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Preface

This book stems from my engagement with philosophers of mathematics at the
University of Rome, the University of Paris, the University of London and King’s
College, London, and members of the newly formed Association for the Philosophy
of Mathematical Practice, as well as mathematics seminars at the Pennsylvania
State University, in particular those of the number theorist Wen-Ch’ing (Winnie)
Li. It also stems from my membership in the Center for Fundamental Theory in the
Institute for Gravitation and the Cosmos at Penn State. Recently I went over there to
help celebrate the fact that for the past 15 years, the IGC has been one of the main
incubators of the spectacular discovery of the gravitational waves that Einstein
predicated a century ago. My membership as the resident Humanist began seven
years ago, and resulted in a workshop on cosmology and time where philosophers
and scientists engaged in fruitful conversation now collected in a special issue of
Studies in the History and Philosophy of Modern Physics, Vol. 52, Part A (2015).
One of the aspects of research at the IGC that struck me right away was the
substantive collaboration between theoretical physicists and highly empirical
astronomers, despite the striking disparity in the kinds of texts they generated.
Watching their interchanges helped me to develop further ideas about mathematical
and scientific research, which I began to formulate during a sabbatical leave sup-
ported by a fellowship from the City of Paris and of course also Penn State. So I am
indebted to colleagues far away and close to home.

The workshop on cosmology and time took place with support from then Head
of the Philosophy Department Shannon Sullivan and Dean Susan Welch, warm
support from Abhay Ashtekar and Murat Gunaydin at the IGC and Professor of
Physics Emeritus Gordon Fleming, as well as John Norton, Director of the Center
for History and Philosophy of Science at the University of Pittsburgh. We listened
to exchanges between Bryan Roberts and Abhay Ashtekar, William Nelson and
Sarah Shandera, Thomas Pashby and Gordon Fleming, David Sloan and Kurt
Gibble, Elie During and myself, and Alexis de Saint-Ours and John Norton; later
additions included responses or essays by Jeremy Butterfield, Julian Barbour, Klaus
Mainzer, and Lee Smolin, to complement the ‘overview’ essays by Abhay Ashtekar
and John Norton that conclude the special issue of SHPMP.
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The relation of the theoretical physicists to the astronomers in cosmological
research seems to me analogous to the relation of the logicians to the number
theorists, geometers and topologists I have encountered over the years at Penn State
and elsewhere. Philosophy of mathematics for many decades has been dominated
by logicians who (I think) misunderstand the role of mathematical logic. It is not an
over-discourse that should supplant the others, but one of many, which can be
integrated with other mathematical discourses in a variety of fruitful ways. Thus I
am happy to note that philosophy of mathematics in the early 21st century is
undergoing a long-awaited and long-overdue sea change. Philosophers of mathe-
matics are turning to a serious study of the history of mathematics, logic, and
philosophy, as well as interviewing mathematicians and educators, and reading
textbooks, to look in detail at mathematical research and instruction. They are
trying to give an account of how mathematical knowledge grows and how problems
are solved, with the dawning insight that serious problem-solving is by nature
ampliative. In addition to the founding of the Association for the Philosophy of
Mathematical Practice in 2009, I would point to a series of publications initiated by
Carlo Cellucci, and Brendon Larvor’s Mathematical Cultures project (2011–2014),
as well as Mic Detlefsen’s Ideals of Proof project (2008–2011) and Karine
Chemla’s Mathematical Sciences in the Ancient World project (2011–2014), both
of the latter conjured up in the wonderful research cauldron SPHERE (CNRS UMR
7219) at the University of Paris Denis Diderot—Paris 7. To this we can now add
Springer’s SAPERE series under the direction of Lorenzo Magnani.

In fact, this change had been in preparation for decades. Imre Lakatos’ cele-
brated book Proofs and Refutations: The Logic of Mathematical Discovery was
published in 1976, and inspired many young philosophers to think about mathe-
matics in a new way. Donald Gillies wrote his dissertation with Lakatos, and has
been active in the philosophy of mathematics since the late 1970s. He published my
essay “Two Episodes in the Unification of Logic and Topology” in the British
Journal for Philosophy of Science in 1985, and that same year introduced me to
Carlo Cellucci when I was in Rome, who would go on to write three important
books on logic and mathematics in Italian, in 1998, 2002, and 2007. (His
Rethinking Logic: Logic in Relation to Mathematics, Evolution, and Method was
published in English in 2013, followed shortly by Danielle Macbeth’s similarly
motivated but dialectically opposed Realizing Reason: A Narrative of Truth and
Knowing in 2014.) In 1995, Donald Gillies edited an important collection of essays,
Revolutions in Mathematics, thoroughly Lakatosian in spirit, with contributions by
inter alia Paolo Mancosu, Herbert Breger, Caroline Dunmore, Jeremy Gray,
Michael Crowe, Herbert Mehrtens, Joe Dauben, and myself. In 1994 and 1995, I
organized two conferences at Penn State (with support from a Humboldt
Foundation Transatlantic Cooperation grant written with Herbert Breger, then
director of the Leibniz Archives), where philosophers and historians of mathematics
interacted and wrote pairs of essays together, so that philosophical claims might be
supported, countered or complicated by case studies from the history of mathe-
matics, which was precisely what Lakatos had encouraged. This resulted in The
Growth of Mathematical Knowledge in 1999, and included essays by Herbert
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Breger and myself, Carlo Cellucci, Donald Gillies, Penelope Maddy, Paolo
Mancosu, François De Gandt, Jaakko Hintikka, Madeline Muntersbjorn, Carl Posy,
Mike Resnik, Hourya Sinaceur, Klaus Mainzer, and others.

In 2005, Carlo Cellucci edited, with Donald Gillies, Mathematical Reasoning
and Heuristics; in 2006, with Paolo Pecere, Demonstrative and Non-demonstrative
Reasoning in Mathematics and Natural Science; and in 2011, with myself and
Emiliano Ippoliti, Logic and Knowledge, as well as a special issue of the Italian
journal Paradigmi. The Festschrift for him edited in 2014 by Emiliano Ippoliti and
Cesare Cozzo continues this series. In the Francophone world, the tradition of
philosophy of mathematics informed by history of mathematics remained unbroken
throughout the 20th century. Jules Vuillemin, for example, who was in a sense the
Quine of France, did not share Quine’s disdain for history; rather, he was an expert
on the history of mathematics, logic and philosophy, as well as the latest texts in
analytic philosophy. His book La Philosophie de l’algèbre (1962/1993) has been
very influential, and so likewise his magisterial Nécessité ou contingence: l’aporie
de Diodore et les systèmes philosophiques, published in 1984. He belonged to the
tradition of Henri Poincaré, the great fin de siècle mathematician-physicist-
philosopher; indeed, Vuillemin’s papers are housed in the Archives Henri Poincaré
at the University of Lorraine, under the auspices of Gerhard Heinzmann, who
published L’Intuition épistémique in 2013. Also included in this lineage are Albert
Lautman, Jean Cavaillès, and Léon Brunschvicg (and the German Ernst Cassirer),
all of whom met their fate in 1944–1945. (Emmy Noether worked with Cavaillès on
an edition of the Cantor-Dedekind correspondence.) Vuillemin was my philo-
sophical mentor, and the teacher of Claude Imbert (whose Pour une histoire de la
logique appeared in 1999) and Hourya Sinaceur (whose book on the theory of
fields, Corps et Modèles, appeared in 1991). I met the Newton scholar François De
Gandt in 1981 through Rémi Brague, when I attended a study group in Paris on
Book I of the Principia; he introduced me to Hourya Sinaceur and Karine Chemla
(she translated, with Guo Shuchun, the Chinese mathematical classic Les neuf
chapitres), and Amy Dahan and Jeanne Pfeiffer (who together edited Une histoire
des mathématiques: routes et dédales, (1986), which was published in English
translation in 2009).

Almost all the French and Italian philosophers just mentioned were invited to the
United States or Canada, and spent some months or a year or so there during the last
two decades of the 20th century, interacting with many important philosophers and
historians of mathematics. They in turn introduced me to a generation of younger
scholars: Marc Parmentier, David Rabouin, Jean-Jacques Szczeciniarz, Christine
Proust, Andy Arana, Dirk Schlimm, Agathe Keller, Renaud Chorlay, Valeria
Giardino, Marco Panza, Ivahn Smadja, Norma Goethe, Amirouche Moktefi, Justin
Smith, Valérie Debuiche, Koen Vermeir, Pierre Cassou-Noguès, Jessica Carter,
Giulia Miotti, Roy Wagner, and many others associated with the University of
Rome ‘La Sapienza,’ SPHERE and elsewhere. This vigorous, unbroken European
tradition has played a big role in the development of a richer approach to philos-
ophy of mathematics, whose proponents moreover now interact fruitfully with
philosophers who continue to be more interested in logic and formalism, as recent
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conferences, lecture series and events attest, organized by Mic Detlefsen, Brendan
Larvor, Lorenzo Magnani, José Ferreirós, Jamie Tappenden, Michel Serfati, Marco
Panza, Penelope Maddy, Dale Jacquette, Marcus Giaquinto, Paolo Mancosu and
others.

To this list should be added philosophically inclined mathematicians whose
“popular” expositions of various issues in contemporary mathematics and the
history of mathematics raise lively issues about mathematical reason, and add
important dimensions to the current conversation: Joseph Mazur, Robyn Arianrhod,
Reuben Hersh, William Byers, Edward Frenkel, Donal O’Shea, Marjorie Senechal
and Chandler Davis. As noted above, I am indebted to the number theorist Winnie
Li for allowing me to sit in on her graduate seminars over a period of many years,
and to graduate students Travis Morrison, Sonny Arora, Ryan Flynn, William
Chen, Ayla Gafni, and Haining Wang for sharing their research with me. And
reiterated thanks, in the final preparation of the manuscript of the book, to Gordon
Fleming, Winnie Li, Jeremy Gray, and Christelle Vincent.

I think it is important to recognize the sea change in philosophy of mathematics
(following upon a change in philosophy of science that began with Kuhn), which
has taken place over the last forty years, and to bring the scattered philosophers,
mathematicians and historians responsible for it into more coherent, though of
course still dialectical, conversation. This book is my contribution to the current
conversation, which so often focuses on the nature of ampliative reasoning in
mathematics and the mathematical sciences, in this case those where we count
moments and stars as well as units. Hence the title of this book.

University Park, USA Emily Rolfe Grosholz
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Introduction

My central concern in this book is the growth of knowledge: what happens when
reasoning not only orders what we know, but adds to what we know? Deductive
logic has traditionally offered important answers to the question of how reasoning
orders what we know, and axiomatic systems like Euclid’s Elements or Newton’s
Principia have served as exemplars for the way in which scattered results can be
unified and brought into useful relation with each other. Inductive logic and
abductive logic, explored in the writings of Mill and Peirce, have been used to
address the question of how reasoning can add to our knowledge. However, since
they were both logicians, there is a limit on their explorations of the question.
Because of the nature of logic, a logician typically assumes that the discourse which
expresses the kind of reasoning explored is homogeneous. If signs shift their
meanings in the midst of a deduction, for example, we have an instance of the
fallacy of equivocation, and the reasoning is invalid.

However, I claim that some of the most important ampliative reasoning—
reasoning that extends knowledge—in mathematics and the sciences takes place
when heterogeneous discourses are brought into novel, and rational, relation. The
study of rationality is not limited to the discipline of logic, though of course it must
include logic as one important aspect. However, my way of proceeding is first and
foremost historical; the way to see and understand these kinds of rational processes
is to track them through history, through the notes of mathematicians and physi-
cists, their published papers, and the presentation of new developments in text-
books. Those who bring heterogeneous discourses together can proceed in a variety
of ways. They can proceed by juxtaposition: thus in Descartes’ Geometry we see
geometrical diagrams side by side on the page with the old-fashioned idiom of
proportions, and the new idiom of polynomial equations. This juxtaposition can be
forced into superposition: thus in Newton’s proof of Proposition XI in Book I of the
Principia, we must understand the same line segment QR as a representation of
force (the novel meaning given to it by Newton’s resolution of the 2-body problem
in terms of gravitational attraction) and as the first segment of the geometrical line
articulated into units that illustrates naturally accelerated motion in Theorem II,
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Proposition II, of the Third Day of Galileo’s Discorsi, and exhibits the fact that the
distance traversed is proportional to the square of the time elapsed; we must also
read QR as both finite and infinitesimal for the argument to go through. And,
finally, superposition can be forced into unification: the modification of the theory
of proportions that Newton profits from is the treatment of all magnitudes (formerly
and in other contexts regarded as heterogeneous and carefully segregated) as
numbers, all ratios as fractions (which then also join the ranks of number) and all
proportions as equations between numbers. In none of these cases does the
heterogeneity disappear, but it is exploited differently. The virtue of heterogeneous
discourse is that investigators can bring different kinds of information, conceptu-
alizations, methods and formal idioms to bear together on problem-solving situa-
tions. Rather than trying to banish the heterogeneity, as logicians strive to do in
both their mathematics and their philosophizing, I urge that we look philosophi-
cally, and historically, at the uses that mathematicians and scientists make of the
heterogeneity of things and of discourses, and the strategies they use to bring them
together.

In this book, I explore a certain range of this kind of reasoning, without claiming
that this exhausts the kind of ampliative reasoning that interests me. Far from it: I’d
be happy to inspire other philosophers to look into other patterns of reasoning
between and among heterogeneous discourses, which with the advent of computer
technology are multiplying, and diverging, quickly. To do this, we need to interact
directly with mathematicians and scientists doing research at the various frontiers of
mathematics and physics, and to work harder at mastering the history of those
domains. In this book, my focus is on the following patterns of reasoning. I argue
that productive mathematical and scientific research takes place when discourse
whose main intent is to establish and clarify reference is yoked with discourse
whose main intent is analysis. I borrow the term analysis here from Leibniz: it
means both the search for conditions of solvability of problems, and the search for
conditions of intelligibility of things. In mathematics, one instructive example is the
disparity between the investigations of figures in geometry, and the analytic elab-
orations of algebra, the infinitesimal calculus and the theory of differential equa-
tions. Another is the disparity between the investigation of numbers in number
theory, and the analytical elaborations of mathematical logic. Two more historical
examples arise in cosmology: the disparity between Newtonian Mechanics and
Thermodynamics in the 19th century and between General Relativity and Quantum
Mechanics in the 20th century. And in the new century, we can track the disparity
between the empirical discourse of astronomers and the abstract theories of modern
cosmologists who pursue, for example, Quantum Gravity.

I don’t see much difference between these cases; another way of putting the
point is that I am not interested in entering the long-standing and vexed debate
about the ontological status of mathematical things. A continuation of that debate
will not show up in the pages of this book; there are no reflections on the ‘reality’ of
numbers and figures, as opposed to that of moments of time or stars.
Mathematicians refer to canonical mathematical things, and strive to expand their
taxonomies and to make them more precise; so do astronomers with respect to
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astronomical things. In both cases, the discourses that allow them to refer well, and
the discourses that allow them to analyze well, typically look very different. What
interests me are the strategies employed to bring these discourses into working
relationship; what I am trying to do is explain how and why these strategies work
well, and extend our knowledge.

Here is a brief account of the plan of the book. In Chap. 1, I elaborate a bit on the
opposition between referential discourse and analytic discourse, and then devote
some pages to a more detailed account of Leibniz’s notion of analysis, clarifying it
in relation to his debates with Locke in the Nouveaux Essais, and then examining its
continuation in the work of Ernst Cassirer. Cassirer, I argue, tends to read super-
position too strongly as unification, as if the referential discourse disappeared
entirely into the analytic discourse; to contest this reading, I tell a historical nar-
rative about the investigation of the circle. The circle, like the cosmos, always has
further surprises to reveal; its determinate oneness is never exhausted by an analytic
discourse.

Having explained the issue that I want to address, in Chap. 2 I defend my
method. My method is based on the study of history rather than on logic; logic
plays a role but that role is subordinate or subsidiary. Philosophers are now used to
the idea that history is central to philosophy of science, but its pertinence to the
philosophy of mathematics seems to need renewed defense. Thus I rehearse the
helpful argument of the philosopher of history, W. B. Gallie, who shows that there
can be no Ideal Chronicle, which in turn helps me to contest Philip Kitcher’s early
and influential position in The Nature of Mathematical Knowledge, where he
invokes the history of mathematics. But there are two assumptions that render
Kitcher’s account ahistorical. One is that mathematical knowledge has its origins in
physical processes that cause fundamental beliefs in us (and these processes, while
temporal, are not historical); this is a commitment to naturalized epistemology that
he shares with Penelope Maddy. The other is that mathematics as it develops should
ultimately be ‘stabilized’ as a unified, universal, axiomatized system where all
problems are solved and have their place as theorems. This account leaves history
behind, in both its empiricist origins and its logicist completion. Thus I turn to the
French philosopher Cavaillès whose sense of history was more refined, make some
remarks about reference, and take up briefly Wiles’ strategy in his celebrated proof
of Fermat’s Last Theorem, in order to carry out a thought experiment that shows
that proofs are embedded in history, like all human actions.

Chapter 3 further explores my methodological assumptions, and shows why in
investigating ampliative reasoning, I put so much emphasis on analysis and its
interplay with reference. I go back over my own engagement with recent work by
Karine Chemla, Carlo Cellucci and Danielle Macbeth to defend my approach and
choice of case studies in the chapters that follow, as well as work by two mathe-
matics educators, Kieran and David Egan, in order to revisit my arguments about
the circle, and to prepare the ground for my case studies in the next two chapters,
where number theory is developed in relation to geometry, algebra, complex
analysis, and topology. In Chap. 4, I review the Nagelian model of theory reduc-
tion, with its projection of a collapse of two discourses into one, and then Jeremy
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Butterfield’s argument that in physics definitional extension is both too strong and
two weak to conform to Nagel’s strict criteria, and so blocks the collapse. I then
argue that the same holds true for attempts at theory reduction in mathematics, by
tracking the expositions of alleged reductions in a logic textbook by H.B. Enderton.
Finally, I trace the proof of a few of Fermat’s conjectures by means of the alliance
of number theory with complex analysis, and show that the truly ampliative and
explanatory proofs open up the study of the rational numbers to the study of
algebraic number fields, an extension of number theory that is once too strong and
too weak to look like Nagelian theory reduction, which is precisely why it turns out
to be so fruitful.

In Chap. 5, I look in some detail at Enderton’s exposition of number theory in
his logic textbook, and at Gödel’s incompleteness theorems. Once again, I show
that definitional extension is both too strong and too weak; the disparity and the
resultant ambiguity in both the textbook and the proofs testify to the disparity
between the referential discourse of arithmetic and number theory and the analytic
discourse of logic. Then I turn to the preliminary stage of Andrew Wiles’ proof of
Fermat’s Last Theorem. Fermat’s Last Theorem follows from a two-way corre-
spondence between elliptic curves and modular forms, because that correspondence
rules out counterexamples to it. The Taniyama-Shimura conjecture, that every
(semi-stable) elliptic curve over Q is modular, is what Wiles proved; the converse
claim, that every modular form corresponds to a certain elliptic curve, had already
been proved by Eichler and Shimura: that is the result I discuss in some detail,
because it is a bit simpler to explain, and yet can exemplify and exhibit my
argument about the whole proof. The proof itself combines disparate discourses, in
a spectacularly ampliative and inspiring way. Then I go on to discuss attempts by
the logicians McLarty, Friedman, and Macintyre to rewrite the proof. I try to show
that the aims of logicians are different from the aims of number theorists: the
‘logically extravagent’ general methods and theorems of the proof seem to be
needed to organize the practice of the number theorists, while the ‘messy and
piecemeal’ methods of the logicians reveal aspects of the proof (its reducible logical
complexity) central to the research practice of logicians (in this case, model theo-
rists and category theorists). All the same, this further disparity is helpful for the
development of mathematics; it can contribute to the growth of knowledge as long
as both sides tolerate each other and remain open to novel kinds of interaction, with
neither claiming to have the Ultimate Discourse.

This is an insight that applies just as well to the sciences. I have explained to a
number of cosmologists my reasons for thinking that there is no Grand Unified
Theory, and why indeed that might be a misleading ideal. (I was met with skep-
ticism.) In the last three chapters of the book, I look at the history of cosmology,
from 17th c. debates to contemporary developments, with special emphasis on
investigations into the nature of time. In Chap. 6, I review the innovative mathe-
matical representations of time in the work of Galileo, Descartes and Newton, and
then turn to the debate over whether time is absolute (to be defined analytically) or
relative (to be defined referentially) between Newton and his mouthpiece Clarke,
and Leibniz. In this process, I re-examine in more detail Leibniz’s treatment of time.
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This is really an exercise in and rehearsal of methodology, as were my initial
chapters, also inspired by Leibniz. How shall we think about the ways in which the
two kinds of discourse, empirical compilation and theoretical analysis, may be
combined in science? Leibniz calls on metaphysics, in particular the Principle of
Sufficient Reason, to regulate a science that must be both empirical and rationalist:
the correlation of precise empirical description with the abstract conception of
science more geometrico is guaranteed by the thoroughgoing intelligibility and
perfection of the created world. Leibniz encourages us to work out our sciences
through successive stages, moving back and forth between concrete taxonomy and
abstract systematization, and this model of scientific inquiry accords very well, as I
try to show, with his own investigations into mechanics and planetary motion, and
so too his mathematical-metaphysical account of time, which was subtler and more
multivalent than that of Newton.

I also review the influence of Leibniz on the contemporary cosmologists Penrose
and Smolin, in the transition to Chap. 7, which examines debates over the nature of
time in recent centuries. I look at the revision of the concept of time occasioned by
19th century thermodynamics, and then Boltzmann’s attempt to reconcile it with
Newtonian mechanics: is the arrow of time (so referentially compelling) real, or can
it be explained away by an analytic discourse? During the 20th century, in a sense
classical General Relativity Theory continued the Newtonian tradition of an ana-
lytic, geometrical theory of time, and Quantum Mechanics continued the Leibnizian
tradition of a referential theory of time elicited from the dynamical object
(molecular, atomic, and subatomic particles); and the dialectic, modified, continues
into the current century. My view is that the heterogeneity of the discourses and
their complementarity are useful for the advance of science; and that the interesting
philosophical question is how the two approaches interact.

The last chapter, Chap. 8, looks into the use of reference and analysis in the
study of astronomical systems from Newton to the present day. I begin by noting
that whereas Bas van Fraassen pays more attention to theoretical models that do the
work of analysis, Nancy Cartwright and Margaret Morrisson pay more attention to
models where the relevant relation is not satisfaction (as between a meta-language
and an object-language), but representation (as between a discursive entity and a
thing that exists independent of discourse), like the iconic images that represent
molecules. I then track the use of both kinds of models in Newton’s Principia,
Books I and III, and find strategies of juxtaposition, superposition, and unification
nuanced by both. Then I argue that in the era after Newton, problems of analysis
were addressed by Euler, Lagrange, Laplace and Hamilton, while problems of
reference came to the fore in the empirical work of Herschel and Rosse. In the same
spirit, I look at the debates between Hubble and Zwicky, ending with a reflection on
the work of Vera Rubin, whose empirical investigations led to a most esoteric
theoretical conjecture, with which cosmologists still struggle to come to terms.

The advantage of analytic discourse is that it is great for organization, indexing
and generalization; however, it also tends to unfocus the specificity of things, to
make them ghostly. The advantage of referential discourse is that it does better
justice to the rich, specific variety of things, but it often loses its way in the forest of
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research because of all those trees. This complementarity holds just as much in
mathematics as it does in the sciences. What strategies do we use to bring these
discourses into rational, productive relation? To what extent must we violate
deductive logic, tolerate a multiplicity of theories, and exploit well-structured
ambiguity to do this, and what does this mean for our conception of rationality?
I hope that my book will advance our understanding of reason.
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Chapter 1
Reference and Analysis

Productive scientific and mathematical discourse must carry out two distinct tasks
in tandem: an analysis or search for conditions of intelligibility (things) and solv-
ability (problems); and a strategy for achieving successful reference, the clear and
public indication of what we are talking about. More abstract discourses that pro-
mote analysis, and more concrete discourses that enable reference are typically not
the same, and the resultant composite text characteristic of successful mathematical
and scientific research will thus be heterogeneous and multivalent, a fact that has
been missed by philosophers who begin from the point of view of logic, where
rationality is often equated with strict discursive homogeneity, and from empiricism
in its recent version of ‘naturalized epistemology’, focusing on the formation of
beliefs from sensory stimulation. Thus I investigate how and why problem-solving
may be ampliative in mathematics and physics, increasing the content of knowledge
and crossing boundaries. And I look at the investigation of numbers, time and stars,
three kinds of things that cannot be directly perceived (with the exception of the
sun, and about ten thousand stars visible to the human eye). My arguments are
supported by case studies from the early modern period, the 19th century and the
more recent past, since I think that historical resemblances and differences make my
philosophical case stronger.

Concepts of rationality and method have been central to philosophy of mathe-
matics, philosophy of science, and epistemology, since Descartes wrote hisDiscourse
on Method, Geometry and Meditations at the beginning of the 17th century. During
the early 20th century, however, philosophers have all too often equated rationality
with logic, and method with the organization of knowledge into axiomatic systems
expressed in a formalized language. Since valid deductive argument forms guarantee
the transmission of truth from premises to conclusion, deductive logic is important as
a guide to efficacious mathematical and scientific reasoning; however, it does not
exhaust them. But valid deductive reasoning requires discursive homogeneity; apples
cannot be deduced from oranges. Thus an unswerving focus on logic diverts attention
from other forms of rationality and demonstration that cut across heterogeneous
discourses and exploit ambiguity. The case studies I present here, drawn from number
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theory, and the study of time and cosmology, support my claim that innovative
mathematical and scientific discourse is typically heterogeneous, involving a variety
of diverse idioms and notations that are superposed and juxtaposed on the page; and
that the deeper epistemological explanation of this fact is that analysis and reference
are disparate requirements for the inquirer. The mismatch between reference and
analysis is at once productive and problematic for the advance of knowledge.

Because human awareness is both receptive and active, an accommodating
construal and an explanatory construction, I warn against two kinds of errors in
contemporary philosophical epistemology, evident in debates between realists and
constructivists. Some philosophers demand that true knowledge be an accurate
construal of the way things are; but then they deny the obvious fact that all rep-
resentation is distortion, however informative it may be, and that representation
itself changes the way we refer to things. Some important objects of investigation
moreover cannot be directly perceived. And explanatory analysis goes far ‘beyond’
the things that invoked it; innovative explanation thus often sacrifices concrete,
descriptive accuracy. Other philosophers want to suppose that all knowledge, and
indeed all reality, is a human construction; but then they deny the obvious fact that
the world is the way it is whether we like it or not, and that it has depths that elude
our construals and constructions altogether. Many an explanatory analysis has
shipwrecked on the hidden shoals of reality. (For stimulating discussions of current
dialectic concerning realism and idealism, see Della Rocca 2016; Wagner 2017:
Chap. 3, meditations that take up the dialectic by reviving Idealism on the one hand
and Pragmatism on the other, in quite innovative ways). The preferable view of
human knowledge, I think, lies in between. If we see it as a combination of
awareness and analytic interpretation, then we will pay more attention to how in
mathematics and the mathematical sciences, we employ multiple modes of repre-
sentation, registering the tension between reference and analysis, as well as doing
more justice to what we are investigating. I begin with a general discussion of the
epistemological insights of G.W. Leibniz and Ernst Cassirer, two philosophers
whose insights have particularly inspired me as I worked through my case studies
during the past decade.

1 Leibniz, Locke and Analysis

For Leibniz, the key to understanding scientific knowledge is to start with the
propositional schema ‘S is P’. When claims of the form ‘S is P’ emerge in math-
ematical and scientific discourse, the term S typically names a problematic object
like p, or the transcendental curve the tractrix, or the solar system. That is, it can be
used to refer to something that is well enough understood and stable enough as an
existing object to figure in a well-defined problem, when we think we are in a good
position to find out more about it. Finding out more about a problematic object is,
for Leibniz, a process of analysis, a search for the conditions of intelligibility of a
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thing, what he would call its requisites, as well as a search for the conditions of
solvability of the problem which involves the thing under scrutiny. For reasons that
I discuss below, analysis typically re-locates the problematic object in a relational
network, where its analogies to other, similar things can be explored.

If, inspired by Leibniz, we take analysis as the key to understanding
mathematical and scientific knowledge, we should also reclaim the intensional
interpretation of the concept, and reaffirm the importance of non-deductive modes
of reasoning, including abduction and IBE (inference to the best explanation),
reasoning to general methods from particular solved problems, induction, and
reasoning by analogy. The problematic object is ‘there’, that is, it is present or
presented—we are aware of it; but analysis typically inserts the problematic object
into relational networks of ‘what is not there’. In the New Essays on Human
Understanding, Leibniz argues correctly that Locke’s insistence on the priority of
sense perception, his extensional treatment of concepts, his Aristotelian account of
abstraction, and his dismissal of innate ideas impair his account of knowledge,
specifically the process of analysis (Leibniz 1962, V: 39–506, 1982). I also want to
add the critical reflection that too heavy an emphasis on analysis leads to an account
of scientific knowledge that slights reference, the public and clear acknowledgment
of what we are talking about, as we will see in the case of Cassirer.

If we arrive at the conclusion that epistemology needs to combine versions of
Leibnizian rationalism and Lockean empiricism, we may conclude further
that human knowing is a hybrid process, which results in texts that are also hybrid,
that is, where disparate registers (those that help us to refer successfully, and those
that help us to analyze well) combine in ways that violate the assumptions of formal
logic. Thus, while formal logic can help us understand certain features of mathe-
matical and scientific rationality in historical texts, those that are captured by the
forms of deductive inference, there are other features to which it must remain blind.
Even the extension of logic to include formal semantics is limited by assumptions
of discursive homogeneity, and the extensional interpretation of concepts. What we
need is a robust account of knowledge that accounts for the ‘thereness’ of prob-
lematic objects, as well as the need to acknowledge the irreducible involvement of
‘what is not there’ when we offer mathematical proofs and scientific explanations.

Two common philosophical terms, ‘abstraction’ and ‘instantiation’, are often
invoked by philosophers to finesse the disparity between these registers of language
and representation in scientific texts, as if it were a simple matter to reconcile
reference and analysis. On the contrary, this reconciliation takes a great deal of hard
work, and its challenges engender a wide variety of strategies. At this point, it will
be useful to revisit some of Leibniz’s remarks on abstraction and the related notions
of nominal and real definition, as well as remarks on analysis. If we understand
abstraction in terms of Leibnizian analysis, we discover that it must be ampliative;
because it adds content, the kinds of reasoning involved cannot be simply deduc-
tive. Ernst Cassirer makes this insight the centerpiece of his book Substance and
Function (Cassirer 1910/1980, 1923/1953). However, from this clarification of the
importance of analysis, we cannot infer that analysis supplants or replaces refer-
ence, or diminishes the hard work of bringing reference and analysis into rational
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alignment; and this is a point that Cassirer, in his enthusiasm for the conceptual
power of functionalization and systematization, does not adequately acknowledge.

John Locke, in An Essay Concerning Human Understanding, begins his account
of abstraction in Book III, Of Words, Chap. III, Of General Terms (Locke 1959, II:
14–31). He begins with a declaration of his nominalism by stating that all things
that exist are particulars, and yet most words are general terms. Because it would be
impossible and useless for every particular thing to have a name, such a language
would not contribute to the sharing and improvement of knowledge. But how are
general words created? His account is genetic, given in terms of the language
acquisition of children. We begin with particular ideas, ‘well-framed’ and repre-
senting only individuals, like ‘Nurse’ and ‘Mama’.

Afterwards, when time and a larger acquaintance have made them observe that there are a
great many other things in the world, that in some common agreements of shape, and
several other qualities, resemble their father and mother, and those persons they have been
used to, they frame an idea, which they find those many particulars do partake in; and to
that they give, with others, the name ‘man,’ for example. And thus they come to have a
general name, and a general idea. (Locke 1959, II: 17–18)

Thus there is nothing new or added in the general idea ‘man’; it omits what is
peculiar to the child’s idea of each familiar person and retains only what they have
in common. General ideas are thus “abstract and partial ideas of more complex
ones, taken at first from particular existences”, simpler and with less content. And
Locke concludes, “this whole mystery of genera and species… is nothing else but
abstract ideas, more or less comprehensive, with names annexed to them” (Locke
1959, II: 18–19). We should be careful not to accord abstract ideas any ontological
significance, as suggested by the scholastic term ‘essence’: “general and universal
belong not to the real existence of things, but are the inventions and creatures of the
understanding, made by it for its own use, and concern only signs, whether words
or ideas” (Locke 1959, II: 21). The nominalist approach thus suggests that the best
way to think about a general concept is extensionally: since it is just a convenient
sign applicable indifferently to many particular things, that collection of particular
things is ontologically all that it amounts to, the sum total of what it really means.

Any teacher of introductory logic knows that if for the sake of pedagogy you
want to refer to a collection of objects whose unity, existence and countability are
relatively unproblematic, it is convenient to choose people (who can be counted by
a census and identified by proper names) or natural numbers (which can be counted
by school children and labeled by Indo-Arabic numerals). By offering the genetic
story of abstraction in terms of a child’s familiar people and the general term ‘man’,
Locke has bracketed a number of important issues that arise for scientists as they
struggle to find clear and public means for indicating what they are talking about.
This struggle involves instrumentation, notation, and theoretical debate. What
entities count as sufficiently unified, organized, irreducible, and stable to function as
referents in a scientific discourse? Does nature reveal them to us, must we discover
what nature is hiding, do we decide by arbitrary convention or by rational con-
vention? Do scientific methods that establish and enhance reference change with
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historical epoch? Do theories that underwrite taxonomies change with historical
epoch? How do we assess and count things with indistinct boundaries, or things that
seem to be infinite? How do we assess and count things that are radically dependent
on other things for their very existence? How do we assess and count the things that
count things? What ontological status does science confer on the (relatively unified,
organized, irreducible and stable) objects we perceive with our human sense organs,
and does that status change over time? In recent books that address these questions
historically, the importance of perceptual evidence (including the results of com-
putation) to the scientific aim of good reference is clear (see Bertoloni-Meli 2006;
Daston and Galison 2010; Klein and Lefèvre 2007; Azzouni 2000). So Locke’s
insistence that all knowledge begins in sense perception seems promising here; but
by choosing relatively unproblematic illustrations, Locke doesn’t confront the issue
of reference as well as he might.

Probing the limitations of Locke’s account of abstraction in the New Essays,
Leibniz reveals the philosophical power of his account of analysis as the search for
conditions of intelligibility. Leibniz is a nominalist in the sense that he believes that
everything that has been actualized by God in this created world is an individual,
that is, an irreducible, intelligible existent. However, he also thinks that different
kinds of things (numbers, circles, stars, plants, people, unactualized possibles) exist
in different ways. He also thinks that phenomena bene fundata are half-real, not
mere arbitrary constructions of human reason, not mere entia rationis or compendia
loquendi. One of the roles of analysis is to find the basis (among substances) for
phenomena bene fundata that lends them reality.

Locke treats abstract terms as shorthand names that allow us to refer by one
word to many individual things; we arrive at these names by ‘framing ideas’ that
include resemblances and omit differences. For Locke, abstraction pertains not only
to the ascent from species to genus, but also to the ascent from ideas of ‘particular
existences’ to species, “by separating from them, by abstraction, time and place and
any other circumstances that may determine them to this or that particular exis-
tence”. For Leibniz, however, this Lockean account is plausible only for ‘nominal’
definitions, and for the ascent from species to genus; it suffices for the merchant or
farmer. But philosophically responsible knowledge requires ‘real’ definitions, a
knowledge of how the problematic object is produced and evidence that it really
exists (Leibniz 1962, V: 268–274).

In mathematics, this requirement means that we must furnish a constructive
proof of the existence of the thing, and show that its features devolve from its
construction. We can usually do this in a finite number of steps, so the proof can be
deductive. In science, it means that we must investigate how the problematic object
is generated, and show how its features devolve from a process of generation that
settles into stability. In history, it means that all cultural institutions, including
language itself, have genealogies whose investigation will explain their variety,
stability, and interconnection. Thus demonstrations in natural science and history
must be non-deductive, because in the created world “individuality involves
infinity” (Leibniz 1962, V: 268). For Leibniz, to exist as a unified thing is to be an
ensouled body (composed of ensouled bodies), which is thus sentient and
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expressive of the world in which it finds itself; its infinity is both corporeal and
psychical. So too the process of analysis must remain open-ended.

Locke’s nominalism suggests an extensional account of concepts, whereas
Leibniz’s nominalism requires an intensional account of concepts. Locke assumes
that we are aware of the problematic objects we must investigate, but doubts that we
can ever know the ‘secret springs’ that produce them. The best methodological
advice Locke can give is to guard against dogmatism; we should always be pre-
pared to revise our stock of ‘nominal essences’, which are best understood as
convenient labels for sets of objects. By contrast, Leibniz counsels us to look for the
secret springs, even though we may never penetrate to their ultimate, infinitary
source; thus we should seek intensional, real and not merely nominal definitions
that explain how objects come to be what they are and why they stand in sys-
tematic, not accidental, relation to each other.

Leibniz’s question for Locke is then, how do we know which resemblances are
important and which differences to ignore? This question can’t be answered unless
we know something about the ground or cause of the resemblance of things, and the
reason why certain traits go together and others do not. Abstract universal terms are
rational because they are not arbitrary; as possibilities, they exist independent of our
thought. Reason allows us to discern the asymmetrical relations among concepts:
some concepts are presupposed by other concepts, while some concepts are
incompatible with each other. And it is in virtue of this discernment that we are able
then to assess the resemblances among things. General and abstract ideas are not the
result of the perception, comparison and classification of objects but are what make
that perception, comparison and classification possible.

For Leibniz, to escape nothingness is to be intelligible, that is, to exist in the way
that possibles exist; to be created is to be implicated in, involved in the network of
the most perfect, indeed self-perfecting, possibles. So in this world we find a kind of
enhanced intelligibility. In Sections VI and VII of the Discourse on Metaphysics,
Leibniz asserts that events express certain rules, and that nothing happens that is not
rule governed (Leibniz 1962, IV: 427–463, 1989: 35–68). Access to these rules
must come from the analysis of individual substances, or other intelligible things,
and different kinds of things require different methods of analysis. The result of
analysis is the finite expression of truth, when a predicate is asserted truly of a
subject, that is, when we assert truly that something is a condition of intelligibility
for something else (Leibniz 1962, IV: 431–432).

Thus Sect. VIII of the Discourse on Metaphysics dispels skeptical anxiety by
introducing the in-esse theory of truth, in a statement that begins by rejecting the
Lockean assumption that the predicative relation is a concatenation of disparate
elements, or that it is the imposition of a ‘concept’ on the ‘object’ (Leibniz 1962,
IV: 432–433). It is rather an expression of the subject. Leibniz puts the emphasis on
the unity—and therefore its existence as an intelligible thing—of the subject: the
predicative relation is an explicating or rendering-explicit of what the subject
involves. Study of the Generales Inquisitiones in tandem with the Discourse on
Metaphysics reveals an attempt to develop a theory of truth based on the assumption
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that the fundamental structure of reality is monadological. An intelligible thing
(unified and existent in virtue of its intelligibility) is what is known, and its unity is
always prior to its analysis: the unity of mind is prior to the multiplicity of things
known, the transcendental number p is prior to the sequence of its digits, the unity
of the organism is prior to its parts, and so forth. And so too discourse is finite: it
precipitates assertions like “S is P”. Yet given the nature of analysis and the things
analyzed, it is also open-ended; the discovery of conditions of intelligibility does
not close off inquiry, but sets the stage for further, deeper inquiry as things are
better and better articulated. Discourse grows as sequences and networks that
express the intelligibility of things: thus science is born, and mathematics, and
history (see Grosholz and Yakira 1998: Chap. 2).

To answer the question, what the mind must be like so that it finds the world
intelligible, Leibniz performs an analysis: he leads the reader back to the simple
term of the individual substance. Leibniz knows he must also answer the converse
question: what must the world be like so that the mind finds it intelligible? The
simplex must be re-embedded in its complex surround, that is, the other points de
vue of other individual substances. Leibniz’s doctrine of pre-established harmony
makes clear why analysis whose schematic outcome is “S is P” may and must be
elaborated into networks of relational representations of the kind Leibniz called
characteristics. The pre-established harmony is the metaphysics that underwrites the
movement from the subject-predicate schema of the term-judgment to relational
characteristics, like algebra or the infinitesimal calculus, which apply ambiguously
to different kinds of objects and operations; conversely, we know that the
pre-established harmony is the correct metaphysics because the spectrum of char-
acteristics is the instrument we use to investigate, ever more successfully, the
intelligible things we encounter (see Breger 2016: Chap. 7).

Analysis is what we use to discover what is primitive, or fundamental, or
‘simple’ in the investigation of a complex thing; and this investigation, in making
the implicit explicit, uncovers the general or canonical form of the thing, the general
formula according to which it can be treated systematically. The result is that many
different cases can be expressed in terms of a single rule, equation, construction, et
cetera; and we are on our way to an elaborated characteristic. Leibniz often refers to
this expression of many cases by a given formulation as a ‘harmony’: the way that a
characteristic organizes disparate cases is by analogy, not identity, as various
passages from the Discourse on Metaphysics suggest. The establishment of the
elements of a characteristic follows upon a long and difficult process of analysis;
they do not, as Descartes assumes, leap to the eye (see Grosholz 2001).

Leibniz knows very well, and often remarks when describing the use of charac-
teristics in the ars inveniendi, that writing allows us to say more than we know we are
saying, and the best characteristics magnify this generative power, especially when
they ambiguously refer to more than one kind of subject matter. A good characteristic
advances knowledge not only by choosing especially deep fundamental concepts but
also by allowing us to explore the analogies among disparate things. Thus he explains
to Huygens that his analysis situs will allow him to investigate not only geometric
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objects but machines as well (Leibniz 1978, II: 17–25). And the later thrust of his
study of differential equations is driven by his conviction that they are the key not
only to understanding higher curves but also to understanding mechanical situations
in terms of force.

2 Cassirer and the Rule of the Series

Ernst Cassirer is one of the great 20th c. philosophers indebted to Leibniz’s central
insights (see Rabouin 2009: Annex II; Grosholz 2014: 97–108). His first book,
published in 1902, was devoted to Leibniz: Leibniz’ System in seinen wis-
senschaftlichen Grundlagen was the first in a series of books wherein Cassirer
considers the important consequences of the application of mathematics to nature
for European culture and metaphysics (Cassirer 1902). The first chapter of
Cassirer’s Substanzbegriff und Funktionsbegriff is entitled, “On the Theory of the
Formation of Concepts”, where his treatment of abstraction owes a great deal to
Leibniz (Cassirer 1910/1980: 3–34, 1923/1953: 3–26). He begins by noting the
modern transformation of logic, and in order to exhibit the profundity of that
change, he returns to Aristotle. Aristotelian logic, he observes, is a reflection of
Aristotelian metaphysics based on substance and attribute; the logical doctrine of
the construction of the concept depends on the belief that we can discover the real
essences of things. The general patterns we discover in plants and animals signify
both the end (telos) toward which the species strives, and the immanent force or
potentia by which its evolution is guided. Only in a fixed, given, thing-like sub-
stratum can logical structure find its real application; quantity and quality, space and
time, and especially relation have a strictly subordinate position in Aristotle’s
metaphysics, and thus his logic is primarily a logic of terms or concepts.

Aristotelian logic, Cassirer argues, generates the original problem of abstraction.
If we are presented with things in their inexhaustible multiplicity and complexity,
our task is to select those features that are common to several of them; things
characterized by possession of some common properties are collected into classes,
and this process can be reiterated to form sub-species, species, genera, and so forth.
Thus the concept is a selection from what is immediately presented by sensuous
reality; and every series of comparable objects has a supreme genus consisting of all
the properties in which those objects agree and eliminating all the properties in
which they do not agree. As we go up the hierarchy of concepts, then, the content of
the more and more generic concepts diminishes, and the category of Being seems to
have no content at all. Since we hope that generic scientific and mathematical
concepts will give us greater and more precise determinations, this is a problem;
also, logic here offers no way to distinguish between the identification of common
properties that are trivial and those that are scientifically or mathematically
meaningful and useful. So this account of abstraction as it is used in mathematical
and scientific practice (even the practice of ancient Greece) must be incomplete
(Cassirer 1910/1980: 3–11, 1923/1953: 3–9).

8 1 Reference and Analysis



We have seen the same dilemma in Locke’s account of general terms, com-
pounded by his doubt that we can ever know the real essences of things. As Cassirer
points out, medieval nominalism and Locke’s and Berkeley’s nominalist, psycho-
logical re-fashioning of the concept does not really challenge the traditional
Aristotelian schema. Whereas for Aristotle external things are compared and
common elements are selected from them, for Locke and Berkeley we find the same
process but with presentations, psychical correlates of things, substituted for things;
in this process, no new structure is produced, but only a certain division of pre-
sentations already given. John Stuart Mill continues in this vein, though since he is
also a great logician, his reflections bring out its limitations. Mill tries to explain
mathematical truths, for example, as abstraction from concrete matters of fact: the
true positive being of every relation lies only in the individual members, which are
bound together by it, and these members can only be given as individuals. The
concept exists only as a part of a concrete presentation; then even arithmetic and
geometry consist of propositions about certain groups of presentations. However,
Mill introduces further qualifications into his account: the reproduced presentation
or memory image in mathematics is somehow especially accurate and trustworthy,
‘clear and distinct’. Moreover, to infer new mathematical truths, we don’t need to
go back every time to impressions of physical objects, because the memory-image
is able to stand in for the sensible object (Cassirer 1910/1980: 11–18, 1923/1953:
9–14).

Yet the image I carry in my mind’s eye of the edge of my desk is no closer to the
Euclidean line than my present perception of the edge of my desk, as I type this
essay. Thus it seems after all we are not concerned with concrete fact but with
hypothetical forms; as Mill’s own explanation shows, in mathematical concept
formation the world of sensible presentations is not so much reproduced as sup-
planted by an order of another kind. And this observation holds equally, according
to Cassirer, for theoretical physics. Thus the empiricist, psychological account of
concept formation is just as problematic as the Aristotelian: similarities among
things are supposed to imprint themselves on our mind while individual differences
fade away. But how are we to understand this act of identification which is alleged
to be the foundation of abstraction?

The act of thought, which holds together two temporally separate presentations,
and recognizes them as in some way related, does not itself have an immediate
sensible correlate in the contents compared, Cassirer argues. Aristotle, Locke,
Berkeley and Mill all presuppose that things or psychical presentations have already
been ordered into ‘series of similars’ for the logician’s consideration. An unac-
knowledged, unarticulated construction of a series stands behind their accounts of the
construction of concepts. This series has already, tacitly, been generated by a rule
which is then manifest in the specific form of the concept. Once we see this, we can
also see the important inference Cassirer draws from it: there are many kinds of ‘rules
of the series’. Aristotle, the medieval philosophers, and the empiricists, enchanted by
the category of substance, limited themselves to series in which the connection
among the members of the series is the possession of a common element or property:
aa, ab, ac, ad…. But (as Leibniz often explained and showed in his infinitesimal
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calculus) there are many other kinds of possible connections among members of a
series: we might have a, a + b, a + b + c, a + b +c + d, a + b + c + d + e, …
for example, or a, b − a, c − b, d − c, e − d, …, or indeed any useful function
binding the terms. Thenwemust see as well (as Leibniz saw) that this rule of the series
is something extra: it is not arrived at by mere summation of terms or neglect of parts
of terms (Cassirer 1910/1980: 18–23; 1923/1953: 14–18).

At this point, Cassirer comes to the notion of mathematical and scientific
(physical) function which is the central idea of his book. Invoking Johann Heinrich
Lambert, an 18th c. critic of Leibniz’s follower Christian Wolff, he claims that
mathematical concepts do not cancel or forget the determinations of the special
cases, but fully retain them. When a mathematician makes his formula more gen-
eral, Cassirer asserts, this means that he is able not only to retain all the more
special cases, but also to deduce them from the universal formula. Note that if a
general concept had been arrived at by Aristotelian abstraction, the special cases
could not be recovered from it, because the particularities have been forgotten. By
contrast, the mathematical or scientific concept seeks to explain and clarify the
whole content of the particulars by exhibiting their deeper systematic connections,
revealed in the law of the series. Here the more universal concept is more, not less,
rich in content; it is not a vague image or a schematic presentation, but a principle
of serial order; indeed, it is the kind of intensional, ‘real’ definition that Leibniz
advocated for mathematical research. Thus in modern mathematics, things and
problems are not isolated, but shown to exist in thoroughgoing interconnection
(Cassirer 1910/1980: 24–34, 1923/1953: 18–26).

Cassirer argues that the abstract concept emerges not from disconnected par-
ticularities, but from elements that have already been presupposed as organized in
an ordered manifold. The rule of the series is not arrived at through bare summation
or neglect of parts. The real problem of abstraction, he concludes, is to identify the
thorough-going rule of succession that has been presupposed, and to articulate it.
Using Descartes’ reorganization of geometry by means of algebra as an example,
Cassirer shows that the explicit articulation of functions and relations in modern
mathematics allows us to deploy general concepts that do not cancel the determi-
nations of the special cases, but in all strictness fully retain them, and moreover
reveal deeper systematic connections among instances formerly regarded as dis-
connected. Abstraction thus understood increases content.

Furthermore, Cassirer continues, the concrete universality of the mathematical
function (despite the way in which Hegel opposes it to the abstract universality of
the concept) extends to the scientific treatment of nature. Thus a series of things
with attributes is transformed into a systematic totality of variable terms or
parameters; things are transformed into the solutions of complex equations, as when
a molecule becomes the solution to a wave equation, or when the sun, the moon and
the earth become a solution to the three-body problem. As Cassirer wrote earlier,
the world of sensible presentations is not so much reproduced as supplanted by an
order of another kind. Then whenever we unify the ‘first order’ objects of our
thought into a single system, we create new ‘second order’ objects whose total
content is expressed in the functional relations holding among them. So too, no
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summation of individual ‘first order’ cases can ever produce the specific unity
which is meant by the system unified under the functional concept. Cassirer insists
on the distinction between the members of the series and the form of the series: “the
content of the concept cannot be dissolved into the elements of its extension… The
meaning of the law that connects the individual members is not to be exhausted by
the enumeration of any number of instances of the law; for such enumeration lacks
the generating principle that enables us to connect the individual members into a
functional whole” (Cassirer 1910/1980: 33–34, 1923/1953: 26). Leibniz would
have approved this claim.

Cassirer in Substanzbegriff und Funktionsbegriff has identified a supremely
important conceptual innovation, which characterizes to a great extent the mathe-
matical and scientific thinking that we like to call modern. In this kind of con-
ceptualization, abstraction or the ascent to a more general concept does not diminish
content, but rather increases it. Such ampliative abstraction both conserves the
content of the particulars and adds to them a representation of their systematic
interconnection, which then moreover may promote the annexation of ideal ele-
ments and generate further knowledge. Thus analysis rewrites geometry as analytic
geometry, and allows Leibniz and his followers to annex the transcendental func-
tions and infinites series; the Peano Postulates and Dedekind’s set theory rewrite
arithmetic and allow Cantor to annex the transfinite numbers; and Frege and Russell
rewrite logic and allow the annexation of the hierarchy of classes of recursive sets.

3 A Criticism of Cassirer: What’s in a Circle?

All the same, Cassirer is a bit hasty and optimistic when he proclaims that the
mathematical concepts that result from such ampliative abstraction, governed by a
search for the ‘rule of the series’, do not forget the determinations of the special
cases, but fully or wholly retain them: that is, the mathematician is able not only to
retain all the more special cases, but also to deduce them from the universal for-
mula. Then the work of analysis could be substituted for the work of reference.
However, this claim is in fact inconsistent with Cassirer’s further claim that
geometry (and physics) must be transformed in order to be subject to such serial
systematization: the world of sensible presentations is not so much reproduced as
supplanted by an order of another kind (Cassirer 1910/1980: 88–147, 148–310,
1923/1953: 68–111, 112–233). He insists on this radical transformation of the
special cases, because it is very important to his attack on Aristotelianism that the
thought process of ampliative abstraction is not inductive.

In analytic geometry, for example, the circles, ellipses, parabolas and hyperbolas
that we find in Greek geometry must be transformed into algebraic equations in
order to be comprehensible as specifications of a single general equation that
exhibits their systematic interconnection. However, those geometric forms, repre-
sented by diagrams and investigated by the Greek geometers, by Leibniz, by the
projective geometers and by Hilbert, present information that is not included in the
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algebraic equation. Even though the algebraic equation manages to express a great
deal of information about, for example, the circle, the content of the circle (that is,
the role it plays in an on-going series of proposed and solved problems) is not
‘wholly’ or ‘fully’ represented by the algebraic equation. The content of the circle,
for any 21st century student of mathematics, includes the way in which it embodies
as a kind of compendium the sine and cosine functions; but this content is not
represented by the algebraic equation. Thus, first of all, if the members of the series
have been radically transformed by the process of ampliative abstraction, they
themselves cannot be deduced from the rule of the series: apples cannot be deduced
from oranges.

But then what is a circle, that stubborn referent? Suppose that our knowledge of
the circle consisted in unpacking “what was already contained in the definition”,
which is what Kant asserts. Euclid’s definition runs: “A circle is a plane figure
contained by one line such that all the straight lines falling upon it from one point
among those lying within the figure are equal to one another, and the point is called
the center of the circle”. This is a good definition, soon thereafter followed (right
after the postulates and common notions) by Proposition I, which presents a dia-
gram with two circles, used to construct an equilateral triangle on a given line
segment (Euclid 1956: 153 and 241). There is a scholarly and philosophical debate
about how important the diagram is in relation to the definition, related to a dispute
about at what point historically diagrams became part of the Euclidean tradition (see
Netz 2003).

We cannot deduce from Euclid’s definition the fact that the sine and cosine
functions can be generated in terms of the circle. They are ‘contained in’ the
concept of the circle for Euler, but not for Euclid. How did they show up there, right
in the middle, plain as day? The answer is given by Leibniz’s notion of analysis, for
Descartes and Leibniz himself discovered new conditions of intelligibility for the
circle by bringing it into novel relation with algebra and arithmetic. We need the
Pythagorean theorem (which is about triangles), Cartesian geometry (which is not
only about geometry but also about the algebra of arithmetic), the infinitesimal
calculus, the completion of the rationals that we call the reals and the notion of a
transcendental function. Once we have embedded the circle in Cartesian geometry,
algebra, arithmetic and infinitesimal analysis, and Euler has developed the modern
notion of a function for us, we can see that the functions sine and cosine can be
‘read off’ the circle (see Youschkevitch 1976).

We impose two Cartesian coordinates on the circle, intersecting at its center, in
such a way that, normalizing, we set the length of the radius of the circle r = 1
(Fig. 1). We then examine the invariant relations among the sides of the right
triangles—each with its base on the x-axis, one vertex on (0, 0) and one vertex on a
point of the circle (x, y)—generated as the radius turns and the angle, h, increases.
Then we see that the changing y-coordinate yields the sine function and the
changing x-coordinate yields the cosine function, and so, by the Pythagorean
Theorem, sin2h + cos2h = 12 = 1, a source of never-ending amazement to 17th c.
and 18th c. mathematicians.
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The embedding of the circle in the emerging field of real analysis required
mathematicians to lift the circle into its new context and then to regain it, or reaffirm
it, as the object it was to begin with. The re-construction of the unit circle ‘upstairs’
in real analysis as the locus of the equation x2 + y2 = 1 plays an important role in
the choice of notation and procedures, and helps to provide a conceptual grounding
for the introduction of the concept of algebraic curves and a bit later, by contrast,
that of transcendental curves. The reinsertion of the circle-equation back into
geometry as the original circle provides an important conceptual check and guide
for a wide variety of developments, and also changes the 18th century under-
standing of geometry in ways that are then only fully recognized in the early 19th
century. The enterprise of lifting and reinsertion, pertinent to many other kinds of
things besides circles, is an important pattern of generalization in tandem with
re-particularization that precipitates many of the procedures and methods charac-
teristic of the beginnings of real analysis. In Descartes’ Geometry, Descartes never
launches into his stunningly ampliative, algebraic reasoning without constantly
checking the cogency of his procedures and novel items back against geometry. The
same might be said of the quite ampliative exposition of Cartesian geometry found
in Franz van Schooten’s Geometry by René Descartes (1659–61), which leads
directly to the development of the infinitesimal calculus in the hands of Huygens
and Leibniz, and Barrow and Newton (see Bos 2013).

The 19th c. projective geometer Michel Chasles criticized the Greek geometers,
observing that the lack of generality in proofs was a real drawback for the Greeks,
and prevented them from making progress. Each construction used to determine the
tangent to a curve, for example, depended on specific features of the curve and
therefore used procedures specific to the object being studied; each method, he

Fig. 1 Sine and cosine
functions in the circle
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lamented, was “essentially different”. There was one method used by the Greeks
that seemed general, the ‘method of exhaustion’, but Chasles argued that the var-
ious ways in which the method was applied were not general (Chasles 1889). If we
focus on the ‘modalities of application’ (Karine Chemla’s useful phrase) of general
methods to which Chasles draws our attention, we see that only in the 17th century
were uniform means provided for the application of a general method for deter-
mining the tangent to a curve (Chemla 1998). Chasles points to Descartes’ method
of tangents (analytic geometry) and Cavalieri’s and Leibniz’s method of indivisi-
bles (infinitesimal analysis) as examples. He also points to Desargues’ treatment of
the conic sections (projective geometry). In the case of Descartes’ method of tan-
gents, there is a general method, but it can be applied to curves only when one has
succeeded in representing them by an algebraic equation. That is, the modality of
application requires that the curve be replaced by an equation. Obviously, this
method at first wouldn’t work for transcendental curves, precisely because they are
not algebraic! Some of Leibniz’s early efforts in developing the infinitesimal cal-
culus are attempts to apply the method of tangents to non-algebraic curves.

