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Preface

This book has a past. Its various editions parallel the growth of stress echocardiography
within the scientific community and the clinical arena. The first edition in 1991 consisted
of 100 pages, which increased to 200 in the second (1994), 300 in the third (1997), nearly
500 pages in the fourth, and finally more than 600 in the current fifth edition. The gen-
eral perception of stress echocardiography has changed in the cardiology community. No
longer a promising innovation viewed with a mixture of suspicion and attraction, it is
now an established technique with the huge potential to resolve the present paradox of
saving health care money while at the same time improving diagnostic standards. In a
cardiological climate where inappropriate, redundant, and often risky imaging examina-
tions proliferate, stress echocardiography offers the great advantage of being relatively
low cost, free of biohazards for the patient, and causing no ecological stress on the planet.
By choice and by necessity, modern, responsible diagnosis with cardiac imaging must be
economical, ecological, and therefore usually echocardiographic. Another major change
has taken place in stress echocardiography laboratories during the last 5 years, making a
new edition of the book mandatory. For a long time, the scope and application of stress
echocardiography remained focused on coronary artery disease. In the last few years, it has
exploded in its breadth and variety of applications, enjoying the tremendous technological
and conceptual versatility that this technique offers. Nowadays, in the stress echocardi-
ography laboratory we assess not only left ventricular function, but also coronary artery
flow, valve gradients, intraventricular pressures, and pulmonary hemodynamics. We stress
not only coronary arteries, but also the valves, myocardium, vessels, alveolar—capillary
barrier in the lung, and peripheral and pulmonary circulation. Ten years ago, only patients
with known or suspected coronary artery disease entered the stress echocardiography labo-
ratory, and only regional wall motion was assessed. Now, we evaluate coronary artery
disease as well as cardiomyopathy, valvular heart disease, children with congenital heart
disease, and patients with incipient or advanced vascular disease. For each patient, we can
tailor a dedicated stress with a specific method to address a particular diagnostic question.
Thirty years ago, Harvey Feigenbaum — one of the founding fathers of modern echocardi-
ography — stated that it is not possible to understand the cardiac patient without the help
of resting transthoracic echocardiography. After 30 years, we can safely state that it is not
possible to understand the cardiac patient without the help of stress echocardiography.
The book was single authored in the first edition, and then enjoyed many distinguished
contributors in its subsequent editions, up to the record number of 29 contributors in the
present edition. They come from 15 countries spanning four continents and represent, in
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my opinion, some of the best available knowledge and expertise in their respective fields.
I am proud and honored that they accepted the invitation to be a part of this project. At the
same time, [ aimed to avoid the fragmentation, gaps, and inconsistencies of a multiauthor
text; therefore, I painfully decided to draft the first version of each chapter — then asked
for corrections, revisions, cuts, additions, and integrations from more knowledgeable con-
tributors. To all of them and to the junior and senior colleagues who have worked with me
over the last 30 years — far too many to be mentioned here — grazie.

Pisa, February 2009 Eugenio Picano
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Basic Principles, Methodology and
Pathophysiology



Stress Echocardiography:
A Historical and Societal Perspective

Eugenio Picano

Like many scientific innovations, in the last 30 years stress echocardiography has evolved
from the status of “promising technique,” embraced by a few enthusiastic supporters [1, 2]
amid general skepticism [3], to “established technology” [4] accepted by the overwhelm-
ing majority of cardiologists [5], to finally play a pivotal role in general cardiology [6, 7]
with specialty echocardiography guidelines [8, 9] (Fig. 1.1). An astounding increase in the
amount of editorial space devoted to stress echocardiography in major journals and meet-
ings testifies to its greater acceptance by cardiologists (Fig. 1.1) and to the progressive
expansion of the diagnostic domain, from coronary artery disease to its currently increas-
ing role in the characterization of cardiomyopathy and valvular heart disease patients [10]
(Fig. 1.2). The growth of this technique can be schematically staged by decade, grossly
corresponding to three major technological step-ups: its infancy, as a monodimensional
approach only applied with exercise during the 1970s; adolescence, characterized by two-
dimensional echocardiography technology also applied with pharmacological stresses in
the 1980s; young adulthood, when the methodology was reshaped with the addition of
coronary flow reserve to standard wall motion analysis; and full maturity today, with
deployment of the technique in the clinical arena to minimize the iatrogenic, legal, and social
burdens that accompany the use of complementary and competing ionizing techniques
such as scintigraphy and multislice computed tomography (MSCT) (Fig. 1.3).

1.1
Dawn of the Stress Echocardiography Era: From Experimental Studies
to the Monodimensional Approach

In 1935, Tennant and Wiggers showed that coronary occlusion resulted in almost instan-
taneous abnormality of wall motion [11]. Experimental studies performed some 40 years
later with ultrasonic crystals [12] and two-dimensional echocardiography [13] on a canine
model proved that during acute ischemia [12] and infarction [13] reductions in regional flow
are closely mirrored by reductions in contractile function, setting the stage for the clinical use
of ultrasonic methods in ischemic heart disease. The monodimensional (M-mode) technique

E. Picano, Stress Echocardiography, 3
© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1.1 The life cycle of a medical innovation, from promising technique (stress echocardiography in
the 1980s) to established technology (stress echocardiography in the last 10 years). Various applica-
tions of stress echocardiography are all simultaneously present in today’s stress echocardiography
laboratory, but at different stages of maturity. The qualitative assessment of regional wall motion
abnormalities for detection of coronary artery disease is clearly “established”, but coronary flow
reserve is still in the “early adopter” phase, while other applications (such as tissue characteriza-
tion or myocardial velocity imaging with tissue Doppler or strain rate) have been discarded after the
validation process and are now obsolete or have been abandoned for current clinical applications of
stress echocardiography
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Fig. 1.2 Stress echocardiography vital signs: the editorial golden age. y-axis indicates the number
of published articles on stress echo; the x-axis indicates the year. DCM=dilated cardiomyopathy;
CAD=coronary artery disease (From Medline Healthgate)
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Fig. 1.3 The timeline of innovation in stress echocardiography. Quantum leaps in clinical impact are
linked to technological improvements and cultural advancement. CFR =coronary flow reserve

was the only one available to cardiologists in the 1970s and nowadays appears largely inad-
equate for providing quality information when diagnosing myocardial ischemia. The time-
motion technique sampling, according to an “ice-pick” view, greatly limited exploration to
a small region on the left ventricle. Although this feature could hardly be reconciled with
the strict regional nature of acute and chronic manifestations of ischemic heart disease,
for the first time the monodimensional technique outlined echocardiography’s potential in
diagnosing transient ischemia. The very first reports describing echocardiographic changes
during ischemia dealt with the use of M-mode in two different models of exercise-induced
ischemia [14] and spontaneous vasospastic angina [15]. Landmark studies by Alessandro
Distante of the Pisa echo laboratory recognized transient dyssynergy to be an early, sensitive,
specific marker of transient ischemia, clearly more accurate than electrocardiogram (ECG)
changes and pain (Fig. 1.4). The potential clinical impact of these observations became more
obvious with the advent of the two-dimensional technique, which allowed exploration of all
segments of the left ventricle with excellent spatial and temporal resolution, and was, there-
fore, ideally suited for searching for the regional and transient manifestations of myocardial
ischemia. If the monodimensional technique was a bludgeon, then the two-dimensional
technique was a bow — a more potent weapon, and much easier to use.

1.2
Second-Generation Stress Echocardiography:
Pharmacological Stresses in the 2D Era

Once armed with the bow — the 2D technique — stress echocardiographers now had to
find the arrows — the proper stresses. Exercise, although already on hand, was soon
revealed to be a blunt arrow: what was the “mother of all tests” for the cardiologist was
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Post-ischemia

Fig. 1.4 Coronary angiographic (upper panels) and echocardiographic monodimensional tracings
(lower panels) during attacks of variant angina induced by ergonovine maleate. At baseline, left ante-
rior descending coronary artery shows a tight stenosis (left panel); the artery is totally occluded by a
complete vasospasm during ischemia (middle panel); and it is again open in the recovery phase (right
panel). The corresponding three frames of an original M-mode recording document a fully reversible
sequence of myocardial ischemia. The septum moves normally at rest (left panel) and is obviously
akinetic during ischemia (middle panel). During the recovery phase (right panel), the previously
ischemic wall exhibits a significant overshoot in motion and systolic thickening. (From [15])

at that time a disagreeable “stepmother” for the echocardiographer due to the technical dif-
ficulties and degraded quality of echocardiographic imaging during exercise. The problem
was minimized with posttreadmill imaging, still the standard in the USA today [16]. An
alternative approach, more popular in Europe, was the introduction of pharmacological
stress echocardiography detecting myocardial ischemia [17] and viability [18].

