂D jk
− ∂ϕi

∂N j
nk + ∂ϕ j

∂Ni
nk

)
D jk,i . (25.97)

Similarly,

ψ̇ = ∂ψ

∂ρ
ρ̇ + ∂ψ

∂ni
ṅi + ∂ψ

∂ni,k
(ni,k)

· + ∂ψ

∂Ni
Ṅi

+ ∂ψ

∂Di j
(Di j )

· + ∂ψ

∂T
Ṫ + ∂ψ

∂T,i
(T,i )

·

and with

ρ̇ = −ρDi jδi j , (ni )
· (25.60)= (

Ni − ωi j n j
)
,

(ni,k)
· = (ṅi ),k − v j,kni, j

(25.60)= Nik − ωi�n�,k − D jkni j − ω jkni, j ,
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this yields

ψ̇ = −ρ
∂ψ

∂ρ
Di jδi j + ∂ψ

∂ni
Ni − ∂ψ

∂ni
ωi j n j + ∂ψ

∂Ni
Ṅi

+ ∂ψ

∂Di j
(Di j )

· + ∂ψ

∂T
Ṫ + ∂ψ

∂T,i
(T,i )

·

+ ∂ψ

∂ni,k

(
(ṅi ),k︸ ︷︷ ︸

(25.60)= Nik−ωi�n�,k

− v j,k︸︷︷︸
(D jk+ω jk )

ni, j
)
. (25.98)

Substituting (25.97) and (25.98) into the entropy imbalance (25.86), rearranging
terms (and adjusting indices) leads to the following long inequality:

(
ti j + ρ2

∂ψ

∂ρ
δi j + ρ

∂ψ

∂nk, j
nk,i

)
Di j +

(
πi j − ρ

∂ψ

∂ni, j
− ∂ϕ j

∂Ni

)
Ni j

−
(

gi + ρ
∂ψ

∂ni

)
Ni −

(
pi + ∂ϕi

∂T

)
T,i − ∂ϕi

∂n j
n j,i

+ ρ

(
n j

∂ψ

∂ni
+ n j,k

∂ψ

∂ni,k
+ nk, j

∂ψ

∂nk,i

)
ω j i − ∂ϕi

∂ρ
ρ,i − ∂ϕi

∂nk, j
nk,i j

− ∂ϕi

∂T, j
T,i j −

(
∂ϕi

∂D jk
+ nk

∂ϕ j

∂Ni
− ni

∂ϕk

∂N j

)
D jk,i

− ρ

(
∂ψ

∂T
+ s

)
Ṫ − ρ

∂ψ

∂Ni
Ṅi − ρ

∂ψ

∂Di j
Ḋi j − ρ

∂ψ

∂T,i
(T,i )

· � 0. (25.99)

This inequality must be identically satisfied for arbitrarily smooth fields. It is linear
in the colored quantities, which can be freely assigned. This is so, because we assume
that the linear and director momentum equations as well as the energy equation are
equippedwith external source terms,whichmay be selected such that for any selected
values of the colored quantities in (25.99) the momentum and energy equations are
identically satisfied. Taking the terms in the last line of (25.99), we therefore conclude
that

∂ψ

∂T,i
≡ 0,

∂ψ

∂Ni
≡ 0,

∂ψ

∂Di j
+ ∂ψ

∂D ji
≡ 0, (25.100)

while

s = −∂ψ

∂T
. (25.101)

Hence, ψ can neither depend upon T,i nor Ni , implying that

ψ = ψ(ρ, T, ni , ni, j ). (25.102)
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The result (25.101) agrees with the classical relation between entropy and the free
energy. Moreover, since the imbalance (25.99) is also linear in the vorticity tensor,
its prefactor in (25.99) must be a symmetric rank-2 tensor; this condition reads

ni
∂ψ

∂n j
+ ni,k

∂ψ

∂n j,k
+ nk,i

∂ψ

∂nk, j
≡ n j

∂ψ

∂ni
+ n j,k

∂ψ

∂ni,k
+ nk, j

∂ψ

∂nk,i
. (25.103)

If the free energy function is an isotropic function of ni and ni, j , which we will
assume, this equation is identically satisfied. This proof has been given in the text
following Eq. (25.48) [where the free energy function is denoted by ϕ and not ψ]; it
is due to Ericksen [23].

There remain the terms involving the blue colored quantities in (25.99), which
can be assigned arbitrary values, implying

∂ϕi

∂ρ
≡ 0,

∂ϕi

∂nk, j
+ ∂ϕ j

∂nk,i
≡ 0,

∂ϕi

∂T, j
+ ∂ϕ j

∂T,i
≡ 0, (25.104)

∂ϕi

∂D jk
+ ∂ϕi

∂Dk j
+ nk

∂ϕ j

∂Ni
+ n j

∂ϕk

∂Ni
− ni

∂ϕk

∂N j
− ni

∂ϕi j

∂Nk
≡ 0. (25.105)

Equation (25.104)1 says that ϕi cannot depend upon ρ. Leslie [47] then mentions

• that it is relatively easy to show with the use of (25.104)3 that ϕi can only linearly
depend upon the temperature gradient,

• that from Eq. (25.105) one can show that, apart from an arbitrary dependence upon
the scalar product ni Ni , ϕi is linear in the vector Ni and the rate of strain tensor
Di j . Hence, ϕi is of the form

ϕi = αi + αi j T, j + βi j N j + βi jk D jk + γi jk T, j Nk + γi jkpT, j Dkp, (25.106)

where the coefficients may depend upon T , ni , ni, j , and ni Ni ; moreover, βi jk and
γi jkp are obviously symmetric in the last two indices.

• that one can show by employing Eq. (25.104)2 that
(i) αi is at most quadratic in ni, j ,
(i i) αi j , βi j and βi jk are at most linear in ni, j ,
(i i i) γi jk are independent of the director gradients.15

• that, as a result of the work of Smith [66] on isotropic integrity bases, and by
recalling (25.92), (25.93), it is a straightforward matter to show that

ϕi = α (T, ni ni , ni Ni )
{
ni n j, j − n j ni, j

}
. (25.107)

15Up to this point, these results are independent of whether the constitutive functions are isotropic
or hemotropic.
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The reader may partially satisfy himself/herself, by taking the above-itemized state-
ments as facts, and verify that with them, Eqs. (25.104) and (25.105) are identically
satisfied.16

Finally, inequality (25.99) is also linear in Ni j [see (25.60)], so that the director
stress πi j is given by

πi j = ρ
∂ψ

∂ni, j
− ∂ϕ j

∂Ni
. (25.108)

It depends not only on the free energy, ψ, but equally also upon ϕ j , the extra entropy
flux.

The scalar coefficient α in (25.107) depends only upon the temperature, the mag-
nitude of ni , and the scalar product ni Ni . The proof of (25.107) is relatively lengthy
and involves the theory of isotropic functions [66, 71, 77, 78].

With these results, the inequality (25.99) reduces to

(
ti j + ρ2

∂ψ

∂ρ
δi j + ρ

∂ψ

∂nk, j
nk,i

)
Di j

−
(

gi + ρ
∂ψ

∂ni

)
Ni −

(
pi + ∂ϕi

∂T

)
T,i − ∂ϕi

∂n j
n j,i � 0. (25.109)

This residual entropy inequality will now be used to draw inferences for thermo-
dynamic equilibrium. To this end, consider a static (time independent) isothermal
process, in which the magnitude of the director does not vary. For such a process
Di j = Ni j = Ni = T,i = 0 [see (25.60)], so that

− ∂ϕi

∂n j
n j,i ≡ 0. (25.110)

The equality sign applies here instead of “(� 0)” because this static process is a
thermodynamic equilibrium for which no entropy is produced. Substituting ni ni =
const. and ni Ni = 0 into (25.107) yields

α(T, const., 0){δi j nk,k − ni, j︸ ︷︷ ︸
�=0

} = 0 =⇒ α(T, const., 0) = 0. (25.111)

Thus, we may write

Ni := ni n j, j − n j ni, j , (25.112)

ϕi = [α0(T, nknk)n j N j + α1
(
T, nknk, n j N j

)]Ni , (25.113)

in which α1 = o(ni Ni ) as ni Ni → 0.

16The authors neither fully verified these statements.
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With this selection of ϕi , it is now evident that for Di j = 0, Ni = 0, T,i = 0, and
ni Ni → 0, no entropy is produced. Thus, we may compose the stress ti j , the intrinsic
body force gi , and the entropy flux pi as

ti j = t0i j + t ′
i j , gi = g0i + g′

i pi = p0
i + p′

i . (25.114)

Substituting these expressions into the imbalance (25.109) and requesting that the
(·)0-quantities produce no entropy, we obtain the equilibrium values

t0i j = −ρ2
∂ψ

∂ρ
δi j − ρ

∂ψ

∂nk, j
nk,i ,

g0i = −ρ
∂ψ

∂ni
− ∂

∂nk

(
α0N j ni

)
nk, j , (25.115)

p0
i = 0,

as well as the residual inequality in the form

t ′
i j Di j − g′

i Ni − ∂

∂ni
(α1Ni ) n j,i −

(
p′

i + ∂ϕi

∂T

)
T,i � 0. (25.116)

Expressions for t ′
i j , g

′
i , and p′

i could now be obtained for the nonequilibrium parts t ′
i j ,

g′
i , and p′

i from isotropic function representations of these quantities; however, on
account of their complexity, this was not done byLeslie [47]. He restricted consider-
ations to static isothermal deformations. For these, the stresses and the intrinsic body
force are given by (25.115), (25.108) and are below written without the (·)0-index:

ti j = −ρ2
∂ψ

∂ρ
δi j − ρ

∂ψ

∂nk, j
nk,i ,

πi j = ρ
∂ψ

∂ni, j
+ α0N j ni , (25.117)

gi = −ρ
∂ψ

∂ni
− (α0N j ni

)
, j .

In these static processes, the heat and entropy flux vectors are zero.Leslie [47] states
that apart from the terms involving α0, the above expressions were already given by
Ericksen [23].However, these extra terms do not appear in the equilibriumequations
and are therefore significant only, if the director stress is specified as a boundary
condition. Indeed, the static equilibrium equation of the director momentum balance
is, according to (25.72) given by πi j, j + gi − ρ�i = 0. Equation (25.72) show that
the α0-contributions to (πi j, j + gi ) drop out. These terms are therefore significant
only, if the director stress is specified as a boundary condition.

Remark: Technically, boundary conditions exert a significant effect on optical prop-
erties of LCs. This is reason for the success of LC devices. (LCDs). The fundamental
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Fig. 25.12 Two polarizers (polarizer/analyser) with a neutral medium in between transmit unpo-
larized light by orienting the transmitted light in only one plane of oscillation. If the directions of
the two polarizers are oriented in parallel, then all the light passing the first polarizer also passes the
second polarizer [panel b], if they are oriented perpendicularly, no light passes the second polarizer
[panel a] [54]

principle is realized in TN (twisted nematic) devices first discussed byM. Schardt

andW. Helfrich and independently also by James Fergason (1934–2008).17 The
principle consists of a twisted fluid cell, which rotates the polarization of light differ-
ently, according towhether the electric field is either switched on or off.Figure 25.12
and the caption to it explain the optical effect of polarizers, when an ordinary gas or
fluid is exposed to a pair of such polarizers. When the light is switched on, it passes
the two polarizing filters bounding the device undisturbed; however, for unpolarized
(natural) light, only light of a certain polarization can pass the filter.

A TN device consists of an approximately 5−µ-thick nematic fluid film between
two glass plates onto each of which an electrically conductive transparent layer of
indium tin oxide is evaporated. Between these films and the fluid-crystalline layer, a
likewise transparent orienting film is positioned (which is usually a plastic). It serves
to orient the long axes of the neighboring liquid crystallinemolecules into a preferred
direction.

In the TN device (see Fig. 25.13), then different orienting layers are so mounted
that the long axes of the molecules, which are in contact with the upper and lower
glass platelets, are rotated relative to one another by 90◦. Owing to the tendency
of the molecules in the fluid-crystalline layer to be parallel-oriented, their preferred
orientation between the two glass surfaces changes gradually from that of the upper
to that of the lower glass platelet, and themolecules arrange themselves as in a twisted
strap.

The polarization filters are equally so arranged that the orientation of the light
transfer agrees optimally with the preferred orientation of the molecular axes of
the two bounding surfaces. The transmitted polarized light then is guided by the
molecules of the LC and follows the twisted structure, so that its oscillation plane

17A read-worthy professional biography of James Fergason is given by Amelia Carolina

Sparavigna [70].
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Fig. 25.13 Structure of a TN cell. The polarizer and analyser (whose arrangement is detailed in the
main text) and bounding a nematic LC in the layer in between, are crosswise arranged. The main
axis of the LCmolecules at the glass platelets is parallel to the respective directions of the polarizers.
Without the application of an electric field, the orientation of the directors changes smoothly from
the polarizer to the analyser [panel a], when the electric field is switched on, the directors in the
core region have a strong tendency to be parallel to the electric field [panel b]

after the passage of the layer at the other bounding surface of the display has equally
been rotated by 90◦. Because the light plane is, thus, parallel-oriented to the second
polarization filter, the light can leave the display without any disturbance.

25.4 Thermodynamics of an Incompressible Liquid
with Director of Constant Magnitude

It is known fromclassical thermodynamics that kinematic constraint conditions affect
the exploitation of the entropy inequality by the fact that each kinematic constric-
tion generates “constraint forces” (pressures, stress tensors), which guarantee the
maintenance of the kinematic constraints. When the director is constrained to be of
fixed length, it is convenient to absorb its magnitude into other fluid properties and
to consider the vector ni as a unit vector. Hence, redefining the director body forces
and stress, we postulate [47]

d

dt

∫

V

[
ρ
(
1
2vivi + ε

)+ 1
2ρ1ṅi ṅi

]
dV

=
∫

V
[ρ(r + fivi ) + ρ1Gi ṅi ] dV

+
∫

∂V

(
ti jvi + πi j ṅi − qi

)
dai , (25.118)

d

dt

∫

V
ρ1ṅidV =

∫

V
ρ1 (Gi + gi ) dV +

∫

∂V
πi j n

+
i da. (25.119)
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In the above energy and director momentum balance laws, ρ and ρ1 are constant
densities per unit volume and unit director length, respectively. Correspondingly, if
[M], [L], [T ] are the dimensions for mass, length, and time, then we have

[ρ] = [M L−3], [ρ1] = [M L−1],
[Gi ] = [gi ] = [M L−1T −2], [�i ] = [MT −2]

for the dimensions of ρ, ρ1, Gi , and �i . Moreover, we have used (25.71)3, (25.72)1,
and (25.73). If we then subject in (25.118), (25.119) the motion to a Euclidian
transformation as done with (25.68), (25.69), we again obtain the balance laws of
mass and linear momentum in global form as stated in (25.70), which, owing to the
constancy of ρ, take the forms

vi,i = 0, ρ
dvi

dt
= ρ fi + ti j, j . (25.120)

Similarly, the local form of the director momentum equation (25.119) is given by

ρ1 (ṅi )
· = ρ1(Gi + gi ) + πi j, j (25.121)

and only differs from (25.72) by the fact that ρ is replaced by ρ1.
Omitting the densities ρ and ρ1 as phase space variables (because they are con-

stant), the phase space is now reduced from (25.91) to

{ni , ni, j , Di j , T, Ti }. (25.122)

Performing with (25.118) transformations analogous to those which led to (25.74)
shows that the energy balance is expressible as

ρε̇ = −qi,i + ti j Di j + πi j Ni j − gi Ni + ρr, (25.123)

as in (25.80), and that t̃i j is defined as in (25.75), viz.,

t̃i j = ti j + πikn j,k − gi n j (25.124)

and is symmetric, t̃i j = t̃ j i .
The entropy inequality in the form (25.84) is combined now with the energy

Eq. (25.123). Elimination of the specific external energy supply r again yields the
imbalance (25.86). On account of the constraints, it is, however, no longer possible
to choose the kinematic quantities completely arbitrarily. One constraint is the con-
tinuity equation, vk,k = 0. It will be incorporated into the entropy inequality by the
Lagrangean term −λDi jδi j . Introducing the free pressure p and the extra stress
deviator t E

i j by
18

18A possible isotropic part may be absorbed into the free pressure p, so ti j is a deviator.
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ti j = −pδi j + t E
i j , (t E

ii = 0), (25.125)

the entropy inequality takes the form

(
t E
i j + ρ

∂ψ

∂nk, j
nk,i

)
D′

i j − (p − λ)Dii +
(

πi j − ρ
∂ψ

∂ni, j
− ∂ϕ j

∂Ni

)
Ni j

−
(

gi + ρ
∂ψ

∂ni

)
Ni −

(
pi + ∂ϕi

∂T

)
T,i − ∂ϕi

∂n j
n j,i

+ ρ

(
n j

∂ψ

∂ni
+ n j,k

∂ψ

∂ni,k
+ nk, j

∂ψ

∂nk,i

)
ω j i − ∂ϕi

∂nk, j
nk,i j

− ∂ϕi

∂Ti
T,i j −

(
∂ϕi

∂D jk
+ nk

∂ϕ j

∂Ni
− ni

∂ϕk

∂N j

)
D jk,i

− ρ

(
∂ψ

∂T
+ s

)
Ṫ − ρ

∂ψ

∂Ni
Ṅi − ρ

∂ψ

∂Di j
Ḋi j − ρ

∂ψ

T,i

(
T,i
)· � 0, (25.126)

where D′
i j = Di j − Dkkδi j is the deviator of Di j . Because the continuity equation

is embedded in this inequality, Di j may form a full symmetric rank-2 tensor; in
particular, Dii does not need to vanish under these conditions. In (25.126), all terms
having a red factor are linear in these factors. This implies as before that the conditions
(25.100), (25.101), and (25.103) must hold also for liquid crystals with ρ = const.
and ρ1 = const. More importantly, since Dii may differ from zero in (25.126), one
concludes that

p = λ. (25.127)

The Lagrange parameter of the continuity equation equals the free pressure.
Scrutiny of the terms of (25.126) involving the factors printed in blue color then

leads to the statements (25.104), (25.105). For the exploitation of these,Leslie states
in [47] that it can be shown that the extra entropy flux is given by

ϕi = α(T )
{
ni n j, j − n j ni, j

}
, (25.128)

where α is a function of the temperature only. Conversely, accepting the representa-
tion (25.128), it follows that ϕi does not depend on T,i , Ni and neither on Di j . The
residual entropy inequality thus takes the form

(
t E
i j + ρ

∂ψ

∂nk, j
nk,i

)
Di j +

(
πi j − ρ

∂ψ

∂ni, j

)
Ni j

−
(

gi + ρ
∂ψ

∂ni

)
Ni − qi T,i

T
� 0. (25.129)
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The reduction of the extra entropy flux to (25.128) can be made using isotropic
function relations by ignoring the fact that the term in (25.126) is linear in Ni j ,
which can take arbitrary values.

The claim

πi j = ρ
∂ψ

∂ni, j
(25.130)

would, however, be premature, because the director length is postulated to be unity,
a condition, which imposes constraints on Ni and Ni j . The following elegant incor-
poration of this constraint is due to Leslie [47].

Consider the combination

πi j Ni j − gi Ni , (25.131)

that arises in (25.129), and select the director stress πi j and intrinsic director force
gi as

πi j = β j ni , gi = γni − βkni,k, (25.132)

inwhichγ andβi are an arbitrary scalar andvector, respectively. Substituting (25.132)
into (25.131) yields

βk
{

ni,k Ni + ni Nik︸ ︷︷ ︸
=0

}− γ
{

ni Ni︸︷︷︸
=0

} = 0. (25.133)

With the definition (25.60) of Ni and Ni j and the property that ni is a unit vector, it
can be shown that the two underbraced terms in (25.133) vanish. Indeed, on account
that ωki is skew-symmetric, we have

(i)

ni Ni = ni {ṅi + ωki nk} = ni ṅi︸︷︷︸
1
2 (ni ni )·=0

+ωki ni nk︸ ︷︷ ︸
=0

= 0, �
(ii)

ni Ni j + ni, j Ni = ni
{
(ṅi ), j + ωki nk, j

}+ ni, j {ṅi + ωki nk}
= ni (ṅi ), j + ni, j ṅi
︸ ︷︷ ︸

(ni ṅi ), j = 1
2

[
(ni ni )

·]
, j

=0

+ωki
(

ni nk, j + ni, j nk︸ ︷︷ ︸
(ni nk ), j

)

= (ωki ni nk)︸ ︷︷ ︸
=0

, j − ωki, j ni nk︸ ︷︷ ︸
=0

, �

It follows that the combination (25.131) plays no role in the inequality (25.129),
or in the energy Eq. (25.76). Moreover, Eq. (25.79) [with the definition (25.75)] is
identically satisfied with the choices (25.132); and the contribution
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πi j, j + gi
(25.132)= (β j, j + γ)ni (25.134)

to the balance law of director momentum (25.39) is thus simply a multiple of ni . This
scalar may be determined from the solution of (25.39) in an initial-boundary-value
problem.

The nontrivial result (25.134) is the reason for keeping the underlined term in
(25.129). The combination (25.131) does not contribute to the entropy production
and neither to the energy equation. It does not enter the mass and linear momentum
balances and fulfills the symmetry requirements of t̃i j identically. However, it enters
the directormomentum balance, whichmay be used to determine the factor (β j, j +γ)

in (25.134). On account of these facts, we now set

πi j = βi n j + π̂i j , gi = γni − β j ni, j + ĝi (25.135)

and call π̂i j the extra director stress, ĝi , the extra intrinsic director force, and γ the
director tension. The terms involving βi contribute nothing new to the equations of
motion, but they could be significant if the director stress is specified at the boundary.

Substituting (25.135) into (25.129) now allows to conclude that

π̂i j = ρ
∂ψ

∂ni, j
, (25.136)

which evidently differs from (25.130). It states that π̂i j does have a form, as if it were
an equilibrium quantity.

It is evident that the entropy production (25.129) vanishes, if Di j = Ni j = Ni =
T,i = 0. Equilibrium values of t E

i j , πi j , gi , and qi are then obtained from (25.129) as

t E
i j |E = −ρ

∂ψ

∂nk,i
nk, j , gi |E = −ρ

∂ψ

∂ni
, (25.137)

π̂i j = π̂i j |E = ρ
∂ψ

∂ni, j
, qi |E = 0,

which determine the extra stress, the extra director stress, the extra intrinsic body
force, and equilibrium heat flux once the functional relation for the free energy
ψ(ni , n j,k, T ) is prescribed. Writing then

t E
i j = t E

i j |E + (t E
i j

)′ = −ρ
∂ψ

∂nk,i
nk, j + (t E

i j

)′
,

πi j = βi n j + π̂i j = βi n j + ρ
∂ψ

∂ni, j
, (25.138)

gi = gi |E + g′
i = −ρ

∂ψ

∂ni
+ g′

i ,

qi = qi |E + q ′
i ,
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where the primed nonequilibrium parts must satisfy the inequality

(t E
i j )

′ D′
i j − g′

i Ni − q ′
i T,i

T
� 0. (25.139)

The general forms of isotropic functions for t ′
i j , g′

i and q ′
i are difficult to postu-

late. Simple linear representations can, however, easily be obtained. Linear isotropic
behavior upon Di j , Ni and T,i and no dependence upon the director or its gradient is
given by

t ′
i j = μDi j , g′

i = −χNi , q ′
i = −κT,i (25.140)

with μ > 0, χ > 0, κ > 0.

However, this is too simple, as dependences upon the director or its gradient cannot
be ignored. We shall give an account of constitutive quantities for ψ, t E

i j , gi , and qi

below.
Leslie also states the equations for isotropic static deformations. From (25.125),

(25.137), we obtain

ti j = −pδi j − ρ
∂ψ

∂nk,i
nk, j ,

πi j = β j ni + ρ
∂ψ

∂ni, j
, (25.141)

gi = γni − βkni,k − ρ
∂ψ

∂ni

and the heat and entropy fluxes vanish. Leslie [47] states that “apart from the terms
involving βi , these are the expressions obtained byEricksen [24]. However,Erick-
sen seems to have overlooked the possibility of such an additional indeterminacy.”

25.5 Explicit Constitutive Parameterizations

Before specific flow parameterizations can be analyzed for fluid mechanical aspects,
the free energy and the nonequilibrium parts of the extra stress and extrinsic director
force must be prescribed. A first rather elementary suggestion, given by (25.140), has
been stated to be oversimplified, mainly because dependencies on ni and ni, j have
been ignored. In what follows we shall look at a model of an incompressible LC
with directors of constant magnitude. For the parameterization of the free energy, we
retain only terms of lowest degree of director gradients, i.e., quadratic terms ni,knk,�,
as already introduced by Frank [31] and further elaborated on by Ericksen [22]
and Leslie [47].
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25.5.1 Frank’s Parameterization of the Free Energy

“The first paper in the 1933Discussions [of theFaradaySociety] was one byOseen
[58], offering a general structural theory of the classical LCs, i.e., the three types:
smectic, nematic and cholesteric, recognized by Friedel [32] in 1922. [In Frank’s
paper]Oseen’s theory (with slight modification) is re-founded on a securer basis. As
with Oseen, this is a theory for the molecular uniaxial liquid crystals, that is to say
those in which the long-range order governs the orientation of only one molecular
axis” [31].

Frank states that “in a thin film, say, of a nematic substance particular orientations
are imposed at the surfaces, depending on the nature or prior treatment of thematerials
at these surfaces; if the imposed orientations are not parallel, some curved transition
from one orientation to the other is required. Curvature may also be introduced when,
say, the orientating effect of a magnetic field conflicts with orientations imposed
by surface contacts. Something analogous to elasticity theory is required to define
the equilibrium form of such curvatures, [however, essentially different from the
elasticity theory of a solid…]. In a liquid, these are not determined by restoring forces
but rather restoring torques which directly oppose the curvature.” Frank states, “we
may refer to these as torque stresses, and assume an equivalent of Hooke’s law,
making them proportional to the curvature strains […]. It is an equivalent procedure
to assume that the free energy, in which the analogues of elastic moduli appear as
coefficients.” This is the procedure, which Frank adopted.

The properties of LCs are primarily determined by the elastic response of their
directors. One differentiates basically between three types of deformations of the
director field as sketched in Fig. 25.14, each associated with its characteristic coef-
ficient. Possible deformations are “splays”, “bends”, and “twists”.

Fig. 25.14 Sketch illustrating deformations characterizing “splays”, “bends”, and “twists”
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Fig. 25.15 (Frederick) Charles Frank (March 6, 1911–April 12, 1998)

Sir (Frederick) Charles Frank, known as Sir Charles Frank, was a
British theoretical physicist and best known for his work on crystal dislo-
cations. He also made many additional contributions in solid-state physics,
geophysics, and the theory of liquid crystals. One can illustrate the breadth
of his scientific activities by his incisive papers on (i) asymmetry in nature in
1953 [30], in which he anticipated population dynamics studies, (ii) on liquid
crystals in 1958 [31], and (iii) on island arcs in 1958 [31] and many others. He
was born in Durban, South Africa, although his parents returned to England
soon afterward. He was educated at Thetford Grammar School and Ipswich
School and went on to study chemistry at Lincoln College, Oxford, gaining a
doctorate at the university’s Engineering Laboratory.
Prior to World War 2, Frank worked as a Physicist in Berlin and as a Colloid
Chemist in Cambridge. During World War II, he joined the Chemical Defense
Experimental Station at PortonDown,Wiltshire, but in 1940 hewas transferred
to the Air Ministry’s Assistant Directorate of Intelligence (Science) and spent
the rest of the war with the Air Ministry. Due to his work, he was made Officer
of the Most Excellent Order of the British Empire in 1946.
After the war, he moved to the University of Bristol Physics Department to do
research in solid-state physics, but switched to research on crystal dislocation.
His work was to demonstrate the role dislocations played in the growth of
crystals. Apart from crystal defects, his wide-ranging research interests at
Bristol included the mechanical properties of polymers, the theory of liquid
crystals and themechanics of the interior of theEarth.Hewas appointedReader
in 1951, MelvilleWills Professor in 1954, Henry OvertonWills Professor, and
Director of the H.H. Wills Physics Laboratory in 1969. He retired in 1976 but
remained active in attending conferences, writing papers and corresponding
with colleagues well into the 1990s. He edited the Farm Hall Transcripts from
Operation Epsilon well into his eighties.
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Frankwas elected Fellow of the Royal Society in 1954, delivering the Bakerian
Lecture in 1973. He was knighted in 1977. He was also awarded honorary
degrees by seven universities. In 1967, he was awarded the A. A. Griffith
Medal and Prize and in 1994 the Royal Society’s Copley Medal, its highest
honor, “in recognition of his fundamental contribution to the theory of crystal
morphology.”
Frank married Maita ASCHÉ (1918–2009) in 1940 from St. Petersburg.
She was from Finnland but because of the turmoil of the war grew up in
Czechoslovakia.
The Text is based on

- https://en.wikipedia.org/wiki/Frederick_Charles_Frank,
- “Sir Charles Frank” National Academy of Engineering, Memorial

Tributes, Vol. 17, The National academic Press, 2013 doi: 10.17226/18477.
- Obituaries in the Guardian (April 10, 1998), Independent (April 15,

1998), Telegraph April 24, 1998, Times (April 27, 1998)
See also [3, 52]

“Oseen likewise proceeded by setting up an expression for the energy density,
in terms of chosen measures of curvature. However, he based his argument on the
postulate that the energy is expressible as a sum of energies between molecules taken
in pairs. This is analogous to the way in whichCauchy set up the theory of elasticity
for solids, and in his case it is known that the theory predicted fewer independent
elasticity constants than actually exist, and we may anticipate a similar consequence
with Oseen’s theory” [31].

Frank’s Model19 Let L be a unit vector, representing the direction of the preferred
orientation in the neighborhood of any spatial point occupied by the LC. The basis
of the ensuing analysis is [31].

We shall assume that the sign of L is essential but will eventually be without
physical significance andwe suppose that its orientation changes slowly as onemoves
away from the point in question. Introducing Cartesian coordinates with origin at the
point in question and its z-axis parallel toL at the origin, the x- and y-axes are then
within the plane perpendicular to the z-axis and are chosen such that (x, y, z) form
a right-handed system.

Referred to these axes, the six components of the curvature at this point are (see
Fig. 25.16)

“Splay” : s1 = ∂Lx

∂x
, s2 = ∂Ly

∂y
,

“Twist” : t1 = −∂Ly

∂x
, t2 = ∂Lx

∂y
,

“Bend” : b1 = ∂Lx

∂z
, b2 = ∂Ly

∂z
.

(25.142)

19For a biographical sketch of F.C. Frank see Fig. 25.15.

https://en.wikipedia.org/wiki/Frederick_Charles_Frank
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Fig. 25.16 Explaining pairs of the components of the slow changes of a vectorL with nearly con-
stant magnitude. a “Splays” describe a spreading in the (xy)-plane. b “twists” give an infinitesimal
rotation round the L-axis. c “Bends” describe a bending in the z-direction, after [31]

Frank assumes approximately a linear change of Lx ,Ly,Lz according to

Lx = a1x + a2y + a3z + O(�2),

Ly = a4x + a5y + a6z + O(�2), (25.143)

Lz = 1 + O(�2),

where �2 = x2 + y2 + z2 and then obtains

s1 = a1, t1 = −a4, b1 = a3,

s2 = a5, t2 = a2, b2 = a6.
(25.144)

He then postulates that the free energy density ρψ is a quadratic function of the
six differential coefficients, which measure the curvature20: In that theory, the six

20It is at this point, where Frank’s analogy with linear elasticity is visible.
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deformation measures are the six independent components of the strain tensor, and
the free energy is a quadratic function of these strain components:

Ψ =
∫

V
ρψdV,

ρψ =
6∑

i=1

ki ai + 1
2

6∑

i, j=1

ki j ai a j , (ki j = k ji ).
(25.145)

When the local coordinate frame is arbitrarily rotated to aCartesian system (x ′, y′, z′),
then the curvatures will change to a′

i (i = 1, . . . , 6); however, for hemotropic or
isotropic behavior of the material it is postulated that ρψ is the same function of the
primed quantities a′

i (i = 1, . . . , 6),

ρψ =
6∑

i=1

ki a
′
i + 1

2

6∑

i, j=1

ki j a
′
i a

′
j , (ki j = k ji ) (25.146)

with the same value for ρψ as in (25.145)2. This requirement imposes restrictions on
the moduli ki , ki j . It is shown in Appendix 25.A to this chapter that, for invariance of
the free energy under arbitrary such rotations, ki and ki j are restricted to the forms

ki = (k1, k2, 0,−k2, k1, 0)
T (25.147)

and

ki j =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

k11 k12 0 −k12 (k11 − k22 − k24) 0
k12 k22 0 k24 k12 0
0 0 k33 0 0 0

−k12 k24 0 k22 −k12 0
(k11 − k22 − k24) k12 0 −k12 k11 0

0 0 0 0 0 k33

⎞

⎟⎟⎟⎟⎟
⎟
⎠

. (25.148)

In reducing the vector ki and the symmetric rank-2 tensor ki j (i, j = 1, . . . , 6) to the
forms (25.147) and (25.148) use was not yet made of our hypothesis that for most
nematic LCs L and −L are equivalent. If the molecules are nonpolar with respect
to the preferentially oriented axis, or if they are distributed with equal likelihood
in both directions, the sign of L is arbitrary. “It is a significant convention in our
definition of curvature components that z is positive in the positive direction of L:
and if z changes sign, one of x and y should change sign also to retain right-handed
coordinates. Hence, a permissible transformation in the absence of physical polarity
is L = −L, x = x ′, y = −y′, z = −z′” [31]. Therefore,
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∂L′
x ′

∂x ′ = −∂Lx

∂x
= −a1x − a2y − a3z + O(�2)

= −a1x ′ + a2y′ + a3z′ + O(�2), (25.149)
∂L′

y′

∂y′ = ∂Ly

∂y
= a4x + a5y + a6z + O(�2)

= a4x ′ − a5y′ − a6z′ + O(�2).

Because in these two representations in primed coordinates the coefficients with
indices 1, 5, and 6 have changed sign compared with (25.143), the invariance of
(25.146) leads to further restrictions, namely

k1 = 0, k5 = 0, k6 = 0, (25.150)

as well as

k12 = k13 = k14 = k25 = k26 = k35 = k36 = k45 = k46 = 0. (25.151)

So, k1 and k12 vanish (beyond those coefficients which have already been shown to
vanish), so that

ki = (0, k2, 0,−k2, 0, 0)
T

⎛

⎜⎜⎜⎜⎜
⎜
⎝

k11 0 0 0 (k11 − k22 − k24) 0
0 k22 0 k24 0 0
0 0 k33 0 0 0
0 k24 0 k22 0 0

(k11 − k22 − k24) 0 0 0 k11 0
0 0 0 0 0 k33

⎞

⎟⎟⎟⎟⎟
⎟
⎠

. (25.152)

Thus, for nonpolar directors only 2 elements of ki and only 10 elements of ki j differ
from zero, but of these nontrivial elements only one (for ki ) and 4 (for ki j ) must
experimentally independently be determined.

There exist further possible restrictions for ki and ki j , which occur, if themolecules
are enantiomorphic or enantiomorphically arranged.21

Most LCs are not enantiomorphic. In the absence of enantiomorphism of the
directors, the value of ρψ should be invariant under right- and left-handed changes
of coordinates. Thus, we may choose

(x ′, y′, z′) = (x,−y, z)

for such an invariance and then have

21Such crystals or molecules have the same dimension and the same degree of symmetry, but can
only be brought to congruence with their mirror picture. Figure 25.17 illustrates enantiomorphic
(or equivalently chiral) objects.
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Fig. 25.17 Hands are enantiomorphic or chiral objects. Such objects often occur in Nature, see the
shells of snails. © Institute of Chemical Biology, Van der Built University

∂L′
x ′

∂x ′ = ∂Lx

∂x
= a1x ′ − a2y′ + a3z′ + O(�2),

∂L′
y′

∂y′ = −∂Ly

∂y
= −a4x ′ + a5y′ − a6z′ + O(�2).

(25.153)

Comparing these expressions with (25.143), it is seen that the indices 2, 4, and 6
have changed signs and so, based on the procedure explained in Appendix 25.A, we
have

k2 = 0,

k12 = k14 = k16 = k23 = k25 = k26 = k34 = k36 = k45 = k56 = 0,

in which only

k2 = 0, k12 = 0 (25.154)

go beyond the inferences stated in (25.151), (25.152). In conclusion, “while (25.150),
(25.151) express themost general dependence of the free energy density on the curva-
ture in molecularly uniaxial LCs, k1 vanishes in the absence of an enantiomorphism,
and k12 vanishes, unless both polarity and chirality occur together” [31]. It might be
emphasized that for nonpolar LCs (the usual case for nematics) the vector ki vanishes
identically.

Given the representations (25.147), (25.148), the free energy (25.145) can be
written down in terms of the ai (i = 1, . . . , 6) and then expressed in the quantities
s1, s2, t1, t2, b1, b2 defined in (25.144). The explicit computation yields

ρψ = k1(s1 + s2) + k2(t1 + t2)

+ 1
2k11(s1 + s2)

2 + 1
2k22(t1 + t2)

2 + 1
2k33(b

2
1 + b2

2)

+ k12(s1 + s2)(t1 + t2) − (k22 + k24)(s1s2 + t1t2). (25.155)
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This is Frank’s expression for the free energy and it differs from the corresponding
expression, obtained by Oseen [58] 25 years earlier, by the underlined terms, which
are missing in [58]. The first, k1(s1 + s2) vanishes for nonpolar LCs (k1 = 0); the
second is more relevant, see Frank [31].

Frank next rescaled the expression (25.155) by selecting

s0 = − k1
k11

, t0 = − k2
k22

, (25.156)

ρψ̃ = ρψ + 1
2k11s20 + 1

2k22t20 .

This is tantamount to scaling ψ such that ψ̃ reaches the minimum value, ψ̃ = 0, with
the optimum degree of splay and twist. With (25.156)1,2 one obtains from (25.155)
that

ρψ̃ = 1
2k11(s1 + s2 − s0)

2 + 1
2k22(t1 + t2 − t0)

2 + 1
2k33(b

2
1 + b2

2)

+ k12(s1 + s2)(t1 + t2) − (k22 + k24)(s1s2 + t1t2). (25.157)

Note that for a nonpolar director k1 = 0, (see (25.150)), so, also s0 = 0 provided
k11 �= 0; similarly, for non-enantiomorphic conditions (vanishing chirality) one also
has k2 = 0, which implies t0 = 0, provided k22 �= 0, as well as k12 = 0, see (25.154).
This is the case for most LCs.

Finally, it will be advantageous to write ρψ̃ in coordinate invariant form. To this
end, note that with L = (0, 0, 1) and ∂Lz/∂z ≈ 0 we have

∇L =
(

∂Lx
∂x ,

∂Ly

∂y ,
∂Lz

∂z

)
,

∇ × L =
(

∂Lz

∂y − ∂Ly

∂z , ∂Lx
∂z − ∂Lz

∂y ,
∂Ly

∂x − ∂Lx
∂y

)
,

L · ∇ = (0, 0, 1) ·
(

∂
∂x , ∂

∂y , ∂
∂z

)
= ∂

∂z ,

(L · ∇)L = ∂L
∂z =

(
Lx
∂z ,

Ly

∂z , 0
)

,

from which we deduce

∇ · L = ∂Lx

∂x
+ ∂Ly

∂y
+ 0

(25.142)= (s1 + s2),

L · ∇ × L = ∂Ly

∂x
− ∂Lx

∂y
(25.142)= −(t1 + t2),

[(L · ∇)L]2 =
(

∂Lx

∂z

)2

+
(

∂Ly

∂z

)2

= b2
1 + b2

2,

∇L : ∇L =
[(

∂Lx

∂x

)2

+
(

∂Ly

∂y

)2

+
(

∂Lz

∂z

)2
]
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+
[(

∂Ly

∂x

)2

+
(

∂Ly

∂y

)2

+
(

∂Ly

∂z

)2
]

+
[(

∂Lz

∂x

)2

+
(

∂Lz

∂y

)2

+
(

∂Lz

∂z

)2
]

,

(∇ · L)2 + (∇ × L)2 − (∇L : ∇L)

= 2

{
∂Lx

∂x

∂Ly

∂y
+ ∂Ly

∂y

∂Lz

∂z
+ ∂Lz

∂z

∂Lx

∂x

− ∂Ly

∂x

∂Lx

∂y
− ∂Lz

∂y

∂Ly

∂z
− ∂Lx

∂z

∂Lz

∂x

}

≈ s1s2 + t1t2.

Employing these operators in the representation (25.157) yields

ρψ̃ = 1
2k11 (∇ · L − s0)

2 + 1
2k22 (L · ∇ × L + t0)

2

+ 1
2k33 [(L · ∇)L]2 − k12 (∇ · L) (L · ∇ × L)

− 1
2 (k22 + k24)

{
(∇ · L)2 + (∇ × L)2 − ∇L : ∇L} , (25.158)

applicable in every arbitrary system of coordinates.
For nonpolar and non-enantiomorphic nematics, ki = 0 (i = 1, . . . , 6) and

k12 = 0, as shown in (25.150) and (25.154), as well as s0 = t0 = 0 as defined in
(25.154). In this case, we have

ρψ̃ = 1
2k22(L · ∇ × L︸ ︷︷ ︸

=ni, j n j,i

)2 + 1
2 (k11 − k22 − k44) (∇ · L)2︸ ︷︷ ︸

ni,i n j, j

+ 1
2 (k33 − k22) [(L · ∇)L]2︸ ︷︷ ︸

=ni n j nk,i nk, j

− 1
2 (k22 + k24)

(
(L · ∇ × L)2 + (∇ × L)2 − ∇L : ∇L︸ ︷︷ ︸

≈0

)

+ 1
2 (k24) (L · ∇ × L)2︸ ︷︷ ︸

=ni, j n j,i

. (25.159)

In this expression, we have changed notation in the underbraced terms from symbolic
to Cartesian tensor notation. Moreover, we have also replaced L by the vector ni to
obtain agreement with the earlier notation in this chapter. In this new notation, the
free energy takes the form

2ρψ̃ = k22ni, j ni, j + (k11 − k22 − k24)ni,i n j, j

+ (k33 − k22)ni n j nk,i nk, j + k24ni, j n j,i . (25.160)

This is Leslie’s expression stated in [47].
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25.5.2 Parameterization of the Nonequilibrium Stress,
Intrinsic Director Body Force, and Heat Flux Vector

For the nonequilibrium parts of (t E
i j )

′, g′
i and qi = q ′

i , we assume linear dependences
upon Ni , Di j and T,i , and omit terms involving director gradients. This can easily be
shown to lead to the expressions

(t E
i j )

′ = μ1(nkn p Dkpni n j ) + μ2n j Ni + μ3ni N j

+μ4Di j + μ5n j nk Dki + μ6ni nk Dk j , (25.161)

g′
i = λ1Ni + λ2n j D ji + λ3ni D j, j︸ ︷︷ ︸

=0

(25.162)

qi = q ′
i = −κ1T,i − κ2ni T, j n j . (25.163)

Here, the coefficients μi , λi , and κi are at most functions of the temperature or are
treated as constants. In order to satisfy the identity (25.79) for the nonequilibrium
stresses (t E

i j ) [the terms involving the free energy satisfy this equation identically], a
straightforward computation yields

λ1 = μ2 − μ3, λ2 = μ6 − μ5. (25.164)

The inequality (25.139) imposes further restrictions upon the coefficients arising in
the parameterizations (25.161)–(25.163). Substituting these into (25.139) leads to
the polynomial inequality

μ1(ni n j Di j )
2 + (μ2 + μ3 + λ2)ni N j Di j + μ4Dik Dki

+ (μ5 + μ6)ni nk Dk j Di j + λ1Ni Ni + κ2

T
(ni T,i )

2 + κ1

T
(T,i T,i ) � 0. (25.165)

Leslie [46] determined the conditions on the coefficients of the quadratic form
(25.165) to be positive definite but mentioned no details. These conditions are22

μ4 � 0, 2μ1 + 3μ4 + 2μ5 + 2μ6 � 0, μ3 − μ2 � 0,

2μ4 + μ5 + μ6 � 0, 4λ1(2μ4 + μ5 + μ6) � (μ2 + μ3 + λ2)
2, (25.166)

κ1 � 0, κ1 + κ2 � 0.

22One way of demonstrating this is to introduce the 15-dimensional vector

X = (ni , Ni , Di j , T,i ), i = 1, 2, 3, j � i

and to write (25.165) as the quadratic formX ·AX, whereA is a 15× 15-matrix. To this matrix, the
Routh–Hurwitz criterion is applied. This yields six conditions. For a simpler model of anisotropic
fluids, Ericksen [25] has given a simple procedure to obtain inequalities analogous to (25.166).
We shall also employ a different procedure below.
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Of the above inequalities μ4 � 0 and κ1 � 0 are well-known results of the simple
viscous heat conducting fluids, stating that the classical viscosity and the classical
coefficient of heat conduction must be nonnegative.

25.5.3 Parodi Relation for a Nematic Liquid Crystal

The dissipative parts of the constitutive relations for (t E
i j )

′, g′
i andqi given in (25.161)–

(25.163), contain a total of eight independent parameters μ1, . . . ,μ6,κ1,κ2, which
are at most functions of the absolute temperature. Parodi [59] showed that the
Onsager [57]23 reciprocal relations lead to the additional dependence

μ2 + μ3 = μ6 − μ5. (25.167)

It follows that, if one adopts the Onsager relations, the dissipative stress parame-
terization (25.161) has “only” seven (five if κ1 and κ2 are not counted) independent
parameters.

In order to apply the Onsager reciprocal relations, let us start with the entropy
production expressed as

Π := (t E
i j )

′
symDi j − g′

i Ni − qi T,i

T
, (� 0). (25.168)

Here, the contribution of (t E
i j )

′
skw in the first term on the right-hand side vanishes.24

Note that

N = (Ω − ω) × n = n ·
( ¯̄Ω − ¯̄ω

)
= −

( ¯̄Ω − ¯̄ω
)

· n (25.169)

is the angular velocity of the director relative to the fluid (vorticity). From this, we
also obtain

n ⊗ N + N ⊗ n = (n ⊗ n) ·
( ¯̄Ω − ¯̄ω

)
−
( ¯̄Ω − ¯̄ω

)
· (n ⊗ n), (25.170)

to be used later on. Moreover, in view of (25.162), the axial vector

G = n × (λ1N + λ2D · n) (25.171)

is the torque exerted by the director on the fluid. Associated with G is the skew-
symmetric rank-2 tensor

23For an exposition on these, see de Groot and Mazur [14].
24In the ensuing analysis, the dual tensor to the axial vector A will be denoted by ¯̄A.
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¯̄G = λ1

2
(n ⊗ N − N ⊗ n) + λ2

2
(n ⊗ n · D − D · n ⊗ n) . (25.172)

Employing Eq. (25.161) for (tE )′ and (25.171) for G, it can be demonstrated that

the antisymmetric part of (tE )′ is given by − ¯̄G and that

( ¯̄G)i j = −( ¯̄G) j i . (25.173)

With the expression (25.161) the symmetric part of (tE )′, (tE )′sym, takes the form

(t E
i j )

′
sym = μ1(nkn p Dkpni n j )

+ μ2 + μ3

2

(
ni nk

( ¯̄Ω − ¯̄ω
)

k j
−
( ¯̄Ω − ¯̄ω

)

jk
nkni

)

+μ4Di j + μ5 + μ6

2

(
ni nk Dk j + n j nk Dki

)
. (25.174)

Analogously, with (25.170) and (25.172)) we have

− g′
i Ni = λ1

2

(
ni nk

( ¯̄Ω − ¯̄ω
)

k j
+
( ¯̄Ω − ¯̄ω

)

ik
n j nk

)

+ λ2

2

(
ni nk Dk j + Dki n j nk

)
(25.175)

and

− qi

T
= κ1

T
T,i + κ2

T
ni n j T, j . (25.176)

With these notations, inequality (25.168) can symbolically be written as25

(tE )′sym : D + ¯̄G :
( ¯̄Ω − ¯̄ω

)
− q · grad T

T
� 0. (25.177)

Here, the colored tensor and vector quantities are in Onsagerism [14, 57] called

thermodynamic fluxes, while D,
( ¯̄Ω − ¯̄ω

)
and (grad T )/T are the thermodynamic

forces.Moreover, (:) and (·) are linear operators connecting the forceswith the fluxes.
InOnsagerism, these fluxes ¯̄J i and forces ¯̄Xi are assumed to be linearly connected.
The superscripts enumerate the number of these objects (three in (25.176)). So,
following Parodi [59] we may set

25Note that in (25.177) the fluxes ( ¯̄Ω − ¯̄ω) are used not (Ω − ω). However, D and grad T/T do

not have dual counterparts. So, it is not clear whether we should write J i
pq not ¯̄J i

pq . Nevertheless,
it should be obvious what is meant by (25.178).
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J i
pq =

∑

rsi j

Li j
pq.rs X j

rs, (25.178)

in which the operators Li j
pq.rs are taken as independent of the forces X j

rs . The
Onsager reciprocal relations state now that

Li j
pq.rs = L ji

pq.rs . (25.179)

The matrices L12 and L21 can be identified from (25.174) and (25.175) as

L12
pq.rs = μ2 + μ3

2

(
n pnrδqs − δpr nqns

)
(25.180)

L21
pq.rs = λ2

2

(
n pnrδqs − δpr nqns

)
.

The symmetry statement (25.179) now implies that

μ2 + μ3 = λ2
(25.167)= μ6 − μ5. (25.181)

There are now five independent viscosity coefficients μ1, μ4, λ1, λ2 and

β = μ5 + μ6. (25.182)

The symmetric part of the stress tensor is

(t E
i j )

′
sym = μ1(nk Dkpn p)ni n j + μ4Di j

+ β

2
(ni nk Dk j + Diknkn j ) + λ2

2
(ni N j + Ni n j ), (25.183)

and the antisymmetric part (25.172) can be expressed as displayed in (25.172). With
these results, the full dissipative stress takes the form

(t E
i j )

′ = μ1(nk Dkpn p)ni n j + λ2 − λ1

2

(
ni N j

)+ λ2 + λ1

2

(
N j ni

)

+μ4Di j + β − λ2

2
ni nk Dk j + β + λ2

2
Diknkn j , (25.184)

in whichμ1,μ4,λ1,λ2, and β now serve as the five independent viscosity parameters.
Finally, the entropy production (25.165) may be written as

Π = μ4Dik Dik + β(ni Dik)(n j D jk) + μ1(ni Diknk)(n j D j�n�)

+ 2λ2ni Dik Nk + λ1Ni Ni + κ1

T
(T,i ni )(T, j n j )

+ κ2

T
T,i T,i � 0. (25.185)
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Parodi [59] takes n in the z-axis for which choice this inequality takes the form26

Π = μ4Dγδ Dδγ + μ4Dzγ Dγz + μ4D2
zz + βDzγ Dzγ

+βD2
zz + μ1D2

zz + 2λ2(Dzγ Nγ)

+λ1Nγ Nγ + κ1

T
T,γT,γ + κ1

T
(T,z)

2 + κ2

T
(T,z)

2

= μ4Dγδ Dγδ +
{
(2μ4 + β)Dzγ Dzγ + 2λ2Dzγ Nγ + λ1Nγ Nγ

}

+ (μ1 + μ4 + β)D2
zz + κ1

T
T,γT,γ + κ1 + κ2

T
(T,z)

2 � 0. (25.186)

In this inequality, all terms appear as pure quadratics except the underlined term.
However, this term must also be a positive quadratic form if Π should be strictly
nonnegative. It is indeed a pure quadratic, written as (ADzγ + BNγ)

2 with A
2 =

2μ4 + β, B2 = λ1 if

2AB = 2
√
2μ4 + β

√
λ1.

Therefore, to make the underlined term in (25.186) nonnegative, 2ABmust be larger
than 2λ2 or

λ1(2μ4 + β) − λ2
2 � 0. (25.187)

With this restriction, the underlined term in (25.186) is positive. It follows that all
terms on the right-hand side of (25.186) are positive if

μ4 > 0, λ1 > 0, 2μ4 + β > 0 μ1 + μ4 + β > 0, (25.188)

κ1 > 0, κ1 + κ2 > 0, λ1(2μ4 + β) − λ2
2 > 0.

These restrictions of the coefficients of the dissipative stress, intrinsic force, and heat
flux vector defined in (25.161)–(25.163) replace the constraint conditions (25.166), if
theOnsager relations are adopted in the Ericksen–Leslie (EL) model for nematic
LCs. The popular acronym for this model is ELP model.

Let us close this analysis by a few remarks about the incorporation of the Parodi
relation into the dissipation inequality. According to the Ericksen–Leslie theory,
the six viscosity coefficients satisfy the inequalities (25.166) [with λ1,2 given by
(25.164)].Moreover, theParodi relation (25.181) contains these by a further relation
and, thus, reduces the number of viscosities from six to five. Currie [9] reports
that the Parodi relation has been adopted by the Orsay Liquid Crystal Group [20]
when analyzing their experiments on wave propagation in nematic LCs. Thus, the
values for the viscosity coefficients derived from these experiments depend on the

26Greek indices have values 1 and 2 and double occurrence of these indices indicates summation
over 1 and 2, and (·)z means that this index is the direction of n. According to the definition of N
and assuming |n| to be constant then implies Nz = 0.
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assumption that (25.164) is valid. On the other hand, Truesdell [73] has severely
criticized theOnsager relations, but, in his own words, suggests that “for particular
materials, counterparts of Onsager relations can be found and given a specific
meaning, …and that meaning will express on the phenomenological scale a special
symmetry or stability” [9]. Currie then reports that his linear stability analysis of
in-plane wave motion has shown that the uniformly oriented state is unstable unless
the Parodi relation holds and

μ2 �= μ3 plus {μ2 < 0 < μ3 or μ2 − μ3 < μ5 − μ6 < μ3 < μ2} . (25.189)

A thorough mathematical analysis of the general Ericksen–Leslie–Parodi system
focussing on well-posedness and stability is given by Wu et al. [79]. They state
“that the Parodi relation can be viewed as a sufficient condition for the non-linear
stability of the Ericksen–Leslie system …. [However], it is still an open problem
whether a similar result holds for the original Ericksen–Leslie system.” Regarding
linear stability, they found that—subject to a number of side conditions regarding the
viscosities μi (i = 1, 2, . . . , 6), not satisfying the Parodi relation—the EL system
admits unstable plane wave solutions.

25.6 Solutions for Simple Flow Problems

The purpose of this section is to investigate simple solutions for flows of an incom-
pressible liquid with a director of constant magnitude. Regarding the theoretical
basis, we rely on the developments and resulting equations obtained in the previous
sections and, thus, rely on Frank’s expression of the free energy. Moreover, for the
nonequilibrium parts of the extra stress and extra intrinsic body force, we assume a
linear dependence on Ni , Di j and T,i and omit terms involving director gradients. In
a first attempt of finding solutions, we assume that thermodynamic effects are unim-
portant. So, all phenomenological parameters, μi and λi , etc., will be assumed to be
constants. The energy equation will therefore play no active role in the analysis and
will henceforth be omitted. As dynamic equations we employ [see (25.38)–(25.39)]

vi,i = 0,

ρv̇i = ρFi + ti j, j , (25.190)

ρṅi = ρ1Gi + gi + πi j, j ,

in which, from equations (25.141), (25.160), (25.161), (25.162),

ti j = −pδi j − ρ
∂ψ

∂nk,i
nk, j + (t E

i j )
′,

πi j = = β j ni + ρ
∂ψ

∂ni, j
, (25.191)
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gi = γni − β j ni, j − ρ
∂ψ

∂ni
+ (gE

i )′

with

2ρψ = k22ni, j ni, j + (k11 − k22 − k24)ni,i n j, j

+ (k33 − k22)ni n j nk,i nk, j + k24ni, j n j,i ,

(t E
i j )

′ = μ1nkn p Dkpni n j + μ2n j Ni + μ3ni N j + μ4Di j (25.192)

+μ5n j nk Dki + μ6ni nk Dk j ,

(gE
i )′ = λ1Ni + λ2n j Di j ,

in which β, λ1, and λ2 satisfy the relations27

β = μ3 + μ6, λ1 = μ2 − μ3, λ2 = μ5 − μ6. (25.193)

In the ensuing calculations, we shall also explicitly use (25.166)3 which, according
to (25.164)1, implies

λ1 � 0. (25.194)

Furthermore, it will also be necessary to require

‖λ1‖ � ‖λ2‖ �= 0. (25.195)

Equation (25.190), with the substitutions of the constitutive relations (25.191)–
(25.193), become seven equations for the seven unknowns: velocity vi (3), pressure
p (1), unit vector ni (2), and director tension γ (1).

25.6.1 Shear Flows

Leslie [47] considers situations, for which the body forces are conservative and the
external director forces are absent (Gi = 0). Thus,

ρFi = −χ,i , (25.196)

where χ is a scalar potential. We also restrict motions to in-plane deformations for
both the liquid and the director. For steady shear flows, we then may write

vx = u(y), vy = vz = 0,
nx = cos(θ(y)), ny = sin(θ(y)), nz = 0,

(25.197)

27This restriction for β holds if the Parodi relation applies.
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in which θ is the slope angle between the x-axis and the director axis. The mass
balance equation (25.190)1 is identically satisfied with (25.197)1,2; the remaining
relations lead to the equations

∂txy

∂y
− ∂(p + χ)

∂x
= 0,

∂((t E
yy)

′ − p − χ)

∂y
= 0,

∂(p + χ)

∂z
= 0, (25.198)

∂πxy

∂y
+ gx = 0,

∂πyy

∂y
+ gy = 0. (25.199)

It can easily be verified that Eq. (25.198) are solved by

txy = ay + c, p + χ = p0 + ax + (t E
yy)

′, (25.200)

in which a, c, and p0 are constants. This solution is readily constructed by recogniz-
ing that in simple shearing ∂txy/∂y is a constant. Evaluating (t E

xy)
′ with the aid of

(25.192)2 yields

(t E
xy)

′ = 2μ1n2
x n2

y
1
2

du

dy
+ μ2ny Nx + μ3nx Ny + μ4

1
2

du

dy

+μ5n2
y
1
2

du

dy
+ μ6n2

x
1
2

du

dy
. (25.201)

In this expression, we employ

(Ni )steady
(25.60)= −ωi j n j

(25.57)= − 1
2 (vi, j − v j,i )n j

or

(Nx )steady = −ωxyny = − 1
2ny

du

dy
, (Ny)steady = −ωyx nx = 1

2nx
du

dy
, (25.202)

so that with nx = cos θ, ny = sin θ, (25.201) assumes the form

(t E
xy)

′ = g(θ)
du

dy
= ay + c, (25.203)

2g(θ) = 2μ1 sin
2 θ cos2 θ + (μ5 − μ2) sin

2 θ + (μ6 + μ3) cos
2 θ + μ4.

Equation (25.199) can be treated in an analogous fashion and what obtains reads28

28This equation is stated in [47] with no indication how it was obtained in detail. We tried to
reproduce the result for several days, but gave up in vainness.
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2 f (θ)
d2θ

dy2
+ d f (θ)

dθ

(
dθ

dy

)2

+ du

dy
(λ1 + λ2 cos 2θ) = 0, (25.204)

f (θ) = k11 cos
2 θ + k33 sin

2 θ.

It follows from Ericksen’s analysis (see [25], his inequalities (18)) that f (θ) is
positive. Moreover, for shear flows in the (x, y)-plane as given in (25.197), we have

(t E
i j )

′ Di j = (t E
xy)

′ Dxy = 1

2
g(θ)

(
du

dy

)2

, (25.205)

owing to (25.203) and Dxy = Dyx = 1
2
du
dy . Similarly,

(gE
i )′Ni = g′

x Nx + g′
y Ny

(25.202)= 1

2

(
−g′

x ny
du

dy
+ g′

ynx
du

dy

)

(25.192)= 1

2

{(

λ1n
2
y

(
du

dy

)2

+ 1

2
λ2n2

x

(
du

dy

)2
)

−
(

λ1n2
y

(
du

dy

)2

+ 1

2
λ2n2

x

(
du

dy

)2
)}

!= 0, (25.206)

and owing to isothermicity of the processes,

qi T,i

T
≡ 0. (25.207)

Substituting the last three expressions into the residual entropy inequality (25.168)
yields

g(θ)

(
du

dy

)2

� 0, (25.208)

requiring that g(θ) is nonnegative (which shall be interpreted as strictly positive).
Leslie also restricted the analysis to cases for which a = 0, see (25.200). In this
case, elimination of the velocity gradient du/dy from Eqs. (25.203) and (25.204)
leads to the single ordinary differential equation

2 f (θ)
d2θ

dy2
+ d f (θ)

dθ

(
dθ

dy

)2

+ c
(λ1 + λ2 cos(2θ))

g(θ)
= 0. (25.209)

It is easy to show that
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dθ

dy

{

2 f (θ(y))
d2θ

dy2
+ d f (θ)

dy

(
dθ

dy

)2
}

≡ d

dy

(

f (θ(y))

(
dθ

dy

)2
)

.

So, Eq. (25.209) can also be written as

d

dy

(

f (θ(y))

(
dθ

dy

)2
)

+ c
λ1 + λ2 cos(2θ(y))

g(θ(y))

dθ

dy
= 0. (25.210)

Leslie [47] searches for solutions of boundary value problems for this equation.

(a) Flows Near a Boundary Consider the half-plane y � 0 with a flow satisfying
the boundary conditions

u(0) = 0, θ(0) = θ1, (25.211)

θ(y) → θ0 as y → ∞,

where θ0 and θ1 are constants in the range 0 < θ0, θ1 < 2π. This corresponds to
a boundary layer flow, in which the director adjusts its orientation from θ = θ1 at
the wall to θ = θ0 as y → ∞. Since n and −n are indistinguishable for LCs, the
values θ and θ ± π are equivalent, requesting invariance of (25.209) under changes
θ → θ ± π as y → ∞, for which we must have dθ/dy = 0 and d2θ/dy2 = 0,
implying in view of (25.209) that

cos(2θ0) = −λ1

λ2
. (25.212)

Moreover, recalling the conditions (25.195), this gives two possible values for θ0.
The trivial cases θ1 = θ0 and θ1 = θ0 ± π are excluded [47].

Combining (25.210) with (25.212) and integrating the emerging equation yields

f (θ)

(
dθ

dy

)2

= −cλ2

∫ y(θ)

y(θ0)→∞
[cos(2ϕ(y)) − cos(2θ0)]

g(ϕ(y))

dϕ(y)

dy
dy

︸ ︷︷ ︸
dϕ

= −cλ2

∫ θ

θ0

[cos(2ϕ) − cos(2θ0)]
g(ϕ)

dϕ. (25.213)

In the first line of this expression, integration is over the variable y and the integration
is from y → ∞ to an arbitrary value of y. In the second line, the variable of integration
is changed to the (dummy) variable ϕ from ϕ = θ0 to ϕ = θ.

Since the left-hand side of this equation is strictly positive, so must be its right-
hand side. This condition determines the value of θ0 which one obtains. In view of
λ1 � 0 and (25.212), Leslie [47] found that
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(i) 0 � θ0 � 1
4π, when c > 0, λ2 > 0,

(i i) 1
4π � θ0 � 1

2π, when c < 0, λ2 < 0,

(i i i) 1
2π � θ0 � 3

4π, when c > 0, λ2 < 0,

(iv) 3
4π � θ0 � π, when c < 0, λ2 > 0.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(25.214)

These may easily be verified by the reader. We may now write

(
dy

dθ

)2

= f (θ)

c h(θ)
, h(θ) := λ2

∫ θ0

θ

cos(2φ) − cos(2θ0)

g(φ)
dφ, (25.215)

from which now follows by integration

y = ±
∫ θ

θ1

{
f (ξ)

c h(ξ)

}1/2
dξ. (25.216)

This relation determines the function y = y(θ) or θ = θ(y), which, in view of
(25.216), is monotone and, alternatively, also delivers g(θ) = g(θ(y)) = g(y) in
(25.203)1. Consequently, from (25.203)1 with a = 0,

du

dy
= c

g(y)
, u(y) = c

∫ y

0

1

g(ȳ)
d ȳ, (25.217)

which delivers the velocity profile corresponding to the above director profile.
Note that limθ→θ0 g(θ) is bounded away from zero and limθ→θ0 f (θ) is equally

bounded away from zero if θ0 �= 0. Thus, the integral (25.216) has an integrable
square root singularity at θ = θ0. Consequently, the director orientation approaches
θ0 asymptotically as y → ∞. Leslie [47] also mentions that one may show with the
use of (25.204)2 and (25.216) that

lim
ζ→0

y = 0, ζ :=,
‖k11‖ + ‖k33‖

‖c‖ , provided θ �= θ0.

This indicates boundary layer behavior when the length
√

ζ is sufficiently small.
Moreover, it is of interest to compare the above results with those of the sim-

pler theories of anisotropic liquids discussed by Ericksen [22] and Leslie [46]. In
contrast with these theories, one obtains only one solution of the type considered.
However, the asymptotic values given by (25.216) correspond to Ericksen’s stable
solutions, which, according to [47], “is rather a satisfactory state of affairs.”

(b) Flow Between Parallel Plates This flow configuration corresponds to a possible
generalization of shear flows of simple fluids to shear flows of nematic LCs. We take
the flow as before between two parallel plates at y = −h and y = h, subject to the
boundary conditions

u(−h) = 0, u(h) = V, θ(−h) = θ(h) = 0. (25.218)
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The liquid moves in a gap of width 2h with vanishing velocity at the bottom y = −h
and with velocity V at y = h. At the walls, the directors are parallel to the walls. We
also consider λ2 to be positive. Solutions for negative λ2 and different director angles
at the boundaries can also be constructed. With the above boundary conditions on θ,
it is tempting to assume the solution to exhibit the symmetry

θ(−y) = θ(y) and
dθ(0)

dy
= 0,

d2θ(0)

dy2
= 0 (25.219)

and to assume the constants in (25.200) to be a = 0 and c > 0. In view of the
symmetry assumption on θ in (25.219), integration of Eq. (25.209) can be performed
again subject to condition (25.212).29 The angle θ0 lies for this case in the interval
0 < θ0 < π/4, so that

f (θ)

(
dθ

dy

)2

= c λ2

∫ θ2

θ

cos(2φ) − cos(2θ0)

g(φ)
dφ, 0 � θ � θ2. (25.220)

θ2 is the orientation of the director at y = 0. Its solution is

Fθ2(θ) =
∫ θ

0

{
f (ξ)

hθ2(ξ)

}1/2
dξ, (25.221)

where

hθ2(θ) = λ2

∫ θ2

θ

cos(2ξ) − cos(2θ0)

g(ξ)
dξ. (25.222)

In this solution, θ2 and c are still not yet determined. This is done by the choice

√
c h = Fθ2(θ2), (25.223)

in which h is the half-width of the gap. Once θ2 and c are determined from (25.220)–
(25.223), the required solution is given by

√
c(h − y) = Fθ2(θ), y � 0,√
c(h + y) = Fθ2(θ), y < 0, (25.224)

or y = ±
{

h − Fθ2(θ)√
c

}
,

y � 0,
y < 0.

It follows from (25.221) and (25.224)1,2 that θ is a monotone function of y in either
half of the gap.

At last, the velocity profile can be determined with Eq. (25.217)2 as

29With the conditions (25.219) Eq. (25.209) implies at y = 0 condition (25.212).
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u = c
∫ y

−h

d ȳ

g(θ(ȳ))
. (25.225)

This solution can now be used to construct a formula for the apparent viscosity. To
this end, we evaluate the velocity at the upper plate, which equals V , thereby using
the skew-symmetry of θ(y) about the position y = h. Then, we find

V = 2c
∫ h

0

d ȳ

g[θ(ȳ)] = 2
√

c
∫ √

c h

0

dξ

g[F−1
θ2

(ξ)] , (25.226)

in which (25.223) was employed. Moreover, using again (25.223),

V h = 2 Fθ2(θ2)

∫ Fθ2 (θ2)

0

dξ

g[F−1
θ2

(ξ)] . (25.227)

With this, we now calculate the apparent viscosity as

ηapparent := (t E
xy)

′(y = h)

V/(2h)

(25.203)1= 2c h

V
(25.227)= Fθ2(θ2)

∫ Fθ2 (θ2)

0
dξ

g[F−1
θ2

(ξ)]
. (25.228)

This result indicates that ηapparent is a function of θ2 or, owing to (25.227), of the
product of V h.

This computation of Leslie [47] is completed by pointing out that a boundary
layer phenomenon can be demonstrated for this solution. It is easy to see, on the basis
of (25.220), (25.221), that the function Fθ2(θ2) becomes infinite as θ2 approaches
the value θ0. Leslie then shows that the director orientation will everywhere have a
value close to θ0, except for boundary layers at either boundary.

For other shear flow problems of nematics, see also Olmsted and Goldbart

[55, 56].

25.7 Discussion

The foregoing analysis restricted its focus upon the Ericksen–Leslie–Parodi for-
mulation of nematic LCs, inwhich one-dimensional directors that are equipped along
their axis with a mass density, can sufficiently accurately describe the polar nature of
the substructure of the fluid. The theoretical concepts are the classical balance laws
of mass, momenta, and energy. These are special when compared with the physical
balance laws by the fact that the equation of fluid momentum is complemented by a
balance law of director momentum, comprising director momentum, director stress,
and director force. These must satisfy constraint conditions (i) that the balance law of
angular momentum is identically satisfied and (ii) the balance law of internal energy
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accounts, beyond the terms known from the corresponding laws of the Boltzmann
continuum, also for the additional stress power of the directors and the work of the
internal director force are accounted for.

All this has been demonstrated to be in harmony with the basic principles in the
pioneering articles of Ericksen [23] and Leslie [47]. The contributions to thermo-
dynamics are by Leslie [47], Frank [31], and Parodi [59]. Leslie postulated an
entropy flux going beyond “heat flux divided by absolute temperature” but kept the
Coleman–Noll postulate ([42], Chap. 18) of open systems thermodynamics with
(among others) arbitrarily applied external director forces. Some of us may ques-
tion this assumption. Frank’s contribution [31] was to postulate a Helmholtz free
energy, being a quadratic form of the director gradient and other variables. He, for
the first time, stated explicitly the number of independent coefficients arising in this
function to hemotropic and isotropic materials. Parodi then adopted the Onsager
reciprocity relations and demonstrated the reduction of the number of the Frank

coefficients by an additional one. It was illustrated by a simple shear flow problem
that derivation of analytical solutions to the emerging boundary value problems is
nontrivial.

It is clear that a simple director is the most primitive representation that character-
izes longish molecules; in particular, such a model ignores the variation of the mass
distribution along the molecule axis. A more detailed description of this transverse
variation can be introduced by tensorial order parameters of order higher than 1.
Models of this complexity were started in the 1980s and 1990s, see e.g., Hess [38],
and Ericksen [27], and later by Maffettone, Sonnet, and Virga [51, 67–69].
Concepts of such structures will be dealt with in Chap. 26. For further literature on
thermomechanical behavior of LCs, see [36–39, 60, 61].

Appendix 25.A Evaluation of the Curvature Vector ki and
Tensor ki j

The reduction of the free energy (25.145) to a form suitable of an isotropic response is
conducted in several steps by subjecting (25.145) to a selection of rotated coordinates.
The choice of the coordinate system in the main text has been to let the z-coordinate
coincide with the axis of the director; the coordinates (x, y)were chosen in the plane
perpendicular to the z-axis, being mutually orthogonal, but otherwise free. We take
now in a first step new Cartesian coordinate systems as shown in Fig. 25.18a, rotated
around the z-axis by the angle π/2. Clearly, x ′ = y, y′ = −x, z′ = z. With the help
of Fig. 25.16, we may identify the following relations:

∂Lx ′

∂x ′ = ∂Ly

∂y ,
∂Ly′
∂y′ = ∂Lx

∂x
,

∂Ly′

∂x ′ = − ∂Lx
∂y ,

∂Lx ′
∂y′ = −∂Ly

∂x
, (25.229)
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∂Lx ′

∂z′ = ∂Ly

∂z ,
∂Ly′
∂z′ = −∂Lx

∂z
.

These relations, together with the linear representations (25.143) for the primed and
unprimed quantities, imply

a′
1 = a5, a′

2 = −a4, a′
3 = a6, (25.230)

a′
4 = −a2, a′

5 = a1, a′
6 = −a3.

Next, we write the free energy density (ρψ)′ in the primed Cartesian system in
long form as follows:

(ρψ)′ = k1a′
1 + k2a′

2 + k3a′
3 + k4a′

4 + k5a′
5 + k6a′

6

+ 1
2 k11a′

1a′
1 + k12a′

1a′
2 + k13a′

1a′
3 + k14a′

1a′
4 + k15a′

1a′
5 + k16a′

1a′
6

+ 1
2 k22a′

2a′
2 + k23a′

2a′
3 + k24a′

2a′
4 + k25a′

2a′
5 + k26a′

2a′
6

+ 1
2 k33a′

3a′
3 + k34a′

3a′
4 + k35a′

3a′
5 + k36a′

3a′
6

+ 1
2 k44a′

4a′
4 + k45a′

4a′
5 + k46a′

4a′
6

+ 1
2 k55a′

5a′
5 + k56a′

5a′
6

+ 1
2 k66a′

6a′
6

(25.230)= k1a5 − k2a4 + k3a6 − k4a2 + k5a1 + k6a3 (25.231)
+ 1

2 k11a5a5 − k12a4a5 + k13a5a6 − k14a2a5 + k15a5a1 − k16a3a5
+ 1

2 k22a4a4 − k23a4a6 + k24a4a2 − k25a4a1 − k26a4a3
+ 1

2 k33a6a6 − k34a6a2 − k35a6a1 + k36a6a3
+ 1

2 k44a2a2 − k45a2a1 − k46a2a3
+ 1

2 k55a1a1 − k56a3a1
+ 1

2 k66a3a3.

In this expression, relations (25.230) have been substituted. On the other hand, (ρψ)

in the unprimed system is given by

(ρψ) = k1a1 + k2a2 + k3a3 + k4a4 + k5a5 + k6a6

+ 1
2 k11a1a1 + k12a1a2 + k13a1a3 + k14a1a4 + k15a1a5 + k16a1a6

+ 1
2 k22a2a2 + k23a2a3 + k24a2a4 + k25a2a5 + k26a2a6

+ 1
2 k33a3a3 + k34a3a4 + k35a3a5 + k36a3a6

+ 1
2 k44a4a4 + k45a4a5 + k46a4a6

+ 1
2 k55a5a5 + k56a5a6

+ 1
2 k66a6a6.

(25.232)

The values of (ρψ)′ and (ρψ) must be equal, if the free energy is insensitive to this
coordinate change; so, (25.231) = (25.232) allows the inferences:

• Compare the linear terms involving a3 and a6:

k3a6 − k6a3 = −k3a3 + k6a6,

−→ (k3 − k6)a6 = −(k3 − k6)a3. (25.233)
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This implies k3 = k6. The inference k3 = k6 = 0 follows by applying an infinites-
imal rotation for which the coefficients ai and a′

j are related by (25.230). Substi-
tuting these expressions in (25.231) and (25.232) then yields for k3a′

3 + k6a′
6 =

k3a3 + k6a6 the result k3a6 − k6a3 = 0 or, since a3 and a6 are arbitrary, k3 = 0,
k6 = 0.

• Compare the linear terms involving a2:

k2a2 = −k4a2, −→ k2 = −k4. (25.234)

• Compare the linear terms involving a5:

k1a5 = k5a5, −→ k1 = k5. (25.235)

Thus, the vector ki is given by (k1, k2, 0,−k2, k1, 0)T . Of the six components,
two are zero and of the remaining four, only two are independent. Next, compare the
quadratic terms.

• Compare the terms involving a5a5:

1
2k11a5a5 = 1

2k55a5a5, −→ k11 = k55. (25.236)

• Compare the terms involving a1a3, a1a6, a2a3, a2a6, a3a4, a3a5, a3a6, a4a6, a5a6:
Therefore, according to these results and that in the footnote,30 we have

k13 = k16 = k23 = k26 = k34 = k35 = k36 = k46 = k56 ≡ 0. (25.237)

• Compare the terms involving a2a2:

1
2k22a2a2 = 1

2k44a2a2, −→ k22 = k44. (25.238)

30This comparison yields the following nine statements:

k13 = −k56, k16 = −k35, k46 = k23,
k26 = −k34, k26 = k34, k36 = −k36,
k23 = k56, k23 = −k46, k46 = −k46.

The underlined identities only allow the solutions k26 = k34 = k36 = k46 = 0; these then imply
straightforwardly k23 = 0, k56 = 0, and k13 = 0. Only k16 = −k35 remain undetermined. To prove
that these coefficients vanish as well, a rotation of the coordinate system by the angle π around the
z-axis is performed. An analogous computation as above then leads to the additional conclusion

k13 = k56,

which, combined with the first of the above nine statements, then yields the desired result

k13 = k56 = 0.
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Fig. 25.18 Cartesian coordinates in the plane (x, y). The director points into the z = z′-axis. In a
the (x, y)-coordinates are rotated counterclockwise by the angle α = π/2; in b α is arbitrary

• Compare the terms involving a3a3:

1
2k33a3a3 = 1

2k66a3a3, −→ k33 = k66. (25.239)

• Compare the terms involving a2a5:

− k14a2a5 = k25a4a5, −→ k14 = −k25. (25.240)

• Compare the terms involving a4a5:

k12a4a5 = −k45a4a5, −→ k12 = −k45. (25.241)

Thus, the vector ki and the matrix ki j (i, j = 1, . . . , 6) reduce with these results
to

k1 = (k1, k2, 0,−k2, k1, 0)
T = 0, (25.242)

ki j =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

k11 k12 0 k14 k15 0
k22 0 k24 −k14 0

k33 0 0 0
k22 −k12 0

sym k11 0
k33

⎞

⎟⎟⎟⎟⎟
⎟
⎠

. (25.243)

Of the six coefficients ki , four are nonzero, but only two are possibly distinct. Sim-
ilarly, of the 36 coefficients of the symmetric matrix ki j , 12 of the upper diagonal
21 coefficients are different from zero but only seven are possibly distinct from one
another.

We next consider a rotation of the Cartesian coordinates by an arbitrary angle α.
In view of Fig. 25.18b, we then obtain
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x = cos(α)x ′ − sin(α)y′, L′
x = cos(α)Lx + sin(α)Ly,

y = sin(α)x ′ + cos(α)y′, L′
y = − sin(α)Lx + cos(α)Ly,

z = z′, L′
z = Lz .

(25.244)

With these expressions, it is straightforward to compute the components of the cur-
vature tensor ∂L′

i/∂x ′
j as follows:

∂L′
x

∂x ′ = cos2(α)
∂Lx

∂x
+ sin(α) cos(α)

(
∂Lx

∂y
+ ∂Ly

∂x

)
+ sin2(α)

∂Ly

∂y
,

∂L′
y

∂y′ = cos2(α)
∂Ly

∂y
− sin(α) cos(α)

(
∂Lx

∂y
+ ∂Ly

∂x

)
+ sin2(α)

∂Lx

∂x
,

∂L′
y

∂x ′ = cos2(α)
∂Ly

∂x
− sin(α) cos(α)

(
∂Lx

∂x
− ∂Ly

∂y

)
− sin2(α)

∂Lx

∂y
,

∂L′
x

∂y′ = cos2(α)
∂Lx

∂y
− sin(α) cos(α)

(
∂Lx

∂x
− ∂Ly

∂y

)
− sin2(α)

∂Ly

∂x
,

∂L′
x

∂z′ = cos(α)
∂Lx

∂z
+ sin(α)

∂Ly

∂z
, (25.245)

∂L′
y

∂z′ = cos(α)
∂Ly

∂z
− sin(α)

∂Lx

∂z
,

∂L′
z

∂x ′ = cos(α)
∂Lz

∂x
+ sin(α)

∂Lz

∂y
,

∂L′
z

∂y′ = cos(α)
∂Lz

∂y
− sin(α)

∂Lz

∂x
,

∂L′
z

∂z′ = ∂Lz

∂z
.

If we select α = π
2 , the formulae (25.245) verify (25.229). On the other hand, for

α = π/4, sin(α) = cos(α) = 1√
2
and sin2(α) = cos2(α) = sin(α) cos(α) = 1

2 .
Consequently, in view of (25.243), written for the primed and unprimed coordinates,
we have

a′
1 = ∂L′

x

∂x ′ = 1

2

(
∂Lx

∂x
+ ∂Lx

∂y
+ ∂Ly

∂x
+ ∂Ly

∂y

)
= 1

2
(a1 + a2 + a4 + a5) ,

a′
2 = ∂L′

x

∂y′ = 1

2

(
−∂Lx

∂x
+ ∂Ly

∂y
+ ∂Ly

∂y
− ∂Ly

∂x

)
= 1

2
(−a1 + a2 − a4 + a5) ,

a′
3 = ∂L′

x

∂z′ = 1√
2
(a3 + a6), (25.246)

a′
4 = ∂L′

y

∂x ′ = 1

2

(
∂Ly

∂x
− ∂Lx

∂x
+ ∂Ly

∂y
− ∂Lx

∂y

)
= 1

2
(−a1 − a2 + a4 + a5) ,

a′
5 = ∂L′

y

∂y′ = 1

2

(
∂Lx

∂x
− ∂Lx

∂y
− ∂Ly

∂x
+ ∂Ly

∂y

)
= 1

2
(a1 − a2 − a4 + a5) ,
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a′
6 = ∂L′

y

∂z′ = 1√
2
(−a3 + a6).

It follows that

2a′
1 = a1 + a2 + a4 + a5,

2a′
2 = −a1 + a2 − a4 + a5,√

2a′
3 = a3 + a6, (25.247)

2a′
4 = −a1 − a2 + a4 + a5,

2a′
5 = a1 − a2 − a4 + a5,√

2a′
6 = −a3 + a6.

If we now consider the representations (25.145) and (25.146) for the free energy
in the primed and unprimed coordinates, the linear contributions yield, with the
k-values as given by (25.147),

(ρψ)′lin = k1
(
a′
1 + a′

5

)+ k2
(
a′
2 − a′

4

)

(25.247)= k1(a1 + a5) + k2(a2 − a4), (25.248)

(ρψ)lin = k1(a1 + a5) + k2(a2 − a4).

Therefore, the requirement (ρψ)′ = (ρψ) implies an identity and no reduction of
the number of coefficients k1 and k2. The same result is also obtained for the linear
terms of representation (25.146) for ψ with an arbitrary such rotation. Indeed, with
(25.245) and (25.143), we may easily compute

(ρψ)′lin = k1
(
a′
1 + a′

5

)+ k2
(
a′
2 − a′

4

)
,

(ρψ)lin = k1 (a1 + a5) + k2 (a2 − a4) .

This shows that the requirement (ρψ)′lin = (ρψ)lin implies

(a′
1 + a′

5) = (a1 + a5) and (a′
2 − a′

5) = (a2 − a4), (25.249)

identically, for any values of α. We emphasize that this result holds for proper
rotations.

The analogous computations for the quadratic terms of the free energy (ρψ)quad =∑6
i, j=1 a′

i a
′
j , ki j = k ji , are much more involved, even though they are not difficult.

With the results (25.243) we may write
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(ρψ)′quad = k11
(
a′
1a

′
1 + a′

5a
′
5

)+ 2k12
(
a′
1a

′
2 − a′

4a
′
5

)

+ 2k14
(
a′
1a

′
4 − a′

2a′
5

)+ 2k15
(
a′
1a

′
5

)

+ k22
(
a′
2a′

2 + a′
4a

′
4

)+ 2k24
(
a′
2a′

4

)+ k33
(
a′
3a

′
3 + a′

6a
′
6

)

(25.250)

≡ (ρψ)quad = k11 (a1a1 + a5a5) + 2k12 (a1a2 − a4a5)

+ 2k14 (a1a4 − a2a5) + 2k15 (a1a5)

+ k22 (a2a2 + a4a4) + 2k24 (a2a4) + k33 (a3a3 + a6a6) .

This statement must hold under conditions of material isotropy for any value of the
rotation angle α. Its identical satisfaction for α = π/2 is already incorporated. For
α = π/4 relations (25.247) apply; they allow computation of a′

i a
′
j as functions of

aka�(i, j, k, � = 1, . . . , 6), of which the results can be substituted into (25.250). The
outcome of this long and rather dull computation yields the following identity:

(k11 − k15 − k22 − k24)
{− 1

2a1a1 + 1
2a2a2 + 1

2a4a4 + 1
2a5a5 + a2a4

}

+ {k11a1a5 + k12 (−2a1a4 + 2a2a5 − a1a2 − a4a5)

+ k14 (2a4a5 − 2a1a2 − a1a4 − a2a5) − k22 (a1a5 + a5a5)

− k24 (a1a5 + a4a5)
} ≡ 0. (25.251)

This identity must be valid for any values of ai (i = 1, . . . , 6). It, thus, follows
that the terms in the first line and then in the subsequent line(s) of (25.251) must
independently vanish. This conclusion follows, e.g., simply from the fact that the
products a1a5 and a2a5 do not arise in the first line, but in all remaining terms of
(25.251). Thus, we conclude that

k15 = k11 − k22 − k24, (25.252)

a result stated by Sir Charles Frank [31], but not explicitly demonstrated by him.
A further relation is obtained by performing an infinitesimal rotation with the

transformation employing (25.245) in the limit α � 1, so that cos(α) = 1, sin(α) ≈
α and ignoring terms quadratic in α. These computations yield

∂L′
x

∂x ′ = ∂Lx
∂x + α

(
∂Lx
∂y + ∂Ly

∂x

)
,

∂L′
y

∂x ′ = ∂Ly

∂x − α
(

∂Lx
∂x − ∂Ly

∂y

)
,

∂L′
y

∂y′ = ∂Ly

∂y − α
(

∂Lx
∂y + ∂Ly

∂x

)
,

∂L′
x

∂y′ = ∂Lx
∂y − α

(
∂Lx
∂x − ∂Ly

∂y

)
,

∂L′
x

∂z′ = ∂Lx
∂z + α

(
∂Ly

∂z

)
,

∂L′
y

∂z′ = ∂Ly

∂z − α
(

∂Lx
∂z

)
,

∂L′
z

∂x ′ = ∂Lz

∂x + α
(

∂Lz

∂y

)
,

∂L′
z

∂y′ = ∂Lz

∂y − α
(

∂Lz

∂x

)

∂L′
z

∂z′ = ∂Lz

∂z .

(25.253)
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Substituting the expansions for L in terms of the parameters ai (i = 1, . . . , 6)
expressed in terms of ai and a′

k (i, k = 1, . . . , 6), respectively, the above expressions
yield

a′
1 = a1 + α(a2 + a4), a′

4 = a4 − α(a1 − a5),

a′
5 = a5 − α(a2 + a4), a′

2 = a2 − α(a1 − a5),

a′
3 = a3 + αa6, a′

6 = a6 − αa3,

a′
7 = a7 + αa8, a′

8 = a8 − αa7.

(25.254)

With these expressions and with relation (25.252) for k15, the free energy condition
for isotropic behavior is

(ρψ)′quad = k11
(
a′
1a

′
1 + 2a′

1a
′
5 + a′

5a
′
5

)+ 2k12
(
a′
1a

′
2 − a′

4a
′
5

)

+ k14
(
a′
1a

′
4 − a′

2a′
5

)+ k22
(
a′
2a′

2 − 2a′
1a

′
5 + a′

4a
′
4

)

+ 2k24
(
a′
2a′

4 − a′
1a

′
5

)+ k33
(
a′
3a

′
3 + a′

6a
′
6

)
, (25.255)

≡ (ρψ)quad = k11 (a1a1 + 2a1a5 + a5a5) + 2k12 (a1a2 − a4a5)

+ k14 (a1a4 − a2a5) + k22 (a2a2 − 2a1a5 + a4a4)

+ 2k24 (a2a4 − a1a5) + k33 (a3a3 + a6a6) .

If in this identity the parameters a′
k (k = 1, . . . , 6) are expressed in terms of the

parameters ai (i = 1, . . . , 6), it turns out that only those parts of the equation
survive, which contain the linear factor α; this expression reduces to

(k12 + k14) [−a1a1 + a2a2 − a5a5 + 2a1a5 + a2a4 − a2a6] ≡ 0,

which must identically vanish for arbitrary values of a j ( j = 1, . . . , 6)). Therefore,

k12 = −k14. (25.256)

This result agrees as well with that stated by Sir Charles Frank [31]. Further
reductions of the parameter set are not possible.

The results of this appendix are stated in the main text as (25.147) and (25.148).
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Chapter 26
Nematic Liquid Crystals with Tensorial
Order Parameters

Abstract This chapter goes beyond the ELP theory of LCs by modeling the
microstructure of the liquid by a number of rank-i tensors (i = 1, . . . , n) (generally
just one) with vanishing trace. These tensors are called alignment tensors or order
parameters. When formed as exterior products of the director vector and weighted
with a scalar and restricted to just one rank-2 tensor, the resultingmathematicalmodel
describes uniaxial LCs. The simplest extensions of the ELP model are theories, for
which the number of independent constitutive variables are complemented by a con-
stant or variable order parameter S and its gradient grad S paired with an evolution
equation for it. We provide a review of the recent literature. Two different approaches
to deduce LC models exist; they may be coined the balance equations models, out-
lined already in Chap.25 for the ELPmodel, and the variational Lagrange potential
models, which, following an idea by Lord Rayleigh (Strutt, Proc Lond Math Soc
4:357–368, 1873, [50]), are extended by a dissipation potential. The two differ-
ent approaches may lead to distinct anisotropic fluid descriptions. Moreover, it is
not automatically guaranteed in either description that the balance law of angular
momentum is identically satisfied. The answers to these questions cover an impor-
tant part of the mathematical efforts in both model classes. Significant conceptual
difficulties in the two distinct theoretical concepts are the postulations of explicit
forms of the elastic energy W and dissipation function R. Depending upon, how
W and R are parametrized, different particular models emerge. Conditions are for-
mulated especially for uniaxial models, which guarantee that the two model classes
reduce to exactly corresponding mathematical models.

