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Preface

Writing projects was always an agony for me … I always
tried to live up to Leo Szilard’s commandment, ‘don’t lie if
you don’t have to do’. I had to. I filled up pages with words
and plans I knew I would not follow. When I go home from
my laboratory in the next afternoon, I often do not know
what I am going to do the next day. I expect to think that up
during the night. How could I tell then, what I would do a
year hence?

—Albert Szent-Gyorgi (1893–1986), Nobel Laureate, quoted
on pg. 382 of Discovering by Robert S. Root-Bernstein [1]

This book is literature, not journalism.
Although it is unusual to apply labels like “literature” and “journalism” in

science and mathematics, it is nevertheless true that oceanographic observations
and contour plots of supercomputer flow are as ephemeral as yesterday’s newsprint.
The lonely oceanographic research vessels of the twentieth century, laboriously
deploying an instrumented mooring here, a tide guage there, painfully struggling
with leaking batteries, failed anchor releases, storms and heavy seas, were crewed
by heroes. Their data, though, has already been forgotten. Who in his right mind
will consult a field experiment in which the whole of the tropical ocean was inferred
from a diamond of five moorings when thousands of data points are available from
the Argos drifters?

In contrast, good theory is literature. To replace awe with understanding, we
must walk the theory road through increasingly complicated approximations. The
stepping stones remain unchanged even as the road is extended. In this sense, most
of the analysis presented here will be as long-lived as Shakespeare, though without
the swordfights and iambic pentameter.

This book reflects my biases. First, most oceanographers flock to oceanographic
conferences, exchange the latest oceanographic gossip, and follow each hint of new
trends and programs from ONR and NSF with the zeal of the Enigma codebreakers,
and talk only to other “water people”. They are connoisseurs of five hundred coastal
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currents, refer to vortices as “Ring Bob” and “TIV Samantha”, and nod sagely at
every wiggle in a CTD sounding. Even the theorists share war stories, with rogue
waves and forty-degree rolls replacing artillery and charges up the hill, earned by
many months at sea. Their job, as they see it, was expressed eloquently by a student
whose response was the title of Dallas Murphy’s book [2]: To “Follow the Water”.

Yes, but a physical and mathematical science is healthy only if some of its
citizens follow mathematics and physics, too.

Second, although I have published 69 papers that employ some form of singular
perturbation theory, I also have written two long books on Chebyshev, Hermite,
and Fourier numerical methods and nearly two hundred articles that employed
them. As visualized in Fig. 1, analysis and perturbation expansions (“chirugery”)
and spectral methods and other numerical algorithms (“arithmurgy”) are not sep-
arate worlds, but rather the view from the left eye and the right eye fused into a
single scene.

This book also bears the scars of its long and difficult genesis. The text began as
a graduate course I first taught in the early 1980s. Unfortunately, the audience for
my advanced classes dried up, our undergraduate oceanography major went away,
and finally my department changed its name to entirely eliminate “oceanic”. I told
myself that I would return to the book when I was older. My father died at 97,
active and independent for almost all of a very long life. Plenty of time, I thought.

Chirugery

Arithmurgy

Fig. 1 The Unity of Chirugery and Arithmurgy
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Unfortunately, Parkinson’s disease intervened. My arms and legs are always sore
(“cogwheel rigidity”). My handwriting trails off into tiny random squiggles; three
tries and 30 seconds to write a single word that I might perhaps read tomorrow but
not in a week (“micrographia”). I limp due to a semi-permanent cramp in my left
foot (“dystonia”). Double-clicking usually takes several tries because nothing
happens at first (“freezing” or “festination”). I freeze when walking, too. I often
move with tiny, shuffling steps with my left arm motionless, though I can some-
times walk almost normally if I consciously take long steps and swing my bad arm.
My soft voice is even softer now (“hypophonia”) and a little slurred; my wife is
urging speech therapy. My typing is slow and error-prone, three or four typos per
sentence (“bradykinesia”). With heavy use of dictation software and a student
scribe hired by my department, I manage. I have twice reviewed the final manu-
script of this book, line by line, for typos, but my typing is so compromised that the
errors were twice as numerous as the stars in our galaxy. I ask the reader’s for-
giveness for the mistakes that remain.

There are some consolations. An incurable, steadily progressive disease is a
great foe for procrastination, and otherwise perhaps this book would never have
been finished.

Illness has released me from grant-chasing, and that, too, is a blessing.
My department, with few students and great dollops of NASA space money,

always expected every faculty member to provide academic year salary support.
This became rather awkward after OCE changed its policy to reject such support for
tenure track faculty. For 30 years, my proposals had huge budgets for page charges
and sundries, but I published only in “free” journals and diverted the funds to pay
the department chair’s tax.

After many years of failure, I finally got a grant from the Math Directorate! It all
went in tax, and I never spent a dime.

My project descriptions were even more fantastic than my budgets, alas. Three
years of milestones and detailed plans, focused on a single project, dummied-down
to what a graduate student can do. Actually, I averaged 20 to 30 journal articles
every 3 years, and hardly ever did I know that I was going to do a problem 6
months in advance of submitting the paper solving same. Year after year, reviewers
and program managers scolded me: One project per proposal! Three years! Work
plans! Deliverables!

In my other life, I have published twenty science fiction and fantasy short stories.
(A list can be found on the Internet Speculative Fiction Database at www.isfdb.org)
It is wonderful that my future fantasies will all be literary!

Still, I mourn the terrible waste of time spent preparing and reviewing proposals.
Only one of my last fourteen proposals was funded before I was finally cut off by
NSF physical oceanography after nearly 40 years. “Not really an oceanographer”
was said at the review panels. “Not enough face time at oceanography meetings”.
A real oceanographer must “follow the water”, apparently, even if the water is
Powerpoint fakery at a giant conference center in the Rose City. If I still had a face,
instead of a Parkinsonian mask, I would even so wish to be judged on what I had
written instead of my skill in networking.
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An oceanography cutoff from mathematics, insular, is ill-prepared for
parallel-in-time reduced basis models. As visualized in Fig. 2, the future of
oceanography is as much in geometry as in the connoisseurship of currents.

My 8-year-old laptop can run the LINPACK benchmark four hundred million
times faster (50 floating operations per second versus 20 gigaflops) than the HP
personal computer I used as a grad student and has a million times more memory
(eight kilobytes versus eight gigabytes), but oceanographers do not have a million
times more insight. Rather, number-crunching is bound by the following:

First Law of Arithmurgy:
Insight grows no faster than logarithmically with resolution

—J.P. Boyd [3]

Supercomputers shall not accelerate us into a wiser future unless numerical
algorithms and oceanographic theory push and push and jump in the bobsled to
descend the turns together.

Of course, deans and department chairs were indifferent to such philosophy-of-
science issues but just as frowny as the civil servants.

The horror! I program.
The horror! I expand, derive and integrate.
The horror! Didn’t I know I was supposed to leave all that to the graduate

students? Science is quantized and the quanta are [grad] student triennia.
Where were my big grants? A sausage factory is supposed to turn out sausage in

bulk, and where was all my fine doctoral bratwurst? And awards? Surely in a time
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when departments and professional societies spend enormous energy on self-
congratulation, why was I not a fellow of AGU and AMS? (I was nominated but not
elected AMS fellow three years running.) In my own reckoning, to be blessed with
the time and opportunity to write four books and 250 journal articles and mentor
more than twenty graduate students is prize enough. And I am not yet done.

STEM education is focused entirely on inspiring the young with the joy of
science, but many students see professors as Not-Scientists. Faculty at a teaching
institution have such heavy teaching loads that they have no time to do science, as
opposed to merely sharing the classics. Professors at a research university are
managers, a hundred parsecs from the lab bench or computer simulation, and are
Not-Scientists, too. I suffered for being a Not-Not-Scientist and don’t know what to
say to students who see no real career in science except an endless succession of
postdocs, moving as often as military families, always working on someone’s else
agenda to impress a review panel, scientific ronin.

It is doubtless a great relief in Arlington that the agencies are no longer tortured
by someone who consistently Colored Outside the Lines. My chair no longer needs
fret about my academic year tax. Our research administrators are happy that one
who paid little attention to budgets and balances has been replaced by junior faculty
who have been drilled since candidacy in the importance of good management.

I was an awful manager, accountant, and pitchman, but mostly by ignoring those
roles entirely, I was mostly, honestly, a scientist, and had a lot of fun. And through
blatant dereliction of duty, as defined by deans and federal agencies, I had time to
write this book.

I thank Dennis Moore for his review. Thanks also to Peter Gent, James Luyten,
Julian P. McCreary, Jr., Mark Cane, and Edward Sarachik for permission to
reproduce figures and for helpful comments.

I also express appreciation for permission to reproduce figures to the American
Meteorological Society, the Royal Society of London, and the Journal of Marine
Research.

I thank Kristina Neal, Temitope Akinlua, Miesha Williamson, and Ninad
Ramachandra Naik for help with illustrations.

I thank Leah Lindsey, my scribe, for her assistance, especially with the innu-
merable corrections.

I acknowledge a little support for more than 35 years from the physical
oceanography section of the NSF and also small, non-renewed grants from NASA
and the Department of Energy. For many years, my one and only little grant was
split-funded between physical oceanography, atmospheric sciences, and computa-
tional mathematics, but the latter two dropped out and then physical oceanography
refused repeated renewal proposals a few years later.

In view of the huge amount of time lost in reviewing, review panels, and
proposal writing, whether the agencies helped or hindered my research is known
but to God.

The funds did support some of my students. I was blessed to be chair or co-chair
for seventeen doctoral students and two master’s students, collaborated on papers
with four other students though not an official advisor and mentored three doctoral
students who visited from China. I dedicate this book to them.
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I am fond of funny words like “arithmurgy”, “chirugery”, and “hydroarithmo-
mancy” [etymologies in the glossary] not only because I studied Latin and classical
Greek and never recovered, but also, I have thought that the spirit of St. Theresa of
Avila’s advice to her novices was sound for science, too: “God deliver me from
frowning saints”. It is possible to combine conviction with humility and humor, and
I do not apologize for trying my best to do so.

Future work will likely find some of my most charming insights are wrong and
some wrong-headed. AIDS was caused only by homosexual contact until it was
caused also by heterosexual contact, drug needles, blood transfusions, and mother’s
milk. All cholesterol was bad until some of it was good. And 30 years of string
theory has yield zero testable propositions. Error is not merely a broken formula;
sometimes an entire field can chase the ether.

But true scientific understanding is not a drawer of index cards, but rather a
structured network which is fault-tolerant to cracks and corrections. And it is also
good, both for science and for reading, to reach beyond facts and formulas to a
poetic sensibility where number-crunching is arithmurgy and “all of loneliness and
grief” is “an empty doorway and a falling leaf ”.1

The poet sees the world on many levels simultaneously, and so must we.
Remember, as you read, that John Keats was multiscaled and fractal long before
Benoit Mandelbrot.

Ann Arbor, USA John P. Boyd
May 2017
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Symbols & Notation

To conform with existing conventions and previous literature, it is sometimes
necessary, to borrow a term from computer science, to “overload” a symbol so that
it represents more than one entity. Such overloaded symbols are clearly marked in
the table.

f Coriolis parameter
A NLS solution, the envelope of a nonlinear wavepacket (Chaps.

2 & 10)
A(Overloaded) NLS solution, the envelope of a nonlinear wavepacket (Chaps.

16 & 17)
D Difference variable /� u
E Energy
fM/N Padè approximant to f ðxÞ, the ratio of a polynomial of degreeM

divided by a polynomial of degree N
F Zonal wind stress
g Gravitational constant
G Latitudinal wind stress
h Height field [proportional to pressure]
H(x) Heaviside step function: H ¼ 1; x[ 0, H ¼ 0; x\0
Hn(y) Unnormalized Hermite polynomials
~H Buoyancy flux (forcing for the height/continuity eq.)
k Zonal (x) wavenumber
kell Elliptic modulus, k2ell ¼ mell

K Complete elliptic integral
L Depth of sponge layer
m Baroclinic mode number
m (Overloaded) Latitudinal wavenumber in Sec. 6.2
mell Elliptic modulus
mi Latitudinal wavenumber of incident wave
mr Latitudinal wavenumber of reflected wave
n Latitudinal mode number

xxi



N2 (Overloaded) Brunt–Vaisala frequency (squared)
N (Overloaded) Number of grid points or numerical degrees of freedom
p Pressure
s Integer zonal (longitudinal) wavenumber
S Sum variable /þ u
T Temperature
U (y) or U (y,z) Longitudinally averaged east–west current
v North–south velocity
w Vertical velocity
W Wavelength
ỹ Mercator latitudinal coordinate, ~y � a arctanhðsinðlatitudeÞÞ
yt Turning point [second latitudinal derivative is zero]
z Vertical coordinate (depth)
ẑ WKB vertical coordinate
hi Deviation of top of i-th layer from the mean in multilayer

models
a Latitudinal scale for different baroclinic modes
A Envelope or “modulation” of a wavepacket
C Carrier wave factor of a wavepacket, C ¼ expðiks½x� cpðksÞt�Þ
d sine/cosine switch in basis functions
F Inhomogenous term in Bjerknes flow
ð Modified perturbation parameter for Euler series acceleration
A NLS solution, the envelope of a nonlinear wavepacket
B Modified Bernoulli Function
E Energy density
F Mass flux

R1
�1 /udy

F Zonal mass flux,
R1
�1 /udy

H d2=dy2 � y2, Hermite eigenoperator
L Generic linear differential operator
L ðd=dyþ yÞ, lowering operator
M Zonal momentum density
P

R Z
0 dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
¼ ð1=2ÞZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p
þð1=2Þ arcsinðZÞ

P Zonal pseudomomentum
Q Coefficient of ODE in McCreary’s linear steady mean current

theories
R ðd=dy� yÞ, raising operator
s Vertical mean wind shear perturbation parameter
SnðxÞ Hermite function series coefficients for S
U Vector Hough-Hermite eigenfunction
Y Constant amplitude of homogeneous part of Yoshida jet
zmðzÞ Baroclinic mode
a Thermal expansion coefficient (Chap. 2)
b df =dy y¼y0

�� , a constant, usual beta-plane meaning

xxii Symbols & Notation



c tanðhÞ where h is the angle between the local tangent to the
coast and due north

djk Kronecker delta; djk = 0 if j 6¼ k, 1 if j ¼ k
D Divergence (Chap.3)
D (Overloaded) Scale factor for latitudinal tapering (Appendix A)
e Lamb’s parameter (nondimensional) [Everywhere except in

nonlinear chapter]
e (Overloaded) Perturbation parameter (Chap. 16)
f Relative vorticity
f (Overloaded) eðx� cgðkÞtÞ in NLS perturbation theory (Chap. 12)
h Angle between the local tangent to the coast and a meridian.
k Longitude
km Eigenvalue of vertical structure equation
K Dilation parameter for triad solutions
Kn Auxiliary array defined in (6.35)
K @

@z N2 @
@z

n o

m 2nþ 1 where n is the latitudinal mode number
n Shifted latitudinal coordinate in the gamma-plane

approximation
N Height-varying nondimensional latitudinal coordinate
p 3.14159
q Density
r Frequency nondimensionalized by 2X
1 Dilation factor
s (Overloaded) Wind stress
s (Overloaded) Slow time variable in multiple scales perturbation theory

(Chap. 12)
/ Height [pressure/density]
/ (Overloaded) Phase constant for triad solutions in Chap. 17
un Phase constants
U Phase factor for quasi-normal modes in the long wave

approximation
v Velocity potential
wn(y) (always
with subscript)

Normalized Hermite functions

w (without
subscript n)]

Streamfunction or mass-weighted streamfunction

W Streakfunction (streamfunction in a moving coordinate system)
x Frequency, nondimensionalized by 2X
x̂(y,z) kðUðy; zÞ � c)
X Angular frequency of the earth’s rotation in radians/second

¼ 2p=86; 400s�1

ℵ Parameter with values 0 or 1, used to switch on/off terms in the
latitudinal structure equation

Symbols & Notation xxiii



ℵ (Overloaded) R X v1 in Boyd 4-mode model (Chap. 6)
i Constant of integration for a Bjerknes flow solution
i Proportionality constant for radiation in nonlocal solitary waves

whose amplitude is proportional to expð�i=eÞ
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Chapter 1
An Observational Overview of the Equatorial
Ocean

Abstract Latitudinal variations of the Coriolis force refract planetary waves to cre-
ate a waveguide that confines important wave motions to a narrow belt around the
equator. Jets parallel to, rather than perpendicular to, the mean wind arise at low
latitudes. Surface jets in opposite directions alternate in latitude. Vertically, jets of
alternating signs are stacked one atop the other in the abyssal equatorial ocean like
a stack of pancakes. The equatorial oceans have their own waves, their own jets and
an ornery indifference to the rules and balances of extratropical dynamics. Some of
the key observational phenomena are reviewed in this introductory chapter to lay a
foundation for what follows. The alternating surface jets, deep internal jets, seasonal
reversals of the Somali Current with the monsoons, upwelling in the Gulf of Guinea
and the coupled hemispheric and oceanic oscillation of huge climatic impact, ENSO,
are all briefly surveyed.

There is danger that computation becomes a substitute for a nonexistent theory.

Peter Lax, in an address at ICIAM87.

1.1 The Thermocline: The Tropical Ocean as a Two-Layer
Model

As a first approximation, the ocean may be divided into two layers: a warm, well-
mixed surface layer and a deeper layer of cold water. The boundary between the
two is known as the “thermocline”. The thermocline can be loosely defined as the
middle of the thin layer inwhich the temperature varies sharplywith height from very
warm above to very cold below. Figure1.1 shows a vertical sounding of temperature
at the equator. Although almost absent in the polar water, the thermocline is well-
defined both in the middle latitudes and in the tropics, particularly the latter. Since
the density of sea water is a function of temperature, one can approximate the density
of the ocean in a similar idealized way: a layer of uniform density (light!) above the
thermocline and a heavier layer of uniform density below.

© Springer-Verlag GmbH Germany 2018
J.P. Boyd, Dynamics of the Equatorial Ocean,
https://doi.org/10.1007/978-3-662-55476-0_1
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2 1 An Observational Overview of the Equatorial Ocean

Fig. 1.1 A typical
temperature versus depth
profile at 0.5◦ N. The
thermocline is missing in
polar waters, but is very
sharp and well-defined
around the equator
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These observational facts explain why two-layer models have been a traditional

first approximation in oceanography. Experimentally, it is easy to create a two-layer
configuration simply by pouring ordinary cooking oil on top of water. [Try it!] This
can be done in your own kitchen. It is quite easy to make internal gravity waves on
the interface between the two fluids, i.e., on the “thermocline”. Analytically, two-
layermodels give equations for baroclinic instability, etc., which are very similar—in
some cases identical—to the two-level models so popular among meteorologists.

In reality, there is some density stratification within the deep ocean and internal
waves are possible below and above the thermocline, not merely along the thermo-
cline. However, when the flow is decomposed into vertical modes, most energy goes
into the “barotropic mode”, which we can identify with wave motions along the
air-sea interface, and the “first baroclinic mode”, which we can identify with waves
along the warm water-cold water interface, i.e., along the thermocline. Furthermore,
the linearized equations for each vertical mode are identical except that the depth
parameter must be replaced by a different “equivalent depth” for each different ver-
tical mode. Consequently, much theoretical work on the equatorial sea and much
numerical modeling, too, has concentrated upon two-layer models, and upon the
motion of the thermocline in particular.

The thermocline has a mean depth of about 75–100m along the equator, but
this mean is not very meaningful because the time-averaged depth in the Pacific
varies from perhaps 200m in the west to only about 50m in the east. (The Atlantic
thermocline slopes from about 120m down off Brazil to only about 20m in the Gulf
of Guinea.) The trade winds piles up water in the west, thus creating a sea surface
that slopes from highest in the west to lowest in the east; hydrostatic balance forces
the thermocline to tilt in the opposite direction so that it is deepest where the surface
of the sea is highest. (The opposite slopes of the sea surface and thermocline are
necessary so that the horizontal pressure gradient in the abyss is zero.)
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1.2 Equatorial Currents

Figure1.2 shows a simplified picture of the surface currents. The North and South
Equatorial Currents (NEC, SEC) are forced directly by the wind stress exerted on the
sea by the trade winds. One can create exactly the same sort of wind-driven currents
by blowing a fan over the water. The North Equatorial Counter-Current (NECC) is
a return flow towards the east sandwiched between the other two. A major part of
the return flow, however, is also carried by the major subsurface current, which is
known as the Equatorial Undercurrent (EUC) or as the “Cromwell Current”.

The EUC/Cromwell jet is approximately centered on the equator as one would
expect, but the system of three surface currents is badly skewed so that the center jet,
the North Equatorial Counter-Current (NECC), is a maximum around 6–7◦ N. The
South Equatorial Current, in defiance of its name, is roughly centered on the equator
and is, if anything, a little stronger in the northern hemisphere. The North Equatorial
Current (NEC) is a puny little weakling in comparison to the other currents, barely
attaining peak velocities of 15cm/s.

The reason for all these asymmetries is the hemispheric asymmetry of the trade
wind/Hadley cell circulation that drives it all: the mean location of the Intertrop-
ical Convergence Zone (ITCZ), which is the boundary between the southerly and
northerly components of the trade winds, the confluence zone where these branches
converge and then ascend, is around 7◦ N., too. (In the mean; the latitude of the ITCZ
varies with the season.) Thus, the middle surface jet, the NECC, is located directly at
the dynamical equator of the winds, not at the geographical equator. In contrast, the
major subsurface flow, the Equatorial Undercurrent, is centered on the geographical

Fig. 1.2 A schematic of the
surface equatorial currents
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equator: it, too, is ultimately an offspring of the wind, but at a further remove so
that where the Coriolis parameter vanishes is more significant to it than where the
meridional wind does.

The North and South Equatorial Currents thus are directly underneath the North-
east and Southeast Tradewinds so that the direction of these ocean currents is roughly
parallel to the wind stress of the Trade Winds. This is rather odd in comparison with
the middle latitudes where the turning of the currents by the Coriolis force tends to
create currents (wind-driven Ekman layers) in which the vertically-averaged ocean
transport is perpendicular to the wind stress. The NEC and SEC serve as reminders
that it is dangerous to blindly apply mid-latitude intuition in the vicinity of the equa-
tor. The NEC and SEC are also the westward flowing jets of the great anticyclonic
gyres that occupy the major ocean basins. The NEC in the Atlantic is the southern
side of the Atlantic gyre whose western side is the Gulf Stream.

In addition, Subsurface Countercurrents (SSCC’s), also known as the “Tsuchiya
Jets”[1], occur on the flanks of the thermostad. The thermostad is a 150m-thick
layer of water of very uniform temperature (about 13◦ C.) and salinity (34.9 parts per
thousand),which is found in thewestern Pacific between 150mand300munderneath
the surface in the band between 5◦ N. and S. [2–5]. Their speed is O(20 cm/s) and the
transport is 0(5–10 sverdrups). The velocity and transport are weak compared to the
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Fig. 1.3 Meridional cross-sections of the zonal currents in cm/s for the three major oceans
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Fig. 1.4 Typical Pacific
Ocean velocity contours
(dashed) superimposed on
temperature contours (solid)
from the same section 26
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0(1m/s) flow and 20–50 sverdrup transports of the EUC.1 Even so, the SSCC’s are
stable and well-defined flows and currents similar to them have also been identified
in the Atlantic.

Since the surface currents are directly driven by the wind, the major theoretical
challenge has been explaining the Equatorial Undercurrent. We will review and
classify the rather bewildering variety of theories later on. In the meantime, Fig. 1.3
shows meridional sections of the zonal current for three different oceans. Because of
the monsoon, the Undercurrent in present only part of the year in the Indian Ocean,
but when it is, it can still attain peak velocities of 75cm/s – very fast for the sea. In
the Pacific, the EUC can achieve velocities as high as 150cm/s (Fig. 1.4).

1.3 The Somali Current and the Monsoon

The idealized picture of the equatorial currents given in the preceding section must
be modified in the Indian Ocean. Because of the monsoon, the winds over the Indian
Ocean blow predominantly north-south rather than east-west. During the Northeast
(NE) Monsoon from November to March, the winds blow from the north and east —
like the usual NE trades but with a much stronger northerly component than over
the other oceans. From May to September, however, the Southwest (5W) Monsoon
sends southerly winds over the ocean. (Fig. 1.5).

There is always a South Equatorial Current (SEC), but it is more to the south than
in the other oceans, usually coming no closer to the equator than 5◦ S. latitude. It is
stronger during the SW Monsoon than during the NE Monsoon, but even at its time
of maximum strength, it is not very conspicuous in Fig. 1.5. because the drawing
extends only to 10◦ S.

In contrast, a westward-flowing surface current north of the equator is present
only during the NE Monsoon–in the summer months, it reverses, and the area of the
NEC and NECC becomes a single broad current flowing towards the east. Different
references use different terminology about this.Knauss [6] describes this as amerging

1A sverdrup is one million cubic meters/second.
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Surface Winds: February

Surface Winds: August
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Fig. 1.5 Monsoon surface winds. (Top) NorthwestMonsoon (February). (Bottom) SouthwestMon-
soon (August)

of theNECwith theEquatorialCountercurrent.Neumann andPierson (1966) [7] state
that the NEC and ECC exist only during the N. Hemisphere winter, and disappear in
the summer to replaced by an eastward flowing Monsoon Current. Düing (1978) [8]
replaces the NEC throughout the year by a Northeast Monsoon Current (winter) and
a Southwest Monsoon Current (summer) but retains an Equatorial Countercurrent
(ECC) during thewintermonths only.We shall generally followDüing’s terminology
in these notes. It isworth noting that theNECC is simply theECC in the IndianOcean;
because the wind patterns are shaped so strongly by the monsoon, the Equatorial
Current is strongest on—or even a little to the south—of the equator instead of being
confined to the Northern Hemisphere as it is in the other two oceans.

Along the coast of Somaliland flows an intense, seasonally-reversing jet known
as the Somali Current. It always flows with the monsoon winds–towards the south
in winter and towards the north in summer. Like the Gulf Stream, it is a very intense
boundary current because of beta-induced “western intensification”. Again like the
Gulf Stream, the Somali current separates from the coast and can formmeanders and
throw off gyres, especially when it separates off Cape Gardafui near the inlet to the
Red Sea at about 12◦ north. However, the Somali Current is more complex than the
Gulf Stream because it straddles the equator and reverses with the seasons.

The major theoretical problems have been to (i) generalize Gulf Stream theory
to low latitudes (ii) understand coastal separation and formation of gyres and (iii)
comprehend the timing of the seasonal reversal. The latter question turns out to
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Fig. 1.6 Monsoon-driven surface currents.The top panel is at the time of the maximum of the NE
Monsoon; the bottom during the SW Monsoon

be more complicated than at first sight because the great escarpment of East Africa
creates an intense, low-level boundary jet in the atmosphere, too. There is still debate
as to whether local wind forcing, i.e., the atmospheric jet, or remote wind forcing,
i.e., the changes in wind stress occurring less violently over the whole basin of the
Indian Ocean, are more important in making the flow reverse (Fig. 1.6).

1.4 Deep Internal Jets

In 1976, Luyten and Swallow discovered that beneath the well-known upper level
jets of the Indian Ocean were a series of weaker but still pronounced alternating
jets extending from just beneath the thermocline to nearly the ocean bottom [9].
Although commonly described by the somewhat vague term of “deep internal jet”,
they are not necessarily axisymmetric, longitude-independent currents like the Equa-
torial Undercurrent and the surface jets, but may in fact be merely the eddy velocities
produced by waves with vertical wavelengths on the order of 300m. Although their
nature is still subject to some argument, later work has shown that these alternating
deep jets are a ubiquitous feature of the equatorial ocean. The principle tool in these
early observations is the acoustic dropsonde, in which the currents are inferred from
the trajectory of a freely falling probe. CTD (Conductivity-Temperature-Depth) pro-
filers have also provided useful information even though the associated temperature
perturbation is very small (on the order of a few hundredths of a degree C.). These
can be combined with the acoustic dropsonde in the composite instrument called
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the Whitehorse, which was developed by Luyten and others at Woods Hole, and the
TOPS dropsonde, which is used in Hayes and Milburn (1980) [10].

The work of Luyten and Swallow (1976) [9], Hayes and Milburn (1980) [10],
Leetmaa and Spain (1981) [11], Muench, Kunze, and Firing (1994) [12], and Eriksen
(1981) [13], and Firing (1987) [14], [9–11, 13] has revealed a number of character-
istics of the deep jets including the following:

1. The deep flow is predominantly zonal and has a very different structure (and
usually much greater coherence) than the meridional velocity, if the latter is large
enough to be accurately measured.

2. The amplitude of the zonal velocity is 0(5–20) cm/swith the larger figure applying
just below the thermocline and the smaller figure close to the ocean bottom. In
some profiles, the amplitude decreases only slightly as one goes towards the
bottom so that 0(10cm/s) near the bottom is not unheard of.

3. The vertical wavelength is on the order of a few hundred meters; the equivalent
depth of such a wavelength is on the order of 0.1cm.

4. There is usually great zonal coherence, or in other words, the jets seem to have
horizontal wavelengths on the order of 1000km or more.

5. The jets are very highly geostrophic, even to within a fraction of a degree of the
equator.

6. Inertial instability of deep currents is now considered a likely suspect for creating
the alternating stacked jets.

7. Surface-forced waves (“vertical beams”) play a role also.
8. Similar stacked jets in the middle atmosphere, which erupt during periods of

intense cross-equatorial latitudinal shear, are known as “pancake instabilities”.
9. Similar deep jets are found in the Atlantic, too [15, 16].

1.5 The El Niño/Southern Oscillation (ENSO)

The Southern Oscillation in the atmosphere was discovered by Sir Gilbert Walker
in the 1920s. El Niño, the episodic replacement of the nutrient-rich cold, upwelled
water off the coast of Peru by a layer of very warm, nutrient-poor water, has been
known to Central and South American fishermen for many centuries. It was not until
the late 60’s, however, that Jacob Bjerknes, already a legend for his contributions as
much as forty years earlier, pointed out that the two were merely the atmospheric and
the oceanic manifestations of a single, coupled oscillation of both wind and water, a
view that is now universally accepted.

The name “Southern Oscillation” is rather unfortunate because it seems to con-
vey the impression of a phenomenon of the Southern Hemisphere whereas in reality
the SO is centered on the equator. Walker used the name to distinguish this equa-
torial oscillation from another cycle he found involving the Icelandic High and the
Aleutian High. It must be admitted that the equator is far to the south of Iceland.
Although ENSO is a very complex phenomenon, Walker discovered that it could
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be characterized by a rather simple “Southern Oscillation Index”. The SO Index is
simply the monthly mean pressure difference between Port Darwin (15◦ S., 130◦ E.)
on the northern coast of Australia and another station many thousands of kilometers
to the east, usually either Tahiti (15◦ S., 150◦ W.) or Santiago, Chile (33◦ S., 70◦ W.).
Since Darwin and Santiago are roughly 15,000km apart, almost on opposite sides
of the globe, the SO Index is mute testimony to the global scale of ENSO.

A low value of the Tahiti-Darwin difference is accompanied by warm water off
Peru (El Niño), little SST (sea surface temperature) difference between the western
and eastern Pacific, a deep ocean thermocline (60–120 m) throughout the Pacific,
westerly wind anomalies in the western Pacific, heavy rain both on the Line Islands
(equatorial, at 160◦ W.) and in Ecuador, and sinking flow in the western Pacific
accompanied by compensating rising motion in the eastern Pacific. This side-to-
side sloshing of air – perpendicular to the predominantly north-south, axisymmetric
Hadley flow – is known as the Walker circulation. ENSO has been a hot topic for
a couple of decades: a monster El Niño occurred in the middle of 1982, and the
following winter was mild in the Midwest but terrible in California and the Rockies.
Australia endured the “Great Dry”, the worst drought that country has known in a
generation. The water in the eastern Pacific became so warm over so large an area
that it wreaked havoc with global circulation patterns. The relationship between the
ENSO and the changes in the position of the mid-latitude jet stream, for example, are
not well understood, but this is precisely why a deeper understanding of the ENSO
has become an urgent priority. Major El Niño episodes occur at intervals of five years
or so, but the phenomenon is highly irregular and intermittent.

In spite of its great importance, the discussion of ENSO here and in the rest of
the book will be somewhat limited. The reason is that these topics are covered by
excellent monographs by Clarke (2008) [17], Sarachik and Cane (2010) [18] and
Philander (1990) [19].

1.6 Upwelling in the Gulf of Guinea

Upwelling, i.e., a positive vertical velocity in the upper layer of the sea, occurs in
the Gulf of Guinea only between June and October even though the local winds are
favorable for upwelling (i.e., tend to drive upwelling by creating a surface Ekman
layer) throughout the whole year and have no seasonal variability. The French have
long maintained an oceanographic research station at Abidjan in the Republic of
the Ivory Coast, right on the Gulf of Guinea, so this seasonal dependence of the
upwelling and the invariability of the winds are both well-documented. Although
this phenomenon is not in and of itself profoundly important, it is interesting that it
was one of the earliest physical events to be explained in terms of equatorial waves
in the note of Moore et al.(1978) [20]. The theory of these eight authors is based on
the fact that while the winds are steady in the eastern Atlantic in the Gulf of Guinea,
there is a sudden seasonal onset of winds in the western part of the ocean off the
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coast of Brazil. This in turn will excite a Kelvin wave which will propagate from
west to east to create conditions favorable for upwelling.

There are dissenting views in the literature; see, for example, Philander (1979)
[21]. However, Verstraete’s lengthy (1992) review concludes that remote forcing is
important [22].

The Gulf of Guinea upwelling is a simple and clear-cut example of how remote
events can drastically alter local dynamics through the propagation of planetary
waves across the ocean.

1.7 Seasonal Variations of the Thermocline

The reversal of the Somali Current and the upwelling in the Gulf of Guinea are but
two examples of many seasonal events that are important in the ocean. Another is the
complex pivoting of the thermocline in theAtlanticwith the seasons. The thermocline
normally is tilted to be deeper in the west in consequence of the wind stress of the
trade winds. Merle (1983) [23] shows that the thermocline simultaneously pivots
about two perpendicular axes.

One pivot is a see-saw in an east-west direction with a fulcrum at about 25◦
west longitude. Most of the variation occurs in the eastern half of the ocean, so the
pivoting is not symmetric about the midpoint of the ocean. It seems to be a fairly
straightforward response of the thermocline to the seasonal changes in the strength
of the trade winds. The other pivot is about a fulcrum located somewhere between
3 and 8◦ north latitude, which through no coincidence whatsoever is roughly the
mean location of the Intertropical Convergence Zone (ITCZ). It is well-known that
the thin line of clouds which is the ITCZ moves north and south with the seasons
with a mean position several degrees into the northern hemisphere. The north-south
wind stresses created by flow converging into the ITCZ are necessarily affected by
the ITCZ’s cyclic north-south movements.

The numerical models of Cane and Sarachik (1981) [24] and Busalacchi and
Picaut (1983) [25] have been remarkably successful in explaining this double pivot
of the thermocline. In turn, these observations of seasonal motion have been the
impetus for a rather large number of both theoretical and numerical efforts focused
on a common goal: How does the equatorial ocean respond to periodic variations in
the applied wind stress, especially the annual cycle?

1.8 Summary

The observed phenomenon described above have been deliberately sketched in rather
limited detail because we will return to them, and to the theories and models that
attempt to explain them, in later chapters. The purpose of this once-over-lightly
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Table 1.1 Selected reviews on equatorial dynamics

Reference Notes

Moore and Philander (1977) [26] Both observations and theory

McCreary (1980) [27] Systematic exposition of 3D separable models

Philander (1980) [28] Equatorial Undercurrent

Leetmaa, McCreary and Moore (1981) [29] Brief treatment of both observations and theory

McCreary (1985) [30] Modeling

McPhaden and Ripa(1990) [31] Wave mean flow interactions

Verstraete (1992) [22] Seasonal upwellings in the Gulf of Guinea

Neelin, Latif and Jin (1994) [32] Coupled ocean-atmosphere models

Battisti and Sarachik (1995) [33] ENSO: Description and prediction

Hamilton (1998) [34] Equatorial middle atmosphere; quasibiennial
oscillation

McPhaden et al. (1998) [35] TOGA observing system

Dijkstra and Burgers (2002) [36] El Niño

Chelton, Schlax and Lyman (2003) [37] Equatorial Rossby in latitudinal mean shear

Philander and Fedorov (2003) [38] El Niño

Kessler (2006) [39] Eastern tropical Pacific

Zeitlin (2007) [40] Nonlinear waves and numerical geostrophic
adjustment

Fedorov and Brown (2009) [41] Encyclopedia article

Khoulder, Majda and Stechmann (2013) [42] Climate in the tropics, PDE theory, mostly
atmosphere

is to give a feel for the diversity of phenomenon in the equatorial ocean. Further
background can be found in the review articles collected in Table1.1.
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Chapter 2
Basic Equations and Normal Modes

Abstract This chapter presents a systematic linearization of the equations ofmotion
about a state of rest, followed by additional approximations, each carefully analyzed
for estimated error, culminating in a full four-dimensional separation of variables.
The general solution to these approximate equations is a superposition of normal
modes. Each mode is the product of four one-dimensional factors. The latitudinal
structure of themodes is a Hermite function or the sum of a pair of Hermite functions.
The vertical structure functions are the eigenmodes of the vertical structure equation.
The normal mode is the product of a factor of latitude multiplied by a function of
depth z only and lastly multiplied by exp(ik(x − ct)).

A traveler who refuses to pass over a bridge until he has personally tested the soundness of
every part of it is not likely to go far; something must be risked, even in mathematics.

Sir Horace Lamb

2.1 Model

The fundamental assumption for studying fluid dynamics at low latitude is the “equa-
torial beta-plane”. In this approximation, the factors of sine and cosine of latitude
are approximated by power series about zero latitude, i.e., the cosine is replaced by
one and the sine is replaced by latitude itself. The rapid increase of the Coriolis force
as one goes away from the equator confines a broad class of waves and jets to very
low latitudes where these geometric approximations are quite good. Typically, the
atmospheric equatorial waves have little amplitude beyond 20◦ — 1/3 of a radian
— north and south of the equator while the ocean motions are much narrower still.
Since cos θ = 1− (1/2)θ2 + ... and sin(θ) = θ − θ3/6, we see that the relative error
in retaining only the lowest order terms is no worse than 5% for either function as
long as θ <= 1/3.

By geophysical standards, this is a very small error: more important still, it is a
purely numerical error that does not change the qualitative behavior of the equations
of motion. The great advantage of these trigonometric approximations is that they
permit one to replace spherical coordinates latitude and longitude by Cartesian
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16 2 Basic Equations and Normal Modes

coordinates x and y, which are simply latitude and longitude multiplied by the radius
of the earth.

McCreary (1980) is a very detailed treatment of the assumptions and approxima-
tions made in equatorial fluid mechanics [1]. The equatorial beta-plane is so basic
that he does not even mention it, assuming correctly that his audience will already
be familiar with it! Following his practice of rating assumptions with labels in “all
caps”, we will supply what he omitted for this one approximation.

Assumption 2.1 Equatorial beta-plane

EXCELLENT for all equatorial motions that are truly equatorial, i.e., confined to
low latitudes, provided that the zonal length scale is not too small.1

The equations of motion on the equatorial beta-plane then take the form

ut + uux + vuy + wuz − f v + (1/ρ)px = (νuz)z (2.1)

vt + uvx + vvy + wvz + f u + (1/ρ)py = (νvz)z (2.2)

(1/ρ)pz = −g (2.3)

ρt + (uρ)x + (vρ)y + (wρ)z = 0 (2.4)

ρt + uρx + vρy + wρz = (�ρz)z (2.5)

where subscripts denote differentiation with respect to the subscripted variable and
ν is viscosity, � is the thermal diffusivity and p is pressure. All symbols are defined
in the “Symbols and Notation” section of the frontmatter.

On the equatorial beta-plane, the Coriolis parameter f = 2Ωy where Ω is the
angular frequency of the earth’s rotation. Parenthetically, note that (2.1)–(2.2) are also
the proper equations for the “mid-latitude beta-plane” inwhich the Taylor expansions
of the sine and cosine of latitude are about a middle latitude, usually 45◦, rather
than the equator. The separation-of-variables procedure is quite unaffected by the
approximation we use for f .

Even in these equations, simplified further below, there are implicit a number of
additional assumptions including the following:

Assumption 2.2 Neglect of vertical Coriolis force.

These terms are normally extremely small and this assumption is always made
even in numerical models.McCreary rates this as GOOD; Iwould say EXCELLENT.

This is part of the “traditional approximation” in meteorology [2, 3] and is in
fact necessary for energetic consistency with other simplifications of the “traditional

1In Sect. 3.12, it is shown that the latitudinal scale is controlled by E+s2 where E is the nondimen-
sional parameter known as“Lamb’s parameter” (defined below as 2.34) and s is the integer zonal
wavenumber. The classical equatorial beta-plane must be generalized by keeping some additional
terms in order to capture the zonal wavenumber effect on the north-south width of the waves. For-
tunately, because ε ∼ O(105) or larger for ocean baroclinic modes, it is only for wavenumbers
s ∼ O(300), or equivalently for east-west wavelengths of a couple of hundred kilometers or less,
that an “extended equatorial beta-plane” is needed.

http://dx.doi.org/10.1007/978-3-662-55476-0_3
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approximation”. For dissenting views, see [4] and the review [5] and also [6–14, 14].

Assumption 2.3 Horizontal viscosity is neglected.

This would be a bad assumption in a pipe flow, but the horizontal scale of large-
scale motions in both the atmosphere and ocean is very large (25–100 times) the
vertical scale, so the errors in ignoring horizontal viscosity are only O(10−4) of the
vertical viscosity effects even when the horizontal viscosity coefficient is as large as
the vertical viscosity coefficient. McCreary describes this as SENSIBLE; I would
say EXCELLENT. (It should be noted, however, that many numerical models keep
horizontal viscosity for computational stability.)

Assumption 2.4 Hydrostatic approximation.

This is poor for very small scales (wavelengths of a couple of kilometers or less),
but it is a terrific approximation for the large-scale waves of interest here in both
the atmosphere and ocean. Another way of putting it is that the vertical acceleration
dw/dt is important only for motions whose time scales are on the order of 2π / the
Brunt–Vaisala frequency. McCreary rates hydrostaticity as GOOD.2

Assumption 2.5 Incompressibility.