In the late 1980s, multiple generations of ultrasound equipment evolved very rapidly,
boosting image quality and offering the ability to image almost any patient. In two-
dimensional exercise echocardiography, stress echocardiography sometimes was a “guess
gram” (Fig. 1.5) and torture for the eyes. It was often repeated by eminent opinion leaders
that you needed “magic eyes” and “magic machines” to obtain good results. The technique
divided the echocardiographic community into two camps, “believers” and “skeptics”
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Fig. 1.5 Stress echocardiography in its infancy: not easy on the eyes. Exercise echocardiograms are
shown before (left panel) and after (right panel) coronary artery bypass surgery. At that time (1979),
image quality was so poor that even obtaining a single “typical example” for publication purposes
was a challenge. (From [16])

[3, 4], and never attained extensive clinical application. Things changed rapidly in the
mid-1980s, with the evolution of imaging technology and the advent of pharmacological
stresses, which were less technically challenging than exercise. In the 1990s, thanks to this
methodological evolution, the technique was upgraded from research toy to clinical tool.
The widespread use of this technique received wide-scale support and credibility; prospec-
tive multicenter studies provided effectiveness [19] and safety [20] data with pharmaco-
logical stress echocardiography. The same groups that proposed stress echocardiography
in journals and meetings now introduced the technique into their clinical practice. Rather
than the number of published articles, it was this compelling argument that convinced most
laboratories to implement stress echocardiography in their own practice as well; the world
described in journals eventually came to resemble real-life cardiology (Fig. 1.6).

1.3
Third-Generation Stress Echocardiography Today:
Coronary Flow Reserve and Dual Imaging

For 20 years, throughout the 1980s and the 1990s, stress echocardiography remained virtu-
ally unchanged [1, 4, 5]. Certainly, there were obvious, continuous, subtle improvements
in imaging technology. Digital echocardiographic techniques permitted the capture and
synchronized display of the same view at different stages. The introduction of native tissue
harmonic imaging, which increases lateral resolution and signal-to-noise ratio, clearly
improved endocardial border detection. Intravenous contrast echocardiography with
second-generation lung-crossing agents for endocardial border recognition allowed
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End-diastole

End-systole

REST 1’ post-DIP 3’ post-DIP
(normal) (hyperkinesia) (ischemia)

Fig.1.6 The birth of pharmacological stress echo. End-diastolic (upper panels) and end-systolic (lower panels)
frames at baseline (left panel), during early hyperkinetic phase (middle panel, 1 min postdipyridamole infu-
sion), and 3 min postdipyridamole infusion at peak ischemic effect (right panel) showing septal akinesia.
The quality of the image (compared to Fig. 1.5) is dramatically improved thanks to the evolution of techno-
logy and the use of pharmacological instead of posttreadmill exercise echo. (Original images from [17])

cardiologists to study otherwise “acoustically hostile” patients and segments [8, 9]. To be
honest, however, the last 20 years were also disappointing with regard to the three great
unfulfilled promises of stress echocardiography: tissue characterization of the myocardial
structure (scar vs. normal tissue); myocardial perfusion with myocardial contrast echocar-
diography (allowing perfusion to be coupled with function in the same stress); regional
wall motion quantification with myocardial velocity imaging methods (turning the diagno-
sis of regional wall motion from an opinion into a quantifiable unit). At first, each of these
targets appeared to be within reach, based on strong experimental data and encouraging
clinical experiences, but they did not pass the test of multicenter studies and to date have
not revealed any valuable clinic impact [8, 9]. Each of these objectives — tissue structure,
myocardial perfusion, and regional function quantification — can be realized in a more
effective and reproducible way with cardiovascular magnetic resonance (CMR) — with
delayed contrast enhancement for scar detection, contrast imaging for myocardial
perfusion, and tagging for wall motion objective quantification [S]. However, in the last 5
years, a major innovation changed the face and the diagnostic content of stress echocardiography:
dual imaging of wall motion and coronary flow reserve with pulsed-Doppler imaging of
the middistal left anterior descending coronary artery [21-23]. Imaging coronary flow reserve
dramatically expands the prognostic potential of stress echocardiography, since in the
absence of wall motion negativity, the patient subset with reduced coronary flow reserve
has a less benign outcome and in patients with wall motion abnormality, those with reduced
coronary flow reserve also have a more malignant prognosis (Fig. 1.7) [22, 23]. In the same
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Fig. 1.7 The magical world of coronary flow reserve enters the stress echocardiography laboratory
with pulsed Doppler, which allows assessment of coronary flow reserve on the middistal left anterior
descending artery (visualized by color Doppler on upper panel). In this case, there is a normal coro-
nary flow reserve, with a >2.5-fold increase in coronary flow velocity during stress (right lower panel)
compared with rest (left lower panel). LAD, left anterior descending; PW, Pulsed Wave Doppler. (By
courtesy of Fausto Rigo, Venice-Mestre [21])

setting, with the same stress, it is now possible to image function and flow simultaneously,
and therefore catch two “birds” (flow and function) with one “stone” (vasodilator stress). Al-
though coronary flow reserve is a technology-in-progress and has yet to reach its full matu-
rity, it is now considered a new standard in the clinical application of stress echocardiography
[24]. However, once again this quantum leap in the impact of stress echocardiography was
the result of a conceptual rather than a technological step-up during the last 5 years: that is,
the need to incorporate long-term radiation risk in the risk—benefit assessment of competing
imaging techniques [5]. Medical, legal, and social arguments have boosted the use of stress
echocardiography as the best way to optimize the risk—benefit ratio for the individual
patient, minimize the risk of litigation due to unjustified long-term cancer risk, and nullify
the oncological population burden of cardiac stress testing [5].

1.4
Cardiac Imaging and Its Guidelines

After 30 years of evolution, in the last 10 years stress echocardiography has reached its
established rank in the diagnosis and prognosis of coronary artery disease, as officially
certified by general cardiology [6, 7] and specialist guidelines [8, 9]. These guidelines
unanimously conclude that nuclear cardiology and stress echocardiography provide
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comparable information on key issues such as diagnostic accuracy for noninvasive de-
tection of coronary artery disease, identification of myocardial viability, and prognostic
stratification. In the recent American College of Cardiology (ACC)/American Heart Asso-
ciation (AHA) guidelines, the advantages listed for stress echocardiography include higher
specificity, versatility, greater convenience, and lower cost. The advantages of stress per-
fusion imaging include higher technical success rate, higher sensitivity (especially for sin-
gle-vessel disease involving the left circumflex artery), better accuracy when multiple rest-
ing left ventricular wall motion abnormalities are present, and a more extensive database
in evaluation of the prognosis [6]. The European Society of Cardiology guidelines (2006)
on stable angina conclude that “on the whole, stress echocardiography and stress perfusion
scintigraphy, whether using exercise or pharmacological stress (inotropic or vasodilation),
have very similar applications” [7]. However, the certified, comparable clinical perform-
ance cannot be construed as an argument for an opinion-driven choice of one technique
over the other. The ACC /AHA Task Force (Committee on Management of Patients with
Chronic Stable Angina) concluded that “the choice of which test to perform depends on
issues of local expertise, available facilities and considerations of cost-effectiveness” [6].
The European Society of Cardiology concluded that “the choice as to which test is employed
depends largely on local facilities and expertise.” In the present era characterized by a
quest for sustainability, the issues of relative cost (Fig. 1.8) [25], biological risk, and
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=
©
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Echo CT SPECT CMR PET Cardiac cath

Fig. 1.8 Relative costs of cardiac imaging. CT =cardiac tomography; SPECT =single photon emission
computed tomography; CMR =cardiac magnetic resonance; PET=positron emission tomography
(Adapted and modified from [25])
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environmental impact of stress-testing procedures — not even mentioned in the guidelines
— should be included in the decision-making process, not only for cardiac stress testing,
but for every imaging test in all branches of medicine, as clearly recommended by the
European Commission Medical Imaging guidelines [26].