Keywords Liquid crystals of tensorial microstructure · Balance law approach
Variational formulation · Alignment tensor model · Uniaxial LC theory
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List of Symbols

Roman Symbols

AAA,AI Rank-i (i = 1, . . . , N ) tensor
a Symbol for area
a Uniaxial rank-2 tensorial order parameter
ak Scalar coefficient in the definition of ÔOO or ŎI see (26.53)
BBB,BI Rank-i (i = 1, . . . , N ) tensor
b∗ Translation of the origin of a Cartesian coordinate system,

b∗ = (b∗
1, b

∗
2, b

∗
3)

D Stretching tensor, strain rate tensor, rate of strain tensor, D =
sym grad v

Diss Dissipation rate in B per unit volume
da Surface element
dV Volume element
E Electric field density
E Elastic modulus for the microstructure, see (26.173)
F Symbol for a function
F Total mechanical energy of a material unit volume
Fi (i = 1, . . . , n) External and internal force acting on a mechanical system
F(a)

i , F(c)
i Applied and constraint forces

F = T + V Total mechanical energy of a material unit volume
f Degrees of freedom for a mechanical system
f Specific body force per unit mass
H Magnetic field density
i, j, . . . Indices for vector and tensor components
L ,L Lagrange function of a holonomic system, length of a system
L = T − V Lagrange function
�, �i j Tensorial body couple per unit mass
MMM, M Lagrangean operator onκ(OOO, ȮOO) andκ(QQQ, Q̇), respectively,

see (26.182), (26.20)
m Upper limit of a counting number
m,mi j Couple stress tensor, angular momentum flux
m̃, m̃i j Dynamic viscous couple stress tensor
N Upper limit of a counting number
n, ni Director vector of unit length, unit vector perpendicular to

the body surface ∂B
n+ Unit vector perpendicular to the body surface ∂B
n‖ Surface vector parallel to the surface
n⊥ Surface vector perpendicular to the surface
OOO,Oi j ...N Tensor valued order parameters
ȮI Time rate of change of OI , ȮI = ∂OI /∂ t + gradOIv◦
OI Corotational timederivative ofOI ,

◦
OI= ȮI −∑n

k=1 WI j
k
OI j

k
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Ô Co-deformational time derivative ofOI , Ô = ◦
OI +∑n

k=1 ak
DI j

k
OI j

k

P2 Second-order Legendre polynomial
PB Power of working of the forces within the body B
p, pi (i = 1, . . . , n) Momentum of a mechanical system
Q Rank-2 tensorial order parameter, orthogonal transformation

in R3

Q j ( j = 1, . . . , f ) Generalized j th force
q, q1, q2, . . . , qm Generalized coordinates
q̇1, . . . , q̇m Generalized velocities
RVE Representative volume element
RPH Rayleigh dissipation function as parameterized in (26.167)
R

n Real Euclidian n-dimensional space
R(OOO, Ô, D) Specific Rayleigh dissipation potential (per unit volume)
R, Ri j Rank-2 orthogonal transformation
R(q, q̇) Rayleigh dissipative potential, a quadratic form of q and q̇
S, S, Si j Scalar and rank-2 tensor valued order parameter
T, T (q, q̇) Kinetic energy of a rigid body—as a function of the gener-

alized coordinates and velocities
t, ti j Cauchy stress tensor
te Elastic stress contribution
tv, t̃ Viscous stress, nonequilibrium stress

t∗ Skew-symmetric part of theCauchy stress, t∗ = n × ∂R/∂
◦
n

V Volume
v, vi Velocity vector
V(q) Potential energy of a body
W Elastic energy, connectedwith themicrostructure,W (OOO, grad

OOO)

W Working, power of working
Ws Power of working of the surface forces per unit surface area,

postulated as a potential, see (26.25)
Ws Total power of working of the surface forces
W∗ Vorticity tensor W∗ = skw grad v = 1

2 (grad v − grad T v)

x = (x1, x2, x3) Cartesian coordinates in R3

x∗ Rotated and shifted Cartesian coordinates in R3

X,XXX, Xi ,Xi Generalized forces
Xb,XXXb Generalized intrinsic forces acting on a boundary ∂B of B
X s,XXXs Generalized intrinsic forces at a moving boundary
Y ,Yi Generalized frictional forces

Greek Symbols

α Counting index for constituents
αi (i = 1, . . . , 6) Constant parameters in the viscous stress representation

(26.91), expressible in terms of γ j ( j = 1, . . . , 5) according
to (26.92), (26.86)
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αi (i = 1, . . . , 7) Constant parameters in Leslie’s viscous stress of his 1992
theory, see (26.119)

β,β1,β2 Two of total seven parameters in the Rayleigh dissipation

function R(n,
◦
n, Ṡ, D) see (26.132)

γi (i = 1, . . . , 5) Constant parameters for an isotropic invariant R(n,
◦
n, D)

representation, see (26.132)
δi j Kronecker delta, δi j = 1 if i = j ; δi j = 0 if i �= j
δ Dirac function, variational symbol
εi jk Levi-Cività tensor, epsilon tensor = 1 for cyclic permuta-

tion of the indices; = −1 for anti-cyclic permutation of the
indices; = 0 for no permutation of the indices.

ε Electric permittivity (magnetic susceptibility) anisotropy ten-
sor

ε‖, ε⊥ Parallel and perpendicular to the molecular symmetry axis
θ Angle between the LC axis and the local director
κ Bulk viscosity of a Newtonian fluid
κ(OOO, ȮOO) Kinetic energy per unit mass due to the microstructure
λ Lagrange parameter
μ Shear viscosity of a Newtonian fluid
� Objective form of an angular velocity at a material element
ρ Mass density of the LC fluid, [M/L3]
φ Potential energy of the body force per unit mass
χ(OOO) Potential energy of the external actions exerted onOOO

σ Constant arising in the definition of
�
OOO

σ(ρ) Potential energy per unit mass due to the compressibility of
the fluid material

τ , τi = εi jk tk j Axial vector of the skew-symmetric part of the Cauchy stress
tensor

ζ[i] (i = 1, 2, 3) Constant coefficients in the parameterization of R(Q,
◦
Q, D)

see (26.163)

ζ[i j] Constant coefficients in the parameterization of R(Q,
◦
Q, D)

(i j = 21, 31, 32, 33, 34) see (26.163)

Miscellaneous Symbols

d/dt Total time derivative (following an LC particle)
∂B Boundary of volume V
LC Liquid crystal
AT Transpose of A
A−T = (AT )−1 = (A−1)T

‖b‖ Norm of b
I Multi-index = (I1, I1, . . . , In)
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Ik j = I1, . . . , Ik−1, j, Ik+1, . . . , In
f[i j] Skew-symmetric part of fi j f[i j] = 1

2 ( fi j − f ji )
f(i j) Symmetric part of fi j f(i j) = 1

2 ( fi j + f ji )
◦ Symbol for composition operator
� Let AAA,BBB two I -rank tensors. Then, (grad AAA � grad BBB)k� =

AAAI,kBBBI,�

A Deviator of the rank-2 tensor A
〈 (·) 〉 Spatial and temporal average of (·)

26.1 Nematic Liquid Crystals with Tensorial Order
Variables

26.1.1 Motivation and Literature Review

Up to now, the theory of LCs has been based on the Ericksen–Leslie–Parodi
formulation, in which the polar nature of this model is based on the assumption
that the long molecules can sufficiently accurately be described by one-dimensional
directors, which are equipped with a one-dimensional mass density along their axis.
It was, however, already explained in Sect. 25.1 to Chap.25 that in a liquid crystal
continuum consisting of individual directors of nearly parallel orientation the direc-
tors of a representative volume element (RVE) can be summarized by the exterior
product of their vectors with unit length, e.g.,

Si j = 1

N

∑

α=1

N

(

ν(α)
i ν(α)

j − 1

3
δi j

)

,

in which να
i is a unit vector of the director α and N is the number of individual direc-

tors within the RVE. The above tensor is called an order parameter, here as a rank-2
deviator, whose trace vanishes (Sii = 0) in an isotropic state in which molecules
have uniformly random orientation. Order parameters based on other variables have
equally been defined, see Eqs. (25.1)–(25.3), [5, 41]; moreover, tensors OOO of rank
larger than 2 can also be defined, [11, 44]. All these tensors will here be denoted as
OOO irrespective of their rank.

The introduction of tensorial order parameters for the description of nematic LCs
is obviously also needed, if the directors are interpreted as long, three-dimensional
bodies, e.g., ellipsoids or shafts. This has led to the theoretical formulations of rank-
2 alignment tensors. Sonnet et al. (2004) [46] write, “A general continuum theory
for an LC described by a second rank alignment tensor [...] is still missing. The
case where the alignment tensor is uniaxial with a variable degree of orientation
has been treated by Ericksen in a comprehensive way [15]. For the full alignment
tensor nonequilibrium thermodynamic methods have been used by Hess [21, 22]
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and later also by Olmsted and Goldbart [36] to obtain first constitutive theories
for homogeneous alignments which have been generalized byHess and Pardowitz
[24] to include also spatial variation. All these attempts have been impaired by not
yielding the full anisotropy of viscosities predicted by ELP theory and confirmed
experimentally. The extension to a co-deformational model was also proposed [23],
which recovered the complete anisotropy of viscosities, but failed to be otherwise
fully consistent with the phenomenological ELP theory [38].”

Sonnet et al. [46] review further recent literature [2, 17, 39, 49], in which analyt-
ical dynamic methods (Poisson bracket method, introducing a dissipation invariant)
are employed using the statistical averaging methods to deduce the coarse-grained
averages from the corresponding microscopic counterparts. In a similar vein are
also papers in which closure approximations were used to obtain equations from the
Fokker–Planck equation for the rank-2 alignment tensor [10, 22, 30].

Sonnet et al. [46] mention that “one major problem in extending the reasoning
behind the ELP theory to the alignment tensor description is that the balance of
angularmomentum can only govern a rigid rotation of thematerial element, that is the
eigenframe of the alignment tensor, while changes in the type of alignment reflected
by the eigenvalues, would remain undetermined. The key [...] is the derivation of both
the stress tensor and the equation describing the alignment evolution from a single
variational principle. There is no need to resort to the balance of angular momentum,
though it remains necessarily valid, and even the balance of linear momentum is
only invoked to identify the stress tensor. Essentially the same idea has been used by
Vertogen [51] for a uniaxial alignment tensor with constant modulus. He started
from an analogy to classical Lagrange mechanics with a Rayleigh dissipation
function.” According to [46], this method misses proper derivation of the elastic
stress and proper boundary conditions. Moreover, Sonnet and Virga [44] mention
that the role played by the dissipation function within the classical director theory of
LCs was first realized by Ericksen [14].

In the ensuing analysis,we followSonnet et al. [46] on the basis ofworkpresented
by them in [44], which itself is based on work by Vertogen [51] and Leslie [28].

26.1.2 Variational Principle

Sonnet andVirga [44] present their variational principle, applicable to nematic LCs
as an extension of Lord Rayleigh’s [50] dissipation principle, who put it forward
for discrete dissipative systems. Prerequisites for its ensuing development are two
assumptions,

• that the total mechanical power of working—excluding dissipation—can be writ-
ten as a sum of products of generalized forces with their generalized velocities
and

• that these forces are balanced by frictional forces which possess a quadratic veloc-
ity potential.
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Fundamental for the theoretical model describing LCs are the Lagrange equations.
They hold for a holonomic dynamical system consisting ofm generalized coordinates
(q1, . . . , qm)which can bewritten in vector form as q. The generalized velocities q̇ =
(q̇1 . . ., q̇m) and q are vectors inRm . Provided that all external forces are conservative,
the total mechanical power of working can be written as the rate of change of the
total mechanical energy F . We let V(q) be the potential energy of the system and
T (q, q̇) its kinetic energy, which is supposed to be a positive-definite quadratic form
in the velocities q̇i (i = 1, . . . ,m). It is known from analytical mechanics that

Ḟ = Ṫ + V̇ =
m∑

i=1

(
d

dt

(
∂L
∂q̇i

)

− ∂L
∂qi

)

q̇i , L = T − V, (26.1)

in which L is called the Lagrange function.1

The generalized forces Xi conjugate to the velocities q̇i are defined by

Ḟ =
m∑

i=1

Xi q̇i = X · q̇, Xi : = d

dt

(
∂L
∂q̇i

)

− ∂L
∂qi

. (26.2)

Thus, in a dissipation-free system, Ḟ can be identified with the power of workingW
of the generalized forces X . So, (26.1) can simply be written as

W = Ḟ =
m∑

i=1

Xi q̇i = X · q̇. (26.3)

When in addition to these forces the system is also subject to dissipation, i.e., if
frictional generalized forces, Yi (i = 1, . . . ,m) are also at work, these forces satisfy
the balance equation

(Xi + Yi ) = 0 (i = 1, . . . ,m) −→ X + Y = 0. (26.4)

If we now introduce the so-calledRayleigh dissipation potential, a positive-definite
quadratic formR of qi and q̇i and require2

Yi = ∂R
∂q̇i

, or Y = ∂R
∂q̇

(26.5)

as a “constitutive assignment”, combination of the equations (26.2)–(26.5) yields

1The derivation of (26.1) is presented in almost every book treating the “dynamics of mechanical
systems,” see e.g., [54] or any other book dealing with “dynamics of rigid bodies.” For ease to the
reader, we give its derivation in Appendix26.A.
2It turns out that the requirement of the existence of theRayleigh dissipation potential corresponds
to the assumption of the Onsager relations.
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d

dt

(
∂L
∂q̇i

)

− ∂L
∂qi

+ ∂R
∂q̇i

= 0 (i = 1, . . . ,m). (26.6)

This equation is the standard form of the Lagrange equations of a dissipative
system ([54], p. 231). Multiplying (26.6) scalarly with q̇i and summing over the
index i yields, sinceR is a homogeneous function of degree two,

m∑

i=1

∂R
∂q̇i

q̇i = 2R, (26.7)

and the balance of energy in the form

m∑

i=1

[
d

dt

(
∂L
∂q̇i

)

− ∂L
∂qi

]

︸ ︷︷ ︸
Xi

q̇i + 2R (26.2)= Ḟ + 2R = 0. (26.8)

For the variational formulation to a continuous dissipative system, the Rayleigh
dissipation function R must be minimized for variations δq̇ of the vector q̇ ∈ R

m

constrained such that the generalized forces X and their power of working Ḟ remain
unchanged, see Sonnet and Virga [44, 45]. Using a Lagrange parameter λ, this
implies

δR + λ δW =
(

∂R
∂q̇

+ λX
)

· δq̇ = 0. (26.9)

Since δq̇ is arbitrary, this equation implies

λX + ∂R
∂q̇

= 0. (26.10)

The Lagrange parameter λ which is still unknown is determined by multiplying
Eq. (26.10) with q̇ and requiring the energy balance (26.8) to hold. Therefore,

λX · q̇ + ∂R
∂q̇
︸︷︷︸
2R

·q̇ = λ X · q̇
︸ ︷︷ ︸
(26.3)= Ḟ

+2R (26.8)=⇒ λ = 1. (26.11)

With this value of λ (= 1) Eq. (26.10) becomes the equation of motion.

26.1.3 Liquid Crystals with Tensorial Order Parameters
and Dissipative Microstructure

It is our intention in this section to apply the variational principle stated in the pre-
ceding section. Following [44], we consider a bodily region B with smooth bound-
ary ∂B. The microstructure will be described by a finite number of rank-i tensors
(i = 2, . . . , n), which will be denoted by OOO (irrespective of the value of the index
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i). Thus, we consider a material of order parameter space equal to the linear space
of all rank-i tensors with i = (2, . . . , n). The generalized velocities of the material
space are the mass velocity v and the material derivative ofOOO

ȮOO = ∂OOO

∂t
+ (gradOOO) · v (26.12)

or in Cartesian components

ȮI = ∂OI

∂t
+ OI, jv j . (26.13)

Here, a comma denotes differentiation with respect to a space variable (here x j ),
and I is the multi-index I = (I1, . . . , In). Below, we will also use the notation Ik j

defined by

Ik j := (I1, . . . , Ik−1, j, Ik+1, . . . , In); (26.14)

thismeans that the index at the kth position is replaced by the index j . The dissipation
function R and the free energy W must be materially objective functions of their
variables. We shall confine attention to dependences on grad v,OOO and ȮOO. Invariance
under Euclidian transformations,

x∗ = Q(t)x + b∗(t), x = QT (x∗ − b∗), (26.15)

shows that of the stretching, D and vorticity, W tensors defined by

D = 1
2 (grad v + grad T v) and W = 1

2 (grad v − grad T v).

D is objective, but W is not objective, viz.,

D∗ = QDQT , W∗ = QW QT + Q̇ QT , (26.16)

as can easily be demonstrated.3 It is known that ȮOO is not frame indifferent. A frame
indifferent time derivative ofOOO is the corotational time derivative, defined by

3With the aid of (26.15) we find in Cartesian coordinates xi (i = 1, 2, 3) and x∗
i∗ (i∗ = 1, 2, 3)

∂v∗
i∗

∂x∗
j∗

= ∂

∂x∗
j∗

(
Qi∗ jv j + Q̇i∗ j x j + ḃi∗

) = ∂

∂xk

(
Qi∗ jv j + Q̇i∗ j x j + ḃi∗

) ∂xk
∂x∗

j∗
︸ ︷︷ ︸
Q j∗k

=
(

Qi∗ j
∂v j

∂xk
+ Q̇i∗k

)

Q j∗k = Qi∗ j
∂v j

∂xk
Q j∗k + Q̇i∗k Q j∗k ,

∂v∗
j

∂xi∗
= Q j∗ j

∂v j

∂xk
Qi∗k + Q̇ j∗k Qi∗k

j↔k= Q j∗k
∂vk

∂x j
Qi∗ j + Q̇ j∗k Qi∗k

︸ ︷︷ ︸
−Q j∗k Q̇i∗k
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O̊I = ȮI −
n∑

k=1

WIk j
OIk j

. (26.17)

Another one is the co-deformational time derivative

ÔI = O̊I +
n∑

k=1

akDIk j
OIk j

, (26.18)

in which ak are scalar coefficients, which are of constitutive nature and may depend
on objective scalar quantities. The additional summation term in (26.18) is a measure
to what extent the deformation of the fluid affects the microstructure.

The proof of thematerial frame indifference of the corotational derivative (26.17),
O̊I , follows the procedure outlined in the footnote 3 of this chapter, but it is a bit cum-
bersome in view of the occurrence of the multi-indices; that of the co-deformational
time derivative (26.18) is trivial, because the contraction of the objective tensors D
and OOO is automatically objective. So ÔI is objective once the objectivity of O̊OO has
been proved.

To apply the principle of virtual work (power), it is convenient to write for the
total energy in B

F =
∫

B
FdV, with

F = ρ
(
v · v + φ + σ(ρ) + κ(OOO, ȮOO) + χ(OOO) + W (OOO, gradOOO)

)
, (26.19)

in which

• ρ is the mass density,
• 1

2v · v the translational kinetic energy of the fluid,
• φ the potential energy of the body force, f = −grad φ,
• σ the potential energy due to the compressibility of the material,
• κ the kinetic energy connected with the microstructure,
• χ the potential energy of the external actions exerted onOOO,
• W the elastic energy connected with the microstructure.

Among these variables, σ as a function of the mass density ρ is automatically a frame
indifferent energy. W will be required to be frame indifferent; in principle, it could
also depend on higher order forces and moments (couple stresses, double forces,
etc.) necessary within B and corresponding flux terms on the bounding surfaces ∂B
of B. More on this is contained in [18, 19].

= Qi∗ j
∂vk

∂x j
Q j∗k − Q̇i∗k Q j∗k = Qi∗ j

∂vk

∂x j
Q j∗k + Q̇ j∗k Qi∗k .

The underbraced term follows from Qi∗k Q j∗k = δi∗ j∗ and relations (26.16) are immediate conse-
quences of the underlined terms.
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Next, we evaluate the total derivative ofF . The individual terms give the following
contributions:

• d

dt

∫

B
1
2ρ (v · v) dV

∗=
∫

B
1
2ρ (v · v)· dV =

∫

B
ρv̇ · v dV,

• d

dt

∫

B
ρφ dV

∗=
∫

B
ρφ̇ dV =

∫

B
ρ

(
∂φ

∂t
+ grad φ · v

)

dV = −
∫

B
ρ f · v dV,

• d

dt

∫

B
ρσ(ρ) dV

∗=
∫

B
ρσ̇(ρ) dV =

∫

B
ρ

dσ

dρ
︸︷︷︸

σ′

ρ̇ dV = −
∫

B
ρ2σ′(ρ)div v dV,

• d

dt

∫

B
ρχ(OOO) dV

∗=
∫

B
ρχ̇(OOO) dV =

∫

B
ρ
dχ

dOOO
ȮOO dV,

• d

dt

∫

B
W dV

∗=
∫

B

(
∂W

∂OOO
ȮOO + ∂W

∂gradOOO
(gradOOO)

· + Wdiv v

)

dV,

• d

dt

∫

B
ρκ
(
OOO, ȮOO

)
dV

∗=
∫

B
ρ
(
κ(OOO, ȮOO)

)·
dV

=
∫

B
ρ

{(
∂κ

∂ ȮOO

)·
− ∂κ

∂OOO

}

︸ ︷︷ ︸
MMM

·ȮOO dV =
∫

B
ρMMM · ȮOO dV . (26.20)

In these equations, we have used at the step (
∗=) that

d

dt

∫

B
ρ f dV =

∫

B
ρ ḟ dV,

for differentiable ρ and f . Moreover, the mass balance ρ̇ = −ρdiv v has also been
used, and it was assumed that ∂φ/∂t ≡ 0, i.e., the force potential does not explicitly
depend on time. The last of the above itemized statements requires some deeper
justification. The basis of it is thatOOO and ȮOO are interpreted as generalized coordinates
and generalized velocities in a Lagrange an formulation, see (26.206),

(
∂T

∂ ȮOO

)·
− ∂T

∂OOO
= QQQ, (26.21)

in which T is now identified with the specific energy of the micromotion, κ and
QQQ = ρMMM is the associated generalized microforce [More on this in a fundamental
manner can be looked up in [4, 22], pp. 16–20.].

Putting all the above energy rates together yields

Ḟ =
∫

B

{

ρ (v̇ − f ) · v + ρMMM · ȮOO +
(

ρ
∂χ

∂OOO
+ ∂W

∂OOO

)

· ȮOO.

+ ∂W

∂gradOOO
· (gradOOO)

· + (W − ρ2σ′) div v

}

dV . (26.22)
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In the classical principle of virtual power, Ḟ is balanced by the power of working
of the forces within B which is given here by

PB =
∫

B

{
X · v +XXX · ȮOO

}
dV . (26.23)

However, as Sonnet andVirga [44] emphasize, Ḟ “fails to be the total power input
for the system [here]; it must be supplemented with the surface powerWs which for
a movable boundary ∂B takes the general form

Ws =
∫

∂B

{
X s · v +XXX

s · ȮOO
}
da, (26.24)

where X s
XXX

s are generalized external forces associated with the velocities v and ȮOO,
respectively. While X s is a vector in the ordinary space, XXXs is an i th (i = 2, . . . , n)
rank tensor”.

If the surface power can be derived from a surface potential, i.e., if

Ws = d

dt

∫

∂B
Ws(x,OOO)da, (26.25)

in which Ws is a scalar function of the position x in space and the tensorial order
parameterOOO then the relations

X s = ∂Ws

∂x
and XXX

s = ∂Ws

∂OOO
(26.26)

ensue. Thus, the rate of energy in the bulk Ḟ and the power of working on the surface
Ws are given by

Ḟ + Ws =
∫

B

{

ρ(v̇ − f ) · v + ρMMM · ȮOO +
(

ρ
∂χ

∂OOO
+ ∂W

∂OOO

)

· ȮOO

+ ∂W

∂gradOOO

(
grad ȮOO − (gradOOO) · (grad v)

)

︸ ︷︷ ︸
(gradOOO)·

+(W − ρ2σ′)div v

}

dV

+
∫

∂B

(
X s · v +XXX

s · ȮOO
)
da. (26.27)

In this expression, several integrations by parts need to be performed; these are as
follows (we employ now Cartesian tensor notation):
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• ∫

B

(
W − ρ2σ′) vi,idV

=
∫

B

((
W − ρ2σ′) vi

)
,i − (W − ρ2σ′)

,i vidV

Gauss= −
∫

B

(
W − ρ2σ′)

,i
vidV +

∫

∂B

(
W − ρ2σ′) vi nida

= −
∫

B
grad

(
W − ρ2σ′) · v dV +

∫

∂B

(
W − ρ2σ′) v · n da,

• ∫

B

∂W

∂OI,�

(
ȮI,� − OI,kvk,�

) =
∫

B

∂W

∂OI,�
ȮI,�dV

︸ ︷︷ ︸
(1)

−
∫

B

∂W

∂OI,�
OI,kvk,�

︸ ︷︷ ︸
(2)

dV,

(1) =
∫

B

{(
∂W

∂OI,�
ȮI

)

,�

−
(

∂W

∂OI,�

)

,�

ȮI

}

dV

Gauss=
∫

∂B

{
∂W

∂OI,�
ȮI n�

}

da −
∫

B

(
∂W

∂OI,�

)

,�

ȮI dV

=
∫

∂B

(
∂W

∂gradOOO
n
)

︸ ︷︷ ︸
XXXb

· ȮOO da −
∫

B
div

(
∂W

∂gradOOO

)

· ȮOO dV,

(2) =
∫

B

∂W

∂O I,�
OI,kvk,� dV

=
∫

B

{(
∂W

∂OI,�
OI,kvk

)

,�

−
((

∂W

∂OI,�

)

OI,k

)

,�

vk

}

dV

Gauss=
∫

∂B

(
∂W

∂OI,�
OI,kvkn�

)

da −
∫

B

(
∂W

∂O I,�
OI,k

)

,�

vk dV .

Introducing the notation

OI,k
∂W

∂OI,�
=
(

gradOOO � ∂W

∂gradOOO

)

k�

, (26.28)

one gets

(2) =
∫

∂B

(

gradOOO � ∂W

∂gradOOO

)

n · v da −
∫

B
div

{

gradOOO � ∂W

∂gradOOO

}

· v dV .

Substituting the above expressions into (26.27), one obtains
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Ḟ + Ws =
∫

B

{
X · v +XXX · ȮOO

}
dV

+
∫

∂B

{
(Xb + X s) · v + (XXXb +XXX

s) · ȮOO
}
da, (26.29)

in which

X = ρ(v̇ − f ) − grad
(
W − ρ2σ′)+ div

(

gradOOO � ∂W

∂gradOOO

)

,

XXX = ρ

(

MMM + ∂χ

∂OOO

)

+ ∂W

∂OOO
− div

(
∂W

∂gradOOO

)

,

Xb = (W − ρ2σ′) n −
(

gradOOO � ∂W

∂gradOOO

)

n ,

XXX
b = ∂W

∂gradOOO
n . (26.30)

In all these expressions, n is the unit normal vector perpendicular to ∂B pointing to
the exterior of B. X XXX and Xb

XXX
b are the generalized intrinsic forces in the body and

on its boundary, respectively;XXX andXXXb are rank-i tensors (i = 1, . . . , n) and X Xb

are vectors.
It is physically significant to note that the surface integral in (26.29) provides the

rational argument, why the surface potential (26.25) with the generalized surface
forces (26.26) was introduced. In the absense of dissipative terms, it will be shown
that the principle of virtual power will require that Xb + X s = 0 andXXXb +XXX

s = 0.
WithWs ≡ 0 also Xb andXXXb would have to separately vanish. This would severely
constrain the model.

In the next step, we introduce the dissipation potential of Sonnet andVirga [44],
originally introduced in a simpler context by Rayleigh, see (26.3)–(26.11). In the
present situation, this potential will be postulated as a frame indifferent functional
of the stretching tensor D the order parameter(s)OOO and their rates ÔOO, viz.,

R =
∫

B
R dV, R = R(OOO, ÔOO, D), (26.31)

where ÔOO is defined in (26.18), [it could also be replaced by O̊OO (26.17)] and is assumed
to be bilinear in ÔOO and D. The variation of the dissipation functionalR is given by

δR =
∫

B

{
∂R

∂ ȮOO
· δ ȮOO + ∂R

∂grad v
· δ(grad v)
︸ ︷︷ ︸
grad (δv)

}

dV (∗)

=
∫

B

{
∂R

∂ ȮOO
· δ ȮOO − div

(
∂R

∂grad v

)

· δv

}

dV

+
∫

∂B

(
∂R

∂grad v
n
)

· δv da, (26.32)
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in which n is the outward unit normal vector on ∂B and the second term in the line
indicated by (∗) has been transformed by integration by parts and use of the Gauss’
theorem. Further transformations can be made using the chain rule of differentiation
in the following terms.

•
∂R

∂ ȮOO
= ∂R

∂ ÔOO
◦ ∂ ÔOO

∂ȮOO
+ ∂R

∂D
◦ ∂D

∂ ȮOO
︸︷︷︸

0

= ∂R

∂ ÔOO

. (26.33)

Here, the symbol ◦ denotes composition. Moreover, (26.17) and (26.18) have been
used to conclude that ∂ ÔOO/∂ ȮOO is the unity operator.

•
∂R

∂grad v
= ∂R

∂ ÔOO

◦ ∂ ÔOO

∂grad v
+ ∂R

∂D
◦ ∂D

∂grad v
︸ ︷︷ ︸

I

= ∂R

∂ ÔOO

◦ ∂ ÔOO

∂grad v
+ ∂R

∂ D
. (26.34)

Using (26.29) and taking its variation gives

δ(Ḟ + Ws) =
∫

B

(
X · δv +XXX · δ ȮOO

)
dV

+
∫

∂B

((
Xb + X s

) · δv + (XXXb +XXX
s
) · δ ȮOO

)
da,

and substituting (26.33), (26.34) into (26.32) yields

δR =
∫

B

{
∂R

∂ ÔOO
· δ ȮOO − div

(
∂R

∂ ÔOO

◦ ∂ ÔOO

∂grad v
+ ∂R

∂D

)

· δv

}

dV

+
∫

∂B

(
∂R

∂ ÔOO

◦ ∂ ÔOO

∂grad v
+ ∂R

∂D

)

· n da. (26.35)

The principle of virtual power now requires

δ
(
Ḟ + Ws

)+ δR = 0, for all {δv, δ ȮOO} (26.36)

with the understanding that the generalized forces and their power of working remain
constant during variation, see (26.8)–(26.11). Under such conditions, Eq. (26.36)
yields

X − div

(
∂R

∂ ÔOO

◦ ∂ ÔOO

∂grad v
+ ∂R

∂D

)

= 0 ,

XXX + ∂R

∂ ÔOO
= 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

in B , (26.37)
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and

Xb + X s +
(

∂R

∂ ÔOO
◦ ∂ ÔOO

∂grad v
+ ∂R

∂D

)

· n = 0,

XXX
b +XXX

s = 0

⎫
⎪⎬

⎪⎭
on ∂B . (26.38)

These are the equations of motion in B and boundary conditions on ∂B. Sonnet and
Virga [44] mention that the boundary conditions (26.38), as derived here, are valid
for freely moving boundaries. If the boundary is not free to change position, e.g.,
partly or fully constrained, then, when δv = 0 on ∂B one may still regard (26.38)1
to hold, and X s will in this case be interpreted as a reactive generalized force exerted
by the boundary. Similarly, if ȮOO onB would be prescribed, then the generalized force
XXX

s is the reaction, when ȮOO is prescribed on ∂B.
Equations (26.37) and (26.38) together with Eq. (26.30)1,2 are the basic governing

equations of this theory, and initial-boundary-value problems can be solved for a
given body B once the free energies W Ws and the external forces X s and XXX

s are
prescribed. These computations detail the presentation provided in [44].

It is certainly compulsory that the governing equations do not violate the balance
laws of linear and angular momenta, given in local form as

ρv̇ = div t + ρ f ,

ρṡ = divm + ρ� + τ , (26.39)

in which v = ẋ is the material velocity, f the specific body force per unit mass, and t
the Cauchy stress tensor. Similarly, s is the spin density per unit mass,m the couple
stress tensor, and � the body couple per unit mass. It is known that τ is related to the
skew-symmetric part of the Cauchy stress tensor (see e.g., [25], pp. 260–261)

τ = dual(t − tT ), τi = εi jk tk j . (26.40)

Evidently, if s ≡ 0, m ≡ 0 and � ≡ 0 then τ ≡ 0; in this case, the Cauchy stress
tensor is symmetric.

If we next substitute the generalized intrinsic force XXX given in (26.30), into the
evolution Eq. (26.37), we obtain

ρv̇ = ρ f + grad
(
W − ρ2σ′)

︸ ︷︷ ︸
div ((W−ρ2σ′)I)

−div

(

gradOOO � ∂W

∂gradOOO

)

+div

(
∂R

∂ÔOO
� ∂OOO

∂grad v
+ ∂R

∂D

)

. (26.41)

If this is compared with (26.40)1, the Cauchy stress can be identified as



26.1 Nematic Liquid Crystals with Tensorial Order Variables 299

t = (W − ρ2σ′)I − gradOOO � ∂W

∂gradOOO
+ ∂R

∂ÔOO
� ∂ÔOO

∂grad v
+ ∂R

∂D
. (26.42)

Notice that in the absence of microrotation the underlined middle term in (26.42)
drops out. In this case, t is symmetric and consists of a pressure p = −(W − ρ2σ′)
due to the compressibility and the linear viscous stress

∂R

∂D
= κ(div v)I + 2μ

(
D − 1

3 (div v)I
)
, (26.43)

in which κ > 0 is the fluid bulk viscosity and μ > 0 the shear viscosity. In the more
general case of nematic liquid crystals, R (andW ) can also depend on ÔOO as evidenced
by the underlined terms in (26.42).

For the analogous computations—in order to corroborate the satisfaction of the
balance law of angular momentum—it is advantageous to search for the implication
of the objectivity requirement of the energy function, i.e.,

W
(
OI ,OI, j

) = W

((

OI

n∏

m=1
RI ∗

m Jm

)

;
(

OJ,k R j∗k
m∏

p=1
RI ∗

p Jp

))

, (26.44)

in which R is an arbitrary rotation matrix [Ri∗k R j∗� = δk�]. Such proofs go back to
Green, Naghdi and Rivlin [18, 19] within the context of multipolar theories and
were explicitly demonstrated in the context of a director theory by Ericksen [12]
and noted but not proven in detail by Leslie [26, 27], Sonnet and Virga [44], and
Sonnet, Moffettone and Virga [46]. The inferences of the frame indifference
requirement (26.44) for the free energy W have been demonstrated by Ericksen in
[12] for anLCmodeled by a director n. This proof is given inChap.25 and culminates
in the statement (25.48) [in which the free energy is denoted by ϕ]. When this is
written as W , the decisive equation reads

DW =
{

∂W

∂ni
n j + ∂W

∂ni,k
n j,k + ∂W

∂nk,i
nk, j

}

Ωi j ≡ 0, (26.45)

where Ω is skew-symmetric. It follows that the term in curly brackets {·} must be a
symmetric rank-2 tensor, which can also be stated as

εi jk

{
∂W

∂n j
nk + ∂W

∂n j,�
nk,� + ∂W

∂n�, j
n�,k

}

= 0. (26.46)

If W is assumed to be a function of a rank-2 tensor, OOO, and its gradient gradOOO,
the corresponding computations are explicitly performed in Appendix26.B. The
results, analogous to (26.46), are then given as Eqs. (26.220) and (26.221). These
equations then suggest how one has to proceed if W depends on a set of tensorial
order parameters OOO of rank i (i = 1, 2, . . . , n) and their gradients, gradOOO. This
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representation is given as Eq. (26.222) and is repeated here as Eq. (26.47),

εpk∗k

{ n∑

i∗=1

(
∂W

∂OI ∗
i∗ k∗

OI ∗
i∗ k + ∂W

∂OI ∗
i∗ k∗ ,�∗

OI ∗
i∗ k ,�∗

)

+ ∂W

∂OI ∗,k∗
OI ∗,k

}

= 0. (26.47)

Sonnet and Virga [44] introduce a symbolic notation of this that is given in index
notation. To this end, they define the generalized vector valued product of two tensors
of the same rank by

(AAA ×BBB)p = εpk∗k

n∑

i∗=1

AI ∗
i∗ k∗BI ∗

i∗ k . (26.48)

Equation (26.47) can then be written in symbolic form as

OOO × ∂W

∂OOO
+ gradOOO × ∂W

∂gradOOO
= 0. (26.49)

Requiring, similarly, the kinetic energy of the micromotion, κ(OOO, ȮOO) to be a frame
indifferent function of its variables, computations analogous to that leading to (26.49)
for W yields

OOO × ∂κ

∂OOO
+ ȮOO × ∂κ

∂ȮOO
= 0. (26.50)

Returning to the representation (26.42) of the Cauchy stress tensor t it is obvious
that only the underlined terms possess skew-symmetric contributions so that the
vector τ is given by

τi = εi jk

(
∂R

∂ÔI

∂ÔI

∂v j,k
︸ ︷︷ ︸

Δi j

−OI, j
∂W

∂OI,k

)

= εi jk

(
∂R

∂ÔI

∂ÔI

∂v j,k
︸ ︷︷ ︸

Δi j

+ ∂W

∂OI, j
OI,k

)

. (26.51)

Owing to (26.37)2 we may replace ∂R/∂ÔI by (−XI ). Similarly, we may employ
(26.18) to evaluate ∂Ô/∂v j,k . To this end let

ÔI = O̊I + ŎI (26.52)
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with

O̊I = ∂OI

∂t
+ OI,pvp

︸ ︷︷ ︸
not a function of vp,q

= ȮI −
n∑

p=1

WI j
p
OI j

p
,

ŎI =
n∑

p=1

apDIqpOI qp , (26.53)

so that

∂O̊I

∂v j,k
= − ∂

∂v j,k

n∑

p=1

WIqpOI qp

= − ∂

∂v j,k

⎛

⎝
n∑

p=1

1

2

(
vp,q − vq,p

)
OI qp

⎞

⎠

= −1

2

⎛

⎝
n∑

p=1

δ j IpδkqOI qp −
n∑

p=1

δ jqδk IpOI qp

⎞

⎠ , (26.54)

from which we find that

εi jk

(
∂R

∂ÔI

∂O̊

∂v j,k

)

= −εi jkXI
∂O̊

∂v j,k

= εi jkXI

n∑

p=1

1

2

(
δ j IpOI kp − δk IpOI j

p

)

= εi jk

⎛

⎝1

2

n∑

p=1

(
XI j

p
OI kp − XI kpOI j

p

)
⎞

⎠

= εi jk

n∑

p=1

(
XI j

p
OI kp

)
. (26.55)

Similarly,

∂Ŏ

∂v j,k
= ∂

∂v j,k

⎛

⎝
n∑

p=1

1

2
ap
(
vIp,q + vIq ,p

)
OI qp

⎞

⎠

= 1

2

n∑

p=1

(
apδ j pδkqOI qp + apδ jqδkpOI qp

)

= 1

2

n∑

p=1

(
apδ j IpOI qp + apδk IpOI j

p

)
, (26.56)
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and, consequently,

εi jk

(
∂R

∂ÔI

∂ŎI

∂v j,k

)

= −1

2
εi jkXI

n∑

p=1

{
apδ j IpOI kp + apδk IpOI j

p

}

= −1

2
εi jk

n∑

p=1

ap

{
XI j

p
OI kp + XI kpOI j

p

}
≡ 0. (26.57)

It follows that τ̆ vanishes for any (finite) value of ap because the {·}-term in (26.57)
is symmetric in the indices jk whilst εi jk is skew-symmetric. So,

τi = τ̊i = εi jk

{
∂R

∂ÔI

∂O̊I

∂v j,k
+ ∂W

∂OI, j
OI,k

}

(26.55)= εi jk

⎧
⎨

⎩

n∑

p=1

(
XI j

p
OI kp

)
+ ∂W

∂OI, j
OI,k

⎫
⎬

⎭
.

Inserting in these relations the expression (26.30)2 for XI implies

τi = εi jk

{

ρ

n∑

p=1

(

MI j
p
+ ∂χ

∂OI j
p

)

OI kp

+
n∑

p=1

[
∂W

∂OI j
p

−
(

∂W

∂OI kp ,m

)

,m

]

OI kp + ∂W

∂OI, j
OI,k

}

(26.58)

∗= εi jkρ

n∑

p=1

{(

MI j
p
+ ∂χ

∂OI j
p

)

OI kp −
(

∂W

∂OI j
p ,m

OIpk

)

,m

}

, (26.59)

where at
∗= expression (26.47) was employed to alter the second line of (26.58). To

this end, by reshuffling indices, (26.47) is written in the form

εi jk
∂W

∂OI, j
OI,k = −εi jk

n∑

p=1

(
∂W

∂OI j
p

+ ∂W

∂OI j
p ,m

OI kp ,m

)

. (26.60)

The explicit form of Eq. (26.59) suggests that we may try to identify the individual
terms of the spin balance (26.39)2. Indeed, by writing (26.39)2 as

τp = ρṡp − mpk,k − ρ�p, (26.61)

and comparison of this equation with (26.59), we obtain
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ṡp = εpk∗k

n∗
∑

i∗=1

MI ∗
i∗ k∗OI ∗

i∗ , ṡ = MMM ×OOO, (26.62)

�p = −εpk∗k

n∗
∑

i∗=1

∂χ

∂OI ∗
i∗ k∗

OI ∗
i∗ k , � = − ∂χ

∂OOO
×OOO, (26.63)

mpk = εpk∗k

n∗
∑

i∗=1

∂W

∂OI ∗
i∗ k∗

OI ∗
i∗ k , m = ∂W

∂gradOOO
×OOO. (26.64)

26.2 Uniaxial Nematic Crystals

26.2.1 Introductory Note

In this section, we shall specialize the general theoretical model developed in
Sect. 26.1 for nematic LCs with tensorial order variables to uniaxial nematics. Two
different classes of models describing such LCs exist, and they differ from one
another by accounting for a scalar order parameter S. This parameter is a measure
of the deviations of the individual molecules in a representative volume element
(RVE) from that of the mathematical director n see Fig. 25.7 in Chap.25. When S is
assumed to be a constant, this means physically that the deviations of the orientations
of the molecules from one another is negligibly small. Ideally, this means that the
orientation of the molecules is perfect. Formally, this is tantamount to a constant
order, S = constant.

The mathematical model for this somewhat ideal situation is the ELP theory,
in which the variable S does not even arise. The model equations in this case are
obtained from the balance laws of linear and angular momenta (and those of mass
and energy).

The more general case is the situation when the values of S in the RVE of material
points differ from point to point. The dynamics of nematic LCs with variable scalar
order parameter was treated in the 90s of the twentieth century by Ericksen [15]
and Leslie [28]. Their approaches led to an additional evolution equation for the
scalar order parameter.

Our approach in dealingwith nematic LCs has been the adoption of theLagrange
a method to dissipative systems as suggested by Lord Rayleigh [50] and perfected
by Sonnet andVirga [44] for LCs with arbitrary tensorial order. The mathematical
structure of the two approaches is quite distinct. It is, therefore, important to inves-
tigate whether this Lagrange–Rayleigh method leads to the same nematic field
descriptions as does the balance equation approach by Ericksen [15] and Leslie
[28]. Sonnet and Virga [44] prove that the Lagrange–Rayleighmethod, as out-
lined in Sect. 26.1, yields the same governing field equations as does the balance
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equation approach.4 This is important as it assigns to these models a high degree of
credibility. Sonnet and Virga give in the introduction to their paper a review of
the literature of the past approximately 40 years, which indicates that such a perfect
agreement is not obtained with a wealth of models in papers on LCs during this
period.5

26.2.2 Uniaxial Nematics with Constant Order Parameter

The description of LCs involves an analysis of order.6 To describe it, it is customary
for nematics to use a rank-2 symmetric traceless tensor, although a scalar order
parameter is usually sufficient to describe uniaxial nematic LCs. This order can be
measured by the Maier–Saupe [31] order parameter

S = 〈P2(cos θ)〉 = 〈 12 (3 cos2 θ − 1)〉,

where θ is the angle between the LCs molecular axis and the local director, see
Fig. 25.7 in Chap.25. P2 denotes the second rank Legendre polynomial and the
brackets 〈(·)〉 denote both a temporal and spatial average. The value for S lies in the
interval S ∈ [0, 1] S = 1 being representative for θ = (0,π) and S = 0 for a com-
pletely random, isotropic sample. For a typical LC sample S ∈ [0.3, 0.8] generally
decreasing in value as the temperature increases. To describe the average orientation
along with the scalar order, it is convenient to use the uniaxial rank-2 alignment
tensor.

a = S
(
n ⊗ n − 1

3 I
)
,

which also reflects the nematic invariance changes from n → −n. With the use of
the above relation, a theory of uniaxial nematics with variable order is obtained as
a special case of a theory for the full rank-2 alignment tensor, treated in Sect. 26.1.
Here, we address a formulation using first a constant scalar order parameter, i.e.,
at this approximation this parameter does not even appear in the formulation, later
we will work with a variable scalar order parameter that enters via S and grad S
into a uniaxial constitutive assumption. The more general case will be reserved to a
separate treatment.

Chapter25 was devoted to the ELP model [13, 15, 27, 37] of nematic LCs “con-
sisting of effectively uniaxial molecules that exhibit the tendency to align their long
axis in a common direction. It is generally described by a unit vector field n the
nematic director, which indicates the local average orientation” [44].

4This statement is restricted to thosemodels satisfying theOnsager relations; this is so, because the
existence of a dissipation potential as in theLagrange–Rayleigh formulation exactly corresponds
to the application of the Onsager relations.
5This fact is informative and the introductory text in [44] isworth reading.However, in this electronic
time, we refrain from copying it.
6See: https://en.wikipedia.org/wiki/Liquid_crystal.

https://en.wikipedia.org/wiki/Liquid_crystal
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Because the processes describing the variability of the orientation of the director
are slow [when compared with the velocity of sound], the fluid can be assumed to
be density preserving. Under such conditions, ρ = constant, and the velocity field is
solenoidal, div v = 0.

Consider Ḟ as stated in (26.22) and write it for the n’s rather than theOOO’s. In this
section, we shall assume that

(1) external forces are not present, f = 0
(2) the fluid is density preserving, σ′ = 0
(3) the potential of the external actions vanishes, χ = 0
(4) the director has unit length, |n| = 1
(5) the kinetic energy connected with the microstructure is ignored, κ = 0 →

MMM = 0.

With these restrictions, (26.22) simplifies to

Ḟ =
∫

B

{

ρv̇ · v + ∂W

∂n
· ṅ + ∂W

∂grad n
(grad n)·
︸ ︷︷ ︸

grad ṅ−grad n grad v
︸ ︷︷ ︸

[1]

+W div v︸︷︷︸
0

}

dV . (26.65)

The underbraced term [1] nowwritten inCartesian tensor notation can be transformed
by integration by parts and use of the divergence theorem due to Gauss as follows:

[1] =
∫

B

{
∂W

∂ni, j

(
ṅi, j − ni,kvk, j

)
}

dV

=
∫

B

{(
∂W

∂ni, j
ṅi

)

, j

−
(

∂W

∂ni, j

)

, j

ṅi − ∂W

∂ni, j
ni,kvk, j

}

dV

= −
∫

B

{(
∂W

∂ni, j

)

, j

ṅi + ∂W

∂ni, j
ni,kvk, j

}

dV +
∫

∂B

∂W

∂ni, j
ṅ j n

+
i da

= −
∫

B

{

div
∂W

∂grad n
· ṅ +

(

(grad n)T
∂W

∂grad n

)

· grad v

}

dV

+
∫

∂B

(
∂W

∂grad n
n+
)

· ṅ da. (26.66)

So, we can write (26.22) in the form

Ḟ =
∫

B

{

ρv̇ · v +
(

∂W

∂n
− div

∂W

∂grad n

)

· ṅ

−
(

(grad n)T
∂W

∂grad n

)

· grad v

}

dV

+
∫

∂B

(
∂W

∂grad n
n+
)

· ṅ da, (26.67)
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in which n+ is the unit normal vector on ∂B pointing to the exterior of the body. Ḟ
is physically the power of working exhibited in the body B and on its boundary ∂B.
Therefore, we can arbitrarily add or subtract the following terms to Ḟ :

• ∫B μ(n · ṅ)dV (= 0 since |n| = 1 or ṅ ⊥ n). The coefficient μ is an arbitrary
scalar.

• On the boundary ∂B a similar scalar quantity μb can be active, for which

∫

∂B
μb(n · ṅ)da (= 0, since ṅ ⊥ n on ∂B).

• In B the term
∫

B
p div v dv (= 0)

maybe added, since in a density-preservingmedium the velocity field is solenoidal.

So, without any effect to the value of Ḟ , we may write

Ḟ =
∫

B

{

ρv̇ · v +
(

∂W

∂n
− div

∂W

∂grad n
+ μn

)

· ṅ

−
(

(grad n)T
∂W

∂grad n
+ p I

)

· grad v

}

dV

+
∫

∂B

(
∂W

∂grad n
n+ + μbn

)

· ṅda, (26.68)

in which μ, p, and μb are arbitrary scalar fields. Obviously, their meaning is “con-
straint forces” guaranteeing density preserving (p), and orthogonality of n and
ṅ(μ,μb). The generalized forces, analogous to (26.30) are now

X = ∂W

∂n
− div

∂W

∂grad n
+ μn,

XXX = ρv̇ + div

(

(grad n)T
∂W

∂grad n
+ p I

)

,

Xb = ∂W

∂grad n
n+ + μbn,

XXX
b =

(

(grad n)T
∂W

∂grad n
+ p I

)

n+, (26.69)

in which μ,μb and p pb appear as Lagrange multipliers corresponding to the
constraints that n has unit length in B and on ∂B and that the velocity field is
solenoidal.

Next, we need to incorporate the dissipative effects. These require the postulation

of the Rayleigh dissipation function R. We select the dependence R = R(n,
◦
n, D)
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and assume it to be a bilinear homogeneous function of D := sym gradv and
◦
nwhere

◦
n= ṅ − Wn = ṅ − ω × n, (26.70)

in whichW = skw gradv is the skew-symmetric vorticity tensor and ω = 1
2 curlv its

dual axial vector, see its analogue (26.17).
From Euler’s theorem on homogeneous functions7 of order 2, we have

∂R

∂
◦
n

· ◦
n + ∂R

∂D
· D = 2R. (26.73)

Moreover,

∂R

∂ṅ
= ∂R

∂
◦
n

◦ ∂
◦
n

∂ṅ︸︷︷︸
=1

= ∂R

∂
◦
n

, (26.74)

according to (26.70). On the other hand,

∂R

∂vk,�
= ∂R

∂
◦
ni

∂
◦
ni

∂vk,�
︸ ︷︷ ︸

(1)
︸ ︷︷ ︸

[1]kl

+ ∂R

∂Di j

∂Di j

∂vk,�
︸ ︷︷ ︸

(2)
︸ ︷︷ ︸

[2]kl

. (26.75)

With
◦
ni= ṅi − 1

2 (vi, j − v j,i )n j , we obtain

(1) = 1

2

(−δikδ j�n j + δ jkδi�n j
)
,

(2) = ∂

∂vk,�

(
1

2
(vi, j + v j,i )

)

= 1

2

(
δikδ j� + δ jkδi�

)
,

[1]kl = 1

2

∂R

∂
◦
ni

(−δikδ j�n j + δ jkδi�n j
)

7Let f (xy) be a homogeneous function of order n so that

f (t x, t y) = tn f (x, y). (26.71)

Then, it is easy to show that

ntn−1 f (x, y) = x
∂ f

∂(xt)
+ y

∂ f

∂(yt)
t=1−→ n f (x, y) = x

∂ f

∂x
+ y

∂ f

∂y
(26.72)

for a homogeneous function of order n. For a bilinear homogeneous function n = 2.
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= −1

2

(
∂R

∂
◦
nk

n� − ∂R

∂
◦
n�

nk

)

, (26.76)

[2]kl = ∂R

∂Di j

∂Di j

∂vk�
= 1

2

∂R

∂Di j

(
δikδ j� + δ jkδi�

)

= 1

2

(
∂R

∂Dk�
+ ∂R

∂D�k

)

= ∂R

∂Dk�
. (26.77)

Therefore, and now reverting to symbolic notation, Eq. (26.67) reads

∂R

∂grad v
= 1

2

(

n ⊗ ∂R

∂
◦
n

− ∂R

∂
◦
n

⊗ n
)

+ ∂R

∂D
. (26.78)

This agreeswith formula (59) in [44].Next,withXgiven by (26.69)2 and the analogue
of the last term on the right-hand side of (26.41), which here reads [OOO is replaced by
◦
n]

div

(
∂R

∂grad v

)

,

the Cauchy stress can be identified as the expression

t = −p I − (grad n)T
∂W

∂grad n
+ 1

2

(

n ⊗ ∂R

∂
◦
n

− ∂R

∂
◦
n

⊗ n
)

+ ∂R

∂D
. (26.79)

Thus, we obtain the field equations

ρv̇ − div t = 0,
∂W

∂n
− div

(
∂W

∂grad n

)

+ ∂R

∂
◦
n

+ μn = 0

⎫
⎬

⎭
in B (26.80)

and boundary conditions

tn+ + Xb = 0,
∂W

∂grad n
n+ + μbn +XXX

s = 0

⎫
⎬

⎭
on ∂B. (26.81)

Obviously, according to (26.79), −p I is the constraint pressure due to the density
preserving of the fluid, while

te := −(grad n)T
∂W

∂grad n
,

tv := 1

2

(

n ⊗ ∂R

∂
◦
n

− ∂R

∂
◦
n

⊗ n
)

+ ∂R

∂D
(26.82)
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are the elastic stress due to variations of the orientation of the director n in space

and the viscous stress due to variations of n in time [as expressed by
◦
n] and fluid

viscous effects. Furthermore, (26.80)2 serves as a field equation for the Lagrange
parameter μ as scalar response to the rigidity of the director length. A similar role is
also played by μb whose determination by (26.81)2 guarantees the orthogonality of

n and
◦
n at the boundary ∂B.

The skew-symmetric part of the stress tensor (26.79) is given by the underlined
term. Its dual (axial) vector is given by

t∗i = εi jk

(

n j
∂R

∂
◦
nk

− ∂R

∂
◦
n j

nk

)

←→ t∗ = n ×
(

∂R

∂
◦
n

)

. (26.83)

Solving (26.80)2 for (∂R/∂
◦
n) substituting the emerging expression into (26.82)2

and recognizing that n × n = 0 yields the identity

n ×
(

div
∂W

∂grad n
− ∂W

∂n
− ∂R

∂
◦
n

)

≡ 0. (26.84)

Sonnet and Virga [44] interpret this equation as a balance of torques, viz.,

n ×
(

div
∂W

∂grad n
− ∂W

∂n

)

︸ ︷︷ ︸
torque due to the elastic
deformation of the directors

= n × ∂R

∂
◦
n︸ ︷︷ ︸

torque due to the viscous
deformation of the directors

. (26.85)

Similarly, when taking the cross product of (26.69)2 with n, viz.,

n ×XXX
s

︸ ︷︷ ︸
torque at the bound.
due to the microforce

= −n ×
[(

∂W

∂grad n

)

n+
]

.

︸ ︷︷ ︸
torque at the boundary due to
elastic deformations of the directors

(26.86)

We recognize a balance of torques due to the microforce XXXs with an elastic surface
torque, both at the boundary ∂B. Moreover, according to (26.64) the couple stress
tensor takes the form

mpk = εpk∗�n
∗
k

∂W

∂n�,k
. (26.87)

There remains the postulation of the dissipation function as a function of
◦
n and D

that can be constructed from the scalar invariants built with these variables and with
n. There are five such invariants, see [43, 47, 52, 53], and their linear combination
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yields for R the representation

R = 1
2γ1

◦
n
2 +γ2

◦
n ·Dn + 1

2γ3(Dn)2

+ 1
2γ4tr(D

2) + 1
2γ5(n · Dn)2, (26.88)

where γi (i = 1, . . . , 5) are constants. It follows from (26.88) that

∂R

∂
◦
n

= γ1
◦
n +γ2Dn, (26.89)

∂R

∂D
= 1

2γ2

( ◦
n ⊗n + n⊗ ◦

n
)

+ 1
2γ3 (Dn ⊗ n + n ⊗ Dn)

+γ4D + γ5 (n · Dn) n ⊗ n. (26.90)

Substituting these R-derivatives into the viscous stress formula (26.82) yields

tv = α1 (n · Dn) n ⊗ n + α2

( ◦
n ⊗ n

)
+ α3n⊗ ◦

n

+α4D + α5 (Dn ⊗ n) + α6n ⊗ Dn, (26.91)

where the coefficients αi (i = 1, . . . , 6) are given by coefficients γ j ( j = 1, . . . , 5)
through the relations

α1 = γ5, α2 = 1
2 (γ2 − γ1), α3 = 1

2 (γ1 + γ2),

α4 = γ4, α5 = 1
2 (γ3 − γ2), α6 = 1

2 (γ2 + γ3),
(26.92)

where between the α-coefficients the equation

α6 − α5 = α2 + α3 (26.93)

must exist (because six α’s are expressed in terms of five γ’s.) Equation (26.93)
is known as Onsager–Parodi relation [44]. Sonnet and Virga also mention that
“this relation is automatically satisfied, because the generalized viscous forces derive
from a potential R. Here indeed Onsager’s principle reduces to the symmetry in the
mixed second derivatives of R”.

26.2.3 Leslie’s Alternative Formulation for Uniaxial
Nematics

It is worth noting that the viscous stress representation (26.91), derived by Sonnet
andVirga [44], agrees in substance with the alternative dynamical theory of LCs by
Leslie [28]. He derived his model based on the balance laws for linear and angular
momenta and energy. These laws form the natural foundation for the expressions of
stress and couple stress in such transversely isotropic liquids. Leslie in 1992 [28]
restricts attention to processes for which thermal effects can be ignored; moreover,
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the liquid is viewed as density preserving and the director n is restricted to unit
length. The significant balance laws are then given by

d

dt

∫

B
ρvidV =

∫

B
ρ fidV +

∫

∂B
tida (26.94)

d

dt

∫

B
ρεi jk x jvkdV =

∫

B
ρ
(
εi jk x j fk + �i

)
dV

+
∫

∂B

(
εi jk x j tk + mi

)
da, (26.95)

where we have employed Cartesian tensor notation and also ignored the spin density,
which is generally small. In the above, apart from the common and well-known
terms ρ, vi the fluxes ti and mi represent the surface tractions and couples per unit
volume, whereas fi and �i are the external body force and body couple per unit mass,
respectively.

If n+ is the unit vector at surface points normal to ∂B and pointing to the exterior
region of B the usual tetrahedronal argument leads to the expressions

ti = ti j n
+
j , mi = mi jn

+
j . (26.96)

With these, the local balance laws take the forms

ρv̇i = ρ fi + ti j, j , 0 = mi j, j + εi jk tk j + ρ�i , (26.97)

the superimposed dot representing the total (material) time derivative.
The stored energy density W as a function of the unit director field n is, for static

processes, given by

W = W (ni , ni, j ). (26.98)

Ericksen [12, 13] shows that invariance of W (ni , ni, j ) under Euclidian transfor-
mations requires W to satisfy the identity

εi pq

{

nq
∂W

∂np
+ np,k

∂W

∂nq,k
+ nk,p

∂W

∂nk,q

}

≡ 0. (26.99)

The proof of this is reproduced in Chap.25 [see Eq. (25.48)].
Detailed information on the stresses and couple stresses can be obtained from the

energy balance [28],

d

dt

∫

B

(
1
2ρvivi + W

)
dV +

∫

B
Diss dV

=
∫

B
ρ ( fivi + �iωi ) dV +

∫

∂B
(tivi + miωi ) da. (26.100)
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In this expression, the two terms on the left-hand side represent the time rate of
change of the kinetic and internal energy plus the dissipation rate Diss in B. Those
on the right-hand side are the power of working of the body and surface forces and
couples, respectively, vi and ωi being the local velocity and angular velocity of the
material element. The local form of (26.100) reads

ti jvi, j + mi jωi, j − εi jk t jkωi = Ẇ + Diss. (26.101)

Since the vector ωi is the angular velocity of the material element, we have

ṅi = εi pqωpnq , (ni, j )
· = (ṅi ), j − ni,kvk, j . (26.102)

It is straightforward to show that

Ẇ = ∂W

∂np
ṅ p + ∂W

∂np,q
(np,q)

·

= εi pq

(

np
∂W

∂nq, j
ωi, j − nk,p

∂W

∂nk,q
ωi

)

− ∂W

∂np, j
n p,ivi, j . (26.103)

In this derivation, (26.102) and (26.99) have been employed. Combining (26.103)
with (26.101), finally, yields, after some rearrangements,

(

ti j + pδi j + ∂W

∂np, j

)

vi, j +
(

mi j − εi pqn p
∂W

∂nq, j

)

ωi, j

−ωiεi pq

(

tqp − ∂W

∂nk,q
nk,p

)

= Diss, (26.104)

the pressure term (in red color) has been added because its contribution vanishes,
owing to vi,i = 0 due to density preserving of the liquid. At this stage, Leslie [28]
imposes the thermodynamic requirement Diss � 0whereby Diss = 0 holds in equi-
librium. For equilibrium, the first line of (26.104) is linear in vi, j and ωi, j which may
have arbitrary values, implying

teqi j = −pδi j − ∂W

∂np, j
n p,i ,

meq
i j = εi pqn p

∂W

∂nq, j
. (26.105)

This suggests for the dynamic case the decomposition

ti j = −pδi j − ∂W

∂np, j
n p,i + t̃i j ,

mi j = εi pqn p
∂W

∂nq, j
+ m̃i j . (26.106)
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Here, t̃i j and m̃i j denote the dynamic contributions. Substituting these expressions
into (26.104) leads to

t̃i jvi, j + m̃i jωi, j − ωiεi jk t̃k j � 0, (26.107)

which is the dissipation inequality. Leslie [28] requires t̃i j and m̃i j to be functions
of nk, np,q ,ω� (but not ω�,m). This implies that (26.107) is linear in the gradient of
the angular velocity; so, one immediately concludes

m̃i j ≡ 0. (26.108)

Recalling (26.106) and using (26.108), the balance law of angular momentum,
(26.97), becomes

εi pq

(

np
∂W

∂nq, j

)

, j

+ ρ�i + εi pq t̃pq − εi pq
∂W

∂nk,p
nk,p = 0. (26.109)

This equation can be simplified by writing

εi jk t̃k j = εi jkn j g̃k + g̃ni . (26.110)

This decomposition splits the axial vector of t̃k j into a component parallel to ni and a
second component perpendicular to ni . Employing this in (26.109) and using (26.45),
viz.,

εi pq
∂W

∂nk,p
nk,q = εi pqn p

∂W

∂nq
+ εi pqn p,k

∂W

∂nq,k
,

yields for (26.109)

εi pqn p

[(
∂W

∂nq, j

)

, j

− ∂W

∂nq
+ g̃q

]

+ g̃ni + ρ�i = 0. (26.111)

The body couple ρ�i generally vanishes in a purely mechanical formulation. How-
ever, for a nematics LC the body moment due to an external magnetic field or an
electric field is generally assumed to have the form [13]

ρ�i = εi pqn pGq , (26.112)

where for a magnetic field H or an electric field E

Gm
i = ΔχmnpHpHi , Ge

i = Δεen pEpEi , (26.113)
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in whichΔχm is the diamagnetic susceptibility anisotropy andΔεe the dielectric per-
mittivity anisotropy, [28]. Employing (26.112) in (26.111) reduces the latter equation
to

εi pqn p

[(
∂W

∂nq, j

)

, j

− ∂W

∂nq
+ g̃q + Gq

]

︸ ︷︷ ︸
⊥ni

+g̃ni = 0, (26.114)

from which one immediately concludes that

g̃ = 0 and

[(
∂W

∂ni, j

)

, j

− ∂W

∂ni
+ g̃i + Gi

]

= γni , (26.115)

γ being an arbitrary scalar.
Concerning constitutive relations Leslie [28] assumes t̃i j to be an isotropic func-

tion of ni , vi, j and ωi objective under Euclidian transformations, linear in the veloc-
ity gradients and the angular velocity. In terms of the objective variables

Di j = 1
2 (vi, j + v j,i ) and �i = ωi − 1

2εi jkvk, j , (26.116)

and the definitions

Ni := εi pqωpnq , � := ωpn p, (26.117)

which, alternatively, imply

ωi = εi jkn j Nk + �ni , (26.118)

Leslie asserts the viscous stress t̃i j which is bilinear in np and ωq to be given by

t̃i j = α1npnk Dpknin j + α2Nin j + α3N jni + α4Di j

+α5Dipn pn j + α6Djpnin p + α7εi j pn p�, (26.119)

where the αi ’s are constants. Each term in this expression is linear in Dpq and ωp and
even in the director n and, thus, invariant against changes n → −n; moreover, since
� andωp are an axial scalar and axial vector, all seven terms of t̃i j are objective rank-2
tensors under the full orthogonal group. Next, constructing the axial vector from
(26.119), and employing the decomposition (26.110), allows explicit identification
of g̃k and g̃ as follows:

g̃i = −γ1Ni − γ2Dipn p, g̃ = −γ3�, (26.120)

where
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γ1 = α3 − α2, γ2 = α6 − α5, γ3 = 2α7.

The coefficients γ1 and γ2 agree with the corresponding coefficients obtained in
(26.92) of the earlierSonnet-Virgamodel. However, the coefficient γ3 from (26.92)
is obtained from the sum α5 + α6 and is not separately given as 2α7. The reason is
the adoption of the Onsager–Parodi relation in the former parameterization of t̃i j
but not in the latter. With (26.108) and (26.116), the inequality (26.107) takes the
form

t̃i j Di j − ωiεi jk t̃k j � 0, (26.121)

or when expressed in terms of (26.116)

t̃i j Di j − g̃i Ni − g̃ni � 0. (26.122)

According to Leslie [28], this “differs from his earlier theory [27] through the final
term.” The imbalance (26.122) is used to constrain the coefficients of the constitutive
quantities t̃i j , g̃i , and g̃.

Sonnet and Virga [44] emphasize that

(1) the field equations of their uniaxial nematic LC formulation, expressed by
(26.79), (26.80) correspond to the balance laws of linear and angular momenta
(26.97) of Leslie [28].

(2) their expressions for the viscous stress (26.82)2 or (26.91) correspond toLeslie’s
expression (26.119) [except for the term involving α7].

(3) the couple stress tensor is given in both formulations by

mi j = εik�nk
∂W

∂nk,�
, in B ∪ ∂B, (26.123)

having only elastic but no viscous contributions. This is a consequence of the
fact that grad ṅ is not an independent constitutive quantity.

Finally, combining the result in (26.115)1 g̃ = 0 with the definition of g̃ in (26.120)
implies

� = 0
(26.116)−→ ωpn p = 1

2npεpjkvk, j . (26.124)

This equation states that “the local spin about the director must always be equal to
the local component of vorticity in that direction” [28].
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Fig. 26.1 Pierre- Gilles De Gennes (October 24, 1932–May 18, 2007)

Pierre-Gilles de Genneswas a French physicist andNobelPrize Laureate
of physics in 1991.

Born in Paris, de Gennes was homeschooled to the age of 12 and early
matured. He graduated in 1955 from École Normale Superieur and subse-
quently became a Research Engineer at the Saclac Center of Atomic Energy,
where he was engaged in neutron scattering andmagnetism. In 1957, he earned
his doctorate and left the centre in 1959 to theUniversity of California inBerke-
ley to work with Charles Kittel on solid-state physics.

After a 27-month service in the French Marine, he became in 1961 Assistant
Professor in Orsay, where he first devoted his research activities to supercon-
ductors, but switched in 1968 to the physics of liquid crystals. In 1971, he was
appointed as Professor of Physics at the Collége de France. He was honored
by the Prix Ampére (1977), the Gay-Lussac-Humboldt-Prize (1983), the
ACS Award in polymer chemistry (1988), the LorentzMedaille (1990), and
the Nobel Prize in Physics (1991) for his discovery that methods, developed
for studying order phenomena in simple systems can be generalized to more
complex forms of matter, in particular to liquid crystals and to polymers. See
[1, 6–8].

The text is based on www.wikipedia.org

www.wikipedia.org
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26.2.4 Uniaxial Nematics with Variable Scalar Order
Parameter

As explained in Sect. 26.2.1, we shall now apply an expression for the LC internal
energy as a function of n grad n S and grad S, viz.,

W = W (S, grad S, n, grad n), (26.125)

which, in general will describe elastic terms as well as terms due to the Landau–de
Gennes8 potential through a single dependence on S. The time rate of change of the
kinetic and internal energy, Ḟ as given in (26.65), is now of the form9

Ḟ = RHS(6.65) +
∫

B

{(
∂W

∂S

)

Ṡ +
(

∂W

∂grad S

)

· (grad S)·
︸ ︷︷ ︸

grad Ṡ−(grad S)·grad v

}

dV

= RHS(6.67) −
∫

B

{

div

(
∂W

∂grad S

)

· Ṡ

+
(

grad S ⊗ ∂W

∂grad S

)T

· grad v

}

dV

+
∫

∂B

(
∂W

∂grad S

)

Ṡ · n+da. (26.126)

It follows that Ḟ now takes the form

Ḟ = RHS(6.68) −
∫

B

{

div

(
∂W

∂grad S

)

· Ṡ

+
(

grad S ⊗
(

∂W

∂grad S

))T

· grad v

}

dV

+
∫

∂B

(
∂W

∂grad S

)

Ṡ · n+da. (26.127)

The generalized force, analogous to (26.30)1, becomes

X = ρv̇ + div

(

(grad n)T
(

∂W

∂grad n

)

+grad S ⊗
(

∂W

∂grad S

))T

+ p I . (26.128)

8For a brief biographical sketch of Pierre-Gilles De Gennes (1932–2007), see Fig. 26.1.
9RHS(·) and LHS(·) denote the right- and left-hand sides of the equation (·).
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Equation (26.30)2 as a generalized force conjugate to ṅ remains unchanged.However,
a generalized force conjugate to Ṡ and analogous to (26.30)2 is given by

XXX
S = ∂W

∂S
− div

(
∂W

∂grad S

)

, (26.129)

which enters the balance Eq. (26.37)2 [in which ÔOO is replaced by S], given by

XXX
S + ∂R

∂ Ṡ
= 0. (26.130)

In order to complete the model, the dissipation function needs to be specified. This
is done by requesting R to be of the form

R = R(n,
◦
n S, grad S, D), (26.131)

objective under Euclidian transformations and quadratic in the rate variables
◦
n, Ṡ,

and D. Equation (26.88) lists the most general form of such an R when R = R(n,
◦
n

, D). This expression must be complemented by two additional terms, which are of
the form Ṡn · Dn and Ṡ2. It follows that

R = β1 Ṡn · Dn + 1
2β2 Ṡ2 + 1

2γ1
◦
n
2 +γ2

◦
n ·Dn

+ 1
2γ3

1
2 (Dn)2 + 1

2γ4trD
2 + 1

2γ5(n · Dn)2, (26.132)

in which the coefficients β and γ are now functions of S. With

∂R

∂ Ṡ
= β1n · Dn + β2 Ṡ, (26.133)

the additional evolution Eq. (26.130) becomes

∂W

∂S
− div

(
∂W

∂grad S

)

+ β1n · Dn + β2 Ṡ = 0, (26.134)

where (26.129) has also been used.
There remains the complementation of the stress tensor (26.79) by the contribution

due to a dependence of W and R on S and Ṡ. That of W must be of the form

t S1 = −grad S

(
∂W

∂grad S

)

, (26.135)

while that owing to R is manifest by the contribution of ∂R/∂D or

t S2 = β1 Ṡn ⊗ n. (26.136)
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Apart from the effects ofmicrorotation,which have beenneglected here, the evolution
equations derived in this and the previous sections are the same as those obtained by
Ericksen in [15].

26.3 Nematic Liquid Crystals Based on a Rank-2
Alignment Tensor

26.3.1 Motivation

This section presents a straightforward generalization of the formulation of the LC
theory, based on a variable scalar order parameter S. Here, our aim is the derivation
of a model that is based on a rank-2 alignment tensor. Such models have been
formulated by Hess [21, 22] and later by Olmsted and Goldbart [35, 36] for
homogeneous alignment and byHess and Pardowitz [24]. As stated by Sonnet et
al. [46] “all these attempts have been impaired by not yielding the full anisotropy of
viscosities predicted by the ELP theory and confirmed experimentally. The extension
to a co-deformational model was proposed byHess [23] who recovered the complete
anisotropies, but failed otherwise to be in full agreementwith theELP theory as shown
in [38].”

Sonnet et al. [46] provide a detailed review of attempts of employing rank-2
alignment tensors [10, 16, 20, 22, 34, 40, 42], starting from a Fokker–Planck
statistical approach, ultimately also including spatial variations of the orientation of
the alignment tensor. They also emphasize that the variationalLagrange–Rayleigh
approach, as demonstrated in Sect. 26.1 is advantageous; specifically, “there is no
need to resort to the balance of angular momentum, though it remains valid, and
even the balance of linear momentum is only invoked to identify the stress tensor”
[44].

In the ensuing analysis, we shall employ the variational principle outlined in
Sect. 26.1.2 to nematic LCs with rank-2 alignment tensors. To this end, the reader
may with advantage rehearse the key steps of the developments of this section. We
shall simply refer to the relevant equations without deeper explanation at this place.

26.3.2 Lagrange–Rayleigh Theory of the Alignment Tensor

As already pointed out earlier, a second rank alignment tensor Q is defined as the
deviator constructed with the dyadic product of a unit vector ν

Q = 〈ν ⊗ ν − 1
3 I〉 =: 〈ν ⊗ ν 〉, (26.137)

where I is the identity tensor and 〈·〉 denotes temporal plus spatial averaging.
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For a specific LC, the alignment tensor must be defined on the basis of material
properties, e.g., Q is proportional to the anisotropic traceless part of the electric
permittivity tensor or of the magnetic susceptibility tensor. If the permittivity (sus-
ceptibility) tensor is ε and ε‖ and ε⊥ are the permittivities (susceptibilities) parallel
and perpendicular to the molecular symmetry axis for a perfectly oriented sample,
then [48]

ε = 1
3 (ε‖ + 2ε⊥)I + (ε‖ − ε⊥)Q

defines the alignment tensor Q.

(a) Free Energy. Following the scheme outlined in Sect. 26.1, we write the total
energy as in (26.19), viz.,

F =
∫

B

{
1
2ρv · v + χ(Q) + W (Q, grad Q)

}
dV, (26.138)

and have omitted here the contributions

(1) φ the potential energy due to the body force ( f = 0),
(2) σ the potential energy due to the compressibility of the fluid, since considerations

are restricted to density preserving liquids,
(3) the kinetic energy due to the microstructure as we ignore rotational inertia.

Evaluation of the time rate of change of F then follows exactly the procedure as
outlined between the formulae (26.19) and (26.28). Following these lines yields

Ḟ =
∫

B

{

ρv̇ · v +
(

∂χ

∂ Q
+ ∂W

∂ Q

)

· Q̇ + ∂W

∂grad Q
· (grad Q)·

}

dV

...

=
∫

B

{[

ρv̇ + div

(

p I + grad Q � ∂W

∂grad Q

)]

· v

+
[

∂χ

∂ Q
+ ∂W

∂ Q
− div

∂W

∂grad Q

]

· Q̇
}

dV

+
∫

∂B

{[(

p I + grad Q � ∂W

∂grad Q

)

n+
]

· v

+
(

∂W

∂grad Q
n+
)

· Q̇
}

da, (26.139)

in which the operator � is defined by

(

grad Q � ∂W

∂grad Q

)

i j

= Qk�,i
∂W

∂Qk�, j
, (26.140)
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as already shown in (26.28). p I is the contribution of the constraint pressure due to
the density preserving of the fluid. This term also arose in the expression (26.68) for
Ḟ of a uniaxial nematics LC. However, corresponding constraint terms like μn and
μbn do not arise here, because at this point no constraints on Q are imposed.

(b) Variation of the Dissipation Function R. In line with the assumption of
constraint-free deformation of Q, we introduce as Euclidian objective time deriva-
tive the corotational derivative already introduced in (26.18). For the present pur-
poses, it is written as

�
Q:= Q̇ − 2W Q −2σ DQ, (26.141)

where σ is a scalar constitutive parameter or a constant [38]. We prove frame indif-
ference of (26.141) in Appendix26.C. According to Sonnet et al. [46] “Ericksen
[15] remarked that choosing σ �= 0 in general just amounts to reordering the same

terms. If σ = 0 (26.141) delivers the corotational derivative
◦
Q= Q̇ − 2W Q that

describes how Q changes in a frame that rotates with the fluid element.” It follows

that it suffices, in principle, to choose R = R(Q,
◦
Q, D) in lieu of R(Q,

�
Q, D). This

is all the more justified as both
�
Q and

◦
Q are linear in D or grad v. Following [46], we

shall choose R to be bilinear in Q̇ and grad v. Based on this device, the variational
principle δḞ + δR = 0 requires evaluation of the following derivatives of R:

∂R

∂
◦
Q

= ∂R

∂ Q̇
◦ ∂ Q̇

∂
◦
Q

= ∂R

∂ Q̇
, (26.142)

∂R

∂grad v
= ∂R

∂D
◦ ∂D

∂grad v
+ ∂R

∂
◦
Q

◦ ∂
◦
Q

∂grad v

= ∂R

∂D
+ Q

∂R

∂
◦
Q

− ∂R

∂
◦
Q

Q, (26.143)

which both can best be verified by using the chain rule of differentiation, the defini-

tion of
◦
Q= Q̇ − 2(W Q) and employing Cartesian tensor notation. With the above

expressions, the variation of the dissipation function R takes the form

δR =
∫

B

{
∂R

∂ Q̇
δ Q̇ + ∂R

∂grad v
· grad (δv)

}

dV . (26.144)

With (26.142)2 we may write



322 26 Nematic Liquid Crystals with Tensorial Order Parameters

∫

B

∂R

∂D
· (δgrad v)dV = −

∫

B
div

(
∂R

∂D

)

· δvdV

+
∫

∂B

(
∂R

∂D
n+
)

· δvda, (26.145)

and

∫

B

⎧
⎨

⎩

⎡

⎣Q
∂R

∂
◦
Q

− ∂R

∂
◦
Q

Q

⎤

⎦

⎫
⎬

⎭
i j

δvi, jdV

=
∫

B

⎧
⎨

⎩

⎡

⎣Q
∂R

∂
◦
Q

− ∂R

∂
◦
Q

Q

⎤

⎦

i j

δvi

⎫
⎬

⎭
, j

dV

−
∫

B

⎧
⎨

⎩

⎡

⎣Q
∂R

∂
◦
Q

− ∂R

∂
◦
Q

Q

⎤

⎦

i j, j

δvi

⎫
⎬

⎭
dV

= −
∫

B

⎧
⎨

⎩
div

⎡

⎣Q
∂R

∂
◦
Q

− ∂R

∂
◦
Q

⎤

⎦ · δv

⎫
⎬

⎭
dV

+
∫

∂B

⎡

⎣Q
∂R

∂
◦
Q

− ∂R

∂
◦
Q

Q

⎤

⎦ n+ · δv da, (26.146)

upon integration by parts and use of the divergence (Gauss) theorem. These results
agree with those of Sonnet et al. [46]. Putting all together, we obtain

δR =
∫

B

⎧
⎨

⎩

∂R

∂
◦
Q

· δ
◦
Q

−div

⎛

⎝ ∂R

∂D
+ Q

∂R

∂
◦
Q

− ∂R

∂
◦
Q

Q

⎞

⎠ · δv

⎫
⎬

⎭
dV

+
∫

∂B

⎧
⎨

⎩

⎛

⎝ ∂R

∂D
+ Q

∂R

∂
◦
Q

− ∂R

∂
◦
Q

Q

⎞

⎠ n+

⎫
⎬

⎭
· δv da. (26.147)

(c) Equations ofMotion. These equations are obtained from the variational theorem

δ(Ḟ + λR) = 0, ∀δ Q̇ and δv, (26.148)

where Ḟ is given in (26.139) and δR in (26.147), and λ = 1. From the expression in
the bulk and for independent variations of δ Q̇ and δv, we obtain
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∂R

∂
◦
Q

+ ∂χ

∂ Q
+ ∂W

∂ Q
− div

(
∂W

∂grad Q

)

= 0,

ρv̇ = div t

⎫
⎪⎬

⎪⎭
in B, (26.149)

in which

t = −p I − grad Q � ∂W

∂grad Q
+ ∂R

∂D
+ Q

∂R

∂
◦
Q

− ∂R

∂
◦
Q

Q. (26.150)

It is straightforward to show that only the underlined terms contribute to the skew-
symmetric part of t .10 On a free boundary ∂B, the variations of Q̇ and v are inde-
pendent and arbitrary. It then follows easily from (26.139) and (26.147) that

∂W

∂grad Q
n+ = 0 and tn+ = 0, on ∂B. (26.151)

These equations state that the micro- and macroforces vanish on a free surface.

(d) Balances of Linear and Angular Momenta. Equation (26.149) evidences for
this LC model the satisfaction of the local form of the linear momentum balance
equation, if body forces are absent. Moreover, it provides a formula for the Cauchy
stress tensor, if the internal energy W and the dissipation function R are prescribed.
Alternatively, it is not directly evident from the field Eq. (26.149)1 and given consti-
tutive relations, whether the balance law of angular momentum

ρ� + divm − τ = 0, (26.152)

in which � is the body couple per unit mass, m is the couple stress, and τ is the
dual axial vector of the skew-symmetric part of the stress tensor (τi = εi jk tk j ) is
identically satisfied. This is indeed so and will now be demonstrated.

The crucial idea to this end is to search for the implications of W to be invariant
under Euclidian transformations,

W (Qi j , Qi j,k) = W (Rip R jq Q pq , Rip R jq Rkr Q pq,r ), (26.153)

in which Rip is a proper orthogonal transformation (Rip R jp = δi j ). We leave it as
an exercise to the reader, to follow the guidelines, leading to Eq. (25.48) in Chap.25
that satisfaction of (26.153) is equivalent to the statement

εi jk

(

2Q jp
∂W

∂Qpk
+ 2Q jp,q

∂W

∂Qpk,q
+ Qpq, j

∂W

∂Qpq,k

)

= 0. (26.154)

10We will show that for the choice of the function W the first of the underlined terms will be
symmetric.
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Guided by the process leading to the axial vector τ of the Cauchy stress (26.150),
we find, owing to the definition (26.150),

τi = εi jk

⎛

⎝2Q j�
∂R

∂
◦
Qkl

− Q�m, j
∂W

∂Q�m,k

⎞

⎠ . (26.155)

Replacing the underlined term in this equation by the corresponding term in (26.154)
yields

τi = 2εi jk

⎛

⎝Q j�
∂R

∂
◦
Q�k

+ Q j�
∂W

∂Q�k
+ Q j�,m

∂W

∂Q�k,m

⎞

⎠ . (26.156)

A last change can be made by eliminating the dissipation function by the expre-
ssion

∂R

∂
◦
Q�k

= − ∂χ

∂Q�k
− ∂W

∂Q�k
+
(

∂W

∂Q�k,m

)

,m

,

as follows from the field Eq. (26.149) for the alignment tensor,

τi = 2εi jk

{

− Q j�
∂χ

∂Q�k
− Q j�

∂W

∂Q�k
+ Q j�

(
∂W

∂Q�k,m

)

,m

+Q j�
∂W

∂Q�k
+ Q j�,m

∂W

∂Q�k,m

}

= 2εi jk

{(

Q j�
∂W

∂Q�k,m

)

,m

− Q j�
∂χ

∂Q�k

}

. (26.157)

From the balance of angular momentum (26.152) as an axial vector statement, we
obtain

τi = ρ�i + εi jk(m jk,n),n where �i := εi jk� jk . (26.158)

Comparison of (26.156) and (26.157) now yields

ρ�i = −2εi jk Q j�
∂χ

∂Q�k
, m jk = Q j�

∂W

∂Q�k
, (26.159)

as conditions for the satisfaction of the angular momentum balance. The second of
Eq. (26.159) indicates that the couple stress tensor only depends upon the elastic
energy W . The absence of viscous contributions to m jk is due to the omission of
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(grad
◦
Q) as independent constitutive quantity as already alerted to in the director LC

theory in Chap. 25.
On the other hand, a possible body couple is induced by a nontrivial potential χ

which could, e.g., be formulated when an electric or magnetic field would be present.
For an electric field E [46]

χ(Q) = − 1
2 εE · QE, ε = ε0(ε‖ − ε⊥),

∂χ

∂ Q
= 1

2 ε E ⊗ E, ρ� = εE × QE. (26.160)

So, if QE is proportional to E then ρ� = 0; no intrinsic couple is generated.

(e) Parameterization of the Dissipation Function. As a function of Q,
◦
Q, and D,

the most general form for R is obtained by writing it as a function of all invariants
that can be formed with these three rank-2 tensors. We had already earlier restricted

R to be bilinear in
◦
Q and D and quadratic in Q. Ericksen [15] showed that in this

case there are 15 invariants. Sonnet et al. [46] chose the minimal basis for invariant
polynomial functions given by Smith [43] as stated in Table 26.1. When the order
is restricted to be uniaxial, the alignment tensor, written in terms of the director is

Q = S n ⊗ n, (26.161)

where S is the Maier–Saupe order parameter and

◦
n= ṅ − Wn,

◦
Q= Q̇ − 2W Q (26.162)

are the corotational derivatives of n and Q.
Based on these definitions, and the assumption of a constant order parameter S

detailed, but in principle not difficult, computations lead to Table 26.2.11 Because S
is generally smaller than unity, it is customary to restrict the number of invariants
in Table26.1 to those elements, which are in Table26.2 independent of S and/or at
most quadratic in S. This then restricts the number of invariants in Table26.1 to 10
elements that are accounted for.

11In these tables, the first line shows those combinations of
◦
Q and D which do not involve Q.

The remaining four lines then show those scalar invariants, which are combinations with linear or
quadratic Q-dependences. We shall identify the 15 elements of these tables by the indices

[1] [2] [3]
[11] [21] [31]
[12] [22] [32]
[13] [23] [33]
[14] [24] [34]
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Table 26.1 Building blocks
for the dissipation function

◦
Q · ◦

Q D· ◦
Q D · D

◦
Q · ( ◦

Q Q)
◦
Q ·(DQ) D · (DQ)

(
◦
Q · Q)2 (D · Q)(

◦
Q · Q) (D · Q)2

(
◦
Q Q) · (

◦
Q Q) (DQ) · (

◦
Q Q) (DQ) · (DQ)

(Q · Q)(
◦
Q · ◦

Q) (Q · Q)(D · ◦
Q) (Q · Q)(D · D)

Table 26.2 Same as
Table26.1 for uniaxial
alignment with constant
scalar parameter S

2S2
◦
n
2

2S
◦
n · Dn D · D

1
3
S3

◦
n
2 1

3 S
2 ◦
n · Dn S(‖Dn‖2 − 1

3 D · D)

0 0 S2(n · Dn)2

5
9 S

4 ◦
n
2 5

9 S
3 ◦
n · Dn S2

( 1
9 D · D + 1

3‖Dn‖2)
4
3 S

4 ◦
n
2 4

3 S
3 ◦
n · Dn 2

3 S
2D · D

It is evident from these two tables that the number of independent invariants is 15
in general, but when formulated with uniaxial rank-2 alignment tensors this number
reduced to 13. This latter proof has first been given byEricksen [15]. Let us evaluate
a few elements of Table26.2 on the basis of Table26.1 and the definitions (26.161)
and (26.162)

• For element [34] one needs

QikQki = S2
(
nink − 1

3 (nmnm)δik
) (
nkni − 1

3nmnmδki
)

= S2
(
nknk nini − 1

3 (n�n� nknk)

− 1
3 (nini nmnm) + 1

9 (n�n� nmnm)δi i
)

= S2
(
1 − 1

3 − 1
3 + 1

3

) = 2
3 S

2.

Thus,

[34] = 2
3 S

2(D · D).

• For element [32] one must compute

DikQki = SDik
(
nink − 1

3n�n�δik
) = S

(
ni Diknk − 1

3Dii
)
.

It follows that

[32] = S2 (n · Dn)2 .
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• For element [31], we must compute

[31] = Dik Dk�Q�i = Dik Dk�S
(
n�ni − 1

3npn pδ�i
)

= S
(
Dkini Dk�n� − 1

3Dik Dki
)

= S
(‖Dn‖2 − 1

3 D · D) .

• For element [33], we must compute

Di j Q jk = Di j S
(
n jnk − 1

3n�n�δ jk
) = S

(
Di jn jnk − 1

3Dik
)
.

Therefore, we obtain

[33] = (DQ) · (DQ) = S2
(
Di jn jnk − 1

3Dik
) (

Dkmnmni − 1
3npn pDki

)

= S2
(
1
9 D · D + 1

3‖Dn‖2) .

The remaining elements involve
◦
n; their verification is left to the reader. It is obvious

that according to Tables6.1 and 6.2, the number of invariants is excessively large
(15 and 13, respectively). We shall ignore those elements, which in Table26.2 are of
order Sn, n > 2 and shall also ignore the elements in Table26.1 which are of order

larger or equal to 2 in
◦
Q. This leaves us with eight scalar invariants, of which a linear

combination gives R of the form

R = 1
2ζ[1]

◦
Q · ◦

Q +ζ[2]D· ◦
Q +ζ[3]D · D

+ζ[21]
◦
Q ·(DQ) + 1

2ζ[31]D · (DQ) + 1
2ζ[32](D · Q)2

+ 1
2ζ[33](DQ) · (DQ) + 1

2ζ[34](Q · Q)(D · D), (26.163)

in which the ζ[i j]’s are viscosity constants.
Sonnet et al. [46] write the corresponding dissipation function for uniaxial LCs

of the ELP theory and refer to [15, 44]. This function possesses the form

R = 1
2γ1

◦
n
2 +γ2

◦
n ·Dn + 1

2γ3(Dn)2

+ 1
2α1(n · Dn)2 + 1

2α4D · D, (26.164)

where

γ1 = α3 − α2, γ2 = α5 − α6, γ3 = α5 + α6 (26.165)

and the α’s are the Leslie coefficients, see (26.92). If we next identify the individual
elements of (26.164) with those in Table26.2, the following correspondences can be
identified
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γ1 = 2S2ζ[1], γ2 = 2S2ζ[2] + 1
3 S

2ζ[21], γ3 = Sζ[31] + 1
3 S

2ζ[33],

α1 = S2ζ[32], α4 = ζ[3] − 1
3 Sζ[31] + 1

9 S
2ζ[33] 23 S

2ζ[34]. (26.166)

There are five coefficients γ and α but eight coefficients ζ and one parameter S.
Sonnet et al. [46] attribute the assignments (26.166) to Diogo and Martins [9].

26.4 Discussion and Conclusions

With the variational procedure, extended by a dissipative function, applied to LCs
of tensorial order, a great number of special dynamic LC models can be generated
by choosing the elastic energy W and the dissipation potential R accordingly. We
presented essentially two theories, one with 15 viscosities and the second one with
only eight such parameters. Sonnet et al. [46] show that the variational formulation
demonstrates how the theory, put forward by Pereira Borgmeyer and Hess in
a different way, and applicable to homogeneous alignments, can be deduced by
the variational procedure. This theory works with only three viscosities and can be
obtained by suitably choosingW and R. Moreover, the Pereira Borgmeyer–Hess
model can be generalized by adding the elasticity of the alignment and/or the kinetic
energy associated with the alignment.

26.4.1 Pereira Borgmeyer–Hess Theory

The model presented in [38] can be obtained by the dissipation function

RPH = 1
2ζ[1]

�
Q · �

Q +ζ[2]D· �
Q + 1

2ζ[3]D · D, (26.167)

in which ζ[1], ζ[2], ζ[3] are the three viscosity coefficients and

�
Q= ◦

Q −2σ DQ (26.168)

denotes the co-deformational time derivative. When σ = 0, i.e.,
�
Q= ◦

Q this theory
is not able to reproduce the full ELP model. Sonnet et al. [46] then state that, since
the alignment is assumed to be homogeneous, the free energy is only given by the
Landau-de Gennes potential φ so that (26.149)1 reduces to

∂R

∂
◦
Q

= −∂W

∂ Q
, which here yields ζ[1]

�
Q= −Φ − ζ[2]D, (26.169)
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whereΦ = ∂φ/∂ Q. As a consequence, the skew-symmetric part of the viscous stress
takes the form

t(v)
skw = Q

∂R

∂
◦
Q

− ∂R

∂
◦
Q

Q
(26.168)= Φ Q − QΦ, (26.170)

an expression also given in [38]. Sonnet et al. [46] emphasize that this result is
exact, while it was obtained in [38] by imposing approximations. The reader may
also easily show that t(v)

skw = 0 when φ is a polynomial function of Q.
Sonnet et al. also list the symmetric traceless part of the stress tensor. This stress

contribution is obtained from (26.150) by recognizing that the pressure and the term
involving W will not arise. So only

sym dev t(v) = ∂RPH

∂D
+ sym dev

⎛

⎝Q
∂RPH

∂
◦
Q

− ∂RPH

∂
◦
Q

Q

⎞

⎠ (26.171)

will contribute. Substituting (26.167) and (26.168) and recognizing that sym dev
(∂RPH/∂D) = dev(ζ[3]D) = 0 the computations yield

sym
(
t
)

= ζ[2]
◦
Q +ζ[3]D − 2σζ[1]

◦
Q Q −4σζ[2] DQ +4σ2 Q DQ .(26.172)

Further properties can be found in [38].