The extension of the general methods of analytic geometry to transcendental
curves in the long run required novel (non-Cartesian) modalities of application for
the same general method. Curves are re-represented as equations with an infinite
number of terms, equations with variable exponents, equations with log, e, sin and
cos as basic components, and equations re-conceptualized as functions. Then
functions (with real variables) are re-represented as the solutions to differential
equations, as functions of a complex variable, as Fourier series, et cetera; and these
pathways lead into the 19th c. debate about what a function might be (see Lakatos
1976). There is an on-going mutual adjustment of methods and modalities of
application, as well as a checking of those modalities against the things they were
originally designed to cover; new general methods reorganize geometry and call up
new families of functions. Thus, to prove that a certain line is the tangent to the
catenary at such and such a point may require the mathematician to quit Euclidean
geometry and take up the modes of representation of a different domain altogether.
All the same, a line is still a line, even when the curve to which it stands as a tangent
is the result of a new discipline.

In the 19th century, the circle comes to harbor another, equally surprising set of
things, the nth roots of unity, that is, the complex numbers satisfying the equation
zn = 1 (Fig. 2). For this discovery to take place, the mathematical community had
to embed the study of the integers and the reals in the study of the complex numbers
(algebraic number theory on the one hand and complex analysis on the other do this
in quite distinct ways), and further recast that study in terms of the complex plane,
so that the resources of Euclidean geometry, projective geometry and eventually
non-Euclidean geometry could be used to frame, unify and solve clusters of
problems. On the complex plane, the nth roots of unity are the vertices of a regular
n-polygon inscribed in the unit circle, │z│ = 1, where (√−1 = i, z = x + iy and
│z│ = x2 + y2. We can also ‘read off’ the unit circle, understood this way, as the
set of points (x, y) where x = cos h and also y = sin h. Then Euler’s famous
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formula, eih = cosh + isinh, is valid for all real h, along with the representation of
the nth roots of unity fn as e

2pihk/n (see Nahim 2010; Mazur 2004).
The field Q[i] is an algebraic extension of the field of rational numbers Q,

obtained by adjoining the square root of −1 (√−1 = i) to the rationals. Its elements
are of the form a + bi where a and b are rational numbers, which can be added,
subtracted and multiplied according to the usual rules of arithmetic, augmented by
the equation i2 = −1; and a bit of computation shows that every element a + bi is
invertible. Within this field Q[i] we can locate the analogue of the integers Z within
Q: it is Z[i], the Gaussian integers, whose elements are of the form a + bi where
a and b are integers. Like Z, Z[i] enjoys unique factorization (that is, each nonzero
element of Z[i] can be expressed as a unique (up to units) product of primes), but its
primes are different from those of Z; and instead of two units it has four: 1, i, −1,
and −i. To be a prime in Z[i], a + bi must satisfy these conditions: either a is 0 and
b is a prime in Z and is congruent to 3(mod 4); or b is 0 and a is a prime in Z and is
congruent to 3(mod 4); or neither a nor b are 0 and a2 + b2 is a prime in Z and is
not congruent to 3(mod 4). When we use the Euclidean plane as a model for C, the
units are then modeled by the square with endpoints 1, i, −1 and −i. This suggests
the generalization that models the set of nth roots of unity as vertices of regular n-
polygons centered at 0 on the complex plane, with one vertex at 1. This nesting of
all such polygons within the circle on the complex plane provides a kind of visual
and iconic index for the generalization from Q[i] to other algebraic fields called
cyclotomic fields, where an nth root of unity (fn) is adjoined to Q (Q[i] is Q[f4]).
Those roots of unity, regarded as vertices, suggest the notion of symmetry, and in
that light may be studied in terms of groups of symmetries. For each cyclotomic

Fig. 2 Circle with fourth,
eighth and sixteenth roots of
unity
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field Q[fn] there is a group of automorphisms that permutes the roots of unity while
mapping Q to itself; it is called the Galois group Gal (Q[fn]/Q) (Kato et al. 1998:
Chap. 5).

So I would argue that the circle becomes ‘problematic’ in the context of Euclid’s
geometry, in relation to the lines and triangles that can be inscribed in it or cir-
cumscribed around it; many of these problems are resolved. It becomes ‘prob-
lematic’ again, in different ways and in relation to other kinds of things, like
polynomials and transcendental curves in the late 17th century; many of those
problems are resolved. Then in the 19th century the circle emerges again, ‘prob-
lematic’ with respect to newly constituted things, like the complex plane, holo-
morphic and diffeomorphic functions, cyclotomic fields and more generally
algebraic number fields. That is, a mathematical concept like the circle is not
problematic in isolation but in relation; and its problematicity waxes and wanes.
This kind of generalization brings new content to the circle by putting it in novel
relation to novel things. The reason the novel juxtapositions I have just sketched are
fruitful for mathematics is because the circle is what it is and has an irreducible
unity. In all of these contexts, the circle severely constrains what can be said of it
and how it can be used to frame and encompass other things. The precise and
determinate resistance the circle offers to any use made of it contributes to the
growth of knowledge. The circle proves itself again and again as a canonical object.
The work of analysis must always be supplemented by, and exists in tension with,
the work of reference (see Magnani 2001: Chaps. 6 and 7).

Thus we cannot simply identify the circle with, say, the equation x2 + y2 = 1; for
the reasons just given, this representation of the circle does not wholly retain all the
‘determinations’ of the circle or all of its content. (Moreover, considered over fields
or rings different from the reals, it does not in fact represent a circle.) For the circle
to reveal the important ‘content’ of its relation to the sine and cosine functions, for
example, it had to be set in the context of 18th c. analysis, re-inscribed in terms of a
very different ‘rule of the series’, and thus represented in a novel way. Indeed, in his
discussion of analytic geometry and projective geometry, Cassirer acknowledges
that the things of geometry can be investigated by two quite different kinds of
ampliative abstraction, governed by different serial rules, and then can be made to
yield rather different swathes of mathematical knowledge (Cassirer 1910/1980:
99–119, 1923/1953: 76–91).

And this point also counts against the structuralism which he too enthusiastically
endorses when he writes that the aim of the act of ampliative abstraction is to bring
to consciousness the meaning of a certain relation independently of all particular
cases of application, purely in itself, or that ampliative abstraction results in a
system of ideal objects whose whole content is exhausted in their mutual relations.
Structuralism can’t explain how we identify instances across logically incongruent
systematizations, or why we would be motivated to do so. How does Cassirer know
to identify the circle in Euclidean geometry, in analytic geometry, and in projective
geometry, unless he is dealing with a mathematical thing that asserts its indepen-
dent, rather Aristotelian and substance-like, existence as it lends itself to different
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modes of representation over the ages and across disciplines? Indeed, who knows
which mode will turn up next, and what we will learn next about the circle?

Cassirer is most structuralist in the second chapter of Substanzbegriff und
Funktionsbegriff, when he discusses number, and its treatment by Dedekind on the
one hand and by Russell on the other. He seems to think that the ‘primitive’ view of
numbers, revived by Pythagoras and Plato in one way and by “Mill’s arithmetic of
pebbles and gingerbread nuts” in another, is an illusion. Numbers cannot be
independent existences present anterior to any relation, or ‘given’ in isolation from
each other. Of numbers, he says that the transformation that we have noted in the
case of the serial systematization of geometrical objects is merely copying, which
does not produce a new thing. To subject numbers to the rule of the series is just to
represent them as they really are, mere placeholders in a relational structure, and to
banish the misguided way in which we might earlier have thought about them
(Cassirer 1910/1980: 35–87, 1923/1953: 27–67).

But different rules of the series bring out different features of numbers, and help
to solve different families of problems about them, as I will show in the chapters
that follow. How is Cassirer able to re-identify the number one, or the number one
million million, or the sequence of prime numbers, or the sequence of Fibonacci
numbers, from one context to another when they have been ampliatively abstracted
in different ways? Andrew Wiles proved Fermat’s Last Theorem by setting the
natural numbers in a series of such contexts, which have a limited relation to the
context provided by the Peano Postulates, beloved of logicians. On the other hand,
number theorists seem to have little to say about whether the natural numbers, as
they continue into the transfinite, pursue a linear course or become rather more
tree-like, branching as they go. This is a compelling and important question, but
number theorists don’t seem particularly interested in going beyond x. Number
theorists on the one hand, and set theorists on the other, approach the natural
numbers with very different serial systematizations; yet each group knows that it is
concerned with the same mathematical things that concern the other. How do they
know that?

Ampliative abstraction, which acknowledges that it investigates things in series
and strives to articulate the rule of the series, does manage to conserve much of the
content of the particulars, as it exhibits the systematic interconnections that bind
them, thus adding rather than subtracting content in the general concept. Yet it does
not ‘wholly’ exhaust the content of the particulars, and it does not reduce the
particulars to mere nodes in a net of relations, not even in arithmetic. It does not
support the structuralism that seems to inspire Cassirer, and it does not allow us to
escape the task of reference. Biology, chemistry, physics, geometry and arithmetic
cannot in principle, and in practice never do, dispense with the things that occur in
the problems that characterize them, and that shape their methods. Leibniz’s
metaphysical doctrine of the monad, and in a different sense his allegiance to
geometry, as well as his anti-reductionist disposition, save him from the struc-
turalism that tempted Cassirer.
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Chapter 2
Philosophy of Mathematics
and Philosophy of History

In this chapter, I argue for the historicity of mathematics, and thus for the pertinence
of the study of the history of mathematics to the philosophy of mathematics. I also
argue that we need to look carefully at what constitutes our philosophy of history,
and the nature of historical explanation. As I hope should be evident from my
arguments in the preceding chapter, this doesn’t mean that I think that what we say
about mathematics is contingent or empirically based. Here I invoke Plato, the great
dialectician of classical antiquity. The Meno is a dramatic dialogue in which two
analyses take place, one mathematical and one philosophical. In the first, Socrates
leads the slave boy to correct, refine, and extend his intuition of a pair of geo-
metrical diagrams by examining his presuppositions in the light of certain back-
ground knowledge (about arithmetic), as they solve a problem together. In the
second, Socrates leads Meno to correct, refine, and extend his intuition about virtue
as well as about method by examining his presuppositions in the light of certain
background knowledge, as they engage in philosophical dialectic together. In both
cases, an intelligible unity is apprehended, but imperfectly, and analysis leads to
increased understanding via a search for the conditions of intelligibility (Plato 1961:
353–384). The form of dramatic dialogue expresses something essential to the
process of analysis, for the dialogue may be read both as a set of arguments (in all
of which reductio ad absurdum plays a pivotal role) that uncover the logical
presuppositions of various claims, but it may also be read as a narrative, a process in
time and history.

And now I invoke Aristotle, the great logician of classical antiquity. A narrative,
as Aristotle tells us in the Poetics, has a beginning, middle, and end. The beginning
introduces us to characters who act in a certain situation, one or a few of whom
have a special claim on our empathy and interest; the middle introduces one or more
surprising contingencies or reversals, and the skill of the storyteller lies in main-
taining the continuity of the story not in spite of but by means of those disconti-
nuities, deepening our understanding of the characters and their actions; and the end
draws us along throughout the tale: how will events ultimately turn out for these
characters? (Aristotle 1947: 620–667). By contrast, an argument has the structure of
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a series of premises that support, in more or less materially and formally successful
ways, a conclusion. The priority of premises with respect to a conclusion is logical,
not temporal or historical; an argument has no beginning or end, no before and
after. The logician takes the cogency of an argument to hold atemporally: if such
and such is the case, then such and such must follow, universally and necessarily.
Pragmatic or rhetorical considerations may superimpose an historical dimension on
the argument, but that is not the concern of the logician.

1 W. B. Gallie on History

Analysis, as I characterized it in the last chapter, is the search for conditions of the
intelligibility of existing things; in mathematics, this often takes the form of solving
a problem. It is an ampliative process, that increases knowledge as it proceeds.
From an analysis, an argument can be reconstructed, as when Andrew Wiles finally
wrote up the results of his seven-years-long search in the 108 page full dress proof
in the May 1995 issue of Annals of Mathematics (Wiles 1995: 443–551). As we
will see in the following chapter, Carlo Cellucci contrasts the analytic method of
proof discovery rather starkly with the axiomatic method of justification, which
reasons “downwards”, deductively, from a set of fixed axioms, as well as with
algorithmic problem-solving methods (see Cellucci 2013; Ippoliti 2008). He argues
that the primary activity of mathematicians is not theory construction but problem
solution, which proceeds by analysis, a family of rational procedures broader than
logical deduction. Analysis begins with a problem to be solved, on the basis of
which one formulates a hypothesis; the hypothesis is another problem which, if
solved, would constitute a sufficient condition for the solution of the original
problem. To address the hypothesis, however, requires making further hypotheses,
and this “upwards” path of hypotheses must moreover be evaluated and developed
in relation to existing mathematical knowledge, some of it available in the format of
textbook exposition, and some of it available only as the incompletely articulated
“know-how” of contemporary mathematicians (see Breger 2000). Indeed, some of
the pertinent knowledge will remain to be forged as the pathway of hypotheses
sometimes snakes between, sometimes bridges, more than one domain of mathe-
matical research (some of which may be axiomatized and some not), or when the
demands of the proof underway throw parts of existing knowledge into question.

The great scholar Gregory Vlastos made a career out of reconstructing the
arguments in Platonic dialogues, abstracting them from the dramatic action. And
yet Platonic analysis is also a process of enlightenment in the life of an individual as
well as a culture: the slave boy and Meno (but not Anytus) are changed in some
fundamental way by their encounter with Socrates. They come to understand
something that they had not understood before, and their success in understanding
could not have been predicted. There is no way to cause understanding, nor can
virtue be caused, even by a virtuous father desperately concerned about his wastrel
son, as Socrates shows at the end of the dialogue. The middle of the plot is a crisis
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where opinions reveal their instability and things their problematicity, and it is
marked by a reductio argument; but it is also marked by anxiety and curiosity on
the part of Socrates’ interlocutors, emotions that might lead them equally to pursue
or to flee the analysis. And at the end of the dialogue, even though it is aporetic, a
shared illumination occurs that bestows on the reader a sense of the discoverable
intelligibility of things, how knowledge unfolds. To understand an argument and to
follow a story are two different things, but the reader must do both in order to
appreciate a Platonic dialogue.

What does this have to do with philosophy of mathematics? The dialogue Meno
shows that the philosophy of mathematics must stand in relation to the history of
mathematics, and moreover this relationship must be undergirded by a philosophy
of history that does not reduce the narrative aspect of history to the forms of
argument used by logicians and natural scientists. History is primarily narrative
because human action is, and therefore no physicalist-reductionist account of
human action can succeed (see Danto 1965: Chap. 8). So philosophy must
acknowledge and retain a narrative dimension, since it concerns processes of
enlightenment, the analytic search for conditions of intelligibility. Indeed, the very
notion of a problem in mathematics is historical, and this claim stems from taking as
central and irreducible (for example) the narrative of Andrew Wiles’ analysis that
led to the proof of Fermat’s Last Theorem. If mathematical problems have an
irreducibly historical dimension, so too do theorems (which represent solved
problems), as well as methods and systems (which represent families of solved
problems): the logical articulation of a theory cannot be divorced from its origins in
history. This claim does not presume to pass off mathematics as a series of con-
tingencies, but it does indicate in a critical spirit why we should not try to totalize
mathematical history in a formal theory.

W. B. Gallie begins his book Philosophy and the Historical Understanding by
rejecting the Hegelian/Marxist doctrine of an inescapable order, a rational purposive
pattern in history that might lead us to predict the end of history, when all social
contradictions shall be resolved. He reviews the partial insights of Cournot, Dilthey,
Rickert, and Collingwood, and then remarks upon a set of logical positivist studies
on the subject of historical explanation (see Gardiner 1961). Gallie writes, “These
studies are, broadly speaking, so many exercises in applied logic: their starting
point is always the general idea of explanation, and they tend to present historical
explanations as deviant or degenerate cases of other logically more perfect models”
(Gallie 1964: 19). Later in the book, he elaborates on this point: “There has been a
persistent tendency, even in the ablest writers, to present historical explanations as
so many curiously weakened versions of the kind of explanation that is charac-
teristic of the natural sciences. To speak more exactly, it is claimed or assumed that
any adequate explanation must conform to the deductivist model, in which a
general law or formula, applied to a particular case, is shown to require, and hence
logically to explain, a result of such and such description” (Gallie 1964: 105).

By contrast, Gallie argues that history is first and foremost narrative, recountings
of human actions that concern the historian and his readers; and that the ending of a
story is “essentially a different kind of conclusion from that which is synonymous
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with ‘statement proved’ or ‘result deduced or predicted’” (Gallie 1964: 23). A good
story always contains surprises or reversals that could not have been foreseen. “But
whereas for a scientist a revealed discontinuity usually suggests some failure on his
part, or on the part of his principles and methods and theories, to account for that
aspect of nature which he is studying, for the man who follows a story a discon-
tinuity may mean… the promise of additional insights into the stuff a particular
character is made of, into the range of action and adaptation which any character
can command” (Gallie 1964: 41). Indeed, Gallie adds, this is the logical texture of
everyday life, where the unforeseen constantly puts to the test our intellectual and
moral resources, and where our ability to rise to the occasion must always remain in
question: the insight of tragedy is that anyone can be destroyed by some unfortunate
combination of events and a lapse in fortitude or sympathy.

Thus, the most important relation between events in a story is “not indeed that
some earlier event necessitated a later one, but that a later event required, as its
necessary condition, some earlier one. More simply, almost every incident in a story
requires, as a necessary condition of its intelligibility, its acceptability, some
indication of the kind of event or context which occasioned or evoked it, or, at the
very least, made it possible. This relation, rather than the predictability of certain
events given the occurrence of others, is the main bond of logical continuity in any
story” (Gallie 1964: 26). Unless one is reading a detective novel, which is not so
much a story as a puzzle in narrative clothing, following a narrative is emphatically
not a kind of deduction or even induction in which successively presented bits of
evidence allow the reader to predict the ending: “Following is not identical with
forecasting or anticipating, even although the two processes may sometimes
coincide with or assist one another” (Gallie 1964: 32). Following a story is more
like the process of analysis. The intrusion of contingency into a story makes it
lifelike; the way we retrospectively make sense of or redeem contingencies in our
lives, as in the way we understand stories, is a good example of how we lend
intelligibility to things. The command to search for conditions of intelligibility is
not just a theoretical but also a practical or moral command; and we honor it not just
by constructing arguments but also by telling stories.

This view of history has two important, and closely related, philosophical
consequences. The first is that although historians and human beings in their
attempts to come to moral maturity must pursue objectivity, wie es eigentlich
gewesen war, in order to escape the provincialism and prejudices that mar histories,
they cannot give this ideal any descriptive content: it is a regulative ideal, to borrow
a Kantian term. “The historian is committed to the search for interconnectedness
and is thus drawn on by an ideal demand that expresses his ideal of the whole, of
the one historical world. But at the same time, because of the inevitable selec-
tiveness of all historical thinking, it is impossible that he should ever reach… that
ideal goal” (Gallie 1964: 61). There can be no such thing as the Ideal Chronicle.

The second is that the physicalist-reductionist account of human action which
supposes such an Ideal Chronicle recording events as they happen, in complete and
accurate detail, must be renounced, as Danto argues. There are two ways to run the
thought experiment. Suppose that the chronicle is written in a language rich enough
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to include the ways in which historians normally pick out, characterize, and link
events. (This is a generous concession to the physicalist-reductionist, who is not
really entitled to it.) This language contains a whole class of descriptions that
characterize agents and actions in terms of their future vicissitudes as well as words
like ‘causes’, ‘anticipates’, ‘begins’, ‘precedes’, ‘ends’, which no historian could
forego without lapsing into silence. But such descriptions and words are not
available to the eyewitness of events who describes them on the edge of time at
which they occur. The description of an event comes to stand in different relations
to those that come after it; and the new relations in turn may point to novel ways of
associating that event with contemporary and antecedent events or indeed to novel
ways of construing the parts of a spatio-temporally diffused event as one event. The
historian’s way of choosing beginnings and endings for narratives is her prime way
of indicating the significance of those events.

Thus to allow a sufficiently rich language for the Ideal Chronicle violates the
original supposition of how the chronicle is to be written. So let us hold the
physicalist-reductionist to his own restrictions: the chronicle must be written in
terms impoverished enough to meet the stringent conditions of its writing on the
edge of time. Then we find that it is reduced to an account of matter in motion, and
the subject matter of history, people and their actions, has dissolved (as it dissolves
in Lucretius’ epic De rerum natura) (Lucretius 2007). The chronicle is no longer
about history, and the chronicler is doing descriptive physics if he is doing anything
at all. If we want to write history, an event must have a beginning, middle, and end;
must be related to its past and future; and must be construed as significant.

2 Kitcher and Cavaillès on History

In short, history is not science, historical explanation is not scientific explanation,
historical method is not scientific method, and human action is not (merely) an
event in nature. If philosophers of science and mathematics wish to make serious
use of the history of their subjects, they must take these distinctions into account;
indeed, this accounting will be helpful because philosophy that takes history seri-
ously cannot pretend to be a science. In fact, philosophy, like mathematics, is
neither history nor science, but involves both narrative (like history) and argument
(like science), because the process of analysis involves both; the philosophical
school that tries to banish either dimension will not succeed.

Up until the last couple of decades, history has been a term conspicuously absent
in Anglo-American philosophy of mathematics (see Della Rocca 2016 for a com-
pelling explanation). The philosophy of mathematics has seemed to have little to do
with the philosophy of history, and the way in which history holds together the
modalities of possibility, contingency, and necessity in human action. Even recent
works that bring the history of mathematics to bear on the philosophy of mathe-
matics in one way or another contain little philosophical discussion of history as
such: they instead take their lead from current discussion in philosophy of science,
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where historical episodes are taken to be evidence for philosophical theses, or
instantiations of them. That is, the relation between episodes in the history of
mathematics to philosophical theses about mathematics is understood in terms of a
scientific model of the relation between scientific theory and empirical fact. The
problem with this model is that it is itself timeless and ahistorical, that is, it con-
strues the history of mathematics as a set of facts that can support or instantiate
(or falsify) a theory, and be explained (or predicted) by a theory; thus the very
historicity of mathematics is lost to philosophical view (see Brown 2008; Gillies
1993; Kitcher 1983; Maddy 2000).

This difficulty is compounded by the epistemology that most philosophers of
mathematics have chosen to work with to undergird their accounts of mathematics.
The first, an empiricist ‘naturalized epistemology’, begins with an appeal to per-
ceptual processes that, while temporal, are not historical. They are construed as
processes in nature, like those described by physics or biochemistry: the
impingement of light on organs, the transmission of electrical impulses in neurons,
etc., so although they happen in time, they take place in the same way universally,
in all times and locations. They are not historical because they do not share in the
peculiarity, idiosyncrasy, and irrevocability of historical character. The other,
rationalist alternative, truth as formal proof, evidently stands not only outside of
history but of time as well.

Mathematics is famous for lifting human beings above the contingencies of time
and history, into a transcendent, infinitary realm where nothing ever changes. And
yet philosophy of mathematics requires philosophy of history, because the dis-
covery of conditions of intelligibility takes place in history, and because we lend
ourselves to the intelligibility of things in undertaking the search. If we can borrow
Plato’s simile of ascending from the cave and Leibniz’s simile of attaining a wider
and more comprehensive point de vue of a city without the totalizing supposition of
The Good, or of God, we can begin to see how the search for conditions of
intelligibility takes place in history. If we can borrow Hegel’s dialectic or Peirce’s
creative evolution of the universe without the totalizing supposition of the end of
history, then we can begin to see how we lend ourselves to the intelligibility of
things. And if we can invoke reason or intelligibility without trying to set
pre-established limits for it, then we might arrive at a philosophy of history useful
for understanding mathematics.

What use should the philosophy of mathematics make of history? Philip Kitcher,
in his book The Nature of Mathematical Knowledge, just cited, tries to bring the
philosophy of mathematics into relation with the history of mathematics, as a quarter
of a century earlier Kuhn, Toulmin, and Lakatos aimed to do for the philosophy of
science. Yet his approach is quite ahistorical. The epistemology he offers has no
historical dimension: it is, he claims, a defensible empiricism. “A very limited
amount of our mathematical knowledge can be obtained by observations and
manipulations of ordinary things. Upon this small basis we erect the powerful
general theories of modern mathematics”, he observes, hopefully, and adds, “My
solution to the problem of accounting for the origins of mathematical knowledge is
to regard our elementary mathematical knowledge as warranted by ordinary sense

26 2 Philosophy of Mathematics and Philosophy of History



perception”. He does admit that “a full account of what knowledge is and of what
types of inferences should be counted as correct is not to be settled in advance…”
especially since most current epistemology is still dominated by the case of per-
ceptual knowledge and restricted to intra-theoretic reasoning (Kitcher 1983: 92–97).

However, his own epistemological preliminaries seem to be so dominated and
restricted: “On a simple account of perception, the process would be viewed as a
sequence of events, beginning with the scattering of light from the surface of the
tree, continuing with the impact of light waves on my retina, and culminating in the
formation of my belief that the tree is swaying slightly; one might hypothesize that
none of my prior beliefs play a causal role in this sequence of events…. A process
which warrants belief counts as a basic warrant if no prior beliefs are involved in it,
that is, if no prior belief is causally efficacious in producing the resultant belief.
Derivative warrants are those warrants for which prior beliefs are causally effica-
cious in producing the resultant belief”. A warrant is taken to refer to processes that
produce belief in the right way. Then “I know something if and only if I believe it
and my belief was produced by a process which is a warrant for it” (Kitcher 1983:
18–19). This is an account of knowledge with no historical dimension. It also
represents belief as something that is caused, for a basic warrant is a causal process
that produces a physical state in us as the result of perceptual experience and which
can (at least in the case of beliefs with a basic warrant) be engendered by a physical
process.

In a later article, “Mathematical Progress”, Kitcher makes a different, rather
more pragmatic claim about mathematical knowledge, characterizing ‘rational
change’ in mathematics as that which maximizes the attainment of two goals: “The
first is to produce idealized stories with which scientific (and everyday) descriptions
of the ordering operation that we bring to the world can be framed. The second is to
achieve systematic understanding of the mathematics already introduced, by
answering the questions that are generated by prior mathematics”. He then proposes
a concept of “strong progress”, in which optimal work in mathematics tends
towards an optimal state of mathematics: “We assume that certain fields of math-
ematics ultimately become stable, even though they may be embedded in ever
broader contexts. Now define the limit practice by supposing it to contain all those
expressions, statements, reasonings, and methodological claims that eventually
become stably included and to contain an empty set of unanswered questions”
(Kitcher 1988: 530–531). So there are two assumptions that render Kitcher’s
account ahistorical. One is that mathematical knowledge has its origins in physical
processes that cause fundamental beliefs in us (and these processes, while temporal,
are not historical). The other is that mathematics should optimally end in a unified,
universal, axiomatized system where all problems are solved and have their place as
theorems. This unified theory has left history behind, like Peirce’s end of science or
Hegel’s end of history, so that history no longer matters.

The intervention of history between the ahistorical processes and objects of
nature, and the ahistorical Ultimate System (related to the former as theory to
model, thus by the ahistorical relationship of instantiation) seems accidental.
Kitcher puts all the emphasis on generalization, rigorization, and systematization,
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processes that sweep mathematics towards the Ultimate System, with its empty set
of unanswered questions. The philosophy of mathematics of Jean Cavaillès, pro-
vides an instructive contrast here. The method of Cavaillès, like that of his mentor
Leon Brunschvicg, is historical. He rejects the logicism of Russell and Couturat, as
well as the appeal of Brouwer and Poincaré to a specific mathematical intuition,
referring the autonomy of mathematics to its internal history, “un devenir historique
original” which can be reduced neither to logic or physics (Cavaillès 1937). In his
historical researches (as for example into the genesis of set theory), Cavaillès is
struck by the ability of an axiomatic system to integrate and unify, and by the
enormous autodevelopment of mathematics attained by the increase of abstraction.
The nature of mathematics and its progress are one and the same thing, he thinks,
for the movement of mathematical knowledge reveals its essence; its essence is the
movement.

Cavaillès always resists the temptation to totalize. History itself, he claims, while
it shows us an almost organic unification, also saves us from the illusion that the
great tree may be reduced to one of its branches. The irreducible dichotomy
between geometry and arithmetic always remains, and the network of tranversal
links engenders multiplicity as much as it leads towards unification. Moreover, the
study of history reminds us that experience is work, activity, not the passive
reception of a given (see Sinaceur 1994: 11–33; Sinaceur 2013: Chap. 6; see also
Wagner 2016: Chap. 1). Thus for Cavaillès a mathematical result exists only as
linked to both the context from which it issues, and the results it produces, a link
which seems to be both a rupture and a continuity.

3 Reference in Mathematics

Current philosophical discussion of reference in mathematics is a bit hard to
characterize. Sometimes the problem of model construction is substituted for the
problem of reference; this move is favored by anti-realist philosophers. Thus the-
ories are about models, though this leaves open the issue of how models refer, or if
they do; and models are not individuated in the way that mathematical things
typically are individuated. Bertrand Russell argued a century ago that the reference
of a name is fixed by a proper definite description, an extensionally correct
description which picks out precisely the person or natural kind intended (Russell
1905: 479–493). And W. V. O. Quine argued half a century ago that the ontological
commitment of a first order theory is expressed as its universe of discourse (Quine
1953/1980: 1–19). But first order theories do not capture the objects they are about
(numbers, figures, functions) categorically, and the ‘ontological commitments’ of
higher order theories are unclear. Saul Kripke insisted that we need the notion of an
initial baptism (given in causal terms), followed by an appropriate causal chain that
links successive acts of reference to the initial act, for only in this case would the
name be a ‘rigid designator’ across all possible worlds; a rigid designator picks out
the correct person or natural kind not only in this world but in all possible worlds
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where the person or kind might occur (Kripke 1980). Hilary Putnam argued that the
ability to correctly identify people and natural kinds across possible worlds is not
possessed by individuals but rather by a society where epistemic roles are shared
(Putnam 1975). And Paul Benacerraf argued in a famous essay that linking refer-
ence to causal chains makes an explanation of how mathematics refers seem futile
(Benacerraf 1965).

In sum, it is not generally true that what we know about a mathematical domain
can be adequately expressed by an axiomatized theory in a formal language; and it
is not generally true that the objects of a mathematical domain can be mustered in a
philosophical courtyard, assigned labels, and treated as a universe of discourse.
What troubles me most about this rather logicist picture is that the difficulty of
integrating or reconciling the two tasks of analysis and reference (as well as the
epistemological interest of such integration) is not apparent, since it is covered over
by the common logical notions of instantiation and satisfaction.

The assumption seems to be that all we need to do is assign objects and sets of
objects from the universe of discourse (available as a nonempty set, like the natural
numbers) to expressions of the theory. If we carry out the assignment carefully and
correctly, the truth or falsity of propositions of the theory, vis-à-vis a ‘structure’
defined in terms of a certain universe of discourse, will be clear. In a standard logic
textbook, the universe of discourse is the set of individuals invoked by the general
statements in a discourse; they are simply available. And predicates and relations are
treated as if they were ordered sets of such individuals. In real mathematics, how-
ever, the discovery, identification, classification and epistemic stability of objects are
problematic; objects themselves are enigmatic. It takes hard work to establish certain
items (and not others) as canonical, and to exhibit their importance. Thus reference is
not straightforward. Moreover, of course, neither is analysis; the search for useful
predicates and relations proceeds in terms of intension, not extension, and the search
for useful methods and procedures cannot be construed extensionally at all. Analysis
is both the search for conditions of intelligibility of things and for conditions of
solvability of the problems in which they figure. We investigate things and problems
in mathematics because we understand some of the issues they raise but not others;
they exist at the boundary of the known and unknown.

My claim that mathematical objects are problematic (and so in a sense historical
and in another sense strongly related to practices) need not lead to skepticism or
anti-realism. We can argue, with Scott Soames inter alia, that natural language
(English, French, German, etc.) provides us with an enormous amount of reliable
information about the way the world is, what things are in it and how they turn up;
and note that we act on this information as we reason (Soames 2007). Natural
language, along with abstract mathematical structures, also allow us to bring the
disparate idioms of mathematics (which are so different from natural language) into
rational relation. So presumably mathematics enhances our information about the
world, modifying without dismissing our everyday understanding. We can claim
that discourse represents things well without becoming dogmatic, if we leave
behind the over-simplified picture of the matching up of reference and analysis as
the satisfaction of propositions in a theory by a structure.
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Things, even the formal things of geometry and arithmetic, have the annoying
habit of turning out to be irreducible to discourse. Things transcend discourse even
though of course they lend themselves to it. But their irreducibility is what makes
truth possible: we can’t just make things up or say whatever we want about things.
A true discourse must have something that it is about. The history of both math-
ematics and science shows that things typically exhibit the limitations of any given
discourse sooner or later, and call upon us to come up with further discourses.
Because of their stubborn haeccity, things are, we might say, inexhaustible. Thus
when we place or discover them in a novel context, bringing them into relation with
new things, methods, modalities of application, theories, and so forth, they require
revised or expanded discourses which reveal new truths about them.

The irreducibility of things should also lead us to pay closer attention to what I
have called subject-discourses, how they are constituted and how they function
(given that they must point beyond themselves). Given their function, they must be
truer to the individuality or specificity of things than predicate-discourses need to
be, since the function of predicate-discourses is to generalize. So they will be less
systematic and well-organized, but more expressive, messy, precise, and surprising.

Another way of putting this is that any discourse that encompasses a broad
domain of problems in mathematics or science will be internally bifurcated, since it
must integrate a subject-discourse and a predicate-discourse. Due to the inherent
disparity of such discourses, this unification will become unstable sooner or later.
Moreover, any discourse fails to exhaust knowledge about the things it concerns;
sooner or later those problematic, resistant things, and the novel (worldly and
discursive) contexts that may arise with respect to them, will generate problems that
the original discourse can’t formulate or solve. Indeed, the very desire to solve
problems via problem-reduction may bring about the situations that force the
revision, replacement and extension of discourse. We often place things in novel
contexts, or come to recognize that novel contexts can be made to accommodate
familiar things, in order to elicit new information. In sum, the model of theory
reduction, examined in detail in Chap. 4, does not do justice to the internal
bifurcation of both the reduced and reducing theories, and it does not capture the
complex relations between them; and so it does not attend properly to the ways in
which knowledge grows. Processes of problem-reduction should be examined by
philosophers alongside processes of theory-reduction; and the ways in which these
processes are ampliative should be recognized.

4 Wiles’ Proof of Fermat’s Last Theorem

Here I return to the story of Andrew Wiles and his proof of Fermat’s Last Theorem.
On the one hand, we have a narrative about an episode in the life of one man (in a
community of scholars) who, inspired by a childhood dream of solving Fermat’s
Last Theorem, and fortified by enormous mathematical talent, a stubborn will, and
the best number theoretical education the world could offer, overcame various
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obstacles to achieve truly heroic success. Indeed, the most daunting and surprising
obstacle arose close to the end, as he strove to close a gap discovered in the first
draft of his proof. On the other hand, we have a proof search which can be mapped
out and reversed into the full dress proof, though it is important to recall that the
proof is not located in any single axiomatized system. It makes use not only of the
facts of arithmetic and theorems of number theory (both analytic number theory and
algebraic number theory), but also results of group theory (specifically Galois
theory); and it exploits the system of p-adic numbers (offspring of both topology
and group theory), representation theory, deformation theory, complex analysis,
various algebras, topology, and geometry. This proof search has its own location in
history, which must be distinguished from that of Wiles’ life, for it constitutes a
path backwards through mathematical history (where earlier results make later
results possible, and where new results bring earlier results into new alignments)
and a leap that is also a rupture opening onto the future, making use of older
techniques in novel ways to investigate a conjecture that many number theorists in
fact worried could not be proved by the means available at the time.

Wiles’ proof of Fermat’s Last Theorem relies on verifying a conjecture born in
the 1950s, the Taniyama-Shimura conjecture, which proposes that every rational
elliptic curve can be correlated in a precise way with a modular form. (It is a nice
example for Carlo Cellucci’s philosophical approach, discussed in Chap. 3, because
Fermat’s Conjecture is true, if the Taniyama-Shimura conjecture is true, and this
turns out to be a highly ampliative reduction.) It exploits a series of mathematical
techniques developed in the previous decade, some of which were invented by
Wiles himself. Fermat wrote that his proof would not fit into the margin of his copy
of Diophantus’ Arithmetica; Wiles’ 108 pages of dense mathematics certainly
fulfills this criterion. Here is the opening of Wiles’ proof: “An elliptic curve over
Q is said to be modular if it has a finite covering by a modular curve of the form
X0(N). Any such elliptic curve has the property that its Hasse-Weil zeta function has
an analytic continuation and satisfies a functional equation of the standard type. If
an elliptic curve over Q with a given j-invariant is modular then it is easy to see that
all elliptic curves with the same j-invariant are modular… A well-known conjecture
which grew out of the work of Shimura and Taniyama in the 1950s and 1960s
asserts that every elliptic curve over Q is modular… In 1985 Frey made the
remarkable observation that this conjecture should imply Fermat’s Last Theorem.
(Frey 1986). The precise mechanism relating the two was formulated by Serre as
the e-conjecture and this was then proved by Ribet in the summer of 1986. Ribet’s
result only requires one to prove the conjecture for semistable elliptic curves in
order to deduce Fermat’s Last Theorem” (Wiles 1995: 443). For my brief expo-
sition of the proof here, in Chap. 5 and in Appendix B, I relied upon the original
article as well as didactic expositions and my own class notes (Darmon et al. 1997;
Li 2001, 2012, 2013, 2014; Ribet 1995).

In number theory, as we have seen, the introduction of algebraic notation in the
early seventeenth century precipitates the study of polynomials, algebraic equa-
tions, and infinite sums and series, and so too procedures for discovering roots and
for determining relations among roots or between roots and coefficients, and ways
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of calculating various invariants. The use of abstract algebra (groups, rings, fields,
etc.) in the late nineteenth and early 20th centuries leads to the habit of studying the
symmetries of algebraic systems as well as those of geometrical items, finitary
figures and infinitary spaces. The habit of forming quotients or ‘modding out’ one
substructure with respect to its parent structure often produces a finitary structure
with elements that are equivalence classes, from two quite infinitary structures. This
habit in turn suggests the use of two-dimensional diagrams characteristic of (for
example) deformation theory, where the relations among the infinitary (or very
high-dimensional) and the finitary are displayed in what might be called iconic
fashion. Abstract algebra also produces the habit of seeking in the relation of
structure to substructure other, analogous relations in different kinds of structure
and substructure. For example, the Fundamental Theorem of Galois Theory tells us
that, when G is the Galois group for the root field N of a separable polynomial
f(x) over a field F, then there is a one-one correspondence between the subgroups of
G and the subfields of N that contain F. And Representation Theory instructs us to
seek groups of matrices that will mimic in important ways the features of other
infinitary and less well-understood groups of automorphisms. Abstract algebra also
suggests the investigation of a given polynomial over various fields, just to see what
happens, as modern logic (treated algebraically) suggests the investigation of
non-standard models, just to see what they are like.

So what is an aspect of reference for one number theorist, like Barry Mazur who
takes his orientation from algebraic topology and cohomology theory, may have
played the role of analysis for other, more traditional number theorists like Eichler
and Shimura, who begin from the arithmetic theory of Abelian varieties. What
preoccupies one number theorist may remain tacit for another, and vice versa, so
that the combination of their results (as in the case of Wiles’ proof) forces the
articulation of ideas which had up till then remained out of focus, beyond the
horizon of attention. Likewise, what remains tacit for the number theorist may be
articulated by the logician, as we shall see in Chap. 5. For what remains tacit in one
approach (given the strengths and limitations of a given mathematical idiom) must
often be made explicit in another in order to bring the two approaches into pro-
ductive relation, as novel strategies of integration are devised.

I will sketch the proof of Fermat’s Last Theorem in terms of two stages, briefly.
The first stage concerns the result of Eichler-Shimura, which proves that given a
certain kind of modular form, we can always find a corresponding elliptic curve.
(This stage is explained at length in Chap. 5, with a glossary (and adumbrated in
Appendix B), and its philosophical implications explored.) The second stage con-
cerns Wiles’ result, proving the Taniyama-Shimura conjecture, that given a certain
kind of elliptic curve, we can always find a certain kind of modular form. (To
explain this stage, I would have to write another book; Appendix A offers some
useful historical background.) Frey conjectured and Ribet proved that Fermat’s Last
Theorem follows from this correspondence, carefully qualified. (Ribet shows that
the correspondence rules out the possibility of counterexamples to Fermat’s Last
Theorem; see Ribet 1990). The strategy that figures centrally in the Eichler-Shimura
proof is the strategic use of L-functions (generalizations of the Riemann zeta
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function, and Dirichlet series), where given a certain kind of modular form f we
have to construct a corresponding, suitably qualified, elliptic curve E. Another
equally important strategy is to use representation theory in tandem with defor-
mation theory, where p-adic families of Galois representations figure centrally in
the proof of the Taniyama-Shimura conjecture. Given a certain kind of elliptic
curve E, we investigate p-adic representations in order to construct a corresponding,
suitably qualified, modular form f.

5 Wiles’ Analysis Considered as History

Andrew Wiles’ fascination with Fermat’s Last Theorem began when he was
10 years old, and culminated on the morning of September 19, 1994, when he
finally put the last piece of the grand puzzle in place. In order to establish the
isomorphism between TR and RR, he had tried to use an approach involving
‘Iwasawa theory’, but that had been unsuccessful; then he tried an extension of the
‘Kolyvagin-Flach method’, but that attempt had stalled. While trying to explain to
himself why this new approach didn’t seem to be working, he realized (inspired by
a result of Barry Mazer’s) that he could use Iwasawa theory to fix just that part of
the proof where the Kolyvagin-Flach approach failed; and then the problem would
be solved. On that morning, something happened that was radically unforeseeable
(even by Wiles, who was very discouraged and did not believe it would happen),
and yet, once it actually took place, presented the kind of necessity that mathe-
matical results present. It disrupted mathematics by changing its transversal rela-
tions, for now modular forms were proved to be correlated in a thoroughgoing way
with elliptical curves, and at the same time established a new order. The unfore-
seeability was not merely psychological, subjective, and merely human; the dis-
ruption lay in the mathematical objects as well as in the mind of the mathematician.

What Wiles did on that morning can only be explained in terms of the mathe-
matics. As Cavaillès argues, “I want to say that each mathematical procedure is
defined in relation to an anterior mathematical situation upon which it partially
depends, with respect to which it also maintains a certain independence, such that the
result of the act [geste] can only be assessed upon its completion” (Cavaillès and
Lautmann 1946: 9). A mathematical act like Wiles’ is related to both the situation
from which it issues and the situation it produces, extending and modifying the
pre-existing one. It is both a rupture and a continuation, an innovation and a rea-
soning. To invent a new method, to establish a new correlation, even to extend old
methods in novel ways, is to go beyond the boundaries of previous applications; and
at the same time in a proof the sufficient conditions for the solution of the problem
are revealed. What Cavaillès calls the fundamental dialectic of mathematics is an
alliance between the necessary and the unforeseeable: the unforeseeability of the
mathematical result is not appearance or accident, but essential and originary; and
the connections it uncovers are not therefore contingent, but truly necessary.
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Another way of describing Cavaillès’ insight is to say that he is trying to
uncouple the connection between necessity and the Kantian a priori, which offers
only Kantian analysis, the unpacking of what is already contained in a concept, or
synthesis, which must be referred to the mind of the knower. What happened when
Wiles finally proved Fermat’s Last Theorem? Just at that point, the unsolved
problem was solved, the unforeseeable flipped over and was seen at last, the
indeterminately possible became the determinately necessary. It was at once an
event in the biography of Andrew Wiles: his alone was the consciousness in which
this amazing peripety or reversal took place, this discovery, a change from igno-
rance to knowledge. No one else could have shared that discovery as it happened
for the first time, that singular event, for no one can inhabit the mind of another: as
Leibniz said, we are windowless monads. Yet both the dramatic structure the act
already possessed, and the argumentative structure inherent in the proof underlay
the story Wiles recounted over and over the next day, to himself (checking the
proof), then to his wife, then to his colleagues, then to the world, in different
fashions. And the story-argument didn’t change thereafter, as it was reenacted in the
thoughts of those mathematicians who knew enough number theory to check the
proof, all of whom found it successful.

The retelling, which includes his narrative of the proof-search, and the published
108 page proof, is marked by the idiosyncracy and irrevocability of that historical
moment in one obvious way: Wiles could only make use of results that had been
discovered up to that point in history when he finished devising his proof. The
Taniyama-Shimura conjecture requires the availability of modular forms, which
rests on the work of Poincaré in exhibiting their infinite symmetry, which requires
the work of Klein and Riemann in formulating hyperbolic space as devised by
Lobachevsky. What is requisite for formulating and solving a problem lies only in
the past, made available by instruction or textbook. Fermat could formulate the
problem of the Last Theorem, but despite his boast he could not have solved it.

6 The Math Genie

The incoherence of the notion of an Ideal Chronicle bears not only on the reality of
human beings and their acts, but on the possibility of giving a complete speech
about the totality of human action because the very description of an event is
interpretive, because one cannot eliminate from the description of events terms that
link it to both its past and its future, and because the description of an event changes
with time as the event comes to stand in different relations to events that come after
it. Likewise, the notion, suggested by Kitcher, of some Ultimate System in math-
ematics is also incoherent, not because the reality or intelligible unity of mathe-
matical things is doubtful, but because we cannot give a complete speech or formal
theory about them. The very description of a mathematical object is interpretive,
because it is given against a background of antecedent knowledge and by means of
a certain notation; one cannot eliminate from its description terms that link it to past
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problems and problems still to be solved; and the relations and correlations in which
it stands to other objects change over time, as new objects are discovered and older
objects are forgotten.

Like perceived things, mathematical things are problematic. Just as perceived
things call for analysis in order to uncover the conditions of their intelligibility, so
mathematical things call for analysis in order to uncover the conditions of solvability
of the problems in which they are always embedded. But to be problematic is an
historical feature. Objects are problematic when we understand enough about them
to see with some precision what we don’t yet know about them. And as soon as we
learn something new about them, in virtue of that very discovery they typically come
to stand in novel, unforeseen relations with other objects that make them problematic
again. As I showed in Chap. 1, when the classical problems concerning the circle
were solved during the 17th century by the new analytic geometry and the
infinitesimal calculus, those same discoveries relocated the circle in relation to
transcendental curves (especially sine and cosine), the definition of curvature and the
generalized notion of a surface, etc., and re-embedded it in a host of new problems.
We know what we know about the circle up to this point in history, with the means at
our disposal as those means have been deployed; and we can’t yet know other things
about it, though we can question, postulate, conjecture, hypothesize, acts that project
us towards that future though we are not quite yet there. Asking questions and
making conjectures is a way of approaching knowledge that we do not yet have: so
analysis is not just a pathway into the history of mathematics (though it is that), but
also an unfinished bridge to the future. The relation between a problem and its
conditions of solvability may be lifted, as it were, out of history: this is what we do
when we turn the search for a proof into a proof. Yet the fact that the problem was a
problem and is now a solved problem, is a fact that belongs as much to history as to
mathematics. Insofar as every theorem may be said to be a solved problem, the same
holds true for theorems (see Hersh 1999).

There are no problems without problematic things; problems exist in mathe-
matics because we encounter things that trouble us. What would a problem be about
if it weren’t about some thing? What would a problem be without its aboutness?
Versions of Fermat’s Last Theorem existed before Fermat, as a range of problems
about positive whole numbers (or rather, triples of them); Fermat turned it into a
problem about a set of polynomial equations; Andrew Wiles turned it into a
problem about a correlation between elliptic curves and modular forms. The evo-
lution of the problem depends on rational relations among different kinds of objects:
numbers serve as conditions of intelligibility for polynomial equations, and the
latter for the Taniyama-Shimura correlation. Wiles’ result can be read backwards, to
hold for the equations and the relevant number-triples; the aboutness of a problem
may change, but the aboutness-apropos-earlier-things remains as a condition of the
intelligibility of the problem. And there are no things without problems. Things,
even they serve as conditions of intelligibility of other things, don’t wear the
conditions of their own intelligibility on their faces; it is always a problem for
reflection to find the conditions of intelligibility of a thing.
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Indeed, if a mathematician could magically reach into the future and bring back
future results, then there would be no activity called solving problems. The
appearance of mathematical problems as problems requires history, and history
demands our patience as we wait to see how things will turn out. Let us suppose that
there is an Ultimate System, a complete system of mathematics independent of the
accidents of history, presided over by the Math Genie. This genie comes to the aid of
mathematicians and maybe even philosophers who rub the relevant lamp: he brings
the solution to any problem that troubles you in the form of information about the
objects involved. He can violate history because he has access to the Ultimate
System. Imagine what this genie might have done for Fermat in the mid-seventeenth
century, when in fact the mathematical resources for proving his Last Theorem were
lacking! He would have set out Andrew Wile’ proof for him, but of course to ensure
that Fermat understood the proof, the genie would have had to teach him, perhaps in
a series of seminars, all the 18th, 19th, and 20th c. mathematics linking what he knew
to what Wiles knew, perhaps keeping him alive by philtres until the process could be
completed. In this case, the genie would have to offer information, not just about
numbers and equations, but about the correlation between modular forms and elliptic
curves. He would have to bring numbers into rational relation with objects that,
given the constraints of 17th c. mathematics, were not even thinkable.

However, we have just told the story from the point of view of the Math Genie
(and tacitly assumed that he is located in our era, cleverly disguised as eternity). We
must tell it from Fermat’s point of view; but then we see that Fermat could not have
made his request successfully in the first place. Suppose that Fermat had asked the
Math Genie to bring back the solutions to his problem, as he himself enunciated it,
for the genie might have required that all requests be precisely specified. In that
case, he could hardly have brought back Wiles’ result, for though Wiles showed
that it entailed a proof of Fermat’s Last Theorem, Fermat could never have asked
the genie for a proof of the Taniyama-Shimura conjecture and its reduction to his
problem. Alternatively, the genie might have acceded to his general request to bring
back problems related to the natural numbers: but then he would have had to go into
the future and bring back all such problems involving all the new objects that
include the natural numbers in their genealogy. This is a limitless prospect: by now
we have seen enough of analysis to know that an analysis typically uncovers new
objects and problems: there is always tacit knowledge at the metalevel to enunciate,
new generalizing abstractions to create (and thereby to lose or forget other things),
new correlations to explore, and so forth. Fermat would have been swamped.

So either Fermat can’t ask for what he wants; or to the extent that he can ask for
it, the genie can only offer him an unsurveyable infinity, without any kind of
closure, of solved problems. The incoherence of supposing that mathematics can be
liberated from the accidents of history, that all problems might be solved and an
Ultimate System projected in which “the set of unanswered problems would be
empty” shows that the historical location of a problem and the way in which the
objects involved in it are problematic is not accidental but essential to the problem
as such. Problems can only appear in a situation where some things are known and
some things are not yet known; the enunciation of a problem is just saying what
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precisely is not known against the background of what has been discovered so far,
and suggestions about how to proceed to solve the problem require even greater
precision. Moreover, problems and their solutions are the articulation of mathe-
matics: they provide it with the intelligible structure that may be written afterwards
as theorems and axioms that organize theorems. The Math Genie is a useful fiction,
like Descartes’ Evil Demon, to show the incoherence of an idea, in this case, that of
mathematics without problems. The thought experiment just entertained shows at
least two reasons why there cannot be a complete speech about mathematical
things, any more than there can be a complete speech about human actions. (And
this is no more a reproach to the reality of mathematical things than it is to the
reality of who we human beings are and what we do.) One is that there are many
different kinds of mathematical things, which give rise to different kinds of prob-
lems, methods, and systems. The other is that mathematical things are investigated
by analysis, which is a process at once logical and historical in which some things,
or features of things, that were not yet foreseen are discovered, and others are
forgotten. Indeed, these two aspects of mathematics are closely related. For when
we solve problems, we often do so by relating mathematical things to other things
that are different from them, and yet structurally related in certain ways, as when we
generalize to arrive at a method, or exploit new correlations. We make use of the
internal articulation or differentiation of mathematics to investigate the intelligible
unities of mathematics. To put it another way, just as there is a certain discontinuity
between the conditions of solvability of a problem in mathematics and its solution
(as Cavaillès noted), so there is a discontinuity between a thing and its conditions of
intelligibility (as Plato noted). An analysis results in a speech that both expresses,
and fails to be the final word about, the thing it considers.
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Chapter 3
Rethinking Ampliative Reasoning

What can a philosopher of mathematics say about ampliative reasoning, in order
both to acknowledge the importance of the canons of deductive logic, and to
explain why reason always seems to go beyond those canons? In this chapter, I
briefly explore two historical episodes, the investigation of a certain transcendental
curve (the catenary), and the early development of complex analysis, which
highlight the disparity of reference and analysis in mathematical research, and how
difficult and rewarding it is to address that disparity; and in each section I bring in
the interesting ideas of a few of my contemporaries (with whom I agree and
disagree) to develop the exposition: philosophers of mathematics Karine Chemla,
Carlo Cellucci, and Danielle Macbeth, and philosophers of education Kieran and
David Egan. In the following two chapters, I examine a series of case studies drawn
from number theory to further develop and defend my ideas about analysis and
ampliative reasoning in mathematics. I chose to work on number theory because
even today many philosophers still suppose that the great vision of theory reduction
that we find in the works of Russell and Whitehead, and Hempel and Carnap, is at
least plausible as far as arithmetic is concerned. I will show that the constricting
vision of arithmetic as a set of truths deducible from a set of axioms not only cannot
account for the development of number theory, it also cannot even account for
schoolroom arithmetic in the sense intended, even though logic sheds interesting
light on arithmetic and number theory more generally. But the interplay between
logic, arithmetic and number theory makes much more sense, and accords better
with the practice of mathematicians, when it is understood as problem-solving that
increases the content of mathematical knowledge, in logic, set theory, and number
theory, in part because of the disparity among those highly specialized languages.

Moreover, the interaction of number theory with real and complex analysis,
algebra, and topology continues blithely and productively today without concern for
the strictures of formal logic, and yet does not go astray. Methods of problem
solution are local (dependent on the peculiar features of certain kinds of mathe-
matical objects, modalities of application, iconic conventions and symbolic idioms)
and hybrid (crossing fields and exploiting polyvalences and ambiguities, a crossover
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that typically requires certain kinds of abstraction) and generalizing (invoking new,
larger domains in which the problem-solving can proceed). So there is a dialectic
between the local and the general, the referent and its analytical surround, upstairs
and downstairs, the original idiom and the translation, in processes of discovery in
mathematics, which ironically combines (as Cavaillès saw) with the discovery of
necessary truths. But the presence of necessary truths stems from the peculiarly
determinate and formal nature of mathematical things, and does not mean that
deductive logic (with its own specific kinds of necessity) is the correct and single
vehicle for the expression of mathematical reasoning. It only means that deductive
logic is a branch of mathematics, like set theory and category theory; we have to give
up the idea that those branches can provide mathematics with foundations or that
mathematics needs foundations. If we pay attention to the problem of reference, we
see that the various idioms of mathematics provide powerful but intensely local tools
(in one sense) and models (in another sense) for solving problems. They only work
well for representing certain kinds of things and helping to solve certain kinds of
problems; to be transported, they must also be transformed, and the language by
which that transformation may be conveyed is natural language. Oddly, natural
language is very limited as a means of expression for mathematical problems; but we
need to use it to bring disparate mathematical idioms into effective partnerships for
solving problems. Thus, in principle there cannot be a single idiom for the expres-
sion of mathematics, much less mathematical physics.

We can see this in the pages of Descartes’ Geometry, where French expository
prose (and later, van Schooten’s Latin) brings the import of the diagrams, ratios and
proportions, formalized tracing instruments, and polynomial equations into rational
relation. Problem-solving often occurs when a problem arises in one domain, but
cannot be solved there, so that other domains are annexed in the service of
problem-solving; the unification of arithmetic and geometry by Descartes’ new
algebra is a good example. Numbers (natural numbers, integers, rationals and
algebraic numbers all figure in this narrative at different stages) are different in kind
from geometric figures. To solve problems related to geometric figures, the Greeks
reasoned in diagrams, establishing ratios and proportions among figures and parts
of figures. To solve problems related to arithmetic, early modern Europeans learned
to calculate using Indo-Arabic numerals and the techniques we all learn in primary
school, which depend on the positional notation that allows a mere ten symbols
(including 0) to stand for all the natural numbers. Descartes introduced a novel way
of correlating numbers and line segments; his demonstrations exploit this novelty as
well as Euclidean results. Thus not only do they juxtapose geometric figures with
ratios and proportions, and polynomials (new objects precipitated by algebra) and
equations; they superimpose interpretations onto the diagrams so that they must be
read at once as about relations among line segments but also as about the triangles
and circles of Euclid. The line segments are read at once as geometrical (Euclidean)
items, as numbers (this transforms the concept of number), and as placeholders (this
motivates the acceptance of polynomials as objects in their own right) (see
Grosholz 1991: Chaps. 1 and 2). Thus polynomials, later on in number theory,
come to function as very important links between different fields: over the rationals,
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a polynomial equation may mean a set of discrete points, while over the real
Euclidean plane it means a curve and over the complex plane it means a Riemann
surface.

1 Chemla: The Catenary

In her edition and translation (into French) of Les neuf chapitres, the Chinese
mathematical classic, Karine Chemla argues that the organization of the book
should not be read as a mere compendium of problems which exhibits a regretable
‘lack of axiomatization’ (see Chemla and Shuchun 2004; Grosholz 2005). Its
strikingly non-Euclidean organization on the contrary deserves careful study, for it
is rather the careful exploration of the meaning of procedures and algorithms in
terms of problems that exhibit their correctness, clarify their domain of application,
and indicate how that domain might be extended. Moreover, the emphasis is on
explaining why a result is correct, not just demonstrating that it is correct. The
working out of problems thus typically exhibits intermediary steps in a process of
reasoning that contributes to the meaning of the final result, and indicates how one
might go on from there. The study of Chemla’s ideas about the Chinese tradition a
decade ago helped me to see Leibniz’s notion of analysis as an art of both discovery
and justification in mathematics, which aims for generalization rather than
abstraction, and explanation rather than formal proof. This characterization may
seem odd to those whose view of Leibniz as the champion of formal proof was
shaped by Bertrand Russell and Louis Couturat, and the later 20th c. philosophers
who interpreted Leibniz under their influence. However, an attentive reading of
Leibniz’s own practice as a mathematician supports my claim, as do many of his
philosophical reflections on that practice. I have made this case in an earlier book,
apropos his treatment of various transcendental curves (Grosholz 2007: Chap. 8).
And to this exploration I return here.