Equation (2.4), which expresses continuity of mass, is almost never used in that
form. By subtracting (2.5), which is the heat equation, from it we obtain

ρ(ux + vy + wz) = −(�ρz)z (2.4∗)

We now simplify this by ignoring the right-hand side of (2.4*):

ux + vy + wz = 0 (2.4∗∗)

Veronis [15] has shown that this is VERY GOOD for a typical ocean wind-driven
circulation.

An important note:Veronis shows that the right-hand side of the heat equation (2.5)
generally cannot be neglected.However, some authors do replace (2.5) by an equation
which the temperature rather than the density ρ is the actual unknown. Semtner and
Holland [16] use the approximate equation of state

ρ = ρ0[1 − α(T − T0)] (2.6)

α = 0.0002/degree (2.7)

where ρ0 and T0 and the thermal expansion coefficient α are constants. Equation (2.6)
ignores salinity, which can be very important in general oceanography, but salinity

2The hydrostatic approximation must fail sufficiently close to breaking for a nonlinear Kelvin wave
as described in Chap.16.

http://dx.doi.org/10.1007/978-3-662-55476-0_16
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differences are largest in northern waters where calving icebergs can overlay the
salty seas with relatively fresh water. Salinity differences seem to be of secondary
importance for the equatorial ocean, so they have been largely ignored up to now,
and we shall do the same. Equations (2.6) and (2.7) make it possible to replace (2.5)
with the alternative (but equivalent) heat equation

Tt + uTx + vTy + wTz = (� ρz)z (2.5∗)

The system of Eqs. (2.1)–(2.3), (2.4**) and either (2.5) or (2.5*) are the basic set
of nonlinear equations that has been the basis for multi-level numerical simulations
of the ocean. Atmospheric modellers use an equation of the same form except that (i)
z is replaced as a vertical coordinate by pressure or log-pressure (ii) vertical viscosity
is usually ignored and (iii) the eddy conductivity term in (2.5*) is normally replaced
by an explicit heating function.

To obtain analytical models of ocean flow, it is necessary to simplify the equa-
tions still further. The first andmost important approximation is to drop the nonlinear
terms. There are analytical theories that include nonlinear effects, but these are per-
turbative calculations in which the starting point is the linearized set of equations.
Hence, linearize-and-separate-variables is the fundamental first step in all analytical
calculations up to the present.

Assumption 2.6 Drop all nonlinear terms in the momentum equations.

McCreary rates this QUESTIONABLE; I would add the qualifier NECESSARY
to obtain linear, analytically solvable equations. This assumption will be relaxed in
Chaps. 16 and 17 on instability and nonlinear waves.

Assumption 2.7 Drop all nonlinear terms in the heat equation except for wdT0/dz
(or wdρ0/dz) where T0(z only) and ρ0(z only) represent the mean temperature
/density stratification of the ocean, which is assumed to be a function only of the
vertical coordinate.

This also is QUESTIONABLE but NECESSARY. This one nonlinear term cannot
be neglected, even in a lowest approximation, because this term is buoyancy. If it
is missing, then the linearized equations have no resistance to vertical motions and
cannot respond to thermal driving. In reality, the density stratification of both the
ocean and atmosphere strongly resists vertical motion, which is why the synoptic
high and low pressure systems on a daily weather map are typically a hundred times
larger in the horizontal dimension than the vertical. Thus, we cannot even come close
to the right answer unless density stratification is included.

Fortunately, the mean density/temperature profile is known in both air and sea. It
does vary with altitude and longitude, too, but rather slowly; in particular, the ocean
and atmosphere are stably stratified over the whole globe. Consequently, inserting
a mean temperature or density that is a function only of depth is a satisfactory first
approximation.

It should be noted that the mean buoyancy term must also be inserted into the
fully nonlinear heat equation, (2.5) or (2.5*), since numerical models usually are

http://dx.doi.org/10.1007/978-3-662-55476-0_16
http://dx.doi.org/10.1007/978-3-662-55476-0_17
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not sufficiently sophisticated and sufficiently high resolution to parameterize the
small-scale convection, radiative transfer, etc. well enough to correctly generate the
observed stratification from first principles. Thus, even for numerical models, the
mean stratification is usually specified rather than internally generated.

Assumption 2.8 Assume special forms for mixing coefficients:

ν = � = A/N 2 (2.8)

where A is a constant and N is the mean Brunt–Vaisala frequency defined by

N 2 = − g

ρ0

dρ0

dz
(2.9)

and modify the form of the eddy mixing of heat to

(�ρz)z −→ (�ρ)zz (2.10)

McCreary does not rate this assumption, but I would describe it as CONVENIENT
and AS REASONABLE AS ANYTHING ELSE. The reason that it is convenient
is that these forms for the mixing are the only known forms that permit separation
of variables. Whatever their lack of realism, these approximations give analytical
models with damping, and with a damping that increases with decreasing vertical
scale as is true of almost any physically reasonable dissipation.

In point of fact, we need not feel too guilty about using these approximations. For
laminar laboratory flow, the viscosities are molecular and have known, measured
values, and off-the-wall assumptions are unneeded. In the atmosphere and ocean,
however, the dominant mixing is by small-scale turbulence. Since these are known
only to within an order-of-magnitude anyway — questionable approximation —
(2.8)–(2.10) really are reasonable as any plausible alternative.

The Assumptions (2.8)–(2.10) were first used by Fjelstad and Mork to study
internal waves and byMcCreary (1980) to explore equatorial dynamics.When small-
scale turbulence provides themixing, it is reasonable that heat andmomentumwill be
mixed with equal efficiency even though the molecular viscosity and diffusivity are
different. The greater the static stability, the larger the Brunt–Vaisala frequency N ;
we expect that greater static stability would, by resisting vertical motion, reduce the
vertical eddy mixing, and the forms (2.8) explicitly allow for this. However, there is
no particularly good physical reason to suppose that ν and � must decrease precisely
as the square of N ; the argument merely implies that bigger N will make ν and �

smaller.
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Assumption 2.9 The pressure is replaced by a new variable φ such that

φx = (1/ρ)px ; φy = (1/ρ)py (2.11)

Equation (2.11) is both a definition and an approximation. The definition is the
introduction of the new variable φ. This is a meteorologist’s notation rather than an
oceanographer’s; the “geopotential” φ always replaces the pressure when pressure or
its logarithm is used as the vertical coordinate, and no further approximations to jus-
tify (2.11) are needed in the atmospheric case except the hydrostatic approximation,
which we have already made. In the ocean, taking

φ ≡ p/ρM (2.12)

where ρM is a constant equal to the vertical average of the basic state density, ρ0(z),
is necessary to obtain a simple relation between p and its replacement, φ. This
approximation of ignoring density variations in themomentum equations while leav-
ing ρ untouched in the heat and hydrostatic equations is known as the Boussinesq
approximation. Since (ρ −ρ0)/ρ is O(10−2) or smaller in the ocean, the Boussinesq
approximation is VERY GOOD.

The replacement of p by φ is very convenient. McCreary [1] simply drops the
factor of ρ0 and uses p as the symbol for both the pressure and for the pressure
divided by the mean density. It seems less confusing to borrow the meteorologist’s
symbol.

All these simplifications finally give the linearized set of equations

ut − f v + φx = [(A/N 2)uz]z (2.13a)

vt + f u + φy = [(A/N 2)vz]z (2.13b)

ρMφz = −ρg (2.13c)

ρt − (ρM/g)N 2w = [(A/N 2)ρ]z z (2.13d)

ux + vy + wz = 0 (2.13e)

where we have ignored the distinction between ρM and ρ0(z) in the denominator of
N 2 in obtaining (2.13d).

2.2 Boundary Conditions

The boundary conditions of the separable model are four at the top and four at
the bottom; since the system is eighth order in z (i.e., 8 z-derivatives appear in
these equations), one unknown (φ, or in other words, the pressure) must be left
unconstrained on the boundaries. The imposed conditions are:
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SURFACE: (at z = 0)

νuz = τ x (2.14a)

νvz = τ y (2.14b)

w = 0 (2.14c)

ρ = ρ0(z = 0) (2.14d)

where τ x and τ y are the surface wind stresses on the ocean in the x and y directions.
The first two boundary conditions are physically correct and are used even in

nonlinear numerical models. The difficulty is that wind stress is created by turbulent
air-sea interaction which is parameterized by formulas relating wind stress to wind
speed.Once thewind stress has been calculated by some formula/incantation/voodoo,
the boundary conditions are mathematically correct and induce no further error.

Assumption 2.10 Rigid lid.

Taking w = 0 at the top of the ocean is physically equivalent to imposing a rigid
lid at z = 0 and is obviously unrealistic; an ocean voyager sees only an endless
field of waves. However, when we separate variables and analyze the structure of
individual vertical modes, we find that setting w = 0 at z = 0 has a major effect
only on the barotropic mode, that is to say, the mode in which the horizontal currents
are independent of depth. To be sure, all the baroclinic modes have very small but
non-zero vertical velocities at the sea surface. However, setting w = 0 at the top for
the baroclinic modes creates an error of O(�ρ/ρ) where �ρ is the variation of the
density with depth. Since this is O(1/250) for the equatorial ocean, we make only a
negligible error for the baroclinic modes by making this approximation.

But what about the barotropic mode? As we shall see below, only the baro-
clinic modes support equatorially trapped motions, so we must largely exclude the
barotropic mode from consideration anyway. McCreary therefore rates this approx-
imation as GOOD.

Assumption 2.11 Density = mean density at surface; equivalently, temperature =
mean temperature at the surface.

This assumption is “UNPLEASANT” in McCreary’s words because it demands
that the atmosphere act as a constant-temperature source of heat, and does not allow
the sea surface to change with time, latitude, or anything else. A coupled ocean-
atmosphere model would never make this assumption because in reality, the situa-
tion is the other way around. The ocean surface temperature does change, and this
provides a constant-temperature source of heat for the atmosphere. Namias’ method
of long-range weather forecasting, for example, is based on looking at sea surface
temperatures and their effect on the atmosphere. A more realistic condition would
be to specify the heat flux at the ocean surface, or better yet, some kind of radia-
tive balance equation involving such complications as evaporation and precipitation,
albedo, and so on.
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Nonetheless, this assumption is essential to separating variables, so for analytical
theory, McCreary rightly labels it as UNFORTUNATE but NECESSARY.

The bottom boundary conditions are
BOTTOM: (at z = −D where D is depth of the ocean, a constant)

νuz = 0 (2.15a)

νvz = 0 (2.15b)

w = 0 (2.15c)

ρ = ρ0(z = 0) (2.15d)

Assumption 2.12 Constant bottom depth D

In reality, the bottom topography of the sea is highly irregular and this can give
rise to all kinds of complicated effects: topographic Rossby waves, jets that follow
the depth contours, topographic scattering of internal waves, etc., etc. However, the
important equatorial motions – at least the sort that have been studied up to now – do
not extend to the bottomof the abyss. The equatorial ocean is sufficiently deep inmost
places so that topographic effects are not important; topography is most important
in very shallow seas and along the continental shelves. I rate this assumption as
NECESSARY, but NOT BAD for the class of motions we are interested in. This
assumption of a flat bottom then forces us to impose (2.15c); note over sloping
topography, the vertical velocity w does not have to be 0.

Assumption 2.13 No stress at the bottom.

A numerical model would use the normal viscous condition of no horizontal
velocities at the bottom; the condition of no stress filters out a bottom Ekman layer
driven by the geostrophic current just above the bottom. However, for surface trapped
motions, there is no bottom Ekman layer anyway. While Ekman spin-down could in
principle be an important dissipativemechanism, the turbulent eddy viscosities are so
low in the deep ocean in comparison to the surface layer that the bottom Ekman layer
can often be ignored when there are bottom currents. McCreary rates this assumption
as NECESSARY and NOT BAD.

Assumption 2.14 No temperature changes at the sea bottom.

In view of the approximate equation of state (2.6), requiring that the density
equal the mean density at the bottom has multiple implications.It is equivalent to
compelling the bottom temperature to equal the mean temperature. This assumption
also forces the sea-bottom to act as a constant temperature source of heat to the ocean,
i.e., a reservoir of infinite heat capacity and conductivity. This is a little unrealistic,
but the lack of realism is not serious for surface-trapped motions. McCreary rates
this NECESSARY and NOT BAD.

For clarity, the full list of assumptions is collected in Table2.1.
As noted by McCreary, the single most restrictive assumption implicit in the

boundary conditions is the constant temperature condition at the surface of the sea.
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Table 2.1 The assumptions of the basic model and their ratings

Equatorial beta-plane EXCELLENT

Neglect of vertical Coriolis GOOD

No horizontal viscosity SENSIBLE

Hydrostatic approximation GOOD

Incompressibility (Nondivergence) VERY GOOD

Drop all nonlinear terms in momentum
equation

QUESTIONABLE

Drop all nonlinear terms except wdT0/dz in
heat equation

QUESTIONABLE

Assume special forms for mixing coefficients:
ν = � = A/N 2

NECESSARY

Replace of p by φ with Boussinesq
approximation

VERY GOOD

Rigid lid upper boundary GOOD (for baroclinic modes)

Density and temperature equal their mean
values at surface

(UNFORTUNATE but NECESSARY)

Constant bottom depth D NECESSARY but NOT BAD (for
surface-trapped motion)

No stress at the sea bottom NECESSARY and NOT BAD

No temperature changes at sea bottom NECESSARY but NOT BAD

This is a real problem because a coupled ocean-atmosphere model of the Southern
Oscillation/El Niño phenomenon, for example, must have sea surface temperature
changes to drive the atmospheric changes of the cycle. The other surface conditions
are either correct or very accurate approximations, andweneed notworry about them.
None of the bottom boundary conditions, in contrast, is realistic, but equatorial flows
are not sensitive to the bottom boundary conditions.

2.3 Separation of Variables

In a nonlinear, numerical model, all five of (2.13) would be retained with the local
time derivatives in the momentum and heat equations being replaced by total time
derivatives, and perhaps the special, stability-dependent viscosity coefficients with
more realistic forms. In a linearized treatment, however, we can reduce the number
of equations in stages.

The first step is to rewrite the heat equation, using the hydrostatic equation to
replace ρ by φz , to give an expression for the vertical velocity:

w = −(1/N 2)[φt − A(φz/N
2)z]z (2.16a)
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The density is given in terms of φ by the hydrostatic equation,

ρ = −(ρM/g)φz (2.16b)

We are then left with a system of 3 equations in the three other unknowns:

ut − f v + φx = AΛu (2.16c)

vt + f u + φy = AΛv (2.16d)

−Λφt + ux + vy = −AΛ2φ (2.16e)

where Λ is the linear operator defined by

Λ = ∂z
1

N 2
∂z (2.17)

The key point is that as a result of the careful choice of the form of the viscosity,
conductivity, and boundary conditions, the vertical derivatives in (2.16) appear solely
in the form of the operator Λ, the resulting spectral equations will uncouple and we
will have separated variables. The eigenfunction problem is

d

dz

[
1

N 2

d

dz
zm

]
= −λmzm (2.18)

with boundary conditions

d

dz
zm = 0 at z = 0,−D (2.19)

This is a classic Sturm–Liouville eigenproblem – no singularities, no complica-
tions of any kind since N (z) is positive definite – but a little care isneeded because
different unknowns have different dependence on zm . The proper expansions are

u =
∞∑

m=0

um(x, y, t)zm(z) (2.20a)

v =
∞∑

m=0

vm(x, y, t)zm(z) (2.20b)

φ =
∞∑

m=0

φm(x, y, t)zm(z) (2.20c)

ρ = ρ0(z) − ρM

g

∞∑
m=0

φm(x, y, t)
dzm
dz

(2.20d)
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w =
∞∑

m=0

wm(x, y, t)
∫ z

−D
zm(z′)dz′ (2.20e)

The three independent variables (u, v, and φ) which solve the closed set of equa-
tions, (2.16a)–(2.16c), thus depend on the vertical eigenfunctions directly, but ρ and
w are different. That ρ depends on the derivatives of the eigenfunctions rather than
on the zm themselves is an obvious consequence of the hydrostatic equation – ρ is
on one side while the z-derivative of φ is on the other – which also gives the sim-
ple relationship of the expansion coefficients of ρ to those of φ which is explicitly
displayed in (2.20d).

The vertical dependence of w can be deduce from the equation of continuity in
its original form

ux + vy + wz = 0 (2.21)

The vertical differentiation in (2.21) eliminates the integral in (2.20e) so that u, v,
and the z-derivative of w are all proportional to zm for a given vertical mode.

The assumed expansions are all consistent with the boundary conditions, too.
One can see why it is necessary to impose somewhat artificial conditions, such as
no stress at the bottom, rather than the more natural no-slip: there are four boundary
conditions at each surface, but only a single vertical structure function zm . The sole
boundary condition on zm at z = 0 is imposed, like it or not, on all four fields, and
similarly at the bottom boundary.

The mechanics of this consistency are a little tricky. The integrals in (2.20e), for
example, automatically impose the boundary condition w = 0 at the bottom because
the lower limit of integration is the bottom, z = −D. The top boundary condition of
w = 0 at z = 0 can only be satisfied if

∫ 0

−D
zm(z′)dz′ = 0 (2.22)

Extra boundary conditions like this cannot be satisfied in general, but (2.22) is
fact a direct consequence of the eigenvalue problem which defines the zm as can be
seen by rewriting (2.18) and (2.19) in integral equation form. By integrating both
sides of (2.18) with respect to z, one obtains

zmz = −N 2λ

∫ z

−D
zm(z′)dz′ (2.23)

This is valid for all z. Evaluating (2.23) at z = 0 and imposing the boundary condition
(2.19), which makes the L.H.S. of (2.23) equal to 0, then gives (2.22).
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The top boundary conditions on u and v are more complex: the vanishing of the
derivatives of zm implies that each term in the z-derivative of the sums for u and
v, (2.20a) and (2.20b), must individually vanish at z = 0 — and yet the boundary
conditions there demand that ux and vx be non-zero to balance the wind stress. This
issue is complex enough to deserve further discussion in Appendix B. Here, we will
simply go ahead to derive the equations for each baroclinic mode and then invoke
the integration-by-parts argument of McCreary [1].

Since (2.18) and (2.19) constitute a regular Sturm–Liouville problem, the eigen-
functions zm are a complete orthogonal set. This justifies the expansions (2.20). It also
implies that we can derive spectral equations to compute the coefficients um(x, y, t),
vm(x, y, t), etc. through the usual procedure of multiplying the equations of motion
by each basis function zm(z) to reduce each infinite sum to a single term.

The x-momentum equation is typical. Since none of the terms involve z-
differentiation, the expansion of the L.H.S. of (2.16c) gives only terms proportional
to zm(z) for various m. Multiplication by a particular basis function, zm(z), followed
by integration then eliminates all terms in the infinite sum exceptm = n. The spectral
projection of the R.H.S. of (2.16c) is

∫ 0

−D
zn A[uz/N

2]zdz = Azn(uz/N
2)|0−D −

∫ 0

−D
A(znz/N

2)uz dz (2.24)

= Azn(uz/N
2)|0−D − Au(znz/N

2)|0−D +
∫ 0

−D
Au[znz/N 2]z dz

(2.25)

by twice integrating-by-parts. To evaluate the integral, use the physical boundary
conditions on ∂u/∂z to evaluate the first surface term, the boundary conditions on
zm to evaluate the second, and the expansion of u into eigenfunctions and the orthog-
onality of the eigenfunctions. This gives

∫ 0

−D
zn A[uz/N

2]zdz = τ xzn(0) − 0 − Aλnun(x, y, t)
∫ 0

−D
z2ndz (2.26)

We see from (2.26) that the convenient normalizations for the vertical eigenfunc-
tions are either

zn(0) = 1 [McCreary normalization], (2.27)

which simplifies the first term in (2.26) and is the choice made by McCreary [1], or

∫ 0

−D
z2ndz = 1, [orthonormal] (2.28)

which simplifies the last term in (2.26). Either way, the spectral equivalent of (2.2)
becomes
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(∂t + Aλn)un − f vn + φnx = Fn (2.29a)

(∂t + Aλn)vn − f un + φny = Gn (2.29b)

λ(∂t + Aλn)φn + unx + vny = 0 (2.29c)

and the two dependent equations

ρn = φn(ρM/g) (2.30a)

wn = λn(∂t + Aλn)φn (2.30b)

where

Fn = τ xzn(0)/
∫ 0

−D
z2ndz (2.31a)

Gn = τ yzn(0)/
∫ 0

−D
z2nda (2.31b)

The closed set of three equations, (2.29), is identical in form with the linearized
shallow water wave equations, and will therefore sometimes be referred to as the
“shallowwaterwave equations”. The two dependent equations, (2.30),will be needed
only rarely.

2.4 Lamb’s Parameter, Equivalent Depths, Kelvin Phase
Speeds and All that

The reason for the rather lengthy section title is that there are several popular con-
ventions for expressing the eigenvalues of the vertical structure equation. One of the
older conventions is based on the analogue between (2.29) and the shallow water
equations: the form is identical provided that we write

λn = 1

(gHeq)
[“equivalent depth”] (2.32)

where Heq(n) is the so-called “equivalent depth” for the n-th baroclinic mode, which
replaces the actual depth H in the shallowwater equations. Because ocean tides were
first studied using the model of a single layer of homogeneous fluid, i.e., the shallow
water equations, this “equivalent depth” convention is popular in both oceanic and
atmospheric tidal theory, among others.

The second convention is based on the fact that (gH)1/2 is the speed of a (non-
rotating) gravity wave in the shallow water model. This would seem to have little
relevance to the large-scale motions that are our primary interest here since these
are strongly affected by rotation. However, the equatorial Kelvin wave (and its
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mid-latitude counterpart, the coastal Kelvin wave) are in geostrophic balance in one
direction while having the structure of a non-rotating gravity wave in the other hor-
izontal coordinate and z; its phase speed is always equal to (gH)1/2 or to (gHeq)

1/2

for the baroclinic Kelvin waves that will be discussed at great length in later chapters.
Because the Kelvin wave is of such physical importance in its own right as well as
providing a convenient scale for other waves–the lowest meridional mode Rossby
wave always travels, for longwavelength, at exactly 1/3 the phase speed of the Kelvin
wave of the same vertical mode, for example— some equatorial dynamicists use the
“Kelvin wave convention”:

λn = 1

c2n
[“Kelvin convention”] (2.33)

where cn is the phase speed of the Kelvin wave for the n-th baroclinic mode. This is
the way of writing the eigenvalue which is used in McCreary [1].

The third convention is to define a quantity, usually called “Lamb’s parameter”, to
be the non-dimensional equivalent of the eigenvalue. Letting a = radius of the earth
and Ω = angular frequency of the earth’s rotation (= 2π/86, 400s),

ε = (4Ω2 a2)λn = (4Ω2a2)

gHeq
[“Lamb’s parameter”] (2.34)

Alas, there is no standard symbol for Lamb’s parameter; the famous treatise of
Longuet–Higgins [17] used ε. The nonlinear papers of Boyd used E so as to reserve
ε for the perturbation parameter.

Fortunately, the issue is not of paramount importance because it is conventional
in equatorial oceanography (although there a few diehards) to nondimensionalize the
shallow water equations (2.29) in an ε-dependent way so that (nondimensionally)
λm = 1. Note that because we have separated variables, we can study each baroclinic
mode in isolation and are free to adopt a different nondimensionalization, i.e., one
that depends on λm , if this is convenient.

The actual eigenvalues, expressed as equivalent depths, for a set of observations
and for an idealized numerical model are given in Table2.2.
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Table 2.2 Properties of baroclinic modes for a simple analytical T (z) [top] and observations
[bottom]

Equivalent Length Time

Vertical
mode n

Depth H0
cm

(gH0)
1/2

(cm s−1)
Scale L
(km)

Scale T
(days)

1 100 312 395 1.46

2 22 146 271 2.15

3 9.4 96 219 2.64

4 5.1 71 189 3.09

5 3.3 57 169 3.44

6 2.3 47 154 3.80

7 1.7 41 143 4.04

8 1.3 36 134 4.31

9 1.1 32 126 4.55

10 0.9 29 120 4.80

H ′
(cm)

√
gH ′

(cm/s)
L
(km)

T
(days)

1 60 240 325 1.5

2 20 140 247 2.0

3 8 88 197 2.6

4 4 63 165 3.1

5 2 44 139 3.6

(a) (Model) T (z) = 4. + 20.ez/500m (in degrees C◦). Data from Semtner and Holland [16]
(b) (Observed) [Atlantic] E.J. Katz, private communication, [18]

2.5 Vertical Modes and Layer Models

The weak flow below the thermocline in either the layered or continuously stratified
case has led to a further idealization popular in equatorial oceanography: the “one-
and-a-half layer” model. The vertically integrated horizontal velocities are always
zero in the two-layer model. When the lower layer is much deeper than the top, as
is always true in the real ocean — the best two-layer fit to the observed density is a
bottom layer roughly 40 times thicker (4km vs 100m) than the upper — the motion
in the lower layer is therefore extremely weak. It is then useful to simplify the model
still further by pretending that the depth of the lower layer is infinite, instead of
merely very large, so that the lower layer is at rest. Symbolically,

1
1

2
layer model≡ 2 layer model with lower layer of infinite depth and no motion

This “one-and-a-half layer” model distorts the linear dynamics of the baroclinic
mode only a little, but it profoundly alters the nonlinear dynamics by eliminating
the coupling between the baroclinic and barotropic modes. The reason is that when
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Fig. 2.1 The 1-1/2 layer model (left) is mathematically equivalent to the shallow water equations
(right).Note that a trough in the thermocline,which is the boundary between thewarm, dynamically-
active upper layer and the cold, dynamically-passive layer translates into a crest in the shallowwater
model. Note also that the mean depth of the shallow water is the equivalent depth (typically half a
meter) rather than the actual depth of the layer above the thermocline, which is O(100) m

a horizontal velocity like u is zero in the lower layer, a nonlinear product like uux

is also zero in the lower layer. Therefore, the nonlinear terms involving the self-
interaction of a motion in the baroclinic mode project back only onto the depth-
varying baroclinic mode rather than onto the barotropic mode, which is independent
of depth. The special cases of (i) equal depth or (ii) an infinite lower layer depth as
here are the only circumstances in which the nonlinear barotropic mode/baroclinic
mode coupling in the two-layer model is 0.

In reality, however, the coupling to the second baroclinic mode – which does not
even exist in the two-layer model – can be as strong as the barotropic mode in the
continuously stratified model. Furthermore, the second baroclinic mode motion is
more interesting than the barotropic mode because only the baroclinic modes are
equatorially trapped. Consequently, it is not possible to do a satisfactory treatment of
nonlinear mode-coupling in the two-layer model even when the depth of the lower
layer is kept finite, so most equatorial oceanographers have been quite shameless in
retreating to the one-and-a-half layer models for nonlinear calculations. (Note that
for purely linear calculations, the baroclinic and barotropic modes are completely
uncoupled, and the difference between the two-layer and one-and-a-half layermodels
is irrelevant.)

The virtue of the one-and-a-half layer model is that it is identical in form with
the nonlinear shallow water wave equations except that (i) the actual depth of the
upper layer is a factor of a hundred or more larger than the equivalent depth, which
is (O[0.6m]) and (ii) the model must be turned upside down (Fig. 2.1). What is
meant by this is that the height φ is proportional to the total thickness of the layer
that is in motion (Fig. 2.1). Since the density difference across the thermocline is
two orders of magnitude smaller than the difference across the air-water interface,
it is the thermocline that moves, and not the sea surface. When the thermocline
moves down, the total thickness of the upper layer increases. Thus, when the shallow
water wave equations are being used to represent the baroclinic mode of the one-
and-a-half layer model, a positive value of φ corresponds to downward movement
of the thermocline, an increased thickness of the upper layer, and downwelling at
the thermocline, i.e., negative vertical velocity. The numerical values in the shallow
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water model must be multiplied by the ratio of thermocline depth/equivalent depth
to obtain the actual thermocline changes: φ equivalent to a 30cm displacement in a
shallow water model with an equivalent depth of only 60cm corresponds to a 50m
change in the thermocline depth.

The one-and-a-half layer model has been described here in some detail because it
has been surprisingly effective in explaining many features of the large-scale ocean
circulation when supplied with realistic boundaries and wind stresses.

Nonetheless, the formalism of continuously stratified models is well understood,
and they are clearly the wave of the future. Figure2.2 compares the first four baro-
clinicmodes as calculated by Semtner andHolland [16] for the idealized stratification

T (z) = 4 + 20ez/500m ◦C (2.35)

(the eigenvalues are given in Table2.2) with the lone baroclinic mode of the two-
layer model for a case in which the bottom layer is much deeper than the top layer.
The structure of the first baroclinic mode for the exponential stratification is similar
to that of the baroclinic mode of the two-layer model except for the smearing out
of the step-function jump in the corresponding eigenfunction. However, both first
baroclinic modes have strong flow in the upper ocean and much weaker flow – in the
opposite direction – in the deep ocean. Thus, the layermodel gives a reasonable, albeit
crude, approximation to the lowest baroclinic mode of a more realistic, continuously
stratified model. While the baroclinic modes shown in Fig. 2.2 are intended to be
representative only—a more realistic stratification would give less amplitude at the
bottom—it is easy to calculate the vertical modes for any specified stratification.

2.6 Nondimensionalization

Letting a = radius of the earth, Ω = angular frequency of the earth’s rotation, and

ε = 4Ω2a2/gHequivalent [“Lamb’s parameter”] (2.34bis)

as before, one can eliminate a, Ω , and ε as explicit parameters by choosing vertical
mode-dependent scalings. Letting asterisks denote the non-dimensional quantities,

x∗ = ε1/4x/a (2.36a)

y∗ = ε1/4y/a (2.36b)

t∗ = ε−1/4(2Ω)t (2.36c)

u∗ = ε1/2u/(2Ωa) (2.36d)

v∗ = ε1/2v/(2Ωa) (2.36e)

φ∗ = εφ/(2Ωa)2 (2.36f)

A∗ = ε5/4A/[(2Ωa)22Ω] (2.36g)
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will reduce the shallow water equations to a formwith no explicit parameters except
the viscosity coefficient, which we shall usually set equal to 0 (Fig. 2.2).

Planetary wave theory and middle atmosphere dynamics often uses a nondi-
mensional frequency σ = dimensional frequency/(2Ω) and the zonal wavenum-
ber is an integer s. The corresponding nondimensional phase speed is cplanetary =
phase speed/(2Ωa). These are connected to the nondimensional quantities used in
equatorial oceanography by

k∗ = s/ε1/4 (2.37)

ω∗ = ε1/4σ (2.38)

c∗ = ε1/2 cplanetary (2.39)

0

1

2

3
4

km
n=2

n=1

n=3

n=4

T(z)=4o C. + 20o exp(z/500m)

(a)

Two-Layer
Model

(b)

Fig. 2.2 Baroclinic modes versus depth where z is the horizontal axis and depth z is the vertical
axis. The dashed vertical lines are the axis z = 0. a First four modes for an exponential variation
of mean temperature with depth. b First (and only) baroclinic mode of a two-layer model
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εσ 3 − [ε1/2(2n + 1) + s2]σ − s = 0 ↔ ω3 − [(2n + 1) + k2]ω − k = 0

The scalings in (2.36) can be summarized by stating that the nondimensional
length scale L , time scale T and velocity scale U are given by

L = ε−1/4a (2.40a)

T = ε1/4/(2Ω) (2.40b)

U = ε1/2 2Ω a (2.40c)

where typically L ∼ O(300km), T ∼ O(2days) and U is O(2m/s).
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Chapter 3
Kelvin, Yanai, Rossby and Gravity Waves

Abstract The Hough-Hermite functions are the normal modes of the shallow water
equations. Each eigenfunction is a vector with different latitudinal and vertical struc-
ture functions for the three fields (u, v, φ). Geophysicists commonly classify the
normal modes into different species: Kelvin wave, Rossby waves, gravity waves and
the Yanai wave, also known as the mixed Rossby-gravity mode. In this chapter, we
catalogue the properties of these normal modes. The latitudinal structure functions
are given explicitly as Hermite functions. Derived fields such as the vorticity are also
cataloged. The eigenvalues are the frequencies, which are analyzed both through
explicit approximations and a plethora of graphs. Hough functions also appear when
Lamb’s parameter ε is the eigenvalue and the frequency is a parameter as in tidal
theory, and also when the zonal wavenumber k is the eigenvalue as needed for tides
in a land-bounded basin and certain applications in meteorology.

Eyesight should learn from reason.

Johannes Kepler

3.1 Latitudinal Wave Modes: An Overview

The normal modes of the linearized shallow water wave equations, henceforth the
“Hough-Hermite” functions, play a dual role in equatorial dynamics. First, they are
the idealized solutions of the simplest rational model. Mean flows, transient forcing,
irregular coastlines, and dissipation stretch and distort both the spatial and temporal
structure of the normal modes, but Rossby waves retain many characteristics of the
Rossby Hough-Hermite modes and distorted Kelvin waves are still Kelvin waves.

Second, the Hough-Hermite functions are a complete orthogonal set which can
be used as the basis set in applying the spectral or pseudospectral method, even in
strongly nonlinear or damped problems. It is possible to eliminate some or all of the
gravity wave basis functions to create a restricted basis set that captures the physics
of low frequency motions and allows a long time step.

© Springer-Verlag GmbH Germany 2018
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In the previous chapter,we derived the three shallowwaterwave equations for each
vertical mode in the most general possible form for a resting mean state (Eq.2.29a,b
and c). For free oscillations these are simplified by the assumptions that

(i) The wind stresses τ x , τ y = 0.
(ii) The eddy viscosity coefficient A = 0.
With these two assumptions, the shallow water wave equations will be equally

appropriate for either the ocean or the atmosphere. The Hough-Hermite functions
are the vector solutions for the undamped, free oscillations of the equatorial ocean;

In addition, we shall use the vertical mode-dependent nondimensionalization of
the previous chapter, which effectively replaces the vertical eigenvalue λ by 1. We
shall also drop the subscripts denoting the vertical mode number for notational sim-
plicity. The equations we must solve are then

ut − f v + φx = 0 (3.1a)

vt + f u + φy = 0 (3.1b)

φt + ux + vy = 0 (3.1c)

where

f =
⎧
⎨

⎩

f0 [midlatitude f-plane],
f0 + βy [midlatitude beta-plane],

y [equatorial beta-plane]
. (3.2)

where f0 and β are constants.
We are of course primarily interested in the last case f = y, but it is worth

nothing that the equations are equally valid for the midlatitude f -plane (or, forming
a vorticity equation from the momentum equations in the shallow water trio, the
midlatitude beta-plane) because these simpler equations — whose coefficients are
constants — will often be useful in later sections for understanding (a) the analogy
between coastal and equatorial motions and (b) wind-driven motions in general.

There are two distinct methods for preceding farther. One is to make the usual
assumption that all the waves depend on x and t in the form

exp[ik(x − ct)] (3.3)

and then reduce the three shallow water equations down to a single equation for
one of the unknowns to determine the latitudinal structure. It is best to make ν the
unknown since this gives the simplest differential equation, the so-called “parabolic
cylinder” equation. This has the great virtue that its eigenfunctions can be written
down in simple closed form as the Hermite functions, which are described fully in
Appendix A — but only if we impose the boundary conditions

u(y = ±∞) = v(y = ±∞) = φ(y = ±∞) = 0 (3.4)

http://dx.doi.org/10.1007/978-3-662-55476-0_2
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Since the equatorial beta-plane cannot be qualitatively correct at high latitudes, it
is foolish to impose boundary conditions at some finite value of ymerely because that
y corresponds to ±π/2 radians. The whole justification for the equatorial beta-plane
is that its dynamics is dominated by motions which are equatorially trapped and
decay exponentially fast beyond some finite turning latitude. So long as we choose
the boundaries to be beyond these turning points, it matters little where we place
them. The boundary conditions at ±∞ have therefore become a canonical part of
the equatorial beta-plane approximation.

One exception is the Gulf of Guinea where the coast of West Africa runs roughly
parallel to the equator for a distance of several hundred kilometers at only 4 ◦N.
Here the correct eigenfunctions are general parabolic cylinder functions—which
cannot be written down in analytical form except as infinite power series—chosen
to vanish at a finite northern boundary (and an infinite southern boundary). For the
low order modes, i.e., Kelvin and mixed-Rossby gravity waves, which are the ones
of greatest physical importance, the effects of the finite boundary are still negligible.
Consequently, we shall use only infinite boundary conditions and Hermite functions.

The disadvantages of the obvious procedure of obtaining a single equation for v
are that (i) it omits the Kelvin wave, which has v ≡ 0 and (ii) it spuriously gives
three solutions for the zeroth-order Hermite mode when there are in fact only two
such wave modes for the original set of three equations. Obtaining a single equation
in u or φ alone is not a useful alternative because these differential equations have
“apparent” singularities and are therefore not standard Sturm–Liouville problems;
further, u and φ are sums of two Hermite functions, unlike the eigenmodes for v,
whose solutions are proportional to a single Hermite function. The standard textbook
approach in [1], for example, is therefore to reduce the three shallow water equations
down to a single equation for v alone and then treat the two exceptions separately.

The other approach is less obvious — indeed, it would not make sense unless
one already knew the answer — but it has the virtue of neither omitting nor adding
waves. Furthermore, this line of attack has proven very useful in solving the inho-
mogeneous shallow water equations when either wind stresses or lower order terms
in perturbation theory replace the zeros on the right-hand sides of the shallow water
system. This “sum-difference” method is therefore the derivation given here.

The “sum-difference” method uses two ancient tricks. Observe that while u and
φ are proportional to sums of two Hermite functions, it is possible, since they both
involve the same two Hermite functions, to define new variables which are linear
combinations of u and φ that are proportional to a single Hermite function, just as v
is [2]:

S ≡ φ + u [“sum variable”] (3.5a)

D ≡ φ − u [“difference variable”] (3.5b)

The second trick, first applied in quantummechanics, is that theHermite functions
have simple “raising” and “lowering” operators that transmute one Hermite function
into another. The beauty of these two tricks is that all the explicit factors of y and
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all the y derivatives can be written in terms of these operators R and L. For the
normalized Hermite functions

R ≡ (d/dy − y) [“raising operator”] (3.6a)

Rψn = −[2(n + 1)]1/2ψn+1 (3.6b)

L ≡ (d/dy + y) [“lowering operator”] (3.7a)

Lψn = [2n]1/2ψn−1 (3.7b)

The first step is to take the sum and difference of the x-momentum equation and
the height equation so as to obtain replacements that involve only S alone or D alone:

St + Sx + (vy − yv) = 0 (3.8a)

Dt − Dx + (vy + yv) = 0 (3.8b)

Note that the terms involving v in (3.8) can both be written in the simple formRv
or Lv by using the “raising” and “lowering” operators. Similarly substituting S, D,
L, and R into the y-momentum equation gives the set

St + Sx + Rv = 0 (3.9a)

vt + 0.5(LS + RD) = 0 (3.9b)

Dt − Dx + Lv = 0 (3.9c)

The next step is to substitute Hermite expansions into (3.9). (Note that the sums
are now over latitudinal eigenfunctions, unlike the sums over vertical modes of the
previous chapter.) The general solution, of course, is a double summation over both
the vertical and latitudinal modes. The sums are

S(x, y, t) =
∞∑

n=0

Sn(x, t)e
−(1/2)y2Hn(y) (3.10a)

v(x, y, t) =
∞∑

n=0

vn(x, t)e
−(1/2)y2Hn(y) (3.10b)

D(x, y, t) =
∞∑

n=0

Dn(x, t)e
−(1/2)y2Hn(y) (3.10c)

Substituting these series into (3.9) and exploiting the properties of the raising and
lowering operators, one finds that the Hermite coefficients are determined by

S0t + S0x = 0 [“Kelvin singlet”] (3.11)
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which completely determines the Kelvin wave, for which v = D = 0, plus the pair
of equations

S1t + S1x − 21/2v0 = 0 [“Yanai doublet”] (3.12a)

v0t + 2−1/2S1 = 0 (3.12b)

plus the infinite set of triples of equation, one for each n with n ≥ 1,

Sn+1,t + Sn+1,x − [2(n + 1)]1/2vn = 0 (3.13a)

vn,t + [(n + 1)/2]1/2Sn+1 − [n/2]1/2Dn−1 = 0 (3.13b)

Dn−1,t − Dn−1,x + [2n]1/2vn = 0 (3.13c)

[“General Triplet”]

Thus, Sn+1 is coupled only to vn and Dn−1 so that the triplet set of Eq. (3.13) may
be solved for a given n independently of all the other triplets.

Because the route of reducing the shallow water wave equations down to a single
equation for v was the historical route, it is now a firm convention to define the
latitudinalmode number for equatorial waves to be the degree of theHermite function
which describes v. It would be natural to use the Hermite degree of the sum variable
S instead; for the Kelvin wave, which has v ≡ 0, it is necessary to define n = −1
in the usual convention. However, the convention is now too firmly entrenched to be
changed.

Since the Eqs. (3.11)–(3.13) are constant coefficient, it is trivial to assume the
usual exp[ik(x−ct)] dependence for all the variables and obtain a dispersion relation.
To avoid complex arithmetic, define

∣
∣
∣
∣
∣
∣

Sn+1(x, t)
vn(x, t)

Dn−1(x, t)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

−S̃ cos(kx − ωt)
ṽ sin(kx − ωt)

−D̃ cos(kx − ωt)

∣
∣
∣
∣
∣
∣

(3.14)

Substituting into the general triplet gives the 3× 3 algebraic eigenvalue problem

∣
∣
∣
∣
∣
∣

(k − ω) −[2(n + 1)]1/2 0
−[(n + 1)/2]1/2 −ω [n/2]1/2

0 [2n]1/2 (−k − ω)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

S̃
ṽ
D̃

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

0
0
0

∣
∣
∣
∣
∣
∣

(3.15)

Because this matrix is homogeneous, this system has nontrivial solutions only if its
determinant is zero. This yields the dispersion relation

ω3 − (2n + 1 + k2) ω − k = 0 (3.16)

which is solved in Sect. 3.3.
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Once ω is known, the first and third equations show that

S̃ = {[2(n + 1)]1/2/(k − ω)
}
ṽ (3.17)

D̃ = {
(2n)1/2/(k + ω)

}
ṽ (3.18)

What follows in the next section is simply an extensive collection of results.