26.4.2 Elastic and Viscous Contributions

Sonnet et al. [46] present also a formulation of their model, which, in the uniaxial
limit, is closest to the EPL model. They treat nonuniform alignments and postulate
a free elastic energy as

W = φ + 1
2E|grad Q|2, (26.173)

where φ is the Landau- de Gennes potential and E is a scalar elastic modulus. To
reproduce the ELP model in the uniaxial specialization at least five viscosities need
to be taken into account, see (26.166), and they suggest to consider in Table26.2 the
entries [1], [2], [3], [31], [32] and to ignore all the other elements. When compared
with Table26.2, this says that all elements of order S0 and S1 but not all elements of
order S2 are accounted for, while all higher order elements are dropped. In terms of
Table26.1, this means that
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R = 1
2ζ[1]

◦
Q · ◦

Q +ζ[2]D· ◦
Q + 1

2ζ[3]D · D
+ 1

2ζ[31]D · (DQ) + 1
2ζ[32](D · Q)2. (26.174)

The evolution equation for the alignment tensor can be derived from (26.149).
Accordingly, we need

∂R

∂
◦
Q

= ζ[1]
◦
Q +ζ[2]D,

∂W

∂ Q
= ∂φ

∂ Q
, div

(
∂W

grad Q

)

= EΔQ. (26.175)

Based on these results, (26.149) assumes the form

ζ[1]
◦
Q= −Φ − ζ[2]D + EΔQ or

ζ[1]
◦
Q +ζ[2]D = −Φ + EΔQ. (26.176)

On the other hand, the skew-symmetric part of the stress tensor can be computed
from the second underlined term in (26.150):

t(v)
skw = Q

∂R

∂
◦
Q

− ∂R

∂
◦
Q

Q

= ζ[1](Q
◦
Q − ◦

Q Q) + ζ[2](QD − DQ)

= Q(ζ[1]
◦
Q +ζ[2]D) −

(

ζ[1]
◦
Q +ζ[2]D

)

Q

(26.176)= (Φ Q − QΦ) + E (Q(ΔQ) − (ΔQ)Q) . (26.177)

Sonnet et al. [46] also list the symmetric part of the traceless viscous stress. To
corroborate their result, we start from the representation (26.163) and assume, in
order to reduce the number of coefficients to five, that ζ[21], ζ[33], ζ[34] are zero.
Then,

R = ζ[1]
◦
Q · ◦

Q
︸ ︷︷ ︸

1

+ ζ[2]D · ◦
Q

︸ ︷︷ ︸
2

+ ζ[3]D · D
︸ ︷︷ ︸

3

+ 1
2ζ[31]D · (DQ)
︸ ︷︷ ︸

4

+ 1
2ζ[32](D · Q)2

︸ ︷︷ ︸
5

, (26.178)

and the symmetric part of the viscous stress is given by ∂R/∂D. This implies
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1 pq = ∂ζ[1]
◦
Q · ◦

Q
∂Dpq

= 0,

2 pq =
∂

(

ζ[2]Di j

◦
Qi j

)

∂Dpq
= ζ[2]δi pδ jq

◦
Qi j= ζ[2]

◦
Qpq ,

3 pq = ∂
(
ζ[3]Di j Di j

)

2∂Dpq
= ζ[3]δi pδ jq Di j = ζ[3]Dpq ,

4 pq = ∂(ζ[31]Di j D j�Q�i )

2∂Dpq
= ζ[31]

2

(
δi pδ jq D j�Q�i + δ j pδ�q Di j Q�i

)

= ζ[31]
2

(
Dq�Q�p + D�pQq�

) = ζ[31]Dp�Qq�,

since D, Q are symmetric, but this is not a deviator. So,

4 pq = ζ[31]
(
Dp�Qp� − 1

3DmnQmnδpq
)

= ζ[31]
(
D�pQ�q − 1

3DmnQmnδpq
)
,

tr

(

4 pq

)

= ζ[31]
(
Dp�Qp� − DmnQmn

) ≡ 0,

5 pq = ζ[32]
2

∂(DmnQmn)
2

∂Dpq
= ζ32(DmnQmn)δmpδnq Qmn

= ζ[32](D · Q)Qpq .

Therefore, collecting the contributions 1 to 5 generates

t(v)
sym = ζ[2]

◦
Q +ζ[3]D + ζ[31] DQ +ζ[32](D · Q)Q, (26.179)

which reproduces the result obtained by Sonnet et al. [46]. Moreover, the elastic
stress contribution is given in (26.150) by the term

te = −grad Q � ∂W

∂grad Q
(26.173)= −Egrad Q � ∂

∂grad Q

(|grad Q|2)
︸ ︷︷ ︸

2grad Q

= −2Egrad Q � grad Q, (26.180)

which confirms a posteriori that t(e) is symmetric. According to Sonnet et al., this
expression is originally due to Qian and Sheng [39].

The above biaxial alignment description of LCs is based upon a dissipation func-
tion R having five viscosity coefficients as shown in (26.178) that is reduced from
the expression having eight coefficients out of 15 that would in principle be needed.
The criteria for the reduction of its number were semi-rational only. An alternative
way of an independent development is thus desirable to put the model equations on
more secure ground. According to Sonnet et al. [46] “such a perspective is offered
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by the microscopic theory for the constitutive equation of polymeric LCs proposed
by Doi [10].” They state that “the ELP theory can be derived from Doi’s [theory] in
the limit of weak velocity gradients and for small perturbations of the equilibrium
state,” and they briefly discuss situations close to the ELP theory as given in [3, 29,
32, 33] and others.

“It would be desirable to address systematically the circumstances that could
justify on amicroscopic basis the choices of simplified dissipation functions proposed
here only under the guidance of phenomenological arguments.”

26.4.3 The Role of the Inertia of the Microrotation

The foregoing analysis was conducted under the assumption that the inertia of the
microrotation was negligible. Conceptually, it is given by the kinetic energy of the
microrotation κ(Q, Q̇) in Eq. (26.19), where we also have changed notation fromOOO

to Q because considerations are restricted to uniaxial LCs, where Q = S〈n ⊗ n −
1
3 (n · n)I〉. We derived in Eq. (26.19)

d

dt

∫

B
ρκ(Q, Q̇)dV =

∫

B
ρ
(
κ(Q, Q̇)

)·
dV

∗=
∫

B
ρ

{(
∂κ

∂ Q̇

)·
− ∂κ

∂ Q

}

︸ ︷︷ ︸
M

· Q̇ dV

=
∫

B
ρM · Q̇ dV, (26.181)

where

M :=
(

∂κ

∂ Q̇

)·
− ∂κ

∂ Q
. (26.182)

The step
∗= is detailed in Appendix26.A. Because no operator

∫
B(·) · v̇dV arises in

the above expression, we may conclude that microinertia does not contribute to the
stress tensor.

We also derived early in this chapter [see (26.30)] the expression

XXX = ρ

(

M + ∂χ

∂ Q

)

+ ∂W

∂ Q
− div

(
∂W

∂grad Q

)

. (26.183)

The variational principle (26.9) with Lagrange parameter λ = 1 transfers here to
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∂R

∂
◦
Q

+XXX = 0 or

∂R

∂
◦
Q

+ ρM + ∂(ρχ)

∂ Q
+ ∂W

∂ Q
− div

(
∂W

∂grad Q

)

= 0, (26.184)

in which XXX has already been given in (26.30) [replacing there OOO by Q]. Equa-
tion (26.184)2 differs formally slightly from the corresponding equation by Sonnet
et al.; they define χ per unit volume, while we have done it here per unit mass.

We require Euclidian invariance of the energy function W , i.e., and request that

W (Qi j , Qi j,k) = W (Rip R jq Q pq , Rip R jq Rkr Q pq,r ), (26.185)

in which Rip is a proper orthogonal transformation. Ericksen [15] has shown (for a
similar case) that (26.185) necessarily implies12

εi jk

(

2Q jp
∂W

∂Qpk
+ 2Q jp,q

∂W

∂Qpk,q
+ Qpq, j

∂W

∂Qpq,k

)

≡ 0. (26.186)

A similar objectivity requirement must also hold for the kinetic energy of the micro-
rotation function κ(Q, Q̇); it is expressible as

εi jk

(

Q jp
∂κ

∂Qpk
+ Q̇ jp

∂κ

∂ Q̇ pk

)

≡ 0. (26.187)

The above identity (26.187) is needed for the skew-symmetric part of the stress
tensor. This skew-symmetric part, written in Cartesian tensor notation, is given by

t[i j] = −Qpq,[i
∂W

∂Qpq, j]
+ Q[i�

∂R

∂
◦
Q�j]

− ∂R

∂
◦

Q[i�
Q�j]

︸ ︷︷ ︸
−Q�[ j ∂R

∂
◦
Q�i]

= −Qpq,[i
∂W

∂Qpq, j]
+ 2Q[i�

∂R

∂
◦
Q�j]

,

of which the dual axial vector is given by

12We remark that an analogous identity has been given by us in this chapter between the formulae
(26.44)–(26.46) for a director theory.
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τi = εi jk t jk = εi jk

{

2Q j�
∂R

∂ Q̇�k
−Qpq, j

∂W

∂Qpq,k
︸ ︷︷ ︸

2Q jp
∂W

∂Qpk
+2Q jp,q

∂W
∂Qpk,q

}

= 2εi jk

{

Q jp
∂W

∂qpk
+ Q jp,q

∂W

∂Qpk,q
+ Q j�

∂R

∂
◦
Q�k

}

,

in which (26.186) has been used to obtain the sub-braced term. At last, we employ

(26.184)2 to replace ∂R/∂
◦
Q�k . Straightforward substitution then yields

τi = 2εi jk

{(

Q j�
∂W

∂Qk�,r

)

,r

− Q j�
∂(ρχ)

∂Q�k
− ρQ j�M�k

}

. (26.188)

In view of the angular momentum balance (26.39)2 τi can be expressed as

τi = mi j, j + ρ�i − ρṡi .

It is clear that (26.187) enforces the identifications

mir = 2εi jk Q j�
∂W

∂Qk�,r
,

ρ�i = −2Q j�
∂ρχ

∂Q�k
, (26.189)

ρṡi = 2εi jk Q j�M�k .

In these expressions, the quantity ρṡi is for constant ρ a total time derivative; so must
be also the right-hand side of (26.189). To prove this, we propose the constitutive
postulate

ρsi := 2εi jk Q j�
∂κ

∂ Q̇k�
. (26.190)

Thus,

ρṡi = 2εi jk

{

Q̇ j�
∂κ

∂ Q̇�k
+ Q j�

(
∂κ

∂ Q̇�k

)·}

(26.182),(26.187)= 2εi jk

{

−Q j�
∂κ

∂Q�k
+ Q j�

(

M�k + ∂κ

∂Q�k

)}

= 2εi jk Q j�M�k, (26.191)

which agrees with (26.189)2.
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Fig. 26.2 System of n mass
points in R3 with positions
xi i = 1, 2, . . . , n and
distances ri j

Appendix 26.A Lagrange Equations

26.A.1 Constraints of Coordinates

Consider amechanical system (e.g., ofmass pointsPi i = 1, 2, . . . , n) whosemotion
can be determined by prescribing their coordinates {x1, x2, . . . , xn} see Fig. 26.2.
The degree of freedom of a mechanical system is the number of independent coor-
dinates needed to describe the motion of the system. Constraints or constraint con-
ditions are equations between coordinates, which restrain the motion of the system.
Rigid point systems with constants of the form

∀i, j xi − x j = r i j = const. ⇐⇒ xi − x j − r i j = 0, where |r i j | = const.

express rigid body motions. They have six degrees of freedom, three for translation
and three for rotation. In analytical dynamics, one differentiates between two kinds
of constraint conditions.
(i) Constraint conditions, which are expressible as equations between coordinates,
are called holonomic.13

(ii) If constraints are not expressible in holonomic form, they are called anholonomic
or skleronomic. If such a constraint condition is not explicitly expressible as a function
also of time it is called skleronomic, else rheonomic.

26.A.2 Generalized Coordinates

When holonomic constraints exist between the coordinates {x1, x2, . . . , xn}, these
constraint conditions will reduce the degree of freedom. If these Λ equations are

13The term “holonomic” was introduced by Heinrich Hertz in 1894 from the Greek “ŏλoς”
(whole, entire) and “νóμoς” (law).



336 26 Nematic Liquid Crystals with Tensorial Order Parameters

independent of one another, the degree of freedom f will be f = 3n − Λ. In this case,
the mechanical system can be described by the so-called generalized coordinates

q1, q2, . . . , q f . (26.192)

In other words, these coordinates determine the values of {x1, . . . , xn} uniquely as
functions of time as follows:

x1 = x1
(
q1, q2, . . . , q f , t

)
,

x2 = x2
(
q1, q2, . . . , q f , t

)
,

...
...

...

xn = xn
(
q1, q2, . . . , q f , t

)
. (26.193)

These are 3n transformation equations between the dependent coordinates {xi , yi , zi }
i = 1, 2, . . . , n and the independent generalized coordinates {q1, . . . , q f }. Their total
time derivatives {q̇1, . . . , q̇ f } are called generalized velocities.

26.A.3 d’Alembert’s Principle, Principle of Virtual Work

A virtual displacement of {xi i = 1, . . . , n} of a mechanical system is a set {δxi i =
1, . . . , n} of instantaneous infinitesimal changes of the positions {xi i = 1, . . . , n}
which are consistent with the existing forces and constraints. Here, the qualification
“instantaneous” wants to emphasize that the displacement is performed, while the
time is held fixed; this displacement is called “consistent with the applied forces and
with the constraints,” because these displacements are kinematically force-freely
admissible. Often, one also speaks of virtual velocities. This then leads to the Prin-
ciple of Virtual Power. To derive it, let us start with the momentum equation in the
form

Fi = ṗi , (i = 1, . . . , n), (26.194)

in which Fi are the external and internal forces and pi is the momentum correspond-
ing to Fi . Multiplying both sides of (26.194) scalarly with δxi and summation over
all indices 1, . . . , n yields

n∑

i=1

(
Fi − ṗi

) · δxi = 0. (26.195)

In general, Fi is the sum of the applied force F(a)
i and the constraint force F(c)

i
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Fi = F(a)
i + F(c)

i . (26.196)

The decisive additional assumption for the elimination of the constraint forces from
the problem is the postulate that the virtual work of the constraint forces is null,

n∑

i=1

F(c)
i δxi = 0. (26.197)

This equation is the expression of the Principle of Virtual Work, or when expressed
in virtual velocities the Principle of Virtual Power.

Combining (26.195) with (26.196), (26.197) yields

n∑

i=1

(
F(a)

i − ṗi
)

· δxi = 0. (26.198)

This is known as d’Alembert’s Principle.

26.A.4 Derivation of the Lagrange Equations

Consider now virtual displacements of the generalized coordinates δq i (i = 1,
. . . , f ). If the functions (26.193) are differentiable, which we will assume, we may
write

δxi =
f∑

i=1

∂xi
∂q j

δq j . (26.199)

A differentiation with respect to time is missing in this expression because the
virtual displacements are instantaneously performed. Substitution of (26.199) into
d’Alembert’s Principle yields with ṗi = mi ẍi

∑

i, j

Fi · ∂xi
∂q j

δq j −
∑

i, j

mi ẍi · ∂xi
∂q j

δq j = 0. (26.200)

Remarks:

• The quantity

Q j :=
n∑

i=1

Fi · ∂xi
∂q j

( j = 1, . . . , f ) (26.201)

is known as j th generalized force.
• The reader can easily verify the following formulae:
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(1)
vi = ẋi =

f∑

j=1

∂xi
∂q j

q̇ j + ∂xi
∂t

=⇒ ∂vi

∂q̇ j
= ∂xi

∂q j
, (26.202)

(2) d

dt

(
∂xi
∂q j

)

=
∑

k

∂2xi
∂q j∂qk

q̇k + ∂2xi
∂q j∂t

= ∂

∂q j

(
∑

k

∂xi
∂qk

q̇k + ∂xi
∂t

)

= ∂vi

∂q j
, (26.203)

(3) ∑

i j

m ẍi · ∂xi
∂q j

δq j

=
∑

i, j

{
d

dt

(
∂

∂q̇ j

mivi · vi

2

)

− ∂

∂q j

(mivi · vi

2

)}

δq j

=
∑

j

{
d

dt

(
∂

∂q̇ j

∑
i mivi · vi

2

)

− ∂

∂q j

(∑
i mivi · vi

2

)}

δq j

=
∑

j

{
d

dt

(
∂T

∂q̇ j

)

− ∂T

∂q j

}

δq j , (26.204)

where T is the kinetic energy.

Substituting (26.201)–(26.204) into (26.200) d’Alembert’s Principle leads to

∑

j

{
d

dt

(
∂T

∂q̇ j

)

− ∂T

∂q j
− Q j

}

δq j = 0, ∀δq j . (26.205)

Consequently,

d

dt

(
∂T

∂q̇ j

)

− ∂T

∂q j
= Q j ( j = 1, . . . , f ). (26.206)

These equations are sometimes called the Lagrange equations. Regularly, this
denotation is, however, only used, if the forces Fi are derivable from a potential
V (q1, . . . , q f , t) = V (x1, x2, . . . , xn) according to

Fi = −grad i (V ). (26.207)

The generalized forces can then be written as

Q j = −
∑

i

(grad i V ) · ∂xi
∂q j

= − ∂V

∂xi
· ∂xi
∂q j

= − ∂V

∂q j
. (26.208)
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Fig. 26.3 Pearl moving on a
permanently rotating circular
wire

Introducing the Lagrange function

L = T − V (26.209)

and using (26.208) and the fact that V does not depend upon q̇i we deduce from
(26.205)

(
d

dt

(
∂L

∂q̇ j

)

− ∂L

∂q j

)

δq j = 0, ∀δq j ,

or

d

dt

(
∂L

∂q̇ j

)

− ∂L

∂q j
= 0, ( j = 1, . . . , f ), (26.210)

which is equivalent to (26.206).
Example: Consider a pearl with massm tied to a vertical circular wire, which rotates
with constant angular velocity ω around a vertical axis, see Fig. 26.3. The pearl can
freely move along the wire. Let the radius of the circle of the wire be R and let
the gravity vector in the vertical plane be g positive downward. The motion of the
pearl can be described by the angle ϕ. So, this angle serves as the only generalized
coordinate. For the pearl, treated as a mass point, we have

v = Rϕ̇eϕ + rωe⊥ = Rϕ̇eϕ + Rω cosϕ e⊥,

T = m

2
R2ϕ̇2 + m

2
R2ω2 cos2 ϕ,

V = mgz = mgR sinϕ,

L = T − V = m

2
R2
(
ϕ̇2 + ω2 cos2 ϕ

)− mgR sinϕ.

Because the system has only one degree of freedom, we have only a single
Lagrange equation:
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∂L
∂ϕ̇

= mR2ϕ̇,
d

dt

(
∂L
∂ϕ̇

)

= mR2ϕ̈,

∂L
∂ϕ

= −mR2ω2 sinϕ cosϕ − mgR cosϕ

= −m

2
R2ω2 sin(2ϕ) − mgR cosϕ.

Substituting these expressions into the Lagrange Equation (26.210) yields

mR2ϕ̈ + m

2
R2ω2 sin(2ϕ) + mgR cosϕ = 0,

=⇒ ϕ̈ + ω2

2
sin(2ϕ) + g

R
cosϕ = 0,

=⇒ ϕ̈ϕ̇
︸︷︷︸

(ϕ̇2/2)·
+ω2

2
sin(2ϕ)ϕ̇
︸ ︷︷ ︸

− 1
2 [cos(2ϕ)]·

+ g

R
cos(ϕ)ϕ̇
︸ ︷︷ ︸

(sinϕ)·
= 0

=⇒
{

ϕ̇2

2
− ω2

4
cos(2ϕ) + g

R
sinϕ

}·
= 0,

ϕ̇2

2
− ω2

4
cos(2ϕ) + g

R
sin φ = const. = c,

=⇒ t − t0 =
∫ ϕ

ϕ0

dϕ̄
[
c + ω2

2 cos(2ϕ̄) − g
R sin ϕ̄

]1/2 ,

which is the solution of the equation of motion.

Appendix 26.B Implications of the Frame Indifference
Requirement of the Free Energy as a Function of Tensorial
Order Parameters

Let W be the free energy. In the main text, it is assumed to be a function of the
director n and its gradient, grad n. Satisfaction of the frame indifference requirement
has been expressed as the statement (26.45) or (26.46). If W depends on a set of
rank-i tensors (i = 2, . . . , n) its frame indifference is expressed as Eq. (26.44). Here,
we begin with a W -function that depends only on a rank-2 tensor and its gradient:
W = W (OOO, gradOOO). Invariance of W under Euclidian transformations (rigid body
motions) then implies

DW = W
(
Oi∗ j∗ ,Oi∗ j∗,k∗

)− W
(
Oi j ,Oi j,k

) != 0, (26.211)

in which

x∗ = Rx + b∗, x∗
k∗ = Rk∗k xk + b∗

k∗ , xk = (x∗
k∗ − b∗

k∗)Rk∗k . (26.212)
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R is an orthogonal transformation [RRT = I]. Cartesian tensor notation is usedwith
indices i, j, k, . . . and i∗, j∗, k∗, . . . in the original and in the rotated coordinates,
respectively. x∗ is the position of the point x measured in the rotated coordinates
given by R and translation by b∗. Below we shall restrict attention to infinitesimal
rotations,

Ri∗m = δi∗m + Ωi∗m, ‖Ωi∗mΩ j∗m‖ � 1, (26.213)

for which only linear terms in Ω are accounted for. It is then easily shown that

δi∗ j∗ ≡ Ri∗m R j∗m = (δi∗m + Ωi∗m)(δ j∗m + Ω j∗m) (26.214)

≈ δi∗ j∗ + Ωi∗ j∗ + Ω j∗i∗

=⇒ Ωi∗ j∗ = −Ω j∗i∗ . (26.215)

Our next step is evaluation ofOOO and gradOOO in the rotated coordinates:

•
Oi∗ j∗ = Ri∗m R j∗mOmn = (δi∗m + Ωi∗m)(δ j∗m + Ω j∗m)Omn

= (δi∗mδ j∗m + δi∗mΩ j∗n + δ j∗nΩi∗m
)
Omn

= Oi∗ j∗ + Oi∗nΩ j∗n + Omj∗Ωi∗m, (26.216)

•
Oi∗ j∗,k∗ = Ri∗m R j∗nOmn,k

∂xk
∂x∗

k∗

(6.B2)= Ri∗m R j∗n Rk∗kOmn,k

= (δi∗mδ j∗m + δi∗mΩ j∗n + δ j∗nΩi∗m
)
(δk∗k + Ωk∗k)Omn,k

= (δi∗mδ j∗nδk∗k + δi∗mδk∗kΩ j∗n

+δ j∗nδk∗kΩi∗mΩi∗m + δi∗mδ j∗nΩk∗k
)
Omn,k

= Oi∗ j∗,k∗ + Oi∗n,k∗Ω j∗n + Omj∗,k∗Ωi∗m

+Oi∗ j∗,k∗Ωk∗k . (26.217)

With the normalizationW (Oi j = 0Oi j,k = 0) = 0 and employing first-order Taylor
series expansion one may write

DW ≈
{

∂W

∂Oi∗ j∗

(
Oi∗ j∗ + Oi∗nΩ j∗n + Omj∗Ωi∗m − Oi∗ j∗

)

+ ∂W

∂Oi∗ j∗,k∗

(
Oi∗ j∗,k∗ + Oi∗n,k∗Ω j∗n

+Omj∗,k∗Ωi∗m + Oi∗ j∗,kΩk∗k − Oi∗ j∗,k∗
)
}

= ∂W

∂Oi∗ j∗

(
Oi∗nΩ j∗n + Omj∗Ωi∗m

)
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+ ∂W

∂Oi∗ j∗,k∗

(
Oi∗n,k∗Ω j∗n + Omj∗,k∗Ωi∗m + Oi∗ j∗,kΩk∗k

)

!≡ 0. (26.218)

This expression is linear in the skew-symmetric rank-2 tensorΩ and can bewritten
in the following new form by reshuffling indices.14 Such a reshuffling yields

DW =
{

∂W

∂Oi∗k∗
Oi∗k + ∂W

∂Ok∗i∗
Oki∗ + ∂W

∂Oi∗k∗,�∗
Oi∗k,�∗

+ ∂W

∂Ok∗i∗,�∗
Oi∗k,�∗ + ∂W

∂Oi∗ j∗,k
Oi∗ j∗,k∗

}

Ωk∗k ≡ 0. (26.219)

Because the tensorΩk∗k is skew-symmetric, the rank-2 tensor Fk∗k in the curly bracket
of this expression must be symmetric, or its skew-symmetric part must vanish. This
can be expressed as εpk∗k Fk∗k = 0 or

εpk∗k

{(
∂W

∂Oi∗k∗
Oi∗k + ∂W

∂Ok∗i∗
Oki∗

+ ∂W

∂Oi∗k∗,�∗
Oi∗k,�∗ + ∂W

∂Oi∗ j∗,k
Oi∗k,k∗

)

+ ∂W

∂Oi∗k,�∗
Oi∗k,�∗

}

≡ 0. (26.220)

Introducing the multi-indices I and Ik j as defined in (26.14), this expression can
alternatively be written as

εpk∗k

{ 2∑

i∗=1

(
∂W

∂OI ∗
i∗ k∗

OI ∗
i∗ k∗ + ∂W

∂OI ∗
i∗ k∗ ,�∗

OI ∗
i∗ k ,�∗

)

+ ∂W

∂OI ∗,�∗
OI ki∗ ,�∗

}

≡ 0. (26.221)

Sonnet and Virga [44] must have performed the analogous computation for a
free energy function W which is a function of a finite number of rank-i tensors OOO
(i = 1, 2, . . . , n). The frame indifference postulate is then Eq. (26.44). Invariance
of W under an infinitesimal rigid body rotation is then expressible as a statement
analogous to (26.219), explicitly as

14Reshuffling indices means that the name of a doubly repeated index may be changed at liberty to
possibly reach a formula that might formally agree with some other formula.
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εpk∗k

{ n∑

i∗=1

(
∂W

∂OI ∗
i∗ k∗

OI ∗
i∗ k + ∂W

∂OI ∗
i∗ k∗ ,�∗

OI ∗
i∗ k ,�∗

)

+ ∂W

∂OI ∗,k∗
OI ∗,k∗

}

= 0. (26.222)

With the above proof of the frame indifference as a function of the rank-2 order
parametersOOO, it is quite natural, how (26.221) can be proven, e.g., by the reader.

Appendix 26.C Euclidian Invariance of
�
Q

Weprove here the frame indifference of the co-deformational derivative of the rank-2
order parameter

�
Q:=

(
Q̇ − 2W Q

)
− 2σ DQ, (26.223)

whereσ is a scalar constitutive parameter or a constant. Let R be anorthogonal second
rank tensor, so that RRT = I . Note, moreover, that Q is a deviator by definition.
Then

(RQRT )· − 2 (RWRT + ṘRT )(RQRT )

= Ṙ QRT + R Q̇RT + RQṘ
T − 2 (RWRT RQRT + ṘRT RQRT )

= R
{
Q̇ − 2W Q

}
RT + Ṙ QRT + RQṘ

T − 2 Ṙ QRT

= R
{
Q̇ − 2W Q

}
RT , (26.224)

which demonstrates objectivity of the quantity (·) in (26.223). Next,

(RDRT )(RQRT ) = RDQRT , (26.225)

demonstratingEuclidian invariance of the last termon the right-hand side of (26.223).
It follows that the co-deformational derivative of Q is an objective rank-2 tensor.
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Chapter 27
Multiphase Flows with Moving Interfaces
and Contact Line—Balance Laws

Abstract A general continuum description for thermodynamic immiscible
multiphase flows is presented with intersecting dividing surfaces, and three-phase
common contact line, taking the contribution of the excess surface and line thermo-
dynamic quantities into account. Starting with the standard postulates of continuum
mechanics and the general global balance statement for an arbitrary physical quantity
in a physical domain of three bulk phases including singular material or nonmaterial
phase interfaces and a three-phase contact line, the local conservation equations on
the phase interfaces and at the contact line are derived, in addition to the classical
local balance equations for each bulk phase. Then, these general additional interface
and line balance laws are specified for excess surface and line physical quantities,
e.g., excess mass, momentum, angular momentum, energy, and entropy, respectively.
Some simplified forms of these balance laws are also presented and discussed. In par-
ticular, for the massless phase interfaces and contact line, these balance laws reduce
to the well-known jump conditions.

Keywords Multiphase flows · Three-phase contact line · Surface balance
equations · Line balance equations · Phase interface · Three-phase contact line ·
Jump condition

List of Symbols

Roman Symbols

c(i), c(si ), c(c) Bulk, surface, and line concentrations of the solute
c(i)
s Bulk concentration of surfactant immediately adjacent to the inter-

face S(i)

c(si )∞ Upper bound to the surface concentration that can be accommodated
in the interface S(i)

g Gravitational force per unit mass

This chapter heavily draws fromWang and Oberlack (2011) [56].
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H (s) Total (i.e., twice the mean) surface curvature of surface S, H (s) =
∇(s) · n(s)

H (si ) Total (i.e., twice the mean) surface curvature of surface S(i)

I (c) Line projection tensor, I (c) = λ(c) ⊗ λ(c)

I (s) Surface projection tensor on the interface S,
I (s) ≡ I − n(s) ⊗ n(s)

I (si ) Surface projection tensor on the interface S(i)

j (i), j (si ), j (c) Bulk, surface, and line solute flux vectors
kad, kde Adsorption and desorption coefficients of surfactant, see (27.92)
n Unit outward normal vector to the surface ∂B of the domain B
n(c) Unit principal normal at a point on the contact line C, defined by

(27.51)
n(i) Unit outward normal vector to the surface ∂B(i) of the subdomain

B(i)

n(si ) Unit normal vector of the interface S(i), pointing into the domain
B(i)

p(i) Hydrostatic pressure in the phase B(i)

q(i), q(si ), q(c) Bulk, surface, and line heat flux vectors
R Ideal gas constant
r (i), r (si ), r (c) Specific bulk, surface, and line heat supplies
s(i) Unit vector normal to the boundary curves C(i) but tangent to the

interface S(i) outward from the system
t (c) Torsion of the curve C.
T (i), T (si ), T (c) Cauchy, surface, and line stress tensors
T (si )

‖ Tangential surface stress, T (si )
‖ ∈ R

2×2, see (27.124)

T (si )
⊥ Normal surface stress, T (si )

⊥ ∈ R
2, see (27.124)

u(i), u(si ), u(c) Specific bulk, surface, and line internal energy densities
v(c) Material velocities of fluid particles that lie on the lineC at the instant

of time
v(i) Material velocity in the subdomain B(i)

v(si ) Velocity of material points which lie on the surfaceS(i)(t) at time t
v

(c)
t Projection of the velocity v(c) in the direction λ(c)

v
(si )
t Projection of the vector v(si ) in the plane tangent to the interface

S(i)

w(c) Velocity of the three-phase contact line C
w

(c)
t Velocity component of the curve, tangent to the curve C

w(s) Velocity of the surface S
w

(s)
t Velocity component of the surface, tangent to the surfaceS

w(si ) Velocity of the interface S(i)

w
(si )
t Velocity component of the surface, tangent to the surfaceS(i)

xc
(i)

Coordinate of C(i)

x(s) Coordinate of an evolving surface S(t)
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Greek Symbols

η(i), η(si ), η(c) Specific bulk, surface, and line entropy densities
γ Bulk densities of the investigated physical quantity Γ in the

domains B
γ(c) Line density of Γ along the three-phase contact line C
γ(i) Bulk densities of the investigated physical quantity Γ in the

phase domains B(i) (i = 1, 2, 3), respectively,
γ(si ) Surface densities of Γ on the phase interfaces S(i)

Γ Physical quantity in the domains B
κ(c) Normal curvature of the contact line C
λ(c) Unit vector tangent to the contact line C directed toward the end

II from the end I
λ(i) Unit vector λ(i) tangent to the curve C(i), s(i) = λ(i) × n(i)

φ Non-convective bulk flux densities of Γ (per unit surface area)
through the material outer surfaces ∂B

φ(i) Non-convective bulk flux densities of Γ (per unit surface area)
through the material outer surfaces ∂B(i) of the bulk phaseB(i)

φ(si ) Non-convective surface flux densities of Γ (per unit line length)
through the outer boundary curves C(i) of the phase interfaces
S(i)

φ(c) Non-convective line flux density of Γ (per point along the line)
through the three-phase contact line C

φ(si )
C Surface flux vector (or scalar for the scalar quantity Γ ) per unit

length at the curve C(i)

φ(i)
η ,φ(si )

η ,φ(c)
η Bulk, surface, and line entropy flux vectors

ϕ(si )(x, t) A scalar function whose zero level set {x(si ) : ϕ(si )
(
x(si ), t

) =
0} represents the phase interface S(i)

π Bulkproduction rate density of the investigated physical variable
Γ in the physical domain B

π(i) Bulkproduction rate density of the investigated physical variable
Γ in the phase subdomain B(i)

π(si ) Surface production rate density of the investigated physical vari-
able Γ on the phase interface S(i)

π(c) Line production rate density of the investigated physical variable
Γ at the three-phase contact line C

π(i)
η ,π(si )

η ,π(c)
η Specific bulk, surface, and line entropy production densities

ρ(i), ρ(si ), ρ(c) Bulk, surface, and line mass densities
σ(si ) Surface tension on the interface S(i)

σ(si )
0 Surface tension of clean interface S(i)

σlv,σsv,σsl Liquid–vapor, solid–vapor, and solid–liquid interfacial tensions
τ (c) Line tension at the three-phase contact line C
Θ(si ) Absolute surface temperature of the interface S(i)

θ Contact angle, see (27.113)
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ζ Bulk supply rate density of the investigated physical variable Γ

in the physical domain B
ζ(i) Bulk supply rate density of the investigated physical variable Γ

in the phase subdomain B(i)

ζ(si ) Surface supply rate density of the investigated physical variable
Γ on the phase interface S(i)

ζ(c) Line supply rate density of the investigated physical variable Γ

at the three-phase contact line C
ξ(s) = {ξ(s)

1 , ξ(s)
2 } Two-dimensional parameter space of the surface S

ζ(i)
η , ζ(si )

η , ζ(c)
η Specific bulk, surface, and line entropy supplies

Miscellaneous Symbols

B Material domain of a body
B(i) Subdomain of phase i
∂B Bounding surface of the material domain B
∂B(i) Bounding surface of the subdomain B(i)

C Three-phase contact line
C(i) Outer boundary curve of the phase interface S(i)

d/dt Material time derivative
d(c)γ(c)/dt Time derivatives of a line field γ(c) following the evolution of

the curve C defined by means of the parameterization x(c) =
x̂(c) (ξ(c), t

)

d(s)γ(s)/dt Time derivative of a surface scalar field γ(s) following the
evolution of the surface S(t) by using the parameterization

x(s) = x̂(s)
(
ξ(s)
1 , ξ(s)

2 , t
)

δ(c)γ(c)/δt Normal time derivative of a line field γ(c), followingC(t), denot-
ing the time derivative following the normal trajectory of the
moving curve

δ(s)γ(s)/δt Normal time derivative of a surface scalar field γ(s), denoting
the time derivative for a given point on the surfaceS following
the normal trajectory of the surface

∂/∂t Partial (local) time derivative
H Heaviside function, defined by (27.150)
sgn(χ) Sign function of χ defined in (27.145)
∇ Gradient operator
∇(c) Line gradient operator, defined by (27.49)
∇(s) Surface gradient operator, see (27.32)
∇(si ) Surface gradient operator on the interface S(i)

S(i) Phase interface between phases i − 1 and i
[[G]](i) Jump of the quantity G over the interface S(i),

[[G]](i) = G(i) − G(i−1) (if i − 1 = 0, it is set i − 1 = 3)
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27.1 Introduction

A particular feature of multiphase immiscible flows is the presence of interfaces sep-
arating two phases. Such a phase interface is often considered as a two-dimensional
singular surface embedded in the three-dimensionalEuclidian space. In this approach,
the bulk properties are extrapolated up to the interface. Further, for multiphase flows
withmore than two phases, a three-phase common zonemay occur. For this case, like
the interfacial regions, we can extrapolate the dividing surfaces into the three-phase
common zones to their intersecting space curve, the so-called three-phase contact
line.

In the classical approach of the multiphase models, the conservation laws of mass,
momentum, and energy, even moment of momentum and entropy, are established for
each phase. Nevertheless, each phase does not evolve independently since they are
strongly coupled through themass,momentum, and energy exchanges between them.
These transfers of physical quantities can be described by a set of jump conditions
on the singular phase interfaces and at the singular contact lines.

However, inmany cases, such simplificationsmay be insufficient to investigate the
details of phase transformations. Our view is that a phase boundary is not a surface of
sudden change of density, momentum, energy, and entropy; it rather constitutes a thin
layer across which density, momentum, energy, etc., change smoothly but rapidly
between the ones of the adjacent bulkmaterials. The reason for this is the necessity of
molecular adjustment between differentmolecular arrays of the adjacent bulk phases.
Such boundary layers possess a thickness of only a few molecular distances. Com-
pared to the dimensions of the adjacent bulk materials, they are almost infinitely thin
and can, therefore, be described as two-dimensional continua, representing mathe-
matically singular surfaces with their own thermomechanical properties. Moreover,
due to its different molecular orderings, the boundary layers have constitutive proper-
ties which differ from those of the adjacent bulk materials. One manifestation of this
is the appearance of surface tension. The cumulative effects on the phase interface
need to be described by associating excess thermodynamic quantities like surface
mass density, surface velocity, surface temperature, etc. Similar to the surface excess
quantities, for a three-phase contact line, corresponding line excess quantities can
also be introduced to describe the cumulative effect in the three-phase common zone.
To investigate these excess surface and line quantities, additional balance equations
for the phase interfaces and three-phase contact line are necessary.

Analogous to the classical bulk balance equations in continuum mechanics, the
balance equations for the interfaces and the contact line may be essential in the
study of phase boundary evolution, contact line motion, thin films undergoing large
deformations, epitaxial growth1, etc. It is also important in the modeling of a singular
surfacewhich carries a certain structure of its own as it migrates through and interacts
with amaterial body.A further examplewhere surface equations can be of importance
is the one of reacting single-phase flows. In certain gas combustion problems, the

1The term epitaxy refers to the growth of a crystalline layer above (epi) the surface of a crystalline
substrate, whose crystallographic orientation imposes a crystalline order (taxis) onto the thin film.
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flame is quite similar to a surface separating fresh gases and burnt products. For
this case, one can define a flame surface density. Likewise, if one is interested in
the details of three-phase contact line or contact angle, corresponding line balance
equations may be necessary.

In formulating the balance equations of excess surface and line momenta, two
important quantities emerge: surface tension (for example, see Fig. 27.1) and line
tension. Surface tension is a material property of a fluid–liquid or fluid–solid or
fluid–gas interface whose origins lie in the different attractive intermolecular forces
that act in the two adjacent phases. Fluids between which no interfacial tension arises
are said to be miscible. Surface tension is visible in everyday life, e.g., beading of
rainwater on the surface of a waxed automobile, formation of drops occurs when a
mass of liquid is stretched, and separation of oil and water is caused by a tension
in the surface between dissimilar liquids. The importance of surface tension is well
known. If no surface tension exists, the surface of a motionless fluid must remain flat.
Surface tensionmay be a function of temperature andmass distribution of surfactants
on the surface. The presence of a gradient in surface tension (e.g., in turn caused by a
concentration gradient or by a temperature gradient along the surface) will naturally
cause the liquid to flow away from regions of low surface tension (theMarangoni

effect).
The line tension is also of considerable importance in many technological prob-

lems, although it is not so well known and obvious as surface tension. It has been
suggested [16, 18] that the efficiency of dropwise condensation heat transfer is con-
nected with properties of the condenser surface, or more specifically, with contact
angle phenomena. A positive line tension operating on a small sessile drop resting
on the condenser surface tends to reduce the length of three-phase line and hence to
increase the contact angle. This may lead to the droplet being pinched off from the
condenser surface. In such a situation, drop departure from the condenser surface
is facilitated, and since most of the heat transfer occurs during the early stages of
the formation and growth of a droplet, the heat transfer efficiency will be increased.
Another example is the role that line tension can play in froth flotation. The modi-
fication of the contact angle by line tension may promote or hinder particle wetting
and displacement into the aqueous phase. It has been found that particles of irregular
shape, especially with sharp edges, will resist the immersion into the liquid phase
because of line tension effects [34].

In the last few years, researchers have paid a fair amount of attention to the surface
balance equations. It is not argued about the necessity of surface balance equations
in many applications, especially in the research of surfactant transport [11, 13, 27,
36]. However, in many works, the balance equations were derived by using different
approaches and assumptions, whichmay be suitable only for special cases [8, 14, 22,
31, 43–45]. They are either formulated only for describing the motion of a surfactant
on a surface or valid only formaterial interfaces, for whichmass transfer across phase
interfaces is excluded. Some authors claim their conservation laws to be suitable for
nonmaterial interfaces on the one hand, but on the other hand do not distinguish
the difference of the surface velocity from the material velocity [1]. To the best of
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Fig. 27.1 (Continued)
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� Fig. 27.1 Surface tension is manifest in many everyday phenomena. a Raindrops on leaves of
plants form, because of the existence of surface stress. We have never seen a drop of gas. Or b
insects can only rest on the water surface of still water, because of surface tension and c Water rises
in a pipette because of surface tension σ acting between the fluid and the pipette wall. Thereby, the
height of rise is obtained from a balance between the weight of the liquid in the pipette above the
liquid free surface in the basin, r2πρgh and the wall-parallel component of surface tension around
the pipette, 2πrσ cos θ. Note, for 1

2 < θ < 3π
2 h is not a rise but a drop. d In a glass of wine (a

mixture of water and alcohol), the wine close to the glass boundary contains less alcohol than farther
away from it (owing to enhanced evaporation). This causes a gradient in the surface tension and,
consequently a flow of liquid away from regions of low surface tension. e In a flame of a candle,
the flame surface separates cold and fresh air from the brunt product

our knowledge, there exists no complete set of conservation laws for excess surface
quantities on nonmaterial phase interfaces.

Very little work has been done to extend existing theories to include the effects of
line excess quantities [6, 42, 45], since there is very little experimental evidence that
these excess quantities have a significant influence on the system as a whole. Line
tension may be the only exception. Theoretically, the line tension may be considered
as a cumulative effect of the deviation of the surface tensions as compared with their
values far from the common line for all surfaces meeting at the line [4, 41]. It is
implied that line tension is a manifestation of the imbalance of intermolecular forces
experienced bymolecules located in and around the three-phase confluence zone [15,
26, 46]. Many experimental results demonstrate the existence of line tension [2, 3,
7, 10, 20, 38, 40, 53, 55]. Further, line tension may even be estimated theoretically
[5, 11, 26, 29, 39, 49, 54].

In this chapter, we will present a general derivation of balance equations for mul-
tiphase immiscible flows and attempt to derive these additional interface and line
balance equations for surface and line excess physical quantities as general as possi-
ble. In Sect. 27.2, we start to formulate a general global balance equation with respect
to multiphase flows for a physical domain of three phases including singular phase
interfaces and three-phase contact line from a viewpoint of continuum mechanics
and then derive the general local forms of balance equations for the bulk, surface,
and line quantities, respectively. In Sect. 27.3, the special forms of local conservation
laws for mass, momentum, energy, and entropy in the bulk phase subdomains, on
the phase interfaces and at the three-phase contact line are presented, and some of
their simplified forms are discussed. In particular, for the case of negligible surface
and line mass densities, these conservation laws reduce to jump conditions, some of
which, e.g., jump conditions for mass, momentum on the interface and the Young
equation at the three-phase contact line are well known. An implicit presentation of
the phase interfaces and the three-phase contact line is briefly presented by means
of the level set method in Sect. 27.4, which can be employed to trace the motion and
deformation of the phase interfaces and the contact line in numerical simulation. For
the case of negligible surface and line mass densities, for which the conservation
laws on the interfaces and the contact line are reduced to jump conditions, a set
of one-fluid conservation equations are given in Sect. 27.5, which are valid for the
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whole multiphase flow domain. In these formulations, the surface and line tensions
can be implemented to the balance equations as local body forces.

To the best of our knowledge, it may be the first attempt to apply a general
continuum approach to a physical domain including three bulk phases and a three-
phase contact line and systematically derive the conservation laws for phase interfaces
and three-phase contact line, in addition to those for bulk phases, simultaneously.
The derived results are generally also applicable to nonmaterial phase interfaces and
contact lines. This is an important extension of the existing theories.

The following chapter will be devoted to the derivation of the constitutive relations
of the emerging surface and line material-dependent quantities from thermodynamic
considerations of the first and second law.

27.2 General Balance Equations for Physical Bulk,
Surface, and Line Quantities

In this section, we will derive the general local balance equations for physical quan-
tities associated with bulk phases, phase interfaces and three-phase contact line from
the approach of continuum mechanics. We start from an integral form of the general
balance statement for a physical domain of a material body including three bulk
phases, phase interfaces, and a three-phase contact line.

27.2.1 Integral Form of the General Balance Statement

Let Γ be a physical variable which characterizes a partial aspect of the state of a
body at time t , and γ denote the corresponding density in the Euler representation.
Further, we choose a certain material domain B(t) of the body under consideration
with its bounding surface ∂B(t) in the Langrange representation with respect to
which the physical variable is evaluated.

The time rate of change of the variable Γ of the body per unit time may be written
as

dΓ

dt
= F + P + S, (27.1)

where F is the flux of the variable Γ flowing from the outside into the body through
the surface ∂B,P is the corresponding production within the domainB, and S is the
supply or source by action at a distance from outside of the body. d/dt denotes the
total time derivative. The quantities arising in this equation express the corresponding
entities for thewhole domain; they are equivalent to a sum of individual contributions
for all particles contained in the domain B (or on the boundary ∂B). The quantity
Γ for the whole domainB is thus equal to the sum of all parts of it for the individual
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material points with position x at time t , i.e., the integration over the volume. If the
investigated physical quantity Γ is continuous in the domain B, we have

Γ =
∫

B

γ(x, t) dv, F =
∮

∂B

φ̃(x, t, n) da,

P =
∫

B

π(x, t) dv, S =
∫

B

ζ(x, t) dv, (27.2)

where γ is the bulk density of the investigated physical quantity Γ , π and ζ denote
the bulk production and supply rate densities of Γ in the domain B, and φ̃ the non-
convective flux density through the boundary ∂B into the domain B. With (27.2)
the global balance statement (27.1) can now be written as

d

dt

∫

B

γ(x, t) dv =
∮

∂B

φ̃(x, t, n) da +
∫

B

π(x, t) dv +
∫

B

ζ(x, t) dv. (27.3)

We have assumed that the bulk flux density (flux per unit surface) φ̃ depends not
only on position x and time t but also on the orientation of the surface or on the
normal vector on the surface with respect to which the flux is taken. In order to
clarify this statement, n is considered as additional argument of the flux φ̃, whose
dependence on position and time is thus complemented by a direction. Because of
this dependence on surface properties, namely, n, the quantity φ̃ is not just a simple
field whose value would be determined if x and t are known.2 This concept leads to
an important consequence which shall be described in the following lemma.

Theorem 27.1 (CauchyLemma) If the flux density (flux per unit surface) φ̃ depends
on the normal n at the surface, this dependency is linear:

φ̃(x, t, n) = −φ(x, t) · n. (27.4)

The multiplication on the right-hand side is a contraction. �
Proof The proof of this lemma results from the balance law (27.3) applied to an
infinitesimal tetrahedron (see Fig. 27.2), whose corners are located along lines paral-
lel to the coordinate axes, with volume ΔV = O (h3), side areas ΔA1,ΔA2,ΔA3,

ΔA = O(h2) and side lengths h1, h2, h3 = O(h). Here, the notation f = O(a)

means that in the limit as a → 0, f is proportional to a with a proportionality differ-
ent from 0 and ∞. The position vector of the origin of the local coordinate system
is x. Furthermore, we assume that all densities appearing in (27.3) are finite, con-
tinuous, and therefore integrable. According to the mean value theorem of integral
calculus, there exist points x(a), x(b), x(c) in the tetrahedron and x(1), x(2), x(3), x(4)

2It is tacitly assumed that the flux depends only on the outer normal vector at the surface points and
not on differential geometric properties of the surface such as mean or Gaussian curvature. This
assumption has first been spelled out by Cauchy and is referred to as the Cauchy assumption.
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Fig. 27.2 Infinitesimal
tetrahedron with normal
vectors n on the abutting
face and −ei , i = 1, 2, 3 on
the side faces. The
characteristic edge length of
the tetrahedron is h, its
surfaces are ΔA and ΔAi for
i = 1, 2, 3
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on its side surfaces, respectively, so that for the tetrahedron the global balance law
(27.3) takes the form

d

dt

(
γ
(
x(a), t

)
ΔV
) =

3∑

k=1

φ̃
(
x(k), t,−ek

)
ΔAk + φ̃

(
x(4), t, n

)
ΔA

+ π
(
x(b), t

)
ΔV + ζ

(
x(c), t

)
ΔV, (27.5)

where the surface integral emerging in (27.3) has been divided into four parts corre-
sponding to the four triangular segments of the tetrahedron. Dividing (27.5) by ΔA
yields

3∑

k=1

φ̃
(
x(k), t,−ek

) ΔAk

ΔA
+ φ̃

(
x(4), t, n

) = O(h). (27.6)

Since the side surfacesΔAk correspond to the projections ofΔA along the coordinate
axes, one can write, geometrically,

ΔAk = (ek · n) ΔA, (27.7)

so that

φ̃
(
x(4), t, n

) = −
3∑

k=1

φ̃
(
x(k), t,−ek

)
(ek · n) + O(h). (27.8)

In the limiting case as h → 0, the expression (27.8) reduces to
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φ̃ (x, t, n) = −
3∑

k=1

φ̃ (x, t,−ek) (ek · n) . (27.9)

If one now introduces the relation

φ(x, t) :=
3∑

k=1

φ̃ (x, t,−ek) ek, (27.10)

which is independent of n, one obtains

φ̃(x, t, n, t) = −φ(x, t) · n. (27.11)

The choice of the sign is such that the flow from outside into the body is taken
positive. With these relations, the proof of (27.4) is achieved.3 �

By means of Theorem 27.1, the global integral balance law (27.3) takes the form

d

dt

∫

B

γ(x, t) dv = −
∮

∂B

φ(x, t) · n da +
∫

B

π(x, t) dv +
∫

B

ζ(x, t) dv. (27.12)

To deduce the physical balance relations for phase interfaces and three-phase con-
tact line, we now consider a material domain B which is composed of three subdo-
mains occupied by three phases B(i) (i = 1, 2, 3) (B = ⋃3

i=1B
(i)), separated from

one another by three discontinuities generally curved surfaces S(i) (i = 1, 2, 3),
called phase interfaces, respectively, i.e., S(1) is the interface between the phase 3
and phase 1, S(2) the interface between the phase 1 and phase 2, and S(3) is the
interface between the phase 2 and phase 3, see Fig. 27.3. These phase interfaces
are represented by moving, singular orientable surfaces. The meaning of a singular
surface at this point solely refers to the fact that a vanishing interface thickness is
considered, across which the physical quantities may be discontinuous. Generally,
the phase interfaces are nonmaterial. It is the case, e.g., when mass transfer occurs
between the interface and the two adjoining phases. The common line C between
the three phases is called the three-phase contact line. The outer boundaries ofB(i),

3The derivation of the result (27.11) requires a number of clarifying remarks to put it into the
proper perspectives. The result was obtained by applying the balance law for a physical quantity to
a material tetrahedronal volume with sharp edges and points for which unit normal vectors cannot
uniquely be defined. Thus, to make the above argument mathematically “clean” the tetrahedron
must be smoothed out such that the edges and vertices become “diffuse” with uniquely defined
normal vectors. This smoothing can formally be done and the limit to a tetrahedron with sharp
edges and vertices can be performed such that in the limit (27.11) is obtained. The assumption that
is needed is that the flux φ is nontrivially defined with respect to surface measure, but that there is
no specific flux quantity defined along the edges or at the vertices.
A historical account onCauchy’s Lemma is given byTruesdell andToupin [52], Sect. 203, more
general treatments, in which nontrivial edge fluxes and vertex fluxes are allowed for, are given by
Noll [32], Noll and Virga [33] and Dell’Isola and Seppecher [9].
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Fig. 27.3 The investigatedmaterial domainBwith its outer boundary∂B consisting of three-phase
subdomains B(i) (i = 1, 2, 3) surrounded by their outer boundaries ∂B(i) and phase interfaces
S(i). Note especially, the contact points I and II (red), from Wang and Oberlack [56]

denoted by ∂B(i) (∂B = ⋃3
i=1∂B

(i)), join at the common curves C(i) which are the
intersections of the singular surface S(i) with the surface ∂B of B, respectively.

The interface or phase boundary may not be a surface of sudden change of mass,
momentum, energy, and entropy; it rather constitutes a thin layer across which mass,
momentum, energy, etc., change smoothly but rapidly between the densities of the
adjacent phase materials. The reason for this is the necessity of molecular arrays of
the adjacent bulk phases. Such an interface layer possesses a thickness of only a few
molecular diameters or molecular mean free paths. Compared to the dimensions of
the adjacent bulk materials, the interface is almost infinitely thin and can therefore be
described as a two-dimensional continuum, representing mathematically a singular
surface with its own thermomechanical properties. The interface can carry mass,
momentum, energy, and entropy. The interface is considered to be material in the
following sense: if we assume that its tangential velocity is the tangential material
velocity of fluid particles that lie on the interface at some instant of time, which is
almost always so assumed in this chapter. The singular surface as a whole, however,
may be nonmaterial, becausemattermay cross it when it represents a phase boundary.
A thermodynamic theory of phase boundaries can thus be founded on the postulation
of conservation laws for surface mass, momentum, and energy and a balance law
for surface entropy together with constitutive assumptions for surface-dependent
fields and jump relations of the bulk fields at the phase boundary. The situation is
analogous for the three-phase contact line, which represents a three-phase-interaction
region and hence may also possess mass, momentum, energy, and entropy, for which
corresponding conservation laws can also be postulated.

For the material domain B, the quantities arising in Eq. (27.1) express the cor-
responding entities for the whole domain; they are equivalent to a sum of individ-
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ual contributions for all particles contained in the domain B or on the boundary
∂B. Thus, for the three-phase material domain B displayed in Fig. 27.3 including
non-negligible surface densities on the phase interfaces and line densities at the
three-phase contact line for corresponding physical quantities, relations (27.2) can
be extended to

Γ =
∫

B

γ dv =
3∑

i=1

∫

B(i)

γ(i) dv +
3∑

i=1

∫

S(i)

γ(si ) da +
∫

C

γ(c) d�,

F = −
∮

∂B

φ · n da = −
3∑

i=1

∫

∂B(i)

φ(i) · n da −
3∑

i=1

∫

C(i)

φ(si ) · s(i) d�

−
[(

φ(c) · λ(c)
)II − (φ(c) · λ(c)

)I ]
, (27.13)

P =
∫

B

π dv =
3∑

i=1

∫

B(i)

π(i) dv +
3∑

i=1

∫

S(i)

π(si ) da +
∫

C

π(c) d�,

S =
∫

B

ζ dv =
3∑

i=1

∫

B(i)

ζ(i) dv +
3∑

i=1

∫

S(i)

ζ(si ) da +
∫

C

ζ(c) d�.

The field quantities included in (27.13) have the following meanings:

γ(i) bulk densities of the investigated physical quantity Γ in the phase
domains B(i) (i = 1, 2, 3), respectively;

γ(si ) surface densities of Γ on the phase interfaces S(i);

γ(c) line density of Γ along the three-phase contact line C;

φ(i) non-convective bulk flux densities of Γ (per unit surface area) through
the material outer surfaces ∂B(i) of the bulk phase B(i);

φ(si ) non-convective surface flux densities of Γ (per unit line length) through
the outer boundary curves C(i) of the phase interfaces S(i);

φ(c) non-convective line flux density of Γ (per point along the line) at the

three-phase contact line C;
(
φ(c) · λ(c)

)I
and

(
φ(c) · λ(c)

)II
are the fluxes

through both boundary points I and II ;

λ(c) unit vector tangent to the contact line C directed toward the end II from
the end I ;

π(i), ζ(i) bulk production and supply rate densities of Γ in the phase domainB(i);
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π(si ), ζ(si ) surface production and supply rate densities of Γ on the interface S(i);

π(c), ζ(c) line production and supply rate densities of Γ at the contact line C;

n unit outward normal vector to the surface ∂B of the domain B;

s(i) unit vector normal to the boundary curves C(i) but tangent to the interface
S(i), outward from the system.

Note we do not assume the contact points I and II to be equipped with mass.
As shown above, throughout this chapter, the physical quantities for the bulk

phaseB(i) are indicated by the superscript (i), the interfacial quantities for the phase
interfaceS(i) are denoted by the superscript (si ), and the superscript (c) characterizes
the line quantities at the three-phase contact line C.

The integral of the traction φ(si ) · s(i) over the curve C(i) (the second term of the
right-hand side in (27.13)2) represents the flux exerted on B by the portion of the
curve S(i) exterior to the domain B. In deriving this flux, it has been assumed that
the surface flux φ̃(si ) (or vector for the vector quantity Γ ), i.e., flux per unit length at
the curve C(i), depends on the coordinate of C(i), xc

(i)
, the time t and the line normal

s(i) by

φ̃(si ) = φ̃(si )
(
xc

(i)
, t, s(i)

)

and the Cauchy lemma for the flux per unit line length has been employed.

Theorem 27.2 (Cauchy Lemma for the surface flux density) If the surface flux
density, i.e., flux per unit line length, φ̃(si ) depends on the normal s(i) at the line, this
dependency is linear:

φ̃(si )
(
xc

(i)
, t, s(i)

)
= −φ(si )

(
xc

(i)
, t
)

· s(i). (27.14)

φ(si ) denotes the corresponding flux vector (or tensor for the vector quantity Γ ). �

This relation is fairly similar to the well-known Cauchy lemma for the bulk flux
density (i.e., flux per unit surface), see Theorem 27.1, as used in the first term of
the right-hand side in (27.13)2. A proof of relation (27.14) can be found, e.g., in
Truesdell [51].

In the last term of the right-hand side in (27.13)2, a similar lemma has also been
employed for the flux through the boundary points I and II along the three-phase

contact line C into the domainB,
[(

φ(c) · λ(c)
)II − (φ(c) · λ(c)

)I ]
, in which the line

flux density (per point along the line), φ(c), is introduced.
Substituting (27.13) into (27.1), we obtain
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3∑

i=1

d

dt

∫

B(i)

γ(i) dv +
3∑

i=1

d

dt

∫

S(i)

γ(si ) da + d

dt

∫

C

γ(c) d�

= −
3∑

i=1

∫

∂B(i)

φ(i) · n da −
3∑

i=1

∫

C(i)

φ(si ) · s(i)d�

−
[(

φ(c) · λ(c)
)II − (φ(c) · λ(c)

)I ]

+
3∑

i=1

∫

B(i)

(
π(i) + ζ(i)

)
dv +

3∑

i=1

∫

S(i)

(
π(si ) + ζ(si )

)
da

+
∫

C

(
π(c) + ζ(c)

)
d�. (27.15)

In order to describe themotions of the material points and the temporal and spatial
changes of investigated local physical quantities in a bulk phase, on a phase interface
or at the three-phase contact line, the above derived global balance expression in an
integral formmay not be convenient. Our aim is to achieve its local forms for the bulk
phases, interfaces, and three-phase common line, when sufficient differentiability
assumptions in the bulk phases, on the phase interfaces and along the contact line,
respectively, are satisfied. For this purpose, the transport theorems and kinematic
description of the moving interfaces and contact line are needed.

27.2.2 Transport Theorems, Divergence Theorems,
and Kinematics

Theorem 27.3 (Reynolds4 Transport Theorem) The time derivative of the integral
of the physical quantity γ(x, t) over the continuous material domain B(t) with
boundary ∂B(t) takes the form

d

dt

∫

B

γdv =
∫

B

∂γ

∂t
dv +

∫

∂B

γ (v · n) da, (27.16)

in which n(x, t) is the outward-pointing unit normal vector, x is a point in the region,
dv and da are the variables of integration, and v(x, t) is the material velocity of the
flow. The function γ may be tensor, vector, or scalar valued. �
Proof We employ the relation for the time derivative of an infinitesimal material
volume element dv,

(dv)· = ∇ · v dv, (27.17)

4For a brief biographyofOsborne Reynolds (1842–1912), seeVol. 2 of this treatise [25], Fig. 15.2
on p. 230.
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inwhich ( )· denotes thematerial time derivative. The proof of relation (27.17) can be
found in almost all textbooks of Continuum Mechanics, see, e.g., [23, 24]. To prove
the relation (27.17), we consider three material line elements dx1, dx2, dx3 and dX1,
dX2, dX3 in the present and reference configuration (see Sect. 22.2), respectively.
The scalars

dv = (dx1 × dx2) · dx3 and dV = (dX1 × dX2) · dX3 (27.18)

form a material volume element in the present and the reference configuration. The
deformation gradient of any given motion, defined in (22.7), i.e.,

F = ∂x
∂X

= ∂χ(X, t)

∂X
= Gradx, (27.19)

mapsmaterial vectorial line elements (dX1, dX2, dX3) in the reference configuration
onto line elements (dx1, dx2, dx3) in the present configuration by (see (22.11))

dx1 = FdX1, dx2 = FdX2, dx3 = FdX3. (27.20)

By means of the algebraic identity

(Aa × Ab) · Ac = (det A) [(a × b) · c] , (27.21)

valid for any second-order tensor A ∈ R
3×3 and vectors a, b, c ∈ R

3, one obtains
from (27.18)

dv = (det F)dV . (27.22)

In terms of (27.22), the time derivative of the volume element, dv, is transferred
to the time derivative of the determinant of the deformation gradient, det F; this is
calculated by using the chain rule

d

dt
(det F(X, t)) =

(
d

dF
det F

)
· Ḟ(X, t)

�= (det F) F−T · Ḟ
= (det F) tr(ḞF−1). (27.23)

At the step, “
�=” the identity

d

dF
det F = (det F) F−1,

valid for all invertible tensors F, has been used. Furthermore, the time derivative of
the deformation gradient (27.19) yields
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Ḟ = ∂ ẋ
∂X

= ∂v

∂X
= Gradv = ∂v

∂x
∂x
∂X

= LF, or L = ḞF−1.

Employing this relation to (27.23) results in

d

dt
(det F(X, t)) = (det F) trL = ∇ · v (det F). (27.24)

Following this, one obtains by taking the time derivative in (27.22)

(dv)· = d

dt
(det F(X, t)) dV = ∇ · v (det F)dV = ∇ · v dv,

the relation (27.17) is proved.
Now, we rewrite the time derivative of the volume integral on the right-hand side

of (27.16) as

d

dt

∫

B

γdv =
∫

B

(
dγ

dt
dv + γ (dv)·

)
(7.17)=

∫

B

(
dγ

dt
+ γ∇ · v

)
dv

=
∫

B

∂γ

∂t
dv +

∫

∂B

γ (v · n) da. (27.25)

In the last step, the Gauss divergence theorem has been employed. Hence, (27.16)
is proved. �

More generally, the Reynolds transport theorem can be extended to a nonmaterial
domain B(t) and remains valid for any motion of its boundary.

Theorem 27.4 (Extended Reynolds Transport Theorem) Let B(t) be a volume
bounded by a closed surface ∂B(t) moving with the velocity w(x, t). The time
derivative of the integral of the physical quantity γ(x, t) over the continuous domain
B(t) takes the form

d

dt

∫

B

γdv =
∫

B

∂γ

∂t
dv +

∫

∂B

γ (w · n) da. (27.26)

�

This result follows Leibniz’s theorem that the total time derivative of an integral
with time-dependent limits equals the integral of the partial time derivative of the
integrand plus a term that accounts for the motion of the integration boundary.

For the material domain B considered presently, which is composed of three
phasesB(i) (i = 1, 2, 3) (B = ⋃3

i=1B
(i)), separated fromone another by three-phase

interfaces S(i) (i = 1, 2, 3), the physical quantities are continuous only within the
subdomains B(i) (i = 1, 2, 3), respectively, and the interfaces may be nonmaterial
due to possible mass transfers between the phases. For this case, we can interchange
the time derivatives and the volume integrations emerging in the first term on the
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left-hand side of (27.15) with the aid of the extended Reynolds transport theorem
(Theorem 27.4), i.e.,

d

dt

∫

B(i)

γ(i)dv =
∫

B(i)

∂γ(i)

∂t
dv +

∫

∂B(i)

γ(i)
(
v(i) · n) da

−
∫

S(i)

γ(i)
(
w(si ) · n(si )

)
da

+
∫

S(i+1)
γ(i)
(
w(si+1) · n(si+1)

)
da

=
∫

B(i)

∂γ(i)

∂t
dv +

∮

∂B(i)∪S(i)∪S(i+1)

γ(i)
(
v(i) · n) da

−
∫

S(i)

γ(i)
(
w(si ) − v(i)

) · n(si )da

+
∫

S(i+1)
γ(i)
(
w(si+1) − v(i)

) · n(si+1) da, (27.27)

where w(si ) denotes the speed of the interfaceS(i), v(i) is the material velocity in the
subdomainB(i), n(si ) is the unit normal vector of the interfaceS(i), which is chosen
to point into the domainB(i), respectively. Together with the unit vector λ(i) tangent
to the curve C(i), (λ(i), n(i), s(i)) form an orthonormal basis of a local right-handed
coordinate system along the space curve C(i). Note that the local coordinate frame on
C(i), (λ(i), n(i), s(i)), does not define a classical Frenet–Serret frame. In fact, we
need to extend the definition of n(i) as a continuation of the inner part of C(i), while
s(i) is given by the relation s(i) = λ(i) × n(i). In (27.27) and the following text, if the
superscript (i + 1) takes the value of 4, it will be automatically set as (i + 1) = 1.
Alternatively, the superscript (i + 1) may be replaced by (mod(i, 3) + 1).

Since S(i) is generally nonmaterial, the velocity of S(i), w(si ), may not coincide
with the velocities of fluid particles that lie on S(i) at some instant of time. Such a
situation prevails, e.g., when the mass transfer occurs across the interface. This is an
important difference of the present investigation from all existing theories, in which
the last two terms in (27.27) vanish.

An evolving surface S(t) oriented by the unit normal field n(s) may be
parametrized locally by a mapping

x(s) = x̂(s)
(ξ, t), or x (s)

i = x̂ (s)
i (ξ(s)

α , t), i ∈ {1, 2, 3}, α ∈ {1, 2}, (27.28)

where ξ(s) = {ξ(s)
1 , ξ(s)

2 } establishes a two-dimensional parameter space. It is
assumed that the mapping is sufficiently smooth. The tangent vectors of the sur-
face can be computed by ∂x (s)

i /∂ξ(s)
α ≡ x (s)

i,α . The partial time derivative

w(s)(x, t) = ∂ x̂(s)

∂t

∣∣∣∣
(ξ(s)

1 ,ξ(s)
2 )

(27.29)
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represents a local velocity field of the surface S(t). Obviously, this velocity field
depends on the choice of parameterization. Specifically, the normal component of
w(s), i.e., (w(s) · n(s))n(s), is independent of the parameterization, but the tangential
velocity w

(s)
t = w(s) − (w(s) · n(s))n(s), is not. Hence, if a surface is nonmaterial,

its tangential velocity defined by (27.29) is not intrinsic and not well defined, but
dependent of the parameterization. The tangential velocity of the nonmaterial surface
may be arbitrarily chosen by different parameterizations. Actually, the so-defined
tangential component of the surface velocity is meaningless, because it represents
neither the interface deformation, which depends only on the normal component of
the surface velocity, nor the component of the material velocity. It may be convenient
to choose the tangential velocity of the material point, lying on the surface in an
instant of time, as the tangential velocity of the surface.

In comparison with the Reynolds transport theorem (27.27) for a bulk quantity,
a difficulty in deriving the transport relation for the surface integrals occurring in
(27.15) is associated with determining appropriate superficial analogues of the time
derivatives. For a surface field γ(s), if the surface is nonmaterial, then neither the
material derivative dγ(s)/dt nor the partial derivative ∂γ(s)/∂t is well defined. Since
material points flow across the interface, it is not generally possible to compute
a time derivative holding material points fixed. Further, the conventional partial
derivative ∂γ(s)/∂t without further explanation is also meaningless, because there is
no assurance that the position x lies on the surface S(t + Δt) at time t + Δt when
x lies on S(t) at time t , even for sufficiently small Δt .

The simplest time derivative of a surface scalar field γ(s) following the evo-
lution of the surface S(t) can be defined by using the parameterization x(s) =
x̂(s)

(
ξ(s)
1 , ξ(s)

2 , t
)
as follows:

d(s)γ(s)

dt
=

dγ(s)
(
x̂(s)

(
ξ(s)
1 , ξ(s)

2 , t
)

, t
)

dt

∣∣∣
∣
(ξ(s)

1 ,ξ(s)
2 )

, (27.30)

which depends on the choice of parameterization (ξ(s)
1 , ξ(s)

2 ). A time derivative
that is independent of the choice of parameterization is the normal time deriva-
tive δ(s)γ(s)/δt of γ(s) following S(t) [50], denoting the time derivative for a given
point on the surface following the normal trajectory of the surface. It can be demon-
strated that the normal time derivative is the conventional partial time derivative of
γ(s) when γ(s) is extended to be constant along the normal lines of the surface. A
simple relation between the two time derivatives is given in Cermelli, Fried and
Gurtin [8]

d(s)γ(s)

dt
= δ(s)γ(s)

δt
+ w

(s)
t · ∇(s)γ(s) = δ(s)γ(s)

δt
+ w(s) · ∇(s)γ(s), (27.31)

where w
(s)
t is the velocity component of the surface, tangent to the surface.
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The surface gradient operator ∇(s) appears in (27.31) because γ(s) is defined
only on the surface. For a bulk field that is well defined and smooth up to the surface
from one or both sides, the surface gradient is simply the tangential component of
the standard gradient, defined by

∇(s) = [I − n(s) ⊗ n(s)
] · ∇ ≡ I (s) · ∇, (27.32)

where I (s) ≡ I −n(s) ⊗n(s) is the surface projection tensor, e.g., for a bulk field Φ,

∇(s)Φ = ∇Φ − (n(s) · ∇Φ
)
n(s).

Further, it can be demonstrated that, if the surface is material, i.e., the velocity of
the surfacew(s) coincides with the material velocity v(s), the material time derivative
of γ(s) is given by

γ̇(s) = dγ(s)

dt
= δ(s)γ(s)

δt
+ v

(s)
t · ∇(s)γ(s) = ∂γ(s)

∂t
+ v(s) · ∇(s)γ(s), (27.33)

where the tangential component of the material velocity on the surface S(t) can be
given by v

(s)
t = I (s) · v(s).

Theorem 27.5 (Transport Theorem for a surface integral) The transport theorem
for the surface integral of a surface variable γ(s) over a material surface S (the
normal unit vector n(s)), moving with the material velocity v(s), closed by the curve
C (with unit vector s, normal to C and tangent to S) reads

d

dt

∫

S

γ(s) da =
∫

S

(
δ(s)γ(s)

δt
+ γ(s)

(
v(s) · n(s)

)
H (s)

)
da

+
∫

C

γ(s)
(
v(s) · s) d�, (27.34)

in which

H (s) = ∇(s) · n(s) (27.35)

is the total (i.e., twice the mean) surface curvature. �

This transport theorem was established first by Petryk andMroz [37] and Gurtin
et al. [21]. Here, we demonstrate a proof from the viewpoint of continuummechanics
without the prerequisite of inclusion of the relevant background knowledge.

Proof We first prove the relation for the time derivative of an infinitesimal material
surface element da,

(da)· = n(s) · ([(tr L(s)) I − (L(s))T] · n(s)
)
da, (27.36)
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with L(s) = grad v(s), or with the index notation in the form

(da)· =
(
v

(s)
i, j δi j − v

(s)
i, j n

(s)
i n(s)

j

)
da =

(
δi j − n(s)

i n(s)
j

)
v

(s)
i, j da. (27.37)

For this purpose, we assume that dx1, dx2 and dX1, dX2 are two material line
elements on the material surface S, respectively, in the present and reference con-
figuration. Hence, the two vectors

da = dx1 × dx2 and dA = dX1 × dX2

form an (oriented) material surface element in the present and reference configura-
tion, respectively. The mapping of material line elements obeys the relation, as given
in (27.20),

dx1 = FdX1 and dx2 = FdX2.

Based on the identity

AT (Aa × Ab) = (det A)(a × b),

which can be obtained by requiring (27.21) for any two fixed vectors a, b and all
c ∈ R

3, the following relation for the material surface element applies

da = dx1 × dx2 = (FdX1) × (FdX2)

= (det F)F−T (dX1 × dX2) = (det F)F−T dA. (27.38)

Employing relation (27.24), i.e., (det F)· = ∇ · v(s) (det F), and the identity

(
F−T

)· = −F−T ḞF−T ,

which results from thedifferentiationof F−T FT = 1,we calculate the timederivative
of (27.38)

(da)· = [
(det F)·F−T + (det F)(F−T )·] dA

=
[
(det F)(∇ · v(s))F−T − (det F)F−T Ḟ

T
F−T

]
dA

= [∇ · v(s) − (ḞF−1)T
]
(det F)F−T dA

= [
(tr L(s)) I − (L(s))T

]
da. (27.39)

In the last step, relations (27.24) and (27.38) have been used. (27.39) is the vectorial
form of (27.36). Its component in the direction n(s), perpendicularly to the surface
element, yields the expression (27.36). Hence, relation (27.36) is proven. This proof
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can also be found in textbooks of Continuum Mechanics, e.g., [19, 23].
By means of the surface projection tensor, defined in (27.32), it further follows a

really simple form,

(da)· = I (s) · ∇v(s) da = ∇(s) · v(s) da. (27.40)

This relation is fairly similar to the time derivative of a material volume element
(dv)· = ∇ · v dv, see (27.17), which has been employed to prove Theorem 27.3. By
means of relation (27.40), the time derivative of the surface integral can be written
as

d

dt

∫

s

γ(s) da

=
∫

s

(
dγ(s)

dt
da + γ(s) (da)·

)
(7.40)=

∫

s

(
dγ(s)

dt
+ γ(s)∇(s) · v(s)

)
da

(7.33)=
∫

s

(
δ(s)γ(s)

δ(s)t
+ v

(s)
t · ∇(s)γ(s) + γ(s)∇(s) ·

(
v

(s)
t + (v(s) · n(s)

)
n(s)
))

da

=
∫

s

(
δ(s)γ(s)

δ(s)t
+ ∇(s) ·

(
γ(s)v

(s)
t

)
+ γ(s)

(
v(s) · n(s)

)∇(s) · n(s)

)
da

=
∫

s

(
δ(s)γ(s)

δ(s)t
+ γ(s)

(
v(s) · n(s)

)
H (s) + ∇(s) ·

(
γ(s)v

(s)
t

))
da

=
∫

s

(
δ(s)γ(s)

δ(s)t
+ γ(s)

(
v(s) · n(s)

)
H (s)

)
da +

∫

c

γ(s)
(
v(s) · nc

)
d�. (27.41)

In the last step, the Green theorem has been employed. Hence, (27.34) is proved. �

For a nonmaterial surfaceS with the surface velocity w(s), the transport theorem
of a surface integral can be extended to the form (without proof)

d

dt

∫

S

γ(s) da =
∫

S

(
δ(s)γ(s)

δt
+ γ(s)

(
w(s) · n(s)

)
H (s)

)
da

+
∫

C

γ(s)
(
w(s) · s) d�, (27.42)

similar to the extension of the Reynolds transport theorem (27.16) to the form
(27.26).

By means of relation (27.42), the time derivative of the surface integration arising
in (27.15) can be written as
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d

dt

∫

S(i)

γ(si ) da =
∫

S(i)

(
δ(si )γ(si )

δt
+ γ(si )H (si )

(
w(si ) · n(si )

))
da

+
∫

C(i)

γ(si )
(
w(si ) · s(i)) d� +

∫

C

γ(si )
(
w(c) · s(i)

)
d�

=
∫

S(i)

(
δ(si )γ(si )

δt
+ γ(si )H (si )

(
w(si ) · n(si )

))
da

+
∮

C(i)∪C
γ(si )

(
w(si ) · s(i)

)
d�

+
∫

C

γ(si )
((

w(c) − w(si )
) · s(i)) d�, (27.43)

where w(c) denotes the velocity of the three-phase contact line and where
∮
is the

line integral along the closed loop C(i) ∪ C.
Now, it should be emphasized that the investigated volume B(t) is a material

subdomain of the body, whose surrounding surface ∂B(t) is also a material sur-
face. Hence, the velocity component of the outer surrounding curve C(i), tangent to
the surface S(i), is coincided with the material velocity component of the material
point lying on the surface at an instant of time. As we have also seen, the tangen-
tial component of the surface velocity according to definition (27.29) depends on
the parameterization and hence is physically meaningless. Physically, it may be rea-
sonable to employ the material velocity component tangent to the surface as the
tangential surface velocity, w(si )

t = (w(si ) · s(i))s(i) = (v(si ) · s(i))s(i), where v(si ) is
the velocity of material points which lie on the surfaceS(i)(t) at time t . In this case,
(27.43) can be rewritten as

d

dt

∫

S(i)

γ(si ) da =
∫

S(i)

(
δ(si )γ(si )

δt
+ γ(si )H (si )

(
w(si ) · n(si )

))
da

+
∮

C(i)∪C
γ(si )

(
v(si ) · s(i)) d�

+
∫

C

γ(si )
((

w(c) − v(si )
) · s(i)) d�. (27.44)

If the contact line is material, the last term in (27.44) vanishes.
Further, themotion of the curveC can be defined by a one-parameter configuration

x(c) = x̂(c) (ξ(c), t
)
, or x (c)

i = x̂ (c)
i (ξ(c), t). (27.45)

The tangent vector of the curve C is ∂x (c)
i /∂ξ(c). The local velocity field w(c) of the

curve can be represented by the time rate of change of position x(c) for the fixed
parameter ξ(c),
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w(c)(x, t) = ∂ x̂(c)

∂t

∣∣
∣∣
ξ(c)

. (27.46)

Only the component ofw(c) normal toC, i.e.,w(c)−(w(c) ·λ(c))λ(c), is independent of
the parameterization ofC and, hence, intrinsic to themotion. Its tangential component
along the curve, (w(c) · λ(c))λ(c), depends on the parameterization.

For a line field γ(c) following the evolution of the curve C, if the curve C is non-
material, its (local or material) time derivative is equally not well defined. One of its
time derivatives can be defined by means of the parameterization x(c) = x̂(c) (ξ(c), t

)

as follows:

d(c)γ(c)

dt
=

dγ(c)
(
x̂(c)

(ξ(c), t), t
)

dt

∣∣∣∣
ξ(c)

, (27.47)

which depends on the choice of parameterization. A time derivative that is indepen-
dent of the choice of parameterization is the normal time derivative δ(c)γ(c)/δt of γ(c)

following C(t), equivalent to the time derivative following the normal trajectory of
themoving curve. It can also be shown that this normal time derivative coincides with
the conventional partial time derivative of γ(c) when γ(c) is extended as a constant in
the directions perpendicular to the curve. Both time derivatives can be related by

d(c)γ(c)

dt
= δ(c)γ(c)

δt
+ w

(c)
t · ∇(c)γ(c)

= δ(c)γ(c)

δt
+ w(c) · ∇(c)γ(c), (27.48)

wherew
(c)
t is the velocity component of the curve, tangential to the curve, and∇(c) is

the line gradient operator, which is the component of the standard gradient tangent
to the contact line, defined by

∇(c) = (λ(c) ⊗ λ(c)) · ∇ ≡ I (c) · ∇, (27.49)

where I (c) = λ(c) ⊗ λ(c) is the line projection tensor.
If the curve C is material, the material time derivative of γ(c) and the normal time

derivative δ(c)γ(c)/δt are related to one another by

γ̇(c) = dγ(c)

dt
= δ(c)γ(c)

δt
+ (v(c) · λ(c))

∂γ(c)

∂�

= δ(c)γ(c)

δt
+ v(c) · ∇(c)γ(c). (27.50)
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Fig. 27.4 Jean Frédéric Frenet (February 7, 1816–June 12, 1900) (right) and Joseph

Alfred Serret (August 30, 1819–March 2, 1885) (left)

Jean Frédéric Frenetwas a French mathematician, astronomer, and mete-
orologist. He was born and died in Périgueux, France.

He is best known for being an (independent) codiscoverer of the Frenet–Serret
formulas. He wrote six out of the nine formulas, which at that time were
not expressed in vector notation, nor using linear algebra. These formulas are
important in the theory of space curves (differential geometry), and they were
presented in his doctoral thesis at Toulouse in 1847. That year he became
a Professor at Toulouse, and one year later, 1848, he became Professor of
Mathematics at Lyon. He also was director of an astronomical observatory
at Lyon. Four years later, in 1852, he published the Frenet formulas in the
Journal de Mathématiques Pures et Appliquées. In 1856, his calculus primer
was first published, which ran through seven editions, the last one published
posthumously in 1917.

Joseph Alfred Serretwas a Frenchmathematician. He studied at the École
Polytechnique in Paris, where he graduated in 1840. In 1848, he was occupied
there as examiner of the admissions exams. In 1861, he became Professor of
CelestialMechanics at theCollège de France and in 1863 Professor ofAnalysis
at the Sorbonne. In 1871, he went on retirement, but was in 1873 at the Bureau
des Longitudes.

Serret is still known today for his work on differential geometry, in particular
the Frenet–Serret formulas of curves in R

3. He researched also in number
theory, analysis, and mechanics. He was the editor of the works of Joseph
Louis Lagrange.

The Frenet–Serret formulas
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⎛

⎜⎜⎜
⎜⎜
⎝

dT
d�
dN
d�
dB
d�

⎞

⎟⎟⎟
⎟⎟
⎠

=
⎛

⎝
0 κ 0

−κ 0 τ
0 −τ 0

⎞

⎠

⎛

⎝
T
N
B

⎞

⎠

were independently discovered by Frenet in his dissertation in 1847 and by
Serret in 1851. In the above formulas,T , N, B,κ, τ are three unit vectors into
the tangential, normal, and binormal directions of a curve; κ is the curvature
and τ the torsion of the curve. The curvature measures the failure of a curve to
be a straight line, while the torsion measures the failure of a curve to be planar.

The text is based on www.wikipedia.org

Note that along the contact line C, the tangent, principal normal, and binormal
unit vectors, λ(c), n(c) and b(c) = λ(c) × n(c), define the basis vectors of a Frenet–
Serret

5 frame. The relations of its unit vectors are given by the Frenet–Serret
formulae

dλ(c)

d�
= κ(c)n(c)

dn(c)

d�
= −κ(c)λ(c) + τ (c)b(c), (27.51)

db(c)

d�
= −τ (c)n(c),

where τ (c) is the torsion of the curve C and

κ(c) = −∇(c) · n(c) (27.52)

is referred to as the normal curvature at the point on the contact line with arc length
�. The Frenet–Serret formulae, (27.51), are usually written as

d

d�

⎛

⎝
λ
n
b

⎞

⎠

(c)

=
⎛

⎝
0 κ 0

−κ 0 τ
0 −τ 0

⎞

⎠

(c)⎛

⎝
λ
n
b

⎞

⎠

(c)

. (27.53)

5For brief biographical sketches of Jean Frédéric Frenet (1816–1900) and Joseph Alfred

Serret (1819–1885), see Fig. 27.4.

www.wikipedia.org
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Similarly to the transport theorem for the surface integral (27.42), the transport
relation for the time derivative of the line integration emerging in (27.15) can also
be derived.

Theorem 27.6 (Transport Theorem for a line integral) Consider a line integral of
a line variable γ(c) with respect to the arc length �, I(c) = ∫C γ(c) d�, taken along a
smooth curve C (the unit principal normal n(c) and the tangential unit vector λ(c))
with two ends I and II , moving in space with a spatially and temporally varying
velocity w(c). Its time derivative can be expressed by

d

dt

∫

C

γ(c) d� =
∫

C

(
δ(c)γ(c)

δt
+ γ(c)

(
w(c) · n(c)

) (∇(c) · n(c)
))

d�

+
[(

γ(c)w(c) · λ(c)
)II − (γ(c)w(c) · λ(c)

)I ]
. (27.54)

�

This transport theorem was derived first by Petryk andMroz [37]. Here, we follow
their derivation.

Proof As shown in (27.45), the curve C can be parametrized by a scalar variable ξ(c)

such that a point along the curve has the space coordinate η̂(c) at t = 0 and space
coordinate at an instant t

x(c) = x̂(c) (ξ(c), t
) = η̂(c)

(ξ(c)) + ζ(c)(η̂(c)
(ξ(c)), t),

or x (c)
i = x̂ (c)

i (ξ(c), t) = η̂(c)
i (ξ(c)) + ζ(c)

i (η̂(c)
j (ξ(c)), t).

The line integral I(c) can be equivalently written as an integral over the fixed interval
ξ(c) ∈ [ξ(c)

I , ξ(c)
II ],

I(c) =
∫

C

γ(c)(x(c), t) d� =
∫ ξ(c)

II

ξ(c)
I

γ(c)
(
x̂(c)

(ξ(c), t), t
)
s(c)(ξ(c), t)dξ(c), (27.55)

where ξ(c)
I and ξ(c)

II are the fixed values of ξ(c) at the ends, I and II , of the curve C,
and

s(c) =
√

∂ x̂ (c)
i

∂ξ(c)

∂ x̂ (c)
i

∂ξ(c)
�= 0, d� = s(c)dξ(c).

The unit vector tangent to the curve C, λ(c), can be written as

λ(c) = 1

s(c)

∂ x̂(c)

∂ξ(c)
, or λ(c)

i = 1

s(c)

∂x (c)
i

∂ξ(c)
.

It can easily be shown that
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d(c)s(c)

dt
≡ ∂s(c)(ξ(c), t)

∂t

∣∣
∣∣
ξ(c)=const

= s(c)w
(c)
i, j λ

(c)
i λ(c)

j , (27.56)

where w
(c)
i = ∂ x̂ (c)

i /∂t |ξ(c) denotes the local velocity field of the curve, defined in
(27.46). By differentiating the line integral (27.55) with respect to t , using (27.56)
and returning to the arc length variable, we obtain

dI(c)

dt
=
∫

C

(
d(c)γ(c)

dt
+ γ(c)w

(c)
i, j λ

(c)
i λ(c)

j

)
d�

=
∫

C

(
d(c)γ(c)

dt
+ γ(c)(λ(c) · ∇w(c)) · λ(c)

)
d�. (27.57)

By employing (27.51)1, i.e.,

dλ(c)

d�
= λ(c) · ∇(c)λ(c) = κ(c)n(c), (27.58)

the expression (27.57) can be rearranged as follows:

dI(c)

dt
=
∫

C

(
d(c)γ(c)

dt
− w(c) · ∇(c)γ(c) − γ(c)κ(c)

(
w(c) · n(c)

)

+λ(c) · ∇(c)
(
γ(c)w(c) · λ(c)

) )
d�. (27.59)

Here, the line gradient operator ∇(c), defined in (27.49), can also be expressed as

∇(c) = ∂

∂�
= λ(c) ∂

∂�
.

Using the relation of the total and normal time derivatives, d(c)γ(c)/dt and δ(c)γ(c)/δt ,
given in (27.48), and integrating the last term of the integrand in (27.59), we finally
obtain

dI(c)

dt
=
∫

C

(
δ(c)γ(c)

δt
+ γ(c)

(∇(c) · n(c)
) (

w(c) · n(c)
))

d�

+ (γ(c)w(c) · λ(c)
)∣∣II

I
. (27.60)

Hence, the transport theorem for a line integral, (27.54), is proved. �

In order to be in consistent with the definition of the total surface curvature H (s) =
∇(s) · n(s) given in (27.35), from here on, we definite the line curvature by

κ(c) = ∇(c) · n(c), (27.61)
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which is different from the previous definition, (27.52), employed in the Frenet–
Serret formulae (27.51). Hence, the transport theorem for a line integral, (27.54),
can be rewritten as

d

dt

∫

C

γ(c) d� =
∫

C

(
δ(c)γ(c)

δt
+ γ(c)κ(c)

(
w(c) · n(c)

))
d�

+
[(

γ(c)w(c) · λ(c)
)II − (γ(c)w(c) · λ(c)

)I ]
. (27.62)

Considering that the investigated domainB(t) is amaterial volume, the convective
fluxes through its outer surface ∂B in the present configuration are induced by the
material velocity on the surface. This is also the case for the convective flux along
the contact line through ∂B. Therefore, in the fluxes at the intersecting points I and
II of C and ∂B arising in (27.62), the tangential line velocity w(c) · λ(c) should be
replaced by its material counterpart v(c) · λ(c), where v(c) is the material velocity at
the line C, i.e.,

d

dt

∫

C

γ(c) d� =
∫

C

(
δ(c)γ(c)

δt
+ γ(c)κ(c)

(
w(c) · n(c)

)

+∇(c) ·
(
γ(c)v

(c)
t

))
d�. (27.63)

Here v
(c)
t is the projection of the velocity v(c) in the direction λ(c), and v

(c)
t =

(v(c) · λ(c))λ(c) = I (c) · v(c).

Theorem 27.7 (Gauss Divergence Theorem) IfB is a volume bounded by a surface
∂B with outward unit normal n and f is a continuously differential vector field in
B, then

∫

∂B

f · nda =
∫

B

∇ · f dv. (27.64)

�

By means of the Gauss divergence theorem, the surface integrations on the right-
hand side of (27.15) can be transformed to volume integration, see Fig. 27.3,

∫

∂B(i)

(
φ(i) · n) da

=
∮

∂B(i)∪S(i)∪S(i+1)

(
φ(i) · n) da +

∫

S(i)

φ(i) · n(si ) da

−
∫

S(i+1)
φ(i) · n(si+1) da

=
∫

B(i)

∇ · φ(i) dv +
∫

S(i)

φ(i) · n(si ) da



27.2 General Balance Equations for Physical Bulk, Surface, and Line Quantities 377

Fig. 27.5 An open surface
S spanned over a simple
double-point free closed loop
C. Note: s = λ × n(s)

−
∫

S(i+1)
φ(i) · n(si+1) da, (27.65)

and similarly for the red term in (27.27)

∮

∂B(i)∪S(i)∪S(i+1)

γ(i)
(
v(i) · n) da =

∫

B(i)

∇ · (γ(i)v(i)
)
dv. (27.66)

Moreover, in order to transform the contour integrals in (27.15) and (27.44) into
surface integrals, we apply the classical Kelvin–Stokes theorem.

Theorem 27.8 (Kelvin–Stokes Theorem or simply Stokes Theorem) This theorem
relates the surface integral of the curl of an arbitrary vector field F over an open
surface S in Euclidean three-dimensional space to the line integral of the vector
field over its simple closed boundary curve C by

∮

C

F · d� =
∫

S

(∇(s) × F
) · n(s)da. (27.67)

The line element vector d� is tangent to C, while n(s) is a unit vector normal toS. �

The length element vector d� takes the form d� = λd� with the unit vector λ
tangential to C and traces C counterclockwise when the surface normal n(s) points
toward the viewer. (λ, n(s), s) forms a local right-handed coordinate system with
s = λ × n(s), as shown in Fig. 27.5.

Proof Let x(s) = x̂(s)
(ξ, t), or x (s)

i = x̂ (s)
i (ξ(s)

α , t), i ∈ {1, 2, 3}, α ∈ {1, 2}, given
in (27.29), be a smooth parametrization of the surface S including its boundary C.
First, the left-hand side of (27.67) can be converted into a line integral

∮

C

F · d� =
∮

C

(

F · ∂ x̂(s)

∂ξ(s)
1

dξ(s)
1 + F · ∂ x̂(s)

∂ξ(s)
2

dξ(s)
2

)

,

so that, if one defines
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G = (G1,G2) =
(

F · ∂ x̂(s)

∂ξ(s)
1

, F · ∂ x̂(s)

∂ξ(s)
2

)

,

then
∮

C

F · d� =
∮

C

G · dξ(s),

where ξ(s) is the position vector in the (ξ(s)
1 , ξ(s)

2 )-plane.
We turn now to the right-hand expression in (27.67) and write it in terms of the

parameterization ξ(s)
1 and ξ(s)

2

∫

S

(∇(s) × F
) · n(s)da =

∫

S

(∇(s) × F
) ·
(

∂ x̂(s)

∂ξ(s)
1

× ∂ x̂(s)

∂ξ(s)
2

)

dξ(s)
1 dξ(s)

2

=
∫

S

(
∂G2

∂ξ(s)
1

− ∂G1

∂ξ(s)
2

)

dξ(s)
1 dξ(s)

2

=
∮

C

G · dξ(s).