When Leibniz investigates a novel transcendental curve, he treats it as what
Chemla would call a canonical object, in order to exhibit procedures or the algo-
rithms that can be elicited from them. The exhibition of the meaning of procedures
and the correctness of algorithms in terms of paradigmatic problems and canonical
objects for Leibniz typically involves the combination of distinct modes of repre-
sentation, including figures that exhibit spatial articulation, and descriptions of how
to reason both upwards and downwards. It is a progressive and pedagogical search
for the reasons that underlie general procedures and the constitution of objects, a
search for deeper as well as broader understanding.

For Leibniz, the key to a curve’s intelligibility is its hybrid nature, the way it
allows us to explore numerical patterns and natural forms as well as geometrical
patterns; he was as keen a student of Wallis, Huygens, and Cavalieri as he was of
Descartes. These patterns are variously explored by counting and by calculation, by
observation and tracing, and by applications of the language of ratios and pro-
portions on the one hand and the new algebra on the other. To think them all

3 Rethinking Ampliative Reasoning 41



together in the way that interests Leibniz requires the infinitesimal calculus as an
ars inveniendi. The excellence of a characteristic for Leibniz lies in its ability to
reveal conditions of intelligibility: for a transcendental curve, those conditions are
arithmetical, geometrical, mechanical, and algebraic. What Leibniz discovers is that
this ‘thinking-together’ of number patterns, natural forms, and figures, where his
powerful and original insights into analogies pertaining to curves considered as
hybrids can emerge, rebounds upon the very algebra that allows the
thinking-together and changes it. The addition of the new operators d and

R
, the

introduction of variables as exponents (which changes the meaning of the vari-
ables), the consideration of polynomials as meaningful objects in themselves, and
the entertaining of polynomials with an infinite number of terms, are all examples of
this. Indeed, the names of certain canonical transcendental curves (log, sin, sinh,
etc.) become part of the standard vocabulary of algebra and analysis.

This habit of generalization is evident throughout Volume I of the VII series
(Mathematische Schriften) of Leibniz’s works in the Berlin Akademie-Verlag
edition, devoted to the period 1672–1676 (Leibniz 1990). As M. Parmentier
admirably displays in his translation and edition Naissance du calcul différentiel, 26
articles des Acta eruditorum, the papers in the Acta Eruditorum taken together
constitute a record of Leibniz’s discovery and presentation of the infinitesimal
calculus. These papers should be read in the context of Parmentier’s French
translation of Eberhard Knobloch’s important edition of De quadratura arithmetica
circuli ellipseos et hyperbolae cujus corollarium est trigonometria sine tabulis,
where the integration of certain conics are shown to generate transcendental curves
(see Leibniz 1989, 1993, 2004; Debuiche 2013a, b). These texts should be read not
just as the exposition of a new method, but as the investigation of a family of related
canonical items, that is, algebraic curves as well as transcendental curves, which
prove to be of supreme importance for the interaction of mathematics and physics in
the next two centuries. A new taxonomy of curves arises in these pages, where
sequences of numbers alternate with geometrical diagrams accompanied by ratios
and proportions, and with arrays of derivations carried out in Cartesian algebra
augmented by new concepts and symbols.

For example, “De vera proportione circuli ad quadratrum circumscriptum in
numeris rationalibus expressa,” which treats the ancient problem of the squaring
of the circle, moves through a consideration of the series p/4 = 1 − 1/3 + 1/5 −
1/7 + 1/9… to a number line designed to exhibit the finite limit of an infinite sum.
Various features of infinite sums are set forth, and then the result is generalized
from the case of the circle to that of the hyperbola, whose regularities are discussed
in turn. The numerical meditation culminates in a diagram that illustrates the
reduction: in a circle with an inscribed square, one vertex of the square is the point
of intersection of two perpendicular asymptotes of one branch of a hyperbola whose
point of inflection intersects the opposing vertex of the square. The diagram also
illustrates the fact that the integral of the (algebraic) hyperbola is the (transcen-
dental) logarithm. Integration takes us from the domain of algebraic functions to
that of transcendental functions; this means both that the operation of integration
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extends its own domain of application (and so is more difficult to formalize than
differentiation), and that it brings the algebraic and transcendental into rational
relation (Leibniz 1682, 1989: 61–81).

Throughout the 1690s, Leibniz systematically investigates mathematics in
relation to mechanics, deepening his command of the meaning and uses of differ-
ential equations, transcendental curves and infinite series. In the “Tentamen
Anagogicum,” Leibniz discusses his understanding of variational problems, fun-
damental to physics since, as he hypothesizes, all states of equilibrium and all
motion occurring in nature are distinguished by certain minimal properties; his new
calculus is designed to express such problems and the things they concern. The
catenary is one such item; indeed, for Leibniz its most important property is the way
it expresses an extremum, or, as Leibniz puts it in the “Tentamen Anagogicum,” the
way it exhibits a determination by final causes that exist as conditions of intelli-
gibility for nature (Leibniz 1962, VII: 270–279). The catenary also turns out to be
the evolute of the tractrix, another transcendental curve of great interest to Leibniz;
thus it is intimately related to the hyperbola, the logarithmic and exponential
functions, the hyperbolic cosine and sine functions, and the tractrix; and, of course,
to the catenoid and so also to other minimal surfaces.

Leibnizian analysis lends itself to generalization (in Chemla’s sense) in mathe-
matics. Generalization starts from a set of solved problems, and asks how suc-
cessful procedures may be extended to new problems and how their success may be
explained. Problems involve problematic items, mathematical things that are
intelligible but not wholly understood: a right triangle may be well defined, but we
are still far from understanding the relation among its legs and hypotenuse. We may
understand the relation among its legs and hypotenuse, but we are still far from
understanding how a family of right triangles inscribed in a circle can define the
transcendental functions sine and cosine. We may express the relation among its
legs and hypotenuse in an equation, but we are still far from understanding the
conditions under which whole number solutions to that equation may or may not
exist. In the course of mathematical history, certain items (like the right triangle and
the circle) prove to be canonical; canonicity is not an intrinsic quality that we
discern by a sixth sense, by ‘intuition,’ but a feature of items that we discover in
mathematical practice. Transcendental curves like sine, cosine and logarithm, and
the catenary and tractrix, were not canonical for the Greeks, who were aware of just
a few transcendental curves, as it were by accident. They became canonical only in
the 17th century, once their important geometrical and mechanical properties were
discerned, and their relations to each other and to the conic sections were studied,
by means of novel mathematical idioms.

Leibniz characterizes his own mathematical practice vis-à-vis Descartes as a
generalizing search for the conditions of intelligibility of canonical items, and the
conditions of solvability of the problems in which those items are involved. In the
introductory paragraph of his essay on the catenary, “De la chainette,” he writes,
“The ordinary analysis of Viète and Descartes consisted in the reduction of prob-
lems to equations and to curves of a certain degree… M. Descartes, in order to
maintain the universality and sufficiency of his method, contrived for that purpose
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to exclude from geometry all the problems and all the curves that one couldn’t treat
by that method, under the pretext that they were only mechanics.” This kind of
exclusion, however, cuts off the process of generalization artificially, and Leibniz
criticizes it. “But since these problems and curves can indeed be constructed or
imagined by means of certain exact [tracing] motions, and since they have
important properties and since nature makes frequent use of them, one might say
that he [Descartes] committed an error in doing this, rather like that with which we
reproach some of the Greeks, who restricted themselves to constructions by ruler
and compass, as if all the rest were mechanics” (Leibniz 1692, my translation).

By contrast, Leibniz is inspired by the cogency and urgency of the excluded
problems and curves to look for ways of expressing them in useful form and
discovering conditions of solvability for them; he baptizes them ‘transcendental’
problems and curves, because they go beyond ordinary algebra. “This is what he
[Leibniz] calls the analysis of infinites, which is entirely different from the geometry
of indivisibles of Cavalieri, or Mr. Wallis’ arithmetic of infinites. For the geometry
of Cavalieri, which is by the way very restricted, is attached to figures, where it
seeks the sums of ordinates; and Mr. Wallis, in order to facilitate research, gives us
by induction the sums of certain sequences of numbers: by contrast, the new
analysis of infinites doesn’t focus on figures or numbers, but rather on general
magnitudes, as ordinary algebra does. But it [the new analysis] reveals a new
algorithm, that is, a new way to add, subtract, multiply, divide and extract roots,
appropriate to incomparable quantities, that is, to those which are infinitely big or
infinitely small in comparison with others. It employs equations involving finite as
well as infinite quantities, and among those that are finite, allows equations with
exponents that are unknowns, or rather, instead of powers and roots, it makes use of
a novel appropriation of variable magnitudes, which is variation itself, indicated by
certain characters, and which consists in differences, or in the differences of dif-
ferences of certain degrees, to which the sums are reciprocal, as roots are to powers”
(Leibniz 1692, my translation).

One can react to the transcendence or sublimity or inhumanity of mathematical
things by turning against the situation. One can become a sophist, content to shift
appearances at the first level of the Divided Line, or a materialist, content to remain
with the sensible at the second level, or an empiricist, who hopes that the third level
of the line is just an abstractive or constructive extension of the second. And these
are natural choices, to try to shelter oneself within the ambit of the human, the
computable, the visible. But philosophers who try to rest within what can be
encompassed by finitary construction and perception in the end somehow never rest
easy, and in any case never do justice to mathematics. They are plagued by diffi-
culties (revealed by reductio arguments), unanswerable questions (revealed by
burden of proof arguments), and by the way even the constructions and perceptions
to which they cling seem willy-nilly to point beyond themselves. The other option,
besides fleeing reason altogether, is to engage in analysis, that is, to recognize the
top half of the Divided Line and try to find a philosophical speech about it, which
acknowledges that it is real, that it stands in rational relation to us, and that its
reality is different from ours. Even the finitary parts of mathematics involve the
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infinitary and even the visible world-system involves the invisible, as conditions of
intelligibility.

The project of philosophical analysis is also self-reflective: it puts into question
the relationship of the human mathematician (or philosopher) to the things of
mathematics. We must not only try to explain the way in which knowledge unifies
but also the way in which it holds things apart. Human beings, and their perceptions
and constructions, are finitary and fleeting; but the things of mathematics are
infinitary and eternal. If we try to reduce mathematics to merely human terms, to
perceptions or finitary constructions, we avoid rather than confront the question of
our rational relation to it, and the differences involved in that relation. In a sense,
such confrontation—which sets us beside the working mathematician—is an exer-
cise of our freedom, something about us which is after all infinitary and eternal (see
Vuillemin 1997). If we pay attention to how differentiation and rational relatedness
accompany each other, then not only the systematic unity of mathematics becomes
salient but also the way in which systematic unities change over time as mathe-
maticians explore the analogical likenesses of unlike things, or conversely try to
articulate and conserve the intrinsic features of things apart from pressures exerted
upon them by impinging analogies, or finally even try to consider likenesses in
themselves, as novel methods and systems precipitate new items. In other words,
history of mathematics becomes pertinent to philosophy of mathematics.

Logic, especially the expressive and subtle instrument of modern predicate logic,
helps philosophers to examine mathematical systems considered as fixed and stable;
but history provides evidence to help us understand how and why mathematics
changes, and why it always moves beyond systematization. More generally, history
is pertinent to the question of how mathematics brings very different kinds of things
into determinate but revisable rational relation, and how this bears upon our
philosophical understanding of rationality itself. Mathematics inspires us because it
is at once inhuman and intelligible; it outstrips our finitary powers of construction,
our perception, even our logic, at every turn, and nevertheless guides us because it
stands in rational relation to us. The things of mathematics are problematic and yet
intelligible, severely constraining what we can say about them; however, because
they are so determinate, they render the little that we do manage to say about them
necessary. Any finite thing in mathematics is at the same time an expression of the
infinite, and the infinitary things that occur in our mathematics find finitary
expression. This tension between the infinite and the finite in all of mathematics
ensures that our knowledge, despite its precision, must remain incomplete.
Mathematics also stands at the crossroads of history and logic: essential as logic is
to the articulation of relations among mathematical items, the very constitution of a
problem in mathematics is historical, since problems constitute the boundary
between the known and the yet-to-be-discovered. We cannot explain the articula-
tion of mathematical knowledge into problems and theorems without reference to
both logic and history.

The philosophical reconstruction of mathematical practice is thus a delicate task,
which requires scholarly familiarity with the detail of the mathematics of a given
period, as well as the imaginative ability to go beyond the perspective of the
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mathematicians of that period and a respectful sense of their rationality. The
problem with logic is its penchant for totalization and its intolerance of history; the
outcome of mathematical progress is not always, and perhaps only rarely, an
axiomatized system, where solved problems recast as theorems follow deductively
from a set of special axioms, logical principles, and definitions. Careful study of the
history of mathematics, even 20th c. mathematics, may discover that mathemati-
cians pursue generality as often as they pursue abstraction, and sometimes prefer
deeper understanding to formal proof. An axiomatic system is not the only model of
theoretical unity, and deduction from first principles is not the only model for the
location and justification of mathematical results.

2 Cellucci and Macbeth: Analysis and Productive Idioms

Carlo Cellucci began his career as a logician: he was Professor of Logic at the
University of Rome La Sapienza for thirty years, and has only recently retired.
However, very early on he began to chafe at the restrictions of mathematical logic
as 20th c. philosophers applied and understood it, and to criticize the limited view
of reasoning in mathematics and the sciences those applications engendered. His
critique of the dogmas of logicism was accompanied by a search for alternative
views, which he found in the history of logic and philosophy (the method of
analysis) and in modern anthropology and neuroscience (a form of naturalism). In
four books published in Italian over a period of ten years with the distinguished
Roman press Laterza, he offers his alternative to the project of modern logic
(Le ragioni della logica), his alternative to mid-twentieth century philosophy of
mathematics (Filosofia e matematica), a detailed critique of most of the major
schools of the latter (La filosofia della matematica del Novecento), and an account
of his version of ‘naturalized epistemology’ (Perché ancora la filosofia).
A presentation of the full range of his ideas was recently published in English,
Rethinking Logic: Logic in Relation to Mathematics, Evolution and Method
(Cellucci 1998, 2002, 2007, 2008, 2013).

The most important aspect of his work, I would argue, is his historical and
philosophical account of the method of analysis. As Chemla works out her ideas in
reference to classical Chinese mathematics, Cellucci re-reads the works of Plato and
Aristotle, noting their radical conception of analysis: it is a method of
problem-solving which is first and foremost ampliative. The method of analysis
enlarges knowledge, going beyond what is currently accepted and what is given in
the formulation of the problem. Thus he writes, “The analytic method is the method
according to which, to solve a problem, one looks for some hypothesis that is a
sufficient condition for solving it. The hypothesis is obtained from the problem, and
possibly other data already available, by some non-deductive rule, and must be
plausible, in a sense to be explained below. But the hypothesis is in its turn a
problem that must be solved, and is solved in the same way… Thus solving a
problem is a potentially infinite process” (Cellucci 2013: 5).
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The heart of Cellucci’s critique of 20th c. logicism is that it seeks to confine
reason in the closed box of an axiomatic system within which we must reason
deductively and where nothing new can ever be discovered; by contrast, the ana-
lytic method requires and expands an open space where research may and indeed
must extend indefinitely. Problem-solving, he argues, not only in the empirical
sciences but also in mathematics, is inherently ampliative. Moreover, axioms can
never be secured by ‘intuition,’ and the great mid-century meta-theorems of
mathematical logic, specifically the theorems of Gödel, place severe limits on its
ability to provide foundations. Thus Cellucci rejects the aims and intent of math-
ematical logic, which he attributes to Frege (perhaps unfairly, see below), and
summarizes as follows. The purpose of mathematical logic is to provide a secure
foundation for mathematics, while correctly modeling the method of mathematics,
that is, the axiomatic method. Thus philosophers and logicians need only be con-
cerned with deductive justification, and can ignore the processes of discovery as
merely psychological, irrational and idiosyncratic, though in a pinch one may
appeal to ‘intuition.’ They can also feel free to ignore the history of mathematical
research programs pursued by individuals alone in their studies or exchanging ideas
in institutional settings. Cellucci notes that this view was shared by Hilbert, Russell,
Tarski and Gödel, whose hopes were, of course, eventually dashed.

Cellucci also explores varieties of ampliative reasoning, comparing the analytic
method as Plato understood it with the analytic-synthetic method as Aristotle
understood it, and contrasting both with the analytic-synthetic method as 20th c.
philosopher-logicians have construed it. Since new demonstrations change our
understanding of the meaning of a problem and its objects, solving a problem is
both a process of discovery and a process of justification. Thus, he argues, the
analytic-synthetic process identified by, e.g., Hintikka and Remes in their rather
logicist reading of Aristotle and Pappus in The Method of Analysis provides an
impoverished account, according to which analysis should always be reversible into
a deduction from already given axioms, or their deductive consequences, consid-
ered as premises (see Hintikka and Remes 1974). But then analysis would be
carried out in a closed conceptual space, and once a proof was offered (which
‘justified’ the result) there would be no further need of other demonstrations.

Cellucci’s careful account of analysis repays study. Most important, he makes
clear that the hypotheses needed for solving a problem need not belong to the field
of the problem, but may belong to other fields. The search for a solution to a
problem is carried out in an open space (not the closed space delimited by a set of
axioms and their deductive consequences). Mathematicians typically cut across
what seem to be the boundaries of their own areas in search of solutions to prob-
lems. This is most strikingly true of number theory, which philosophers persist in
regarding as safe inside the box of the Peano Postulates, despite those pesky
incompleteness theorems; but number theorists, as I will show in the two chapters
that follow, are always launching into the Beyond of topology, complex analysis,
algebraic geometry, and category theory.
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Cellucci also notes that the hypotheses for solving a problem are local, not
global. Methods for solving problems are local: they depend on the peculiarities of
the objects of the field and also on the peculiarities of the mathematical idioms in
which they are couched. Thus we shouldn’t be surprised that the formal languages
of mathematical logic and set theory, designed to express the peculiar features of
propositions on the one hand and sets on the other, are often not very useful for
mathematicians who are trying to discover features of numbers, or Riemann sur-
faces, or matrices. Being local, not global, the hypotheses for solving a problem can
be efficient. They can express and address the idiosyncracies of the problem, and
exploit the specific strengths of the formal language. Problem searches try to reduce
the search space, the domain within which the solution is sought, and this means
using plausible hypotheses and exploiting known relations among terms (and
among objects).

If we set these two features of the analytic method side by side, we can see a
tension. The research mathematician is trying both to reduce the search space, but
also to enlarge it: deep explanatory solutions to problems typically enlarge the
setting of the original problem. Solutions to puzzles about integer solutions to
certain simple polynomials are not solved by more and more computation, but
rather by embedding the integers in other kinds of algebraic number fields (with
help from complex analysis and group theory). On the one hand, good searches
need to bridge domains; on the other hand, they depend on detailed knowledge of
the domain in which the problem originates. But by the same token, searches
depend on detailed knowledge of the domain brought in as an auxiliary, as well as a
good acquaintance with abstract notions (like that of polynomial or group or vector
space) that make the bridging possible. Those abstract notions, by the way, are not
isolated concepts; they are more like a toolbox of instruments: the notion of group,
for example, comes equipped with subgroup, coset, automorphism, permutation,
homomorphism, quotient group, and so forth. Thus what we often find in mathe-
matical problem-solving are patches from different fields juxtaposed or superim-
posed, to double or triple the information brought to bear on the problem, and
reorganize our (local) understanding.

Cellucci is quite hostile to Frege and his project. “The second half of the
19th century marks the swan song of the view that logic must provide means to
acquire knowledge. With the rise of mathematical logic, such a view is abandoned,
and logic makes the deductivist turn… Frege is the key factor in this turn” (Cellucci
2013: 181). He criticizes Frege’s basic assumptions about logic, his ideal of
atomizing deduction, his view of mathematical practice in terms of the axiomatic
method, his analysis of assertions and deduction, his foundationalism, and his
logicist programme in general. He also considers the variant approaches to logic
presented by Gentzen and Hilbert, but concludes that in each case, the high
expectations were disappointed. Mathematical logic does not provide a means of
discovery, a universal language for mathematics, a calculus of reasoning, a secure
foundation for mathematics, or a discourse which is self-justifying. Moreover, by
divorcing logic and method, it initiates a frivolous philosophical tradition of
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explicating discovery in terms of romantic genius, dreams, abnormal psychology
and (sometimes) normal psychology.

Towards the end of Rethinking Logic, Cellucci develops his account of logic as
encompassing methods for discovery as well as justification against the background
of a ‘naturalized epistemology’ that draws broadly on the theory of evolution,
anthropology, and current views about the biology of the human organism, espe-
cially in relation to neuroscience. And towards the end of the book, he examines
‘rules of discovery,’ including inductive reasoning, reasoning by analogy, gener-
alization, specialization, metaphor and metonymy. These pages, I would argue,
would have been better spent on studying the history of mathematics and the actual
development of important recent problem-solutions. First, I don’t think that the
naturalist view that we should focus on plausibility instead of truth, and construe
justification as always somewhat empirical and revisable, captures the peculiar
nature of mathematical reasoning. The things of mathematics are determinate and
unchanging as the things of nature are not: why would we ever revise our belief that
the sum of the squares of the two oppositive sides of a Euclidean right triangle is
equal to the square of its hypotenuse, or that 2 + 3 = 5? We can always discover
new aspects of numbers and figures when they are brought into relation with other
mathematical items and systems. Cellucci is right that the process of analysis is
unending, but not because mathematical knowledge is always revisable but because
the objects of mathematics are infinitely inexhaustible. This claim becomes clear if
we track the vicissitudes of a mathematical object over the course of a few centuries
or millennia.

Second, as Cellucci himself observes, analytic methods of problem-solving are
interestingly local. In between the alleged moments of irrational genius that bring
insight (and about which logicist philosophers believe they have nothing to say) and
the closed universality of the axiomatic method, lie the organized and principled
and surprising local methods and bridging strategies of the mathematicians. We
have to look carefully at the historical record, because the ability of mathematicians
to deploy these strategies depends on a deep familiarity with the peculiarities of the
objects and of the formal languages and schemata used to frame problems about
them.

Carlo Cellucci’s book bears a striking family resemblance to Danielle Macbeth’s
recent book Realizing Reason: A Narrative of Truth and Knowing (Macbeth 2014).
Both books are the culmination of many decades of reflection upon, and refinement
of, a complex view of logic, mathematics, knowledge and method. Both philosophers
revisit the texts of Plato, Aristotle and Euclid continuing on to those of the present
day, with significant sojourns in the early modern period and the 19th century. Both
construe this history as a kind of dialectic, and want to revise our conception of
reasoning to include not only a deductive logic of propositions (e.g. the predicate
logic we all grew up with) but also an ampliative process of problem-solving and
organization that employs a range of formal languages, including diagrams and iconic
displays. Oddly, however, in Cellucci’s story the villain is Frege, and in Macbeth’s
story Frege is the hero. Macbeth spends much of her book exploring the great
mathematical flowering of European (especially German) mathematics, and explains
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how Frege’s Begriffsschrift precisely captures the habits of mind that made it pos-
sible. Cellucci would argue that Frege’s reformulation of logic made it precisely
impossible to appreciate or capture those habits of mind. But what is philosophy if not
dialectic?

At the beginning of Realizing Reason, Macbeth makes the following important
observation: “…the symbolic languages of mathematics are quite unlike natural
languages. Neither narrative nor sensory… they are special purpose instruments
designed for particular purposes and useless for others. They are not constitutively
social and historical, and they have no inherent tendency to change with use. Unlike
natural languages, they also can (at least in some cases) be used merely mechan-
ically, without understanding, used, that is, not as languages at all but as useful
calculating devices” (Macbeth 2014: 108, and see also 58–68). Thus the commu-
nication of mathematical and scientific ideas to the general public is really very
difficult, and it’s often not clear what exactly is being communicated. What an
equation means to a physicist may be quite different from what it means to a
mathematician; what it means to a topologist may be different from what it means to
a number theorist; and what it means to the general public, and how it means, may
be something else altogether.

As Macbeth points out, while you can describe a procedure for finding (say) a
complicated long division problem in English, you cannot calculate the result in
English: you have to use Arabic numerals and the procedures you learned in primary
school. Your calculation, written on paper with a pencil, doesn’t describe or report
the solution to the problem, but rather performs it—or one might say displays it or
embodies it. You are reasoning in a system of signs, in a specially formulated
artificial language. She notes further that whereas natural languages change with use
and historical-cultural conditions, are first and foremost oral, and are amazingly
versatile, formal-symbolic languages have no inherent tendency to change with time,
are inherently written (we perform them by writing with them, correctly), and are
designed for very specific uses. These special idioms make possible reasoning that
has something like the rigor of deduction but is also ampliative, extending and
adding to what we know (see also Serfati 2005; Mazur 2014).

Specialists in mathematics and science know how to perform mathematics or
physics or chemistry: this is the point of all those damn problems at the end of
chapters of textbooks that you just have to do to pass the exams and in fact to
understand the subject matter. You have to learn to carry out each task in the special
formal language designed for it, with the appropriate concepts, methods and pro-
cedures; mathematics and science (including the theoretical stuff, not just the
experiments) must be performed. Thus, when a well-meaning scientist or mathe-
matician describes a problem and the solution to the problem to us in English and in
ordinary language, we don’t really understand. In one sense we understand and in
another sense we don’t. A second-grader might nod her head when the teacher
explains long division at the beginning of the year, but she doesn’t really under-
stand until, at the end of the year, she can perform it. At that point, she might say to
her admiring, younger cousin, give me a big number and another big but smaller
number, and I’ll tell you what the answer is when you divide the first one by the
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second. And then too of course she has only taken the first steps down the long,
long road of number theory, to understand the deep relations among natural
numbers revealed by their decomposition as sums and on the other hand as products
of other numbers.

Thus, as Margery Arent Safir remarks, in the Introduction to her edited volume
Storytelling in Science and Literature, “Specialized material is made accessible to
non-specialists only on condition of altering the language used,” and, we might add,
switching from performance to description (Safir 2014). A chemist reading an
article in Angewandte Chimie is rehearsing the performance of another chemist
which, in principle, he could himself re-perform, using the same technical language
to describe what is going on and the same instruments and apparatus. An art
historian, reading the same article to analyze how molecules are represented and
admiring them for their symmetries, can only read it as a description, from the
outside, and ask colleagues to define some of the technical vocabulary in plain
English. But you can’t perform chemistry, running reactions, synthesizing mole-
cules and then breaking them up in order to study them by various methods, in plain
English. You need the specialized languages of chemistry, the purified substances,
the sheltered spaces, the instruments and the computers. For this very reason, the
one episode in number theory that I try to explain ‘all the way down,’ in Chap. 4,
includes an extensive glossary at the end, and a detailed account of proofs from an
introductory textbook. I am trying to show how the proof is performed, not merely
to describe it, in order to show what I need to show philosophically.

3 Kieran and David Egan: Teaching Complex Analysis

These reflections are important not only for philosophers, but also for teachers. To
teach mathematics properly, we need to convey not just a set of facts, but also a
repertoire of competences that can be performed (as we handle and employ
mathematical idioms in order to solve problems) and so too a vivid sense of what
real discovery in mathematics might be. Studying the history of mathematics can be
illuminating here, for pedagogy can sometimes follow in the footsteps of earlier
mathematicians. And philosophers also have something to learn in this pilgrimage.

High school students, like Leibniz and other mathematicians of the early modern
era, are often puzzled by the complex numbers. What could we possibly mean by
√−1? Why shouldn’t we worry that the use of such a paradoxical concept might not
tempt us into the pursuit of nonsense? (see Grosholz 1987). Historically, the
existence and usefulness of complex numbers were not widely accepted until their
geometrical interpretation around 1800, which was formulated at roughly the same
time by Caspar Wessel, the Abbé Buée, Jean-Robert Argand and the great math-
ematician Carl Freidrich Gauss. (Leonhard Euler invented the notation i = √−1 late
in his life, but it was Gauss’ use of i in his Disquisitiones arithmeticae in 1801,
which resulted in its widespread adoption.) Gauss published a memoir about the
geometrical interpretation of complex numbers in 1832, which launched its wide

2 Cellucci and Macbeth: Analysis and Productive Idioms 51

http://dx.doi.org/10.1007/978-3-319-46690-3_4


acceptance in the mathematical world, aided also by the work of Augustin Louis
Cauchy and Niels Henrik Abel (see Green 1976).

In the geometrical interpretation, every complex number is identified with an
ordered pair of real numbers, (x, y)—which may also be written x + iy—and so
further identified with the Euclidean plane. The notation of Cartesian coordinates
for points on the plane (x, y) suggests itself here, where the number z = x + iy is
mapped onto the point P = (x, y) with the real component x of z as abscissa, and the
imaginary component y as ordinate. However, the notation of polar coordinates is
also a fruitful way of writing complex numbers under this geometric interpretation,
where r is the nonnegative length of the segment joining (x, y) to 0, and h is the
angle from the x-axis to this segment. We call r = │z│the absolute value or norm
or modulus of the complex number z and h its argument. Indeed, this was Argand’s
mode of presentation of the complex numbers. The geometric interpretation, using
this notation, immediately illuminates and is illuminated by Abraham de Moivre’s
formula (1730), because if we represent a complex number in this way,
z = │z│(cos h + i sin h), and if we know from de Moivre’s formula that
(cos h + i sin h)n = cos (nh) + i sin (nh), then we know that the absolute value of a
product of complex numbers is the product of the absolute values of the factors, and
the argument is the sum of the arguments of the factors. This means geometrically
that complex multiplication corresponds to a dilation followed by a rotation. And
the same insight holds for Euler’s formula (1748), eih = cos h + i sin h, from which
de Moivre’s formula can be derived, as well as the equation we call Euler’s identity,
eip + 1 = 0, which in my experience never fails to enchant students of mathematics,
at whatever level of study (see Nahin 2006/2011). A reader poll discussed in the
Mathematical Intelligencer in 1990 named it as the most beautiful theorem in
mathematics (see Wells 1990). For example, Euler’s identity is in turn also a special
case of another general identity that states that the complex nth roots of unity, for
any n, add up to zero.

Xn�1

k¼0

e2pik=n ¼ 0:

Students are delighted to discover that complex nth roots of unity can be found
using trigonometry, and indeed geometry, because (as noted in Chap. 1) the
complex nth roots of unity are the vertices of a regular polygon of n sides inscribed
in the unit circle, │z│ = 1 on the complex plane.

Thus the testimony of history is that we should introduce students to the complex
numbers as they were introduced to the world of mathematicians between the mid-
sixteenth century (when the Italians Ludovico Ferrari, Geronimo Cardan, Niccolo
Tartaglia and Rafael Bombelli made important discoveries about the algebra they
had inherited from medieval Latin and Arabic texts) and the mid-nineteenth century
(when complex analysis, the theory of functions of a complex variable, flourished).
In this period, we find a suite of modes of representation offered for the complex
numbers, and when the geometric interpretation is offered, mathematical research on
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the complex numbers explodes. So we have an analogy, between historical sequence
and pedagogical sequence: and how shall we understand its significance?

David Egan presents a kind of case study on a website hosted by the Imaginative
Education Research Group (http://ierg.net), which offers advice about how to teach
the complex numbers to high school students. The website includes a wealth of
pedagogical materials, generated by a group of researchers at Simon Fraser
University, in Vancouver, Canada, among whom Kieran Egan is perhaps the most
visible. He is the author of The Educated Mind: How Cognitive Tools Shape Our
Understanding, Thinking Outside the Box, and Learning in Depth (Egan 1999, 2007,
2011). His way of thinking about education is shaped by the writings of RalphWaldo
Emerson and John Dewey, as well as by the doctrines of Lev Vygotsky, whose work
among Anglophone educators has recently enjoyed a resurgence, attested in the
Cambridge Companion to Vygotstky (Daniels et al. 2007). One might mention in this
regard the well-received book The Gleam of Light: Moral Perfectionism and
Education in Dewey and Emerson by Naoko Saito (Kyoto University), written in the
tradition of the Harvard neo-Pragmatists Israel Scheffler, Hilary Putnam and Stanley
Cavell (Saito 2005). Here is one of the descriptions of their project, established in
2001 in the Faculty of Education at Simon Fraser University: “Imaginative Education
is a way of teaching and learning that is based on engaging learners’ imaginations.
Imagination is the ability to think of what might be possible, in a manner that is not
tightly constrained by the actual or taken-for-granted. It is the ‘reaching out’ feature
of the mind, enabling us to go beyond what we have mastered so far. Without human
imagination, no culture would look the way it does today, and no learner would be
able to participate in and contribute to that culture” (see http://ierg.ca/about-us/what-
is-imaginative-education/).

What does this research group mean by ‘imagination,’ a notoriously indeter-
minate member of the collection of faculties, as one looks back through the history
of philosophy? The opening description on the website says that the group intends
to build later forms of understanding on intellectual skills that are common in
children in [traditional] cultures, such as story-telling, metaphor generation and
recognition, image formation from spoken words, and so on. They reject the
‘warehouse’ model of learning, which depends on notions of storage and retrieval,
and where the main challenge for the learner lies in mentally storing as much
correct information as possible, and then being able to retrieve that information
when needed. Instead, the research group seeks to promote educational methods
that are not modeled on the assembly line or warehouse; so the topics that recur in
their writings are developmental topics: somatic, mythic, romantic, philosophic and
ironic understanding. The idea is that the ascent up these levels of understanding
should not abandon but maintain and integrate the modes of education used on the
lower levels (see Ruitenberg 2010).

On the website of the Imaginative Education Research Group, under Teacher
Resources, there are lesson plans for a variety of scientific and mathematical topics,
including among the latter differential calculus, decimalization, infinity, angles and
complex numbers. The unit Complex Numbers, by David Egan, is aimed at 16 to
20-year-old students, for a unit that lasts 2–3 weeks (see http://ierg.ca/wp-content/
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uploads/2014/01/Complex-Numbers-Unit-Plan.pdf). In Sect. 1, he identifies pow-
erful underlying ideas: “It is very difficult to wrap the mind around the idea of
imaginary numbers. Despite this bafflement, imaginary numbers fit quite sensibly
into a system of complex numbers.” Egan adds, “the experience of learning about
complex numbers reinforces the tremendous power of abstract thinking, and the
mathematical tools that facilitate it.” That is, our earlier ‘intuitive,’ or ‘visual’ grasp
of numbers must be revised and extended by the abstract tools of mathematical
thinking. One of these tools is the Argand diagram; if we express complex numbers
in the form z = a + bi, Egan notes, students will discover that the real numbers are
actually exceptional; they are “the exceptional set of cases where b = 0” (Fig. 1).
The teacher can also use this notation to introduce the Fundamental Theorem of
Algebra: the complex numbers allow us, finally, to find ourselves in an alge-
braically closed number system.

Section 2 is entitled “Organizing the content into a theoretic structure.” There
Egan draws a distinction between a ‘mathematical’ and an ‘intuitive’ approach to
numbers, and adds that an intuitive approach depends heavily on visualization, and
on conceptualization in terms of concrete examples. Thus, we understand a negative
number intuitively when we visualize it as the left-hand side of the real number line
(left of zero), and conceptualize it as a bank account. By contrast, our arithmetic
methods for multiplying large numbers one might call ‘blind’ conceptualization:
though we can’t ‘see’ what it means to multiply 435,678 by 963, 271 we can easily
carry out the calculation on paper, using the wonderful positional method
bequeathed to us by Indian and Arabic mathematicians, and we trust the results
even though, he observes, we don’t have the ‘safety net’ of intuition to check them.

In Sect. 2.2, concerned with organizing the unit, Egan asks “What meta-narrative
provides a clear overall structure to the lesson or unit?” Here the teacher asks the
students to wrestle with the problem of how to understand 5-dimensional Euclidean
space; to see finally that they cannot visualize it; and then to resort to expressing it as
R5, with points tagged by five real coordinates (v, w, x, y, z). They discover that
although intuition has failed them, this notation that will allow them to formulate
and solve problems about the geometry of 5-dimensional Euclidean space. And so

Fig. 1 Argand Diagram
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by analogy with complex numbers: the romance of this narrative, Egan surmises, is
that mathematics can bravely venture where intuition fears to tread. And here he
brings in the historical narrative: “A survey of the history of complex numbers
shows the strong, and sometimes furious, opposition with which the idea of complex
numbers was met… Many prominent mathematicians refused to accept complex
numbers, and they only became widely accepted in the 19th century.” Section 3 is
entitled, “Developing the tools to analyze the theoretical structure.” Here students
learn to express complex numbers in the form z = a + bi, and then learn the rules for
their addition, subtraction, multiplication, and division.

Egan observes that the Argand diagram makes complex numbers easier to
visualize, and also provides a demonstration of the power of abstract, mathematical
thinking: the one-dimensional number line has become a part of a 2-dimensional
plane. (He adds that this is like the moment in a chess game, when a pawn is
promoted to a queen.) The diagram can then be used to introduce the expression of
complex numbers in polar coordinates, which might then lead to an introduction of
their use in mechanics. This train of thought continues into Sect. 4, which continues
the historical narrative, by pointing out that Gauss, at the age of 21, proved the
Fundamental Theorem of Algebra: every algebraic equation has a solution in the set
of complex numbers! This is also a good moment to point towards the world of
complex numbers expressed as vectors using polar coordinates (using some linear
algebra and trigonometry), and perhaps also to the world of functions of a complex
variable.

Egan concludes, in the last three sections, that the point of the Complex
Numbers unit is to encourage students to be bold, to reach out beyond their own
‘intuitive’ comfort zone to go beyond restrictions and limitations, “to navigate this
fantastic world with the mathematical tools they have acquired.” And he adds that
the romantic approach works nicely with adolescents, who as we all know are
keenly interested in voyages of exploration, like those of Odysseus and Robert
Louis Stevenson. Thus too students can recognize retrospectively that the natural
numbers, the integers, the rational numbers, the algebraic numbers, the reals and the
complex numbers form a surprising but inevitable sequence, and that the complex
numbers provide striking closure for that development.

Having criticized at length elsewhere the use of the term ‘intuition’ in the
writings of Descartes, Kant and Brouwer, I will criticize its use in this lesson plan
too (Grosholz 2007: Sects. 2.1 and 9.2). 20th c. mathematics was dominated by
abstract algebra, and 20th c. philosophy of mathematics was dominated by logic.
Thus it has become a commonplace to identify algebra and logic (and by associ-
ation arithmetic) with mathematical reason, and geometry with ‘intuition’. The
narrative about the 19th century that many philosophers of mathematics favor is
that geometric intuition led real and complex analysis astray into confusion and
contradiction until Cauchy and Kronecker in one sense and Dedekind in another
guided mathematicians out of the labyrinth through the arithmetization of analysis.
While there is some truth to this particular myth, the other side of the story is that
the use of geometry in most cases in 19th c. mathematics was not misleading and in

3 Kieran and David Egan: Teaching Complex Analysis 55



many cases it was the key to important developments. Thus as we have seen the
geometrization of complex numbers was essential to their acceptance and to the
development of complex analysis; geometry provided the canonical examples that
led to the formulation of group theory; and geometry, transformed by Riemann, lay
at the heart of topology, which from the end of the 19th century throughout the
20th century in turn transformed much of modern mathematics.

In certain cases the demand for purity of method and the restriction of notation to
one kind (motivated by the preference for ontological parsimony on the part of
many philosophers, some mathematicians, and some educators) may be helpful for
mathematical research and pedagogy. Sometimes if we investigate how much we
can produce or how far we can proceed with very limited means, the outcome is
mathematically suggestive. However, in many cases and indeed I believe in the
most fruitful cases, we find mathematicians juxtaposing and even superimposing a
variety of notations or more generally ‘modes of representation,’ that is, we find
them multiplying rather than restricting their ‘paper tools,’ as Ursula Klein calls
them (see Klein 2001).

In order to counter and clarify the various uses of the term ‘intuition’ as opposed
to reason, I prefer to use the terms ‘iconic’ and ‘symbolic,’ borrowed from the
American philosopher C. S. Peirce. Some mathematical modes of representation are
iconic, that is, they picture and resemble what they picture; others are symbolic and
represent by convention, ‘blindly’ and without much resemblance (Grosholz 2007:
4). As Macbeth shows, we ‘perform’ mathematics in both iconic and symbolic
idioms. In many cases, problems in mathematics are most successfully understood,
addressed and solved when the problematic things that give rise to them are rep-
resented by a consortium of modes of representation, some iconic and some
symbolic. Both kinds do important conceptual work: symbols typically help to
analyze and distinguish, and icons help to unify and stabilize reference (though not
always, as we shall see). We need to do both at the same time in order to identify,
reformulate and solve problems.

Thus, as I see it, the reason why the geometric interpretation of complex
numbers moved mathematical research forward historically and why it aids students
pedagogically is because it gives us a repertoire of modes of representation that can
be used in concert to understand what complex numbers are and how to use them.
Students are not leaving behind the timid formulation of i as the square root of (−1),
or as the solution to the equation x2 + 1 = 0 given in the original context of an
algebra of arithmetic transformed by its use in analytic geometry. Rather, they are
using it together with the Argand diagram, which is no more or less ‘intuitive’ or
‘mathematical’ than the algebraic representation. But it is certainly more iconic and
spatial, whereas the algebraic representation is more ‘blind’ and symbolic. The
Argand diagram suggests as well two different symbolic formulations, one in
Cartesian and one in polar coordinates; the latter immediately brings in the notation
of trigonometry and the transcendental functions, originally so foreign to analytic
geometry, that underlie it. This combination of modes of representation, as we have
seen, reveals our old friend the circle in an entirely new way, as the home and
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factory of the sine and cosine functions. All of mechanics, we might say, lies folded
up in the circle.

So I would re-write the romance of complex numbers. What we find historically
is the addition of an important iconic, geometric representation of complex numbers
to the existing algebraic representation, which in turn suggests a trigonometric
representation that lends itself to mechanics. In the end, we’ll have at least four
modes of representation on the page, to help us think through problems! We could
call this a kind of laboratory work, investigating mathematical things on the
combinatorial space of the page (as Jean Cavaillès called it) with paper tools. So
what we are teaching students is not how to leave behind the ‘intuitive’ for the
‘mathematical,’ but rather how to profit from and think together a new range of
representations, all of them mathematical, some of them iconic and some of them
symbolic, in order to investigate complex numbers and complex functions more
effectively. The pedagogical point is still innovation, critical thinking and origi-
nality, and the goal is teaching students how to make conceptual breakthroughs. But
now, I would argue, we are guided by a more accurate reading of history, and by
philosophical ideas that do not promote algebra and logic at the expense of
geometry.

References

Cellucci, C. (1998). Le ragioni della logica. Rome and Bari: Laterza & Figli.
Cellucci, C. (2002). Filosofia e matematica. Rome and Bari: Laterza & Figli.
Cellucci, C. (2007). La filosofia della matematica del Novecento. Rome and Bari: Laterza & Figli.
Cellucci, C. (2008). Perché ancora la filosofia. Rome and Bari: Laterza & Figli.
Cellucci, C. (2013). Rethinking logic: Logic in relation to mathematics, evolution and method.

Dordrecht: Springer.
Chemla, K., & Shuchun, G. (Tr. and Eds.). (2004). Les neuf chapitres: La classique mathématique

de la Chine ancienne et ses commentaires. Paris: Dunod.
Daniels, H., Cole, M., & Wertsch, J. V. (Eds.). (2007). Cambridge Companion to Vygotsky.

Cambridge: Cambridge University Press
Debuiche, V. (2013a). Perspective in Leibniz’s Invention of Characteristica Geometrica: The

problem of Desargues’ influence. In Historia Mathematica, 40, 359–385.
Debuiche, V. (2013b). L’expression leibnizienne et ses modèles mathématiques. Journal of the

History of Philosophy, 51(3), 409–439.
Egan, K. (1999). The educated mind: How cognitive tools shape our understanding. Chicago:

University of Chicago Press.
Egan, K. (2007). Thinking outside the box. New York: Teachers’ College Press.
Egan, K. (2011). Learning in depth. Chicago: University of Chicago Press.
Green, D. R. (1976). The historical development of complex numbers. The Mathematical Gazette,

60/412, 99–107.
Grosholz, E. (1987). Two Leibnizian manuscripts of l690 concerning differential equations.

Historia Mathematica, 14, 1–37.
Grosholz, E. (1991). Cartesian method and the problem of reduction. Oxford: Oxford University

Press.

3 Kieran and David Egan: Teaching Complex Analysis 57



Grosholz, E. (2005). Lessons about method from a Chinese mathematical classic. Review of K.
Chemla & G. Shuchun (Tr. and Eds.), Les neuf chapitres. In Gazette des Mathématiciens, 105,
49–56.

Grosholz, E. (2007). Representation and productive ambiguity in mathematics and the sciences.
Oxford: Oxford University Press.

Hintikka, J., & Remes, U. (1974). The method of analysis: Its geometrical origin and its general
significance. Stuttgart: Springer.

Klein, U. (2001). Tools and modes of representation in the laboratory sciences. Dordrecht:
Kluwer.

Leibniz, G. W. (1682). De vera proportione circuli ad quadratum circumscriptum in numeris
rationalibus expressa. Acta Eruditorum, Feb. 1682; reprinted in Leibniz 1978 V: 118–22.

Leibniz, G. W. (1692). De la chainette. Journal des Scavans 1692; reprinted in Leibniz 1978 V:
258–263.

Leibniz, G. W. (1962). In C. I. Gerhardt (Ed.), Die Philosophischen Schriften (Vol. I–VII)
Hildesheim: Georg Olms.

Leibniz, G. W. (1978). In C. I. Gerhardt (Ed.), Mathmatischen Schriften (Vol. I–VII) Hildesheim:
Georg Olms.

Leibniz, G. W. (1989). In M. Parmentier (Tr.), La naissance du calcul différentiel: 26 articles des
Acta Eruditorum. Paris: Vrin.

Leibniz, G. W. (1990). In E. Knobloch & W. Contro (Eds.),Mathematische Schriften, Geometrie –
Zahlentheorie – Algebra, 1672–1676 (Series VII, Vol. 1). Berlin: Akademie Verlag.

Leibniz, G. W. (1993). In E. Knobloch (Ed.), De quadratura arithmetica circuli ellipseos et
hyperbolae cujus corollarium est trigonometria sine tabulis. Göttingen: Vandenhoeck &
Ruprecht.

Leibniz, G. W. (2004). M. Parmentier (Tr.), Quadratura arithmétique du cercle, de l’ellipse et de
l’hyperbole et la trigonométrie sans tables trigonométriques qui en est le corollaire. Paris:
Vrin.

Macbeth, D. (2014). Realizing reason: A narrative of truth and knowing. Oxford: Oxford
University Press.

Mazur, J. (2014). Enlightening symbols: A short history of mathematical notation and its hidden
powers. Princeton: Princeton University Press.

Nahin, P. J. (2006/2011). Dr. Euler’s Fabulous Formula. Princeton: Princeton University Press.
Ruitenberg, C. (Ed.). (2010). What do philosophers of education do?. Oxford: Oxford University

Press.
Safir, M. (Ed.). (2014). Storytelling in science and literature. Lewisburg: Bucknell University

Press.
Saito, N. (2005). The Gleam of light: Moral perfectionism and education in Dewey and Emerson.

New York: Fordham University Press.
Serfati, M. (2005). La révolution symbolique: La constitution de l’écriture symbolique

mathématique. Paris: Editions Pétra.
Vuillemin, J. (1997). La Question de savoir s’il existe des réalités mathématiques a-t-elle un sens?

Philosophia scientiæ 2/2: Actes du Colloque international Nelson Goodman, Pont-à-Mousson,
2, 275–312.

Wells, D. (1990). Are these the most beautiful? The Mathematical Intelligencer, 12(3), 38–41.

58 3 Rethinking Ampliative Reasoning



Chapter 4
Algebraic Number Theory
and the Complex Plane

1 Early Problems in Number Theory

If we are interested in number theory and have been trained in a certain philo-
sophical tradition, the pertinence of complex analysis to number theory will be
puzzling. The logicist and formalist tradition, even modified as it must be now by
the meta-theorems of mathematical logic, often seems to claim that all of classical
pure mathematics can be deduced from the theory of sets adumbrated by predicate
logic (hopefully confined to first and second order predicate logic). The reductionist
account involves a sequence of theory reductions, beginning with the reduction of
reasoning about the integers and the rational numbers to first-order Peano
Arithmetic. If we start with a first-order theory of Peano Arithmetic, for example,
we assume that we have at our disposal the natural numbers; they are ‘given’ as the
intended model of the theory. However, it is not clear exactly how they are given.
They are not given by the formal theory, which is not categorical and cannot by
itself pick out the intended model from a spectrum of non-standard models which
are nevertheless isomorphic to the natural numbers from the point of view of the
theory. So we have to bracket the question of how we know they are available.

We suppose then that ‘the language of number theory’ is deducible from the
axioms of Peano Arithmetic; we can adopt Enderton’s preferred formulation AE

presented in his A Mathematical Introduction to Logic (Enderton 1972: 193–194).
It is expressed in first-order predicate logic with the addition of a constant symbol 0;
a one-place function symbol S (the successor function); a two-place predicate
symbol that denotes the strict linear ordering of the natural numbers <; and finally
+, ∙, and E, two-place function symbols intended to denote the operations of
addition, multiplication and exponentiation. The terms of this language thus include
the sequence 0, S0, SS0, SSS0… et cetera; also included in this language are
arithmetic truths like S0 < SS0, and S0 + SS0 = SSS0, and so forth, and logical
compounds involving individual and n-place predicate symbols, and formed with
negation, the operations ‘and’ and ‘or,’ and the adjunction of quantifiers. (Enderton
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1972: Chap. 3, and see 68 and 174, where Enderton finesses the status of the
equality sign—it is neither a part of pure predicate logic nor is it part of the special
vocabulary of arithmentic.) If we begin with the example of the counting numbers,
we notice the simple way in which they are generated, adding a unit to the unit, and
then adding another unit to the sum of the unit and a unit, and then adding another
unit et cetera, ad infinitum: the counting numbers seem to arrive with their rational
content in full display.

However, early on (in human history and in the education of children) the
counting numbers lead to patterns that seem mysterious. The natural numbers N can
be divided into odd and even numbers; it is easy to present, e.g., the odd numbers,
to find the next one in the list, and to give a general rule that captures all of them.
But N can also be divided into prime and non-prime numbers; it is not so easy to
present this list by finding the next and the next and the next one by using, for
example, the sieve of Eratosthenes. And there is no formula that captures them all,
as 2n and (2n + 1) capture the even and odd numbers. This difference stems from
the difference between the trivial additive decomposition of the natural numbers
(which logicians make much of) and the highly non-trivial multiplicative decom-
position of the natural numbers (which logicians try to finesse: the primes after all
are a recursive set). In the historical development of number theory, however,
insight is not arrived at merely by combining what is “already there,” like facts of
addition and multiplication. Going beyond N, in the variety of ways in which one
can go beyond N, is the only way to discover why the odd patterns evident in
N emerge, to understand the deeper reasons for them. This process leads to novel
investigations of the fine structures inherent in N, which are themselves not dis-
coverable until mathematicians have brought some of those external structures to
bear on N; it also changes the meaning of basic notions like number, prime and unit.
This “going beyond” includes bringing N into relation with Euclidean geometry;
with the integral domain of integers Z, the ring of rationals Q, the field of reals R,
and the field of complex numbers C; with various algebraic number fields like
Q[i] and other cyclotomic fields, or Q[√2] and other quadratic fields; with the fields
of p-adic numbers; and with the complex plane as the staging ground for complex
analytic or topological methods.

In the 17th century, Fermat noted that there were many positive integral solu-
tions to the equation x2 + y2 = z2, but none to be found for the equations
x3 + y3 = z3 or x4 + y4 = z4 or x5 + y5 = z5. How did he see this as a pattern in the
first place, and why did he find it puzzling and in need of explanation? One
important bit of background knowledge that set the stage for this perception was the
Pythagorean Theorem. This result from classical antiquity, as we all know, asso-
ciated numbers with a certain geometrical figure (the right triangle) in a deep and
illuminating way: for every right triangle, the square of the length of the hypotenuse
is equal to the sum of the squares of the lengths of the two legs, that is, the two sides
opposite the hypotenuse. Examples of triplets of positive whole numbers that in this
case satisfy both the constraints of arithmetic (the multiplication and addition
tables) and the constraints of geometry (the nature of a triangle in Euclidean
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geometry and the constraints put on a triangle by its being right) were known to the
Pythagoreans: 3, 4, 5; 5, 12, 13; 8, 15, 17; even 119, 120, 169.

However, Fermat noted both the existence of these triplet-solutions and their
absence in the case of analogous equations with exponents of higher degree than 2.
Why did he notice this absence? And why did he perceive this absence as
anomalous or puzzling? Why hadn’t this pattern bothered anyone else before? One
answer to these questions is that Fermat, like Descartes, used the notation of
algebra, where variables represent suites of numbers in one sense and indeterminate
numbers in another sense, and constants represent distinguished, determinate
numbers (so variables and constants play different conceptual roles), and equations
replace proportions. Thus he could consider an expression like x2 + y2 = z2, and
ask what might happen if one replaced 2 with another integer. The polynomial itself
becomes a conceptual display and an object of mathematical investigation.
Descartes discovered an analogous puzzle (in this case among curves rather than
numbers) apropos Pappus’ Problem: after he finished solving the problem for the
conic sections (that is, for curves associated with quadratic equations in two vari-
ables), he posed the problem hypothetically for cubic equations and analogous
equations of higher degree. Like Fermat, he was puzzled by the difficulty of
obtaining solutions and discerning a taxonomy even for cubic curves, and like
Fermat he boasted unrealistically that nonetheless his methods would lead
straightway to the solutions sought (see Grosholz 1991: Chaps. 1 and 2).

One reason why the background knowledge of Fermat and Descartes led them to
perceive these facts (there seem to be no solutions—among the integers Z—to the
equation xn + yn = zn when n is equal to 3 or 4 or 5 or higher; and, it is very hard to
identify and classify all the cubic curves, and even harder to identify and classify
the higher algebraic curves of n degree) as puzzling, is that they understood them
against the background of arithmetic, that is, in light of the method of mathematical
induction. That method shows that if you can prove a claim involving n for the first
case 1, and then prove that if the case involving n holds, the case n + 1 must hold,
then you have proved your claim for every n. But this method only works when
n indexes the cases in a certain way, and when the relation between case n and case
n + 1 is a certain kind of relation. (For example, once arithmetic has been allied
with geometry in the way that algebra facilitates, indexing by n becomes really
problematic because increasing the dimension of Euclidean space increases the
complexity of that space and the items in it and their mutual relations in a way that
is serious, if not dire.) Thus, it seemed to Fermat that if x2 + y2 = z2 had lots of
positive integral solutions, x3 + y3 = z3 should have them too. But it didn’t.
Background knowledge of arithmetic, and the yoking of arithmetic and geometry
by the new algebra, made this fact show up as anomalous, as a rupture in the
intelligibility of mathematics, as requiring an explanation.

An explanation of this puzzling fact could not be pursued by mere induction, that
is, by computing more examples of triplets or by looking harder for examples of the
missing triplets. The explanation lay in three insights, well articulated only in the
19th century. The first is that the natural numbers can be better understood if they
are embedded in other number systems that are larger and may have different kinds
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of systematic features. The second is that the natural numbers have a fine structure,
or rather a repertoire of fine structures, which only becomes apparent in light of
these embeddings. The third, twentieth century insight is that there are deep cor-
relations between the repertoire of fine structures and the greater embeddings: this is
the central insight of Class Field Theory. As I go through these three developments
in this chapter, I will endeavor to exhibit the novel concept clusters, and show how
they arise from the exploitation of structural ambiguities, which bring together ideas
that formerly did not interact at all, in the service of problem-solving: not mere
proof, but cogent, systematic explanation (see Hicks 2013 for important insights
into the formation of concept clusters). But first, I want to review the mid-twentieth
century account of theory reduction, in order afterwards to show that the successful
explanation of these facts of number theory cannot be captured by that account.

2 Butterfield’s Critical Assessment of Nagel’s Account
of Theory Reduction

In an essay on the topic of time, the British philosopher of science Jeremy
Butterfield offers a useful discussion of the philosophical problem of reduction.
(Butterfield and Isham 1998/1999). He begins by reviewing the standard account of
theory reduction proposed by Ernst Nagel in his influential book, The Structure of
Science (1961) (Nagel 1961). Nagel’s well-known version of theory reduction
proposes that a theory T1 is reduced to another theory T2 when the theorems of T1

are a subset of those of T2, so that T1 is a subtheory of T2. Butterfield observes,
“However, one needs to avoid confusion that can arise from the same predicate (or
other non-logical symbol) occurring in both theories, but with different intended
interpretations. This is usually addressed by taking the theories to have disjoint
non-logical vocabularies. Then one defines T1 to be a definitional extension of T2, if
and only if one can add to T2 a definition of each of the non-logical symbols of T1

in such a way that T1 becomes a sub-theory of T2. That is: in T2, once augmented
with the definitions, we can prove every theorem of T1. (The definitions must of
course be judiciously chosen, with a view to securing the theorems of T1.)”
(Butterfield and Isham 1998: 6). He then raises the following interesting question:
“which operations for compounding predicates, and perhaps other symbols, does
one allow oneself in building the definitions of the terms of T1? It has been usual to
consider a very meagre stock of operations, viz. just the logical operations: the
Boolean operations of conjunction and negation, and the application of the quan-
tifiers ‘all’ and ‘some’” (Butterfield and Isham 1998: 7). For theory reduction to be
plausible in physics, he argues, this stock of operations should include as well other
standard operations like taking derivatives, integrals, orthocomplements, comple-
tions, and so forth. Physical theories, he notes, use mathematical apparatus that is
‘high up’ in the deductive chain relative to basic logic and set theory, like calculus,
so that in these cases the ‘underlying logic’ must be much stronger. This limitation
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of the standard account of theory reduction was registered even by its proponents.
“Nagel adds to the core idea of definitional extension some informal conditions,
mainly motivated by the idea that the reducing theory should explain the reduced
theory” (Butterfield and Isham 1998: 7).