3.2 Latitudinal Wave Modes: Structure and Spatial
Symmetries

The explicit linearized plane wave solutions of (3.13), i.e., the results obtained by
assuming that thewave depends upon x and t only through a factor of exp[ik(x−ct)],
are collected as Tables3.1, 3.2 and 3.3. Somewhat inconsistently, the formulas for
n = 1 and higher are expressed in terms of normalized Hermite functions while
the Kelvin wave and mixed-Rossby gravity wave results are displayed explicitly as
ordinary polynomials (because of their simplicity). Only u, v, φ, the vorticity ζ , and
the linearized potential vorticity q ≡ ζ − yφ are given because the other quantities
of interest are proportional to those listed. For example, the divergenceΔ is given by

Δ ≡ ux + vy = ikcφ (3.19)

for all wave modes; this is an obvious consequence of the continuity equation [φt

equation] of the linearized shallow water wave set. Similarly,

w = −ikc
∫ z

−D
φ(z′)dz′ (3.20)

T = −αρ = [αρM/g]φz (3.21)

from Eq.2.20.
Note that w, T , and ρ are the only quantities which depend upon either deriva-

tives or integrals of the vertical structure functions; the other variables are directly
proportional to zm(z) itself.

Figures3.1, 3.2 and 3.3 illustrate the horizontal winds and pressure for the Kelvin
wave (n = −1), the mixed Rossby-gravity or Yanai wave (n = 0, westward-
traveling), and the n = 1 Rossby wave. Several general comments can be made.

First, the height φ and zonal flow u are always zonally in phase and have the
same latitudinal symmetry with respect to the equator. The latitudinal current v, in
contrast, is always 90 degree out of east-west phase with u and φ and always has the
opposite symmetry with respect to the equator.

http://dx.doi.org/10.1007/978-3-662-55476-0_2
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Fig. 3.1 Kelvin wave for east-west wavenumber k = 1. Positive isolines of height are solid while
negative-valued contours are dotted. Local maxima and minima of height φ are marked with the
letters “H” and “L”, a common meteorological convention. The arrows show the magnitude (vector
length) and direction (arrow orientation) of the horizontal wave velocity vector whose components
are (u, v). No numerical values are given because the amplitude of a linear normal mode is arbitrary

Fig. 3.2 Mixed Rossby-gravity (Yanai) wave for k = 1
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Fig. 3.3 n = 1 Rossby mode for k = 1

Equations (3.19)–(3.21) show thatw, T , and the divergenceΔ are all proportional
toφ (or its vertical integral or derivative). Thus, all three of these quantities invariably
have the same zonal-latitudinal structure as φ.

This explains a rather amusing convention; the equatorial symmetry of a given
mode is defined to be the symmetry of u, φ,w and T . Thus, the n = 1 Rossby mode,
for which all these quantities are symmetric with respect to the equator, is called a
“symmetric” mode. The irony is that the mode is numbered according to the Hermite
degree of v, and this is always opposite in symmetry to the other four fields. One
therefore has to remember that while the Kelvin wave and all n = 1, n = 3, n =
5, . . . , modes are symmetric with the equator, the Hermite functions of odd degree
n are antisymmetric with respect to the equator. Table3.4 summarizes the latitudinal
symmetry of each individual field.

The vorticity ζ and potential vorticity q share the same latitudinal symmetry as
v; the potential vorticity is in fact proportional to the same Hermite function as v.
However, because of the factor of i in front of v, which is missing from q and ζ , the
two vorticities are always 90 degrees out of phase with v and therefore have maxima
and minima along the same meridians as u and φ.

Zonally speaking, we have that u, φ, ζ , and q are in phase while the ridges and
troughs of v and the divergence Δ are always a quarter wavelength out of phase with
the first four. The zonal phases for w and T are a little more complicated because
these depend upon integrals or derivatives of φ. When the vertical structure functions
represent standing waves, unlike those shown in Fig. 3.4, w is zonally out of phase
with φ while the temperature is in phase with φ.
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Fig. 3.4 Longitude-depth
cross-section for a Kelvin
wave with downward energy
propagation. Note that the
direction of phase
propagation is upward,
opposite to that of the energy

In the atmospheric case

z(z) ≈ eirz (3.22)

which r is the vertical wavenumber. (We have ignored the usual density growth factor
of exp(z/(2H)where H is the scale height of the atmosphere because this factor has
no oceanic counterpart, and is omitted anyway in the Boussinesq approximation.)
Because the atmosphere is semi-infinite rather than bounded, equatorial waves freely
radiate away to space. This implies that free modes are impossible. Instead, one has
only forced modes which propagate upward and do not return. We have therefore
appropriately omitted a subscript mode number from z(z).When one has to vertically
integrate the complex exponential in (3.22) one obtains a factor of i , and likewise
in differentiating. Therefore, in the atmosphere, the zonal phase relationships of w
and T are changed: w is always in phase with φ while T is always zonally a quarter
wavelength behind.

Because w and T always have the same latitudinal structure as φ and because the
zonal average of the product ofφ andw—which is the vertical energy flux—must be
positive for an upward propagating wave, we can make the unambiguous statement
that the vertical velocity is always maximum upwards where φ is a maximum while
the strongest downdrafts occur at the troughs ofφ. Similarly, the temperaturemaxima
always lead the ridges of φ by a quarter of a wavelength, regardless of whether the
wave is traveling to the east or the west.

Ocean waves that are excited at the surface and transmit energy downward into
the abyss may exhibit a similar one-way propagation, only turned upside-down, if
there is sufficient damping so that the energy that reflects off the bottom is strongly
attenuated before it reaches the surface again. The different vertical propagation
direction implies that the oceanic structure is

z(z) ≈ exp(−ir z) (3.23)
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These zonal phase relationships for a surface-forced, downward-energy-propagating
Kelvin wave are shown in Fig. 3.4.

When the vertical wavelength is short in comparison to the mean ocean depth of
4km, it is therefore reasonable to apply a radiation condition on the eigenfunctions
of the vertical structure equation. Then the atmospheric phase relationships apply to
the ocean, too, except that for downward-propagating waves, maximum downward
velocities coincide with the ridges of φ, and T now lags the ridges of φ instead of
leading them.

For ocean normal modes in which the zn(z) are real (rather than complex), the
vertical integration/differentiation needed to obtain w and T from φ does not intro-
duce a factor of i . In this case, w is out of phase with φ while the temperature T
now is in phase with φ. Thus, the distinction between vertical normal modes and
vertical traveling waves is very important to the zonal phase relations — which in
turn are important in understanding whether observed waves are normal modes, or
surface-generated waves on a one-way trip to the bottom.

In the vertical normalmodes case, there is no simple rule as towhether φ and T are
of the same or opposite sign at a given point because both are oscillating with z, but
one is proportional to zn(z) and the other is proportional to its derivative. Similarly, u
andφ are always proportional to the same function of depth, but since their latitudinal
structure is different, they may be of the same or opposite sign, depending on the
latitude.

3.3 Dispersion Relations: Exact and Approximate
Frequencies

The dispersion relation for the Kelvin mode is trivial: without approximation

c = 1 ∀k ↔ ω = k (3.24)

The Yanai dispersion relation is the quadratic

ω2 − kω − 1 = 0 (3.25)

which has also an algebraic exact solution:

ω = k

2
±

√
k2

4
+ 1 [Yanai Frequency] (3.26)

For the special case k = 0, the frequency simplifies to

ω = ±1 [Yanai Zero-Wavenumber Frequency] (3.27)
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The frequencies for the three modes whose north-south current is proportional to
ψn(y) are the three roots of the cubic equation

ω3 − (2n + 1 + k2)ω − k = 0 (3.28)

Note that because the coefficient of ω2 is zero, the so-called “Vieta Root Identities”
(Theorem 11.9 on p. 224 of [3]) show that the sum of the roots is exactly zero:

ωRossby(n, k) + ωEG(n, k) + ωWG(n, k) = 0 [Vieta Identity] (3.29)

where the three roots are a Rossby wave, an eastward-traveling gravity wave and a
westward-traveling gravity wave as discussed further below.

For the special case k = 0, the roots are

ω = 0,±√
2n + 1 [Zero Wavenumber Frequencies] (3.30)

The zero frequencymodes are geostrophically-balancedwith zero north-south veloc-
ity and are often called the “geostrophic modes”, although they are also the smooth
limits of Rossby waves in the limit k → 0. The frequencies of the other two modes
are similarly the well-behaved limits of the frequencies for eastward-traveling and
westward-traveling gravity waves

The exact roots for general k are given by (Theorem 1.1, p. 199 of [3])

ωEG = √
4/3 (2n + 1 + k2)1/2 cos(Ξ/3) (3.31)

ωWG = √
4/3 (2n + 1 + k2)1/2 cos(Ξ/3 + 2π/3) (3.32)

ωRossby = √
4/3 (2n + 1 + k2)1/2 cos(Ξ/3 + 4π/3) (3.33)

where the subscripts EG and WG denote the gravity waves propagating towards the
east and towards the west, respectively, and where

Ξ ≡ arccos

(
33/2

2(2n + 1 + k2)3/2
k

)

(3.34)

One can show that Ξ differs form π/2 by no more than 1/(2n + 1) for all n and
k; the power series approximations to the arccosine and cosine functions are rapidly
convergent and give the approximate solutions

ωG ≈ ±(2n + 1 + k2)1/2 (3.35)

where the plus sign gives the eastward-traveling gravity wave and

ωRossby ≈ −k/(2n + 1 + k2) (3.36)



46 3 Kelvin, Yanai, Rossby and Gravity Waves

Boyd [4] proves rigorous error bounds for these approximations as discussed
further in the next section. The relative error in the Rossby wave approximation
is never worse than 1 part in 60 for all n and k — a far smaller error than that
made by ignoring mean currents and other assumptions implicit in (3.28) —so it is
rarely necessary to use the exact trigonometric solutions (3.33). The gravity wave
approximations may be in error by as much as 10%, but the relative error can be
reduced to less than 1% for all n, k by modifying (3.35) to

ωG ≈ ±(2n + 1 + k2)1/2 − 1

2
ωRossby (3.37)

where ωRossby is given by (3.36). This second approximation for gravity waves is
consistent with the Vieta Theorem (3.29) (p. 234 of [3]).

Figures3.5, 3.6, 3.7 and 3.8 illustrate the dispersion relations for n = −1 (Kelvin),
n = 0 (Yanai), and n = 1, 2, 3. The graphs use the common oceanographic conven-
tion of plotting eastward andwestward traveling gravity waves as a single continuous
curve by defining ω to always be positive and allowing k to be either positive (for
waves propagating towards the east) or negative (for westward-traveling waves). In

Fig. 3.5 Dispersion relations for the mixed Rossby-gravity (Yanai) wave [latitudinal mode n = 0]
and for the Kelvin wave [n = −1]
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Fig. 3.6 Dispersion relations for the n = 1 latitudinal mode. The dashed line in the upper diagram
shows where k is complex-valued; the imaginary part of the east-west wavenumber k is the oval
closed curve in the lower panel. Waves in this intermediate frequency range are coastally trapped,
and decay away from shore. The wavenumbers are the two roots of k2 − k/ω + (3 − ω). (Note
that the dispersion relation is cubic in frequency ω but only quadratic in zonal wavenumber k for
n ≥ 1.) Complex k is discussed at length in Sect. 3.6

the analytical formulas (3.32), (3.33), (3.35), and (3.37), we have employed the usual
meteorological convention of taking k > 0 always and allowing the frequency to
be either sign. It makes no physical difference so long as we are consistent, but
it is important to note that the meteorological and oceanographic conventions are
different.

The small positive correction added to the gravity wave frequency for both east-
ward and westward traveling waves is responsible for the slight asymmetry of the
gravity wave branch of the curve; gravity waves have small (but non-zero) group
velocities for k → 0.

When the atmosphere drives the ocean at a fixed frequency ω, then we need to
solve (3.28) for k(ω) instead of computing frequency as a function of wavenumber.
We will postpone a discussion of this until Sect. 3.6, and first explain in Sect. 3.5 the
implications of the large separation between the frequencies of gravity and Rossby
waves.
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Fig. 3.7 Dispersion relations for the n = 2 latitudinal mode, same as the two previous figures but
for a different latitudinal mode
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Fig. 3.8 Dispersion relations for the n = 3 latitudinal mode, same as the two previous figures but
for a different latitudinal mode. The wavenumbers are the two roots of k2 − k/ω + (7 − ω)
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3.4 Analytic Approximations to Equatorial Wave
Frequencies

3.4.1 Explicit Formulas

The exact solutions in terms of the arccosine are precise but much less useful than
the algebraic approximations described by the following.

Theorem 3.1 (Approximate Dispersion Relations) Let w and k denote the nondi-
mensional freuency and wavenumber. Then 1. The dispersion relation for equatorial
Rossby waves satisfies the following:

w = −k

k2 + 2n + 1
{1 + Δ} (3.38)

for some Δ that satisfies the bound

|Δ| ≤ 0.039

(n + 1/2)2
, n ≥ 1 (3.39)

The relative error is no worse than 1.7% even for the lowest, n = 1 mode.
2. For gravity waves,

w =
√
k2 + 2n + 1 {1 + Δ} (3.40)

|Δ| ≤ 0.141

n + 1/2
(3.41)

where the relative error is no worse than 10% even for the lowest, n = 1 mode.
3. For gravity waves, the improved approximation and its bound are

w = ±
√
k2 + 2n + 1

{

1 ± k

(2 (k2 + 2n + 1)3/2

}

{1 + Δ} (3.42)

|Δ| ≤ 0.021

(n + 1/2)2
(3.43)

the relative error is no worse than 1% even for the lowest, n = 1 mode. (From
Appendix B of [4].)

3.4.2 Long Wave Series

Long Rossbywaves (|k|  c) have useful Taylor series approximations for the phase
speed in powers of the square of the wavenumber. This depends on the mode number
through
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ν ≡ 2n + 1 (3.44)

c = −1

ν
+ c2k

2 + c4k
4 + . . . (3.45)

c2 = −1 + ν2

ν4
(3.46)

c4 = −3 − 4 ν2 + ν4

ν7
(3.47)

The dispersion relation c3 − (ν + k2)c − 1 = 0 has a triple point when k2 = −ν, so
the series converges only for k ≤ √

2n + 1.
The radius of convergence can probably be extended to the entire positive real

axis by expanding in the modified perturbation parameter ð such that

k2 = ð
ν

1 − ð
⇔ ð = k2

k2 + 2n + 1
(3.48)

This is equivalent to Euler acceleration of the power series in k2. Unfortunately,
extensions to quantities other than the phase speed are not yet available.

3.5 Separation of Time Scales

In the middle latitudes, it is well-known that the dominant, low-frequency wave
motions are Rossby waves (perhaps modified by shear into baroclinic instability, but
still low-frequency) while the gravity waves are merely high-frequency noise. More
or the less the same is true in equatorial regions as well, but unfortunately, quasi-
geostrophy is not a good approximation for waves at low latitudes. (It becomes better
and better for Rossbywaves as n → ∞, but ismediocre for the n = 1Rossbywave—
which is the most important one.) However, there is still a large gulf between the
frequencies of gravity and Rossby waves at the equator.

For simplicity, use the approximate dispersion relations for n ≥ 1, (3.35) and
(3.36). Observe that as the mode number n increases, the frequency (and phase
speed) of the Rossby waves becomes smaller and smaller while exactly the reverse
happens for the gravity waves. Consequently, the Rossby and gravity modes that are
closest in frequency are the n = 1 modes. Taking the ratio gives

|ωG/ωR| = (3 + k2)1/2/[k/(3 + k2)] [n = 1 modes] (3.49)

= (3 + k2)3/2/k (3.50)

≥ 7.79 for all k (3.51)
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as can be shown by differentiating (3.50) with respect to k, computing the zero of the
derivative which is the minimum kmin , and lastly evaluating the ratio at this k = kmin .
Thus, even for this worst case, there is a separation of an order of magnitude between
the time scales of even the quickest Rossby wave and the slowest pure gravity wave.

The Kelvin wave and mixed-Rossby gravity wave have frequencies intermediate
between those of the pure Rossby and gravity waves for n ≥ 1.1 Nonetheless, this
wide disparity of time scales has made it possible to apply a “two-timing” initial-
ization procedure to replace quasi-geostrophy for global models by an alternative
method, still accurate at low levels, which exploits this separation in frequency to
filter out high frequency gravity waves (Tribbia, Kasahara, Lynch) [5–8].

3.6 Forced Waves

When we calculate the free oscillations of the ocean, Lamb’s parameter is known—it
is determined by the particular baroclinic mode we are interested in — and either
the phase speed c or frequency ω is the eigenvalue. It is perfectly possible, however,
to have waves which are forced at a definite frequency ω. In this case, either ε or the
zonal wavenumber k is the eigenvalue.

In the atmosphere, the boundary condition in x is zonal periodicity. It follows that
the wavenumber k is always real and is quantized by the requirement that the wave
be periodic around the circumference of the earth—in other words, the dimensional
zonal wavenumber at the equator must equal an integer divided by the radius of the
earth. Lamb’s parameter ε, which determines the vertical structure of the waves, is
the eigenvalue.

Although εmust always be positive for free oscillations— the free oscillations of a
baroclinic mode are analogous to those of a single layer of fluid with the appropriate
equivalent depth, and the depth must always be positive—it is perfectly possible
that for waves forced at a particular frequency ω, for ε(ω) to be negative. (Platzman
reviews the seven (!) independent discoveries of negative Lamb’s parameter [9].)
Physically, ε < 0 simply means that the forced wave is decaying exponentially
with height instead of being vertically propagating. For a semi-infinite fluid, i.e.,
one with no top boundary, this vertical trapping is just as consistent with the upper
boundary condition as is the radiating solution where the vertical structure function
is proportional to exp(ir z). All atmospheric tidal calculations done before the early
60’s were wrong because the modes with negative ε were simply left out of the sum
over modes in the mistaken belief that they did not exist.

1In the shortwave limit k → ∞, the gravity wave phase speeds converge to one from above creating
a shortwave resonance with a steepening, nonlinear Kelvin wave as described in Chap.16. This is
not important for initialization, however.

http://dx.doi.org/10.1007/978-3-662-55476-0_16


52 3 Kelvin, Yanai, Rossby and Gravity Waves

Wu and Moore (2004) and Wu, Sarachik and Battisti (1999) show that a con-
tinuous spectrum of modes of negative ε is necessary for some forced problems in
meteorology [10, 11].

For equatorial waves linearized about a resting mean state, however, ε > 0
always. However, to show this and to do any other useful calculation for forced
waves, the ε-dependent nondimensionalization is no longer convenient. To convert
the dimensional frequency into a nondimensional frequency, one must know ε—but
ε is always 1 in the ε-dependent scaling, and one could not calculate it even if it still
appeared as an explicit parameter because one does not know the nondimensional
frequency without it.

Consequently, the ε-dependent scaling of this Chapter, which is so ubiquitous in
oceanography, is never used in meteorology. Instead, atmospheric scientists use a
nondimensionalization in which the length scale is always the radius of the earth
and the time scale is always the reciprocal of twice the angular frequency of the
earth’s rotation, as done in [1]. Let σ denote the dimensional frequency/(2Ω) and s
[an integer] denote the dimensional zonal wavenumber divided by the radius of the
earth The dispersion relation becomes

εσ 3 − [ε1/2(2n + 1) + s2]σ − s = 0 (3.52)

For fixed ω, this equation can be explicitly solved as a quadratic equation for the
square root of ε.

In the ocean, the forced wave problem is different because the sea is bounded
both above and below, which forces ε to be quantized, i.e., to assume only a discrete
set of values. Coastlines destroy the zonal boundary condition of periodicity that
is always correct in the atmosphere. Instead, k becomes the eigenvalue, and it may
become imaginary, physically representing forced waves that decay exponentially
in longitude away from continental boundaries (see O’Connor and Sozou [12–15]).
The appropriate dispersion relations in terms of k as the eigenvalue (and with ε

nondimensionalized to 1, as always in the ocean) are

k = ω [Kelvin wave] (3.53)

k = ω − 1/ω [Yanai, alias mixed Rossby gravity] n = 0 (3.54)

[also eastward n = 0 gravity wave]

k = −1/(2ω) ± {ω2 + 1/(4ω2) − (2n + 1)}1/2 n ≥ 1 (3.55)

Note that for forced waves, the dispersion relation for general n is a quadratic in
ε1/2 or k rather than a cubic so that (i) all solutions are explicit, requiring nothing
more exotic than square roots and (ii) there are at most two forced waves for a
given n in contrast to the three free modes for each n and (iii) the eigenvalue can be
complex-valued.

Figures3.5, 3.6, 3.7 and3.8,which illustrateω(k), of course also display the forced
wave dispersion relations k(ω) (3.53)–(3.55). The graphs employ the convention, not
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used in meteorology, of taking the frequency to always be positive while k can be
of either sign. With this convention, waves with negative k correspond to westward
traveling disturbances such as Rossby waves. Note also that the Kelvin and mixed
Rossby-gravity waves can never be zonally trapped; it is only when the mode n ≥ 1
that k can be complex. The dashed line in the upper parts of Figs. 3.6, 3.7 and 3.8
denotes that part of the curve for which k is complex; the solid curves represent
the real valued gravity wave [upper curves, opening upward to infinity] and Rossby
waves [k negative only and asymptoting to 0 at the origin]. The argument given in
Sect. 3.5 to show the large frequency separation of the gravity and Rossby waves
applies only when k is real. The branch with k complex connects the real-valued
Rossby and gravity wave curves as shown in the figures.

These boundary trapped waves can be readily generated simply by forcing the
ocean in a particular baroclinic mode with the structure of a particular latitudinal
mode at a frequency between that of the maximum frequency of a free Rossby wave
and the minimum frequency gravity wave. For the n = 1 mode, this means k will
have an imaginary part whenever

31/2 > −ω > 31/2/6 (3.56)

We will see later that such boundary trapped waves are excited not only by wind
stress if the stress is oscillating with ω in the necessary range (3.56), but also as part
of the reflection of zonally propagating equatorial waves from coastal boundaries.

3.7 How the Mixed-Rossby Gravity Wave Earned Its Name

For n = 1, the two westward-traveling free modes that exist for higher n are com-
bined into a single mode. This wave is not described as either a Rossby wave or a
gravity wave because in different parametric ranges, it behaves like both — hence
its description as a “mixed-Rossby-gravity” wave. Oceanographers often use the
shorter (but less descriptive) term “Yanai” wave for this same mode after Michio
Yanai of UCLA, who was the first person to detect such waves in the atmosphere
in the late 60’s. Meteorologists use this name less frequently than oceanographers,
in part because the existence of this wave was predicted theoretically by Stanley
Rosenthal several years earlier and, independently, by a number of oceanographers
(Stern, Bretherton, and Hendershott). Another important note: oceanographers plot
both the westward and eastward traveling n = 0 waves as a single, continuous func-
tion as evident in Fig. 3.5, so they sometimes use the name “Yanai” wave to denote
all n = 0 waves, regardless of their direction of phase propagation.

When ε is plotted against σ for fixed zonal wavenumber, as meteorologists nor-
mally do, where σ denotes a frequency that is allowed to be of either sign, the graphs
for the eastward and westward traveling waves cannot be joined into a single, con-
tinuous graph, so meteorologists restrict “Yanai” and “mixed Rossby-gravity” to the
westward-traveling wave only.
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In the atmospheric case where the frequency σ is known and ε is the eigenvalue,
the Rossbywave-like behavior occurs for large σ : ε becomes small and then negative
as σ increases. No true gravity wave ever has a negative ε! (This is shown in Longuet-
Higgin’s exhaustive (1968) study of the solutions of Laplace’s Tidal Equation on a
sphere with equatorial waves representing the ε → ∞ limit.) In the opposite limit
of small σ , ε goes to ∞ as 1/σ 4, like a gravity wave, rather than the slower increase
proportional to 1/σ 2. Thus, we have

|σ | ≥ 1/s → ε < 0 [global Rossby wave] (3.57a)

|σ |  1/s → ε � 1 [equatorial gravity wave] (3.57b)

As explained in Longuet-Higgins [16], planetary waves are equatorially trapped
only when ε + s2 is large and positive [assuming no mean current with shear], and
waves with negative ε are global and cannot be well approximated by the equatorial
beta-plane. (Here s is the integral zonalwavenumber and its role in equatorial trapping
is explained in [17, 18] andSect. 3.12.) For ε = 0, the spherical problemcanbe solved
exactly as done by Haurwitz [19]; this gives σ = −1/s for the mixed Rossby-gravity
wave. For intermediate σ , the wave is a hybrid of Rossby and gravity wave (hence
the name!).

In the oceanic case, ε = 1 (after nondimensionalization) and we are interested
in either ω(k) or, for forced waves, k(ω). Both gravity and Rossby wave behavior
are still manifest in the equatorial beta-plane dispersion relation shown in Fig. 3.5,
proving that it is possible for the mixed Rossby-gravity wave to be Rossby-like even
when it is equatorially trapped, and not merely when it is a global, vertically trapped
(ε < 0) mode. However, an oceanographer would describe the parametric range
differently. Comparing Figs. 3.5 and 3.6, observe that the westward-traveling wave
(k < 0) behaves like a Rossby wave for large negative k in that ω remains bounded
(and actually goes to zero, though this cannot be seen from the graph) as |k| → ∞
while ω is a monotonically increasing function of k for gravity waves. For small
negative wavenumber, however, the Yanai wave is similar to a gravity wave in that
it tends to a finite, non-zero limit as k → 0 whereas all the pure Rossby waves have
ω → 0 in this same limit. Thus, we have

−k � 1 → ω  1 [equatorial Rossby wave] (3.58a)

−k = O(1) → ω ∼ O(1) [equatorial gravity wave] (3.58b)

3.8 Hough-Hermite Vector Basis

3.8.1 Introduction

In undergraduate physics, trigonometric functions play a dual role. Mathematically,
cos(kx) and sin(kx) are the basis functions for Fourier series. An arbitrary function
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u(x), whether it represents waves or not, can always be expanded as a Fourier series.
Spectral and pseudospectral methods are schemes for solving differential equations
— elliptic, hyperbolic or whatever — that employ a Fourier basis. Physically, how-
ever, the structure of infinitesimal amplitude waves in a homogeneous medium is
also described by cos(kx) and sin(kx). More complicated nonlinear waves are no
longer simply proportional to a single trigonometric function; nonlinearity couples
different wavenumbers together, and variations in refractive index can modulate the
amplitude and wavelength. Nevertheless, this dual role of trigonometric functions is
full of insight. Simple, somewhat idealized problems are often solved by expanding
the initial condition as a Fourier series. The general solution is that each Fourier
component propagates at its own speed. The mathematics of basis functions blends
thusly into the physics of waves.

The same is true in more complicated fashion for planetary waves in general
and equatorial waves in particular. Hough functions, that is, the normal modes of
Laplace’s linear tidal equations for a global homogeneous ocean of constant depth,
have been sporadically employed as the latitude-and-longitude basis functions for
two-dimensional and three-dimensional atmospheric models [7, 20–25].

On the equatorial beta-plane, as noted earlier, the exact solutions to the linearized
equations of motion are wave modes that are finite linear combinations of Hermite
functions in latitude multiplied by sinusoidal functions in longitude and, in three
dimensions, by baroclinic modes in depth. However, the Hermite functions are also
a complete set of basis functions for smooth functions on an infinite interval. Even
when the ocean is not idealized or linear, the Hermite-spectral method is a good
numerical method as illustrated in Anderson [26], Holvorcem and Vianna [27, 28],
Smith [29], Majda and Khoulder [30] and Tribbia [6] among others. Again, the
Hermite functions are both basis function [mathematics] and wave mode [physics].

There is a complication, however: if we expand each of the three unknowns of the
shallow water set as Hermite series, then, even using the sum-difference variables,
three wave species are mixed together. Thus, vn(x, t), the n-the Hermite coefficient
of the north-south current, is the sum of the n-th Rossby mode plus the eastward-
traveling andwestward-traveling n-thmode gravity waves. The function vn(x, t)will
have a complicated time evolution as each of its three component waves propagates
separately.

To create a one-to-one match between basis functions and waves, we have to use
vector eigenfunctions that we will dub the “Hough-Hermite” functions. S.S. Hough
in the late 19th century showed how to compute the vector eigenfunctions of the
shallow water equations on the sphere, which are “Laplace’s Tidal Equations” in that
context. The eigenfunctions are commonly called “Hough” functions in his honor.2

TheHough-Hermite functions are asymptotic approximations to the spherical Hough
functions in the limit of small equivalent depth, that is, of small mean depth in the
shallow water system.

2“Hough” is pronounced “Huf”; Sir Frank Dyson, Astronomer Royal, gives a biography of Sydney
Samuel Hough, F. R. S., in [31].
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Table A.17 is a catalogue of numerical models that use Hermite functions or
Hough-Hermite functions. However, Hermite functions and equatorial waves are
so entangled that almost every article on equatorial wave theory could be added to
the list.

3.8.2 Inner Product and Orthogonality

Theorem 3.2 (Hough-HermiteOrthonormality)Assume that the zonal wavenumber
k is restricted to an integral multiple of the zonal period. Define the scalar inner
product by

< f, g > ≡
∫ P

0
dx

∫ ∞

−∞
f (x, y) g(x, y)dy (3.59)

Then the Hough-Hermite vector eigenfunctions are orthonormal with respect to the
following vector inner product:

< Sk,n,q,i t ype Sk′,n′,q′,i t ype′ > +2 < vk,n,qvk′,n′,q′,i t ype′ > + < Dk,n,q,i t ypeDk′,n′,q,i t ype′ >

= δk,k′δn,n′δq,q′δi t ype,i t ype′ , k �= 0 (3.60)

where δi j is the usual Kronecker δ such that δ j j = 1 whereas δi j = 0, i �= j . The
reason for the factor of two multiplying the scalar inner product in v, but not the
other two terms, will be explained below.

Proof The orthogonality of modes of different latitudinal mode number n is rather
trivial. The sum variable S for the n-th mode is always proportional to ψn+1(y). It
follows that the sumvariable for a different latitudinalmode number n′ will be propor-
tional to a different Hermite function. Integrating the product Sk,n,q,i t ypeSk ′,n′,q′,i t ype′

will therefore give zero because the Hermite functions are orthonormal. Similarly,
when we integrate the products of different zonal wavenumbers k and k ′ over x , the
usual orthogonality of different degrees of a Fourier series will again give zero.

The non-trivial part of the proof is to show that the vector inner product of different
wave types of the same n and k are orthogonal.

To prove orthogonality in the case when k = k ′ and n = n′, we need to look
carefully at the solutions of the coupled system of three equations in x and t which
are solved by the various wave species of a given latitudinal mode number n.

First, substitute ∣
∣
∣
∣
∣
∣

Sn+1(x, t)
vn(x, t)

Dn−1(x, t)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

−S̃ cos(kx − ωt)
ṽ sin(kx − ωt)

−D̃ cos(kx − ωt)

∣
∣
∣
∣
∣
∣

(3.61)

into the linearized shallowwater equations. This gives the algebraic eigenvalue prob-
lem for the three modes of a given n and k as
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∣
∣
∣
∣
∣
∣

(k − ω) −[2(n + 1)]1/2 0
−[(n + 1)/2]1/2 −ω [n/2]1/2

0 [2n]1/2 (−k − ω)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

S̃
ṽ
D̃

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

0
0
0

∣
∣
∣
∣
∣
∣

(3.62)

The matrix is not symmetric, but can be made so by (i) multiplying the middle
equation by

√
2 and (ii) defining the modified unknown

v̂ ≡ √
2ṽ (3.63)

The algebraic eigenvalue problem then becomes

∣
∣
∣
∣
∣
∣

(k − ω) −(n + 1)1/2 0
−(n + 1)1/2 −ω n1/2

0 n1/2 (−k − ω)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

S̃
v̂
D̃

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

0
0
0

∣
∣
∣
∣
∣
∣

(3.64)

We can then invoke the well-known matrix theorem that the eigenvalues of a sym-
metric, real-valued matrix are real and the eigenvectors are orthogonal. It follows
that the eigenvectors of different modes of the same n and k will be orthogonal with
respect to the usual vector inner product. This in turn confirms the orthogonality of
the integral inner product in (3.60). Reverting to the original variable ṽ gives the
factor of two multiplying < v, v′ > in (3.60). �

It is straightforward to choose a normalization constant, denoted below by
k,n,iג t ype, so the vector basis functions have unit vector inner product.

3.8.3 Orthonormal Basis Functions

The Hough-Hermite functions can be written in terms of either exp(ikx), where k
must take both positive and negative values, or equivalently as real-valued functions
using cos(kx) and sin(kx). Since the complex-valued forms are given in Tables3.1,
3.2 and 3.3, we shall display the real-valued forms here.

The Kelvin basis function is, with q restricted to either q = 0 or q = 1,

uk,−1,q =
∣
∣
∣
∣
∣
∣

S
v
D

∣
∣
∣
∣
∣
∣
= 1−ג

∣
∣
∣
∣
∣
∣

cos(kx − qπ/2)ψ0(y)
0
0

∣
∣
∣
∣
∣
∣

(3.65)

where
1−ג = 1/

√
P/2 (3.66)

The Yanai basis functions are, restricting i t ype to only two modes,
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uk,0,q,i t ype =
∣
∣
∣
∣
∣
∣

S
v
D

∣
∣
∣
∣
∣
∣
= k,0,iג t ype

∣
∣
∣
∣
∣
∣
∣

√
2

ω − k cos(kx − qπ/2)ψ1(y)

sin(kx − qπ/2)ψ0(y)
0

∣
∣
∣
∣
∣
∣
∣

, k �= 0 (3.67)

where
k,0,iג t ype = 1/

√

P
{
1/(ω − k)2 + 1

}
(3.68)

The Yanai basis functions for zero wavenumber are

u0,0,i t ype,q =
∣
∣
∣
∣
∣
∣

S
v
D

∣
∣
∣
∣
∣
∣
= i,0,0ג t ype

∣
∣
∣
∣
∣
∣

±√
2ψ1(y)

ψ0(y)
0

∣
∣
∣
∣
∣
∣

(3.69)

where ω = 1 (and the plus sign applies) for i t ype = 1 while ω = −1 and the
negative sign applies for i t ype = 2.

i,0,0ג t ype = 1

2
√
P

, k = 0 (3.70)

where the factor of 2 arises because the average of the constant over x ∈ [0, P] is P ,
double that of cos2(kx) for any nonzero wavenumber. That is

∫ P
0 cos2((2πκ/P)x)

dx = P/2 where κ is a nonzero integer and
∫ P
0 cos2(0)dx = P .

The basis functions for latitudinal mode n ≥ 1 are

uk,n,i t ype,q =
∣
∣
∣
∣
∣
∣

S
v
D

∣
∣
∣
∣
∣
∣
= k,n,iג t ype

∣
∣
∣
∣
∣
∣
∣
∣

cos(kx − qπ/2)
√
2(n+1)

ω(k,n,i t ype)−kψn+1(y)

sin(kx − qπ/2) ψn(y)

cos(kx − qπ/2)(−1)
√
2n

ω(k,n,i t ype)+kψn−1(y)

∣
∣
∣
∣
∣
∣
∣
∣

(3.71)

where k is the zonal wavenumber, n is the latitudinal mode number (n ≥ 1), i t ype
is a triple-valued index (one Rossby and two gravity modes) and q = 0, 1. ג is the
normalization constant,

ג =

⎧
⎪⎨

⎪⎩

1/

√

P
{

(n+1)
(k−ω)2

+ 1 + n
(k+ω)2

}
k �= 0

1√
P

1√
2(n+1)

ω2
+2+ 2n

ω2

k = 0, i t ype = 2 or 3
(3.72)

where P denotes the spatial period in the east-west direction. (The limit P → ∞,
which corresponds to a zonally-unbounded ocean, causes no particular difficulties.)

For zero wavenumber, the geostrophic modes [limits of Rossby waves as k → 0]
are

u0,n,1 =
∣
∣
∣
∣
∣
∣

S
v
D

∣
∣
∣
∣
∣
∣
= n,1,0ג

∣
∣
∣
∣
∣
∣
∣

ψn+1(y)
0√

n+1
n ψn−1(y)

∣
∣
∣
∣
∣
∣
∣

(3.73)
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n,1,0ג =
√

n

P (2n + 1)
(3.74)

For zero wavenumber, the gravitational modes are

u0,n,i t ype =
∣
∣
∣
∣
∣
∣

S
v
D

∣
∣
∣
∣
∣
∣
= n,i,0ג t ype

∣
∣
∣
∣
∣
∣
∣

(−1)
√
2(n+1)

ω
ψn+1(y)

ψn(y)√
2n
ω

ψn−1(y)

∣
∣
∣
∣
∣
∣
∣

, i t ype = 2, 3 (3.75)

n,i,0ג t ype = 1√
P

1
√

2(n+1)
ω2 + 2 + 2n

ω2

, i t ype = 2, 3 (3.76)

3.9 Applications of the Hough-Hermite Basis: Linear
Initial-Value Problems

The Hough-Hermite functions, in their dual role as both waves and basis func-
tions, provide an almost trivial solution to the general unforced, inviscid initial-value
problem for the linearized shallowwater equations on the equatorial beta-plane. Sup-
pose that the initial conditions are uinit (x, y), vinit (x, y) and φini t (x, y). The cor-
responding initial conditions for the sum and difference variables are Sinit (x, y) ≡
φini t (x, y)+uinit (x, y) and Dinit (x, y) ≡ φini t (x, y)−uinit (x, y). Define the integer
zonal wavenumber κ by

κ ≡ (P/[2π ]) k (3.77)

where P is the east-west spatial period and k is the zonal wavenumber, which is
generally not an integer. Further define

Sinitκ,n,q

Dinit
κ,n,q

⎫
⎬

⎭
≡

∫ P

0
cos(kx − qπ/2)dx

∫ ∞

−∞
dy

⎧
⎨

⎩

ψn+1(y) Sinit (x, y)

ψn−1(y)Dinit (x, y)
(3.78a)

vinitκ,n,q ≡
∫ P

0
sin(kx − qπ/2)dx

∫ ∞

−∞
dy ψn(y)v

init (x, y) (3.78b)

and similarly for the other fields.
The coefficient of the Hough-Hermite basis function is

ak,n,q,i t ype = k,n,iג t ype

{

Sinitκ,n,q

√
2(n + 1)

ω(k, n, i t ype) − k
+ 2vinitκ,n,q −

√
2n

ω(k, n, i t ype) + k
Dκ,n,q

}

κ = 0, 1, 2, . . . ; n = 1, 2, . . . ; q = 0, 1; i t ype = 1, 2, 3 (3.79)

where ג is defined by (3.72).
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The Kelvin and Yanai modes require special treatment, but the ideas are the same
as for n ≥ 1. The Kelvin coefficient is

aκ,−1,q = 2

P

∫ P

0
cos((2π/P)κ x − qπ/2)dx

∫ ∞

−∞
dy ψ0(y)S

init (x, y) (3.80)

where index i t ype is omitted since there is only one species of Kelvin wave.
The Yanai coefficients are

ak,0,q,i t ype k,0,iג= t ype

{

Sinitκ,0,q

√
2

ω(k, n, i t ype) − k
+ 2vinitκ,0,q

}

κ = 0, 1, 2, . . . ; n = 1, 2, . . . ; q = 0, 1; i t ype = 1, 2
(3.81)

The solution to the general initial value problem is then

∣
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∣
∣
∣
∣

S(x, y, t)
v(x, y, t)
D(x, y, t)
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∣
∣
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a0,n,10ג,n,1
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ψn+1(y)
0√
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n ψn−1(y)
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∣
∣
∣
∣
∣
∣

ψn+1(y)
0√

n+1
n ψn−1(y)
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∣
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+
∞∑

κ=1

1∑

q=0

3∑

i t ype=2

aκ,0,q,i t ype κ,0,iג t ype

∣
∣
∣
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√
2

ω − k cos(κx − qπ/2)ψ1(y)

sin(κx − qπ/2)ψ0(y)
0

∣
∣
∣
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,

+
∞∑

κ=1

∞∑

n=1

1∑

q=0

3∑

i t ype=1

aκ,n,q,i t ype κ,n,iג t ype ×
∣
∣
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∣
∣
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∣

{cos(κx − qπ/2) cos(ωt) + sin(kx − qπ/2) sin(ωt)}
√
2(n+1)

ω(κ,n,i t ype)−κ
ψn+1(y)

{sin(κx − qπ/2) cos(ωt) − cos(kx − qπ/2) sin(ωt)} ψn(y)

{cos(κx − qπ/2) cos(ωt) + sin(κx − qπ/2) sin(ωt)} (−1)
√
2n

ω(κ,n,i t ype)+κ
ψn−1(y)

∣
∣
∣
∣
∣
∣
∣
∣

(3.82)

It is only a modest extension to solved forced problems for the linearized shallow
water equations.

3.10 Initialization Through Hough-Hermite Expansion

For nonlinear numerical models, the vector basis functions are equally important.
Numerical weather forecasts are awful when raw observations define the initial con-
dition: the small, random observational errors excite unrealistically large amounts of
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high frequency gravity waves. The forecast is then poisoned by spurious, rapid oscil-
lations. Consequently, all operational forecasting models apply an “initialization”
step which adjusts the data by suppressing the gravity waves. The goal is to adjust
the raw data onto the nearest point on the hypothetical “slow manifold”, a subspace
of the phase space of the model which consists of purely low frequency motion.

As reviewed by Tribbia [5, 6], a popular strategy for initialization of spherical
models is to expand the initial conditions in Hough functions. One can suppress the
high frequency gravity waves by setting the coefficients of thosemodes equal to zero.

The same strategy is a naturalway to initializemodels on the equatorial beta-plane.
The coefficients of Hough-Hermite modes with large ω — how large is “large” is
up to the modeler — are set equal to zero. The crucial point is that the Kelvin wave
should usually not be modified in initialization: its phase speed is only three times
that of the fastest Rossby wave, and it is the simplest and likely the most energetic
wave in the tropical ocean.

Nonlinear interactions usually excite the “initialized” high frequencymodes as the
flow evolves. Refined nonlinear initializations are described by Tribbia and the arti-
cles by Baer and Tribbia [32, 33]. The Baer–Tribbia perturbation series is asymptotic
but divergent; a subtlety is that the slow manifold is existent to all orders in powers
of the small parameter but nonexistent “beyond all orders” due to a tiny, unavoidable
residual of high-frequency motion whose amplitude is an exponential function of
the reciprocal of the small parameter [34–44]. The crucial point is that normal mode
initialization, even when extended to higher order, is still all about expanding the
initial conditions in Hough or Hough-Hermite functions.