In the last step, Green’s Theorem has been used. Hence, it is proved that both sides
of (27.67) are equal. �

To apply the Kelvin–Stokes theorem to the contour integrals in (27.15) and
(27.44), we employ an extended form of the Kelvin–Stokes theorem.

Theorem 27.9 (Surface Divergence Theorem) For any vector G(s) defined on the
surface S and its boundary C (see Fig.27.5), one has

∫

C

G(s) · s d� =
∫

S

(∇(s) · G(s) − H (s)
(
G(s) · n(s)

))
da, (27.68)

where H (s) = ∇(s) · n(s) denotes the total surface curvature of the surface S. �
Proof We employ the identities

a · (b × c) = (a × b) · c, (27.69)

∇ × (a × b) = a(∇ · b) − b(∇ · a) + (b · ∇)a − (a · ∇)b (27.70)

for any differentiable vectors a, b, c, and then obtain for any vector G(s) defined on
the surface S and its boundary C,

∮

C

G(s) · s d� = −
∮

C

G(s) · (n(s) × λ
)
d�
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(27.69)1= −
∮

C

(
G(s) × n(s)

) · λ d�

=
∮

C

(
n(s) × G(s)

) · d�

(27.67)=
∫

S

(∇(s) × (n(s) × G(s)
)) · n(s)da

(27.70)=
∫

S

[
n(s)

(∇(s) · G(s)
)− G(s)

(∇(s) · n(s)
)

+G(s) · (∇(s)n(s)
)− n(s) · (∇(s)G(s)

) ] · n(s)da

∗=
∫

S

(∇(s) · G(s) − H (s)
(
G(s) · n(s)

))
da. (27.71)

In the last step, (
∗=) the identities

n(s) · ∇(s)(· · · ) = 0,
(∇(s)n(s)

) · n(s) = 1
2∇(s)

(
n(s) · n(s)

) = 1
2∇(s)(1) = 0

and H (s) = ∇(s) · n(s) have been used. �

Using relation (27.68), we can rewrite the contour integrals in (27.15) and (27.44)
in the forms

∫

C(i)

φ(si ) · s(i) d� =
∮

C(i)∪C
φ(si ) · s(i) d� −

∫

C

φ(si ) · s(i) d�

=
∫

S(i)

(∇(si ) · φ(si ) − H (si )
(
φ(si ) · n(si )

))
da

−
∫

C

φ(si ) · s(i) d�, (27.72)

∮

C(i)∪C
γ(si )

(
v(si ) · s(i)

)
d� =

∫

S(i)

(
∇(si ) · (γ(si )v(si )

)

−γ(si )H (si )
(
v(si ) · n(si )

) )
da. (27.73)

In lieu of (27.73), another form is often employed



380 27 Multiphase Flows with Moving Interfaces and Contact Line …

∮

C(i)∪C
γ(si )

(
v(si ) · s(i)) d� =

∮

C(i)∪C
γ(si )

(
v

(si )
t · s(i)

)
d�

=
∫

S(i)

∇(si ) ·
(
γ(si )v

(si )
t

)
da, (27.74)

where v
(si )
t is the projection of the vector v(si ) in the plane tangent to the interface

with the relation v
(si )
t = [I − n(si ) ⊗ n(si )] · v(si ).

Likewise, the flux through the two end points intersecting with ∂B intoB, arising
in (27.15), can be written in the form of a line integral

[(
φ(c) · λ(c)

)II − (φ(c) · λ(c)
)I ]

=
∫

C

(∇(c) · φ(c) − κ(c)
(
φ(c) · n(c)

))
d�. (27.75)

With the above vector-analytic breakdown of volume integrals into other volume
plus surface integrals and possibly line integrals, using the Green, Stokes and
Gauss laws, we are now in a position to deduce the local forms of the general
balance equations. By means of the relations derived above, we can obtain the local
forms of the general balance equations.

27.2.3 Local Forms of the General Balance Statement

Substituting relations (27.27), (27.44), (27.63), (27.65), (27.66), (27.72), (27.74),
and (27.75) into the balance equation (27.15) yields

3∑

i=1

∫

B(i)

{
∂γ(i)

∂t
+ ∇ · (γ(i)v(i)

)+ ∇ · φ(i) − π(i) − ζ(i)

}
dv

+
3∑

i=1

∫

S(i)

{
δ(si )γ(si )

δt
+ ∇(si ) ·

(
γ(si )v

(si )
t

)
+ γ(si )H (si )

(
w(si ) · n(si )

)

+∇(si ) · φ(si ) − H (si )
(
φ(si ) · n(si )

)− (π(si ) + ζ(si )
)

− [[γ (w(s) − v
) · n(s) − φ · n(s)

]](i)
}
da

+
∫

C

{
δ(c)γ(c)

δt
+ ∇(c) ·

(
γ(c)v

(c)
t

)
+ γ(c)κ(c)

(
w(c) · n(c)

)

+∇(c) · φ(c) − κ(c)
(
φ(c) · n(c)

)− (π(c) + ζ(c)
)

+
3∑

i=1

(
γ(si )

(
w(c) − v(si )

) · s(i) − φ(si ) · s(i))
}
d� = 0, (27.76)
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where [[G]](i) = G(i) − G(i−1) denotes the jump of the quantity G over the interface
S(i) (if i − 1 = 0, it is set i − 1 = 3).

In the above equation, the integration domains B(i) are arbitrary, as are conse-
quently also S(i) and C; thus, the integrands of the volume integrals must vanish
identically. This yields the so-called local balance equations for each phase B(i),

∂γ(i)

∂t
+ ∇ · (γ(i)v(i)

)+ ∇ · φ(i) − π(i) − ζ(i) = 0, (27.77)

which hold true at all points of the body except on the singular surfacesS(i) and the
contact line C.

Likewise, the surface integrals must vanish for an arbitrary area of the singular
surface; as a result, the corresponding integrand must also vanish identically, i.e.,

δ(si )γ(si )

δt
+ ∇(si ) ·

(
γ(si )v

(si )
t

)
+ γ(si )H (si )

(
w(si ) · n(si )

)

+∇(si ) · φ(si ) − H (si )
(
φ(si ) · n(si )

)− (π(si ) + ζ(si )
)

− [[γ (w(s) − v
) · n(s) − φ · n(s)

]](i) = 0,

(27.78)

which is valid on the interface S(i) (i = 1, 2, 3), except at the contact line C.
Substituting (27.77) and (27.78) into (27.76), the line integral in (27.76) must also

vanish for an arbitrary length element of the contact line C, explicitly,

δ(c)γ(c)

δt
+ ∇(c) ·

(
γ(c)v

(c)
t

)
+ γ(c)κ(c)

(
w(c) · n(c)

)

+∇(c) · φ(c) − κ(c)
(
φ(c) · n(c)

)− (π(c) + ζ(c)
)

+
3∑

i=1

(
γ(si )

(
w(c) − v(si )

) · s(i) − φ(si ) · s(i)) = 0,

(27.79)

which hold true at all points of the three-phase contact line C.
These general local balance equations will now be specified for mass, momentum,

angular momentum, energy, and entropy.
It is worth noting that in the above derivation of the local balance laws for bulk,

areal, and line subregions of a body, it would strictly also be possible to interpret
the endpoints I and II (see Fig. 27.3) as limiting (dimensionless) material points for
which balance laws could be formulated. To our knowledge, this has so far not been
done and will not be done here either.
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Table 27.1 Thermodynamic fields for balance equations

Quantity Mass Solute Momentum Angular momentum Energy Entropy

Bulk field quantities in the phase subdomain B(i)

γ(i) ρ(i) c(i) ρ(i)v(i) x × ρ(i)v(i) ρ(i)
(
u(i) + 1

2 v(i) · v(i)
)

ρ(i)η(i)

φ(i) 0 j (i) −T (i) −x × T (i) q(i) − T (i)T v(i) φ(i)
η

π(i) 0 0 0 0 0 ρ(i)π(i)
η

ζ(i) 0 0 ρ(i)g x × ρ(i)g ρ(i)
(
v(i) · g

)+ ρ(i)r (i) ρ(i)ζ(i)
η

Surface field quantities on the phase interfaces S(i)

γ(si ) ρ(si ) c(si ) ρ(si )v(si ) x(si ) × ρ(si )v(si ) ρ(si )
(
u(si ) + 1

2 v(si ) · v(si )
)

ρ(si )η(si )

φ(si ) 0 j (si ) −T (si ) −x(si ) × T (si ) q(si ) − T (si )
T
v(si ) φ(si )

η

π(si ) 0 0 0 0 0 ρ(si )π(si )
η

ζ(si ) 0 0 ρ(si )g x(si ) × ρ(si )g ρ(si )
(
v(si ) · g

)+ ρ(si )r (si ) ρ(si )ζ(si )
η

Line field quantities at the three-phase contact line C

γ(c) ρ(c) c(c) ρ(c)v(c) x(c) × ρ(c)v(c) ρ(c)
(
u(c) + 1

2 v(c) · v(c)
)

ρ(c)η(c)

φ(c) 0 j (c) −T (c) −x(c) × T (c) q(c) − T (c)T v(c) φ(c)
η

π(c) 0 0 0 0 0 ρ(c)π(c)
η

ζ(c) 0 0 ρ(c)g x(c) × ρ(c)g ρ(c)
(
v(c) · g

)+ ρ(c)r (c) ρ(c)ζ(c)
η

27.3 Specified Balance Equations

The identifications of the variables in the general balance equations (27.77)–(27.79)
are given in Table 27.1 for the specified physical balance equations. Here, T (i),
T (si ), T (c) are the Cauchy, surface, and line stress tensors, respectively; q(i), q(si ),
q(c), denote the bulk, surface, and line heat flux vectors; j (i), j (si ), j (c) the bulk,
surface, and line solute flux vectors; moreover, φ(i)

η , φ(si )
η , φ(c)

η are the bulk, surface,
and line entropy flux vectors; u(i), u(si ), u(c) indicate the specific internal energy
densities; r (i), r (si ), r (c) denote the specific heat supplies; π(i)

η , π(si )
η , π(c)

η are the
specific entropy productions; ζ(i)

η , ζ(si )
η , ζ(c)

η the specific entropy supplies; ρ(i), ρ(si ),
ρ(c) the mass densities; c(i), c(si ), c(c) the concentrations of the solute; η(i), η(si ), η(c)

the specific entropy densities. Moreover, g is the gravitational force per unit mass,
and v(si ), v(c) are the material velocities of the fluid particles that lie on the surface
S(i) and the line C at the instant of time, respectively.

It should be pointed out that in Table27.1 the expressions of the physical quan-
tities are specified only for classical multiphase flows. For some special flow prob-
lems, additional terms may be necessary. It has been assumed that the material is a
Boltzmann or nonpolar continuum. For example, for a polar continuum, intrinsic
angular momentum (spin), couple stress tensor, and body couple will arise in the
balance equation of angular momentum, while their corresponding workings will
be included in the conservation equation of energy, as in Chap.1, Table 21.1. For
flows of electrically conducting fluids in the presence of an electromagnetic field, the
electric and magnetic forces need also to be accounted for as additional body forces
to the gravitational force. If material features of the fluids are homogeneous for each
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phase, the electric force appears usually only as a surface force on the interface.
Furthermore, if chemical reactions are considered, production terms must be added
to the mass balances.

Substituting these specified variables listed in Table27.1 in the general balance
equations derived above, the special balance equations for mass, solute, momentum,
angular momentum, energy, and entropy can be furnished with little more labor.

27.3.1 Conservations of Mass

Substituting the corresponding variables of Table27.1 for the mass balance in
(27.77)–(27.79), respectively, the conservation laws of mass can be obtained:

in the phase subdomain B(i):

∂ρ(i)

∂t
+ ∇ · (ρ(i)v(i)

) = 0, (27.80)

on the phase interface S(i):

δ(si )ρ(si )

δt
+ ∇(si ) ·

(
ρ(si )v

(si )
t

)
+ ρ(si )H (si )

(
w(si ) · n(si )

)

= [[
ρ
(
w(s) − v

) · n(s)
]](i)

, (27.81)

along the three-phase contact line C:

δ(c)ρ(c)

δt
+ ∇(c) ·

(
ρ(c)v

(c)
t

)
+ ρ(c)κ(c)

(
w(c) · n(c)

)

= −
3∑

i=1

(
ρ(si )

(
w(c) − v(si )

) · s(i)) . (27.82)

The conservations of mass on the surface S(i), (27.81), and for the three-phase
contact line C, (27.82), can also be written in the forms

on the phase interface S(i):

δ(si )ρ(si )

δt
+ ∇(si ) · (ρ(si )v(si )

)+ ρ(si )H (si )
((

w(si ) − v(si )
) · n(si )

)

= [[
ρ
(
w(s) − v

) · n(s)
]](i) ; (27.83)

along the three-phase contact line C:
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δ(c)ρ(c)

δt
+ ∇(c) · (ρ(c)v(c)

)+ ρ(c)κ(c)
((

w(c) − v(c)
) · n(c)

)

= −
3∑

i=1

(
ρ(si )

(
w(c) − v(si )

) · s(i)) . (27.84)

If we neglect the mass density on the phase interface, the mass balance equation
on the phase interfaceS(i), (27.81), is simplified to the classicalmass jump condition

[[
ρ
(
w(s) − v

)]](i) · n(si ) = 0, (27.85)

i.e., the mass flux from one side onto the interface must be equal to the same mass
flux into the other side.

If the line mass density along the contact line is neglected, the mass balance
equation along the contact line C, (27.82), is reduced to

3∑

i=1

(
ρ(si )

(
w(c) − v(si )

) · s(i)) = 0, (27.86)

which indicates that the total mass transfer through the common line vanishes.

27.3.2 Solute Transport

In many applications, one is interested in the transport process of a solute whose
concentration is small, and its influence on the flow field is negligible. Such a solute
is considered as a passive constituent which is converted by the fluid flow and whose
relativemotion to thefluidflow ismodeled by a diffusiveflux. Themass balance equa-
tion of the solute can also be established by the general balance equations (27.77)–
(27.79) by means of the following identifications listed in Table27.1 for the solute
investigated. Here, c(i) and j (i) denote the bulk concentration and flux of the solute
in the domainB(i), c(si ) and j (si ) the surface concentration and flux of the solute on
the interface S(i), as well as c(c) and j (c) are the line concentration and flux of the
solute along the three-phase contact line C.

Substituting the corresponding variables of Table27.1 for the solute mass balance
in (27.77)–(27.79), respectively, the conservation laws of mass can be obtained:

in the phase subdomain B(i):

∂c(i)

∂t
+ ∇ · (c(i)v(i)

) = −∇ · j (i), (27.87)

on the phase interface S(i):
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δ(si )c(si )

δt
+ ∇(si ) ·

(
c(si )v

(si )
t

)
+ c(si )H (si )

(
w(si ) · n(si )

)

+∇(si ) · j (si ) − H (si )
(
j (si ) · n(si )

)

= [[
c
(
w(s) − v

) · n(s) − j · n(s)
]](i)

, (27.88)

along the three-phase contact line C:

δ(c)c(c)

δt
+ ∇(c) ·

(
c(c)v

(c)
t

)
+ c(c)κ(c)

(
w(c) · n(c)

)

+∇(c) · j (c) − κ(c)
(
j (c) · n(c)

)

= −
3∑

i=1

(
c(si )

(
w(c) − v(si )

) · s(i) − j (si ) · s(i)) . (27.89)

In most cases, Fick’s first law is employed to relate the diffusive fluxes to the
concentration fields

j (i) = −D∇c(i), j (si ) = −D(s)∇(si )c(si ), j (c) = −Dl∇(c)c(c), (27.90)

where D, D(s), and Dl denote the bulk, surface, and line diffusion coefficients or
diffusivities, respectively. Relations (27.90) are reasonable if interactions between
solute molecules are negligible. Furthermore, if there exist chemical reactions the
solute may also be created as a result of chemical reactions, corresponding source
terms need to be included in (27.87)–(27.89).

By assuming that the phase interface (si ) is material and adsorbs or desorbs solute
from the adjacent phases (i − 1) and (i), and employing relations (27.90), the well-
known conservation law of surfactant mass is obtained

dc(si )

dt
+ c(si )∇(si ) · v

(si )
t + c(si )H (si )V (si )

= D(s)Δ(si )c(si ) + (DΔc(i)
) |(si ) − (DΔc(i−1)

) |(si ), (27.91)

where d/dt is thematerial time derivative, V (si ) = w(si ) ·n(si ) is the normal (material)
velocity of the interface (si ), and (DΔc(i))|(si ) denotes the diffusion flux in the phase
(i) immediately adjacent to the interface (si ).

Further, the mass flux from the bulk (i) to the interface (si ) is controlled, in
general, by both diffusion and adsorption–desorption fluxes [12]

− (DΔc(i)
) |(si ) = kadc

(i)
s

(
c(si )∞ − c(si )

)− kdec
(si ), (27.92)
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where kad and kde are adsorption and desorption coefficients, respectively, c(i)
s is the

bulk concentration of surfactant immediately adjacent to the interface, and c(si )∞ is the
upper bound to the surface concentration that can be accommodated in the interface.

27.3.3 Balance of Linear Momentum

Substituting the corresponding variables of Table27.1 for the momentum balance in
(27.77)–(27.79), respectively, the conservation laws of momentum can be obtained:

in the phase subdomain B(i):

∂
(
ρ(i)v(i)

)

∂t
+ ∇ · (ρ(i)v(i) ⊗ v(i)

) = ∇ · T (i) + ρ(i)g, (27.93)

on the phase interface S(i):

δ(si )
(
ρ(si )v(si )

)

δt
+ ∇(si ) ·

(
ρ(si )v(si ) ⊗ v

(si )
t

)

+ρ(si )v(si )H (si )
(
w(si ) · n(si )

)

= ∇(si ) · T (si ) − H (si )
(
T (si ) · n(si )

)+ ρ(si )g

+ [[ρv
(
w(s) − v

) · n(s) + T · n(s)
]](i)

, (27.94)

along the three-phase contact line C:

δ(c)
(
ρ(c)v(c)

)

δt
+ ∇(c) ·

(
ρ(c)v(c) ⊗ v

(c)
t

)
+ ρ(c)v(c)κ(c)

(
w(c) · n(c)

)

= ∇(c) · T (c) − κ(c)
(
T (c) · n(c)

)+ ρ(c)g

−
3∑

i=1

(
ρ(si )v(si )

(
w(c) − v(si )

) · s(i) + T (si ) · s(i)
)
. (27.95)

Considering the conservation relations of mass, (27.80)–(27.82), we can rewrite
the balance laws of momentum in the forms:

in the phase subdomain B(i):

ρ(i) ∂v(i)

∂t
+ ρ(i)v(i) · ∇v(i) = ∇ · T (i) + ρ(i)g, (27.96)
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on the phase interface S(i):

ρ(si )
δ(si )v(si )

δt
+ ρ(si )v(si ) · ∇(si )v(si )

= ∇(si ) · T (si ) − H (si )
(
T (si ) · n(si )

)+ ρ(si )g

+ [[ρ (v − v(s)
) (

w(s) − v
) · n(s) + T · n(s)

]](i)
, (27.97)

along the three-phase contact line C:

ρ(c) δ
(c)v(c)

δt
+ ρ(c)v(c) · ∇(c)v(c)

= ∇(c) · T (c) − κ(c)
(
T (c) · n(c)

)+ ρ(c)g

−
3∑

i=1

(
ρ(si )

(
v(si ) − v(c)

) (
w(c) − v(si )

) · s(i) + T (si ) · s(i)) . (27.98)

Usually, the stress tensors can be decomposed into isotropic parts and dynamic
parts in the forms

T (i) = −p(i) I + (T (i)
)D

, (27.99)

T (si ) = σ(si ) I (si ) + (T (si )
)D

, (27.100)

T (c) = τ (c) I (c) + (T (c)
)D

, (27.101)

where p(i) denotes the hydrostatic pressure in phase B(i), σ(si ) the surface tension
on interfaceS(i), τ (c) is the line tension along the contact line, and I (si ) and I (c) are
the surface and line projection tensor, defined in (27.32) and (27.49), respectively.
Moreover, the superscript D indicates “dynamic” contributions.

If we employ the expressions of the stress tensors (27.99)–(27.101), the momen-
tum balances (27.96)–(27.98) can be rewritten, respectively, as

in the phase subdomain B(i):

ρ(i) ∂v(i)

∂t
+ ρ(i)v(i) · ∇v(i) = −∇ p(i) + ∇ · (T (i)

)D + ρ(i)g, (27.102)

on the phase interface S(i):

ρ(si )
δ(si )v(si )

δt
+ ρ(si )v(si ) · ∇(si )v(si )

= ∇(si )σ(si ) − σ(si )H (si )n(si ) + ∇(si ) · (T (si )
)D

−H (si )
((
T (si )

)D · n(si )
)

+ ρ(si )g

+ [[ρ (v − v(s)
) (

w(s) − v
) · n(s) − pn(s) + (T )D · n(s)

]](i)
, (27.103)
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along the three-phase contact line C:

ρ(c) δ
(c)v(c)

δt
+ ρ(c)v(c) · ∇(c)v(c)

= ∇(c)τ (c) − τ (c)κ(c)n(c) + ∇(c) · (T (c)
)D − κ(c)

((
T (c)

)D · n(c)
)

+ ρ(c)g

−
3∑

i=1

(
ρ(si )

(
v(si ) − v(c)

) (
w(c) − v(si )

) · s(i) + σ(si )s(i)

+ (T (si )
)D · s(i)

)
,

(27.104)

where on the basis of (27.49), the following relation has been used:

∇(c) · (τ (c) I (c)
) = ∇(c)τ (c) + τ (c)λ(c) · ∇(c)λ(c) = ∇(c)τ (c) − τ (c)κ(c)n(c).

Neglecting the surface mass density and the surface dynamic stress on the phase
interface, the surface momentum balance equation on the interfaceS(i), (27.103), is
reduced to the momentum jump condition

[[
ρ
(
v − v(s)

) (
w(s) − v

)− p I + (T )D
]](i) · n(si )

= −∇(si )σ(si ) + σ(si )H (si )n(si ). (27.105)

By means of the jump condition of mass, (27.85), the condition (27.105) can be
further reduced to

[[
ρv
(
w(s) − v

)− p I + (T )D
]](i) · n(si )

= −∇(si )σ(si ) + σ(si )H (si )n(si ). (27.106)

Furthermore, for the static case, this jump condition is simplified to

[[p]](i) = −σ(si )H (si ), σ(si ) = const. (27.107)

The above second condition in (27.107) indicates that a nonuniformly distributed
surface tension will always induce motion (theMarangoni

6 effect).

6For a brief biographical sketch of Carlo Giuseppe Matteo Marangoni (1840–1925), see
Fig. 27.6.
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Fig. 27.6 Carlo Giuseppe Matteo Marangoni (April 29, 1840–April 14, 1925)

Carlo Giuseppe Matteo Marangoni was an Italian physicist.

He graduated in 1865 from the University of Pavia under the supervision of
Giovanni Cantoni with a dissertation entitled “Sull’ espansione delle gocce
liquide” (“On the spreading of liquid droplets”). He then moved to Florence
where he first worked at the “Museo di Fisica” (1866) and later at the Liceo
Dante (1870), where he held the position of High School Physics Teacher for
45 years until retirement in 1916. He primarily studied surface phenomena in
liquids, and the Marangoni effect and the Marangoni number are named after
him. He also contributed to meteorology and invented a Nefoscopio to observe
clouds.

The text is based on www.wikipedia.org

Generally, the interfacial surface tension σ(si ) is a function of the surface con-
centration of the solute (surfactant concentration), c(si ) and surface temperature,
according to an equation of state. That due to Langmuir7 equation of state [28] has
the form

σ(si ) = σ(si )
0 + RΘ(si )c(si )∞ ln

(
1 − c(si )

c(si )∞

)
, (27.108)

where R is the ideal gas constant, Θ(si ) the absolute surface temperature, σ(si )
0 the

surface tension of a clean interface and c(si )∞ is the maximum packing concentration.
This relation provides a good model for low interfacial surfactant concentrations.
Nonuniform surfactant concentration leads to nonuniform normal (capillary) and
tangential (Marangoni) stresses on the phase interfaces which can significantly
affect the motion and deformation of interfaces of multiphase flows.

7For a brief biographical sketch of Irving Langmuir (1881–1957), see Fig. 27.7.

www.wikipedia.org


390 27 Multiphase Flows with Moving Interfaces and Contact Line …

Fig. 27.7 Irving Langmuir (January 31, 1881–August 16, 1957)

Irving Langmuir, the son of wealthy parents, studied at the Chestnut Hill
Academy in Philadelphia, the Pratt Institute in Brooklyn and at the School of
Mines at the Columbia University in New York. A three-year study period in
Europe thereafter brought him also to W. Nernst, who initiated his interest in
physical chemistry at Göttingen. Under his supervision, he obtained in 1906
the doctorate. Between 1906 and 1909, he was a teacher for chemistry at the
Stevens Institute of Technology in Hoboken. In 1909, he joined the Research
Laboratory of the General Electric Company in Schenectady (N.Y.), where he
assumed the CEO position in 1950. It is here where most of his fundamental
scientific and industrially significant research results were established.

Langmuir researched in the fields of colloid chemistry, phase boundary chem-
istry, absorption and adsorption techniques, reaction kinetics, heterogeneous
catalysis, etc., and contributed fundamentally to the development of physical
chemistry of the twentieth century, as well as its technological application.
This brought him honorary membership in many national and international
scientific and industrial societies. In 1932, Langmuir was awarded the Nobel
prize in chemistry as the first American chemist from industry; 13 universities
also awarded him honorary doctorates.

Langmuir contributed fundamentally to the theory of valence, as well as the
chemical adsorption of monocular layers. He contributed to reaction kinetics
of catalytic processes and studied in particular reactions at interface surfaces
of heterogeneous systems, of which (27.108) is a special example.

The text is based on
– Fachlexikon: Forscher und Erfinder, Nikol Verlagsgesellschaft mbH and
Co.KG, Hamburg 2005, 3. Auflage ©1992 Verlag Arry Deutsch, Thun,
Frankfurt am Main, Pages 346.

– The collected works of Irving Langmuir, 12 Volumes (Eds: C.G Suits and
H.E. Way), New York, London (1960–1962)
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If we neglect the line mass density and the dynamic line stress along the contact
line, themomentumbalance equation along the contact lineC, (27.104), is reduced to

3∑

i=1

(
ρ(si )

(
v(si ) − v(c)

) (
w(c) − v(si )

) · s(i) + σ(si )s(i) + (T (si )
)D · s(i)

)

−∇(c)τ (c) + τ (c)κ(c)n(c) = 0, (27.109)

which is a balance between the momentum transfer, the contact line force, and the
surface tensions of all three phases at every point of the three-phase contact line.
By employing the relation of the mass balance along the contact line, (27.86), the
momentum balance (27.109) can be reduced to

3∑

i=1

(
ρ(si )v(si )

(
w(c) − v(si )

) · s(i) + σ(si )s(i) + (T (si )
)D · s(i)

)

−∇(c)τ (c) + τ (c)κ(c)n(c) = 0, (27.110)

in which the material velocity of the contact line, v(c), does not occur as one may
expect.

For static cases, this balance relation is further reduced to

σ(1)s(1) + σ(2)s(2) + σ(3)s(3) + τ (c)κ(c)n(c) = 0, τ (c) = const. (27.111)

The above second relation indicates that a nonconstant line tensionwill always induce
material motion near the contact line like theMarangoni effect due to a nonuniform
surface tension.

Neglecting the line tension along the contact line, this relation takes the simple
form

σ(1)s(1) + σ(2)s(2) + σ(3)s(3) = 0, (27.112)

which is the generalized Young
8 equation.

Upon simplifications for a sessile drop on an ideal (rigid, homogeneous, horizon-
tal, and smooth) surface, the horizontal component of the force balance (27.111)1 at
the contact line can be written as

σlv cos θ = σsv − σsl − τ (c)

R
, (27.113)

where R is the radius of the three-phase contact circle; σlv , σsv , and σsl are liquid–
vapor, solid–vapor, and solid–liquid interfacial tensions; θ is the contact angle cor-
responding to a finite contact radius (R); and τ (c) is the line tension. This relation is
often employed to determine line tension for solid–liquid–vapor systems by inves-
tigating the drop size dependence of the contact angle for sessile drops on a solid
surface [2, 3, 10, 20, 40, 55].

8For a brief biographical sketch of Thomas Young (1773–1829), see Fig. 27.8.
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Fig. 27.8 Thomas Young (June 13, 1773–May 10, 1829)

Thomas Young was an English mathematician, physicist, and physician.
He made notable contributions to the fields of vision, light, solid mechanics,
energy, physiology, language, musical harmony, and Egyptology. At the age
of 14, he had learned Greek and Latin and was acquainted with French, Ital-
ian, Hebrew, German, Aramaic, Syriac, Samaritan, Arabic, Persian, Turkish,
and Amharic. He contributed significantly to the decipherment of Egyptian
hieroglyphs (in particular the Rosetta Stone) and was highly recognized in
physics by Herschel, Helmholtz, Maxwell, and Einstein. He has been
described as “The last man who knew everything”.

Young began to study medicine in London in 1792, moved to the University
of Edinburgh Medical School in 1794 and a year later to Göttingen, Germany,
where he obtained the doctorate in medicine in 1796. In 1797, he entered
Emmanuel College Cambridge and in 1799 established himself as a physician.
In 1801, Young was appointed Professor of Natural Philosophy at the Royal
Institution and in 1802 foreign secretary of the Royal Society, of which he had
become a fellow in 1794. He resigned his professorship in 1803. His university
lectures were published in 1807 as Course of Lectures on Natural Philosophy.
In 1811, he becamephysician to the St.George’sHospital and in 1818 secretary
of the Board of Longitude. Young was elected a foreign Honorary Member
of the American Academy of Arts and Sciences in 1822.

Young’smost important achievementwas to establish thewave theory of light.
To this end, he had to overcome the century-old view that light is a particle,
expressed in the century-old view that light is a particle, expressed in New-

ton’s Opticks. Nevertheless, with his interference experiments in the context
of water waves and his double slit experiment, he demonstrated interference in
the context of light as a wave. His research on diffraction andNewton’s rings
is summarized in Course of Lectures on Natural Philosophy and the Mechan-
ical Arts (1807), in which he also gives Grimaldi credit for first observing
the fringes in the shadow of a light beam.
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Young is credited (primarily in the Anglo-Saxon science literature) for the
characterization of elasticity of a material body, known as Young’s modu-
lus, denoted as E (1807). It must, however, be acknowledged that Giordano
Riccati in 1782 and Leonhard Euler in (1727) had preceded this concept
earlier. Special in this concept was that “(stress) = E × (strain)” expressed
a pure material property that did not include the geometry of the specimen of
which the “(Force) = k(displacement)” relation depends. In his own words,
Young introduced his modulus as follows: “The modulus of elasticity of any
substance is a column of the same substance, capable of producing a pressure
on its base which is to the weight causing a certain degree of compression as
the length of the substance is to the diminution of its length”. His commissioner
– the British Admiralty – responded immediately: “Though science is much
respected by their Lordship and your paper is much esteemed, it is too learned
... in short, it is not understood” (after [17]).

Thomas Young also developed the theory of capillary phenomena on the
principle of surface tension (1804). One year later, Pierre- Simon Laplace

discovered the significance of meniscus radii in capillary action. Their work
was combined in 1830 by Carl Friedrich Gauss in the Young–Laplace
equation that describes the capillary pressure difference sustained across the
interphase between two static fluids.
The text is based on www.wikipedia.org and [17]

27.3.4 Balance of Angular Momentum

As with the balance of linear momentum, the balance law of angular momentum is
also one of the basic axioms of Galilean physics. In general, angular momentum is
“moment of momentum plus self-angular momentum” (also called spin). The form
chosen by us in Table27.1 indicates that the spin is not taken into account there. These
are also called nonpolar continua. Substituting the angular momentum density, the
flux, the production, and the supply of angular momentum as listed in Table27.1 in
the general conservation equations (27.77)–(27.79), respectively, the balance laws
of angular momentum can be written as follows:

in the phase subdomain B(i):

∂
(
x × ρ(i)v(i)

)

∂t
+ ∇ · (x × ρ(i)v(i) ⊗ v(i)

)

= ∇ · (x × T (i)
)+ x × ρ(i)g, (27.114)

www.wikipedia.org
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on the phase interface S(i):

δ(si )
(
x(si ) × ρ(si )v(si )

)

δt
+ ∇(si ) ·

(
x(si ) × ρ(si )v(si ) ⊗ v

(si )
t

)

+ (x(si ) × ρ(si )v(si )
)
H (si )

(
w(si ) · n(si )

)

= ∇(si ) · (x(si ) × T (si )
)− H (si )

((
x(si ) × T (si )

) · n(si )
)+ x(si ) × ρ(si )g

+ [[(x × ρv)
(
w(s) − v

) · n(s) + (x × T ) · n(s)
]](i)

, (27.115)

along the three-phase contact line C:

δ(c)
(
x(c) × ρ(c)v(c)

)

δt
+ ∇(c) ·

(
x(c) × ρ(c)v(c) ⊗ v

(c)
t

)

+ (x(c) × ρ(c)v(c)
)
κ(c)

(
w(c) · n(c)

)

= ∇(c) · (x(c) × T (c)
)− κ(c)

((
x(c) × T (c)

) · n(c)
)+ x(c) × ρ(c)g

−
3∑

i=1

((
x(si ) × ρ(si )v(si )

) (
w(c) − v(si )

) · s(i) + (x(si ) × T (si )
) · s(i)) .

(27.116)

The balance of bulk angular momentum (27.114), together with the balance of

bulk linear momentum (27.93), yields the well-known result, T (i) = (
T (i)
)T
, i.e.,

the Cauchy stress tensor must be symmetric for nonpolar continua.

To evaluate the balance of surface angular momentum (27.115), after subtracting
x(si ) × (7.94), (27.115) is reduced to

δ(si )x(si )

δt
× (ρ(si )v(si )

)

+∇(si ) ·
(
x(si ) × ρ(si )v(si ) ⊗ v

(si )
t

)
− x(si ) ×

(
∇(si ) ·

(
ρ(si )v(si ) ⊗ v

(si )
t

))

= ∇(si ) · (x(si ) × T (si )
)− x(si ) × (∇(si ) · T (si )

)
. (27.117)

To further simplify (27.117), we employ the following identity:

∇(si ) · (x(si ) × P (si )
)

= x(si ) × (∇(si ) · P (si )
)+ ε :

(
P (si ) · ∂x(si )

∂ξ(si )

)
, (27.118)

where P (si ) ∈ R
3×2 is a second-rank tensor defined on the surface S(i), x(si ) =

x(si )
(
ξ(si ), t

)
is the surface parameterization ξ(si ) as indicated in (27.28) and ε =

{εi jk} is third-rank epsilon tensor (or fully antisymmetric tensor). The component
form of (27.118) is
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∂

∂ξ(si )
α

(
εi jk x

(si )
j P (si )

kα

)
= εi jk x

(si )
j

∂P (si )
kα

∂ξ(si )
α

+ εi jk P
(si )
kα

∂x (si )
j

∂ξ(si )
α

, (27.119)

i ∈ {1, 2, 3}, α ∈ {1, 2}.

By means of identify (27.118), (27.117) is reducible to

δ(si )x(si )

δt
× (ρ(si )v(si )

)+ ε :
((

ρ(si )v(si ) ⊗ v
(si )
t

)
· ∂x(si )

∂ξ(si )

)

−ε :
(
T (si ) · ∂x(si )

∂ξ(si )

)
= 0. (27.120)

By simplifying the second term on the left-hand side of (27.120) into

ε :
((

ρ(si )v(si ) ⊗ v
(si )
t

)
· ∂x(si )

∂ξ(si )

)
= ε :

(
ρ(si )v(si ) ⊗ v

(si )
t

)

= v
(si )
t × (ρ(si )v(si )

)
, (27.121)

and then combining it with the first term on the left-hand side of (27.120), the whole
left-hand side results in w(si ) × (ρ(si )v(si )

)
. Hence, (27.120) is reduced to

w(si ) × (ρ(si )v(si )
)+ ε :

(
T (si ) · ∂x(si )

∂ξ(si )

)
= 0. (27.122)

Further, if the interface S(i) is a material surface, w(si ) = v(si ), (27.122) yields

ε :
(
T (si ) · ∂x(si )

∂ξ(si )

)
= 0 or εi jkT

(si )
kα

∂x (si )
j

∂ξ(si )
α

= 0. (27.123)

The (full) surface stress T (si ) can be decomposed into two parts

T (si ) = T (si )
‖ · ∂x(si )

∂ξ(si )
+ T (si )

⊥ ⊗ n(si ),

or T (si )
kα =

(
T (si )

‖
)

αβ

∂x (si )
k

∂ξ(sk )
β

+
(
T (si )

⊥
)

α
n(si )
k , (27.124)

i ∈ {1, 2, 3}, α,β ∈ {1, 2},

where T (si )
‖ ∈ R

2×2 is the tangential surface stress and T (si )
⊥ ∈ R

2 the normal surface
stress. Figure 27.9 shows their distribution on the edges of a surface element δS(i).
Substituting (27.124) into (27.123) yields
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Fig. 27.9 a Surface element δS(i) drawn with small finite thickness and side faces parallel to the
curved coordinates 1 and 2. In red color, the normal membrane stress components in the directions
1 and 2 are shown, and in orange color, the shear membrane stresses are displayed. b Analogous
plot for the surface normal shear stress components are shown but according to (27.126) these stress
components are zero

εi jk

(
T (si )

‖
)

αβ

∂x (si )
k

∂ξ(sk )
β

∂x (si )
j

∂ξ(si )
α

+ εi jk

(
T (si )

⊥
)

α
n(si )
k

∂x (si )
j

∂ξ(si )
α

= 0,

or
(
T (si )

‖
)

αβ
t(si )α × t(si )β +

(
T (si )

⊥
)

α
t(si )α × n(si ) = 0, (27.125)

where t(si )α = ∂x(si )/∂ξ(si )
α is the surface tangent vector. (27.123) is equivalent to

T (si )
‖ =

(
T (si )

‖
)

, T (si )
⊥ = 0, (27.126)

i.e., T (si ) is a surface stress tensor and must be symmetric. This result was obtained
also by Moeckel [30].

A similar evaluation for the balance of angular momentum along the three-phase
contact line C (without consideration of additional torques) can be performed.
Repeating the steps from (27.118) to (27.122), but here for the contact line C, and
forming “(27.116) − x(c) × (27.95)” yield

w(c) × (ρ(c)v(c)
)+ ε : (T (c) · ∇(c)x(c)

) = 0, (27.127)

which is fully similar to relation (27.122) obtained for the interface S(i). For a
material contact line, for which w(c) = v(c), (27.127) is reduced to

ε : (T (c) · ∇(c)x(c)
) = 0. (27.128)

By means of a one-parameter configuration of the contact line x(c) = x̂(c) (ξ(c), t
)
,

as indicated in (27.45), (27.128) can be rewritten as
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Fig. 27.10 Line element δC, drawn with small cross section. The normal stress component T (c)
λ =(

T (c) · λ(c)
)

· λ(c) = t(c) · λ(c) (in red color) is tangential to the line. The shear forces (in blue

color) are within the cross section, arranged according to the Serret–Frenet, but vanish in view
of (27.129)

ε :
(
T (c) · λ(c) ∂x

(c)

∂ξ(c)

)
= 0 =⇒ (

T (c) · λ(c)
)× λ(c) = 0. (27.129)

Since the line stress tensor is a tensor with T (c) ∈ R
3×1 in the one-parameter con-

figuration, it can be expressed as T (c) = t(c) ⊗ λ(c) with t(c) ∈ R
3. It is concluded

from (27.129) that t(c) is parallel to the contact line, see Fig. 27.10.
As indicated above, if there is an additional spin on the singular surface and along

the contact line or the surface and the contact line are nonmaterial, one needs the
conditions for a full angular momentum, accounting for a spin balance.

27.3.5 Conservation of Energy

Substituting the specifications of the corresponding variables for the energy balance
(listed in Table27.1) in (27.77)–(27.79) and employing the conservation relations of
mass (27.80)–(27.82), respectively, the conservation laws of energy can be obtained9:

in the phase subdomain B(i):

ρ(i) ∂

∂t

(
u(i) + 1

2v
(i) · v(i)

)+ ρ(i)v(i) · ∇ (u(i) + 1
2v

(i) · v(i)
)

= −∇ · (q(i) − T (i)v(i)
)+ ρ(i)

(
v(i) · g

)+ ρ(i)r (i), (27.130)

9The derivation of these expressions is not difficult as it follows the procedure already used in
simpler situations, but it is a bit long and tedious.
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on the phase interface S(i):

ρ(si )
δ(si )

δt

(
u(si ) + 1

2v
(si ) · v(si )

)+ ρ(si )v(si ) · ∇(si )
(
u(si ) + 1

2v
(si ) · v(si )

)

= −∇(si ) · (q(si ) − T (si )v(si )
)+ H (si )

((
q(si ) − T (si )v(si )

) · n(si )
)

+ [[ρ ((u + 1
2v · v

)− (u(s) + 1
2v

(s) · v(s)
)) ((

w(s) − v
) · n(s)

)

− (q − Tv) · n(s)
]](i) + ρ(si )

(
v(si ) · g

)+ ρ(si )r (si ), (27.131)

along the three-phase contact line C:

ρ(c) δ
(c)

δt

(
u(c) + 1

2v
(c) · v(c)

)+ ρ(c)v(c) · ∇(c)
(
u(c) + 1

2v
(c) · v(c)

)

= −∇(c) · (q(c) − T (c)v(c)
)+ κ(c)

(
q(c) − T (c)v(c)

) · n(c)

+ρ(c)
(
v(c) · g

)+ ρ(c)r (c)

−
3∑

i=1

(
ρ(si )

((
u(si ) + 1

2v
(si ) · v(si )

)− (u(c) + 1
2v

(c) · v(c)
))

· (w(c) − v(si )
) · s(i) − (q(si ) − T (si )v(si )

) · s(i)
)
. (27.132)

We rewrite the balance relations of the total energy (27.130)–(27.132) in the form
of the balance equations for the internal energy. For this purpose, we first take the
scalar product of the bulk velocity v(i) with the bulk momentum balance (27.102),
the surface velocity v(si ) with the surface momentum balance (27.103), and the line
velocity v(c) with the line momentum balance (27.104), respectively, then subtract
these resulting equations from (27.130)–(27.132), respectively. By performing these
indicated computations, the following reduced balances for the bulk, surface, and
line internal energies are obtained:

in the phase subdomain B(i):

ρ(i) ∂u
(i)

∂t
+ ρ(i)v(i) · ∇u(i) = −∇ · q(i) + tr

(
T (i)

(∇v(i)
))+ ρ(i)r (i), (27.133)

on the phase interface S(i):

ρ(si )
δ(si )u(si )

δt
+ ρ(si )v(si ) · ∇(si )u(si )

= −∇(si ) · q(si ) + tr
(
T (si )

(∇(si )v(si )
))+ H (si )

(
q(si ) · n(si )

)+ ρ(si )r (si )

+ [[ρ ((u − u(s)
)+ 1

2

(
v − v(s)

) · (v − v(s)
)) ((

w(s) − v
) · n(s)

)

−q · n(s) + (T (v − v(s)
)) · n(s)

]](i)
, (27.134)
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along the three-phase contact line C:

ρ(c) δ
(c)u(c)

δt
+ ρ(c)v(c) · ∇(c)u(c)

= −∇(c) · q(c) + tr
(
T (c)

(∇(c)v(c)
))+ κ(c)

(
q(c) · n(c)

)+ ρ(c)r (c)

−
3∑

i=1

(
ρ(si )

((
u(si ) − u(c)

)+ 1
2

(
v(si ) − v(c)

) · (v(si ) − v(c)
))

· ((w(c) − v(si )
) · s(i))

−q(si ) · s(i) + (T (si )
(
v(si ) − v(c)

)) · s(i)
)
. (27.135)

If we neglect the surface mass density (and thus also neglect the surface dynamic
stress and surface heat flux), or strictly speaking, if our concern is primarily with
the energy transfer through the interface rather than with the energy associated with
the interface, we can rewrite the energy conservation equation (27.134) on the phase
interface S(i) as a balance between the jump quantity and the surface tension as

[[
ρ
((
u − u(s)

)+ 1
2

(
v − v(s)

) · (v − v(s)
)) ((

w(s) − v
) · n(s)

)

−q · n(s) + (T (v − v(s)
)) · n(s)

]](i) + σ(si )
(∇(si ) · v(si )

) = 0, (27.136)

where relation (27.100) has been used. By means of the jump conditions for mass,
(27.85), and formomentum, (27.106), the above jump condition for energy, (27.136),
can be reduced to

[[
ρ
(
u + 1

2 (v · v) − v(s) · v
) ((

w(s) − v
) · n(s)

)− (q − Tv) · n(s)
]](i)

= −∇(si ) · (σ(si )v(si )
)+ σ(si )H (si )

(
v(si ) · n(si )

)
. (27.137)

Similarly, if the line mass density, line dynamic stress, and line heat flux are
negligible, the conservation equation of energy along the contact line, (27.135), can
be reduced to the jump condition

3∑

i=1

(
ρ(si )

((
u(si ) − u(c)

)+ 1
2

(
v(si ) − v(c)

) · (v(si ) − v(c)
))

· ((w(c) − v(si )
) · s(i))

−q(si ) · s(i) + (T (si )
(
v(si ) − v(c)

)) · s(i)
)

−τ (c)
(∇(c) · v(c)

) = 0. (27.138)

Further, if the surface mass densities (and the surface dynamic stresses and heat
fluxes) on the interfaces are also neglected (see (27.100) and (27.101), where the
dynamic stresses are ignored), this relation can be simplified to
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3∑

i=1

( (
σ(si ) I (si )

(
v(si ) − v(c)

)) · s(i)
)

− τ (c)
(∇(c) · v(c)

) = 0. (27.139)

This relation represents a conservation of the works at the contact line performed
by both the surface tension due to the difference of the interface and contact line
material velocities, and the line tension on account of the stretching of the contact
line.

27.3.6 Entropy Inequality

Substituting the corresponding variables of Table27.1 for the conservation of entropy
in (27.77)–(27.79) and employing the conservation relations ofmass (27.80)–(27.82),
respectively, the conservation laws of entropy can be obtained:

in the phase subdomain B(i):

ρ(i) ∂η(i)

∂t
+ ρ(i)v(i) · ∇η(i) = −∇ · φ(i)

η + ρ(i)π(i)
η + ρ(i)ζ(i)

η , (27.140)

on the phase interface S(i):

ρ(si )
δ(si )η(si )

δt
+ ρ(si )v(si ) · ∇(si )η(si )

= −∇(si ) · φ(si )
η + H (si )

(
φ(si )

η · n(si )
)+ ρ(si )π(si )

η + ρ(si )ζ(si )
η

+ [[ρ (η − η(s)
) (

w(s) − v
) · n(s) − φη · n(s)

]](i)
, (27.141)

along the three-phase contact line C:

ρ(c) δ
(c)η(c)

δt
+ ρ(c)v(c) · ∇(c)η(c)

= −∇(c) · φ(c)
η + κ(c)

(
φ(c)

η · n(c)
)+ ρ(c)π(c)

η + ρ(c)ζ(c)
η

−
3∑

i=1

(
ρ(si )

(
η(si ) − η(c)

) (
w(c) − v(si )

) · s(i) − φ(si )
η · s(i)) . (27.142)

The entropy principle states that the entropy production is nonnegative in all
thermodynamic processes, i.e.,

π(i)
η ≥ 0, π(si )

η ≥ 0, π(c)
η ≥ 0.
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With these conditions, the conservation laws of entropy (27.140)–(27.142) yield
the entropy inequalities for the bulk phases, phase interfaces, and the contact line,
respectively. The exploitation of these entropy inequalities will be given in Chap. 28.

27.4 Implicit Representation of Phase Interfaces
and Contact Line

In the last section, the balance equations for phase interfaces and the three-phase
contact line have been derived. To apply these equations, the motion of the phase
interfaces, and the contact line and their shapesmust be represented and (numerically)
tracked. For this purpose, the level set method may be a suitable technique. The
level set method was introduced by Osher and Sethian [35] and has become an
increasingly popular method for simulating multiphase flows. The advantage of the
level set method is that one can perform numerical computations involving curves
and surfaces on a fixed grid without having to parameterize these objects. Also,
the level set method makes it very easy to follow shapes that change topology, for
example, when a shape splits into two, develops holes, or when the reverse of these
operations occurs.

Letϕ(si )(x, t) be a scalar functionwhose zero level set {x(si ) : ϕ(si )
(
x(si ), t

) = 0}
represents the phase interface S(i). For example, we may set ϕ(si )(x, t) to be the
signed distance from the point x toS(i) at time t . Since the interface moves with the
velocity w(si ), [which may depend on position, time, the geometry of the interface
(e.g., its normal or itsmean curvature) and the external physics, or be given externally,
for instance, as thematerial velocity in a fluid flow simulation] the evolution equation
for the level set function ϕ(si ) is given by

∂ϕ(si )

∂t
+ w(si ) · ∇ϕ(si ) = 0. (27.143)

Here w(si ) is the surface velocity on the interface that is arbitrary elsewhere. If the
interface S(i) is a material surface, w(si ) can be replaced by the fluid velocity. It
is convenient to make ϕ(si ) equal to the signed distance to the interface so that
|∇ϕ(si )| = 1. This ensures that the level set is a smoothly varying function,well suited
for high-order accurate numerical methods. Unfortunately, as noted in Sussman,
Smereka and Osher [48] the level set function can quickly cease to be a signed
distance function especially for flows undergoing extreme topological changes. To
avoid this, the level set function is re-initialized after each time step to be a signed
distance function at least locally near the interface [47, 48]. This is performed by
solving the following Hamilton–Jacobi equation to steady state (as fictitious time
τ → ∞)

∂ϕ(si )

∂τ
+ sgn

(
ϕ(si )
0

) (|∇ϕ(si )| − 1
) = 0, ϕ(si )(x, 0) = ϕ(si )

0 (x), (27.144)
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where ϕ(si )
0 is the level set function before the re-initialization, and τ is the pseudo-

time and sgn(χ) the sign function of χ defined as

sgn(χ) =
⎧
⎨

⎩

−1, if χ < 0,
0, if χ = 0,
1, if χ > 0.

(27.145)

One of the advantages of the level set method is that geometrical quantities can
be easily computed from the level set function. Assume that the set of x such that
ϕ(si )(x, t) > 0 is contained in B(i), then the normal, curvature, and surface delta
function of the interface S(i) are

n(si ) = ∇ϕ(si )

|∇ϕ(si )| ,

H (si ) = ∇ ·
( ∇ϕ(si )

|∇ϕ(si )|
)

, (27.146)

δ(si ) = δ(ϕ(si ))|∇ϕ(si )|,

where δ(χ) = d (sgn(χ)) /dχ is the usual one-dimensional delta function.
With the specified velocities of the three-phase interfaces, w(si ) (i = 1, 2, 3), the

motion and deformation of the interfaces can be represented and numerically tracked
by means of the level set method. However, it is necessary to point out that the three
surface velocities w(si ) are not independent of each other. They must fulfill some
condition (at least near the moving contact line) so that the following compatibility
conditions are met:

{
ϕ(s1) ∩ ϕ(s2)

} = {ϕ(s2) ∩ ϕ(s3)
} = {ϕ(s3) ∩ ϕ(s1)

}
. (27.147)

This common domain constructs the three-phase contact line.
Furthermore, the motion of the three-phase contact line is determined only by the

motions of the three-phase interfaces. The velocity of themoving three-phase contact
line can be easily obtained by the velocities of any two of the three intersecting phase
interfaces due to the fact that its projection to the normal direction of any interface
is consistent with the normal velocity of that interface. Hence, the velocity of the
three-phase contact line can be given by

w(c) =
{

w(sl) · n(sl)

1 − (n(sl) · n(sm)
)2
(
n(sl) − (n(sl) · n(sm)

)
n(sm)

)

+ w(sm) · n(sm)

1 − (n(sl) · n(sm)
)2
(
n(sm) − (n(sl) · n(sm)

)
n(sl)

)
} ∣∣
∣∣
C

, (27.148)

and its tangential direction can be specified simply by
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λ(c) = n(sl) × n(sm)

∣∣n(sl) × n(sm)
∣∣

∣∣
∣∣
C

, (27.149)

where {l,m} ⊂ {1, 2, 3} with l �= m, i.e., (l,m) ∈ {(1, 2), (2, 3), (3, 1)}, and the
subscript |C denotes the quantities evaluated near the contact line. Obviously, the
velocity of the three-phase contact line depends on the normal velocity components
of any two of the three-phase interfaces composing the three-phase contact line and
their orientations immediately adjacent to the contact line. In general, in (27.148)
and (27.149), the two-phase interfaces Sl and Sm can be chosen arbitrarily unless
their orientations immediately adjacent to the contact line are identical. For that
case,

(
n(sl) · n(sm)

) |C = 1, the other two possible combinations of (l,m) should be
chosen.

27.5 One-Fluid Conservation Equations

If the surface and line densities on the phase interfaces and along the contact line are
small and negligible, three-phase flows with interfaces and the three-phase contact
line can be treated by a single set of conservation laws for the whole flow field. For
this purpose, it is necessary to account for the differences in the material properties
of the different phases such as density, viscosity, and molecular diffusion coefficient
and to add appropriate interface terms for interfacial and line phenomena, such as
surface and line tensions. Since these terms are concentrated at the phase interfaces
and the contact line between the different phases, they are represented by delta (δ)
functions.

By means of the level set functions, ϕ(s1), ϕ(s2), and ϕ(s3), introduced in the last
section, the three-phase domains can be identified uniquely by the signs of the level
set functions (see Fig. 27.11)

Phase(1) : {ϕ(s1) > 0
} ∩ {ϕ(s2) < 0

}
,

Phase(2) : {ϕ(s2) > 0
} ∩ {ϕ(s3) < 0

}
,

Phase(3) : {ϕ(s3) > 0
} ∩ {ϕ(s1) < 0

}
.

By introducing the Heaviside function

H(x) =
{
0, if x < 0,
1, if x ≥ 0,

(27.150)

any fluid property ψ is expressible as

ψ = ψ(1)H (ϕ(s1)
)H (−ϕ(s2)

)+ ψ(2)H (ϕ(s2)
)H (−ϕ(s3)

)

+ψ(3)H (ϕ(s3)
)H (−ϕ(s1)

)
, (27.151)
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where ψ stands for density ρ, viscosity μ, or diffusivity D, i.e., ψ ∈ {ρ,μ, D}.
Then, the one-fluid conservation equations, here, for example, only for mass and

momentum, can be written as

• Conservations of mass

∂ρ

∂t
+ ∇ · (ρv) = 0; (27.152)

• Balance of linear momentum

∂(ρv)

∂t
+ ∇ · (ρv ⊗ v)

= −∇ p + ∇ · (μ (∇v + (∇v)T
))+ ρg

+
3∑

i=1

(∇(si )σ(si ) − σ(si )H (si )n(si )
)
δ
(
ϕ(si )

)

+ (∇(c)τ (c) − τ (c)κ(c)n(c)
)
δ
(
ϕ(sl)

)
δ
(
ϕ(sm)

)
, (27.153)

where sl and sm are two arbitrarily chosen phase interfaceswhose orientations imme-
diately adjacent to the contact line are different. This equivalence can be traced back
to the compatibility condition (27.147). In writing the balance equation (27.153) a
Newtonian fluid with viscosity μ has been assumed. The expressions of the last two
terms in (27.153) are based on the identities

Fig. 27.11 Three-phase subdomains defined by level set functions in a two-dimensional description
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∫

B

(
∇(si )σ(si ) − σ(si )H (si )n(si )

)
δ
(
ϕ(si )

)
dv

=
∫

S(i)

(
∇(si )σ(si ) − σ(si )H (si )n(si )

)
da, (27.154)

∫

B

(
∇(c)τ (c) − τ (c)κ(c)n(c)

)
δ
(
ϕ(sl)

)
δ
(
ϕ(sm)

)
dv

=
∫

C

(
∇(c)τ (c) − τ (c)κ(c)n(c)

)
d�.

In numerical simulations, itmay be advantageous to implement such one-fluid conservation
equations (27.152) and (27.153) in the whole flow domain B.

27.6 Concluding Remarks

In this chapter, the local forms of the conservation laws of mass, momentum, angular momen-
tum, (internal) energy, and entropy for the bulk, surface, and line quantities have been derived,
starting from a general global balance equation for a multiphase flow domain including phase
interfaces and three-phase contact line. The derived local balance laws for mass, (27.80)–
(27.82), for momentum, (27.102)–(27.104), and for energy, (27.130)–(27.132), do not deter-
mine the field variables defined and interrelated by them uniquely. To that end, some fields
(here T (i), T (si ), T (c), q(i), q(si ), q(c)) must be expressed as functionals of the others, such
that the emerging equations have the potential of generatingwell-defined functional equations.
The forms of these constitutive relations must obey the known universal physical principles
which have been abstracted from experience, and are reduced or constrained by them. The
most important of these principles is the second law of thermodynamics, which is formulated
as an entropy principle. This issue will be discussed in the following chapter.
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Chapter 28
Multiphase Flows with Moving
Interfaces and Contact
Line—Constitutive Modeling

Abstract A thermodynamic analysis, based on the MÜLLER–Liu thermodynamic
approach of the second law of thermodynamics, is performed to derive the expres-
sions of the constitutive variables in thermodynamic equilibrium. Non-equilibrium
responses are proposed by use of a quasi-linear theory. A set of constitutive equations
for the surface and line constitutive quantities is postulated. Some restrictions for the
emerging material parameters are derived by means of the minimum conditions of
the surface and line entropy productions in thermodynamic equilibrium. Hence, a
complete continuum mechanical model to describe excess surface and line physical
quantities is formulated. Technically, in the exploitation of the entropy inequality,
all field equations are incorporated with Lagrange parameters into the entropy
inequality. In the process of its exploitation, the Lagrange parameter of the energy
balance is identified with the inverse of the absolute temperature in the bulk, the
phase interface, and in the three-phase contact line. Interesting results, among many
others, are theGibbs relations, which are formally the same in the bulk, on the inter-
face and along the contact line, with the pressure in the compressible bulk replaced
by the surface tension on the interface and by the line tension along the contact line,
see (28.45), (28.87).

Keywords Multiphase flows · Entropy principle · Constitutive equations · Phase
interface · Three-phase contact line
List of Symbols

Roman Symbols

D(c) Contact line stretching tensor,
D(c) = 1

2

(∇(c)v(c) + (∇(c)v(c))T
)

D(si ) Surface stretching tensor,
D(si ) = 1

2

(∇(si )v(si ) + (∇(si )v(si ))T
)
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g Gravitational force per unit mass
H (si ) Total (i.e., twice the mean) surface curvature of surface S(i),

H (si ) = ∇(si ) · n(si )

I (c) Line projection tensor, I (c) = λ(c) ⊗ λ(c)

I (si ) Surface projection tensor on the interface S(i),
I (si ) ≡ I − n(si ) ⊗ n(si )

n(c) Unit principal normal to the contact line C
n(si ) Unit normal vector of the interfaceS(i), pointing into the phase

domain B(i)

p(i) Hydrostatic pressure in the phase domainB(i)

q(i), q(si ), q(c) Bulk, surface, and line heat flux vectors
r (i), r (si ), r (c) Specific bulk, surface, and line heat supplies
s(i) Unit vector normal to the boundary curves C(i) but tangent to

the interface S(i) pointing to the exterior of the system
T (i), T (si ), T (c) Cauchy, surface, and line stress tensors
u(i), u(si ), u(c) Specific bulk, surface, and line internal energy densities
v(c) Material velocities of fluid particles that lie on the line C at the

instant of time
v(i) Material velocity in the subdomain B(i)

v(si ) Velocity of material points which lie on the surface S(i)(t) at
time t

w(c) Velocity of the three-phase contact line C
w(si ) Velocity of the interface S(i)

W c,W i
c W c = w(c) − v(c), and W i

c = w(c) − v(si ) (i ∈ {1, 2, 3})
W+

s ,W−
s ,Ws W+

s = w(si )−v(i),W−
s = w(si )−v(i−1), andWs = w(si )−v(si )

Greek Symbols

η(i), η(si ), η(c) Specific bulk, surface, and line entropy densities
κ(c) Normal curvature of the contact line C
λ(c) Unit vector tangent to the contact line C directed toward to the

end II from the end I
Λ(i)

ρ ,Λ(i)
v ,Λ(i)

ε Lagrange multipliers associated with the constraints placed
on the bulk entropy inequality by the other balance relations
in phase (i), see (28.16)

Λ(si )
ρ ,Λ(si )

v ,Λ(si )
ε Lagrange multipliers associated with the constraints placed

on the surface entropy inequality by the other balance relations
on the phase interface, see (28.17)

Λ(c)
ρ ,Λ(c)

v ,Λ(c)
ε Lagrange multipliers associated with the constraints placed

on the line entropy inequality by the other balance relations at
the contact line, see (28.18)

φ(i)
η ,φ(si )

η ,φ(c)
η Bulk, surface, and line entropy flux vectors
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Π(i),Π(si ),Π(c) entropy productions per unit volume in the phaseB(i), per unit
area on the phase interface S(i), and per unit length along the
three-phase contact line C, respectively

ψ(i),ψ(si ),ψ(c) Helmholtz free energies for bulk phases B(i), interfaces S(i),
and the contact line C

ρ(i), ρ(si ), ρ(c) Bulk, surface, and line mass densities
σ(si ) Surface tension on the interface S(i)

τ (c) Line tension at the three-phase contact line C
Θ(i), Θ(si ), Θ(c) Absolute temperatures in the phaseB(i), on the interfaceS(i),

and at the three-phase contact line C, respectively
ζ(i)
η , ζ(si )

η , ζ(c)
η Specific bulk, surface, and line entropy supplies

Miscellaneous Symbols

B(i) Subdomain of phase i
C Three-phase contact line
d/dt Material time derivative
d(s)γ(s)/dt Time derivative of a surface scalar field γ(s) following the

evolution of the surface S(t) by using the parameterization

x(s) = x̂(s)
(
ξ(s)
1 , ξ(s)

2 , t
)

d(c)γ(c)/dt Time derivatives of a line field γ(c) following the evolution of
the curve C defined by means of the parameterization x(c) =
x̂(c) (

ξ(c), t
)

δ(si )γ(si )/δt Normal time derivative of a surface scalar field γ(si ), denot-
ing the time derivative for a given point on the surface S(i)

following the normal trajectory of the surface
δ(c)γ(c)/δt Normal time derivative of a line field γ(c), following C(t),

denoting the time derivative following the normal trajectory
of the moving curve

∂/∂t Partial (local) time derivative
∇ Gradient operator
∇(c) Line gradient operator, defined by

∇(c) = (λ(c) ⊗ λ(c)) · ∇ ≡ I (c) · ∇
∇(si ) Surface gradient operator on the interface S(i)

S(i) Phase interface between phases i − 1 and i
[[G]](i) Jump of the quantity G over the interface S(i),

[[G]](i) = G(i) − G(i−1) (if i − 1 = 0, it is set i − 1 = 3)
E (i) = 0 Conservation equation of energy in the phase subdomainB(i)

E (si ) = 0 Conservation equation of energy on the phase interface S(i)

E (c) = 0 Conservation equation of energy along the three-phase contact
line C

M(i) = 0 Balance equation of momentum in the phase subdomain B(i)

M(si ) = 0 Balance equation of momentum on the phase interface S(i)
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M(c) = 0 Balance equation of momentum along the three-phase contact
line C

R(i) = 0 Conservation equation of mass in the phase subdomain B(i)

R(si ) = 0 Conservation equation of mass on the phase interface S(i)

R(c) = 0 Conservation equation of mass along the three-phase contact
line C

Π(i) ≥ 0 Entropy inequality in the phase subdomain B(i)

Π(si ) ≥ 0 Entropy inequality on the phase interface S(i)

Π(c) ≥ 0 Entropy inequality along the three-phase contact line C

28.1 Introduction

It1 is widely known today that, to better investigate the behaviors of multiphase flows
including singular phase interfaces and three-phase contact line, it may be necessary
for some cases to introduce excess surface quantities associated with the phase inter-
faces and excess line quantities at the contact line. For these excess physical quantities
(e.g., surface mass density, surface momentum density, and surface internal energy,
as well as line mass density, line momentum density and line internal energy, etc.),
the conservation laws have been presented in Chap. 27. In these conservation equa-
tions, some new constitutive quantities, e.g., the surface and line stress tensors, heat
flux vectors, internal energies, must be postulated by suitable constitutive relations,
which must obey the known universal physical principles.

To some extent, modern continuum thermodynamics amounts to a collection of
thermodynamical theories sharing common premises and common methodology.
There are theories of elasticmaterials, of viscousmaterials, ofmaterialswithmemory,
of mixtures, and so on. It is generally the case that, in the context of each theory, one
considers all processes (compatible with classical conservation laws) that bodies
composed of the prescribed material might admit. Moreover, there exist for the
theory some universal physical principles that have been abstracted from experience.
Therefore, one can reduce the generality of the constitutive relations of dependent
material variables by relying upon these principles. The most important of these
principles is the second law of thermodynamics.

In Wang and Hutter (1999) [35], an attempt was made to explain how the
basic postulates of two forms of the entropy principle, (i) the generalizedClausius–
Duhem inequality with the Coleman–Noll approach and (ii) the MÜLLER–Liu
entropy principle, differ from one another and then demonstrate that they may yield
different results in many cases, especially for some complicated materials, e.g., for
granular materials [36, 37]. In Chap. 18 in Vol. 2 of this treatise, both forms of the
entropy principle have been introduced and extensively discussed.

1Additional symbols are the same as in Chap. 27.

http://dx.doi.org/10.1007/978-3-319-33636-7_18
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Most of themodernworkon rational thermodynamics is basedupon theClausius–
Duhem inequality after Coleman and Noll [5] had suggested a method for its
exploitation, in which the entropy flux was assumed to be equal to the heat flux
divided by the absolute temperature, just as in linear irreversible thermodynamics,
and the entropy supply has been assumed to be equal to the specific energy supply
divided by the absolute temperature. These assumptions may only be adopted in
linear irreversible thermodynamics with the principle of local equilibrium. Another
key to the exploitation of the Clausius–Duhem inequality is the statement that
this inequality holds only for thermodynamic processes, i.e., solutions of the field
equations rather than for arbitrary fields. In theColeman–Noll approach of thermo-
dynamics, it is considered that the linear momentum equation and the energy balance
have all arbitrarily assignable external source terms, so that these balance laws would
not affect the exploitation of the entropy inequality, because whatever the fields are,
the conservation equations of momentum and energy would be satisfied by a suitable
body force and radiation supply. Such a procedure may not be physically justified
and has been criticized [42]. The formulation of the Clausius–Duhem inequality
has provided a step away from thermostatics in the direction of a properly formulated
thermodynamic theory, because it allows the entropy to depend on non-equilibrium
variables. Such an extension is proper and in fact is dictated by the kinetic theory
of gases that shows the entropy in non-equilibrium to deviate from the equilibrium
entropy [11, 27]. However, once this step is made, it would seem inconsistent to rely
upon thermostatics to suggest the expression for the entropy flux. It is shown that in
general, the entropy flux is different from the heat flux divided by the temperature
[11, 27].

MÜLLER [24] proposed an entropy principle which is free of these special assump-
tions. Rather, the entropy flux is given by a constitutive equation. Just like in the
exploitation of the Clausius–Duhem inequality, the entropy inequality must hold
for all thermodynamic processes, i.e., solutions of the field equations. Thus, the field
equations can be considered as constraints, i.e., the fields that satisfy the entropy
inequality are constrained by the requirement that they must be solutions of all field
equations, regardless of whether external sources are included or not. Liu [21] has
shown that one may take account of such constraints to MÜLLER’s entropy inequal-
ity explicitly by use of Lagrange multipliers. Thus, the entropy principle with the
MÜLLER–Liu approach is more general than that of the Coleman–Noll approach.

Mathematicians interested in continuum thermodynamics are generally not aware
of the differences in the various postulations of the second law of thermodynamics.
Virtually, the same is true formany continuummechanicians. It appears that they have
learned how Coleman–Noll apply the Clausius–Duhem inequality and use it as
a “machine” to generate inferences with little contemplation whether the deduced
results make physical sense. It was demonstrated in Hutter, JÖHNK and Svendsen
[14] that the emerging solutions of a constitutive mixture theory, if it is obtained
by the Coleman–Noll exploitation of the Clausius–Duhem inequality [6], are
extremely restricted. There exists no solution for a simple gravity-driven shearing
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flow of viscous constituents. However, in this case, if the mixture theory is derived
from the MÜLLER–Liu approach of the entropy principle [30], this nonexistence of
the solution can be avoided. This is tempting to favor the MÜLLER–Liu approach
of the entropy principle over the Coleman–Noll exploitation of the Clausius–
Duhem inequality on another account. The MÜLLER–Liu approach of the entropy
principle has been widely employed to deduce restrictions on constitutive equations
andpostulate thermodynamically consistent constitutive laws inmany researchfields.
Some examples can be found, e.g., in references [4, 7–10, 15, 16, 19, 20, 23, 28,
30–32, 35–38, 41].

In the present work, we intend to derive the constitutive equations of the excess
material-dependent quantities in conservation laws of multiphase flows, associated
with phase interfaces and three-phase contact line, by means of the entropy prin-
ciple using the MÜLLER–Liu approach. Because in this approach all balance laws
are considered as constraint conditions to the entropy inequality, its exploitation is
much more complicated than, e.g., with the Clausius–Duhem inequality. In the
evaluation of the entropy principle, we assume that the Lagrangemultiplier for the
energy equation is inversely proportional to the temperature, and the material behav-
ior is independent of the external supplies. Furthermore, when the phase interface is
in thermodynamic equilibrium, the net heat flux and the net entropy flux from the
neighboring bulk phases into the interface are assumed to vanish, and the tempera-
tures of the neighboring bulk phases at the interface are the same. These assumptions
are physically plausible and will be further argued when they occur later.

In Sect. 28.2, the conservation laws of multiphase flows for bulk, surface, and
line quantities, which were derived in Chap. 27, are briefly presented. Further, the
bulk, surface, and line entropy inequalities are formulated and the postulations of the
MÜLLER–Liu exploitation are introduced. Section 28.3 is devoted to the derivation of
the constitutive equations of the material-dependent quantities associated with phase
interfaces from thermodynamic consideration of the second law together with the
surface conservation laws of mass, momentum, and energy. The forms of the consti-
tutive quantities, e.g., the interfacial stress tensor, the heat flux vector in the context
of thermodynamic equilibrium are derived. The interfacialGibbs equation and some
extended relations for thermodynamic equilibrium are obtained. By the postulation
of the nonequilibrium parts for the constitutive quantities, some restrictions for the
emergingmaterial parameters are also determined. In Sect. 28.4, the constitutive rela-
tions of thematerial-dependent quantities associatedwith the three-phase contact line
are derived by obeying the line entropy inequality and simultaneously satisfying all
line balance laws. In Sect. 28.6, this chapter is summarized.
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28.2 Thermodynamic Processes in a Boltzmann-Type
Mixture

28.2.1 Balance Relations

Starting with the standard postulates of continuummechanics and the general global
balance statement for an arbitrary physical quantity in a physical domain of three
bulk phases B(i) (i = 1, 2, 3) including singular material or nonmaterial phase
interfacesS(i) (i = 1, 2, 3) and a three-phase contact lineC, seeFig. 28.1, InChap. 27
(see also Wang and Oberlack (2011) [39]), the local balance laws for physical
quantities associated with the bulk phases, the phase interfaces, and the common
three-phase contact line are presented. The obtained conservation equations of mass,
momentum, and energy for bulk quantities in the phase subdomain B(i), (27.80),
(27.96), and (27.133), surface quantities on the phase interfacesS(i), (27.83), (27.97),
and (27.134), and line quantities at the three-phase contact line C, (27.84), (27.98),
and (27.135), respectively, are listed with some slight reformulation as follows:
In the phase subdomain B(i):

R(i) : = dρ(i)

dt
+ ρ(i)∇ · v(i) = 0, (28.1)

M(i) : = ρ(i) dv
(i)

dt
− ∇ · T (i) − ρ(i)g = 0, (28.2)

E (i) : = ρ(i) du
(i)

dt
+ ∇ · q(i) − tr

(
T (i)

(∇v(i)
)) − ρ(i)r (i) = 0, (28.3)

Fig. 28.1 Physical domainB consisting of three-phase subdomainsB(i) (i = 1, 2, 3) with three-
phase interfaces S(i) (i = 1, 2, 3) and a three-phase contact line C, from Wang et al. [40]
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on the phase interface S(i):

R(si ) :=d(si )ρ(si )

dt
+ ρ(si )∇(si ) · v(si ) + ρ(si )H (si )

((
w(si ) − v(si )

) · n(si )
)

− [[
ρ

(
w(s) − v

) · n(s)
]](i) = 0, (28.4)

M(si ) :=ρ(si )
d(si )v(si )

dt
− ∇(si ) · T (si ) + H (si )

(
T (si ) · n(si )

) − ρ(si )g

− [[
ρ

(
v − v(s)

) (
w(s) − v

) · n(s) + T · n(s)
]](i) = 0, (28.5)

E (si ) :=ρ(si )
d(si )u(si )

dt
+ ∇(si ) · q(si ) − tr

(
T (si )

(∇(si )v(si )
))

− H (si )(q(si ) · n(si )) − ρ(si )r (si )

− [[
ρ

((
u − u(s)

) + 1
2

(
v − v(s)

) · (
v − v(s)

)) ((
w(s) − v

) · n(s)
)

−q · n(s) + (
T

(
v − v(s)

)) · n(s)
]](i) = 0, (28.6)

along the three-phase contact line C:

R(c) : = d(c)ρ(c)

dt
+ ρ(c)∇(c) · v(c) + ρ(c)κ(c)

((
w(c) − v(c)

) · n(c)
)

+
3∑

i=1

(
ρ(si )

(
w(c) − v(si )

) · s(i)) = 0, (28.7)

M(c) : = ρ(c) d
(c)v(c)

dt
− ∇(c) · T (c) + κ(c)

(
T (c) · n(c)

) − ρ(c)g

+
3∑

i=1

(
ρ(si )

(
v(si ) − v(c)

) (
w(c) − v(si )

) · s(i) + T (si ) · s(i))

= 0, (28.8)

E (c) : = ρ(c) d
(c)u(c)

dt
+ ∇(c) · q(c) − tr

(
T (c)

(∇(c)v(c)
)) − κ(c)

(
q(c) · n(c)

)

+
3∑

i=1

(
ρ(si )

((
u(si ) − u(c)

) + 1
2

(
v(si ) − v(c)

) · (
v(si ) − v(c)

))

· ((
w(c) − v(si )

) · s(i)) − q(si ) · s(i) + (
T (si )

(
v(si ) − v(c)

)) · s(i))

−ρ(c)r (c) = 0. (28.9)

In the conservation laws (28.1)–(28.9), the superscript (i) indicates the bulk quantities
in the phase subdomain B(i), the superscript (si ) denotes the surface quantities on
the phase interface S(i) separating the phase subdomains B(i−1) and B(i), and the
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superscript (c) stands for the line quantities in the three-phase contact line C. The
emerging physical quantities have the following meanings: ρ is the (bulk, surface,
line) mass density, v the material velocity, T the stress tensor, u the internal energy,
q the heat flux vector, g the body force per unit mass, r the energy supply/source per
unit mass, w(si ) and w(c) indicate the velocities of the interfaceS(i) and the contact
line C, respectively, n(si ) the unit normal vector of the interface S(i) pointing into
the domainB(i), n(c) the unit principal normal to the contact line, s(i) the unit vector
tangent to the surface S(i), normal and pointing to the contact line C. H (si ) is the
total surface curvature of the interface S(i) (H (si ) = ∇(si ) · n(si )), and κ(c) denotes
the normal curvature of the contact line (κ(c) = ∇(c) · n(c)). [[G]](i) = G(i) − G(i−1)

denotes the jump of the quantity G across the interface S(i) (if i − 1 = 0, it is set
i − 1 ≡ 3).

The surface and line gradient operators, ∇(si ) and ∇(c) are defined, respectively,
by

∇(si ) = [I − n(si ) ⊗ n(si )] · ∇ ≡ I (si ) · ∇,

∇(c) = (λ(c) ⊗ λ(c)) · ∇ ≡ I (c) · ∇,
(28.10)

whereλ(c) is the unit vector tangent to the contact line, while I (si ) ≡ I−n(si ) ⊗n(si )

and I (c) ≡ λ(c) ⊗ λ(c) are the surface and line projection tensors, respectively.
The bulk, surface, and line time derivatives are defined by

d

dt
= ∂

∂t
+ v(i) · ∇,

d(si )

dt
= δ(si )

δt
+ v(si ) · ∇(si ), (28.11)

d(c)

dt
= δ(c)

δt
+ v(c) · ∇(c),

where the normal surface time derivative δ(si )/δt indicates the time derivative for a
given point on the surface following the normal trajectory of the surface, while the
normal line time derivative δ(c)/δt denotes the time derivative following the normal
trajectory of themoving curve. It can be easily shown that if the interfaceS(i) and the
contact line C are material, the surface and line time derivatives, d(si )/dt and d(c)/dt ,
coincide with the corresponding material time derivative d/dt . All these quantities
have already been introduced and explained in Chap. 27.

In the balance laws presented above, the dependent field quantities are the bulk,
surface, and line stress tensors, T (i), T (si ), and T (c), the bulk, surface, and line heat
flux vectors, q(i), q(si ) and q(c), as well as the bulk, surface, and line internal energy
densities, u(i), u(si ) and u(c). They must be expressed as functional relations of the
independent field variables, such asmass densities, velocities, temperature, etc. These
functional relations are called constitutive relations or constitutive equations.

In most continuum thermodynamic theories, it is stipulated that the union of the
balance laws and constitutive relations forms so-called field equations, which are



418 28 Multiphase Flows with Moving Interfaces …

conjectured to define a well-posed problem; in other words, with appropriate initial
and boundary conditions these equations are supposed to yield unique functions
of space and time for the field variables, at least for some finite nonzero interval
of time. Any set of the independent fields that satisfies the equations is called a
thermodynamic process. In reality, the constitutive relations are not arbitrary, they
should obey universal physical principles, i.e., one can reduce the generality of these
functions by relying upon these physical principles. The most important of these
principles is the second law of thermodynamics, which we now introduce in the
form of the entropy principle.

28.2.2 Entropy Principle

It is assumed that there exist an entropy density η, entropyfluxφη, entropy production
density πη, and entropy supply density ζη, which obey a balance law. The second law
of thermodynamics requires that the entropy production πη should be nonnegative
during a physical process; thus, the following inequality must be satisfied:

πη := H (
η,φη

) − ζη ≥ 0. (28.12)

In this imbalance relation, H(η,φη) is a function of the entropy density η and the
local flux of the entropy φη and ζη is the entropy supply density. Moreover, unlike
in previous chapters, we now denote the entropy density by η, since the various s’s
are here surface identities. Now, any process which satisfies (28.12) (via the consti-
tutive relations) represents a so-called physically admissible process. The entropy
inequality, however, need not hold for arbitrary fields, but only for thermodynamic
processes, i.e., any acceptable solutions of the field equations via the constitutive
assumptions. The working principle is therefore that all thermodynamic processes
must satisfy (28.12) or all fields which satisfy field equations must in addition satisfy
(28.12). We must point out that as long as η, φη, ζη are not related to any of the field
quantities, the second law is an empty statement. Various second laws differ by the
method how this link is made.

In the generalized Clausius–Duhem inequality with the Coleman–Noll
approach, the flux and the supply of entropy are related a priori to the flux and
supply of heat. And free sources are assumed for all balance equations except per-
haps the balance of mass. In order to relax these assumptions, MÜLLER [24, 25]
proposed an entropy principle in which the entropy and its flux are both a priori
unrestricted constitutive quantities. Liu [21] introduced Lagrange multipliers to
consider the influences of all balance laws on the entropy inequality, by which the
exploitation of the general entropy inequality is much facilitated.

In the investigation of multiphase flows, for the bulk phase, the phase interface,
and the three-phase contact line, the entropy inequality (28.12) can bewritten, respec-
tively, as (see also (27.140), (27.141), and (27.142))
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In the phase subdomain B(i):

Π(i) = ρ(i) dη
(i)

dt
+ ∇ · φ(i)

η − ρ(i)ζ(i)
η ≥ 0, (28.13)

on the phase interface S(i):

Π(si ) = ρ(si )
d(si )η(si )

dt
+ ∇(si ) · φ(si )

η − H (si )
(
φ(si )

η · n(si )
)

− [[
ρ(η − η(s))(w(s) − v) · n(s) − φη · n(s)

]](i)

−ρ(si )ζ(si )
η ≥ 0, (28.14)

along the three-phase contact line C:

Π(c) = ρ(c) d
(c)η(c)

dt
+ ∇(c) · φ(c)

η − κ(c)
(
φ(c)

η · n(c)
)

+
3∑

i=1

(
ρ(si )

(
η(si ) − η(c)

) (
w(c) − v(si )

) · s(i) − φ(si )
η · s(i))

−ρ(c)ζ(c)
η ≥ 0. (28.15)

Here, η(i), η(si ), η(c) are the bulk, surface, and line entropy densities per unit mass,
φ(i)

η , φ(si )
η , φ(c)

η the bulk, surface, and line entropy fluxes, and ζ(i)
η , ζ(si )

η , ζ(c)
η are the

bulk, surface, and line entropy supply densities per unit mass, respectively. Π(i),
Π(si ) and Π(c) are entropy productions per unit volume in the phase B(i), per unit
area on the phase interface S(i), and per unit length along the three-phase contact
line C, respectively.

For a physically realizable process, the entropy inequality for the bulk phaseB(i),
(28.13), must be satisfied subject to the simultaneous satisfaction of the balance laws
(28.1)–(28.3), while for the phase interfaceS(i), the entropy inequality (28.14) must
hold subject to the simultaneous satisfaction of the balance laws (28.4)–(28.6), as
well as for the three-phase contact line C the entropy inequality (28.15) subject to
the simultaneous satisfaction of the balance laws (28.7)–(28.9), respectively. The
moment of momentum, which yields the symmetry of the peculiar stress tensors, is
satisfied by postulating the constitutive relation accordingly, thus it is not considered
as a constraint condition for the exploitation of the entropy inequality.

Liu [21] has shown that instead of fulfilling the entropy inequality for independent
fields that are constrained by the balance laws one may extend the entropy inequality
by subtracting from it the products of each constraining equation with a Lagrange
multiplier and satisfying this extended inequality for unrestricted independent fields.
For the investigated multiphase flows these extended entropy inequalities are

In the phase subdomain B(i):
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Π(i) − (1/Θ(i))Λ(i)
ρ R(i) − (1/Θ(i))Λ(i)

v · M(i) − Λ(i)
ε E (i) ≥ 0, (28.16)

on the phase interface S(i):

Π(si ) − (1/Θ(si ))Λ(si )
ρ R(si ) − (1/Θ(si ))Λ(si )

v · M(si ) − Λ(si )
ε E (si ) ≥ 0, (28.17)

at the three-phase contact line C:

Π(c) − (1/Θ(c))Λ(c)
ρ R(c) − (1/Θ(c))Λ(c)

v · M(c) − Λ(c)
ε E (c) ≥ 0, (28.18)

where the quantitiesΛ(i)
ρ ,Λ(i)

v ,Λ(i)
ε , andΛ(si )

ρ ,Λ(si )
v ,Λ(si )

ε , as well asΛ(c)
ρ ,Λ(c)

v ,Λ(c)
ε

represent the Lagrange multipliers associated with the constraints placed on the
entropy balances by the other balance relations. For convenience the factors 1/Θ(i),
1/Θ(si ) and 1/Θ(c) (Θ is interpreted as absolute temperature) have been extracted
above from the Lagrangemultipliers referring to the mass and momentum balance
relations, respectively. These Lagrange multipliers may be constitutive quantities
and given by some constitutive relations, see, however, Liu [21] orHutter [12], for
the more general situation.

In the above point, the inequalities (28.16)–(28.18) hold for arbitrary bulk, surface,
and line fields.

To further exploit the entropy inequalities (28.16)–(28.18), the following plausible
assumptions are taken into consideration:

• The Lagrangemultiplier for the energy equation is inversely proportional to the
temperature

Λ(i)
ε = 1

Θ(i)
, Λ(si )

ε = 1

Θ(si )
, Λ(c)

ε = 1

Θ(c)
. (28.19)

• The material behavior is independent of the supplies, i.e., that all external source
terms balance, viz.,

Θ(i)ρ(i)ζ(i)
η − Λ(i)

v · ρ(i)g − ρ(i)r (i) = 0,

Θ(si )ρ(si )ζ(si )
η − Λ(si )

v · ρ(si )g − ρ(si )r (si ) = 0, (28.20)

Θ(c)ρ(c)ζ(c)
η − Λ(c)

v · ρ(c)g − ρ(c)r (c) = 0,

which serve as identities for the entropy supplies.

The assumption of the Lagrange multiplier Λ(i)
ε for the bulk phase B(i), (28.19)1,

is not reasonable in cases when the time derivative of the temperature (dΘ(i)/dt)
should also be an independent variable in the constitutive functions. As we will not
include such a dependence the a priori assignment is justifiable on the basis that Liu
and MÜLLER have proved it in [22]. It was based on the empirical assumption that
there exists an impermeable ideal wall where the entropy production vanishes so that
the entropy flux into the wall on one side exits on the other side as a flux out of the
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wall. On ideal walls the temperature is also assumed continuous. Hence, condition
(28.19)1 can be derived (see, e.g., Liu [22], MÜLLER [27]).

To postulate the LagrangemultiplierΛ(si )
ε for the phase interfaceS(i), (28.19)2,

one can extend MÜLLER’s postulation of the existence of an ideal wall for the bulk
phase [26] to the interface, by assuming that there exists an ideal heat conducting
singular quasi-material line separating two different surface materials across which
the normal jump of the entropy flux vanishes when the temperature and the normal
component of the heat flux are continuous.With this assumption one can obtain from
the evaluation of the entropy inequality that the multiplierΛ(si )

ε must be independent
of the particular phase interface material and be a universal function of the surface
temperature in the expression of (28.19)2 if the time derivative of temperature is not
included in the constitutive variables [1, 2, 13].

For the Lagrange multiplier Λ(c)
ε associated with the line energy equation we

directly employ the postulation (28.19)3 without any further explanation although it
may be obtained if one extends MÜLLER’s assumption also to the line quantities.

Concerning assumption (28.20), whenMÜLLER [24] proposed the general entropy
principle in which the entropy and its flux were both constitutive quantities, a priori
unrestricted, he argued that, since constitutive properties of a material should not
depend on external supplies in exploiting constitutive restrictions, it suffices to con-
sider only supply free bodies. Relation (28.20) may be considered as an extension
of MÜLLER’s entropy principle when Liu [21] introduced Lagrangemultipliers by
which the exploitation of the general entropy inequality was much improved. Both
assumptions, namely, supply free bodies expressed in equations (28.20), are a result
of the fact that the material behavior is independent of the supplies.

Further,wewill introduce theHelmholtz free energies for bulk phases, interfaces
and the contact line

ψ(i) = u(i) − Θ(i)η(i),

ψ(si ) = u(si ) − Θ(si )η(si ), (28.21)

ψ(c) = u(c) − Θ(c)η(c).

In this chapter,wewill not intend to discuss the exploitation of the entropy inequal-
ity for the bulk phaseB(i), (28.16), which has been excessively investigated for var-
ious materials. Some examples have been given in Chap. 18 in Vol. 2 of this treatise.
For instance, for an isotropic, viscous, heat conducting fluid, the constitutive func-
tions for the stress T (i), the heat flux q(i), the internal energy u(i) and the entropy
flux φ(i)

η obeying the entropy principle take the forms (see, e.g., Hutter and JÖHNK
[15])

T (i) = − p(i) I + α(i)
0 I + α(i)

1 D(i) + α(i)
2

(
D(i)

)2
,

q(i) = − κ(i)gradΘ(i),

u(i) = û(i)
(
Θ(i)

)
,

φ(i)
η = q(i)/Θ(i),

(28.22)

http://dx.doi.org/10.1007/978-3-319-33636-7_18
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where

α(i)
j = α̂(i)

j (ρ(i), Θ(i), ID(i) , IID(i) , IIID(i) ), ( j = 0, 1, 2),

α̂(i)
j (ρ(i), Θ(i), 0, 0, 0) = 0,

κ(i) = κ̂(i)
(
ρ(i), Θ(i), |gradΘ(i)|) ,

and ID(i) , IID(i) and IIID(i) denote the first, second, and third invariants of the sym-
metric part of the velocity gradient (D(i) = sym

(
grad v(i)

)
), respectively. For an

incompressible fluid, the pressure p(i) is an independent field quantity determined
by the conservation laws. In case of a compressible fluid, p(i) is given by an equation
of state p(i) = p̂(i)

(
ρ(i), Θ(i)

)
. Moreover, the Gibbs relation takes the form (see

(18.70) in Chap. 18 in Vol. 2 of this treatise [18], adjusted to the notation in this
chapter),

dη(i) = 1

Θ(i)

(
du(i) + p(i)d

(
1

ρ(i)

))
. (28.23)

The linear forms of (28.22) for the stress T (i) and the heat flux q(i) correspond to the
constitutive equations for Newtonian fluids in the form

T (i) = (−p(i) + λ(i))I + 2μ(i)D(i),

q(i) = −κ(i)gradΘ(i), (28.24)

whereλ(i),μ(i), andκ(i) are functions only ofρ(i) andΘ(i). According to theminimum
condition of the entropy production in thermodynamic equilibrium, the following
restrictions on these material parameters must hold (see, e.g., Hutter and JÖHNK
[15], Spurk [29], Hutter and Wang, Chap. 7 of Vol. 1 of this treatise [17])

λ(i) + 2
3μ

(i) ≥ 0, μ(i) ≥ 0, κ(i) ≥ 0. (28.25)

The entropy inequalities, (28.17) on the phase interface and (28.18) at the three-
phase contact line, respectively, will be used to investigate the postulates for the
constitutive quantities emerging in the conservation laws on the interfaceS(i) and at
the contact line C in the following sections.

28.3 Constitutive Relations for the Phase Interface

The basic objective of thermodynamics on singular phase interfaces is the determi-
nation of the basic fields of surface density, motion, and surface temperature. These
can be determined from the balance equations (28.4)–(28.6), provided the surface-

http://dx.doi.org/10.1007/978-3-319-33636-7_18
http://dx.doi.org/10.1007/978-3-319-33633-6_7
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dependent fields T (si ), q(si ) and u(si ) are related in a “materially dependent manner”
to the basic fields. Such relations are called constitutive equations for phase interfaces.
They must reflect the peculiarities of the phase-change interface in nonequilibrium.
We recall that the purpose of the entropy principle is to derive restrictions upon the
constitutive relations. The entropy and its flux as well as the Lagrange multipliers
must be considered as auxiliary quantities. In this section, we evaluate the entropy
inequality (28.17) on the interface S(i) for a given constitutive class, which may be
suitable for a liquid–fluid interface.

28.3.1 Constitutive Assumptions and Restrictions

To investigate the material behaviors of an interface, we must first postulate its
constitutive class, in which a dependent variable is expressed as a function of its
independent variables (and not a functional). The constitutive class fathomed by this
assumption may be very large and should be restricted by thermodynamic principles.
In some complicated cases, a constitutive relation may be expressed as a differential
equation among some variables [7, 10]. Such a setting will not be discussed in this
chapter.