Butterfield observes that this means definitional extension is at once too weak
and too strong to capture what actually happens in scientific practice. It is too weak
because, even if T1 is a definitional extension of T2 so that the extension of each of
its predicates has the same extension as a compound predicate built from T2’s
vocabulary, “there may well be aspects of T1, crucial to its functioning as a sci-
entific theory, that are not encompassed by (are not part of) the corresponding
aspects of T2” (Butterfield and Isham 1998: 9). The properties of T1 might simply
be different from those of T2, even the compound properties of T2; or T1 might have
aspects to do with explanation, modelling or heuristics that are not encompassed by
T2. These aspects of T1 that ‘outstrip’ T2 vary, Butterfield observes, from case to
case; the controversy that ensued over how to supplement definitional extension
after Nagel proposed it shows that there is no general consensus and therefore no
way to formalize this supplementation, widely recognized, even by Nagel, to be
required. Thus, although physics offers many examples of theory reduction and
definitional extension, this formal pairing typically requires further ‘supplementa-
tion’ (to capture the ways in which T1 outstrips T2) and such supplementation varies
from case to case. Butterfield concludes, “there may well be no single ‘best’ con-
cept of reduction—no ‘essence’ of reduction,” that is, no formalizable supplement
(Butterfield and Isham 1998: 10).

Definitional extension is also too strong. Nagel’s proposal is widely regarded as
too strict; there are many cases of useful reductions in science that don’t live up to
his standards, for example, cases where T2 reduces T1 while remaining inconsistent
with it, as Feyerabend argued (Feyerabend 1962/1981). Newton’s reduction of the
principles of Kepler, Galileo and Descartes are taken to be an illustration of this
point. Reduction often involves approximation, a point conceded even by Nagel.
“More generally, various authors have suggested … that reduction often involves
T2 including some sort of analogue, T* say, of T1. They require this analogue to be
close enough to T1, in such matters as its theoretical properties and the postulates
concerning them, and/or its explanatory resources, and/or its observational conse-
quences, that one is happy to say that ‘T2 reduces T1’” rather than merely con-
cluding that the theories are incommensurable (Butterfield and Isham 1998: 11).
Here again, controversy continues about what conditions are required of T* so that
it is ‘close enough’ to T1, and so once again the possibility of formalizing some
‘essence’ of reduction seems elusive; and some conceptual and explanatory dis-
parity remains. Thus there seems to be no way to draw a sharp (formalizable) line
between reduction, and emergence or supervenience or replacement or incom-
mensurability, in the physical sciences.

Oddly enough, however, Butterfield begins the discussion by claiming that the
overblown optimism shown by mid-20th c. philosophers of science about the
possibility of formalizing definitional extension for physics stems from “the striking
success of studies in logic and mathematics, from the mid-nineteenth century
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onwards, in showing various pure mathematical theories to be definitional exten-
sions in the above sense, i.e., using just these logical operations, of others. Indeed,
by concatenating such deductions with judiciously chosen definitions, one shows in
effect that all of classical pure mathematics can be deduced from the theory of sets.”
(Butterfield and Isham 1998: 6). Presumably by this claim he has in mind the
alleged reduction of the natural numbers to sets, the reduction of the integers and
rationals to natural numbers, the reduction of the reals to the rationals, and the
reduction of geometry to the numerical models of analytic geometry and real
analysis. Yet none of these reductions is straightforward; each must be understood
variously in syntactical and semantic terms; and each is either too strong or too
weak, to use Butterfield’s vocabulary, when measured against the ideal reduction of
Nagel. Here I argue that Butterfield’s arguments about the failure of philosophers to
formalize definitional extension in physics apply just as well, and for the same
reasons, to mathematics and specifically to number theory. While the reductions
just listed are important and fruitful, taken together they are a motley and do not
amount to an example of Nagelian reduction.

3 Theory Reduction Applied to Number Theory
and Arithmetic

Is it true that all of classical pure mathematics can be deduced from the theory of
sets? This claim must be spelled out in detail so that the sequence of theory
reductions can be assessed. Let us look first at what should be the most straight-
forward case, the reduction of reasoning about the integers and the rational numbers
to first-order Peano Arithmetic. If we start with a first-order theory of Peano
Arithmetic, for example, we assume that we have at our disposal the natural
numbers; they are ‘given’ as the intended model of the theory. As noted above, the
formal theory is not categorical and cannot by itself pick out the intended model
from a spectrum of non-standard models which are nevertheless isomorphic to the
natural numbers from the point of view of the theory. So there is an unresolved
problem already concerning how we know the natural numbers are available.

We suppose then that ‘the language of number theory’ is deducible from the
axioms of Peano Arithmetic, as formulated in Enderton’s textbook and cited at the
beginning of this chapter. An arithmetical set is a set of natural numbers (supposing
that they are available) that can be defined by a well-formed formula of first-order
Peano Arithmetic, AE. There is a hierarchy of arithmetical sets, whose levels are
registered by the number and order of universal and existential quantifiers that
precede the formulae that live on each level. The first level consists of the recursive
sets (represented by formulae with no quantifiers), and the second consists of the
recursively enumerable sets, represented by formulae preceded by a finite number
of existential quantifiers. The rest of the hierarchy is produced by adding blocks of
existential and universal quantifiers, so that the increasing internal complexity of
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the formulae reflects the increasing complexity (or, decreasing computability) of the
sets of natural numbers. This is why quantifier elimination is an important tool in
model theory, so that formulae can be re-written in a way that exhibits their logical
complexity precisely. Any arbitrary countable set of natural numbers can be located
somewhere in the arithmetical hierarchy. Thus, the integers, the set of n-tuples of
integers for a given n, and the rational numbers can all be shown to be arithmetical
sets, if we use the trick of Gödel numbering to index formulae that define each
element of a given set, and then check to see if the set of corresponding Gödel
numbers (which are all natural numbers) is arithmetical. As noted above, the set of
prime numbers turns out to be recursive, even though it is increasingly difficult to
use the ‘sieve of Eratasthenes’ for larger and larger primes. Thus we can say that a
definitional extension that exploits Gödel numbering allows the set of primes as
well as the set of integers to be defined within Peano Arithmetic.

However, definitional extension is inherently ampliative. The strategy of Gödel
numbering depends on the assumption that the formal language is sandwiched in
between schoolroom arithmetic and a meta-language which Enderton characterizes
as ‘English.’ Schoolroom arithmetic is expressed in Indo-Arabic numerals with
algebraic conventions developed in the 17th century; it is not a formalized lan-
guage, but rather the expression in a variety of formal and informal idioms of a
collection of interesting facts, solved and unsolved problems, and procedures for
calculation. Moreover, its boundaries are not clear: does the problem, to show that
an odd prime p can be written as the sum of two squares (that is, x2 + y2 where
x and y are integers) if and only if p � 1 (mod 4), belong to schoolroom arithmetic?
(I examine this problem later in this chapter.) And English is certainly not a for-
malized language. Fragments of schoolroom arithmetic and of English are for-
malizable in the language of first-order predicate logic, as every student in an
introductory logic class discovers; but this local translatability does not make either
arithmetic or English an object language or a meta-language in the technical sense
intended by logicians. The pretense that the relations among schoolroom arithmetic
(not to speak of modern number theory!), AE, and English are precisely the relations
among a formal object language, a formal language, and a formal meta-language is
motivated by the logicizing philosopher’s wish to make the relations among these
‘theories’ resemble the mid-twentieth century model of theory reduction, where the
dictionaries are trivial. But they never are.

Let me underscore the point by quoting from Enderton’s A Mathematical
Introduction to Logic, Chap. 3, ‘Undecidability.’ He introduces the language of
number theory, ‘a first-order language with equality and with the following
parameters…’ and then adds, “We will let R be the intended structure for this
language. Thus we may informally write R = (N, 0, S, <, +, ∙, E). (More precisely,
│R│ = N…, OR = 0, etc.) By number theory we mean the theory of this struc-
ture, ThR” (Enderton 1972: 174–175). He adds a bit later that ThR is “a very strong
theory and is neither decidable nor axiomatizable,” so that we should concern
ourselves with AE (the axiom set he proposes on pages 193–194, as noted above,
along with all its theorems). In any case, by treating schoolroom arithmetic ‘in-
formally’ as if it were ‘the intended structure,’ Enderton slips in the assumption that
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it is already structured as an object theory, that reference to the natural numbers can
be treated as if it were a map from one discourse (AE) to another discourse (R) and
that the natural numbers are available as a set which is ambiguously part of R, over
which the universal quantifier of AE can range. But schoolroom arithmetic is not
structured like a theory and it is not axiomatized: the whole point of the Peano
Axioms was to axiomatize it! It is a discourse, but as a discourse it is a messy
collection of facts, solved and unsolved problems, and procedures for calculation
and ‘proof by recurrence,’ dependent on the additive decomposition of the natural
numbers as sums of units, and their multiplicative unique prime decomposition.
And it refers to the natural numbers (using Indo-Arabic notation), which are not
themselves discourse even if our access to them is through discourse, and which
cannot without further—ampliative and contestable—argument be construed as a
set.

Here are Enderton’s remarks that introduce the Sect. 3.4, ‘Arithmetization of
Syntax.’ “(1) Certain assertations about wffs can be converted into assertions about
natural numbers (by assigning numbers to expressions). (2) These (English)
assertions about natural numbers can in some cases be translated into the formal
language …” (Enderton 1972: 217). But English is not a meta-language any more
than arithmetic is a structure, model or object-language. Moreover, the dictionary
supplied by Enderton, which maps AE to R (the ‘intended structure’ for AE, which is
in fact schoolroom arithmetic) is not part of AE, and neither is the dictionary, or
rather code manual, of Gödel numbering which maps English to AE, part of AE.
They are instead good examples of sideways ampliative reasoning.

Nagel and Newman, in Chap. 7 of Gödel’s Proof, write “Gödel described a
formalized calculus within which all the customary arithmetical notations can be
expressed and familiar arithmetical relations established,” a formalized language
like AE. “Gödel first showed that it is possible to assign a unique number to each
elementary sign, each formula (or sequence of signs), and each proof (or finite
sequence of formulas). This number, which serves as a distinctive tag or label, is
called the “Gödel number” of the sign, formula, or proof.” (Nagel and Newman
1958: 68–69). Nagel and Newman spend the next few pages (69–76) spelling out
what the assignment looks like in detail, concluding that this set of directions
establishes a one-one correspondence between expressions in the formalized lan-
guage and certain natural numbers. In virtue of the unique prime decomposition
enjoyed by the natural numbers, each term, wff (well formed formula) and sequence
of wffs, can be retrieved from the natural number that codes it by unpacking that
number’s prime decomposition. But where does this assignment and unpacking
take place? Not, clearly, in AE. They observe that Gödel “showed that all
meta-mathematical statements about the structural properties of expressions in the
calculus can be adequately mirrored within the calculus itself… Since every
expression in the calculus is associated with a Gödel number, a meta-mathematical
statement about expressions and their relations to one another may be construed as a
statement about the corresponding (Gödel numbers and their arithmetical relations
to one another.”) (Nagel and Newman 1958: 76–77).

66 4 Algebraic Number Theory and the Complex Plane

http://dx.doi.org/10.1007/978-3-319-46690-3_3
http://dx.doi.org/10.1007/978-3-319-46690-3_7


What is this meta-mathematics? Nagel and Newman characterize it as expressing
“the structural properties of expressions in the calculus” and “relations of logical
dependence between meta-mathematical statements,” as if it were, not English, but
rather a slightly aggrandized version of AE, another formal language that could refer
to the wffs of AE, that would be about the wffs of AE, and say modestly formal
things about them, say AE′. (Recall that AE is certainly about the discourse of
arithmetic and is also sometimes alleged to be about the natural numbers, which are
themselves not a discourse.) But the meta-language must do much more than that.
Perhaps there is a way to say in AE′ that one formula b of AE is an initial part of
another formula a of AE, or that a certain sequence of wffs x in AE is a proof of a
certain wff z in AE. And perhaps there is a way to say in AE that b is a factor of
a (in other words, that ‘is a factor of’ can be suitably defined in AE) or that x and
z are related by the arithmetical formula ‘Dem (x, z).’ (For an explanation of
Dem (x, z) see Chap. 5.) But in the meta-language required by the demands of
Gödel’s proof, we must also be able to say that “the smaller formula ‘(pvp)’ can be
an initial part of the axiom ‘(pvp) ! p’ iff the (Gödel) number b, representing the
former, is a factor of the (Gödel) number a, representing the latter,” and that “the
sequence of formulae with Gödel number x is a proof of the formula with Gödel
number z iff Dem (x, z) is true.” The cogency and meaningfulness of both instances
of “iff” depends on the intervention of the dictionary in the argument: we have
invoked Gödel numbering. But the dictionary belongs neither to AE nor to AE′: it
requires us to correlate terms and wffs (what AE′ is about) with numbers (what AE is
about), and, as Nagel and Newman argue at length in a footnote, a numeral is a sign
(a term) and a number, in particular a Gödel number, is something a term desig-
nates: “we cannot literally substitute a number for a sign.” (Nagel and Newman
1958: 82–84). This important distinction, they explain, stems from the difference
between mathematics and meta-mathematics.

I want to make two points about the failure of the relation between AE and R and
the relation between AE′ and AE to live up to the standards of ideal theory reduction.
First, the mismatch is useful. Some of the amplification of knowledge that takes
place between AE and R is contained in the model theoretic insights about Wiles’
proof that I discuss in Chap. 5. The amplification that takes place between AE′ and
AE includes the substance of Gödel’s proof and the meta-theoretic results about
formal languages that follow in its wake. The demands of pure theory reduction are
too strong, because when we go up from arithmetic to AE and then to AE′ we lose
the specificity of the natural numbers, but we can work with an analogue that is
‘good enough’ and that reveals the logical complexity of reasoning in arithmetic as
well as novel features of the languages of logic; so we don’t reject the reduction as
mere incommensurability. And the reduction is too weak: the natural numbers
re-represented as 0, S0, SS0, … may be useful for logic but this idiom makes
ordinary arithmetic impossible. Arithmetic, as Macbeth would observe, cannot be
performed in this idiom. Moreover, there are important aspects of the natural
numbers, crucial to their functioning within the series of problems that characterize
18th through 21st century number theory, which are not encompassed by and are
not part of a system of terms and wffs. The properties of natural numbers are simply
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different from those of logical terms and wffs, requiring different idioms and
methods, and those distinctive features play a crucial role in the explanations,
modeling and heuristics of number theory. For example, the natural numbers are the
only mathematical items that index, and count, themselves; that is why Gödel must
use them to index the pertinent terms and wffs. The natural numbers enjoy unique
prime (multiplicative) decomposition; but there is no such thing as a prime term or
logical formula (or, for that matter, a prime set). The concept of prime does not arise
in the consideration of sets or logical formulae; consider a collection of sets or
formulae as long as you like, but you will never discern any “primes” among them.

Similarly, the reduction supposed to hold between the rational numbers and the
natural numbers within AE is too strong; specifically, we do not retrieve the rational
numbers here, but only an equivalence class of isomorphic systems identified by the
pertinent set of formulae in the arithmetic hierarchy. Recall that we cannot retrieve
the natural numbers from AE because it is not categorical; we have to sacrifice the
power of second order ThR for the good behavior of first order AE. Second, the
reduction is too weak; there are aspects of the rational numbers crucial to their
functioning in mathematical problems that are not encompassed by their
re-representation as a set of Gödel numbers located somewhere in the lower reaches
of the set-theoretical hierarchy of sets of natural numbers, associated with a formula
in the logical arithmetic hierarchy. These aspects include their important topological
features, when we think of them as points in the continuum of the line: unlike the
discrete natural numbers they are dense, and unlike the real numbers they are not
complete. Considered by themselves as a topological space, they are the unique
countable metrizable space without isolated points; it is totally disconnected and not
locally compact. These features are central to their investigation by, for example,
Cantor, Dedekind and Hausdorff.

4 Theory Reduction, Number Theory and Set Theory

There is a third issue here, which so far I haven’t talked much about explicitly.
When we claim to have reduced the rational numbers to Peano arithmetic (AE) by
definitional extension, using the trick of Gödel numbering, we have not only ‘lifted’
the natural numbers to a system of logical formulae, we have also embedded them
in a set theoretic hierarchy, a hierarchy of sets. Neither the logical lifting nor the set
theoretic embedding conforms to the model of pure theory reduction, and in both
cases Gödel numbering stands sideways from the alleged reduction; moreover, the
relations between the lifting and the embedding are unclear. Arithmetic is about
numbers; logic is about logical formulae (terms, wffs and proofs); but set theory is
about sets. When we talk about the rational numbers as a set definable by a wff in
Peano arithmetic (AE), with a place in the arithmetic hierarchy, we invoke set theory
but then set it aside. In Enderton’s discussion of first-order languages in Chap. 2 of
A Mathematical Introduction to Logic, he states matter-of-factly, “It is important to
notice that our notion of language includes the language of set theory. For it is
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generally agreed that, by and large, mathematics can be embedded into set theory.
By this it is meant that (a) statements in mathematics (like the fundamental theorem
of calculus) can be expressed in the language of set theory; and (b) the theorems of
mathematics follow logically from the axioms of set theory” (Enderton 1972: 69).
This claim might lead us to believe that arithmetic can be expressed straightfor-
wardly in the language of set theory (via a dictionary), and that its theorems,
suitably translated, will follow from the axioms of set theory. But neither of these
claims is correct; there are relations of reduction but they are all problematic (too
strong and too weak) and so useful for the growth of knowledge.

The arithmetical hierarchy as we have been discussing it is at once a hierarchy in
mathematical logic, which sorts well formed formulae according to their internal
complexity, and suggests special procedures for reducing the complexity of those
objects in order to exhibit their canonical form; and it is a hierarchy of sets of
natural numbers, the ‘intended model’ of the first order theory AE. Note first of all
that this hierarchy is much vaster than schoolroom arithmetic, which takes place
mostly at the levels of recursive and recursively enumerable sets; the hierarchy
contains an infinite number of levels above those two, which from the point of view
of arithmetic are mostly vacuous. Secondly, note that the sets in the arithmetical
hierarchy so understood have Urelemente, the natural numbers, and therefore
presuppose the existence and availability of the natural numbers. But when
Enderton, for example, claims that arithmetic can be embedded into set theory, he
means that the subject matter of natural numbers can be erased and folded into the
subject matter of set theory by means of a suitable dictionary. But then we cannot
presuppose the natural numbers as Urelemente; the set theoretic hierarchy must be
constructed out of the empty set, the set of the empty set, and further iterations
created by the operation of set formation, and then correlated with the natural
numbers.

When we embed the natural numbers themselves in the set theoretical hierarchy,
we get back only an equivalence class of sets, different threads that go up the levels
(all of them starting at the empty set Ø) and imitate the natural numbers adequately.
There is a variety of possible bridge laws that map the natural numbers in appro-
priate ways to a specific sequence of sets. Thus for example, the bridge laws might
identify 0 with the empty set Ø, 1 with the set of the empty set, 2 with the set of the
set of the empty set, and so forth, while working out mappings between the natural
numbers along with the operations +, �, and E, and Ø, {Ø}, {{Ø}}, along with
negation, union and intersection, which preserve the laws of arithmetic. But instead
of choosing Ø, {Ø}, {{Ø}}, {{{Ø}}},…, we could choose Ø, {Ø}, {Ø,{Ø}},
{Ø, {Ø}, {Ø}}},…., and that would work just as well. Thus the analogue of the
natural numbers once number theory has been ‘reduced’ by set theory is really an
equivalence class of sequences of sets, and the criteria for membership in that
equivalence class is available not within set theory but only by appeal to arithmetic.
We have to know what the natural numbers are to know which of the many
sequences of sets are candidates for mimicking them.

The alleged reduction of number theory to set theory can be understood in two
different ways. If we think of the reduction in more discursive terms (re-writing
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discourse about numbers as discourse about sets), it looks like a project undertaken
by model theorists to reduce the ontological extravagance of number theory. Then
the aim of the reduction is to match the things, operations, and procedures of
number theory with counterparts at determinate levels of the set theoretic hierarchy,
and further to re-write a given episode in number theory so that the pertinent items
correspond to even lower levels, if possible. And the theory reduction is not pure. If
we think of the reduction in more ontological terms, however, in the hopes of
achieving a pure theory reduction where numbers disappear, it looks like a project
undertaken by set theorists whose main concern is not logic, but the desire to find a
unified theory for all of mathematics. In this case, we are reminded that the area of
mathematics with the most extravagant ontology of all is set theory (with the
possible exception of category theory), because the mysterious operation of ‘power
set’ allows the mathematician to go ever up and up the hierarchy of transfinite
cardinals. This is of course why set theory can hope to include an analogue of every
other mathematical item. If set theorists wanted to argue that mathematics is really
only about sets and thus to offer a unified theory in the language of set theory
formulated in terms of predicate logic, it would have to be couched in not just an
n-order logic but eventually in a n-orderא logic. It is hard to imagine what such a
theory would look like on the page. Also, sets of very high cardinality seem to have
strange properties (insofar as we can understand them), so the set theorist seems to
be trading in one kind of heterogeneity for another; we don’t really know what
axioms would cover all of set theory. But all along we have been making the
assumption that definitional extension will take place at relatively low levels (the
lowest of the arithmetic levels) of the set theoretic hierarchy, and can be captured by
first-order logic, since it is really only within first-order formal languages that we
know precisely what we mean by ‘successful deduction.’

There are two issues here. We must distinguish between the logical complexity
of the object, and the logical complexity of reasoning about the object. For
example, the real numbers are the first and most important example of a set that is
demonstrably not countable; it does not exist anywhere in the arithmetical hierar-
chy. We must go up to the analytical hierarchy, where sets of natural numbers are
defined by wffs from second-order predicate logic, in order to locate the real
numbers. However, if we accept the real numbers (despite their logical complexity),
we find that the first-order theory of real closed fields has very nice properties. Any
real closed field F has the same first-order properties as the field of real numbers;
examples include the field of real algebraic numbers, and the field of the
non-standard reals. Tarski proved that the theory of real closed fields in the first
order language of partially ordered rings (consisting of the binary predicate sym-
bols = and � , the operations of addition, subtraction, multiplication and the
constant symbols 0 and 1) admits elimination of quantifiers. The important con-
sequences of this result for model theory is that the theory of real closed fields is
complete, o-minimal (o-minimality is a weak form of quantifier elimination) and
decidable, that is, there is a well-defined algorithm for determining whether a
sentence in the first-order language of real closed fields is true (see Tarski 1951;
Sinaceur 1999: Part IV, Chap. 1). Euclidean geometry, without the ability to
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measure angles, is also a model of the real closed field axioms, and so is also
decidable. Model theorists are often happy to put the issue of the logical complexity
of the object in brackets, and to look at the logical complexity of reasoning about it;
as interesting and productive as this approach is, the ‘reduction’ involved doesn’t
meet the standards of pure theory reduction, which would like the real numbers to
be folded back into the rationals, thence to the natural numbers, thence to sets. The
other option is to look for an intuitionist or constructivist analogue of the real
numbers (and of the procedures of infinitesimal analysis), which might plausibly
live in the arithmetical hierarchy, and try to enforce a restriction of mathematical
activity to them; the difficulty is then that practicing mathematicians, while they are
sometimes interested in knowing the level of logical complexity of their objects and
procedures, are in general not interested in constructivist restrictions.

Even as astute a philosopher as Butterfield seems to have been persuaded that by
turning the natural numbers into sets, by ‘covering’ the natural numbers with a
first-order theory (first order Peano arithmetic) that includes as well the integers and
the rational numbers, and by ‘covering’ in a different sense the real numbers and
part of geometry with a well-behaved first-order theory (the theory of closed real
fields), that we have mastered most of mathematics by a series of definitional
extensions that begins with set theory. However, as Butterfield says about physics,
this appearance is an illusion. The results of model theory are striking and
important, but they don’t mean that geometry, real and complex analysis, and
number theory have been reduced to set theory. Rather, these results mean that
logicians have a useful way to measure the ‘logical complexity’ of items in other
branches of mathematics, a measurement that can enhance research in a variety of
domains, but which may or may not be key or even pertinent to the solution of
important problems.

The (illusory) story just told depends on the avoidance of talking about the
things of mathematics in favor of talking about discourse about mathematics. It is
much easier to believe that discourse about geometry can be reduced to discourse
about sets than to believe that figures like circles and triangles can be reduced to
sets, especially sets constructed from iterations of bracketing the empty set. Circles
and triangles are shapes with distinctive properties as shapes: the circle is perfectly
and infinitely symmetrical around its center, and the triangle is the most economical
way to bound a finite area on the plane with line segments—only three of them (and
right triangles are the canonical form of the triangle). You can operate however you
want on Ø, {Ø}, {{Ø}}, … but you will never arrive at a shape.

Let us return to Butterfield’s earlier observation about T1 and T2, the reduced
and the reducing theories, and paraphrase it so that it emphasizes the things the
theories are about. Then we conclude, echoing him, that there may well be aspects
of geometry, viewed as a problem-solving enterprise that investigates figures, which
are crucial to its functioning as a scientific theory, but are not encompassed by (are
not part of) the corresponding aspects of set theory. The properties of geometrical
figures might simply be different from those of sets; or geometry might have aspects
to do with explanation, modelling or heuristics that are not encompassed by or even
perceptible in set theory. We cannot ‘deduce’ apples from oranges; no claims about
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Ø, {Ø}, {{Ø}}, …, no matter how elaborated, will yield a claim about the circle.
This does not mean, however, as Butterfield also observes, that a theory about
geometrical figures and a theory about sets are wholly incommensurable, and that
seeking a systematic connection between them is in vain. It may be quite illumi-
nating for a geometer to know that a fragment (and which particular fragment) of a
certain formalization of Euclidean geometry is decidable.

Likewise, it is easier to believe that discourse about the natural numbers can be
reduced to discourse about sets than to believe that the natural numbers themselves
can be reduced to sets. The natural numbers are canonical because they are the only
mathematical items that index themselves; they are used to index all other countable
things in mathematics, including sets! Thus, in order for iterations of bracketings of
the empty set to represent the natural numbers within set theory, we have to be able
to count the iterations; the natural numbers are epistemically prior to, and required
for, the construction of the sets used to represent them. The natural numbers are
prior to any iteration and indeed any hierarchy. Moreover, the natural numbers and
the rational numbers lend themselves to, and suggest, embeddings in complex
analysis and in algebraic geometry that no thread of iterations of forming sets of the
empty set would ever lead to. What a mathematical thing might be, is indicated not
only by the solved problems in which it figures but also in the unsolved problems to
which it lends itself.

In sum, echoing Butterfield again, there may well be aspects of number theory
viewed as a problem-solving enterprise that investigates natural numbers (and by
‘impure’ definitional extension the integers and the rational numbers), which are
crucial to its functioning as a scientific theory, but are not encompassed by (are not
part of) the corresponding aspects of set theory. The properties of natural numbers,
integers and rational numbers might simply be different from those of sets, espe-
cially sets built on the empty set; and problems about them in number theory might
have aspects to do with explanation, modelling or heuristics that are not encom-
passed by or even perceptible in set theory. This does not mean, however, that
number theory and a theory about sets are wholly incommensurable, and that
seeking a systematic connection between them is in vain. It may be illuminating for
a number theorist to know that some of the machinery used in the proof of Fermat’s
Last Theorem can be replaced by other means of more modest logical complexity.

Part of the genius of logic, is to treat things as if they were discourse. Logic
especially encourages this tendency because for valid deductive arguments to go
through, the terms must be homogeneous throughout; and things (even mathe-
matical things) tend to be quite heterogeneous. Line segments are not numbers, and
numbers are not sets. And subject terms play a role in thought very different from
predicates (and relations), a difference which it suits logic to minimize. Discourse is
a great homogenizer, and logical discourse all the more so. However, this process of
making things discursive not only helps to solve problems, but also generates
certain illusions and leads us astray if we are not careful. It is what we do every time
we think ‘S is P.’

Encountering a problematic thing (which exists in the many ways that things
exist, not as isolated but in relation to other things, and offering an irreducible,
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infinitely complex, unity to our awareness), we look for its conditions of intelli-
gibility. Sometimes, however, having translated the thing upwards into the predi-
cates and relations that articulate its intelligibility, we confuse it with those
conditions, or we neglect to notice when we bring it back down that it has become a
shadow of its former self or an equivalence class or a useful analogue S* 6¼ S of
what we started out with. Thus, not only am I arguing that we should keep in mind
the distinction between things and discourse, even in mathematics, but also that we
might consider problem reduction as even more centrally important for philosophy
than theory reduction. Then we will find that the natural numbers, which seem
initially so simple and transparent, both inspire and resist the discourses into which
we lift or plunge them to solve problems about them: algebraic number theory,
analytic number theory, and logic itself. In each case, there are aspects of numbers
and the problems they raise that are not encompassed by the ‘reducing’ discourse,
which nonetheless because of the way it represents or highlights other aspects may
sometimes offer fruitful problem-solving strategies.

5 Number Theory and Ampliative Explanation

What about the canonical problems of number theory, like those that puzzled
Fermat, discussed earlier in this essay? The solution of those problems also offered
explanations of why those problems arose in the first place, and brought two
different ways of looking at the integers into novel relation. In order for these
insights to be developed, new concepts had to be articulated, with the creation of
novel clusters of concepts. Before we move to the 19th c., however, we should note
a few important developments between Fermat and Gauss. In the 17th c., the natural
numbers took on a new meaning when they were viewed as solutions to polynomial
equations. The advent of polynomial equations made visible the distinctions among
rational, algebraic and transcendental numbers, and then led to the dawning real-
ization that many important curves were not associated with any polynomial of
fixed degree with a finite number of terms: beyond the algebraic functions lay the
transcendental functions. The infinitesimal calculus, and the notation and methods
associated with differential equations, allowed for the exploration of these functions
by Leibniz, the Bernoullis, Euler and Lagrange in conjunction with the nascent
discipline of Newtonian mechanics. This set the stage for Gauss’s work, which
included the flowering of complex analysis based on the insight that the Euclidean
plane provides a good (geometric) model for the complex number system. Gauss
also revisited the ancient Chinese Remainder Theorem with a fresh conceptual-
ization called the Quadratic Reciprocity Theorem, which explained for the first
time why congruences, especially congruences precipitated by prime numbers, lie at
the heart of number theory. The exploration of congruences reveals the fine
structure of the natural numbers.

Albrecht Fröhlich and M.J. Taylor begin their textbook Algebraic Number
Theory with a nice example of ampliative reasoning, where a problem is carried up
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into a broader context and then re-situated (Fröhlich and Taylor 1991: 1–2). Exactly
the same problem shows up at the beginning of Number Theory 1 authored by
Kazuya Kato, Nobushige Kurokawa, and Takeshi Saito (translated into English
by Masato Kuwata) (Kato et al. 1996: 4–5). The problem was first articulated by
Fermat in the seventh of the forty-eight comments he left in the margin of his copy
of Diophantus’ Arithmetica, published posthumously by his son. The context for
this result was Fermat’s study of right triangles in relation to prime numbers.
Studying the triplets of integers that satisfy the equation x2 + y2 = z2, he noted that
the length of the hypotenuse in each case was a prime number congruent to
1 (mod 4) and was never a prime number congruent to 3 (mod 4). To say that two
integers are congruent “modulo n” means that if they were divided by n, an integer,
the remainder in both cases would be the same; thus the odd primes 5, 13 and 17
(for example) are congruent to, or equivalent to, 1 mod 4. It is easy to see that every
integer n thus divides up the infinite set of integers into n equivalence classes, Z/nZ,
which can then themselves be treated as elements of a set; indeed, they form a finite
group. (If n = p, p prime, then these equivalence classes Z/pZ form a finite field.)
This sorting of the integers by ‘modding out’ a subgroup provides useful infor-
mation, especially when n is prime, or the power of a prime. Note that whereas the
concept of a positive integer had an obvious Euclidean-geometrical interpretation (a
certain line length, built up from unit line segments), the concepts of a prime
number and of congruence did not; here Fermat brings these concepts into a pro-
ductive association with geometry for the first time.

This result led Fermat to ask, under what condition an odd prime p may be
written as the sum of two squares (p = x2 + y2 where x and y are integers), and
under what condition it may not be so written. (Note that this equation has no
Euclidean-geometrical significance, though it is clearly formally or rather alge-
braically related to the equation p2 = x2 + y2.) Fermat claimed that the first con-
dition is p � 1 (mod 4) and the second is p � 3 (mod 4) in his Two Squares
Theorem. He asserted this claim without proof; Euler proved it about a hundred
years later by the formal and rather unilluminating method of infinite descent. But
the key explanatory insight was that a prime number p congruent to 1(mod 4) loses
its irreducibility as a prime number in the ring Z[i] of Gaussian integers in the field
Q[i], while a prime number p congruent to 3(mod 4) remains prime. That is, the fact
that a number is prime is not simply an inherent feature of the number, but also
depends upon the number system in which the number is located! This is rather
astonishing. Moreover, it accounts for many puzzling features of the integers.

These explanatory insights require some definitions, some of which were
introduced in Chap. 1, but which are worth rehearsing here. The field Q[i] is an
algebraic extension of the field of rational numbers Q, obtained by adjoining the
square root of −1 (√−1 = i) to the rationals. Its elements are of the form a + bi
where a and b are rational numbers, which can be added, subtracted and multiplied
according to the usual rules of arithmetic, augmented by the equation i2 = −1; and a
bit of computation shows that every element a + bi is invertible. Within this field
Q[i] we can locate the analogue of the integers Z within Q: it is Z[i], the Gaussian
integers, whose elements are of the form a + bi where a and b are integers. Like Z,
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Z[i] enjoys unique prime decomposition, but its primes are different from those of
Z; and instead of two units it has four.

To be a prime in Z[i], as noted earlier, a + bi must satisfy these conditions:
either a is 0 and b is a prime in Z and is congruent to 3(mod 4); or b is 0 and a is a
prime in Z and is congruent to 3(mod 4); or neither a nor b are 0 and a2 + b2 is a
prime in Z and is not congruent to 3(mod 4). If we return to Fermat’s Two Squares
Theorem, we note that 5, 13 and 17 cease to be primes in Z[i] and may be factored
there, whereas 7, 11 and 19 remain prime.

5 ¼ 2 þ ið Þ 2�ið Þ ¼ 22 þ 12

13 ¼ 3þ 2ið Þ 3�2ið Þ ¼ 32 þ 22

17 ¼ 4þ ið Þ 4�ið Þ ¼ 42 þ 12

Richard Dedekind, using a result of Lagrange, offered a proof that exploits this
insight in 1894; here is a version of that presentation is given by Fröhlich and Taylor.

We begin in Z. Suppose p = x2 + y2 (p an odd prime, x and y integers). Consider
the sequence of squares: 1, 4, 9, 16, 25, 36, 49, 64, 81, and so forth; it is easy to see
that for every even integer n, n2 � 0 (mod 4) whereas for every odd integer n,
n2 � 1 (mod 4). Moreover, x and y can’t both be even, and x and y can’t both be
odd (because in either of those cases x2 + y2 would be even, but x2 + y2 must be
equal to an odd prime); so x must be odd and y must be even, or vice versa: in either
case p = x2 + y2 � 1 (mod 4).

Proving the converse is the hard part. Recall that if we mod out the integers by a
prime p, the equivalence classes will form not just a finite group under addition, but
also a finite field under addition and multiplication. We assume here that p is an odd
prime with p � 1 (mod 4), and we want to show that p = x2 + y2 with x and
y integers. In a finite field F with p elements, the non-zero elements form a mul-
tiplicative group of order (p − 1); the order of a group or a subgroup is its cardi-
nality. The order of an element g of a group is the smallest integer n such that
gn = 1 (the multiplicative identity). Two striking facts about group theory is that
the order of every element in the group, as well as the order of every subgroup,
divides the order of the group. The order of every element in this group is then a
divisor of the integer (p − 1), so that every element satisfies the equation xp−1 = 1,
and is thus a (p − 1)th root of unity; so we can find a primitive (p − 1)th root of
unity, the generator, which makes the group cyclic. (A cyclic group is a finite—or
countably infinite group—whose elements are generated by a single element, the
generator of the group.) Since p � 1 (mod 4), in this case we can infer that this
cyclic group has an element of order 4. The equivalence class that contains −1 is the
unique element of order 2 in the finite field of p elements, so we can infer that
m2 � −1 mod (p) for some integer m; then p divides m2 + 1.

Now we go upstairs to Z[i]. We have just seen that p divides m2 + 1, so it also
divides the product of Gaussian integers (m + i) (m – i), a possibility that only
appears in the ring Z[i]. The proof goes through from this point on because of the
happy condition that one can define a Euclidean norm on Z[i], N(z) = zz or
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N(x + iy) = x2 + y2. (The symbol z means the complex conjugate of z.) This
makes Z[i] a principal ideal domain—every element has a unique decomposition
into prime elements—and so enjoys a precise analogue of the unique prime fac-
torization found in Z. Moreover, z is a unit of Z[i] if and only if N(z) = 1, that is,
z = 1, −1, i, or −i.

Then we proceed by a short reductio ad absurdum argument. Suppose p divided
either of the factors (m + i) (m − i), then by applying complex conjugation it would
divide the other and so p would divide 2i, which is absurd; so p does not divide
either of the factors. Thus p, though it is prime in Z, is not a prime element in Z[i],
and there must be a factorization p = (x + iy) (x′ + iy′) as a product of two Gaussian
integers, neither of which is a unit. Indeed, in view of the norm (which is multi-
plicative, and defined so that N(p) = p2), the factorization can have only two factors
and it must be of the form p = (x + iy) (x − iy). Now we go back downstairs. This
transit is accomplished by applying the norm to both sides of the factorization of p,
to arrive at the equation p2 = (x2 + y2) (x2 + y2), and conclude that p = (x2 + y2)
(Fröhlich and Taylor 1991: 1–2).

The proof strategy sets the concepts involved in this problem of number theory
into novel proximity with a variety of concepts. It relates the integers to the
complex numbers, since Q[i] is a subfield of C, the field of complex numbers. If we
use the Euclidean plane as a model for C, the units are then modeled by the square
with endpoints 1, i, −1 and −i. This suggests, as we have seen, the generalization
that models the set of nth roots of unity as vertices of regular n-polygons centered at
0 on the complex plane, with one vertex at 1. As noted earlier, we can then move
from Q[i] to other algebraic fields called cyclotomic fields, where an nth root of
unity (fn) is adjoined to Q; for each cyclotomic field Q[fn] there is a group of
automorphisms that permutes the roots of unity while mapping Q to itself, the
Galois group, Gal (Q[fn]/Q). The field Q[i] is also a vector space, which is not
merely an abstract structure, but a toolkit of related concepts, like basis, norm, inner
product, vector, scalar, eigenvector and eigenvalue and of course dimension. (The
concept of norm plays an important role in the proof just mentioned.) Finally, the
notion of congruence plays a central role in the proof, specifically congruence mod
4. We have seen that the key to the latter problem solution is the insight that some
primes in Q remain prime in Q[i] and some primes decompose into factors (factors
which are prime in Q[i]), and that this sorting must be carried out by looking at the
primes in terms of which congruence class (mod 4) they belong to.

As it turns out, the Galois group Gal (Q[fn]/Q) is isomorphic to the finite abelian
group (Z/nZ)x, the multiplicative group of Z/nZ. There also exists a one-one
correspondence between subfields of Q[fn] and subgroups of Gal (Q[fn]/Q. These
correspondences allow us to find patterns linking the decomposition (factoring) of
prime numbers in cyclotomic fields to specific congruences. For example, a prime
decomposes in Q[f7] if it is congruent to 1 (mod 7); a prime decomposes in Q[f5] if
it is congruent to 1 (mod 5). Here is the theorem that generalizes these facts: Let
n be a natural number; suppose that a subfield L of Q[fn] corresponds to a subgroup
H of (Z/nZ)x [isomorphic to Gal (Q[fn]/Q)]. Then for any prime number p not
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dividing n, we can prove that p is totally decomposed in L if and only if p mod n is
an element of H. (To say that p is totally decomposed means in this context that it
splits into prime factors; in more general contexts, it means that it splits into prime
ideals.) (Kato et al. 2010: 16f.) These kinds of patterns, relating ‘outer’ to ‘inner,’
that is, the ways that the integers can be embedded in algebraic number fields to the
internal fine structure of the integers revealed by congruences, lead eventually to
Class Field Theory. As Kazuya Kato writes, rather poetically, in Chap. 8 of his
co-authored Number Theory 2, “In a fairy tale, sceneries far away from home may
be seen in the magic mirror. How many abelian extensions are there over a global or
a local field K, and what happens in such abelian extensions? These ‘outdoor
sceneries of K’ are reflected in the ‘indoor mirror of K,’ that is, the multiplicative
group or the idele class group of K. This is the main content of what class field
theory is” (Kato et al. 2010: 151).

Gauss introduced the Gaussian integers Z[i] in his monograph on biquadratic or
quartic reciprocity (1832), which investigates the solvability of the congruence
x4 � q (mod p) with respect to that of the conguence x4 � p (mod q) (where p and
q are distinct odd primes greater than two). He found that solving this problem was
easier if he first posed it in terms of the Gaussian integers rather than ordinary
integers. This work followed his investigations into quadratic and cubic reciprocity,
analogously stated for x2 and x3. As it turns out, every quadratic field is a subfield of
a certain cyclotomic field (this is an instance of the Kronecker-Weber Theorem);
thus the way that a prime number p decomposes in a quadratic field is also
determined by p mod n for some n, and the Quadratic Reciprocity Theorem may be
understood as a re-statement of this fact. Class field theory generalizes this result, to
cases where the ring of integers in an algebraic field does not enjoy prime
decomposition, but only decomposition into prime ideals.

Fröhlich and Taylor give the following account of this generalization (here
K stands for any algebraic number field and OK for its ring of integers): “Whilst
rings of algebraic integers are not in general principal ideal domains, and so do not
possess unique factorisation of elements, they do still possess unique factorisation
of non-zero ideals: that is to say, given a number field K, every non-zero OK-ideal
can be written uniquely (up to order) as a product of prime ideals of OK.” (Fröhlich
and Taylor 1991: 4). The extent to which unique factorization fails in the ring of
integers of an algebraic number field can be described by a certain group known as
the ideal class group; this group is finite, and its order is the class number, which
registers the extent to which prime factorization fails. (Wiles’ final struggle to show
that TR and RR are isomorphic, noted in Chap. 3, involved the creation of a class
number formula.) The class group of OK is defined to be the group of fractional
OK-ideals modulo the subgroup of principal fractional OK-ideals, where K is an
algebraic number field. When every OK-ideal is a principal ideal, or when we can
define a Euclidean norm on OK, this class group is trivial, that is, it is just the
(multiplicative) group consisting of the element 1, and thus the class number is one
and we have unique prime decomposition. In sum, the task of locating and defining
structure in rings of algebraic integers within algebraic extension fields that will be
analogous to structure in the ordinary integers turned out to be very difficult. My
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point is, once again, that going upstairs from Z or Q to algebraic number fields like
Z[i] within C in order to solve certain problems that arise early on in number theory
(already in the notes of Fermat) is a non-trivial matter: the reasoning is ampliative,
both going up and coming down.

Chapter 4 of Fröhlich and Taylor is devoted mostly to units and class groups,
though with an oddly geometrical section on lattices in Euclidean space, note-
worthy because Fröhlich and Taylor try very hard to keep geometry and real and
complex analysis out of this book: this is a book about algebra. They then conduct
the reader into a more detailed study of fields of low degree (Chap. 5 deals with
quadratic, biquadratic, cubic and sextic fields), and then of cyclotomic fields
(Chap. 6), where, significantly, quadratic fields are re-visited and the quadratic
reciprocity law is re-proved. It was Gauss’s favorite theorem; in the Disquisitiones
Arithmeticae (1801) he called it the fundamental theorem and by the time he died he
had proved it eight different ways. The next step up in complexity—and it is a
considerable step—is to cubic fields, created by adjoining to Q the roots of
equations whose exponents may go up to 3. Recall that the order of an element a in
a multiplicative group G is the minimum positive integer m such that am = e, the
identity element. In general, the group of roots of unity in a field L is a subgroup of
the points of finite order of the multiplicative group Lx. If we adjoin a primitive nth
root of unity fn to Q, for example, we adjoin the whole group of nth roots of unity,
because fn generates the whole group. Analogously, we can explore what happens
when one adjoins the coordinates of the group G of points of finite order (torsion
points) of an elliptic curve to a field L; this generates a theory analogous to the
theory of cyclotomic fields. Cyclotomic fields, as we have seen, have very nice
properties. The ring of integers in the cyclotomic field Q[fn] is just Z[fn] and the
abelian Galois group Gal (Q[fn]/Q) is isomorphic to the multiplicative group
(Z/nZ)x, as we noted earlier. The Kronecker-Weber Theorem tells us that every
Abelian extension of Q (and thus every quadratic extension of Q) is contained in
some cyclotomic field Q[fn]. Because of these nice properties, cyclotomic fields can
be described and classified in terms of objects defined back down in Q, residue
class characters, elements of the ‘character group’ associated with (Z/nZ)x, another
version of the way that ‘inner’ is related to ‘outer’ in algebraic number theory.

6 Coda

Peter Roquette makes a rather Spinozan observation at the beginning of his inter-
esting long essay, “What is Reciprocity? On the Evolution of class field theory in
the 20th century,” when he remarks: “… the mere proof of the validity of a theorem
is in general not satisfactory to mathematicians. We also want to know “why” the
theorem is true; we strive to gain a better understanding of the situation than was
possible for previous generations. Sometimes a result seems to be better understood
if it is generalized, or if it is looked at from a different point of view, or if it is
embedded into a general theory which opens analogies to other fields of
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mathematics”. (This essay is under revision and no longer available online.
Please see: http://www.rzuser.uni-heidelberg.de/*ci3/manu.html.) And Kazuya Kato
sounds quite Leibnizian at the beginning of his co-authored Number Theory 1, when
he writes, “Fermat, who was the founder of modern number theory, noticed the depth
of the world of numbers… We think that the reason for the depth of the world of
numbers that fascinated Pythagoras, Fermat, and many others is that it is a reflection
of the depth of the universe. As number theory has been developed during the
350 years since Fermat’s era, we have discovered the enormous depth of the world of
numbers.” (Kato et al. 1996: 14).

Interesting mathematical systems are emphatically non-trivial and require first
principles whose truth is evident only against a background of highly developed
knowledge. And that dependence on background knowledge leaves them open to
questioning, a feature that enhances rather than impairs their status as axioms. Good
axioms (take the Peano Postulates, for instance!) summarize and refer back to a great
deal of hard-won mathematical experience, and that very reference can be used to
adjust, unpack, generalize and improve them. But no matter which way you look at
it, a number is not a set and it is not a shape; however, numbers acquire new meaning
by being brought into relation with things that are not numbers, as when the integers
are embedded in various algebraic number fields as well as in the complex plane.
Look as long as you want at the Peano Postulates, or at the hierarchy of sets built on
the empty set: you will not find a square or a circle there. (Nor, for that matter, will
you find a vector space, a norm, a Galois group, a reciprocity theorem, or the
complex plane.) The Peano Postulates put important constraints on what might count
as the integers, and perhaps one of the structures of this theory is classroom arith-
metic; but they do not give us number theory. And we should keep in mind that even
classroom arithmetic, the kind we offer to our children in primary and secondary
school, is riddled with inexplicable mysteries. Why can we easily find integral
solutions for x2 − y2 = z2 but none at all for x3 − y3 = z3? Why can some primes be
written as the sum of two squares x and y (where x and y are integers), but other
primes can’t? If we were limited to the language (and concepts) of Peano Arithmetic,
we would never be able to explain. Problem solving and explanation in mathematics
are inherently ampliative, and that is what makes mathematical research so much
more exciting than what we do in the schoolroom, deducing theorems from neatly
arranged axioms: satisfying as that activity is, deduction should ultimately inspire
students, and all lovers of mathematics, to go beyond deduction.
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Chapter 5
Fermat’s Last Theorem and the Logicians

1 Logic and the Illusion of Homogeneity

At the risk of trying the reader’s patience, in this chapter I am going to revisit A
Mathematical Introduction to Logic (Enderton 1972), and Gödel’s Proof (Nagel
and Newman 1958), before examining the first stage of Wiles’ proof of Fermat’s
Last Theorem as a case study. I return to Butterfield’s critique of the mid-twentieth
century model of theory reduction, but whereas in the last chapter I tried to show
the limitations of the theory reductions presented by Enderton and in a different
sense by Gödel in Butterfield’s own terms (“too weak and too strong”), here I want
to show how these reductions (imperfect as they are) lend themselves to the growth
of knowledge, often by means of the productive ambiguity that occurs when dis-
parate discourses must meet and mingle. And this sheds light in retrospect on the
episode from number theory presented at the very end of Chap. 4, which sets the
stage for my exposition of the first stage of the proof of Fermat’s Last Theorem.

Logic, in order to formulate rules of correct inference, must abstract from all
subject matter. In order to offer rules of thought in general, it must not express
special assumptions about special features of this or that kind of thing. The AAA1
syllogism reliably transmits truth (when the premises are true) no matter what kinds
of terms are substituted for S, M, and P; modus ponens reliably transmits truth
(when the premises are true) no matter what kinds of propositions are substituted
for p and q. Predicate logic seems to introduce considerations of subject matter
because of the quantifiers, which must quantify over a universe of discourse, but
students introduced to ‘pure predicate logic’ in a textbook are told to assume that
the universe of discourse includes everything. Robert Paul Churchill, in his standard
textbook, Logic. An Introduction (1990), for example, advises the student that we
must establish a ‘universe of discourse’ which includes everything that can be
named or described, whether physical or non-physical (Churchill 1990, 149). By
adding special vocabulary to the language of pure predicate logic, we may develop
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a formal language that restricts predicate logic to a certain subject matter (arith-
metic, for example); in textbook problems, restrictions are introduced informally by
telling students that the universe of discourse has been chosen to include only
certain kinds of things (all human beings, for example).

This fact about logic has led some philosophers to claim that logic is purely
syntactic, and that the regulation and organization it provides for human knowledge
operates only at the level of syntax. The theory of the syllogism, propositional logic
and pure predicate logic are intended to introduce no restrictions on subject matter,
but to remain semantically neutral (Carnap 1928, 1983). Other philosophers like
Bas van Fraassen, wishing to introduce semantical considerations, presented
models for logical theories that are themselves constituted in terms of formal lan-
guages, so that the relation between model and formalized theory depends on an
isomorphism between object language and meta-language. (Van Fraassen 1989:
Part III; he thinks beyond the ‘myth of pure syntax’ in his later book, Van Fraassen
2008.) Because first order theories have nicer properties (and so are better under-
stood) than second order theories, the preferred formal theories are usually
expressed in first order pure predicate logic augmented by special symbols, along
with rules for the employment of the special symbols. However, when they are
intended to be about mathematical systems, these first-order theories are
non-categorical, that is, they are satisfied by an infinite spectrum of isomorphic
models. The models, even the somewhat mysterious ‘intended model,’ thus also
come to seem like uninterpreted structures, syntactic objects. And structuralism has
come to seem like an attractive option for philosophers of mathematics.

However, let us step back from the myth of pure syntax, and from the
assumption that logic is the main—perhaps the sole—source of organization and
regulation for human (and mathematical) thought. Then we may see that the central
task of syllogistic, propositional logic and pure predicate logic, which is to give
rules for the deductive transmission of truth, itself imposes restrictions on subject
matter, and on the relations between a formal theory and subject matter. The first is
the restriction of homogeneity on the subject matter. Logic, to exhibit the forms of
deductive inference and to serve as the standard of argument, must be expressed in
a homogeneous idiom: not only must p, q, and r be homogeneous, but so must be S,
P and M. Since they are the same kind of thing, S and P can be yoked unprob-
lematically in the universal proposition, ‘All S is P,’ and S, P and M can be used
either as the subject or the predicate term in a proposition. Likewise, p, q, and r can
be inserted within a premise or a conclusion as needed. In predicate logic, constant
terms and n-place predicate terms are distinguished, but their homogeneity is
guaranteed because, when and if interpreted, they are referred to a single universe of
discourse whose elements must all be logically compatible. The extensional
interpretation of predicate logic guarantees that constant terms and n-place predicate
terms are all taken to be elements and subsets of the same universe of discourse, and
thus for example a constant term a either will or will not occur in a one-place
predicate term H. If it does, then Ha is true; if it doesn’t, then Ha is false.

The second restriction is that the relations between logical items and subject
matter must be univocal and stable: they must be expressible in terms of an
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isomorphism. Whenever S or P occur, or p, q, and r, they must be exactly the same
item in the formal language; likewise, once the issue of subject matter has been
reinstated, they must always be interpreted in only one way, and indeed in exactly
the same way at every occurrence. These two restrictions hold because otherwise
logic cannot do its job: they are required in order for a deductive argument form to
transmit truth reliably. If the homogeneity condition did not hold, we could not
guard against the fallacy of irrelevance, beloved of religious fundamentalists; if the
univocality condition did not hold, we could not guard against the fallacy of
equivocation, beloved of politicians. We must be able to combine and transpose and
re-identify the items of our logic as we reason.

During the last century, these formal requirements of logic, which it must invoke
in order to be logic, acquired a life of their own and turned into formal conditions
that bore upon subject matters. This happened both because predicate logic became
central to philosophy of science and mathematics, and because logical positivists
tended to re-fashion subject matters to look like formal theories. We can see the
demands for homogeneity and univocality operating on many different levels. It
produced the mid-century model of theory reduction; the deductive-nomological
model of explanation and prediction; and an extensional, set-theoretical under-
standing of predication. But this widespread tendency to impose logical restrictions
on subject matters has made many important aspects of scientific and mathematical
rationality hard to see, or has erased them altogether. One aspect, diagnosed very
well by Robin Hendry, is that scientific and mathematical definition and explana-
tion often exhibit asymmetries that are central to the reasoning, but which are erased
by the symmetry of ‘isomorphism’ when it is used to explicate them philosophically
(Hendry 2001). Another aspect, which I have tried to show in the preceding
chapters, is that scientific and mathematical activity often make use of subject
matters and associated discourses that are logically (though not, of course, ration-
ally) disparate, and this occurs at the level of theory, argument, and proposition.

In such theory integration and in such explanations, terms may fail to be uni-
vocal; I have also studied the uses of what I call productive ambiguity in various
proofs, where terms are required to shift their meanings in order for the proof to go
through (Grosholz 2007: Chaps. 9 and 10). But the interesting question is how
these shifts take place, and how they can deepen rather than subvert understanding.
I have been arguing that the study of these compelling and up till now often
invisible questions should be a matter not only of philosophical but also of his-
torical interest: we need historical epistemology. Logical positivists often assume
that a philosopher who strays from the straight and narrow path of logic must then
fall into the swamps of naturalism, the empirical study of human behavior or human
perception. But the cure for logicism is not ‘naturalism’ or ‘empiricism,’ but rather
reflective history. The discipline of history is empirical, as I argued in Chap. 2, but
its methodology is distinct from that of the sciences, because it is concerned with
human actions and practices that are temporal and cultural; and it is history that
philosophy needs as an ally in this project.
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2 Enderton Redux

In his well-known logic textbook cited in Chap. 4, A Mathematical Introduction to
Logic, Herbert B. Enderton introduces the study of models in the following way. He
states that a structure for a first-order language will tell us what collection of things
the universal quantifier symbol refers to, and what the other parameters (the
predicate and function symbols) denote. Then he formally defines a structure U for
a given first-order language as a function whose domain is the set of parameters
(Enderton 1972: 79).

1. U assigns to the universal quantifier symbol a non-empty set │U│, called the
universe of U.

2. U assigns to each n-place predicate symbol P an n-ary relation PU which is a
subset of the set of all n-tuples of members of │U│, │U│n.

3. U assigns to each constant symbol c a member cUof the universe │U│.
4. U assigns to each n-place function symbol f an n-ary operation fU on │U│, so

that fU: │U│n ! │U│.

Note that the structure U is a function; in so far as it is a function, it is just as
‘discursive’ or ‘logical’ as the so far uninterpreted first order language that serves as
its domain. Considered simply as a function which performs a service for predicate
logic, the structure U is itself presumably also uninterpreted, even if its service is to
provide an interpretation. That is, the structure U considered simply as a function
has no ontological import, no more ontological import than the uninterpreted first
order language that serves as its domain.

If we then think of the structure U as ‘purely’ discursive and the set │U│ as
somehow outside of or beyond discourse, we must wonder how they have been
brought into relation. One answer might be that by treating whatever it is that lies
outside or beyond discourse as a set, we have assimilated it to a discourse (the
discourse of set theory). But then we have only established a mapping between two
discourses: does this mapping really count as successful reference and denotation?
Doesn’t it seem odd that the discourse of first order predicate logic and the dis-
course of set theory should resemble each other so closely? Perhaps there is an
historical explanation for that notable resemblance.

Another answer might be that we find here an example of two different functions
of language, the function of indicating what we are talking about and the function of
analyzing it. Then the structure U considered as a function has the job of analysis,
and the set │U│ has the job of indicating, or perhaps exhibiting, what we are
talking about. But what is the relation between the structure U (which is a function)
and the non-empty set │U│, which is presumably more like a referent or object,
since it provides the interpretation? This is a very difficult question to answer; in a
sense, the philosophically vexed question of how applied mathematics is possible at
all is implicated in this question, and our choice of reply to it. What is Enderton’s
response to it? After a few more pages of exposition, Enderton gives an example of
what it means for a model to satisfy a set of sentences.
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Example. Assume that our language has the parameters ‘universal quantifier,’ P
(a two-place predicate symbol), f (a one-place function symbol), and c (a constant
symbol). Let U be the structure for this language defined as follows:

│U│ = N, the set of all natural numbers;
PU = the set of pairs of natural numbers <m, n> such thatm is less than or equal to n;
f U = the successor function S; and cU = 0.