3.11 Energy Relationships

The relative amounts of meridional and zonal kinetic energy and potential energy
are often as important in identifying waves modes in observations as is the detailed
structure collected in Tables3.1, 3.2, 3.3, 3.4, 3.5 and 3.6, so it is useful to discuss
energetics here. If we define

MK E ≡
∫∫

(1/2)v2 dx dy [“Meridional Kinetic Energy”] (3.83)

Table 3.1 Kelvin mode,
n = −1

c ≡ 1 (dispersion relation)

φ = e−(1/2)y2

u ≡ φ

v ≡ 0

ψ ≡ yφ

q ≡ 0
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Table 3.2 Yanai wave, n = 0. In the dispersion relation, the + sign is the eastward gravity wave;
the − sign gives the mixed-Rossby gravity or “Yanai” wave. The expressions for the fields apply to
both the eastward and westward traveling n = 0 modes with use of the appropriate phase speed c

c = (1/2) ± [1/4 + 1/k2]1/2
φ = 1

(1−c) ye
−(1/2)y2

u ≡ φ

v = ike−(1/2)y2

q = [−k2 − 1/(1 − c)]e−(1/2)y2

Table 3.3 Higher Rossby and gravity waves n ≥ 1. The phase speeds c are the three solutions of
the cubic equation ω3 − (2n + 1 + k2)ω − k = 0 where ω ≡ kc is the frequency. The dispersion
relation is a cubic because the linearized shallow water equations are a set of three equations for
each positive integer with a first order time derivative appearing in each one. Physically, the three
roots correspond to an eastward traveling gravity wave, a westward traveling gravity wave, and a
westward traveling Rossby wave. Although the cubic cannot be exactly factorized, the roots are so
well separated in frequency —the gravity wave roots are of roughly equal magnitude but opposite
sign while the Rossby root is always negative and of very small magnitude — that highly accurate
approximations are available as given below

cRossby = −1
2n+1+k2

[1 + ER], |ER | ≤ 0.039
(n + 1/2)2

ωgravity = ±(2n + 1 + k2)1/2[1 + EG ],

|EG | ≤ 0.141
(n + 1/2)

φ = 1
(1−c) [(n + 1)/2]1/2ψn+1 + 1

(1+c) [n/2]1/2ψn−1

u = 1
(1−c) [(n + 1)/2]1/2ψn+1 − 1

(1+c) [n/2]1/2ψn−1

v = ikψn

ζ = [(n+1)(n+2)]1/2
2(1−c) ψn+2 + [n(n−1)]1/2

2(1+c) ψn−2 −
[

(n+1)
2(1−c) + n

2(1+c) + k2
]
ψn

q = −ψn

[
(n+1)
(1−c) + n

(1+c) + k2
]

ZK E ≡
∫∫

(1/2)u2 dx dy [“Zonal Kinetic Energy”] (3.84)

PE ≡
∫∫

(1/2)φ2 dx dy [“Potential Energy”] (3.85)

then it is easy to calculate these three terms for each linear mode by performing the
integrations using the explicit solutions of Tables3.1, 3.2 and 3.3. We find that

ZK E ≡ PE [all modes, all wavenumbers] (3.86)

MK E/ZK E =
{

0 [Kelvin waves]
= 2k2(1 − c2)2/{(2n + 1)(1 + c2) + 2c} n ≥ 0

(3.87)
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Table 3.4 Latitudinal symmetries and Hermite expansions. Neglecting mean currents and lineariz-
ing about a state of rest, all equatorial fields are (neglecting mean currents) either symmetric or
antisymmetric about the equator. The middle column lists the symmetry with respect to y = 0 for
the fields of a symmetricmode, that is, one with n odd. The third column lists the Hermite functions
which appear in the Hermite series for the function. Mean currents do not break these symmetries if
and only if each mean component matches the symmetry of that component for a symmetric wave
mode; thus, the mean zonal velocity and height fields must be symmetric about the equator

Variable Equatorial symmetry Hermite

North-south current v Antisymmetric ψn

Zonal current u Symmmetric ψn+1, ψn−1

Height (pressure) φ Symmetric ψn+1, ψn−1

Vorticity ζ Antisymmetric ψn+2, ψn, ψn−2

Potential vorticity q Antisymmetric ψn

Divergence Δ Symmetric ψn+1, ψn−1

Temperature T Symmetric ψn+1, ψn−1

Vertical velocity w Symmetric ψn+1, ψn−1

Perturbation density ρ Symmetric ψn+1, ψn−1

Streamfunction ψ Antisymmetric Infinite series

Velocity potential χ Symmetric Infinite series

Table 3.5 Zonal structure
groups

Pressure group: φ, u, ζ , q, T

North-south velocity group: v, Δ, w

Table 3.6 Vertical structure
groups

zm(z): u, v, φ, ζ, q,Δ
∫ z

zm(z′) d z′: w

(d/dz) zm(z): T, ρ

For Rossby waves, |c| ≤ 1/3 for all n and k, so (3.87) simplifies to

MK E/ZK E ≈ 2k2/(2n + 1){1 + O[1/(2n + 1)2]} [Rossby; all k& n] (3.88)

For gravity waves, the approximation ω ≈ ±(2n + 1 + k2) gives

MK E/ZK E ≈ 2(2n + 1)2/{(2n + 1)(2n + 1 + k2) ± 2k(2n + 1 + k2)1/2} [n ≤ 1]
(3.89)

The exact dispersion relation for the n = 0 mode gives

MK E/ZK E = 2 + k2 ∓ 2k(1 + k2/4)1/2 [n = 0] (3.90)

where the negative sign applies to the eastward-traveling gravity wave and the (+)
to the mixed Rossby-gravity wave. By considering the limits of these expressions,
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we arrive at the following. Longuet-Higgins [16] has already given the long-wave
limits.

Theorem 3.3 (Ratio of Meridional Kinetic Energy to Zonal Kinetic Energy)

(i) MK E/ZK E ≡ 0 [Kelvin wave]

(i i) MK E/ZK E →

⎧
⎪⎨

⎪⎩

2 as k → 0

[Mixed Rossby-gravity]

∞ as k → ∞

(i i i) MK E/ZK E →

⎧
⎪⎨

⎪⎩

2 as k → 0

[n = 0 Eastward-traveling]

0 as k → ∞

(iv) MK E/ZK E →

⎧
⎪⎨

⎪⎩

0 as k → 0

[Rossby; n ≥ 1]
∞ as k → ∞.

(v) MK E/ZK E →

⎧
⎪⎨

⎪⎩

2 as k → 0

[Gravity; n ≥ 1]
0 as k → ∞

3.12 The Equatorial Beta-Plane as the Thin Limit
of the Nonlinear Shallow Water Equations
on the Sphere

The nonlinear shallow water equations on the equatorial beta-plane are the limit
ε → ∞ of the nonlinear shallow water equations on the sphere. This “equatorial
beta-plane” limit corresponds to the dynamics of a global ocean in the limit that
the depth (or equivalent depth, for a baroclinic mode) goes to zero. In the opposite
limit that ε → 0, either the velocity potential χ [for gravity and Kelvin waves] or
the streamfunction and relative vorticity [for Rossby waves, usually called “Rossby-
Haurwitz waves in this limit] are proportional to a single spherical harmonic of
latitudinal index n′. Unfortunately, Longuet-Higgins in his magisterial hundred page
article on Hough functions (1968) observes that although each normal mode is a
single branch ω(ε) without bifurcations on the entire range ε ∈ [0,∞], there are
complications in cataloging themodes. A commonway to distinguish eigenfunctions
is to define the mode number to be the number of interior zeros of the eigenfunction,
but this changes at some finite ε for some Hough functions. The latitudinal mode
numbers n on the equatorial beta-plane [the degree of the Hermite function that is
the north-south structure of the latitudinal velocity v] is not generally equal to the
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subscript n′ of the spherical harmonic that describes amode in the opposite limit. The
Yanai wave is often called the “mixed-gravity wave” because this mode is Rossby-
like in part of parameter space and gravity wave-like in the rest of the parameter
space as already described earlier. The equatorial Kelvin wave asymptotes to the
lowest symmetric gravity wave as ε → 0. Longuet-Higgins [16] does a thorough job
of sorting out these complexities.

An important subtlety omitted from Longuet-Higgins is that the degree of equato-
rial confinement of a mode, and therefore the accuracy of the equatorial beta plane in
describing that particular Hough function, is not controlled by Lamb’s parameter ε

alone. Rather, if the longitudinal factor is exp(isλ)where λ is the longitude in radians
and s is an integer, then latitudinal structure is proportional to exp(−√

ε + s2 ϑ2).
Thus, it is possible for both Rossby waves [17] and Kelvin waves [18] to be equa-
torially trapped and therefore well approximated by the equatorial beta plane even
when ε is zero, so long as the zonal wavenumber s is sufficiently large.

It has been known for half a century that Rossby Hough functions for finite ε are
often well-approximated by simpler transcendentals known as the “prolate spher-
oidal wave functions” [45–51]. The prolate approximation smoothly merges into
the equatorial beta-plane formalism because the Hermite functions are asymptotic
approximations to both prolate functions and also to the latitudinal structure of spher-
ical harmonics of large zonal wavenumber s [52–54].

As pointed out by Longuet-Higgins [16], the Kelvin wave on the sphere is always
weakly dispersive even in the absence of mean currents. Boyd and Zhou studied
the Kelvin solitary waves and cnoidal waves that are a balance between this weak
dispersion and the frontogenetic tendencies of weak nonlinearity [55]. Their work is
discussed in Chap. 16.

DeLeon, Erlick and Paldor [56] derive various approximations to analyze the
equatorial beta-plane/sphere for waves as summarized in Paldor’s book [57].3

Lindzen’s article, though ancient, is still a very good analysis of the relationship
of the equatorial beta-plane to the midlatitude beta-plane [58–61].
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Chapter 4
The “Long Wave” Approximation &
Geostrophy

Abstract The quasigeostrophic approximation, so useful in the middle latitudes, is
notoriously inaccurate near the equator. This chapter describes a replacement that
has been extremely useful in low latitude dynamics. The “longwave” approximation,
whichmight equally well be dubbed the “low frequency” or “meridional geostrophy”
approximation, filters gravity waves while retaining Kelvin and Rossby waves. The
key assumption is that there is geostrophic balance in the latitudinal momentum
equation only. This chapter also discusses the separation between the high and low
frequency waves and the usefulness of this separation for initialization of equatorial
numerical models.

Scientia is knowledge. It is only in the popular mind that it is equated with facts. This is, of
course, flattering since facts are incontrovertible. But it is also demeaning, since facts are
meaningless. They contain no narrative. Science, by contrast, is story-telling. That is evident
in the way we use our primary scientific instrument, the eye. The eye searches for shapes. It
searches for a beginning, a middle, and an end.

– JohnPolanyi in “Science, scientists and society”,QueensQuarterly, 107, 31–36 (2000).

4.1 Introduction

Quasi-geostrophy has been so useful in understanding the dynamics of the middle
latitudes that there is an almost irresistible temptation to extend it to low latitudes,
too. In this chapter, we explain why a simple-minded extension of quasi-geostrophy
does not work.

4.2 Quasi-Geostrophy

Sufficiently far from the equator and for sufficiently small amplitude, it must be
possible to derive the quasi-geostrophic streamfunction equation from the shallow
water equations on the equatorial beta-plane. But what is the relationship? In this
section, we shall answer that question for infinitesimal amplitude waves.
© Springer-Verlag GmbH Germany 2018
J.P. Boyd, Dynamics of the Equatorial Ocean,
https://doi.org/10.1007/978-3-662-55476-0_4
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The midlatitude, linearized streamfunction equation for a traveling wave of phase
speed C and zonal wavenumber K is

ψYY +
{
1

C
− K 2 − 1

}
ψ = 0 (4.1)

with the standard midlatitude nondimensionalization. (The standard midlatitude
length scale, the so-called “Rossby radius of deformation”, is nondimensionally
O(1).) Capital letters are used for the phase speed, zonal wavenumber and latitude
because the standard scalings for the equatorial region need not be the same.

For a sinusoidal wave (in longitude), v = ikψ , so the equation for ψ must match
the equatorial equation for the north-south velocity:

vyy +
{
1

c
− k2 − y2

}
v = 0 (4.2)

Note that β has been nondimensionalized to one in both cases; prior to the nondimen-
sionalization, 1/c was the dimensional term β/c. We want the equatorial equation to
be as close as possible to its midlatitude, quasi-geostrophic counterpart after rescal-
ing.

Let y0 denote a reference latitude where, in the equatorial nondimensionalization,
|y0| � 1. Define

y = y0 + 1

y0
Y, x ≡ 1

y0
X (4.3)

The equatorial equation becomes

vYY +
{

1

cy20
− k2

y20
− (1 − 2

y20
Y + Y 2

y40
)

}
v = 0 (4.4)

If we assume that the latitudinal scale of the midlatitude disturbance is small
compared to y0 — the usual midlatitude beta-plane approximation — then the Y -
varying terms in the coefficient of v can be neglected. The equatorial equation for v
then becomes identical in form with its midlatitude counterpart if

C ≡ cy20 , K ≡ k

y0
(4.5)

In themiddle latitudes, a phase speed cwhich is small compared to unity in equatorial
scaling, as would be associated with a high order Rossby mode, corresponds to
roughly unit phase speed C in terms of the midlatitude coordinates. Thus, C � c as
expected. Note that fluid velocities will scale in the same way as phase velocities.
Thus

Ū (Y ) = y20 ū(y) (4.6)
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where ū is the zonally-averaged current in the equatorial coordinates.
Unit length in Y , the midlatitude coordinate, corresponds to a small change in

the equatorial coordinate y. This is in agreement with the principle that the Rossby
radius of deformation becomes smaller and smaller as the latitude increases. Indeed,
the relationship (y − y0) = Y/y0 together with the O(1) length scale in Y can be
taken as a statement that 1/y0 is, in the equatorial nondimensionalization, the Rossby
radius at y = y0.

With these scalings, we can, as it were, translate midlatitude solutions — even
nonlinear ones— to the standard equatorial beta-plane to examine, either numerically
or perturbatively, how propinquity to the equator alters them. However, surprisingly
little has been done except through the explicit computation of the linear waves
as described in the preceding chapter and through comparisons between equatorial
solitons and midlatitude modons as described in Chap. 16.

4.3 The “Meridional Geostrophy”, “Low Frequency” or
“Long Wave” Approximation

Although a naive application of quasi-geostrophy must fail, there is a very useful
approximation which has many of the same virtues. In particular, this approximation
filters out gravity waves and allows one to numerically integrate the equations of
motionwith a long time step.More important, all the basic formulas and relationships
of equatorial dynamics are greatly simplified, and many important problems, such
as the reflection from the eastern boundary of an ocean, can be solved in closed form
with — but only with — this approximation.

The requirement for the validity of the approximation is that either (i) the zonal
scale is very long or (ii) the frequency is very low. (For Rossby waves of sufficiently
large zonal scale to have a westward group velocity, the validity of either of these
conditions automatically implies that the other is true, too.) For this reason, the “long
wave” approximation can be legitimately dubbed the “low frequency” approximation
as well. The key is “meridional geostrophy”, which therefore is a third valid name
for the approximation. Low frequency phenomenon include the annual cycle in the
ocean as well as the waves such as those observed by Lukas and Firing [1].

This simplification was apparently first employed in a (non-equatorial) paper by
Pedlosky [2] and introduced into equatorial oceanography by Cane and Sarachik [3].

Definition 4.1 (Meridional Geostrophy/Long Wave Approximation) This approxi-
mation consists of dropping the local time derivative of the north-south velocity in
the latitudinal momentum equation.

Theorem 4.1 (Long Wave/Meridional Geostrophy Approximation) The neglect of
the local time derivative of v in the north-southmomentum equation has the following
consequences for flow that has been linearized about a state of rest:

1. The Kelvin wave is unaffected.

http://dx.doi.org/10.1007/978-3-662-55476-0_16
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2. The Yanai or mixed Rossby-gravity wave is filtered out in both its gravity-like and
Rossby-like regimes.

3. Gravity waves are filtered out from the approximate shallow water equations.
4. The Rossby wave dispersion relation is simplified:

ωRossby = −k/(2n + 1 + k2) ⇒ ωlong ≡ −k/(2n + 1) [long Rossby]
(4.7)

with a relative error of

ωRossby = ωlong
{
1 + O(k2/[2n + 1])} (4.8)

5. The magnitude and structures of u, v and φ are not altered except through the
O(k2) changes in the frequency ω.

Proof The Kelvin wave has a zero north-south velocity, so obviously an approx-
imation that modifies only a term in v is irrelevant to this mode.

The Yanai wave is described by the coupled pair of equations

S1t + S1x − 21/2v0 = 0 [“Yanai doublet”] (4.9a)

v0t + 2−1/2S1 = 0 (4.9b)

where the term in the box is neglected in the meridional geostrophy approximation,
and S1(x, t) and v0(x, t) are the coefficients of ψ1(y) in the sum variable S and
of ψ0(y) in the north-south velocity v for this mode. However, this immediately
implies S1(x, t) ≡ 0, and substituting this in the first equation demands that v0 ≡ 0,
too. (This also shows that the mixed Rossby-gravity wave is never latitudinally
geostrophic even in its Rossby-like regime.)

To demonstrate that (i) all gravity waves with latitudinal mode n ≥ 1 are filtered
and (ii) confirm the modifications to the Rossby wave, it is necessary to look at the
“general triplet” (3.13) which arises from Hermite expansion of the shallow water
equations in their sum-difference form:

Sn+1,t + Sn+1,x − [2(n + 1)]1/2vn = 0 (4.10a)

vn,t + [(n + 1)/2]1/2Sn+1 − [n/2]1/2Dn−1 = 0 (4.10b)

Dn−1,t − Dn−1,x + [2n]1/2vn = 0 (4.10c)

The boxed term is the only term which is dropped in the long wave approximation.
One might suppose that dropping only one of three time derivatives would reduce
the dispersion relation from a cubic (i.e., number of branches of dispersion relation

http://dx.doi.org/10.1007/978-3-662-55476-0_3
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equal to the number of time derivatives) to a quadratic. However, the (simplified)
latitudinal momentum equation shows that

Sn+1 = √
n/(n + 1) Dn−1 (4.11)

for all x, t . Thus, there is only one independent time derivative after meridional
geostrophy is enforced.

To confirm this explicitly, assume that Sn+1(x, t) depends on x, t as S̃n+1 exp(ikx
− iωt) where S̃n+1 is a constant, and similarly for the other unknowns. The triplet
becomes the matrix problem

∣∣∣∣∣∣∣
i(k − ω) −√

2(n + 1) 0√
(n + 1)/2 0 −√

n/2

0
√
2n

1/2 −i(k + ω)

∣∣∣∣∣∣∣

∣∣∣∣∣∣
S̃n+1

ṽn
D̃n−1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
0
0
0

∣∣∣∣∣∣ (4.12)

This homogeneous matrix equation has a solution if and only if its determinant is
zero. However, the zero in the box, which would otherwise be −iω, eliminates the
ω3 term from the determinant of the shallow water triplet. The long wave dispersion
relation has only the single root:

ωlongwave ≡ −k

2n + 1
↔ clongwave = −1

2n + 1
, n = 1, 2, . . . (4.13)

The deletion of the two roots of the dispersion relation that correspond to gravity
waves implies that the long wave approximation has filtered these modes from the
shallow water equations.

The error estimate in the long wave Rossby approximation follows from compar-
ing it with the highly accurate approximation (3.36) ωRossby ≈ −k/(2n + 1 + k2):
the long wave approximation is the result of expanding the denominator of ωRossby

as a power series in powers of k.
The structural formulas are unchanged by the long wave approximation: it is still

true that

φ = 1

(1 − c)
[(n + 1)/2]1/2ψn+1 + 1

(1 + c)
[n/2]1/2ψn−1 (4.14)

u = 1

(1 − c)
[(n + 1)/2]1/2ψn+1 − 1

(1 + c)
[n/2]1/2ψn−1 (4.15)

v = ikψn, (4.16)

exactly as in Table3.3. The reason is that the first and third equations of the triplet
are unaltered by the long wave approximation, and contain only vn and either [but
not both] of the sum and difference variables. This implies that the relationship
between vn and Sn+1, as expressed by the first equation, is unaltered. Similarly, the

http://dx.doi.org/10.1007/978-3-662-55476-0_3
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third equation gives precisely the same proportionality between vn and Dn−1 with or
without the assumption of latitudinal geostrophy.

However, because the phase speed for each long wave mode is independent of k,
it is possible to rewrite the modes alternatively as

S0(x, y, t) = A0(x − t) ψ0(y) (4.17)

and for the Rossby modes with mode number n ≥ 1:

vn(x − ct) ≡ d An

dx
(x − ct) (4.18)

Sn+1 =
√
2 (n + 1)

1 − c
An(x − ct) ψn+1(y) (4.19)

Dn−1 =
√
2

n

n + 1

(1 − c)
An(x − ct) ψn+1(y) (4.20)

where An is an arbitrary function of a single argument.
However, these arguments that demonstrate the mathematical soundness and con-

sequences of the long wave approximation do not explain: Why does it work?
Equation (4.14) shows that

v ∼ O(k/n1/2)

{
u
φ

(4.21)

Since the frequencyω ∼ O(k/[2n + 1]) and the y-derivative ofφ is O(n1/2φ), as can
be shown from the identities for the derivatives of the Hermite functions, it follows
that

− iωv ∼ O(k2/n1/2)

{
yu
φy

(4.22)

Thus, the long wave approximation is successful for two reasons. First, the low
frequency makes the time derivative in the latitudinal momentum equation small by
one factor of k, because ω ∼ O(k). Second, v is itself small compared to the other
fields for Rossby waves, which contributes another factor of O(k) to the smallness
of the term which is neglected in the long wave approximation.

Thus, the long wave approximation is highly accurate for Rossby waves when
k 
 1. The error is always small even for the lowest (n = 1) Rossby mode for small
k, and becomes smaller still as the mode number increases.

The meridional geostrophy approximation has been justified with such care
because of its extreme usefulness. Boyd and Christidis [4–6] have exploited it with
great success in interpreting complex mode-mixing in the theory of equatorial insta-
bilities. It is even more useful in obtaining analytical solutions for (i) the quasi-free
modes of the equatorial ocean and (ii) for the oceanic response to periodic wind
stress.
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4.4 Boundary Conditions

Reflection from a western boundary would seem to immediately torpedo the long
wave approximationbecausemeridional geostrophyfilters out the short gravitywaves
which are part of the reflection of a long Rossby wave from a western boundary. The
long wave dispersion relation is,

c = −1/(2n + 1) (4.23)

i.e., c is independent of k so that (4.23) is really a non-dispersion relation. For
nondispersive waves, the group and phase velocities are equal so that the long wave
approximation forces all Rossby waves to move westward.

Pedlosky (1965) first showed the way out of this conundrum: the short Rossby
waves that form part of the reflection from a western boundary have very low group
velocities when the wavenumber of the incident Rossby wave is small [2, 7, 8]. To
be precise, the full dispersion for equatorial waves in terms of k is

k = − 1

2ω
±

√
ω2 + 1

4ω2
− (2n + 1) (4.24)

Taking the (+) in (4.24) and carefully expanding the radical forω 
 1 shows that this
root is O(ω) and physically corresponds to the incident long Rossby wave packet.
The other root is approximately

k ≈ − 1/ω + O(1) (4.25)

(assuming that the mode number n is not too large). By differentiating the dispersion
relation with respect to k and solving for cgx = ∂ω/∂k, the group velocity for Rossby
waves can be written in terms of ω, k, and n as

cgx = [1 + 2kω]/[3ω2 − (k2 + 2n + 1)] (4.26)

Eq. (4.25) allows us to substitute k → −1/ω which transforms the group velocity
into

cgx ∼ ω2 (1 + O(ω) ) (4.27)

For waves of annual period, this is an astonishingly slow rate of travel. For the first
baroclinic mode, ω2 ≈ 0.00068; cgx has a dimensional speed of about (1/7)cm/s.
Put another way, it would take the reflected short waves about 250years to cross the
width of the Pacific!

In practice, these slowly-traveling waves are destroyed by dissipation before trav-
eling very far away from the coast. For very low frequency incident wave packets, it
therefore follows that the short reflected waves give only a boundary layer response
that is effectively trapped near the western side of the ocean. If we are prepared to
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forgo a knowledge of the detailed dynamics of this boundary layer, then the long
wave approximation does give useful results in the rest of the ocean for k 
 1 or
ω 
 1.

Without the short reflected Rossby waves, however, we still cannot hope to satisfy
the true boundary condition u = 0. Cane and Sarachik showed that in the long wave
approximation, the correct condition to impose at the western boundary is

∫ ∞
−∞ u dy = 0 at western boundary of ocean (4.28)

The justification of (4.28) begins with the observation that when k ∼ O(−1/ω), as
is true for the short, reflected Rossby waves, the explicit formulas for u, v, and φ)
show that

v ∼ O(−1/ω)

{
u
φ

(4.29)

i.e., v is very large in comparison to u and φ for the short, reflected Rossby waves
by exactly the same factor by which it is very small in comparison to u and φ for
the incident long Rossby waves. In the equation of continuity, this implies that the
(−iω φ) term is small in comparison to the other two terms by O(ω2):

iku + vy = 0 + O(ω2); k � 1; ω 
 1 (4.30)

If we integrate (4.30) from −∞ to ∞ in y, then the derivative of v gives only the
boundary terms, [v(∞) − v(−∞)] = 0, implying (4.28), that is

∫ ∞

−∞
udy = 0, short, reflected Rossby waves (4.31)

This equation is true for all x for the reflected Rossby wave and not merely at the
boundary, is (4.28). Since this integral vanishes for each of the short reflected waves
individually, it follows that the only way that the integral of the total u can be 0 is if

∫ ∞

−∞
(uKelvin + ui ) dy = 0, at the western boundary (4.32)

i.e., the sum of the latitudinal integral of the incident Rossby wave and the reflected
Kelvin wave must be zero.

This boundary condition (4.32) is usefulmathematically because it makes it possi-
ble to treat the longRossby-cum-Kelvinwaves that survive the longwave approxima-
tion as a closed set; one can calculate the reflected Kelvin wave from (4.32) without
the bother of having to calculate the coefficients of all those irrelevant short Rossby
waves through the recurrence formula of Sect. 3. It is useful physically because it
shows that short Rossbywaves can only serve to redistributemass in the zonal bound-
ary layer. One could, for example, have a westward flow in the northern hemisphere

http://dx.doi.org/10.1007/978-3-662-55476-0_3
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and an eastward flow in the southern hemisphere created by these reflected Rossby
waves, but the latitudinal average of such zonal flows in the western boundary layer
must vanish.

It is in these latter contexts that we can alternatively think of the long wave
approximation as a low frequency approximation. For a forcing of annual period, for
example, ω = 0.026, and the relative error in the dispersion relation ωlongwave is

k2/[2n + 1] ∼ O([2n + 1]ω2) (4.33)

which implies that the approximation breaks down only for n ∼ O(700), i.e., only
for modes whose turning points are well into the middle latitudes so that they cannot
properly be considered equatorial waves anyway.

4.5 Frequency Separation of Slow [Rossby/Kelvin]
and Fast [Gravity] Waves

Implicit in the arguments in the previous section is that gravitywaves are unimportant:
otherwise, an approximation that completely neglects gravitywaves would obviously
be unacceptable. But why are gravity waves unimportant?

A partial answer is that in the tropical ocean, as in the midlatitude atmosphere and
ocean, there is a huge frequency gap between the slow modes (Kelvin and Rossby)
and the fast modes (gravity waves) as already discussed for general k in Sect. 3.5. The
Kelvin and Rossby modes have frequencies which are O(k) as already seen in the
previous section. For gravity waves, including the Yanai mode, the frequency tends
to a fixed limit |ωgravity | = (2n + 1)1/2 as k → 0. This implies that the frequency
separation between the high frequency gravity waves and low frequency Kelvin and
Rossby waves, which is always large even for moderate k, becomes enormous for
small k.

Just as it does in the middle latitudes, this frequency separation suggests that the
high frequency gravity wave motions are just noise. If the ocean is perturbed by a
small k change in the wind stress — in other words, by a change in the winds with a
large zonal scale— the gravity waves will rapidly propagate away from the region of
the perturbation and adjust almost instantaneously tothe perturbation in comparison
to the much, much slower response of the excited Rossby and Kelvin waves. As in
the middle latitudes, the low frequency modes are the only ones that count, and one
would like to find an approximation that filters out the gravity waves— and yet still
accurately reproduces the Kelvin and Rossby waves even at the equator. The long
wave approximation does this.

http://dx.doi.org/10.1007/978-3-662-55476-0_3
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4.6 Initial Value Problems in an Unbounded Ocean,
Linearized About a State of Rest, in the Long Wave
Approximation

Let Sinit (x, y) = uinit (x, y, 0) + φini t (x, y, 0) denote the initial condition as
expressed in terms of the sum variable. Expand

Sinit (x, y) =
∞∑

n=−1

Sn+1(x) ψn+1(y) (4.34)

Sn+1(x) =
∫ ∞

−∞
dySinit (x, y)ψn+1(y) (4.35)

The linearized-about-rest long wave solution at a later time t is

S(x, y, t) = S0(x − t)ψ0(y) +
∞∑
n=1

Sn+1(x + [1/(2n + 1)] t) ψn+1(y) (4.36)

Note that there is no n = 0 longwave mode, and thus the coefficient of ψ1(y) in
the initial height field must be dropped. (For the full shallow water approximation,
this term would generate a very fast-moving Yanai transient.)

The north-south velocity and difference field cannot be specified independently:
as soon as one field is specified, the other two are completely determined. (Indepen-
dent specification of (S, v, D) will excite high-frequency transients which cannot be
described by the meridional geostrophy approximation.) In particular, recalling that
c(n) = −1/(2n + 1),

vn(x, t) = (1 + 1/(2n + 1))√
2 (n + 1)

dSn+1(x + [1/(2n + 1)] t)
dx

(4.37)

Dn−1(x, t) =
√
n + 1

n
Sn+1(x, t) (4.38)

to conclude that

v(x, y, t) =
∞∑
n=1

(1 + 1/(2n + 1))√
2 (n + 1)

dSn+1(x + [1/(2n + 1)] t)
dx

ψn(y) (4.39)

D(x, y, t) =
∞∑
n=1

√
n + 1

n
Sn+1(x + [1/(2n + 1)] t) ψn−1(y) (4.40)

Figure4.1 illustrates dispersion in the long wave approximation.
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Fig. 4.1 Dispersion of an equatorial pulse in the linearized long wave approximation as seen
through contour plots of the “sum” variable S ≡ φ + u; negative values are dashed. The contour
interval is 1/10. S(x, y, 0) = exp(−x2) exp(−y2). The Kelvin wave moves eastward (cKelvin = 1)
so rapidly that it is beyond the right edge of the graph in the lower panel. The Rossby modes
gradually segregate by mode number; in the lower panel, the n = 1 mode, which has the fastest
nondimensional speed, c = −1/3, has separated from the slower and higher modes dispersing to
its east. There is a rather strong n = 0 pulse which is filtered by the long wave approximation, and
therefore not shown. Note that mean currents and all forms of nonlinearity are neglected

4.7 Reflection from an Eastern Boundary in the Long Wave
Approximation

4.7.1 The Method of Images

Every function can be decomposed into its symmetric and antisymmetric parts:

f (x) = f S + f A; (4.41)

f S(x) ≡ 1

2
( f (x) + f (−x)) & f A(x) ≡ 1

2
( f (x) − f (−x)) (4.42)

where by construction f S(x) is symmetric about the origin, that is, f S(−x) = f S(x)
for all x and similarly f A is antisymmetric in the sense that f A(−x) = − f A(x)



80 4 The “Long Wave” Approximation & Geostrophy

for all x . Note that all antisymmetric functions are always zero at the origin since
f A(0) = − f A(0), and the only number which is its own inverse is zero.
Lord Kelvin realized that such symmetry, and the inflation of a semi-infinite inter-

val to the whole real axis could furnish easy solutions to boundary value problems.
His technique is “The Method of Images”.

For example, suppose that the problem on the semi-infinite interval is

utt = uxx , u(x, 0) = Q(x), ut (x, 0) = −Qx ; u(0, t) = 0, x ∈ [−∞, 0] ⊗ t ∈ [0, ∞]

If the homogeneous Dirichlet boundary condition at x = 0 is ignored, the solution
on the real axis is the rightward-moving pulse

u(x, t) = Q(x − t) (4.43)

If the domain was extended to the right half-interval and u(x, t) was antisymmetri-
cally continued to positive x as the “image” −Q(−x − t), this image pulse is auto-
matically leftward-moving. Furthermore, the sum of leftward and rightward moving
pulses is antisymmetric for all time and therefore zero at x = 0 for all time. However,
if both pulses initially extend individually over the whole real axis, the left-of-the-
origin continuation of the right image pulse will mess up the initial conditions. It is
therefore necessary to employ the Heaviside step function

H(x) =
{
1, x ≥ 0
0, x < 0

(4.44)

Then the solution on the infinite interval,

u(x, t) = Q(x − t)H(−x + t) − Q(−x − t) H(x + t) (4.45)

satisfies the initial conditions for negative x and is always antisymmetric about the
origin and therefore always zero at x = 0 (Fig. 4.2).

4.7.2 Dilated Images

“Dilation” is the symmetry operation of scaling a function by a factor ς as in f (x) →
f (ςx). It is useful when left-moving and right-moving waves travel at different
speeds. For example, suppose the general wave solution is

u(x, 0) = Q(x − t) + R(x + t/3) (4.46)

How do we create a solution that is antisymmetric about the origin for all time? The
answer is to apply dilation as well as reflection and write (Fig. 4.3)
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Fig. 4.2 Top the original problem on x ∈ [−∞, 0]. The continent to the right of the origin is
shaded. Bottom the equivalent problem on an infinite interval. For all t , the rightward-moving pulse
and its image sum to a function which is antisymmetric about x = 0 for all t and therefore u(0, t) =
for all t

Fig. 4.3 Same as the bottom panel of the previous graph except that the image pulse has been
dilated by a factor of three [narrowed]. The superposition of leftward and rightward moving pulses
still sums to zero at x = 0 for all time even though the leftward-moving wave is traveling only
one-third as fast as the rightward-moving pulse

u(x, t) = Q(x − t)H(−x + t) − Q(3[x + t/3])H(3[x + t/3]) (4.47)

4.7.3 Zonal Velocity

The east-west velocity u is

u(x, t) = 1

2
(S − D) (4.48)

= 1

2

∞∑
n=1

{
Sn−1(x, t) −

√
n + 1

n
Sn+1(x, t)

}
ψn−1(y) (4.49)

It follows that in the long wave approximation, satisfying the eastern boundary con-
dition at x = 0 requires that
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Sn+2(0, t) =
√
n + 1

n + 2
Sn(0, t) n = 0, 1, 2, . . . (4.50)

Thus, if the Kelvin wave has the initial condition

S0(x, 0) = Q(x) ⇒ S2(x, 0) =
√
1

2
Q (3x) (4.51)

S2(x, t) =
√
1

2
Q (3[x + t/3]) (4.52)

S4(0, t) =
√
3

4
S2(0, t) (4.53)

=
√
3

4

√
1

2
Q (t) (4.54)

which requires that

S4(x, 0) =
√
3

4

√
1

2
Q (7x) (4.55)

S4(x, t) =
√
3

4

√
1

2
Q (7[x + t/7]) (4.56)

The general solution is then, recalling Eq.4.37, the relationships expressing v and D
in terms of the sum variable S,

S0 = Q(x − t) (4.57)

S2n(x, t) =
{

n∏
k=1

√
(2k − 1)

2k

}
Q ((4n − 1) {x + [1/(4n − 1)] t}) (4.58)

S(x, y, t) = Q(x − t)ψ0(y) +
∞∑
n=1

S2n(x, t) ψ2n(y)

v(x, y, t) =
∞∑
n=1

(1 + 1/(2n + 1))√
2 (n + 1)

dSn+1(x + [1/(2n + 1)] t)
dx

ψ2n−1(y)

D(x, y, t) =
∞∑
n=1

√
n + 1

n
S2n(x, t) ψ2n−2(y) (4.59)

This solution will be discussed at much greater length in Sects. 8.2 and 6.4.

http://dx.doi.org/10.1007/978-3-662-55476-0_8
http://dx.doi.org/10.1007/978-3-662-55476-0_6


4.8 Forced Problems in the Long Wave Approximation 83

4.8 Forced Problems in the Long Wave Approximation

Forced motion will be discussed at much greater length in later chapters. Here, we
show that such calculations are easy, at least in the long wave approximation, and
also obtain the forced long wave equations that will be needed in the next section in
this chapter and in the later discussion of solitary waves.

In sum and difference form, the equatorial beta-plane equations in the long wave
approximation can be written

St + Sx + Rv = (F + H̃) (4.60a)

(1/2)[LS + RD] = G (4.60b)

Dt − Dx + L v = (H̃ − F) (4.60c)

where S ≡ φ + u, D ≡ φ − u,L andR are the lowering and raising operators for the
Hermite functions, and where F , G, and H̃ are the forcing terms for x-momentum
equation, y-momentum equation and for the height equation, respectively.

Expanding everything in sight in terms of normalized Hermite functions gives the
equivalent algebraic set:

S0,t + S0,x =
(
F0 + H̃0

)
(4.61)

and the triplets, one for each n ≥ 1

Sn+1,t + Sn+1,x − [2(n + 1)]1/2 vn =
(
Fn+1 + H̃n+1

)
(4.62)

[(n + 1)/2]1/2 Sn+1 − [n/2]1/2Dn−1 = Gn (4.63)

Dn−1,t − Dn−1,x + [2n]1/2vn = −
(
Fn−1 − H̃n−1

)
= 0 (4.64)

where An denotes the n-th normalized Hermite coefficient of the quantity A (wind
stress or nonlinear) for any A.

The latitudinal momentum equation, simplified by the neglect of vt in the long
wave approximation, implies that the difference variable can be expressed in terms
of the sum variable as

Dn−1 = [(n + 1)/n]1/2Sn+1 − √
2/n Gn (4.65)

The height equation becomes

√
n + 1

n
Sn+1,t −

√
n + 1

n
Sn+1,x + √

2nvn = −Fn−1 − H̃n−1 +
√
2

n
Gn,t −

√
2

n
Gn,x

(4.66)
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This can be rewritten as an equation for the north-south velocity in terms of the sum
variable

vn = 1

n

√
n + 1

2

{
Sn+1,x − Sn+1,t

} − 1√
2n

Fn−1 − 1√
2n

H̃n−1 + 1

n
Gn,t − 1

n
Gn,x

where the subscripts onG denote differentiation with respect to t and x , respectively.
We can eliminate vn to obtain an equation in the sum variable only by multiplying
the first, Eq. (4.62), by the square root of n and the second, (4.66), by the square root
of (n + 1). Adding, and then multiplying the result by a common factor of the square
root of n gives

(2n + 1)Sn+1,t − Sn+1,x = n
(
Fn+1 + H̃n+1

)
− √

n(n + 1)
(
Fn−1 − H̃n−1

)

+√
2(n + 1)

(
Gn,t − Gn,x

)
(4.67)

The homogeneous solution to (4.61)–(4.64) plus (4.67) has already been given in the
previous section.

The crucial advantage is that through the long wave approximation, a system
of three time-dependent equations has been reduced to a single first-order time-
dependent equation — a vast simplification.

To illustrate this simplicity, note that for a zonal wind stress which is (i) inde-
pendent of x and (ii) has a time dependence of exp[−iωt], it is trivial to obtain the
x-independent particular solution as (F �= 0,G = 0, H̃ = 0)

S0 = −F0/(iω) (4.68)

Sn+1 = −[nFn+1 − (n[n + 1])1/2Fn−1]/(iω) (4.69)

We shall study more complicated forced problems in later chapters.
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Chapter 5
The Equator as Wall: Coastally Trapped
Waves and Ray-Tracing

Abstract There are many analogies between coastal dynamics and equatorial
dynamics. The first three sections therefore discuss coastally-trapped waves, ray-
tracing in general, and ray-tracing for coastal waves in particular. The rest of this
chapter extends this ray-tracing analysis to equatorial waves.

“A theorist is allowed to introduce one tooth fairy into his theory — but only one.”

— David Schramm, quoted in Cosmic Adventures by Bob Berman, p. 217.

5.1 Introduction

The purpose of this chapter is to explore the very close analogy that exists between
equatorial dynamics and coastal dynamics. As suggested in the title, the equator does
indeed behave very much like a rigid wall.

In particular, the Yoshida jet—parallel to the equator and very strong, driven by
the wind stress parallel to the flow in contrast to the weak, perpendicular currents
driven by the winds at higher latitudes—is mirrored in the “coastal jet”, an intense
flow parallel to the coast which is driven by the wind component parallel to the coast.
The Yoshida jet is described in Chap.9.

The equatorial Kelvin wave is mirrored by the coastal Kelvin wave. Indeed, the
connection between the two waves is so intimate that when an equatorial Kelvin
wave hits a coastline, some of its energy is converted into coastal Kelvin waves that
then run north and south away from the equator.

The full spectrum of higher order waves — gravity waves traveling in both direc-
tions along the equator/coast and Rossby waves propagating much more slowly than
the gravity waves and in just one direction — are present in the shallow water wave
equations both in the vicinity of a coast and at low latitudes.

The differences aremostly in the e-folding scale. Equatorial phenomena decay like
Gaussians, i.e., as exp(−(1/2) y2). Coastal jets, coastal Kelvin waves, and coastally-
trapped gravity and Rossby waves decay as exp[−x] for a coast running due north-
south. This difference has little or no significance, however. Bottom topography
gives different and more complicated decay away from the coast, but the important
point is still that the coastal jets and waves are coastally-trapped and exponentially
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small at large distances from the coast. The topography of the ocean varies from bay
and basin to bay and basin, but the equatorial case is simpler —always a Gaussian
–because the Coriolis force depends only on the shape of the earth, which is always
a sphere.

In the next section, the spectrum of coastally trapped waves will be briefly
reviewed. In the third section, we will wrestle with a deeper question: why are there
these similarities between coastal and equatorial phenomena? For the waves with
mode number n ≥ 0, we will at least partly answer this question through ray-tracing
and the ideas of geometrical optics.