1.5
Cardiac Imaging and the Radiation-Induced Biorisks

Small individual risks multiplied by billions of examinations become significant popula-
tion risks [27-31]. At least 10% of all cancers are due to diagnostic imaging, and at least
half of them come from cardiac examinations (Fig. 1.9). Cardiac stress imaging contrib-
utes to these individual and population biorisks. On the individual level, the effective dose
is expressed in millisievert (mSv). It provides an estimate of the whole-body dose and a
measure of the biological effects. The dose of a single nuclear cardiology procedure ranges
from 27mSv (>1,500 chest X-rays) from a thallium scan to 10mSv (500 chest X-rays)
from a technetium-MIBI scan [32-34]. One millisievert corresponds to the dose equivalent
of 50 chest X-rays (single postero—anterior projection = 0.02mSv). According to the latest
estimation of BEIR VII (2006), this exposure dose corresponds to an extra-lifetime risk of
cancer per examination ranging from 1 in 500 (thallium) to 1 in 1,000 (sestamibi) [35, 36].
The typical effective dose of several common diagnostic procedures is reported in Table 1.1
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Fig. 1.9 Annual effective dose received by an average US inhabitant (from [23], National Council on
Radiation Protection and Measurements). The total dose is of 3.2mSv per year: 2.4 mSv from natural
and 0.4 mSv from man-made sources. (Updated from [27])
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Table 1.1 Doses in cardiology

Effective Equivalent no.
Examination dose (mSv) of chest X-rays
Conventional radiology
m Chest X-ray (single postero—anterior) 0.02 1
Nuclear medicine
= Tc-99m tetrafosmin cardiac 10.6 530
rest—stress (10mCi + 30 mCi)*
m Tc-99m sestamibi cardiac 12 600
1-day rest—stress (10 mCi + 30 mCi)?
m Tc-99m sestamibi cardiac 17.5 775
2-day stress-rest (30 mCi + 30 mCi)?
m TI-201 cardiac stress 25 1,250
and reinjection (3.0mCi + 1.0 mCi)*
= Dual isotope cardiac 27 1,350
(3.0mCi T1201 + 30 mCi Tc-99 m)?
64-Slice Cardiac computed tomography
s ECG pulsing, no aorta® 9 450
» No ECG pulsing, yes aorta® 29 1,450
Interventional radiology
m Conventional rhythm device® 1.4 70
m Cardiac resynchronization device® 5.5 275
m Cerebral angiography® 1.6-10.6 80-530
m Coronary angiography® 3.1-10.6 155-555
m Abdominal angiography® 6-23 300-1,150
m Peripheral angiography® 2.7-14 135-700
m Coronary angioplasty® 6.8-28.9 340-1,445
m Peripheral angioplasty® 10-12 500-600
= Radiofrequency ablation® 17-25 850-1,250
= Valvuloplasty® 29 1,450
*From [26], [33]
"From [34]
‘From [35]

CT protocols that rescan the same region of interest (e.g., noncontrast and contrast-enhanced scans)
impart two to three times the radiation dose

and translated into the corresponding additional lifetime risk of cancer per examination
in Fig. 1.10 [35, 36]. The risk is cumulative, and the dose exposure of an average adult
cardiology patient easily reaches 100mSy, corresponding to 5,000 chest X-rays and an
additional risk of 1 cancer in 100 [37]. This threshold can be reached, for instance, by
summing up dose exposures of four thallium or dual isotope stress perfusion scintigraphy
studies — still the preferred protocol for radionuclide stress imaging in the USA in spite of
the unfavorable dosimetry [33, 35]. With the current best (BEIR VII) risk estimates, the 10
million stress perfusion studies per year lead to an estimated 20,000 new cancers each year
in the USA alone (Table 1.2). The estimated 10 million cardiac CT studies per year yield an
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Fig. 1.10 Population risk of radiation-induced cancer, today around 10% of all cancers and still rising.

(From [29])

Table 1.2 Cardiac imaging for detection of coronary artery disease: population impact

Dose per

examination INDg I Examinations  New cancers

(CXRs) examination per year per year
MPI 1,000 (500-1,500) 1 in 500 10 million 20,000
MSCT 750 (500-1,500) 1in 750 10 million 15,000
CMR 0 0 10 million 0
Stress 0 0 10 million 0
echocardiography

CXR, chest X-ray; MPI, myocardial perfusion imaging; MSCT, multislice computed tomography;
CMR, cardiovascular magnetic resonance

additional 15,000 new cancers per year in the USA alone (Fig. 1.11) [30]. Obviously this
has raised public health concerns in regulating bodies and scientific societies. As stated
in the recent White Paper of the ACR (American College of Radiology), “the expanding
use of imaging modalities using ionizing radiation may eventually result in an increased
incidence of cancer in the exposed population” [31]. If stress echocardiography and CMR
are employed instead of perfusion imaging and MSCT, no known individual or population
oncological burden is observed (Table 1.2).
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Fig.1.11 Simplified effective dose ranges of some common medical procedures involving exposure to
ionizing radiations in diagnostic nuclear medicine and radiological procedures. The reference unit is
one chest X-ray (postero—anterior projection), equal to an effective dose of 0.02mSv. There is a linear
relationship between dose (x-axis) and risk (y-axis), with no safe dose (the risk line starts from zero).
Ultrasound and MRI have zero dose and zero risk. (Adapted from [32])

1.6
Cardiac Imaging and the Regulatory Framework

The abovementioned environmental, population, and biological burdens are fully accept-
able when there is no substitute or alternative for information provided by the imaging
technique, in a proper risk—benefit assessment that includes long-term risks in the bal-
ance. The same burden may become too heavy, and the risks offset the benefits, when
comparable diagnostic information can be obtained using widely available alternative
techniques, with no known biohazards and no environmental impact. In cardiology, the
frequent need for serial repeated stress imaging testing in the same patient amplifies
the biohazard, since radiological risk is cumulative [38]. These obvious considerations
have left a mark on the regulatory framework governing the use of cardiac imaging in
medical guidelines, and — at least in Europe — in federal, national, and regional laws
regulating cardiac imaging prescriptions. In the European Union [39], a 97/43 EURATOM
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directive establishes that indication and execution of diagnostic procedures should
follow three basic principles: the justification principle (article 3: “if an exposure cannot
be justified, it should be prohibited”), the optimization principle (article 4: “according
to the ALARA principle, all doses due to medical exposures must be kept As Low As
Reasonably Achievable”), and the responsibility principle (article 5: “both the referring
physician ordering the test — the prescriber — and the physician — the practitioner — are
responsible for the justification of the test exposing the patient to ionizing radiations”).
These principles have been reinforced on the national level. In Italy [40], a recent law
(DL 187, 26 May 2000) states that an ionizing examination can only be performed when
“it cannot be replaced by other techniques which do not employ ionizing radiation.” In
the same law, article 14 sanctions the inappropriate use of ionizing tests with fines up to
€5,000 and jail for a period up to 3 months. These laws are not so strictly implemented
in clinical practice, where at least 1 out of 3 imaging tests is inappropriate [41, 42] and
both doctors [43—46] and patients [46] are largely unaware of doses and risks, setting the
stage for a perfect medicolegal storm [38].

1.7
Cardiac Imaging in the Age of Sustainability: The "Eco-Eco-Echo" Diagnosis

In today’s cost-environment — and risk-conscious climate, the prescribing physician must
be aware that his/her choice places economic and biohazard burdens upon the planet, so-
ciety, and the individual. Ours was the last generation of prescribers and practitioners
that could afford to neglect costs and environmental impact, ignore radiological doses,
and deny the risks of our often inappropriate imaging testing. Society, the government,
patients, and the law will rightfully demand accountability for our acts. It is entirely
likely that our increased awareness of the doses, risks, and environmental impact of
imaging methods will profoundly reshape the way cardiology (and medicine in general)
is taught, learned, and practiced. A cost-environment — and risk-conscious algorithm
should follow simple rules. Faced with comparable or largely similar information, non-
ionizing testing should be chosen: echo instead of nuclear, and MRI instead of CT. For
any given ionizing test, the one with a lower dose should be chosen. For similar doses
and accuracy, the test with less environmental impact should be chosen [for instance, CT
rather than positron emission tomography (PET)]. This simple, common sense-driven
algorithm could revolutionize the current practice of medicine. Today, the cardiac imaging
community is gratified by the huge rise of imaging numbers, on the order of magnitude
of +4,800% for CT, +2,800% for stress echocardiography, +100% for CMR, and +300%
for stress perfusion imaging projected from 2006 to 2020 [47]. It does not matter that
nearly half of these examinations [41, 42] are inappropriate — even when long-term risks
are not considered [48].