We consider the phase interfaceS(i) consisting of heat conducting viscous mate-
rials whose response is characterized by constitutive functions of the form

S = Ŝ (
ρ(si ),∇(si )ρ(si ), Θ(si ),∇(si )Θ(si ),

∇(si )v(si ), H (si ), v(si ), v(i), v(i−1),w(si )
)
, (28.26)

for the material variables

S ∈ {
T (si ), q(si ),φ(si )

η ,ψ(si ), η(si )
}
. (28.27)

Invoking the principle of material objectivity, which requires that the material
response is independent of the velocity and skew-symmetric part of the velocity
gradient, equation (28.26) reduces to

S = Ŝ (
ρ(si ),∇(si )ρ(si ), Θ(si ),∇(si )Θ(si ),

D(si ), H (si ),Ws,W+
s ,W−

s

)
, (28.28)

where D(si ) = 1
2

(∇(si )v(si ) + (∇(si )v(si ))T
)
is the surface stretching tensor and

W+
s = w(si ) − v(i), W−

s = w(si ) − v(i−1), and Ws = w(si ) − v(si ).
These constitutive equations must satisfy the entropy inequality (28.17), which

canbe rewritten, by inserting the conservation equations (28.4)–(28.6) and employing
the relations in (28.19)2, (28.20)2, and (28.21)2, as



424 28 Multiphase Flows with Moving Interfaces …

Θ(si )Π(si )

= − ρ(si )
d(si )ψ(si )

dt
− ρ(si )η(si )

d(si )Θ(si )

dt
+ Θ(si )∇(si ) · φ(si )

η

− Θ(si )H (si )
(
φ(si )

η · n(si )
) − Λ(si )

ρ

dρ(si )

dt
− Λ(si )

ρ ρ(si )∇(si ) · v(si )

− Λ(si )
ρ ρ(si )H (si )

((
w(si ) − v(si )

) · n(si )
) − ρ(si )Λ(si )

v · d
(si )v(si )

dt

+ Λ(si )
v ∇(si ) · T (si ) − Λ(si )

v · (
H (si )

(
T (si ) · n(si )

)) − ∇(si ) · q(si )

+ tr
(
T (si )

(∇(si )v(si )
)) + H (si )

(
q(si ) · n(si )

)

− Θ(si )
[[
ρ

(
η − η(s)

) (
w(s) − v

) · n(s) −φη · n(s)
]](i)

+ Λ(si )
ρ

[[
ρ

(
w(s) − v

) · n(s)
]](i)

+ Λ(si )
v · [[

ρ
(
v − v(s)

) (
w(s) − v

) · n(s) + T · n(s)
]](i)

+
[[

ρ
((
u − u(s)

) + 1
2

(
v − v(s)

) · (
v − v(s)

)) ((
w(s) − v

) · n(s)
)

− q · n(s) + T
(
v − v(s)

) · n(s)
]](i)

≥0. (28.29)

Incorporating the functional dependence of the material quantities (28.27) expressed
in (28.28) into (28.29) by use of the chain rule of differentiation yields the new
inequality

Θ(si )Π(si ) =
−

(
ρ(si )

∂ψ(si )

∂ρ(si )
+ Λ(si )

ρ

)
d(si )ρ(si )

dt
− ρ(si )Λ(si )

v · d
(si )v(si )

dt

+ (
T (si ) − Λ(si )

ρ ρ(si ) I (si )
) · D(si ) − ρ(si )

(
∂ψ(si )

∂Θ(si )
+ η(si )

)
d(si )Θ(si )

dt

−ρ(si )
∂ψ(si )

∂∇(si )ρ(si )
· d

(si )∇(si )ρ(si )

dt
− ρ(si )

∂ψ(si )

∂∇(si )Θ(si )
· d

(si )∇(si )Θ(si )

dt

−ρ(si )
∂ψ(si )

∂D(si )
· d

(si )D(si )

dt
− ρ(si )

∂ψ(si )

∂H (si )

d(si )H (si )

dt
− ρ(si )

∂ψ(si )

∂Ws
· d

(si )Ws

dt

−ρ(si )
∂ψ(si )

∂W+
s

· d
(si )W+

s

dt
− ρ(si )

∂ψ(si )

∂W−
s

· d
(si )W−

s

dt

+
(

Θ(si )
∂φ(si )

η

∂ρ(si )
+ Λ(si )

v · ∂T (si )

∂ρ(si )
− ∂q(si )

∂ρ(si )

)

· ∇(si )ρ(si )
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+
(

Θ(si )
∂φ(si )

η

∂∇(si )ρ(si )
+ Λ(si )

v · ∂T (si )

∂∇(si )ρ(si )
− ∂q(si )

∂∇(si )ρ(si )

)

· ∇(si )
(∇(si )ρ(si )

)

+
(

Θ(si )
∂φ(si )

η

∂Θ(si )
+ Λ(si )

v · ∂T (si )

∂Θ(si )
− ∂q(si )

∂Θ(si )

)

· ∇(si )Θ(si )

+
(

Θ(si )
∂φ(si )

η

∂∇(si )Θ(si )
+Λ(si )

v · ∂T (si )

∂∇(si )Θ(si )
− ∂q(si )

∂∇(si )Θ(si )

)

·∇(si )
(∇(si )Θ(si )

)

+
(

Θ(si )
∂φ(si )

η

∂D(si )
+ Λ(si )

v · ∂T (si )

∂D(si )
− ∂q(si )

∂D(si )

)

· ∇(si )D(si )

+
(

Θ(si )
∂φ(si )

η

∂H (si )
+ Λ(si )

v · ∂T (si )

∂H (si )
− ∂q(si )

∂H (si )

)

· ∇(si )H (si )

+
(

Θ(si )
∂φ(si )

η

∂Ws
+ Λ(si )

v · ∂T (si )

∂Ws
− ∂q(si )

∂Ws

)

· ∇(si )Ws

+
(

Θ(si )
∂φ(si )

η

∂W+
s

+ Λ(si )
v · ∂T (si )

∂W+
s

− ∂q(si )

∂W+
s

)

· ∇(si )W+
s

+
(

Θ(si )
∂φ(si )

η

∂W−
s

+ Λ(si )
v · ∂T (si )

∂W−
s

− ∂q(si )

∂W−
s

)

· ∇(si )W−
s

−H (si )Θ(si )
(
φ(si )

η · n(si )
) − H (si )Λ(si )

ρ ρ(si )
((

w(si ) − v(si )
) · n(si )

)

−H (si )Λ(si )
v · (

T (si ) · n(si )
) + H (si )

(
q(si ) · n(si )

)

−Θ(si )
[[
ρ

(
η − η(s)

) (
w(s) − v

) · n(s) − φη · n(s)
]](i)

+Λ(si )
ρ

[[
ρ

(
w(s) − v

) · n(s)
]](i)

+Λ(si )
v · [[

ρ
(
v − v(s)

) (
w(s) − v

) · n(s) + T · n(s)
]](i)

+ [[
ρ

((
u − u(s)

) + 1
2

(
v − v(s)

) · (
v − v(s)

)) ((
w(s) − v

) · n(s)
)

−q · n(s) + T
(
v − v(s)

) · n(s)
]](i)

≥ 0. (28.30)

This formidable inequality is expressible as

a(si ) · α(si ) + b(si ) ≥ 0, (28.31)
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where the vector a and the scalar b are functions of the variables listed in (28.28),
but not of α, and the vector α depends on time and space derivatives of these
variables. Hence, inequality (28.31) is linear inα. It follows from Liu’s theorem that
α is arbitrarily selectable at a fixed material point—in other words, it is possible to
construct an admissible thermodynamic process having any value of α we please.
The inequality must hold for all fields: density, velocity, temperature, and surface
curvature; and, in particular, it must hold for arbitrary values of α at one point. It
is concluded that all terms with the components of α must vanish. Thus, necessary
and sufficient conditions for (28.31) to hold are2

a(si ) = 0 and b(si ) ≥ 0. (28.32)

Explicitly, the entropy inequality must hold for all independent variations, indi-
cated by the red color in (28.30), of

α(si ) =
{
d(si )ρ(si )

dt
,
d(si )v(si )

dt
,
d(si )Θ(si )

dt
,
d(si )∇(si )ρ(si )

dt
,
d(si )∇(si )Θ(si )

dt
,

d(si )D(si )

dt
,
d(si )H (si )

dt
,∇(si )

(∇(si )ρ(si )
)
,∇(si )

(∇(si )Θ(si )
)
,

∇(si )D(si ),∇(si )H (si ),
d(si )Ws

dt
,
d(si )W+

s

dt
,
d(si )W−

s

dt
,

∇(si )Ws,∇(si )W+
s ,∇(si )W−

s

}
. (28.33)

These variables appear linearly in (28.30), and thus, their coefficients must vanish.
This leads to the so-called Liu identities. This implies that the following expressions
must hold, respectively, for:

the Lagrange multipliers Λ(si )
ρ and Λ(si )

v

Λ(si )
ρ = −ρ(si )

∂ψ(si )

∂ρ(si )
, Λ(si )

v = 0, (28.34)

for the specific entropy density

η(si ) = − ∂ψ(si )

∂Θ(si )
, (28.35)

2This argument must be applied with caution: If α(si ) has components which are symmetric,
α

(si )
k� = α

(si )
�k , then the corresponding component of a(si ) must be skew-symmetric, a(si )

k� = −a(si )
�k .
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for the free energy ψ(si )

∂ψ(si )

∂∇(si )ρ(si )
= 0,

∂ψ(si )

∂∇(si )Θ(si )
= 0,

∂ψ(si )

∂D(si )
= 0,

∂ψ(si )

∂H (si )
= 0,

∂ψ(si )

∂Ws
= 0,

∂ψ(si )

∂W+
s

= 0,
∂ψ(si )

∂W−
s

= 0, (28.36)

and the relations among φ(si ), T (si ), and q(si )

sym

(

Θ(si )
∂φ(si )

η

∂∇(si )ρ(si )
+ Λ(si )

v · ∂T (si )

∂∇(si )ρ(si )
− ∂q(si )

∂∇(si )ρ(si )

)

= 0,

sym

(

Θ(si )
∂φ(si )

η

∂∇(si )Θ(si )
+ Λ(si )

v · ∂T (si )

∂∇(si )Θ(si )
− ∂q(si )

∂∇(si )Θ(si )

)

= 0,

Θ(si )
∂φ(si )

η

∂D(si )
+ Λ(si )

v · ∂T (si )

∂D(si )
− ∂q(si )

∂D(si )
= 0,

Θ(si )
∂φ(si )

η

∂H (si )
+ Λ(si )

v · ∂T (si )

∂H (si )
− ∂q(si )

∂H (si )
= 0, (28.37)

Θ(si )
∂φ(si )

η

∂Ws
+ Λ(si )

v · ∂T (si )

∂Ws
− ∂q(si )

∂Ws
= 0,

Θ(si )
∂φ(si )

η

∂W+
s

+ Λ(si )
v · ∂T (si )

∂W+
s

− ∂q(si )

∂W+
s

= 0,

Θ(si )
∂φ(si )

η

∂W−
s

+ Λ(si )
v · ∂T (si )

∂W−
s

− ∂q(si )

∂W−
s

= 0,

where sym A = 1
2

(
A + AT

)
. Equations (28.34)–(28.37) correspond to the condition

a = 0 in (28.32)1.
The restrictions on the free energy (28.36) imply the reduced dependence

ψ(si ) = ψ̂(si )
(
ρ(si ), Θ(si )

)
. (28.38)

Introducing the extra entropy flux

Φ(si )
η = φ(si )

η + 1

Θ(si )

(
Λ(si )

v · T (si ) − q(si )
)

(28.39)

and considering (28.34)2, we have from (28.37)
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sym

(
∂Φ(si )

η

∂∇(si )ρ(si )

)

= 0, sym

(
∂Φ(si )

η

∂∇(si )Θ(si )

)

= 0,
∂Φ(si )

η

∂D(si )
= 0,

∂Φ(si )
η

∂H (si )
= 0,

∂Φ(si )
η

∂Ws
= 0,

∂Φ(si )
η

∂W+
s

= 0,
∂Φ(si )

η

∂W−
s

= 0.

(28.40)

Using these restrictions (28.40) on the extra entropy flux Φ(si )
η and the isotropy

assumption it follows that

Φ(si )
η = 0. (28.41)

Thus, the entropy flux assumes its traditional form. It can be shown that this result
will not follow, if we add the dependences d(si )ρ(si )/dt and/or d(si )Θ(si )/dt to
the constitutive functions (28.28). This explicitly demonstrates the physical inad-
equacy of the Coleman–Noll approach in some cases, e.g., for materials under
real thermodynamic processes. This has been recognized for a long time, see, e.g.,
Hutter [12], Liu and MÜLLER [22].

Returning now to the entropy inequality (28.30) and employing the above restric-
tions, we obtain the residual entropy inequality, corresponding to condition (28.32)2,
i.e., b(si ) ≥ 0,

Θ(si )Π(si )

= (
T (si ) − σ(si ) I (si )

) · D(si ) − q(si ) · ∇(si )Θ(si )

Θ(si )

−H (si )σ(si )
((

w(si ) − v(si )
) · n(si )

)

−Θ(si )
[[
ρ

(
η − η(s)

) (
w(s) − v

) · n(s) − φη · n(s)
]](i)

+(σ(si )/ρ(si ))
[[
ρ

(
w(s) − v

) · n(s)
]](i)

+ [[
ρ

((
u − u(s)

) + 1
2

(
v − v(s)

) · (
v − v(s)

)) ((
w(s) − v

) · n(s)
)

−q · n(s) + T
(
v − v(s)

) · n(s)
]](i)

≥ 0, (28.42)

where we have introduced the definition of the thermodynamic surface tension [see
(28.34)1], viz.,

σ(si ) := Λ(si )
ρ = −ρ(si )2

∂ψ(si )

∂ρ(si )
, (28.43)

which is identical with the well-known surface tension, as we will see later.
At this point, we should also point out that the constitutive class (28.28) is only

suitable for surfaces with variable surface mass density. For density preserving
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surfaces,, i.e., surfaces whose mass density does not change, ρ(si ) and ∇(si )ρ(si ) are
no longer independent variables within the constitutive class (28.28). In this case,
returning to the initial constitutive assumption (28.28), we delete the dependences on
ρ(si ) and ∇(si )ρ(si ) from the constitutive equations and repeat the above analysis. We
then find the same constitutive restrictions with density preserving surfaces as before
for variable surface mass density, if here σ(si ) = ρ(si )Λ(si )

ρ is introduced, which now
is an unknown (constraint) variable and can no longer be determined by the free
energy ψ(si ) as expressed in (28.43). We encourage the reader to repeat the details
of the analysis.

Furthermore, considering relations (28.21)2, (28.35), (28.38) and (28.43), we find
that the surface entropy η(si ), internal energy u(si ) and tension σ(si ) are only functions
of the surface density ρ(si ) and temperature Θ(si ),

η(si ) = η̂(si )
(
ρ(si ), Θ(si )

)
,

u(si ) = û(si )
(
ρ(si ), Θ(si )

)
, (28.44)

σ(si ) = σ̂(si )
(
ρ(si ), Θ(si )

)
.

They are related by the surfacial Gibbs equation3

dη(si ) = 1

Θ(si )

(
du(si ) − σ(si )d

(
1

ρ(si )

))
, (28.45)

3The surfacial Gibbs equation, (28.45), can be easily derived. By means of (28.21)2 and (28.44)1,
one obtains

η(si ) = η̂(si )
(
ρ(si ), Θ(si )

)
= 1

Θ(si )

(
u(si ) − ψ(si )

)
.

Taking the total differential of η(si ) yields

dη(si ) = − 1

(Θ(si ))2

(
u(si ) − ψ(si )

)
dΘ(si ) + 1

Θ(si )

(
du(si ) − dψ(si )

)

= − 1

(Θ(si ))2

(
u(si ) − ψ(si )

)
dΘ(si )

+ 1

Θ(si )

(

du(si ) − ∂ψ(si )

∂ρ(si )
dρ(si ) − ∂ψ(si )

∂Θ(si )
dΘ(si )

)

= − 1

(Θ(si ))2

(

u(si ) − ψ(si ) + Θ(si )
∂ψ(si )

∂Θ(si )

)

dΘ(si )

+ 1

Θ(si )
du(si ) + 1

Θ(si )

(

(ρ(si ))2
∂ψ(si )

∂ρ(si )

)

d

(
1

ρ(si )

)

= 1

Θ(si )

(
du(si ) − σ(si )d

(
1

ρ(si )

))
.

In the last step, relations (28.21)2, (28.35), and (28.43) have been used.
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which expresses the total differential of the entropy as the product of the inverse
of the absolute temperature times the total differential of the internal energy plus
the additional term −σ(si )d

(
1/ρ(si )

)
. This result is formally identical with the bulk

Gibbs relation for a heat conducting viscous fluid, stated in (28.23).

28.3.2 Thermodynamic Equilibrium

As usual, further restrictions on the constitutive relations can be obtained from the
residual inequality (28.42) in the context of thermodynamic equilibrium, which is
characterized in the current local formulation by homogeneous thermodynamic field
quantities and the vanishing of the entropy production rate density Π(si ). In the
context of the current constitutive class, (28.42) implies that the surface entropy
production density Π(si ) is a function of the variables

Y (si ) = (∇(si )Θ(si ), D(si ),W+
s ,W−

s ,Ws

)
, (28.46)

in the form

Θ(si )Π(si )

= (
T (si ) − σ(si ) I (si )

) · D(si ) − (
1/Θ(si )

)
q(si ) · ∇(si )Θ(si )

+ [−H (si )σ(si ) + T (i) − T (i−1)
]
n(si ) · Ws

+
[
ρ(i)

((
u(i) − u(si )

) + 1
2

(
v(i) − v(si )

) · (
v(i) − v(si )

))

−Θ(si )ρ(i)
(
η(i) − η(si )

) + (σ(si )/ρ(si ))ρ(i) − T (i)

]
n(si ) · W+

s

−
[
ρ(i−1) ((

u(i−1) − u(si )
) + 1

2

(
v(i−1) − v(si )

) · (
v(i−1) − v(si )

))

−Θ(si )ρ(i−1)
(
η(i−1) − η(si )

) + (σ(si )/ρ(si ))ρ(i−1) − T (i−1)

]
n(si ) · W−

s

+Θ(si )
[[
φη · n(s)

]](i) − [[
q · n(s)

]](i) ≥ 0, (28.47)

The surface entropy production Π(si ) vanishes whenever Y (si ) = 0. The condition
Y (si ) = 0 is called thermodynamic equilibrium and will be denoted by the index E .
Obviously, in thermodynamic equilibrium, due toW+

s |E = 0,W−
s |E = 0,Ws|E = 0,

hence

w(si )|E = v(si )|E = v(i)|E = v(i−1)|E on the phase interface. (28.48)
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This means that in the defined thermodynamic equilibrium the phase interface is
a material surface. Here, it has been assumed that the adjacent bulk phases B(i)

and B(i−1) are also in equilibrium when the phase interface is in equilibrium, i.e.,
q(i)|E = 0 and q(i−1)|E = 0. Alternatively, we can also use the relaxed restrictions
of

[[
q · n(s)

]](i) |E = 0 and [[Θ]](i) |E = 0. Furthermore, we have restricted our
investigation only to the classical isotropic, incompressible, viscous, heat conducting
fluid, for which the bulk entropy flux φ(i)

η can be expressed φ(i)
η = q(i)/Θ(i) as

indicated in (28.22). We can also relax this restriction by a much weaker assumption,
namely,

[[
φη · n(s)

]](i) |E = 0. In summary, we employ the restrictions

[[
q · n(s)

]](i) |E = 0, [[Θ]](i) |E = 0,
[[
φη · n(s)

]](i) |E = 0, (28.49)

which are physically plausible, i.e., when the phase interface is in thermodynamic
equilibrium, the net heat flux and the net entropy flux from the neighboring bulk
phases into the interface vanish, and the temperatures of the neighboring bulk phases
at the interface are the same.

It follows that Π(si ) has a minimum in equilibrium. Necessary conditions for this
minimum are that

∂Π(si )

∂Y (si )
k

∣
∣∣∣
E

= 0, Y (si )
k ∈ Y (si ),

∂2Π(si )

∂Y (si )
l ∂Y (si )

m

∣∣∣∣
E

is nonnegative definite, Y (si )
l , Y (si )

m ∈ Y (si ).

(28.50)

As is well known, the first condition restricts the equilibrium forms of the dependent
constitutive fields, while the second constrains the signs ofmaterial parameters. Here,
we deal with the first. Applying the conditions

∂Π(si )

∂D(si )

∣∣∣
E

= 0,
∂Π(si )

∂∇(si )Θ(si )

∣∣∣
E

= 0 (28.51)

to the residual entropy inequality (28.47), together with condition (28.49), yields the
equilibrium values of the stress, and heat flux,

T (si )
E = σ(si ) I (si ), q(si )

E = 0, (28.52)

while the conditions

∂Π(si )

∂W+
s

∣∣∣
E

= 0,
∂Π(si )

∂W−
s

∣∣∣
E

= 0, (28.53)
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together with condition (28.48) and (28.49), imply

u(i−1)
E − Θ(si )η(i−1)

E + p(i−1)

ρ(i−1)

= u(i)
E − Θ(si )η(i)

E + p(i)

ρ(i)

= u(si )
E − Θ(si )η(si )

E − σ(si )

ρ(si )
. (28.54)

The last condition ∂Π(si )/∂W s |E = 0 yields

H (si )σ(si ) = − [[p]](i) . (28.55)

In (28.54) and (28.55), the bulk equilibrium relationsT (i)|E = −p(i) I andT (i−1)|E =
−p(i−1) I have been used.

The result (28.52)1 indicates that the equilibrium surface stress is isotropic and
that σ(si ) is the surface tension. Recalling the expression for σ(si ), (28.43), we find
that T (si )

E is derivable from the free energy function. Furthermore, (28.38) and (28.43)
demonstrate that, in equilibrium, the surface stress σ(si ) is a function of the surface
mass density ρ(si ) and Θ(si ). This relation should be given by an equation of state.
Relation (28.52)2 implies in thermodynamic equilibrium a vanishing interfacial heat
flux. Condition (28.55) reproduces the well-known relation of the force balance
between the surface tension and the pressure on the two sides of the interface.

When Θ(si ) = Θ(i) = Θ(i−1), ψ(i)
E + p(i)/ρ(i) = ψ(i−1)

E + p(i−1)/ρ(i−1), the first
relation of (28.54) is a well-known result of thermostatics of phase equilibria and has
been derived in various ways (see, e.g., Baehr [3]). This condition means that the
Gibbs functions, or the specific Gibbs free enthalpies of the phases at the interface
are equal in thermodynamic equilibrium.

The second part of (28.54), ψ(i)
E + p(i)/ρ(i) = ψ(si )

E − σ(si )
E /ρ(si )

E , is new and
implies important consequences for the understanding of nucleation phenomena. It
contradicts the basic assumption made in classical nucleation theory, that surface
tension equals the free energy of the surface per unit area, which would read σ(si )

E =
ρ(si )
E ψ(si )

E . We conclude that the classical nucleation theory is thermodynamically
inconsistent.

28.3.3 Linear Theory for the Nonequilibrium Parts

It is assumed that the representations of the constitutive variables are composed of two
parts, the equilibrium response and the dynamic or nonequilibrium response. Here
we consider a linear theory in which the representations for the dynamic constitutive
quantities q(si ) − q(si )

E and T (si ) − T (si )
E are linear in the nonequilibrium variables

Y (si )
k defined by (28.46). Recalling the functional dependence expressed by (28.28)
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for q(si ) and T (si ), we then have in the linear theory

T (si ) − T (si )
E = λ(si )

(
tr D(si )

)
I (si ) + 2μ(si )D(si ), (28.56)

q(si ) − q(si )
E = −κ(si )∇(si )Θ(si ) + α(si )

1 Ws + α(si )
2 W+

s + α(si )
3 W−

s , (28.57)

where the coefficients are, in general, scalar functions as follows:

{κ(si ),λ(si ),μ(si ),α(si )
1 ,α(si )

2 ,α(si )
3 }

= {κ̂(si ), λ̂(si ), μ̂(si ), α̂(si )
1 , α̂(si )

2 , α̂(si )
3 } (

ρ(si ),∇(si )ρ(si ), Θ(si ), H (si )
)
. (28.58)

Such linear forms are indeed the simplest, and when there are not enough observa-
tions, experiments, or other physical reasons to assume that the constitutive processes
involved are more complicated, it seems sensible to work with these linear forms. If
necessary, more complicated constitutive assumptions for these dynamic parts can
be considered.

Finally, we write the constitutive equations for T (si ) and q(si ) together

T (si ) = (σ(si ) + λ(si )tr D(si ))I (si ) + 2μ(si )D(si ), (28.59)

q(si ) = −κ(si )∇(si )Θ(si ) + α(si )
1 Ws + α(si )

2 W+
s + α(si )

3 W−
s . (28.60)

For variable surface mass density, the surface tension σ(si ) can also be determined
by ψ(si ) in (28.43), which may be specified by an equation of state as pointed out
before, while for mass density preserving surfaces, σ(si ) is an independent variable,
which can be computed by solving the field equations for the interface together with
the corresponding boundary conditions.

Substituting the constitutive equations (28.59) and (28.60) into the residual
entropy inequality (28.42), and evaluating the second condition of (28.50) for the
minimum of the entropy production imply limitations on the material coefficients
listed in (28.58). For the sake of simplicity, we evaluate this condition in index nota-
tion and assume that the stress tensor and the heat flux vector are functions of the
components of ∇(si )Θ(si ), Ws, W+

s , W
−
s and of six independent components of

D(si ), e.g., D(si )
11 , D(si )

12 , D(si )
13 , D(si )

22 , D(si )
23 , D(si )

33 . Then, the second-order derivative
is a tensor of order two, M(si ), with

M (si )
i j = ∂2Π(si )

∂Z (si )
i ∂Z (si )

j

∣∣
∣∣
E

, {i, j} ∈ (1, 2, . . . , 18) (28.61)

and

Z(si ) = ((∇(si )Θ(si )
)
1 ,

(∇(si )Θ(si )
)
2 ,

(∇(si )Θ(si )
)
3 , (Ws)1 , (Ws)2 ,

(Ws)3 ,
(
W+

s

)
1 ,

(
W+

s

)
2 ,

(
W+

s

)
3 ,

(
W−

s

)
1 ,

(
W−

s

)
2 ,

(
W−

s

)
3 ,

D(si )
11 , D(si )

12 , D(si )
13 , D(si )

22 , D(si )
23 , D(si )

33

)
. (28.62)
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Evaluating the components of M(si ) yields

∂2Π(si )

∂
(∇(si )Θ(si )

)
k ∂

(∇(si )Θ(si )
)
l

∣
∣∣∣
E

= 1

Θ(si )
κ(si )δkl, (28.63)

∂2Π(si )

∂ (Ws)k ∂
(∇(si )Θ(si )

)
l

∣∣∣∣
E

= − 1

Θ(si )
α(si )
1 δkl, (28.64)

∂2Π(si )

∂
(
W+

s

)
k
∂

(∇(si )Θ(si )
)
l

∣∣∣∣
E

= − 1

Θ(si )
α(si )
2 δkl, (28.65)

∂2Π(si )

∂
(
W−

s

)
k ∂

(∇(si )Θ(si )
)
l

∣∣∣
∣
E

= − 1

Θ(si )
α(si )
3 δkl, (28.66)

∂2Π(si )

∂D(si )
kl ∂D(si )

mn

∣∣
∣∣
E

= λ(si )δkl I
(si )
mn + λ(si )δmn I

(si )
kl + 4μ(si )δ(kl)(mn), (28.67)

where {k, l} ∈ (1, 2, 3) and {m, n} ∈ (1, 2, 3). The other components ofM (si ) vanish.
The condition, that the tensor M(si ) must be nonnegative definite, is equivalent to the
relation f · M(si ) f ≥ 0 for an arbitrary vector f �= 0. By choosing various special
functions for f we obtain the following inequalities4

κ(si ) ≥ 0, μ(si ) ≥ 0, (28.68)

α(si )
k = 0, λ(si ) I (si )

{kk} + 2μ(si ) ≥ 0, k = 1, 2, 3, (28.69)

∣∣∣λ(si ) I (si )
kl

∣∣∣ ≤ min

{
2

[
2μ(si )

(
λ(si ) I (si )

{mm} + 2μ(si )
)] 1

2 : m = 1, 2, 3

}
(28.70)

for (kl) = (12), (13), (23).

Note that in (28.69)2 and (28.70) it is understood that the repeated indices {kk} and
{mm} are not summed. Considering the validity of relations (28.69)2 and (28.70) for
all possible orientations of the phase interface, for which I (si )

{kk} ∈ [0, 1], I (si )
{mm} ∈ [0, 1]

and |I (si )
kl | ∈ [0, 1

2 ], and assuming that these material parameters are independent of
the orientation of the interface yield the restrictions

λ(si ) + 2μ(si ) ≥ 0,

∣∣ 1
2λ

(si )
∣∣ ≤ min

{
4μ(si ), 2

√
2μ(si )

(
λ(si ) + 2μ(si )

)}
.

(28.71)

4The derivations of the first conditions, (28.68) and (28.69)1, are straight. However, the derivations
of (28.69)2 and (28.70) are somewhat tedious and complicated by choosing various special functions
for f . Here, we refrain from providing more details.
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Furthermore, combining both restrictions (28.71) yields the relation

8(2 − √
5)μ(si ) ≤ λ(si ) ≤ 8μ(si ). (28.72)

The functional forms of the coefficient functions κ(si ),λ(si ),μ(si ) must be deter-
mined by experiments, in general.

28.4 Constitutive Relations for the Three-Phase Contact
Line

In this section, we perform an exploitation of the entropy inequality (28.18) for the
three-phase contact line C, analogous to those corresponding processes for the phase
interface demonstrated in the last section.

28.4.1 Constitutive Assumptions and Restrictions

We consider the material-dependent line variables

S ∈ {T (c), q(c),φ(c)
η ,ψ(c), η(c)}; (28.73)

they are functions of the following independent line variables:

S = Ŝ (
ρ(c),∇(c)ρ(c), Θ(c),∇(c)Θ(c), D(c),κ(c),W c,W 1

c,W
2
c,W

3
c

)
, (28.74)

inwhich D(c) = 1
2

(∇(c)v(c) + (∇(c)v(c))T
)
is the line stretching tensor,W c = w(c)−

v(c), andW i
c = w(c) − v(si ) (i ∈ {1, 2, 3}). Here, the principle of material objectivity

has been observed in the choice of the variables.
These constitutive equations must satisfy the entropy inequality (28.18). Incorpo-

rating the dependences (28.74) into (28.18) by use of the chain rule of differentiation
and employing relations in (28.19)3, (28.20)3, and (28.21)3 yields the new inequality

Θ(c)Π(c) =
−

(
ρ(c) ∂ψ(c)

∂ρ(c)
+ Λ(c)

ρ

)
d(c)ρ(c)

dt
− ρ(c)Λ(c)

v · d
(c)v(c)

dt

+ (
T (c) − Λ(c)

ρ ρ(c) I (c)
) · D(c) − ρ(c)

(
∂ψ(c)

∂Θ(c)
+ η(c)

)
d(c)Θ(c)

dt

−ρ(c) ∂ψ(c)

∂∇(c)ρ(c)
· d

(c)∇(c)ρ(c)

dt
− ρ(c) ∂ψ(c)

∂∇(c)Θ(c)
· d

(c)∇(c)Θ(c)

dt
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−ρ(c) ∂ψ(c)

∂D(c)
· d

(c)D(c)

dt
− ρ(c) ∂ψ(c)

∂κ(c)

d(c)κ(c)

dt

−ρ(c) ∂ψ(c)

∂W c
· d

(c)W c

dt
−

3∑

i=1

ρ(c) ∂ψ(c)

∂W i
c

· d
(c)W i

c

dt

+
(

Θ(c)
∂φ(c)

η

∂ρ(c)
+ Λ(c)

v · ∂T (c)

∂ρ(c)
− ∂q(c)

∂ρ(c)

)

· ∇(c)ρ(c)

+
(

Θ(c)
∂φ(c)

η

∂∇(c)ρ(c)
+ Λ(c)

v · ∂T (c)

∂∇(c)ρ(c)
− ∂q(c)

∂∇(c)ρ(c)

)

· ∇(c)
(∇(c)ρ(c)

)

+
(

Θ(c)
∂φ(c)

η

∂Θ(c)
+ Λ(c)

v · ∂T (c)

∂Θ(c)
− ∂q(c)

∂Θ(c)

)

· ∇(c)Θ(c)

+
(

Θ(c)
∂φ(c)

η

∂∇(c)Θ(c)
+ Λ(c)

v · ∂T (c)

∂∇(c)Θ(c)
− ∂q(c)

∂∇(c)Θ(c)

)

· ∇(c)
(∇(c)Θ(c)

)

+
(

Θ(c)
∂φ(c)

η

∂D(c)
+ Λ(c)

v · ∂T (c)

∂D(c)
− ∂q(c)

∂D(c)

)

· ∇(c)D(c)

+
(

Θ(c)
∂φ(c)

η

∂κ(c)
+ Λ(c)

v · ∂T (c)

∂κ(c)
− ∂q(c)

∂κ(c)

)

· ∇(c)κ(c)

+
(

Θ(c)
∂φ(c)

η

∂W c
+ Λ(c)

v · ∂T (c)

∂W c
− ∂q(c)

∂W c

)

· ∇(c)W c

+
3∑

i=1

(

Θ(c)
∂φ(c)

η

∂W i
c

+ Λ(c)
v · ∂T (c)

∂W i
c

− ∂q(c)

∂W i
c

)

· ∇(c)W i
c

−κ(c)Θ(c)
(
φ(c)

η · n(c)
) − κ(c)Λ(c)

ρ ρ(c)
((

w(c) − v(c)
) · n(c)

)

−κ(c)Λ(c)
v · (

T (c) · n(c)
) + κ(c)

(
q(c) · n(c)

)

+
3∑

i=1

(
ρ(si )

(
η(si ) − η(c)

) (
w(c) − v(si )

) · s(i) − φ(si )
η · s(i))

−Λ(c)
ρ

3∑

i=1

(
ρ(si )

(
w(c) − v(si )

) · s(i))

−Λ(c)
v ·

3∑

i=1

(
ρ(si )

(
v(si ) − v(c)

) (
w(c) − v(si )

) · s(i) + T (si ) · s(i))

−
3∑

i=1

(
ρ(si )

((
u(si ) − u(c)

) + 1
2

(
v(si ) − v(c)

) · (
v(si ) − v(c)

))
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((
w(c) − v(si )

) · s(i)
) − q(si ) · s(i) + (

T (si )
(
v(si ) − v(c)

)) · s(i)
)

≥ 0. (28.75)

This inequality is linear in the new independent variables, indicated by red color in
(28.75) and can be collected as follows:

α(c) =
{
d(c)ρ(c)

dt
,
d(c)v(c)

dt
,
d(c)Θ(c)

dt
,
d(c)∇(c)ρ(c)

dt
,
d(c)∇(c)Θ(c)

dt
,
d(c)D(c)

dt
,

d(c)κ(c)

dt
,∇(c)

(∇(c)ρ(c)
)
,∇(c)

(∇(c)Θ(c)
)
,∇(c)D(c),∇(c)κ(c)

d(c)W c

dt
,
d(c)W 1

c

dt
,
d(c)W 2

c

dt
,
d(c)W 3

c

dt
,

∇(c)W c,∇(c)W 1
c,∇(c)W 2

c,∇(c)W 3
c,

}
. (28.76)

Since thermodynamic processes, for which these variables can take any values, are
admissible, the coefficients a(c) of a(c) · α(c) must vanish. This leads to the so-called
Liu identities. It then follows that the expressions for the Lagrange multipliers,
Λ(c)

ρ and Λ(c)
v , are

Λ(c)
ρ = −ρ(c) ∂ψ(c)

∂ρ(c)
, Λ(c)

v = 0, (28.77)

for the specific entropy density is

η(c) = − ∂ψ(c)

∂Θ(c)
, (28.78)

and for the free energy ψ(c) implies

∂ψ(c)

∂∇(c)ρ(c)
= 0,

∂ψ(c)

∂∇(c)Θ(c)
= 0,

∂ψ(c)

∂D(c)
= 0,

∂ψ(c)

∂κ(c)
= 0,

∂ψ(c)

∂W c
= 0,

∂ψ(c)

∂W 1
c

= 0,
∂ψ(c)

∂W 2
c

= 0,
∂ψ(c)

∂W 3
c

= 0. (28.79)
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Moreover, the relations among φ(c), T (c), and q(c)

sym

(

Θ(c)
∂φ(c)

η

∂∇(c)ρ(c)
+ Λ(c)

v · ∂T (c)

∂∇(c)ρ(c)
− ∂q(c)

∂∇(c)ρ(c)

)

= 0,

sym

(

Θ(c)
∂φ(c)

η

∂∇(c)Θ(c)
+ Λ(c)

v · ∂T (c)

∂∇(c)Θ(c)
− ∂q(c)

∂∇(c)Θ(c)

)

= 0,

Θ(c)
∂φ(c)

η

∂D(c)
+ Λ(c)

v · ∂T (c)

∂D(c)
− ∂q(c)

∂D(c)
= 0,

Θ(c)
∂φ(c)

η

∂κ(c)
+ Λ(c)

v · ∂T (c)

∂κ(c)
− ∂q(c)

∂κ(c)
= 0, (28.80)

Θ(c)
∂φ(c)

η

∂W c
+ Λ(c)

v · ∂T (c)

∂W c
− ∂q(c)

∂W c
= 0,

Θ(c)
∂φ(c)

η

∂W 1
c

+ Λ(c)
v · ∂T (c)

∂W 1
c

− ∂q(c)

∂W 1
c

= 0,

Θ(c)
∂φ(c)

η

∂W 2
c

+ Λ(c)
v · ∂T (c)

∂W 2
c

− ∂q(c)

∂W 2
c

= 0,

Θ(c)
∂φ(c)

η

∂W 3
c

+ Λ(c)
v · ∂T (c)

∂W 3
c

− ∂q(c)

∂W 3
c

= 0,

must hold, where sym A = 1
2

(
A + AT

)
.

The restrictions on the free energy (28.79) imply the reduced dependence

ψ(c) = ψ̂(c)
(
ρ(c), Θ(c)

)
. (28.81)

Introducing the extra entropy flux

Φ(c)
η = φ(c)

η + 1

Θ(c)

(
Λ(c)

v · T (c) − q(c)
)

(28.82)

and considering (28.77)2, we have from (28.80)

sym

(
∂Φ(c)

η

∂∇(c)ρ(c)

)

= 0, sym

(
∂Φ(c)

η

∂∇(c)Θ(c)

)

= 0,
∂Φ(c)

η

∂D(c)
= 0,

∂Φ(c)
η

∂κ(c)
= 0,

∂Φ(c)
η

∂W c
= 0,

∂Φ(c)
η

∂W 1
c

= 0,
∂Φ(c)

η

∂W 2
c

= 0,
∂Φ(c)

η

∂W 3
c

= 0.

(28.83)
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Using the restrictions (28.83) on the extra entropy fluxΦ(c)
η and the isotropy assump-

tion, it follows that

Φ(c)
η = 0. (28.84)

Thus, the entropy flux assumes its traditional form and equals the heat flux divided by
the temperature, as presumed in the Coleman–Noll approach. It can be shown that
this result will not follow, if we add the dependences d(c)ρ(c)/dt and/or d(c)Θ(c)/dt
to the constitutive functions (28.74).

Substituting the restrictions (28.77)–(28.84) into the entropy inequality (28.75),
we obtain the reduced entropy inequality in the form

Θ(c)Π(c)

= (
T (c) − τ (c) I (c)

) · D(c) − q(c) · ∇(c)Θ(c)

Θ(c)
− κ(c)τ (c)

((
w(c) − v(c)

) · n(c)
)

+
3∑

i=1

(
ρ(si )

(
η(si ) − η(c)

) (
w(c) − v(si )

) · s(i) − φ(si )
η · s(i))

−τ (c)/ρ(c)
3∑

i=1

(
ρ(si )

(
w(c) − v(si )

) · s(i))

−
3∑

i=1

(
ρ(si )

((
u(si ) − u(c)

) + 1
2

(
v(si ) − v(c)

) · (
v(si ) − v(c)

))

((
w(c) − v(si )

) · s(i)) − q(si ) · s(i) + (
T (si )

(
v(si ) − v(c)

)) · s(i))

≥ 0, (28.85)

where we have introduced the definition

τ (c) = −ρ(c)2 ∂ψ(c)

∂ρ(c)
. (28.86)

We will see later that τ (c) corresponds to the line tension.
As shown above in (28.86), when the line mass density ρ(c) is a physical variable,

the line tension τ (c) is not a field quantity and should be determined by an additional
equation of state depending on the surface density and temperature (via the line free
energy ψ(c)). For a density preserving line, i.e., when the line density is constant, it
can be demonstrated that τ (c) is an independent field quantity and can be determined
by solving the field equations in a suitably formulated boundary value problem.

It can be easily seen that the line entropy η(c), internal energy u(c) and tension
τ (c), which all are only functions of the line density ρ(c) and temperature Θ(c), are
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related by the Gibbs equation5

dη(c) = 1

Θ(c)

(
du(c) − τ (c)d

(
1

ρ(c)

))
, (28.87)

an equation which is analogous to the corresponding Gibbs relations in the bulk,
(28.23), and on the interface, (28.45).

28.4.2 Thermodynamic Equilibrium

As usual, further restrictions on the constitutive relations can be obtained from the
residual inequality (28.85) in the context of thermodynamic equilibrium, which is
characterized in the current local formulation by the vanishing of the entropy pro-
duction rate density Π(c). In the context of the current constitutive class, (28.85)
implies that Π(c) vanishes when the independent dynamic variables

Y (c) = (∇(c)Θ(c), D(c),W c,W 1
c,W

2
c,W

3
c

)
(28.88)

all vanish, where W c = w(c) − v(c), and W i
c = w(c) − v(si ) (i ∈ {1, 2, 3}). We

see that the line entropy production Π(c) has a minimum in equilibrium. Necessary
conditions for this minimum are that

∂Π(c)

∂Y (c)
k

∣∣∣
Y (c)=0

= 0, Y (c)
k ∈ Y (c),

∂2Π(c)

∂Y (c)
l ∂Y (c)

m

∣∣∣
Y (c)=0

is nonnegative definite, Y (c)
l , Y (c)

m ∈ Y (c).

(28.89)

As is well known, the first condition restricts the equilibrium forms of the dependent
constitutive fields, while the second constrains the signs of material coefficients;
here we deal only with the first. For Y (c)

k ∈ {D(c),∇(c)Θ(c)}, (28.89)1 yields the
equilibrium values of the stress, and heat flux in the forms

T (c)
E = τ (c) I (c), q(c)

E = 0. (28.90)

Recalling the expression for τ (c), (28.86), we find that T (c)
E is derivable from the free

energy function. Furthermore, (28.90) demonstrates that, in equilibrium, the line
stress τ (c) is a function of the surface mass density ρ(c) andΘ(c). This relation should
be given by an equation of state. If the line density ρ(c) is constant, the line tension
is an independent field quantity and can be determined by the field equations.

5The Gibbs equation for the contact line, (28.87), can also be proved as demonstrated for the
surfacial Gibbs equation, (28.45) in footnote 3 on page 429.
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For Y (c)
k ∈ {W c}, (28.89)1 implies

κ(c)τ (c)n(c) = −
3∑

i=1

σ(si )s(i), (28.91)

which in case of vanishing line tension is reduced to the generalizedYoung equation,
while (28.89)1 for Y

(c)
k ∈ {W i

c} (i = 1, 2, 3) yields

u(si )
E − Θ(c)η(si )

E − σ(si )

ρ(si )
= u(c)

E − Θ(c)η(c)
E − τ (c)

ρ(c)
, (28.92)

or in terms of the Helmholtz free energies, if it is assumed that the temperature
from the interface S(i) to the contact line C is continuous, Θ(si ) = Θ(c),

ψ(si ) − σ(si )

ρ(si )
= ψ(c) − τ (c)

ρ(c)
, (28.93)

or when using equations (28.43) and (28.86) to express σ(si ) and τ (c) in terms of
ψ(si ), respectively,

∂
(
ρ(si )ψ(si )

)

∂ρ(si )
= ∂

(
ρ(c)ψ(c)

)

∂ρ(c)
, (28.94)

an equationwhich is impressivemerely by its beauty. Substituting (28.93) into (28.91)
yields

κ(c)τ (c)n(c) = −
3∑

i=1

{
ρ(si )

(
ψ(si ) − ψ(c)

) + ρ(si )

ρ(c)
τ (c)

}
s(i), (28.95)

or when expressing τ (c) by (28.86)

− κ(c)ρ(c) ∂ψ(c)

∂ρ(c)
n(c) = −

3∑

i=1

{
ρ(si )

ρ(c)

(
ψ(si ) − ψ(c)

) − ρ(si )
∂ψ(c)

∂ρ(c)

}
s(i). (28.96)

This equation expresses the unit principal normal vector n(c) in terms of the unit
vectors normal to the boundary curve C and tangential to the interfacesS(i), pointing
exterior to S(i) plus the mass densities and the free energies of the interfaces and
the contact line. This relation can be considered as another form of the generalized
Young equation in terms of the surface and line Helmholtz free energies. In this
balance, the line curvature κ(c) is the only differential geometric property that enters
(28.96). For straight contact lines, κ(c) vanishes so that the right-hand side of (28.96)
must vanish by itself.
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28.4.3 Linear Theory for the Nonequilibrium Parts

Here we consider a linear theory, one of the simplest possible forms, in which the
representations for q(c) − q(c)

E and T (c) − T (c)
E are linear in the variables Y (c)

k defined
by (28.88). Recalling the functional dependence expressed by (28.74) for q(c) and
T (c), we then have in the linear theory

T (c) − T (c)
E = λ(c)

(
tr D(c)

)
I (c) + 2μ(c)D(c), (28.97)

q(c) − q(c)
E = −κ(c)∇(c)Θ(c) + α(c)

0 W c +
3∑

i=1

α(c)
i W i

c, (28.98)

where the coefficients are, in general, scalar functions as follows:

{κ(c),λ(c),μ(c),α(c)
0 ,α(c)

1 ,α(c)
2 ,α(c)

3 }
= {κ̂(c), λ̂(c), μ̂(c), α̂(c)

0 , α̂(c)
1 , α̂(c)

2 , α̂(c)
3 } (

ρ(c),∇(c)ρ(c), Θ(c),κ(c)
)
. (28.99)

The complete constitutive equations for T and q can be written as

T (c) = (τ (c) + λ(c)tr D(c))I (c) + 2μ(c)D(c), (28.100)

q(c) = −κ(c)∇(c)Θ(c) + α(c)
0 W c +

3∑

i=1

α(c)
i W i

c. (28.101)

These constitutive relations for line quantities are fairly similar to the surface consti-
tutive equations, given in (28.59) and (28.60). For variable line mass density, the line
tension τ (c) can also be determined byψ(c) via (28.86), while for a density preserving
line, τ (c) is an independent variable, which can be computed from the momentum
equation and the boundary conditions.

As obtained above the evaluation of the second condition for the minimum results
in conditions on the material coefficients. For the sake of simplicity we evaluated the
second condition in index notation and assumed that the stress tensor and the heat
flux vector are functions of the components of ∇(c)Θ(c), W c, W j

c , j = 1, 2, 3 and of
six independent components of D(c). Here we use the components D(c)

11 , D
(c)
12 , D

(c)
13 ,

D(c)
22 , D

(c)
23 , D

(c)
33 of D(c). Then the second derivative is a second-order tensor M(c)

with

M (c)
i j = ∂2Π(c)

∂Z (c)
i ∂Z (c)

j

∣∣∣∣
E

, {i, j} ∈ (1, 2, . . . , 21) (28.102)
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and

Z(c) = ((∇(c)Θ(c)
)
1 ,

(∇(c)Θ(c)
)
2 ,

(∇(c)Θ(c)
)
3 , (W c)1 , (W c)2 , (W c)3 ,

(
W 1

c

)
1 ,

(
W 1

c

)
2 ,

(
W 1

c

)
3 ,

(
W 2

c

)
1 ,

(
W 2

c

)
2 ,

(
W 2

c

)
3 ,

(
W 3

c

)
1 ,

(
W 3

c

)
2 ,

(
W 3

c

)
3 , D(c)

11 , D(c)
12 , D(c)

13 , D(c)
22 , D(c)

23 , D(c)
33

)
. (28.103)

Evaluating the components of M(c) yields

∂2Π(c)

∂ (W c)k ∂
(∇(c)Θ(c)

)
l

∣
∣∣∣
E

= − 1

Θ(c)
α(c)
0 δkl, (28.104)

∂2Π(c)

∂
(
W 1

c

)
k ∂

(∇(c)Θ(c)
)
l

∣∣∣∣
E

= − 1

Θ(c)
α(c)
1 δkl, (28.105)

∂2Π(c)

∂
(
W 2

c

)
k
∂

(∇(c)Θ(c)
)
l

∣∣∣∣
E

= − 1

Θ(c)
α(c)
2 δkl, (28.106)

∂2Π(c)

∂
(
W 3

c

)
k ∂

(∇(c)Θ(c)
)
l

∣∣∣
∣
E

= − 1

Θ(c)
α(c)
3 δkl, (28.107)

∂2Π(c)

∂
(∇(c)Θ(c)

)
k ∂

(∇(c)Θ(c)
)
l

∣
∣∣∣
E

= 1

Θ(c)
κ(c)δkl, (28.108)

∂2Π(c)

∂D(c)
kl ∂D(c)

mn

∣∣∣∣
E

= λ(c)δkl I
(c)
mn + λ(c)δmn I

(c)
kl + 4μ(c)δ(kl)(mn), (28.109)

where {k, l} ∈ (1, 2, 3) and {m, n} ∈ (1, 2, 3). The other components of M(c) are
equal to zero. These components are formally similar to those for the phase inter-
face, indicated in (28.63)–(28.67). The condition, that this tensor is positive (semi-
)definite, is equivalent to the condition f · M(c) f > 0, where f �= 0 is an arbitrary
vector. For special choices of f we obtain the limitations

κ(c) ≥ 0, α(c)
0 = 0, α(c)

k = 0,

μ(c) ≥ 0, λ(c) I (c)
{kk} + 2μ(c) ≥ 0

(28.110)

for k = 1, 2, 3. Note that the repeated indices {kk} are not summed. Due to the fact
that I (c)

{kk} ∈ [0, 1], satisfying the restriction (28.110)5 for all possible orientations of
the contact line yields

λ(c) + 2μ(c) ≥ 0. (28.111)
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A further restriction from the semi-positivity of M(c) is

∣∣∣λ(c) I (c)
kl

∣∣∣ ≤ min

{
2

[
2μ(c)

(
λ(c) I (c)

{mm} + 2μ(c)
)] 1

2
,m = 1, 2, 3

}
(28.112)

for (kl) = (12), (13), (23). Its validity for all possible orientations of the contact
line, for which I (c)

{mm} ∈ [0, 1] and |I (c)
kl | ∈ [0, 1

2 ], reveals a relation, similar to that for
the phase interface (28.72), in the form

8(2 − √
5)μ(c) ≤ λ(c) ≤ 8μ(c), (28.113)

which includes relation (28.111). Hence, the restriction (28.111) is no longer
necessary.

28.5 Constitutive Relations for Phase Interfaces
with Memory

In Sect. 28.3 the constitutive relations for a heat conducting viscous phase interface
have been investigated, whose response is characterized by the constitutive class
(28.28). In this section, we will examine a more complicated case. We assume that
the investigated phase interface is heat conducting viscous, and additionally with
memory, e.g., for an elastic interface;moreover, itsmaterial responsemayalsodepend
on its orientation. For such an interface the material behavior may be postulated by
functions of the form6

S = Ŝ
(
ρ(si ), ρ̇(si ),∇(si )ρ(si ), Θ(si ), Θ̇(si ),∇(si )Θ(si ), D(si ), Ḋ

(si )
,

n(si ),∇(si )n(si ),Ws,W+
s ,W−

s

)
(28.114)

6Here, the material historic dependence on the material time derivative Ḋ
(si ) does not satisfy the

requirement of material objectivity. A more reasonable variable describing the dependence of the
materially deformational history may be the material objective time derivatives of D(si ), e.g., the

upper-convected time derivative (orOldroyd derivative)
�
D (si ), the lower-convected time derivative

�
D (si ) or Jaumann time derivatives

◦
D (si ), respectively, defined by

Upper-convected time derivative
�
D (si ) = Ḋ(si ) − L(si )D(si ) − D(si )(L(si ))T ,

Lower-convected time derivative
�
D (si ) = Ḋ(si ) + (L(si ))TD(si ) + D(si )L(si ),

Jaumann time derivative
◦
D (si ) = Ḋ(si ) − W(si )D(si ) + D(si )W(si ),

where L(si ) is the velocity gradient, D(si ) the rate of deformation tensor and W(si ) is the spin
tensor. If we would employ these materially objective time derivatives, the following evaluation of
the entropy principle would become much more complicated, if they would be still achievable by
hand. Here, we refrain doing this.
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for the constitutive quantities

S ∈ {
T (si ), q(si ),φ(si )

η ,ψ(si ), η(si )
}
. (28.115)

In comparison with (28.28) the additional dependences, {ρ̇(si ), Θ̇ , Ḋ
(si )}, have been

included into the constitutive class (28.114) to take the material memory (e.g., elastic
feature) into account. The curvature of the interface, H (si ),which arises in (28.28), has
been removed from (28.114). Instead, in (28.114) a more general variable,∇(si )n(si ),
is taken into account (of which H (si ) = tr

(∇(si )n(si )
)
). Moreover, the dependence

on the orientation of the interface, n(si ), is also considered.
In the following, we will investigate the restrictions on the material dependences

(28.114) by evaluating the entropy inequality (28.29), as done in Sect. 28.3.

28.5.1 Evaluation of the Entropy Inequality

Substituting the functional dependencies (28.114) into (28.29) and using the chain
rule of differentiation yields the entropy inequality of the form

Θ(si )Π(si ) = a(si ) · α(si ) + b(si ) ≥ 0,

in which

α(si ) =
(
d(si )ρ̇(si )

dt
,
d(si )∇(si )ρ(si )

dt
,
d(si )Θ̇(si )

dt
,
d(si )∇(si )Θ(si )

dt
,
d(si ) Ḋ

(si )

dt
,

d(si )n(si )

dt
,
d(si )∇(si )n(si )

dt
,
d(si )Ws

dt
,
d(si )W+

s

dt
,
d(si )W−

s

dt
,
d(si )v(si )

dt
,

∇(si )
(∇(si )ρ(si )

)
,∇(si )

(∇(si )Θ(si )
)
,∇(si )D(si ),∇(si ) Ḋ

(si )
,

∇(si )
(∇(si )n(si )

)
,∇(si )Ws,∇(si )W+

s ,∇(si )W−
s

)
(28.116)

and

b(si ) = −
(

ρ(si )
∂ψ(si )

∂ρ(si )
+ Λ(si )

ρ

)
d(si )ρ(si )

dt

−
(

ρ(si )
∂ψ(si )

∂Θ(si )
+ ρ(si )η(si )

)
d(si )Θ(si )

dt

− ρ(si )
∂ψ(si )

∂D(si )
· d

(si )D(si )

dt
+ (

T (si ) − Λ(si )
ρ ρ(si ) I (si )

) · D(si )
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+
(

Θ(si )
∂φ(si )

η

∂ρ(si )
+ Λ(si )

v · ∂T (si )

∂ρ(si )
− ∂q(si )

∂ρ(si )

)

· ∇(si )ρ(si )

+
(

Θ(si )
∂φ(si )

η

∂Θ(si )
+ Λ(si )

v · ∂T (si )

∂Θ(si )
− ∂q(si )

∂Θ(si )

)

· ∇(si )Θ(si )

+
(

Θ(si )
∂φ(si )

η

∂n(si )
+ Λ(si )

v · ∂T (si )

∂n(si )
− ∂q(si )

∂n(si )

)

· ∇(si )n(si )

− Θ(si )H (si )
(
φ(si )

η · n(si )
) − Λ(si )

ρ ρ(si )H (si )
((

w(si ) − v(si )
) · n(si )

)

− Λ(si )
v · (

H (si )
(
T (si ) · n(si )

)) + H (si )
(
q(si ) · n(si )

)

− Θ(si )
[[
ρ

(
η − η(s)

) (
w(s) − v

) · n(s) − φη · n(s)
]](i)

+ Λ(si )
ρ

[[
ρ

(
w(s) − v

) · n(s)
]](i)

+ Λ(si )
v · [[

ρ
(
v − v(s)

) (
w(s) − v

) · n(s) + T · n(s)
]](i)

+
[[

ρ
((
u − u(s)

) + 1
2

(
v − v(s)

) · (
v − v(s)

)) ((
w(s) − v

) · n(s)
)

− q · n(s) + T
(
v − v(s)

) · n(s)
]](i)

. (28.117)

Since a(si ) and b(si ) are independent of α(si ), the inequality can be violated by
arbitrary values of α(si ) unless a(si ) = 0 and b(si ) ≥ 0.

The condition a(si ) = 0 corresponds to the relations for the Helmholtz free
energy as follows:

∂ψ(si )

∂ρ̇(si )
= 0,

∂ψ(si )

∂Θ̇(si )
= 0,

∂ψ(si )

∂ Ḋ
(si )

= 0,

∂ψ(si )

∂n(si )
= 0,

∂ψ(si )

∂∇(si )n(si )
= 0, (28.118)

∂ψ(si )

∂Ws
= 0,

∂ψ(si )

∂W+
s

= 0,
∂ψ(si )

∂W−
s

= 0,

for the Lagrange multiplier referring to the momentum equation as

Λ(si )
v = 0, (28.119)

and for the extra entropy flux as
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sym

(
∂Φ(si )

η

∂∇(si )ρ(si )

)

= 0, sym

(
∂Φ(si )

η

∂∇(si )Θ(si )

)

= 0,

sym

(
∂Φ(si )

η

∂∇(si )n(si )

)

= 0,
∂Φ(si )

η

∂D(si )
= 0,

∂Φ(si )
η

∂ Ḋ
(si )

= 0,

∂Φ(si )
η

∂Ws
= 0,

∂Φ(si )
η

∂W+
s

= 0,
∂Φ(si )

η

∂W−
s

= 0,

∂Φ(si )
η

∂ρ̇(si )
− ρ(si )

∂ψ(si )

∂∇(si )ρ(si )
= 0,

∂Φ(si )
η

∂Θ̇(si )
− ρ(si )

∂ψ(si )

∂∇(si )Θ(si )
= 0,

(28.120)

where sym(M) = 1
2

(
M + MT

)
and the extra entropy flux is defined by

Φ(si )
η := φ(si )

η + 1

Θ(si )

(
Λ(si )

v · T (si ) − q(si )
)

(8.119)= φ(si )
η − q(si )

Θ(si )
. (28.121)

The constraints (28.118) result in the reduced dependence of theHelmholtz free
energy, which now reads

ψ(si ) = ψ̂(si )
(
ρ(si ),∇(si )ρ(si ), Θ(si ),∇(si )Θ(si ), D(si )

)
. (28.122)

Using the constraints (28.120) and the isotropy assumption leads to the reduced form
of the extra entropy flux

Φ(si )
η = ξ(si )n(si ) (28.123)

with ξ(si ) = ξ̂(si )
(
ρ(si ), Θ(si ), ρ̇(si ), Θ̇(si )

)
. From the last two conditions in (28.120),

if it is further assumed that ξ(si ) = ξ̂(si )
(
ρ(si ), Θ(si )

)
, one obtains

ψ(si ) = ψ̂(si )
(
ρ(si ), Θ(si ), D(si )

)
. (28.124)

The condition (28.123) also demonstrates the difference of our results from those
obtained by an evaluation of the entropy principle according to Coleman–Noll,
since the assumption of Coleman–Noll, φ(si )

η = 1
Θ(si )

q(si ), contradicts equation
(28.123). Inserting the definition H (si ) := tr

(∇(si )n(si )
)
of the surface curvature,

the identity n(si ) · ∇(si )(·) = 0 and the constraints (28.119), (28.123), and (28.124)
into inequality (28.117) leads to the reduced entropy inequality
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Θ(si )Π(si )

= −
(

ρ(si )
∂ψ(si )

∂ρ(si )
+ Λ(si )

ρ

)
ρ̇(si ) −

(
ρ(si )

∂ψ(si )

∂Θ(si )
+ ρ(si )η(si )

)
Θ̇(si )

+ (
T (si ) − σ(si ) I (si )

) · D(si ) − ρ(si )
∂ψ(si )

∂D(si )
· Ḋ(si )

− 1

Θ(si )
q(si ) · ∇(si )Θ(si ) − σ(si )H (si )

(
w(si ) − v(si )

) · n(si )

+ σ(si )

ρ(si )

[[
ρ

(
w(s) − v

) · n(s)
]](i)

− Θ(si )
[[
ρ

(
η − η(s)

) (
w(s) − v

) · n(s) − φη · n(s)
]](i)

+
[[

ρ
((
u − u(s)

) + 1
2

(
v − v(s)

) · (
v − v(s)

)) ((
w(s) − v

) · n(s)
)

− q · n(s) + T
(
v − v(s)

) · n(s)
]](i)

≥0, (28.125)

where the definition σ(si ) := ρ(si )Λ(si )
ρ has been introduced.

28.5.2 Thermodynamic Equilibrium

From the reduced entropy inequality (28.125) we can obtain the expressions of the
constitutive equations in thermodynamic equilibrium. To this end we choose a series
of suitable dynamic variables Y (si ) so that Π(si ) = 0 for Y (si ) = 0. Then, we
evaluate theminimumcondition (28.50) in the context of thermodynamic equilibrium
Y (si ) = 0. The residual entropy inequality implies the choice

Y (si ) =
(
ρ̇(si ), Θ̇(si ), D(si ), Ḋ

(si )
,∇(si )Θ(si ),Ws,W+

s ,W−
s

)
(28.126)

of independent nonequilibrium variables. The minimum conditions of the entropy
production in thermodynamic equilibrium, (∂Π(si )/∂Y (si )

k )|E = 0 for Y (si )
k ∈

{ρ̇(si ), Θ̇(si ), Ḋ
(si )} yield a condition for the Lagrange multiplier Λ(si )

ρ and con-
ditions for the Helmholtz free energy,

Λ(si )
ρ = −ρ(si )

∂ψ(si )

∂ρ(si )
, η(si ) = − ∂ψ(si )

∂Θ(si )
,

∂ψ(si )

∂D(si )
= 0. (28.127)
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The minimum conditions (∂Π(si )/∂Y (si )
k )|E = 0 for Y (si )

k ∈ {D(si ),∇(si )Θ(si )}
deliver the expressions of the stress and the heat flux in thermodynamic equilibrium,

T (si )
E = σ(si ) I (si ), q(si )

E = 0, (28.128)

identical to (28.52).
With the assumptions T (i)

E = −p(i) I and T (i−1)
E = −p(i−1) I for the adjacent bulk

phase subdomains, the condition (∂Π(si )/∂Y (si )
k )|E = 0 for Y (si )

k = Ws results in
the well-known relation

H (si )σ(si ) = − [[p]](i) , (28.129)

agreeing with (28.55), while for Y (si )
k ∈ {W+

s ,W−
s } it follows that

u(si ) − Θ(si )η(si ) − σ(si )

ρ(si )
= u(i) − Θ(si )η(i) + p(i)

ρ(i)

= u(i−1) − Θ(si )η(i−1) + p(i−1)

ρ(i−1)
. (28.130)

This agrees with (28.54), but holds now in thermodynamic nonequilibrium as well,
because the surficial internal energy and entropy have been shown to be independent
of the rate variables, as seen from (28.118), (28.122), and (28.127)3.

Furthermore, from the condition (28.127)3, it follows

ψ(si )
E = ψ̂(si )

E

(
ρ(si ), Θ(si )

)
. (28.131)

From relation (28.123), together with (28.121), (28.119), and (28.128)2, we obtain
the entropy flux in thermodynamic equilibrium

φ(si )
η

∣∣
E

= ξ(si )n(si ). (28.132)

28.5.3 Isotropic Theory for the Dynamic Part

Now, we intend to employ the results obtained for the thermodynamic equilibrium to
postulate an isotropic approach for the constitutive relations and derive constraints
on the arising material parameters. For the sake of simplicity, we evaluate the second
condition (28.50) and assume that the stress tensor and the heat flux vector are
functions of the dynamic components of ∇(si )Θ(si ), Ws, W+

s and W−
s and the six

independent components of D(si ) and Ḋ
(si ), respectively.
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Usingonly the linear generators for the isotropic representation obtainedbyWang
[33, 34] yields the following form for the dynamic part of the constitutive equations

q(si ) = −κ(si )∇(si )Θ(si ) + α(si )
1 Ws + α(si )

2 W+
s + α(si )

3 W−
s (28.133)

T (si ) − T (si )
E = λ(si ) I (si ) + 2μ(si )D(si ) + β(si )

1 Ḋ
(si )

. (28.134)

The prefactors are assumed to be functions of the form

{
κ(si ),μ(si ),λ(si ),α(si )

1 ,α(si )
2 ,α(si )

3

}

=
{
κ̂(si ), μ̂(si ), λ̂(si ), α̂(si )

1 , α̂(si )
1 , α̂(si )

1

} (
ρ(si ),∇(si )ρ(si ), Θ(si ),∇(si )Θ(si ),

ρ̇(si ), Θ̇(si ), D(si ), Ḋ
(si )

, n(si ),∇(si )n(si ),Ws,W+
s ,W−

s

)
. (28.135)

By inserting the constitutive equations (28.134) in the reduced entropy inequality,
(28.125) takes the form

Θ(si )Π(si )

= −
(

ρ(si )
∂ψ(si )

∂ρ(si )
+ Λ(si )

ρ

)
ρ̇(si ) −

(
ρ(si )

∂ψ(si )

∂Θ(si )
+ ρ(si )η(si )

)
Θ̇(si )

+ λ(si ) I (si ) · D(si ) + 2μ(si )D(si ) · D(si ) + β(si )
1 Ḋ

(si ) · D(si )

+ 1

Θ(si )
κ(si )∇(si )Θ(si ) · ∇(si )Θ(si ) − 1

Θ(si )
α(si )
1 W+

s · ∇(si )Θ(si )

− 1

Θ(si )
α(si )
2 W−

s · ∇(si )Θ(si ) − 1

Θ(si )
α(si )
3 Ws · ∇(si )Θ(si )

− ρ(si )
∂ψ(si )

∂D(si )
· Ḋ(si ) − σ(si )H (si )

(
w(si ) − v(si )

) · n(si )

− Θ(si )
[[
ρ

(
η − η(s)

) (
w(s) − v

) · n(s) − φη · n(s)
]](i)

+ σ(si )

ρ(si )

[[
ρ

(
w(s) − v

) · n(s)
]](i)

+
[[

ρ
((
u − u(s)

) + 1
2

(
v − v(s)

) · (
v − v(s)

)) (
w(s) − v

) · n(s)

− q · n(s) + T
(
v − v(s)

) · n(s)
]](i)

≥0. (28.136)

Now, we derive all second derivatives of Π(si ) with respect to the dynamic variables
(28.126). Assuming that the matrix of the second derivatives is positive semidefi-
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nite close to thermodynamic equilibrium as mentioned in (28.50)2, we obtain the
conditions7

2
∂λ(si )

∂D(si )
jk

I (si )
jk + 4μ(si ) ≥ 0, (28.137)

κ(si ) ≥ 0, (28.138)

α(si )
1 = 0, α(si )

2 = 0, α(si )
3 = 0, (28.139)

− ρ(si )
∂2ψ(si )

∂ρ(si )∂D(si )
jk

− ∂Λ(si )
ρ

∂D(si )
jk

+ ∂λ(si )

∂ρ̇(si )
I (si )
jk = 0, (28.140)

− ρ(si )
∂2ψ(si )

∂Θ(si )∂D(si )
jk

− ρ(si )
∂η(si )

∂D(si )
jk

+ ∂λ(si )

∂Θ̇(si )
I (si )
jk = 0, (28.141)

∣∣∣∣
∣
∂λ(si )

∂D(si )
jk

I (si )
mn + ∂λ(si )

∂D(si )
mn

I (si )
jk

∣∣∣∣
∣

≤ 4

[(
∂λ(si )

∂D(si )
jk

I (si )
jk + 2μ(si )

) (
∂λ(si )

∂D(si )
mn

I (si )
mn + 2μ(si )

)] 1
2

, (28.142)

∣∣
∣∣∣

∂λ(si )

∂
(∇(si )Θ(si )

)
m

I (si )
jk

∣∣
∣∣∣

≤ 2

[

2

(
∂λ(si )

∂D(si )
jk

I (si )
jk + 2μ(si )

)
2

Θ(si )
κ(si )δmm

] 1
2

, (28.143)

∂λ(si )

∂Ws
I (si )
jk = − ∂σ(si )

∂D(si )
jk

H (si )n(si ), (28.144)

∂λ(si )

∂W+
s

I (si )
jk = − ρ(i)

ρ(si )

∂σ(si )

∂D(si )
jk

n(si ), (28.145)

∂λ(si )

∂W−
s

I (si )
jk = −ρ(i−1)

ρ(si )

∂σ(si )

∂D(si )
jk

n(si ). (28.146)

It is important tomention that there is no summationover piecewise occurring indices.
From (28.145) and (28.146), it follows that

∂λ(si )

∂W−
s

= ρ(i−1)

ρ(i)

∂λ(si )

∂W+
s

. (28.147)

7These derivations are fairly tedious and complicated. Here, we refrain from providingmore details.



452 28 Multiphase Flows with Moving Interfaces …

Since the inequality (28.137) must be independent of the coordinate system, which
means the inequality must be satisfied for arbitrary I jk , we conclude that

∂λ(si )

∂D(si )
jk

≥ −2μ(si ) (28.148)

must hold for ( jk) ∈ {(11), (12), (13), (22), (23), (33)}. Due to (28.139) a depen-
dence of the surface heat flux q(si ) on the relative velocitiesWs,W+

s ,W
−
s in (28.133)

cannot occur. To obtain more explicit limitations on the material parameters, further
assumptions on the form of the constitutive equations are required.

28.6 Closing Summary

This chapter was devoted to the derivations of the possible forms for the constitutive
relations of the material laws of phase interfaces and three-phase contact line in the
context of multiphase flows. We presented the continuum description of phase inter-
faces and three-phase contact line associated with excess surface and line physical
quantities. Starting from a fairly general postulate of constitutive functions, a sim-
ple continuum model was deduced by restrictions imposed by the rules of material
frame indifference, and particularly the entropy principle paired with a few ad hoc
assumptions.

As an example, we mention the postulation that the interfacial constitutive vari-
ables S ∈ {

T (si ), q(si ), ...
}
are characterized by the constitutive functions

S = Ŝ
(
ρ(si ),∇(si )ρ(si ), Θ(si ),∇(si )Θ(si ),∇(si )v(si ),

H (si ), v(si ), v(i), v(i−1),w(si )
)
.

We employed the principle of material objectivity, evaluated the entropy inequality,
and employed a linear theory for the dynamic parts of the constitutive variables.
Among other results, the constitutive equations for the interfacial stress T (si ) and the
interfacial heat flux q(si ) take the reduced forms

T (si ) = (σ(si ) + λ(si )tr D(si ))I (si ) + 2μ(si )D(si ),

q(si ) = −κ(si )∇(si )Θ(si ),

where the following restrictions on the material parameters κ(si ), λ(si ) and μ(si ) must
hold:

κ(si ) ≥ 0, μ(si ) ≥ 0, 8(2 − √
5)μ(si ) ≤ λ(si ) ≤ 8μ(si ).
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In case of a variable surface mass density at the interface (ρ(si ) = ρ̂(si )
(
x(si ), t

)
), the

surface tension σ(si ) should be determined by a surface thermal equation of state; it is
expressed in terms of the interfacialHelmholtz free energy, as shown in (28.43). For
a density preserving surface (ρ(si ) = const), the surface tension σ(si ) is an unknown
field quantity and must be determined by solving the field equations in a properly
posed initial boundary value problem. Furthermore, the interfacial Gibbs equation,
(28.45), and the relations among the interfacial Helmholtz free energy, the surface
tension, as well as the Helmholtz energies and pressures of the neighboring bulk
phases in thermodynamic equilibrium, (28.54), were also derived.

Similar constitutive relations for the three-phase contact line were also deduced.
Thesematerial equations seem to be fairly simple andmay be applicable to explicit

calculations of dynamic processes associated with the phase interfaces and the three-
phase common line in multiphase flows.

28.7 Concluding Remarks

This and the previous chapter are concernedwith the derivation of restrictions implied
by thermodynamics of multiphase flows of bodies exhibiting moving interfaces and
contact lines. In Chap. 27, the balance laws are derived for Boltzmann models of
bulk, surface, and contact line continua. In this chapter then continues this problem
of classical physics in three, two, and one dimensions with the presentation of the
derivation of the implications that follow from MÜLLER’s entropy principle applied
to these fluid continua for viscous, heat conducting, compressible or density pre-
serving fluids. Except for the analytical-algebraic complexity of the computations,
the procedures to reach the corresponding inferences are straightforward. The pro-
cedures and results of both chapters can be classified as belonging to established
rules of thermodynamics. They are necessary prerequisites for a consistent applica-
tion of the deduced results in fluid dynamical studies of such complex systems in
initial boundary value problems. Such applications must follow the thermodynamic
groundwork laid down in the two chapters.

The two chapters deal with multiphase flows with moving interfaces and contact
line as a thermodynamic system, in which three-dimensional continua are separated
by dynamic two-dimensional contact surfaces and a one-dimensional contact line. It
is assumed that the moving interfaces have conceptually vanishing thicknesses and
the contact line is similarly treated as a mathematical line possessing vanishing cross
section. More complex geometric configurations are not analyzed.

The complexity of the multiphase model is, however, enhanced with respect to
assumptions describing the physics of this model. The three-dimensional bulk part
of the body is composed of three separate phases. They are assumed to be different
Boltzmann materials, respectively, and can also be mixtures of class II, in which
dilute constituent components are described by constituent mass balance laws, which
can, in principle, interact via dynamic and/or chemical exchange processes, but move
in consensus with the bearer fluid. The moving interfaces and the contact line are
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treated as two-dimensional and one-dimensional mass carrying continua, which, in
principle possess distinctmass densities, velocities, temperatures, and entropies from
one another and from the bulk phase. The dynamic and thermal interactions of the
moving interfaces with the bulk materials and the moving interfaces with the moving
contact line are exerted by the surface and line balance equations of mass, momenta,
energy, and entropy that reduce to the familiar corresponding jump conditions when
the surface and line mass densities are ignored.

The implication is that the moving interfaces behave essentially as membranes
subject to surface tensions and shear forces parallel to the surface, but incapable of
sustaining bending and twisting moments. Similarly, the contact line possesses the
structure of a thread or string, underlying line tension and axial shear force, but again
only vanishing bending and torsion.

These properties allow possible extensions of the thermodynamic model of the
interfaces and the contact line to liquid shells and liquid shafts or beams, whichwould
allow extensions of the descriptions of the physical behavior of themoving interfaces
and contact line. In such extensions, they would fit into two-dimensional and one-
dimensionalCosserat continua, which thenwould interact with aBoltzmann bulk
fluid. Such extensions then could allow accounting for the variability of the field
variables across the thickness of the interfaces and the contact line by considering
variations of the kinematic and thermal fields and nonzero bending and twisting
moments as well as the temperature.
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Chapter 29
A Granular Fluid as a Limit of a Binary
Mixture Theory—Treated as a
One-Constituent Goodman–Cowin-Type
Material

Abstract Goodman and Cowin (1972) (Goodman and Cowin (1971). J. Fluid
Mech. 45, 321–339. [6]) proposed a continuum theory of a dry cohesionless granu-
lar material in which the solid volume fraction ν is treated as an independent kine-
matic field for which an additional balance law of equilibrated forces is postulated.
They motivated this additional balance law as an equation describing the kinematics
of the microstructure and employed a variational formulation for its derivation. By
adopting the MÜLLER–Liu approach to the exploitation of the entropy inequality
we show that in a constitutive model containing ν, ν̇ and grad ν as independent vari-
ables, results agree with the classical Coleman–Noll approach only, provided the
Helmholtz free energy does not depend on ν̇, for which theGoodman–Cowin equa-
tions are reproduced. This reduced theory is then applied to analyses of steady fully
developed horizontal shearing flows and gravity flows of granular materials down an
inclined plane and between parallel plates. It is demonstrated that the equations and
numerical results presented by Passman et al. (1980) (Passman, Nunziato, Bailey
and Thomas (1980). J. Eng. Mech. Div. ASCE 106, 773–783. [15]) are false, and
they are corrected. The results show that the dynamical behavior of these materials
is quite different from that of a viscous fluid. In some cases, the dilatant shearing
layers exist only in the narrow zones near the boundaries. They motivated this addi-
tional balance law as an equation describing the kinematics of the microstructure and
employed a variational formulation for its derivation. In an appendix, we present a
variational formulation, treating the translational velocity and solid volume fraction
as generalized coordinates of a Lagrangean formulation.

Keywords Granular materials · Constitutive equations · Iteration method ·
Granular shearing flows

This chapter is heavily based on the paper by Wang and Hutter [20].
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List of Symbols

Roman Symbols

A n × n matrix in a linear equation Aφ = f
A Constitutive parameter for A = 2γν∂ψ/∂(grad ν · grad ν)

a(= 0) Liu identities
a0, . . . , a3 Parameters in the second-order approximation of γνψ, see (29.57)
B Material body
b > 0 Residual entropy inequality
b Body force
D Strain rate (stretching) tensor
E Symbol for energy balance
f Intrinsic equilibrated body force
f D Nonequilibrium parameter for f
f E Thermodynamic equilibrium value of f
f n-dimensional vector
h Equilibrated stress vector
k Iteration index in a numerical integration method
k Extra entropy flux vector, k = φ + 1

θ
(λv · T + λkh − q)

l, � External equilibrated body force
M Symbol for linear momentum balance
N Symbol for equilibrated force balance
p Thermodynamic pressure (see (29.39))
q Heat flux vector
qE = 0 Thermodynamic equilibrium value of q
R Symbol for mass balance
r Heat (energy) supply
s Entropy supply density
S Dimensionless parameter, see (29.66), S = γb/(2νma0)ξ
T Cauchy stress tensor
T E Cauchy stress tensor in thermodynamic equilibrium
u(y) x-component of v in a shearing problem
v Velocity vector
w = grad ν Gradient of the volume fraction
x, y, z Cartesian coordinates, (x, y) horizontal, z vertical generally against

gravity
x̄, ȳ, z̄ Dimensionless forms of (x, y, z)
Y Independent constitutive variables in thermodynamic nonequilibrium,

Y = (ν̇, grad θ, D)

Greek Symbols

α Vector of physical quantities formed with derivatives of the indepen-
dent constitutive variables

α(ν) Coefficient function in the parameterization of φ(ν), see (29.60)
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α0, . . . Coefficients in the parameterization of α(ν) (dimensionless)
β Configurational pressure, see (29.39)
γ True density, density of the grains
ε Internal energy
η Entropy density per unit mass
μ Viscosity
μ0 Reference viscosity (see (29.61))
ν Volume fraction
νm Critical volume fraction
ν∞ Volume fraction at densest packing
ζ Nonequilibrium parameter for f
φ Entropy flux
φ n × n vector in the linear equation Aφ = f
σ0 Dimensionless pressure at the upper surface of the shear layer
π Entropy production density
λ Bulk viscosity
λk Lagrange multiplier of the equilibrated force balance
λv Lagrange multiplier of the momentum balance
λε Lagrange multiplier of the energy balance
λν Lagrange multiplier of the mass balance
θ Empirical (and later)Kelvin temperature, inclination angle of a gran-

ular layer
ψ Free energy (Helmholtz free energy)
ξ Thermodynamic nonequilibrium parameter of theCauchy stress ten-

sor
1/ξ Material length, ξ2 = a0/α0 = [1/L2]
κ Heat conductivity

Miscellaneous Symbols

d/dt Total time derivative
∂V Boundary of volume V
AT Transpose of A

A−T = (AT )−1 = (A−1)T

‖b‖ Norm of b
¯(·) Dimensionless form of (·)

29.1 Introduction

A granular material is a collection of a large number of discrete solid particles with
interstices filled with a fluid or a gas. In most flows involving the granular materials,
the interstitial fluid plays an insignificant role in the transportation of momentum
and thus flows of such materials can be considered dispersed single phase rather than
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multiphase flows. A detailed review of flows of granular materials has been presented
by Hutter and Rajagopal [9] and Wang and Hutter [20, 21].

It is widely known today that granular media exhibit microstructural effects on
their macroscale, which is accounted for, in general, by adding an additional dynam-
ical equation for the solid volume fraction ν. Different authors do not unanimously
agree upon the form of this equation. Svendsen and Hutter [19] treated the solid
volume fraction as an internal variable and write an evolution equation balancing its
time rate of change with its production. Wilmanski [22] on the other hand, using
statistical arguments on the microscale demonstrated that the Svendsen–Hutter
equation needed to be complemented by a flux term, thus arriving at a complete bal-
ance law. On the other hand, Goodman and Cowin (1972) [7] introduced, on pure
mathematical grounds, a balance law of equilibrated forces in which second-order
time derivatives of ν, i.e., ν̈ were balanced with a flux, production and supply terms.
Today, it is still not clear what their motivation might have been, except, perhaps, the
formal analogy with Newton’s law.

In deriving their reduced constitutive relations from a class of constitutive postu-
latesGoodman andCowin used theColeman–Noll approach of thermodynamics,
i.e., the linear momentum equation, the energy balance and the balance of equili-
brated forces had all arbitrarily assignable external source terms, so that these balance
laws would not affect the exploitation of the entropy inequality. Whereas such a pro-
cedure can be tolerated for the momentum and energy sources, it is physically utter
nonsense for the balance law of equilibrated forces. This is an internal law all by
itself, and at least this law must influence the thermodynamics.

This is one reason why we have rederived the thermodynamic theory, now using
the MÜLLER–Liu approach in which the entropy inequality is exploited for all ther-
modynamic processes, i.e., all balance laws and boundary conditions, be these pro-
cesses driven by external sources or not. We find thatGoodman–Cowin’s approach
agrees with this more general approach provided the Helmholtz free energy does
not depend on ν̇. We present the general field equations that emerge in this case,
study the thermodynamic equilibrium state of granular media in detail and show
that in a viscous (but not plastic) model equilibrium-shear stresses can be supported
by the model through the inhomogeneities of the solid volume fraction distribution.
Deviations from the thermostatic equilibrium are modeled in a linear fashion as is
done by Goodman and Cowin [7]. The analysis reproduces the Goodman–Cowin
equations for a limited constitutive class but calls for the more general thermody-
namic approach when memory effects through the ν̇-dependence are included in the
Helmholtz free energy.

As mentioned in the chapter title, we wish to interpret a granular material con-
ceptually as a limit construction of a mixture theory of an assembly of granules—in
the simplest situation of particles of one representative form and diameter—and an
interstitial fluid or empty space. Different authors do not unanimously agree upon the
form of this equation. Svendsen andHutter [19] treat the solid volume fraction as
an internal variable and write an evolution equation, balancing its time rate of change
with its production.Wilmanski [23], on the other hand, using statistical arguments
on the microscale, demonstrates that the Svendsen–Hutter equation needed to be
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complemented by a flux term, thus arriving at a complete balance law:

ν̇ = π, Svendsen−Hutter [23],
ν̇ = div h + π, Wilmanski [27], (29.1)

in which ν is the solid volume fraction, π its specific production, and h its flux.
Much earlier, Goodman and Cowin [7] suggested that the volume fraction of a

moving granular material ought to have the form

Iν̈ = div h + π, Goodman−Cowin [9], (29.2)

in which I has the meaning of an inertia and ν̈ is a volume fraction accelera-
tion assigning to their volume fraction equation the structure of a ‘volume fraction
momentum balance’.

With a somewhat simplistic understanding, and with the adoption of the postulate
that the granular structure can be “derived” from a scalar balance law, which typically
reflects a momentum-like character, we shall now propose a model procedure. This
attitude suggests that the momentum associated with the volume variation of the
granules plus the pore volumemaybe postulated to be proportional to the acceleration
of the volume fractionmultipliedwith a pre-factor that can be identifiedwith a volume
fraction inertia I. This term is balanced by the volume fraction stress, the divergence
of a vector-valued quantity h, called the volume fraction flux, plus a scalar-valued
volume fraction body force π that may be composed of an intrinsic, ρ f , and an
external, ρ�, contribution. Here, ρ = γν is the density and γ the true density per unit
volume of the solid grains. Writing the volume fraction inertia as I = γk, in which k
is a phenomenological parameter, the volume fraction momentum balance may now
simply be conjectured in the form

γkν̈ = div h + γν( f + �). (29.3)

Even though the motivation of this balance equation is far from being a derivation,
it possesses a high potential of being able to capture a substantial part of the physics
of granular materials. Ignoring the external supply part, �, all remaining quantities,
k, h, and f have essentially constitutive character. This means that (29.3) possesses
the potential of capturing a great number of physical phenomena, since all these
quantities follow essentially from experimentation. The aim of the application of
the second law of thermodynamics is then virtually the only tool to constrain the
freedom in the selection of the functional form of k, h, and f . This must be done
by simultaneously accounting the balance laws of mass, momentum, and energy. As
we shall see, the coupling of (29.3) with these physical laws will be enhanced by
introducing working terms in the energy equation that are of the form h·grad ν̇ and
γν f ν̇.

The above relatively weak motivation of the equilibrated force balance also sheds
light on our preference of the entropy principle ofMÜLLER against that ofColeman–
Noll: Introducing an external equilibrated force γν� and handling it as a “deus ex
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machina” to ignore (29.3) in the exploitation of the entropy principle implies that the
thermodynamic interplay between (29.3) and the remaining physical balance laws
is not as strong as otherwise. Therefore, to abandon the open-system exploitation of
the entropy principle is a helpful step in achieving better model equations.

As the various micro-grain postulates imply distinct balance laws with distinct
thermodynamically detailed results, explicit computations of flow configurations
need to be deduced and compared with experimental results. We shall present results
of such computations and demonstrate that the fundamental axiomatics are crucial
in this regard.

In an attempt to reproduce and generalize the shear flowcomputations ofPassman
et al. (1980) [15], it was found that our reduced differential equations for the hori-
zontal shearing flow differed in the sign of one single but important term; scrutiny
apparently proved us to be correct, and recomputations generated vastly different
results. Thus, in Sects. 29.5–29.7 the theory is applied to analyses of steady fully
developed horizontal shearing flows and gravity flows of granular materials down an
inclined plane and between vertical parallel plates, by use of a special expression of
free energy used in Passman et al. [15]. Results show that the dynamical behavior
of these materials is quite different from that of a viscous fluid. In some cases, the
dilatant shearing layers exist only in the narrow zones near the boundaries, which
is different from a viscous fluid, in which shearing exists in all flow zones. We also
present the analysis of the horizontally sheared layer between two rigid plates and
show that results are in this case vastly different from what Passman et al. obtained.

29.2 Thermodynamic Processes

29.2.1 Balance Relations

We shall now assume the moving material as a single-constituent material of fluid
type, of which the empty pore space is dynamically acting on the motion of the grain
assemblage by the microstructure equation (29.3). We shall employ the following
notation:

• γ is the true mass density of the grains (2.6 × 103 kgm−3).
• ν is the volume fraction occupied by the grains.
• T is the Cauchy stress tensor of the grains, necessarily symmetric in a one-
constituent fluid.

• b is the body force per unit mass (∼gravity force).
• The microstructural force balance is taken in the form (29.3).
• The balance of energy is extended by two additional power terms due to the flux
h and the intrinsic body force γν f , which are given by h · grad ν̇ and −γν f ν̇,
respectively. So, the total power of working is postulated as

T · D + h · grad ν̇ − γν f ν̇. (29.4)
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• ε is the internal energy, q the heat flux vector, and r the radiation supply per unit
mass.

With these notations, the physical balance laws of this postulated granular continuum
take the forms (see this Volume Chaps. 21, 25 and 26).

• Balance of mass

R ≡ γ̇ν + γνdiv v = 0, (29.5)

• Balance of linear momentum

M ≡ γνv̇ = div T + γνb, (29.6)

• Balance of angular momentum

T = T T , (29.7)

• Balance of equilibrated force

N ≡ γνkν̈ = div h + γν(l + f ), (29.8)

• Balance of energy

E ≡ γνε̇ = T · D + h · grad ν̇ − γν f ν̇ − div q + γνr. (29.9)

The balance equations (29.5), (29.6) and (29.7) are analogous to the classical bal-
ance equations of mass, linear momentum, and angular momentum. The balance of
equilibrated force is assumed in this simplest form (29.8) according to Goodman
and Cowin [7]. The conservation of energy (29.9) differs from the traditional state-
ments by the occurrence of the power terms associated with ν̇; here we are following
MÜLLER [14] and Goodman and Cowin [7].

29.2.2 Entropy Inequality

According to our concept of thermodynamics, following MÜLLER [14] and Liu [13]
we postulate an entropy inequality of the form

π = γνη̇ + divφ − γνs, (29.10)

η is the entropy density per unit mass, φ its flux density, and s its production density
per unit mass. π is the entropy production per unit volume, for which we require

π > 0 (29.11)
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for any thermodynamic process satisfying the balance laws (29.5)–(29.9). Following
Liu [13], this can be achieved by satisfying the extended entropy inequality

π − 1

θ
λνR − 1

θ
λv · M − 1

θ
λkN − λεE > 0, (29.12)

where λν , λv/θ, λk/θ, and λε are the Lagrange multipliers of mass, momentum,
equilibrated force balance, and energy. In the imbalance (29.12) the condition of the
symmetry of theCauchy stress tensor is not implemented, becausewe tacitly assume
that the constitutive relation for T is postulated so as to fulfill the symmetry condition.
Thismeans that we regard the granularmaterial as aBoltzmann continuum and thus
ignore a possible intrinsic spin balance which for not too small grains may well be
an oversimplification. We also have weighted in (29.12) the Lagrange parameters
with 1/θ (except for λε), because ensuing calculations will be simplified, if (θ > 0)
is identified with the Kelvin temperature. When substituting R, M, N and E as
defined in (29.5)–(29.9) into (29.12), we obtain

π = γνη̇ + divφ − γνs − (1/θ)λν(γ̇ν + γν̇ + γνdiv v)

−(1/θ)λv · (γνv̇ − div T − γνb) − (1/θ)λk(γνkν̈ − div h − γν(l + f ))

−λε(γνε̇ − T · D − h · grad ν̇ + γν f ν̇ + div q − γνr) � 0. (29.13)

We will satisfy this new inequality for all (unrestricted) fields. Explicitly, the balance
relations appear as constraints on the class of physically realizable processes, where
λν, λv, λk, λε represent the corresponding Lagrange multipliers.

Introducing the free energy

ψ = ε − ηθ (29.14)

as well as the assumption λε = 1/θ transforms the entropy inequality into the form

θπ = −γν[ψ̇ + ηθ̇] − [γλν + γν f ]ν̇ − γνλv · v̇
+θdivφ + λv · div T + λkdiv h − div q − νλνγ̇

+[T − γνλν I] · D + h · grad ν̇ − λkγνkν̈ + λkγν f � 0. (29.15)

In deducing it, we assumed that the material behavior is independent of the supplies,
that all external source terms balance, viz.,

θγνs − λv · γνb − λkγνl − γνr = 0, (29.16)

which may serve as an equation that determines the entropy supply in terms of the
other supply terms. The entropy and its flux as well as the Lagrange multipliers
must be considered as auxiliary quantities.