5.2 Coastally-Trapped Waves

Model assumptions:

(i) linear shallow water wave equations
(ii) infinitely long, straight coast running due north-south
(iii) variable depth H(x) with land for −x and water for x ≥ 0
(iv) No variations in bottom depth in either y or t
(v) boundary condition as x → ∞ : u → 0
(vi) boundary condition at x = 0 : u = 0
(vii) f = constant [neglect rotational beta-effect but not topographic beta-effect]
The linearized shallow water wave equations are

ut − f v + gφx = 0 (5.1)

vt + f v + gφy = 0 (5.2)

φt + (uH)x + (vH)y = 0 (5.3)

where φ is the displacement of the surface relative to mean sea level, as in earlier
chapters, and where g is the gravitational constant. (In discussing coastal phenom-
enon, we shall retain g as the gravitational constant and use dimensional unknowns to
conform to the common practice.) The coordinate system is illustrated schematically
in Fig. 5.1.

In equatorial wave theory, it is most convenient to reduce the equations down to
a single equation for v alone, but here, it is easier to solve for φ instead:

L u = −g(φxt + f φy); L v = −g(φyt − f φx ) (5.4)

where

L ≡ ∂2

∂t2
+ f 2 (5.5)

The single equation for φ is then
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Fig. 5.1 The coordinate
system for coastal flow
theories. The y-axis is out of
the plane of the paper and
parallel to the coast

H(x)

(x,t)

z

x

HΔφt + Hxφxt + f Hxφy − (1/g)L φt = 0 (5.6)

where Δ is the usual two-dimensional Laplacian operator and L is the operator
defined by (5.5).

Since (5.6) has coefficients which vary only with x , we can, without approxima-
tion, separate variables by assuming

φ = F(x)ei(ky−ωt) (5.7)

The fact that both the y-wavenumber k and frequency ω are constants turns out to be
of crucial importance in the ray-tracing discussed in the next section. Equation (5.7)
is an exact solution (with the proper F(x)).

The x-structure function satisfies the ordinary differential equation

(HFx )x +
[
− k

ω
{ f Hx } − k2H − ( f 2 − ω2)

g

]
F = 0 (5.8)

If we treat H(x) in the same way as f is treated by the mid-latitude beta-plane,
i.e., replacing it by a constant except where differentiated, thenwe can divide through
by H to obtain an equation which is identical in form to its analogue in the equatorial
beta-plane,

vxx +
[
− k

ω
{β} − k2 − ( f 2 − ω2)

gH

]
v = 0 (5.9)

This is written in dimensional form, in contrast to the nondimensional form usually
employed elsewhere in this book.

The differences between the two equations are that (i) the trapping is produced by
variations in H(x) in one case and by the increase of f with latitude in the equatorial
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situation and (ii) the beta term, which is in curly brackets in both (5.8) and (5.9), is
equal to

β = d f/dy [rotation]; β = f Hx/H [topographic] (5.10)

For typical continental shelves, the topographic β defined by (5.10) is usually
O(50) times larger than d f/dy, so an f -plane is a safe approximation as assumed
above. The topographic beta effect is important because, just like its rotational coun-
terpart, it creates Rossby waves.

The boundary conditions on u become, using (5.4)

F → 0 as x → ∞ (5.11)

and at x = 0 either

f kF(0) − ω
dF

dx
(0) = 0 H(0) �= 0 [“cliff”] (5.12)

or ∣∣∣∣dFdx (0)

∣∣∣∣ < ∞ H(0) = 0 [“beach”]. (5.13)

Equation (5.7) and the boundary conditions (5.11)–(5.13) constitute a standard
one-dimensional Sturm–Liouville eigenvalue problem. Explicit solutions are possi-
ble only for special cases, alas, but numerical solutions are easy. A general statement
can be made, however: if H(x) � H(0), then all the terms in (5.7 ) will disappear
except the −k2H(x). (One can see this by dividing (5.7) by H(x) and then esti-
mating the magnitude of each term as H(x) becomes very large with H ′ bounded.)
Asymptotically, (5.7) thus reduces to

Fxx − k2F = 0 (5.14)

with the solution
F ∼ e−kx (5.15)

This asymptotic behavior is explicit in the case of a linear slope, i.e.,

H(x) = αx (5.16)

since the eigensolutions of (5.7), (5.10) and (5.11) are simply the Laguerre functions

Fn(x) = e−kx Ln(2kx) n = 0, 1, 2, . . . (5.17)

where
Ln(x) ≡ n-th Laguerre polynomial (5.18)
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Fig. 5.2 Dispersion relations for the n = 1, n = 2 and n = 3 waves on a beach of constant slope
α. The Rossby frequencies, all negative, are of such small magnitude that the curves are hard
to distinguish on this graph. The n = 2 and n = 3 Rossby curves are thus given a single label,
even though their frequencies are different. The n = 1 Rossby wave has the largest magnitude of
frequency while higher modes travel more and more slowly. In contrast, the magnitude of gravity
wave frequencies increases with n. The dimensional dispersion relation can be transformed into a
cubic equation for the nondimensional frequency, ω/ f versus the nondimensional parallel-to-the-
coast wavenumber, (gα/ f 2)k, so these quantities are the axis labels

with the dispersion relation

ω3 − [ f 2 + (2n + 1)gαk]ω − f gαk = 0 (5.19)

Laguerre polynomials are close cousins of Hermite polynomials. Like them, the
subscript is the degree of the polynomial. The differences are that the exponential
has a quadratic argument for equatorial waves, but a linear argument for the coastally
trappedwaves, and that the Laguerre functions are orthogonal on x ∈ [0,∞]whereas
the Hermite functions are orthogonal on [−∞,∞].

The cubic dispersion relation (5.19) is a good imitation of the cubic dispersion
relation on the equatorial beta-plane. It implies that, just as for equatorial waves, there
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are three distinct wave modes for each integer n ≥ 1, physically corresponding to
gravitywaves traveling both up and down the coast and topographic Rossbywaves—
usually called “continental shelf waves” in this context — traveling at much slower
speed in one direction only. Just as for equatorial waves, there are only two waves for
n = 0, both corresponding to gravity waves; the third root has physical meaning only
for k = 0 and is often called the “inertial mode” in the literature. Just as for equatorial
waves, the gravity wave frequencies increase with increasing wavenumber while the
Rossby wave has a maximum frequency at some finite wavenumber (Fig. 5.2).

One importance difference from the equatorial case is that the e-folding scale
depends on the wavenumber parallel to the coast, k, whereas for equatorial waves, it
is independent of wavenumber. This implies that very long coastally trapped waves
will not in fact be coastally trapped. We shall explore the reasons for this when we
examine ray-tracing in the next section.

5.3 Ray-Tracing For Coastal Waves

One universal truth about waves is that they propagate in a straight line only when the
properties of the medium, i.e., those parameters that enter into the wave’s dispersion
relation, are independent of space. When the medium varies, waves are refracted.
Light waves are refracted when they propagate into a glass lens because the speed
of the waves is slower in glass than in air. When a water wave propagates from deep
water into shallow, its phase speed changes, and so it usually is refracted, too. It
matters not whether the speed of the medium jumps discontinuously, as at the air-
to-glass transition of eyeglasses, or smoothly and continuously, as for a water wave
above a gently-shoaling bottom: when the speed of the wave varies, the wave path
will bend.

The key point here is that neither the type of wave nor the parameter is important:
any spatial variation in the dispersion relation will refract the waves.

It is this generality of refraction that produces the kinship between equatorially
trapped waves and coastally trapped waves. For the former, it is the variation of the
Coriolis parameter with latitude that generates the refraction that traps the waves at
low latitudes. Wave rays that initially propagate away from the equator are bent so
strongly as they travel that they eventually bend around and turn towards the equator
again, and so never escape the neighborhood of the equator.

For coastally-trapped waves, the strong refractive bending that traps the waves
near the coast is created by variations in the depth of the water. The end result is the
same: where the varying property, Coriolis/depth, goes to 0, the bending is so strong
that the rays are trapped eternally in that neighborhood.

Ray-tracing is a multi-dimensional generalization of the one-dimensional WKB
method; the conditions for validity of the generalization are the same as for theWKB
approximation: the length scale onwhich the phase speed of the wave is varyingmust
be large in comparison to the phase scale of thewave,which is thewavelength divided
by 2π . In practice, as shown in Bender and Orszag [1], WKB, ray-tracing, and other
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“multiple scale” approximations are quantitatively accurate evenwhen the separation
of scales is only a factor of 2. Ray-tracingmay still give the correct qualitative answer
even when the numerical error is rather large. Consequently, we are justified in using
ray-tracing as a conceptual tool without fretting about its numerical accuracy.

The basic idea behind ray-tracing is that because the depth of water is varying
“slowly” with x , the dynamics of the waves in the vicinity of a certain point x will
be more or less the same as those for a flat-bottomed ocean whose depth is equal
to the instantaneous depth H(x). Put another way, we assume that the dispersion
relation for constant H is still a legitimate description of waves on varying depth
provided that we allow H(x) to be variable, and thus obtain a variable c(x) from the
flat-bottom dispersion formula.

To clarify the idea, it is sufficient [since we will not perform any numerical calcu-
lations here] to restrict ourselves to long coastal gravity waves, only weakly affected
by the earth’s rotation, so that the variable c(x) is given by the usual formula for
ultra-long, non-dispersive, non-rotating gravity waves

c(x) = √
g H(x) (5.20)

Because themean depth varies only in x , the frequencyω and y-wavenumber k are
rigorous invariants. Consider a wave whose wavevector is making an instantaneous
angle of θ0 with respect to the perpendicular to the coast at a distance from the coast.
(The angle θ is defined in Fig. 5.3) Let k denote the vector wavenumber. The two
invariants are then

ω = |k|c(x) (5.21)

k = |k| sin θ(x) (5.22)

Eliminating |k| between (5.21) and (5.22) shows that

sin θ(x)/c(x) = k/ω = constant (5.23)

which is equivalent to the more familiar form

sin θ(x)

c(x)
= sin θ0(x)

c0
[“Snell’s Law”] (5.24)

Snell’s Law, as this is usually called in optics, is completely general, but to actually
trace a ray one needs a specific formula for c(x) such as that provided by (5.20). In
reality, c(x) = √

gH(x) will be slightly modified by the Coriolis force, etc., but nor
enough to change the qualitative behavior of the waves: as the wave propagates into
deeper water, the phase speed c(x) increases.

For simplicity, suppose H(0) is finite and take x0 = 0. If the ray leaves the coast
almost perpendicular to the coast, i.e., θ0 � 1, then Snell’s law shows that as it
travels into deeper water so c(x) becomes large, sin θ(x) must increase also. This is
possible only if θ is increasing, i.e., the wave is bending back towards the coastline.
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Fig. 5.3 Schematic of
gravity wave refraction on a
sloping bottom which
descends to the right. A ray
that leaves the coast at an
angle θ0, relative to the
normal to the coast, will
bend until it is turned back
towards the coast. The wave
is thus coastally trapped



Eventually, if the depth of the sea continues to increase, θ → π/2, and the wave
is propagating parallel to the coast. It can go no farther from the coast than that
maximum value of x defined by the equation

c(xmax )/c0 = cosec θ0 (5.25)

and must then bend back towards the coast as illustrated schematicaly in Fig. 5.3.1

There is a kind of Catch-22 in the ray-tracing idea: a wave with θ0 = 0, i.e. one
propagating straight away from land, will not be refracted but instead will travel
straight out into the sea. Equation (5.23) shows that such waves have k = 0, i.e.,

1Strictly speaking, Snell’s Law does not tell us what happens after θ = π/2; it is consistent with
(5.24) for the ray to turn back towards the coast, but there is nothing in Snell’s Law that insists upon
it. In reality, the multiple scales arguments break down in the vicinity of the turning point, which
is also called a “caustic” in optics, and a special analysis is needed which does predict that the ray
will reflect from the caustic.
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are independent of y, and since the exponential decay factor in (5.15) and (5.17) is
exp(−kx), it follows that the analytic solutions predict no decay for such waves also.
Thus, it is still consistent to state the conceptual equation

refraction = trapping (5.26)

This is a rather different situation from the equatorial beta-plane where all waves
are trapped by the variations of the Coriolis parameter with turning points that are
independent of the zonal wavenumber k. Qualitatively, however, the behavior is very
similar.

5.4 Ray-Tracing on the Equatorial Beta-Plane

The ray-tracing method can also be applied to planetary waves at low latitudes. In
this section, we will be more formal than in the discussion of coastal waves above.

The key mathematical assumption is that the waves are approximately sinusoidal
in spite of the variable Coriolis parameter so that we may write

v = A(x, y, t) exp{iΦ(x, y, t)} (5.27)

where A(x, y, t), the amplitude or envelope, is slowly varying in comparison with
the phase function Φ. If the medium is slowly varying, we may still define local
wavenumbers and frequencies. One can after all speak of a child as being 3’11” in
spite of the fact that growth is a continuous, ever-varying process: one simply applies
a yardstick to the little fellow, and then adds the qualifier “is his height at the age
of 5 years and 4 months”. In the same way, we can define local wavenumbers by
simply measuring the distance between adjacent crests of the wave disturbance, and
then adding the qualifier “are the x and y wavenumbers at the point (x, y, t)”.

The formal mathematical definitions of the local wavenumbers and frequency are

k ≡ Φx ; m ≡ Φy; ω ≡ −Φt (5.28)

and as long as the amplitude satisfies the conditions that

(1/A)Axx � k2 + m2; (1/A)Ayy � k2 + m2; (1/A)Att � ω2 (5.29)

then k, m, and ω obey the usual dispersion relation for equatorial waves with the
factor of 2n + 1 replaced by m2 + y2:

ω3 − (k2 + m2 + y2) ω − k = 0 (5.30)

Equation (5.30) can be justified in either of two equivalent ways. First, note that
WKB treatment of the parabolic cylinder equation satisfied by the n-th Hermite
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function,
vyy + [(2n + 1) − y2]v = 0 (5.31)

gives
m2 = 2n + 1 − y2 (5.32)

where m is the local latitudinal wavenumber. The second route to (5.32) is to simply
derive a dispersion relation from the linearized shallow water wave equations with
y-derivatives represented in the form

φy = imφ (5.33)

and similarly for u and v.
Since the medium is still independent of x and t , both the zonal wavenumber

k and frequency ω are constants, as true for coastally-trapped waves. It is only
the wavenumber in the direction of variations of the equations, i.e., the latitudinal
wavenumber m, which changes as the wave propagates.

The velocity of a wave packet, i.e., a wave solution whose Fourier spectrum is
sharply peaked about particular initial values of k and m, is given by the vector
group velocity. Formally, we have the following equations from Schopf, Anderson
and Smith [2], which are proven in general form in the books byWhitham, Yang and
Pedlosky [3–5]:

Dx

Dt
= ∂ω

∂k
= cgx (5.34)

Dy

Dt
= ∂ω

∂m
= cgy (5.35)

Dm

Dt
= −∂ω

∂y

∣∣∣∣
m=constant

(5.36)

The last equation requires a comment since it has just been explained above that
ω is constant as the ray or wave packet travels, and the derivative of a constant
is usually 0! However, ω is constant because m and y vary simultaneously as the
packet propagates to make it so. If we take the derivative of ω with fixed m, as
shown explicitly in (5.36), and replace ω by the usual approximate expressions for
frequency:

ω = −k/(k2 + m2 + y2) [Rossby waves] (5.37)

ω = ±[k2 + m2 + y2]1/2, [gravity waves] (5.38)

we do indeed obtain a non-zero value for ∂ω/∂y.
The time derivatives have been written using D/Dt to denote that they are the

advective derivatives following the motion of the ray or wave packet:
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D

Dt
= ∂

∂t
+ cgx

∂

∂x
+ cgy

∂

∂y
(5.39)

We would seem to have a little trouble in evaluating the partial derivatives
that define the two group velocities and the advective derivative of the latitudinal
wavenumber because the full dispersion relation (5.30) is implicit rather than explicit.
However, if we differentiate (5.30) with respect to k,m and y respectively, we obtain
the three equations

3ω2[∂ω/∂k] − (k2 + m2 + y2)[∂ω/∂k] − 2kω − 1 = 0 (5.40)

3ω2[∂ω/∂m] − (k2 + m2 + y2)[∂ω/∂m] − 2mω = 0 (5.41)

3ω2[∂ω/∂y] − (k2 + m2 + y2)[∂ω/∂y] − 2yω = 0 (5.42)

It is trivial to solve these to obtain the necessary partial derivatives in terms of ω,
k, m and y without approximation:

cgx = 1 + 2kω

[3ω2 − (k2 + m2 + y2)] (5.43)

cgy = 2mω

[3ω2 − (k2 + m2 + y2)] (5.44)

Dm

Dt
= − 2yω

[3ω2 − (k2 + m2 + y2)] (5.45)

All these expressions are exact, and apply to either gravity or Rossby waves with
the choice of the appropriate branch of the solution of (5.30) for ω.

The paths of the rays or wave packets in the x − y plane can be obtained by
integrating the usual trajectory equation

dy

dx
= cgx

cgy
= m

(k + 1/[2ω]) (5.46)

Recalling that m = (2n + 1 − y2)1/2 for the n-th Hermite function, (5.46) can be
solved via separation of variables, i.e.,

dy

(2n + 1 − y2)1/2
= dx

(k + 1/[2ω]) (5.47)

Integrating each side of (5.47) gives an arcsin function on the left and x/(k +
1/2ω) on the right, which implies
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y = (2n + 1)1/2 sin

[
x

(k + 1/[2ω]) + �

]
(5.48)

where � is an arbitrary phase constant. The book by Gill [6] discusses ray-tracing
also and gives (5.48), but the context is one of equatorial gravity waves only. All the
results in this section, however, apply to both Rossby and gravity waves if the correct
ω is substituted into them.

Equation (5.48) shows explicitly that the rays for equatorial waves — any type of
equatorial wave, for (5.48) applies to either gravity waves or Rossby waves — are
refracted by the latitudinal variations of the Coriolis parameter so that they turn back
(at yt = ±(2n + 1)1/2, which are the usual turning points for the n-thmode) and cross
and recross the equator as the wave propagates zonally. Strictly speaking, (5.48) is
not self-consistent because WKB theory and its generalizations always break down
at turning points (which in ray theory are also known as “caustics”); one must do a
local treatment in terms of Airy functions and then match that to the solutions away
from the caustics given by the generalizedWKB treatment. The Airy analysis shows,
however, that the wave packets do simply reflect off the turning latitudes and return
towards the equator so that (5.48) is the correct trajectory for the wave packets.

In contrast to a wave packet, the Hermite functions that describe the n-th latitu-
dinal eigenfunctions have a cosine-like structure between the turning points with no
propagation whatsoever. Inside the turning points, the Hermite functions have the
WKB representation [n even]

ψn(y) ∼ 0.5[exp(imy) + exp(−imy)] (5.49)

wherewe have suppressed the slowly-varying amplitude factor on the right-hand side
of (5.49). A standing wave in y can always be decomposed into two traveling waves,
propagating in opposite directions in latitude. AHermite function is the superposition
of two wave packets, and reflection of the waves from the turning points is the key
to a physical (as opposed to merely mathematical) understanding of the Hermite
functions.

Ripa (1994) also provides a ray-tracing analysis for equatorial waves [7], and one
of his themes is specifically the latitudinal modes/ray tracing relationship. He notes
in his abstract, speaking also of radiation from a point source on the equator, that,
“The full solution…has a structure that would be hard to find in a normal modes
expansion”. See also [8].

Refraction is the key for coastal waves, too: exactly the same kind of trapping
occurs for coastal waves even though the Coriolis parameter is kept constant and it
is quite a different physical mechanism— the water depth — which is varying. The
point is that variations of almost anything— f , H , the mean shear, the static stability
—will cause refraction of the waves. If the refraction is strong enough, refraction
will trap waves within certain regions of space.

Figures5.4 and 5.5 show this refraction-sum-trapping actually occurs for packets
of equatorial waves even when no approximations are made, and the equations are
solved numerically. The formal condition for the accuracy of WKB and ray-tracing-
methods is
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Fig. 5.4 Dispersion and refraction of gravity waves on the equatorial beta-plane. Note that the
horizontal axis is time, not longitude, while the vertical axis is latitude. The packet is excited by
the initial conditions S(x, y, 0) = exp(−8[y − 8]2), v(x, y, 0) ≡ 0, D(x, y, 0) = 0. The packet is
independent of x for all time. Contours of the sum variable, S = u + φ, are plotted with a contour
spacing of 1/10 and omission of the zero contour and all negative contours. A similar case with
different parameter values is Fig. 6 of [9], which is reprinted in Gill (1982)

Fig. 5.5 The dashed line is the ray of a Rossby wave-train radiating from a circular mountain
at 30◦ N., which disturbs a flow that would otherwise be in solid-body rotation. The black disk
marks the position of the mountain. As the Rossby wave is refracted towards the equator, and then
eventually from a turning latitude in the southern hemisphere back towards the equator, it decays
in amplitude because of dissipation. The isolines of a similar experiment can be seen in Figs. 3a, c
of Grose and Hoskins [10]
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n � 1 (5.50)

i.e., the wave is oscillating with y on a scale small in comparison to 1 (which is
the scale on which f is varying) so that the oscillation scale may be considered a
“fast” scale in the in sense of the method of multiple scales in comparison to the
“slow” scale on which Coriolis parameter or depth varies. In practice, WKB usually
gives qualitatively correct results even when this criterion of disparity of scales of
variations is but poorly satisfied. Equatorial waves are a good example: even the
lowly Kelvin wave is equatorially trapped despite the fact that WKB and ray-tracing
cannot be rigorously justified for this mode.

Although our first look at ray-tracing has been confined to explaining why coastal
and equatorial trapping are possible, it is also a perfect tool in understanding the
shadow zones and foci that occur when the equatorial ocean is forced by the annual
and semiannual cycles in the atmospheric wind stress. Before we can move on to this
relatively advanced topic, we must first consider a more basic issue: how equatorial
waves reflect off coastal boundaries, as described in the next chapter.

5.5 Coastal and Equatorial Kelvin Waves

The coastal Kelvin wave is illustrated in Fig. 5.6. In the off-shore direction, there
is perfect geostrophic balance while the wave is otherwise a normal gravity wave
propagating at the usual gravity wave speed parallel to the coast. Like the equatorial
Kelvin wave, one of the horizontal velocity components is identically equal to zero—
for the coastal Kelvin wave, the component perpendicular to the coast.

Unlike other coastally-trappedwaves, theKelvinmode can exist in a flat-bottomed
channel with no variations in the depth of the sea at all. What is essential is the
presence of the shore so that the pressure gradients created by the piling up of
the water along the cliff can balance the off-shore Coriolis force. If the coast were
suddenly removed, as could be done in a laboratory experiment, the crests of the
waves would be free to slop over what had been land, shoved sideways by the now-
unopposed Coriolis force.

The coastal Kelvin wave, linearized about a state of rest, is

φ = e−x/Reik(y−ct) (5.51)

v = −(g/H)1/2eik(y−ct) (5.52)

where
R = (gH)1/2/ f [“Rossby radius of deformation”] (5.53)

c = −(gH)1/2 [Coastal Kelvin dispersion relation] (5.54)
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Fig. 5.6 Schematic of a coastal Kelvin wave. The shaded wall is the coast. The height φ is depicted
by a mesh diagram. The arrows show the magnitude and sign of the horizontal velocity, which is
everywhere parallel to the coast

The e-folding scale is the usual Rossby radius of deformation. The Kelvin wave
is nondispersive and the minus sign in (5.54) is a reminder that coastal Kelvin waves,
like coastally trapped topographic Rossby waves, are always “right-bounded”, that
is to say, keep the land on the right as viewed by an observer traveling with the wave
(in the northern hemisphere).

5.6 Topographic and Rotational Rossby Waves and
Potential Vorticity

The potential vorticity for a barotropic fluid is given by

q = (ζ + f )/H (5.55)
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Fig. 5.7 Left the mechanism of planetary wave propagation. Conservation of potential vorticity
implies that a particle which is perturbed equatorward acquires cyclonic vorticity (arrow). The
broad arrow shows the motion induced by this change in vorticity, and is equivalent to westward
propagation. Right same but for topographic Rossby waves, also known as shelf waves

The quintessential point is that variations in either the Coriolis parameter or the depth
will force changes in the relative vorticity ζ . In particular, if the particles of a fluid
are perturbed from their equilibrium positions by being moved to where either f or
H is different from its original value, the particles will acquire a relative vorticity
so that q is conserved. This vorticity in turn can push the particles back to their
original positions while sending the wave propagating in a direction perpendicular
to the gradient of f or H as shown schematically in Fig. 5.7.

In either case, it is not the mean value of f or H that is important, but rather the
fact that f and H vary. Without gradients of f or H , the particles would acquire no
relative vorticity when displaced, so there would be no horizontal restoring force to
push the particles back to their original positions.

Both species of waves are now commonly called “Rossby” waves because the
dynamical mechanism is the same, even though Rossby’s original paper was limited
to variations in f alone. The topographic Rossby waves are somewhat confusingly
also called “continental shelf waves” and “edge waves”, but it is more sensible to
name them “topographic Rossby waves” since these waves can occur in the deep
ocean because of gradients of topography along the sea floor, thousands and thou-
sands of kilometers from the continental shelves or the edges of the sea.

An elementary power series expansion shows that if Δy is the northward dis-
placement of the particle, then it acquires a relative vorticity Δζ given by

Δζ = −(d f/dy)Δy (5.56)

A similar expansion about a point (x0, y0) gives

Δζ = (dH/dx)( f0/H0)Δ x (5.57)

assuming for simplicity that the topography varies in the x-direction. The identifica-
tion of a “topographic beta” in (5.57) is obvious.
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As described in Sect. 5.2, topographic Rossby waves comprise one of the three
modes for each off-shore mode number n ≥ 1, but they have been observed not only
along the continental shelf, but above prominent topographic features in the interior
of ocean basins.
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Chapter 6
Reflections and Boundaries

Abstract Coastal boundaries reflect ocean waves and in so doing generate new
waves, jets and transient currents. The first third is a comprehensive discussion of
the reflection of equatorial waves from straight boundaries aligned with a meridian.
Although the equatorial oceans are effectively unbounded north and south, normal
modes and quasi-normalmodes do exist and are analyzed in themiddle of the chapter.
The final part is reflection from irregular boundaries and scattering from islands.

Mathematical analysis appears to be a dying or lost art, and I would argue for a better balance
between analytical and numerical methods.

Philip D. Thompson on p. 636 of his article, “TheMaturing of the Science”, Bull. Amer. Met.
Soc., 68, 631– 637 (1987). Thompson was both a brilliant theorist and an adept number-
cruncher; he wrote the first American book on numerical weather prediction.

6.1 Introduction

The equatorial ocean is chopped up into several pieces by the continents, and these
zonal boundaries greatly complicate the dynamics. The Yoshida jet solution given
in Chap.9 is still a solution to the linear equations of the equatorial beta-plane, but
additional terms — free oscillations – must be added in order to satisfy the zonal
boundary conditions. Thus, the first role of coasts is to act as wavemakers.

Even when waves are excited directly in the open ocean by wind stresses that vary
with x and t , the coasts play a role because such waves must eventually collide with
land. For nonrotating gravitywaves, the reflection problem is simple: thewave simply
bounces and then propagates with the same speed but opposite direction. The rotation
of the earth, however, introduces strong asymmetries in the propagation of planetary
waves. For example, only long Rossby waves have a westward group velocity while
only short Rossby waves have an eastward group velocity. It follows that even if a
Rossby wave reflects into another Rossby wave, we must expect a drastic change in
zonal wavenumber. On the equatorial beta-plane, however, the situation is still more
complicated.
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Nonetheless, boundary effects are essential to synthesizing complete solutions.
Because of the complexities involved, we shall begin with Rossby wave reflection
on the midlatitude beta-plane where some of the difficulties are suppressed. We shall
then proceed to the relatively easy case of reflections of equatorial waves from a
western boundary and then to the much more difficult problem of eastern boundary
reflections where coastal Kelvin waves are an annoying but essential complication.
Finally,wewill turn to reflections from slanted boundaries, i.e., those not oriented due
north–south, which is an approximation employed in early sections of this chapter.

6.2 Reflection of Midlatitude Rossby Waves from a Zonal
Boundary

The problem of this section is that of the reflection of a quasi-geostrophic Rossby
wave (or more accurately, a wave packet) whose streamfunction is in the form

ψi = A(x, y, t) exp(i[ki x − mi y − ωi t]) (6.1)

from a zonal boundary at x = 0. When the incident wave (6.1) is a wave packet,
the “envelope function” A(x, y, t) will vary slowly with position and time, but the
shape of the envelope has no bearing on the reflection of the packet. In other words,
to lowest order in perturbation theory, the precise mathematical form of A(x, y, t)
is irrelevant, and we may take A to be a constant for purposes of calculating the
reflected wave. However, unless the wave is really a wave packet, the concepts
of “incident” and “reflected” would be meaningless because both the incident and
reflected would extend to infinity in x , and could not be meaningfully separated.
Hence, it is conceptually important that A varies with x and t even though this
“envelope” or “modulation” factor will not be discussed in detail until Chap.16.

The fundamental physical condition at a zonal boundary which is parallel to the
y-axis is

u = 0 (6.2)

for any exact or approximate system. For quasi-geostrophic waves, this becomes

ψy = 0 (6.3)

If we assume that the reflected wave is of the same general form as (6.1) — we
must check a posteriori to verify that we have indeed obtained a solution to both the
differential equation and boundary conditions — then (6.3) implies

mi Ai exp(i(mi y − ωi t)) + mr Ar exp(i(mr y − ωr t)) = 0 (6.4)

http://dx.doi.org/10.1007/978-3-662-55476-0_16
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at x = 0. Now the only way that (6.4) can be satisfied for all t is if

ωi = ωr (6.5)

i.e., the frequency is invariant to reflection. (Thiswould still be true even for reflection
from an oblique coast, and not merely one aligned north–south.) The only way that
(6.4) can be satisfied for all y is if

mi = mr (6.6)

(This is not true for reflection from an oblique coast). Thus, for a straight coastline,
both the frequency and y-wavenumber are conserved, and only the changes in k and A
remain to be determined. At this point, it is necessary to invoke the explicit dispersion
relation for Rossby waves in the form

ω = −βk/(k2 + m2 + F) (6.7)

where F is the Froude number, f 2/gH .1

Many years ago, Michael Longuet-Higgins noted that the Rossby dispersion rela-
tion (6.7) can be rearranged into

(
k + β

2ω

)2

+ m2 = β2

4ω2
− F (6.8)

This is the equation of a circle in the k −m plane with a center at k = −β/(2ω) and
a radius of

√
β2/(4ω2) − F as shown in Fig. 6.1. This is precisely what is needed

to determine the reflected wavenumber kr since the total wavevectors for both the
incident and reflected wave must (sinceω is invariant) touch the same circle. Further,
since the y-wavenumberm is conserved, both the incident and reflected wavenumber
must lie on the straight line, parallel to the k-axis, for which m is the equal to the
y-wavenumber of the initial wave. The dashed line intersects the circle only in two
points.

To determine which point is which, recall that a wave packet incident on a west-
ern boundary from the east must obviously have a westward group velocity. Only
long Rossby waves (small k) have this property. On the other hand, the reflected
packet must have an eastward group velocity, which is possible if and only if k is
sufficiently large. It follows that the leftmost point on the circle and the line through
y-wavenumberm must be the tip of the wavevector for the incident wave whereas the
right point — which has much larger k —is the tip of the wavevector of the reflected
packet.

This is indeed the correct answer: the x-wavenumber k is signficantly increased
by the reflection whereas m and ω are unchanged. To verify that we have obtained

1Notation warning: m, which is elsewhere the index of the baroclinic vertical modes, is here used
for the latitudinal wavenumber in this section only.
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Fig. 6.1 The dispersion relation for Rossby waves, which can be written by clearing denominators
as (k + β/(2ω))2 + m2 = β2/(4ω2) − F2, is the implicit representation of a circle. All pairs of
longitudinal and latitudinal wavenumbers (k,m) such that the frequency is equal to the common
frequency ω = ωi = ωr of the incoming and reflected Rossby waves must lie on this circle. Since
the latitudinal wavenumberm is unchanged by the reflection, i.e.,mi = mr as marked by the dashed
line, both the incoming and reflected wavevectors (rays with arrows) must lie on the dashed line
m = mi as well as on the circle. Based on a concept of M.S. Longuet-Higgins

a true solution, we need to check that the waves whose wavevectors lie in the right
half of the circle in Fig. 6.1 do indeed have eastward group velocities while those
that lie in the left half of the circle travel in the opposite direction. The equations for
the two points with fixed m that lie on the circle are given by

k = −β/2ω ±
√

β2/[4ω2] − (F + m2) (6.9)

where the (−) corresponds to the incident wave and the (+) to the reflected wave;
the difference of the two roots gives the change in wavenumber due to reflection. It
is straightforward to show that the condition that the radical vanish – which is the
point of demarcation between the left and right half of the circle at the top of the
circle – is the condition for the group velocity cgx = ∂ω/∂k = 0. (Differentiate both
sides of the dispersion relation with respect to k, set ∂ω/∂k = 0, and this becomes
k = −β/(2ω), that is k must lie on a straight vetical line in the k-m plane through
the center of the circle.) It follows that wave packets of larger k will have eastward
group velocities while waves of smaller k have westward group velocity so that our
initial assumption of a reflected wave in the same form as the incident wave always
yields a true and consistent solution. Figure6.2, which shows a graph of frequency
versus zonal wavenumber for fixed m, makes this even clearer and also illustrates
the increase in k.

Equation (6.4) then, in view of (6.5) and (6.6), implies that

Ai (0, y, t) = −Ar (0, y, t) (6.10)
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Westward-
energy
flux

Eastward-
energy
flux

Fig. 6.2 The thick curve is the dispersion relation ω(k) for a Rossby mode where k is the zonal
wavenumber. The double-headed arrow connects wavenumbers that have the same frequency. The
vertical dotted line, which marks the zonal wavenumber k where the group velocity cg = dω/dk
is zero, is the boundary between waves of positive and negative group velocity as labeled

In words, the amplitude of the wave is not changed by reflection, but the phase is
reversed by 180 degrees.

The zonal velocity, which is given by (minus) the y-derivative ofψ , is unchanged
(except in phase) because the y-wavenumber and the amplitude A are unchanged.
The latitudinal velocity, however, is greatly increased by the reflection because it is
the x-derivative of ψ , and is therefore proportional to k, which is greatly increased
by reflection.

It can be shown, as done in Pedlosky ([1], p. 127), that the energy density (energy
per unit area) of the reflected wave is greater than that of the incident wave to
compensate for the slower group velocity of the reflected packet; thus, the total
energy flux stays the same. Because of the change of wavenumber, the reflected
packet is squeezed into a narrower region traveling more slowly from the boundary,
but the total energy of the packet stays the same.

Pedlosky [1] also discusses reflection froma latitudinal boundary, i.e., one running
due east–west at a fixed value of y. For this special case, everything is conserved
except thatm suffers a change of sign. However, this case has little direct connection
with equatorial oceanography, so we will say no more here.

6.3 Reflection of Equatorial Waves from a Western
Boundary

On the equatorial beta-plane, the reflection of a wave from a zonal boundary is more
complicated because the zonal velocity u is the sum of two Hermite functions with
different coefficients, i.e.,
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u = 1

k − ω

√
n + 1

2
ψn+1 − 1

k + ω

√
n

2
ψn−1 (6.11)

It would be a blessing if an incoming wave packet of meridional mode number N
would reflect as a wave packet of the same meridional wavenumber. However, as in
the midlatitude Rossby wave reflection problem solved in the previous section, the
east–west wavenumber k is changed by reflection even though the frequency ω is
not. Because the coefficients in (6.11) have different dependence upon k, it is not
possible to choose the amplitude of the N -th reflected mode so as to simultaneously
cancel both Hermite terms in (6.11) for the incoming wave so as to make u vanish
at the boundary.

To derive the explicit solution, write the incoming wave as

vi = i Ai (x, y, t) exp[i(ki x − iωt)]ψN (y) (6.12)

(Note that we have divided out the wavenumber k from the formulas of Chap.3).
Assume that the reflected wave is the finite series

ur = i
N∑

n=1

Ar exp[i(knx − ωt)]
{√

(n + l)/2

k − ω
ψn+1 −

√
n/2

k + ω
ψn−1

}

− [ω/
√
2] A0 exp[i(ω − 1/ω)x − ωt] ψ1 + AKel exp[iω(x − t)] ψ0

(6.13)

Note that both the Yanai and Kelvin waves appear in (6.13) because both have group
velocities towards the east, even though the Yanai wave has a phase velocity in the
opposite direction.

To make (6.13) satisfy the condition

ui + ur = 0 at x = 0, (6.14)

choose the coefficient AN so as to match the (N + 1)-st Hermite coefficient of
the ui . Unfortunately, this leaves the (N − 1)-st Hermite coefficient of mode N
uncancelled, so we need the N − 2 mode in the reflected packet, too. By choosing
AN−2 appropriately,we can cancel the second part of ui —but this leaves uncancelled
the degree N −3 term in the reflected (N −2)mode. To get rid of this, we are forced
to choose AN−4 to balance it, and so it goes until we come to modes which have
zonal velocities that are proportional to but a single Hermite function — the Yanai
and Kelvin waves. Thus, these modes play an essential role in making a finite, closed
form solution possible for reflection from a western boundary.

The results are
AN = (ω − kN )/(ω − ki )Ai (6.15)

AN−2 = √
N/(N − 1) (kN−2 − ω)

{
Ai

1

ω + ki
+ AN

1

ω + kN

}
(6.16)

http://dx.doi.org/10.1007/978-3-662-55476-0_3
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An−2 = An

√
n/(n − 1) {(kn−2 − ω)/(kn + ω)} (6.17)

A0 = − A2

√
2 / {ω(k2 + ω)} (6.18)

AKel = A1/
{√

2(k1 + ω)
}

(6.19)

Note that the recursion advances by jumps of 2: only those equatorial waves with
(i) mode numbers less than or equal to that of the incomingwave packet N and (ii) the
same symmetry with respect to the equator will enter into the reflected wave packet.
Thus, if the incomingwave is symmetric about the equator, i.e., ui is symmetric about
the equator, then the Yanai wave will not be part of the reflected wave packet. The
wavenumbers that appear in (6.16)–(6.19) are easily determined from the dispersion
relation

k = −1/(2ω) ±
√

ω2 + 1/(4ω2) − (2n + 1) (6.20)

which is just the usual dispersion relation for equatorial waves, written so as to solve
for k instead of ω. (Note that ω in this case is the same for all waves, both incoming
and reflected, and is the frequency of the incoming wave.) For an incoming gravity
wave, the negative sign in (6.20) would be appropriate; the (+) sign would be used
for all the reflected waves. For an incoming Rossby wave, one would apply the (+)
sign in (6.20) to that, and the (−) sign to all the reflected waves.

In either event, note the following:

1. The reflection problem is solved in explicit, closed form and consists of a finite
number of waves.

2. All the Hermite functions which enter into the reflected packet have a degree less
than or equal to that of the incoming packet. Since the turning points of the waves
are proportional to the mode number, it follows that the reflected wave packet is
confined to the same latitudinal band as the incoming wave packet.

3. All the wavenumbers k are real so that the reflected wave packets will propagate
into the interior of the ocean.2

One final note: when the zonal wavenumber k and latitudinal mode number n are
both small, as is appropriate to low frequency (annual and semiannual) long wave
motions, the Kelvin wave will tend to dominate the response since the denominator
in (6.19) is then very small. The terms in the general recursion (6.17) on the other
hand, will be of O(1) so that the higher order modes will be of comparable size.
Even when n and k are not both small, the Kelvin wave will still play a special role
in the reflection of a wave from the western boundary – any wave – because it has a
much higher group velocity than any Rossby wave.

2Note that the radical in (6.20) must be positive for the incoming, N -th mode so that it can be a
propagating (as opposed to a zonally-trapped) wave. Since all the waves in the reflected packet have
mode numbers less than or equal to N , it follows that the radical is the same or larger for them.
Hence, k is real for all waves in the reflected packet.
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6.4 Reflection from an Eastern Boundary

If we attempt to apply the recursive procedure of the preceding section to determine
the mode-by-mode components of the reflected wave which is created when a wave
of mode number N is incident on a boundary on the eastern side of the ocean,
we run into fatal problems because the lowest two modes, the n = 0 Yanai and
n = −1 Kelvin waves, always have group velocities towards the east. Consequently,
they cannot be part of the wave ensemble which reflects westward off an eastern
boundary. The downward recursion therefore fails because we need the Kelvin and
Yanai modes to cancel the components of zonal velocity u which are proportional to
ψ1(y) [for the n = 2 mode] and ψ0(y) [for the n = −1].

Instead, we must use an upward recursion (in latitudinal mode number), and this
generates an infinite series of modes instead of a finite sum. There are, however, three
different sets of formulas because the reflection of the Kelvin and Yanai waves must
be dealt with separately from the higher modes. (This is unnecessary in discussing
western boundary reflection because these two exceptional, eastward-moving wave
modes can never reflect from a western boundary).