In this societal perspective, sensitive to the environmental, economic, and societal milieu,
a virtuous attempt to keep to the highest diagnostic standards while minimizing the eco-
nomic and biological footprint of our medical acts will inevitably lead to a growing role for
stress echocardiography in cardiac imaging practice.
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Anatomical and Functional
Targets of Stress Testing

Eugenio Picano

The principle of stress under controlled conditions derives from the Industrial Revolution:
metallic materials undergo endurance tests to identify the breaking load. This approach
identifies structural defects, which — although occult in the resting or static state — might
show up under real-life loading conditions, leading to a dysfunction of the industrial product.
In the same way, a patient with normal findings at rest undergoes a stress test to identify
any potential vulnerability of the myocardium to ischemia, if there is clinical suspicion of
ischemic heart disease.

2.1
Pathways of Ischemia

Myocardial ischemia is the final common pathway of various morphological and func-
tional substrates. In order to describe the pathways of ischemia, the normal heart can be
conveniently schematized into its three fundamental anatomical components, each a poten-
tial target of pathological conditions leading to ischemia: epicardial coronary arteries,
myocardium, and small coronary vessels (Fig. 2.1).

2.2
Epicardial Coronary Arteries

The alterations of epicardial coronary arteries can be either fixed or dynamic. Fixed
epicardial artery stenosis is the target of functional stress testing, but we also know from
pathology studies that the degree and number of coronary artery stenoses do not predict
onset, course, complications, infarct size, and death in ischemic heart disease [1].
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Fig. 2.1 The pathways of ischemia. Upper panel: The fundamental anatomical components of the
normal heart are shown: epicardial coronary arteries (parallel lines), myocardium (square box), small
vessels (circles). Lower panel: The three main pathophysiological conditions that may provoke myo-
cardial ischemia. Left to right: coronary stenosis (either fixed or dynamic); myocardial hypertrophy;
small vessel disease. (Redrawn and modified from [2])

2.3
Fixed Stenosis

The human body incorporates a functional reserve, which allows it to cope with the
physiological emergencies and dangers of pathological states. By exploiting its func-
tional reserve, each organ can — for a certain amount of time — play a role that is much
more demanding than the usual one or, when a pathological process develops, it can main-
tain normal function in resting conditions. Coronary circulation is no exception to this
rule. Coronary reserve is the ability of the coronary arteriolar bed to dilate in response to
increased cardiac metabolic demands [2]. It is fully exhausted when maximal vasodila-
tion is reached, corresponding to about four times the resting coronary blood flow in the
normal subject (Fig. 2.2). A fixed atherosclerotic stenosis reduces the coronary reserve
in a predictable way according to the curve described in Fig. 2.2 [3]. In this curve four
separate segments can be identified: (a) the hemodynamically silent zone, where stenoses
ranging from 0 to 40% do not affect the coronary flow reserve to any detectable extent;
(b) the clinically silent zone, where stenoses ranging from 40 to 70% reduce the flow
reserve without reaching the critical threshold required to provoke ischemia with the usual
stresses; (c) the zone potentially capable of inducing ischemia, where stenoses exceeding
the critical level of 70% elicit myocardial ischemia when stress is applied, but not
in resting conditions; and (d) the zone provoking ischemia at rest, where tight stenoses
(>90%) completely abolish the flow reserve and may critically reduce coronary blood flow
even in resting conditions.
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Fig.2.2 Coronary blood flow curve (on the ordinate) for increasing levels of coronary stenosis (on the
abscissa) experimentally obtained in resting conditions (lower curve) and at maximal postischemic
vasodilation (upper curve). Coronary reserve — i.e., the capacity of the coronary circulation to dilate
following increased myocardial metabolic demands — is expressed as the difference between hyper-
emic flow and the resting flow curve. The dashed area between the two curves identifies a critical
value of coronary stenosis (70%) beyond which the flow reduction is so severe as to make the myocar-
dium vulnerable to ischemia in the presence of increased oxygen consumption. (Modified from [3])

2.4
Dynamic Stenosis

From a theoretical point of view, dynamic stenoses may be the consequence of three
different conditions: increased tone at the level of an eccentric coronary plaque, complete
vasospasm caused by local hyperreactivity of the coronary smooth muscle cells, or intra-
vascular thrombosis. The first mechanism can significantly modulate the anginal threshold
in patients with chronic stable angina [4], while vasospasm is responsible for variant
angina. All three mechanisms coexist in unstable angina [5]. The biochemical mechanisms
of coronary vasoconstriction remain somewhat elusive; however, we know that coronary
vasoconstriction can be superimposed on any degree of anatomical stenosis and that func-
tional and organic (fixed and dynamic) stenoses can be associated to a variable extent over
time, transiently lowering exercise tolerance in the individual patient (Fig. 2.3). Organic
stenosis determines the fixed ceiling of flow reserve which cannot be exceeded without
eliciting ischemia, whereas dynamic stenosis can modulate exercise capacity in a given
patient in a transient, reversible, and unpredictable way [4].

2.5
Myocardium and Small Coronary Vessels

Even in the presence of normal epicardial arteries, myocardial hypertrophy can lower
coronary reserve through several mechanisms: vascular growth that is inadequate with
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Fig. 2.3 In the presence of a fixed hemodynamically significant stenosis, there is a pathologically
reduced “ceiling” of flow reserve (continuous transverse line) which induces ischemia when myocar-
dial oxygen demand exceeds a definite threshold (upper panel). In the presence of a dynamic stenosis
(lower panel) the effort tolerance is modulated — in an intermittent, unpredictable way — by fluctuations
of coronary tone (dashed line), which may reduce the oxygen supply even in the presence of a normal
organic ceiling of flow reserve. (Modified from [4])

respect to myocardial growth; a reduction of the cross-sectional area of resistance of a
vessel caused by vascular hypertrophy; and compression of intramural coronary vessels
by increased extravascular resistance [2]. Furthermore, hypertrophy determines increased
oxygen consumption in resting conditions: the resting flow curve shifts upward with a
consequent reduction in coronary reserve (Fig. 2.2). Due to myocardial hypertrophy, as
well as accompanying small vessel disease, coronary reserve may also be reduced in both
dilated and hypertrophic cardiomyopathy. With normal epicardial coronary arteries and
myocardial mass, coronary reserve can still be reduced following increased resistance at
the level of the small prearteriolar vessels, which are too small to be imaged by coronary
angiography [6].

Small vessel disease can be either primary (as in syndrome X) or secondary (as in
arterial hypertension [2]). The decreased flow reserve may be related to a functional and/
or an organic factor of the coronary microcirculation. In the former situation, one must
assume the inability of the microcirculation to vasodilate appropriately, due to errors in
the decoding or transmission of the myocardial metabolic message. In the latter case,
anatomical reduction of the microvascular cross-sectional area is likely to occur for medial
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hyperplasia, which determines an increased wall-to-lumen ratio (Fig. 2.1). This anatomical
phenomenon may also determine hyperreactivity to functional stimuli for purely geometric
reasons, since minimal caliber reductions cause a marked increase in resistances, with a
consequently exaggerated response to normal vasoconstrictive stimuli.

2.6
The Target of Ischemia: The Subendocardial Layer

The many functional and anatomical pathways of ischemia share a common pathophysio-
logical mechanism: the reduction of coronary reserve. This makes the myocardium vulner-
able to ischemia during stress. Regardless of the stress employed and the morphological
substrate, ischemia tends to propagate centrifugally with respect to the ventricular cavity
[7, 8]: it involves the subendocardial layer, whereas the subepicardial layer is affected
only at a later stage if the ischemia persists (Fig. 2.4). In fact, extravascular pressure is
higher in the subendocardial than in the subepicardial layer; this provokes a higher meta-
bolic demand (wall tension being among the main determinants of myocardial oxygen
consumption) and an increased resistance to flow. Selective stress-induced hypoperfusion
is especially important for stress echocardiography applications, since regional systolic
thickening is linearly and closely related to subendocardial perfusion and only loosely
related to subepicardial perfusion [8, 9] (Fig. 2.5).