This form of the entropy inequality (29.15) will be used to investigate the consti-
tutive postulates in the next section.
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29.3 Constitutive Relations

29.3.1 Constitutive Assumptions and Restrictions

We consider granular materials whose response is characterized by constitutive func-
tions of the form

S = Ŝ(ν0, ν, grad ν, ν̇, γ, θ, grad θ, v, grad v) (29.17)

for the material variables

S = {ψ, η, T , h, f, q,φ}. (29.18)

In accordance with the assumption presented in Goodman and Cowin [7], we
assumed that the response functions for granular materials depend on a reference
configuration through the reference volume distribution ν0; in this property granular
materials are different from fluids. Invoking the principle of material objectivity,
which implies that the response of granular materials is independent of the veloc-
ity and skew-symmetric part of the velocity gradient W = 1

2 (grad v − (grad v)T ),
(29.17) reduces to

S = Ŝ(ν0, ν, grad ν, ν̇, γ, θ, grad θ, D), (29.19)

where D = 1
2

(
grad v + (grad v)T

)
is the stretching tensor. Note that we omit grad γ

as an independent constitutive variable. If the functional dependence of ψ, T , h, q,
and φ, expressed in (29.19), is incorporated in (29.15) by use of the chain rule with
the identity

˙grad ν = grad ν̇ − grad ν · grad v, (29.20)

then, inequality (29.15) becomes

θπ=−
[
γν

∂ψ

∂ν
+ γλν + γν f

]
ν̇ − γνλv · v̇ −

[
γν

∂ψ

∂γ
+ νλν

]
γ̇

+
[
T − γνλν I + γν

∂ψ

∂grad ν
⊗ grad ν

]
· D + γν

∂ψ

∂grad ν
⊗ grad ν · W

− γν

[
λkk + ∂ψ

∂ν̇

]
ν̈ − γν

[
∂ψ

∂θ
+ η

]
θ̇

+ λkγν f − γν
∂ψ

∂grad θ
· ˙grad θ + ∂ψ

∂D
· Ḋ
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+
[
h − γν

∂ψ

∂grad ν
+ θ

∂φ

∂ν̇
+ λv · ∂T

∂ν̇
+ λk ∂h

∂ν̇
− ∂q

∂ν̇

]
· grad ν̇

+
[
θ

∂φ

∂ν0
+ λv · ∂T

∂ν0
+ λk ∂h

∂ν0
− ∂q

∂ν0

]
· grad ν0

+
[
θ
∂φ

∂ν
+ λv · ∂T

∂ν
+ λk ∂h

∂ν
− ∂q

∂ν

]
· grad ν

+
[
θ

∂φ

∂grad ν
+ λv · ∂T

∂grad ν
+ λk ∂h

∂grad ν
− ∂q

∂grad ν

]
· grad (grad ν)

+
[
θ
∂φ

∂γ
+ λv · ∂T

∂γ
+ λk ∂h

∂γ
− ∂q

∂γ

]
· grad γ

+
[
θ
∂φ

∂θ
+ λv · ∂T

∂θ
+ λk ∂h

∂θ
− ∂q

∂θ

]
· grad θ

+
[
θ

∂φ

∂grad θ
+ λv · ∂T

∂grad θ
+ λk ∂h

∂grad θ
− ∂q

∂grad θ

]
· grad (grad θ)

+
[
θ

∂φ

∂D
+ λv · ∂T

∂D
+ λk ∂h

∂D
− ∂q

∂D

]
· grad D � 0.

(29.21)

This inequality has the form

a · α + b � 0, (29.22)

where the vector a and the scalar b are functions of the variables listed in (29.19),
and the vector α depends on time and space derivatives of these quantities. Hence,
inequality (29.22) is linear in α (the terms in red color in (29.21)), and since these
variables can take any values, it would be able to violate it unless

a = 0 and b � 0. (29.23)

Explicitly, the entropy inequality must hold for all independent variations ofα = {θ̇,
γ̇, v̇, ν̈,grad ν̇,

˙grad θ, Ḋ,grad ν0,grad (grad ν0),grad (grad ν),grad γ,grad (grad θ),
grad D}. These variables appear linearly in (29.21) and thus their coefficients must
vanish. This leads to the so-called Liu identities, a = 0 in (29.23)1. It then follows
that the expressions for the Lagrange multipliers λv , λν , λk

λv = 0, λν = −γ
∂ψ

∂γ
, λk = −1

k

∂ψ

∂ν̇
, (lines 1 and 3 in (29.21)) (29.24)

for the specific entropy density

η = −∂ψ

∂θ
, (line 3 in (29.21)) (29.25)

for the free energy ψ



29.3 Constitutive Relations 467

∂ψ

∂grad θ
= 0,

∂ψ

∂D
= 0, (textline4in (29.21)) (29.26)

for the equilibrated stress vector h

h = γν
∂ψ

∂grad ν
− θ

∂φ

∂ν̇
− λv · ∂T

∂ν̇
− λk ∂h

∂ν̇
+ ∂q

∂ν̇
(line 5 in (29.21)) (29.27)

and the relations among φ, T , h and q

θ
∂φ

∂ν0
+ λv · ∂T

∂ν0
+ λk ∂h

∂ν0
− ∂q

∂ν0
= 0, (line 6 in (29.21))

θ
∂φ

∂γ
+ λv · ∂T

∂γ
+ λk ∂h

∂γ
− ∂q

∂γ
= 0, (line 9 in (29.21))

θ
∂φ

∂D
+ λv · ∂T

∂D
+ λk ∂h

∂D
− ∂q

∂D
= 0, (line 12 in (29.21)) (29.28)

sym

[
θ

∂φ

∂grad ν
+ λv · ∂T

∂grad ν
+ λk ∂h

∂grad ν
− ∂q

∂grad ν

]
= 0,

(line 8 in (29.21))

sym

[
θ

∂φ

∂grad θ
+ λv · ∂T

∂grad θ
+ λk ∂h

∂grad θ
− ∂q

∂grad θ

]
= 0,

(line 11 in (29.21))

must hold, where sym A = 1
2 (A + AT ). Equations (29.24)–(29.28) correspond to

the above a = 0.
Furthermore, to simplify our problem, we will now assume that the free energy ψ

is independent of ν̇. We will see that under this assumption the emerging constitutive
relations are in correspondence with those in Goodman and Cowin [7] which were
gained by use of the method of Coleman and Noll. By use of the assumption, it
follows from (29.24)3 that

λk = 0. (29.29)

The restrictions on the free energy (29.26) imply the reduced dependence

ψ = ψ̂(ν0, ν, grad ν, γ, θ), (29.30)

or, in view of the isotropic dependence of ψ upon grad ν,

ψ = ψ̂(ν0, ν, grad ν · grad ν, γ, θ). (29.31)

It follows from (29.31) that
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∂ψ

∂grad ν
⊗ grad ν =

(
∂ψ

∂grad ν
⊗ grad ν

)T

, (29.32)

hence, the term in (29.21) involving W vanishes identically.
Introducing next the extra entropy flux

k = φ + 1

θ

(
λv · T + λkh − q

) = φ − q
θ

(29.33)

and considering (29.24)1 and (29.29) we have from (29.28)

∂k
∂ν0

= 0,
∂k
∂γ

= 0,
∂k
∂D

= 0,

sym

(
∂k

∂grad ν

)
= 0, sym

(
∂k

∂grad θ

)
= 0.

(29.34)

Using the restrictions (29.34) on the extra entropy flux k and the isotropy condition1

it follows that (Goodman and Cowin, [7])

k = 0. (29.35)

Thus the entropy flux takes on its traditional form. This result will not follow, when
theHelmholtz free energy depends also on ν̇. Indeed, in that case λk is nontrivially
determined by the free energy and so the entropy flux must deviate in direction from
that of the heat flux by a contribution proportional to h, the equilibrated stress vector.
In theColeman–Noll approach such a term, however, cannot enter since an external
equilibrated body force prevents in that case the equilibrated force balance from
entering the entropy inequality. This explicitly demonstrates the physical inadequacy
of the Coleman–Noll approach in this case.

Combining (29.35) with (29.27) and recalling the functional form (29.31) for ψ
implies

h = γν
∂ψ

∂grad ν
= Agrad ν, (29.36)

where

A = Â(ν0, ν, grad ν · grad ν, γ, θ) = 2γν
∂ψ

∂(grad ν · grad ν)
. (29.37)

Returning now to the entropy inequality (29.21) and employing these restrictions,
we obtain

1The isotropy condition implies that k cannot depend on grad ν and grad θ. Thus, k = k(ν, ν̇, θ),
but this is only possible, if k ≡ 0.
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θπ = (T + ν p I + h ⊗ grad ν) · D − (γν f − (p − β)) ν̇

−q · grad θ

θ
� 0, (29.38)

where we have introduced the definitions

p = γ2 ∂ψ

∂γ
, β = γν

∂ψ

∂ν
, (29.39)

which can be interpreted as the thermodynamic pressure and the configurational
pressure, respectively. Equation (29.38) is the statement (29.23)2.

At this point, we should also point out that the constitutive class (29.19) is only
suitable for compressible granular materials. For incompressible granular materials,
γ is no longer an independent variable. In this case returning to the initial constitutive
assumption (29.19), we delete the dependence on γ from the constitutive equations
and repeat the above analysis. We find the same constitutive restrictions for incom-
pressible granular materials as before for compressible granular materials, if here
p = −γλν is introduced, which now is an unknown variable and can no longer be
determined by the free energy ψ as expressed in (29.39)1. We leave the details of the
analysis to the reader.

29.3.2 Thermodynamic Equilibrium

As usual, further restrictions on the constitutive relations can be obtained from the
residual inequality (29.38) in the context of thermodynamic equilibrium, which is
characterized in the current local formulation by the vanishing of the entropy pro-
duction rate density π. In the context of the current constitutive class, the imbalance
(29.38) implies that π vanishes when the independent dynamic variables

Y = (ν̇, grad θ, D) (29.40)

all vanish. We see that π has a minimum in equilibrium. Necessary conditions for
this minimum are that

∂π

∂Yi

∣∣∣
Y=0

= 0, Yi ∈ Y ,

∂2π

∂Yi ∂Y j

∣∣
∣
Y=0

is nonnegative definite, Yi , Y j ∈ Y .

(29.41)

As is well known, the first condition restricts the equilibrium forms of the dependent
constitutive fields, while the second constrains the signs of material properties; here
we deal only with the first. This condition yields the equilibrium values of the stress,
intrinsic equilibrated body force and heat flux,
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T E = T̂ (ν0, ν, grad ν, 0, γ, θ, 0, 0) = −ν p I − h ⊗ grad ν, (29.42)

f E = f̂ (ν0, ν, grad ν, 0, γ, θ, 0, 0) = p − β

γν
, (29.43)

qE = q̂(ν0, ν, grad ν, 0, γ, θ, 0, 0) = 0. (29.44)

Recalling the expressions for p and β defined by (29.39) and A defined by (29.37),
we find that T E , f E are derivable from the free energy function. Furthermore, (29.42)
demonstrates that, in equilibrium, the stress need not be a hydrostatic pressure. This
shows that equilibrium properties of this material deviate from those of a classical
fluid. Moreover, the result, along with (29.37), also provides some physical insight
into the character of the equilibrated stress h. Clearly, h will play a significant role
in the theory if the system makes inhomogenerous distributions of grains important.
In that case, dilatant behavior is observed and grains in close contact with each other
can give rise to very high local stresses. Moreover, only the existence of h gives rise
toMohr–Coulomb friction in equilibrium (Savage, [16]).

29.3.3 Linear Theory for the Nonequilibrium Parts

Here, we consider a linear theory in which the representations for q, T − T E and
f − f E are linear in the variables Yi defined by (29.40). We also suppose h to be
linear in grad ν; this together with (29.36) implies

h = γν
∂ψ

∂grad ν
= Agrad ν, A = Â(ν0, ν, γ, θ). (29.45)

Recalling the functional dependence expressed by (29.19) for q, T and f , we then
have in the linear theory

q = −κgrad θ, (29.46)

T − T E = ξν̇ I + λ(tr D)I + 2μD, (29.47)

f − f E = −ζν̇ − δtr D, (29.48)

where the coefficients are, in general, scalar functions as follows:

{κ, ξ,λ,μ, ζ, δ} = {κ̂, ξ̂, λ̂, μ̂, ζ̂, δ̂}(ν0, ν, grad ν, γ, θ). (29.49)

Such linear forms are indeed the simplest, and when there are not enough observa-
tions, experiments or other physical reasons to believe that the constitutive processes
involved are more complicated, it seems sensible to work with these linear forms.
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Finally, we write the constitutive equations for T , f , h, and q together

T = [−ν p + λtr D + ξν̇]I − h ⊗ grad ν + 2μD, (29.50)

f = p

γν
− β

γν
− δtr D − ζν̇, (29.51)

h = Agrad ν, (29.52)

q = −κgrad θ. (29.53)

where the coefficient A and the configurational pressure β can be determined by
the free energy ψ by use of the expressions (29.37) and (29.39)2. For compressible
granular materials, the dynamic pressure p can also be determined by ψ in (29.39)1,
while for incompressible granular materials, p is an independent variable, which
can be computed from the momentum equation and the boundary conditions. The
coefficients κ, ξ,λ,μ, ζ, δ can be determined by experiments, in general. Note that
A can be expressed in terms of the internal friction angle of the material (Savage,
[16]).

29.4 Constitutive Equations for Special Granular Materials

In this section, we will obtain the concrete forms of the constitutive equations by
use of a special expression of the free energy for granular materials. It follows
directly from the work of Passman et al. [15]. Our interest here is in isothermal
motions. Therefore, we use the purely mechanical balance relations, avoiding all
thermodynamic considerations. This theory is based on balances of mass (29.5),
momentum (29.6), and equilibrated force (29.8)

ν̇ + νdiv v = 0, (29.54)

γνv̇ = div T + γνb, (29.55)

γνkν̈ = div h + γν f, (29.56)

where we have assumed that the granular material is incompressible (γ = const) and
the external equilibrated body force vanishes (l = 0).

To obtain the explicit expressions of T , h, and f from (29.50)–(29.52) a repre-
sentation for the specific free energy ψ is needed. We assume the specific free energy
per unit volume γνψ to be an isotropic function which is expandable in a Taylor
series about grad ν = 0 and ν = νm , with νm interpreted as the critical volume frac-
tion (Goodman and Cowin, [6]). Moreover, variations in |grad ν| about zero and
variations in ν about νm are assumed to be small. When following a second-order
approximation, γνψ can be written as

γνψ = a0 + a1(ν − νm) + a2(ν − νm)2 + a3grad ν · grad ν, (29.57)
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where the coefficients may depend on νm . Requiring the free energy per unit volume
to be nonnegative with a minimum, zero, at ν = νm and grad ν = 0 implies that the
coefficients are restricted by

a0 = 0, a1 = 0, a2 � 0, a3 � 0. (29.58)

Now, we write (29.57) in the form

γνψ = φ(ν) + α(ν)w · w, with w = grad ν, (29.59)

and also assume (Passman et al. [15])

φ(ν) = a0(ν − νm)2, a0 � 0,

α(ν) = α0

(
νm

ν∞ − ν

)2

, α0 � 0, (29.60)

in which ν∞ is the volume fraction corresponding to densest possible packing of the
material; and ν∞, νm (ν∞ � νm � 0) are constants.

Substituting (29.59) and (29.60) into (29.39)2, the resulting equation into (29.51),
and (29.60) into (29.50) and (29.52), and selecting the representation

μ = μ0

(
νm

ν∞ − ν

)8

; μ0 � 0 (29.61)

for the viscosity μ (Savage, [16]), we obtain the constitutive equations

T = [−ν p + λtr D + ξν̇]I − 2α0

(
νm

ν∞ − ν

)2

w ⊗ w

+2μ0

(
νm

ν∞ − ν

)8

D, (29.62)

f = p

γν
− 1

γν2

[
a0(ν

2 − ν2
m)

−α0

(
νm

ν∞ − ν

)2 (3ν − ν∞
ν − ν∞

)
w · w

]
− δtr D − ζν̇, (29.63)

h = 2α0

(
νm

ν∞ − ν

)2

w. (29.64)

Substitution of (29.62)–(29.64) into (29.54)–(29.56) yields five scalar equations for
five unknowns, p, ν, and the three components of v. They fully agree with those of
Passman et al. [15].
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In the following sections, we will numerically solve the differential equations
(29.54)–(29.56) with the constitutive relations (29.62)–(29.64) subject to appropri-
ate boundary conditions for some typical shearing field equations and gravity-flow
problems, respectively.

29.5 Horizontal Shearing Flow Problem

29.5.1 Basis Equations and Boundary Conditions
for Horizontal Shearing Flow

First, we discuss a steady simple shearing problem. The boundaries are two parallel,
infinite plates, a fixed distance L apart. Deformation is caused by moving one plate
parallel to the other. Choose fixed Cartesian coordinates with the origin on the fixed
plate, x parallel to the direction of motion of the top plate, and y orthogonal to the
plates, and pointing from the fixed plate toward the moving plate against the gravity
field, as shown in Fig. 29.1.

Assume a unidirectional steady flow as follows

v = [u(y), 0, 0], ν = ν(y), b = [0,−b, 0]. (29.65)

It is convenient to formulate the problem in terms of dimensionless variables. We let

ξ2 = a0
α0

and S = γb

2νma0ξ
. (29.66)

It should be noted that 1/ξ is a characteristic material length. Thus, increasing S
corresponds to increasing either the characteristic material length or the magnitude
of the gravity. We choose

ȳ = ξy, L̄ = ξL , ν̄ = ν

νm
, ν̄∞ = ν∞

νm
, ū = u

V0
, π̄ = − Tyy

a0ν2
m

. (29.67)

Fig. 29.1 Horizontal
shearing flow and coordinate
system

u(y)
b

x

y

L

V0
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There is some question as to what kind of boundary conditions ought to be assigned
to ν. Here we choose simply (Passman et al. [15])

ν(0) = ν0, ν(L) = ν0, u(0) = 0, u(L) = V0, Tyy(L) = T0. (29.68)

The assignment (29.68)5 indicates that a stress (a pressure if T0 < 0!) will be required
to maintain a constant distance between the walls.

We consider steady motions. In view of the field Eqs. (29.54) and (29.56) and
constitutive equations (29.62)–(29.64), the governing differential equations in terms
of the nondimensional variables reduce to

∂Tyy
∂y

− γνb = 0 −→ dπ̄

d ȳ
+ 2Sν̄ = 0, (29.69)

∂hy

∂y
+ γν f = 0 −→ d

d ȳ

[
2

(ν̄∞ − ν̄)2

dν̄

d ȳ

]

+1

ν̄

[

π̄+1−ν̄2− (ν̄∞ + ν̄)

(ν̄∞ − ν̄)3

(
dν̄

d ȳ

)2
]

= 0, (29.70)

∂Txy
∂y

= 0 −→ d

d ȳ

[
1

(ν̄∞ − ν̄)8

dū

d ȳ

]
= 0. (29.71)

The nondimensional boundary conditions are

ν̄(0) = ν̄0, ū(0) = 0, ν̄(L̄) = ν̄0, ū(L̄) = 1, π̄(L̄) = − T0
a0ν2

m

=: σ0. (29.72)

We choose

ν∞ = 0.644, νm = 0.555, ν0 = 0.51, (29.73)

the values as given by Savage [16], appropriate to natural angular beach sand with
diameters of particles from 0.318–0.414mm. It follows that

ν̄∞ = 1.16, ν̄0 = 0.919. (29.74)

29.5.2 Numerical Method

Because the differential equations (29.69)–(29.71) are nonlinear, we cannot solve
the boundary value problem by a direct finite-difference method. Here, we solve the
nonlinear differential equation system (29.69)–(29.71) with the boundary conditions
(29.72) by means of the method of successive approximation.
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We describe this method for a general boundary value problem

F(x, y(x)) = 0, x ∈ (a, b), (29.75)

for which the boundary conditions are prescribed at only two points, say x1 = a and
x2 = b, where a < b,

V1(x, y(x))|x=a = 0, V2(x, y(x))|x=b = 0. (29.76)

We shall only deal with the special case of boundary value problems for which
the boundary conditions (29.76) are linear. In the iteration method, the nonlinear
(differential) equation (29.75) is put into the form

L(x, y(x)) = N (x, y(x)), (29.77)

where N is a nonlinear functional in y and L a linear functional such that the boundary
value problem

L(x, y(x)) = r(x) (29.78)

with the boundary conditions (29.76), which we write as

V1(x, y(x))|x=a = 0, V2(x, y(x))|x=b = 0 (29.79)

can be solved readily for any well behaving right-hand side r(x). If the equation
(29.75) is a differential equation, we can obtain a linear equation system from (29.78)
by means of the finite-difference method

Aφ = f , (29.80)

where A is a n×n matrix and φ and f are vectors:φ = (y(x1), y(x2), . . . , y(xn))T ,
f = (r(x1), r(x2), . . . , r(xn))T with discrete points a < x1 < x2 < · · · < xn < b.
In the splitting (29.77), it must be ensured that in (29.80) A is nonsingular.

If (29.75) is a differential equation of order n and, as is usually the case, the given
differential equation can be solved for the highest derivate which occurs in terms of
the lower derivatives, i.e., if it can be put into the form

y(n) = ϕ(x, y, y′, . . . , y(n−1)) (29.81)

with y(m) = dm y/dxm , then one obvious rearrangement of the form (29.77) has
L = y(n) and N = ϕ(x, y, y′, . . . , y(n−1)).
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We can now define an iterative procedure which determines a sequence of func-
tions y0(x), y1(x), y2(x),…in the following manner: y0(x) is chosen arbitrarily, then
y1(x), y2(x), …are calculated successively as the solutions of the boundary value
problems

L(x, yk+1(x)) = N (x, yk(x)),
V1(x, yk+1(x))|x=a = 0, V2(x, yk+1(x))|x=b = 0

}
(k = 0, 1, 2, . . .).

(29.82)

With this generality, nothing can be asserted about the convergence of the sequence
yk(x) to the solution y(x) of the boundary value problem; it can happen that the
sequence does not converge at all. When it does converge, the effectiveness of the
method is often influenced considerably by the form of the rearrangement (29.77) of
the given (differential) equation and by the choice of the starting function y0(x); the
method is generally more effective the closer y0(x) is to y(x).

In our calculations, to achieve a better convergence, we use the so-called method
of successive over-relaxation. We solve the following boundary-value problems

L(x, ỹk+1(x)) = N (x, yk(x)),
V1(x, ỹk+1(x))|x=a = 0, V2(x, ỹk+1(x))|x=b = 0

}
(k = 0, 1, 2, . . .) (29.83)

to obtain ỹk+1, then yk+1 is defined by the formulas

yk+1 = yk + τ (ỹk+1 − yk), 0 < τ � 1, (29.84)

where τ is a real parameter. We should choose τ so small that convergent iteration
is reached. For τ = 1, the successive over-relaxation method (29.83) and (29.84) is
in correspondence with the simple iteration method (29.82).

For the boundary-value problem (29.69)–(29.72) the successive over-relaxation
method is as follows:

We may represent the Eqs. (29.69)–(29.71) in the form

π̄ = π̄0 + 2S
∫ L̄

ȳ
ν̄ dȳ, (29.85)

d2ν̄

d ȳ2
= − (ν̄∞ − ν̄)2

2ν̄

[

π̄ + 1 − ν̄2 + 3ν̄ − ν̄∞
(ν̄∞ − ν̄)3

(
d2ν̄

d ȳ2

)2
]

, (29.86)

d2ū

d ȳ2
= − 8

ν̄∞ − ν̄

dν̄

d ȳ

dū

d ȳ
. (29.87)

Equations (29.86) and (29.87) are obtained from Eqs. (29.70) and (29.71) by per-
forming product differentiation of the terms on the left-hand sides and reordering
the emerging equations that largest (second-order) derivatives arise on the left-hand
sides. Then the iteration process is applied as follows:
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π̄k = π̄0 + 2S
∫ L̄

ȳ
ν̄k dȳ, (29.88)

d2 ˜̄νk+1

d ȳ2
= − (ν̄∞ − ν̄k)2

2ν̄k

[

π̄k + 1 − (ν̄k)2 + 3ν̄k − ν̄∞
(ν̄∞ − ν̄k)3

(
d2ν̄k

d ȳ2

)2
]

, (29.89)

d2 ˜̄uk+1

d ȳ2
= − 8

ν̄∞ − ν̄k

dν̄k

d ȳ

dūk

d ȳ
(29.90)

with the boundary conditions

˜̄νk+1(0) = ν̄0, ˜̄νk+1(L̄) = ν̄0, ˜̄uk+1(0) = 0, ˜̄uk+1(L̄) = 1. (29.91)

Then, the over-relaxation iteration is defined by the formulas

ν̄k+1 = ν̄k + τ ( ˜̄νk+1 − ν̄k),

ūk+1 = ūk + τ ( ˜̄uk+1 − ūk),

}
0 < τ � 1. (29.92)

Wewould like to point out that this iterative choice is not the only possible one.Wecan
discretize the Eqs. (29.88)–(29.90) for n uniformly distributed discrete points in ȳ ∈
[0, L̄] by finite-difference approximations with central finite-difference quotients.
In so doing, for each iterative step two tri-diagonal systems emerge, for ˜̄νk+1 from
Eq. (29.89) and for ˜̄uk+1 from (29.90), respectively; these can be solved e.g. by
Gaussian elimination. We start with the initial trial functions

ν̄0 = ν̄0, ū0 = ȳ/L̄, (29.93)

which satisfy the boundary conditions. The iteration should be carried out until the
relative differences of the computed ν̄ und ū between two iterative steps are smaller
than a given error, respectively, chosen to be 10−12.

29.5.3 Numerical Results

Typical calculated results for the volume distribution, dimensionless velocity for this
horizontal shearing flow problem are shown in Figs. 29.2, 29.3, 29.4, 29.5, 29.6
and 29.7. For convenience, the coordinate across the channel has been expressed in
terms of ȳ/L̄ . Figure29.2 shows the profiles of the volume fraction for various L̄ ,
for a fixed nondimensional normal top-wall stress σ0 and a fixed parameter S, in
this case σ0 = 0 and S = 0.05. Notice that L̄ indicates the ratio of the distance of
the two horizontal plates (channel width) to the grain size. It can be seen that near
the boundaries the volume fraction attains its minimum, which may lead back to the
effect of dilatancy in granularmaterials. Relatively narrow channels (curveA) show a
fairly homogeneous volume fraction profile across the channel, while, as the channel
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ȳ

L̄

ν̄

σ0 = 0, S = 0.05
A : L̄ = 5, B : L̄ = 10
C : L̄ = 15, D : L̄ = 20

Fig. 29.2 Nondimensional volume fraction profiles for various distances of the plates for a hori-
zontal shearing flow, from Wang and Hutter [20]. c©Part. Sci. Technol. Taylor & Francis

width increases, there is an increasing tendency for the volume fraction evasion near
the center from its fixed value on the boundaries. The corresponding velocity fields
are shown in Fig. 29.3. For a narrow channel, the granular flow behaves similar to
that of an incompressible Navier–Stokes fluid, i.e., the velocity field has a nearly
linear profile across the channel. Increasing the channel width L̄ gives an increasing
tendency toward two thin regions of high shear rate near the bottom and top surfaces,
and a rigid region of adherence toward the center. Thus, in channels which are narrow
compared to the particle size, the shear of the moving boundary can be felt over most
of the channel. In channels which are wide compared to the particle size, the shear
exists only in very thin layers near the boundaries. We should also point out that this
feature of granular flows occurs only for sufficiently large grain sizes. If the grain
size is very small, the behavior of granular flows is more similar to a viscous fluid,
as we can immediately see below.

Figures29.4 and 29.5 show the effect of varying S on volume fraction and velocity
forσ0 = 0 and L̄ = 10; this variation expresses to some extent a dependence on grain
size or on gravity.Here, a fixed L̄ means, if the grain size varies, that the channelwidth
should be changed accordingly. Figure29.4 indicates the same effects of dilatancy as
before; the solid volume fraction is smallest at the boundaries and increases toward
the center. The corresponding velocity profiles are shown in Fig. 29.5. Fine grains
(small values of S) showavelocity profile similar to that of an incompressibleNavier–
Stokes fluid. Increasing the grain size (increasing S) increases the manifestation of
the granular character of the material. With the increasing grain size (indicated by S),
if the channel width also increases to the same extent (i.e., fixed L̄), the grain motion
near the center is similar to that of an entire solid state, while the shear occurs only
near the boundaries. Recalling that varying S can also be interpreted as varying the
effect of gravity, Fig. 29.5 also shows that under microgravity, the behavior is close
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σ0 = 0, S = 0.05
A : L̄ = 5, B : L̄ = 10
C : L̄ = 15, D : L̄ = 20

Fig. 29.3 Nondimensional velocity profiles for various distances of the plates for a horizontal
shearing flow, from Wang and Hutter [20]. c©Part. Sci. Technol. Taylor & Francis
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ν̄

L̄ = 10, σ0 = 0
A : S = 0, B : S = 0.01
C : S = 0.05, D : S = 0.1

Fig. 29.4 Nondimensional volume fraction profiles for various values of parameter S for a hori-
zontal shearing flow, from Wang and Hutter [20]. c©Part. Sci. Technol. Taylor & Francis

to that of a Newtonian fluid, while strong gravity favors plug-flow behavior in the
middle portion of the layer. Of course, the balance is described by the ratio of the
two effects as expressed by S.

These results are vastly different from those obtained by Passman et al. [15]. One
reason is the difference in sign in Eq. (29.69) mentioned before; an additional reason
is the different application of boundary conditions applied here and in Passman et al.
[15]. The constitutive relations give rise to normal stress effects. As a result, to main-
tain the distance between the two plates in this shearing motion, a transverse normal
stress σ0 must be applied. This normal stress is applied here at the top boundary and
it is a pressure. We were only able to reproduce the results of Passman et al. [15],
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ȳ
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L̄ = 10, σ0 = 0
A : S = 0, B : S = 0.01
C : S = 0.05, D : S = 0.1

Fig. 29.5 Nondimensional velocity profiles for various values of parameter S for a horizontal
shearing flow, from Wang and Hutter [20]. c©Part. Sci. Technol. Taylor & Francis
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S = 0.05, L̄ = 10
A : σ0 = 0, B : σ0 = 0.2
C : σ0 = 0.5, D : σ0 = 1.0

Fig. 29.6 Nondimensional volume fraction profiles for various values of the normalized top-plate
pressure for a horizontal shearing flow, fromWang andHutter [20]. c©Part. Sci. Technol. Taylor
& Francis

provided their incorrect sign was corrected and the stress boundary conditions were
imposed at the bottom boundary. This, they must have done, despite the difference
in their statements in the text. They showed results for the bottom stress σ0 = 0, i.e.,
not even the weight of the material was supported. We face difficulties in physically
interpreting such conditions.

Computations have also been performed for various other values of the normal
stress. Figures29.6 and 29.7 show the effect of changing the normal top-wall stress
on the horizontal granular shear flow. Increasing the normal stress will tend to cause
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S = 0.05, L̄ = 10
A : σ0 = 0, B : σ0 = 0.2
C : σ0 = 0.5, D : σ0 = 1.0

Fig. 29.7 Nondimensional velocity profiles for various values of the normalized top-plate pressure
for a horizontal shearing flow, fromWang andHutter [20]. c©Part. Sci. Technol. Taylor & Francis

the grains to interlock and increase ν̄ throughout the flow field. As the normal stress
increases, the grain motion has an increasing tendency toward a rigid motion near
the center, while the shear occurs only in the thin layers near the boundaries.

29.6 Inclined Gravity-Flow Problem

In this section, the case of steady flow of a layer of uniform thickness of a granular
material down an inclined plate is analyzed. This motion is driven by gravity, a body
force, rather than by a surface traction, as in the former case of simple shearing.

Consider a fully developed, two-dimensional, steady flow of a granular material
of thickness L , having a tension free upper surface, down a rough plane inclined at
an angle θ to the horizontal (in our computations we take θ = 30◦), as shown in
Fig. 29.8. A Cartesian coordinate system, fixed to the bottom, is employed with the
x axis oriented down the inclined surface, and the y axis normal to the bottom.

As in the previous problem, in view of the field equations (29.54) and (29.56) and
constitutive equations (29.62)–(29.64) and employing a rectilinear flow assumption
as in (29.65)1, the governing differential equations for this inclined gravity-flow
problem, in terms of the nondimensional variables, can be presented as follows
(compare these equations with (29.69)–(29.71))

dπ̄

d ȳ
+ 2S cos(θ)ν̄ = 0, (29.94)

d

d ȳ

[
2

(ν̄∞ − ν̄)2

dν̄

d ȳ

]
+ 1

ν̄

[

π̄ + 1 − ν̄2 − (ν̄∞ + ν̄)

(ν̄∞ − ν̄)3

(
dν̄

d ȳ

)2
]

= 0, (29.95)
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Fig. 29.8 Inclined
gravity-flow and coordinate
system
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d

d ȳ

[
1

(ν̄∞ − ν̄)8

dū

d ȳ

]
+ 2S1 sin(θ)ν̄ = 0, (29.96)

where the dimensionless variables π̄, S, ν̄, ū, . . . are defined as in (29.66) and
(29.67); furthermore, the new parameter

S1 = γbνm
2μ0V0ξ2

(29.97)

may be interpreted to represent to some extent the ratio of the gravity to the viscous
friction. Equation (29.96) indicates that the value of S1 affects only the velocity
amplitude, but not its distribution across the depth. Here, because we take only
an interest in the velocity distribution but not in its absolute value, we will in our
computations not consider the effect of various values of S1.

Theboundary conditions for this problemare specified at the free boundary surface
ȳ = L̄ and along the supporting plate ȳ = 0.We suppose that the upper free surface is
tension free (Goodman andCowin, 1971) and at the bottom the boundary conditions
are specified such that the nondimensional boundary conditions are

ν̄(0) = ν̄0, ū(0) = 0,
dν̄

d ȳ
(L̄) = 0; ∂ū

∂ ȳ
(L̄) = 0; π̄(L̄) = σ0 = 0. (29.98)

The boundary conditions on velocity and stress are physically well motivated, those
on ν are, however, somewhat problematic. In an experiment, the layer thickness
cannot be prescribed but must be the result of the upstream flow conditions. The
total mass flux can be prescribed, and that will, through an integration of the velocity
profile, essentially describe the thickness L . On the other hand, in such gravity-driven
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σ0 = 0, S = 0.05
A : L̄ = 2, B : L̄ = 5
C : L̄ = 10, D : L̄ = 15

Fig. 29.9 Nondimensional volume fraction profiles for various granular depths for an inclined
gravity-flow, from Wang and Hutter [20]. c©Part. Sci. Technol. Taylor & Francis

flows, often the upper most part of the granular material moves as a passive layer on
top of a fluidized boundary layer. This would mean that ν should also be described
at the top surface (together with dν̄/dy = 0). If we prescribe ν̄(0) in (29.98) this is
tantamount to an a posteriori prescription of ν̄(L̄).

Equations (29.94)–(29.96) with boundary conditions (29.98) can be solved as
described in Sect. 29.5.2 by means of the iteration method.

Profiles of the dimensionless volume fraction and the dimensionless velocity are
shown in Figs. 29.9, 29.10, 29.11, 29.12, 29.13 and 29.14 for various values of
the granular thickness L̄ , the parameter S and the normal stress σ0, respectively.
For convenience of comparison, the coordinate across the cross-section has also
been expressed in terms of ȳ/L̄ and the maximum velocity has been normalized.
Figure29.9 illustrates the strong dependence of the volume distribution on L̄ . A rel-
atively thin layer thickness, i.e., L̄ = 2, shows an almost constant volume fraction
across depth, while for thicker grain flow, the volume distribution decreases mono-
tonically with depth; mainly in a relatively narrow zone near the bottom, where the
shear is largest, dilation occurs, obviously due to the increased shearing. This is
manifested in the velocity distribution displayed in Fig. 29.10. For small L̄ (curve
A), the velocity distribution is similar to that in an incompressible fluid theory. As L̄
increases, there is an increasing tendency that the shear is bounded in a very narrow
layer near the bottom; above the layer the velocity can be regarded as constant (curve
D). This is a demonstration why for a granular flow down an inclined plane one can
often assume that only a portion of the grains which is close to the base is fluidized
(fluidized layer), while the upper portion is passively moving (passive layer) with
the speed of the particles at the upper edge of this fluidized layer (e.g., see Hutter
et al. [10]).
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σ0 = 0, S = 0.05
A : L̄ = 2, B : L̄ = 5
C : L̄ = 10, D : L̄ = 15

Fig. 29.10 Nondimensional velocity profiles for various granular depths for an inclined gravity-
flow, from Wang and Hutter [20]. c©Part. Sci. Technol. Taylor & Francis
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L̄ = 10, σ0 = 0
A : S = 0, B : S = 0.01
C : S = 0.05, D : S = 0.1

Fig. 29.11 Nondimensional volume fraction profiles for various values of parameter S for inclined
gravity-flow, from Wang and Hutter [20]. c©Part. Sci. Technol. Taylor & Francis

Another interesting result is, how profiles for ν̄ and ū can change when the grain
size or gravity vary. In Figs. 29.11 and 29.12 the profiles for various values of the
parameter S are displayed for fixed L̄ and σ0. It can be seen that, as the grain size
increases (i.e., S increases), themanifestation of the granular character of thematerial
increases and the dilatancy of the granular material becomes obvious.

We also investigated the influences of the variations of the normal surface stress
σ0 for fixed L̄ and S. Figures29.13 and 29.14 illustrate the dependence on normal
surface stress for inclined granular flow. This problem is somewhat academic as we
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L̄ = 10, σ0 = 0
A : S = 0, B : S = 0.01
C : S = 0.05, D : S = 0.1

Fig. 29.12 Nondimensional velocity profiles for various values of parameter S for an inclined
gravity-flow, from Wang and Hutter [20]. c©Part. Sci. Technol. Taylor & Francis
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S = 0.05, L̄ = 10
A : σ0 = – 0.2, B : σ0 = 0
C : σ0 = 0.2, D : σ0 = 0.5

Fig. 29.13 Nondimensional volume fraction profiles for various values of the normalized surface
pressure for an inclined gravity-flow, from Wang and Hutter [20]. c©Part. Sci. Technol. Taylor
& Francis

previously already concluded that the surface should be stress free. However one
may differently view this exercise; σ0 �= 0 may well represent some surface tension
effects. Increasing the normal stress will tend to cause the grains to interlock, so
that the material becomes denser and the shear layer becomes thinner. These figures
allow for the possibility of tensile stresses on the surface.
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S = 0.05, L̄ = 10
A : σ0 = – 0.2, B : σ0 = 0
C : σ0 = 0.2, D : σ0 = 0.5

Fig. 29.14 Nondimensional velocity profiles for various values of the normalized surface pressure
for an inclined gravity-flow, fromWang andHutter [20]. c©Part. Sci. Technol. Taylor & Francis

29.7 Vertical Channel-Flow Problems

In this section, an analysis similar to that in the previous two sections is performed for
the fully developed two-dimensional flow of a granular material between two rough
infinite parallel flat plates of distance L aligned with the gravity field. A Cartesian
coordinate system fixed to a plate is employed as shown in Fig. 29.15. The x axis is
along the direction of flow and gravity field and the y axis is oriented normal to the
plates.

The governing differential equations for this vertical channel-flow problem, in
terms of the nondimensional variables, can be presented as follows

Fig. 29.15 Vertical
channel-flow and coordinate
system

x

u(y)

L

b

y
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d
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(ν̄∞ − ν̄)2

dν̄

d ȳ

]
+ 1

ν̄

[

π̄ + 1 − ν̄2 − (ν̄∞ + ν̄)

(ν̄∞ − ν̄)3

(
dν̄

d ȳ

)2
]

= 0, (29.99)

d

d ȳ

[
1

(ν̄∞ − ν̄)8

dū

d ȳ

]
+ 2S1ν̄ = 0 (29.100)

with π̄ = constant, where the dimensionless variables π̄, S, S1, ν̄, ū, . . . are defined
as in (29.66), (29.67) and (29.97).

We suppose that on two vertical flat plates the volume fraction is specified and
that the no-slip condition applies. So, the nondimensional boundary conditions are
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L̄

ν̄

σ0 = 0.2
A : L̄ = 5, B : L̄ = 10
C : L̄ = 30, D : L̄ = 100

Fig. 29.16 Nondimensional volume fraction profiles for various channel widths for a vertical
channel-flow, from Wang and Hutter [20]. c©Part. Sci. Technol. Taylor & Francis
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σ0 = 0.2
A : L̄ = 5, B : L̄ = 10
C : L̄ = 30, D : L̄ = 100

Fig. 29.17 Nondimensional velocity profiles for various channel widths for a vertical channel-flow,
from Wang and Hutter [20]. c©Part. Sci. Technol. Taylor & Francis
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ν̄(0) = ν̄(L̄) = ν̄0, ū(0) = ū(L̄) = 0. (29.101)

Obviously, the symmetry conditions could also be invoked. The system of nonlinear
ordinary differential equations (29.99) and (29.101) is also solved numerically by
using the iteration method as described before in Sect. 29.5.2.

Dimensionless forms of the volume distribution and velocity across the complete
channel are showed in Figs. 29.16, 29.17, 29.18 and 29.19 for various values of L̄
and σ0, respectively. It can be seen that for narrow channels and small normal stress,
the shear can extend from the walls to the center, which behaves as an incompressible
fluid, whereas for wider channels and larger normal stress the flow structure is far

ȳ

L̄

ν̄

L̄ = 10
A : σ0 = 0, B : σ0 = 0.2
C : σ0 = 1.0, D : σ0 = 3.0

Fig. 29.18 Nondimensional volume fraction profiles for various values of the normalized pressure
for a vertical channel-flow, fromWang and Hutter [20]. c©Part. Sci. Technol. Taylor & Francis
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ū

L̄ = 10
A : σ0 = 0, B : σ0 = 0.2
C : σ0 = 1.0, D : σ0 = 3.0

Fig. 29.19 Nondimensional velocity profiles for various values of the normalized pressure for a
vertical channel-flow, from Wang and Hutter [20]. c©Part. Sci. Technol. Taylor & Francis
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from an incompressible Newtonian fluid, in which in a large region near the center
the grain flow is similar to that of a plug flow, with a nearly constant velocity, the
shear layers close to the walls may be very thin.

29.8 Alternative Formulations

29.8.1 Fluid Models for Cohesionless Granular Materials
with Internal Length Parameter

In the year 2006 Fang, Wang, and Hutter [3, 4] took up the subject of the
microstructural description of granular materials again by arguing that the Good-
man–Cowin theory needed to be amended, because the balance law of equilibrated
forces was dimensionally not consistent in the various terms. Fang et al. argue as
follows:

• The balance law of equilibrated forces was not derived by Goodman and Cowin
as a momentum balance, rather just motivated. It should better be interpreted
as an energy balance, since k = 1

2αν̇2 looks like the traditional form of a kinetic
energy. Because ν̇2 has the dimension [1/T 2],αwould need to have the dimension
[α] = [L2], where T and L are time and length scales, to make k a specific kinetic
energy.The parameter α should be replaced by a squared internal length �2.

• Fang et al. introduce an internal length � and propose the rate of change of the
“momentum associated with ν” of a granular body B to have the form

d

dt

∫

B
(γν�ν̇) dv, (29.102)

which is dimensionally correct. This proposal then leads directly to the “balance
law of momentum associated with ν” as

d

dt

∫

B
(γν�ν̇) dv =

∫

∂B
h · n da +

∫

B
γν( f + s) dv, (29.103)

in which h is its flux (corresponding to the equilibrated stress vector), f is its
intrinsic body force (corresponding to its equilibrated intrinsic body force), and
s its supply (corresponding to its equilibrated body force) which we shall set to
zero. Localizing (29.103) yields, on using the conservation of mass,

γν(�ν̇)· = γν(�̇ν̇ + �ν̈) = div h + γν f. (29.104)

This is the modified “balance of momentum associated with ν”, in which the
“acceleration term” has the correct dimension.
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• Fang et al. then propose the energy expressions of the new formulation

– 1
2 (�ν̇)2 as kinetic energy associated with ν,

– �ν̇h as energy flux associated with ν,
– ρ f �ν̇ as energy supply associated with ν.

It is now consequential to postulate the total energy by

E =
∫

B
ρ
{
ε + 1

2v · v + 1
2 (�ν̇)2

}
dv, (29.105)

comprising of internal energy, ρε, traditional kinetic energy, 1
2ρv · v and configura-

tional kinetic energy 1
2ρ(�ν̇)2. Moreover, the power of working of the forces, L , may

be postulated as

L =
∫

B
ρ {b · v + f �ν̇} dv +

∫

∂B
(vT · n + �ν̇h · n) da. (29.106)

The heat added to the body from outside, Q, is as classically given by

Q =
∫

B
ρr dv −

∫

∂B
q · n da. (29.107)

The balance of total energy dE/dt = L + Q can be written as

d

dt

∫

B
ρ
{
ε + 1

2v · v + 1
2 (�ν̇)2

}
dv

=
∫

B
ρ {b · v + f �ν̇ + r} dv +

∫

∂B
{vT − q + �ν̇h} · n da, (29.108)

which leads to the localized energy balance

d

dt

{
ρ
(
ε + 1

2v · v + 1
2 (�ν̇)2

)} + ρ
{
ε + 1

2v · v + 1
2 (�ν̇)2

}
div v

∗= ρε̇ + 1
2ρ(v · v)· + 1

2ρ
(
(�ν̇)2

)·
= div (vT ) − div q + ρr + v · ρb + div (�ν̇h) + ρ f �ν̇, (29.109)

inwhich at the step (
∗=) the balance ofmass has been incorporated.Using the balances

of kinetic energy plus the equilibrated kinetic energy (29.104),

(ρv̇ − div T − ρb)︸ ︷︷ ︸
=0

·v + ρ
(
(�ν̇)· − div h − f

)

︸ ︷︷ ︸
=0

�ν̇ = 0, (29.110)

and subtracting this expression from (29.109), finally yields

ρε̇ = T · D − div q + ρr + h · grad (�ν̇) − ρ f �ν̇. (29.111)
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In these equations, only the energies of ν have been included. If the variation of the
internal length � is independent of the variation of ν additional energies associated
with the variation of � would equally have to be taken into account.

Fang et al. [3, 4] conduct thermodynamic analyses for different situations how
the internal length scale is treated. They present detailed analyses for the following
model assumptions:

• � is a material constant (Model I ),
• � is a constitutive variable (Model II ),
• � is an independent field quantity (Model III ),
• � is an independent kinematic field quantity (Model IV ).

The analyses for models I and II are straightforward, given the experience in this
chapter. In [3] the balance laws ofmass, momentum,modified equilibrated force, and
modified energy are complemented by the entropy balance and constitutive assump-
tions, and the exploitation of the entropy inequality is performed in the spirit of
MÜLLER–Liu. For Model III, an additional balance equation must be proposed to
make the problem mathematically well posed. The “�-associated momentum equa-
tion” is proposed as

ρ(Λ�̇)· = divΓ + ρΠ + ρG, Λ = const., (29.112)

where Γ ,Π,G are the flux, specific intrinsic production and an external supply term
of � (which we shall set to zero). These �-associated quantities will also contribute
to the energies

• 1
2ρ(Λ�̇)2 as kinetic energy, associated with �,

• Λ�̇Γ as energy flux associated with �,
• ρΛ�̇G as energy supply associated with �.

Proceeding as above with (29.108), the first law now takes the form

d

dt

∫

B
ρ
{
ε + 1

2v · v + 1
2 (�ν̇)2 + 1

2 (Λ�̇)2
}
dv

=
∫

B
ρ
{
b · v + f �ν̇ + Λ�̇Π

}
dv

+
∫

∂B

{
vT − q + �ν̇h + Λ�̇Γ

} · n da, (29.113)

from which the localized energy equation takes the form

ρε̇ = T · D − div q + ρr + h · grad (�ν̇) − ρ�ν̇ f

+Γ · grad (Λ�̇) − ρΛ�̇Π, (29.114)

in which Γ and Π are regarded as additional constitutive quantities. With this local
form of the first law of thermodynamics the closed systems entropy principle can
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now be exploited by the MÜLLER–Liu method, which is done for an elastic-viscous
fluid like body in [3].

InModel IV, the internal length � is considered an independent field quantity, for
which a kinematic evolution equation of the form

ρ�̇ = divΓ + Π (29.115)

is proposed. The identifier “kinematic” is employed for this equation, because only
the first material time derivative of � occurs (and not the second). Γ and Π are
regarded as constitutive quantities and no additional power terms involving Γ and
Π enter the first law of thermodynamics and no additional power terms involving Γ

andΠ enter the first law of thermodynamics. The thermodynamic analysis shows for
Model IV that heat flux and entropy flux are no longer collinear, contrary to models
I, II, and III. This makes the model algebraically rather complicated and leads us to
the conclusion that Model IV is not suitable for the description of the dynamics of
granular materials.

29.8.2 Application to Simple Shear, Plane Poiseuille,
and Gravity-Driven Flows

Fang et al. [4] deepen their analysis of the dynamic behavior of Models I, II, and
III by explicitly parameterizing the constitutive variables for the Cauchy stress
T , the heat flux vector q, the equilibrated stress vector h, the �-associated flux
vector Γ , the �-associated equilibrated intrinsic body force f , as well as the free
energy γνψ. Their focus is to formulate the dissipative parts of the constitutive
variables as linear relations of ν̇, �̇, D, h,Γ . In so doing, a complete set of constitutive
equations for the constitutive quantities for eachmodel is obtained. The implemented
models are quantified by use of experimental findings of laboratory experiments and
then applied to investigate typical isothermal steady granular shearing flows with
density preserving grains, in particular, simple plane shearing flows, Poiseuille
flows, inclined gravity-driven flows and vertical channel flows, in particular for their
Models I and III, illustrating their numerical results with graphs. Of importance are
in this connection the boundary conditions. These results show thatModel III is more
appropriate than Model I, because Model III allows a better account of the motion
of an individual grain. The interested reader is encouraged to consult [3, 4].

29.9 Concluding Remarks

In this chapter, a thermodynamic theory for a granular material was presented
in which, besides balances for mass, momentum and energy, a balance law for
equilibrated forces, as proposed by Goodman and Cowin, was introduced to
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accommodate for the dynamical effects played by the solid volume fraction, and
porosity, respectively.

The form of the entropy principle was that of MÜLLER–Liu, i.e., for the pre-
scribed constitutive class the entropy inequality was identically satisfied subject to
the constraints that the balance laws of mass, momentum, energy and equilibrated
forces with or without supply terms. It was shown that in comparison to a “standard”
exploitation according to Coleman–Noll, in which momentum, energy, and equi-
librated force sources of arbitrary value must be permitted, the entropy flux is no
longer collinear to the energy flux, if the time rate of change of the volume fraction
is an independent variable of the Helmholtz free energy. If the Helmholtz free
energy does not depend on ν̇, the two approaches yield identical results.

For such a reduced theoretical model, which agrees with that proposed by
Goodman and Cowin [7] three typical shearing flow problems were analyzed:
steady fully developed horizontal shearing flows and gravity flows of granular mate-
rials down an inclined plane and between vertical parallel plates. All three examples
of granular flows display flow features different from a viscous fluid. It is shown
that for a large thickness of the granular flow and large grain sizes, dilatant shearing
layers exist only in narrow zones near boundaries. In the zones far away from the
boundaries the shearing nearly vanishes, where the grains move as an entire solid
body in a plug-flow manner, while for small thickness of the granular flow and fine
grains, the behavior of the granular flows is very similar to that of a viscous fluid.

In this chapter, in which the free energy is assumed to be independent of ν̇, only
linear thermodynamic parts of the constitutive variables T, f , and q are used.

Appendix 29.A Variational Principle for a
Goodman–Cowin Type Granular Material

29.A.1 Preliminaries

In this appendix, we present a variational principle providing an alternative motiva-
tion of the balance law of equilibrated forces, as introduced byGoodman andCowin
[7]. We shall use Cartesian tensor notation; xi (i = 1, 2, 3) and Xa (a = 1, 2, 3)
will be the coordinates of material points in the present and reference configurations,
respectively, and t will denote the time. The volume fraction ν(x) (0 � ν � 1) and
the true density γ(x) > 0 will denote the averaged volume fraction over an RVE,
filling densely the space of the body B so that the bulk density is expressible as

ρ = γν, (29.116)

also filling the space B densely.



494 29 A Granular Fluid as a Limit of a Binary Mixture Theory—Treated …

Let us consider equilibrium states xi (X), ν(X). Neighboring such states will be
denoted as xi (X,λ), ν(X,λ), parameterized by λ. The variations of the positions
δxi and volume fraction δν may then be defined by

δxi = dxi
dλ

∣∣∣
∣ λ=0

X fixed

, δν = dν

dλ

∣∣∣
∣ λ=0

X fixed

. (29.117)

If the volume fraction is thought of as a function of x and t , ν = ν(x, t) rather than
ν(X, t) , the variation (29.117)2 is represented by

δν = ∂ν

∂λ

∣∣∣∣ λ=0

x fixed

+ ∂ν

∂xi

∂xi
∂λ

∣∣∣∣
λ=0

. (29.118)

A variation of ν holding the spatial position x fixed is denoted byCowin andGood-
man [2] by

Δν = ∂ν

∂λ

∣
∣∣∣ λ=0

x fixed

. (29.119)

Substituting (29.119) into (29.118) and using (29.117)1 yields

δν = Δν + ν,iδxi . (29.120)

From this representation follows

(δν), j︸ ︷︷ ︸
δ(ν, j )+ν,i (δxi ), j

= (Δν), j︸ ︷︷ ︸
Δ(ν, j )

+ν,i jδxi + ν,i (δxi ), j , (29.121)

so that

δ(ν, j ) = Δ(ν, j ) + ν,i jδxi . (29.122)

The underbraced term on the left-hand side of (29.121) can be justified by the fact
that (δν), j differs from (δν, j ) by the convective term ν,i (δxi ), j , since x but not X is
held fixed, whereas in the underbraced term on the right-hand side of (29.121) Δ is
the variation holding the present configuration fixed.
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29.A.2 Variational Principle

Wenow suppose that in the granular material the interaction of the grains is described
by a scalar valued balance law that is added to the force balance by the fact that
besides δxi also δν is an independent variation. So, the stored energy function W is
for equilibrium states given by a function of the form W = W (γ, ν, ν,i ). It follows
that the variation of the total energy function of the body can be postulated in the
form

δ

∫

B
γνW dv =

∫

B
(γνbi δxi + γν� δν) dv

+
∫

∂B
(ti δxi + H δν) da. (29.123)

The volume term on the right-hand side of this equation consists of the virtual work
done by the volumetric body force γνbi , subjected to the virtual displacement δxi .
In addition the scalar intrinsic equilibrated body force in Goodman-Cowin’s ter-
minology, performs work when being subjected to volume fraction variations δν.
The second term on the right-hand side of (29.123) represents the associated surface
work: ti δxi is this working by the stress tractions when being subjected to the vari-
ations of the surface displacement δxi and the variation of the equilibrated surface
traction H , when being exposed to a variation of the volume fraction at the surface.
This terminology follows Goodman and Cowin, however, (29.123) introduces the
equilibrated intrinsic body force � and the equilibrated traction H (both as scalar
quantities). They may equally be introduced in an abstract way without specifying
their meaning by a model interpretation. It is given by Goodman in 1969 [5].

We require the mass of a body to be conserved during variations. Thus,

M =
∫

B
γν dv ≡ const.

=⇒
∫

B
δ(γν) dv +

∫

B
γν δ(dv) ≡ 0. (29.124)

Because this identity applies for all B, also infinitesimal ones, we have

δ(γν) dv + γν δ(dv) = 0,

from which we deduce

δ(γν) dv + γν δ(xi ),i dv = 0

=⇒ δ(γν) = −γν(δxi ),i . (29.125)

Similarly, (29.124)1 can be multiplied with the stored energy function to yield
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δ(γν)W dv + γνW δ(dv) = 0,

(29.126)

or
∫

B
δ(γν)W dv +

∫

B
γνW δ(dv) = 0.

These equations imply

δ

∫

B
γνW dv =

∫

B
γνW (δ dv)

=
∫

B
δ(γν)W dv +

∫

B
γνW δ(dv)

︸ ︷︷ ︸
=0 because of mass balance

+
∫

B
γν δW dv

=
∫

B
γν δW dv. (29.127)

The expression on the right-hand side of (29.126) shall now alternatively be written.
To this end, we observe that W = W (γ, ν, ν,i ) and obtain

δW = ∂W

∂γ
δγ︸︷︷︸

(29.125)= {−γ(δxi ),i−γ δν
ν }
+∂W

∂ν
δν + ∂W

∂ν,i
δ(ν,i )︸ ︷︷ ︸

(29.121)= {(δν),i−ν,k (δxk ),i}
= ∂W

∂γ

{
−γ(δxi ),i − γ

δν

ν

}
+ ∂W

∂ν
δν + ∂W

∂ν,i

{
(δν),i − ν,k(δxk),i

}
.

Multiplying this relation by γν yields

γν δW = −γ2ν
∂W

∂γ
(δxi ),i − γν

∂W

∂ν,i
(δxk),iν,k

︸ ︷︷ ︸
(i)

+ γν
∂W

∂ν,i
(δν),i

︸ ︷︷ ︸
(i i)

−γ2 ∂W

∂γ
δν + γν

∂W

∂ν
δν

︸ ︷︷ ︸
(i i i)

. (29.128)

Following Cowin and Goodman [2], this relation now suggests the definitions

p̂ := γν2 ∂W

∂ν
, p := γ2ν

∂W

∂γ
, hi := γν

∂W

∂ν,i
(29.129)

P := 1

ν
(p − p̂) = 1

ν

(
γ2ν

∂W

∂γ
− γν2 ∂W

∂ν

)
, (29.130)

Ti j := −p δi j − hiν, j = −γ2ν
∂W

∂γ
δi j − γν

∂W

∂ν,i
ν, j . (29.131)
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Thus,

Ti j (δx j ),i = −γ2ν
∂W

∂γ
(δxi ),i − γν

∂W

∂ν,i
ν, j (δx j ),i (i), (29.132)

hi (δν),i = γν
∂W

∂ν,i
(δν),i (i i), (29.133)

−P(δν) = −
(

γ2 ∂W

∂γ
− γν

∂W

∂ν

)
δν (i i i). (29.134)

The symbols (i), (i i), and (i i i) correspond to the underscored terms in (29.128),
which can now be written as

γν δW = Ti j (δx j ),i + hi (δν),i − P δν

= (Ti jδx j ),i − Ti j,iδx j + (hi δν),i − hi,i δν − P δν. (29.135)

Integrating this expression over the body B and using the Gauss theorem leads to

∫

B
γν δW dv = −

∫

B

{
Ti j,i δx j + (hi,i + P)δν

}
dv

+
∫

∂B

{
Ti j ni δx j + hini δν

}
da. (29.136)

Next, using (29.127) in (29.123) and subsequently employing (29.136) implies

∫

B

{
(Ti j,i + γνb j )δx j + (hi,i + P + γν�)δν

}
dv

+
∫

∂B

{
(t j − Ti j ni )δx j + (H − hini )

}
δν da ≡ 0, (29.137)

which must be valid for arbitrary and independent variations of δx j and δν, which
leads to

Ti j,i + γνb j = 0
hi,i + P + γν� = 0

}
in B,

t j = Ti j ni
H = hini

}
on ∂B. (29.138)

These equations represent the equilibrium equations balancing the stress divergence
and the body force and the equation of the balance of the equilibrated forces—
divergence of the flux hi , the volume fraction- dependent pressure P , and the intrin-
sic equilibrated body force γν�. The equations on the right-hand side of (29.138)
define the “stress boundary conditions”, which would also follow from Cauchy’s
tetrahedral argument.

Cowin andGoodman [2] state at this point that “given the stored energy function
W as a function of γ, ν, ν,i the relations (29.128) and (29.129) together with the
equations (29.137) constitute four equations in terms of the two unknowns γ and
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ν”. The system is, therefore, overdetermined as noted by Jenkins [12]. Following
this author Cowin and Goodman then propose an equivalent alternative variational
principle “which leads directly to a reduction of the equations to form a compatible
system”.

Alternative variational formulation (compressible granules) Jenkins [12] did
not treat δxi and δν as independent fields, but δxi and Δν, defined in (29.119) and
related to δν via (29.120). The variation of the stored energy function then takes the
form

γν δW = γν
∂W

∂γ
δγ + γν

∂W

∂ν
δν + γν

∂W

∂ν,i
δ(ν,i ), (29.139)

where

δγ = −γ(δxi ),i − γ
δν

ν
, δν

(29.120)= Δν + ν,i δxi ,

δ(ν,i )
(29.122)= Δ(ν,i ) + ν,i j δx j ,

so that (29.139) can be written as

γν δW = γν
∂W

∂γ

{
−γ(δxi ),i − γ

δν

ν

}
+ γν

∂W

∂ν

{
Δν + ν,i δxi

}

+γν
∂W

∂ν,i

{
Δ(ν,i ) + ν,i j δx j

}
. (29.140)

Next, note that

W,i = ∂W

∂γ
γ,i + ∂W

∂ν
ν,i + ∂W

∂ν, j
ν, j i .

With this and the definitions (29.129) and (29.130) for p, hi , and P a somewhat
involved but simple identification of individual terms shows that

γν δW = γν

(

p

(
1

γν

)

,i

+ W

)

δxi −p(δxi ),i︸ ︷︷ ︸
−(p δxi ),i+p,i δxi

−PΔν + hi (Δν),i︸ ︷︷ ︸
(hiΔν),i−h,iΔν

= γν

{
p

(
1

γν

)

,i

+ p,i

γν
︸ ︷︷ ︸

[p/(γν)]i

+W,i

}
δxi

−(p δxi ),i + (hiΔν),i − PΔν − hi,iΔν.

Integrating this over the body B, and employing the divergence theorem in the last
two terms on the right-hand side yield
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∫

B
γν δW dv =

∫

B

{

γν

(
p

γν
+ W

)

,i

δxi − (hi,i + P)Δν

}

dv

+
∫

∂B

{−pni δxi + hi,i ni
}
Δν da. (29.141)

The right-hand side of this expression must be identified with the right-hand side of
(29.123), viz.,

∫

B

{

γν

[(
p

γν
+ W

)

,i

− �ν,i − bi

]

δxi − [
hi,i + P + γν�

]
Δν

}

dv

+
∫

∂B

{(
pni + ti + Hν,i

)
δxi + (hini − H)Δν

}
da ≡ 0. (29.142)

For this to hold for all δxi and all δν, we obtain

∂

∂xi

(
p

γν
+ W

)
= bi + �ν,i

hi,i + P + γν� = 0

⎫
⎬

⎭
in B,

−pni = ti + Hν,i

H = hini

}
in ∂B. (29.143)

These equations possess the advantage that they can directly be integrated, if bi and
� are expressed in terms of a potential as suggested by Jenkins [12]. If we choose a
force potential Φ(xi , ν) such that

bi = −∂Φ

∂xi
, � = −∂Φ

∂ν
, (29.144)

then the field equations and boundary conditions take the forms

∂

∂xi

(
p

γν
+ W + Φ

)
= 0

∂hi
∂xi

+ P = γν
∂Φ

∂ν

⎫
⎪⎪⎬

⎪⎪⎭
in B,

−pni = ti + Hν,i

H = hini , t j = Ti j ni

}
on ∂B. (29.145)

The particular form of these field equations and boundary conditions shows that
they emerge naturally when one considers variations of ν by holding x fixed rather
than X .

29.A.3 Variational Principle for Density Preserving Granules

For a density preserving material the specific true mass is constant, γ = const., and
here, therefore, δγ ≡ 0. From mass balance (29.125), it then follows that
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δν = −ν(δxi ),i . (29.146)

It follows that the variations of δν and δx are no longer independent. Thus, the
variational principle (29.123) can now be expressed as

δ

∫

B
γνW dv =

∫

B

(
γνbi δxi − γν2�(δxi ),i

)
dv

+δ

∫

∂B

(
ti δxi − νH(δxi ),i

)
da. (29.147)

For density preserving granules, W = W (ν, νi ) and, therefore,

δW = ∂W

∂ν
δν + ∂W

∂ν,i
δ(ν,i ). (29.148)

When using

δ(ν, j ) = (δν), j − ν,i (δxi ), j , see (29.121)

and (29.146) in the expression (29.147) and employing the definitions (29.129)–
(29.131), straightforward computations yield

− γν δW = (− p̂ δi j + νhk,k δi j + hiν, j
)
,i δx j + [hiν(δx j ), j ],i

+[ p̂ δi j − νhk,k δi j + hν, j ],i . (29.149)

This equation is now integrated over the body; hereby, the underlined terms are
transformed to surface integrals using the divergence theorem. This step leads to

δ

∫

B
γνW dv =

∫

B
γν δW dv

= −
∫

B

(− p̂ δi j + νhk,k δi j − hiν, j
)
,i δx j dv −

∫

∂B
hiniν(δx j ), j dv

+
∫

∂B
ni
(− p̂ δi j + νhk,k δi j − hiν, j

)
,i δx j da. (29.150)

The right-hand side of this variational statement must equal the right-hand side of
(29.147), in which we transform the underlined term by writing

γν2�(δxi ),i = (γν2� δxi ),i − (γν2�),i δxi

and use the divergence theorem for the first term on the right-hand side. These
computations lead to
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∫

B

{[(
− p̂ δi j + νhk,k δi j − h jν,i + γν2� δi j︸ ︷︷ ︸

:=Ti j

)

, j

+ γνbi

]
δxi

}
dv

+
∫

∂B

{[
ti + (

p̂ni − νhk,kni + h jn jν,i − γν2�ni
)

︸ ︷︷ ︸
:=−Ti j n j

]
δxi

}
da

+
∫

∂B
(hini − H)ν(δx j ), j da ≡ 0, (29.151)

which must hold for all δxi in B and on ∂B. However, this requires caution in the
evaluation of (δx j ), j along the free surface ∂B. This quantity is specified by δx j

everywhere in B ∪ ∂B except in the direction normal to the boundary ∂B. Letting
Dk be the surface gradient and D⊥ the directional derivative perpendicular to ∂B,
then we have

(δxi ),i = (D⊥ni + Di )δxi , on ∂B, (29.152)

and the last term in (29.151) becomes

∫

∂B

[
(hini − H) ν

(
D⊥n j + Dj

)
δx j

]
da. (29.153)

Substituting (29.153) into (29.151) yields

0 ≡
∫

B
(Ti j, j + γνbi )δxi dv

+
∫

∂B

[
(ti − Ti j n j )δxi + (hini − H)νD⊥ni δx j + Dj δx j )

]
da. (29.154)

As the variations δxi inB∪∂B and D⊥ δx j on ∂B are independent, (29.154) implies

Ti j, j + γνbi = 0, in B, (29.155)

ti = Ti j n j , H = hini , on ∂B, (29.156)

in which Ti j is defined in the subbraced terms of (29.151), formally,

Ti j := − p̂ δi j + νhk,k δi j − h jν j + γν2� δi j . (29.157)

Equation (29.155) is the classical force balance, with the stress tensor defined in
(29.157) and the flux boundary conditions in (29.156). They are also given byGood-
man and Cowin [7].

Alternative variational formulation (density preserving) For density preserv-
ing granules (δγ = 0) it was shown in (29.146) that δν = −ν(δxi ),i . With this, the
variational principle (29.123) can be written as
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δ

∫

B
γνW dv =

∫

B

[
γbi + γ�ν,i + (γν�),i

]
ν δxi dv

+
∫

∂B

[(
ti + Hν,i − γν2�ni

)
δxi − H(νδxi ),i

]
da, (29.158)

in which (29.146) and the divergence theorem have been employed. Next, usingmass
balance (see (29.126)) and the representation (29.148), alongwith (29.129)–(29.131)
we obtain

γν δW =
(
p̂

ν
+ γW − h j, j

)

,i

ν δxi

+
{(− p̂ + h j, jν

)
δxi − hi

(
ν δx j

)
, j

}

,i
. (29.159)

Integrating both sides of this equation over the bodyB and employing the divergence
theorem in the second term in curly brackets yields

∫

B
γν δW dv =

∫

B

{
p̂

ν
+ γW − h j, j

}

,i

ν δxi dv

+
∫

∂B

{(− p̂ + h j, jν
)
δxi

}
ni da

−
∫

∂B
hiν(δx j ), j ni da. (29.160)

This expression must equal the variation of the stored energy (29.147) expressed in
terms of the power of the body forces (classical and equilibrated) plus the corre-
sponding workings of the surface forces; this statement can be written in the form

0 ≡
∫

B

{

γbi + γ�ν,i + (γν�),i −
(
p̂

ν
+ γW − h j, j

)

,i

}

ν δxi dv

+
∫

∂B

{
ti + Hν,i + (

p̂ − h j, jν − γν2�
)
ni
}
δxi da

+
∫

∂B
[hini − H ] (ν δx j ), j da, (29.161)

an identity, which must hold for arbitrary δxi in B and on ∂B as well as arbitrary
gradients of νδx j perpendicular to ∂B. Therefore,

∂

∂xi

(
p̂

ν
+ γW − νh j, j − γν�

)
= γbi + γ�ν,i , in B,

ti + Hν,i = (− p̂ + νh j, j + γν2�
)
ni , H = hini , on ∂B. (29.162)
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These field equations and boundary conditions are equivalent to (29.156), if the stress
tensor (29.157) is substituted.2

29.A.4 Dynamic Case

To apply the principle of virtualwork to the dynamic casewe follow theLagrangean
method employed in Chap. 26 for liquid crystals with tensorial-order parameter. In
this case of a granular assembly the total energy in B is given in (26.19) as

F =
∫

B
F dv, with

F = ρ (v · v + φ + σ(ρ) + κ(ν, ν̇) + χ(ν)) + W (ν, grad ν), (29.163)

in which the rank-i tensorOOO from (26.19) has been replaced by the volume fraction
ν; analogous to Chap.26:

• ρ = γν is the mass density,
• 1

2v · v, the translational kinetic energy of the grains,
• φ, the potential energy of the body force, f = −grad φ,
• σ(ρ), the potential energy due to the compressibility of the material,
• κ(ν, κ̇) the kinetic energy connected with the motion of the volume fraction,
• χ(ν), the potential energy of the external actions on ν (which is physically nonre-
alistic and will be set to zero),

• W is interpreted as an “elastic” energy of the volume fraction and can be associated
with the variation of the volume fraction.

Admittedly, some of these quantities are difficult to realistically identify with specific
physical facts.

To evaluate the total time derivative of F , we obtain the following individual
expressions

d

dt

∫

B
1
2ρ(v · v)dv =

∫

B
ρv̇ · v dv,

d

dt

∫

B
ρφ̇ dv =

∫

B
ρφ̇ dv = −

∫

B
ρ f · v dv,

d

dt

∫

B
ρσ(ρ) dv =

∫

B
ρ

dσ

dρ︸︷︷︸
σ′

ρ̇ dv = −
∫

B
ρ2σ′(ρ)div v dv,

d

dt

∫

B
ρχ(ν) dv =

∫

B
ρχ̇(ν) dv =

∫

B
ρ
∂χ

∂ν
ν̇ dv, (29.164)

2Cowin and Goodman have a misprint in the stress boundary condition.
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d

dt

∫

B
W dv =

∫

B

{
∂W

∂ν
ν̇ + ∂W

∂grad ν
(grad ν)· + Wdiv v

}
dv

d

dt

∫

B
ρκ(ν, ν̇) dv =

∫

B
ρ (κ(ν, ν̇))· dv ∗=

∫

B
ρ

{(
∂κ

∂ν̇

)·
− ∂κ

∂ν

}

︸ ︷︷ ︸
m

ν̇ dv

=
∫

B
ρmν̇ dv,

in which the step (
∗=) follows from our basic assumption that ν and ν̇ are interpreted

as independent generalized coordinates and velocities in a Lagrangean formulation
(see Appendix 26.A in Chap.26, (26.19) and 26.206), or see [1]).

Evaluating Ḟ , with all expressions (29.164) substituted, yields

Ḟ =
∫

B

{
ρ (v̇ − f ) · v + ρmν̇ +

(
ρ
∂χ

∂ν
+ ∂W

∂ν

)
ν̇ + ∂W

∂grad ν
(grad ν)·

+ (
W − ρ2σ′(ρ)

)
div v

︸ ︷︷ ︸
[(W−ρ2σ′)vi ],i−(W−ρ2σ′),ivi

+ ∂W

∂grad ν
(grad ν)·
︸ ︷︷ ︸

grad ν̇−grad ν·grad v

}
dv

=
∫

B

{
ρ(v̇ − f ) · v + ρmν̇ +

(
ρ
∂χ

∂ν
+ ∂W

∂ν

)
ν̇

+ ∂W

∂grad ν
grad ν̇

︸ ︷︷ ︸
[1]

− ∂W

∂grad ν
grad ν · grad v

︸ ︷︷ ︸
[2]

− (
W − ρ2σ′(ρ)

)
,i vi

}
dv

+
∫

∂B

[(
W − ρ2σ′) vi

]
ni da,

in which

[1] =
∫

B

∂W

∂ν,i
ν̇,i dv =

∫

B

{(
∂W

∂ν,i
ν̇

)

,i

−
(

∂W

∂ν,i

)

,i

ν̇

}

dv

=
∫

∂B

∂W

∂grad ν
· nν̇ da −

∫

B
div

(
∂W

∂grad ν

)
ν̇ dv

[2] =
∫

B

∂W

∂ν,i
ν,kvk,i dv =

∫

B

[(
∂W

∂ν,i
ν,kvk

)

,i

−
(

∂W

∂ν,i
ν,k

)

,i

vk

]

dv

=
∫

∂B

∂W

∂ν,i
ν,kvkni da −

∫

B

(
∂W

∂ν,i
ν,k

)

,i

vk dv

=
∫

∂B

[(
grad ν � ∂W

∂grad ν

)
n · v

]
da
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−
∫

B
div

{
grad ν � ∂W

∂grad ν

}
· v dv.

Recall that, if a, b are vectors in R
3, then (a � b)ik = akbi which equals (a ⊗ b)T .

Therefore,

Ḟ =
∫

B

{
ρ(v̇ − f ) · v + ρmν̇ +

(
ρ
∂χ

∂ν
+ ∂W

∂ν

)
ν̇ − div

(
∂W

∂grad ν

)
ν̇

+div

(
grad ν � ∂W

∂grad ν

)
· v − (

W − ρ2σ′(ρ)
)
v

}
dv

+
∫

∂B

{[(
W − ρ2σ′) n · v + ∂W

∂grad ν
· nν̇

]

−
(
grad ν � ∂W

∂grad ν

)
n · v

}
da. (29.165)

In classical mechanics Ḟ is the total power input into a mechanical system. Here,
this is not so, because (29.165) contains surface terms, which may unduly constrain
the potentialsW and σ′ without generalized surface forces. The powerWs of surface
forces for a moving boundary ∂B can be written in the form

Ws =
∫

∂B

{
X s · v + ξs ν̇

}
da, (29.166)

in which v and ν̇ are independent generalized velocities. Moreover, if the surface
power can be derived from a potential, i.e., if

Ws = d

dt

∫

∂B
Ws(x, ν) da, (29.167)

in which Ws is a scalar potential of position and solid volume fraction, then the
relations

X s = ∂Ws

∂x
, and ξs = ∂Ws

∂ν
(29.168)

ensue. Adding (29.166) to the expression (29.165) now provides the possibility to
relate X s and ξs toW and σ′. Explicitly, Ḟ+Ws can now be written as stated already
in (26.29), namely as

Ḟ + Ws =
∫

B

{
X · v + ξs ν̇

}
dv

+
∫

∂B

{(
Xb + X s

) · v + (
ξb + ξs

)
ν̇
}
da, (29.169)
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in which

X = ρ(v − f ) − grad (W − ρ2σ′) + div

(
grad ν � ∂W

∂grad ν

)

ξ = ρ

(
m + ∂χ

∂ν

)
+ ∂W

∂ν
− div

(
∂W

∂grad ν

)

⎫
⎪⎪⎬

⎪⎪⎭
in B,

(29.170)

Xb = (
W − ρ2σ′) n −

(
grad ν � ∂W

∂grad ν
n
)

ξb = ∂W

∂grad ν
· n

⎫
⎪⎪⎬

⎪⎪⎭
on ∂B.

We repeat, as we already pointed out in Chap.26, p. 288: It is physically significant
to note that the surface integral in (29.169) with generalized forces X s and ξs was
introduced in (29.168). In the absence of dissipative terms we will prove that X s +
Xb = 0, ξs + ξb = 0. So, when Ws ≡ 0 then Xb and ξb would have to separately
vanish, which would constrain the functions W and σ.

To avoid this situation, we now introduce, following Lord Rayleigh [18] or
Sonnet and Virga [17], see Chap.26, (26.31), the dissipation potential as a frame
indifferent functional of the stretching tensor D, the volume fraction ν and its rate
ν̇; explicitly

R =
∫

B
R dv, R = R(ν, ν̇, D). (29.171)

We suppose R to be a bilinear function of ν̇ and D; writing it in terms of ν̇ and
grad ν, we have

δR =
∫

B

{
∂R

∂ν̇
δν̇ + ∂R

∂grad ν
· δ(grad v)
︸ ︷︷ ︸
grad (δv)

︸ ︷︷ ︸
[1]

}
dv,

where

[1] = ∂R

∂vi, j
(δvi ), j =

(
∂R

∂vi, j
δvi

)

, j

−
(

∂R

∂vi, j

)

, j

δvi ,

implying

δR =
∫

∂B

(
∂R

∂grad v
n
)

· δv da

+
∫

B

{
∂R

∂ν̇
δν̇ − div

(
∂R

∂grad v

)
· δv

}
dv, (29.172)
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or, since ∂R/∂grad v = ∂R/∂D,

δR =
∫

∂B

(
∂R

∂D
n
)

· δv da

+
∫

B

{
∂R

∂ν̇
δν̇ − div

(
∂R

∂D

)
· δv

}
dv. (29.173)

Here, n is the outward unit normal vector on ∂B, and the divergence theorem has
been used to obtain (29.173).

With (29.169), (29.170) and (29.173), all elements are now at disposal to apply
the principle of virtual power, which requires

δ(Ḟ + Ws) + δR = 0, ∀{δv, δν̇}, (29.174)

with the understanding that the generalized forces and their power of working remain
constant during the variation, see also Chap.26, Eqs. (26.8) and (26.11). Conse-
quently, with (29.169), (29.170), and (29.173), we have

X − div

(
∂R

∂D

)
= 0

ξ + ∂R

∂ν̇
= 0

⎫
⎪⎬

⎪⎭
in B, (29.175)

Xb + X s + ∂R

∂D
· n = 0

ξb + ξs = 0

}

on ∂B. (29.176)

These equations, with the interpretations (29.170), are the equations of motion in B
and the boundary conditions on ∂B. Note that Xb + X s = 0 and xib + ξs = 0 if
effects of dissipation are ignored. In this limited case, X s and ξs are nonzero, since
Xb �= 0 and ξb �= 0. According to (29.170)3,4, as stated earlier, their vanishing would
severely constrain the potentials W and σ on the free surfaces.

Explicitly, the momentum equations (29.175)1 take the forms

ρv̇ = ρ f + div
(
(W − ρ2σ′)I

)

−div

(
grad ν � ∂W

∂grad ν

)
+ div

(
∂R

∂D

)
, (29.177)

from which the stress tensor can directly be read off:

T = (W − ρ2σ′)I − grad ν � ∂W

∂grad ν
+ ∂R

∂D
. (29.178)

SinceW must be objective, it can be written asW = Ŵ (ν, g), g := 1
2grad ν ·grad ν;

all three terms on the right-hand side of (29.178) are now symmetric, so that T = T T .
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In particular,

grad ν � ∂W

∂grad ν
= ∂Ŵ

∂g
grad ν ⊗ grad ν

Ŵ= f (ν)g= f (ν)grad ν ⊗ grad ν. (29.179)

Moreover, the dissipative term ∂R/∂D does not need to be restricted toNewtonian
behavior, viz.,

∂R

∂D
= κ(div v)I + 2μ

(
D − 1

3 (div v)
)
I

with bulk, κ, and shear,μ, viscosity. For isotropic behavior the function R in (29.171)
takes the form

R = R(ν, ν̇, ID, IID, IIID), (29.180)

where ID, IID, IIID are the invariants of the stretching tensor D. It is convenient to
separate the (ν, ν̇)-dependence of R from the dependence on D. Instead of (29.180),
we shall, therefore, write

R = r(ν, ν̇)R̃(ID, IID, IIID), (29.181)

and then may write

T diss = r(ν, ν̇)

{
∂ R̃

∂ ID

∂ ID
∂D

+ ∂ R̃

∂ IID

∂ IID
∂D

+ ∂ R̃

∂ IIID

∂ IIID
∂D

}

. (29.182)

For the principal invariants one may deduce (seeHutter and JÖHNK [8], pp. 46–49)

∂ ID
∂D

= I,
∂ IID
∂D

= ID I − D,

(29.183)
∂ IIID
∂D

= D−1 IIID = {
D2 − IDD + IID I

}
,

in which D must be symmetric and the Caley-Hamilton theorem has also been
used. Substituting (29.183) into (29.182) leads to the following expression for the
dissipative Cauchy stress

T diss = r(ν, ν̇)
[
φ0 I + φ1D + φ2D2

]
, (29.184)
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where

φ0 = ∂ R̃

∂ ID
+ ∂ R̃

∂ IID
ID + ∂ R̃

∂ IIID
IID,

φ1 = −
(

∂ R̃

∂ IID
− ∂

R̃

∂ IIID
ID

)

, (29.185)

φ2 = ∂ R̃

∂ IIID
.

This stress representation possesses the structure of a Reiner–Riwlin fluid. Notice
that in case R̃ does not depend upon the third invariant IIID, the dependence on D2

in (29.184) drops out and the φ-dependences simplify to

φ0 = ∂ R̃

∂ ID
+ ∂ R̃

∂ IID
ID, φ1 = ∂ R̃

∂ IID
, φ2 = 0, if R̃ �= R̃(·, IIID). (29.186)

Note,moreover, a density preserving granularmaterial (γ = const.) is not necessarily
volume preserving. Its bulk viscosity is μbulkr(ν, ν̇)φ0, while its shear viscosity is
given by μshear = r(ν, ν̇)φ1. However, if we ignore both ID- and IIID-dependences
of R̃, then the bulk viscosity vanishes. In this case, the dissipative stress reduces
simply to

T diss = r(ν, ν̇)φ1D, φ1 = ∂ R̃

∂ II ′
D

II ′
D = 1

2 ID2 . (29.187)

Except for the r(ν, ν̇)-dependence this law corresponds to the classical viscous shear-
ing behavior, known in fluid mechanics as dilatant and pseudoplastic behavior (see
e.g., [11], pp. 366–371). Popular examples are so-called power laws.

The second equation of motion (for the evolution of the volume fraction) is
obtained by combining (29.175)2 with (29.170)2 and using the definition ofm given
in (29.164). This yields

γν

{(
∂κ

∂ν̇

)·
− ∂κ

∂ν

}

+ ∂W

∂ν
− div

(
∂W

∂grad ν

)
+ ∂R

∂ν̇
= 0. (29.188)

With the stored energy functionW = Ŵ (ν, g), g := 1
2grad ν ·grad ν and the volume

fraction kinetic energy κ given by

Ŵ = f(ν)g and κ(ν, ν̇) = 1
2k(ν)ν̇2, (29.189)

(both are quadratic in grad ν and ν̇) one easily deduces
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γν
{
k(ν)ν̈ + 1

2k
′(ν)ν̇2

} − f′(ν)g − f(ν)Δν + ∂R

∂ν̇
= 0. (29.190)

The Eqs. (29.188) and (29.190) look more general than that introduced in [7],

γνkν̈ + div h − γν f = 0. (29.191)

It is evident that the coefficient of equilibrated inertia must be a material constant as a
condition to reach agreement between the field equations derived by the balance law
and variational approaches. This maywell be the reasonwhyEringen in his writings
of micro-morphic continua postulates explicitly a conservation law of equilibrated
inertia ka = 0 (a = 1, . . .) in mixture formulations (see also Chap.30, (30.5)). On
the other hand, it is easy to verify that

h = −∂Ŵ

∂g
grad ν = −f(ν)grad ν,

(29.192)

f = 1

γν

∂Ŵ

∂ν
g = 1

2 f
′(ν)grad ν · grad ν.

Thus, there is a one-to-one correspondence of the differential equations for the fluid
velocity v and the volume fraction ν between the variational and balance law deriva-
tion of the field equations. Incorporating the dissipation potential R the variational
method has gone beyond the balance law approach, since it delivered explicit for-
mulae for the dissipative stress given in (29.184) and (29.185). Moreover, with the
introduction of the dissipative surface potential Ws , it also delivers in (29.170)3,4
boundary conditions for the surface forces Xb and ξb.
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Chapter 30
A Granular Mixture Model with
Goodman–Cowin-Type Microstructure
and its Application to Shearing Flows in
Binary Solid–Fluid Bodies

Abstract A continuum theory of a granular mixture is formulated. In the basic
balance laws, we introduce an additional balance of equilibrated forces to describe
the microstructural response according to Goodman and Cowin (Arch Rational
Mech Anal, 44:249–266,1972, [10]) and Passman et al. (Rational Thermodynam-
ics, Springer, New York, pp. 286–325, 1984, [18]) for each constituent. Based on
the MÜLLER–Liu form of the second law of thermodynamics, a set of constitutive
equations for a viscous solid–fluid mixture with microstructure is derived. These
relatively general equations are then reduced to a system of ordinary differential
equations describing a steady flow of the solid–fluid mixture between two horizon-
tal plates. The resulting boundary value problem is solved numerically and results
are presented for various values of parameters and boundary conditions. It is shown
that simple shearing generally does not occur. Typically, for the solid phase, in the
vicinity of a boundary, if the solid volume fraction is small, a layer of high shear
rate occurs, whose thickness is nearly between 5 and 15 grain diameters, while if the
solid volume fraction is high, an interlock phenomenon occurs. The fluid velocity
depends largely on the drag force between the constituents. If the drag coefficient
is sufficiently large, the fluid flow is nearly the same as that of the solid, while for
a small drag coefficient, the fluid shearing flow largely decouples from that of the
solid in the entire flow region. Apart from this, there is a tendency for solid particles
to accumulate in regions of low shear rate.

Keywords Granular materials · Solid–fluid mixture · Goodman–Cowin-type
microstructure · Viscous fluid · Constitutive behavior · Shearing flows in binary
mixtures

This chapter is heavily based on the paper by Wang and Hutter [26].
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List of Symbols

Roman Symbols

Aa Tensorial parameter to evaluate ha, see (30.62),
Aa = 2ρa∂ψa/∂(grad νa · grad νa), (a = 1, . . . , N )

as, (a f ) Coefficients in the parameterizations of φs , (φ f ), see (30.93),
(30.94)

a = 0 Liu identities
a (a = 1, ..., N ) Identifier of the ath constituent
b > 0 Residual entropy inequality
ba Body force of constituent a
C List of dependent constitutive variables
c+
a Production rate density of the ath mass balance
Da Strain rate (stretching) tensor of constituent a
e+
a Production rate density of the total energy of constituent a
fa Intrinsic equilibrated body force of constituent a
f Ea Equilibrium value of fa
f Da Dynamic contribution to fa
Fb Set of independent constitutive variables of constituent a
g+
a Production rate density of the ath equilibrated force
ha Flux vector of equilibrated force of constituent a
I Unit matrix (tensor) in R2 or in R3

j Mixture flux density, j = −θφ + q
ja Constituent flux density, ja = −θφa + qa

j I j I = ∑
a ja

j c Mixture constituent flux density, see (30.29)
ka Density of equilibrated inertia of constituent a
La Velocity gradient of constituent a, La = grad va
�a External equilibrated force of constituent a
m+

a Production rate density of linear momentum of constituent a
m+E

a Equilibrium value of m+
a

m+D
a Dynamic contribution to m+

a

mD Diffusion coefficient for m+D
a

pa := γ2
a∂ψa/∂γa

ps, (p f ) Solid (fluid) pressure
qa Heat (energy) flux vector of constituent a
q Heat (energy) flux vector of the mixture
qE = 0 Equilibrium value of q
r Radius vector from the coordinate origin to a particle a
r Heat supply to the mixture
ra Heat supply to constituent a
s Entropy supply to the mixture
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sa Entropy supply to the constituent a
Sa Set of independent constitutive variables
T Cauchy stress of the mixture
Ta Cauchy stress tensor of constituent a
T E

a Equilibrium value of Ta

T D
a Dynamic contribution of Ta

ua = va − v Diffusion velocity of constituent a
v Mixture velocity, ρv = ∑

a ρava
va Velocity of constituent a
Wa Vorticity tensor of the constituent a,

Wa = 1
2 (grad va − (grad va)T )

W Vorticity tensor of the mixture,
W = 1

2 (grad v − (grad v)T )

Wa = Wa − W Objective vorticity tensor of constituent a
Y Nonequilibrium-independent dynamic constitutive variables.

Greek Symbols

α Vector of physical quantities formed as derivatives of the inde-
pendent constitutive variables

βa Configurational pressure, βa := ρa∂ψa/∂νa
γa True density of constituent a
δab Kronecker delta
ε Internal energy density of the mixture
εa Internal energy density of the constituent a
εI = ∑

a ξaεa Intrinsic internal energy of the mixture
η Entropy density of the mixture
ηa Entropy density of constituent a
η+
a Entropy production density of constituent a

θ Empirical temperature, absolute Kelvin temperature
λa Dissipation parameter for f Da , see (30.79)
λν
a Lagrange multiplier of the balance law of constituent a

λa Lagrangemultiplier of the momentum equation of constituent
a

λk
a Lagrange multiplier of the balance law of the equilibrated

forces of constituent a
λε

Lagrange multiplier of the mixture energy equation
μa Viscosity for constituent a
μ̄s Viscosity parameter for the parameter choice (30.90)
νa Volume fraction of constituent a
′
νa Time derivative of ν following the constituent a
νm Value of ν at densest packing (≈0.74 for equal spheres)
νs Solid volume fraction in a binary mixture
ξ = ρa/ρ Mass fraction of constituent a
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Π Entropy production density of the mixture
π Lagrange multiplier of the saturation condition (= saturation

pressure)
ρ = ∑N

1 ρa Mass density of the mixture
ρa Mass density of constituent a
σs, (σ f ) Solid (fluid) expression for σs = −Ts yy , (σ f = −T f yy)

τ ∈ (0, 1] Iteration parameter in the method of successive approximation
φ Entropy flux vector of the mixture
φE = 0 Equilibrium value of φ
φa Entropy flux vector of constituent a
ψI Mixture inner free energy
ψa (Helmholtz) free energy density of constituent a
φs, (φ f ) Solid (fluid) free energy as function of νs (ν f )

Miscellaneous Symbols

d/dt Total time derivative (following the mixture particle)
∂B Boundary of a material volume B

′
(·))a Total time derivative of (·)a
AT Transpose of A
A−T = (AT )−1 = (A−1)T

‖b‖ Norm of b
f[i j] Skew-symmetric part of fi j , f[i j] = 1

2 ( fi j − f ji )
f(i j) Symmetric part of fi j , f(i j) = 1

2 ( fi j + f ji )

30.1 Introduction

Granular fluid mixture theories are of fundamental interest in many fields of engi-
neering and natural sciences.1 A frequent class of such multiphase flows are debris
flows, groundwater flows in soils, and sediment transport in rivers and estuaries in
which the granular phases may be distinguished by the different regimes of particle
diameters or species characteristics (various grains of solid rocks, wood pieces, etc.).
The interstitial fluidsmay consist ofwater and oil or fluid-suspended chemicals. If the
different constituents arise in respectable concentrations and interact, then it is likely
that their presence affects the dynamics of the neighboring solid or fluid constituents,
so that the dynamics of such interacting components ought to be described not only
by the common physical laws of balance of mass, momenta, and energy, but also
by micromechanical balance laws, equations for each constituent by a Goodman–
Cowin-type microstructure equation.