For the general case of an incoming wave of latitudinal mode number N with
N ≥ 1, the reflected wave takes the form

ur =
∞∑

n=N

An exp[i(knx − ωt)]
{ [(n + 1)/2]1/2

kn − ω
ψn+1 − [n/2]1/2

kn + ω
ψn−1

}
(6.21)

where N is the mode number of the incoming, eastward-travelllng wave packet.
To cancel the term in the sum (ur + ui ) which is proportional to N − 1, we must

have
Ai

√
N/2/(ki + ω) + AN

√
N/2/(kN + ω) = 0 (6.22)

which implies
AN = −Ai (kN + ω)/(ki + ω), N ≥ 1 (6.23)

Unfortunately, the zonal velocity component of the reflected N -th mode propor-
tional to ψN+1 generally does not exactly cancel the corresponding component of
the incoming wave, so the “low” component of mode (N + 2) — that is to say, the
part of u which is proportional to the Hermite function of degree lower than the mode
number —must be pressed into service to cancel the “high” components of both the
incoming and N -th reflected mode, demanding

− AN+2 [(N + 2)/2]1/2/(kN+2 + ω)

+ Ai [(N + 1)/2]1/2/(ki − ω) + AN [(N + 1)/2]1/2/(kN − ω) = 0 (6.24)

which gives, using (6.23),
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AN+2 = Ai [(N + 1)/(N + 2)]1/2(kN+2 + ω) ×
{

1

ki − ω
− (kN + ω)

(ki + ω) (kN − ω)

}

(6.25)

In a similar way, wemust cancel the “high” part of the zonal velocity of the n-thmode
with the “low” degree component of the (n + 2)-d mode, which gives the general
recursion

An+2 = An

√
(n + 1)/(n + 2)

kn+2 + ω

kn − ω
, n ≥ N + 2 (6.26)

The general recursion (6.26) applies when the incident wave is a Kelvin or a Yanai
wave, too, but the starting values are different. For the Kelvin wave

A1 = AKel 2
1/2 (k1 + ω) [incident Kelvin] (6.27)

with the recursion (6.26) determing A3 and all higher An’s. For the Yanai (n = 0)
incoming wave, the lowest mode of the reflected wave disturbance is

A2 = −A0 2
−1/2 ω (k2 + ω) [incident Yanai] (6.28)

where the general recursion (6.26) again applies to determine all higher coefficients.
A number of remarks are in order. First, the reflectedwave disturbance always has the
same symmetry with respect to the equator that the incident wave does, regardless
of whether the reflection is from an eastern or western boundary. Thus, when the
mode number of the incoming wave packet is odd, all the even number An’s are
automatically 0; when the incident wave is a Yanai wave or other mode of odd
symmetry, then A1, A3, . . . are all 0.

Second, one should properly speak of a reflected wave disturbance rather than a
reflected wave because the reflection of a single packet invariably consists of a num-
ber, perhaps an infinite number, of latitudinal modes, each with its own characteristic
group velocity. The reflection of a localized wave packet will therefore inevitably
segregate into many wave packets as each mode goes at its own speed.

Third, although the disturbance reflected from an eastern boundary is inevitably
an infinite series, only a finite number of the modes of the reflection will be able to
propagate westward into the interior of the ocean. The proof follows from recalling
that the dispersion relation for k in terms of latitudinal mode number n and frequency
ω) (which is the same for all modes, being invariant under reflection) is

k = −1/(2ω) ±
√

ω2 + 1/(4ω2) − (2n + 1) (6.29)

As n increases for fixed frequency, the radical must inevitably become imaginary,
implying that all the higher modes are zonally trapped.

In a brilliant piece of classical mathematical analysis too complicated to repeat
here, Moore [2] showed in his thesis that the zonally-trapped terms in the series
could be approximately summed for large y, and that the sum is a slowly varying
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coastal Kelvin wave propagating poleward along the eastern boundary of the ocean
— actually two Kelvin waves of identical form propagating in opposite directions.
The two Kelvin waves are in phase if the incident wave is symmetric about the
equator, but the Kelvin waves are 180 degrees out of phase, i.e., are of opposite sign,
when the incident wave packet is antisymmetric. The adjective “slowly varying’ is
necessary because the classic coastal Kelvin wave is usually derived on an f-plane,
but the series ofHermite functions is a solution on the equatorial beta-planewhere the
Coriolis parameter is varying with y. The correct approximate form for the coastal
Kelvin wave is therefore

v ∼ [constant]
√
y exp[i {ωt − ωy + x/(2ω)} + yx] {1 + O(1/y)} (6.30)

where it is assumed that the coordinate system is chosen so that x = 0 corresponds
to the eastern boundary of the ocean. The e-folding scale (the Rossby radius of
deformation) becomes smaller as one goes away from the equator (linearly with y),
so the coastal Kelvin wave must narrow as it propagates poleward. Conservation of
energy then forces the amplitude of the wave to grow as the square root of y so as
to compensate for the narrowing of the wave in latitude as y increases. The reason
for the square root dependence is that the energy is a quadratic function of the wave
amplitude. This narrowing also implies that the phase lines must tilt with respect to
the coast, which is why a factor of x appears multiplied by i in the exponential in
(6.30).

These coastal Kelvin waves have all kinds of profound implications, both physical
and mathematical. The major physical consequence is that the equatorial ocean can-
not be considered a bounded system — energy always leaks away to high latitudes
through coastal Kelvin waves running poleward along the east coast of the ocean.
The mathematical implication is that one cannot simply choose a basin of fixed size,
and then demand that the solutions vanish at the meridional sidewalls; the coastal
Kelvin waves can make the amplitude as large on the northern and southern walls
of the model as it is at the equator. In the remainder of this chapter, we will explore
these consequences and approximations that are useful in understanding them.

6.5 The Meridional Geostrophy/Long Wave
Approximation and Boundaries

The formulas of the preceding two sections are general but messy. When the fre-
quency is small or when the zonal wavenumber k is small — these statements are
equivalent for Rossby waves with westward group velocity— it is possible to greatly
simplify them. This so-called “long wave”,“low frequency”, or “meridional geostro-
phy” approximation, was derived and extensively discussed in Chap.4. It is the
equatorial equivalent of the quasi-geostrophic approximation.

The western boundary condition for flow with the long wave approximation is

http://dx.doi.org/10.1007/978-3-662-55476-0_4
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∫ ∞

−∞
(uKelvin + ui ) dy = 0, at the western boundary (6.31)

i.e., the sum of the latitudinal integral of the incident Rossby wave and the reflected
Kelvin wave must be zero.

This boundary condition (6.31) is convenient because, unfiltered by the assump-
tion of meridional geostrophy, the long Rossby waves and the Kelvin waves become
a closed set. The reflected Kelvin wave can be computed from (6.31) without com-
puting the irrelevant short Rossby waves through the recurrence formula used earlier.
Meridional geostrophy is conceptually valuable because it shows that short Rossby
waves can only redistribute mass in the coastal boundary layer.

In the next section, we will give a practical example of the usefulness of the
long wave approximation in obtaining simple, closed form solutions to an otherwise
almost intractable problem.

6.6 Quasi-normal Modes: Definition and Other Weakly
Non-existent Phenomena

In his thesis, Moore [2] calculated the eigenfrequencies and eigenfunctions of the
free oscillations of an ocean-sized, rectangular basin that spanned the equator [2].
He showed that the poleward-traveling coastal Kelvin waves could turn the corner
and run back towards the west as zonally-propagating coastal Kelvin waves along
the northern boundary, then turn the corner again to travel towards the equator along
the western boundary. Moore also solved the simpler problem of the free oscillations
of a “strip” ocean which is unbounded in y; this is much less realistic because some
[fictitious] energy source at high latitudes along the western boundary must pump
energy into equatorward-traveling Kelvin waves to make up for what is being lost
to higher latitudes on the eastern side of the sea via the poleward traveling Kelvin
waves (Figs. 6.3 and 6.4).

In truth, it is thought that the closed basin problem is nomore relevant to the actual
ocean than the strip model. While the ocean basins are closed— the earth is a sphere
with a finite surface area — dissipation will almost certainly clobber the coastal
Kelvin waves as they make their long journey from Peru to Alaska and then run back
down the coast of Siberia towards the equator again. Further, coastal Kelvin waves
will be disrupted by the highly irregular twists and turns of real-life coasts and by local
(estaurine and gulf) circulations, which are ignored in the idealized, inviscid, straight
coastline model of Moore [2] [and the preceding section]. In reality, the energy taken
off along the eastern boundary of the ocean by the poleward-traveling Kelvin waves
is lost to the equatorial seas forever. Any waves excited in the equatorial region,
therefore, will eventually damp out as the coastal Kelvin waves extract a certain
percentage of the remaining energy on each trip of the wave pulse back-and-forth
along the equator.
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Fig. 6.3 Free oscillations in
a strip ocean. To supply the
losses from the equatorial
zone due to Kelvin waves
radiating away from the
equator (dashed line) on the
eastern side of the ocean, one
must have fictitious energy
sources at y = ±∞ (stars)
to excite Kelvin waves
moving towards the equator
along the western coast

Fig. 6.4 Free oscillations in
an ocean basin. The equator
is dashed. Arrows show the
direction of propagation of
the Kelvin waves
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However, there are never true free oscillations in the sea (or air) because every
wave will lose energy to dissipation even if spared the radiative loss that depletes
equatorial waves. The physical interest in inviscid, free oscillations is that when the
rate of energy loss is sufficiently low — to whatever causes — a free mode is a
near-resonant response of the ocean to external forcing. Thus, although an immortal
equatorial wave pulse is impossible even in the limit of vanishing viscosity, it is still
true that after being forced by changes in the wind stress, the equatorial ocean may
well be dominated by quasl-normal modes, that is to say, by wave pulses whose
frequencies and wavelengths are such that the rate of energy loss to coastal Kelvin
waves is very low.

Such thinking motivates the following:

Definition 6.1 (Quasi-normal Mode/Basin Resonance) A solution to the inviscid
shallow water wave equations is a true normal mode if it oscillates forever. A solu-
tion is a quasi-normal mode if it decays by irreversibly radiating energy out of the
equatorial region to higher latitudes so slowly that the decay time scale is large
compared to the period of oscillation.

“Basin resonance” is often used today in place of “quasi-normal mode”. Because
of dissipation, permanent free oscillations never exist. However, the response to forc-
ing with a broad frequency spectrum may exhibit tall, narrow peaks at the a discrete
set of “resonance frequencies”. These match the eigenfrequencies of the normal
modes (or quasi normal modes) as computed in an inviscid model. A forced bound-
ary value problem is not, to a mathematician, the same as an eigenvalue problem,
but the underlying physics is the same.

Cane and Moore found analytic quasi-normal modes of low frequency composed
entirely of Rossby and Kelvin waves in the long wave approximation. Gent in col-
laboration with Semtner found high frequency quasi-normal modes. We will discuss
each in turn in the following sections.

First, though, it is useful to set quasi-normal modes in a larger context. Similar
slowly-decaying phenomenon are ubiquitous in nature including radioactive nuclei,
externally-destabilized atoms, breathers in the φ4 field theory and other weakly non-
local solitary waves [3]. In addition, there are other phenomena which do not decay
but share the property of being “beyond-all-orders nonexistent”. This propertymeans
that the phenomenon such as the slow manifold is predicted by all orders of a power
series in the small parameter ε, but the slowmanifold is nonexistent because of effects
which are exponentially small in 1/ε. The slowmanifold, for example, is nonexistent
because there is an unavoidable fast gravity wave motion which is O (exp(−1/ε)). It
may offend the purist to generalize the concept of “normal mode” from an oscillation
that is immortal in the absence of dissipation to a “quasi” normal mode that is ever-
weakening with time even when viscosity and friction are completely neglected, but
that is the way the world is.

A proton is an extreme example. Modern quantum theories assert that the proton
is not a permanent state, but rather its intrinsic nature is to decay as surely as any
quasi-normalmode of the ocean. On the other hand, the average lifetime of the proton



118 6 Reflections and Boundaries

is larger than the expected lifetime of the universe! Measurement of proton decay
would confirm some theoretical ideas, but otherwise is otherwise utterly irrelevant
to human affairs.

Equatorial Rossby solitons of latitudinal mode number n ≥ 3 are “weakly nonlo-
cal” in the sense that they radiatively decay by emission of small amplitude sinusoidal
equatorial Rossby waves of lower latitudinal mode number [3–6]. (See Sect. 16.18.)
If the soliton amplitude is O(ε2), it is possible to compute a power series in ε to
arbitrarily high order to capture the structure of the apparently nondecaying solitary
wave. The decay is missed by the power series because it lies “beyond-all-orders”,
proportional to exp(−�/ε) where � > 0 is a constant. The decay rate is absurdly
small — exponentially small — for small ε. Given that there is always dissipation, it
seems silly turn a blind eye to viscosity while asserting that Radiative Decay Changes
Everything, as some in the nonlinear waves community do, even now.

The quasi-normal modes discussed in the rest of the this chapter are considerably
more “quasi” in the sense that the decay rates are not, alas, exponential functions
of anything. Nevertheless, basin modes whose decay scales are long compared to
the oscillation period are normal modes in a practical sense, and we must deal with
them.

6.7 Quasi-normal Modes in the Long Wave
Approximation: Derivation

Using the long wave approximation, Mark Cane and Dennis Moore independently
derived explicit solutions for such quasi-free modes and published their results in
a joint paper (Cane and Moore, [7]). In the remainder of this section and the next,
we will derive and discuss their results. In Sect. 6.9, we will describe other efforts to
explore quasi-free oscillations by Peter Gent and others.

The derivation begins by calculating the eastern boundary reflection of a Kelvin
wave in the long wave approximation using the Rossby wave dispersion relation

kn = −(2n + 1) (6.32)

The coefficients of the reflected long Rossby waves simplify to

A1 = AKelvin

√
2 (k1 + ω)

= −23/2 ω AKelvin (6.33)

and the general recurrence

An+2 = An

√
(n + 1)/(n + 2) (kn+2 + ω)/(kn − ω)

= An

√
(n + 2)/(n + 1) (6.34)

http://dx.doi.org/10.1007/978-3-662-55476-0_16
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where we have made no approximations in (6.33) or (6.34) except the longwave
approximation (6.32).

A convenient notational trick is to introduce the coefficients Λn defined by

Λn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
3·5·7···n

2·4·6···(n−1)n odd, n ≥ 3

0, n even
1, n = 1

(6.35)

The Λn , which Cane and Moore denote by the more cumbersome notation κ1n , obvi-
ously satisfy the recurrence (6.34). These coefficients will appear often in equatorial
calculations because they are proportional to the expansion coefficients of y, i.e.,

y = 2π1/4
∞∑

n=1,n odd

Λnψn(y) (6.36)

=
∞∑

n=1,n odd

a2n+1ψ2n+1(y) (6.37)

a2n+1 = π1/4

√
(2n + 1)!
2n−1 n! (6.38)

∼ 2.378 (2n)1/4 [n → ∞] (6.39)

In terms of these coefficients Λn ,

An ≡ − 23/2ω Λn, n ≥ 1 (6.40)

The reflection of the Kelvin wave is now given by (top sign refers to u, bottom to φ)

ur
φr

}
= − 23/2 ω AKelvin

∞∑
n=1;n odd

Λn exp(−iωt) exp(−iω(2n + 1)x)×
{√

(n + 1)/2

kn − ω
ψn+1 ∓

√
n/2

kn + ω
ψn−1

}
(6.41)

where we have already employed (6.32) to replace kn in the exponential in (6.41).
Introduce the new “stretched” x coordinate

s ≡ ω (x − xE ) (6.42)

where xE is the location of the eastern boundary. This definition is convenient because
all the wavenumbers k in the long wave approximation are proportional to ω, which
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can then be absorbed into the new coordinate. In (6.41), it is implicitly assumed, as
in earlier sections, that the eastern boundary is at x = 0, but for purposes of applying
the western boundary condition below, it is convenient to shift x = 0 to correspond
to the western boundary. Since the phase of the Kelvin wave and its reflection is
arbitrary anyway, we can replace x by (x − xE ) without altering anything else in
(6.41).

Use of (6.32) for the kn in the second line of (6.41) shows

√
(n + 1)/2/(kn − ω) = √

(n + 1)/2/(−(2n + 1) ω)

= 1/[−ω 23/2
√
n + 1] (6.43)

√
n/2/(kn + ω) = √

n + /2/(−2n ω)

= 1/[−ω 23/2
√
n] (6.44)

The factors of [−ω 23/2] in (6.43) and (6.44) cancel the same factor which appears
in (6.41). The solution for u and φ (including the Kelvin wave) becomes

u
φ

}
= AKelvin exp(−iωt) {ψ0(y) exp(is)

+
∞∑

n=1;n odd

Λn
[
(n + 1)−1/2ψn+1(y) ∓ n−1/2 ψn−1(y)

]
exp(−is(2n + 1)

⎫⎬
⎭
(6.45)

What is remarkable about (6.45) is that with a couple of further transformation,
the infinite series can be summed in closed form. First, we collect degrees of Hermite
functions to obtain

u
φ

}
= AKelvin exp(−iωt) {ψ0(y) [exp(is) ∓ Λ0 exp(−i3s)]

+
∞∑

n=2;n even

ψn(y)[Λn−1 n
−1/2 exp(−is(2n − 1)) ∓ Λn+1 (n + 1)−1/2 exp(−is(2n + 3)) ]

⎫⎬
⎭

(6.46)

By using the recurrence (6.34), which implies

Λn−1 n
−1/2 = Λn+1 (n + 1)−1/2 (6.47)

we can rewrite (6.46) as
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u
φ

}
= AKelvin exp(−iωt)

∞∑
n=0;n even

(n + 1)−1/2 Λn+1 ψn exp(−is(2n + 1)) ×

{exp(2is) ∓ exp(−2is) }
(6.48)

The crucial point about the form (6.48) is that the sums for u and φ differ only in
a term which is independent of n and therefore can be taken outside the sum. Taking
the ratio of u/φ eliminates all the y dependence to give

u = i tan(2s) φ, (6.49)

which is equivalent to (10) of Cane and Moore [7] except for some differences of
notation. [Cane andMoore assume the mode is proportional to exp(iωt)whereas we
have kept the usual exp(−iωt). This reverses the sign of all factors of s that appear
in (6.48) because s is proportional to (x − xE ) times ω, and thus is sign-flipped by
a different convention about the sign of ω. Also, Cane and Moore use h in place of
our φ.]

Equation (6.49) is a philosopher’s stone for this problem, turning brass into gold,
because all the modes in the previous equation—Kelvin and long Rossby— satisfy
the long wave approximation

yu + φy = 0 (6.50)

Multiplying (6.49) by y and subtracting it from (6.50) eliminates u to give the first
order ordinary differential equation for φ,

φy + { i tan(2s) y} φ = 0 (6.51)

with the general solution

φ = η(s) exp(−i tan(2s) y2/2) (6.52)

Equation (6.51) is a differential equation in y alone, so its solution is propor-
tional to an arbitrary function of s, η(s). It may be determined by evaluating the
x-momentum equation at y = 0, which is

− i ω u + ω φs = 0 (6.53)

where we have used ∂x = ω∂s as a result of the definition of s. Replacing u by
[i tan(2s)φ] as given by (6.49) converts (6.53) into a differential equation in φ alone.
Dividing out the common factor of ω, we have

− i tan(2s)φ + φs = 0 (6.54)
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which is really an equation for η(s) since φ(s, y = 0) = η(s). The solution is (to
within an arbitrary multiplicative constant)

η(s) = √
cos(2s) (6.55)

A solution for v can be obtained by evaluating the x-momentum equation for
non-zero values of y. Let us write the height in the form

φ = η(s) exp(−i Φ(s, y) ) (6.56)

The x-momentum equation becomes

yv = ω {−iu + φs} (6.57)

= ω {−i[i tan(2s) ( η exp(−iΦ) ) ] + exp(−iΦ) ηs + η (exp(−i Φ) )s } (6.58)

= ω exp(−iΦ) {[tan(2s) η + ηs] − i η Φs} (6.59)

Now the two terms in square brackets [ ] in (6.59) are the only surviving terms at y = 0
where Φ = Φs = 0, so they must sum to 0. (The vanishing of their sum is in fact
the differential equation that determined η(s).) Therefore, since Φ = tan(2s)y2/2,

yv = −iω η exp(−iΦ) (Φs) = − iωφ
{
(1/2)y2 [tan(2s)]s

}
(6.60)

where we have used the definition of φ in terms of η and s in the second half of
(6.60). Dividing out the common factor of y gives finally

φ = √
cos(2s) exp

{−i tan(2s) y2/2
}

(6.61)

u = i tan(2s)φ (6.62)

v = −iωy sec2(s) φ (6.63)

where we recall that s = ω(x − xE ).
Equations (6.61)–(6.63) give the complete so1ution for an equatorial Kelvin wave

and for the long Rossby waves that are its reflection from the eastern boundary. Thus,
it automatically satisfies the boundary condition at x = xE . To be a normal mode
of the ocean basin, however, it must also satisfy the boundary condition at x = 0,
which is the western side of the ocean. The long wave boundary normal condition is

∫ ∞

−∞
u(x = 0, y)dy = 0, (6.64)

but because of the special form of (6.61)–(6.63), the only way that (6.64) can be true
is if u satisfies the exact boundary condition
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u(x = 0, y) = 0 (6.65)

(There are other problems— those with forcing, for example — where we will have
to fall back to (6.64) when using the long wave approximation, but we will come to
those at a later time). Equation (6.65) demands tan(2s) = 0, or in other words, since
s(x = 0) = −ωxE ,

ω xE = m π/2, m = integer (6.66)

or equivalently in terms of temporal period P

P = 4xE/m, m = 1, 2, 3, . . . (6.67)

Since the Kelvin wave has unit nondimensional speed and the width of the basin is
xE , it follows that the mode with the lowest frequency (m = 1) has a period equal to
four times the length of time it takes a Kelvin wave to cross the basin. Equiva1ently,
the m = 1 mode has a period equal to the length of time required for a Kelvin wave
to cross the basin from west to east plus the time for the lowest, n = 1 Rossby mode
to return. The careful reader is probably bothered by all sorts of questions at this
time.

How could we write the eastern boundary reflection of the Kelvin wave as an
infinite sumof long,westward propagatingRossbywavewhenwe showed in Sect. 6.4
that all the high order reflectedwaves are zonally trapped, and form the coastal Kelvin
wave? How are we to interpret the singularities of u and φ for s = π/4+ jπ/2 where
j is any integer? How did we make the “leakiness” of the equatorial ocean to higher
latitudes disappear? 1n the next section, we will try to answer these questions, and
discuss the Cane-Moore normal modes in detail.

6.8 Quasi-normal Modes in the Long Wave
Approximation: Discussion

The longwave approximation falsifies the Kelvin wave’s eastern boundary reflection
by forcing it to consist solely of long, eastward-propagating Rossby waves. In reality,
the full dispersion relation

k = −1/(2ω) +
√

ω2 + 1/[4ω2] − (2n + 1) (6.68)

shows that the radical always becomes imaginary for

n � N (ω) ≡ 1/(8ω2) (6.69)

The sum of the zonally trapped waves with complex k was shown by Moore [2]
to be a coastal Kelvin wave propagating away from the equator. Equation (6.68)
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implies that while the breakdown must always occur, it happens only for very large
n if ω << 1. This makes it at least plausible that the amount of energy which leaks
poleward in the form of coastal Kelvin waves is very small for ω << 1. Cane and
Moore [7] quote the loss rate per period P as

ΔEnergy

Energy
≈ (N + 1)Λ2

N ≈ 2√
2πN

, (6.70)

but do not give a detailed derivation. They do, however, convert this into a decay time
1/r , measured in periods of the oscillation, which is shown for various (inviscid)
modes in a table in their paper. The decay time/period ratios for the four lowest
vertical modes in each ocean range from 5 to 10 in the Indian Ocean, 6–11 in the
Atlantic, and 13–25 in the Pacific where in each case the first baroclinic mode is the
leakiest (smallest ratio of decay time scale to oscillation time scale).

The tabulated energy loss rates suggest a couple of important points.
The decay rates are always small in comparison to a period, which implies that

neglecting the energy loss to coastal Kelvin waves, as we have done in the ana-
lytical long wave modes derived in the previous section, is always a sensible first
approximation.

These “radiative” decay rates 1/r are comparable with or smaller than the e-
folding scales produced by reasonable dissipation in the ocean. In other words,
dissipation is just as important and probably more important for these modes. Con-
sequently, it is as reasonable to study these “leaky” normal modes of the equatorial
ocean, which in reality lose energy to both dissipation and coastal Kelvin wave radi-
ation, as it is to study the free normal modes of Lake Michigan or other confined
bodies of water, which lose energy to dissipation [only].

For equatorial basin modes, the fact that the energy e-folding scale is large in
comparison to the period implies that the energy loss rate is small enough so that
these modes are physically important.

Another question, however, is what to do about the singularities of the Cane–
Moore solutions at s = π/4, 3π4, 5π/4, etc.? Cane and Moore [7] point out that the
addition of any form of dissipation will remove these singularities. Mathematically,
the simplest choice is linear or “Rayleigh” friction, which involves adding −ru to
the x-momentum equation, −rφ to the height equation and −rv to the y-momentum
equation. [The Rayleigh friction −rν in the y-momentum equation is neglected in
the long wave approximation.] Although there is no physical justification for this
form of the dissipation — it should be some form of turbulence parameterization,
but turbulence is after all understood only by God — it is a useful conceptual tool
because it is formally equivalent to the replacement

ω → ω̂ ≡ ω − i r (r = constant) (6.71)

Recalling that s ≡ ω (x − xE ), this implies that
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tan(2s) → tan {2(s − ir(x − xE ))} = (1 − μ2) tan(2d) + i μ sec2(2s)

1 + μ2 tan2(2s)
(6.72)

where s on the R.H.S. of (6.72) is to be interpreted as (x − xE ) multiplied by ω (not
the complex frequency defined by Eq. (6.71), ω̂), and where

μ ≡ − tanh {2 r (x − xE ) } (6.73)

If we assume r << 1 so that μ << 1, then away from the caustics where
tan(2s) = ω, the R.H.S. of (6.72) is approximately equal to tan(2s), i.e., the damping
has only a negligible effect. Near these singularities (“near” means |tan(2s)| > 1/μ),
the solution is heavily damped because tan {2(s − ir(x − xE )} ≈ i/μ. In this highly
dissapative region, exp[i(y2/2) tan(2s)] becomes a rapidly decaying exponential
in y.

The abbreviated version of the argument above is that by effectively making the
frequency slightly complex, we have shifted the singularity slightly off the real s axis
so that it occurs only for imaginary values of s: s = π/4 + iμ, to be precise. This
slight shift — and the damping — are only a small correction to the solution except
within the small neighborhood s = π/4 + 0(μ).

The inclusion of linear friction is a useful generalization of the theory given in
the previous section because it makes it possible to not only remove the unphysical
singularities at s = π/4, etc., but also offers a direct numerical reassurance about
the neglect of the coastal Kelvin wave. Figures4, 5, 6 and 7 of Cane and Moore
[7] compare the exact solution for the reflection of a low frequency Kelvin mode
(coastal Kelvin wave included) with the corresponding long wave solution at various
latitudes and various values of the friction coefficient. The panels show that out to
y = 5 at least, which is 15 degrees of latitude for the first baroclinic mode, the exact
and long wave reflections are qualitatively similar even with no dissipation at all.
When a weak dissipation with r = (1/10)ω is included, the two become identical.
Since the damping time scale of the ocean is thought to be only a few years and
ω = 1/30, used to make the figures, corresponds to a period slightly longer than a
year, r = 0.1ω is actually likely to be too little damping (compared to the real ocean)
rather than too much. Thus, the extremely good agreement between the exact and
the long wave graphs in the bottom sections for y = 0, y = 1, and y = 5 implies
that we will really sacrifice nothing by making the long wave approximation.

Figures6.5 and 6.6 show the actual amplitude φ and u for the long wave free
modes. The height field is bounded, but both u and v (where the latter is not illustrated)
have poles that rise to infinity at s = −π/4, y = 0. The phase patterns are illustrated
by Fig. 6.7, which shows the real part of φ, which is similar to that of the other fields.
The dissipation was deliberately chosen to be very weak to bring out the character
of the inviscid solution. Although the graphs exhibit only the lowest, m = 1 mode
explicitly, the periodicity of the solutionswith respect to s—noteφ(s−π/2) = iη(s)
and similarly for u and v — implies that the solutions for m > 1 can be pictured by
repeating these figures with the proper phase shifts.
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Fig. 6.5 |φ| for the lowest Cane–Moore free oscillation of the equatorial ocean, viewed looking
towards the equator from the northwest. The flat wedge is the shadow zone where none of the rays
of the normal mode penetrate; the point of the wedge at the equator is the focus. The longitudinal
coordinate is s; the whole width of the ocean is illustrated

Fig. 6.6 Cane–Moore lowest mode, same as previous figure except the absolute velocity of the
east–west velocity is shown. Both u and v (not shown) have poles at the focus, so the amplitude of
|u| was truncated at three to avoid infinities
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Fig. 6.7 Cane–Moore lowest mode. Same case as previous figure contours of
(φ) are shown with
the contour intervals at [−0.9 : 0.2 : 0.9]. The dashed line bounds the shadow zone where the wave
amplitude is zero. The triangle marks the focus, which is right on the equator at s = −π/4, that is,
exactly in the middle of the ocean

The ray-tracing theory of Chap.5 gives the physical reason for both the V-shaped
pattern of phase lines seen in the phase plots, radiating like a fan from s = −π/4, y =
0, and also for the very large amplitude of u at that point. Equation (5.48) showed
that the trajectory of the rays in the x − y plane is given by

y = √
2n + 1 sin[x/{k + 1/(2ω)} + Φ] (6.74)

whereΦ is an arbitrary phase factor. In the longwave approximation,wemust neglect
k in comparison to 1/(2ω) with an error O(ω2) to obtain

y = √
2n + 1 sin[2ωx + Φ] (6.75)

Thus, all rays follow a trajectory of the same sinusoidal shape, differing only in
magnitude.

If we choose the phase factor Φ to be the same for all n, then all the rays — in the
long wave approximation — will cross the equator at the same point. The particular
choice Φ = π/2 causes the focus to occur at s = −π/4, which is precisely where u
is very large and also the point from which the fan of constant phase lines radiates.
The trajectories of a few rays are sketched schematically in Fig. 6.8.

Figures6.9 and 6.10 show the Cane–Moore modes in the space-time plane instead
of longitude-latitude plane illustrated in previous figures.

http://dx.doi.org/10.1007/978-3-662-55476-0_5
http://dx.doi.org/10.1007/978-3-662-55476-0_5
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Fig. 6.8 Cane–Moore lowest mode, same as previous figure except showing the rays. The ray-
tracing approximation,which gives the ray curves as y(s) = √

2n + 1 sin(2s+π/2), is not exact and
produces a spurious symmetry with respect to reflection about the middle of the ocean, s = − π/4.
Otherwise the ray pattern closely resembles the Cane–Moore analytical approximation. The wave
looks symmetric in longitude with respect of the focus, but the previous figure shows that there
should be a slight asymmetry

Fig. 6.9 Cane–Moore
normal modes in the
space-time plane [not
longitude-latitude plane as in
previous figures]: φ at the
equator versus s (rescaled
longitude) and the product of
ω with time
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Fig. 6.10 Same as the left
panel except it shows u

Equation (6.74) and the focus evident in Figs. 6.5, 6.6 and 6.7 show that when the
Kelvin wave bounces off the eastern boundary, it effectively converts the boundary
into a wavemaker. We could create the same westward pattern of Rossby waves
(without the Kelvin wave) if we replaced the boundary by a north–south column of
wavemakers, all synchronized to generate wave packets in phase.

What we have not done is explained precisely why all the wave packets generated
by the boundary reflection of the Kelvin wave must be in phase. To do this requires
the sophisticated ray-tracing study of Schopf, Anderson and Smith [24], and we
shall explore the more detailed results of their paper — some of the elementary ray
formulas for a single wave packet given earlier were also taken from their work —
when we consider the response to periodic wind-forcing in the next chapter.

For now, it is sufficient to note that through the longwave approximation, we have
obtained analytical normal modes without ray-tracing.

6.9 High Frequency Quasi-free Equatorial Oscillations

Moore [2] showed that the free oscillations of a rectangular basin or open strip
spanning the equator are not equatorially trapped because coastal Kelvin waves
carrry energy away from low latitudes [2]. Gent [8] observed that it was possible to
impose the condition that the coastal Kelvin waves are zero by allowing the width
of the ocean L to be a free eigenparameter (in addition to the frequency ω, which
is also kept as an eigenvalue.) In physical terms, Gent’s standing modes are a finite
sum of equatorial waves whose phases and amplitudes are in such a ratio that the
coastal Kelvin waves exactly cancel.
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The catch is that the width of the L must be (mathematically!) taken as variable. A
geologistwould hardly approve! InMoore’s scheme, there are always twomodes (one
symmetric about the equator and one antisymmetric) in the latitudinally unbounded
ocean for any value of the frequency ω.3 Gent’s mode exists only for discrete set of
pairs of the values of (ω, L). As a mathematician would put it, the allowed discrete
values of L are a set of “measure zero” in comparison to the continuous intervals of
L between the eigen-L’s for which no modes exist; expressed differently, there is a
zero probability that the width of any of the real oceans is exactly equal to one of the
free mode values of L .

The obvious rejoinder is that we are interested in the ocean rather than mathemat-
ics, and oceanography is no more an “exact” science than medicine or economics. In
reality, Gent’s approach is just as legitimate as that of Cane andMoore because if the
width of the ocean is close to that of a free mode— not exactly equal, but only close
— the ocean will still exhibit a quasi-resonant response at roughly the frequency of
the free oscillation its width is “close to”.

For brevity, we will not attempt to derive Gent’s dispersion relation in detail, but
the method is to apply the eastern boundary reflection recurrence formulas derived
earlier in the chapter. The simplest of his standing modes consists of the Kelvin wave
and either two n = 1 gravity waves or two n = 1 Rossby waves. For either, he shows
that the condition on L is

L = √
p(p + m) for any nonzero integersm, p (6.76)

Figure6.11 shows the values of ω for the two types of Kelvin-plus-two-(n = 1)
modes when the integersm and p are both 1. The integer p is the number of complete
wavelengths (across the basin) of the relative phase of theKelvinwave and the shorter
of the two n = 1 modes while the integer m is the number of wavelengths of the
relative phase between the two n = 1 modes.

In physical terms, only one member of each triplet of waves that make up the
normal mode is carrying energy westward – the long Rossby wave in the case of
the lower frequency mode. Two waves, the Kelvin and the short Rossby wave, carry
energy eastward. Individually, a Kelvin wave generates an infinite series of coastally
trapped modes — the coastal Kelvin wave—when it reflects. Individually, the short
Rossby wave does the same. Together, however, the coastal Kelvin wave excited by
the reflection of the short Rossby wave exactly cancels that excited by the equatorial
Kelvin wave, and the result is that the sole survivor in the reflection of the sum is a
single long Rossby wave.

The essential role of the short Rossby wave shows that Gent’s approach is com-
plementary to that of Cane and Moore: this short Rossby wave would be filtered by
the long wave approximation employed by the latter. For low frequency motions, the
long wave approximation is legitimate, which strongly suggests that Gent’s modes

3In other words, for the “strip” ocean, we have a continuous spectrum of eigenmodes. When the
north and south of the ocean are walled off so that the ocean becomes a basin, then the spectrum
becomes discrete as for any other species of water waves in a basin.
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Fig. 6.11 Dispersion relations for the two lowest quasi-normal modes of [8]. Left the horizontal
dividing line at themode’s frequency ofω = 1.85 intersects theω(k) curves of the three participating
modes: a westward-traveling n = 1 gravity wave, an eastward-traveling gravity wave of the same
latitudinal mode, and a Kelvin wave. The right panel is the same except for the mode whose
frequency is ω = 0.27; this consists of a short (high |k|) Rossby wave, a long Rossby wave, and a
Kelvin wave. In each panel, the Kelvin wave has the linear dispersion relation, ω = k for k > 0

are of much higher frequency than those found by Cane and Moore. Indeed, the
Rossby mode in Gent’s Fig. 2 still has a period of only 36 days, which is much
shorter than any of the Cane–Moore modes which all have periods of at least 120
days. Gent’s gravity wave mode in his Fig. 3 has a period of only 5 days.

The two modes composed of a Kelvin wave plus a pair of n = 1 waves are hardly
the only types possible; Gent’s [8] paper gives examples of many others formed from
a Yanai wave plus an n = 1 and n = 3, etc., and of modes formed from four, five, or
many different waves.

Gent’s illustrations bring up an interesting point: there is apparent zonal phase
propagation in these waves, even though they are standing modes trapped between
zonal boundaries. The reason for this is constructive and destructive interference
between the three zonally propagating waves, each with its own phase speed, that
collectively make up the standing mode. On can follow a node as it propagates from
one side of the ocean to the other as shown in his Fig. 3, but the apparent phase
velocity so defined is not spatially uniform, being larger in the center of the basin
than near the boundaries. The average phase speed is about 0.11 that of the Kelvin
wave or equivalently 0.47 of the long Rossby wave — that is to say, it is different
from the phase speeds of all the waves which make it up. Gent’s mode thus serves
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as a warning that sums of waves can mimic the phase behavior of a single wave, and
thus lead to totally erroneous identifications of different wavemodes in ocean data. If
the observations were sufficiently bountiful, of course, it would be possible to avoid
such errors by looking carefully at the latitudinal structure of the mode. However,
oceanographic data is always sparse, so sometimes apparent phase propagation is all
that can be inferred. What appears to move may not be a single wave, but rather the
pattern of interference between several different waves.

Gent and Semtner [9] numerically tested Gent’s [8] theory [8, 9]. By artificially
imposing a large friction along the northern and southernwalls of their computational
basin, they insured that any energy that escaped the equatorial region in the form of
coastal Kelvin waves would be lost forever.

McPhaden and Semtner [10] have added mean zonal flows to the picture, and
find that the low-frequency standing modes — those made of Rossby waves plus
the Kelvin wave or Yanai wave — become very leaky in the presence of mean shear
[10].

Later work has established the existence of significant basin resonances at 90-day
and 180-day (semiannual) periods in the equatorial Indian Ocean. Han, McCreary,
Masumoto, Vialard and Duncan [11] give a good review of previous work and then
apply a hierarchy of models to show that the resonances are robust. The Maldive
Islands weaken the semiannual oscillation, but lie in a node of the higher frequency
quasi-normal mode and therefore have little effect on the 90-day resonance.

To leak away as a coastal Kelvin wave or not to leak away? That is still a question.

6.10 Scattering and Reflection from Islands

Scattering of waves by islands has a long history that extends from non-equatorial
contributions by Meyer and Painter [12] to later contributions like Pedlosky et al.
[13] and Spall and Pedlosky [14].

Yoon [31] showed through numerical shallowwater simulations thatKelvinwaves
always get through, even when the island is of unit nondimensional width. Neither
the Maldive Islands in the Indian Ocean nor the Gilberts in the Pacific have much
effect on Kelvin waves. In contrast, an island on the equator can reduce transmission
of Rossby waves to less than one-third the incident energy.

The appendix of Spall and Pedlosky [14] presents a theory that reiterates this
point: the fundamental assumption is that because an equatorial Kelvin wave can
penetrate a narrow gap so freely, there is no reflected Kelvin wave when a long
Rossby wave forces a narrow gap propagating in the opposite direction. All the mass
flux forces the gap, too, since the reflected short Rossby waves carry negligible mass
flux. The mass flux through the gap is idealized as a Dirac δ-function. (The gap was
75km or 1/4 nondimensional length units in their extensive numerical calculations.)
An incident n = 1 latitudinal mode Rossby wave

v = A1 exp(ki x − iωt) (6.77)
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yields the mass flux on the far side of the gap

F ≡
∫ ∞

−∞
φudy (6.78)

=
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{
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}
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where J is the largest (odd) mode number for which the dispersion relation gives
real-valued kJ (ω):

k j = − 1
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1

ω
− 2ω

)2

− 8 j (6.80)

Analysis of island effects is still a topic of active research for both tropical and
extra-tropical latitudes, even today, but theory, numerical studies and laboratory
experiments are addicted to circular islands, infinitesimally thin islands, square and
rectangular islands. Clarke [15] provides at least a veneer of respectability for such
idealizations. His motive is that the “State of the art models of El Niño/Southern
Oscillation (ENSO) events …suggest that reflection of low-frequency energy from
the western Pacific boundary is crucial to ENSO dynamics: if too little reflection
occurs, an interannual oscillation does not develop.” This motivates him to consider
reflection of low-frequency waves with roughly annual period.

Since the nondimensional timescale of the first baroclinic mode of the ocean is a
couple of days, unit nondimensional frequency corresponds to a period of a couple
of weeks. It follows that the annual frequency is very small. The dispersion relation
for Kelvin waves, c = k/ω = 1 implies k = ω � 1 is always very small for Kelvin
waves (and by similar reasoning, Rossbywaves) of such low-frequency. This justifies
his statement in his abstract that “At low frequencies, equatorial Kelvin and Rossby
waves have very large East–West scales .…Consequently, these land masses may be
treated as islands that are infinitesimally thin in the East–West direction.”

His article generalizes previous single-island low frequency theory byCane and du
Penhoat [32] to as many as seven islands. His results are too extensive to be reviewed
in detail here, but one noteworthy feature is direct engagement with “Sverdrup
jumps”, although he does not use this terminology [16].

Classic Sverdrup flow [1, 17–19] satisfies the ordinary differential equation

β ψx = curl-of-the-wind-stress ⇔ v = curl-of-the-wind-stress (6.81)

where the left is the familiar quasi-geostrophic midlatitude balance and the right is
the equivalent nondimensional statement on the equatorial beta-plane. Because the
ordinary differential equation for ψ is first-order, only a single boundary condition
may be imposed. Ocean texts explain that the correct boundary condition is that
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ψ = χ at x = xE (y) (6.82)

where χ is a constant, usually set equal to zero on the boundary of the ocean basin,
and where xE (y) is the longitude of the basin boundary at the eastern side of the
ocean [1, 17, 18].

An island or peninsula creates a discontinuity in Sverdrup flow. Let yN denote
the northern boundary of an island, and let xI (y) denote the western boundary of the
island. Then the longitude where the boundary condition is applied jumps discontin-
uously by hundreds or thousands of kilometers at y = yN :

ψ(x = xE (y), y) = 0, y > yN (6.83)

ψ(x = xI (y), y) = χ, y < yN (6.84)

The island boundary condition is ψ = χ where χ is a constant.
An equatorial beta-plane treatment of Sverdrup flow is given in Sect. 8.3, but the

Sverdrup jumps at the northernmost and southernmost tips of an island are similar
regardless of latitude.

If a specific model for dissipation is added to the inviscid dynamics of Clarke’s
model, then the discontinuities can be resolved by diffusive boundary layers. Ped-
losky, Pratt, Spall and Helfrich [20] give a good discussion of the boundary layer on
the northern and southern sides of the rectangular island, the “zonal boundary layer”
in their terminology.

Temam and Jung have written a series of fifteen papers (so far) developing both
the analysis and the numerical analysis of similar boundary layers [21, 22]. They
have not yet developed a theory for the hardest case, which is the boundary layer at
a promontory (as opposed to a bay. The Stommel layer on the Eastern coast of the
islands thickens as the northernmost point is approached and then detaches from the
coast to erupt westward into the interior of the flow, the diffusive, widening interior
layer in which longitude is a time like coordinate and the diffusion is a latitudinal
spreading.