2.7
The Diagnostic “Gold Standard”: Pure Gold?

The results of noninvasive diagnostic tests (Table 2.1) are usually compared with a “gold
standard,” that is, angiographically assessed coronary artery disease. Although generally
accepted, the gold standard has some limitations of both a theoretical and a practical nature
[10] (Table 2.2).

First, coronary stenosis is assessed by angiography through the visually assessed
percentage reduction of the vessel lumen. The percent of stenosis is a reliable index of
severity only if the vascular segment immediately proximal and distal to the stenotic seg-
ment is normal and the lesion concentric and symmetrical. Both assumptions are valid in
only a very limited number of cases: atherosclerotic involvement usually extends beyond
the point of maximum lumen reduction, and the most frequent type of lesion is eccentric.
Second, coronary angiography represents only the vessel lumen, an innocent bystander
of atherosclerotic disease, rather than the vessel wall, which is the real victim. Minimal,
“nonsignificant” lesions at angiography can harbor a diffuse severe atherosclerotic process
[2]. The close correlation between coronary stenosis and coronary flow reserve found in
the experimental animal [3] is replaced in the clinical setting by an impressive scatter
of data [11]. It is impossible to predict the physiological meaning of a stenosis solely
on the basis of its angiographic appearance — unless selected patients with single
vessel disease, no previous myocardial infarction, no collateral circulation, and no left
ventricular hypertrophy are enrolled [12]. Coronary stenosis provokes ischemia as a result of
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Table 2.1 Standard terminology in diagnostic testing

True positive = Abnormal test result in individual with disease

False positive = Abnormal test result in individual without disease

True negative = Normal test result in individual without disease

False negative = Normal test result in individual with disease

Sensitivity = True positives/True positives + False negatives

Specificity = True negatives/True negatives + False positives

Accuracy = True positives + True negatives/Total number of tests performed
Positive predictive value = True positives/True positives + False positives

Negative predictive value = True negatives/True negatives + False negatives

Table 2.2 Limitations of the coronary angiographic gold standard

Practical Theoretical

Limited reproducibility % stenosis s

% stenosis unrelated to CFR AHEF
Underestimation of diffuse disease ++
Infarct-producing plaques often noncritical HF
Static luminogram ++

Thrombus, spasm, inflammation, rupture, and HH=HE

embolization unrelated to plaque size

CFR coronary flow reserve

hemodynamic consequences on the coronary reserve; however, the two parameters
(anatomical and pathophysiological) can diverge, and the individual values of coronary
flow reserve vary substantially for stenoses of intermediate (40-80%) angiographic severity.
In these patients, positive stress test results are more frequently found in patients with
depressed coronary flow reserve (<2.0) than in patients with preserved flow reserve (>2.0).
This is true for all forms of stress testing, including exercise electrocardiography [13—17]
and, to a greater extent, stress perfusion scintigraphy [18-21] and stress echocardiography
[22-24]. Third, coronary angiography evaluates the anatomical component of myocardial
ischemia, while stress tests can induce ischemia through mechanisms that are totally

Fig.2.5 The relationship between regional blood flow and systolic wall thickening in resting conscious
dogs subjected to various degrees of circumflex coronary artery stenosis. Flow is expressed as a
decimal fraction of that in a normal region of the ventricle, and percentage wall thickening (%W Th)
is expressed as a fraction of the resting value prior to coronary stenosis. a Subendocardial blood flow
vs. wall thickening, showing a nearly linear relationship (solid line). b Subepicardial blood flow vs.
wall thickening, showing considerable scatter and no change in subepicardial flow until function is
reduced by more than 50%. (Modified from [9])
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different from the organic stenosis (such as dynamic vasoconstriction) and cannot be as-
sessed by means of a purely morphological, static evaluation of the coronary tree [25]. Extra-
coronary factors such as myocardial hypertrophy can also reduce coronary flow reserve
and therefore make the myocardium potentially vulnerable to ischemia during stress tests
[26, 27]. Finally, the commonly employed visual and subjective assessment of stenosis is
burdened by a marked intra- and interobserver variability, and arbitrary threshold criteria
(such as the presence of a 50% diameter stenosis in at least one major coronary vessel) are
introduced to distinguish between “normal” and “sick” patients, when in fact the severity
of the atherosclerotic disease ranges over a continuous spectrum. Anatomical coronary
artery disease can be assessed much more accurately by intracoronary ultrasound (Fig.
2.6), which substantially improves the representation of atherosclerosis compared with
coronary angiography [28]. This improvement is comparable to that achieved in left ven-
tricular imaging when moving from chest X-ray to transthoracic echocardiography. Chest
X-ray outlines external profiles and provides a rough index of cardiac volumes, whereas
transthoracic echocardiography describes tomographically the various heart chambers and

Angiography

ICUS

v

Coronary
Flow
Reserve

Epicardial
Coronary
Artery

% stenosis Normal 20% 50% 75% 90% 100%

% cross
sectional area Normal 36% 75% 91% 99% 100%

Fig. 2.6 Invasive diagnostic tests for the detection of coronary artery disease. Invasive tests include
the luminogram of coronary angiography and the direct visualization of the coronary arterial wall
by intracoronary ultrasound (/CUS). The percentage of a stenosis can be expressed in angiographic
studies as a percentage reduction in diameter and as a percentage reduction in cross-sectional area.
The percentage reduction is greater for area than for diameter because of the quadratic relationship
between the diameter (2r) and area (mr?) of a circle. The two estimates of stenosis correspond
perfectly only for zero stenosis and for 100% stenosis. For each level of stenosis severity, the coronary
flow reserve is expressed with a Doppler tracing before and after a coronary vasodilator (adenosine
or dipyridamole). Stenoses of less than 50% diameter reduction are not hyperemic flow limiting.
(Redrawn and modified from [29])
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the thickness of the walls, and identifies within each segment the different layers (endo-
cardium, myocardium, and pericardium). In a similar fashion, coronary angiography offers
only a luminogram of the vessel, whereas intracoronary ultrasound imaging provides an
assessment of the lumen and of the vessel wall thickness [29]. In addition, at each site,
the different layers (intima, media, and adventitia) can also be evaluated. Angiography
and intracoronary ultrasound correlate closely in healthy vessels with a nearly circular
lumen shape. However, as the lumen becomes progressively more irregular, the correlation
between a silhouette imaging method (angiography) and a tomographic modality (ultra-
sound) diverges significantly. The most substantial disagreement is found in status after
angioplasty in which angiography cannot accurately depict the true size of the complex
and distorted luminal shape commonly encountered after interventions. Abnormal stress
test results can be found in patients with nonsignificant coronary angiographic findings
in whom intracoronary sonography may show angiographically unrecognized atheroscle-
rotic changes [30], as typically happens in cardiac allograft vasculopathy [31]. Invasive
angiographic gold standards are the obligatory reference for noninvasive stress testing
procedures, but not all that glitters is gold [32]. In several conditions, coronary arteries
are perfectly smooth, even with intracoronary ultrasound, and the coronary flow reserve is
impaired by transthoracic stress echocardiography, for instance, in aortic stenosis,
syndrome X, or dilated cardiomyopathy [33] (Fig. 2.7). A “false-positive” result by ana-
tomic criteria (i.e., a reduced coronary flow reserve with angiographically normal coronary
arteries) can became a “true-positive” prognostic response in the long run, and patients
with reduced coronary flow reserve — assessed by complex techniques such as positron
emission tomography or simple methods such as transthoracic vasodilatory stress echocar-
diography — are more likely to experience adverse events in a variety of clinical conditions
such as chest pain with normal coronary arteries [34], dilated cardiomyopathy [35, 36],
and hypertrophic cardiomyopathy [37, 38].
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Fig.2.7 The spectrum of clinical conditions with normal coronary arteries and reduced coronary flow
reserve on the left anterior descending artery by transthoracic vasodilatory stress echocardiography.
(Redrawn and modified from [33])
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Symptoms and Signs
of Myocardial Ischemia