Then Enderton adds, off-handedly, “We can summarize this in one line, by
suppressing the fact that U is really a function and merely listing its components:
U = (N, � , S, 0).” (Enderton 1972: 85).

And thereafter, the fact that U is ‘really’ a function is always suppressed and
Enderton writes as if the structure U can be thought of as the referent, the object of
discourse, in this case the natural numbers. So at the beginning of Chap. 3, on
Undecidability, Enderton introduces the structure (N, 0, S, <, +, �, E) as the
‘intended structure’ for the first-order language of number theory with equality and
the usual parameters (Enderton 1972: 174). Clearly here (in an exposition of the
undecidability of certain logical theories) the structure U is meant to stand for the
referent or object that supplies the interpretation and lies somehow beyond or
outside of the discourse of first order predicate logic.

Shall we accuse Enderton of intellectual dishonesty? In fact, what he has done
here is to employ a common strategy of mathematicians (and scientists) who must
bring an analytic discourse into rational relation with what it refers to. Of course,
there are no such things as bare facts or raw data! What is referred to, is never
encountered wholly outside of discourse: we articulate our awareness of things in
one way or another, according to one or another mode of representation, and
thereby develop modes of representation and formal idioms that lend themselves
well to indicating what we are talking about. Meanwhile we develop other, dis-
parate modes of representation and formal idioms that lend themselves better to
certain kinds of analysis of the things under investigation. Some terms occur in
more than one of the disparate discourses that develop, and so may serve as bridges
between them, though usually because the mathematicians or scientists learn to live
with their ambiguous meaning: they typically mean one thing in one discourse and
something slightly different in another. (Thus H2O means a certain molecule in the
middle of a chemical article, and a purified substance in a beaker in the account of
the experiment at the end of the article.) Enderton needs the student to believe in
Chap. 2 that the structure U is part of the formal logical apparatus, and in Chap. 3
that the structure U is the object of knowledge. His sleight-of-hand is so brief and
casual that for most students it goes unnoticed.

The problem with Enderton’s exposition is that he has left out the discourses that
mathematicians historically employ for referring to numbers. In one sense it is the
arithmetic that children learn, expressed in the idiom of the Indo-Arabic numerals
enhanced by the polynomials of Descartes and Fermat, which inter alia allows us to
express the prime decomposition of a large number in the following perspicuous
way: 243,000,000 = 26 � 35 � 56. In another sense, it is the multiply idiomatic
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discourse to be found in an article published in a journal devoted to number theory,
where mathematicians present and defend their latest results. Recall that for
Enderton, the ‘intended structure’ U = (N, 0, S, <, +, �, E) has already been
assimilated to a logician’s discourse in which the numbers are represented as the
initial element 0 and successive iterations of the function successor, S. This mode of
representation was developed by logicians to subject arithmetic to logical analysis,
but it is never employed in the classroom to teach arithmetic, or in articles in
journals devoted to number theory. When logicians need to use the natural numbers
as indices, or to compute number theoretical facts like the prime decomposition of a
large number, they make use of Indo-Arabic/Cartesian notation without really
mentioning their own departure from the formalism they are supposed to be using.

This doesn’t mean that there is a single preferred idiom for referring or picking
out the things we are interested in ‘correctly.’ Successful referring typically depends
on the context of use, and changes in the historical context of problem-solving may
lead us to change the representations we use not only for analyzing but also for
referring. However, the notation 0, S0, SS0, SSS0, … however useful for logical
analysis of the natural numbers, is not useful for successful reference in most
problem-solving situations in classroom arithmetic or in number theory.

3 Gödel Redux

An accurate and well-received exposition (cited in Chap. 4) of Gödel’s two
Incompleteness Theorems is given by Ernest Nagel and James R. Newman in their
book Gödel’s Proof, dedicated to Bertrand Russell (Nagel and Newman 1958:
78–79). The proof strategy is fairly well known. Gödel begins with a theory (a set of
axioms and their deductive consequences) in the language of first order predicate
logic with parameters like those offered by Enderton. Then he assigns a natural
number, now called its Gödel number, to every well formed formula (wff) in such a
way that if we are given the number, its prime decomposition will allow us to recover
the wff; and then he performs a similar feat for any sequence of wffs. Then he devises
a numerical function ‘Dem.’

Here is Nagel and Newman’s exposition of Dem: “Let us fix attention on the
meta-mathematical statement: “The sequence of formulas with Gödel number x is a
proof of the formula with Gödel number z.” This statement is represented (mir-
rored) by a definite formula in the arithmetical calculus which expresses a purely
arithmetical relation between x and z…We write this relation between x and z as the
formula ‘Dem (x, z)’ to remind ourselves of the meta-mathematical statement to
which it corresponds (i.e. of the meta-mathematical statement ‘the sequence of
formulas [wffs] with Gödel number x is a proof (or a demonstration) of the formula
with the Gödel number z’).” (Nagel and Newman 1958: 85–97).

This relation Dem (x, y) is used to create the celebrated Gödel Sentence G via a
carefully constructed, self-referential designation ‘(sub(m, 13, m))’ which picks out
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“the Gödel number of the formula that is obtained from the formula with Gödel
number m, by substituting for the variable with Gödel number 13 [y] the numeral
for m,” which in turn can be shown to be a definite number that is a certain
arithmetical function of the numbers m and 13, and the function itself can be
expressed within the formalized system. The Gödel Sentence G is then constructed
by beginning with the following formula:

xð Þ�Dem x; sub y; 13; yð Þð Þ;

which meta-mathematically claims that “the formula with Gödel number sub(y,13,y)
is not demonstrable.” It has a Gödel number, which we will call n. Then the Gödel
Sentence G is:

xð Þ�Dem x; sub n; 13; nð Þð Þ;

and the meta-mathematical meaning of G is “The formula with Gödel number sub
(n,13,n) is not demonstrable.” Gödel has cleverly set up the ‘diagonalization,’ so
that in fact the Gödel number of G is sub(n,13,n), and the formula claims of itself
that it is not demonstrable. Gödel then uses this special formula to show that G is
demonstrable if and only if *G is demonstrable and thus that if the axioms of this
formalized system of arithmetic are consistent, then G must be formally undecid-
able. And G can be shown to be true by meta-mathematical reasoning: it formulates
a complex numerical property that must hold of all numbers. So the claim that ‘if
arithmetic is consistent, it is incomplete,’ is represented by a demonstrable formula
within formalized arithmetic (Gödel 1931, 1992).

The use of Gödel numbering as the strategic bridge between formalized arith-
metic qua logical system, and arithmetic, forces an ambiguity on the natural numbers
similar to the ambiguity we noted in Enderton’s treatment of the structure U.
Enderton uses the notation U = (N, � , S, 0) to mean both an uninterpreted structure,
and to mean the natural numbers, the referents which various formalizations are
trying to represent. When he wants to emphasize the ‘analytic’ meaning, he invokes
the notation 0, S0, SS0, etc., and when he wants to emphasis the referential meaning,
he invokes the notation 1, 2, 3, etc. Gödel likewise constantly invokes the natural
numbers (he was a Platonist, after all), but uses a variety of notations to represent
them, depending on whether he is using them in an analytic or referential capacity.
This is noteworthy, since he is intent on expressing his proof in the strict notation of
Principia Mathematica as the title of his proof announces.

Gödel uses a notation slightly different from that used by Nagel and Newman
(who have simplified his exposition a bit to make it clearer); I will now refer to the
notation in On Formally Undecidable Propositions in Principia Mathematica and
Related Systems. The natural numbers are represented as 0, f 0, f f 0, f f f 0, etc.; 0
and f are included among the ‘basic signs’, and the series just given is included
among ‘signs of first type’. Along with the ‘n-type signs,’ they constitute the class
of elementary formulae; Gödel next gives a set of axioms numbered I–V, and
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defines the class of provable formulae in terms of them. Then he announces Gödel
numbering (Gödel 1992: 41–46).

The basic signs of the system P are now ordered in one-to-one correspondence
with natural numbers, as follows:

“0” … 1
“f” … 3
“*” … 5
“v” … 7
“P” … 9
“(” … 11
“)” … 13

Furthermore, variables of type n are given numbers of the form pn (where p is a
prime number greater than 13). Hence, to every finite series of basic signs (and so
also to every formula) there corresponds, one to one, a finite series of natural
numbers. These finite series of natural numbers we now map (again in one-to-one
correspondence) on to natural numbers, by letting the number 2n1 • 3n2 … • pk

nk

correspond to the series n1, n2, … nk, where pk denotes the kth prime number in
order of magnitude. A natural number is therefore assigned in one-to-one corre-
spondence, not only to every basic sign, but also to every finite series of signs.

This passage rewards study. When Gödel wants to refer directly to the natural
numbers, as in the array where numbers are assigned to ‘basic signs,’ and whenever
he indexes anything, he uses Indo-Arabic/Cartesian notation. He has to do this,
since, for example, “0” is assigned “f 0” in the notation of his formal system, which,
if assignment is taken to be identification, is the contradiction 0 = 1. He doesn’t
intend to propose a contradiction, of course, but rather an isomorphism between
formulae and natural numbers. All the same, we might think that Gödel does in fact
understand this assignment as identification, since a few pages earlier he writes:
“Proofs, from the formal standpoint, are likewise nothing but finite series of for-
mulae (with certain specifiable consequences). For metamathematical purposes it is
naturally immaterial what objects are taken as basic signs, and we propose to use
natural numbers7 for them. Accordingly, then, a formula is a finite series of natural
numbers8, and a particular proof-schema is a finite series of finite series of natural
numbers.” (Gödel 1992: 38–39).

He nuances this passage with two footnotes that adumbrate ‘natural numbers.’
Footnote 7 explains that we are to understand the identification of natural numbers
with basic signs as a one to one mapping, despite the clear suggestion that the
objects in this proof are natural numbers. Footnote 8 is a statement of Gödel’s
Platonist faith; the natural numbers do not exist in space and cannot be set in a
spatial array.

My point is not to accuse Gödel of confusion, or illogic, or metaphysical
commitments. Rather, I am trying to show that to carry out his proof, he must use
modes of representation that lend themselves to logical analysis (Russell’s notation)
but not to computating or referring, and other modes of representation that lend
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themselves to successful reference (Indo-Arabic/Cartesian notation). He must use
disparate registers of the formal languages available to him, combine them, and
exploit their ambiguity, as he does in the passage just quoted. When Gödel says
‘natural number,’ he must mean both a series of formulae in the system PM, and the
objects of arithmetic, in the language of arithmetic (see also Wagner 2008).

Thus if a Gödel number is to function as a plank in the bridge between the
formalized, uninterpreted calculus and arithmetic, Gödel (as well as Nagel and
Newman) must invoke it in two ways. It must be a number that we can refer to by a
numeral in Indo-Arabic/Cartesian notation, because only in that notation can the
wffs be retrieved from their Gödel numbers, via unique prime decomposition. So
for example, (here I revert to the exposition of Nagel and Newman where the Gödel
numbering is slightly different) the PM formula ‘0 = 0’ in the uninterpreted cal-
culus is represented by 26 � 35 � 56 which is equal to 243,000,000; we must use
the prime decomposition in Indo-Arabic/Cartesian notation to rewrite 243,000,000
in order to find the powers of 2, 3 and 5 (the first three primes)—6, 5, and 6—which
code for 0, =, and 0. But a Gödel number must also be an analytic modality, a
numeral in the uninterpreted calculus, with the form SSSS…SSS0, if we are to
believe that the formalized calculus of arithmetic can describe its own formal
properties as a system. (There is no such thing as the prime decomposition of a
logical formula, any more than there is the prime decomposition of a circle.) In
order for the proof to go through, Gödel numbers must be variously considered as
both; the proof cannot renounce its two distinct modes of representation. Their
combination via the strategy of Gödel numbering results in a demonstration that
exploits and requires a carefully controlled ambiguity. This ambiguity cannot be
dispelled; it cannot be dismissed as heuristics but is central to the demonstration;
and it goes largely unremarked by Nagel and Newman, whose exposition betrays it
nonetheless here and there (see Byers 2010).

In Chap. 1, I noted Karine Chemla’s use of the idea of “modalities of applica-
tion,” elicited from her study of the development of projective geometry, focusing
on 19th c. projective geometer, Michel Chasles. Chasles pointed to Descartes’
method of tangents in analytic geometry as having an enhanced generality not
available to the Greeks. Descartes’ method of tangents, Chemla notes, is indeed
general, but can be applied to curves only when one has succeeded in representing
them by an algebraic equation. That is, the ‘modality of application’ requires that
the curve be replaced by an algebraic equation (Chemla 1998). Since this method at
first wouldn’t work for transcendental curves, precisely because they are not
algebraic, many of Leibniz’s early efforts in developing the infinitesimal calculus
are attempts to apply the method of tangents to non-algebraic curves. The extension
of the general methods of analytic geometry to transcendental curves in the long run
required novel (non-Cartesian) ‘modalities of application’ for the same general
method.

Logicians are typically very fond of arithmetic. Herbert Enderton, at the
beginning of his textbook discussed above, observes that symbolic logic is a
mathematical model of deductive thought, and that axiomatic mathematics consists
of many logically correct deductions laid end to end: “Thus the deductions made by
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the working mathematician constitute real-life originals whose features are to be
mirrored in our model.” He adds that first order logic is “admirably suited to
deductions encountered in mathematics. When a working mathematician asserts
that a particular sentence follows from the axioms of set theory, he means that this
deduction can be translated to one in our model” (Enderton 1972: 2). Logic gets
itself into trouble because of its own pretentions: it wants to replace the mathe-
matical languages it formalizes. So, since logical languages must be homogeneous,
logic must offer substitutes for (among other items) the natural numbers. We have
seen that Enderton’s textbook tries to finesse the disparity between logic, set theory,
and number theory, as does Nagel and Newman’s exposition of Gödel’s proof.
Ironically, Gödel’s proof offers a clear example of the complexity of bringing
modes of representation useful for referring, and modes of representation useful for
analysis, into rational relation; it is also an example of the fruitfulness of doing so.
His solution to the problem is sometimes to let Gödel numbers mean numerals in
the logical calculus, when they must play the role of an analytic ‘modality of
application,’ and sometimes to let them mean numbers identified by
Indo-Arabic/Cartesian numerals, when they must serve as referents. They must
mean both in order for the proof to go through. But then he is exploiting a carefully
controlled and fruitful ambiguity, which multiplies the information available to the
mathematician, though it is hard for a logician to admit that he is trafficking in
heterogeneity.

4 Wiles’ Proof of Fermat’s Last Theorem Redux

The question, is arithmetic logic, or, can arithmetic be reduced to logic in the sense
of Nagel, as I have been arguing, is ill-posed. It confuses areas of research with
formal theories. Formal theories are possible elements or aspects of areas of study,
and instruments by means of which these areas can be studied. Just as we may learn
something by re-constructing a collection of problematic mathematical things as a
topological space, so we may learn something by re-constructing a collection of
problematic mathematical things as a formal theory. In the latter case, we are
treating some of the things of mathematics as if they were discourse; and then we
treat discourse as if it were a topic for mathematical investigation, which of course
it is: terms, propositions, arguments, sets and categories turn out to have very
interesting properties when understood as mathematicial things.

Number theory and logic are two disparate areas of research; for example, they
admit extension in very different ways. The solution of problems in number theory is
often accomplished by embedding the integers in various kinds of completions, as
we saw in the last chapter: the rationals, the reals, the complex numbers, the p-adic
numbers, and ultra-products of such completions. The peculiar structure of the
integers as discrete units on the one hand makes their construction straightforward,
but on the other hand complicates their investigation. Diophantine equations are not
assured of solutions because the integers have ‘gaps’: hence the various strategies
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for filling those gaps by different completions. Sometimes logical methods can help
in this process, but logic has no special claim as a helpmeet, for algebra, complex and
real analysis, and topology may also play important roles here. Similarly, the
extensions of logic, to second order logic, logics with generalized quantifiers, set
theory, recursion theory or model theory, are launched to solve the peculiar problems
that logic poses to itself, as it attempts to provide representations for discourse about
ever more large and complex mathematical structures. And analysis and topology
force developments in logic far beyond those that arithmetic suggests (Grosholz
2007: Chap. 10). The correlations between logic and number theory take a variety of
forms, the transfer of information runs both ways, and the role that one area of
research plays in the problem-solving strategies of the other is important but episodic
and local.

Logicians like Angus Macintyre, Colin McLarty, and Harvey Friedman who
analyze Wiles’ proof of Fermat’s Last Theorem, try to reduce the logical com-
plexity of the proof. In their project of re-writing the proof using discourse of lower
logical complexity, certain kinds of abstract structures, used explicitly in Wiles’
original proof, may be suppressed, and so aspects of its original organization may
be obscured or complicated. Conversely, what was left unremarked or tacit in the
original proof, like the ‘foundational’ justification of some of his sources, are
brought to light by the logicians’ attempts to re-write the proof; and the methods of
approximation they use, as well as their ability to highlight the most combinatoric
and arithmetic aspects of the proof, may turn out to be mathematically suggestive to
the number theorists. Their articulations can thus be considered as extensions of the
original text, where what plays the role of instrument of analysis for the number
theorists becomes an object of reference for the logicians. That is, the logicians’
reformulations, while they are sometimes intended to replace the original, can more
fruitfully be considered as superpositions; the result is then a combination of
number theoretical and logical approaches, rationally integrated, so the information
available for the solution of various novel problems in both number theory and
mathematical logic is increased.

I have been arguing that reasoning in mathematics often generates internally
differentiated texts because thinking requires us to carry out two distinct though
closely related tasks in tandem, reference and analysis. We investigate things and
problems in mathematics because we understand some of the issues they raise but
not others; they exist at the boundary of the known and unknown. So too, what
plays the role of referent in one mathematical context may appear as an instrument
of analysis in another, and vice versa. The philosophical challenge is this: how can
a philosopher account for the organization of mathematical discourse, both as it is
used in research and as it is used in textbooks? I would like to argue that organi-
zation takes place at many levels. It is inscribed in many notations and iconic
conventions, in procedures and algorithms, and in the methods that generalize them.
It is expressed in the canonization of objects and problems, and the collecting of
problems into families. And it is precipitated in iconic as well as symbolic fashion,
in diagrams and arrays, as well as in the enunciation of theorems and principles;
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moreover, specialized mathematical language must be explained and brought into
working relationship by natural language.

Between the principles that govern analysis, and the mathematical things to
which we refer, the organization created by the mathematician is quite multifarious.
My claim that mathematical objects are problematic (and so in a sense historical and
in another sense strongly related to the practices of researchers and teachers) need
not lead to skepticism or to dogmatism about the furniture of the mathematical
universe; rather, it should lead us to examine the strategies of integration that
organize mathematical discourse. We can claim that discourse represents things
well without becoming dogmatic, if we leave behind the over-simplified picture of
the matching up of reference and analysis as the satisfaction of propositions in a
theory by a structure.

Let us look more closely at some aspects of Wiles’ proof. Fermat’s Last
Theorem (1630) states that the equation xn + yn = zn, where xyz 6¼ 0, has no integer
solutions when n is greater than or equal to 3. Fermat himself proved the theorem
for exponent 4, which also reduces the problem to proving the cases where n is an
odd prime. Euler produced an (apparently flawed) proof for the case where n = 3
(1753), Dirichlet and Legendre simultaneously proved the case where n = 5 (1825),
and Lamé proved the case where n = 7 (1839). Sophie Germaine and Ernst Eduard
Kummer produced more general, and generalizable, results in the 19th century,
relating the theorem to what would become class field theory in the 20th century
(see Bashmakova 1997).

The striking feature of Wiles’ proof, to people who are not number theorists, is
that it does not seem to be about integers! Here, again, is the opening paragraph of
his 108 page paper in the Annals of Mathematics: “An elliptic curve over Q is said
to be modular if it has a finite covering by amodular curve of the form X0(N). Any
such elliptic curve has the property that its Hasse-Weil zeta function has an ana-
lytic continuation and satisfies a functional equation of the standard type. If an
elliptic curve over Q with a given j-invariant is modular then it is easy to see that all
elliptic curves with the same j-invariant are modular… A well-known conjecture
which grew out of the work of Shimura and Taniyama in the 1950s and 1960s
asserts that every elliptic curve over Q is modular… In 1985 Frey made the
remarkable observation that this conjecture should imply Fermat’s Last Theorem.
The precise mechanism relating the two was formulated by Serre as the e-conjecture
and this was then proved by Ribet in the summer of 1986. Ribet’s result only
requires one to prove the conjecture for semistable elliptic curves in order to deduce
Fermat’s Last Theorem” (Wiles 1995: 443).

This apparent change of referents is explained by the fact that the proof hinges
on a problem reduction, just the kind of ampliative problem reduction that interests
Carlo Cellucci. The truth of Fermat’s Last Theorem is implied by the truth of
theTaniyama-Shimura conjecture, that every elliptic curve over Q is modular; the
converse claim that every modular form corresponds to a certain elliptic curve, as
we noted, had already been proved by Eichler and Shimura: Fermat’s Last
Theorem follows from the two-way correspondence, which rules out counterex-
amples to it. The condition of modularity is important because then the elliptic
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curve’s L-function will have an analytic continuation on the whole complex plane,
which makes Wiles’ proof the first great result of the Langlands Program, and a
harbinger of further results. Important problem-reductions combine, juxtapose and
even superpose certain kinds of objects (and the procedures, methods and problems
typical of them) on other kinds. Wiles’ proof is not only about the integers and
rational numbers; it is at the same time concerned with much more ‘abstract’ and
indeed somewhat ambiguous and polyvalent objects, elliptic curves and modular
forms. So for example at the culmination of Wiles’ proof, where analysis has
invoked cohomology theory, L-theory, representation theory, and the machinery
of deformation theory, we find the mathematician also involved in quite a bit of
down-to-earth number-crunching.

Wiles’ proof of Fermat’s Last Theorem can be understood in terms of two
stages. The first stage was already done for him: it is the result of Eichler-Shimura,
which shows that given a certain kind of modular form f, we can always find a
corresponding elliptic curve Ef (see Eichler 1954; Shimura 1958) The second stage
Wiles had to carry out himself, proving the Taniyama-Shimura conjecture, that
given a certain kind of elliptic curve E, we can always find a certain kind of
modular form that renders it ‘modular.’ Fermat’s Last Theorem follows from this
correspondence, qualified by a restriction to semi-stable elliptic curves. In the first
stage, modular forms are investigated as the objects of reference, and treated
‘geometrically’ as holomorphic differentials on a certain Riemann surface, while
elliptic curves are treated as instruments of analysis. In the second stage of Wiles’
proof, elliptic curves serve initially as objects of reference (smooth, projective
non-singular—without cusps or self-intersections—curves of genus 1 over a field
K, with a distinguished point O), while modular forms become the instruments of
analysis. One strategy that interests me here is the use of L-functions, which figures
centrally in the Eichler-Shimura proof, which I discuss in some detail. Another
equally important strategy is the use of representation theory in tandem with
deformation theory, where p-adic families of Galois representations figure cen-
trally in the proof of the Taniyama-Shimura conjecture. Had I but world enough and
time, I would discuss this too, but then my book would be twice as long (see
Frenkel 2013: Chaps. 7–9).

Wiles puts the problem in a very general setting: he finds a universal repre-
sentation that takes GQ (the group of automorphisms of the algebraic closure of the
rationals that leaves the rationals unchanged) to GL2(RR), the set of all 2 � 2
invertible matrices with entries in the universal deformation ring RR defined with
respect to a certain finite set of primes R. (Thus, in both cases, there is a hierarchy
of representations: there exists a representation to which all the other, more finitary
representations can be ‘lifted’ under the right conditions. Lifting is a kind of
generalization specific to deformation theory.) Meanwhile, he also constructs
another universal representation: this one takes GQ to GL2(TR), where TR is the
completion of a classical ring of Hecke operators acting on a certain space of
modular forms. Thus, in both cases, there is a hierarchy of representations: there
exists a representation to which all the other, more finitary representations can be
‘lifted’ under the right conditions; lifting is a kind of generalization specific to

4 Wiles’ Proof of Fermat’s Last Theorem Redux 93



deformation theory. Then Wiles shows that TR et RR are isomorphic! This part of
the proof, the postulation of universal deformations, might seem, from the point of
view of logicians (in particular model theorists concerned with definability), rather
extravagant; but in fact this is not where the problem lies for them. Rather, it is
Wiles’ use of Grothendieck duality about twenty pages earlier (Wiles 1995: 486f.)
where the functor categories use universes (see McLarty 2010). I return to this point
below. The employment of both strategies is just as much part of the ‘analysis’ of
problems as is the construction of theories.

The problematic nature of reference arises with respect to both elliptic functions
and modular forms. In order for the proofs to go through, the mathematicians must
specify precisely what kinds of elliptic curves and modular forms they are referring
to, in a sufficiently broad manner. But to make the proof practicable, the definition
must also be narrowed as much as possible. The delicacy of this issue appears in the
first sentences of Wiles’ proof. Moreover, a second concern about reference arises
here, which is the ‘doubling’ of the definition of both elliptic curves and modular
forms. For example, an elliptic curve is both geometrical (considered as a projective
non-singular curve of genus 1, over a field k, with a point O whose coordinates are
in k) and algebraic (endowed with a commutative group structure). The specific
kind of modular form under investigation also has two aspects. The
Eichler-Shimura proof begins with a modular form f from the space of weight 2
cusp forms on C0(N) and seeks a corresponding elliptic curve. The latter expression,
C0(N), is defined as the group of 2 � 2 integer matrices with determinant 1 that are
upper triangular mod N; it is a congruence subgroup of finite index of SL2(Z), the
group of all 2 � 2 matrices with integer coefficients and determinant 1. (The
congruence subgroups of SL2(Z) are called modular groups.) We can identify a
fundamental domain for the action of the group C0(N) restricted to the upper half
of the complex plane (the Poincaré complex half-plane) and compactified by adding
cusps, which is the curve X0(N): it is a Riemann surface (We define f to be
holomorphic on this Riemann surface; a cusp form, which is a kind of modular
form, vanishes at the cusps).

Because the expression f zð Þd zð Þ ¼ f
a b
c d

� �
z

� �
d

a b
c d

� �
z

� �
is invariant

under the action of all the
a b
c d

� �
in C0(N) on the complex plane, this gives

f azþ b
czþ d

� �
¼ czþ dð Þ2f zð Þ and in particular f zþ bð Þ ¼ f ðzÞ for all integers b. Then

f has a Fourier expansion in powers of q ¼ e2piz, namely f zð Þ ¼ P1
n¼1 anq

n. Here is
the re-doubling of the definition of a modular form: we identify the space of weight
2 cusp forms on C0(N), the f(z), with the space of holomorphic differentials on the
Riemann surface X0(N), the f(z)dz. We can define Hecke operators Tm on the space
of these modular forms, which satisfy certain important properties and form a
commutative algebra T under composition; we also define a Petersson inner product
<, >, so that all f and g in this space satisfy the relation <Tmf, g> = <f, Tmg>. We
can then study this space in terms of the eigenfunctions of the Tm, and this study
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allows us to define an important class of modular forms called ‘newforms.’ The
newforms and their suitable transforms constitute a basis for the weight 2 cusp
forms for C0(N), and the elements of this basis are common eigenfunctions of all
Hecke operators. For each newform f, in its Fourier expansion

f zð Þ ¼
X1
n¼1

anq
n

we can assume a1 = 1, so that all the coefficients an are eigenvalues of the Hecke
operators Tn and each an lies in Z. The study of modular forms is thus reduced to
the study of newforms.

L-functions are, again, generalizations of the Riemann zeta function, and the
Dirichlet series, representations of functions in terms of infinite series that give
valuable information about the function even at values where its infinite series does
not converge. In the case of these modular forms, we have two ways of expressing
their L-functions, one as an infinite sum, and the other as an infinite product.

L s; fð Þ ¼
X1
n¼1

ann
�s ¼

Y
p does not divide N

1
1� app�s þ p1�2s

Y
p divides N

1
1� app�s

:

The Eulerian of the L-function at all primes p reflects the fact that the Hecke
algebra T is generated by the Tp (p prime). To an elliptic curve there is also an
associated L-function with a form similar to that given above, arising from counting
points. So for a given f with integral coefficients an we want to find a suitable
elliptic curve E whose L-function coefficients bn will match the L-function coeffi-
cients an of f. But first, we must return to the definition of an elliptic curve, in the
hope that, just as the L-functions attached to modular forms have nice properties,
the L-functions attached to elliptic curves will have equally nice, informative
properties.

Modular forms belong to complex analysis, though they were originally inten-
ded to help solve problems in number theory. Elliptic curves belong to algebraic
geometry. As noted above, they are defined in a double sense. Taken geometrically,
an elliptic curve is a smooth, projective non-singular (with no cusps or
self-intersections) curve of genus 1, over a field k, with a point O with coordinates
in k. Taken algebraically, it is a projective variety endowed with a group structure,
that is, an operation which is necessarily commutative with the point O as the
identity element. The Riemann-Roch theorem tells us that every elliptic curve
defined over a field with characteristic not 2 or 3 is given by some generalized
Weierstrass equation,

�ð Þy2 ¼ x3 þ axþ b:

Elliptic curves reveal different features, depending on what field they are taken
over. Over the complex numbers, an elliptic curve is described as the complex plane
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modded out by a lattice, making it a torus. This is a Riemann surface with a group
structure inherited from the addition of complex numbers. To see it geometrically,
note that the meromorphic functions on E, which is a torus, are doubly periodic. It
turns out that these elliptic functions form a field generated by two functions x and
y which, with some complex numbers a and b, satisfy the relation (*) given above.
Over the real numbers it is a plane curve, and if we add a point at infinity as the
distinguished point O, it becomes the projective version of this curve. The points on E
with rational coordinates form a discrete, finitely generated Abelian group. The
L-function of an elliptic curve with conductor N is defined in the following way.

L E; sð Þ ¼
Y

p does not divide N

1
1� bpp�s þ p1�2s

Y
p divides N

1
1� bpp�s

:

The Eichler-Shimura result shows that when we carry out the construction
mentioned above, namely, given a weight 2 cusp form f for C0(N) with integral
coefficients an, the Jacobian J0(N) of X0(N) contains a special subvariety A so that
J0(N)/A will be the elliptic curve sought, whose L-function has coefficients bn that
match the L-function coefficients an of the original modular form f (For a more
detailed account of this proof, which I have only summarized here, please see
Appendix B).

In sum, the Jacobian of a modular curve is analogous to a complex elliptic curve
in that both are complex tori and so have Abelian group structure. Every complex
elliptic curve with a rational j-invariant is the holomorphic homomorphic image of a
Jacobian. Indeed, the elliptic curve is the image of a quotient of a Jacobian, the
Abelian variety associated to a weight 2 eigenform (a cusp form) f. Only weight 2
eigenforms with rational Hecke eigenvalues correspond to elliptic curves; more
general eigenforms correspond to Abelian varieties. All the ways of explaining this
correspondence involve appeals to ‘large’ structures to which the rather modest
newform f(z) can be lifted, investigated, and then re-deposited with a new affilia-
tion, to an elliptic curve. And this is just a sketch of the first part of the proof; the
more difficult part was Wiles’ proof of the Taniyama-Shimura conjecture, showing
that given a certain kind of elliptic curve E, we can always find an associated
modular form f.

As I have argued above, mathematical discourse must carry out two distinct
tasks in tandem, analysis and reference. In the case of number theory, the referents
are integers and rational numbers in one sense and additionally, in a broader sense
given the problem reduction at the heart of Wiles’ proof, modular forms and elliptic
curves. For logic, the referents are propositions and sets (and perhaps also formal
proofs), or, if we include the broader range of category theory as part of logic,
categories (and perhaps also functors). Thus what is an aspect of analysis for the
number theorist is an aspect of reference for the logician. Moreover, techniques of
calculation that preoccupy the number theorist remain tacit for the logician because
they directly involve numbers, and considerations of logical complexity that con-
cern the logician remain tacit for the number theorist because they are not
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conditions of solvability for problems about numbers. This disparity is inescapable,
but it is also positive for the advance of mathematics. For when what remains tacit
in one domain must be made explicit in another in order to bring the domains into
rational relation, novel strategies of integration must be devised.

5 McLarty and Friedman

A notable feature of Andrew Wiles’ proof of Fermat’s Last Theorem is that it
invokes cohomology theory (inter alia) and thus Grothendieck’s notion of suc-
cessive universes, which from the point of view of set theory become very large;
and yet the detail of the proof stays on relatively low levels of that vast hierarchy. In
a recent essay, Colin McLarty offers foundations for the cohomology employed in
Wiles’ proof at the level of finite order arithmetic; he uses Mac Lane set theory,
which has the proof theoretic strength of finite order arithmetic, and Mac Lane type
theory, a conservative extension of the latter (McLarty 2010). Angus Macintyre is
re-working aspects of the proof (bounding specific uses of induction and compre-
hension) to bring it within a conservative nth order extension of Peano Arithmetic
(Macintyre 2011) and Harvey Friedman has informally speculated that it could be
further reduced to Exponential Function Arithmetic.

Meanwhile, the significant re-working and extension of the proof by number
theorists proceeds independently of logic, in the sense that number theorists don’t
seem particularly concerned about the logical complexity of their methods. (See for
example recent work by Christophe Breuil, Brian Conrad, Frederick Diamond,
Mark Kisin, and Richard Taylor.) On the one hand, we see number theorists
choosing logically extravagent methods that usefully organize their investigations
into relations among numbers, as well as elliptic curves, modular forms, and their
L-functions, inter alia, and make crucial computations visible and possible. On the
other hand, we see logicians analyzing the discourse of the number theorists, with
the aim of reducing its logical complexity. Should number theorists care whether
their abstract structures entail the existence of a series of strongly inaccessible
cardinals? Serre and Deligne, for example, do sometimes seem to be concerned
about the logical complexity of their methods (Macintyre 2011: 10). Will the
activity of logicians produce useful results for number theorists, or is it enough if
they answer questions of interest to other logicians, such as whether in fact Fermat’s
Last Theorem lies beyond the expressive strength of Peano Arithmetic (and thus
might be a historical and not merely artificially constructed example of a Gödel
sentence)?

As I have argued above, mathematical discourse must carry out two distinct
tasks in tandem, analysis and reference. I use as an illustration of this disparity and
the possibility of productive integration the work of Angus Macintyre (a model
theorist) and Colin McLarty (a category theorist) on Wiles’ proof of Fermat’s Last
Theorem. At issue is Wiles’ use of Grothendieck cohomology, as set forth in
various writings and editions of Eléments de Géométrie Algébrique over the third

4 Wiles’ Proof of Fermat’s Last Theorem Redux 97



quarter of the 20th century. Colin McLarty writes that Grothendieck pre-empted
many set theoretic issues in cohomology by positing a universe: a set large enough
that the habitual operations of set theory do not go outside it. His universes prove
that ZFC is consistent, so ZFC cannot prove that they exist. (McLarty 2010:
359–361). Wiles invokes Grothendieck cohomology and by implication the vast
universes it involves around page 486 of Wiles’ “Modular elliptic curves and
Fermat’s Last Theorem,” where he uses Grothendieck duality and parts of Mazur’s
work, and the textbook An Introduction to Grothendieck Duality by Altman and
Kleiman (see Mazur 1977; Altman and Kleiman 1970). The path through these
books leads back to Grothendieck’s Eléments de Géométrie Algébrique and functor
categories that use universes (Grothendieck and Dieudonné 1960–1967).

As McLarty points out, the odd thing is that these rather oblique and vague
references are all that Wiles offers the logician-reader interested in tracing back his
assumptions to their origins; indeed, Wiles never offers an explicit definition of
cohomology. McLarty speculates that Wiles may be assuming that the Anglophone
reader will consult the standard textbooks, Hartshorne’s Algebraic Geometry or
Freyd’s Abelian Categories; but these books are not included in the extensive
references at the end of Wiles’ article (Hartshorne 1977; Freyd 1964). In any case,
both Hartshorne and Freyd treat questions of proof and foundations in a rather
cavalier manner. McLarty writes that Hartshorne quantifies over functors between
categories which are not well defined in ZF, and he does not prove the basic results
he uses. He cites Freyd’s Abelian Categories for proofs and also sketches several
other strategies one could use. Freyd in turn waves off the question of foundations
by claiming he could use some theory like Morse-Kelley set theory, a
non-conservative extension of ZF. And that is true of his chief results (though at
least one of his exercises goes beyond that). In general, McLarty argues, from the
point of view of the logician, Wiles proves no theorems from the ground up
(McLarty 2010: 367–368).

Wiles makes use of cohomology theory, and the deformation theory allied with
it, because it helps him to organize the results he needs for his proof; but it is not
what his proof is about. The logical strength of the theory does not really concern
him, so he lets it remain for the most part tacit and unanalyzed in his exposition. For
logicians concerned with model theory, or with the meaning of Gödel’s
Incompleteness Theorems, however, the logical strength of Wiles’ proof of the
Taniyama-Shimura conjecture, or of other proofs still to be discovered that are now
emerging from it, is paramount. It must be made explicit, in order to explore the
possibility of proofs of the same result but with lower logical complexity. One way
of posing this question, however, leads us back to the discussion of the double
nature of the definitions in Wiles’ proof in the preceding sections. Can a proof in
number theory really do without geometry? This is a central question because, even
if one succeeds in wresting large parts of cohomology theory into first or second
order arithmetic, even second order arithmetic will not provide any uncountable
fields like the reals or complex numbers or p-adic numbers. An appropriate for-
malization will apply to them if one assumes they exist, but will not prove they
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exist. So we are dealing not only with the disparity between number theory and
logic, but also with the disparity between number theory and geometry.

6 Macintyre

In his essay, “The Impact of Gödel’s Incompleteness Theorems on Mathematics,”
Angus Macintyre begins by noting the positive contributions of logicians to
research in various branches of mathematics (apart from mathematical logic itself).
He cites Presburger’s work on the ordered Abelian group ℤ, which underlies much
of p-adic model theory; Tarski’s work on real closed fields; the uses of Ramsey’s
Theorem in harmonic analysis; and Herbrand and Skolem’s contributions to
number theory: Herbrand to ramification theory and cohomology, and Skolem
to p-adic analytic proofs of Finiteness Theorems for Diophantine equations
(Macintyre 2011: 3–4). He then summarizes the reactions of number theorists to
Gödel’s Incompleteness Theorems. “In the last thirty-five years, number theory has
made sensational progress, and the Gödel phenomenon has surely seemed irrele-
vant,” even though number theorists are sensitive to the effectivity or logical
complexity of their results. On the one hand, artificially constructed statements that
are formally undecidable seem to be mathematically uninteresting: “the equations
whose unsolvability is equivalent (after Gödel decoding) to consistency statements
have no visible structure, and thus no special interest.” On the other hand, the really
important results seem mostly to be decidable, at least in principle: “there is not the
slightest shred of evidence of some deep-rooted ineffectivity.” (Macintyre 2011:
4–5).

Macintyre observes further that while logic is sometimes a good idiom for
recasting mathematical research (as in the cases given above), sometimes it
uncovers results that are of interest to logicians, but not to geometers or number
theorists. What model theory reveals, generally speaking, are the natural “logical”
or arithmetic-combinatorial features of a subject matter or problem context. Even
when the subject matter is squarely geometrical or topological, these features may
be important; but we cannot expect them to tell the whole story. Logic seems more
apt for the work of analysis than the work of reference in other mathematical
domains. For example, discussing the work of C.L. Siegel, Macintyre writes, “A
propos the decision procedure for curves, the natural logical parameters of the
problem, such as number of variables, and degree of polynomials involved, obscure
the geometrical notions that have proved indispensable to much research since …
1929… If one’s formalism obscures key ideas of the subject, one can hardly expect
logic alone to contribute much.” (Macintyre 2011: 6).

In the Appendix to the paper, Macintyre sketches his conception of what a
re-writing of Wiles’ proof might look like, if it were carried out by a logician who
wanted to show that there is no need for strong second-order axioms with existential
quantifiers involved; in other words, he asks what the proof might look like if
confined within first-order Peano Arithmetic (PA). Macintyre’s conjectured
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re-writing breaks the proof up into a series of ‘local issues,’ giving arithmetic
interpretations of specific parts of real, complex or p-adic analysis or topology. He
points out that zeta functions, L-series and modular forms are all directly related to
arithmetic: “There is little difficulty in developing the basics of complex analysis for
these functions, on an arithmetic basis, sufficient for classical arithmetical appli-
cations… nothing would be gained by working in a second-order formalism, in a
very weak system. At best such systems codify elementary arguments of general
applicability.” (Macintyre 2011: 7). Thus for the number theorist interested in
advancing research by generalization, the re-writing of the logician would not be of
immediate interest; but for the logician, the re-writing is of central importance.

However, since number theorists are in fact concerned about the logical com-
plexity of their methods, in retrospect they would be motivated at least to study a
first-order version of the proof, even if from the perspective of their immediate
interests it appears over-detailed and oddly arranged. McLarty observes,
“Macintyre points out that analytic or topological structures such as the p-adic, real
and complex numbers enter Wiles’s proof precisely as completions of structures
such as the ring of integers, or the field of rational numbers, which are interpretable
in PA [Peano Arithmetic]. Macintyre outlines how to replace many uses of com-
pletions in the proof by finite approximations within PA. He shows how substantial
known results in arithmetic and model theory yield approximations suited to some
cases. He specifies other cases that will need numerical bounds which are not yet
known. Theorems of this kind can be very hard. He notes that even routine cases
can be so extensive that ‘it would be useful to have some metatheorems.’” (McLarty
2010: 363).

From the point of view of number theory, this re-writing would damage the
organization and perspicuity of the original proof. Thus, the ‘logically extravagent’
general methods and theorems seem to be needed to organize the practice of
number theorists. However, the ‘messy and piecemeal’ methods of the logician
reveal aspects of the proof (its reducible logical complexity) central to the research
practice of logicians. An analyst or topologist need not be interested in replacing
R or C by ‘finite approximations within Peano Arithmetic,’ but a model theorist is
highly motivated to spend quite a bit of time and ink in the attempt. Mathematicians
like Wiles, Ribet and Mazur posit the big structures to set their problem in the best
conceptual framework possible, so they can see how to solve the problem and then
how to generalize the result; model theorists like Macintyre break the big structures
into smaller approximations, in order to solve different kinds of problems. Neither
one thinks that a finite approximation is identical to the original object it approx-
imates; but for different reasons, and for specified purposes, locally, the number
theorist and the model theorist are both willing to entertain the conjectural equiv-
alence. The reduction is both too weak and too strong, but it is useful.

Macintyre is concerned about the way many people misunderstand the import of
Gödel’s incompleteness results, and overstate the inability of logic to capture the
content of important theorems. (It is useful to weigh his arguments against those of
Carlo Cellucci, discussed in Chap. 3.) So at least part of what he is trying to do in
the Appendix is to show that the ‘logical,’ that is, the arithmetic-combinatorial,
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aspects of e.g. Wiles’ proof loom very large, and can be captured and re-stated
perspicuously by logicians (in particular, model theorists). I would observe that the
canonical objects of geometry and topology can typically be treated by
arithmetical-combinatorial approaches, even if those approaches do not allow us to
capture the canonical objects categorically, or to prove their existence. The work of
logic in other mathematical domains is not reference but analysis. Macintyre also
points out that the ‘monsters,’ the sentences, functions, or set-theoretical objects
that seem to be squarely beyond the realm of the effective, seem (so far) not very
interesting to mathematicians working in other areas. One can point to them, but
there doesn’t seem to be much to say about them. Like inaccessible ordinals, their
very inaccessibility makes them mathematically inert and unrelated to the items and
methods that currently drive research. Thus logicians may have a great deal to teach
number theorists (and geometers, and set theorists) about the tacit assumptions that
guide their choices about what things, procedures, and methods to canonize; and the
interaction between logic and number theory, for example, may give rise to novel
objects, procedures and methods still to be discovered.
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Chapter 6
The Representation of Time
in the 17th Century

Augustine of Hippo once wrote, “What then is time? There can be no quick and
easy answer, for it is no simple matter even to understand what it is, let alone find
words to explain it. Yet, in ordinary conversation, no word is more familiarly used
or more easily recognized than ‘time.’ We certainly understand what is meant by
the word both when we use it ourselves, and when we hear it used by others. What,
then, is time? I know well enough what it is, provided that nobody asks me; but if I
am asked what it is and try to explain, I am baffled” (Augustine 1961: XI.14.17,
263–264). Here Augustine, without precedent, makes time itself a topic of philo-
sophical reflection, as Descartes makes consciousness itself (apart from the objects
of consciousness) a topic of philosophical reflection in Meditations I and II.
Augustine realized that discourse, and indeed in a sense lived experience, retrieve
things from the asymmetrical flow of temporality. We experience for the most part a
world of stable objects, and our language assigns permanent names to them, their
salient properties and relations, and their characteristic functions and activities. The
names of Gods are concepts, as the classicist James Redfield has often noted; so too
concepts are little gods, conferring immortality on the things they organize. That
immortality is in part illusory, because things persist stably only for awhile, and the
gods seem to have departed; but it is also the key to scientific knowledge because
that stability is real. We live in an organized world, not a maelstrom.

We now have the habit, learned in the 20th century from Relativity Theory, to
speak of 4-dimensional space-time; yet I would argue (with Bergson) that time is
not like space, and we should be wary of the assimilation. In Classical Mechanics,
space makes physical symmetry possible; it allows for symmetries and indeed the
study of symmetries in geometry, physics and chemistry is a way of obtaining
information about the structure of space. Time, by contrast, is a principle of
asymmetry, if one is willing to assert the reality of its directedness. Bas van
Fraassen writes that periodicity is a certain kind of symmetry in time (Van Fraassen
1989/2003: 252). While this is a suggestive formulation, it is wrong in one obvious
sense. If I decide to leave my office right now, and go out for an afternoon
promenade, I can walk north or south, east or west, and if I can find some stairs or
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an elevator I can go up and down. But I cannot decide to visit this morning. On my
circuit, I can walk up the library steps and then down them later on the way back to
my office; but I cannot return to this morning. Space allows for the possibility of
symmetry in our displacements, to and fro; time appears to allow for symmetry (in
the guise of periodicity) but only because of its alliance with space, and the systems
that organize themselves in space. Tomorrow morning, it will be the same
clock-time as it is now, and the hands on my clock will point to the same numbers
as they do now; but it will be tomorrow. Our ways of keeping time, dependent on
the periodicities of the solar system, allow the clock face to be round and the
calendar pages to be square, mapping asymmetrical, unrepeating time back on itself
by means of finite spatial arrays.

What then is time? Important scientific texts dealing authoritatively with time
often occur in the midst of debates that a philosopher might want to call dialectical.
Thus Newton argues with Leibniz; the founders of thermodynamics are countered
by Boltzmann; the defenders of General Relativity Theory oppose some (though
not all) of the proponents of Quantum Mechanics; and contemporary cosmologists
find themselves at odds. The structure of these debates in every case strikes me as
similar. One side takes on the abstract, more discursive project of theorizing, what
Leibniz called analysis; here time is treated as a condition of the intelligibility of
things and expressed mathematically. The other side adopts more concrete, often
materially realized strategies for achieving successful reference; here time is treated
dynamically as a feature of physical systems, including clocks. My suggestion is
that if we pay attention to how these opposing discourses are subsequently inte-
grated, and why the polarity of analysis and reference nonetheless always reasserts
itself, we will gain some insight into the nature of time.

1 Galileo’s Representation of Time

Theorem I, Proposition I in the section ‘Naturally Accelerated Motion’ in the Third
Day of Galileo’s Discorsi (Two New Sciences) states: “The time in which any space
is traversed by a body starting from rest and uniformly accelerated is equal to the
time in which that same space would be traversed by the same body moving at a
uniform speed whose value is the mean of the highest speed and the speed just
before acceleration began” (Galilei 1914/1954: 173–174). The accompanying figure
has two components, a vertical line CD on the right representing space traversed
(not just distance but displacement), and a two-dimensional figure AGIEFB on the
left, in which AB represents time (Fig. 1). The two-dimensional figure reproduces
Oresme’s diagram that applies the important theorem reached by the logicians at
Merton College, Oxford, concerning the mean value of a ‘uniformly difform form’
to uniformly accelerated motion. However, Galileo rotates the diagram by 90°
because he is going to apply it even more specifically to the case of free fall, and
wants to emphasize its pertinence to the vertical trajectory CD. Koyré points out
that the genius of this set of figures is that AB represents not the distance traversed,
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but time, for Galileo like Oresme has wrested geometry from the geometer’s pre-
occupation with extension and put it in the service of mechanics, whose objects of
study are dynamic and temporal (Koyré 1939: 11–46). The parallels of the triangle
AEB perpendicular to AB stand for velocities, and the area of the triangle as a
whole, taken to be a summation of instantaneous velocities, therefore represents
distance traversed. Thus the triangle AEB exhibits the way that uniformly
increasing velocity and time are related in the determination of a distance. Visual
inspection of this diagram shows that, with each passage of n units of time, the area
of triangle AEB increases in the following way: for n number of terms,

1þ 3þ 5þ 7þ . . . 2n� 1½ � ¼ n2

that is, distance traversed is proportional to the square of the time elapsed.
Galileo spells this out in a more indirect and rigorous way in his Theorem II,

Proposition II, which characterizes free fall. Here the vertical line acquires a
numerical and literal articulation: the points H, L, M, N and I mark the passage of
successive equal intervals of time, and the units of length inscribed on the line
indicate that in the first interval of time, the body falls 1 unit, in the second 3, in the
third 5, in the fourth 7, and so on. Thus we see depicted by this line, as by the earlier
triangle, that distance traversed is proportional to the square of the time elapsed

Fig. 1 Galileo, Discorsi,
Third Day, Naturally
Accelerated Motion,
Theorem I, Proposition I
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(Fig. 2) (Galilei 1914/1954: 174–175). Then, in the Fourth Day, Theorem I,
Proposition I, he combines his earlier analysis of inertial motion with his analysis of
free fall, and produces his celebrated diagram that proves that the trajectory of a
projectile is parabolic, the combination of uniform motion along (what we would
call) an x-axis, and of uniformly accelerated motion along a y-axis (Fig. 3). The line
abcde represents time as well as the displacement of a body in inertial motion
(since, as Galileo proved earlier, in such motion the intervals of time elapsed are
proportional to the intervals of distance traversed); the intervals bc, cd, de are equal.
The line bogln, borrowed from his earlier analysis of free fall, is ruled off in
intervals proportional to 1, 3, 5, 7, and so forth. The genius of the diagram is the
perpendicular juxtaposition of line bogln with abcde, which displays Galileo’s
insight that projectile motion is “compounded of two other motions, namely, one

Fig. 2 Galileo, Discorsi,
Third Day, Naturally
Accelerated Motion,
Theorem II, Proposition II
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uniform and one naturally accelerated,” so that its path is a semi-parabola (Galilei
1914/1954: 248–250) (see also Grosholz 2007: Chap. 1, 2011a).

Thus in this diagram, time is represented in two different ways. In line abcde,
time is ‘analytic’ or geometrical, and t is proportional to the distance traversed. The
units of length can just as well be taken to be units of time, so that time can be
specified independently of the dynamical event. In line bogln, however, time is
‘referential,’ in the sense that it is a function of the dynamical event. Distance
traversed is proportional to the square of time, so that t is proportional to the square
root of the total distance traversed: the reckoning of time is tied to the dynamical
event of the falling body. The mathematics that produced this line (as we saw in
Figs. 1 and 2) is a foray into methods that a later generation will call the differential
and integral calculus. We read the passage of time from the body as it falls, and that
reckoning points towards the discovery of the gravitational constant, an empirical
feature of free fall, as well as, later on, the formulation of gravity as a force.
Compose the ‘analytic’ and ‘referential’ records of time in the diagram, and we see
the parabolic path of the projectile.

2 Newton’s Representation of Time

Newton’s proof of the inverse square law in Proposition XI of Book I of the
Principia also depends on the combination of three different ways of representing
time. We can locate them by tracing Newton’s argument through Book I: The
Motion of Bodies. The reasoning begins with Proposition I of Book I, Newton’s
generalization of Kepler’s law of areas: “The areas which revolving bodies describe

Fig. 3 Galileo, Discorsi, Fourth Day, The Motion of Projectiles, Theorem I, Proposition I
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by radii drawn to an immoveable center of force do lie in the same immoveable
planes, and are proportional to the times in which they are described” (Fig. 4)
(Newton 1934: I, 40–42; see also De Gandt 1995). In the diagram, S is the center of
force; the body proceeds on an inertial path from A to B, and would continue
straight on to c if it were not deflected by an ‘impulse’ of force so that it arrives at C.
Then cC (= BV) represents the deflection of the body due to force; the perimeter
ABCDEF… is the trajectory of the body as it is deflected at the beginning of each
equal interval of time by discrete and instantaneous impulsions from S. Given
Euclidean results about the equality of triangles, we can read off the diagram that
equal areas are described in equal times. Thus, time is directly proportional to the
line AB (because the motion of the body is inertial) and to the area ΔSBC; and the
square of time is directly proportional to cC in the first moment of free fall.

In Proposition VI, where Newton gives a general definition of the action of a
central force, time is directly proportional to PR, the inertial path that the revolving
body would follow if it were not deflected by the central force. This is the ‘ana-
lytic’, geometrical representation of time that we recall from Galileo’s diagram of
projectile motion. Time is also directly proportional to the area ΔSPQ [which in the
limit is equal to ½ (SP � QT)], by Newton’s rewriting of Kepler’s Law; and QR is
directly proportional both to the force F and to the square of time, by Newton’s
adaptation of Galileo’s model of free fall “in the first moment of fall.” Here time is
defined ‘referentially,’ in terms of the dynamical nexus of the body and the center
of force, and the magnitudes are ‘evanescent,’ to use the vocabulary of Newton’s
version of the infinitesimal calculus. Thus QR is proportional to the product of the
force F and the square of (SP � QT), so that (rearranging the proportion) F is
inversely proportional to (SP2 � QT2/QR) (Fig. 5) (Newton 1934: I, 48–49).

Fig. 4 Newton, Principia,
Book I, Section II,
Proposition I, Theorem I
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In the subsequent propositions leading up to Proposition XI, the proof of the
inverse square law, Newton investigates other situations suggested by the generality
of Proposition VI. He finds the law governing the center of force when the body
moves in a circle and the center of force is at the center of the circle; when the body
moves in a circle and the center of force is very far removed; when the body moves
in a spiral and the center of force is in the center of the spiral; and when the body
moves in an ellipse and the center of force is in the center of the ellipse, not at one
of the foci.

Finally, Newton finds the law governing the center of force when the body
moves in an ellipse and the center of force is located at one of the two foci. To apply
his general result to the particular case of an elliptical trajectory, Newton makes use
of the specific geometrical attributes of ellipses, and shows that in this case the
central force F must be inversely proportional to the square of the distance, because
the formula (SP2 � QT2/QR) reduces to SP2, the square of the distance from the
body to the center of force (Fig. 6). I will not rehearse the details of the proof here
as I do in Chap. 7 of my Representation and Productive Ambiguity in Mathematics
and the Sciences (see Grosholz 2007: Chap. 7, 2011a). However, the main point is
that the proof goes through because the three distinct ways to define time (with
respect to Descartes’ definition of inertial motion, Kepler’s law of areas, and
Galileo’s analysis of free fall) are usefully combined in the proportions, which
carefully segregate the geometrical elements from the evanescent and dynamical
elements of the diagram, only to recombine them at the end in order to arrive at the
celebrated result.

However, a tension remains inside this work of combination, because the modes
of representation are disparate; one cannot be reduced to the other, and in cer-
tain situations they are clearly not equivalent. Here is a simple example. If we
change the inertial frame in which we set the projectile motion analyzed by Galileo
so that the inertial frame moves at the same rate as the horizontal component of
the projectile’s motion, time will not be represented by a line but by a point (since
the projectile’s horizontal displacement will be zero) and the parabola will become
the line bogln, the line of free fall. Then time as geometrically represented will

Fig. 5 Newton, Principia,
Book I, Section II,
Proposition VI, Theorem V
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be proportional to zero, given the convention by which Galileo has chosen to
represent it. Time as dynamically represented, however, will be finite and growing;
so they are not equivalent. In fact, Newton’s absolutist doctrine of space and time,
as we have already seen, is too strong; it makes all motion absolute, so that the
physical equivalence of rest and inertial motion, and of motion in different inertial
frames, is lost. But the equivalence, on which depends the ‘Galilean invariance’ of
physical laws, is central to his mechanics. This disparity points to tensions within
mechanics that eventually lead to the special and general theories of relativity.
Moreover, geometry and infinitesimal analysis remain distinct mathematical
domains. Despite the obvious and extensive overlap, geometry retains its own
items, modes of representation, and methods, quite different from those of
infinitesimal analysis, and gives rise to different kinds of offspring, like projective
geometry. And while the ideal items and processes of classical mechanics remain
central to the development of analysis as the home of transcendental as well as
algebraic curves and of the differential equations, they do not exhaust it, as it veers
off on its own towards the infinitary.