In Clarke’s model, the Sverdrup jumps simply induce δ-functions in the east–west
velocity. This illuminates a very general principle.

Assertion 6.1 (δ-Functions and Boundary Layers) Every δ-function in geophys-
ical fluid dynamics is the limit of a boundary layer, a cover-up for a layer of finite
thickness that is unanalyzed for the sake of simplifying the theory.

Other examples are discussed in [16, 23]. The proper choice of the dissipation
model near the coast of an island is still a matter of dispute, so Clarke’s decision to
avoid the controversy at the price of δ-function jets was sensible. The reader who is
unhappy with δ-functions can take heart that there always is an underlying boundary
layer that could, with the use of the method of matched asymptotic expansions,
replace the singularity by a thin layer of high gradients.

McAlpin applied (6) of Cane andGent’s low frequency theory, which we repeat as

http://dx.doi.org/10.1007/978-3-662-55476-0_8


6.10 Scattering and Reflection from Islands 135

U =
∫ YN

YS

{u[X (y), y] − γ (y) v[X (y), y] } dy (6.85)

where X (y) denotes the nondimensional longitude of the boundary. Using numerical
quadrature of the integral, he calculated reflection from piecewise linear approxima-
tions to the western boundaries of all three oceans. Waves of annual period or longer
in low meridional and baroclinic modes reflect as if from a straight boundary, but
increasing the latitudinal and/or baroclinic mode number increases the effects of
complicated geometry, especially for the most complicated boundary, that of the
Pacific.

Rowlands [24] is a posthumous article completed by Anderson and Moore. It
is unusual in that the low frequency approximation is not made; instead, as in
Anderson and Rowlands [25, 26], Laplace transforms in time are applied. East of
the island, assumed infinitely thin in longitude as in many other studies, there is an
ever-narrowing boundary layer of short Rossby waves. Although neglected by most
other authors, the steady decrease of spatial scale in the short Rossby waves blows up
the consistency of inviscid, linear models because either dissipation or nonlinearity
must become important in this thin, east-of-the-island layer. The same is true of the
δ-function jets (the spoor of Sverdrup jumps as noted earlier) at the tips of the islands.

Another exception that goes beyond the long wave approximation is du Penhoat,
Cane and Patton [27]. Figure6.12, original but drawing heavily on their ideas, is a
schematic of the Kelvin wave diffracting around a thin island.

Much of the discussion in Rowlands is focused on island perturbations of the
Equatorial Undercurrent and other mean jets, as in Hendry and Wunsch [28]. This
properly belongs in our treatment of jets and so mean currents will be largely ignored
here.

McPhaden and Gill used a 2–1/2 layer model. This has two active layers above an
unmoving, infinitely deep abyss. They employed the model to examine the scattering
of Kelvin waves and also Rossby waves from undersea ridges [34]. Kelvin waves in
the first baroclinic mode are strongly reflected by shallow ridges but indifferent to
deep ridges; second baroclinic mode Kelvin waves are just the opposite. Other work
on scattering by undersea features has been sparse, in part because understanding
reflection from islands, peninsulas and archipelagoes is far from complete.

Clarke [29] extends Moore’s theory for reflections from straight north–south
coasts by incorporating boundary curvature. He derives analytical formulas for small
curvature combined with numerical treatment of large curvature. Cane and Gent [30]
attacked straight coastlines rotated by angle γ from due N-S, and gave analytical for-
mulas applicable to curved boundaries, too. Neither paper is about island scattering
per se, but was part of the foundation for later work that was.

The territorial boundaries of the intellectual geography of the studies of reflections
from curved coasts, gaps, islands and barriers are as artificial as the aftermath of a
really bad peace treaty. We have tried to be inclusive.

Table6.1 catalogs a few illuminating references.
We have omitted vast amounts of detail from the literature on equatorial wave

reflection, diffraction and scattering because this is an area where Lord Kelvin’s
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Fig. 6.12 Schematic of the transient solution for a Kelvin wave reflecting/diffracting from a thin
island, which is the texture shaded rectangle, narrow in x and extending from y ∈ [0, b]. The
incoming Kelvin wave is at unit value everywhere in the dark shaded area; this part of the ocean
had not yet been effected by the reflected waves. For large time, the asymptotic approximation is
accurate out to x ∼ t . This edge of the front is marked by the dotted line; the white space to the
right of this line is where the wave amplitude is zero because the switched on Kelvin wave has
not yet reached the unshaded part of the ocean by time t . This is the farthest (eastward) the Kelvin
wave travels. The western boundary of the asymptotic approximation is a curving front located at
x ∼ −t/3 at the equator and at x ∼ y−2t at high latitudes. East of the western front and west of
the eastern front at x = t , the amplitude is everywhere T where T < 1 as marked by light shading.
Theory from du Penhoat, Cane and Patton [27]

famous remark about all of science being “physics and stamp collecting” breaks
down. That is to say, the peculiarities of individual islands, undersea ridges, penin-
sulas, and island groups create detail as individual as the 200,000 species of beetles
or the peculiarities of a misprinted Penny Black. But mathematics and physics are
ingrained as deeply in physical oceanography as they are irrelevant to botany and
stamp collecting.
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Table 6.1 Island scattering

Reference Notes

Reflection from curved boundaries

Clarke [29] Analytical formulas for small curvature
numerical treatment of large curvature;
applications

Cane and Gent [30] Straight coastlines rotated by angle γ from due
N-S

Island and Island Gap Scattering

Yoon [31] Purely numerical study; includes Gilbert Is.,
Maldives Is.

Rowlands, Anderson and Moore [24] Laplace transforms-in-time for Kelvin waves

Cane and du Penhoat [32] Single island, low frequency

du Penhoat, Cane sand Patton [27] Reflection from partial boundaries

McCalpin [33] Realistic western boundaries of all 3 oceans in
low frequency approximation

McPhaden and Gill [34] Kelvin scattered from submarine ridges in 2.5
layer model

du Penhoat and Cane [35] Reflection from complicated gaps

Clarke [15] Irregular Pacific boundary

Cravatte, Boulanger and Picaut [36] Intraseasonal equatorial Rossby reflected by
western Pacific

Spall and Pedlosky [37] Mix of numerical model and narrow-gap theory
for western boundary with gaps

Yuan and Han [38] Reflection and seasonal Indian Ocean flow
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Chapter 7
Response of the Equatorial Ocean to Periodic
Forcing

Abstract The annual and semiannual cycles in the atmosphere are the result of
low-frequency periodic forcing of the ocean. This chapter systematically develops
the theory of the ocean response to a periodically-varyingwind stress. Special empha-
sis is given to low frequency forcing and the use of the low frequency/meridional
geostrophy approximation to analyze it.

“Nature is not embarrassed by difficulties of analysis.”

Augustin Fresnel

Lighthill [1] modeled the response of the Indian Ocean by postulating an abrupt onset of
the southwest monsoon ... observation suggests that the onset of the southwest moon is far
from abrupt, occurring not over a few days, but rather over weeks to perhaps two months. ...
at least part of the temporal spectrum is better described as a quasi-periodic process than as
a transient.

Carl Wunsch [2]

7.1 Introduction

Historically, the first studies of the response of the equatorial ocean to forcing were
driven by the need to testWyrticki’s theory that the rapid event known as El Niño was
a reaction to changes in the Trade Winds. For this reason, the papers of 1974–1978
were almost entirely concerned with the response to a wind stress forcing which was
impulsive, and was usually idealized as a step function in time. The problem of a
periodic forcing — the annual and semiannual cycles of the sea, for example — is
mathematicallymuch simpler since timederivatives canbe replacedbymultiplication
by −iω, whereas inversion of Laplace transforms via the steepest descent method is
necessary for impulsive forcing. We shall therefore reverse the historical order and
consider periodic-in-time forced problems first.

For an annual period, ω = 0.026 for the first baroclinc mode of the ocean, which
implies that the “long wave” approximation is just as useful for the seasonal cycles
of the sea as it is for the quasi-free modes discussed in the previous chapter. The
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seminal paper of Cane and Sarachik [3] is still the analytical state-of-the-art; in the
next section, we discuss various levels of approximation to explain why. We then
briefly review the pioneering numerical studies by Kindle, O’Brien, Busalacchi, and
their descendants using actual ship wind data and realistic coastal boundaries.

7.2 A Hierarchy of Models for Time-Periodic Forcing

The theoretical studies described in later sections make a lot of approximations.
The schematic Fig. 7.1 is a visualization of options with the Cane–Sarachik straight-
coasts-with-long-wave framework as the bottom.

Nonlinearity is always a serious complication. When the forcing is confined to
a single frequency ω, the “fundamental”, nonlinearity generates components whose
frequencies are integer multiples of the fundamental, the “harmonics”. Denoting
the coefficients of exp(imσ t) by um(x, y, z) and similarly for the other fields, the
numerical task is a single set of nonlinear PDEs coupling all the fields and all the
harmonics. Such studies almost always eschew the nonlinear boundary value problem
in favor of a general circulation model or another elaborate initial value code. (In
nonlinear wave theory, solving for harmonics using perturbation theory is common,
and discussed at some length in Chap.17.)

If the coastlines are curvy but nonlinearity and mean currents are neglected, the
forced periodic problem is a set of linear PDEs with coefficients that vary with y.
The method of separation of variables does not apply because the boundaries do not
coincide with coordinate isolines. It is necessary to attack the linear inhomogeneous
PDE system

− iωu − yv + hx = F (7.1)

−iωv + yu + hy = G (7.2)

−iω h + ux + vy = H̃ (7.3)

where F and G are the zonal and meridional wind stress and H̃ is a buoyancy flux.
When the coastlines run north and south, it is convenient to rewrite the system

above in sum and difference variables, using the lowering and raising operators L
and R, as

−i ωS + Sx + Rv = F + H̃ (7.4a)

−i ωv + (1/2)[LS + RD] = 0 (7.4b)

−i ωD − Dx + Lv = (H̃ − F) (7.4c)

A Hermite Galerkin method then replaces the PDE by systems of three ODEs in x ,
identical in form to the equations for normalmodes except that the frequency is now a
specifiedparameter insteadof an eigenvalue and theODE triplets are inhomogeneous.

http://dx.doi.org/10.1007/978-3-662-55476-0_17
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Fig. 7.1 Hierarchy of models for periodic-in-time forced motion. Top Quadratic nonlinearity will
multiply two copies of the forcing frequency to generate the second harmonic; nonlinear interaction
of second harmonics will generate a frequency equal to four times that of the forcing, and so on. A
domain bounded by curving coasts [second from the top] can be mapped into a rectangle, but the
metric factors make the transformed PDEs nonseparable. If the coasts are straight and nonlinearity
is omitted [second from the bottom], the PDEs are separable and the triplets of (Sn+1, vn, Dn−1) are
uncoupled by the PDEs, but still chained together by the boundary conditions on the zonal velocity.
In the long wave approximation, the triplets become single long wave modes, but are still coupled
by the boundary conditions on u Bottom
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It is convenient to introduce new variables for the inhomogeneous terms:

F̂ = F + H̃ ; Ĝ ≡ H̃ − F (7.5)

The equations for the Hermite coefficients {S0, S1, . . .}, {v0, v1, . . .}, and {D0,

D1, . . .} are

− iωS0 + S0,X = F̂0 (7.6)

−i ωSn+1 + Sn+1,x − √
n + 2 vn = F̂n+1 (7.7)

−i ωvn + √
(n + 1)/2Sn+1 + √

n/2Dn−1 = 0 (7.8)

−i ωDn−1 + Dn−1,x + √
2nvn = Ĝn−1 (7.9)

For the annual and semiannual cycles, the longwave approximation is quite accurate.
This yields the problem discussed in Sect. 4.8 and the solutions provided in the rest
of this chapter.

With x-independent forcing on an acquaplanet, the equations simplify still further
to

− iωS0 = F̂0 (7.10)

−i ωSn+1 − √
n + 2 vn = F̂n+1 (7.11a)

−i ωvn + √
(n + 1)/2Sn+1 + √

n/2Dn−1 = 0 (7.11b)

−i ωDn−1 + √
2nvn = Ĝn−1 (7.11c)

7.3 Description of the Model and the Problem

The model makes the following assumptions:

1. hydrostatic approximation
2. linear shallow water wave equations
3. “long wave” approximation
4. zonal boundaries at x = 0 and x = XE (running due N–S)
5. forcing is independent of x
6. y-dependence of forcing is a Gaussian.

(Usually; we will derive solutions for general y-dependence first.)
This model is the most complicated model with periodic forcing that allows ana-

lytical theory.
For the first baroclinic mode, the annual and semiannual periods are roughly ω =

0.026 and 0.052, respectively, so both frequencies are small in comparison to 1 and

http://dx.doi.org/10.1007/978-3-662-55476-0_4
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the longwave approximation is quite accurate. However, atmospheric fluctuations on
shorter time scales can always be represented by aFourier integral over frequencies; if
the time scale of the fluctuation is only a few days, then the long wave approximation
will be terrible. However, the general solution (without the approximation) is so
messy that adopting the long wave approximation seems a small price to pay for a
much clearer physical understanding.

The assumption of coasts parallel to the y-axis is made of dire necessity: it is not
possible to obtain analytical solutions without it.

The assumption of x-independent forcing is made solely for simplicity. For a
zonally bounded ocean, one can synthesize a solution as a Fourier series over discrete
wavenumbers in x , but because the solution is not periodic in x , the Fourier series
converge poorly, and a numericalmodel is superior. Since the problem is after all only
two-dimensional, numerical solutions are not hard. Personal computers are making
messy analytical solutions less and less useful. (By “messy” is meant analytical
solutions that cannot be more easily interpreted than a numerical solution.)

The Gaussian dependence in latitude is convenient because one has to choose
something or other, and the Hermite coefficients of a Gaussian of arbitrary width are
known in analytical closed form (AppendixA).Wewill derive the solution for general
y-dependence first, however, because we do not need to assume any specific form
for the y-structure of the forcing until a rather late stage in the analysis. A general
property of the solutions to linear, inhomogeneous differential equations — quite
independent of the five assumptions given above— is that the general solution is the
sum of (a) a particular solution, which satisfies the inhomogeneous equations, but
not the forcing and (b) the general homogeneous solution, which contains arbitrary
constants that must be chosen so that the sum of the homogeneous solutions plus
the particular solution satisfies the boundary conditions. In our problem, it is easy
to derive a particular solution which is independent of x (since the forcing is) and
has only the trivial (exp[−iωt]) dependence upon time. The general homogeneous
solution is the sum of all the free oscillations allowed, i.e., the Kelvin wave plus the
long Rossby waves (if wemake the long wave approximation), and these samewaves
plus gravity waves and short Rossby waves if we do not. The arbitrary constants
are simply the countable infinity of the amplitudes of these modes. Each of the
homogeneous solution waves has the same (exp[−iωt]) dependence as the forcing.

The forced, particular solution in the long wave approximation is

ū = (iω)−1 exp(−iωt)

{

dK M̄K +
∑

n

rn R̄n

}

(7.12)

where the summation is over all Rossby modes. ū is the vector (u, φ) and

M̄ = 2−1/2

∣
∣
∣
∣
ψ0(y)
ψ0(y)

∣
∣
∣
∣ (7.13a)
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R̄n = 1

4n(n + 1)

∣
∣
∣
∣
−(2n + 1)ψn,y − yψn

(2n + 1)yψn + ψn,y

∣
∣
∣
∣ (7.13b)

= 2−3/2

∣
∣
∣
∣
∣

1√
n+1

ψn+1 − 1√
n
ψn−1,

1√
n+1

ψn+1 + 1√
n

ψn−1

∣
∣
∣
∣
∣

(7.13c)

where the ψn(y) are the usual normalized Hermite functions and (7.13) give the
latitudinal dependence of the Kelvin and Rossby waves as evaluated in the long
wave approximation. It is noteworthy that these structure functions are independent
of k in this approximation. These functions also satisfy the (vector) orthogonality
relations

(M̄K , R̄n) = 0, (R̄m, R̄n) = 0 for anym, n (7.14)

where

(A, B) ≡
∫ ∞

−∞
AuBu + AφBφ dy (7.15)

for any vectors A, B. These orthogonality relationships are important because they
imply that one can use the longwave approximations to theKelvin andRossbymodes
as freely as their exact counterparts so that there is no difficulty in solving for the
as yet undetermined constants dK and rn . Precisely because this task is relatively
simple, we shall postpone it for the moment and instead turn to the determination of
the homogeneous part of the solution.

The free modes are

ū f ree =
{

b′
K MK (y) exp(iωx) +

∑

n

a′
n R̄n(y) exp(−iωx[2n + 1])

}

(7.16)

where we have used the fact that (i) k = ω (exactly) for the Kelvin wave and (ii)
kn = −ω(2n + 1) in the long wave approximation.1 It is convenient to rewrite the
particular solution in a form that explicitly adds a sum of the free modes (7.16) so
that the new particular solution automatically satisfies the boundary condition at the
eastern boundary. With the definitions

Φ ≡ ω XE ; ξ ≡ (x − XE )/XE (7.17)

— note that the rescaled x-coordinate ξ is different from the variable s employed in
the discussion of long wave quasi- free modes — the full solution is

1It should be noted that Cane and Sarachik assumed a time dependence of exp[+iωt], which
effectively multiplies the exponentials in (7.16) by a minus sign. Their convention means they
represent waves in the unorthodox form exp[−ikx + iωt]; the usual representation exp[ikx − iωt]
will be employed in these notes.
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ū = (iω)−1 exp(−iωt)

{

dK M̄K [1 − exp(iΦξ)] +
∑

n
rn R̄n[1 − exp(−i(2n + 1)Φξ)]

+bK M̄K exp(iΦξ) +
∑

n
an R̄n exp(−i(2n + 1)Φξ)

}

(7.18)

where the constants bK and an are different from the primed equivalents in (7.16).
The advantage of the form (7.18), which at first glance seems needlessly compli-

cated, is that since the particular solution now satisfies the eastern boundary condition
of vanishing zonal velocity, i.e., u particular (ξ = 0) = 0, it follows that the sum of the
free modes must also separately vanish at the eastern boundary. However, we have
already solved the problem of free modes at an eastern boundary in the long wave
approximation: the solution consists of the incoming Kelvin wave plus its Rossby
wave reflections. It follows from Eq. (6.45) of the previous chapter that

ū f ree = (iω)−1 exp(−iωt)

{

dK M̄K [1 − exp(iΦξ)] +
∑

n

rn R̄n[1 − exp(−i(2n + 1)Φξ)]

+bK M̄K exp(iΦξ) +
∑

n

an R̄n exp(−i(2n + 1)Φξ)

}

(7.19)

The eastern boundary condition thus determines the homogeneous solution com-
pletely to within an overall multiplicative constant, which is the still undetermined
amplitude bK .

The coefficients of the particular solution, {dK , rn}, are determined entirely by the
wind stress that is driving the motion, so the single factor bK is the only remaining
unknown. What determines it is the boundary condition at the west where x = 0
and ξ = −1. For the long wave quasi-free oscillations of the previous chapter, it
is possible to satisfy the rigorous boundary condition u = 0. Here, however, the
solution consists of forced as well as traveling waves, and we must fall back upon
the general long wave boundary condition derived in Chap.6:

∫ ∞

−∞
u dy = 0 at x = 0 [ξ = −1] (7.20)

Using the known y-integrals of the Hermite functions gives

∫ ∞

−∞
(M̄K ) u dy = π1/4,

∫ ∞

−∞
(R̄n) u dy = π1/4 	n/[2n(n + 1)] (7.21)

where, as before, 	1 = 1 and (6.35) 	n = √[3 · 5 · 7 · · · n]/[2 · 4 · 6 · · · (n − 1)] if
n ≥ 3 is odd and 	n = 0 for all even n. Substituting these into (7.20) and using
(7.18) and (7.19) gives

bK = {B(iΦ) + dK (exp(−iΦ) − 1)} / {1 − exp(2iΦ)S(iΦ)} (7.22)

http://dx.doi.org/10.1007/978-3-662-55476-0_6
http://dx.doi.org/10.1007/978-3-662-55476-0_6
http://dx.doi.org/10.1007/978-3-662-55476-0_6
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where the sums B and S are given by

B(iΦ) ≡
∑

n

[2n(n + 1)]−1 rn 	n [1 − exp(iΦ(2n + 1))] (7.23)

S(iΦ) ≡
∑

n

[n(n + 1)]−1 [	n]2 exp(i2nΦ) (7.24)

At this point, we have obtained the complete solution in the long wave approxi-
mation. Several comments are necessary.

First, the limit N → ∞ of the sums over the Rossbymodes have deliberately been
left unspecified above. As was the case in our treatment of the longwave basinmodes
in the previous section, it is analytically convenient to extend the sums to∞.However,
it is not possible to obtain closed form exact sums, but only approximate results that
are useful in interpreting results in various parameter ranges. For numerical purposes,
it is safer to evaluate the series by simply summing them. In this case, the proper
truncation is

N = 1/(8ω2) [cutoff mode number] (7.25)

since, according to the full dispersion relation for equatorial waves, modes of higher
n are zonally trapped. It is senseless to include these higher modes in the sums since
the long wave approximation hopelessly falsifies their nature by forcing all Rossby
modes to be zonally propagating. For the annual cycle in the first baroclinic mode
with an equivalent depth of 0.65m, N ≈ 180.

Second, the latitudinal structure functions M̄K and R̄n are deliberately restricted
to describe only u andφ.Whenω << 1, v << u as explained in Chap.6 in justifying
the long wave approximation. The calculation of v is not ill-conditioned since all the
terms in the x-momentum and height equations involving u and φ are multiplied by
ω or k, and thus are as small as those involving v. It is somewhat pointless to compute
v, however, since it is so small in comparison to u for low frequency motions that it is
below the noise level of observational instruments. Consequently, Cane and Sarachik
[3] completely ignore the north-south velocity, and we shall do likewise.

Third, the long wave y-momentum equation, yu + φy = 0, demands

φy = 0 [at the coastal boundaries] (7.26)

i.e., the height φ is constant along the coast. (Equivalently, in the language of the
1–1/2 layer model, the thermocline depth does not vary with latitude along the coast.)
Strictly speaking, this is true only for |y| <

√
(2N + 1)where N is the limitingmode

number given by (7.25). At higher latitudes, higher modes which sum to the coastal
Kelvin wave dominate the solution, and (7.26) is no longer a good approximation.
This is rather important because coastal measurements are the easiest to take (for
obvious reasons) and (7.26) implies that the signal will have no phase or amplitude
variations along the coast to bedevil observationalists. Along the eastern boundary
in particular, the particular solution in (7.18) is zero by construction. Therefore, the

http://dx.doi.org/10.1007/978-3-662-55476-0_6
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eastern boundary height is given entirely by the φ component of the sum of free
waves in (7.19) — but we already saw that this sum has a closed form solution in the
previous chapter. Evaluating the sum at x = XE gives

φE = XE bK exp(−iωt)/[π1/4 i Φ] (7.27)

Thus, the coefficient of the free Kelvin wave, bK , determines the amplitude and phase
of the height along the eastern side of the ocean (note that bK is normally complex),
and vice versa.

Fifth, we havemultiplied (and divided) by XE in (7.27) because the overall ampli-
tude of φ is, all other things being equal, directly proportional to the width of the
ocean basin. The reason for this can be understood by taking the limit of very low
frequencymotions so that the waves, inviscid in the approximations used here, would
be suppressed by the damping of the real ocean. In this limit, the ocean is always
close to being in quasi-equilibriumwith the wind stress, that is to say, the solution for
the ocean is approximately equal to that for a steady wind stress equal to the instan-
taneous value of the (fluctuating) wind stress. For a steady wind , the x-momentum
equation is

φx = τ (x); (7.28)

If τ (x) is oscillating with frequency ω and is independent of x , then (ignoring the
waves) φ tilts up and down like a seesaw. The important point is that (7.28) shows
that the slope of φ is determined entirely by the wind stress. It follows that if we
double the width of the basin, the amplitude of the motion of the ends of the seesaw
( φE and its western counnterpart) will have to double also. Consequently, φE is
proportional to XE , and the graphs of the height fields from Cane and Sarachik [3]
are invariably graphs of φ/XE rather than φ itself.

Cane and Sarachik [3] contains a number of typographical errors [3]. There is
a factor of π−1/4dK /(iΦ) missing from the unnumbered equation just below their
Eq. (24); their Eq. (14) is missing absolute value bars and a factor of ω. The most
significant error is that in their Eq.(19), they make the replacement

bK → dK ρ(iΦ) (7.29)

where their (20) defines ρ (comparing formulas) as

ρ = exp(−iΦ) bK (7.30)

This is inconsistent; since dK , which is part of the particular solution and is therefore
directly proportional to the strength of the wind stress, appears in the formula for
bK , the product of dK with ρ contains a term proportional to the square of dK and
therefore to the square of the wind stress — which is rather remarkable in a linear
model.

However, all is not lost. At worst, this mistake gives only an overall amplitude
and phase error; the relative variations of amplitude and phase with x , y, and t are
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Fig. 7.2 Left Amplitude of ρ(iΦ)/ iΦ forμ = 1/5 (corresponding to a forcing scale of 10 degrees
of latitude) as a function of Φ, x and y are scaled by Leq = √

c/β [=1, nondimensionally]. This
is also a graph of bK /(iΦ) versus Φ where bK is the amplitude of the Kelvin wave in ū f ree , the
homogeneous solution. Right Phase of ρ(iΦ)/ıΦ for μ = 1/5 as a function of Φ. Redrawn after
Cane and Sarachik [3], Fig. 1, who assume a time dependence of exp(iωt) versus the exp(−iωt)
used here; this reverses the sign of the phases

not affected. The mistake is probably only a typo anyway. However, it is not obvious
(as it is with most typos) how to correct the mistake.

In the rest of their paper, Cane and Sarachik [3] use only a forcing with a Gaussian
dependence upon latitude,2 i.e.,

τ x = exp(−iωt) exp(−[1/2] μ y2); τ y = 0 (7.31)

The advantage of this form, as mentioned earlier, is that Hermite expansion coeffi-
cients of (2.19) are known in analytical closed form as given in Appendix A. Unfor-
tunately, this is not sufficient to obtain simple, analytical answers for the solution as
a whole: Eq. (26) of Cane and Sarachik [3] is very intricate and includes integrals
which cannot be done in closed form. However, it is possible to obtain closed form
approximations to the solution in various parameter ranges, but that for the most
interesting and realistic case, Φ ∼ 0(1), is unfortunately quite messy. We therefore
will content ourselves with a description of their numerical results.

Figure7.2 shows the graph of a quantity proportional to φE as a function of the
parameterΦ = ωXE . The resonances forΦ = mπ/2 correspond to the Cane–Moore
free oscillations of the basin that were described in Chap.6. A white noise spectrum
of forcing, i.e., one in which there is roughly equal energy over some wide band
of frequency, will give a response dominated by those frequencies that correspond
to the Cane–Moore free modes for that particular ocean. Figure7.3 shows that bK

2Strictly speaking, they also consider an antisymmetric zonal wind stress obtained by multiplying
(7.31) by y. However, this does not excite a Kelvin wave and does not offer any particularly
interesting new features, so we shall only discuss the cases where the stress is symmetric about the
equator.

http://dx.doi.org/10.1007/978-3-662-55476-0_2
http://dx.doi.org/10.1007/978-3-662-55476-0_6
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Fig. 7.3 Amplitude of
ρ(iΦ)/ iΦ, same as previous
figure, but versus μ, the
width of the forcing. There is
little variation for μ < 0.2
[forcing wider than 10
degrees of latitude]. Figure2
of Cane and Sarachik [3]

is rather insensitive to μ, i.e., to the width of the forcing, so long as μ < 0.2, but
becomes sensitive for narrower forcing. The phase for small y is sensitive to the
width of the forcing for all μ. These comments are based on more than the graph,
of course; after inspecting many sets of output, Cane and Sarachik concluded that
a forcing with a half-width of 10 degrees of latitude or more would give the same
features in amplitude as taking the forcing to be independent of y.

The remaining figures from their paper illustrate four different cases: (i)Φ << 1,
narrow forcing (Fig. 7.4) (ii)Φ << 1, broad forcing (Fig. 7.5) (iii)Φ ≈ 0(1), annual
cycle in the Atlantic Ocean and (iv) Φ ≈ 0(1), annual cycle in the Pacific Ocean.

The first case (Fig. 7.4) — Φ = 0.01 and a narrow forcing — is probably the
least realistic since, for an ocean as wide as the Atlantic (5000km), this Φ implies
a period of forty years (far longer than the dissipation time scale) and furthermore
the winds are broad rather than narrow. The parameter P = 2Φ/μ plays a crucial
role in Cane and Sarachik’s analytical approximations. The response is strongly
concentrated about the equator and the amplitude of the tilt increases linearly from
small values [O(P1/2)] in the east to rather large values [0(10)] in the west. The
tilt of the height field φx is everywhere in phase with the forcing and is indeed
precisely what it would be for the quasi-equilibrium solution discussed above. The
wave-like part of the solution, which is approximately independent of both x and y
in this parameter range, is complex, however, so that φ itself is not in phase with the
forcing. However, this distinction is important only in a thin boundary layer of width
O(P1/2) near the eastern boundary because the amplitude of the wave part of φ is
only O(P1/2).

The second case (Fig. 7.5) uses the same unrealistically small value ofΦ, but now
the forcing is broad and the parameter P is 0(1). The amplitude of φ is (except for
such large values of y that they are off the graph) approximately independent of y in
both amplitude and phase. The height field is seesawing up and down around a pivot
point located at the amplitude minimum at ξ = −0.572 — not quite the middle of
the ocean. In the limit that the forcing becomes so broad that the parameter P >> 1
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Fig. 7.4 The low frequency (Φ = 0.01) narrow symmetric forcing case (μ = 4.5, corresponding
to a forcing scale of 3 degrees of latitude). Left Amplitude of height field oscillations normalized
by XE . The isoline interval in 0.1. Right Phase of height oscillations with respect to the forcing
(negative phases lead the forcing). Contour interval is 50 degrees. Bottom φ/XE versus time on the
equator. Contour interval 1/5. Time is scaled by the reciprocal of ω. Redrawn after Fig. 3 of Cane
and Sarachik [3]

(not illustrated by a graph), the pivot point moves out to ξ = −0.6667 so that there
is twice as much ocean on the eastern side of the pivot point as on the western:

φ = (2/3 + ξ) XE exp[iωt] [Φ << 1; P >> 1] (7.32)

for y not too large; the thermocline pivots like a rigid seesaw in phase with the wind
to the east of the pivot point and out of phase to the west.
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Fig. 7.5 The low frequency (Φ = 0.01) wide symmetric forcing case (μ = 0.006, corresponding
to a forcing width of 60 degrees of latitude). Left Amplitude of φ/XE . Contour interval of 0.05.
Right Phase of φ relative to the forcing (negative phases lead). Contour interval is 20 degrees.
Bottom φ/XE versus times on the equator. Contour interval 1/10. Figure4 of Cane and Sarachik
[3]

This location of the pivot point, which has certain obvious observational conse-
quences since thermocline tilting on seasonal time scales can be seen with existing
intruments, seems to defy common sense, which would predict that the height would
tilt about the exact middle of the ocean basin. This common sense result is indeed
what happens for a closed basin [4] or a basin for which mass is conserved. The
unbounded equatorial ocean, however, is free to exchange mass with the reservoir at
infinity, gaining and losing during different phases of the cycle. Thus, the generation
and repeated reflection of Kelvin and Rossby waves at the boundaries drastically
alters the dynamics of the ocean’s response to the periodically varying wind.

The phase, however, is varying across the basin (east-to-west), so the pivoting
is not occurring as if the thermocline were a rigid surface, but rather as if it were
a “writhing snake” to use Cane and Sarachik’s rather poetic expression. One can
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define a local x-wavenumber as ∂χ/∂x where χ is defined by φ = exp[iχ ], and
the corresponding phase speed as cphase = ω/klocal = ω/∂χ/∂x . Even away from
the equator where the Kelvin wave has negligible amplitude and only long Rossby
waves are found, there is nonetheless an eastward phase propagation. [Note that with
our phase convention of taking the time dependence as exp[−iωt], the phases have
opposite signs from what is shown in the Cane and Sarachik diagrams.] This phase
propagation in the wrong direction is another reminder that the behavior of a sum of
waves cannot be directly related to the phase behaviour of any of the waves making
up the sum. This seems rather obvious, but because oceanographic data is always so
sparse, there is always an almost irresistable temptation to identify any evidence of
phase propagation with an individual equatorial mode — which is probably wrong.
Many studies have looked hard for evidence of “annual Rossby” waves in the ocean;
again the eastward phase propagation of the forced response implies that this sort of
search is likely to be futile, at least in most parameter ranges.

When Φ is 0(1), the only analysis that can be done is rather complicated and will
not be presented here. Cane and Sarachik give approximations that predict rather
well the minima and maxima of amplitude as shown by the dashed lines in Figs. 7.6
and 7.7. The graph for the Atlantic annual cycle is interesting; the structure can be
interpreted by using the ray-tracing ideas of Schopf, Anderson and Smith [5]. When
Φ > π/4, as it is for the Pacific annual cycle, the focusing, caustics, and shadow
zones so characteristic of the Cane–Moore quasi-normalmodes of the basin reappear.
However, the focus for the Cane–Moore mode of longest period was located in the
middle of the ocean whereas in Fig. 7.7 it is rather near the western boundary.

The shadow zone and the caustics, which are the regions of large amplitude
that bound the shadow zone, are very similar to long wave basin modes because
the particular solution, although present here, is overwhelmed by the homogenous
solution in (7.18) wherever the latter is singular, or nearly singular.

Fig. 7.6 The Atlantic annual (Φ = 0.54) Symmetric Forcing Case (μ = 1/5). Left amplitude of
φ/XE with a contour interval of 1/10. Right Phase relative to forcing (negative phases lead the
forcing). The thick multiple lines mark the jump from 180 degrees to –180 degrees. The contour
interval is 50 degrees. Redrawn after Fig. 5 of [3]
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Fig. 7.7 Pacific annual (Φ = 1.13) Symmetric forcing case (μ = 1/5). Left amplitude of φ/XE
with a contour interval of 1/10. Minima are marked by dashed lines while maxima are thick solid
lines. The contours are in agreement with theory. Right Phase relative to forcing (negative phases
lead the forcing). The thick multiple lines mark the jump from 180 degrees to –180 degrees. The
contour interval is 50 degrees. Bottom φ/XE versus t and x . Redrawn after Fig. 6 of [3]

For both of these annual cycles, the phase variation across the basin is about 180
degrees. If we assume that the variation occurs linearly for purposes of scale analysis,
then this implies an effective x-wavenumber of aboutπ/XE . The order-of-magnitude
of the apparent zonal phase propagation of the thermocline will be ωπ/XE , or about
30 cm/s for the annual signal in the Atlantic. This is just about the value noted by
[6].

7.4 Numerical Models: Reflections and “Ringing”

Kindle [7] solved the nonlinear shallow water wave equations (i.e., the nonlinear
1–1/2 layer model) on the equatorial beta-plane using numerical integration for both
impulsive and seasonal wind stresses. He also did a simple analytical treatment,
which, although far cruder than the long wave theory of [3], nevertheless gives some
useful insights.

When the wind is turned on impulsively, the response in the interior of the ocean
is identical with that of the Yoshida jet, which is why it is worthwhile to study
the Yoshida jet even though the real equatorial oceans have continental boundaries.
The Yoshida jet is only a particular solution, however; free Kelvin, gravity, and
Rossby waves must be added to it to satisfy the boundary conditions. Since the zonal
flow in the Yoshida jet is increasingly linearly varying with time, more and more
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waves must be generated at the boundary to make u = 0 on the eastern and western
boundaries; these coastlines are therefore forced to play the role of continuously
operating wavemakers.

The Kelvin and Rossby modes which dominate the long time behavior of the
waves take a few weeks to penetrate the interior, but eventually they reach the other
side of the sea and reflect. After a few more months, the reflections have crossed the
ocean and been transmuted into re-reflections. For large times, the overall solution is
rather messy because so many waves are pinging back and forth in the ocean basin.
However, after a time scale of about 4XE , which is long enough for a Kelvin wave to
cross the basin once and make one return as an n = 1 Rossby wave,3 the amplitude
of the fluctuations becomes rather small and the flow is in near equilibrium with the
wind stress, even though a complicated pattern of small wavy perturbations on top
of this equilibrium may persist for many years. (Recall Gent’s normal modes). Each
time the Kelvin and Rossby waves reflect, they lose energy to coastal Kelvin waves,
and the remainder becomes spread out among a large number of modes which then
largely cancel each other out through interference effects. Furthermore, in the real
ocean, energy is lost to dissipation. Thus, although technically the re-reflections are
part of the solution for many years after the turn-on of the winds, in practice only the
initial Kelvin and Rossby waves — the ones that begin to move towards the interior
of the ocean from the boundaries as soon as the wind stress is turned on — and their
first reflections are large enough to worry about.

Kindle exploits these ideas for seasonal forcing by assuming that the upwelling
rate along the equator can be represented in the form

w(x, t) = wK sin(ωt) + wK sin[ω(t − x)/cK ] + wR sin[ω(t + {XE − x}/cR)]
+ wK R sin[ω(t − XE/cK + (XE − x)/cR)] + wRK sin[ω(t − XE/cK + x/cR)]

(7.33)

with cK = 1 and cR = −1/3 where wI is the Yoshida jet (interior) contribution, wK

and wR are the Kelvin and n = 1 Rossby waves excited directly at the boundary, and
wK R and wRK are respectively the n = 1 Rossby part of the reflection of the directly
excited Kelvin wave, and the Kelvin reflection of the directly excited n = 1 Rossby
wave. His Figs. 7 and 8 compare the analytical solution as given by (7.33) [together
with the Kelvin and Rossby re-reflections, which are not written out explicitly in
(7.33)] with the numerical solution. The graphs are virtually indistinguishable [7].

Equation (7.33) is remarkable for what it leaves out. First, all higher order Rossby
modes are omitted! The reason is that the first few Hermite coefficients of the series
solution given in Sect. 7.3 decrease very rapidly; the n = 1 mode has much more
energy than n = 3 and the highermodes.Hence,within a degree or two of the equator,
the highermodes can be ignored. At higher latitudes, the situation is reversed because
the n = 1 mode has turning points at y = ±1.73, so at high latitudes, it has decayed
away to nothing and the modes of larger n completely determine the solution. This

3Note that some of the Kelvin wave energy goes into all the higher and slower moving Rossby
waves; however, the n = 1 mode gets the lion’s share.
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primacy of the n = 1 mode along the equator is still worth noting, however; this
mode is highly energetic in comparison to the rest.

Even more notably, (7.33) and the figures together show what has been said in
words above: though the basin “rings” with reflections forever in an inviscid model,
in practice the numerical solution and the real ocean are both likely to be dominated
by just the first reflection or two plus the waves and interior x-independent flow that
are directly excited by the wind stress and boundaries.

Kindle calculates the reflection coefficients in his model in two ways: (i) by
using the analytical formulas of [8] and (ii) directly from his computer integrations
by carefully examining the amplitude in places and times where the upwelling is
determined by only a single wave mode, or by one plus others whose amplitude is
already known. The results are summarized below:

wK = −1.4wI , wR = 0.6wI (7.34)

wK R = RE wK , wRK = RW wR (7.35)

RE =
{
0.36 [numerical]
0.5 [analytical]

, RW =
{
0.75 [numerical]
1.0 [analytical]

(7.36)

Note that these results are expressed in terms of relative upwelling velocities along
the equator; since w and φ are proportional to one another with a proportionality
constant of −iω times the ratio of the integral of the vertical structure function to the
vertical eigenmode zn(z), the relative upwelling is equivalent to specifying relative
values of φ(y = 0) rather than amplitudes of Sn or M̄K and R̄n .

It is striking that he underestimates the analytical reflection coefficients by about
25%.Kindle suggests that this is probably due to the viscosity and periodic numerical
smoothing built into his computer model, and chooses to use the numerical values in
comparing his analytical solution (7.33) with the results of the full numerical integra-
tion. Although this pastiche of numerical reflection coefficients with the theoretical
solution is a little inconsistent, it is nonetheless true that there is dissipation in the
real ocean.While damping will little effect onwK andwR , the directly excited waves,
it will have some effect on the first reflections, making their amplitude lower than
in an inviscid calculation, and will more and drastically suppress the higher order
reflections. Kindle’s numerical reflection coefficients have this dissipative reduction
built into them, but it must be noted that a good model or parameterization for the
dissipation of the real ocean is not available, and his viscosity was included more for
numerical stability than for physical realism.

The large amplitude of the directly excited Kelvin wave, which is opposite in sign
to that of the Yoshida jet, results in a near-cancellation whereas the Rossby wave,
though smaller in amplitude, adds its own upwelling to that produced directly by the
interior solution. The result is that the initial motion of the thermocline is four times
greater at the eastern boundary than at the western boundary (for an impulsive turn
on of the wind; for periodic forcing, this simple picture is modified by the reflected
waves).
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It is also interesting that the eastern boundary reflection coefficient is only half as
large as that at thewestern boundary in both the inviscid analytical andviscous numer-
ical calculations. Kindle notes thatMoore’s (1968) analysis of the reflection problem,
discussed in Chap. 6, showed that when a wave reflects from a western boundary,
energy is funneled downwards in mode number so that the solution involves only
waves of smaller n. At an eastern boundary, on the other hand, energy is shifted into
all higher modes, so the n = 1 Rossby mode receives a relatively small share of the
energy of the incident Kelvin wave because it must share with n = 3, 5, 7, . . ..

7.5 Atlantic Versus Pacific

Observations show [3] that the Pacific has a weak annual signal in the equatorial
thermocline with most of the variation from the annual mean occurring at the eastern
end. In marked contrast, the Atlantic has a strong annual signal at all longitudes.
An obvious motive for exploring how the ocean responds to periodic forcing is to
determine if the differing widths of the two oceans is responsible for the weakness
of the Pacific annual cycle.

Both the numerical work of Kindle (1979) and the analytical model of [3] show
quite the opposite: the response becomes stronger and more complex as the width of
the ocean increases. In the long wave theory, the maximum thermocline variations
at the boundary for the Pacific annual [>8 at both coasts] is significantly larger than
for the Atlantic annual [∼5 at the western boundary and ∼7 at the eastern boundary]
for the same strength of forcing (unity).