Eugenio Picano

A transient regional imbalance between oxygen supply and demand usually results in
myocardial ischemia, the signs and symptoms of which can be used as a diagnostic tool
[1]. Myocardial ischemia results in a typical “cascade” of events in which the various
markers are hierarchically ranked in a well-defined time sequence [2]. Flow heterogene-
ity, especially between the subendocardial and subepicardial perfusion, is the forerunner
of ischemia, followed by regional dyssynergy, and only at a later stage by electrocardio-
graphic changes, global left ventricular dysfunction, and pain (Fig. 3.1). The ideal marker
of ischemia should provide absolute values of sensitivity and specificity, as well as a
diagnosis of the site and severity of ischemia. Unfortunately, such a marker does not
exist; in contrast, we have a number if imperfect markers that it associated can provide a
reasonably good noninvasive estimation of the presence, extent, and severity of myocar-
dial ischemia. The pathophysiological concept of the ischemic cascade is translated into a
gradient of sensitivity of different available clinical markers of ischemia, with chest pain
being the least sensitive and regional malperfusion the most sensitive (Fig. 3.2).

3.1
Chest Pain

Chest pain is, in general, the reason the patient seeks medical care. However, many chest
pain syndromes are not ischemic in origin and are due to extracardiac causes (such as
anxiety or reflux esophagitis), and about 25% of deaths due to coronary artery disease are
observed to occur in patients who had never complained of chest pain. Ischemia is “silent”
when diagnostic electrocardiographic changes are not associated with symptoms; it is
“supersilent” when mechanic and/or metabolic alterations are not associated with either
chest pain or electrocardiographic signs (Fig. 3.3). More than 60% of ischemic episodes
observed on Holter monitoring are silent, and about 20% of transient dyssynergies detected
by echocardiography are supersilent. Thus, chest pain is an important clinical symptom,
but it is also a simple diagnostic optional feature [3].
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Fig. 3.1 The classical ischemic cascade, triggered by coronary vasospasm and/or epicardial stenosis.
The various markers are usually ranked according to a well-defined time sequence
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Fig.3.2 The sensitivity of different diagnostic markers of ischemia ranked according to the underlying
coronary anatomy and physiological impairment in coronary flow reserve. Electrocardiographic
changes appear late during stress testing and provide only a modest sensitivity, barely superior to
that of chest pain. The sensitivity of wall motion abnormalities is markedly superior to that of ECG
changes. Malperfusion is more sensitive than wall motion abnormalities in detecting minor, but flow-
limiting, levels of coronary artery stenosis
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Fig. 3.3 Relative sensitivity of electrocardiography, pain, and echocardiography in diagnosing myo-
cardial ischemia. In the domain of electrocardiography there is the entity of silent ischemia; in the
domain of echocardiography there is the entity of so-called supersilent ischemia

3.2
Electrocardiographic Changes

Electrical alterations provoked by ischemia can easily be detected by the 12-lead electrocar-
diogram (ECG). The electrocardiographic signs of subendocardial ischemia are represented
by ST-segment shift or T-wave changes; by contrast, transmural ischemia is generally associ-
ated with transient ST-segment elevation. The site of ST-segment elevation is correlated with
the site of ischemia, while this agreement does not hold in the more frequently found ST-
segment depression. However, ST-segment shifts and T-wave changes are often an equivocal
marker of ischemia because the line dividing normal from abnormal is not sharp, and a
series of factors (electrical, metabolic, pharmacological, neurohumoral, hemodynamic) can
induce ischemia-like ST-T changes [4]. Therefore, the electrocardiographic marker — alone
or associated with chest pain — is not always capable of detecting the presence of myocardial
ischemia and usually cannot predict its site and extent. The ECG is no longer the definitive
proof in the diagnostic process of myocardial ischemia, but only one of the clues.

3.3
Alterations in Left Ventricular Function

Myocardial ischemia causes left ventricular regional dyssynergy (an early, sensitive, and
specific marker of ischemia) and global dysfunction (a late and nonsensitive sign). Various
techniques have been proposed for the imaging of left ventricular function: echocardiography,
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radioisotopic ventriculography (at first pass or equilibrium), fast computed tomography,
and magnetic resonance imaging [5]. To date, echocardiography has been the technique of
choice for the assessment of ventricular function, both in resting conditions and even more
so during stress, in spite of the dependence of echocardiographic imaging on the patient’s
acoustic window and on the experience of the cardiologist interpreting the study. The
advantages of feasibility, safety, reliability, and unsurpassed temporal and spatial resolution
allow the documentation under optimal conditions of a regional dysfunction which can be
extremely localized in space and transient in time.

3.4
Perfusion Abnormalities

An epicardial coronary artery stenosis reduces the maximal flow achievable in the related
territory, although the blood flow in resting condition can be equal to that observed in
regions supplied by normal coronary arteries. During hyperemia (either during exercise
or after dipyridamole or adenosine) a perfusion heterogeneity will occur with lower blood
flow increase in the regions supplied by the stenotic artery, even in the absence of regional
ischemia [6]. The criterion of positivity is the presence of a regional flow heterogeneity or
malperfusion between different zones of the left ventricle (Fig. 3.4). Perfusion imaging is
routinely performed with gamma-camera scintigraphy, but it can be also obtained — with

REST VASODILATION

Fig.3.4 Schematic illustration of the principle underlying myocardial perfusion imaging for the diag-
nosis of coronary artery disease. At rest, myocardial perfusion is homogeneous, with no differences
between the territory of the normal coronary artery (LAD, left anterior descending artery) and that
of the diseased coronary artery (Cx, left circumflex, with 80% stenosis). The resting flow image
(obtained, for instance, with thallium-201 scintigraphy or with contrast echocardiography) does not
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higher accuracy and at substantially greater cost — by means of positron emission tomography.
Other techniques with potential for perfusion imaging are contrast echocardiography and
magnetic resonance imaging with injection of specific contrast agents.

3.5
The Paradigm Challenged: The Alternative Ischemic Cascade

In diagnostic practice with stress imaging, not all patients follow the reassuring paradigm
proposed by the “ischemic cascade.” ECG changes may often occur with typical chest
pain, in the absence of echocardiographic changes, and are often accompanied by real, not
artifactual [6], reversible perfusion defects. In fact, the typical behavior of microvascular
disease during stress testing is the frequent induction of chest pain, ST-segment depres-
sion, and also perfusion abnormalities without regional or global wall motion changes [7].
The sequence of events is therefore strikingly different from the classical ischemic cascade
described in Fig. 3.1 and in the right panels of Fig. 3.5 as well as from that found during
stress testing in the presence of a coronary stenosis. This alternative ischemic cascade
is illustrated in the left panel of Fig. 3.5 and derives from real clinical experience [8].
The classical ischemic cascade was a clear laboratory phenomenon described as early as
1935 by Tennant and Wiggers [9], who demonstrated that the immediate result of a coro-
nary occlusion was an instantaneous abnormality of wall motion. The alternative ischemic
cascade was a clear clinical finding disclosed by cardiac imaging techniques and it still
requires a good laboratory model. It was initially described in cardiac syndrome X by
Kemp et al. in 1973 with pacing left ventriculography [10], and later observed with stress
echocardiography [11-13]. The left ventricle is hyperdynamic during stress, in spite of the
frequent occurrence of chest pain and ST-segment depression: it is “too good to be ischemic,”
[14] at least when the usual pattern of classic ischemia due to coronary artery stenosis is
considered. The alternative cascade refers to a sequence of clinical events, during which
the occurrence of ischemia usually cannot be proven [15], although in a subset of patients
a reduction in coronary flow reserve [16, 17], and/or a metabolic evidence of inducible
ischemia [18, 19], and/or a strictly subendocardial stress-induced hypoperfusion [20] have
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Fig.3.4 (continued) show any interregion variation. However, perfusion in the territory of the stenotic
coronary artery is maintained at the price of a partial exhaustion of coronary reserve, with partial
dilatation of the arteriolar bed — represented by larger circles located downstream from the epicardial
coronary arteries. The normal arteriolar tone is represented by smaller circles (normally vasocon-
stricted arterioles). During vasodilation obtained with a metabolic stimulus, such as exercise, or with
a pharmacological stimulus, such as dipyridamole, the arteriolar tone is lost determining an increase
in flow that will be greater in the normal coronary artery (which, at rest, has a preserved tone in the
entire arteriolar district) than in the stenotic coronary artery (with lower coronary reserve). Perfusion
imaging will show the stenosis “mirrored” in the myocardium as a region with relative underconcen-
tration of flow tracer when compared with the normal contralateral region. The septal and anterior
wall appear “brighter” (due to greater echocontrast concentration) when compared with the “darker”
inferoposterior wall (lower echocontrast concentration)
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Fig.3.5 A concise view of the different pathophysiological situations of the classic (C4D) and alterna-
tive (microvascular) ischemic cascade. In normal conditions (framed, second column from left) there