3 Leibniz on Method

Leibniz’s conception of method, dependent on his metaphysics, tends to make the
study of history scientific and the scientific study of nature historical. This notable
effect of his method indicates that both his method and metaphysics are intimately
related to time; that is, his treatment of temporality should provide an important key
to his method and metaphysics, and thus to his work as scientist and historian. In
both domains, a Leibnizian savant must engage in analysis, the search for the

Fig. 6 Newton, Principia,
Book I, Section II,
Proposition VI, Theorem V
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conditions of intelligibility, the requisites, of what exists; this search is ampliative,
leading from the simple schema ‘S is P’ to series and networks of relations. The
doctrine of pre-established harmony, and conversely the doctrine of monadic
expression, underwrites the movement from ‘S is P’ to relational idioms, like
algebraic formulas, infinite series, differential equations, and combinatorial
schemes, or deductive inference forms, probabilities and trees, which apply to a
variety of different kinds of objects and operations. As I have been arguing, the
method of analysis, uncovering a condition of intelligibility P of an existent, S, is
ampliative; it discovers what is primitive, or fundamental, or ‘simple’ in the
investigation of a complex thing, and this investigation, by making the implicit
explicit, uncovers the general or canonical form of the thing, the general formula
according to which it can be treated systematically. Things that exist are not just
non-contradictory, but completely—indeed infinitely—conditioned, governed both
by the principle of contradiction and the Principle of Sufficient Reason; so the
systematicity uncovered by analysis is not illusory or superficial but rather
well-founded. To understand something, a Leibnizian savant must not only witness
its internal consistency, but also investigate the processes that determine it to be
what it is, and therefore what it expresses. Unlike Spinoza, Leibniz believes that
determinations of nature and of human culture cannot be understood purely in terms
of logic. The conditioning of S by P is not merely logical or even causal, but also
historical, because the created world is the result of the intelligible and moral choice
of a rational and benevolent God, the progressive expression of sentient and
self-conscious, perceptive and apperceptive, creatures. Progress must be temporal;
indeed, it must take place in history as well as in time. Explanation requires nar-
rative as well as argument.

There remains, however, a tension between Leibniz’s insistence on the impor-
tance of development in both the natural world and human culture, and his tendency
to read temporal succession back to causal consequence and thence to logical
consequence, which works against the reality of time. The latter tendency is the
result of his debt to Spinoza and his love of logic and mathematics; the former
stems from his interest in British empiricism and the Royal Society, and his own
inexhaustible curiosity: it made him the harbinger of Goethe and Darwin, and
indeed of modern scientific cosmology. For Leibniz, natural science includes nat-
ural history, but it also includes mathematical physics. Another tension exists
within Leibniz’s evocation of narrative: for Leibniz, time is the expression in the
created world of the logical incompatibility of concepts (possibles) as space is the
expression of their logical compossibility; the conditions are prior to the condi-
tioned, and what we choose excludes the unactualized possibles we did not choose.
Thus time is not illusory or indifferent, as it is for Spinoza, but rather an aspect of
the orderliness and morality of the created world. However, Leibniz sometimes
writes as if the time of the created world will come to an end, following the Book of
Revelations, and sometimes as if it will go on forever, in this best of all possible
worlds which is continually perfecting itself. History requires narrative, the
recounting of the free acts of human beings which always include reference to the
actions that were not chosen, the unactualized possibles that frame and give
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meaning to realized action. So Leibniz hovers between the closed moral order of
Revelations and Dante’s Divine Comedy, where all the stories are told in retrospect,
and the open moral order of lived history.

4 Leibniz as Historian

Leibniz produced a wide range of historical writings. Two historical works that he
wrote as the librarian of Hanover during the 1690s led to his commission to write a
history of the House of Brunswick, which he extended to include an account of the
western empire from the time of Charlemagne to the end of the Saxon imperial line.
This history was not published until 1843 (two thousand pages in three volumes!),
but Leibniz did publish two collections of sources, the Accessiones Historicae in
1697 and Scriptores Brunsvicensia illustrantes in 1707 and 1711, as well as many
shorter works. Lessing, Kant and Herder were directly inspired by Leibniz’s
metaphysics and historical writings; one might observe that not only did Leibniz
inspire the Enlightenment, but the Romantic turn against it, with his notion of the
monad and the dynamic development of the created world. In his two-volume work
Die Entstehung des Historismus, Friedrich Meinecke traced 20th c. historicism
back from Herder to Leibniz, and Ernst Troeltsch, somewhat tendentiously, argued
that Romanticism sprang from the mysticism of Eckhart and the philosophy of
Leibniz (see Meinecke 1936; Troeltsch 1934).

The French historian of philosophy, Louis Davillé, traced Leibniz’s accom-
plishments and influence as an historian directly to his metaphysics in Leibniz
historien. At the beginning of Chap. 6, “La philosophie de l’histoire,” Davillé
writes, “From the metaphysical point of view, Leibniz, contemplating together the
diversity and uniformity of things and beings, also follows two opposed principles,
recognized earlier by scholastic philosophers, the principle of individuation and the
principle of analogy, which he expresses by two phrases, in French: “l’individualité
enveloppe l’infini” and “c’est tout comme ici.” But this is only an appearance.
Always seeking to reconcile opposites, he unites these two points of view in “la
conception d’un développement à la fois spontané et régulier des êtres,” through the
contemplation of the universal harmony, the principle of things persisting in
diversity balanced by identity. This powerful and original synthesis he calls the law
of continuity… The notion of continuity plays a leading role in Leibniz’s philos-
ophy, differentiating it sharply from that of Descartes. One might call the law of
continuity the ‘general method’ of Leibniz, and this expression doesn’t seem to be
an exaggeration” (Davillé 1909; my translation).

Davillé notes three formulations of the principle of continuity: (1) Time and
space are divisible to infinity. (2) The order of causes or starting points is expressed
in their consequences, and vice versa. This principle, ‘of harmony,’ is a corollary of
the Principle of Sufficient Reason. It has as a corollary the principle of induction,
that the whole cause can always be retrieved from the effect; the principle of
differentials; and the principle of analogy. (3) Change never occurs in jumps, but
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always by degrees. Leibniz also calls this the principle of transition; like the
principle of the identity of indiscernibles, Leibniz deduces it from the Principle of
Sufficient Reason. The principle of continuity, taken as a principle governing his-
tory, corresponds to a conception of historical evolution, slow and successive
change due to a natural and immanent cause.

The principle of continuity, Davillé observes, has obvious applications in
Leibniz’s mathematical and scientific research, and he clearly makes use of it in
natural history (geology, botany, zoology) and human history. (The Protogaea,
central to the development of the earth sciences in the 18th century, was recently
edited and translated into English by Claudine Cohen and André Wakefield)
(Leibniz 2008). In Leibniz’s monadology, there is both an internal and external
continuity: each monad contains within itself the series of its own development; and
it expresses the world, made up of other, equally expressive monads, whose points
of view differ from those of their neighbors “par des transitions insensibles.” Thus
the present is always pregnant with the future, and wears the traces of the past, for
those who know how to read them; and the least event reverberates throughout the
world. Leibniz as historian is very sensitive to the ways in which the past prolongs
itself, expressing itself in the present. Inspired by the principle of continuity, Albert
Sorel wrote L’Europe et la révolution française, which shows in eight volumes that
the French Revolution was not a revolution—a discontinuity in history—after all
(Sorel 1885–1904).

Not only does Leibniz’s principle indicate that all historical development is an
evolution, reminding us of the continuities of geography, of chronology, of
genealogy; it also confers special importance on the details of culture, Davillé
argues, for even the smallest thing is expressive of the whole. Thus Leibniz is
always preoccupied with origins, pursues hidden causes and distant consequences,
loves to digress, and explores analogy wherever he can. Thus too Leibniz always
studies the languages of the cultures he studies, tracing etymologies, borrowings,
and branchings on the great tree of Adam’s language. Overall, the principle of
continuity acts as a regulative, chastening guide, to keep historical hypotheses from
veering off into improbability, and imprints on Leibniz’s historical works their
defining characteristics: determinism (but not fatalism), optimism, and the idea of
progress.

In the past half-century, we seem to have lost sight of the importance of Leibniz as
a model for philosophy of history. As Ursula Goldenbaum argues in her essay
“‘Peter denies’—The impact of Leibniz’ Concept of Time on his Conception of
History,” while Hegel was interested in a teleological philosophy of history as a
substitute for spiritual history, Leibniz was looking for a science of history with new
methods for closing the gap between theoretical knowledge and empirical knowl-
edge (Goldenbaum 2012). However, the temperate middle ground between glacial
tradition and the fires of revolution, which Leibniz analyzed so well, has recently
been re-identified by Penelope Corfield in her study Time and the Shape of History.
Corfield identifies three central and interlocking dimensions of history in time:
continuity, gradual change, and abrupt or revolutionary change. In her chapter
devoted to the middle term, gradual change, she writes, “In historical application, it
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is helpful to distinguish between, on the one hand, slow, adaptational ‘mico-change,’
summarized as evolution or gradualism and, on the other hand, rapid, drastic and
fundamental ‘macro-change,’ summarized as revolution or structural discontinuity”
(Corfield 2007: 57). Leibniz’s metaphysics of time invites us back to the study of
micro-change, and indeed suggests that it provides the best model for historians,
since cultural stasis always contains the seeds of change, and revolutions are never as
revolutionary as they claim to be.

5 Leibniz as Physicist

Leibniz’s definition of time as the expression (in the world of phenomena bene
fundata) of relations of mutual incompatibility among things entails a method-
ological directive to the historian, to make history scientific. For Leibniz as a
physicist, it led to his celebrated quarrel at the end of his life with Isaac Newton via
Samuel Clarke; whereas Newton claimed that space and time are absolute and
established prior to the things of the created world, for Leibniz space and time are
relative to the created world, a plenum of monads. As we have seen, relativism
creates a metaphysical problem, or tension, within his system, because these rela-
tions of incompatibility must not themselves be temporal, lest the definition of time
be circular. Leibniz sometimes argues that these relations of incompatibility must be
causal: the asymmetry of causal relations—a cause causes an effect, but an effect
does not cause a cause—underlies the asymmetry of their expression as temporal
relations of earlier and later. And when he speculates about possible worlds, before
the creation of this world or in reference to worlds that will never be created, the
asymmetry of causal relations is further referred to the asymmetry of premise and
conclusion (premises support a conclusion, but a conclusion does not support a
premise) or of terms in a series (n + 1 always comes after n); and this seems to be
an echo of Spinoza, for whom time was not metaphysically real.

Thus Leibniz’s speculations about the time of the cosmos proceed in a mathe-
matical way, following the lead of Newton and employing his own supple notation
for differential equations, which will become the idiom in which mechanics is
developed in the 18th century. But they also proceed in a more speculative way in
his metaphysical writings, like the Discourse on Metaphysics, where cosmic time
proves both historical and moral. A few earlier manuscripts lead up to Leibniz’s
Tentamen de Motuum Coelestium Causis (1689) (Leibniz 1962, VI: 144–186).
There he responds directly to Newton’s Philosophiae Naturalis Principia
Mathematica (1687). In De Motu Gravium vel Levium Projectorum (1688), Leibniz
begins with the discovery that Newtonian curves described by rectilinear uniform
motion compounded by the action of gravity can be replaced by curves described
by a body pushed by a vortex rotating with a velocity inversely proportional to the
distance from the center (see Bertoloni Meli 1993: 276–304).

This result allows Leibniz to claim that he can explain planetary motion just as
well by appeal to the motion of vortices as by appeal to inertial motion compounded
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with motion caused by central forces. Newton’s way of composing the trajectory is
not pursued: he calculates the deviation from the tangent to the curve, the inertial
path the body would have pursued if not deflected by an impulse of force. Leibniz
however expresses the situation with a single differential equation, by calculating
the variation of the distance from the center, comparing the distances at different
times by a rotation of the radius. Leibniz writes, “Hence it is clear that if all
endeavors from gravity m are added together, and from this all centrifugal
endeavors k are detracted, one will have the impetus of descent 1G1L, namely,
dr ¼ R

m� R
k, that is, ddr ¼ m� k.” Leibniz also offers an original derivation of

Newton’s Proposition XI (Book I) in terms of a differential equation which he
solves by substitutions

r ¼ v2 þ a2
� �

=a as well as v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ar�aa

p� �

and separation of variables, which result in the expressions

dt ¼ dr � r= ffiffiffiffiffiffiffiffiffiffiffiffiffi
ar�aa

p
or t ¼ 2vþ

Z
a2dv=v:

His goal is to arrive at a relation between time and distance satisfying Kepler’s
laws, but due to errors in calculation (the integration problem is extremely difficult),
he fails to achieve it in this manuscript (see Bertoloni Meli 1993; Aiton 1985:
Chap. 6).

In the Tentamen, section 19, Leibniz proves more successfully that “If a moving
body having gravity, or which is drawn to some center, such as we suppose a planet is
with respect to the Sun, is carried in an ellipse (or another conic section) with a
harmonic circulation, and the centre both of attraction and of circulation is at the focus
of the ellipse, then the attractions or solicitations of gravity will be directly as the
squares of the circulations, or inversely as the squares of the radii or distances from the
focus,” by “a not inelegant specimen of our differential calculus or analysis of infi-
nites.”His reasoning results in the differential equation, ddr ¼ bbaahh�2aaqrhhð Þ=bbr3
from which Leibniz elicits 2ahh=rr as the ‘solicitation of gravity,’ which is thus
“inversely as the squares of the radii.” In these formalizations, time becomes merely
the parameter t, a feature of the dynamical system, without the independent definition
it receives in Newton’s formalization, where it is represented by the virtual line of
inertial motion (Leibniz 1962, VI: 156–157) (Fig. 7).

The debate between Leibniz and Newton (via his representative and friend,
Samuel Clarke, in the Leibniz-Clarke correspondence) is first and foremost over the
philosophical status of space and time: are space and time dependent upon, or
independent of, the things and events that occur in them? (Leibniz 1978, VII:
352–440). Leibniz’s plenum of monads, on the phenomenal level, conveniently
‘expressed’ a Euclidean spatial structure and a unidirectional, uniform temporal
flow. Newton asserted by fiat that the absolute structure of space is Euclidean (with
Cartesian origin and axes thrown in for good measure) and that time “flows equably
without relation to anything external.” Both seemed to assume, as we would
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formulate it now, that the time-line is orthogonal to the three dimensions of space.
However, because Leibniz—like Descartes—defines spatial and temporal position
only in relation to other bodies, he cannot distinguish properly between inertial
motion and accelerated motion; but the concept of inertial motion is central to his
mechanics. And because Newton defines absolute space and time so strongly,
motion itself becomes absolute, and he loses the equivalence of rest and inertial
motion, which is central to his mechanics.

Both Leibniz and Newton fail to see that inertial motion is a term required to
play two distinct roles. Each thinker exploits its ambiguity in order to introduce the
aspect of time and space that he has neglected. In Cartesian and Leibnizian
mechanics, a particle in inertial motion can never occur because the world is a
plenum, and all particles are continually jostled into curved trajectories; and
moreover, a Leibnizian cannot distinguish inertial motion from other curved (and
thus accelerated) trajectories. However, it must remain as a stand-in for the
Euclidean line and the “equable flow” of time that Newton establishes by fiat;
Leibniz cannot do without absolute time, and inertial motion, by its ambiguity,
provides it for him. In Newtonian mechanics, a particle in inertial motion can occur,
in case God decides to put a single particle into the great framework of space and
time: it will thus travel through the void in a straight line at a constant velocity,
un-acted upon by any external forces; and moreover, it will have an absolute
direction and velocity assigned to it, with respect to the immoveable, a priori,
“common center of the world.” However, it must also remain as the exemplum of
the spatio-temporal referent, whose inherent and virtual inertial motion is constantly
deflected by external forces, and in this role it must be equivalent to rest—inertial

Fig. 7 The Analysis of
Orbital Motion in the
Tentamen
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motion can have no more effect on a physical system than rest. Newton cannot do
without the stipulation of time by a moving thing, and inertial motion, by its
ambiguity, provides this for him (Grosholz 2011a).

Newton focuses on the geometrical representation of time as proportional to the
line of inertial motion (moreover, the laws of Newtonian physics are time-reversal
invariant). This approach raises the question, does the symmetry of the line show
that time itself is symmetric, despite appearances? And it tends to make time seem
illusory: if our best scientific representation of time contradicts empirical experi-
ence, where time is asymmetrical, perhaps time itself does not exist. Leibniz
focuses on time as a feature of physical referents, the dynamical system, and thus on
an empirical record of measurement. This approach raises the question, does the
causal asymmetry exhibited by things (for example, the increase in entropy in the
universe) show that time itself is asymmetric, or does asymmetry only happen to be
a feature of appearances? And it tends to make time seem unintelligible: if the
temporal features of the whole historical cosmos do not reveal anything about time,
what would? In the end, I argue that a combination of both approaches is needed, to
do justice to the reality and intelligibility of time, as we investigate it.

6 Leibniz as Mathematician

Leibniz believed that mathematics has a special place in the human search for
wisdom, knowledge of the “most sublime principles of order and perfection,”
because the things of mathematics are so determinate, and exhibit their determinate
inter-relations so clearly. However, the proper use of mathematics requires careful
philosophical reflection. The reason why materialism has seemed attractive to
serious thinkers, he argues in the Tentamen Anagogicum (1696), is because it lends
itself well to mathematical representation, and thus to calculation and rigorous
inference (Leibniz 1978, VII: 270–279). However, we should not overestimate the
extent to which the material world lends itself to mathematics, for all mathematical
‘models’ are a finitary representation of an infinitary reality; and we should not
forget that other aspects of reality also lend themselves similarly to mathematiza-
tion. The materialist illusion is not only a mathematical mistake (which should be
addressed by yet more mathematics) but also a metaphysical mistake. The alleged
materialist universe is a mirage, for it violates the Principle of Sufficient Reason,
which along with the principle of contradiction governs the created world; it is thus
after all not thinkable, like the mirage of the ‘greatest speed.’ The world’s beings
are not only material, but thoroughly sentient and endowed with force or conatus, a
striving for perfection; and in that striving they express their Maker, as well as the
intelligibility for which mathematics is apt. Leibniz writes that “The ancients who
recognized nothing in the universe but a concourse of corpuscles,” as well as the
modern philosophers who are inspired by them, find materialism plausible,
“because they believe that they need to use only mathematical principles, without
having any need either for metaphysical principles, which they treat as illusory, or
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for principles of the good, which they reduce to human morals; as if perfection and
the good were only a particular result of our thinking and not to be found in
universal nature… It is rather easy to fall into this error, especially when one’s
thinking stops at what imagination alone can supply, namely, at magnitudes and
figures and their modifications. But when one pushes forward his inquiry after
reasons, it is found that the laws of motion cannot be explained through purely
geometric principles or by imagination alone” (Leibniz 1978, VII: 271).

Moreover, he adds, there is no reason to suppose that other phenomena which in
that era had eluded mathematical formulation (he mentions light, weight, and elastic
force) will not sooner or later prove to lie within the expressive powers of math-
ematics. But all such representation will be provisional, because while finitary
models can express the infinitary things of nature well, they can never express them
completely; and the formulation of increasingly accurate stages of representation
must be governed, like nature itself, by the two great principles of contradiction and
sufficient reason.

Leibniz recognizes that different sciences require different methodologies, but no
matter what special features different domains exhibit, he believes that all scientific
investigation must move between mathematics and metaphysics. Mechanics, in
particular, is best viewed as a middle term between mathematics and metaphysics,
and so too Leibniz’s account of time. Of all the parameters involved in mechanics,
time is the least tied to any specific content, even though it presents a determinate
topic for scientific investigation. Thus a closer look at Leibniz’s account of time
presents an especially ‘pure’ version of the interaction of mathematics and phi-
losophy in the service of progressive knowledge.

As Yvon Belaval, Gilles-Gaston Granger, François Duchesneau, and Daniel
Garber have variously argued on the basis of a wide range of texts, Leibniz’s novel
conception of scientific method has two dimensions (Belaval 1960; Granger 1981;
Duchesneau 1993; Garber 2009). His account of method is informed by that of
Bacon and Descartes, but diverges from both in significant ways and combines
aspects of each. He borrows from Bacon the project of collecting empirical samples
from the laboratory and field, inductively, and compiling tables, taxonomies and
encyclopediae, always with the expectation of discovering harmonies and analo-
gies, deeper systematic organization in the things of nature. He borrows from
Descartes (and Spinoza) the assurance that the indefinite presentations of sense can
be associated with precise mathematical concepts, and thus by analogy be
re-organized as ordered series, which can then be subject to deductive inference.

In the Tentamen Anagogicum, Leibniz mentions the use of geometry in the
“analysis of the laws of nature,” and goes on in that essay to develop the ideas of
Fermat, Descartes, and Snell in optics using a series of geometrical diagrams, as
well as the ideas of maximal and minimal quantities developed in his infinitesimal
calculus. In an earlier, more general essay, “Projet d’un art d’inventer,” (1686), he
invokes arithmetic as a source of formulations apt for analysis considered as the art
of invention, “which would have the same effect in other subject matters, like that
which algebra has on arithmetic. I have even found an astonishing thing, which is
that one can represent all kinds of truths and inferences by means of numbers”
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(Leibniz 1961: 175). The idea is to locate nominal definitions, involving a finite
number of requisites, and then reason on the basis of them: “I found that there are
certain primitive terms—if not absolutely primitive then at least primitive for us—
which once having been constituted, all our reasonings could be made determinate
in the same way as arithmetical calculations; and even in the case of those rea-
sonings where the data, or given conditions, don’t suffice to determine the question
completely, one could nevertheless determine [metaphysically] mathematically the
degree of probability.” The clarity and determinacy of mathematical things is
crucial to this method of analysis. “The only way to improve our reasonings is to
make them as salient as those of mathematicians, so that one can spot an error
clearly and quickly, and when there is a dispute, one need only say: let us compute,
without further ado, to see who is right” (Leibniz 1961: 176, my translation).

Early modern mechanics begins by exploiting an already existing trove of
empirical records, the precise tables left by centuries of astronomers tracking the
movements of the moon, the planets, certain stars and the named constellations
which culminate in the careful data of Tycho Brahe, so important to Kepler, and
which are soon thereafter improved by the measurements of astronomers equipped
with telescopes. Happily for human science, the solar system is both an exemplary
mechanical system (just a few moving parts, isolated, and so almost closed despite
the occasional comet) and a very precise clock; so its study richly repaid the efforts
of early modern physicists.

How shall these two occupations, empirical compilation and theoretical analysis,
be combined? Leibniz calls on metaphysics, in particular the Principle of Sufficient
Reason in the guise of the principle of continuity, to regulate a science that must be
(due to the infinite complexity of individual substances) both empirical and
rationalist. The correlation of precise empirical description with the abstract con-
ception of science more geometrico is guaranteed by the thoroughgoing intelligi-
bility and perfection of the created world, and encourages us to work out our
sciences through successive stages, moving back and forth between a concrete
taxonomy and abstract systematization. Empirical research furnishes nominalist
definitions—finite lists of requisites for the thing defined—which can set up the
possibility of provisionally correct deductions, though every such definition due to
its finitude can be corrected and amplified; mathematics provides the rule of the
series.

This model of scientific inquiry accords very well with Leibniz’s own investiga-
tions into mechanics and planetarymotion, and so too his mathematical-metaphysical
account of time. Given the subtlety of his conception of method, I will argue that his
account of time is deeper and more multivalent than that of Newton, which explains
why it has proved to be more suggestive for physicists in succeeding eras and espe-
cially during the last century. Here we will take a step back, and look at Descartes’
account of time, against which Newton reacts.
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7 The Dispute Between Leibniz and Newton

Descartes’ definition of motion in the Principles of Philosophy is “the transfer of
one piece of matter, or one body, from the vicinity of those bodies which are in
immediate contact with it, and which are regarded as being at rest, to the vicinity of
other bodies” (Descartes 1964–1974, VIII: 53). Thus motion and rest can be
interpreted only as a difference in velocity or acceleration established with respect
to a reference frame of other bodies; no absolute determination of motion or rest is
possible. This definition of motion and rest is so radically relativistic that, strictly
speaking, the Cartesian observer, by choosing different reference frames, may not
only shift from judging that a given particle is at rest to judging that it is in inertial
motion (rectilinear motion at a constant speed), but also to judging that its trajectory
should be considered accelerated (and perhaps curvilinear). Descartes himself never
seems to have considered this consequence of his relativism, nor its inconsistency
with his invocation of inertial motion in the first two rules of motion given at the
beginning of the Principles. Perhaps the inconsistency escaped his notice because
in his mechanics there is no accelerated motion: the inherent motion of corpuscles is
rectilinear and constant in speed (that is, inertial) and the transfer of momenta
(defined for each contributing corpuscle as bulk times constant speed) in a collision
is instantaneous. His mechanics is thus undynamical and atemporal; its laws are not
only time-reversal invariant, they do not involve time as an independent variable:
nothing in Descartes’ mechanics varies continuously with respect to time.

Newton, however, saw and criticized this outcome, precisely because it entails
that Descartes is not entitled to his own definition of inertial motion. In De
Gravitatione (unpublished in his lifetime) he argues that since in Cartesian vortex
mechanics all bodies are constantly shifting their relative positions with time,
“Cartesian motion is not motion, for it has not velocity, nor definition, and there is
no space or distance traversed by it. So it is necessary that the definition of places,
and hence of local motion, be referred to some motionless thing such as extension
alone or space in so far as it is seen to be truly distinct from bodies” (Newton 1962:
131). That is, Descartes cannot give empirical procedures in his mechanics that
allow him to distinguish inertial motion from accelerated motion.

Newton responds with his well-known thought experiment about the revolving
bucket, arguing that the presence of forces is the sign of true (accelerated) motion;
forces are real and measurable. But he goes beyond that claim: in Book III of the
Principia, he writes,

Hypothesis I: The center of the system of the world is at rest.

Proposition 11, Theorem 11: The common center of gravity of the earth, the sun, and all the
planets is at rest (Newton 1972, II: 816).

Taken together, these claims offer an absolutist conception of space that makes
not only accelerated motion, but even uniform motion, definable with respect to a
Euclidean space that has been provided with a centre and axes. By countering so
strongly Descartes’ relativism and subsequent loss of the distinction between
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inertial motion and accelerated (straight or curvilinear) motion, Newton has sacri-
ficed the equivalence of inertial reference frames and thus his own first law, as we
noted above. He has also postulated a spatio-temporal structure that cannot be
empirically verified, a set of Cartesian coordinates for the Euclidean space of his
planetary mechanics, which violates his methodological principle of not invoking
merely metaphysical hypotheses.

Newton is not entitled to the equivalence of rest and inertial motion, which is
just as essential to his system as Descartes’ concept of inertial motion is to his
system (Grosholz 2011b). Leibniz acknowledged but was not troubled by the
consequences of Descartes’ relativism, and extended it to time. Thus in a com-
mentary on the Principles, “Critical Thoughts on the General Part of the Principles
of Descartes,” (unpublished in his lifetime), Leibniz writes about Principles II,
Articles 25 and 26:

If motion is nothing but the change of contact or of immediate vicinity, it follows that we
can never define which thing is moved. For just as the same phenomena may be interpreted
by different hypotheses in astronomy, so it will always be possible to attribute the real
motion to either one or the other of the two bodies which change their mutual vicinity or
position. Hence, since one of them is arbitrarily chosen to be at rest or moving at a given
rate in a given line, we may define geometrically what motion or rest is to be ascribed to the
other, so as to produce the given phenomena. Hence if there is nothing more in motion than
this reciprocal change, it follows that there is no reason in nature to ascribe motion to one
thing rather than to others. The consequence of this will be that there is no real motion
(Leibniz 1978, IV: 369).

This is just what Newton says! But for Leibniz, it is not a problem, certainly not
a problem to be banished by postulating absolute space and time as the arena for
motion. Rather, he makes the following claim in “Animadversiones in partem
generalem Principiorum Cartesianorum”: “Thus, in order to say that something is
moving, we will require not only that it change its position with respect to other
things but also that there be within itself a cause of change, a force, an action”
(Leibniz 1978, IV: 369). Newton proposes that whenever acceleration occurs, it is
due to the action of forces; Leibniz proposes that whenever any motion occurs, it is
due to the action of forces. This doesn’t mean that he has reverted to
Aristotelianism, but is instead an expression of his pan-animism. What Leibniz
means by force is not Newtonian force, but something more like energy, internal to
the body. Leibniz believes that no body is ever truly at rest, for all bodies are
ensouled: motion thus becomes an expression of conatus, as individual substances
jostle each other for a place within the Cartesian plenum at all times (Leibniz 1978,
IV: 350–392).

In this picture of the universe, we see the Principle of Sufficient Reason at work,
fashioning Lebniz’s mechanics along with mathematics. The universe must be a
plenum, and the individual substances in that plenum are jostling each other in an
effort to attain perfection: everything strives. Indeed for Leibniz even unactualized
possibles strive: essences strive for existence. In the realm of ideas, this striving
sorts ideas out into an infinity of possible worlds, and (with the beneficent coop-
eration of God) precipitates one world into creation; in the created world, it induces
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vortical motion in the plenum as well as temporality. Time is the expression of the
incompatibility of things; because creation involves plurality, mentality, and mutual
limitation, all things are active, passive and intentional. This is the best of all
possible worlds because it is continually becoming more perfect, on into the infinite
open future: creation is a continuous temporal process. In the law of the series, the
independent variable is always time. Thus matter is not merely extended, but
involves resistance and action; and it develops: Leibniz’s science will also be a
natural history. Thus his ideas stand at the origin not only of modern biology, but
also of modern cosmology.

Having invented a supple and powerful notation for his version of the
infinitesimal calculus during his sojourn in Paris (1672–76), Leibniz proceeded to
work out a theory and practice of differential equations, in which the dependence of
different forms of accelerated motion on time could be clearly expressed by the term
‘dt’. One application of this method was to planetary motion. While in Vienna on
his way to Rome in 1688, Leibniz read Newton’s Principia, took extensive notes
and then wrote a series of papers that culminated in the Tentamen de Motuum
Coelestium Causis (Acta Eruditorum, Feb. 1689), where he proposed differential
equations that would characterize planetary motion. Leibniz combined Cartesian
vortex theory with Newton’s reformulation of Kepler’s laws, locating the planets in
‘fluid orbs’ rather than empty space, in order to derive the laws governing central
forces while avoiding the problem of action at a distance. Whereas Newton cal-
culates the deviation from the tangent to the curve, as we saw above, Leibniz
expresses the situation with a single differential equation, by calculating the vari-
ation of the distance from the center, comparing the distances at different times by a
rotation of the radius. The upshot of his calculation, is that the effect of gravity can
be written as

2h2
� �

= ar2
� �� �

dt2

so that the ‘solicitation of gravity’ (conceptualized in Cartesian terms as the action
of a vortex) is inversely proportional to the square of the distance, which was of
course the result Leibniz was trying to reproduce.

For Leibniz, space is the expression in the created world of the logical order of
compossibility among individual substances, and time is the logical order of
incompatibility among individual substances (he asserts this in, for example, his
Letter to de Volder of June 20, 1703) (Leibniz 1978, II: 248–253). Thus, space and
time only come into being with the creation of this material universe, the best of all
possible worlds, and have only a secondary ontological status, because they are
constituted as relational structures of the things with primary ontological status,
individual substances. This is the basis of Leibniz’s relationalism; but we must
recall that his relationalism is deployed on the basis of a method which, as we have
seen, is two-tiered, both mathematical (seeking a precise mathematical correlate for
the law of the series) and metaphysical while at the same time empirical (examining
and tabulating evidence in an ongoing search for the systematic organization of
things). The true scientist will find ways to put the mutual adjustment of
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nominalistic form with the investigation of the infinitely complex, infinitely ordered
world of individual substances, in the service of the progress of knowledge; this
process requires both mathematics and metaphysics.

To correlate time with precise mathematical concepts, Leibniz chooses as the
correct representation the straight Euclidean line, endowed with directionality by
Descartes’ analytic geometry, which assigns positive and negative numbers—real
numbers we would say—to the line. In some texts, it appears that Leibniz holds
time to be a half-line, given what he writes to Clarke in the fifth letter of the
Leibniz-Clarke correspondence (Leibniz 1978, VII: 389–420). Since this is the best
of all possible worlds, created by God, the universe must constantly increase in
perfection, and so has a temporal beginning point but no end. Thus it is meta-
physically important that the number-line is both geometrical and arithmetical. As
arithmetical, it expresses the fact that time is asymmetric; time may be counted out
in units, like seconds or years, and the numbers increase in a unidirectional order
without bound to infinity. The asymmetry of time follows from the metaphysical
ground that everything strives. As geometrical, the number-line expresses the fact
that time is a continuum; units of time like seconds are not atoms, but conven-
tionally established, constant measures of time, as the inch is a measure of con-
tinuous length. An instant is only the marker of a boundary of a stretch of time, not
what time is composed of; we misunderstand what an instant is, Leibniz observes, if
we conceive of it as an atom of time. Time must be both measured and counted.

This duality of time is not however without conundrums. Analysis in arithmetic
leads us to the unit; but in geometry it leads us to the point. Whole numbers are
composed of units, but lines are bounded by points, not composed of them;
Cartesian reductionism is useful as an approach to arithmetic, but not to geometry.
In a letter to Louis Bourguet, composed just before the correspondence with Clarke,
in August 1715, Leibniz writes,

As for the nature of succession, where you seem to hold that we must think of a first,
fundamental instant, just as unity is the foundation of numbers and the point is the foun-
dation of extension, I could reply to this that the instant is indeed the foundation of time but
that since there is no one point whatsoever in nature which is fundamental with respect to
all other points and which is therefore the seat of God, so to speak, I likewise see no
necessity whatever of conceiving a primary instant. I admit, however, that there is this
difference between instants and points—one point of the universe has no advantage of
priority over another, while a preceding instant always has the advantage of priority, not
merely in time but in nature, over following instants. But this does not make it necessary for
there to be a first instant. There is involved here the difference between the analysis of
necessities and the analysis of contingents. The analysis of necessities, which is that of
essences, proceeds from the posterior by nature to the prior by nature, and it is in this sense
that numbers are analyzed into unities. But in contingents or existents, this analysis from the
posterior by nature to the prior by nature proceeds to infinity without ever being reduced to
primitive elements. Thus the analogy of numbers to instants does not at all apply here. It is
true that the concept of number is finally resolvable into the concept of unity, which is not
further analyzable and can be considered the primitive number. But it does not follow that
the concepts of different instants can be resolved finally into a primitive instant (Leibniz
1978, III: 580–583, my translation).
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The analysis of time requires the scientist to proceed both by the analysis of
contingents, using the line whose continuity is the best expression mathematics
provides for infinite complexity; and by the analysis of necessities, using the natural
numbers whose linear ordering and asymmetry is the best mathematical expression
of irrevocability. Leibniz goes on to observe that the use of mathematics does not
solve the metaphysical question whether time has a beginning, which leads one to
suppose that more metaphysics and more empirical research are required. He writes:

Yet I do not venture to deny that there may be a first instant. Two hypotheses can be
formed—one that nature is always equally perfect, the other that it always increases in
perfection. If it is always equally perfect, though in variable ways, it is more probable that it
had no beginning. But if it always increases in perfection (assuming that it is impossible to
give its whole perfection at once), there would still be two ways of explaining the matter,
namely, by the ordinates of the hyperbola B or by that of the triangle C (Leibniz 1978, III:
580–583, my translation).

Thus despite what he would shortly write to Clarke, he was perhaps not con-
vinced that time has a beginning:

According to the hypothesis of the hyperbola, there would be no beginning, and the instants
or states of the world would have been increasing in perfection from all eternity. But,
according to the hypothesis of the triangle, there would have been a beginning. The
hypothesis of equal perfection would be that of rectangle A. I do not yet see any way of
demonstrating by pure reason which of these we should choose. But though the state of the
world could never be absolutely perfect at any particular instant whatever according to the
hypothesis of increase, nevertheless the whole actual sequence would always be the most
perfect of all possible sequences, because God always chooses the best possible (Leibniz
1978, III: 580–583, my translation).

In any case, Leibniz’s conception of method requires that time be investigated
not solely by pure reason or pure mathematics, which he admits here to being
inconclusive; time must also be investigated empirically. It must be considered as
the relational structure of the individual substances that exist, insofar as they are not
logically compatible with each other. This means that we may have to revisit the
formal structures we have just been discussing, in light of what we discover about
the physical universe. The Principle of Sufficient Reason governs the created world;
not only does it entail that everything is determinate and intelligible (which for
Leibniz means, thinkable), it also entails that everything strives for perfection. Thus
the essences that are ideas in the mind of God strive for existence, but only those
that constitute this best of all possible worlds succeed; and in the created world, the
essences continue to jostle each other, to interfere with each other, as they all strive.
This dynamic quality of ideas produces time, as their harmonies produce space;
creation entails plurality and mutual limitation, activity and passivity. And the time
that is produced is asymmetrical, as creation tends towards greater perfection, a
harmonious dissension among the sentient, active individual substances.

What Leibniz heralds is the now received belief that matter is not passive and
inert, or dead: even a molecule is mobile, active, forceful, and sensitive. As he
writes in the Monadology, sec. 66–69:
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66. (…) there is a world of creatures, of living beings, of animals, of entelechies, of souls in
the least part of matter.

67. Each portion of matter can be conceived as a garden full of plants, and as a pond full of
fish. But each branch of a plant, each limb of an animal, each drop of its humors, is still
another such garden or pond.

68. And although the earth and air lying between the garden plants, or the water lying
between the fish of the pond, are neither plant nor fish, they contain yet more of them,
though of a subtleness imperceptible to us, most often.

69. Thus there is nothing fallow, sterile, or dead in the universe, no chaos and no confusion
except in appearance (…) (Leibniz 1978, VI: 618–619).

8 Coda

Leibniz understands that productive scientific and mathematical discourse must
carry out distinct tasks in tandem: a more abstract search for conditions of intel-
ligibility or solvability, and a more concrete strategy for achieving successful ref-
erence. While deductive argument is important (since its forms guarantee the
transmission of truth from premises to conclusion) as a guide to effective mathe-
matical and scientific reasoning, it does not exhaust method, for Leibniz. As we
have seen, Leibnizian method has two dimensions, empirical and rational, and both
require analysis, whose logical structure includes abduction, induction, and rea-
soning by analogy, as well as deduction. Moreover, analysis, the search for con-
ditions of intelligibility, is more than logic; it is a compendium of research and
problem-solving procedures, which vary among investigations of different kinds of
things. Such representational combination and multivocality is just what we find in
Leibniz’s most important pronouncements on the nature of time.
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Chapter 7
The Representation of Time from 1700
to the Present

To probe the limits of Leibniz’s relationalism in order to lead into a discussion of
the treatment of time in modern physics in the wake of Newton and Leibniz’s
celebrated dispute, I leave the path of textual analysis for a couple of pages, and
venture into the forest of thought experiments. Inspired by 20th c. speculation, I
propose that we try out Leibnizian relationalism on models of the universe very
different from that which he entertained, and see what becomes of the account of
time. First, let us suppose that nothing exists except a single particle. Then there is
no time, because time is the expression of relations of incompatibility among things
and one thing is clearly compatible with itself.

Suppose next that nothing exists except a perfect harmonic oscillator, which
moves through a certain series of configurations only to return to exactly the same
configuration in which it began. The motion of the harmonic oscillator, with one
causal state giving rise to another, expresses time, but is the time it expresses finite
or infinite? Since its beginning and end state are identical, it seems as if we should
identify the times they express; then time would be finite. The local ‘befores’ and
‘afters’ would have no global significance; the asymmetry of cause and effect along
the way would be absorbed into a larger symmetry, because every effect would
ultimately be the cause of the cause… of the cause of its cause. Thus the local
incompatibility of before and after would be absorbed into a global compatibility;
but then we must wonder whether this finite time is really temporal at all. It seems
that in this picture duration both does and does not occur.

Moreover, the picture seems to contradict the supposition that what exists is a
perfect harmonic oscillator, for there is no oscillation. The concept of oscillation
involves the notion of repetition, which in turn requires a linear ordering of time, so
that when a particular configuration recurs, that is when it occurs again, the first
occurrence is earlier than the later one, but the later one is not earlier than the first.
We can imagine that the same configuration recurs at a later moment of time; but it
is incoherent to suppose that the selfsame moment of time recurs at another moment
of time, for those two moments of time must then be both identified with, and
distinguished from, each other. As Leibniz often observes, contradiction makes
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alleged ideas vanish into nothingness; the relationalist idea of an isolated harmonic
oscillator is a mirage, and so is the idea of a moment of time recurring.

So we would have to admit that the time that frames the harmonic oscillator is
ongoing, linear and infinite, and so must be constituted by something beyond the
relations that hold among the moving parts of the harmonic oscillator; but this goes
against Leibnizian relationalism. To avoid this problem, Leibniz must completely
fill up his cosmos with things and events that never repeat, on pain of incoherence.
Such a cosmos is precisely what his metaphysics provides, chosen by God
according to the Principle of Plenitude, the Principle of Perfection, the Principle of
Sufficient Reason, and the Principle of Contradiction. Moreover, since all of his
monads are body-souls, everything that exists is provided with a developed or
rudimentary intentionality, that drives it forward in time. The strong asymmetry
observed in the organic, sentient world is guaranteed for everything that exists. In
Leibniz’s cosmos, everything is alive and everything strives. The dispute with
Clarke shows that Leibniz’s cosmos must be a plenum, for otherwise isolated things
would show up in absolute space and God’s choice of their location would be
arbitrary; similarly, if isolated events happened in absolute time, God’s choice of
when they occurred would be arbitrary. So even if we imagine the ideal harmonic
oscillator to express an ongoing, infinite time, perhaps by allowing the natural
numbers as a condition of its intelligibility, so that each of its oscillations might
thereby be distinguished by a numerical index, it would still violate the Principle of
Sufficient Reason.

At this juncture in the argument, however, we might suspect that Leibniz has not
discovered the infinity and uni-directionality of time in the relations among things,
but merely construed the relations among things so that the time they express will
turn out to be appropriate, that is, infinite and uni-directional. And another suspi-
cion may arise: Even if Leibniz is accurately describing the way things are (an
organicist, animist plenum), perhaps that in itself sheds no light on time. Time itself
may have no flow; and it may prove to be finite, coming to an end that no living
thing (including Leibniz) foresees. If our grasp of time is merely empirical, based
on temporal relations among things, maybe real time is beyond our grasp. However,
for Leibniz no pursuit of truth should be merely empirical; to be a Leibnizian
relationalist is not to reduce science to empiricism. Leibniz avoids this skeptical
worry by trusting in the ability of metaphysical principles to regulate the interaction
of empirical research and theoretical speculation in science. Informing this trust is
his trust in the perfection and intelligibility of the cosmos, so that time is the
expression of the infinite, harmonious incompatibility of things.

1 Penrose and Smolin in the Long Shadow of Leibniz

Variations of this problem continue to this day. Here are two of them, resurfacing in
two recent books by prominent cosmologists who acknowledge the influence of
Leibniz, Roger Penrose and Lee Smolin. In a recent book, Cycles of Time: An
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Extraordinary New View of the Universe, Roger Penrose suggests a “conformal
cyclic cosmology”. He observes that as we move back in time, temperatures are
increasingly great, so that all particles are so energetic as to be effectively massless
near the Big Bang. Massless particles in relativity theory do not experience the
passage of time, but they and their interactions may be supposed to satisfy “con-
formally invariant equations”. At this point, the universe cannot build a clock and
so loses track of time, while retaining its conformal geometry. Penrose then applies
similar reasoning to the distant future, where the universe again forgets time in the
sense that there is no way to build a clock with just conformally invariant material,
and concludes that with conformal invariance both in the remote future and at the
Big Bang origin, we can try to argue that the two situations are physically identical,
so the remote future of one phase of the universe becomes the Big Bang of the next.
This results in his conception of conformal cyclic cosmology. The structure of this
thought experiment is not so different from the one I proposed above, concerning a
universe composed of a single perfect harmonic oscillator, whose beginning state
can be identified with its end state (see Penrose 2011).

Making use of the four-dimensional space-time manifold of Relativity Theory,
Penrose suggests that at the two identified end and beginning states, temporality has
disappeared because massless particles are atemporal, and the universe is “space-
like”. When temporality is not expressed by the things that exist, it fades away, so
that the duration of the universe is not finite but also not infinite, as if it had the
topology of an open interval. Thus temporality, fading in and then fading out, is
located somewhere between the beginning and end states. However, the problems
that arise with respect to the harmonic oscillator arise here as well. Even if at the
beginning and end of the cosmos time has faded away, Penrose still speaks of
phases of the universe, one of which is next after ours. The very notion of an event
being repeated (because it is physically identical to another, in a different location
of spacetime) entails a linear ordering of time; if it is not the time of the massless,
temporally indifferent things of the universe at the beginning and end state(s), then
it is a meta-time, and the relationalism of Leibniz and Penrose must be modified:
relational time must be supplemented by absolute time. If the hypothesis of rela-
tionalism is not forgone, then we have a location in spacetime occupying another
location in spacetime, which seems just as incoherent as the notion that a moment
can occupy another moment. Is cosmology the mathematical description of the
perennial structure of the whole universe, an extension of Newtonian-Leibnizian or
rather Einsteinian mechanics, or is it a kind of natural history? I have been trying to
show that we owe this modern conundrum in part to Leibniz, whose metaphysics of
time introduced the theoretical possibility that the scientific treatment of the cosmos
might also be historical.

Lee Smolin takes up the question of the reality of time in his recent book Time
Reborn (Smolin 2013). He advocates a novel version of naturalism, proposing that
the passage of time is real, the present moment is real and the past consists of
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moments that were real (but the future is open), the universe is unique, and the laws
of nature evolve in time. His position is informed, he announces, by Leibniz’s
Principle of Sufficient Reason augmented by the claim that the universe contains all
its causes, and the Principle of the Identity of Indiscernibles, and his attendant
philosophy of relationalism. Here Smolin counters a number of assumptions often
associated with earlier versions of naturalism: everything that exists in the natural
world can be described in the language of physics, the laws of physics are invariant,
and the universe really is an invariant mathematical object: the passage of time is an
illusion from the point of view of the “block universe”. Smolin argues that this
version cannot explain why our experience is organized as a one-dimensional
succession of moments, why we remember the past but not the future, and how we
use the word “now”. He argues further that block universe naturalism stems from an
illegitimate extension of the Newtonian paradigm, to study an isolated subsystem,
idealized and observed from outside; Book I of the Principia indicates how crucial
this strategy was for launching modern physics. However, it is highly misleading
when we are trying to understand the whole universe; there is no outside and there
is no external clock.

Smolin thus proposes his own version of naturalism, which he believes will
allow cosmology to seek better answers, both theoretically and empirically, to
important questions: What are the conditions that give rise to the laws of physics?
How might these laws evolve? Why does the universe display the asymmetry of
time (why has it been so long out of equilibrium)? Are the laws of nature time
reversal invariant or not? Is the future open? His proposal makes use of the theory
of ‘shape dynamics’ (also explored by Julian Barbour), an interpretation of general
relativity in which there is a preferred slicing of space-time, that is, a preferred
choice of time coordinate that has physical meaning. This confers physical meaning
on the simultaneity of distant events; but physics on these fixed slices is invariant
under local changes of distance scale. The preferred slices are called constant mean
curvature slices, and offer a global notion of time for the universe. Other features of
his position include viewing energy and momentum as intrinsic rather than rela-
tional, considering events as unique (repeatable laws depend on coarse graining,
which forgets the information that makes events unique), and adding novel ways to
characterize and investigate the evolution of natural laws, a ‘principle of prece-
dence’ and a ‘principle of cosmic natural selection’. His speculations show (whe-
ther one tends towards Barbour’s conviction that time is not real, or Smolin’s
conviction that it is) how crucial our understanding of the nature of time is for the
development of modern physics. Towards the end of his paper, in a discussion of
qualia or conscious experience (including my experience of a “now”), Smolin
suggests that the conviction that time is real might lead one to entertain a revival of
Leibniz’s pan-psychism. That is, qualia cannot be part of the block universe and
time, but if—as temporal naturalism assumes—time is real, they might be important
aspects of the natural world (see also Smolin 2015).
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2 The Dispute Between Leibniz and Newton Redux

As we have seen, Newton claims that space and time are given independent of
anything that might be set into them. Euclidean space offers the correct structure for
space, and “absolute, true and mathematical time, of itself, and from its own nature,
flows equably without relation to anything external” (Newton 1934: 6). It is thus
nicely represented by the inertial motion of a body, a straight line flowing equably.
Newton solves Galileo’s unacknowledged problem with the inertial frames by
assigning the world system a center and a coordinate system, which makes all
motion absolute and thus, as noted above, impugns the physical equivalence of rest
and inertial motion, which Newton nonetheless invokes for his system. Leibniz, by
contrast, asserts that space and time are nothing in themselves, but rather the
expression of underlying causal or logical relations, holding among the things that
exist. Space and time are relations of compatibility or incompatibility among things;
and things are dynamical for Leibniz because for him all matter is ensouled and
therefore endowed with force and a lesser or greater sentience and intentionality.
For Leibniz, as for Goethe and Smolin, everything strives. Thus for Leibniz, time
finds its expression in differential equations applied to mechanics; time is no more
than the record of things that change with time.

Newton’s absolutist metaphysics leads him to prefer the abstract, geometrical,
autonomous representation of time, and Leibniz’s relational metaphysics leads him
to prefer the concrete representation of time that arises from the dynamical object,
given in terms of differential equations. The metaphysical and mathematical pref-
erences that divide the two men are very strong. The mathematics that Newton uses
almost polemically in the Principia is geometry. He undermines his own devel-
opment of infinitesimalistic methods; the variables used by Newton are finite,
because he tries to sidestep the problem of infinitesimals by using finite ratios
between vanishing or ‘evanescent’ quantities. And Newton’s notation does not lend
itself to the development of differential equations, as becomes clear in Book I,
Propositions XXXIX, XXXX, and XXXXI, where he tackles and does not com-
pletely solve the problem of finding the shape of a trajectory given that the law
obeyed by the central force is the inverse square law (De Gandt 1995: 244–264). By
contrast, Leibniz puts his entire treatment of planetary motion into the elaboration
of his differential equations, encouraged by his own lucid and suggestive notation,
but loses command of the formalization because he sets the solar system into
Cartesian vortices (‘fluid orbs’) instead of Newton’s useful and simple Euclidean
space.

What conclusions can we draw here? The debate between Newton and Leibniz
may be viewed as inevitable, but irresolvable. The issue is not whether one should
try to understand time as an abstract structure independent of the things in time, or
as a constitutive feature of the concrete things in time. My point is that scientists
must try to do both, in a discourse with at least two disparate registers that, despite
the disparity and also in part because of it, still manages to make sense and to reveal
important things about the world. And indeed, that is what both Newton and
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Leibniz did in their scientific and mathematical practice. Every mode of repre-
sentation is a distortion as well as an illumination, so we must always remain
reflective about those we use. And every disparity will sooner or later produce
contradictions that must be attended to, though pari passu the combination of
disparate discourses also increases information and makes insight somehow more
visible. Moreover, finally, we need to refer successfully and analyze at the same
time, in order to say something true.

How do scientists manage to refer successfully and analyze deeply at the same
time? What terms play the role of concrete or abstract, and how is their disparity
mediated? The answers to these questions must be determined by historical study;
there is no universal answer. All the same, they must still be raised by philosophy of
science, which then pretty clearly can’t proceed without history of science. My
reading of Galileo, Newton, and Leibniz has been influenced retrospectively by
recent debates in 20th c. and early 21st c. cosmology, where I discern the same
tension between abstract and concrete descriptions of time, and the same kind of
misunderstandings over competing metaphysical schemes (see Grosholz 2015:
1–7). The goal of finding a ‘unified theory’ may not always be the right ‘regulative
ideal’ (to use Kant’s term) for science. It may tempt scientists to look for the wrong
thing, and to misconstrue what they themselves are doing. Instead, scientists should
look for the best way to deploy disparate but well-correlated and well-mediated
ways of representing, as they refer to and analyze a world that they both encounter
and construct. The search for a unified theory of physics in the 21st century, like the
search for a resolution between Newton and Leibniz, may be misconceived. This
insight shapes the way in which I understand the episodes that occupy the next
sections.

In Chap. 2 of The Dappled World, Nancy Cartwright argues, “First, a concept that
is abstract relative to another more concrete set of descriptions never applies unless
one of the more concrete descriptions also applies. These are the descriptions that
can be used to ‘fit out’ the abstract description on any given occasion. Second,
satisfying the associated concrete description that applies on any particular occasion
is what satisfying the abstract description consists in on that occasion” (Cartwright
1999: 49). Thus the more concrete and the more abstract descriptions are compatible;
they can both coherently be attributed to the same situation or event at the same time.
Indeed, to make the abstract description effective or explanatory, it must be com-
patible with a concrete description: abstract descriptions can only be used to say true
things if they are combined with concrete descriptions that fix their reference in any
given situation. However, this doesn’t mean that both descriptions can be
re-inscribed in a discourse constituted by a single formal language, via the kind of
translation required by Nagel’s account of theory reduction, discussed in Chap. 4.

To block this assumption, Cartwright adds the caveat, “The meaning of an
abstract concept depends to a large extent on its relations to other equally abstract
concepts and cannot be given exclusively in terms of the more concrete concepts
that fit it out from occasion to occasion” (Cartwright 1999: 40). The more abstract
description adds important information that cannot be ‘unpacked’ from any or even
many of the concrete descriptions that might supplement it from our awareness of
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the things successfully referred to; there is no sum of referential descriptions that
relieves discourse of the task of analysis. Conversely, I would add, the more
concrete descriptions have meanings of their own that are to a large extent inde-
pendent of the meaning of any given abstract term they fall under; there is no
complete sum of the conditions of intelligibility of a thing that will relieve discourse
of the task of referring. The Nagelian ideal of theory reduction, as I argued in
Chap. 4, does not capture how scientists (or mathematicians) actually do science
(or mathematics); and the attempt to achieve homogeneity would erase the useful
heterogeneity among registers of discourse, and their combination, that in fact
increases the information available in any given situation.

3 Thermodynamics and Boltzmann

Time might seem to be an odd choice of scientific topic. How can we refer to, or be
aware of, time? How can time be presented or present or ‘there’? Is there indeed a
single ‘flow’ of time? Formal or material unity and spatial location are often very
helpful for reference, but it is hard to see how they would help us refer to time.
Likewise, how can we analyze time? What makes time what it is—what are its
requisites? What conditions of intelligibility or possibility might time have? In a
sense, time doesn’t seem to lend itself to thought. As a principle of sheer transience,
as a principle of radical asymmetry, as a principle of unpredictability, and as
infinite, time seems inimical to discourse. Moreover, like space, it cannot be per-
ceived; whether its effects can be perceived is another difficult question. When
things alter, or start up, or deteriorate, or repeat, we explain those changes by
reference to the causal and material or psychological properties of things in time,
not time itself.

Conversely, discourse seems inimical to time. When we analyze by searching for
conditions of intelligibility, we typically abstract from temporality in the thing
investigated. We look for logical or causal conditions that will hold universally for
that kind of thing: such kinds and relations are taken to be constant and general.
Similarly, the more concrete representations that help us to refer also have little
temporal spread: they may be schemata or descriptions that would help us identify
an ‘x’ any time an ‘x’ shows up. The conceptualization that leads to discourse pulls
away from time and towards the timeless, transcendent, eternal, atemporal, divine.
(Philosophers disagree about what should be opposed to time). All the same, there
are many scientific and mathematical discourses that seem historically to have
advanced our understanding of time, so it should be helpful to look at them in more
detail.

Given the preceding discussion in this book (after all, number and figure are no
more or less elusive than time), we may expect two registers of discourse in
scientific investigations of time. The more ‘analytic’ register will look at time as a
condition of intelligibility for other things, and treat it in terms of pure mathematics
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(arithmetic and geometry), so that its relations with other equally abstract notions
can be developed and exploited. The more ‘referential’ register will look at time in
relation to the concrete descriptions that ‘fit it out’ on various occasions, and which
study it as a constitutive feature of objects like clocks and dynamical systems. Then
we may notice that these distinct modes of representation are compatible in many
contexts, but exhibit interesting tensions and incompatibilities in other contexts.
Both systematic compatibility and disruptive incompatibility may contribute to the
growth of scientific knowledge.

All the laws of Newtonian mechanics are time reversal invariant; if time is
indifferent to physical systems, they should also be indifferent to time. A century
after Newton, Pierre-Simon Laplace wrote that if all the particles in the universe
somehow suddenly retained their position but reversed the direction of their
velocity, the universe would run backwards, because the laws of Newtonian
mechanics are time reversal invariant. Many people took that claim to mean that
time could just as easily run backwards as forwards, and that—t might be substi-
tuted for t in the great equation of the universe.

What it really means, however, is that if we have assigned Cartesian coordinates
to the timeline, we could say by convention that the beginning of our process is
t = −T and that the relevant process runs to t = 0, so that we go from state x(−T) to
state x(0). (By state x(t), I mean that both the position and velocity of each particle
is specified.) At t = 0, however, we must initiate a different process (that means, in
the case that Laplace envisages, a different universe), in which the particles are in
the same configuration as x(0) but the velocities are reversed; we can call it x′(0).
Then in the interval between t = 0 and t = +T, this second universe will evolve
from state x′(0) to state x′(T), in which all the particles will be positioned like those
of x(−T) but with the velocities reversed. Thus clearly we cannot identify x′(0) with
x(0) and we also cannot identify x (−T) with x′(T). Time does not run backwards,
and indeed our universe does not run backwards: it is in another (formal) universe
that a process takes place that (formally) reverses a process that took place in ours.
It is this formal possibility that misleads one into thinking that Newtonian
mechanics allows for the possibility of time going backwards, or for a process in the
universe, or the universe itself, running backwards (see Earman 2002; Sachs 1987).

However, my argument here about the meaning of Laplace’s thought experiment
may not dissuade the Newtonian scientist, who would like analytic time to render
superfluous any appeal to referential time. Perhaps the symmetry of the line, or the
time symmetric invariance of the equations of motion, is a better guide to time than
the apparent empirical asymmetry of our experience; for a Newtonian, time must be
investigated as a condition of intelligibility, and thus by formal rather than
empirical means. And the time reversal invariance of Newton’s equations also
applies to Einstein’s equations of motion in both Special and General Relativity
Theory, and to Schroedinger’s equation and Dirac’s equation in Quantum
Mechanics. All the same, 19th c. Thermodynamics and certain developments in
20th c. Quantum Mechanics as well as Relativistic Quantum Field Theory pose
serious challenges to this understanding of time, for they appear to offer physics
certain laws and rules that are not time reversal invariant.
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The modern discipline of thermodynamics, the study of heat, begins in 1824
with the publication of Sadi Carnot’s Réflexions sur la puissance motrice du feu,
considered the source for the laws of thermodynamics. The second law of ther-
modynamics states that the entropy of an isolated system not in equilibrium will
tend to increase over time. Following the work of Rudolf Clausius and James Clerk
Maxwell, Ludwig Boltzmann and J. Willard Gibbs defined entropy in a way that led
to their definition being interpreted (not without controversy) as a measure of
disorder. Clearly this law is not time reversal invariant, for an increase in entropy
corresponds to irreversible changes in a system. But is this law analytic or refer-
ential? That is, does this law report a condition necessary for the intelligibility of
physical processes, or is it a very high-level empirical generalization? And what
does this law reveal about the nature of time? (See Müller 2007; Carroll 2010;
Penrose 2011.)