1Such early theories have been developed by Ahmadi [1, 2], Bluhm et al. [5], Bowen [6, 7],
Ehlers [8], Ehlers and Kubik [9], Homsy et al. [12], Johnson et al. [13], Massoudi [16],
Passman et al. [18, 19], Svendsen and Hutter [21], and Svendsen [22].
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It was made clear in Chap.29 that such additional equations influencing the
dynamics of each granular constituent are distinct among different specialists. It fol-
lows that uniquedescriptions of granular fluidmixtures donot (yet) exist; this does not
come as a surprise, as different proposals pertain to distinct microstructural proper-
ties.We repeat fromChap.29 that Svendsen andHutter [21] treat the solid volume
fraction as an internal variable and write an evolution equation for it, balancing its
time rate of change with its production. Wilmanski [27], on the other hand, using
statistical arguments on the microscale, demonstrated that this equation needed to be
complemented by a flux term.Goodman andCowin [10] based their scalar equation
model on the theory of structured media, deducing thereby a balance law of equili-
brated forces. The approach explainswhy this scalar evolution equation is reminiscent
ofmomentumwith an inertial termproportional to the second-order time derivative of
the constituent volume fractions, ν̈a (a = 1, . . . , N ), complemented by equilibrated
stress vectors ha (a = 1, . . . , N ) and equilibrated intrinsic interacting scalar body
forces, la. The Goodman–Cowin proposal, applied for single constituent granular
continua, was extended by Passman et al. [18] to mixtures and will here equally be
used. The reader, however, should be aware that the equilibrated force balance is also
applied to thefluid.Analternative derivation for thismixturemodel, usingLagrange
an dynamics in the spirit of Appendix29.A could also be given here, see also
[10, 18].

In deducing inferences for a chosen constitutive model, Passman et al. [18] fol-
lowed Goodman and Cowin’s [10] procedure for dry granular materials, thereby
employing the principle of equilibrated stresses and introduced additional equili-
brated stress balances for all constituents to describe the microstructural response.
An interstitial fluid or the porosity of the empty space is ignored. In this chapter,
we shall act in the same way. However, we shall not employ the Coleman–Noll
approach in exploiting the entropy principle. Passman et al. [18] introduced exter-
nal source terms in the linear momentum equations, the energy equation and the
equilibrated force balances for each constituent, which could be applied arbitrarily.
It implies in the Coleman–Noll approach that these balance laws do not affect the
exploitation of the entropy inequality. Whereas such a procedure can in certain cir-
cumstances be tolerated for the linear momentum and energy sources, it is physically
not justified for the balance laws of the equilibrated forces. These are internal laws
for the body by themselves, which, as exclusive material laws, must influence the
thermodynamics. This fact has already been the reason in Chap.29 for the postula-
tion that the sum of all external source terms in the long entropy inequality should
not affect the material thermodynamic behavior. The MÜLLER–Liu approach of the
exploitation of the entropy imbalance is based on this postulate: it means that all bal-
ance laws and possibly other compelling physical conditions must be accounted for
in the process of exploitation of the entropy imbalance. Indeed, it will be shown that
in our more general approach, additional terms beyond those of Passman et al. [18],
will appear in the constitutive relations, which turn out to be physically significant.

The present theory is believed to be valid for the full spectrum of two-phase
solid–fluid media covering the range of variation of the solid volume fraction. The
theory allows the possibility of supporting shear stresses in an equilibrium state.
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This is necessary for granular media and has, e.g., been observed in the case of high
concentrations in sediment transport processes, pore water flows as well as blood
suspensions.

In subsequent sections, the basic laws of the motion for the constituents and the
entropy imbalance for the mixture are presented. This is followed by the deriva-
tion of the constitutive equations from considerations of the first and second law of
thermodynamics. This merges into the field equations of a mixture of compressible
constituents. This analysis is then repeated for an assemblage of density-preserving
constituents. All these field equations are in their reduced forms in conformity with
the second law of thermodynamics.

In order to assess the implications of the principal equations, we then consider spe-
cific boundary value problems. To compare the emerging results with results derived
by Passman et al. [18], we adopt their formulas of the constituent free energy func-
tion and solve a steady fully developed horizontal shearing flow problem between
two parallel plates, of which the upper one is moving with a constant speed. With
the employed numerical method, it is demonstrated that the results are qualitatively
similar to those of Passman et al. [18], even though the constitutive equations of
both models are not the same. Obviously, the results depend on boundary condi-
tions; however, they are in qualitative agreement with experimental results on high
concentration suspensions [3, 4, 11].

30.2 Thermodynamic Considerations

30.2.1 Balance Relations

We begin by assuming that the mixture consists of N constituents. The index a
denotes the ath constituent, a = 1, . . . , N . The necessary thermal and mechanical
field variables for each constituent are introduced as primitive quantities. Specifically,
there exists a kinematic variable, the volume fraction or volume distribution function
νa for each constituent a, introduced originally byGoodman andCowin [10] for dry
granular materials, that accounts for the distributions of volume of each constituent a
in amultiphasemixture. It is complemented by the distributedmass density (granular
true mass density) γa, the Cauchy stress tensor Ta, body force ba, specific internal
energy εa, heat flux vector qa, and heat supply ra. In addition, to account for energy
flux and energy supply associatedwith the time rate of change of volume distribution,
a higher order stress and body force were introduced by Goodman and Cowin

[10]. Such terms are expected since the volume distribution function and the motion
are assumed to be kinematically independent. It is plausible, if a new independent
quantity such as νa is introduced in a theory, a new equation must be introduced to
determine its evolution. Following the approach of Goodman and Cowin [10] for
dry granularmaterials, Passman et al. [18] choose to do this for amultiphasemixture
also bymeans of an additional equation of balance for each constituent. According to
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[10, 18], an equilibrated inertia ka, equilibrated stress vector ha, external equilibrated
body force la,2 and intrinsic equilibrated body force fa are introduced for each
constituent. Each distributed constituent must satisfy the basic laws of motion of
continuum mechanics. We write the local equations of balance for each constituent
a (a = 1, . . . , N ) of the mixture in the following forms:

• Conservation of mass

c+
a = ρ́a + ρadiv va, (30.1)

• Balance of linear momentum

m+
a = c+

a va + ρav́a − div Ta − ρaba, (30.2)

• Balance of angular momentum

M+
a − r × m+

a = Ta − T T
a , (30.3)

• Balance of equilibrated force

g+
a = c+

a kaν́a + ρa(kaν́a)
′ − div ha − ρa(la + fa), (30.4)

• Conservation of equilibrated inertia

ḱa = 0, (30.5)

• Conservation of energy

e+
a = c+

a

(
εa − 1

2va · va − 1
2kaν́

2
a

) + m+
a · va

+g+
a ν́a + ρaέa − Ta · La − ha · grad ν́a

− 1
2ρaḱaν́

2
a + ρa faν́a + div qa − ρara. (30.6)

Note that in Eq. (30.5), the conservation of equilibrated inertia is new and states that
ka is a material constant, i.e., a quantity that remains constant when the constituent
particle follows its own trajectory. This simultaneously means that “the total deriva-
tive” (·)′a should be understood as the time derivative ∂(·)a/∂t + grad (·)a · va. We
shall not introduce a separate symbol for the derivative ∂(·)a/∂t + grad (·)a · ·vb.
Moreover, f́a = ∂ f/∂t + (grad fa) · va = ḟa + (grad fa) · ua is the material time
derivative with respect to va, ḟa = ∂ f/∂t + (grad fa) · v the material time deriva-
tive with respect to the mixture velocity v and ua = va − v the constituent diffusion
velocity in the mixture; r is the position vector. c+

a ,m
+
a , M

+
a , g

+
a , and e

+
a are, respec-

tively, the internal growths (specific productions) of mass, linear momentum, angular

2We do not see that, physically, such an external force can exist. We keep it here for formal
coincidence with [10, 18]. Our form of the second law does not depend on its existence.
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momentum, equilibrated force, and energy. A derivation of the equations of balance
of equilibrated force and energy and the equation of conservation of equilibrated
inertia can be found in references [10, 18].

We require that the growths represent only exchanges among phases

∑
c+
a = 0,

∑
m+

a = 0,
∑

M+
a = 0,

∑
g+
a = 0,

∑
e+
a = 0. (30.7)

Moreover, we assume that exchanges of mass and equilibrated force do not exist,
although there is no particular difficulty in relaxing this assumption,

c+
a = 0, g+

a = 0, (30.8)

and the exchange of angular momentum happens only through the exchange of linear
momentum

M+
a = r × m+

a . (30.9)

Using these constraints (30.8) and (30.9), the equations of balance (30.1)–(30.6) can
be rewritten in the forms

0 = γ́aνa + ν́aγ + γaνadiv va, (30.10)

m+
a = ρav́a − div Ta − ρaba, (30.11)

0 = Ta − T T
a , (30.12)

0 = ρakaν̋a − div ha − ρa(la + fa), (30.13)

e+
a = m+

a · va + ρaέa − Ta · Da − ha · grad ν́a

+ρa faν́a + div qa − ρara. (30.14)

The summation of (30.14) for all constituents a (a = 1, 2, . . ., N ) forms the balance
equation of energy for the mixture as a whole equivalent to

0 = ρε̇ + div q − T · D − ∑
ha · grad ν́a

+∑
ρa faν́a − ρr, (30.15)

where the constituent and mixture fields are connected by the sum relations

ρ = ∑
ρa, v = ∑

ξava, ε = εI + 1
2

∑
ξaua · ua,

εI = ∑
ξaεa, r = ∑

ξara
(30.16)

with
∑ = ∑N

a=1, ua = (δab − ∑
ξb)vb and the constituent mass fraction

ξa = ρa/ρ. (30.17)
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The mixture fluxes (stress and heat flux) take the usual forms

T = ∑
(Ta − ρaua ⊗ ua) ,

q = ∑ {
qa − [

Ta − ρa(εa + 1
2ua · ua)I

]
ua

}
.

(30.18)

The balance laws (30.10)–(30.14) do not determine the field variables defined and
interrelated by them uniquely. To that end, some fields (here Ta, ha, fa, qa) must
be expressed as functionals of the others, such that the emerging equations have
the potential of generating well-defined solutions. The forms of these constitutive
relations are reduced or constrained by the second law of thermodynamics which is
here formulated as an entropy principle.

30.2.2 Entropy Principle

There is an additive quantity for each constituent a, the entropy, with specific density
ηa, fluxφa, supply sa and growth of entropy η+

a , for which we may write an equation
of balance in the following local form:

η+
a = ρaήa + div (φa) − ρasa. (30.19)

The summationof (30.19) over all constituentsagives the equationof entropybalance
for the mixture in the form

Π = ρη̇ + divφ − ρs, (30.20)

where

η = ∑
ξaηa, φ = ∑(

φa + ρaηaua

)
,

s = ∑
ξasa, Π = ∑

η+
a .

(30.21)

Following Truesdell [24], we do not restrict η+
a for each constituent except for the

requirement that the total growth of entropy of the mixture be nonnegative. Formally,
this so-called second law of thermodynamics represents the restriction

Π = ρη̇ + divφ − ρs � 0. (30.22)

Now, any process, which satisfies (30.22), represents a so-called admissible process.
Such a process, however, must in addition satisfy the balance relations (30.10)–
(30.13) and (30.15) and other additional relations, if such relations should exist. One
such constraint is that of saturation. It states that all constituents together fill the
whole mixture space,
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∑
νa = 1. (30.23)

Taking the total time derivative following the mixture motion yields

∑ dνa
dt

=
∑ (

∂νa

∂t
+ v · grad νa

)

=
∑ (

∂νa

∂t
+ va · grad νa

︸ ︷︷ ︸
ν́a

− (va − v)
︸ ︷︷ ︸

ua

·grad νa

)

=
∑ (

ν́a − ua · grad νa
) = 0. (30.24)

This equation holds for t > 0 and can be integrated subject to the initial condition∑
νa = 1 at t = 0. Thus, we may replace (30.23) by

∑
(ν́a − ua · grad νa) = 0, t > 0 and

∑
νa = 1, t = 0. (30.25)

In ensuing developments, we further suppose that all constituents possess the same
temperature θ. Such an assumption is tantamount to the statement that thermal
exchanges between the constituents occur instantaneously with no phase changes
taking place in any constituent. We thus must satisfy the entropy inequality (30.22)
subject to the simultaneous satisfaction of (30.10), (30.11), (30.13), (30.15), and
(30.25). (The symmetry of the peculiar stress tensors is satisfied by postulating the
constitutive relation accordingly). Liu [14] has shown that instead of fulfilling the
entropy inequality for independent fields that are constrained by the balance laws
and constraint conditions one may extend the entropy inequality by subtracting from
it the products of each constraining equation with a Lagrange multiplier, viz.,

Π = ρη̇ + divφ − ρs

−(1/θ)
∑

λν
a

[
γ́aνa + γaν́a + γaνadiv va

]

−(1/θ)
∑

λv
a · [

ρav́a − div Ta − ρaba − m+
a

]

−(1/θ)
∑

λk
a [ρakaν̋a − div ha − ρa(la + fa)]

−λε
[
ρε̇+div q−T · D−∑

ha · grad ν́a+∑
ρa faν́a

−ρr ] − (π/θ)
∑[ν́a − ua · grad νa] � 0, (30.26)

where λν
a, λv

a, λk
a, λε, π represent the corresponding Lagrange multipliers, and

satisfying this extended inequality for unrestricted-independent fields. (For conve-
nience a factor 1/θ has been extracted above fromλν

a,λ
v
a λk

a andπ). TheseLagrange
multipliers may be constitutive quantities or independent variables. In the following
evaluation of the entropy principle for a given constitutive class, we can demonstrate
that the Lagrange multipliers λν

a, λv
a, λk

a, and λε can be given by some consti-
tutive relations, while on π no restriction is exerted, which therefore represents an
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independent variable. This variable, because it is the Lagrange multiplier of the
saturation condition (30.25), will be denoted saturation pressure.

Substituting the sum relations (30.16), (30.18) and (30.21) into (30.26) and intro-
ducing the mixture inner free energy

ψI = ∑
ξaψa = εI − θη (30.27)

and the mixture flux density

j = −θφ + q = j c − ∑(
Ta − ρa

2 (ua · ua)1
)
ua (30.28)

with its constitutive part

j c := ∑
ja + ∑

ρaψaua = j I + ∑
ρaψaua, (30.29)

where ja = −θφa + qa, yields the form

θΠ=−ρ(ψ̇I + ηθ̇) − ∑[
γaλ

ν
a + π + ρa fa

]
ν́a

−∑
ρa

(
λv
a + ua

) · v́a − φ · grad θ − div j c
+∑ (

λv
a + ua

) · div Ta + ∑(
Ta − γaνaλ

ν
a I

) · Da

−∑
λk
aρakaν̋a + ∑

λk
adiv ha + ∑

λk
aρa fa

−∑
λν
aνaγ́a + ∑

λv
a · m+

a + ∑
ha · grad ν́a

+∑
πua · grad νa � 0 (30.30)

of the entropy inequality with the assumption λε = 1/θ. This assumption is not
reasonable in cases when θ̇ should also be an independent constitutive variable. As
wewill not include such a dependence, the a priori assignment λε = 1/θ is justifiable
on the basis that MÜLLER and Liu have proved it in [15] and Svendsen andHutter
could also show it in the context of [16], but did not publish the result. For single fluids
or mixtures of fluids, this assumption can be directly obtained from the evaluation
of the entropy inequality by use of the property of the entropy that on an ideal wall
where the entropy production vanishes the normal component of the entropy flux is
continuous (see e.g., [15]). In deducing (30.30), we assumed also that the material
behavior is independent of the supplies, i.e., that all external source terms balance,
viz.,

θρs − ∑
λv
a · ρaba − ∑

λk
aρala − ρr = 0. (30.31)

The form (30.30) of the entropy inequality will be used to investigate the constitutive
postulates in the next section.
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30.3 Constitutive Modeling

We recall that the purpose of the entropy principle is to derive restrictions upon the
constitutive relations. The entropy and its flux as well as the Lagrange multipliers
must be considered as auxiliary quantities. In this section, we evaluate the entropy
inequality (30.30) for a given constitutive class, which is suitable for a fluid–granular
mixture.

30.3.1 Constitutive Equations

We write constitutive equations in which for each constituent a, the material specific
dependent variables

Ca := {
ψa, ηa, Ta, ha, qa, φa

}
(30.32)

are functionals only of variables of the same constituent a (principle of phase sepa-
ration). We suppose here that these independent variables are

Sa := (νa, grad νa, ν́a, γa, grad γa, θ, grad θ, Da). (30.33)

Quite naturally, the growths m+
a may depend on the independent variables of all

constituents, here chosen in the form Fb, b = 1, 2, . . . , N ,

Fb = (νb, grad νb, ν́b, γb, grad γb, θ, grad θ, Db, ub,Wb), (30.34)

where Da is the symmetric part, and Wa the skew-symmetric part of grad va, rep-
resenting corresponding deformation rate and vorticity tensors, respectively; Wa

represents the difference

Wa = Wa − W , (30.35)

where W = skw (grad v). To conform with the principle of material objectivity
(material frame indifference) the constitutive quantities cannot depend on all veloci-
ties of constituents va and the skew-symmetric parts of their gradients (except for the
symmetric parts), only on the relative velocities ua = va − v (constituent diffusion
velocities) and the corresponding gradients. In short,

Ca = Ĉa(Sa),

m+
a = m̂+

a (Fb, b = 1, . . . , N ),

}

(a = 1, . . . , N ). (30.36)

Strictly speaking, according to the principle of equipresence [23] in Truesdell’s
original list, all the dependent constitutive variables must be functions of all the



30.3 Constitutive Modeling 525

independent constitutive variables. However, for simplicity of calculation, we have
replaced the principle of equipresence by the principle of phase separation, which has
been adopted in many mixture theories (e.g., [1, 18]). Practically, in multiphase mix-
tures, the individual constituents are clearly separated physically and it is plausible to
think of the mixture as phase separated. On the other hand, we ought to mention that
there are also valid plausibility arguments to reject the principle of phase separation,
since the different constituents in the mixture may appear as different materials in
combination with the other constituents than without. A theory which imposes the
principle of equipresence is far more complicated, and inferences from the entropy
principle are far more difficult to draw. At last, only the results in concrete situations
can decide whether the simple theory will be meaningful.

These constitutive equations must satisfy the entropy inequality (30.30). Substi-
tuting the constitutive relations (30.32)–(30.34) into (30.30), and using the identities

ν̇a = ν́a − grad νa · ua, (ν́a)
· = ν̋a − grad ν́a · ua,

γ̇a = γ́a − grad γa · ua,

˙grad νa = grad ν́a−grad νagrad va−grad (grad νa) · ua,

(30.37)

yields the new inequality

θΠ = −ρ

[
∂ψI

∂θ
+ η

]

θ̇ − ρ
∂ψI

∂grad θ
· ˙grad θ − ∑

ρ
∂ψI

∂Da
· Ḋa

−∑
[

ρ
∂ψI

∂γa
+ λν

aνa

]

γ́a − ∑
[

ρ
∂ψI

∂ν́a
+ λk

aρaka

]

ν̋a

−∑
[

ρ
∂ψI

∂νa
+ γaλ

ν
a + ρa fa + π

]

ν́a

+∑
[

ρ
∂ψI

∂γa
ua − ∂ j c

∂γa

]

· grad γa

+∑
[

ρ
∂ψI

∂νa
ua + πua − ∂ j c

∂νa

]

· grad νa

−∑
[

ρ
∂ψI

∂grad νa
+ ρ

∂ψI

∂ν́a
ua − ∂ j c

∂ν́a
− ha

]

· grad ν́a

+∑
ρ

∂ψI

∂grad γa
· ˙grad γa − ∑ ∂ j c

∂grad γa
· grad grad γa

+∑
[

Ta − γaνaλ
ν
a I + ρ

∂ψI

∂grad νa
⊗ grad νa − ∂ j c

∂va

]

· Da

+∑
[

ρ
∂ψI

∂grad νa
⊗ grad νa − ∂ j c

∂va

]

· Wa

−
[

φ + ∂ j c
∂θ

]

· grad θ
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+∑
[

− ∂ j c
∂grad νa

+ ρ
∂ψI

∂grad νa
⊗ ua

]

· grad (grad νa)

− ∂ j c
∂grad θ

·grad (grad θ) − ∑ ∂ j c
∂Da

· grad Da

−∑
ρa

(
λv
a + ua

) · v́a + ∑ (
λv
a + ua

) · div Ta

+∑
λv
a · m+

a + ∑
λk
aρa fa + ∑

λk
adiv ha � 0. (30.38)

It possesses the form

a · α + b � 0, (30.39)

where the vector a and the scalar b are functions of the variables listed in (30.33) and
(30.34), and the vectorα (printed in red color) depends on time and space derivatives
of these quantities. Hence, inequality (30.39) is linear inα, and since these variables
can take any values, it would be able to violate (30.39) unless

a = 0 and b � 0. (30.40)

Explicitly, the entropy inequality must hold for all independent variations of α =
{θ̇, ˙grad θ, Ḋa, γ́a, v́a, ν̋a, grad ν́a,

˙grad γa, grad (grad γa), grad (grad νa), grad
(grad θ), and grad Da}. These variables appear linearly in the inequality (30.38)
and thus their coefficients must vanish, leading to the so-called Liu identities. It then
follows that the expressions for the Lagrange multipliers λv

a, λ
ν
a, λ

k
a are given by

λv
a = −ua, (30.41)

λk
a = − ρ

ρaka

∂ψI

∂ν́a

(30.27)= − 1

ka

∂ψa

∂ν́a
, (30.42)

λν
a = − ρ

νa

∂ψI

∂γa

(30.27)= −γa
∂ψa

∂γa
. (30.43)

To simplify our problem, we will now assume that the free energy ψa is independent
of ν́a, so the Lagrange multiplier λk

a must vanish,

λk
a = 0 ∀a. (30.44)

The entropy inequality (30.38) implies also the following restrictions for the consti-
tutive variables:

η = −∂ψI

∂θ
, (30.45)

∂ψI

∂grad θ
= 0,

∂ψI

∂Da
= 0,

∂ψI

∂grad γa
= 0, (30.46)



30.3 Constitutive Modeling 527

ha = −ρ
∂ψI

∂grad νa
− ρ

∂ψI

∂ν́a
ua + ∂ j c

∂ν́a
, (30.47)

∂ j c
∂grad θ

· grad (grad θ) = 0, (30.48)

∂ j c
∂grad γa

· grad (grad γa) = 0, (30.49)
(

ρ
∂ψI

∂grad νa
⊗ ua− ∂ j c

∂grad νa

)

·grad (grad νa)=0, (30.50)

∂ j c
∂Da

· grad Da = 0. (30.51)

Equations (30.41)–(30.51) correspond to a · α = 0 in (30.40).
The restrictions (30.46) on the form of the mixture specific inner free energy

cannot be functions of grad θ, Da and grad γa; thus, ψI and ψa take the forms

ψI = ψ̂I (ν1, . . . , νN , grad ν1, . . . , grad νN , γ1, . . . , γN , θ)

=⇒ ψa = ψ̂a(νa, grad νa, γa, θ). (30.52)

Using (30.29) and (30.52), one can rewrite the restrictions (30.48)–(30.50) on j c as
the restrictions on its inner parts j I in the forms

∂ j I
∂grad θ

· grad (grad θ) = 0, (30.53)

∂ j I
∂grad γa

· grad (grad γa) = 0, (30.54)

∂ j I
∂grad νa

· grad (grad νa) = 0. (30.55)

These three restrictions mean that ∂ j I /∂grad θ, ∂ j I /∂ grad γa, and ∂ j I /∂grad νa
must be skew-symmetric, which implies that j I are collinear to grad θ, grad γa and
grad νa, with the corresponding material coefficient tensors being skew-symmetric.
On the other hand, the isotropy of j I requires any such material tensors to be sym-
metric. To satisfy both requirements requires that these tensors must vanish, making
j I independent of grad θ, grad γa and grad νa, and takes its reduced form

j I = ĵ I (θ, ν1, . . . , νN , ν́1, . . . , ν́N , γ1, . . . , γN , θ, D1, . . . , DN )

or ja = ĵa(θ, νa, ν́a, γa, Da). (30.56)

If we restrict attention to isotropic behavior, the special form (30.56) necessarily
implies ja = 0, ∀a, (there is no isotropic vectorial function of only scalars and a
second rank tensor) and thus, the constituent entropy fluxes are equal to constituent
heat fluxes divided by absolute temperature (see Eq. after (30.29)),
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φa = qa/θ, (30.57)

which in the entropy principle of Coleman–Noll are assumed from the outset, and

j I = 0. (30.58)

In this case, j c reduces to

j c = ∑
ρaψaua. (30.59)

Let ψa be an isotropic function; then (30.52) implies

ψa = ψ̂a(νa, grad νa · grad νa, γa, θ). (30.60)

Substituting (30.60) and (30.59) into (30.47) asserts that the equilibrated stress ha

has the representation

ha = ρa
∂ψa

∂grad νa
= Aagrad νa, (30.61)

where

Aa = Âa(νa, grad νa, γa, θ) = 2ρa
∂ψa

∂(grad νa · grad νa)
. (30.62)

According to (30.59) and (30.61), the quantity

[

ρ
∂ψI

∂grad νa
⊗ grad νa − ∂ j c

∂va

]

is symmetric, so that its inner product with Wa must vanish,

[

ρ
∂ψI

∂grad νa
⊗ grad νa − ∂ j c

∂va

]

· Wa = 0, (30.63)

since Wa is skew-symmetric. It follows that the corresponding term in (30.38) van-
ishes as well.

Returning now to the entropy inequality (30.38) and employing these restrictions,
and the identities from (30.59)

∂ j c
∂va

= ρa(ψa − ψI )I,

∂ j c
∂νa

= γa(ψa − ψI )ua + ρa
∂ψa

∂νa
ua,
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∂ j c
∂γa

= νa(ψa − ψI )ua + ρa
∂ψa

∂γa
ua,

we obtain the reduced entropy inequality in the form

θΠ = −∑
[βa − pa + γaνa fa + π] ν́a

+∑ [
(γa(ψI − ψa) + π)grad νa

+νa(ψI − ψa)grad γa
] · ua − ∑

m+
a · va

+∑
[Ta + νa (pa + γa(ψI − ψa)) I

+Aagrad νa ⊗ grad νa
] · Da

−
[

φ + ∂ j c
∂θ

]

· grad θ � 0, (30.64)

where pa is the thermodynamic pressure

pa := γ2
a

∂ψa

∂γa
(30.65)

and βa is the configurational pressure

βa := ρa
∂ψa

∂νa
. (30.66)

Inequality (30.64) corresponds to b � 0 in (30.40).
At this point, we should also point out that the constitutive class (30.33), (30.34)

is suitable for mixtures with compressible constituents. For density-preserving con-
stituents, i.e., constituents whose true mass densities do not change, γa and grad γa
are no longer independent variables. In this case returning to the initial constitutive
assumption (30.33), (30.34), we delete the dependences on γa and grad γa from the
constitutive equations and repeat the above analysis. We find the same constitutive
restrictions for mixtures with density-preserving constituents as before for com-
pressible constituents, if here pa = −γaλ

ν
a is introduced, which now is an unknown

variable that can no longer be determined by the free energy ψa as expressed in
(30.65). We shall not repeat the details of the analysis. We further should point that
inequality (30.64) looks as if entropy would be produced by the saturation pressure π
by the terms in the first and second lines on the RHS of (30.64). However, this is not
so, because π only contributes to the equilibrium parts of the constitutive quantities
fa andm+

a , while the residual dissipation inequality depends only on nonequilibrium
parts of these quantities as we shall demonstrate shortly.
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30.3.2 Thermodynamic Equilibrium

As usual, further restrictions on the constitutive relations can be obtained from the
residual inequality (30.64) in the context of thermodynamic equilibrium, which is
characterized by the vanishing of the entropy production rate density Π . In the
context of the current constitutive class, Π vanishes when the independent dynamic
variables

Y = (ν́1, . . . , ν́N , grad θ, v1, . . . , vN , D1, . . . , DN ) (30.67)

all vanish, which implies that Π assumes its minimum, zero, in thermodynamic
equilibrium. Necessary conditions for this minimum are that

∂Π

∂Yi

∣
∣
∣
Y=0

= 0, Yi ∈ Y ,

∂2Π

∂Yi ∂Y j

∣
∣
∣
Y=0

is nonnegative definite, Yi , Y j ∈ Y .

(30.68)

As is well known, the first condition restricts the equilibrium forms of the depen-
dent constitutive fields, while the second constrains the signs of certain material
parameters; here we deal only with the first:

∂Π

∂ν́a

∣
∣
∣
Y=0

= 0,
∂Π

∂grad θ

∣
∣
∣
Y=0

= 0,

∂Π

∂va

∣
∣
∣
Y=0

= 0,
∂Π

∂Da

∣
∣
∣
Y=0

= 0.
(30.69)

These restrictions yield the following expressions for the equilibrated internal force
fa, the entropy flux φ, the heat flux q, the Cauchy stress Ta, and the momentum
exchange rate density m+

a in thermodynamic equilibrium (denoted by the super-
script E)

f Ea = pa − βa

γaνa
− π

γaνa
, (30.70)

φE = 0, (30.71)

qE = 0, (30.72)

T E
a = −νa (pa + γa(ψI − ψa)) I − Aagrad νa ⊗ grad νa, (30.73)

m+
a
E = ∑

b {[π + γb(ψI − ψb)] grad νb

+νb(ψI − ψb)grad γb} (δab − ξa)

= πgrad νa + ∑
b(ψI − ψb)grad (νbγb)(δab − ξa). (30.74)

It is seen from (30.70) that π does also have the meaning of a pressure. As the
Lagrange multiplier associated with the saturation constraint, it is called the
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saturation pressure. This saturation pressure is an independent variable. It is observed
that when only a single granular phase exists, the equilibrium constitutive equations
of Goodman and Cowin [10] as well asWang and Hutter in [25] or as contained
in Chap.29 for granular materials (with π = 0) are recovered. The existence of a
nonvanishing scalarAa gives rise to the possibility of supporting shear stress at zero
shear rate, which is an important characteristic of granular materials, blood as well
as high concentration suspensions. For low concentration suspensions Aa → 0 and
the medium becomes incapable of supporting any shear stress at zero shear rate. It is
obvious that only in this limiting situation the equilibrium properties of this granular
mixture is fluid like.

Finally, it should be pointed out that the constitutive relations (30.70)–(30.74)
are not in agreement with those obtained by Passman et al. [18]. Using the
Coleman–Noll approach of thermodynamics, their derived constitutive relations
for the thermodynamic equilibrium parts f Ea and qE are in coincidence with the
expressions (30.70) and (30.72). In their form of the entropy principle the constituent
entropy fluxes are from the outset assumed to have the form φa = qa/θ, which is
equally a disadvantage of the Coleman–Noll approach, as (30.71) is automati-
cally satisfied according to (30.18)2, (30.21)2 and (30.72). However, the constitutive
relations for T E

a and m+
a
E in [18], viz.,

T E
a = −νa pa I − Aagrad νa ⊗ grad νa, (30.75)

m+
a
E = πgrad νa, (30.76)

do not agree with (30.73) and (30.74). Obviously, the constitutive relations (30.73),
(30.74), based on the MÜLLER–Liu thermodynamic approach, contain more terms
than those obtained by a “standard” exploitation according to Coleman–Noll. The
differences are significant.

30.4 Saturated Solid–Fluid Mixture with Incompressible
Constituents

In this section, we specialize this mixture theory for a specific binary mixture. We
consider isothermal flows of a two-phase saturated mixture of an incompressible
granular solid and a fluid. Phase f represents the fluid constituent, while phase s
represents the granular solid constituent.

We assume that the constituent Cauchy stresses Ta, the intrinsic equilibrated
body forces fa as well as the momentum exchange rate densitiesm+

a may be decom-
posed according to

Ta = T E
a + T D

a , fa = f Ea + f Da , m+
a = m+

a
E + m+

a
D
, (30.77)

so that
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θΠ = −∑
γaνa f Da ν́a + ∑

T D
a · Da − ∑

m+D
a · va

+
[

φ + ∂ j c
∂θ

]

· grad θ � 0, (30.78)

where T E
a , f Ea , and m+

a
E represent the thermodynamic equilibrium parts, as dis-

played in (30.70), (30.73), and (30.74), while T D
a , f Da and m+

a
D are their dynamic

contributions, which must vanish in thermodynamic equilibrium. Imbalance (30.78)
is the true dissipation inequality, and it does not involve the constraint pressure. This
is proof that the constraint pressure does not produce entropy forwhatever the thermo-
dynamic pressure may be. For the dynamic parts in (30.77), a very useful assumption
of simplification is quasi-linearity, i.e., scalar-, vector-, and tensor-valued quantities
are assumed to depend explicitly and linearly on scalar-, vector-, and tensor-valued
independent dynamicvariables, respectively, via scalar coefficientswhich themselves
depend on these and on the scalar-valued independent variables. A special case of
this is linearity, which arises when the scalar-valued coefficients in the quasi-linear
form are assumed to depend at most on the scalar-valued independent variables. Such
a form is indeed the simplest, and when there are no observations, experiments or
other physical reasons to believe that the constitutive processes involved are more
complicated, it seems sensible to work with this linear form. Having no such infor-
mation to the contrary, and for simplicity, we assume in this work that the dynamic
parts of the constituent Cauchy stresses Ta, the intrinsic equilibrated body force fa
as well as the momentum exchange rate density m+

a can be adequately represented
by their linear forms.

T D
a = 2μaDa,

f Da = λaν́a, (30.79)

m+
a
D = −mD(va − vb), (a 
= b),

where μa, λa, mD are functions of νa, grad νa · grad νa. Substituting (30.79) into
the reduced entropy inequality (30.78) and exploiting (30.68)2 yields the thermody-
namic stability properties

μa � 0, λa � 0, mD � 0, ∀a. (30.80)

Substituting the expressions (30.70), (30.73), (30.74), and (30.79) into (30.77),
and the emerging expressions into Eqs. (30.10), (30.11), and (30.13) yields the equa-
tions of conservation of mass, linear momentum, and equilibrated forces for two
incompressible constituents

∂νs

∂t
+ div (νsvs) = 0, (30.81)

∂ν f

∂t
+ div (ν f v f ) = 0, (30.82)
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νs + ν f = 1, (30.83)

νsγs

(
∂vs

∂t
+vs · grad vs

)

=−grad [νs(ps+γs(ψI −ψs))]

−div
[Asgrad νs ⊗ grad νs

]

+div
[
νs(grad vs + (grad vs)

T )
] + νsγsbs

+ [
π + (1 − ξs)γs(ψI − ψs) + ξsγ f (ψI − ψ f )

]
grad νs

−mD(vs − v f ), (30.84)

ν f γ f

(
∂v f

∂t
+v f · grad v f

)

=−grad
[
ν f (p f +γ f (ψI −ψ f ))

]

−div
[A f grad ν f ⊗ grad ν f

]

+div
[
ν f (grad v f + (grad v f )

T )
] + ν f γ f b f

+ [
π + (1 − ξs)γs(ψI − ψs) + ξsγ f (ψI − ψ f )

]
grad ν f

−mD(v f − vs), (30.85)
νsγsks ν̋s =div(Asgrad νs)+(ps−βs−π)+νsγsλs ν́s, (30.86)

ν f γ f k f ν̋ f=div(A f grad ν f )+(p f −β f −π)+ν f γ f λ f ν́ f . (30.87)

From (30.86) and (30.87), we may derive

π = pα − βa + div (Aagrad νa) − νaγakaν̋a + νaγaλaν́a, (30.88)

a = {s, f },

and when taking their difference to eliminate the saturation pressure π,

βs − β f = ps − p f + div
[
(As + A f )grad νs

] + ν f γ f k f ν̋ f

−νsγsks ν̋s + ν f γ f λ f ν́ f − νsγsλs ν́s . (30.89)

Furthermore, we choose

μs = μ̄sν
2
s

(νm − νs)2
(30.90)

according toPassman et al. [19]with μ̄s a constant, inwhichνm is the volume fraction
corresponding to densest possible packing of the solid particles. For uniform spheres
νm ≈ 0.74, Savage [20] uses essentially the same function, except an eighth power
dependence on (νm − νs). We will assess the effects of changing this power for the
latter example of simple shearing flows. For the viscosity of the fluid, we let (see
Passman et al. [19])

μ f = ν2
f μ̄ f , (30.91)

with μ̄ f a constant. We also assume the drag coefficient mD in the form
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mD = (νs(1 − νs))
mD, m = 1, (generally m > 0), (30.92)

which assures that the drag force between the constituents vanishes automatically
for the limit cases νs → 0 and νs → 1.

To obtain the explicit expressions of Ta, m+
a , and fa, a representation for the

specific free energy ψa for each constituent a is needed. We choose the simplest
form according to Passman et al. [19]

νaγaψa = φa(νa) + αa(grad νa · grad νa) (30.93)

with the expressions

φs = as[νs − νc]2, as > 0
φ f = a f [ν f − (1 − νc)]2, a f > 0,

(30.94)

where νc is called the critical volume fraction for solid particles, above which shear-
ing of the material will cause dilatancy, below which it will cause contraction. For
uniform spheres, this corresponds to a simple cubic lattice, so νc ≈ 0.52. Similarly
to (30.90), we take

αs = ᾱs

(νm − νs)2
(30.95)

for the solid constituent with ᾱs a constant. We assume that α f is a constant.
Substitution of the expression for the free energy (30.93) and the expressions

for the viscosities of fluid and solid constituents (30.90), (30.91) into the field Eqs.
(30.81)–(30.87) gives eleven scalar equations for eleven unknowns νs , ν f , ps , p f , π,
the three components of vs and the three components of v f . In the following sections,
we will numerically solve the differential equation system subject to appropriate
boundary conditions for a typical shearing flow problem.

30.5 Horizontal Shearing Flow Problem

30.5.1 Basic Equations and Boundary Conditions for
Horizontal Shearing Flows

First, we discuss a simple shearing problem. The boundaries are two parallel, infinite
plates, a fixed distance l apart. Deformation is caused by moving one plate parallel
to the other. Choose fixed Cartesian coordinates with the origin on the fixed plate,
x parallel to the direction of motion of the top plate, and y orthogonal to the plates,
and pointing from the fixed plate toward the moving plate against the gravity field,
as shown in Fig. 30.1.
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Fig. 30.1 Horizontal
shearing flow and coordinate
system

0

x
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f

v
s

v

v

We consider only steady motions and assume

vs = [vs(y), 0, 0], v f = [v f (y), 0, 0],
νs = νs(y), ν f = ν f (y), bs = b f = [0,−g, 0], (30.96)

ps = ps(y), p f = p f (y), π = π(y).

In view of the field equations (30.81)–(30.85), (30.88), (30.89), the assumptions
(30.96) and the expressions (30.90)–(30.95), the governing differential equations for
this special problem reduce to

νs + ν f = 1, (30.97)

d

dy

[

νs(ps + γs(ψI − ψs)) + As

(
dνs
dy

)2
]

− [
π + (1 − ξs)γs(ψI − ψs) + ξsγ f (ψI − ψ f )

] dνs
dy

+gνsγs = 0, (30.98)

d

dy

[

ν f (p f + γ f (ψI − ψ f )) + A f

(
dν f

dy

)2
]

− [
π + (1 − ξs)γs(ψI − ψs) + ξsγ f (ψI − ψ f )

] dν f

dy
+gν f γ f = 0, (30.99)

d

dy

(

μs
dvs
dy

)

− Dνs(1 − νs)(vs − v f ) = 0, (30.100)

d

dy

(

μ f
dv f

dy

)

− Dνs(1 − νs)(v f − vs) = 0, (30.101)

π = p f − β f + d

dy

(

A f
dν f

dy

)

, (30.102)

βs − β f = ps − p f + d

dy

(

(As + A f )
dνs
dy

)

. (30.103)
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with

νsβs =as
[
ν2
s −ν2

c

]+ᾱs
3νs−νm

(νm−νs)3
grad νs ·grad νs, (30.104)

ν f β f = a f
[
ν2
f − (1 − νc)

2
] − α f grad ν f · grad ν f , (30.105)

As = 2αs, A f = 2α f . (30.106)

Equation (30.97) is the saturation condition, relations (30.98), (30.99) express the
equilibrated force balances of the solid and liquid constituents, while (30.100),
(30.101) express the flow transverse constituent momentum balances. Finally, rela-
tions (30.102), (30.103) provide the constitutive parameterizations of the saturation
pressure and the difference of the configurational pressures.

Equations (30.97)–(30.103) are a systemof seven equations in the sevenunknowns
νs, ν f , π, ps, p f , vs, v f , which is second order in νs, ν f , vs and ν f , and first order
in ps and p f . Thus, we expect that specification of ten boundary conditionswill allow
us to determine νs , ν f , π, ps , p f , vs , v f . We specify

νs(0), νs(l), ν f (0)(= 1 − νs(0)), ν f (l)(= 1 − νs(l)), (30.107)

consistent with (30.103) and choose no-slip boundary conditions

vs(0) = 0, vs(l) = 1,
v f (0) = 0, v f (l) = 1.

(30.108)

Here, since Eqs. (30.100) and (30.101) are linear, vs and v f may be nondimension-
alized by dividing them by the speed of the boundary y = l; so, there is no loss of
generality in choosing unity for the velocity boundary conditions at y = l.

For simplicity, we suppose that in the upper surface the normal stress is given by

Tsyy(l) = T f yy(l) = −σ0 (σ0 > 0). (30.109)

We know from previous studies [17, 25] that in problems of this type, specifying the
normal stress on the boundary is equivalent to specifying the flow rate.

This problem lays bare a known weakness of this theory, namely the necessity
of prescribing the values of the volume fraction of the solid (and the fluid) at the
plate boundaries. These are physically not controllable and thus make the solution of
this problem rather academic. Other difficulties are the no-slip conditions (30.108)
imposed upon the solid and the fluid. There could be a slip that might be tolerable.
These difficulties call for a different parameterization of the stresses, not in terms of
the volume fraction gradient, but rather on a rate-independent stretching measure.
As long as parameter studies on the influence of these boundary conditions are
performed, one may proceed ahead and infer consequences they imply.
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30.5.2 Numerical Method

The differential equations (30.97)–(30.103) are nonlinear. Here, we solve the system
of nonlinear algebra–differential equations with the boundary conditions (30.107)–
(30.109) by means of the method of successive approximation. We describe this
method as follows:

We may represent Eqs. (30.97)–(30.103) and the expressions (30.104)–(30.106)
in the form (the numbers on the left indicate which equation is involved)

(30.97) ν f = 1 − νs, (30.110)

(30.104) βs = as
ν2
s − ν2

c

νs
+ ᾱs

3νs − νm

νs(νm − νs)3

(
∂νs

∂y

)2

, (30.111)

(30.105) β f = a f

ν2
f − (1 − νc)

2

ν f
− α f

ν f

(
∂ν f

∂y

)2

, (30.112)

(30.98) ps = 1

νs
σs − γs(ψI − ψs) − 2

αs

νs

(
∂νs

∂y

)2

, (30.113)

(30.99) p f = 1

ν f
σ f − γ f (ψI − ψ f ) − 2

α f

ν f

(
∂ν f

∂y

)2

, (30.114)

(30.102) π = p f − β f + d

dy

(

2α f
dν f

dy

)

, (30.115)

(30.98) σs = σ0 +
∫ l

y

{

− [π + (1 − ξs)γs(ψI − ψs)

+ξsγ f (ψI − ψ f )]dνs
dy

+ gνsγs

}

dy, (30.116)

(30.99) σ f = σ0 +
∫ l

y

{

− [π + (1 − ξs)γs(ψI − ψs)

+ξsγ f (ψI − ψ f )]dν f

dy
+ gν f γ f

}

dy, (30.117)

(30.103)
d

dy

[

2(αs + α f )
dνs
dy

]

= βs − β f − (ps − p f ), (30.118)

(30.100)
d

dy

(

μs
dvs
dy

)

−Dνs(1−νs)vs =−Dνs(1−νs)v f , (30.119)

(30.101)
d

dy

(

μ f
dv f

dy

)

−Dνs(1−νs)v f =−Dνs(1−νs)vs, (30.120)

where σs = −Tsyy , σ f = −T f yy are the normal stresses in the vertical direction. We
can now define an iterative procedure which determines a sequence of functions
(ν0

s (y), v
0
s (y), v

0
f (y),...), (ν

1
s (y), v

1
s (y), v

1
f (y),...), (ν

2
s (y), v

2
s (y), v

2
f (y),...), ... in the

followingmanner: (ν0
s (y), v

0
s (y), v

0
f (y),...) are chosen arbitrarily, then (ν1

s (y), v
1
s (y),
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v1
f (y), ...), (ν

2
s (y), v

2
s (y), v

2
f (y),...), ... are calculated successively as the solutions of

the boundary value problem

d

dy

[

2(αk
s + α f )

dν̃k+1
s

dy

]

= βk
s − βk

f − (pks − pkf ), (30.121)

d

dy

(

μk
s

dṽk+1
s

dy

)

− Dνk
s (1−νk

s )ṽ
k+1
s =−Dνk

s (1−νk
s )v

k
f , (30.122)

d

dy

(

μk
f

dṽk+1
f

dy

)

−Dνk
s (1−νk

s )ṽ
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subject to the boundary conditions (30.107), (30.108), with the expressions

νk
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s , (30.124)
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, (30.125)
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πk = pkf − βk
f + d

dy

(

2α f

dνk
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f γ f

}
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We can discretize Eqs. (30.121)–(30.123) for n uniformly distributed discrete points
in y ∈ [0, l] by finite-difference approximations with central finite-difference quo-
tients. In so doing, for each iterative step three tri-diagonal systems emerge, for ν̃k+1

s
from Eq. (30.121), for ṽk+1

s from (30.122), and for ṽk+1
f from (30.123), respectively.

We can solve this boundary value problem, e.g., by Gaussian elimination to obtain
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ν̃k+1
s , ṽk+1

s , and ṽk+1
f . Then νk+1

s , vk+1
s , and vk+1

f are defined by the over-relaxation
iteration by the formulas

νk+1
s = νk

s + τ (ν̃k+1
s − νk
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vk+1
s = vk

s + τ (ṽk+1
s − vk

s ),

vk+1
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f + τ (ṽk+1
f − vk

f ),

⎫
⎪⎬

⎪⎭
0 < τ � 1, (30.132)

where τ is a positive real parameter. We should choose τ so small that convergent
iteration is reached. We would like to point out that this iterative choice is not the
only possible one.

We start with the initial trial functions

ν0
s = νs(0) + y

l
(νs(l) − νs(0)), v0

s = y

l
, v0

f = y

l
, (30.133)

which satisfy the boundary conditions. The iteration should be carried out until the
relative differences of the computed νs, vs , and v f between two iterative steps are
smaller than a given error, respectively, chosen to be 10−6.

30.5.3 Numerical Results

We choose to investigate the case with estimated parameters corresponding to a
mixture ofwaterwith natural angular beach sand (average particle diameter 0.04 cm).
For this mixture, the values for γa, μa, and νm are given according to Passman et al.
[19] by

γs = 2200 kgm−3, μ̄s = 723 kgm−1s−1, νm = 0.74,
γ f = 1000 kgm−3, μ̄ f = 0.001 kgm−1s−1.

(30.134)

The values of parameters αa, aa are somewhat problematic. We take as values

ᾱs = 4.0 × 10−5 kgm s−2, α f = 3.0 × 10−5 kgm s−2,

as = 20 kgm−1s−2 (Pa), a f = 10 kgm−1s−2 (Pa),
(30.135)

for an initial computational investigation and later assess the effects of changing
them. For the drag coefficient D, we choose

D ∈ [0, 105] kg m−3s−1 (30.136)

to perform our computations. It is even more problematic as to what boundary condi-
tions to assign to νs(0), νs(l). We know of no evidence, experimental or otherwise,
which would guide the choice of either of these two numbers for types of physical
boundaries, which we assume, and indeed, although our numerical scheme works
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successfully for any νs(0) ∈ (0, νm], νs(l) ∈ (0, νm], our choices are essentially arbi-
trary. In our computations, we first take

νs(0) = 0.7, νs(l) = 0.3 (30.137)

and later assess the effect of changing them.
We have done an extensive parametric study for this problem, which is not pre-

sented in detail here. Instead, a few representative volume fraction, velocity, and
normal stress profiles will be presented with a discussion of effects of the parame-
ters.

The results for the parameter choices (30.135), (30.136) and the boundary condi-
tions (30.108), (30.109) with σ0 = 0 as well as (30.137) are shown in Fig. 30.2a–d.
The solid volume fraction (Fig. 30.2a) decreases initially only very slowly from its
boundary value as the distance from the bottom increases. As the distance increases,
this decrease becomesmore rapid, specially in the top region of the cross section. The
normal stresses for the solid and the fluid (Fig. 30.2b) increase approximately lin-
early from their given zero boundary value at the top as the depth increases. The solid
normal stress is considerably larger than that of the fluid except for the very small
zone at the top. The fluid velocity profiles for various values of the drag coefficient D
are shown in Fig. 30.2c. All parameters are the same as in Fig. 30.2a, b. For the case
of D = 105 kgm−3s−1 the solid velocity is nearly the same as that of the fluid (for
curve A in the graph), and decreasing the value of D decreases the solid velocity only
very slightly so that we do not show it in the figure. The value of the fluid velocity
increases considerably when the value of D is decreased, a fact that is expected as
D measures the Darcy drag. For D = 0 the fluid constituent behaves very similar
to a viscous fluid flow. On the other hand, the solid flow occurs mainly only near
the top. Comparison of the solid velocity profile (curve A in Fig. 30.2c) with the
solid volume fraction (Fig. 30.2a) shows that near the top the shearing of the material
causes dilatancy.Qualitatively, these results are similar to those obtainedbyPassman
et al. [19], although the used constitutive equations in the two models are signifi-
cantly distinct. That is to say that the additional terms in the constitutive relations
obtained in the evaluation of the entropy principle following the concept of MÜLLER

and Liu play not a very significant role in this numerical example of simple shearing,
but we still cannot say that these terms are not important for all flow problems. We
need further study in what cases these additional terms may be important.

In the above computations, we have employed an expression of the solid viscosity
in the form

μs = μ̄sν
2
s

(νm − νs)n
(30.138)

with n = 2 according to Passman et al. [19] (see Eq. (30.90)), which is different
from Savage’s choice [20] with a power n = 8. We have also assessed the effect
of the value of the power in the expression of the solid viscosity, with n = 2, 4, 8
instead of n = 2. The results are shown in Fig. 30.2d for the solid and fluid velocities
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Fig. 30.2 a Solid volume fraction profile. b Normal solid and fluid stress profiles. S: Solid;
F: Fluid. c Nondimensional fluid velocity profiles for various values of the drag coefficient
D. D = 105 (A), 104 (B), 103 (C), 102 (D), 0 (E) kgm−3s−1. The solid velocity for these cases
is almost the same as the fluid velocity (A). d Nondimensional (solid or fluid) velocity pro-
files for D = 105 kgm−3s−1 with various values of power n = 2 (A), 4 (B), 8 (C) (instead
of n = 2 for (c)) in the function (30.90) μs = (μ̄sν

2
s )/(νm − νs)

n . The other parameters are
ᾱs = 4.0 × 10−5 kgm s−2, α f = 3.0 × 10−5 kgm s−2, as = 20 kgm−1s−2, a f = 10 kgm−1s−2,
νs(0) = 0.7, νs(l) = 0.3, σ0 = 0, l = 0.01m, from Wang and Hutter [26]

which are almost identical for D = 105 kgm−3s−1. Increasing the value of the power
n tends to bound the solid flow toward a thinner layer at the top; this is not the same
as obtained by Passman et al. who claimed that the exact value of this power, as
long as it is positive and even, appears to have little effect on the character of the
flow. Our results disqualify this statement.

Computations have also been performed for various other values of the normal
stress. Figure30.3 shows the effect of changing the normal top-wall stress on the
horizontal mixture shearing flow, where nothing has been changed from the case
shown in Fig. 30.2a–c, except the value of the normal top-wall stress and the drag
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Fig. 30.3 a Solid volume fraction profiles. b Nondimensional velocity profiles. c Normal solid
stress profiles. d Normal fluid stress profiles. Here nothing has been changed from the case shown
in Fig. 30.2a–c for D = 105 kgm−3s−1, except various values of the normal stress at the top σ0
(instead of σ0 = 0): A: σ0 = 0 Pa; B: σ0 = 50 Pa; C: σ0 = 100 Pa, fromWang and Hutter [26]

coefficient is fixed at D = 105 kgm−3s−1. Increasing the normal stress will tend to
cause the grains to interlock and increase ν throughout the flow field (Fig. 30.3a). For
large values of D (here D = 105 kgm−3s−1), the solid and fluid velocity profiles are
approximately the same (Fig. 30.3b). As the normal stress increases, the grainmotion
has an increasing tendency toward a rigidmotion in the larger region near the bottom,
while the shearing layer near the top becomes thinner. The normal solid and fluid
stresses (Fig. 30.3c–d) do no longer increase approximately linearly with increasing
depth as for the case with σ0 = 0 (curve A). Specifically, for the normal fluid stress,
if the normal top stress is sufficiently large, the normal fluid stress decreases initially
with increasing distance from the top and then increases. There is even a case for
which the normal fluid stress at the bottom is smaller than that at the top (curve C in
Fig. 30.3d).
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Fig. 30.4 a Solid volume fraction profiles. b Nondimensional velocity profiles. c Normal solid
stress profiles. d Normal fluid stress profiles. All parameters are the same as in Fig. 30.2a–c and
D = 105 kgm−3s−1, except the distance of the plates l. A: l = 0.5 cm;B: l = 1.0 cm;C: l = 3.0 cm,
from Wang and Hutter [26]

Figure30.4 demonstrates the effect of varying the distance of the two plates on
the volume fraction, velocity, and normal stress. It can be seen from Fig. 30.4a, b that
a wide channel shows a relative large interlock layer near the bottom with an almost
constant volume fraction,while, as the channelwidth decreases, there is an increasing
tendency to extend the shearing and dilatant layer near the top. However, the absolute
value of the shearing layer thickness is less influenced, which is approximately
between 5 and 15 grain diameters. The normal solid and fluid stresses, shown in
Fig. 30.4c, d, as expected increase when the channel width increases.

We also investigated the effect of changingαs andα f by changing each by factors
of 0.1, 10, 100, using the case in Fig. 30.2a–c with D = 105 kgm−3s−1 as a basis.
These results are displayed in Fig. 30.5. As the values of αs and α f are increased, the
curvatures of the volume fraction and velocity profiles are decreased, i.e., increasing
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Fig. 30.5 a Solid volume fraction profiles. b Nondimensional velocity profiles. c Normal solid
stress profiles. d Normal fluid stress profiles. Here nothing has been changed from the case
shown in Fig. 30.2a–c for D = 105 kgm−3s−1, except the values of ᾱs , α f . A: (ᾱs ,α f )=
(4.0, 3.0) × 10−6 kgm s−2; B: (ᾱs ,α f )=(4.0, 3.0) × 10−5 kgm s−2; C: (ᾱs ,α f )=(4.0, 3.0) ×
10−4 kgm s−2; D: (ᾱs ,α f )=(4.0, 3.0) × 10−3 kgm s−2, from Wang and Hutter [26]

αs and α f enlarges the shearing zone near the top and reduces the interlock zone
near the bottom. The shear rate at the top is, of course, decreased accordingly. It can
also be seen from Fig. 30.5a, b that for sufficiently large values of αs and α f , (ᾱs >

4.0 × 10−4 kgm s−2 and α f > 3.0 × 10−4 kgm s−2) the volume fraction and the
velocity profiles are influenced only very slightly by varying ᾱs andα f . Interesting is
that the normal solid stress decreases by increasing ᾱs and α f (Fig. 30.5c), whereas
the normal fluid stress changes in the reverse way (Fig. 30.5d). This behavior is
also fairly different from varying the volume fraction and the velocity; the normal
stresses vary still, even more, rapidly with ᾱs and α f for ᾱs > 4.0 × 10−4 kgm s−2

and α f > 3.0 × 10−4 kgm s−2, which we can see from Fig. 30.5c, d. A possible
reason is that, for small αs and α f , the change of the normal stresses by varying αs
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Fig. 30.6 a Solid volume fraction profiles. b Nondimensional velocity profiles. c Normal solid
stress profiles. d Normal fluid stress profiles. Here nothing has been changed from the case shown
in Fig. 30.2a–c for D = 105 kgm−3s−1, except the values of as , a f . A: (as , a f )=(2, 1) Pa; B:
(as , a f )=(20, 10) Pa; C: (as , a f )=(200, 100) Pa; D: (as , a f )=(2000, 1000) Pa, from Wang

and Hutter [26]

and α f is compensated by a corresponding change in volume fraction. When αs and
α f are large enough (ᾱs > 4.0 × 10−4 kgm s−2 and α f > 3.0 × 10−4 kgm s−2), the
volume fraction remains nearly unchanged when αs and α f are varied; in this case,
the influence of varyingαs andα f manifests itself mainly in the change of the normal
stresses. Besides, there exists even a negative normal solid stress (tensile) zone near
the top for large ᾱs and α f (curve D in Fig. 30.5c), which is perhaps unphysical
because the values of αs and α f exceed the physically reasonable range.

We also investigated the effect of changing as and a f by changing the value of
each variable by factors of 0.1, 10, 100, using the case in Fig. 30.2a–c with D =
105 kgm−3s−1 as a basis. It can be seen from Fig. 30.6a, b that decreasing as and a f

has the effect of causing an even larger region near the bottomwhere the solid volume
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Fig. 30.7 a Solid volume fraction profiles. b Normal solid (S) and fluid (F) stress profiles.
c Nondimensional velocity profiles. S: Solid velocity. A-E: Fluid velocity for various values of
the drag coefficient D. D = 105 (A), 104 (B), 103 (C), 102 (D), 0 (E) kgm−3s−1. All param-
eters are the same as in Fig. 30.2a–c, except the boundary values of the volume fraction νs(0) =
0.72, νs(l) = 0.02, from Wang and Hutter [26]

fraction profile remains close to constant (the boundary value), and correspondingly
causing a somewhat larger region where the motion is almost rigid, with a smaller
region of even higher shear rate. These features of varying as and a f are very similar
to those of varying αs and α f . The difference from those of varying αs and α f is that
for sufficiently small values of as and a f (as < 20 Pa and a f < 10 Pa) the volume
fraction and the velocity profiles vary only slightly by varying as and a f , which
can be seen in Fig. 30.6c, d. Increasing as and a f decreases the normal solid stress,
but increases the normal fluid stress, which is similar to varying αs and α f . It is of
interest to note that the normal stresses at the bottom are essentially unaffected by
varying as , a f .
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Fig. 30.8 a Solid volume fraction profiles. b Normal solid (S) and fluid (F) stress pro-
files. c Nondimensional velocity profiles for various values of the drag coefficient D. D =
105 (A), 104 (B), 103 (C), 102 (D),0 (E) kgm−3s−1. The solid velocity for these cases is almost
the same as the fluid velocity (A).All parameters are the same as in Fig. 30.2a–c, except the boundary
values of the volume fraction νs(0) = 0.4, νs(l) = 0.4, fromWang and sc Hutter [26]

The effect of changing boundary conditions νs(0) and νs(l) is illustrated in Figs.
30.7 and 30.8. Here, all parameters are exactly the same as in Fig. 30.2a–c, except
that the solid volume fraction at the bottom has been set equal to νs(0) = 0.72, a
value very close to νm , and at the top νs(l) = 0.02, i.e., almost only fluid constituent
exists (Fig. 30.7), as well as νs(0) = νs(l) = 0.4 (Fig. 30.8), respectively.

Figure30.7a indicates that, for the case that the solid volume fraction at the bottom
attains its possibly maximum and at the top nearly only fluid constituent is present,
the solid volume fraction decreases only slightly from its boundary value with the
distance from the bottom over approximately half of the cross section, then there
is a sudden decrease and at the top one-tenths of the cross section the decrease
becomes slower again. This resembles a two-layer effect: a thick solid layer near
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the bottom and a very thin fluid layer near the top. For this case, the normal fluid
stress increases rapidly at the top two-tenths of the cross section with decreasing
distance from the top, then varies only very slightly, while against it, the normal
solid stress decreases only slightly at the top two-tenths of the cross section from
its zero boundary value, then increases almost linearly with the increasing depth, as
demonstrated in Fig. 30.7b. The corresponding solid and fluid velocity profiles are
displayed in Fig. 30.7c for various values of the drag coefficient D. Because of a
fairly low solid volume fraction near the top, the solid and fluid velocities are visibly
different, even though D = 105 kgm−3s−1. The graph S indicates the solid velocity,
which is principally independent of the value of D. A solid motion of high shear rate
exists only in a very small region at the top. In the remaining large lower region, the
solid motion vanishes. It clearly demonstrates the existence of an internal boundary
separating a shearing region from a rigid region. The fluid motion for a large value
of D is very similar to that of the solid, with appreciable values only in a thin layer
near the top. Decreasing D extends the region of the fluid motion till the bottom. For
very small D, the fluid constituent behaves nearly as a viscous fluid.

For the boundary conditions that the solid volume fraction at the top and at the
bottom possesses the same value νs(0) = νs(l) = 0.4, it can be seen from Fig. 30.8a
that, in addition to the increase in the solid volume fraction in the neighborhood of the
top plate, which is similar to Fig. 30.2a, there is an increase also in the neighborhood
of the bottom plate. The volume fraction diagram is, of course, unsymmetric in
an obvious fashion because of gravity. In both cases, the region of the low solid
volume fraction is a region of high shear rate (Fig. 30.8c as well as Fig. 30.2c),
which may lead back to the effect of dilatancy in granular materials. For the high
drag coefficient D = 105 kgm−3s−1, the velocities of the two constituents again are
virtually indistinguishable. As before, the solid velocity is nearly independent of D
(graph A), while the fluid velocity profiles become less astute with decreasing D,
close to that of a viscous fluid. The normal stresses increase monotonously with
increasing depth with the exception of the normal solid stress near the bottom.

30.6 Concluding Remarks

In this chapter, a thermodynamic theory for a multiphase mixture, specially for a
solid–fluid mixture was presented in which, besides balances for mass, momentum,
and energy, a balance law for equilibrated forces, as proposed by Goodman and
Cowin for dry granular and then used by Passman et al. for mixtures, was intro-
duced, for each constituent of the mixture, to accommodate for the dynamical effects
played by the volume fraction. The form of the entropy principle of the mixture
imposed on a postulated constitutive relation was that of MÜLLER–Liu, i.e., for the
prescribed constitutive class the entropy inequality was identically satisfied under the
constraints that the balance laws ofmass, momentum, energy, and equilibrated forces
of all constituents (with or without supply terms), as well as a saturation condition
be satisfied. It was shown that in comparison to a “standard” exploitation according
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to Coleman–Noll from Passman et al. [18], in which momentum, energy, and
equilibrated force sources of arbitrary value are permitted, the constitutive relations
based on the more general MÜLLER–Liu thermodynamic consideration are different.
This theory was applied to analyses of steady fully developed horizontal shear-
ing flows of a saturated solid–fluid mixture with incompressible constituents. The
partly numerical results are in qualitative agreementwith those obtained byPassman
et al. [19], although the used constitutive equations in the two models are not quite
the same.Most results showed that the flowwas divided into two regimes of behavior
by the existence of an internal boundary above which the granular material deformed
rapidly, but below which the granular material remained rigidly locked in place. This
feature is in qualitative agreement with experimental results by Hanes and Inman

[11]. Their experiments clearly demonstrate the existence of an internal boundary
separating a shearing region from a rigid region. The thickness of the shearing region
was measured to be between 5 and 15 grain diameters. In our computational results,
the thickness of the shearing layer also lies approximately in this range.
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Chapter 31
Modeling of Turbulence in Rapid
Granular Flows

Abstract This chapter is devoted to a phenomenological theory of granularmaterials
subjected to slow frictional as well as rapid flows with intense collisional interac-
tions. The microstructure of the material is taken into account by considering the
solid volume fraction as a basic field. This variable enters the formulation via the
balance law of configurational momentum, including corresponding contributions to
the energy balance, as originally proposed byGoodman and Cowin (Arch Rational
Mech Anal 44:249–266, 1972, [25]), but modified here by adequately introducing
an internal length. The subgrid motion is interpreted as volume fraction variation in
relatively moderate laminar variation and rapid fluctuations, which manifest them-
selves in correspondingly filtered equations in terms of correlation products as in
turbulence theories. We applyan ergodic (Reynolds) filter to these equations as in
classical turbulent RANS-modeling and deduce averaged balances of mass, linear
and configurational momenta, energy, turbulent and configurational kinetic energy.
Moreover, we postulate balance laws for the dissipation rates of the turbulent kinetic
energy. All these comprise 10 evolution equations for a larger number of field vari-
ables. Closure relations are formulated for the laminar constitutive quantities and
the correlation terms, all postulated to obey the material objectivity rules. To apply
the entropy principle, three coldness measures are introduced for capturing mate-
rial, configurational and turbulent dissipative quantities, they simplify the analysis
of MÜLLER’s entropy principle. The thermodynamic analysis delivers equilibrium
properties of the constitutive quantities and linear expressions for the non-equilibrium
closure relations.

Keywords Granular materials · Extended Goodman–Cowin type
microstructure · Turbulent motions · Reynolds filtering · Laminar and turbulent
constitutive modeling · Entropy principle for laminar and turbulent motions ·
Material, turbulent and granular temperature
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List of Symbols

Roman Symbols

A Symbol for mass balance
A Reynolds average of A
Ax = b General form of the field equations
a · x + β � 0 General form of the entropy inequality
a a = f K , (K = M, T,G, ε, d) ∈ R

15, see (31.130)
aε, ad Coefficients in the nonequilibrium part of the Π ε and Πd

parameterization, see (31.140)
ai j (i, j = 1, . . . , 5) Abbreviations of coefficients arising in the Hessian matrix,

see (31.142)
B Symbol for momentum balance
B Reynolds average of B
Bivi − 1

2 Avivi = 0 Balance of modified turbulent kinetic energy
b, bi Body force per unit mass
bε, bd Coefficient in the parameterization of the nonequilibrium part

of Π ε and Πd

C Symbol for configurational momentum balance, symbol for a
dependent constitutive variable

C Reynolds average of C
C�n − 1

2 A�2n2 = 0 Balance of modified turbulent configurational kinetic energy
C turb General member of the dependent constitutive expressions
Ci j Turbulent configurational stress tensor,

Ci j = 2γν ∂ψturb

∂g
∂ν
∂xi

∂ν
∂x j

c Coefficient in the parameterization of k, see (31.103)
D Symbol for internal energy balance
D Stretching or strain rate tensor
d Dissipation rate due to “configurational deformations”
E Index characterizing thermodynamic equilibrium
e Internal energy
e Modified mean internal energy (ρe = ρ e + ρ′e′)
F General constitutive function
f Intrinsic equilibrated body force per unit mass, general phys-

ical variable
G Superscript characterizing association with configurational

behavior
g g ≡ ∂ν

∂xi
∂ν
∂xi

g g = (grad θM , θT , θG, ε, d)

H H = 1
ρ

{
h′
j
∂�n′
∂x j

− ρ f ′�n′ + ρ′ f ′�m
}
, see (31.36)

H Hessian matrix of the entropy production, see (31.142)
Hj Turbulent configurational stress vector,

Hj = −�ρn′v′
j + ρ�mm j , see (31.34)
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H(i j) Symmetric part of Hi j , H(i j) := 1
2 (Hi j + Hji )

H[i j] Skew-symmetric part of Hi j , H[i j] := 1
2 (Hi j − Hji )

h Equilibrated stress vector
k Equilibrated inertia
k Turbulent kinetic energy, k = 1

ρ
ρv′

iv
′
i

k Modified turbulent kinetic energy, Favre turbulent kinetic
energy, k = (k − 1

2mimi ) = − 1
2ρ Rii

K d
j Flux of configurational turbulent dissipation rate

K ε
j Flux of classical turbulent dissipation rate

k j Extra turbulent entropy flux vector, see (31.102)
k turbj Reduced form of the extra turbulent entropy flux vector, see

(31.73)
l External equilibrated body force
� Characteristic length of a grain, internal length in a granular

material
Li j Flux arising in (31.41), Li j = �n′h′

j − 1
2ρ�2n′ 2v′

j + ρsm j

M Superscript characterizing association to “material” behavior
m j Correlation value of the density-velocity product,

m j = ρ′v′
j

m Mass weighted correlation of ρ′ and n′, m = ρ′n′/ρ
n ≡ ν̇ Time rate of change of ν, “solid volume fraction velocity”
n n = n + m = ρn/ρ

p Turbulent thermodynamic pressure, p ≡ γ2 ∂ψturb

∂γ
Q, Qi j Orthogonal rank-2 tensor, Qi j Qkj = Q ji Q jk = δik
Q j Turbulent heat flux (= Favre turbulent heat flux),

Q j = ρe′v′
j − ρ′e′m j

q Heat flux vector
q Average material heat flux vector
R

n Real number space of dimension n
Ri j Modified Reynolds stress tensor, see (31.30)
r Energy supply per unit mass, radiation
s Supply rate density of a physical variable per unit mass
s Turbulent configurational kinetic energy, s = 1

2ρρ�2n′ 2
T Cauchy stress tensor
T ( y, z) Closure function embracing laminar and turbulent processes
Ui = vi i th component of the mean value of the material velocity
u′
i Reynolds fluctuation of ui

u′′
i Favre fluctuating part of ui

v j j component of the material velocity
vi vi (i = 1, . . . , 6) = grad {γ,ϑM ,ϑT ,ϑGε, d)}, see (31.102)
x j , j = 1, 2, 3 Spatial coordinates
z Element of the turbulent state space, see (31.62)
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Greek Symbols

αi (i = 1, . . . , 5) Coefficients of contributions to the heat flux vector due to
grad (ϑT ,ϑT , ε, d), see (31.135)

βi (i = 1, . . . , 5) Coefficients of contributions to the vector K j due to
grad (ϑT ,ϑG, ε, d), see (31.136)

β Turbulent configurational pressure, β = γν ∂ψturb

∂γ
γ True density
γ′ Fluctuation of the true density
γi (i = 1, . . . , 5) Coefficients for nonequilibriumcontributions to L j , see (31.57)
Δn Principal minors of order n of a matrix of order > n

ε ε = 1
ρ
Ti j

∂v′
i

∂x j

ζ Viscosity of the intrinsic configurational force, see (31.134)
ζi (i = 1, . . . , 5) Coefficients of nonequilibriumcontributions to Kd

j , see (31.58)
η Entropy density
η Mean entropy density
θ Temperature
ϑ Coldness (ϑ = 1/θ)
ϑM ,ϑT ,ϑG Material (M), turbulent (T ), configurational (G) coldness

variables.
Λa Lagrange parameters, Λa(a) = (γ, ν,Ui , e, k, s, ε, d), λ
λT (= 0) Turbulent bulk viscosity
λM Material bulk viscosity, see (31.132)
μT Turbulent shear viscosity
μM Material shear viscosity, see (31.132)
ν Volume fraction
ν0 Reference volume fraction
ν ′ Fluctuation of the volume fraction
ξT (= 0) Turbulent volume fraction viscosity, see (31.133)
ξM Material volume fraction viscosity, see (31.132)
ξi (i = 1, . . . , 5) Coefficients for nonequilibriumcontribution to K ε

j , see (31.58)
π Production rate of a physical variable per unit mass, entropy

production (rate) per unit mass
Πd Production (rate density) of the configurational turbulent dis-

sipation
Π ε Production (rate density) of the classical turbulent dissipation
πE Mean entropy production in equilibrium
πint E = 0 Internal turbulent dissipation
ρ Density of mass
ρ Mean value of ρ
σ Entropy supply density
φ,φi Flux of a general physical variable, entropy flux
φT

j = ρη′v′
j Turbulent flux of entropy due to fluctuations of η and v j

φ j Mean value of φ j
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φturb
j Turbulent entropy flux for the mean motion,

φturb
j = φ j + φT

j

ψturb Helmholtz free energy of granular turbulent processes,
ψturb = e + (θT /θM)k + (θG/θM)s − η/θM

Miscellaneous Symbols
d(·)
dt Total time derivative (following a material particle) of (·)
∂(·)
∂t Partial time derivative of (·)

(·) Mean value of (·) in a turbulent motion
(·)′ Fluctuation of (·)
◦

(·) Favre time derivative of (·)
LES Large eddy simulations
RANS Reynolds averaged NS equations

31.1 Introduction

“The microstructural grain–grain interaction of a dry granular matter results from
two contributions: The long-term enduring frictional contact, i.e., sliding, and the
short-term elastic or inelastic collisions. Whereas a creeping flow (in a quasi-static
state) and a rapid flow (in a collisional state) are defined when the dominant grain–
grain interactions are relatively long and short, respectively, a flow in a dense state is
characterized by the two types of interactions with equal significance [6, 7, 46, 47].
Grain–grain interactions induce temporal and spatial pulsations of the macroscopic
behavior of a granular assemblage that is akin to the turbulent responses of conven-
tional Newtonian fluids. However, the turbulent fluctuations in dry dense materials
are distinct from those in viscous fluids in three perspectives:

• They merge from grain–grain interactions by collisions rather than from flow
instabilities.

• They arise also at slow speed in contrast to such responses in Newtonian fluids,
which are inherently velocity dependent, characterized by the Reynolds number.

• While turbulent fluctuations in viscous fluids produce kinetic energy with
anisotropic eddies and destroy it essentially with isotropic eddies at the
Kolmogorov scales, granular eddies are barely recognized from the perspec-
tive of an energy cascade and the spectrum of the frequencies of the different
eddies.

These facts imply that a dense granular flow is tantamount to a complex rheological
fluid continuum with significant kinetic energy dissipation, after [16].

In classical fluid dynamics of Navier–Stokes type, it is conjectured that the
Navier–Stokes (NS) equations are correctly describing all motions, be these lam-
inar or turbulent or in an intermediate range between laminar and turbulent. This
has been corroborated over and over again by comparing experimental findings
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with results of direct numerical simulations (DNS). The Reynolds averaged NS-
equations (RANS) are equations obtained from the NS equations by applying an
ergodic filter to these equations and closing the deduced equations with phenomeno-
logical statements for the correlation products of fluctuating quantities. The degree
of complexity of these closure schemes is in turbulence modeling known as zero-,
first-, second-, and even higher order closure, and what emerges in the higher order
schemes is formally a theory for averaged field quantities of a rheologically complex
fluid. In large eddy simulations (LES) essentially the same procedure is taken, the
difference being that the ergodicity of the filtering process is dispensed with [40].

An important detail in the derivation of turbulent model equations (either for
RANS or LES) is what is called the realizability of the model equations (see [12, 50,
58–60]). By this is meant that the solutions of the field equations describe in some
way physically realistic situations. In the turbulence literature of the past 30 years
(see [1–5, 11, 42, 51–53]), this corresponds to the requirement that the averaged
equations together with their parametrization for the closure quantities satisfy the
second law of thermodynamics, i.e., in no process deduced from the governing field
equations the irreversibility requirements are violated [40].

A source of particularly vivid and controversial discussions in the past has been the
question, whether turbulent closure conditions that are analogous to the invention of
material constitutive statements, ought to satisfy the principle of observer invariance,
briefly stated as rule of objectivity. Presently, the common assumption is to accept
this concept of invariance of the turbulent closure conditions on all levels of closure.
However, it cannot be stated that the question is settled. Our present attitude is to
accept the turbulent objectivity rule in this chapter as an attempt of granular laminar-
turbulent motion. Incidentally, the opinion of non-objectivity of turbulent closure
conditions may have emerged from the basic work of the pioneers in turbulence
modeling, e.g., Prandtl, to name just him. These early authors of, say, turbulent
shear flows, parametrized the shear stress τ with an eddy viscosity ε(x, y1, y2)which
depends also on y2 �= y1, see Chap.16 in Vol. 2 of this treatise [29]. A somewhat
deeper insight into this is also given by Egolf and Hutter [13].

Granular systems, when treated as continua, are capable under slow motions of
relatively smooth and ordered deformations, but are intensively fluctuating under
rapid shearing because of the collisions that occur in these processes. A theoretical
model that embraces both dynamical regimes has first been presented in [40].Models
for the slow creeping “laminar” flow have been developed (see [30, 61–63]) and
approaches to model the collisional interaction regime have also been developed
([9, 10, 33, 34, 41, 45, 49, 50, 54, 55]), but are modeled by patching equations
from the two regimes together (see [30] summarizing related literature), which is
obviously unsatisfactory. The techniques applied in turbulence theory to arrive at
RANS or LES models is a rational procedure by which the two regimes of distinct
behavior can be bridged. It is, therefore, tempting to extend the thermodynamically
consistent schemes applied in turbulence theory to the NS equations also to other
fluid–solid systems. These systems are governed by other than the NS equations,
supposed to be valid for smooth motions. Filtering these equations by an ergodic
(Reynolds) filter will then yield corresponding averaged equations and correlation
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products of fluctuating quantitieswhich serve as basis for the description of processes
in which rubbing friction and collisional transport are equally significant. Closure
conditions will be formulated and the emerging theory will have to satisfy the second
law of thermodynamics, since the processes described by the averaged fields must
be physically realizable.

It will be demonstrated how the splitting into a smooth “laminar” and an averaged
“turbulent” set of equations can be achieved in a systematic and thermodynamically
consistent way for any physical system in which the “laminar” variant is valid at
all lengths and timescales—this represents the micro-behavior—while the averaged
equations model the macro-behavior of the system and the filtering operations are
the rules of homogenization. We shall demonstrate this with equations that describe
the dynamical response of granular materials in their fluid-like regime.

In Ref. [25], Goodman and Cowin proposed a theory of granular materials by
considering the solid volume fraction ν as a basic field variable in order to account for
the microstructure of the material. They postulated a balance equation, which they
called the balance of equilibrated force, for the quantity kν̇, where the equilibrated
inertia k has the physical dimension of L2 and ν̇ denotes the total time derivative
of ν,

ρ
d

dt
(kν̇) = ∂h j

∂x j
+ ρ f + ρ l, (31.1)

in which

ḟ ≡ ∂ f

∂t
+ ∂ f

∂x j
v j ≡ d f

dt
.

The vector h j is referred to as the equilibrated stress vector, while the production
f and the supply l are called the intrinsic equilibrated body force and external
equilibrated body force, respectively.

The first law of thermodynamics is the assertion that the total energy of a body
changes at a rate balanced by the heat flow into that body and the power expended
on it. Consequently, considering that the microstructure produces energy quantified
as 1

2ρkν̇
2, these authors derived the balance of internal energy in the form

ρė = T · D + h · grad ν̇ − ρ f ν̇ − div q + ρ r. (31.2)

In our developments, we follow closely Goodman and Cowin [25], by slightly mo-
difying the balance equation (31.1). We motivate this by the nonsymmetry of the
power terms in the balance equation of internal energy (31.2). More precisely, let us
focus attention on Eq. (31.1). By analyzing the physical dimension of the left-hand
side, we deduce that the equilibrated stress vector h j and the intrinsic equilibrated
body force f are not at all a stress and a body force, respectively, which we expect
them to be due to their names. That is why the power terms h · grad ν̇, ρ f ν̇, although
they clearly are the analoga of T · D, have not the same structure as T · D. Instead of
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(31.1), in Sect. 31.2 we propose a transport equation for the so-called configurational
momentum, defined as ρ�ν̇, where � is a characteristic length of the material, and
derive the balance law of internal energy, in which the terms mentioned before are
replaced by h · grad �ν̇, ρ f �ν̇.

In order to describe the fluid-like behavior of the granular material, we adopt
the same constitutive assumptions as those of Goodman and Cowin [25] (see also
Wang and Hutter [63]) with the additional flexibility that the true density may
spatially vary. The thermodynamically consistent emerging equations are accepted
to be adequate for the description of the true motion of the granular fluid (and
correspond to classical fluid mechanics to the NS equations).

In Sect. 31.3, the governing equations of the fully developed turbulent flows of
the granular material are derived by applying an ergodic (Reynolds) filter to these
equations. These equations comprise of balances of mass, linear and configurational
momenta, energy, and turbulent kinetic energy as well as turbulent configurational
kinetic energy. We simplify these averaged equations by ignoring fluctuations of the
true density and of the solid volume fraction, however the emerging equations still
involve density variations. For the dissipation rates of the turbulent kinetic energy
and of the turbulent configurational kinetic energy, transport equations are postu-
lated. Since threemeasures of energy enter the formulation, namely themean internal
energy, the turbulent kinetic energy, and the turbulent configurational kinetic energy,
three measures of temperature or coldness are introduced as basic field variables.
Finally, for the averaged constitutive quantities of the laminar flow and for the corre-
lation terms due to the fluctuating motion closure relations are given using the rules
of material and turbulent objectivity, including equipresence. Because the variables
to be deduced from the field equations must describe physically realizable processes,
the postulated closure relationsmust bemade to conformwith a dissipation principle.

In Sect. 31.4, therefore, we formulate for both laminar and turbulent motions an
entropy principle which is used in Sect. 31.5 to restrict the generality of the closure
functions postulated in the turbulent case. This task is carried out in the spirit of
the MÜLLER–Liu theory. The restrictions are derived in form of the Liu equations
and a residual inequality. Exploitation of the entropy principle suggests the introduc-
tion of the Helmholtz free energy and achieves determination1 (i) of all Lagrange
multipliers in terms of it, (ii) of all three measures of energy. Furthermore, when
the Helmholtz free energy is independent of the time rate of changes of the solid
volume fraction, we prove a relation for the mean entropy flux analogous to the clas-
sical one. Section31.6 deals with the restrictions on the constitutive functions in the
laminar case. In Sect. 31.7, we define the thermodynamic equilibrium as a process
that produces no entropy and exploit its consequences with regard to the equilibrium
properties of the closure functions. We also perform its analysis in case of linear
relations for the nonequilibrium parts of the closure functions.

1These have to be introduced when applying the entropy principle multipliers that uses the field
equations as constraints.
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31.2 Laminar Motions

We introduce the mechanical and thermal field variables that are used to describe the
laminar motions of a granular material: ρ – mass density, ν – solid volume fraction,
vi – velocity, ϑ – coldness, Ti j – stress tensor, e – internal energy, q j – heat flux, b j

– body force, r – heat supply. We suppose ν �= 0 and define the true (or distributed)
density γ by

ρ ≡ γ ν.

The objective of thermodynamics of laminar motions of granular materials is then
the determination of the six basic fields

γ, ν, vi , ϑ. (31.3)

To this end, the necessary equations are the balance equations complemented by
closure relations. The first three of them are

• Balance of mass: ρ̇ + ρ
∂v j

∂x j
= 0, (31.4)

• Balance of linear momentum: ρv̇i = ∂Ti j
∂x j

+ ρ bi , (31.5)

• Balance of angular momentum: Ti j = Tji . (31.6)

So, as we have done it already for the granular theories in Chaps 29 and 30, the
granular theory in this chapter will be based on a Boltzmann continuum. However,
in our theory the internal energy balance does not have the traditional form, because
the time derivative of the solid volume fraction produces kinetic energy. In order
to deduce the appropriate form of the internal energy balance, we first propose a
transport equation for the time derivative of the solid volume fraction as follows.

In this chapter the microstructure, characteristic for granular materials, will be
the amended Goodman–Cowin model with internal length scale as developed by
Fang et al. [14, 15] and explained in Sect. 29.8 of Chap. 29. To separate this kind
of model from the postulated physical quantities and equations of the Goodman–
Cowin model typified by “equilibrated forces” etc., these forces and equations will
be characterized as configurational forces etc., In this spirit, let2 � be a characteristic
length of the granular material, such as a typical particle diameter or the width of
an internal boundary layer. Then, the quantity �ν̇ has the physical dimension of a
velocity, so that we may call ρ �ν̇ the configurational momentum. For it we assume
the following transport equation:

∂

∂t
(ρ�ν̇) + ∂

∂x j
(ρ�ν̇v j ) = ρ

d

dt
(�ν̇) = ∂h j

∂x j
+ ρ f, (31.7)

2A change of the notation k, as employed in Chaps. 29 and 30, has been necessary, in order to
eliminate the confusion that would result in referring to k as the turbulent kinetic energy.
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in which the balance of mass has been used to obtain the expression in the middle
of this chain of expressions. By analogy with the balance of linear momentum, the
flux h j may be called the configurational stress vector and the production f—the
configurational body force. Note that our Eq. (31.7) does not contain any supply term,
as (31.1) does. The supplies are, at least principally, sources that drive the system
externally and can be controlled by measuring them. Therefore, a supply l in (31.7)
has to be a measurable external quantity, but there is no indication that such a source
describing the microscale effects on the macroscale would exist. In short, (31.7) is
exclusively an equation describing the material properties, and source terms cannot
play any role to that end.

Now we write the first law of thermodynamics by taking into account the kinetic
energy produced by the microstructure of the granular material:

∂

∂t

{
ρ(e + 1

2vivi + 1
2 �2ν̇2)

}

+ ∂

∂x j

{
ρ(e + 1

2vivi + 1
2 �2ν̇2)v j − Ti j vi − �ν̇h j + q j

} = ρ bivi + ρ r. (31.8)

If (31.8) is rewritten by using (31.4), and from this new expression of the first law
we subtract the balance of linear momentum multiplied by vi and the balance of
configurational momentum multiplied by �ν̇, we get the balance of internal energy

ρė = Ti j Di j + h j
∂

∂x j
(�ν̇) − ρ f �ν̇ − ∂q j

∂x j
+ ρr. (31.9)

Here Di j denotes the stretching tensor. The second and the third power terms on the
right-hand side of (31.9) are quite analogous to the usual power term Ti j Di j that
appears in the classical balance of internal energy. For the characteristic length �,
we could write an evolution equation, but we consider the simplest case, i.e., � is a
constant. For alternatives, see Chap. 29, Sect. 29.8.

The system (31.4)–(31.7), (31.9) is not closed in the sense that it contains too
many unknowns. Besides, the temperature θ or coldness ϑ = 1/θ does not appear
explicitly as a variable in this system. That is why we must close it by setting in
relation the field variables of the set

{Ti j , h j , f, e, q j } (31.10)

to the basic fields (31.3). Therefore, if C stands for any member of the set (31.10),
then we suppose that C is given by the closure (constitutive) relation

C = F
(

ν0, ν, ν̇,
∂ν

∂xi
, γ,

∂γ

∂xi
, Di j , ϑ,

∂ϑ

∂xi

)
, (31.11)

where ν0 is a reference solid volume fraction, that we take into account according
to [25]. In comparison to a previous work [63], (grad γ) is added as another inde-
pendent variable in order to envisage more realistic situations. The functions F in
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(31.11) are supposed to have a common domain of definition D, that we call the
laminar state space. The function F is called a material or constitutive or closure
function. We assume that the field variables of the set (31.10) are objective and that
the corresponding material functions are frame indifferent. Occasionally for brevity
we shall denote by y any member of the laminar state space, i.e.,

y ≡
(

ν0, ν, ν̇,
∂ν

∂xi
, γ,

∂γ

∂xi
, Di j , ϑ,

∂ϑ

∂xi

)
. (31.12)

If we introduce the closure relations (31.10), (31.11) into (31.4)–(31.7), (31.9) we
obtain the field equations for the determination of the basic field variables (31.3).
Every solution of these field equations is called a laminar thermodynamic process.

31.3 Turbulent Motions

In a turbulent motion, all the field variables are decomposed into a mean part and a
fluctuating part. Doing this one uses a filter, i.e., an averaging operator which defines
the mean value u of a quantity u. We use a filter having the properties

u + v = u + v, λu = λ u (λ ∈ R),

u = u,

it commutes with the derivatives, e.g.
∂u

∂x
= ∂u

∂x
,

u v = u v.

(31.13)

Such a filter is called an ergodic or a Reynolds filter. The fluctuating part of u is
defined as u′ and for the mean velocity we use the notation Ui , i.e., vi ≡ Ui . Thus,

u = u + u′ and vi = Ui + v′
i .

Only the mean values of the field variables are relevant for the mean motion. In order
to obtain the equations that relate themean fields, we filter the balance equations. The
equations that are obtained by this procedure are called themean balance equations.
We shall show that they can be put into the form of balance laws. Next, we derive
those basic laws that model the turbulent flows of the granular materials which were
introduced in Sect. 31.2.

The averaging procedure forces us to select a particular expression for the system
of balance equations. The choice is unambiguous, since the balance equations are
originally postulated in the form

∂ρ f

∂t
+ ∂

∂x j

{
ρ f v j + Φ j

} = ρπ + ρs, (31.14)
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where Φ j is the flux, π is the production, and s is the supply of f . Therefore, the
starting point of averaging will be the form (31.14) of the balance laws on which the
theory of laminar flows is developed. We now write down these balance laws.

• Balance of mass:

∂ρ

∂t
+ ∂ρv j

∂x j
= 0. (31.15)

• Balance of linear momentum:

∂ρvi

∂t
+ ∂

∂x j

{
ρviv j − Ti j

} − ρbi = 0. (31.16)

• Balance of configurational momentum:

∂ρ�n

∂t
+ ∂

∂x j

{
ρ�nv j − h j

} − ρ f = 0, n ≡ ν̇. (31.17)

• Balance of total energy (the first law of thermodynamics):

∂

∂t

{
ρ
(
e + 1

2vivi + 1
2�

2n2
)}

+ ∂

∂x j

{
ρ
(
e + 1

2vivi + 1
2�

2n2
)
v j − Ti jvi − �nh j + q j

}

−ρbivi − ρr = 0. (31.18)

Next,we sketch theway thatwe follow in averaging (31.15)–(31.18). These equations
can be symbolically written as

A = 0, Bi = 0, C = 0 , (31.19)

Bivi − 1
2 Avivi + C�n − 1

2 A�2n2 + D = 0,

where the significance of the quantities A, Bi , C is obvious from (31.15)–(31.17),
and D is given by

D ≡ ∂ρe

∂t
+ ∂ρev j

∂x j
− Ti j Di j − h j

∂�n

∂x j
+ ρ f �n + ∂q j

∂x j
− ρr. (31.20)

With the aid of (31.19), this equation can easily be verified. Note that, by rewriting
(31.18) in the form (31.19)4, we did not use (31.15)–(31.17), thus keeping the system
(31.15)–(31.18) in its original form. By averaging (31.19) we get

A = 0, Bi = 0, C = 0, (31.21)

Bivi − 1
2 Avivi + C�n − 1

2 A�2n2 + D = 0.
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When exploiting the system (31.21) we must take into account the relations

Bivi = 0, Avivi = 0, C�n = 0, A�2n2 = 0,

which are valid because of (31.19)1−3; they are also independent of (31.21)1−3.
Indeed, e.g., Bi = 0 implies Bi vi = 0 for any finite vi . Thus, by definition

Bivi = (Bi vi ) + (Bi vi )
′ −→ (Bi vi ) = Bivi + (Bi vi )′,

implying Bi vi = Bivi , owing to (31.13)3. Consequently, the averaging procedure
applied to system (31.19) gives the set of independent equations

A = 0, Bi = 0, C = 0, D = 0,

Bivi = 0 , Avivi = 0, C�n = 0, A�2n2 = 0,

which can be further exploited in the following manner: The terms Bivi and Avivi
are given by

Bivi = ∂

∂t
(ρvivi ) + ∂

∂x j
(ρviviv j ) − ∂

∂x j
(Ti jvi ) + Ti j

∂vi

∂x j
− ρbivi v̇i , (31.22)

Avivi = ∂

∂t
(ρvivi ) + ∂

∂x j
(ρviviv j ) − 2ρvi v̇i .

The result is that both equations Bivi = 0 and Avivi = 0 contain the term ρvi v̇i . We
can eliminate it by considering the equation

Bivi − 1
2 Avivi = 0. (31.23)

Analogously, the terms C�n and A�2n2 are given by the expressions

C�n = ∂

∂t
(ρ�2n2) + ∂

∂x j

(
(ρ�2n2v j ) − (�nh j )

)
+ h j

∂�n

∂x j
− ρ f �n − ρ�2ṅ, (31.24)

A�2n2 = ∂

∂t

(
ρ�2n2

)
+ ∂

∂x j
(ρ�2n2v j ) − 2ρ�2nṅ.