STRESS

is a normal coronary flow reserve (CFR, first row, with intracoronary Doppler ultrasound), normal
coronary anatomy (/VUS, second row, with intravascular ultrasound), normal perfusion pattern with
scintigraphy (Perfusion, third row), and normal contraction during stress (Function, fourth row). ECG
is shown in the /ast row. Coronary flow reserve is pictorially expressed with a Doppler tracing
before, during, and after a coronary occlusion. With the classic ischemic cascade, perfusion defects
are present with mild (third column from the right), moderate (second column from the right), and
severe (first column from the right) coronary stenosis, mirroring reductions in coronary flow reserve
and accompanied (for moderate-to-severe stenoses) by regional wall motion abnormalities, which
are usually absent for mild degrees of stenosis, capable of limiting coronary flow reserve without
inducing ischemia. In microvascular disease (first column from the left) the depressed coronary flow
reserve is associated with a normal coronary anatomy, the frequent occurrence of stress-induced perfusion
defects (often with ST-segment depression), and normal left ventricular function. (Modified from [8])

been described. Thus, while few would argue that induced myocardial dysfunction is an
accurate marker of regional ischemia, the occurrence of ECG changes and demonstration
of regional abnormal vasodilator reserve may or may not be associated with ischemia
[8]. In this debate, one should consider that the absence of stress-induced dysfunction
does not rule out the ischemic nature of the electrocardiographic abnormalities. It is well
known that under ideal imaging conditions even a subendocardial infarction characterized
by prolonged chest pain, a rise in serum enzymes, and ST-segment and T-wave changes
can be accompanied in 20% of cases by a perfectly normal echocardiogram [21]. Several
conditions can be clustered together with cardiac syndrome X in coronary microvascular
disease, characterized by normal coronary arteries and reduced coronary flow reserve,
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without epicardial coronary artery vasospasm [14]. In each of them, an echocardiographi-
cally silent ST-segment depression has been described as the typical pattern during stress
testing. Among others, they include arterial hypertension (with normal coronary arteries,
with or without left ventricular hypertrophy), hypertrophic cardiomyopathy [22], and
diabetes [23]. It is entirely likely that our monolithic view of ischemia mirrored in the clas-
sical ischemic cascade should integrate awareness of the reverse or alternative ischemic
cascade best describing microvascular disease, with ECG changes coming first, perfusion
abnormalities second, and with echocardiographic changes usually absent during physical
or pharmacological stress. Not all forms of myocardial ischemia are the same, and milder,
patchy degrees of myocardial ischemia — like those possibly induced in microvascular
angina — remain silent in its mechanical functional manifestations and may represent a
physiological scotoma of stress echocardiography (Fig. 3.5). The typical stress imaging
pattern of a hypertensive patient with epicardial coronary artery stenosis is displayed in
Fig. 3.6: perfusion defect with wall motion abnormality. The typical stress imaging pattern
of a patient with normal coronary arteries is displayed in Fig. 3.7: perfusion defect without
wall motion abnormality. “Anatomic lies” on the ECG may well be turned into “physiologic
truths,” when coronary flow reserve or systemic endothelial function are considered, or even
into correct prognostic predictions — possibly identifying troublemakers in the long run [22].
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Fig. 3.6 Positive ECG response (left upper panel), positive thallium scan (right upper panel), apical
4- and 2-chamber view of end-systolic frames at peak stress with apical akinesis (indicated by arrows,
left lower panel) of a patient with significant left anterior descending coronary artery stenosis (right
lower panel). (From [13])
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Fig. 3.7 Positive ECG response (left upper panel), positive thallium scan (right upper panel), apical
4- and 2-chamber view of end-systolic frames at peak stress with normal left ventricular motion of a
patient without significant coronary artery disease (right lower panel). (From [13])

3.6
Equations in the Diagnosis of Ischemia

On the basis of the classical markers of ischemia, i.e., chest pain and ECG changes,
diagnostic equations have been proposed, and are reported in Table 3.1. In view of the
limitations of these traditional hallmarks of acute transient myocardial ischemia, “new
practical objective criteria (other than ECG changes and pain) for the diagnosis of transient
myocardial ischemia are needed” as pointed out by Maseri in 1980 [24]. The classic equa-
tions ignore the variable of mechanical changes. However, it is known that the three most
commonly used markers of ischemia (chest pain, electrocardiographic changes, mechan-
ical abnormalities) identify at least partially superimposed diagnostic fields (Fig. 3.3). In
the absence of concomitant electrocardiographic changes, one is reluctant to affirm the
ischemic nature of chest pain; however, ischemic processes resulting in angina pectoris
may occur without significant alteration of the ECG [25], as shown by angiographic [26],
hemodynamic [27], scintigraphic [28], and echocardiographic [29] studies. It is also well
known that asymptomatic myocardial ischemia, as detected by ECG changes and wall motion
abnormalities, is a frequent finding during daily activity and during stress testing [30].
The diagnostic accuracy of chest pain and ECG changes is markedly lower than that of
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echocardiographic changes during all forms of stress [31]. In terms of prognostic impact,
the stress-induced echocardiographically recognized dysfunction matters independently
of the associated induced chest pain [32, 33]. Considering the low diagnostic and prog-
nostic accuracy of the traditional hallmarks of acute transient ischemia, namely, pain and
ST-segment depression, the standard diagnostic equations can be profoundly remodeled
by introducing a new variable, such as transient mechanical changes detected by two-
dimensional (2D) echocardiography, during spontaneously occurring chest pain or during
stress (Table 3.2). Being highly specific for an ischemic event, the mechanical marker is
the only “stand-alone” criterion (justifying even the equation “asynergy — ST change—pain
= supersilent ischemia”). However, such a statement, although sound from the conceptual
point of view, should be applied with caution to daily clinical practice when hypokinesis
is involved, since at present we lack reliable quantitative criteria for the detection of
hypokinesis with echocardiographic techniques. In clinical practice things are more com-
plicated and the good old ECG can offer surprisingly important information in the imaging
era. During stress testing, ECG changes can occur without scintigraphic abnormalities
(which are more sensitive than echocardiographic changes) and are associated with poor
long-term prognosis [34]. In patients with positive stress echocardiography results and
underlying coronary artery disease, a concomitant ST-segment depression identifies a
group at higher prognostic risk [35]. In patients with negative stress echocardiography
results and normal coronary arteries, stress-induced ST-segment depression identifies
patients with endothelial dysfunction [36]. Patients with positive stress echocardiography
results may have no ST-segment changes, but have an increase in QT dispersion, which
may be a marker of electrical instability and represents an electrocardiographic sign of
ischemia different from the ST-segment shift [37, 38]. In conclusion, no diagnostic marker
is perfect, but some are more imperfect than others.