In the mid-nineteenth century, the second law of thermodynamics was a notable
exception within physics; today, it rules out decreases in the entropy of closed
systems (except for the occasional statistical fluctuation), and therefore by extension
in the entropy of the cosmos as a whole (depending on how the ‘wholeness’ of the
cosmos is conceived). However, the reduction of thermodynamics to statistical
mechanics carried out by Boltzmann, Maxwell and Gibbs at the end of the 19th
century explained away this apparent asymmetry in macroscopic processes
(T-violation) by reformulating them in terms of time-reversal invariant microscopic
processes with special initial conditions: heat phenomena can be reduced to and
redescribed as the collisions of large numbers of particles, governed by the laws of
Newtonian mechanics. At the macroscopic level, an ice cube in a glass of water at
room temperature will always melt; however, another possible solution to the
Newtonian equations of motion that describe the situation of the particles in the
glass is that an ice cube spontaneously forms out of the water. This seems to violate
the second law of thermodynamics, but Boltzmann explains the apparent paradox
by noting that while this ‘solution’ is logically possible it is statistically extremely
unlikely (see Horwich 1987; Cercignani 2006; Zeh 2007). The second law of
thermodynamics is a statistical regularity, not a universal and necessary law like the
laws of Newtonian mechanics. We are misled by the fact that we apprehend events
at the macroscopic level via the approximations provided by our sense organs.

This argument seems plausible when the example is a glass of water, but less so
when the example is the cosmos. Scientists want to explain events as well as to
describe them. If all the laws of physics were truly time reversal invariant, the
macrostates of the past should be no more and no less probable than those of the
future; but then the thermodynamical evolution of the cosmos seems inexplicable.
Since most scientists agree that entropy has been increasing as the cosmos evolves,
science must furnish an explanation of this fact. Roger Penrose hoped to offer an
explanation by postulating an initial condition for the cosmos of very low entropy,
cast in terms of a new concept of gravitational entropy (Penrose 1979). However,
even if that explanation does not develop as planned, one would apparently have to
conclude that time reversal invariance cannot characterize all the fundamental laws
of physics; other laws that explain the universal asymmetry must be added, and the
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second law of thermodynamics seems a likely candidate. Boltzmann’s reduction
demotes the second law to merely referential status; but this strategy undermines the
achievement of one of science’s most important analytic tasks, explanation.

4 General Relativity and Quantum Mechanics

The seeds of Einstein’s revolution lay in James Clerk Maxwell’s set of partial
differential equations that laid the foundation of classical electrodynamics and
optics. Einstein postulated the invariance of the velocity of light c in a vacuum as a
result of studying Maxwell’s results, and then thought through the consequences of
this insight in relation to Galilean relativity (the claim that inertial motion, straight
line motion at a constant speed, is physically equivalent to rest). In his Theory of
Special Relativity (1905), the first of his revolutionary theories, he argued that
Newton’s notions of absolute time as well as of absolute simultaneity were
untenable. While time in the Theory of Special Relativity was no longer absolute,
however, the space-time framework was still rigid, a fixed ‘stage’ within which
physical events simply take place. Based on the failure of scientists to detect any
changes in the relative velocity of light (as they attempted to detect motion relative
to the aether), Einstein posited that the speed of light in a vacuum c will be the same
for all inertial frames, and thus the relative speed between moving bodies could
never be accelerated beyond the speed of light. He realized that if we pursue
consistently the implications of Galilean invariance (all uniform motion is relative
and there are no privileged inertial reference frames) together with the invariance of
the speed of light, consequences unforeseen by Newtonian mechanics—and of
course barred by Newton’s insistence on absolute space and time—must follow.
The duration of the time interval between two events, and what counts as a set of
simultaneous events, for example, will not be the same for all observers, so that talk
of space and time must become talk of 4-dimensional spacetime; and energy and
mass will be equivalent, that is, E = mc2 (Ashtekar 2015).

Einstein’s second revolution, the Theory of General Relativity (1915), resulted
from his attempt to unify special relativity with a theory of gravity. Einstein was
motivated in this work by two seemingly simple observations. Ashtekar notes:
“First, as Galileo demonstrated through his famous experiments at the leaning tower
of Pisa, the effect of gravity is universal: all bodies fall the same way if the only
force on them is gravitational. Second, gravity is always attractive. This is in
striking contrast with, say, the electric force where unlike charges attract while like
charges repel. As a result, while one can easily create regions in which the electric
field vanishes, one can not build gravity shields. Thus, gravity is omnipresent and
non-discriminating; it is everywhere and acts on everything the same way. These
two facts make gravity unlike any other fundamental force, and suggest that gravity
is a manifestation of something deeper and universal” (Ashtekar 2015). Since
space-time is also omnipresent, Einstein came to see gravity and space-time as
expressions of the same cosmic structure: space-time is curved by the presence of
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matter and it is dynamic; the effects of gravity are explained by the curvature of
space-time. So time in general relativity becomes ‘elastic’: whereas in special rel-
ativity time intervals depend on the motion of the observer, in general relativity they
can also depend on the location of the observer, because of variable curvature. The
evolving geometry of space-time opens up the possibility of singularities. In par-
ticular, if one assumes that there is no preferred place or preferred direction in the
universe, the hypothesis of the Big Bang follows from Einstein’s equations, as
Georges Lemaître recognized even before Edwin Hubble collected his revolution-
ary astronomical data. On this hypothesis, the universe would have begun at a finite
time in the past, and it would then be meaningless to ask what happened before:
there would be no earlier time, for time would have had a beginning (Ashtekar
2015).

The latest revolution involves the ongoing attempt to unify general relativity
with quantum mechanics, since the earliest stages of a cosmological model of the
Big Bang entail a very high energy density, whose features can only be understood
in terms of the relativistic quantum properties of energy in the Planck regime:
quantum energy is described by quantum fields (see Weinberg 1977/1993).
Moreover, the predictions of general relativity for those early stages are so far
physically meaningless or unreliable. Current efforts to unify general relativity and
quantum mechanics, however, sometimes suggest that space-time might not be a
smooth continuum, and sometimes suggest that time might not be a single flow; and
this of course complicates our conception of time. The most successful account of
time in this context, according to Jeremy Butterfield, is a reprise of relational time:
one chooses a suitable, monotonically increasing dynamical variable for the cosmos
(the reciprocal of total matter density, for example, or a suitable curvature scalar)
and uses it as a clock with respect to which all other observables change. The
problem is then that in quantum gravity, the graininess of space-time blocks the
foliation of space-time into space-like slices and thus the consistent reconciliation
of time as defined in terms of distinct choices of clock-variables (as occurs in
general relativity). One hopes for a new kind of congruence among choices to
emerge, but what its nature will be and whether it is really possible remains to be
seen (see Butterfield 2015).

Other controversial aspects also arise. Quantum theory, the collective creation of
perhaps a dozen physicists in the early 20th century, seems to entail (if one takes
state reduction seriously) an asymmetry in time. (Some physicists and philosophers,
for example David Deutsch, Leonard Susskind and Simon Saunders, contest this
claim, but it is widely held: Roger Penrose, Giancarlo Ghirardi and others champion
it.) Although Schrödinger’s equation, which describes how the quantum state of a
physical system changes over time, is time reversal invariant, a standard though
contested tenet of quantum mechanics is that the measurement of a system irre-
trievably destroys information, so that we cannot reconstruct the system’s initial
state once we have measured it. The measurement required for scientific investi-
gation is itself an irreversible process, and this ‘state reduction’ is as fundamental to
Copenhagen quantum mechanics as the Schrödinger equation. (Heisenberg, Pauli,
Dirac and von Neuman held this view, but it was opposed early on by Schrödinger
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and Einstein.) (Ney and Albert 2013). A striking consequence of the two
20th century revolutions in physics is thus that general relativity (whose best
empirical verification occurs on a cosmic scale), Newtonian mechanics (which
works best on and around the solar system), and quantum mechanics (which most
successfully explains very small-scale phenomena) seem logically incompatible in
many respects, not least a propos their accounts of space and time.

Just as Boltzmann wanted to demote the asymmetry of entropy, so a research
program based on the notion of quantum decoherence (a program active since the
1980s) dismisses the asymmetry of state reduction as an illusion that stems from
treating any system as isolated. According to this account, since no system is truly
isolated, the information lost in the process of measurement is not really destroyed,
but leached away into the ambient environment, where it is dispersed. So the
apparent in-principle irreversibility of the process is replaced by the statistically
unlikely possibility of retrieving the dispersed information from the environment in
which it has become entangled. This approach however generates the following
quandary: if when the measurement is made the information isn’t really lost, then
according to quantum mechanics in a sense a definite outcome of the measurement
has not taken place. Thus Roger Penrose and some of his colleagues are pursing a
program opposed to the quantum decoherence program, according to which state
reduction and its attendent time asymmetry must be real (see Penrose 2004: Chaps.
22, 29 and 30; Schlosshauer 2008; Jaeger 2009). Other physicists, including Lee
Smolin, as noted above, also defend the reality of the arrow of time.

5 Coda

The attempt to bring general relativity theory and quantum theory into closer
relation in 20th (now 21st) century cosmology has altered our understanding of the
physical world. At first, general relativity was supposed to refer to cosmological
and astrophysical phenomena, and quantum mechanics to the study of atomic and
subatomic particles. However, in the states of the big bang and the big crunch or
bounce, where the cosmos is hypothesized to be very dense, the world of general
relativity and quantum mechanics must meet, and scientists wish that at that
meeting point their descriptions and predictions would be at least compatible.

The electromagnetic field was successfully quantized by representing the
dynamical field, a tensor field Flm on Minkowski space-time, as a collection of
operator-valued harmonic oscillators (see Schweber 1994). One might say that
Minkowski space-time and the isometries of the Minkowski metric play an analytic
role here, and constructed physical quantities such as fluxes of energy, momentum
and angular momentum (carried by electromagnetic waves) play a role that is more
concrete and referential. However, it has proved much harder to quantize gravity
and general relativity. In general relativity, there is no background geometry; the
space-time metric itself is the fundamental dynamical variable. As Abhay Ashtekar
writes, “On the one hand, it is analogous to the Minkowski metric in Maxwell’s
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theory; it determines space-time geometry, provides light cones, defines causality,
and dictates the propagation of all physical fields (including itself). On the other
hand it is the analogue of the Newtonian gravitational potential and therefore the
basic dynamical entity of the theory, similar in this respect to the Flm of the
Maxwell theory. This dual role of the metric is in effect a precise statement of the
equivalence principle that is at the heart of general relativity. It is this feature that is
largely responsible for the powerful conceptual economy of general relativity, its
elegance and aesthetic beauty, its strangeness in proportion. However this feature
also brings with it a host of problems… We see already in the classical theory [of
General Relativity] several manifestations of these difficulties. It is because there is
no background geometry, for example, that it is so difficult to analyze singularities
of the theory and to define the energy and momentum carried by gravitational
waves. Since there is no a priori space-time, to introduce notions as basic as
causality, time, and evolution, one must first solve the dynamical equations and
construct a space-time” (Ashtekar 2012: 2).

How do scientists address this problem? There were two approaches, according
to Ashtekar’s historical summary, the canonical and the covariant, a late 20th c.
contest that reproduced, again, the tension between a dominance of the abstract
formulation on the one hand, and the concrete formulation on the other. The
canonical approach aimed to retain Einstein’s fusion of gravity and geometry. It
used the Hamiltonian formulation of general relativity, and designated the
three-metric on a space-like slice as the basic canonical variable. Despite its
commitment to the analytical and geometrical, it was led to internally differentiate:
the set of ten Einstein’s equations were decomposed into two sets, four (more
analytic) constraints on the metric and its conjugate momentum, and six (more
referential) evolution equations. This research program became stagnant, however,
since the use of this framework in the study of particle physics produced very
difficult, perhaps unsolvable, equations. In addition, concepts and methods that had
proved successful in quantum electrodynamics (scattering matrices, Feynman dia-
grams) did not emerge here, so that practitioners of particle physics could find little
common ground.

Another more referential approach, the covariant approach, thus came to seem
more promising; despite its commitment to the concrete—the dynamical object—it
was also forced to assign distinct roles to distinct parts of discourse, but in a
different way. It split the space-time metric itself into two parts, the first more
analytic and the second more referential. Thus, glm ¼ glm þ

ffiffiffiffi
G

p
hlm, where ηlm is a

background, kinematical metric (often chosen to be flat), G is Newton’s constant,
and hlm is the deviation of the physical metric from the chosen background, the
dynamical field; Ashtekar observes, the two roles of the metric tensor are now split.
As this framework is applied to the study of particle physics, in the transition to the
quantum theory, only hlm is quantized; quanta of this field propagate on the classical
background space-time with metric ηlm. If the background is chosen to be flat, the
quanta turn out to be gravitons, the machinery of perturbation theory and the
Feynman rules apply, and there is a way to compute amplitudes for scattering
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processes. This approach, however, is only applicable if gravitation is weak
(Ashtekar 2012).

One reflection that this discussion brings to mind is that time seems as resistant
to the idioms of science and mathematics as it is to those of philosophy; yet we
must go on trying to talk about it. All things arise and end in time, even the cosmos
itself. Time still seems (to me) to be both transcendent and fatal, a principle of
transience that resists every kind of discourse. This is odd, since we usually think of
transcendence as our refuge from fatality. What do these disputes tell us about time?
A Leibnizian physicist might exclaim, “So what if all fundamental physical laws are
time reversal invariant! That doesn’t prove that nature with its ‘real time’ is not
asymmetric!” By the same line of argument, I suppose that if some of the funda-
mental physical laws turn out not to be time reversal invariant, that development
also wouldn’t prove that nature with its ‘real time’ is asymmetric. A Newtonian
physicist might respond, “So what if the whole measureable history of the cosmos
exhibits an important asymmetry (the increase in entropy)! That doesn’t prove that
time itself is asymmetric!” By the same line of argument, I suppose that if we
discover that a new empirical method makes that apparent asymmetry disappear,
that development also wouldn’t prove that time itself is not asymmetric. Adherence
to the analytic Newtonian ideal on the one hand, or adherence to the referential
Leibnizian ideal on the other, seems to lead to skepticism about the nature of time.
My suggestion is that our best hope of investigating time is to seek to combine
disparate theories, some better designed for analysis, some for reference, without
forcing them into an artificial unity, in order to construct a novel and more effective
integration. The result might look, surprisingly, like philosophical dialectic; and yet
it might still be good science.

References

Ashtekar, A. (2012). Introduction to loop quantum gravity. In arXiv: 1201.4598v1 [gr-qc] 22 Jan.
2012: 1–30.

Ashtekar, A. (2015). Time in fundamental physics. In E. Grosholz (Ed.), Time and Cosmology,
Special Issue of Studies in History and Philosophy of Modern Physics, 52, 69–74.

Butterfield, J. (2015). Assessing the montevideo interpretation of quantum mechanics. In E.
Grosholz (Ed.), Time and Cosmology, Special Issue of Studies in History and Philosophy of
Modern Physics, 52, 75–85.

Carroll, S. (2010). From eternity to here: The quest for the ultimate theory of time. Cambridge,
MA: MIT Press.

Cartwright, N. (1999). The dappled world. Cambridge: Cambridge University Press.
Cercignani, C. (2006). Ludwig Bolzmann: The man who trusted atoms. Oxford: Oxford University

Press.
De Gandt, F. (1995). Force and geometry in Newton’s Principia. Princeton: Princeton University

Press.
Earman, J. (2002). What time reversal invariance is and why it matters. International Studies in

Philosophy of Science, 16(3), 245–264.
Grosholz, E. (Ed.) (2015). Time and Cosmology, Special Issue of Studies in History and

Philosophy of Modern Physics, 52.

140 7 The Representation of Time from 1700 to the Present



Horwich, P. (1987). Asymmetries in time: Problems in the philosophy of science. Cambridge, MA:
MIT Press.

Jaeger, G. (2009). Entanglement, information, and the interpretation of quantum mechanics. New
York: Springer.

Müller, I. (2007). A history of thermodynamics. New York: Springer.
Newton, I. (1934). In A. Motte (Tr.) & F. Cajori (Ed.), Mathematical principles of natural

philosophy and his system of the world. Berkeley: University of California Press.
Ney, A., & Albert, D. (Eds.). (2013). The wave function. Oxford: Oxford University Press.
Penrose, R. (1979). Singularities and time-asymmetry. In W. Hawking & W. Israel (Eds.), General

relativity: An Einstein centenary (pp. 581–638). Cambridge: Cambridge University Press.
Penrose, R. (2004). The road to reality: A complete guide to the laws of the universe. New York:

Knopf.
Penrose, R. (2011). Cycles of time: An extraordinary new view of the universe. New York:

Vintage.
Sachs, R. G. (1987). The physics of time reversal. Chicago: University of Chicago Press.
Schlosshauer, M. (2008). Decoherence and the quantum-to-classical transition. New York:

Springer.
Schweber, S. S. (1994). QED and the men who made it: Dyson, Feynman, Schwinger and

Tomonaga. Princeton: Princeton University Press.
Smolin, L. (2013). Time reborn. New York: Houghton Mifflin Harcourt.
Smolin, L. (2015). Temporal naturalism. In E. Grosholz (Ed.), Time and Cosmology, Special Issue

of Studies in History and Philosophy of Modern Physics, 52, 86–102.
Weinberg, S. (1977/1993). The first three minutes: A modern view of the origin of the universe.

New York: Basic Books.
Zeh, H. D. (2007). The physical basis of the direction of time. New York: Springer.

References 141



Chapter 8
Analysis and Reference in the Study
of Astronomical Systems

Scientific language used in the study to elaborate and systematize abstract thought
is often very different from language used by scientists working in the laboratory,
field and observatory. The chemist must bring the equations of quantum mechanics
into relation with the records of experimental processes, as well as diagrams and
computer simulations of a given molecule in its experimental setting. The botanist
must integrate the high-level principles of neo-Darwinian theory with her field
records, genetic information and statistical representations of the fate of her plants.
Texts that announce important ideas, bringing two or more spheres of activity into
intelligible relation, are therefore typically heterogeneous and multivalent. But
philosophers who begin with logic, as we have noted, seem to assume either that the
reports of empirical observation can be re-written in the same formalized idiom as
the first principles of the scientific theory, because they are ultimately deducible
within the theory, or that they can be re-written as a structure that corresponds
isomorphically to the theory. Assumptions about the logical homogeneity of sci-
entific discourse have not been directly challenged by philosophers known for other
kinds of challenges to logical positivism, like Kuhn, Popper, Van Fraassen and
Kitcher.

Philosophers of science need to ask new questions that bring the work of
combination itself into focus. Is there a useful taxonomy of strategies of combi-
nation across mathematics and the sciences? How does it contribute to the growth
of knowledge? In this chapter I will focus on these two questions, and illustrate my
reflections on them by referring first to Newton’s Philosophiae Naturalis Principia
Mathematica, the Principia, and then to the ensuing debates about the structure of
the solar system and, later, of galaxies and the cosmos. In his essay “Mathematics,
Representation and Molecular Structure”, Robin Hendry notes that Nancy
Cartwright (and Margaret Morrison) distinguish strongly between two kinds of
models (Hendry 2001). On the one hand, philosophers like Bas van Fraassen, in his
earlier book Laws and Symmetry, pay most attention to theoretical models, which as
in model theory are structures that satisfy a set of sentences in a formal language:

© Springer International Publishing AG 2016
E.R. Grosholz, Starry Reckoning: Reference and Analysis
in Mathematics and Cosmology, Studies in Applied Philosophy,
Epistemology and Rational Ethics 30, DOI 10.1007/978-3-319-46690-3_8

143



such structures are themselves organized as a language, so that the sentences of the
formal language are true when interpreted in terms of the object-language. On the
other hand, philosophers like Cartwright and Morrison remind us of the importance
of representational models, where the relevant relation is not satisfaction (as
between a meta-language and an object-language), but representation (as between a
discursive entity and a thing that exists independent of discourse), like the iconic
images that represent molecules (this one is benzene, C6H6, in Fig. 1).

Different models, or modes of discourse bring out different aspects of the ‘target
system’. As I have argued, those that help us to elaborate theory and the abstract,
highly theoretical networks that lead to scientific explanation, typically differ from
those that help us to denote, to single out the intended ‘target system’. The relation
between metatheory and object theory is isomorphism; but isomorphism leaves us
adrift in a plurality of possible structures; most of the time, scientists cannot allow
themselves to drift in that way. Hendry writes, “… we note that equations are offered
not in isolation, but in conjunction with text or speech. This linguistic context is what
determines their denotation and serves to make representation a determinate,
non-stipulative relation that may admit (degrees of) non-trivial success and failure.
Natural languages like English, French or German equip their speakers with abilities
to refer to their surroundings, and we can understand how equations can represent if
they borrow reference from this linguistic context” (Hendry 2001). In sum, theo-
retical models by themselves are too general; they cannot help us refer properly to the
things and systems we are trying to investigate. And referential models by them-
selves are too limited; they cannot offer the explanatory depth that theory provides.

My intention in this chapter is to show how models of the solar system, our
galaxy and closest galaxy-neighbor Andromeda, and our cosmos have historically
proved to be composites: in order to be effective, they must combine analytic and
referential modelling in an uneasy but fruitful unity. We need a thoughtful account
of the variety of strategies that scientists use to construct such composite models.
The relative stability of successful models makes scientific theorizing possible; and

Fig. 1 Benzene Molecule
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the residual instability (which no logician can erase) leaves open the possibility of
further analysis and more accurate and precise reference. Models are revisable not
only because they are ‘approximations’ that leave out information, but also because
they must combine both reference and analysis. To inquire into the conditions of
intelligibility of formal or natural things, we may decompose them in various ways,
asking what components they have and how those components are related, or
asking what attributes go into their complex concepts. We can also ask what laws
they satisfy. But in order to refer properly to a thing or system, we have to grasp it
first as what it is, a canonical unity or a whole relatively stable in time and space, its
oneness governing the complex structure that helps to characterize it.

Things and systems—both natural and formal—have symmetries and (since
periodicity is symmetry in time) so do natural processes! Carbon molecules as they
throb, snowflakes as they form, and solar systems as they rotate exhibit symmetries
and periodicities that are key to understanding what they are and how they work.
Thus the shape (in space and time) of a system or thing is not, as Aristotle once
claimed, a merely accidental feature. On the contrary, symmetry and periodicity are
a kind of generalization of identity; they are the hallmark of stable existence.
Symbolic modes of representation seem to be most useful for abstract analysis, and
iconic modes of representation for reference: a representation of shape is often an
important vehicle for referring. This is an over-simplification, however; tabulated
data and data displayed to exhibit (for example) linear correlations have both
symbolic and iconic dimensions, and most icons come equipped with indices that
relate them to symbolic notation. Thus we should expect models to be both sym-
bolic and iconic. And then it is rewarding to ask, how do those modes of repre-
sentation interact, on the page and in thought?

1 A Taxonomy of Strategies for Integrating Reference
and Analysis: Newton’s Principia

If the tasks of analysis and reference are often disparate, we may expect that, for
example, the records kept by astronomers (even when their work is informed by
theory) will differ from the theorizing of physicists and natural philosophers (even
when they are concerned primarily with celestial systems). The modes of repre-
sentation and the idioms of mathematical and scientific expression will differ; and
the explication and organization required of natural language will differ from one
task to the other. What we can then expect are composite texts in both kinds of
endeavor; and the nature of this composition can suggest a preliminary taxonomy of
‘strategies of integration’. I will illustrate each one in terms of Newton’s Principia.

The simplest such strategy is juxtaposition. The overall structure of the Principia
is a striking example of juxtaposition. Book I presents Newton’s mathematical
method for analyzing physical phenomena, and Book III is the application of those
methods to the solar system (Book II is in part a refutation of Cartesian vortex
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mechanics, which I won’t discuss in this chapter). What we find in Book I are
geometrical diagrams adjusted to accommodate Newton’s ‘method of first and last
ratios’ which makes possible the analysis of motion in terms of position, time,
velocity, force and mass. The paradigm of motion is the orbit of a body around a
center of force, introduced in Proposition I, and the culmination is the proof of the
inverse square law for gravity in Proposition XI; clearly, the canonical object for
Newton in Book I is the solar system. Despite the strict geometrical abstraction of
Book I, in the Scholium to Proposition IV Newton mentions Wren, Hooke, Halley,
and Huygens, adding “in what follows, I intend to treat more at large of those things
which relate to centripetal force decreasing as the squares of the distances from the
centres” (Newton 1999: 452). In Book III, by contrast, Newton includes many
tables copied from the records of various astronomers, and he insists on the con-
gruence of records kept by different astronomers in different countries who are
tracking the same celestial object. Book III also includes two stylized pictures of the
transit of a comet through the heavens (Newton 1999: 906 and 919). Its geometrical
diagrams differ strikingly from those in Book I, because they show techniques for
adjusting the predictions of theory to the complexities of real astronomical data (for
example, the moon is the earth’s satellite, but the influence of the sun is consid-
erable and must be factored in).

A variant of juxtaposition is the kind of two-dimensional correlation that pro-
duces tables, systems of equations, matrices, and graphs. In a manner that is rather
subtle, since these arrays are present to the eye on the page all at once, a
two-dimensional array presents two different kinds of information at once, locating
the terms in two different kinds of discourse. In Galileo’s account of projectile
motion in the Fourth Day of the Discorsi, as we saw, he juxtaposes horizontal
inertial motion (which is a creature of theory) with vertical free fall (which is the
mathematically elaborated observational description of how bodies fall near the
earth); their compounding produces the parabola of the trajectory of a projectile.
And Newton borrows this strategy in Book I, Proposition I of the Principia: at each
moment of its motion, a body revolving around a center of force endeavors to
continue in inertial motion, but is deflected into free fall by an impulse of the
centripetal force. The further juxtaposition of these moments side by side in the
diagram, governed by Euclidean rules about the equality of the area of triangles and
rendered infinitesimalistic and so dynamic by the method of first and last ratios,
produces a demonstration of Kepler’s law of areas (Newton 1999: 444–446).

A more nuanced form of juxtaposition is best explained by beginning with the
venerable notation of proportions. Euclid’s treatment of ratios and proportions in
Book V of the Elements provides a useful schema. For Euclid, ratios hold only
between things ‘of the same kind’. Proportions that yoke two ratios, a : b :: c : d,
thus allow mathematical discourse to bring different kinds of things into relation
without denying their disparity: though numbers are different from line segments,
the ratio between two numbers may be considered analogous to the ratio between
two line segments. The conclusion of the proof of the inverse square law, Book I,
Proposition XI, is just such a proportion: L � QR : QT2 :: 2PC : Gv. The mag-
nitudes on the left-hand side have physical import, resulting from the expression of
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the dynamical features of the idealized physical system; the magnitudes on the
right-hand side are finite geometrical line lengths with no physical import, stem-
ming from the mathematical properties of the figures involved (Newton 1999: 262–
263; see also Grosholz 1987: 209–220).

A modern elaboration of this strategy is the notion of isomorphism: two domains
are acknowledged to be different in kind, but their structural similarities can be
captured by an isomorphism, a one-to-one mapping that preserves structure. The
schematic picture of Halley’s comet of 1680 presented in the ‘example’ following
Proposition XLI, Book III (based upon the tabulated data given on the preceding
pages), and the geometrical diagrams in Proposition XLI that exhibit its trajectory
as a parabola, share a common structure, which constitutes for Newton significant
evidence of the truth and fruitfulness of his theory (Newton 1999: 906 and 902).

Some kinds of integrative strategies, however, we may call unification in the
logicians’ sense, for they insist on a stronger rapprochement between the two
disparate epistemic tasks and the resultant disparate discourses. Euclid also studies
continuous proportions, a : b :: b : c. In such proportions, the sharing of the term
b between the two ratios guarantees that a, b and c are all the same kind of thing.
For Newton, spatial position, temporal duration, velocity, mass and force are very
different kinds of magnitudes—the latter pertain to the dynamical object and the
former to the metaphysical framework furnished prior to objects by God. Yet for
certain purposes of calculation he treats them all as numbers, and then the pro-
portions that link them can be treated by special methods formerly reserved (in the
Middle Ages) for continuous proportions. Specifically, the proportion is arithme-
tized, ratios become fractions (a new kind of number), the compounding of ratios
can be treated as the multiplication of fractions, and analogy becomes an equality:
a/b = c/d (Sylla 1984). That is, the unification of Newtonian mechanics depends
not only on the discovery of first principles and the constitution of an axiomatized
theory; it also depends on the re-formulation of things as if they were generalized
objects, or rather on the substitution of generalized objects for things. Thus mag-
nitudes are treated as if they were numbers (with appropriate units), the large
objects of the solar system are treated as if they were point masses in one sense and
a sequence of spatio-temporal points in another, and trajectories become, in the
Leibnizian development of Newtonian mechanics, solutions to differential
equations.

Re-writing the things of a domain to reduce the disparity between the task of
analysis and the task of referring has a number of aims. A scientist like Newton who
is looking for a unified physics is motivated to minimize the differences among
things not only so that they can be treated by one unified theory, but also so they
can be combined in novel ways, subjected to calculation, and made amenable to
general methods. We recall how Karine Chemla stresses the importance of ‘modes
of application’ in mathematics, which allow processes of generalization, in relation
to Desargues’ projective geometry and to classical Chinese mathematics (see
Chemla and Shuchun 2004). One such example is Descartes’ re-writing of algebraic
curves as equations, so that his rule for finding tangents becomes immediate and
straightforward. The effort to extend Descartes’ general methods to ‘mechanically
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generated’ transcendental curves by Leibniz and the Bernoullis led to the elabo-
ration of notation for equations with variable exponents, and special symbols like
sin, cos, e and log, notation for infinite series, and notation for differential
equations.

Ernst Cassirer, as we saw in Chap. 1, explores a strong version of this strategy of
unification in Substanzbegriff und Funktionsbegriff, focusing on how Descartes was
able to exhibit the systematic connections among conic sections via his re-writing
of curves into equations. Arguing against the Aristotelian account of abstraction and
a naïve view of induction, Cassirer claims that the great conceptual innovation of
early modern science was to seek mathematical concepts that do not cancel or
forget the determinations of the special cases, but fully retain them, so that they can
be deduced from the universal formula. If a general concept had been arrived at by
Aristotelian abstraction, the special cases could not be recovered from it, because
the particularities would have been forgotten. By contrast, the mathematical or
scientific concept seeks to explain and clarify the whole content of the particulars
by exhibiting their deeper systematic connections, revealed in the law of the series.
Here the more universal concept is more, not less, rich in content; it is not a vague
image or a schematic presentation, but a principle of serial order. Thus in modern
mathematics, things and problems are not isolated, but shown to exist in thor-
oughgoing interconnection (Cassirer 1923/1953: Chap. 3).

Moreover, if the general concept had been arrived at by naïve induction, it would
have emerged from disconnected particularities. The rule of the series, Cassirer
argues, is not attained through bare summation; rather, its elements have already
been presupposed as organized in an ordered manifold. What Newton was able to
do in formulating his three laws and the law of Universal Gravitation, was to add
something to the theoretical situation that had not been there before, his unprece-
dented treatment of force and mass. In Book I of the Principia, a series of things
with attributes (specifically the bodies of the solar system) is transformed into a
systematic totality of variable terms or parameters; things are transformed into the
solutions of mathematically articulated problems. As Cassirer puts it, the world of
sensible presentations is not so much reproduced as supplanted by an order of
another kind. Then whenever we unify the ‘first order’ objects of our thought into a
single system, we create new ‘second order’ objects whose total content is
expressed in the functional relations holding among them; they can be deduced
from the axioms because disparity has disappeared (Cassirer 1923/1953: Chap. 5).
However, we should remember that this transformation is carried out in Book I of
the Principia; Cassirer neglects the importance of the work carried out in Book III,
which is also scientific and brings the task of analysis into more robust relation with
the task of reference.

If we return to Euclid’s continuous proportion, a : b :: b : c, another strategy of
unification appears, which could be called superposition. Initially it looks like a
fallacy, the fallacy of equivocation, but it has serious uses. What if a and c really are
different kinds of things, whose disparity cannot be dismissed by theory or practice?
Then we may use the term b to mean different (but related) things in each ratio. This
strategy exploits an ambiguity in the term b; however, as I have argued elsewhere, if
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the ambiguity is highly structured and controlled, it may be productive for math-
ematics and science. It sometimes allows the scientist to find a way between the
theoretical looseness of juxtaposition and the loss of reality that plagues unification.
In the next section, after tracking Newton’s uses of juxtaposition and unification in
the Principia, I will end by showing where and why he uses the strategy of
superposition.

2 Further Consideration of Newton’s Use of These
Strategies in the Principia

In the late sixteenth century and throughout the 17th century, the problem of
reference in astronomy is just as compelling as the problem of analysis. The main
object of study in that period is the solar system; as we stand on the earth, the sun
and the moon are large, brilliant objects in the sky, and the planets are salient and
distinctive in their movements. To refer, in one sense, all we have to do is point. But
the very act of pointing out an item in the solar system is a tracking: celestial objects
move, so the question of how to characterize the movement must also arise.
Tracking the objects of the solar system required, in the 16th century, a compass
and a sextant or quadrant; Tycho Brahe used these instruments in an unusually
consistent and careful fashion, calibrating his instruments regularly and measuring
their positions at small temporal intervals all along a given orbit with unprecedented
accuracy. Brahe’s tables of planetary motion, the Rudolphine Tables, meant to
supplant the 13th c. Alphonsine Tables, were published by his collaborator Kepler
after his death in 1601. His famous ellipse from the Astronomia Nova is given
below (Fig. 2).

The exposition of the Rudolphine Tables shows that problems of reference are
solved in relation to problems of analysis; recall that my claim is not that these
problems are disjunct, but that they are logically disparate and in need of further
integration. Given the way that Kepler sets up the table, he is clearly using a
heliocentric system with elliptical planetary orbits. This fact is noteworthy because
Tycho remained opposed to the heliocentric hypothesis till the end of his life, and
he died before Kepler worked out his laws of motion: the claim that the orbit of
Mars is elliptical is first published in his Astronomia Nova (1609). Thus the tables
embody and display two theoretical challenges to Aristotelian/Ptolemaic astronomy
which Tycho himself never made. Second, it was the very accuracy of Tycho’s data
that persuaded Kepler finally to abandon his devotion to the circle, and to search for
other simple mathematical forms, at last settling on the ellipse. Unprecedented
accuracy (achieved largely by scaling the instruments up in size), and frequent
tracking motivated a change in conceptualization. Of course, it was the highly
theoretical mathematics of Euclid and Apollonius that offered a repertoire of forms
to Kepler, from which he chose the ellipse (see Voelkel 2001).
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As is well known, Galileo pounced upon the refracting telescope almost as soon
as it was invented, made improvements to it, and turned it on the heavens. (Kepler
was an enthusiastic supporter of Galileo’s Sidereus Nuncius (1610), and he himself
used the telescope to look at the moons of Jupiter and the surface of the moon.)
Sixty years later, Newton built the first reflecting telescope, using a concave pri-
mary mirror and a flat diagonal secondary mirror; this invention impressed both
Barrow and Huygens, and led to Newton’s induction into the Royal Society. From
then on, improvements in our ability to refer to the objects of astronomy have
depended on improvements in the material composition, size, and placement of
telescopes. Galaxies and galaxy clusters, if they are not simply invisible, are at first
mere smudges on the night sky (a few are visible as smudges to the naked eye).
Either they are not recorded, or they are noted as ‘nebulae’, clouds whose structure
is just barely visible in the 19th century and whose composition remains mysterious
until well into the 20th century. Like clouds, they seem to have no determinate
shape; the discernment of galactic shape plays an important role in the development
of 20th c. astronomy and cosmology (Wilson 2014: Chaps. 1 and 2).

In Book I of Newton’s Principia, Kepler’s Second Law (that planets sweep out
equal sectors in equal times: they accelerate as they get closer to the sun and
decelerate as they get farther away) is proved in Newtonian fashion in Proposition I,
and his ellipse is the centerpiece of the diagram that accompanies the proof of the
inverse square law, Proposition XI. That ellipse therefore appears as a palimpsest. It
is at the same time a Euclidean-Apollonian mathematical object, with one set of

Fig. 2 Frontispiece,
Astronomia Nova
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internal articulations useful for discovering its mathematical properties; a tracking
device for Kepler as he finishes compiling the Tables with Tycho’s compass and
sextant or quadrant, and therefore just an outline, since a trajectory is just a line
across the sky; and finally as well Newton’s construction, with a superimposed set
of articulations for displaying physical and indeed dynamical properties. The ellipse
is a discursive locus where the demands of reference and the demands of theory are,
in Proposition XI, happily but formally reconciled (Newton 1999: 462–463). All
the same, the multiple roles the ellipse is forced to play there in a sense destabilize
the geometry and will ultimately lead to its re-expression in the Leibnizian form of
a differential equation. In particular, if we suppose, given our observational data,
that the orbiting body is subject to the effects of more than one center of force (or
that the force—reaction—it exerts on neighboring bodies is non-negligible), the
mathematics required is so complex that a new notation becomes imperative.

Newton’s project is to explain Kepler’s claim that planetary trajectories are
elliptical by uncovering its conditions of intelligibility. At the opening of Book I,
Newton shows that any body revolving around an immovable center of force must
obey Kepler’s Second Law; that result can be proved without making any
assumptions about the center of force, as it is in Proposition I (Newton 1999: 444–
446). In Proposition VI, Newton shows that the action of a center of force will
determine the shape of the trajectory of the revolving body; thus, the shape of a
trajectory will give information about the center of force (Newton 1999: 453–455).
Geometry provides Newton with a wide range of possible trajectories (considered
abstractly in Propositions VII–X), but only observation allows him to select as most
important an elliptical orbit with the center of force at one focus (Newton 1999:
455–463). The procedures of accurate reference have generated tables that present
the earth’s orbit as elliptical. If the trajectory is elliptical, and the center of force is
located at one focus of the ellipse, then the center of force must obey the inverse
square law. Note that in the proof of Proposition XI, Newtonian analysis considers
the abstract model of a solar system with only the sun and the earth (Newton 1999:
462–463).

In May of 1686, Edmond Halley wrote to Newton, to tell him that the members
of the Royal Society viewed the Principia as such an important work, that they
would undertake its printing ‘at their own charge’, though in fact he himself paid
for its printing at some personal sacrifice. For the next year or so, much of Newton’s
correspondence with the distinguished astronomer concerned the printing of the
Principia. Surprisingly, in June Newton wrote to Halley that he wanted to suppress
Book III, the presentation of the system of the world. I. Bernard Cohen observes,
“Halley proved to be a master of diplomacy and his saving of Book III may just
possibly have been his most significant contribution to the Principia” (Cohen 1971:
134). Newton was worried about the reception of the book, because he was not
satisfied with his studies of the motions of the moon or of the comets, but Halley
persuaded him that these applications of his theory were of utmost importance to
the scientific community as well as to the educated public. In July 1686, Newton
complied, to the delight of Halley and the Astronomer Royal John Flamsteed.
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The proof-reading and final publication of the Principia was completed, under
Halley’s direction, in July 1687 (Cohen 1971: 134–142).

Book III, The System of the World, begins with various admonitions from
Newton to the reader. He first writes, “I chose to reduce the substance of this Book
into the form of Propositions (in the mathematical way), which should be read by
those only who had first made themselves masters of the principles established in
the preceding Books”, adding that acquaintance with the Definitions, the Laws of
Motion, and the first three sections of Book I (up to the proof of the inverse square
law) would suffice. Then he gives four Rules of Reasoning in Philosophy, and adds
a notable section entitled Phenomena. Phenomenon I states that the moons of
Jupiter obey Kepler’s Second and Third laws; Newton cites in tabular form the
observations of Borelli, Townly, and Cassini as well as Pound, noting that they
used different methods and instrumentation. Phenomenon II makes the same point
about the moons of Saturn, citing observations of Cassini and Huygens.
Phenomena III, IV, and V taken together establish the same conclusion about the
planets Mercury, Venus, Mars, Jupiter and Saturn, citing the results of Kepler and
Boulliau in tabular form, and other astronomers, who all agree that the planets
revolve around the sun (not the earth) and obey Kepler’s Second Law, the Law of
Areas (Newton 1999: 797–801).

Thomas Kuhn called the development of Newtonian mechanics a good example
of ‘normal science’, the working out of puzzles nicely covered by the rules, like
problems at the end of a textbook chapter. His claim is certainly true of Newton’s
account of the orbits of the moons of Jupiter and Saturn, and of the five planets just
noted around the sun, which are handled with dispatch in Propositions I, II and V.
This isn’t surprising, since these very objects in just such systematic relations
served as the canonical objects for Kepler and Newton: the theory was designed
especially for them. Here, we see an integration of analysis and reference that looks
like a deduction, an almost perfect case of the strategy of unification. But this is not
the end of Book III, only the first 15 of its 150 pages! Newton’s hesitation about
publishing Book III stemmed from his inability to match that perfection even in the
case of the moon, and for different reasons in the case of the comets. The issues
raised by the moon pertained more to analysis, how to frame the 3-body problem;
nobody disputed the presence of the moon or where it was in the sky. The issues
raised by comets pertained more to reference: Was the comet of 1680 the same
entity as the comet of 1682? Were comets really part of the solar system? Were
comets made of the same stuff as the planets and their moons? Newton strives
mightily in the rest of Book III to address these issues, but the proper treatment of
the orbit of the moon had to wait for the new notation developed by Leibniz, the
Bernoullis and Euler, and the identity of Halley’s comet was not established until
after Newton’s death, by Halley (see Cook 1998).

In Proposition XXII, Newton asserts hopefully, “That all the motions of the
moon, and all the inequalities of those motions, follow from the principles which
we have laid down” (Newton 1999: 832). His attempt to justify this claim covers 60
pages, filled with geometrical diagrams (in which Newton is trying to get his
geometry to do the job of differential equations), geographical reports about the
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tides from around the world, and a small treatise by Mr. Machin about the moon’s
nodes, inserted and quoted verbatim as two propositions and a scholium (Newton
1999: 832–888). His treatment of the comets runs about 50 pages, and includes
geometrical diagrams, numerous astronomical tables and observations compiled by
Flamsteed, Halley, Hooke and Pound, as well as observations recorded by the
Italians Ponthio, Cellio, Cassini, and Montenari, the French astronomers Gallet,
Ango and Bayer, the American Storer, and the German Zimmerman, and an
imaginative ten-page excursus, worthy of Kipling, on the physical composition of
comets and why they have tails (Newton 1999: 888–938).

In his treatment of comets, Newton must first persuade the reader that a comet
belongs in the same category with the planets, that it is also a member of the solar
system, a claim oddly located as a lemma following a discussion of the precession
of the equinoxes, Lemma IV: “The comets are more remote than the moon, and are
in the regions of the planets” (Newton 1999: 888). He spends about seven pages
defending Lemma IV in terms that are strikingly qualitative, despite the presence of
two diagrams. He cites the commonly acknowledged retrograde motion they share
with the outer planets, and the fluctuations in the brightness of their heads as they
(he infers) pass near to the sun, observed by Kepler in 1618, by Helwelcke in 1665,
and by Flamsteed in 1680 and again in 1682. (Significantly, he does not identify the
comet of 1680 and the comet of 1682.) He concludes, “Comets shine by the sun’s
light”.

Having thus located comets in the solar system, he asserts in Proposition XL,
“Comets move in conics having their foci in the center of the sun, and by radii
drawn to the sun, they describe areas proportional to the times”. He notes in
Corollary I, that their orbits are ellipses, but in Corollary II, adds “but these orbits
will be so close to parabolas that parabolas can be substituted for them without
sensible errors”, presumably because as one focus of an ellipse is drawn further and
further away from the first, the ellipse becomes (in the infinite limit) a parabola,
though Corollary II has no explanatory gloss (Newton 1999: 895). The geometrical
treatment of the trajectory of a comet follows in seven lemmas and Proposition XLI,
illustrated by nine diagrams and then by the ‘example’ of Halley’s comet, docu-
mented in six tables and two pictures which are, like all pictures of trajectories, like
time-lapse photographs. As noted above, the second picture (“a true representation
of the orbit which this comet described”) and the diagram-parabolas in
Proposition XLI exhibit the isomorphism that Newton claims must hold between
theory and the recorded trajectory.

In the midst of this exposition, Newton writes, “The observations of this comet
from beginning to end agree no less with the motion of the comet in the orbit just
described than the motions of the planets generally agree with planetary theories,
and this agreement provides proof that it was one and the same comet that appeared
all this time, and that its orbit has been correctly determined here” (Newton 1999:
911). And just before the second picture, he adds, “The theory that corresponds
exactly to so nonuniform a motion through the greatest part of the heavens, and that
observes the same laws as the theory of the planets, and that agrees exactly with
exact astronomical observations cannot fail to be true” (Newton 1999: 916). In fact,
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Newton was right about the comets; they are part of our solar system and they do
correspond very well to his theory. However, my point is that the issue of the
disparity of analysis and reference remains. It is evident in the contrast between
Book I and Book III, but it also appears within Book I, where it is dealt with by
strategies of unification, nuanced by superposition, and in Book III, where it is dealt
with by strategies of juxtaposition, nuanced by isomorphism.

3 The 3-Body Problem: From Newton to Hamilton

In Book III of the Principia, Newton elaborates his theory and enriches his model,
building in further complexity, to show that he can account for further tabular
evidence compiled by other astronomers around Europe. He accounts for pertur-
bations in the orbit of the moon in terms of the gravitational pull of both the earth
and the sun, and goes on to account for the tides; he explains the orbits of comets as
they intermittently visit the solar system; and he shows that not only the other
planets but also the moons of Jupiter obey the generalized law of universal grav-
itation. The problems left for the next generation by Newton’s Book III are
therefore, in his opinion, ‘puzzles of normal science’ (Kuhn apparently concurs in
Newton’s assessment). On this account of scientific progress, the puzzles of ref-
erence are to locate and measure the movements of more and more astronomical
items, and so to make sure that they accord with Newton’s Three Laws of Motion
and the Law of Universal Gravitation. Existing theory, expressed in the formal
(highly geometrical) idioms of the Principia, will cover and explain the results of
observation, and prove adequate to solving the puzzles of theory, which include
first and foremost how to move from the 2-body problem to the 3-body problem to
the n-body problem (Fig.6.6 is the figure given in Book I, Sect. III, Proposition XI
of the Principia). Newton’s Law of Universal Gravitation states that, in the case of
two bodies, the force acting on each body is directly proportional to the product of
the masses, inversely proportional to the square of the distance between their
centers, and acts along the straight line which joins them. And he also shows that
gravity acts on the bodies (with spherically symmetric mass distributions relative to
their centers) in just the same way that it would act on point particles having the
same masses as the spheres and located at their centers. This allowed the formu-
lation of the n-body problem, which models a group of heavenly bodies: consider
n point masses in three-dimensional Euclidean space, whose initial positions and
velocities are specified at a time t0, and suppose the force of attraction obeys
Newton’s Law of Universal Gravitation: how will the system evolve? This means
we have to find a global solution of the initial value problem for the differential
equation describing the n-body problem (Diacu and Holmes 1996: Chap. 1).

But here is the irony: the differential equations of the 2-body problem are easy to
solve (Newton’s difficulties with his own much more geometric formulation in
Propositions XXXIX–XLI indicate the superiority of the idiom of differential
equations here). However, for n larger than two, no other case has been solved
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completely. One might have thought that ‘reducing’ the models to differential
equations would have made the solution of these centrally important problems
about the solar system straightforward. But on the contrary, the equations articu-
lated the complexity of the methods needed to solve problems in higher dimen-
sional phase spaces, in order to express the physical situation (sub-systems of the
solar system) accurately, as well as the great difficulty of finding complete solutions.
For a 2-body problem, only one differential equation in one variable is needed, but
for an n-body problem where n > 2, more than one differential equation, in more
than one variable, is required. The severe difficulty of the n-body problem (not only
in astronomy but in general mechanics) drove the development of physics for many
decades. The work of Leibniz, Euler, Lagrange, Laplace and Hamilton replaced
Newton’s Laws with a single postulate, the Variational Principle, and replaced
Newton’s vectorial mechanics with an analysis in which the fundamental quantities
are arbitrarily chosen coordinates and their time derivatives, and the dynamical
relations are arrived at by a systematic process of differentiation. Lagrange’s
Méchanique Analytique (1788) introduced the Lagrangian form of the differential
equations of motion for a system with n degrees of freedom, as we noted above, and
generalized coordinates qi (i = 1,… n). That is, he showed that there is a form in
which equations of motion can be cast, such that the form does not change no
matter which variables one chooses. This innovation, the versatile use of variational
principles, allowed physicists to choose whatever coordinates were most useful for
describing the system, increasing the simplicity, elegance and scope of the math-
ematics (Fraser 2000: 93–101).

But of course in another obvious sense, the very complexity of the object, the
solar system, forced the development of physics, since the solar system was the
only thing that could be studied as a celestial mechanical system by the instruments
available at the time. The main features of that complexity were already apparent to
everyone: around the sun there are many planets, with moons around some planets.
Uranus was identified by the important astronomer Herschel in 1781, and the
asteroid belt between Mars and Jupiter was correctly identified at the beginning of
the 19th century. Moreover, there were no important advances in telescopy until the
mid-nineteenth century, so the controversies and advances apropos the mathemat-
ical models were notably theoretical/analytic. The culmination of these develop-
ments was the publication of Pierre-Simon Laplace’s five-volume Mécanique
céleste (1799–1825), where with immense mathematical skill he further elaborated
these results into analytical methods for calculating the motions of the planets. In
the early 1830s, in the context of general mechanics, William Rowan Hamilton
discovered that if we regard a certain integral as a function of the initial and final
coordinate values, this ‘principal function’ satisfies two first order partial differential
equations; Carl Jacobi showed how to use Hamilton’s approach to solve dynamical
ordinary differential equations in terms of the Hamilton-Jacobi equation, later
simplified and generalized by Alfred Clebsch (Diacu and Holmes: Chap. 4; see also
Leech 1958: Chaps. 3–6).

Hermann von Helmholtz’s publication of On the Conservation of Force (with
Kraft defined in such a way that we would now translate it as energy) in 1847 was
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the culmination of efforts to find a mechanical equivalent for heat in the new
domain of thermodynamics, and to aim at integrating a theory of mechanics, heat,
light, electricity and magnetism by means of the notion of energy, rather than
gravitational force (It was only in the 20th century that this aim became practicable,
in the context of General Relativity Theory and Quantum Mechanics). Rudolf
Clausius reformulated the work of Sadi Carnot and introduced the Second Law of
Thermodynamics in 1850, as well as the notion of entropy in 1865. In an 1870
lecture entitled “On a Mechanical Theorem Applicable to Heat”, he introduced the
Virial Theorem, which states that in an assemblage of particles in gravitationally
bound, stable statistical equilibrium, the average kinetic energy is equal to half the
average potential energy (The import of the Virial Theorem within physics is more
general, for it applies to any system in which the inter-particle forces are propor-
tional to a gradient of a fixed power of the inter-particle distances). Whereas
measuring the potential energy of a gravitational system requires the ability to
measure its mass, measuring the kinetic energy depends on the measurement of the
motions of bodies in the system. In the case of astronomical bodies, it was much
easier to measure the latter than the former, so the Virial Theorem came to assume
an important role in 20th c. cosmology, when it was applied to galaxies and galaxy
clusters. However, in 1870, these objects were barely discernible: they were
referred to as nebulae, clouds, because that was how they appeared. Many
astronomers supposed that they would prove to have interesting internal structure,
after Laplace in 1796, following the speculations of Kant, proposed the nebular
hypothesis that the solar system emerged from a cloud of swirling dust. Thus the
issue of models for the heavens reverted to the problem of reference, in the work of
the astronomers Sir William Herschel and William Parsons, Earl of Rosse.

4 The Problem of Reference, from Rosse to Hubble

The path from the detection of ‘nebulae’ as cloudy smudges within the sole ‘island
galaxy’ of the Milky Way to the recognition that many of them were in fact other
galaxies far distant from our own, with complex internal structure encompassing
hundreds of billions of stars is long and winding. Charles Messier catalogued the
closest galaxy Andromeda as M31 in 1764, and William Herschel estimated that it
was about 2000 times further away from us than Sirius (which is one of the stars
closest to us). Herschel’s large reflecting telescopes produced a dramatic increase in
the ability of astronomers to watch the heavens; in 1789 he proposed that nebulae
were made up of self-luminous nebulous material. He made hundreds of drawings
of them, looking for significant morphological differences, or patterns of devel-
opment, as he searched for evidence of his nebular hypothesis that clusters of stars
may be formed from nebulae (Laplace modified the nebular hypothesis, as noted
above, to speculate that the solar system was originally formed from a cloud of
gases). Herschel’s son John revised his father’s catalogue for the Northern
Hemisphere, and established a catalogue for the Southern Hemisphere as well, and
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kept alive the question of the composition of the nebulae: what were they made of?
Alongside tabulations of positions, astronomical observations were drawn by hand;
John Herschel was known for his meticulous sketches, which he hoped could be
used in series, and by future astronomers, to determine change and motion in
celestial configurations (Nasim 2010).

In 1845, William Parson, Earl of Rosse, built the largest telescope in the world: its
speculum mirror was six feet in diameter, with a focal length of over four feet. He
hoped to discover some of the fine structure of Herschel’s nebulae. Soon after the
telescope was set up, next to a smaller one that was equatorially mounted, he pointed
it at Messier 51 (what we now call theWhirlpool Galaxy, a bright, face-on spiral with
a companion) and discovered both its spiral, swirled structure and its companion.
The discernment of the shape of the nebula was decisive. He sketched it repeatedly,
in two steps: first he used the smaller telescope to scale the drawing, and then the
large one to fill in the details. Herschel saw Rosse’s sketches, presented at a meeting
of the British Association for the Advancement of Science and was enthusiastically
supportive. These drawings were later improved and engraved, so that the nebula
was represented in negative, as black on a white background. So in Rosse’s research
project, the production of an astronomical image was an interplay between what was
seen through the telescope, and what was carefully sketched by lamplight by Rosse
and various assistants, thereafter to be re-fashioned as an engraving. This was the
first (representational) model of a galaxy (Nasim 2010) (Fig. 3).

In the last two decades of the 19th century, astronomers solved various technical
problems (how to keep the telescope and camera pointing in the right direction,
over a period of time, for example) and profited from the introduction of dry plate
photography, so that by 1887 a consortium of twenty observatories could produce a

Fig. 3 Rosse’s Sketch of Messier 51
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comprehensive astronomical atlas from photographic images. Comparison of
photographs rapidly made clear how variable sketches had been as records of
celestial objects, especially nebulae. Once astronomers had a firmer grasp of what
they were trying to look at, the next step was to estimate how far away they were,
and then to combine that knowledge with star counts and further estimations of
stellar velocities within a given galaxy. Up to this point, the application of classical
mechanics to these mysterious objects had really only been a pipedream. In the first
decades of the 20th century it became a true research program, once nebulae were
acknowledged to be extra-galactic objects, much larger and farther away than
anyone in the 19th century suspected, and ever more powerful telescopes were able
to track their motions and resolve their images. In the meantime, however, classical
mechanics was being transformed, and the ensuing theoretical disputes affected the
work of astronomers as well.

The development of Newtonian mechanics was therefore not ‘normal science’ in
Kuhn’s sense. The emergence of electro-magnetic theory, the independent devel-
opment of chemistry, and the study of thermodynamics were shaped by a growing
awareness that in different domains forces other than gravity were important and
demanded codification, and that the notation of differential equations, the study of
symmetries, and the category of energy (as opposed to force) should be central to
mechanics. However, the most direct challenge to Newtonian mechanics of course
came from Einstein’s special and general theories of relativity, which explored the
consequences of the equivalence of inertial frames (Special Relativity) and of
accelerated frames (General Relativity), given the invariant speed of light. We have
noted that Einstein proposed an equivalence between matter and energy, a
4-dimensional space-time continuum curved locally and perhaps globally by the
matter and energy located in it, a dilation or slowing down of the passage of time
registered by an observer in one reference frame as occurring in another reference
frame moving (from the perspective of the first reference frame) close to the speed
of light, and the notion of a light-cone as a formal limit on cosmic causal inter-
action. It was clear that these revisions of classical mechanics would have signif-
icant consequences for astronomy, certain aspects of which were beginning to
change into modern scientific cosmology. In the late eighteenth and early 19th
century, cosmology had remained merely speculative, driven by the metaphysical
certainty of Leibniz and Goethe that in nature, ‘everything strives’. However,
Relativity Theory did not impinge immediately on the study of galaxies. Rather, it
was the characterization of ‘Cepheid variables’ by Henrietta Swan Leavitt and then
the study of the ‘red shift’ of the electro-magnetic radiation emitted from stars by
Edwin Hubble (both more closely related to problems of reference and taxonomy
than to theoretical speculation) which moved the study of galaxies into the heart of
modern cosmology.