From the system C�n = 0, A�2n2 = 0, we eliminate the term ρ�2nṅ and deduce the
relation

C�n − 1
2 A�2n2 = 0. (31.25)

In the derivation of these results, it was assumed that � is constant. Thus, we obtain in
this case the following system of governing equations of themeanmotion of granular
materials3 :

3The specification “modified” will soon become clear.
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A = 0 (balance of mean mass),
Bi = 0 (balance of mean linear momentum),
C = 0 (balance of mean configurational momentum),
D = 0 (balance of modified mean internal energy),
Bivi − 1

2 Avivi = 0 (balance of modified turbulent kinetic energy),
C�n − 1

2 A�2n2 = 0 (balance of modified turbulent configurational
kinetic energy).

Now, we proceed to derive explicit expressions for these equations, by writing
them in the form of balance laws. To this end, in the averaging procedure we use the
properties of the chosen filter and the easily verifiable rules

uv = u v + u′v′, ρuv = ρ u v + u ρ′v′ + v ρ′u′ + ρu′v′,
ρuvw = ρ u v w + u w ρ′v′ + v w ρ′u′ + u v ρ′w′ + u ρv′w′

+v ρu′w′ + w ρu′v′ + ρu′v′w′.

It is convenient to define the notation

Uj ≡ v j , ρm j = ρ′v′
j (31.26)

for the mean velocity field v j and mass weighted diffusion velocity mi . These two
quantities suggest the so-called Favre-averaged velocity

Vj = Uj + m j . (31.27)

Averaging the mass balance equation (see (31.15)) leads to the following chain
of inferences:

∂ρ

∂t
+ (ρv j ), j = 0,

∂ρ

∂t
+ (ρ v j ), j + (ρ′v′

j ), j = ∂ρ

∂t
+ ρ v j, j + ρ, jv j + (ρ′v′

j ), j︸ ︷︷ ︸
(ρm j ), j

= 0, (31.28)

∂ρ

∂t
+ ρ, j (v j + m j )

︸ ︷︷ ︸
◦
ρ

+ ρ(v j + m j ), j︸ ︷︷ ︸
ρVj, j

= 0,

◦
ρ +ρVj, j = 0,

where the superposed ring denotes the Favre time derivative, i.e.,

◦
f ≡ ∂ f

∂t
+ ∂ f

∂x j
Vj . (31.29)
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Equation (31.28) expresses the balance of the mean mass. A simple computation
also shows that

∂(ρ f )

∂t
+ (ρ f Vj ), j = f

∂ρ

∂t
+ ρ

∂ f

∂t
+ (ρ f ), j Vj + (ρ f )Vj, j

= f

{[
∂ρ

∂t
+ ρ, j Vj

︸ ︷︷ ︸
◦
ρ

]
+ ρ Vj, j

︸ ︷︷ ︸
◦
ρ+ρ Vj, j=0

}
+ ρ

(
∂ f

∂t
+ f, j Vj

)

︸ ︷︷ ︸
ρ

◦
f

,

so that

∂(ρ f )

∂t
+ ∂(ρ f Vj )

∂x j
= ρ

◦
f ,

which will be used in the derivation of the mean balance laws, without explicitly
mentioning it.

Next, by averaging the balance of linear momentum (see (31.16)) a somewhat
lengthy calculation yields

ρ
◦
V i= ∂

∂x j
(T i j + Ri j ) + ρ bi + ρ′b′

i , (31.30)

where the modified Reynolds stress tensor Ri j is defined4 as

Ri j ≡ −ρ v′
iv

′
j + ρmim j . (31.31)

Details are exemplified in Appendix31.B at the end of the chapter. Since ρ Vi = ρ vi ,
Eq. (31.30) can be interpreted as the balance of mean linear momentum. Note that,
in view of the formula5

ρ u′′v′′ = ρ u′v′ − 1

ρ
ρ′u′ ρ′v′, (31.32)

where u′′, v′′ denote the Favre fluctuating parts of u and v, respectively, and the flux
Ri j equals theReynolds stress tensor introduced in the Favre averaging procedure.
Therefore, Eq. (31.30) is nothing else than themean balance of linear momentum as a
result of Favre filtering. In the form (31.30) it is expressed in terms of only one type
of mean value, namely that introduced in (31.13). Apart from this, the Reynolds

filter is preferred to the Favre filter, at least because it commutes with derivatives
and the Favre filter does not.

4The classical Reynolds stress tensor is given by Ri j ≡ −ρ v′
iv

′
j .

5The proof of it rests on the identity ρ(ũ − u) = ρ′u′, where ũ is the Favre (For a brief biography
of Alexandre Jean Auguste Favre, see Fig. 31.1.) mean value of u, defined as ρ ũ ≡ ρu.
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Fig. 31.1 Alexandre Jean Auguste Favre (February 23, 1911–May 25, 2005)

Alexandre Jean Auguste Favre (Feberuary 23, 1911 Toulon–May 25,
2005 Marseille) has been an engineering physicist with specialization in tur-
bulence. He received his basic education at Toulon and Saint-Nazaire and
acquiredhis academicdegree in engineeringphysics at the “École d’ Ingénieurs
deMarseille” from 1928–1931with graduation in 1932. Following this period,
he specialized at the “Institut de Mécanique des fluids” in Marseille, where he
prepared his doctoral dissertation on air flow around airplane wings under the
supervision of André Marchand.
Alexandre Favre received in 1945 the position Maitre de Conférences
( Lecturer) and in 1951 Titular Professor of Statistical Turbulence and Mete-
orology at the Université de la Méditerranée and simultaneously professor
of Fluid Mechanics at “Ecole Central de Marseille”. Here, he devoted dur-
ing more than two decades his interests to the recruitment and education of
students and collaborators. After several consultancies with Theodore von

Kármán, he created in 1961 the “Institute of Statistical Mechanics and Tur-
bulence (IMST)”, where he functioned for nearly 20 years as Director. The
institute’s principal researches were/are supersonic flows and exchange mech-
anisms between the ocean and the atmosphere, which influenced developments
in supersonic aviation and meteorology.
Favrewas elected into the “Académie deMarseille” in 1968, as corresponding
member of the “Académie des Sciences” in 1971 and full member in 1977.

He was “Officier de la Légion d’ Honneur et de la Ordre du Mérite” and the
“Commandeur des Palmes”.
Professionally, Favre primarily worked in fluid experimentation [18], par-
ticularly in two-dimensional turbulence [20, 21] and meteorology [22]. He
gained his lasting scientific recognition through the statistical averaging of the
compressibleNavier Stokes equations, where in 1965 the Favre averaging
was introduced in lieu of Reynolds averaging [19, 23].
The text is based on www.wikipedia.org and [26]

www.wikipedia.org
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We go further and average the balance of configurational momentum (see (31.17))
and obtain

ρ �
◦
n= ∂

∂x j
(h j + Hj ) + ρ f + ρ′ f ′, (31.33)

where

n ≡ n + m, ρm ≡ ρ′n′, Hj ≡ −� ρ n′v′
j + ρ �mm j . (31.34)

Detailed calculations are shown in Appendix 31.C at the end of the chapter.
Since ρ n = ρ n, we interpret (31.33) as the balance of mean configurational

momentum. The correlation Hj can be called turbulent configurational stress vector.

By averaging the balance of internal energy, D = 0 (see (31.20)), we obtain

ρ
◦
e = T i j

∂Ui

∂x j
+ h j

∂� n

∂x j
− ∂

∂x j
(q j + Q j )

(31.35)

+ρ ε + ρH − � n(ρ f + ρ′ f ′) + ρ r + ρ′r ′,

which is derived in Appendix31.D at the end of the chapter. The new correlation
variables are defined as

ρe ≡ ρ e + ρ′e′, Q j ≡ ρ e′v′
j − ρ′e′ m j , (31.36)

ρ ε ≡ T ′
i j

∂v′
i

∂x j
, ρH ≡ h′

j

∂�n′

∂x j
− ρ f ′�n′ + ρ′ f ′�m.

Equation (31.35) is the balance of modified mean internal energy6 e. The correlation
Q j can be identified as turbulent heat flux. Using again (31.32) we recognize Q j as
being the Favre turbulent heat flux. The terms ρε, ρH will be interpreted later.

Next, we exploit equation (31.23), in which we insert (31.22). By averaging we
deduce that7

ρ (
◦
k −mi

◦
mi +Vi

◦
V i ) = Ri j

∂Ui

∂x j
+ ∂K j

∂x j
(31.37)

+Ui

{
∂

∂x j
(T i j + Ri j ) + ρ bi + ρ′b′

i

}
− ρε + ρbimi + ρ b′

iv
′
i ,

6By definition (31.36)1, e is the Favre mean value of the internal energy density e.
7The above computations with explanatory details in Appendices B, C, D at the end of the chapter
could be continued, but these computations will not be demonstrated; only the final result will be
quoted, because the structure of the derivation is analogous to what has been demonstrated before,
“only” more complex.
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where the turbulent kinetic energy k and the flux K j are introduced according to

ρ k ≡ 1
2 ρv′

iv
′
i , K j ≡ T ′

i jv
′
i − 1

2 ρv′
iv

′
iv

′
j + ρ k m j . (31.38)

If we use the balance of mean linear momentum (31.30) in order to eliminate the

term ρ
◦
V i in (31.37), we obtain the balance of modified turbulent kinetic energy k,

viz.,

ρ
◦
k = Ri j

∂Vi

∂x j
+ T i j

∂mi

∂x j
+ ∂

∂x j

{
K j − (T i j + Ri j )mi

}

−ρ ε − ρ′b′
i mi + ρb′

iv
′
i , (31.39)

where

ρ k ≡ ρ
(
k − 1

2 mimi
) = − 1

2 Rii . (31.40)

Hence, k is the Favre turbulent kinetic energy. The production ρ ε (here an annihila-
tion) can be interpreted as the dissipation rate of k. If mi is identically zero, equation
(31.39) turns into the balance of the classical turbulent kinetic energy k.

Finally, we exploit Eq. (31.25). Inserting (31.24) into (31.25) and averaging, we
obtain

ρ (
◦
s −�2m

◦
m +�2n

◦
n)

= Hj
∂� n

∂x j
+ ∂L j

∂x j
+ � n

∂

∂x j
(h j + Hj ) − ρ H + � n (ρ f + ρ′ f ′), (31.41)

where the turbulent configurational kinetic energy s and the flux L j are defined as

ρ s ≡ 1
2 ρ �2n′2, L j ≡ � n′h′

j − 1
2ρ �2 n′2v′

j + ρ s m j . (31.42)

Substitution of ρ�
◦
n from the balance law (31.33) into (31.41) gives the balance of

modified turbulent configurational kinetic energy s, viz.,

ρ
◦
s= Hj

∂�n

∂x j
+ h j

∂�m

∂x j
+ ∂

∂x j

{
L j − (h j + Hj ) �m

} − ρH, (31.43)

where

s ≡ s − 1
2 �2m2. (31.44)

When m = 0, Eq. (31.43) emerges as the balance law of the classical turbulent
configurational kinetic energy s. The production ρH (here also an annihilation) can
be interpreted as the dissipation rate of s. The rates of dissipation ρ ε, ρH also enter
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the balance of modified mean internal energy (31.35) with opposite sign. According
to their interpretation, they should be positive and then enter as production terms in
this equation. The balance law (31.35) contains yet another production /annihilation
term, �n(ρ f + ρ′ f ′) due to the configurational body force. Its sign is not clear at
the present stage of the analysis, but intuitively should be negative.

Consider next a laminar balance equation

ρ
dη

dt
+ ∂φ j

∂x j
− σ = π (31.45)

for a scalar quantity η, its flux φ j , supply σ, and production π. Here, η will be
identified with the entropy density, φ j with its flux, σ its supply density and π its
production density. Reynolds averaging (31.45) leads to

ρ(
◦
η + ◦

S) + ∂

∂x j

(
φturb

j

) − σ = π, (31.46)

in which

ρS ≡ ρ′η′, φturb
j ≡ φ j + φT

j , φT
j ≡ ρη′v′

j − ρSm j . (31.47)

A derivation of (31.46) from (31.45) is given in Appendix31.E to this chapter.
Now we shall simplify the analysis by assuming that

γ ′ = 0, ν ′ = 0. (31.48)

The first of these assumptions implies that, although the true density may vary, its
fluctuations are assumed to be negligible. This is reasonable, because acoustic waves
in grains usually have timescales that are distant from turbulent fluctuation time
scales. Thus, we still account for compressibility but do not consider its fluctuation
as significant. The second assumption is physically not so obvious. It says that particle
collisions may give rise to interstitial volume changes on the mean level but not to
fluctuations of it. Intuitively, this seems to be a reasonable approximation even though
its experimental corroboration would be difficult.

Since

ρ′ = γν ′ + γ′ν + γ′ν ′ − γ′ν ′,

it follows on the basis of assumptions (31.48) that ρ′ = 0 and thereforemi = 0,m =
0 (see (31.27)2, (31.34)2), which clearly simplifies the balance equations (31.28),
(31.30), (31.33), (31.35), (31.39), (31.43). Moreover, the Favre time derivative
(31.29) merges into the time derivative following the mean motion, Uj , viz.

◦
f = ḟ , ḟ ≡ ∂ f

∂t
+ ∂ f

∂x j
U j .
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Henceforth, this definition will be kept for the remainder of this chapter. Then the
relations

n = ∂ν

∂t
+ ∂ν

∂x j
U j + ∂ν ′

∂x j
v′
j , n′ = ∂ν ′

∂t
+ ∂ν ′

∂x j
U j + ∂ν

∂x j
v′
j − ∂ν ′

∂x j
v′
j

and assumption (31.48)2 simplify to

ν̇ = n, n′ = ∂ν

∂x j
v′
j . (31.49)

Thus, supposing also that there are no fluctuations of the body force, i.e., b′
i = 0, the

balance equations (31.28), (31.30), (31.33), (31.35), (31.39), (31.43), and (31.46)
take the forms

ρ̇ + ρ
∂Uj

∂x j
= 0, (31.50)

ρU̇i = ∂

∂x j
(T i j + Ri j ) + ρ bi , (31.51)

� ρ
..

ν = ∂

∂x j
(h j + Hj ) + ρ f , (31.52)

ρ ė = T i j
∂Ui

∂x j
+ � h j

∂ν̇

∂x j
− ∂

∂x j
(q j + Q j ) + ρ ε + ρH

−� ρ ν̇ f + ρ r , (31.53)

ρk̇ = Ri j
∂Ui

∂x j
+ ∂K j

∂x j
− ρ ε, (31.54)

ρṡ = � Hj
∂ν̇

∂x j
+ ∂L j

∂x j
− ρH, (31.55)

ρη̇ = −∂φ j

∂x j
+ σ + π. (31.56)

The quantities Ri j , Hj , Q j , ε, H , K j , L j , k, s are defined in (31.31), (31.34)3,
(31.36)2−4, (31.38), (31.42). We collect them here and write them by taking into
account (31.49) and ρ′ = 0:

Ri j = −ρ v′
iv

′
j ,

Hj = −�ρn′v′
j

(31.49)2= �ρv′
iv

′
j

∂ν

∂x j
= � Ri j

∂ν

∂xi
,

Q j = ρ e′v′
j , ρ ε = T ′

i j

∂v′
i

∂x j
,
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ρH = � h′
i

∂n′

∂xi
− ρ f ′ �n′ = �h′

i

∂

∂xi

(
∂ν

∂x j
v′
j

)
− �ρ f ′v′

j

∂ν

∂x j

= � h′
iv

′
j︸︷︷︸

Hi j

∂2ν

∂xi∂x j
+ �h′

i

∂ν

∂xi

∂v′
j

∂x j
− �ρ f ′v′

j

∂ν

∂x j︸ ︷︷ ︸
ρ d≡�

(
h′
i

∂vi
∂x j

−ρ f ′v′
j

)
∂ν
∂x j

= H(i j)
∂2ν

∂xi∂x j
+ ρ d, (31.57)

ρ d = �

(
h′
i

∂vi

∂x j
− ρ f ′v j

)
∂n

∂x j
,

ρ k = 1
2ρ v′

iv
′
i = − 1

2 Rii ,

K j = T ′
i j v

′
i − 1

2ρ v′
i v

′
i v

′
j = T ′

i j v
′
i + 1

2 Rii j ,

ρs = 1
2�

2ρ(n′)2 = 1
2�

2 ρv′
iv

′
j︸ ︷︷ ︸

−Ri j

∂ν

∂xi

∂ν

∂x j
= 1

2�
2Ri j

∂ν

∂xi

∂ν

∂x j
,

L j = �n′h′
j − 1

2�
2ρ(n′)2v′

j = �v′
i h

′
j

∂ν

∂xi
− 1

2�
2 v′

i v
′
� v′

k︸ ︷︷ ︸
−R j�k

∂ν

∂xk

∂ν

∂x�

= Hji
∂ν

∂xi
+ 1

2�
2R j�k

∂ν

∂xk

∂ν

∂x�

,

φT
j = ρη′v′

j ,φ
turb
j = φ j + φT

j ,

in which ρ = γ ν. Moreover, in (31.57) round brackets enclosing tensor indices
indicate that a tensor is symmetrized with respect to those indices. On noticing that
the fluctuating part v′

j of the velocity field is an objective8 vector, the quantities

Ri j , Q j , H(i j), K j , L j , ε, d

turn out to be equally objective.
The dissipation rates ε and d are considered internal variables as in classical

turbulence theory of fluids; the same is also so for the “granular” dissipation rate d.
Their evolutions are described by the transport equations

ρε̇ = ∂K ε
j

∂x j
+ Π ε, ρḋ = ∂Kd

j

∂x j
+ Πd , (31.58)

where the fluxes K ε
j , K

d
j are objective vectors and the productions Π ε, Πd are

objective scalars. These equations are here postulated rather than derived. They can

8Let x�
i = Qi j (t)x j + di (t) be a Euclidean transformation, in which Qi j Qkj = δik . The scalar a,

vector ai , tensor Ai j are called objective if a� = a, a�
i = Qi j a j , and A�

i j = Qik Akl Q jl .
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also be motivated as, e.g., the Eq. (31.58)1 can be suggested by means of averaging
a balance law for enstrophy.9

The entropy principle follows here an idea by Sadiki and Hutter [53]. They
assume for turbulent motions the existence of two coldness variables ϑM , ϑT . Luca
et al. [40] took a step further and assumed the existence of three coldness variables:

In a turbulent motion of a granular material there exist three (empirical) temperatures
θM , θT and θG related to the molecular motion, turbulent kinetic energy and turbulent
configurational kinetic energy, respectively. Associated with these are the variables ϑM , ϑT

and ϑG , called material, turbulent and granular coldness, respectively.

We motivate the introduction of the third temperature as follows: (i) If we choose to
relate a temperature to the turbulent kinetic energy k, as Sadiki and Hutter [53]
have done (see also Hutter and Jöhnk [28]), then it is reasonable to relate another
temperature to the turbulent configurational kinetic energy s. (ii) Eight generic bal-
ance equations (31.50)–(31.55) are at our disposal. They serve to determine the eight
fields γ, ν, Ui , ϑM , ϑT , ϑG . Of these, ϑM will be identified with the mean cold-
ness ϑ = ϑM . Moreover, (31.58) serve as two additional equations for the dissipative
variables ε and d.

The objective of thermodynamics of turbulent motions of granular materials is
now the determination of the ten basic fields

γ, ν, Ui , ϑM , ϑT , ϑG, ε, d. (31.59)

To this end, the necessary equations are the ten equations (31.50)–(31.55), (31.58)
thatmust be supplemented by closure relations in amanner dependent on thematerial
and the turbulence for the quantities contained in the set

{T i j , h j , f , e, q j , Ri j , nQ j , H(i j), K j , L j , K ε
j , Kd

j , Π ε, Πd}. (31.60)

First, we note that the averaged value of y from (31.12) is

y =
(

ν0, ν, ν̇,
∂ν

∂xi
, γ,

∂γ

∂xi
, Di j , ϑM ,

∂ϑM

∂xi

)
, (31.61)

because with (31.48) we have ν̇ = ν̇. We shall denote by z the independent variables
that we choose, besides y, to describe the turbulence:

z ≡
(

ϑT ,
∂ϑT

∂xi
, ϑG,

∂ϑG

∂xi
, ε,

∂ε

∂xi
, d,

∂d

∂xi

)
. (31.62)

Next, we formulate the closure relations. If C turb stands for any member of the set
(31.60), then

9The specific enstrophy is defined as curl v · curl v, where v is the velocity field. By taking the inner
product of the vorticity equation with itself, a balance law for enstrophy emerges. An analogous
application to curl v′ yields the balance of enstrophy useful in turbulence theory.
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C turb = T ( y, z). (31.63)

We refer to the functions T in (31.63) as closure functions. They are supposed to
be frame indifferent (objective) and to have a common domain of definition Dturb,
which we call the turbulent state space.

When the closure relations (31.60), (31.63) are inserted into the equations of
balance (31.50)–(31.58), the field equations for γ, ν, Ui , ϑM , ϑT , ϑG , ε, d are
obtained. Every solution of these field equations is called a turbulent thermodynamic
process. Not all of these processes are admissible or physically realizable, however.
These processes must also obey the second law of thermodynamics, which will now
be formulated by an entropy principle.

31.4 Entropy Principle

The second law of thermodynamics is a statement about the irreversibility of physical
processes. Many versions of the second law appeared in the literature. As an entropy
principle it is used to ensure thermodynamically sound closure relations. One explicit
form of the entropy principle for turbulent motions was proposed by Sadiki and
Hutter [53] (see also [28]). We reformulate this principle in order to let it be as
general as possible.

Entropy principle

(1) Every material which is able to perform laminar and turbulent motions possesses
an extensive quantityη, called entropy, towhich afluxΦ j and a supplyσ are assigned.

We define the entropy production π as in (31.45) and when applied to turbulent
processes and definitions listed in (31.158) in Appendix31.E. When the simplified
processes subject to (31.48) are considered, Eq. (31.45) reduces to

π ≡ ρη̇ + ∂Φ j

∂x j
− σ. (31.64)

The mean entropy production π will then be

π = ρ η̇ + ∂Φ turb
j

∂x j
− σ, (31.65)

where

Φ turb
j ≡ Φ j + ΦT

j , ΦT
j ≡ ρ η′v′

j .
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(2) The entropy η and the entropy flux Φ j are an objective scalar and an objective
vector, respectively, and both are given by closure relations. In a turbulent flow the
mean entropy η and its flux Φ turb

j must be also given by closure relations.

We invoke Truesdell’s principle of equipresence and assume that

η = η( y), Φ j = Φ j ( y), η = η( y, z), Φ turb
j = Φ turb

j ( y, z). (31.66)

The closure functions η, Φ j , η, Φ turb
j are supposed to be frame indifferent.

(3) In a supply-free body, i.e., bi = 0, r = 0, σ = 0, the entropy production π is non-
negative for all laminar thermodynamic processes, and the mean entropy production
π is nonnegative for all turbulent thermodynamic processes.10

Thus, the requirement (3) of the entropy principle reads

π � 0 (31.67)

for all solutions γ, ν, vi , ϑ of the field equations that describe the laminar motion,
and

π � 0, (31.68)

for all solutions γ, ν, Ui , ϑM , ϑT , ϑG , ε, d of the field equations that describe the
turbulent motion. By referring to a supply-free body we take the position that the
supplies cannot affect the material behavior. From now on we shall consider only
supply-free materials.

The entropy principle is formulated in the spirit of the MÜLLER theory [44] (see
Chaps. 17 and 18 inVol. 2 of this treatise [29]). Therefore, it will be exploited by using
the method of Lagrange multipliers as developed by Liu [39]. This will be carried
out in the next section. Before doing so we remark that, formally, the laws (31.4)–
(31.7), (31.9)–(31.11), (31.64), (31.66)1,2, (31.67) that govern the laminar motion of
the granular material represent a particular case of the laws (31.50)–(31.58), (31.60),
(31.63), (31.65), (31.66)3,4, (31.68) that govern the turbulent motion of this material.
To see this we must only change the notation for the field variables11 as follows:

y −→ y,
vi −→ Ui ,

Ti j , h j , f, e, q j −→ T i j , h j , f , e, q j ,

η, Φ j , π −→ η, Φ turb
j , π ≡ πM .

We then obtain the “turbulent” motion as

10Alternatively, in a body with supplies, the supplies cannot affect the material behavior and so
σ = λi bi + λr , see Liu [39]. It can be shown that the two approaches are equivalent.
11Note that only the field variables receive an overbar, the constitutive functions remain the same.
This fact must be kept in mind to avoid misinterpretations.
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T i j = Ti j ( y), h j = h j ( y), f = f ( y),

e = e( y), q j = q j ( y), ε = d = 0, (31.69)

Ri j = Q j = H(i j) = K j = L j = Π ε = Πd = K ε
j = Kd

j = 0,

η = η( y), Φ turb
j = Φ j ( y),

in which the only relevant balance equations are (31.50)–(31.53). By the entropy
principle, the corresponding entropy production, denoted as in [53] by πM , must be
nonnegative for all laminar thermodynamic processes, i.e.,

πM � 0, (31.70)

for all solutions ν, γ,Ui , ϑ = ϑM of the field equations that result after the insertion
of (31.69) into the mean balance equations. Therefore, we have the rule:

The restrictions on the constitutive functions under laminar flow conditions can
be deduced from the restrictions on the closure relations describing the turbulent
flow by

• considering the case (31.69),
• omitting the overbars,
• replacing Ui by vi .

We emphasize the logical independence of the requirements (31.70) and (31.68).
Condition (31.70) restricts the constitutive functions, whilst condition (31.68)
restricts the functions that appear in the closure relations assumed for turbulent
motions. However, as we have already remarked, it is not necessary to exploit both
(31.70) and (31.68). The restrictions on the constitutive functions are simply deduced
from those obtained via (31.68) by using the rule indicated above.

31.5 Exploitation of the Entropy Inequality

As a result of (31.68) and of the definition (31.65), we obtain the entropy inequality

ρ η̇ + ∂Φ turb
j

∂x j
� 0, (31.71)

that must be satisfied by every turbulent thermodynamic process. To exploit it we
introduce the Helmholtz free energy ψturb according to

ϑMψturb ≡ ϑMe + ϑT k + ϑGs − η, (31.72)

and the extra entropy flux k turbj by
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Φ turb
j ≡ ϑM(q j + Q j ) − ϑT K j − ϑGL j + k turbj . (31.73)

Notice that the definition of thisHelmholtz free energy involves the products “cold-
ness times energy” for all three energy types. A similar rule “coldness times energy
flux” is also introduced for the turbulent entropy flux. Substitution of η and Φ turb

j
from (31.72) and (31.73) into the entropy inequality (31.71) yields

ρ
(−ϑM ψ̇turb + ϑMė + ϑT k̇ + ϑGṡ

) + ρ
(
e − ψturb) ϑ̇M + ρ kϑ̇T + ρ sϑ̇G

+ϑM

(
∂q j

∂x j
+ ∂Q j

∂x j

)
− ϑT ∂K j

∂x j
− ϑG ∂L j

∂x j
+ ∂k turbj

∂x j

+(q j + Q j )
∂ϑM

∂x j
− K j

∂ϑT

∂x j
− L j

∂ϑG

∂x j
� 0. (31.74)

We remark that, after inserting the closure relations (31.63) into Eqs. (31.50)–(31.58)
and performing all differentiations by the chain rule, one obtains a system that is linear
in the derivatives

U̇i ,
∂ν0

∂x j
, ν̈,

∂ν̇

∂x j
,

∂2ν

∂xi∂x j
, γ̇,

∂2γ

∂xi∂x j
,

˙︷︸︸︷
∂γ

∂x j
,

Ḋi j ,
∂Di j

∂xk
, ϑ̇M ,

˙︷︸︸︷
∂ϑ

∂x j
,

∂2ϑM

∂xi∂x j
, ϑ̇T ,

˙︷︸︸︷
∂ϑT

∂x j
,

∂2ϑT

∂xi∂x j
, (31.75)

ϑ̇G,

˙︷︸︸︷
∂ϑG

∂x j
,

∂2ϑG

∂xi∂x j
, ε̇,

˙︷︸︸︷
∂ε

∂x j
,

∂2ε

∂xi∂x j
, ḋ,

˙︷︸︸︷
∂d

∂x j
,

∂2d

∂xi∂x j
.

Hence, it is the component formula of an equation of the type

Ax = b, (31.76)

where A is a linear transformation from R
n to Rm . In our case n = 133, m = 10 and

the components of x are the derivatives (31.75).
In the entropy inequality (31.74), after explicit performance of all differentiations

by the chain rule, the left-hand side, i.e., the entropy production π, is also linear in
these derivatives, hence inequality (31.74) has the form

a · x + β � 0, (31.77)

where a · x denotes the Euclidean inner product of a and x in R
n , and β ∈ R. We

suppose that Eq. (31.76) has a nontrivial solution x. By the entropy principle, any
solution x ∈ R

n of (31.76) must satisfy inequality (31.77). Consequently we may
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resort to a lemma proved by Liu [39].12 According to this, the equation

ATλ = a, (31.78)

where AT denotes the transpose of A, has at least one solution λ ∈ R
m and any

solution of (31.78) satisfies the inequality

b · λ + β � 0. (31.79)

Hence, the closure functions that define A and a are related by means of (31.78),
which is called the Liu equation. The closure functions that define b and β must
satisfy the inequality (31.79), in which λ is the vector that appears in (31.78). This
inequality is called the residual (dissipation) inequality. Note that if x is a solution
of (31.76) and λ is a solution of (31.78), then a · x = b · λ, such that the left-hand
side in the residual inequality is nothing else than the entropy production evaluated
at a thermodynamic process and expressed in terms of λ.

Both Liu’s equation and the residual inequality are referred to as thermodynamic
restrictions on the closure functions, and themain task of the thermodynamicmaterial
theory of the MÜLLER–Liu type is to derive these restrictions. To this end, it is
practically useful to start from the inequality

a · x + β − λ · (Ax − b) � 0, (31.80)

which is required to hold for any x ∈ R
n . Inequality (31.80) would be violated unless

the “coefficient” of x is zero,13 so that we obtain (31.78) and (31.79). Liu called the
components of λ Lagrange multipliers.

In our theory, inequality (31.80) emerges in the form

ρ
(−ϑM ψ̇turb + ϑMė + ϑT k̇ + ϑGṡ

) + ρ
(
e − ψturb

)
ϑ̇M

+ρ kϑ̇T + ρ sϑ̇G + ϑM

(
∂q j

∂x j
+ ∂Q j

∂x j

)
− ϑT ∂K j

∂x j
− ϑG ∂L j

∂x j
+ ∂k turbj

∂x j

+(q j + Q j )
∂ϑM

∂x j
− K j

∂ϑT

∂x j
− L j

∂ϑG

∂x j

−Λγ

{
γ̇ ν + γ ν̇ + γ ν

∂Uj

∂x j

}
− ΛUi

{
ρU̇i − ∂T i j

∂x j
− ∂Ri j

∂x j

}

12Actually Liu’s lemma is a special case of a much broader theorem, well known in operations
research. A proof in that context can be found in Schrijver [57], but the theorem dates back to
Farkas [17] and Minkowski [43], see also Hauser and Kirchner [27].
13This statement must be understood with caution: The inner product in (31.80) may contain com-
ponents which can be combined as products of the form ai j x ji , where x ji is a symmetric tensor.
Then, ai j x ji = 0 implies that ai j is skew-symmetric.
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−Λν

{
�ρ ν̈ − ∂h j

∂x j
− ∂Hj

∂x j
− ρ f

}

−Λe

{
ρ ė − T i j

∂Ui

∂x j
− � h j

∂ν̇

∂x j
+ ∂q j

∂x j
+ ∂Q j

∂x j

−H(i j)
∂2ν

∂xi∂x j
+ � ρ ν̇ f − ρε − ρd

}

−Λk

{
ρk̇ − Ri j

∂Ui

∂x j
− ∂K j

∂x j
+ ρε

}

−Λs

{
ρṡ − � Hj

∂ν̇

∂x j
− ∂L j

∂x j
+ H(i j)

∂2ν

∂xi∂x j
+ ρ d

}

−Λε

{
ρε̇ − ∂K ε

∂x j
− Π ε

}
− Λd

{
ρḋ − ∂Kd

∂x j
− Πd

}
� 0, (31.81)

and it must hold for all arbitrary fields (31.75). The ten Lagrange multipliers

Λγ, ΛUi , Λν, Λe, Λk, Λs, Λε, Λd

may depend on ( y, z) ∈ Dturb.
From (31.78) it is clear that any assumption on the solution λ is an assumption

about A and a and, therefore, on the closure relations involving A and a. We shall
“force” A and a to be such that the identifications

Λe = ϑM , Λk = ϑT , Λs = ϑG

hold. Then, proceeding as in the exploitation of inequality (31.80), in (31.81) we
set the coefficients of the derivatives (31.75) equal to zero, and thus deduce the Liu
equations. Then, substituting these identifications into (31.81) and performing all
differentiations of constitutive quantities according to the chain rule of differentiation
and collecting terms according to the list (31.75) yields the long form of the extended
inequality (31.80). Setting the coefficients of the quantities (31.75) equal to zero,
thereby also observing the provisos of the above footnote, one deduces the following
Liu identities:

Λγ = −γϑM ∂ψturb

∂γ
, ΛUi = 0, Λν = −1

�
ϑM ∂ψturb

∂ν̇
, (31.82)

Λe = ϑM , Λk = ϑT , Λs = ϑG, (31.83)

Λε = −ϑM ∂ψturb

∂ε
, Λd = −ϑM ∂ψturb

∂d
, (31.84)

∂ψturb

∂γ, j
= 0,

∂ψturb

∂Di j
= 0,

∂ψturb

∂ϑM
, j

= 0, (31.85)
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∂ψturb

∂ϑT
, j

= 0,
∂ψturb

∂ϑG
, j

= 0,
∂ψturb

∂ε, j
= 0,

∂ψturb

∂d, j
= 0, (31.86)

e = ψturb + ϑM ∂ψturb

∂ϑM
, k = ϑM ∂ψturb

∂ϑT
, s = ϑM ∂ψturb

∂ϑG
, (31.87)

�ϑMh j + �ϑGHj + ∂k turbj

∂ν̇
+ Λν

(
∂h j

∂ν̇
+ ∂Hj

∂ν̇

)

+Λε
∂K ε

j

∂ν̇
+ Λd

∂Kd
j

∂ν̇
= γ νϑM ψturb

∂ν, j
, (31.88)

∂k turbj

∂ν0
+ Λν

(
∂h j

∂ν0
+ ∂Hj

∂ν0

)
+ Λε

∂K ε
j

∂ν0
+ Λd

∂Kd
j

∂ν0
= 0, (31.89)

∂k turbj

∂Dik
+ Λν

(
∂h j

∂Dik
+ ∂Hj

∂Dik

)
+ Λε

∂K ε
j

∂Dik
+ Λd

∂Kd
j

∂Dik
= 0, (31.90)

sym

{
∂k turbj

∂ν,i
+ Λν ∂

∂ν,i

(
h j + Hj

) + Λε
∂K ε

j

∂ν,i
+ Λd

∂Kd
j

∂ν,i

}

= (ϑG − ϑM)H(i j), (31.91)

sym

{
∂k turbj

∂γ,i
+ Λν ∂

∂γ,i

(
h j + Hj

) + Λε
∂K ε

j

∂γ,i
+ Λd

∂Kd
j

∂γ,i

}
= 0, (31.92)

sym

{
∂k turbj

∂ϑM
,i

+ Λν ∂

∂ϑM
,i

(
h j + Hj

) + Λε
∂K ε

j

∂ϑM
,i

+ Λd
∂Kd

j

∂ϑM
,i

}
= 0, (31.93)

sym

{
∂k turbj

∂ϑT
,i

+ Λν ∂

∂ϑT
,i

(
h j + Hj

) + Λε
∂K ε

j

∂ϑT
,i

+ Λd
∂Kd

j

∂ϑT
,i

}
= 0, (31.94)

sym

{
∂k turbj

∂ϑG
,i

+ Λν ∂

∂ϑG
,i

(
h j + Hj

) + Λε
∂K ε

j

∂ϑG
,i

+ Λd
∂Kd

j

∂ϑG
,i

}
= 0, (31.95)

sym

{
∂k turbj

∂ε,i
+ Λν ∂

∂ε,i

(
h j + Hj

) + Λε
∂K ε

j

∂ε,i
m + Λd

∂Kd
j

∂ε,i

}
= 0, (31.96)

sym

{
∂k turbj

∂d,i
+ Λν ∂

∂d,i

(
h j + Hj

) + Λε
∂K ε

j

∂d,i
+ Λd

∂Kd
j

∂d,i

}
= 0 (31.97)

and the residual inequality

{
ϑM (T i j + Ci j + ν pδi j ) + ϑT Ri j

}
Di j + ϑM

{
p − β − � γ ν f

}
ν̇

+
{
q j + Q j +

∂kturbj

∂ϑM
+ Λν

(
∂h j

∂ϑM
+ ∂Hj

∂ϑM

)
+ Λε

∂K ε
j

∂ϑM
+ Λd

∂Kd
j

∂ϑM

}
∂ϑM

∂x j
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+
{

−K j +
∂kturbj

∂ϑT
+ Λν

(
∂h j

∂ϑT
+ ∂Hj

∂ϑT

)
+ Λε

∂K ε
j

∂ϑT
+ Λd

∂Kd
j

∂ϑT

}
∂ϑT

∂x j

+
{

−L j +
∂kturbj

∂ϑG
+ Λν

(
∂h j

∂ϑG
+ ∂Hj

∂ϑG

)
+ Λε

∂K ε
j

∂ϑG
+ Λd

∂Kd
j

∂ϑG

}
∂ϑG

∂x j

+
{

∂kturbj

∂ε
+ Λν

(
∂h j

∂ε
+ ∂Hj

∂ε

)
+ Λε

∂K ε
j

∂ε
+ Λd

∂Kd
j

∂ ε

}
∂ε

∂x j

+
{

∂kturbj

∂d
+ Λν

(
∂h j

∂d
+ ∂Hj

∂d

)
+ Λε

∂K ε
j

∂d
+ Λd

∂Kd
j

∂d

}
∂d

∂x j

+
{

∂kturbj

∂ν
+ Λν

(
∂h j

∂ν
+ ∂Hj

∂ν

)
+ Λε

∂K ε
j

∂ν
+ Λd

∂Kd
j

∂ν

}
∂ν

∂x j

+
{

∂kturbj

∂γ
+ Λν

(
∂h j

∂γ
+ ∂Hj

∂γ

)
+ Λε

∂K ε
j

∂γ
+ Λd

∂Kd
j

∂γ

}
∂γ

∂x j

+Λνγ ν f + (ϑM − ϑT )γ νε + (ϑM − ϑG)γ νd + ΛεΠε + ΛdΠd � 0. (31.98)

Here we have used the notations

p ≡ γ 2 ∂ψturb

∂γ
, β ≡ γ ν

∂ψturb

∂ν
, Ci j ≡ γ ν

∂ψturb

∂ν,i

∂ν

∂x j
. (31.99)

We may refer to p as the turbulent thermodynamic pressure, to β as the turbulent
configurational pressure, and to Ci j as the turbulent configurational stress tensor.
By the isotropy condition, ψturb depends on ν,i via the scalar g defined as

g ≡ ∂ν

∂xi

∂ν

∂xi
.

Consequently, we have

Ci j = 2γ ν
∂ψturb

∂g

∂ν

∂xi

∂ν

∂x j
= C ji .

Let us next investigate theLiu equations (31.82)–(31.97). First notice that (31.82),
(31.84) imply that all Lagrange multipliers are determined once the free energy
function ψturb is prescribed as a function of its arguments. Second, (31.85) and
(31.86) reduce the number of variables upon which ψturb can depend considerably.
Effectively, ψturb cannot depend on Di j and any gradients arising in the lists (31.61),
(31.62) except ν,i :

ψturb = ψturb(ν0, ν, ν̇, g, γ, ϑM, ϑT, ϑG, ε, d). (31.100)

These are remarkable reductions. Third,via (31.87), (31.72) we obtain
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η = ϑM

(
ϑM ∂ψturb

∂ϑM
+ ϑT ∂ψturb

∂ϑT
+ ϑG ∂ψturb

∂ϑG

)
.

The first member on the right-hand side is the classical expression, the second and
the third are due to the turbulent and granular temperatures and reflect a similar
structure.

By means of (31.82), (31.84) the Lagrangemultipliers Λγ , Λν , Λε, Λd depend
exclusively on variables present in (31.100). That is why the restrictions (31.90),
(31.92)–(31.97) can be cast into the forms

∂k j

∂Dik
= 0,

∂ki
∂vA

j

+ ∂k j

∂vA
i

= 0, i, j, k ∈ {1, 2, 3}, A ∈ {1, . . . , 6}, (31.101)

where the vectors k and vA are defined by

k ≡ kturb + Λν(h + H) + ΛεK ε + ΛdK d ,

v1 ≡ grad γ, v2 ≡ grad ϑM , v3 ≡ grad ϑT , (31.102)

v4 ≡ grad ϑG, v5 ≡ grad ε, v6 ≡ grad d.

Integration of the identities (31.101) gives

k =
6∑

A,B=1
A<B

αAB v
A × vB +

6∑
A=1

C Av
A + c, (31.103)

where αAB are scalar coefficients, C A are skew-symmetric tensors and c is a vector.
Note that αAB , C A, and cmay depend on ν0, ν, ν̇, ν, j , γ, ϑM , ϑT , ϑG , ε, d. Further,
we recall that the entropy η and the entropy flux Φ j are assumed to be objective
quantities, so that the entropy flux Φ turb

j is an objective vector. Focusing on the

definition of k turbj , see (31.73), and recalling the objectivity of q j , Q j , K j , L j h j , Hj ,
K ε

j , K
d
j , Λ

ν , Λε, and Λd , we infer the objectivity of the vector k. Since the closure
functions are frame indifferent, k turns out to be an isotropic vector-valued function.
With (31.103) this is possible if and only if αAB = 0, C A = 0 and c is an isotropic
vector-valued function of grad ν.14 This implies that

k j = c
∂ν

∂x j
, c = c (ν0, ν, ν̇, g, γ,ϑM ,ϑT ,ϑG, ε, d),

and therefore the extra entropy flux k turbj is given by

k turbj = −Λν(h j + Hj ) − ΛεK ε
j − Λd K d

j + c
∂ν

∂x j
. (31.104)

14See Appendix31.F at the end of the chapter.
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Now, substituting (31.104) into (31.88), (31.89), (31.91) yields

�ϑMh j + �ϑGHj − ∂Λν

∂ν̇

(
h j + Hj

) − ∂Λε

∂ν̇
K ε

j − ∂Λd

∂ν̇
Kd

j + ∂c

∂ν̇

∂ν

∂x j

= γ νϑM ∂ψturb

∂ν, j
, (31.105)

∂Λν

∂ν0

(
h j + Hj

) + ∂Λε

∂ν0
K ε

j + ∂Λd

∂ν0
Kd

j − ∂c

∂ν0

∂ν

∂x j
= 0, (31.106)

sym

{
∂Λν

∂ν,i

(
h j + Hj

) + ∂Λε

∂ν,i
K ε

j + ∂Λd

∂ν,i
K d

j − c δi j − 2
∂c

∂g

∂ν

∂xi

∂ν

∂x j

}

= (ϑM − ϑG)H(i j). (31.107)

We can simplify these restrictions if we allow the turbulent free energy to be inde-
pendent of ν̇,

∂ψturb

∂ν̇
= 0. (31.108)

This is an ad hoc assumption. It implies (see (31.82), (31.84))

Λν = 0,
∂Λε

∂ν̇
= 0,

∂Λd

∂ν̇
= 0, (31.109)

so that relations (31.104)–(31.107) take the forms

k turbj = −ΛεK ε
j − Λd K d

j + c
∂ν

∂x j
, (31.110)

h j = 1

�ϑM

(
2γ νϑM ∂ψturb

∂g
δi j − �2 ϑG Ri j − ∂c

∂ν̇
δi j

)
∂ν

∂xi
, (31.111)

∂Λε

∂ν0
K ε

j + ∂Λd

∂ν0
Kd

j − ∂c

∂ν0

∂ν

∂x j
= 0, (31.112)

(ϑM − ϑG)H(i j) = 2 sym

{(
∂Λε

∂g
K ε

j + ∂Λd

∂g
Kd

j

)
∂ν

∂xi

}

−c δi j − 2
∂c

∂g

∂ν

∂xi

∂ν

∂x j
. (31.113)

In deducing (31.111), we used the expression of Hj from (31.57). This completes
the exploitation of the Liu equations.

Next, with (31.109) and (31.110) the residual inequality (31.98) emerges in the
form

π = {
ϑM(T i j + Ci j + ν p δi j ) + ϑT Ri j

}
Di j + ϑM{p − β − � γ ν f }ν̇
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−
{
−q j − Q j + ∂Λε

∂ϑM
K ε

j + ∂Λd

∂ϑM
Kd

j − ∂c

∂ϑM

∂ν

∂x j

}
∂ϑM

∂x j

−
{
K j + ∂Λε

∂ϑT
K ε

j + ∂Λd

∂ϑT
K d

j − ∂c

∂ϑT

∂ν

∂x j

}
∂ϑT

∂x j

−
{
L j + ∂Λε

∂ϑG
K ε

j + ∂Λd

∂ϑG
Kd

j − ∂c

∂ϑG

∂ν

∂x j

}
∂ϑG

∂x j

−
{

∂Λε

∂ε
K ε

j + ∂Λd

∂ε
Kd

j − ∂c

∂ε

∂ν

∂x j

}
∂ε

∂x j

−
{

∂Λε

∂d
K ε

j + ∂Λd

∂d
Kd

j − ∂c

∂d

∂ν

∂x j

}
∂d

∂x j

+πint � 0, (31.114)

where

πint ≡ −
{

∂Λε

∂ν
K ε

j + ∂Λd

∂ν
Kd

j − ∂c

∂ν

∂ν

∂x j

}
∂ν

∂x j

−
{

∂Λε

∂γ
K ε

j + ∂Λd

∂γ
Kd

j − ∂c

∂γ

∂ν

∂x j

}
∂γ

∂x j

+(ϑM − ϑT )γ νε + (ϑM − ϑG)γ ν d + Λε Π ε + Λd Πd . (31.115)

The quantity πint may be called the internal dissipation.

31.6 Restriction to the Laminar Case

Here we use the rule indicated at the end of Sect. 31.4 in order to obtain thermody-
namic restrictions in the laminar case. Thus, with

ϑψ ≡ ϑe − η, Φ j ≡ ϑq j + k j ,

by means of (31.100), (31.82), (31.84)1, (31.87), (31.104)–(31.107), we derive the
following results:

ψ = ψ(ν0, ν, ν̇, g, γ,ϑ) , g ≡ ∂ν

∂xi

∂ν

∂xi
,

Λγ = −γϑ
∂ψ

∂γ
, Λvi = 0, Λν = −ϑ

�

∂ψ

∂ν̇
,

Λe = ϑ, e = ψ + ϑ
∂ψ

∂ϑ
,
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k j = −Λνh j + c
∂ν

∂x j
, c = c(ν0, ν, ν̇, g, γ,ϑ), (31.116)

(
�ϑ − ∂Λν

∂ν̇

)
h j + ∂c

∂ν̇

∂ν

∂x j
= ρϑ

∂ψ

∂ν, j
,

∂Λν

∂ν0
h j − ∂c

∂ν0

∂ν

∂x j
= 0,

sym

{
∂Λν

∂ν, i
h j

}
= c δi j + 2

∂c

∂g

∂ν

∂xi

∂ν

∂x j
.

If we suppose that

∂ψ

∂ν̇
= 0,

as we did in (31.108), then Λν = 0 and the last relation in (31.116) implies c = 0.
Consequently, the extra entropy flux vanishes and the configurational stress vector
is completely determined by the free energy, viz.,

k j = 0, h j = 1

�
ρ

∂ψ

∂ν, j
.

By using (31.114), the residual inequality reads

ϑ
(
Ti j + Ci j + ν p δi j

)
Di j + ϑ (p − β − �γ ν f )ν̇ + q j

∂ϑ

∂x j
� 0, (31.117)

where the thermodynamic pressure p, the configurational pressure β, and the con-
figurational stress tensor Ci j are defined as

p ≡ γ2 ∂ψ

∂γ
, β ≡ ρ

∂ψ

∂ν
, Ci j ≡ ρ

∂ψ

∂ν, i

∂ν

∂x j
. (31.118)

From (31.116)–(31.118), we infer that the spatial variation of the true density may
influence the thermodynamics only through the stress tensor Ti j , the production f
and the heat flux q j (see (31.117)).

31.7 Thermodynamic Equilibrium

We derive further restrictions on the closure relations (31.60), (31.63) by analyz-
ing the thermodynamic equilibrium. Doing this we still account for the assumption
(31.108).
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By a state of thermodynamic equilibrium we mean a state ( y, z)E given by (see
(31.61) and (31.62))

( y, z)E ≡ (ν0, ν, 0,
∂ν

∂xi
, γ,

∂γ

∂xi
, 0, ϑM , 0, ϑT , 0, ϑG , 0, ε, 0, d, 0), (31.119)

at which the entropy production π, given in (31.114) and (31.115), vanishes

πE = 0.

The lower index E attached to a quantity which is not ( y, z) indicates that this
quantity is evaluated at ( y, z)E . Therefore, via (31.114) an equilibrium state will be
a state ( y, z)E defined by (31.119) at which the internal dissipation vanishes

πint E = 0. (31.120)

We notice that owing to (31.108)

ψturb
E = ψturb,

which, based on (31.109), implies that

Λε
E = Λε , Λd

E = Λd . (31.121)

If we take into account definition (31.115) of πint, then condition (31.120) reads

πint E ≡ −
{

∂Λε

∂ν
K ε

j E + ∂Λd

∂ν
Kd

j E − ∂cE
∂ν

∂ν

∂x j

}
∂ν

∂x j

−
{

∂Λε

∂γ
K ε

j E + ∂Λd

∂γ
Kd

j E − ∂cE
∂γ

∂γ

∂x j

}
∂γ

∂x j

+(ϑM − ϑT )γ νε + (ϑM − ϑG)γ ν d + Λε Π ε
E + ΛdΠd

E

= 0. (31.122)

Thermodynamic equilibrium is only meaningfully defined if (31.122) holds identi-
cally. Consequently, all states ( y, z)E are states of thermodynamic equilibrium and
condition (31.122) does no longer restrict the field variables ν0, ν, ν,i γ, γ,i , ϑ

M , ϑT ,
ϑG , ε, d, but it restricts rather the free energy ψturb through Λε, Λd , the fluxes K ε

j ,
K=d

j , the productions Π ε, Πd , and the function c.
Note that the entropy production π assumes its global minimum value at an equi-

librium state. Consequently, π can be considered a function of

ν̇, Di j ,
∂ϑM

∂xi
,

∂ϑT

∂xi
,

∂ϑG

∂xi
,

∂ε

∂xi
,

∂d

∂xi
,
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having the global minimum located at (0, 0, 0, 0, 0, 0, 0). It follows that under suf-
ficient smoothness properties π has to satisfy the conditions

∂π

∂ν̇

∣∣∣∣
E

= 0,
∂π

∂Di j

∣∣∣∣∣
E

= 0 ,
∂π

∂ϑM
,i

∣∣∣∣∣
E

= 0,
∂π

∂ϑT
,i

∣∣∣∣∣
E

= 0,

∂π

∂ϑG
,i

∣∣∣∣∣
E

= 0,
∂π

∂ε,i

∣∣∣∣
E

= 0,
∂π

∂d,i

∣∣∣∣
E

= 0,

(31.123)

and that

the Hessian matrix ofπ is positive semi-definite at ( y, z)E . (31.124)

Now, we investigate the necessary conditions (31.123). Inspection of the defini-
tions of the pressures p, β and of the configuration stress tensor Ci j (see (31.99))
shows that

p|E = p, β|E = β, Ci j |E = Ci j .

Therefore, from (31.114) and (31.123) we obtain the following restrictions on the
closure functions:

f E = 1

� γ ν
(p − β) + 1

�ϑMγ ν

∂πint

∂ν̇

∣∣∣∣
E

,

{
ϑMT i j + ϑT Ri j

}
E = −ϑMν p δi j − ϑMCi j − ∂πint

∂Di j

∣∣∣∣∣
E

,

{
q j + Q j

}
E

= ∂Λε

∂ϑM
K ε

j E + ∂Λd

∂ϑM
Kd

j E − ∂cE
∂ϑM

∂ν

∂x j
− ∂πint

∂ϑM
, j

∣∣∣∣∣
E

,

K jE = −∂Λε

∂ϑT
K ε

j E − ∂Λd

∂ϑT
K d

j E + ∂cE
∂ϑT

∂ν

∂x j
+ ∂πint

∂ϑT
, j

∣∣∣∣∣
E

, (31.125)

L jE = −∂Λε

∂ϑG
K ε

j E − ∂Λd

∂ϑG
Kd

j E + ∂cE
∂ϑG

∂ν

∂x j
+ ∂πint

∂ϑG
, j

∣∣∣∣∣
E

,

∂Λε

∂ε
K ε

j E + ∂Λd

∂ε
Kd

j E = ∂cE
∂ε

∂ν

∂x j
+ ∂πint

∂ε, j

∣∣∣∣
E

,

∂Λε

∂d
K ε

j E + ∂Λd

∂d
Kd

j E = ∂cE
∂d

∂ν

∂x j
+ ∂πint

∂d, j

∣∣∣∣
E

.

Further investigation of (31.122), (31.125) is of little use unless specific closure
assumptions aremade. For instance, if we suppose for equilibriumor nonequilibrium
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c = 0,
∂Λε

∂ν
= ∂Λd

∂ν
= 0,

∂Λε

∂γ
= ∂Λd

∂γ
= 0, (31.126)

then a dimensional analysis of the terms that remain in (31.122) suggests the choice

Λε = τ ε(ϑM − ϑT ), Λd = τ d(ϑM − ϑG) , (31.127)

Π ε = − 1

τ ε
γ νε, Πd = − 1

τ d
γ νd,

with τ ε, τ d time dimensional quantities depending on g, ϑM , ϑT , ϑG , ε, d. The
assumptions (31.126), (31.127) imply identical satisfaction of (31.122) or

πint = 0,

and the restrictions (31.125)1,2 merge into

f E = 1

� γ ν
(p − β),

{
ϑMT i j + ϑT Ri j

}
E

= −ϑMν p δi j − ϑMCi j .

Now, from the last two conditions (31.125), we infer that if the determinant

∣∣∣∣∣∣∣∣

∂Λε

∂ε

∂Λd

∂ε
∂Λε

∂d

∂Λd

∂d

∣∣∣∣∣∣∣∣
�= 0, (31.128)

then, since the right-hand sides of (31.125)6,7 vanish, we have

K ε
j E = 0, Kd

j E = 0, (31.129)

which implies through (31.125)4,5 that

{
q j + Q j

}
E

= 0, K j E = 0, L j E = 0. (31.130)

If at particular points of thermodynamic processes the value of the determinant
(31.128) turns out to be zero, then we require, through continuity, that (31.129)
equally hold and obtain (31.130). This completes the investigation of equilibrium
restrictions (31.122), (31.125) in the particular case defined by (31.126)–(31.128).
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31.8 Linear Deviations from Thermodynamic Equilibrium
in Dynamic Processes

Next, let us turn to condition (31.124). For brevity, we write the entropy production
in the form

π = {
ϑM(T i j + Ci j + ν p δi j ) + ϑT Ri j

}
Di j

+ϑM
{
p − β − � γ ν f

}
ν̇ + a j g j + πint,

where

g ≡ (grad ϑM , grad ϑT , grad ϑG, grad ε, grad d) ∈ R
15,

a ≡ ( f M , f T , f G, f ε, f d) ∈ R
15,

f Mj ≡ −
{
−q j − Q j + ∂Λε

∂ϑM
K ε

j + ∂Λd

∂ϑM
Kd

j − ∂c

∂ϑM

∂ν

∂x j

}
,

f Tj ≡ −
{
K j + ∂Λε

∂ϑT
K ε

j + ∂Λd

∂ϑT
K d

j − ∂c

∂ϑT

∂ν

∂x j

}
,

f Gj ≡ −
{
L j + ∂Λε

∂ϑG
K ε

j + ∂Λd

∂ϑG
Kd

j − ∂c

∂ϑG

∂ν

∂x j

}
,

f ε
j ≡ −

{
∂Λε

∂ε
K ε

j + ∂Λd

∂ε
Kd

j − ∂c

∂ε

∂ν

∂x j

}
,

f dj ≡ −
{

∂Λε

∂d
K ε

j + ∂Λd

∂d
Kd

j − ∂c

∂d

∂ν

∂x j

}
.

With this notation the (symmetric) Hessian matrix corresponding to π is given by

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2π

∂ν̇
2

∂2π

∂ν̇ ∂D

∂2π

∂ν̇ ∂g

∂2π

∂D ∂ν̇

∂2π

∂D ∂D

∂2π

∂D ∂g

∂2π

∂g ∂ν̇

∂2π

∂g ∂D

∂2π

∂g ∂g

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

For the entries of the matrix HE we find

∂2π

∂ν̇
2

∣∣∣∣
E

=
{

−2ϑM� γ ν
∂ f

∂ν̇
+ ∂2πint

∂ν̇
2

}

E

,

∂2π

∂ν̇∂Di j

∣∣∣∣∣
E

=
{

ϑM ∂T i j

∂ν̇
+ ϑT ∂Ri j

∂ν̇
− ϑM� γ ν

∂ f

∂Di j
+ ∂2πint

∂ν̇∂Di j

}

E

,
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∂2π

∂ν̇∂gi

∣∣∣∣
E

=
{

−ϑM� γ ν
∂ f

∂gi
+ ∂ai

∂ν̇
+ ∂2πint

∂ν̇∂gi

}

E

,

∂2π

∂Di j ∂Dkl

∣∣∣∣∣
E

=
{

ϑM

(
∂T i j

∂Dkl
+ ∂T kl

∂Di j

)
(31.131)

+ϑT

(
∂Ri j

∂Dkl
+ ∂Rkl

∂Di j

)
+ ∂2πint

∂Di j ∂Dkl

}

E

,

∂2π

∂Di j ∂gk

∣∣∣∣∣
E

=
{

ϑM ∂T i j

∂gk
+ ϑT ∂Ri j

∂gk
+ ∂ak

∂Di j
+ ∂2πint

∂Di j ∂gk

}

E

,

∂2π

∂gi ∂g j

∣∣∣∣
E

=
{

∂ai
∂g j

+ ∂a j

∂gi
+ ∂2πint

∂gi ∂g j

}

E

.

It is evident that without specific closure assumptions the condition on HE of being
positive semi-definite cannot be further exploited. For simplicity we assume that the
stresses T i j − T i j E , Ri j − Ri j E , the productions f − f E ,Π

ε − Π ε
E ,Π

d − Πd
E and

the fluxes q j + Q j ,K j , L j , K ε
j , K

d
j can be approximated by linear functions of ν̇,

Di j , g j as follows:

T i j = T i j E + (
ξM ν̇ + λM tr D

)
δi j + 2μMDi j , (31.132)

Ri j = Ri j E + (
ξT ν̇ + λT tr D

)
δi j + 2μT Di j , (31.133)

f = f E − ζν̇ − δ tr D, (31.134)

q j + Q j = q j E + Q j + α1
∂ϑM

∂x j
+ α2

∂ϑT

∂x j

+α3
∂ϑG

∂x j
+ α4

∂ε

∂x j
+ α5

∂d

∂x j
, (31.135)

K j = K j E −
{
β1

∂ϑM

∂x j
+ β2

∂ϑT

∂x j
+ β3

∂ϑG

∂x j
+ β4

∂ε

∂x j
+ β5

∂d

∂x j

}
, (31.136)

L j = L jE −
{
γ1

∂ϑM

∂x j
+ γ2

∂ϑT

∂x j
+ γ3

∂ϑG

∂x j
+ γ4

∂ε

∂x j
+ γ5

∂d

∂x j

}
, (31.137)

K ε
j = K ε

j E −
{
ξ1

∂ϑM

∂x j
+ ξ2

∂ϑT

∂x j
+ ξ3

∂ϑG

∂x j
+ ξ4

∂ε

∂x j
+ ξ5

∂d

∂x j

}
, (31.138)

Kd
j = Kd

jE −
{
ζ1

∂ϑM

∂x j
+ ζ2

∂ϑT

∂x j
+ ζ3

∂ϑG

∂x j
+ ζ4

∂ε

∂x j
+ ζ5

∂d

∂x j

}
, (31.139)

Π ε = Π ε
E − aεν̇ − bε tr D, Πd = Πd

E − ad ν̇ − bd tr D. (31.140)

In these expressions, the scalar coefficients

ξM , λM , μM ,
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ξT , λT , μT ,

ζ, δ,

α j , j = 1, . . . , 5,

βk, k = 1, . . . , 5,

γ�, � = 1, . . . , 5,

ξm, m = 1, . . . , 5,

ζn, n = 1, . . . , 5,

aε, bε, ad , bd ,

are 37 quantities to be specified by experiments or other means before the model
equations can be applied.

We also assume that

c = cE . (31.141)

In general, these coefficients are scalar functions of ν0, ν, ν,i , γ, γ,i , ϑM , ϑT , ϑG ,
ε, d, and the equilibrium values that appear in (31.132)–(31.141) must be restricted
by (31.122) and (31.125). Moreover, combining the definitions of k and s in (31.57)
with (31.87)2,3, we may write

ρ k = − 1
2 Rii = ρϑM ∂ψturb

∂ε
,

ρ s = 1
2�

2 Ri j
∂ν

∂xi

∂ν

∂x j
= ρϑM ∂ψturb

∂ϑG
.

In these expressions, since according to (31.108) ψturb is not a function of ν̇, ψturb is
formally the same as ψturb|E , so that with (31.132) and (31.133), we obtain

− 1
2

{
Rii E + ξT ν̇ + (3λT + 2μT )trD

} = ρϑM ∂ψturb

∂ε︸ ︷︷ ︸
− 1
2 Rii E

,

− 1
2�

2
{
Ri j E + (

ξT ν̇ + λT trD
)
δi j + 2μT Di j

} ∂ν

∂xi

∂ν

∂x j
= ρϑM ∂ξturb

∂ϑG︸ ︷︷ ︸
− 1
2�

2Ri j E

.

These identities imply

ξT ν̇ + (3λT + 2μ)trD ≡ 0,

and
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ξT ν̇ + λT trD
∂ν

∂xi

∂ν

∂xi
+ 2μT Di j

∂ν

∂xi

∂ν

∂x j
≡ 0,

from which we deduce, since ν̇, D may vary arbitrarily,

ξT = 0, 3λT + 2μT = 0 and

ξT = 0, μT = 0 ∀grad ν �= 0.

The latter result may for continuity reasons be extended to hold for all grad ν-values,
including grad ν = 0. Hence, in the representation (31.132), the Reynolds stress
tensor, when linearly depending upon the stretching tensor and the mean volume
fraction speed only, cannot depend on them at all. This seems to be reasonable since
the definition (31.57) of s, Hj and the restriction (31.111) on h j show that Ri j is
strongly related to the granular structure of the material. Furthermore, it indicates
that the Reynolds stress tensor should nonlinearly depend on stretching, a result
that is in conformity with many other granular theories.

In view of (31.115), (31.138)–(31.141), the second derivatives of πint appearing
in (31.131) can be shown to vanish identically. Accordingly, insertion of (31.132)–
(31.139), (31.141) into (31.131) yields the following explicit entries of the Hessian
matrix HE :

∂2π

∂ν̇
2

∣∣∣∣
E

= 2ϑM� γ ν ζ ≡ a,

∂2π

∂ν̇∂Di j

∣∣∣∣∣
E

= (ϑMξM + ϑM� γ νδ ) δi j ≡ b δi j ,

∂2π

∂ν̇∂gi

∣∣∣∣
E

= 0,

∂2π

∂Di j ∂gk

∣∣∣∣∣
E

= 0,

∂2π

∂Di j ∂Dkl

∣∣∣∣∣
E

= 2(ϑMλM + ϑTλT ) δi j δkl + 4(ϑMμM + ϑTμT ) δik δ jl

≡ λ δi j δkl + 2μδik δ jl ,

∂2π

∂ϑM
,i ∂ϑM

, j

∣∣∣∣∣
E

=
{

∂ f Mi
∂ϑM

, j

+ ∂ f Mj
∂ϑM

,i

}

E

= 2

(
α1 + ∂Λε

∂ϑM
ξ1 + ∂Λd

∂ϑM
ζ1

)
δi j ≡ a11 δi j ,

∂2π

∂ϑM
,i ∂ϑT

, j

∣∣∣∣∣
E

=
{

∂ f Mi
∂ϑT

, j

+ ∂ f Tj
∂ϑM

,i

}

E
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=
(

α2 + ∂Λε

∂ϑM
ξ2 + ∂Λd

∂ϑM
ζ2 + β1 + ∂Λε

∂ϑT
ξ1 + ∂Λd

∂ϑT
ζ1

)
δi j

≡ a12 δi j ,

∂2π

∂ϑM
,i ∂ϑG

, j

∣∣∣∣∣
E

=
{

∂ f Mi
∂ϑG

, j

+ ∂ f Gj
∂ϑM

,i

}

E

=
(

α3 + ∂Λε

∂ϑM
ξ3 + ∂Λd

∂ϑM
ζ3 + γ1 + ∂Λε

∂ϑG
ξ1 + ∂Λd

∂ϑG
ζ1

)
δi j

≡ a13 δi j ,

∂2π

∂ϑM
,i ∂ε, j

∣∣∣∣∣
E

=
{

∂ f Mi
∂ε, j

+ ∂ f ε
j

∂ϑM
,i

}

E

=
(

α4 + ∂Λε

∂ϑM
ξ4 + ∂Λd

∂ϑM
ζ4 + ∂Λε

∂ε
ξ1 + ∂Λd

∂ε
ζ1

)
δi j ≡ a14 δi j ,

∂2π

∂ϑM
,i ∂d, j

∣∣∣∣∣
E

=
{

∂ f Mi
∂d, j

+ ∂ f dj
∂ϑM

,i

}

E

=
(

α5 + ∂Λε

∂ϑM
ξ5 + ∂Λd

∂ϑM
ζ5 + ∂Λε

∂d
ξ1 + ∂Λd

∂d
ζ1

)
δi j ≡ a15 δi j ,

∂2π

∂ϑT
,i ∂ϑT

, j

∣∣∣∣∣
E

=
{

∂ f Ti
∂ϑT

, j

+ ∂ f Tj
∂ϑT

,i

}

E

= 2

(
β2 + ∂Λε

∂ϑT
ξ2 + ∂Λd

∂ϑT
ζ2

)
δi j ≡ a22 δi j ,

∂2π

∂ϑT
,i ∂ϑG

, j

∣∣∣∣∣
E

=
{

∂ f Ti
∂ϑG

, j

+ ∂ f Gj
∂ϑT

,i

}

E

=
(

β3 + ∂Λε

∂ϑT
ξ3 + ∂Λd

∂ϑT
ζ3 + γ2 + ∂Λε

∂ϑG
ξ2 + ∂Λd

∂ϑG
ζ2

)
δi j

≡ a23 δi j ,

∂2π

∂ϑT
,i ∂ε, j

∣∣∣∣∣
E

=
{

∂ f Ti
∂ε, j

+ ∂ f ε
j

∂ϑT
,i

}

E

=
(

β4 + ∂Λε

∂ϑT
ξ4 + ∂Λd

∂ϑT
ζ4 + ∂Λε

∂ε
ξ2 + ∂Λd

∂ε
ζ2

)
δi j ≡ a24 δi j ,

∂2π

∂ϑT
,i ∂d, j

∣∣∣∣∣
E

=
{

∂ f Ti
∂d, j

+ ∂ f dj
∂nϑT

,i

}

E

=
(

β5 + ∂Λε

∂ϑT
ξ5 + ∂Λd

∂ϑT
ζ5 + ∂Λε

∂d
ξ2 + ∂Λd

∂d
ζ2

)
δi j ≡ a25 δi j ,
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∂2π

∂ϑG
,i ∂ϑG

, j

∣∣∣∣∣
E

=
{

∂ f Gi
∂ϑG

, j

+ ∂ f Gj
∂tG,i

}

E

= 2

(
γ3 + ∂Λε

∂ϑG
ξ3 + ∂Λd

∂ϑG
ζ3

)
δi j ≡ a33 δi j ,

∂2π

∂ϑG
,i ∂ε, j

∣∣∣∣∣
E

=
{

∂ f Gi
∂ε, j

+ ∂ f ε
j

∂ϑG
,i

}

E

=
(

γ4 + ∂Λε

∂ϑG
ξ4 + ∂Λd

∂ϑG
ζ4 + ∂Λε

∂ε
ξ3 + ∂Λd

∂ε
ζ3

)
δi j

≡ a34 δi j ,

∂2π

∂ϑG
,i ∂d, j

∣∣∣∣∣
E

=
{

∂ f Gi
∂d, j

+ ∂ f dj
∂ϑG

,i

}

E

=
(

γ5 + ∂Λε

∂ϑG
ξ5 + ∂Λd

∂ϑG
ζ5 + ∂Λε

∂d
ξ3 + ∂Λd

∂d
ζ3

)
δi j ≡ a35 δi j ,

∂2π

∂ε,i ∂ε, j

∣∣∣∣
E

=
{

∂ f ε
i

∂ε, j
+ ∂ f ε

j

∂ε,i

}

E

= 2

(
∂Λε

∂ε
ξ4 + ∂Λd

∂ε
ζ4

)
δi j ≡ a44 δi j ,

∂2π

∂ε,i ∂d, j

∣∣∣∣
E

=
{

∂ f ε
i

∂d, j
+ ∂ f dj

∂ε,i

}

E

=
(

∂Λε

∂ε
ξ5 + ∂Λd

∂ε
ζ5 + ∂Λε

∂d
ξ4 + ∂Λd

∂d
ζ4

)
δi j ≡ a45 δi j ,

∂2π

∂d,i ∂d, j

∣∣∣∣
E

=
{

∂ f di
∂d, j

+ ∂ f dj
∂d,i

}

E

= 2

(
∂Λε

∂d
ξ5 + ∂Λd

∂d
ζ5

)
δi j ≡ a55 δi j .

By collecting the entries of the matrix HE , the following bloc diagonal form for the
matrix HE is deduced

HE =
(

A 0
0 B

)
, (31.142)

where A is the 10 × 10 symmetric matrix
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A ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b 0 0 0 b 0 0 0 b
b λ + 2μ 0 0 0 λ 0 0 0 λ
0 0 2μ 0 0 0 0 0 0 0
0 0 0 2μ 0 0 0 0 0 0
0 0 0 0 2μ 0 0 0 0 0
b λ 0 0 0 λ + 2μ 0 0 0 λ
0 0 0 0 0 0 2μ 0 0 0
0 0 0 0 0 0 0 2μ 0 0
0 0 0 0 0 0 0 0 2μ 0
b λ 0 0 0 λ 0 0 0 λ + 2μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and B is the 15 × 15 symmetric bloc matrix

B ≡

⎛
⎜⎜⎜⎜⎝

a11 I a12 I a13 I a14 I a15 I
a12 I a22 I a23 I a24 I a25 I
a13 I a23 I a33 I a34 I a35 I
a14 I a24 I a34 I a44 I a45 I
a15 I a25 I a35 I a45 I a55 I

⎞
⎟⎟⎟⎟⎠

, I =
⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠ .

Now, it is useful to use the Sylvester criterion15; in so doing we impose the
(stronger) restriction on HE of being positive definite. Since the determinant of a
bloc matrix of the form (31.142) equals det A det B, using Sylvester’s criterion
we find that HE is positive definite if and only if A and B are simultaneously positive
definite. From the condition on A of being positive definite we deduce the following
restrictions:

a > 0, μ > 0, a(3λ + 2μ) − 3b2 > 0.

As a result of the corollary that is proved inAppendix31.A of this chapter the 15 × 15
matrix B is positive definite if and only if the 5 × 5 matrix whose entries are ai j ,
i, j = 1, . . . , 5 is positive definite. This delivers restrictions upon the signs of the
coefficients that appear in (31.135)–(31.139), but we refrain to write them down,
since the formulae that are involved are too long.

31.9 Discussion and Conclusions

In this chapter, we presented a thermodynamically consistent derivation of the turbu-
lent equations of a granular continuum that obeys on the laminar level equations of
theGoodman–Cowin type. The strategywas to assume that the “laminar” equations
would adequately describe the physics at all scales, and adequate reproduction of
time scale features would only have to be computed with a sufficiently refined mesh.

15A real symmetric matrix M is positive definite, if and only if all the leading principal minors of
M are positive (see [24] or any book on matrix algebra).
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In this sense the “laminar” equations describe the granular system on the microscale,
and the smoothed processes that are not resolving this microscopic fine structure are
deduced by applying to the “laminar” equations a filter or smoothing operator. This
operation introduces correlation products which represent the manifestation of the
microscale on the macroscale. Consequently, the postulation of closure relations for
these terms correspond to a homogenization procedure that could be applied to any
physical or nonphysical system which gives rise to a smoothing operation in space
and/or time.

An important issue that was addressed was the embedding of the postulation of
material constitutive relations in a dissipation principle from which both could be
reduced. We proposed an entropy principle as suggested by Sadiki and Hutter

[53] and which may be regarded as an extension or application of that proposed by
Müller. This entropy principle was applied in the spirit of modern rational con-
tinuum mechanics of Müller [44] and Liu [39]. The results prove us to be right in
doing so, because it turned out that the turbulent heat flux and entropy flux vectors
are not collinear. We derived complete reduced forms for the material equations in
the laminar case and for the turbulent correlation quantities in the turbulent case.
Thermodynamic equilibrium quantities and linear closure relations for nonequilib-
rium quantities were deduced with restrictions on the signs of the phenomenological
coefficients of the latter. The final set of equations forms a complete set, from which
physically realizable solutions can be deduced. One particular and interesting result
is that the Reynolds stress tensor cannot linearly depend on the mean stretching if
grad ν �= 0. This points at the necessity of a nonlinear relation as it has been pointed
out already by Bagnold [8]. However, it is interesting that this result is deduced
here from pure thermodynamic arguments.

This chapter on the laminar-turbulent description of the dynamics of granular
materials is based on reference [40]. It uses the entropy inequality to constrain the
postulated constitutive relations such that the final field equations subject to initial-
boundary conditions exclusively generate physically realizable solutions. Similar
research articles of comparable complexity have been quoted, extensions capturing
more complex situations are rare. Some attempts, in which hypoplastic processes are
included, are given by Schneider andHutter [31, 32, 56],Kirchner andHutter
[36], Kirchner and Teufel [37], and Fang [16], who presents a k − ε-model for
granular turbulent behavior.

Future activities will have to concentrate on applications of the presentedmodel to
gravity-driven shear flows with free surface in two- and three-dimensional situations.
This is by itself an equally interesting and nontrivial subject. A further extended
problem would be the application of the turbulent averaging procedure as suggested
in [40] and presented here to a binary mixture of a fluid and a solid. Such mixtures
are the adequate vehicle, e.g., for the description of mudflows in which both the fluid
and the solid oscillate rapidly and also interact. Correlation stresses will here enter
the fluid and the solid and correlations arising from the constituent interaction terms
will describe how fluid and solid fluctuations affect each other.
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Appendix 31.A On Positive Definiteness of the Matrix
(31.142)

In this Appendix, we shall prove the statement mentioned at the end of Sect. 31.8.

Lemma 31.1 Let A be a n × n matrixwhose entries are ai j , i, j = 1, . . . , n (n � 1).
To A we associate the 3n × 3n matrix B as follows:

B ≡

⎛
⎜⎜⎜⎝

a11 I a12 I · · · a1n I
a21 I a22 I · · · a2n I

...
...

...

an1 I an2 I · · · ann I

⎞
⎟⎟⎟⎠ . (31.143)

Here I is the 3 × 3 unit matrix. Then the determinant of B is given by

det B = (det A)3. (31.144)

�

Proof To prove the lemma we proceed by induction on n. For n = 1 the relation
(31.144) is trivially satisfied. Now, let n > 1 be a given integer and suppose that
(31.144) holds for any n × n matrix A. We shall have completed the proof once we
have shown that (31.144)n holds for any (n + 1) × (n + 1) matrix A.

Hence, let A be a (n + 1) × (n + 1)matrixwhose entries areai j , i, j = 1, . . . , n +
1 and let B be the associated matrix as in (31.143). Since relation (31.144) is obvious
for A = 0 we consider the case A �= 0. Without loss of generality, we may assume
a11 �= 0 and, therefore, the following calculus is permitted:

det B = a311

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I a12
a11

I · · · a1 n+1

a11
I

a21 I a22 I · · · a2 n+1 I

...
...

...

an+1 1 I an+1 2 I · · · an+1 n+1 I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= a311

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I a12
a11

I · · · a1 n+1

a11
I

0
(
a22 − a21

a12
a11

)
I · · ·

(
a2 n+1 − a21

a1 n+1

a11

)
I

...
...

...

0
(
an+1 2 − an+1 1

a12
a11

)
I · · ·

(
an+1 n+1 − an+1 1

a1 n+1

a11

)
I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (31.145)
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We remark that the last determinant in (31.145) equals the determinant of a 3n × 3n
matrix of the form (31.143), so that we can appeal to the inductive assumption. It
remains only to see that det B is nothing else than (det A)3, which completes the
proof.

Lemma 31.2 Let A and B be the matrices specified by Lemma 31.1. If B1 and B2

denote the principal minors of order 3n − 1 and 3n − 2, respectively, of the matrix
B, then

B1 = Δ2
n−1 Δn, B2 = Δn−1 Δ2

n,

where Δn−1, Δn are the principal minors of order n − 1 and n, respectively, of the
matrix A.16 �

We omit the proof of Lemma 31.2 since it is similar to the proof given for Lemma
31.1.

By virtue of the two lemmas and of Sylvester’s criterion we deduce the result that
we need to exploit the thermodynamic equilibrium restrictions.

Corollary Let A and B be the matrices specified by Lemma 31.1. Then the matrix
B is positive definite if and only if the matrix A is positive definite.

Appendix 31.B Derivation of Favre’s Form
of the Momentum Equation

By averaging the momentum equation (see (31.16)) we deduce

∂(ρvi )

∂t
+ (ρviv j ), j

︸ ︷︷ ︸
LHSB

= T i j, j + ρbi + ρ′b′, (31.146)

where

LHSB = ∂

∂t
(ρvi ) + (

ρviv j
)
, j

= ∂

∂t
(ρ vi ) + ∂

∂t
(ρ′v′

i )

+
[
ρ viv j +

(
ρv′

iv
′
j + ρ′v′

iv
′
j︸ ︷︷ ︸

=ρv′
iv

′
j :=−Ri j+ρmim j

)
+ ρ′v′

i︸︷︷︸
ρmi

v j + ρ′v′
j︸︷︷︸

ρm j

vi

]

, j

16Hence Δn = det A.
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= ∂

∂t
(ρ vi ) + ∂

∂t
(ρmi )

+
[
ρ viv j + ρmiv j + ρm jvi − Ri j + ρmim j

]
, j

. (31.147)

Next, we introduce the definition (see (31.27))

vi = Ui = Vi − mi

and evaluate the underlined terms in the above expression. This leads to

• ∂

∂t
(ρ vi ) + ∂

∂t
(ρmi ) = ∂

∂t
(ρVi − ρmi ) = ∂

∂t
(ρVi ), (31.148)

• [
ρmiv j + ρm jVi

]
j = [

ρmi (Vj − m j ) + ρm j (Vi − mi )
]
, j

= [
ρmiVj − ρmim j + ρm jVi − ρmim j

]
, j

= [
ρ
(
miVj + m jVi − 2mim j

)]
, j . (31.149)

It follows that

LHSB = ∂

∂t
(ρVi ) + [

ρ viv j + ρmiVj + ρm jVi − ρmim j − Ri j
]
, j

.

Substituting in this expression

ρ viv j = ρViVj − ρVim j − ρVjmi + ρmim j ,

we obtain

LHSB = ∂

∂t
(ρVi ) + [ρViVj − Ri j ], j

= ∂ρ

∂t
Vi + ρ

∂Vi

∂t
+ ∂ρ

∂x j
Vi Vj + ρ(ViVj ), j︸ ︷︷ ︸

ρVj, j Vi+ρVi, j Vj

−Ri j

=
(

∂ρ

∂t
+ ∂ρ

∂x j
Vj

)

︸ ︷︷ ︸
◦
ρ

Vi + ρVj, j Vi

︸ ︷︷ ︸
(

◦
ρ +ρVj, j︸ ︷︷ ︸

=0

)Vi=0

+ ρ
∂Vi

∂t
+ ρVi, j Vj

︸ ︷︷ ︸
ρ

◦
V i

−Ri j, j

= ρ
◦
V i −Ri j, j . (31.150)
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In these underbraced terms, the definition of the Favre derivative (see (31.29)) of
◦
ρ

and
◦
V i have been used and the balance law ofmass (see (31.28)) have been employed.

Substituting now (31.150) into (31.146) yields

ρ
◦
V i= (T i j + Ri j ) + ρbi + ρ′b′

i , (31.151)

in which Ri j is the modified Reynolds stress tensor as defined in (31.31).

Appendix 31.C Derivation of Favre’s Form of the Mean
Configurational Momentum Equation

In this appendix we demonstrate, how Eq. (31.33) is obtained. Starting point is the
balance law of configurational momentum, (31.17), which reads

�
∂

∂t
(ρn) + �{ρnv′

j }, j = h j, j + ρ f, n := ν̇. (31.152)

The right- and left-hand sides of this equation are referred to as RHSC and LHSC ,
respectively. Taking Reynolds averages of this equation yields

LHSC ≡ �
∂

∂t
(ρn) + �

{
ρnv j

}
, j

= RHSC ≡ h j, j + ρ f + ρ′ f ′

= �
∂

∂t
(ρ n) + �

∂

∂t
(ρ′n′)︸ ︷︷ ︸

ρm

+�
{
ρ n v j + v j ρ′n′︸︷︷︸

ρm

+nρ′v′
j + ρn′v′

j

}
, j

= �ρ
∂n

∂t
+ �n

∂ρ

∂t
+ �

∂ρ

∂t
m + �ρ

∂m

∂t

+�

{
ρ, j n v j + ρ n, jv j + ρ n v j, j + ρ, jmv j + ρm, jv j + ρmv j, j

+n, j ρ′v′
j︸︷︷︸

ρm j

+n (ρ′v′
j ), j︸ ︷︷ ︸

(ρm j ), j

+(ρn′v′
j ) j

}

=
〈
�ρ

{(
∂n

∂t
+ ∂m

∂t︸ ︷︷ ︸
∂n/∂t

)
+ (

n + m︸ ︷︷ ︸
n

)
, jv j

}〉

+
〈
�
∂ρ

∂t
(n + m︸ ︷︷ ︸

n

) + �ρ, j (n + m︸ ︷︷ ︸
n

)v j

〉

+
〈
�ρ(n + m︸ ︷︷ ︸

n

)v j, j + �(n ρm j ), j

〉
+ �(ρn′v′

j ), j︸ ︷︷ ︸
−Hj, j+(ρ�mm j ), j

.
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In this chain of equations the subbraced terms are definitions in (31.34). With these,
the LHSC transforms to the expression

LHSC = �ρ

{
∂n

∂t
+ n, j Vj − n, jm j

}
+

{
�
∂ρ

∂t
n + �ρ, jnVj − �ρ, jnm j

}

+�ρnVj, j − �ρnm j, j + �(n ρm j ), j + �(ρmm j ) j − Hj, j

= �

{
∂

∂t
(ρn) + ∂

∂x j
(ρnVj ), j

}

︸ ︷︷ ︸
�ρ

◦
n

−Hj, j , (31.153)

in which vi was replaced by Vi − mi . The underlined terms together define �ρ
◦
n.

The remaining terms together, except Hj, j , add up to zero.
Equating in the above expression LHSC = RHSC delivers the final result

�ρ
◦
n= ∂

∂x j
(Hj + h j ) + ρ f + ρ′ f ′, (31.154)

stated in the main text as (31.33).

Appendix 31.D Derivation of the Modified Balance of the
Mean Turbulent Energy

In this appendix, we shall corroborate Eq. (31.35), which is the balance law, D =
0, for the modified Favre mean of the internal energy. The Reynolds average
of (31.9) is

∂

∂t
(ρe) + ∂

∂x j
(ρev j ) − Ti j

∂vi

∂x j
− h j

∂(�n)

∂x j

+ρ f �n + ∂q j

∂x j
− ρ r − ρ′ f ′ ≡ 0. (31.155)

The individual terms in this equation can be written in the form17

17In the underbraced terms, definitions stated in (31.27) and (31.36) are used.
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• ∂

∂t
(ρe) = ∂

∂t (ρ
′e′) + ∂

∂t ( ρ e︸︷︷︸
ρe−ρ′e′

) = ∂
∂t (ρe),

• ∂

∂x j
(ρev j ) = ∂

∂x j

(
ρ e v j + e ρ′v′

j︸︷︷︸
ρm j

+ρ′e′v j + ρe′v′
j︸ ︷︷ ︸

Q j+ρ′e′m j

)

= ∂

∂x j

[(
ρ e (v j + m j )︸ ︷︷ ︸

Vj

)
+ ρ′e′(v j + m j )︸ ︷︷ ︸

Vj

+Q j

]

, j

= ∂

∂x j

[
ρ eVj + ρ′e′Vj + Q j

]
, j

,

• Ti j
∂vi

∂x j
= Ti j

∂vi
∂x j

+ T ′
i j

∂v′
i

∂x j︸ ︷︷ ︸
ρε

= ρε + T i j
∂vi
∂x j

,

• h j
∂�n

∂x j
= h j

∂�n
∂x j

+ h′
j
∂�n′
∂x j︸ ︷︷ ︸

ρH+�ρ f ′n′−�mρ′ f ′

,

• �ρ f n = �

{
ρ f n + ρ′n′

︸︷︷︸
ρm

f + nρ′ f ′ + ρ f ′n′
}
,

• ∂q j
∂x j

− ρr = ∂q j
∂x j

− ρ r − ρ′r ′.

Substituting these expressions into (31.155) yields

∂

∂t
(ρe) + ∂

∂x j
(ρ eVj ) + ∂

∂x j
(ρeVj ) + ∂

∂x j

(
(ρ′e′)Vj

)
︸ ︷︷ ︸
(ρe−ρ e)Vj

+∂Q j

∂x j

−ρε − Ti j
∂vi
∂x j

− h j
∂�n
∂x j

− ρH − �ρ f ′n′

+ �mρ′ f ′ + �ρ f n + � f ρm + �n f ′ρ′ + �ρ f ′n′

= ρ
(

∂e
∂t + ∂(eVj )

∂x j

)
+ e

∂ρ
∂t + eVj

∂ρ
∂x j

+ ∂
∂x j

(
ρ eVj + (ρ′e′)Vj

)

+ ∂
∂x j

[
(ρe − ρ e) Vj

] − ρε + ∂Q j
∂x j

− T i j
∂v j
∂x j

− �h j
∂n
∂x j

− ρH

−�ρ f ′n′ + �ρ′ f ′(n + m)︸ ︷︷ ︸
�n f ′ρ′

+ �ρ f n + �ρ f m︸ ︷︷ ︸
�ρ f n

+�ρ f ′n′ + ∂qi
∂x j

− ρ r − ρ′r ′

= ρ

(
∂e

∂t
+ ∂e

∂x j
V j

)

︸ ︷︷ ︸
ρ

◦
e

+
(

ρeVj, j + e
∂ρ

∂x j
V j + e

∂ρ

∂t

)

︸ ︷︷ ︸
e

(◦
ρ +ρVj, j

)
= 0

mass balance

+ ∂
∂x j

(
Q j + q j

)

+ρε − T i j
∂v j
∂x j

− �h j
∂n
∂x j

− ρH + �n(ρ f + ρ′ f ′) − ρ r − ρ′r ′ = 0,

implying

ρ
◦
e = T i j

∂vi

∂x j
+ �h j

∂n

∂x j
− ∂

∂x j
(Q j + q j ) + ρε + ρH
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−�n(ρ f + ρ′ f ′) − ρ r − ρ′r ′ = 0.

This agrees with Eq. (31.35) in the main text.

Appendix 31.E Favre’s Form of the Entropy Balance

We consider the entropy balance in the form

∂

∂t
(ρη) + ∂

∂x j
(ρηv j ) + φ j, j − σ = π. (31.156)

Averaging this balance law yields

∂

∂t
(ρ η) + ∂

∂x j
(ρηv j ) + ∂φ

∂x j
− σ = π

and, using the product rules of Reynolds averaging

∂

∂t
(ρ η) + ∂

∂t
(ρ′η′)

+ ∂

∂x j

{
ρ η v j + ηρ′v′

j + ρ′η′v j + ρη′v′
j

}
+ ∂φ j

∂x j
− σ = π. (31.157)

We introduce the definitions

ρS ≡ ρ′η′, φT
j ≡ ρη′v′

j − ρSm j , φturb
j = φ j + φT

j (31.158)

and

Uj ≡ v j , Vj ≡ Uj + m j . (31.159)

Employing these expressions in (31.157) leads to the long balance expression

which, by reshuffling terms, as indicated by the colored underlines, can be brought
to the form
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ρ

{
∂η

∂t
+ ∂η

∂x j
(Uj + m j︸ ︷︷ ︸

Vj

)

}

︸ ︷︷ ︸
ρ

◦
η

+ ρ

{
∂S

∂t
+ ∂S

∂x j
(Uj + m j︸ ︷︷ ︸

Vj

)

}

︸ ︷︷ ︸
ρ

◦
S

+ (η + S)

{
∂ρ

∂t
+ ∂ρ

∂x j

(
(Uj + m j )︸ ︷︷ ︸

Vj

)

︸ ︷︷ ︸
◦
ρ

+ρ
∂

∂x j

(
Uj + m j︸ ︷︷ ︸

Vj

)}

︸ ︷︷ ︸
=0 (mass balance (11.28))

+ ∂

∂x j

(
φ j + φT

j︸ ︷︷ ︸
φturb
j

)
− σ = π,

or finally,

ρ

(◦
η + ◦

S

)
+ ∂φturb

j

∂x j
− σ = π. (31.160)

The superimposed ring denotes the Favre time derivative, (31.29).

Appendix 31.F Isotropic Representation of the Vector k in
(31.103)

In this appendix,we prove that (31.103) in themain text is an isotropic vector function
for k, if C A is skew-symmetric and αAB = 0.

Skew-Symmetry of C A

Consider ki = Ci jv j , which is one single term of the middle term on the right-hand
side of (31.103). Then, we have

∂ki
∂v j

− ∂k j

∂v j
= 0,

which implies

∂Cikvk

∂v j
+ ∂C jkvk

∂vi
= Cikδk j + C jkδki ,= Ci j + C ji ≡ 0 (31.161)

expressing skew-symmetry of C and so generally of CA
i j (A = 1,…,6), qed.

Demonstration that αAB = 0
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We sketch the proof for an isotropic vector-valued function k of three vector variables
v1 ≡ u, v2 ≡ v, grad ν ≡ w. Similar arguments are usedwhenmany vector variables
vA are involved. Since the scalar variables are not relevant for the representation of
the isotropic functions, they are left aside. Hence let k be the function defined as in
(31.103) by

k(u, v,w) = α(w) u × v + A(w)u + B(w)v + c(w),

where α(w) is a scalar coefficient, A(w) and B(w) are skew-symmetric tensors and
c(w) is a vector. The function k is isotropic if it satisfies the condition

k(Qu, Qv, Qw) = Q k(u, v,w) (31.162)

for all orthogonal tensors Q. If we take u = v = 0 in (31.162) we obtain that c
is an isotropic vector-valued function of w and therefore c(w) = c(w · w)w holds.
Now using this result in (31.162) and taking v = 0 we obtain that A is an isotropic
skew-symmetric tensor-valued function of a vector variable. Therefore A(w) turns
out to be zero. Analogously, we get B(w) = 0. Finally, condition (31.162) reduces to
α(Qw) = (detQ)α(w). In particular this implies thatα is a hemitropic scalar-valued
function of a vector variable. Consequently, we have α(w) = α̂(w · w), implying
α(w) = α(−w). On the other hand, if we choose Q = −1 in the reduced condition,
we obtain α(−w) = −α(w) and hence α(w) = 0.
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