3.7
A New Diagnostic Variable: Coronary Flow Reserve

The diagnostic equations based on ECG and wall motion abnormalities have been further
remodeled in the last 5 years with the advent of coronary flow reserve evaluated by pulsed
Doppler transthoracic echocardiography in the stress echocardiography laboratory [39].
It represents an ideal complement of regional wall motion in the stress echocardiography
diagnostic one-stop shop [40]. The equations of ischemia become more robust with the
integration of the two markers, one (regional wall motion) assessing mainly anatomic epi-
cardial coronary artery disease, the other (reduced coronary flow reserve) also mirroring the
functional condition of coronary microcirculation. The spectrum of responses will range
anywhere from very abnormal (induced wall motion abnormalities and reduced coronary
flow reserve, indicating epicardial stenosis and abnormal microcirculatory response) to
completely normal (no inducible wall motion abnormalities and normal coronary flow
reserve), indicating absence of hemodynamically significant macroepicardial upstream,
and micro, distal, downstream arteriolar coronary alterations. The stress response can be
stratified into a severity code, mirroring the experimental ischemic cascade: no evidence
of abnormality (normal wall motion and normal coronary flow reserve) associated with
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very low risk; isolated perfusion or coronary flow reserve abnormality (without inducible
wall motion) associated with intermediate risk; and inducible wall motion abnormalities
(usually with a perfusion or coronary flow reserve reduction) associated with the highest
risk, in patients who will benefit most from ischemia-driven revascularization. When
handling in clinical terms this exciting additional information, rich in novel diagnostic [41]
and prognostic [42-44] dividends, we should be always aware that — as smart clinicians
said already 25 years ago, at the very beginning of the cardiac imaging explosion — “our
surprise in finding out that a new approach gives information that the old methods do not
give, in detecting myocardial ischemia, does not differ from the surprise that an intelligent
primitive human would experience if he were suddenly confronted with the problem of
understanding what makes a car run. After a short observation he would probably first
conclude that if you smash your car probably it will not run any more. Then he will discover
that even an intact car will not run if its engine is broken. With time he will come to the
astonishing discovery that even intact cars with intact engines may not run if they run out
of gasoline and, furthermore, that some will not run even when full of gasoline. This, they
would probably classify as super-silent trouble.” [45].
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Rational Basis of Stress
Echocardiography

Fabio Recchia and Eugenio Picano

Stress echocardiography stems from three lines of evidence placed at three different levels:
biochemical, pathophysiological, and clinical. The pathophysiological hallmark of stress
echocardiography positivity is myocardial ischemia: when the stress echocardiography
study shows abnormalities, myocardial ischemia is present. The presence of regional
dysfunction requires ischemia, and — in the words of John Ross Jr. — the very definition
of ischemia requires an alteration of myocardial function: “Ischemia is a reduction in
myocardial blood flow sufficient to cause a decrease in myocardial contraction” [1]. In
considering this definition, however, one must consider that “decrease in myocardial con-
traction” is not synonymous with “reduction in visually assessed regional systolic thickening,”
which expresses only one dimension (radial strain) of the complex three-dimensional event
of myocardial contraction. This latter also includes circumferential and longitudinal strain,
all contributing to changes in ejection fraction and to the pump function. In addition, systo-
lic thickening is evaluated in a subjective and qualitative, not objective and quantitative,
way and reflects the average transmural function, without discriminating between
the subendocardium (highly vulnerable to ischemia) and subepicardium (more resistant
to ischemia) [2]. The clinical world is not the experimental laboratory, stress echocardi-
ography is not equivalent to implanted sonomicrometry, and therefore the fundamental
parameter of regional systolic thickening by two-dimensional (2D) echocardiography
should be integrated with information derived from clinical presentation, patient specificity,
and information provided by other markers of ischemia.

4.1
Biochemical Basis

At rest, about 60% of the high-energy phosphates produced by cell metabolism is used
for development of contractile force, about 15% for relaxation, 3—5% for maintenance of
electrical activity, and the remaining 20% for “wear and repair” [3]. The cell’s top priority
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is to repair itself. During ischemia, therefore, the cell minimizes its expenditure of energy
on cardiac work and utilizes whatever is left for maintenance of cell integrity. In the normal
heart at rest intracellular calcium is sequestered mostly in the sarcoplasmic reticulum,
where it cannot be used for myocardial contraction (mediated by the actin—-myosin system).
Cell membrane excitation and depolarization are followed by a rapid “downhill” (i.e.,
along the concentration gradient) influx of extracellular calcium, triggering the release of
intracellular calcium from sarcoplasmic reticulum; this activates the contraction following
the calcium—troponin interaction, which exposes myosin to the binding site of actin. For
relaxation to occur, intracellular calcium must be sequestered back “uphill” (i.e., with
energy expenditure against a concentration gradient) to the sarcoplasmic reticulum; in this
phase, a calcium efflux through the plasma membrane also takes place. When ischemia
occurs, the process of contraction and relaxation is slowed by two main intracellular bio-
chemical events: the reduction of high-energy phosphates, due to the blockade of mito-
chondrial aerobic metabolism, which requires oxygen, and the increased concentration
of hydrogen ions, due to the activation of anaerobic glycolysis. Hydrogen ions compete
with calcium ions for the troponin activation sites — thereby slowing the actin—myosin
interaction. The reduction of intracellular high-energy phosphates in turn reduces the rate
of the energy-dependent active reuptake of calcium into the sarcoplasmic reticulum, thus
determining an impairment of relaxation [3].

4.2
Physiological Heterogeneity of Myocardial Function

The contraction of the heart is a complex phenomenon involving a deformation (strain)
along three coordinates: radial thickening; longitudinal contraction; and circumferential
contraction (torsional twist): Fig. 4.1. In addition, the normal adult left ventricle is character-
ized both morphologically and functionally by a high degree of regional nonuniformity
[4]. Myocardial strain is defined as the difference between any end-systolic and end-diastolic
dimension divided by the reference end-diastolic dimension and is, as such, dimensionless
and presented as percent values. Positive radial strains represent wall thickening, whereas
negative strains represent segment shortening (e.g., circumferential shortening). In the
clinical assessment of myocardial function, all three types of strain can be measured — at
least in principle: systolic thickening with M-mode and 2D echocardiography (by far the
most used and the only one adequately validated for clinical applications); longitudinal
contraction with myocardial velocity imaging; and circumferential shortening with 2D
speckle tracking (Table 4.1). In addition, regional ejection fraction can now also be meas-
ured with real-time 3D echocardiography. The inward motion and deformation (circum-
ferentially and longitudinally) of the endocardium determine the changes in intracavitary
volume, and endocardial regional ejection fraction can thus be viewed as a composite
measure of the local contribution to ejection. The regional ejection fraction increases
significantly from base to apex, and remarkably the regions with the highest ejection frac-
tion show the least wall thickening (Fig. 4.2). There is some degree of horizontal (in-
tersegment) variation of myocardial function, but it is less marked than in the vertical
(base-to-apex) and transmural (subendocardium-to-subepicardium) direction (Fig. 4.3).
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Fig. 4.1 Base-to-apex heterogeneity in radial (left panel), longitudinal (middle panel), and circumfer-
ential (right panel) function

Table 4.1 Physiological heterogeneity of myocardial functions

Echocardio-
Transmural Base- Horizontal graphy Alternative
gradient to-apex gradient method method
% Systolic thickening +++ 4=F e M-mode 2D MRI
(radial strain)
Longitudinal strain ++ ins e Myocardial MRI tagging
velocity imaging
Circumferential strain + ins == Speckle tracking MRI tagging
Regional ejection + =F = Real time (RT3D) MRI tagging
fraction

RT real time

This gradient is magnified by stress also in healthy normal subjects, suggesting that a
“relative” hyperkinesia during stress is a normal warrant which should imply a conserva-
tive reading of stress echocardiograms, to avoid an exorbitant number of false-positive
responses [5] (Fig. 4.4). The normal myocardial function is rather heterogeneous at different
levels (base to apex) since the relative contribution to ejection increases towards the apex
and, within the same segment, at different layers (subendocardium—subepicardium) of the
left ventricular walls (Fig. 4.5). Measurements of intramyocardial thickening demonstrate
that normally 67% of thickening occurs in the inner half of the wall [7]. Thus, normally
there is only a small contribution of the subepicardium to the overall thickening (Fig. 4.6).
A “functional” gradient, although less significant, also exists at the various levels of the
left ventricle, with greater systolic thickening in the apical than in the basal segments (6-9).
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Fig.4.2 Regional ejection fraction can be obtained with real-time 3D imaging in the echocardiography
laboratory (upper panel). 1t is correlated only weakly with % systolic thickening (lower right panel)
and tightly with circumferential strain (lower left panel). (Redrawn and adapted from original MRI
tagging data from [3])
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Fig. 4.3 Heterogeneity of radial, longitudinal and strain in septal (S), anterior (4), inferi