The astronomer Edwin Hubble identified nebulae as galaxies, and then studied
galaxies by analyzing the emission spectra of the light emitted by their stars; he
noted that the standard patterns of spectral lines were for the most part shifted
toward the red end of the spectrum (Some galaxies, like Andromeda which is in fact
moving towards us, are blue-shifted). This he interpreted as a ‘Doppler shift’, which
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we know from ordinary experience as the lowering of the tone (due to the sound
wave’s perceived lengthening) of a train whistle when it rushes past us; that is, he
took it as evidence that the galaxies (most of them) were receding from us. His
famous law proposed in 1929 posits a linear relation defined by the Hubble constant
between recessional velocity and distance, so that a measurement of red shift could
be used to give an accurate estimate of how far away from us a galaxy lies. He also
used ‘standard stars’ called Cepheid variables, whose period of variation and
absolute luminosity are tightly related, as signposts; in combination, these factors
allowed him to see that nebulae were extra-galactic, and to estimate their distances
from us. Thus it was only during the 1920s that the scale of the universe began to
dawn on astronomers (Liddle and Loveday 2008). In 1936, Hubble wrote in his
influential book The Realm of Nebulae that “valuable information has been
assembled concerning the scale of nebular distances, the general features of neb-
ulae, such as their dimensions, luminosities, and masses, their structure and stellar
contents, their large-scale distribution in space, and the curious velocity-distance
relation” (Hubble 1982/2013: 181) (Fig. 4).

From that point on, scientists were puzzled about how to address the mismatch
between astrophysical theory, originally based on the behavior of objects in the
solar system, and the measurement of celestial systems. If rotating galaxies behaved
like our solar system (which has a dominant central mass, the sun), the speed of
stars at the outskirts of a galaxy should diminish in proportion to the reciprocal
of the square root of their distance from the center; but stars on the outskirts of
galaxies go much too fast. The laws of Newtonian physics predict that such high
speeds would pull the galaxy apart. Thus in order to explain the stability of a

Fig. 4 Hubble’s Date (1929)
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galaxy, scientists either had to assume there is much more matter in a galaxy than
we can see in the form of stars like our sun, or that Newton’s laws must be revised
for large systems.

5 Edwin Hubble and Fritz Zwicky

In 1937, the astronomer Fritz Zwicky took issue with Hubble on a number of
points. He announced at the beginning of his paper “On the Masses of Nebulae and
Clusters of Nebulae”, that the determination of the masses of extragalactic nebulae
was a central problem for astrophysics. “Masses of nebulae until recently were
estimated either from the luminosities of nebulae or from their internal rotations”,
he noted, and then asserted that both these methods of reckoning nebular masses
were unreliable. The adding up of observed luminosities gave figures that are
clearly too low; and the models used for reckoning mass on the basis of observed
internal motions were too indeterminate. Better models were needed, not least
because Zwicky was convinced that in addition to luminous matter, galaxies (and
the larger formations of galaxy clusters) included ‘dark matter’. He wrote, “We
must know how much dark matter is incorporated in nebulae in the forms of cool
and cold stars, macroscopic and microscopic solid bodies, and gases” (Zwicky
1937). It would be anachronistic to read Zwicky here as supporting or even
introducing the current hypothesis of ‘dark matter’, since he used the term simply to
indicate that he thought that our telescopes cannot see some or most of what is
actually included in a galaxy or galaxy cluster. There was luminous matter, which
we can detect, and dark matter which (as yet) we can’t. This made it all the more
important to be able to estimate the mass of a galaxy or galaxy cluster on the basis
of the internal movements of its visible components; thus we would have to
improve upon the mechanical models used, so that those estimates could become
more accurate. He discussed four kinds of models, the first of which, Hubble’s
model, he dismissed.

In The Realm of Nebulae, Hubble argued that from observations of internal
rotations, good values of the mass of a galaxy should be derived. He wrote, “Apart
from uncertainties in the dynamical picture, the orbital motion of a point in the
equatorial plane of a nebula should be determined by the mass of material inside
the orbit. That mass can be calculated in much the same way in which the mass of
the sun is found from the orbital motion of the earth (or of the other planets)”
(Hubble 1982/2013: 179). However, he expressed some doubts about how to
interpret available data about both galaxies and galaxy clusters. Zwicky diagnosed
the problem in terms of the indeterminacy of the mechanical model, for one could
make the assumption that the ‘internal viscosity’ of a nebula was negligible, or that
it was very great. In the former case, the observed angular velocities will not allow
the computation of the mass of the system; in the latter case, the nebula will rotate
like a solid body, regardless of what its total mass and distribution of that mass may
be. For intermediate and more realistic cases, Zwicky argued, “It is not possible to
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derive the masses of nebulae from observed rotations without the use of additional
information”. If, for example, there were a central, highly viscous core with distant
outlying, little-interacting components, one would need information about that
viscosity and about the distribution of the outlying bodies. And he dismissed the
analogy with the solar system as superficial.

Zwicky went on to propose three other possible models for calculating the mass
of a galaxy or galaxy cluster. The second approach was to apply the Virial
Theorem. If a galaxy cluster such as the Coma cluster was stationary, then “the
virial theorem of classical mechanics gives the total mass of a cluster in terms of the
average square of the velocities of the individual nebulae which constitute this
cluster” (Zwicky 1937: 227). He argued that the Virial Theorem would work for the
system, even if the nebulae are not evenly distributed throughout the cluster. But
what if the cluster was not stationary? A brief calculation showed that, given the
velocities, the Virial Theorem predicts that ultimately it will fly apart, which is odd,
since then there should be no galaxy clusters at all; so there must be ‘internebular
material’, whose nature and density should be further studied. Zwicky concluded
that “the Virial Theorem as applied to clusters of nebulae provides for a test of the
validity of the inverse square law of gravitational forces”, because the distances are
so enormous and these clusters are the largest known aggregates of matter (Zwicky
1937: 234). He also remarked that it would be desirable to apply the Virial
Theorem to individual galaxies, but that it was just too difficult to measure the
velocities of individual stars, as it was at that point in time. He treated this practical
limitation as if he could not foresee its resolution.

The next model was that of gravitational lensing, a direct application of
Einstein’s theory of General Relativity; however, this was initially a merely spec-
ulative proposal, and wasn’t tested and confirmed observationally until 1979. The
final model was an extrapolation of ordinary statistical mechanics, “analogous to
those which result in Boltzmann’s principle”. Zwicky’s motivation in this section
seemed to be to find a theory that would explain large-scale features of the universe
without resorting to the kind of cosmological account (like the Big Bang theory,
with which Hubble’s Law became associated) he opposed, given his general dis-
approval of Hubble. Zwicky concluded, “It is not necessary as yet to call on
evolutionary processes to explain why the representation of nebular types in
clusters differs from that in the general field. Here, as in the interpretation of other
astronomical phenomena, the idea of evolution may have been called upon pre-
maturely. It cannot be overemphasized in this connection that systematic and
irreversible evolutionary changes in the domain of astronomy have thus far in no
case been definitely established” (Zwicky 1937: 239). For Zwicky, part of what was
at stake was whether our model of the whole cosmos should be evolutionary or not.

Thus at the end of the 1930s, two important astronomers who had access to the
same observational data on the largest material objects in the universe found
themselves associated with two radically opposed views on the direction cosmology
should take. Yet they were both equally puzzled by the discrepancy in estimates of
the mass of these large objects. The evidence provided by star-counting or
galaxy-counting, and the results of mechanically plausible models that calculate
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mass on the basis of the motions of stars in galaxies and of galaxies within clusters,
simply did not agree. So the choice of theory could not be determined by obser-
vational results, and the clash of observational results could not be reconciled by
theory. A quarter century later, astronomers were finally in a position to measure
the velocities of components of a galaxy, and so to calculate the mass of the galaxy.
Astronomers already had reliable evidence that a galaxy rotates about its center,
based on the gradient in the stellar absorption lines on the major axis and the lack of
such a gradient on the minor axis. If a galaxy were a mechanical system like the
solar system, then we should expect that the velocity of its outer regions should
decrease, as Kepler proposed and then, generalizing, Newton and Clausius
demonstrated. The longer periods of revolution of Jupiter and Neptune, and the
shorter periods of Mercury and Venus, can be accurately predicted. Even such a
distinguished astronomer as Vesto Slipher (1875–1969) continued to characterize
the radial velocity data of Andromeda and the Sombrero galaxy as “planetary” into
the 1950s.

6 Vera Rubin and the Enigma of Andromeda

When Vera Rubin wrote her master’s thesis in 1951, she reported her findings at a
meeting of the American Astronomical Society, and met with little interest and
some hostility. In the early 1960s, she and her graduate students made careful
studies of the velocities of stars on the outskirts of Andromeda, because Rubin was
interested in where galaxies actually end; they found that the galaxy rotation curve
did not diminish, as expected, but remained flat. In her 1962 paper, she concluded
“For R > 8.5 kpc, the stellar curve is flat, and does not decrease as is expected for
Keplerian orbits”. In 1970, she and W. Kent Ford, Jr. reported new data on
Andromeda, profiting from the identification of almost 700 individual emission
regions, as well as the use of image intensifiers that reduced observation times by a
factor of 10. The edges of Andromeda did not move slower; they moved just as
quickly as the inner regions (The Galaxy Andromeda is M31 in the Messier
Catalogue) (Rubin and Ford 1970) (Fig. 4).

In 1980, with W. Kent Ford and Norbert Thonnard, she reported similar data for
21 further galaxies. While in the earlier papers she was reticent about drawing
explicit conclusions, in this paper she writes, “Most galaxies exhibit rising rota-
tional velocities at the last measured velocity; only for the very largest galaxies are
the rotation curves flat. Thus the smallest Sc’s (i.e. lowest luminosity) exhibit the
same lack of Keplerian velocity decrease at large R as do the high-luminosity
spirals. This form for the rotation curves implies that the mass is not centrally
condensed, but that significant mass is located at large R. The integral mass is
increasing at least as fast as R. The mass is not converging to a limiting mass at the
edge of the optical image. The conclusion is inescapable that non-luminous matter
exists beyond the optical galaxy” (Rubin et al. 1980). Since then, her observations
have proved consistent with the measurement of velocities in a wide variety of other
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galaxies. Rubin has become more willing to say publicly that she thinks that the
study of the kinematics of galaxies can teach us about galaxy evolution and cos-
mology; that galaxy dark halos must exist, and contain an order of magnitude more
mass than the visible galaxy; and that galaxies remain an enigma. None of the
models we have, in combination with received theories, can explain what we see as
we watch the largest objects in the universe (Fig. 5).

We need to posit a spherical halo of dark matter around the spiral or ellipsoid
that we see. This disparity also seems to hold for galaxy clusters. Thus its advocates
claim that the evidence for dark matter is overwhelming; we are compelled to infer
the existence of matter we can’t see from its gravitational effects, and so too to
search for novel ways to detect it, so that we can give it some characterization more
determinate than simply “matter we can’t see”, Zwicky’s tag for it 75 years ago. It
is odd that in the context of this research program, the referential practice has so far
been given the task of delineating more and more precisely a referential absence.
Astronomers try to estimate precisely what percentage of matter is missing from
this or that galaxy or galaxy cluster. No positive experimental program of detection
has been successful: many candidates for dark matter have been entertained and
ruled out, most recently neutrinos. Whatever it is, it bears a striking resemblance to
17th century ‘aether’, a perfect fluid that offers no resistance to anything passing
through it, including and especially light, and no viscosity: it doesn’t clump.

Fig. 5 Rubin’s Data (1970)
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Other scientists are unhappy with a scientific theory based on something that (up
till now) resists detection altogether; they hold on to the hope of finding a strategy
of unification, driven by observation rather than theory. The research program
MOND (Modified Newtonian Dynamics) proposes that we revise Newtonian
Mechanics to explain the uniform velocity of rotation of galaxies: perhaps
Newton’s Second Law of Motion (F = ma) is not universal, but applies only when
gravitational acceleration is comparatively large. Perhaps for very low accelerations
(like those experienced by stars on the outskirts of a galaxy) acceleration is not
linearly proportional to force. Since its inception thirty years ago, proponents of
MOND have tried various adjustments and refinements, trying to make it conform
to General Relativity. However, other scientists are skeptical of the program
because it looks like elaborate ad hoc reasoning, adding modifications to the theory
simply to force it to accord with novel, more accurate observations. Proponents of
MOND respond by observing that there is no reason why considerations of scale, in
the study of such enormous objects, shouldn’t prove pertinent to and so require
expression in physical theory (see Sanders 2010).

7 Coda

I end the chapter with a final reflection, whose debt to Leibniz is acknowledged
throughout this book. In general, science is (to state the obvious) both mathematical
and empirical. In order to do good science, we must be able to refer successfully, so
that we can show publicly and clearly what we are talking about. And we must
analyze well—here I invoke Leibniz’s definition of analysis as the search for
conditions of intelligibility—to discover productive and explanatory conditions of
intelligibility for the things we are thinking about. In order to evaluate whether our
means of analysis are really productive and explanatory, we need to be able to
denote—publicly and clearly—what we are considering. And in order to check
whether our ways of referring are really public and clear, we must set the object of
investigation in a more abstract discursive context where we can study it deeply and
broadly. Sometimes one task is more difficult, sometimes the other, sometimes
both. The tasks themselves are very different, so it is not surprising that they
generate different kinds of discourse.

In referential discourse, we do our best to honor the extra-discursive world as
what it is, with the best empirical means at our disposal; in analytic discourse, we
treat the world in a sense as discourse and totalize, infinitize, simplify, or abstract it
in the many ways that discourse allows. The advantage of analytic discourse is that
it is great for organization, indexing and generalization; however, it also tends to
unfocus the specificity of things, to make them ghostly. The advantage of referential
discourse is that it does better justice to the rich, specific variety of things, but it
often loses its way in the forest of research because of all those trees. In sum,
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science does its work best when we refer and analyze in tandem. However, the
kinds of representations that make successful reference possible and those that
make successful analysis possible are not the same, so that significant scientific and
mathematical work typically proceeds by means of heterogeneous discourses that
must be rationally reconciled without one collapsing into the other. The growth of
scientific knowledge often stems from the work of reconciliation, whose fine
structure has not received the attention it deserves. Philosophers need to pay more
attention to the various ways in which scientists bring disparate discourses into
rational, and productive, relation.
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Afterword

As a child, I learned about thrilling developments in 20th c. mathematics from
reading Scientific American and science fiction (especially the works of Isaac
Asimov and Ray Bradbury). I wanted to investigate the hypercube, and rethink the
relation between space and time in terms of General Relativity Theory, and figure
out how to turn a sphere inside out. In 1969 I met a few mathematicians who were
doing research in Cambridge, Massachusetts, and listened in on their discussions at
The Blue Parrot. I met others at the University of Chicago and Yale while I was
earning my degrees, and still others in the early 1980s in Paris. In college and
graduate school, since I couldn’t figure out how to storm the ramparts of mathe-
matics, I climbed over the walls of philosophy of mathematics, furnished with
wysteria vines and the odd ladder. I dutifully took courses in formal logic (as I
taught introductory logic and advanced logic at Penn State later on), and read the
work of the philosophers collected in Philosophy of Mathematics: Selected
Readings edited by Paul Benacerraf and Hilary Putnam (1964), The Philosophy of
Mathematics edited by W. D. Hart (1996), and The Philosophy of Mathematics: An
Anthology edited by Dale Jacquette (2002). The cast of characters hasn’t changed
much in half a century; yet I discuss very little of their work in the present book.
Why is that?

The short answer is that what has always interested me in mathematics is
invention, the way mathematics helps us to discover realms that we would never
have discovered without its various items and languages, and its methods of
abstraction and concretion, and its ways of formulating problems. (During my years
at Penn State, I have come to regard physics, astrophysics and cosmology in the
same way.) Early on, it was only in the writings of Imre Lakatos and Tobias
Dantzig that I found some glimmer of the excitement I discerned, as through a glass
darkly, in mathematical research: the discovery of the unexpected at the frontiers of
knowledge. For me, that was precisely where all the philosophical interest was
located. What struck me about those two books was that the authors not only made
arguments, but told stories, historical narratives. History recounts the slow pro-
cesses by which cultural traditions are formed, and then notes how the unexpected
emerges from them, searching in retrospect to explain the disruptions and explore
their consequences. Thus when I discovered the work of the friends and colleagues
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I discuss in the Preface to this book, starting with Donald Gillies (a student of
Lakatos!) and Carlo Cellucci (a friend of Donald!) just about the time I started to
teach at Penn State forty years ago, as well as the French tradition of philosophy of
mathematics which had always included history, I saw the possibility of deeper
exchange with other philosophers of mathematics.

And that exchange encouraged me to continue in two directions. The first was to
go on studying mathematics and physics formally and informally. I’m grateful to
my colleagues who let me sit in on their courses and who participated in the
discussion groups and workshops I organized, or just spent some of their precious
time talking to me and explaining things: Gordon Fleming, Winnie Li, Abhay
Ashtekar, John Roe, Lee Smolin, Mihran Papikian, and (at Cornell) Roald
Hoffmann. Given the highly specialized and peculiar nature of the languages of
mathematics and science, a philosopher needs this kind of conversation and
guidance: accuracy is very important. The second was to investigate the nature of
time itself. “Time like an ever-rolling stream / Bears all its sons away / They fly,
forgotten, as a dream / Dies at the opening day.” So Isaac Watts once wrote of the
asymmetry of time; but time also constantly brings forth the new and unexpected.
The asymmetry of time is (to borrow Bergson’s word) creative as well as fatal.
Thus I regard the philosophical error of logicians, who wish to explain discovery
away as an accident of human psychology, as akin to the philosophical error of
those who think that the arrow of time can similarly be explained away. Both errors
stem, it seems to me, from an impoverished view of rationality and from a fear of
the unforeseeable. But this intellectual caution is unworthy of the philosophical
tradition that gave us Descartes, Spinoza, Newton, Locke and Leibniz.
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Appendix A
Historical Background for Fermat’s Last
Theorem

Analytic number theory uses real and complex analysis to study problems about the
integers. In the 18th century Euler used analysis to re-prove the infinity of the prime
numbers, and his approach then inspired Dirichlet, Jacobi and Riemann in the 19th
century. This path of research led to important results about the distribution of
primes in the work of Hadamard and de la Vallée-Poussin around 1900, because the
reduction of questions about integers to questions about the divergence and con-
vergence of certain series, offered much more powerful and flexible techniques than
algebra in many cases. Conversely, once this habit of transposing problems upstairs
to real and complex analysis was established, problems that arose originally in the
infinitesimal calculus turned out to have important consequences for the study of
the integers: the study of elliptic integrals began at the end of the 17th century in
connection with the mathematical modeling of the pendulum, which entailed
finding a way to determine the arc length of an ellipse. 18th c. mathematicians had
the tendency to study problems of number theory analytically, embedding the study
of the integers in the study of real-valued functions, and 19th c. mathematicians
often embedded real analysis in complex analysis; this provides an important
background for understanding the reduction of Fermat’s Last Theorem to the
Taniyama-Shimura Conjecture, the converse of the theorem of Eichler and
Shimura.

I. From Euler to Riemann

Leonhard Euler studied the harmonic series in the mid-eighteenth century as a
real-valued function, in order to prove in a quite non-Euclidean way that there are
infinitely many primes. Knowing that the harmonic series (1 + 1/2 + 1/3 +
1/4 + ��� + 1/n + … for all natural numbers n) diverges, that is, its sum becomes
arbitrarily large as more and more terms are added, he used this fact to argue that if
there were only finitely many primes, then the unique factorization of positive
integers into prime powers would entail that

X1
n¼1

1=n ¼
Y

p
ð1þ 1=pþ 1=p2 þ . . .Þ ¼

Y
p
ð1� 1=pÞ�1
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and thus a divergent series and a finite quantity would be equal, which proves the
result by reductio ad absurdum. This line of thought led him to wonder whether the
‘prime harmonic series’

1þ 1=2þ 1=3þ 1=5þ � � � þ 1=p. . . for all primes pð Þ

also has an infinite sum. To answer the question by means of a problem reduction,
he looked at the related sum

fðsÞ ¼ 1þ 1=2s þ 1=3s þ 1=4s þ � � � þ 1=ns . . . for all integers n:

This is the celebrated zeta function (given its name a century later by Riemann).
He knew that if s is bigger than 1, the sum has a finite answer. Dividing this sum up
into one part involving all the prime terms, and another part involving all the
non-prime terms, he asked whether as s becomes closer and closer to 1 the first part,
the sum

1þ 1=2s þ 1=3s þ 1=5s þ 1=7s. . .;

increases without bound. This would mean that the sum

1þ 1=2þ 1=3þ 1=5þ � � � þ 1=p. . .

for all primes p is in fact infinite. Once again, because of the unique prime
decomposition of the natural numbers, this train of reasoning led him not only to the
conclusion that f(s) does become infinite as s tends to 1, but in the process led him
to formulate the equation,

fðsÞ ¼ 1= 1� 1=2sð Þð Þ � 1= 1� 1=3sð Þð Þ � 1= 1� 1=5sð Þð Þ � � � � � 1= 1� 1=psð ÞÞ
� . . . for all primes p;

which of course links an infinite sum involving the natural numbers with an infinite
product involving the primes p. There is nothing a number theorist likes better than
bringing an additive decomposition into productive relation with a multiplicative
decomposition!

These problems led number theorists to wonder if there is any way to characterize
or quantify the distribution of the prime numbers within the integers: they seem to
thin out as the integers get larger. Both Gauss (around 1790) and Dirichlet (around
1840) conjectured that the ‘prime number function’ p(x) that counts the primes less
than x (x is real), is asymptotically equivalent to the function x/ln x. Dirichlet’s
investigations into the problem of the distribution of primes engendered a host of
auxiliary notions, whose importance was borne out in the following 150 years. He
introduced the character function, an arithmetic function that maps the integers to a
field, here the real numbers. Intended to sort out the primes depending on the
remainder they leave when divided by k, the function vmust satisfy these conditions:
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(1) v(n) = v(n + k) for all n (it is periodic with period k so that if a � b (mod k) then
v(a) = v(b)); (2) v(mn) = v(m)v(n) for all integers m, n (it is completely multi-
plicative); and (3) v(n) = 0 if n and k have a common factor and is non-zero
otherwise, so v(1) = 1. Dirichlet used the character function to generalize the zeta
series: his modified zeta series is known as the Dirichlet L-series, and has the form
(where s is real and greater than 1),

L s; vð Þ ¼ v 1ð Þ=1s þ v 2ð Þ=2s þ v 3ð Þ=3s þ v 4ð Þ=4s þ � � � þ v nð Þ=ns . . . for all n:

Riemann studied the zeta function as a complex function of one variable w in his
memoir “On the Number of Primes Less than a Given Magnitude” (1859), noting
that for Re(w) > 1, the series is absolutely convergent, and indeed converges uni-
formly in any region of the form Re(w) > –1 + e for e > 0. This means that it gives
rise to an analytic function on the half planeH, and that one can exploit the additive
and multiplicative decomposition of the integers to write,

fðsÞ ¼
X1
n¼1

n�s

fðsÞ ¼ Pp0 1� p�sð Þ�1

logfðsÞ ¼ Rp0 � log 1� p�sð Þ

logfðsÞ ¼ Rp0
X1
n¼1

p�ns=n

(He also baptized the function with the Greek letter f.) All of these facts turned out
to be very useful. Riemann proved that the zeta function is meromorphic on H with
a simple pole at s = 1 of residue 1 and no other poles by using Abel’s method of
summation by parts, which is analogous to integration by parts.

Riemann also generalized the notion of character by allowing s and the numbers
v(n) to be complex numbers. In his memoir of 1859, Riemann treated the Dirichlet
L-series given above as a function from the complex numbers to the complex
numbers, L(w, v), and established a number of important results. Euler’s
Theorem states that if a and n are coprime (without any common factors),
au(n) � 1 (mod n), where u is the totient function which maps the natural numbers
to the natural numbers: u(n) counts the number of primes less than n that are
relatively prime to n. Riemann gave this theorem new meaning: since

v auðkÞ
� �

¼ vð1Þ ¼ 1;

and

v auðkÞ
� �

¼ vðaÞuðkÞ;
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then for all a relatively prime to k, v(a) is a u(k)th complex root of unity. Riemann
showed as well that the L-function can be extended to a meromorphic function on
the whole complex plane by analytic continuation, formulated its functional
equation, and demonstrated a relation between its zeroes and the distribution of
prime numbers. He also made several sweeping and unproved claims in that
memoir, which inspired Hadamard to make them rigorous and more precise. In
1896, Hadamard and de la Vallée-Poussin exploited Riemann’s treatment of the
zeta function to prove the conjecture that the prime number function u is asymp-
totically equivalent to the function x/ln x. In the 20th century, the Dirichlet
L-function was further generalized by the work of Emil Artin, Erich Hecke and
Robert Langlands, and plays an important role in Wiles’ proof.

Riemann moreover transformed the study of analytic (complex) functions by
introducing the geometric and ultimately topological notion of a Riemann surface,
what we would now call a one-dimensional complex manifold, locally homeo-
morphic to the complex plane. If f is an arbitrary analytic function (in general
many-valued on the complex plane C), there is a corresponding Riemann surface S
on which it is single-valued. So the theory of analytic functions of a complex
variable is coextensive with the theory of single-valued analytic functions on
Riemann surfaces. Their study is in turn deepened, reorganized and generalized by
the introduction of group theory in the late 19th century, applied to problems of real
and complex analysis by Dedekind, Klein and Poincaré. In algebraic geometry an
elliptic curve is defined as a 1-dimensional Abelian variety, a projective algebraic
variety that is also always a group. In complex analysis applied to number theory, a
modular form is defined in terms of a matrix group SL2 (Z) that acts on the complex
upper half plane H. The theory of p-adic representations (which serve along with
L-functions as important ‘middle terms’ in Wiles’ proof) belongs to representation
theory, which allows us to map almost anything with symmetries to linear trans-
formations of vector spaces and then to groups of certain invertible matrices. Thus
group theory too plays an essential role in the definition of the items to which Wiles
refers in the formulation of his main result.

Here, I take a side-step to explain p-adic numbers and representation theory,
developed by Kurt Hensel (1897) building on insights of Ernst Kummer. The
importation of notions from topology has had important consequences, because
topology allowed for the generalization of notions of distance and closeness. Thus
we get from Q to R and C by a definition of closeness that stems from the real line,
using the Euclidean norm. But we get from Q to the p-adic field Qp by a definition
of closeness that stems from congruence relations. Within the ring of integers
Z there is a kind of fine structure precipitated by relations of congruence. There is
the reorganization of the integers when they are sorted into subsets by modding out
by a natural number n; the subsets form a group, and when n is a prime p they form
a field. From this reorganization we can move to a sorting mod p2, and then to a
sorting mod p3, and so on. These relations of congruence led to a novel conception
of closeness, which in the 20th century came to play a key role in number theory
and led to the definition of p-adic number fields: two integers are close to each other
when they remain in the same congruence class not only mod p, but also
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mod p2, mod p3, and in general mod pn. This sense of closeness can be generalized
from the integers Z to the rationals Q by the notion of a p-adic valuation, so that we
arrive at Qp. The move to Qp, arises only when mathematicians embed Q in R and
then R in C when C is understood as the complex plane and complex analysis
comes to be carried out on it, and then when Q is understood in relation to Q[i].
Once the topological notion of open set and metric space (and allied notions) are
defined in their full generality, inspired by the study of holomorphic and mero-
morphic functions on the complex plane, and group theory has transformed our
notion of congruences (at the same time as it transforms our notion of symmetries),
one can embed Q in Qp.

Representation theory, which originally stems from the work of Frobenius
(1896), studies a group by mapping it into a group of invertible matrices; it is a kind
of linearization of the group. (Mathematicians are typically interested in the group
of automorphisms of a system, often a highly infinitary system.) Another way to
formulate this definition is to say that a representation of a group G, which maps
elements homomorphically from G into a group of n � n invertible matrices with
entries in (for example, though it could be other fields) R, sets up the action of G on
the vector space Rn and so directly yields an RG-module. Representation theory
thus combines the results of group theory and linear algebra in a useful way.
Symmetry is measured by the number of automorphisms under which an object or
system remains invariant. The bigger the automorphism group, the more sym-
metrical the thing is. Every mathematical system has a symmetry group G, and
certain vector spaces associated with the system turn out to be RG modules. (An
RG module is a vector space over R in which multiplication of elements of the
group G by elements of R is defined, satisfying certain conditions; there is a close
connection between RG modules and representations of G over R).

II. Elliptic Curves and Modular Forms

The study of elliptic functions begins in one sense with the study of the pendulum,
and the determination of the arc length of an ellipse; this leads to the study of
elliptic integrals, which engaged Giulio Fagnano and Leonhard Euler in the early
eighteenth century and Laplace and Legendre later on in that century. Elliptic
integrals can be thought of as generalizations of the trigonometric functions; so for
example the position of a pendulum could be computed by a trigonometric function
as a function of time for small angle oscillations, but a full solution for arbitrarily
large oscillations required the use of elliptic integrals. Elliptic functions (like those
of Jacobi and Weierstrass) were discovered as inverse functions of elliptic integrals.
Gauss studied elliptic functions of a complex variable in the early 19th century, but
published few of his results. However, another tendril in this root system leads back
to John Wallis, the champion of arithmetic. Having studied the ‘geometric pro-
gression’ a, ar, ar2, … in which each term is obtained by multiplying its prede-
cessor by a constant ratio, Wallis went on to study the ‘hypergeometric
progression,’ in which the successive multipliers are unequal. (He used his
influential method of interpolation to generate these multipliers: an example is the
factorial sequence 1, 2, 6, 24….). Percolating through the work of Euler, Lagrange,
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Stirling and Pfaff, it re-surfaced in Gauss’ investigations (1812), and later
Riemann’s (1857), into the hypergeometric equation, which is characterized by the
second-order ordinary linear differential equation,

x 1� xð Þ d2y=dx2 þ c� aþ bþ 1ð Þxð Þ dy=dx�aby ¼ 0:

This equation was used by Gauss, Abel, Jacobi and Kummer to study the
transformation problem for elliptic functions.

In the work of Leibniz and the Bernoullis, the discovery of general methods for
differentiation and integration led to the study of a whole new family of curves,
transcendental curves, and their study by means of differential equations, which
required a host of new methods for their solution, very different from (but fruitfully
related to) the methods used to solve polynomial equations. These novel items and
methods defined over the real numbers take on a new range of significance once
they are defined over the complex numbers. Thus too, what began as the study of
number series was transformed when it was embedded in problems of complex
analysis, involving differential equations and functions defined on the complex
plane; it generated new items that require new methods to classify and characterize
them. That is, problems that arise about familiar items (the integers), when they are
lifted up into complex analysis, engender new items that require serious taxo-
nomical investigation and in many ways are just as ‘concrete’ as the integers.

One of the most important examples of this is the study of elliptic functions. In
the latter part of the 19th century, Karl Weierstrass and Carl Jacobi characterized
different, equally important kinds of elliptic functions, where f is defined as a
doubly periodic, meromorphic function on the complex plane, satisfying the con-
dition (where a and b are complex, non-zero numbers and a/b is not real),

f ðzþ aÞ ¼ f ðzþ bÞ ¼ f ðzÞ for all z inC:

The difference between the Jacobi and the Weierstrass elliptic functions is that
Jacobi’s has a double pole in the period parallelogram, and Weierstrass’ has two
single poles. The Weierstrass elliptic function, with periods x1 and x2, is defined as

}ðz;x1;x2Þ ¼ 1
z2

þ
X

ðm;nÞ6¼ð0;0Þ

1

ðzþmx1 þ nx2Þ2
� 1

ðmx1 þ nx2Þ2
( )

:

This function and its first derivative are related by the formula

}0ðzÞ2 ¼ 4}ðzÞ3 � g2}ðzÞ � g3:

Here, g2 and g3 are constants; this relationship is given in terms of an elliptic
curve over the complex numbers.
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Modular forms and modular functions are analytic functions on the complex
upper half plane H. They are a generalization of the notion of an elliptic function;
Klein’s work, deploying the notion of group developed earlier by Evariste Galois
and Camille Jordan, can be seen as an attempt to disentangle the theory of modular
functions and modular transformations from the theory of elliptic functions, com-
bining Dedekind’s treatment of modular transformations—based on the idea of the
lattice of periods of an elliptic function—with Galois group theory and the strategy
of using Riemann surfaces, sorting out cases by the genus of the associated
Riemann surface. The genus of the associated Riemann surface can be any positive
integer n and, roughly, counts the holes in it. (A sphere, for example, has no holes,
and a torus has one.) The definition of modular forms and modular functions is
given in terms of a group action on the complex upper half plane H. Looking
backwards from Wiles’ proof, we are interested mostly in a certain kind of modular
form, and thus a certain kind of group action. In particular, SL2(Z), the Special
Linear Group, is the set of all 2 � 2 matrices with determinant 1 and integer entries
(with ordinary matrix multiplication and matrix inversion); it is called the modular
group and acts on H. Modular forms are the functions that transform in a (nearly)
invariant way under the action and satisfy a holomorphy condition. A modular
function is a modular form without the condition that f(z) is holomorphic at i∞;
instead, a modular function may be meromorphic at i∞. A modular form of weight
k for the modular group is holomorphic, and of course holomorphic at the cusp i∞,
and satisfies the equation, with c divisible by N,

f
azþ b
czþ d

� �
¼ ðczþ dÞkf ðzÞ

Every non-zero modular form has thus two associated integers, its weight k and
its level N.

In Wiles’ proof, one is concerned with modular forms of weight 2, which satisfy
in addition an important condition that picks out the ‘newforms’ that arise at every
level N; the character function v here plays a significant role. Modular forms of any
given weight and level constitute a vector space. Linear operators called Hecke
operators act on these vector spaces; an eigenform is a modular form that is an
eigenvector simultaneously for all the Hecke operators. Though modular form
theory arises in complex analysis, its most important applications are in number
theory; so there is an historical dialectic worthy of philosophical reflection that
moves from arithmetic to complex analysis and back to arithmetic. We can
understand Kronecker’s constructivism or the project of a model theorist like Angus
Macintyre as such a reflection.

Modular form theory is a special case of the theory of automorphic forms,
developed by Henri Poincaré during the 1880s on the basis of earlier work by
Lazarus Fuchs and in competition with Klein. An automorphic function is a
function on a space, a function that is invariant under the action of some group. The
theory of automorphic functions of a single variable is, historically, a union of
analytic function theory and group theory. An analytic function f on the complex

Appendix A: Historical Background for Fermat’s Last Theorem 175



plane is automorphic with respect to a discontinuous group C of linear (fractional)
transformations of the plane if f takes the same value at points that are equivalent
under C. Thus we think of f as a function on the pertinent quotient space: since a
quotient space is constructed by identifying certain points of a given space by
means of an equivalence relation, and then treating them as one point of the new,
quotient space, the action of a group on a space turns it into a new space whose
points are the orbits of the original space induced by the group action. (The orbit Ox

of a point x in a space X with respect to a group C is the set of points of X to which
x can be moved by the action of C, and the set of all orbits of X under the action of
C is called the quotient of the action or the orbit space or the coinvariant space.)

The most important domain for such an analytic (nonconstant) f is the complex
upper half plane H; then C is the discontinuous group of linear (fractional) trans-
formations (or we may call them linear transformations). More concretely, if f sat-
isfies the following functional equation, where V is an element of C (a real discrete
group) and z is an element of H, then it is an automorphic function on C: f (Vz) =
f(z) and so too f(Vz) = (cz + d)2 f′(z). Thus a modular form is a function defined in
terms of a group C that acts on H; this group maps the points of H to a modular
curve whose points are representatives of the orbits of C (the points ofH equivalent
under the action of C), resulting in a quotient space that is a compact complex
manifold very much like an algebraic variety, a Riemann surface of genus n.

In the mid-twentieth century, Robert Langlands shows how in general the
Riemann-Roch theorem can be applied to the calculation of dimensions of auto-
morphic forms; he also produces the general theory of Eisenstein series, demon-
strating that all automorphic forms arise in terms of cusp forms and the residues of
Eisenstein series induced from cusp forms on smaller subgroups. The condition of
modularity is important because then the elliptic curve’s L-function will have an
analytic continuation on the whole complex plane, which makes Wiles’ proof the
first great result of the Langlands Program, and a harbinger of further results.
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Appendix B
More Detailed Account
of the Proof of Eichler and Shimura

Eichler and Shimura proved the following congruence between certain modular
forms and elliptic curves. Let f(z) = Rcne

2pinz (summing over n greater than or equal
to 1) be a cusp form, in particular a normalized newform of weight 2 for C0(N) such
that cn e Z. (Note that the holomorphic differential f(z)dz is invariant under the
action of C0(N).) By C0(N) we mean a certain congruence subgroup of the modular
group SL2(Z), which acts on the complex upper half plane by fractional linear
transformations. Associated to C0(N) is the Riemann surface Y0(N) arising from the
action of that congruence subgroup of SL2(Z) on the complex upper half plane,
folding it over on itself; the points of Y0(N) are then the orbits of the subgroup
C0(N). If we compactify Y0(N) at its cusps, the resulting compact Riemann surface
is X0(N), and we can think of f(z)dz as living on that compact surface. Can we find
an elliptic curve Ef defined over Q, which corresponds to f?

We can do this by constructing a suitable Abelian subvariety A of J0(N), the
Jacobian of X0(N), such that J0(N)/A = Ef, with the help of Hecke operators. All the
normalized newforms of weight 2 for C0(N) such that cn e Z can be thought of as a
vector space on X0(N). Since such modular forms are not easy to express explicitly
(as Eisenstein series, another kind of modular form, by contrast are), specifying a
basis for the vector space cannot proceed by direct calculation. Instead, Hecke
operators Tm can be defined on the vector space, and can be used to locate linearly
independent eigenvectors that provide a basis for it. Supposing that m and N are
mutually prime, each Hecke operator Tm belongs to the ring of endomorphisms of
J0(N), End (J0(N)). It’s important to keep in mind that the Hecke operators are
defined in terms of a vector space of differentials f(z)dz which are isomorphic to the
vector space of the f(z) just defined, Riemann surfaces treated as topological spaces,
cycles on those surfaces, integrals over those cycles, and associated homology
groups. (I will not go into more detail here.)

The Hecke operators constitute a Hecke algebra T over Q, generated by the
identity operation and the Tm. The Hecke algebra acts on a newform f = Rcne

2pinz

by Tmf = cmf. Thus, given a newform f with normalized c1 = 1 and cn e Z, we can
define a one-dimensional representation qf: T ! Q, where qf(Tm) = cm and
qf(id) = c1 = 1. Since T can be decomposed into a direct sum of fields ki of finite
degree over Q, plus the nilradical (T) (elements in the algebra that are nilpotent, that

© Springer International Publishing AG 2016
E.R. Grosholz, Starry Reckoning: Reference and Analysis
in Mathematics and Cosmology, Studies in Applied Philosophy,
Epistemology and Rational Ethics 30, DOI 10.1007/978-3-319-46690-3

177



is, where for some n e Z, xn = 0), we can specify further that qf(nilradical (T)) = 0
and that qf│ki is a homomorphism from ki to Q. Each Tm is represented by a
g � g matrix with entries in Z, so each Tm is defined over Q, and T is a
finite-dimensional Q-algebra and it is commutative. Then we can finally define A as
the Q-rational Abelian subvariety of J0(N) generated by the images a(J0(N)) for all
a e (ker q \ End (J0(N))). So there it is, our A, but what is it exactly? Since A is the
key middle term in this whole argument, it has to be properly constructed and then
shown to do the job it is supposed to do.

Call Ef the quotient Abelian variety J0(N)/A which is Q-rational, then, and call
v the natural map from J0(N) to Ef, which is Q-rational. We identify J0(N) with the
Cartesian product of g copies of C (thus a space of dimension 2g over the field of
real numbers) modded out by a lattice K of rank 2g. The tangent space at its
distinguished element is a Lie algebra J that can be identified with Cg; the natural
map from J = Cg to Cg/K is the exponential map. (Recall that an elliptic curve is a
smooth, projective algebraic curve of genus 1 with a distinguished point O, as well
as an Abelian variety of dimension 1 where O serves as the identity.) The Lie
algebra of the Abelian subvariety A, A, is the tangent space at the distinguished
element of A; it turns out to be a subalgebra of J. If we then carefully define l(f), a
linear functional on the Lie algebra J which maps Cg back down to C, in terms of v,
we can show that the ker l(f) is A and so l(f) usefully maps K to Kf, and that the
elliptic curve Ef is isomorphic to C/Kf.

Having constructed J0(N)/A = Ef, we want to be able to show that the L-func-
tions of the modular form f we started out with, and the elliptic curve Ef we arrived
at, agree: L(Ef, s) = L(f,s). An L-function can be represented by a sum taken over
the positive integers where each factor is cn/n

s, with s a complex variable restricted
to some right half plane so the series converges absolutely. An L-function can also
be represented by an Eulerian factorization, a product taken over the primes p in
which cp appears in every factor, combined with other items. The upshot of this
successful identification is that the system of eigenvalues cp of the newform
f (considered as an eigenform of the Hecke operators Tp) that occur on the right side
of the above equation, can be identified with the solution counts of the equation
(mod p) that gives the elliptic curve Ef. Recall that an elliptic curve E is defined by a
certain cubic equation, y2 = 4x3 − g2x − g3, where g2 and g3 are integers and
g2
3 − 27g3

2 6¼ 0. For each prime number p, we can associate a number cp(E) that
counts the number of integer solutions (x, y) of E mod p. These are the coefficients
that occur on the left side of the above equation.

In sum, the Jacobian of a modular curve is analogous to a complex elliptic curve
in that both are complex tori and so have Abelian group structure. The celebrated
Taniyama-Shimura modularity theorem says that every elliptic curve defined over
Q is a homomorphic image of some Jacobian J0(N) and omit the next sentence.
Only weight 2 eigenforms with Hecke eigenvalues in Z correspond to elliptic
curves defined over Q; more general eigenforms correspond to Abelian varieties of
higher dimension. All the ways of explaining this correspondence involve appeals
to ‘large’ structures to which the rather modest newform f(z) can be lifted, inves-
tigated, and then re-deposited with a new affiliation, to an elliptic curve.
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These appeals are clearly ampliative. We first define it in terms of the group of
fractional linear transformations of the complex upper half plane, and the projective
special group of matrices SL2(Z). We map the complex upper half plane onto itself,
adding points at infinity to make a compact Riemann surface X0(N), which is a
topological space as well as a geometrical space. On the space of weight 2 cusp
forms we define a set of Hecke operators, which form a commutative algebra of
operators. The space of weight 2 cusp forms f(z) for C0(N) can be identified with the
space of differentials f(z)dz on X0(N). We make use of the Jacobian of X0(N), J0(N).
Inspired by J0(N), we invoke Cg and a lattice K, construct their quotient Cg/K,
identify it with J0(N), and then invoke a tangent space at the distinguished element
which is a Lie algebra J.

The process of going back down, however, is also nontrivial and requires further
amplification. The study of matrices depends on the mapping of the matrix to an
informative single number, the determinant or the trace for example. We defined a
one-dimensional representation q (representations map groups to groups of
invertible matrices) that maps T down to Q, and the map v that maps J0(N) to Ef,
and l(f) that maps Cg back down to C. And in the present context, an L-function
takes either a modular form or an elliptic curve and reduces it to a set of positive
integers. Indeed, the expression of f(z) as a Fourier series, f(z) = Rcne

2pinz (summing
over n greater than or equal to 1), does the same; when f is an eigenform for the
Hecke operators, these coefficients turn out to be the eigenvalues of the associated
Hecke operators.
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Glossary

Automorphism An automorphism is a mapping of an object to itself, which
preserves all its structure, so it is a bijective homomorphism (if the object can be
construed as a set). The set of all automorphisms of an object is a group,
the automorphism group, which in a general sense expresses the symmetry of the
object. Roughly, the larger the automorphism group, the more symmetry the
object has.

Character A multiplicative character (or linear character, or simply character)
on a group G is a group homomorphism from G to the multiplicative group of a
field (Artin 1966), usually the field of complex numbers. If G is any group, then
the set Ch(G) of these morphisms forms an Abelian group under pointwise
multiplication. This group is referred to as the character group of G. Sometimes
only unitary characters are considered (thus the image is in the unit circle); other
such homomorphisms are then called quasi-characters. Dirichlet characters can
be seen as a special case of this definition. Multiplicative characters are linearly
independent.

Chinese Remainder Theorem Let r and s be relatively prime positive integers
(that is, they have no common divisors except 1), and let a and b be any two
integers. Then we can always find an integer n such that n � a (mod r) and also
n � b (mod s). Moreover, n is uniquely determined modulo r � s. This result can
be generalized in terms of a set of simultaneous congruences n � ai (mod ri).

Class Group The extent to which unique factorization fails in the ring of integers
of an algebraic number field (or more generally any Dedekind domain) can be
described by a certain group known as an ideal class group (or class group). If
this group is finite (as it is in the case of the ring of algebraic integers of an
algebraic number field), then the order of the group is called the class number.
The class group of OK (the set of all algebraic integers in K) is defined to be the
group of fractional OK-ideals modulo the subgroup of principal fractional
OK-ideals, where K is an algebraic number field. When OK is a principal ideal
domain, or when we can define a Euclidean norm on OK, this class group is
trivial, that is, it is just the group of the element 1. More generally, the multi-
plicative theory of a Dedekind domain (whose class group may be infinite) is
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intimately tied to the structure of its class group. For example, the class group of
a Dedekind domain is trivial if and only if the ring is a unique factorization
domain.

Conductor The conductor of a ring is an ideal of a ring that measures how far it is
from being integrally closed. The conductor of an abelian variety defined over a
local or global field measures how bad the bad reduction is at some prime p.

Cyclotomic Field A cyclotomic field is a field constructed by adjoining a complex
number that is a primitive root of unity to the field of rational numbers Q. Thus
the nth cyclotomic field Q(fn) is constructed by adjoining a primitive nth root of
unity to Q: Q(i) is the 4th cyclotomic field, because i = f4, since i � i � i �
i = (−1) � (−1) = 1. Since the roots of unity form a cyclic group, adjoining the
primitive root of unity will yield all the roots. A cyclotomic field is always a
Galois extension of the field Q.
An elliptic function f is a doubly periodic, meromorphic function defined on the
complex plane, which satisfies the condition (where a and b are complex,
nonzero numbers and a=b is not real), f zþ að Þ ¼ f zþ bð Þ ¼ f ðzÞ for all z in
C. There are two kinds of canonical elliptic functions, the Jacobi elliptic func-
tion, which involves the theta function [Jacobi forms are related to double
periodicity and further generalize modular forms], and the Weierstrass elliptic
function. The centrally important elliptic functions are the Weierstrass }-func-
tion and its derivative }0. When we expand } in a power series of its variable u,
then the coefficients are modular forms; in fact, they are Eisenstein series for
SL2(Z). This is the connection between elliptic functions and modular forms in
general. Elliptic functions were discovered by Abel, Gauss and Jacobi in the
1820s.
An elliptic curve over a field K is a genus 1 curve defined over K with a point
O in K. We can say both that an elliptic curve is a smooth, projective albraic
curve of genus one with a distinguished point O, and that it is an abelian variety
of dimension 1 where O serves as the identity. Take K to be the complex
numbers: elliptic curves defined over C correspond to embeddings of the torus in
the complex projective plane. If a modular curve has genus 1, then it is an elliptic
curve over a suitable field K, chosen so that the curve contains a point with
coordinates in K. When a modular curve X(C) has genus 1, it is an elliptic curve
over C: in this case the quotients of modular forms of the same weight give rise
to meromorphic functions on X(C), which are elliptic functions.
A complex elliptic curve. is a quotient of the complex plane by a lattice. It is an
Abelian group, a compact Riemann surface, a torus, and a bijective correspon-
dence with the set of ordered pairs of complex numbers satisfying a cubic
equation of the form E.

E : y2 ¼ 4x3 � g2x� g3

where g2, g3 are complex numbers and g32 � 27g23 does not equal zero.
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The Modularity Theorem associates to E an eigenformf = fE in a vector space of
weight 2 modular forms at a level N called the conductor of E. The eigenvalues
of f are its Fourier coefficients. The Modularity Theorem only applies to elliptic
curves defined over Q, which has a model given by y2 ¼ x3 � ax� b with a,
b in Q and 4a3 � 27b2 nonzero, which differs from the above model by the
integer 4 in front of x3:

Galois Group and Galois Extension A Galois extension E of a field F is an
extension such that E/F is algebraic, and the field that is fixed by the group of
automorphisms of E (that is, Aut(E/F)) is precisely F. Thus, for example, the
Galois group of Q(f4) = Q(i) consists of the automorphisms of Q(i) that permute
the two elements i and −i while leaving Q fixed.

Hecke Operator The modular forms of any given weight and level form a vector
space; linear operators called Hecke operators (including the operator Tp for
each prime p) act on these vector spaces.

Ideal An ideal C in a ring A is a non-empty subset of A with the properties that
c1 and c2 in C imply that c1 − c2 is in C, and that c in C and a in A imply that ac
and ca are in C. (Given any homomorphism of a ring A, the set of elements that
map to zero is an ideal in A).

Fractional Ideal Let R be an integral domain and let K be its field of fractions,
which is the smallest field in which it can be embedded: Q is the field of fractions
of the ring/integral domain Z. Recall that a module over a ring is a generalization
of a vector space over a field: if M is a left (resp. right) R-module and N is a
subgroup of M, then N is a an R-submodule if, for any n in N and any r in R, the
product rn (resp. nr) is in N. Then a fractional ideal of R is an R-submodule of
K such that there exists a nonzero r 2 R such that rI�R. The element r can be
thought of as clearing out the denominators in I.

Fundamental Domain If C is a real discrete group, the relation of C-equivalence
partitions H into disjoint orbits Cz. A subset F of H that contains exactly one
point from each orbit is called a fundamental set for C relative to H. (You can
always find such a set, but it is not unique.) The most familiar groups have very
simple fundamental sets. For example, the doubly periodic group is a parallel-
ogram with two adjacent open sides and their common vertex adjoined. In each
case, the fundamental set is an open set with some of its boundary points
adjoined, and the complete boundary consists of line segments or circular arcs.
Every discrete group admits a fundamental set of this kind.
A group action of a group G on a set X is a map G� X ! X where ðg; xÞ ! gx
such that the identity element in G applied to any x in X goes to x, and g1g2 xð Þ ¼
g1 g2xð Þ for all g1 and g2 in G and all x in X. The orbit of a point x in X under the
action of G is the set of points Ox s.t. Ox ¼ fgxjg 2 Gg and the stabilizer of a
point x in X is the subgroup Gx s.t. Gx ¼ fg 2 Gjgs ¼ sg. Orbits and stabilizers
are closely related. That is, the orbit of x in X under the action of G can be
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identified with the cosets of Gx in G, that is, the quotient G=Gx. This is just a set
isomorphism.

Ideals: Prime Ideal An ideal P of a commutative ring R is prime if it has the
following two properties: If a and b are elements of R such that their product ab
is an element of P, then a is in P or b is in P, and P is not equal to the whole ring
R. Principal Ideal. If b is an element of a commutative ring A with unity, the set
(b) of all multiples xb of b, for any x in A, is a principal ideal. Principal
Fractional Ideal. The principal fractional ideals are those R-submodules of
K generated by a single nonzero element of K.

Ideal Class Group An ideal class group is the quotient group JK/PK where JK is
the set of all fractional ideals of K and PK is the set of all principal ideals of
K. The extent to which unique factorization fails in the ring of integers of an
algebraic number field (or more generally any Dedekind domain) is registered by
the ideal class group. If this group is finite (as it is in the case of the ring of
integers of a number field), then the order of the group is called the class number.

Integral Domain A nonzero commutative ring in which the product of any two
nonzero elements is nonzero; this is a generalization of the ring of integers,
between the ring of integers and the field of the rationals.

Jacobian The Fréchet derivative in finite-dimensional spaces is the usual deriva-
tive. In particular, it is represented in coordinates by the Jacobian matrix, the
matrix of all first-order partial derivatives of a vector valued function with
respect to another vector. That is, we have F:Rn ! Rm, and this function is
given by m real-valued component functions, y1ðx1; . . .; xnÞ; . . .; ymðx1; . . .; xnÞ.
The partial derivatives of all these functions (if they exist) can be organized in an
m-by-n matrix. The Jacobian is the determinant of the Jacobian matrix if m = n.

Kronecker-Weber Theorem Every cyclotomic field is an abelian extension of Q,
the field of rational numbers. This theorem provides a partial converse: every
abelian extension of Q is contained in some cyclotomic field; thus, every
algebraic integer whose Galois group is abelian can be expressed as a sum of
roots of unity with rational coefficients.

L-function; Dirichlet Characters These are certain arithmetic functions which
arise from completely multiplicative characters on the units of Z/kZ. Dirichlet
characters are used to define Dirichlet L-functions, which are meromorphic
functions with a variety of interesting analytic properties. If v is a Dirichlet
character, one defines its Dirichlet L-series by

L s; vð Þ ¼
X1
n¼1

vðnÞ
ns

where s is a complex number with real part >1. By analytic continuation, this
function can be extended to a meromorphic function on the whole complex
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plane. Dirichlet L-functions are generalizations of the Riemann zeta-function and
appear prominently in the generalized Riemann hypothesis

Modular Forms These are complex analytic functions on the complex upper half
plane H. A matrix group called the modular group acts on H, and modular
forms are the functions that transform in a (nearly) invariant way under the
action and satisfy a holomorphy condition. We can restrict the action to sub-
groups of the modular group called congruence subgroups, which gives rise to
further modular forms. Modular form theory arises in complex analysis, but its
most important applications are in number theory. Modular form theory is a
special case of the theory of automorphic forms. A modular form of weight k
for the modular group (isomorphic to SL2(Z)) is holomorphic, and indeed
holomorphic at the cusp i ∞, and satisfies the equation

f
azþ b
czþ d

� �
¼ czþ dð Þkf ðzÞ

Every nonzero modular form has two associated integers, its weight k and its
level N. The modular forms of any given weight and level form a vector space.
Linear operators called Hecke operators (including the operator Tp for each
prime p) act on these vector spaces. An eigenform is a modular form that is an
eigenvector simultaneously for all the Hecke operators. A cusp form is a
modular form which is holomorphic at all cusps and vanishes at all cusps.
The modular group Cis a group of linear fractional transformations of the
complex upper half plane, sending z to azþ b=czþ d where a, b, c and d are
integers and ad − bc = 1. This is isomorphic to the special linear group SL2(Z),
the set of all 2 � 2 matrices with integer entries with det = 1, modulo � the
identity matrix, the so-called PSL2(Z).
A modular curve is a quotient of the complex upper-half plane by the action of
a congruence (or, more generally, a finite index) subgroup of SL2(Z). Every
modular curve is a Riemann surface, as well as the corresponding algebraic
curve, constructed as a quotient of the complex upper-half plane by the action of
a congruence subgroup of the modular group SL2(Z). The term modular curve
can also be used to refer to the compactified modular curve X(C), obtained by
adding finitely many points, the cusps of C, to this quotient, via an action on the
extended complex upper-half plane. A modular curve can have any genus
n. Points of a modular curve parametrize isomorphism classes of elliptic curves,
together with some additional structure depending on the group C. This inter-
pretation allows one to give a purely algebraic definition of modular curves,
without reference to complex numbers, and moreover proves that modular
curves are defined either over the field Q of rational numbers, or a cyclotomic
field. The latter fact and its generalizations are of fundamental importance in
number theory.
A modular function takes the complex upper-half plane to the complex num-
bers. Not all modular functions are modular forms. A modular function is a
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modular form without that condition that f(z) is holomorphic at infinity
(or cusps); instead, a modular function may be meromorphic at infinity, that is, it
may have poles at cusps.

P-adic Numbers The p-adic number system for any prime number p extends the
ordinary arithmetic of the rational numbers in a way different from the extension
of the rational number system to the real and complex number systems. The
extension is achieved by an alternative interpretation of the concept of absolute
value. The p-adic numbers were first described by Kurt Hensel in 1897, though
with hindsight some of Kummer’s earlier work can be interpreted as implicitly
using p-adic numbers. The p-adic numbers were motivated primarily by an
attempt to bring the ideas and techniques of power series methods into number
theory. The field of p-adic analysis essentially provides an alternative form of
calculus. For a given prime p, the field Qp of p-adic numbers is a completion of
the rational numbers. The field Qp is also given a topology derived from a
metric, which is itself derived from an alternative valuation on the rational
numbers. This metric space is complete in the sense that every Cauchy sequence
converges to a point in Qp. This is what allows the development of calculus on
Qp, and it is the interaction of this analytic and algebraic structure which gives
the p-adic number systems their power and utility. See also Appendix A.

Quadratic Reciprocity Theorem If p and q are distinct odd primes, the congruences
x2 � q mod pð Þ and also x2 � p mod qð Þ are both solvable in Z unless both p and
q leave the remainder 3 when divided by 4, in which case one of the congruences is
solvable but the other is not. Here is another way to formulate this result. It
involves the Legendre symbol ðp=qÞ, used in the following way: ðp=qÞ ¼ 1 in case
x2 � p mod qð Þ is solvable for x, and ðp=qÞ ¼ �1in case x2 � p mod qð Þ is not

solvable for x. Then we write, ðp=qÞðq=pÞ ¼ ð�1Þðp�1Þðq�1Þ=4.

Reciprocity Laws Let f(x) be a monic irreducible polynomial with integral coef-
ficients, and let p be a prime number. If we reduce the coefficients of f(x) modulo
p, we get a polynomial fp(x) with coefficients in the field Fp of p elements. The
polynomial fp(x) may then factor, even though the original polynomial f(x) was
irreducible. If fp(x) factors over Fp into a product of distinct linear factors, we say
that f(x) splits completely mod p and we define Spl(f) to be the set of all primes
such that f(x) splits completely modulo p. Then the general reciprocity problem
is, given f(x) as above, describe the factorization of fp(x) as a function of the
prime p. We also ask the related question: is there a rule that determines which
primes belong to Spl(f)? It turns out that the reciprocity problem has been solved
for polynomials that have an Abelian Galois group, but not for polynomials
whose Galois group is not Abelian.

Recursive Set A set of natural numbers is called a recursive set if there exists an
algorithm that terminates after a finite amount of time, and correctly determines
whether or not a given number belongs to the set.
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A Riemann Surface is a 1-dimensional complex manifold. A 2-dimensional real
manifold can be turned into a Riemann surface only if it is orientable and
metrizable; thus a sphere and a torus can be treated like a Riemann surface, but a
Moebius strip, a Klein bottle and the real projective plane cannot

Representation Theory See Appendix A.

Zeta Function See Appendix A.
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