Kindle (1979) shows a plot of the upwelling amplitude (proportional to φ) versus
the basinwidth-and-frequency parameterΦ (instead of time, as in the Cane–Sarachik
diagrams). Thepattern of contours showsquite clearly that the amplitude is increasing
with Φ and reaches truly large values for Φ ∼ π/2, which corresponds to the lowest
Cane–Moore quasi-normal mode, and is truly enormous for Φ = π , which is the
second Cane–Moore mode. (Kindle points out that in either case, the condition for
resonance is that all waves cross the ocean and return with exactly the same phase
as when they first left the boundary. However, the resonance is weaker at Φ = π/2
than at Φ = π because waves which leave one boundary in phase with the wind
stress forcing arrive at the other boundary exactly 90 degrees out of phase with the
forcing. For the first baroclinic mode, the very strong Φ = π resonance occurs only
for semiannual period, and only when the effective width of the ocean is taken to be
∼15,000km.)

Still, the picture is clear. Resonances do occur even in a numerical model like
Kindle’s which allows the coastal Kelvin waves to radiate poleward and also includes
dissipation. The Pacific is far closer to resonance than the Atlantic, and should, all
things being equal, have a much stronger response.

The only way out of this dilemma is to suppose that annual component of the wind
stress forcing is much weaker in the Pacific than the Atlantic. In fact, this seems to
be the case. The mean wind stress in both oceans is about 0.4 dynes cm−2, but the

http://dx.doi.org/10.1007/978-3-662-55476-0_6
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amplitude of the Atlantic annual is about 0.15 dynes cm−2 whereas it varies from
0.02 to 0.1 dynes cm−2 in the Pacific [9, 10].

Although this is not terribly obvious in their Figures, the smoothness of the con-
tours for Φ = 0.5 (Atlantic) versus the much more highly structured contours for
Φ = 1.1−1.5 (Pacific) show that the waves are much less important for the smaller
ocean. In the Atlantic, “the solution is essentially in equilibriumwith the wind stress”
(Kindle, 1979) insofar as the equatorial thermocline is concerned; the refractive
effects so evident in Fig. 7.6a occur only away from the equator. The implications of
this wave-free simplicity and the larger signal imply that the Atlantic is a much better
laboratory for studying the annual cycle than the Pacific. In contrast, the interannual
variations of wind in the Pacific are bigger than in the smaller ocean, and these longer
period changes correspond to smaller values of ω such that the response is closer
to equilibrium. Thus, the Pacific is likely to be a good place to explore long-term
variations (time scale of several years) in the ocean due to the wind.

7.6 Summary

The overall conclusion is that the broad features of the equatorial response to periodic
wind forcing are understood. “Ringing” in the form of directly excited and reflected
Kelvin and Rossby waves, the Yoshida jet-like interior, the refraction and focusing
of Rossby waves, and local wind stress curl all play roles. The mean tilt of the
thermocline and its annual and semiannual harmonics and thoseof the three equatorial
surface currents (NEC, NECC, and SEC) are all reasonably well-reproduced by a
simple 1–1/2 layer model. There are, however, many discrepancies in detail between
theory and observation. It appears that these are due at least as much to the crudity
of the wind stress data as to the limitations of the 1–1/2 layer model. The course for
the future is largely one of refinement, correction, and the explanation of features of
smaller scales (in both time and space).
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Chapter 8
Impulsive Forcing and Spin-Up

Abstract On the equatorial beta-plane, the response of the flow in the linear shallow
water wave equations to wind stress which is a step function in time can be formally
solved by Laplace transform integrals (multiplied by the usual Hermite functions).
Although these transform integrals must evaluated numerically, it is still possible
to analyze the oceanic response to jumps in the wind. The work of Anderson and
Rowlands (J Mar Res 34(3):295–312, 1976) [1] and Cane and Sarachik (J Mar Res
35(2):395–432, 1977) [2] is the point of entry to the complex wave patterns that
result.

An analytical solution, if sufficiently complicated, is no more useful, and useful only in
the same ways, as a numerical solution.

— J.P. Boyd

8.1 Introduction

In this chapter, we will deal with the response of the linear, 1–1/2 layer ocean to wind
stresses which are applied impulsively. Usually, for the sake of simplicity, we shall
assume that thewind is turned on as a step function in time. This sort of sudden, rather
than periodic, change in the wind is an appropriate means of understanding El Niño
events and perhaps the seasonal reversal of the Somali Current off East Africa. To be
sure, both are part of quasi-periodic variations of the ocean-atmosphere system, but
the data suggest that both events occur on time scales short in comparison to those
of the interannual (El Niña) or annual (Somali Current) oscillations in which they
are embedded.

In principle, of course, any time dependence of the forcing can be represented as a
Fourier integral over time and is therefore just the superposition of the periodic forc-
ing results obtained in the previous chapter. In practice, Fourier methods are a clumsy
tool for understanding spin-up and switch-on problems because the Fourier integral
may have properties and behavior very different from those of the single-frequency
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solutions that are the integrand. Our purpose is to gain insight, so it is more useful
to look at impulsive forcings directly.

The next section is an analysis of Anderson and Rowlands’ [1] on the reflection
of a switch-on [not periodic] Kelvin wave from the eastern boundary. They do not
make the long wave approximation and present some interesting time sequences that
clearly show that low latitudes respond faster than high latitudes and also illustrate
the generation of the coastal signal.

In Sect. 8.3, we will briefly review the spin-up problem in the absence of bound-
aries; this is basically the Yoshida jet, but we will also discuss the effects of
y-variations in the forcing. In the rest of the chapter, we will then discuss, along
the lines of Cane and Sarachik [2], the corresponding solution with boundaries.

8.2 The Reflection of the Switched-On Kelvin Wave

This problem was treated by Anderson and Rowlands [1] as a warm-up to a study of
the Somali Current reversal whichwas published in the same issue [3]. The switched-
on Kelvin wave is assumed to be of the form

S0(x, t) ≡ H(x − t) ⇔ S0 =
{
0 t < x
1 t > x

(8.1)

where S0 is the zeroth-th degree Hermite coefficient of the usual sum variable S.
The eastern boundary is at x = 0 (not x = XE as in the Cane-Sarachik work, and
elsewhere in this book). Thus, the Kelvin wave is implicitly assumed to be switched
on far upstream for some negative time and then propagates until it hits the coast
at t = 0. Equation (8.1) is assumed to be the complete solution to the Kelvin wave
for all time, which is an assumption that can be made without approximation or
apology since the Kelvin mode (i.e., S0) is completely uncoupled from all the others.
The other modes are assumed to be 0 until t = 0, but when the Kelvin wave hits
the boundary, all the higher modes are switched-on so that the boundary condition
u = 0 at x = 0 can be satisfied.

Anderson and Rowlands ignore all effects of a western boundary by implicitly
assuming that the ocean is unbounded to the west, north, and south. This allows
them to retrieve the general linear solution by taking Laplace transforms in time. The
linear partial differential equations in x and t are thus reduced to constant coefficient
equations in x alone which are easily solved to give the Laplace transform of each
Sn or Dn .1

The bad news is that the final integral is very messy and cannot be done in closed
form even for D0, and the complexity rapidly mounts for the corresponding integrals

1Notational comment: Anderson and Rowlands use q and r to denote our sum and difference
variables S and D, respectively. They work in terms of parabolic cylinder functions (asymptotically
proportional to exp(−0.25y2) instead of Hermite functions, which are proportional to exp(−0.5y2),
so there are lots of unexpected factors of 2 in their paper.
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for higher modes. However, it is easy to evaluate the Laplace Transform numerically.
The results for D0 are shown in Fig. 4 of Anderson and Rowlands and Fig. 8.1 here.
The most striking feature is the sharp spike at the leading edge of the wavefront. This
front propagates at the same speed as the Kelvin wave (c = −1, nondimensionally)
but in the opposite direction, and is due to the fact that Anderson andRowlands do not
filter out the gravity waves by using the long wave approximation. By asymptotically
evaluating the integral in the vicinity of the front, Anderson and Rowlands show that
(viewed in a coordinate system moving with the front), it can be described by the
same J0([2xt]1/2) factor that describes the western boundary layer for the spin-up
of a bounded, midlatitude ocean. This similarity exists because gravity waves are
indifferent to their direction of propagation (eastward from a western boundary, or
westward from an eastern coast) and are the waves responsible for the steep gradients
in either case. As is visible in the figure, the width of the first spike shrinks so that it is
O(1/t), so for large times,wewould expect viscositywould destroy it. Consequently,
we should not be too upset when these gravity wave spikes are filtered by the pseudo-
long wave approximation employed by Anderson in his earlier solo paper, Anderson
[4], and by the long wave approximation employed in our later illustrations below.

Fig. 8.1 D0(x, t) in the exact model as a function of x and t as generated by the reflection of a
Kelvin wave at t = 0 from an eastern boundary at x = 0
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They interpret the poleward front as the coastal Kelvin wave which is illustrated
in their Figs. 5, 6 and 7. The wave front amplifies as it propagates like y1/2, just
as predicted by Moore’s solution. This amplification is a purely geometric effect
caused by the narrowing of the Kelvin wave as the stronger Coriolis forces at higher
latitudes trap the wave into a narrower and narrower layer along the coast. In the
wake of the front, the Kelvin signal subsides to a value that Anderson and Rowlands
show that at all latitudes is 1/21/2 [1/2 in our convention] of the amplitude of the
equatorial Kelvin wave. The coastal Kelvin wave asymptotes to a constant (rather
than 0) because the equatorial Kelvin wave is unbounded to the west and therefore
keeps pumping a constant amount of energy into the coastal boundary layer for all
t > 0. This constant is less than 1 because some of the energy of the incoming Kelvin
wave (of unit amplitude) is reflected westward as Rossby waves.

The meridional velocity is strongly trapped to the coast for all times as shown at
four different times by contour plots in Fig. 11 ofAnderson andRowlands; v drops off
to very small amplitudes after the front of coastal Kelvin wave has passed. Part of the
reason is that, near the coast butwell in backof the headof the coastalKelvinwave, the
solution is a sum of Rossby waves which are not zonally trapped. Cane and Sarachik
[2] point out that in a switch-on problem, the frequency component ω = 0 is always
present. Thus, all Rossby latitudinal modes can propagate some energy westward,
and for moderate to large times when the high frequency transients have propagated
off the map, only the low frequency (and zonally unbounded) Rossby waves remain.
Cane and Sarachik therefore object to Anderson and Rowland’s description of the
coastal Kelvin wave asymptoting to 1/21/2 because it is actually the sum of zonally
propagating Rossby waves that is doing the asymptoting except near the front of
the coastal signal.) These long, low-frequency Rossby waves have v << u; this
observation is the basis for the long wave approximation, and v becomes smaller as
the frequency 0 becomes lower. Asymptotic analysis of the Fourier integrals over ω

in the switch-on problem show that for large t , the integrals are dominated by smaller
and smaller values of ω, so v drops off to nothing rather quickly.

Anderson [4] reduced the system of three equations for each latitudinal mode
number n to a single equation for each n [4]. To avoid severe explicit time-stepping
restrictions, Anderson dropped the third time derivative from this reduced, third
order equation, thus filtering out gravity waves. This is less drastic than the long
wave approximation in that the zonal velocity and height are not forced into per-
fect geostrophic balance in the y-direction, but the gravity waves are filtered out.
His Figs. 6 and 7 shows that this “pseudo-long wave” approximation eliminates the
gravity wave spikes, but otherwise, since Rossby wave dispersion is still included in
a very accurate form, it changes the solution but little.

To elaborate on their ideas, it will suffice here to use the longwave approximation.
The reflection of the Kelvin wave derived in Sect. 6.4 above as Eq.6.27:

http://dx.doi.org/10.1007/978-3-662-55476-0_6
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S(x, y, t) = H(x − t)ψ0(y) +
∞∑
n=1

{
n∏

k=1

√
(2k − 1)

2k

}
H ((4n − 1) {x + [1/(4n − 1)] t}) ψ2n(y)

D(x, y, t) =
∞∑
n=1

√
n + 1

n

{
n∏

k=1

√
(2k − 1)

2k

}
H ((4n − 1) {x + [1/(4n − 1)] t}) ψ2n−2(y) (8.2)

Each reflected Rossby mode in the long wave approximation (which is free of dis-
persion within a given latitudinal mode) is a step-function pulse in x as illustrated in
Fig. 8.2. The superposition of many modes, each traveling at its own speed, creates
the more complex pattern illustrated by the contour plot in Fig. 8.3.

It is possible to roughly estimate the boundaries of the wave pulse as it expands
both poleward and westward. At a time and longitude (x, t), only those latitudinal
modes are to be found for which |ct | > |x |, that is, t > (2n + 1)(−x) where n is the
latitudinal mode number. As elaborated in Appendix A, the n-th Hermite function
has “turning latitudes” yt = √

2n + 1 where the function transitions from oscillation
(for smaller |y|) to very rapid exponential decay (for |y| > |yt |). If follows that the
latitudinal extent of the disturbance at (x, t) is roughly bounded by the turning
latitudes of the highest mode which has reached longitude x at time t . The highest

Fig. 8.2 Surface plot of S22(x, y, t = 50), the coefficient of the sum variable in latitudinal mode 21
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Fig. 8.3 The thick dashed line is the wavefront. The thin gray curves are the isolines of S(x, y, t =
50), the sum of all modes, as opposed to the single mode illustrated in the previous figure

mode has t/|x | ≈ 2n+1, but the right-hand side is the square of the turning latitudes
for the mode, yielding for the frontal position y f ront (x, t)

y2f rontal = t

−x
(8.3)

This is graphed as the heavy dashed line in Fig. 8.3 and also in the “zoom plot” for
larger t , Fig. 8.4.

Anderson and Rowland’s Figs. 9 to 11 are each a quartet of contour plots illustrate
φ, u, and v at various times as calculated via their numerical model. Initially, sharp
gradients of pressure form in a coastal boundary layer, but by t = 20, the front has
propagated off the map, and the rather flat and much smoother field associated with
the Rossby waves is left behind. Notice that the disturbance is spreading westward
at y = −8 [bottom of graph] throughout all four plots in each of their figures. At
this high latitude, only Rossby modes with n > 8 have significant amplitude, so the
effective rate of propagation of the sum of reflected Rossby waves at this latitude is
bounded by c8 = −1/17.
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Fig. 8.4 Same as previous figure except that the time is doubled to t = 100 and the zonal scale is
zoomed in (shrunk) to an interval 20 times smaller. The thin curves are the isolines of S(x, y, t =
100)

Thewestward spreading ismuchmore subdued for u than for the height φ because
at the boundary, the Rossbymodes and coastal front must cancel the zonal velocity of
the equatorial Kelvin wave so that u = 0 everywhere along the coast. It is interesting
that for large times a small region of westward flow develops along the equator and
near the coast.

8.3 Spin-Up of a Zonally-Bounded Ocean: Overview

In the absence of coastal boundaries, the problem of a switched-on wind stress is
that of the Yoshida jet, discussed in Chap. 9. The response to an x-independent zonal
stress is a zonal jet that accelerates linearly with time plus inertial waves needed to
satisfy the initial conditions of no motion at t = 0. The response to a north- south
stress is merely a steady jet also accompanied by inertial oscillations.

Boundaries at x = 0 and x = XE modify the response in the following two ways:
(A) The wind stress forcing is cut-off at the boundaries so that an x-independent

wind creates a forcing in the shape of a “top hat” or “square well”.
(B) The boundaries are barriers to zonally propagating motions so that any energy

which is driven onto the boundaries in the Yoshida solution will inevitably generate
reflected waves to carry the incident energy away.

http://dx.doi.org/10.1007/978-3-662-55476-0_9
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Both types of modifications are important.
Overall, the solution consists of five parts: (i) The interior (Yoshida) solution ū I ,

which is independent of x .
(ii) The inertial gravity waves (a) needed to satisfy the initial conditions in the

Yoshida problem plus (b) their boundary reflections.
(iii) The eastern boundary response consisting of (a) long Rossby waves needed

to bring ū I to 0 at the eastern boundary and (b) reflections of Kelvin waves (which
are also long Rossby waves plus a coastal signal.)

(iv) The short Rossbywave part of the western boundary response, which involves
(a) waves which superimpose to give a thinning boundary layer described by Bessel
functions so as to bring ū I to zero plus (b) the short Rossby reflections of long Rossby
waves. (By “thinning” we mean that its width is ∼O(1/t)]

(v) The Kelvin wave part of the western boundary response, which consists of (a)
a wave directly excited at t = 0 plus (b) reflections of long Rossby waves.

In terms of the two species of Yoshida modifications described above, parts (a) of
the last three categories correspond to (A): the zonal truncation of the Yoshida jet.
Parts (b) of the last (four) categories above correspond to (B): coastal boundaries-
as-wavemakers-via-reflection.

Parts (iii.a) and (iv.a) also appear in the solution to the barotropic vorticity equation
for a bounded ocean. The long Rossby waves which propagate westward from x =
XE , (iii.a), are the wavefront that spins-up the interior of the sea to the Sverdrup
solution. Since the boundary does not modify these long Rossby waves, they are
unchanged by the presence or absence of the coast – what is important to them is
merely that the forcing stops at x = XE . The Bessel function-like, ever-thinning
western boundary layer of short Rossby waves is needed to bring the Sverdrup flow
to 0 along the western boundary in the solution to the barotropic vorticity equation;
the fact that x = 0 is a coast, and not merely the edge of the wind stress, is essential
to the existence of this thinning boundary layer. The new kid on the block, the one
feature which was not found in the solution of the barotropic vorticity equation, is
the Kelvin wave. Because of it, one of the waves which is needed to bring u to 0 at the
western boundary can now propagate energy eastward. In theories of El Niño, it is
this wave which propagates the decisive downwelling signal that Peruvian fishermen
have observed – and dreaded – for centuries.

In the next few sections, we shall successively review the interior solution, the
inertial-gravity waves, the western boundary layer of short Rossby waves, and then
finally the Kelvin and long Rossby waves that dominate the spin-up of the equatorial
ocean.

8.4 The Interior (Yoshida) Solution

In Chap.9, we derive the solution for an x-independent, y-independent wind stress
acting in the x-direction only. The methods employed in Sect. 9.3 can be easily
generalized to include (a) a meridional wind stress (b) a buoyancy source (i.e., a

http://dx.doi.org/10.1007/978-3-662-55476-0_9
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heating function which provides forcing for the height equation) and (c) latitudinal
variations of the wind stress. Since the method is the same, we shall merely quote
results from Cane and Sarachik [2].

Before doing so, it is helpful to define some auxiliary 3-component vectors that
give the meridional structure of each mode. Let

w̄n(y) ≡ (y ψn, 0,−dψn/dy), (n ≥ 0) (8.4)

v̄n(y) ≡ (0, ψn, 0) (n ≥ 0) (8.5)

M̄n(y) ≡ (−dψn/dy, 0, y ψn) (n ≥ 0) (8.6)

R̄n(y) ≡ {
(2n + 1) M̄n(y) − w̄n(y)

}
/ [4n(n + 1)] (8.7)

M̄K (y) ≡ (ψ0, 0, ψ0)/1.4141 (8.8)

where ψn(y) is the n-th normalized Hermite function. The solution for a forcing
vector that involves only a zonal wind stress and buoyancy source can be written

F̄ = (F(y), 0, H(y) ) [independent of x, t ] (8.9)

ū I = (t u(1), v(1), t φ(1)) (8.10)

(u(1), 0, φ(1)) = dK M̄K (y) +
∞∑
n=1

rn R̄n(y) (8.11)

v(1) = −
∞∑
n=0

[dn/(2n + 1)] ψn(y) (8.12)

[Notational comment: Cane and Sarachik [2] use ū I to denote the inertial-gravity part
of the problem, and, unlike us, have no separate symbol to denote the accelerating
jet.) We adopt the notation

An =
∫ ∞

−∞
Aψn(y)dy = n-th Hermite coefficient of A (8.13)

for any quantity A. The Hermite coefficients in (8.11) and (8.12) are

dK = 2−1/2 (F + H)0 (8.14a)

dn = (yF + dH/dy)n (8.14b)

rn = (dF/dy + yH)n − dn/(2n + 1) (8.14c)
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The corresponding solution for a purely meridional wind stress is given by

F̄ = (0,G(y), 0) [independent of x, t] (8.15)

ū I = (u(2), 0, φ(2)) (8.16)

=
∞∑
n=0

[gn/(2n + 1)] w̄n(y) (8.17)

where
gn = (G)n = (ψn(y),G) (8.18)

Aswill be noted in our discussion ofYoshida’s problem, a latitudinally unbounded
stress implies a solution which decays only algebraically with y. This in turn implies
that the coefficients an of the Hermite series decrease only algebraically with n —
small, fractional powers of n — so Moore/Hutton/Euler summation, described in
Appendix B, must be employed. Cane and Sarachik note that if the forcing is a
Gaussian in y, then the exponential decay of the stress will cause the solution to
decay exponentially with |y| also and in turn the coefficients of its infinite series to
decay exponentially with degree n as well so that the series can be summed without
special tricks. If the width of the Gaussian is wide, then the solution will differ only
a little from Yoshida’s. Figure8.5 illustrates the structure functions for various types
of wind stresses. One does not sacrifice an analytical solution by using a Gaussian
since the Hermite expansion of such a function is known explicitly:

exp(−b2 y2) =
∞∑
n=0

π1/4

√
2√

1 + 2b2

√
(2n)!
2n n!

∣∣∣∣1 − 2b2

1 + 2b2

∣∣∣∣
n

ψ2n(y) (8.19)

where the sum is over the even coefficients only. For small b, the coefficients that
satisfy (2n + 1) << 0.5b2 are essentially the same as in the Hermite expansion of
f (y) = 1, i.e., as in Yoshida’s problem. Cane and Sarachik make heavy use of such
Gaussian wind stresses [2, 5–7].

Although we shall not go through the details here, Cane and Sarachik [5] describe
how to calculate the response to forcings with an arbitrary dependence on x . The
required Fourier integrals are rather messy, however, so most work has either used
brute-force numerical methods or idealized wind stress as a step function or “top
hat” in x .

The x-independent solutions ū I derived here have been labelled with the subscript
“I” to denote that they are the “interior” solution: away from the boundaries, ū I

dominates the flow for small times because none of the waves – which are entirely
generated at the boundaries of the ocean – have had time to penetrate deep into the
interior. At later times, the x-independent interior solution is overlaid with waves at
all longitudes. In particular, the wave part of the solution cancels the secular growth
with time implied by (8.10) so that the solution with coastal boundaries spins up to
a flow which is bounded in time.
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Fig. 8.5 Top three panels Response in an unbounded ocean to a westerly wind stress (F 	= 0)
while the other forcing components are zero (G = H = 0). Left top F(y) = 1. Middle top
F(y) = exp(−y2/4). Right top F(y) = y exp(−y2/4). Bottom four panelsResponse to a southerly
wind (G 	= 0), also in an unbounded ocean with F = H = 0. Middle left G(y) = 1. Middle right
G(y) = exp(−y2/4). Bottom left G(y) = y exp(−y2/4). Bottom right G(y) = y. Figures7 (top)
and 8 (bottom four panels) of Cane and Sarachik [5]
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8.5 Inertial-Gravity Waves

Retain the same auxiliary functions as in the previous section. When a forcing is
switched on as a step function at t = 0, Cane and Sarachik [2, 5] show that, to
satisfy the initial conditions of no motion, the general linear solution for the inertial-
gravity waves is

ūinertial =
∞∑
n=0

m−2 [w̄n(y) + v̄n(y) ∂/∂t]
{

1√
2n + 1

dn sin(
√
2n + 1t) + gn cos(

√
2n + 1t)

}

(8.20)

As in theYoshida problem, ūinertial is independent of x . However, contrary towhat
one might expect, the inertial- gravity waves in (8.20) have an eastward group veloc-
ity and this has rather important consequences when zonal boundaries are included.
To calculate this group velocity, we note that the usual gravity wave approximation

ω ≈ ±
√
2n + 1 + k2 (8.21)

predicts a zero x-group velocity for k = 0. This immediately tells us that the exact
group velocity for k = 0, whatever it is, has to be very small, or otherwise it would
not have been missed by what is otherwise a good approximation. There are two
ways of obtaining the correct group velocity.

The most direct method is to simply take the exact cubic dispersion relation

ω3 − [2n + 1 + k2]ω − k = 0 (8.22)

and, using (8.21) as the zeroth-order approximation, apply Newton’s method to gen-
erate higher approximations. The next lowest approximation is given by

ω = ±
√
2n + 1 + k2 + k/[2n + 1 + k2] (8.23)

Differentiating with respect to k and then taking the limit k → 0 gives

cgx(k = 0) = 0.5/(2n + 1) (8.24)

for gravity waves of either sign of frequency. Thus, the group velocity of the inertial-
gravity waves is (i) always eastward and (ii) of a magnitude equal to exactly half the
velocity of the corresponding (same n) long Rossby mode.

When zonal boundaries are added, the situation becomes that shown schematically
in Fig. 8.6. Since there are (obviously!) no inertial-gravity waves at t = 0 west of
the boundary at x = 0 — there is no water west of x = 0 — it follows that for
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Fig. 8.6 Inertial-gravity equatorial wave of latitudinal mode number n and its boundary responses
at time t for the Yoshida problem with boundaries at x = 0 and x = xE . The directly excited
initial mode reflects as a very long gravity wave of the same mode number and almost the same
speed. That is to say, the western boundary cancels the initial wave for x ≤ t/ {2(2n + 1)}. The
eastern boundary reflection is a series of modes of mode number m,m + 2,m + 4, . . .. Only the
n-th reflected mode propagates; the higher reflected modes are trapped with an e-folding scale for
the m-th mode given by D(m) = √

2(m − n) − 1/4(2n + 1)−1. A little of the initial energy thus
goes into a zonally-trapped eastern boundary layer. Figure3 of Cane and Sarachik [2]. Note that
D(n + 2) is plotted for Dn+2

t > 0, the gravity wave signal propagates eastward towards the interior of the ocean.
Conceptually, what happens at the western boundary is that a given inertial-gravity
mode merely generates the same mode at the boundary with equal amplitude but
opposite phase. As time passes, the superposition of the two – which sum to 0 –
propagates eastward at the velocity given by (8.24). One can hardly dignify this as
a western boundary “reflection” since all the energy is being swept away from the
boundary by the intrinsic free group velocity of the waves.

At the eastern boundary, the situation is more complicated. The only reflected
wave that is zonally propagating has m = n, i.e., the same mode number as the
incident wave, and it has very nearly the same energy, too: if the amplitude of the
incident wave is normalized to 1, then the amplitude of the m = n reflected wave is
[1 − 1/(2n + 1)] as shown in Fig. 8.6, which is almost indistinguishable from the
initial wave for large n. The small fraction of energy that is left over goes into an
infinite number of zonally-trapped modes with mode numbers greater than that of
the incident wave (i.e., m > n) and the same parity (m = n mod 2). The reflected
long wave has k ≈ 1/(2n + 1), which is certainly a large wavelength, but it is not
proper to speak of this as a Rossby wave because it – and all the zonally-trapped
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modes – oscillate at the same high frequency (ω = [2n + 1]1/2) of the incident
wave, and such high frequencies are an order of magnitude too large for Rossby
waves. (Thus, there is no coupling at the eastern boundary between the high and low
frequency parts of the response, i.e., between the inertial-gravity waves and the long
Rossby waves which we will discuss later.)

The long term outcome is that the inertial-gravitywaves ping back and forth across
the ocean basin for a long time, gradually losing energy into the zonally-trapped
motions at the eastern boundary. It should be noted that the time for even one crossing
of the ocean is very slow: even the fastest-moving n = 1 mode takes a whole year to
cross the width of the Pacific. The return mode has slightly less energy and a slightly
lower group velocity than the incident mode, “slightly” meaning O[1− 1/(2n + 1)]
or smaller. When the return mode reflects off the western boundary, a little of the
energy goes into a Kelvin mode (among others), but most is put into k = 0 waves
of the same latitudinal mode number. As a first approximation, however, the mode
simply bounces endlessly back and forth.

The inertial-gravity waves therefore never settle down into a steady-state in and
of themselves. Their ultimate fate is to be destroyed by viscosity. They play no role
whatsoever in the spin-up of the equatorial ocean to a Sverdrup flow, but rather
are simply high-frequency noise superimposed on this adjustment process. For this
reason, we shall not discuss these waves further. Note, however, that such modes do
play a role as constituents of the rather high frequency quasi-free basin modes of
Gent which were discussed in Chap. 6.

8.6 Western Boundary Response

The zonal velocity along the western boundary has a time dependence of the form

u(y, t) = u(y)t s, s = 0 or 1; (8.25)

A similar equation but with a different shape in y can be written for the eastern
boundary. The case s = 0 applies to a cross-equatorial wind stress whereas s = 1
denotes a steady zonal stress, the accelerating Yoshida jet. Cane and Sarachik [2]
show that the western boundary response ūW (which excludes the incoming long
Rossby waves) is

ūW (x, y, t) = bK H(t − x) (t − x)s M̄K (y) + ū B(x, y, t) (8.26)

The Kelvin wave term is exact – note the similarity for s = 0 to the form assumed
by Anderson and Rowlands [1] – but ū B is described by horribly messy integrals
which cannot be integrated in closed form. Asymptotic approximations to the short
Rossby waves that superpose to give ū B can be obtained, however, and the result can
be written either of two ways. The first form is

http://dx.doi.org/10.1007/978-3-662-55476-0_6
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Fig. 8.7 The Bessel functions which describe the short Rossby waves in the western boundary
layer. Note that the abscissa is xt , not x : this implies that all these functions shrink in longitudinal
scale like O(1/t)

ū B(x, y, t) ∼
∣∣∣∣∣
(t/x)s/2 Js(2[xt]1/2) ∑∞

n=0 bn H(cnt − x) (dψn/dy, 0, y ψn)

−(t/x)(s+1)/2 Js+1(2[xt]1/2) ∑∞
n=0 bn H(cnt − x) (0, ψn, 0)

∣∣∣∣∣
(8.27)

where the first sum gives the latitudinal structure of the zonal velocity (first com-
ponent of the vector) and φ (third component) whereas the second sum gives the
structure of the north-south current. The Bessel functions that appear in (8.27) are
illustrated in Fig. 8.7.

The reason for the step functions in (8.27) [omitted from (8.28) below] is to serve
as a reminder that (8.27) is merely an asymptotic approximation and is valid only
close to the coast. The parameter cn = 1/[8(2n+1)] is themaximum eastward group
velocity of the n-th mode; when x > cnt , the n-th mode is exponentially small and
the proper asymptotic approximation has a different form.

The second, alternative form is

ū B(x, y, t) = (uB, vB, φB)

= [−∂/∂y, ∂/∂x, y] (t/x)s/2 Js(2[xt]1/2)
∞∑
n=0

bn ψn(y) (8.28)

The simple form of (8.28) is possible because the short Rossby waves are, for very
low frequencies (i) nondivergent and (ii) in geostrophic balance in the x-direction,
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i.e., vB is in geostrophic balancewithφx . These two observations remain truewhether
we are dealing with short Rossby waves at a single frequency ω << 1, or whether
we are dealing with those produced by a switch-on forcing, which gives a solution
dominated by a mix of frequencies – all very low – for large time.

The condition of nondivergence,

uB
x + vBy = 0 [+ O(ω2) error for a single frequency] (8.29)

can be integrated in y from y = −∞ to y = ∞ to give, since v(±∞) = 0,

∫ ∞

−∞
uB
x (x, y, t) dy = 0 ∀ (x, t) (8.30)

In words, since (8.30) is true for all x , this equation implies that the y-integral of u
is at most a constant independent of x . Since uB is 0 at x = ∞ (or XE ), it follows
that this constant must be 0. Thus,

∫ ∞

−∞
uB(x, y, t) dy = 0 ∀ (x, t) (8.31)

We have, of course, already derived this equation in Chap.6: the Kelvin wave carries
all the mass flux away from the western boundary, and the short Rossby waves only
create some local recirculation. It is worth recapitulating the argument here, however,
because it gives a quick and efficient method for calculating the Hermite coefficients
bn that appear in (8.27) and (8.28).

The boundary condition at x = 0 is

− ui (y) t
s = uB(0, y, t) + 2−1/2 bK ts ψ0(y) (8.32)

where ui (y) is the incident wave disturbance (sum of long Rossby waves) and where
the second term on the right in (8.32) is the contribution of the Kelvin wave. [The
factor of 21/2 is due to the normalization of the Kelvin wave employed by Cane and
Sarachik [2].] Integrating this equation from y = −∞ to y = ∞ and applying (8.31)
gives

−
∫ ∞

−∞
ui (y) dy = π1/4 bK (8.33)

where we have used (i) ψ0(y) = π−1/4 exp(−0.5y2) and (ii) the integral from
[−∞,∞] of exp(−0.5y2) is (2π)1/2. With the Kelvin wave response thus com-
pletely determined by the zonal mass flux of the incoming waves, we can then obtain
the Hermite coefficients of uB at the boundary by calculating those of u(y) through
the usual method and then correcting that for ψ0 by using (8.33). Cane and Sarachik
[2] also describe a second method based on recurrence relations, but this is less
efficient unless the incoming wave consists of but a single long Rossby mode.

http://dx.doi.org/10.1007/978-3-662-55476-0_6
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Of course, as discussed in Chap.6, the boundary layer of short Rossby waves has
little physical importance, and it is best to ignore it. This is easier to do in theoretical
treatments such as our study of Cane-Moore normal modes, than it is in numerical
models. The computer codes will inevitably show the thinning, Bessel function-like
layer, so it important that one is not confused into thinking the numerics have gone
beserk. In what follows, however, we shall generally ignore the western boundary
response except for the all-important Kelvin wave.

8.7 Sverdrup Flow on the Equatorial Beta-Plane

The steady-state equations of motion on the equatorial beta- plane take the form

− yv + φx = F(y) (8.34a)

yu + φy = G(y) (8.34b)

ux + vy = H(y) (8.34c)

Steady-state solutions are possible because of the assumption that the forcing func-
tions are step functions of time, and thus constant in time after the switch-on at t = 0.
The solution for v can be obtained by taking the curl of (8.34a) and (8.34b) (i.e., differ-
entiating the x-momentum equation with respect to y and the y-momentum equation
with respect to x and subtracting) to obtain

v = (Gx − Fy) − y (ux + vy) (8.35)

The divergence term can be rewritten in terms of the forcing via (8.34c) to give the
final vorticity equation

v = (Gx − Fy) − y H (8.36)

In the absence of the buoyancy forcing H , (8.36) expresses the classical balance
βv = curl(τ ), where the vector τ , is the horizontal wind stress. The β does not
explicitly appear in the left- hand side of (8.36) because the usual equatorial nondi-
mensionalization sets β = 1, but the left-hand side of (8.36) is nonetheless dimen-
sionally equivalent to βv.

The height equation (8.34c) can be written, using the explicit solution for v, as

ux = − {
(Gx − Fy) − yH

}
y + H (8.37)

Integrating this with respect to x then gives the Sverdrup solution for u. Note that
u is determined by a first order equation: this implies that one can impose at most

http://dx.doi.org/10.1007/978-3-662-55476-0_6
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one boundary condition in x upon u. This is the usual Sverdrup dilemma; its proper
resolution is to demand u = 0 at x = XE and to add in a time-dependent western
boundary layer. We have already discussed this boundary layer, and pointed out that
it consists of short Rossby waves which sum to solutions that can be approximated
by Bessel functions of argument (2[xt]1/2). The fact that the width of the western
boundary layer isO(1/t) insures that it isalways time-dependent and thus can resolve
the “Sverdrup paradox” that the steady solution can satisfy only a single boundary
condition. Integration gives

u =
∫ x

XE

dx
{ [Gx − Fy]y − [2H + yH y]

}
(8.38)

The solution for the height field is the most complicated of the lot. Solving the
x-momentum equation for φx and using (8.36) for v gives

φ =
∫ x

XE

dx
{
y [Gx − Fy] − y2 H + f

} + A(y) (8.39)

where A(y) is an arbitrary function of integration. [Since the differential equation
for φ involves x only, the constant of integration is free to vary with y). For u,
the corresponding arbitrary function was 0 so that u could vanish at the eastern
boundary x = XE , but φ is under no such constraint. To find A(y), we must apply
the y-momentum equation at x = XE . Since u(x = XE ) = 0, (8.34b) reduces to

φy(x = XE ) ≡ A(y) = G(x = XE , y) (8.40)

Integrating with respect to y shows that A(y) is equal to the integral of the boundary
value of the north-south wind stress G plus another constant of integration φ0 which
is independent of both x and y. The full solution for φ is then

φ =
∫ x

XE

dx
{
y[Gx − Fy] − y2 H

} +
∫ y

∞
dy G(x = XE , y) + φ0 (8.41)

The constantφ0 cannot be determined directly from the equations ofmotion (8.34)
since φ appears only in differentiated form. Instead, φ0 must be found via a mass
conservation condition. If the integral of H over the basin is 0, then the integral of φ

over the basin must vanish also. Cane and Sarachik [2] show that the contribution to
the double integral of φ from the time-dependent western boundary layer is O(t−1/2)

so that it can be ignored. (The Sverdrup solution is the steady solution, remember,
and is a good approximation only when t is large so that the transients from the
switch-on have died away.) If the integral of H over the basin is not zero, then the
integral for φ as given by (8.41) must increase linearly in time, but this corresponds
to adding mass to the basin and is therefore rather artificial.
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Just as on themidlatitude beta-plane, the zonal velocity for the equatorial Sverdrup
solution depends upon the curl of the wind stress rather than wind stress itself.
However, unlike the midlatitude case, there is a nonzero solution even if the curl is
0, given by (with H = 0 also for simplicity)

φx = F; φy = G; u ≡ v ≡ 0 [curl](τ ) = H = 0] (8.42)

i.e., the height field adjusts so that pressure gradients balance the wind stress. It is
precisely this adjustment that is responsible for creating the tilt of the equatorial
thermocline due to the zonal wind stress of the Trade Winds. Correspondingly, there
will also be an adjustment process with radiation of transient Rossby and Kelvin
waves when F and G change, and one can in fact model El Niño by changes in a
zonal wind stress which is independent of x so that there is no curl at all. On the
midlatitude beta-plane, in contrast, when thewind stress has zero curl, there is neither
a steady solution nor a transient one.

Note that the two equations for φ for the zero-curl case do have a solution, even
though there are two equations in but a single unknown. Taking the derivatives of
both equations and demanding that the mixed derivatives of φ be equal requires that
Fy = Gx [mathematicians call this the “compatibility condition” for this particular
set of seemingly overdetermined equations]— but this is just the condition that there
should be zero curl.

8.8 Spin-Up: General Considerations

Figures8.8 and 8.9 illustrate the response of the zonally unbounded equatorial ocean
to a switched-on wind stress which is a step function to the east of the origin. The
patterns for a zonal wind stress in Fig. 8.8 are identical with those for the correspond-
ing solutions of the barotropic vorticity equation except that the solutions for each
different mode are superimposed. This shows explicitly what was always implicit in
the barotropic vorticity equation (in the dependence on the latitudinal mode number
n that we carried around): there is strong modal dispersion for Rossby waves, and the
crucial long waves, which propagate westward to spin-up the interior to the Sverdrup
solution, travel at different rates. Since this fast-moving n = 1 mode is also the one
trapped nearest to the equator, the spin-up will occur most rapidly along the equator
and much more slowly at higher latitudes. This is evident both in the schematic,
Fig. 8.10, and in the later diagrams of a model El Niño from McCreary [8].

For a given mode, the solutions shown in Figs. 8.8 and 8.9 are very similar to
those for various Green’s functions for the midlatitude barotropic vorticity equation
as reviewed in Cane and Sarachik [5].
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Fig. 8.8 Response in an unbounded ocean to a westerly wind which is impulsively switched-on
and is a step function in x . Top longitudinal dependence of the low n modes. Bottom φ at t = 5
when F = H(x), G = H = 0. From Cane and Sarachik [5], Fig. 9

The Rossby waves generated by a zonal wind stress F = H(x)H(t) are identical
with G(3) for the barotropic vorticity equation. The solution for the Rossby waves
generated by a meridional wind stress G = H(x)H(t) is quite different, however:
the solution is zero for all positive x except for a Bessel-function-like, narrowing
boundary layer around the jump discontinuities at x = 0. The reason is that the
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Fig. 8.9 Sameas previousfigure except that thewind stress is southerly insteadof zonal:G = H(x),
G = H = 0. From Cane and Sarachik [5], Fig. 10

meridional stress enters the vorticity equation, the equatorial Sverdrup solution and
so on as the curl of the wind stress, i.e., as ∂G/∂x . Since the x-derivative of a
step function is the δ-function, it follows that the equatorial solution resembles the
midlatitude Green’s function which is forced by something proportional to δ(x)
rather than, as in Fig. 8.8, something proportional to the smoother function H(x).

The schematic Fig. 8.10 reviews different stages in the equatorial spin-up problem,
showing successively: (a) before any wave has completely crossed the Pacific (t <

XE ) (b) after the directly-excitedKelvinwave has reflected off the east coast, creating
a second Rossby front, but before any Rossby waves have completely crossed the
ocean (XE < t < 3XE ) (c) after the directly-excited Rossby waves have reflected,
creating a second edge to the western boundary layer and also a second front in
the Kelvin mode and (d) the final asymptotic solution in which the transient waves
have disappeared, leaving only the Sverdrup solution and the nonpropagating, ever-
thinning western boundary layer which is needed to satisfy the western boundary
condition u = 0. The individual components of this diagram and their roles have
already been discussed above in some detail, but a comparison of Figs. 8.8 and 8.9
shows that a general schematic like Fig. 8.10, which makes no distinction between
different kinds of wind forcing, is glossing over some details: the mathematical
form is actually quite different depending upon whether the wind stress is zonal or
meridional. It therefore is useful to take a step- by-step approach to the problem,
breaking wind stress forcing into four cases depending on (a) direction and (b)
symmetry with respect to the equator, and discussing the characteristics of each in
turn. This is done in the next section.
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Fig. 8.10 A schematic of the equatorial spin-up in a bounded ocean with walls at x = 0, x = XE .
“W.B.” is an abbreviation of “Western Boundary Layer”. The inertial-gravity oscillations have been
suppressed so that the schematic shows only the Kelvin, Rossby, and the unbounded x-dependent
interior solution ū I . Top t < XE . Upper middle XE < t < 3XE . Lower middle 3XE < t < 4XE .
Bottom t = ∞. From Cane and Sarachik [2], Fig. 4

8.9 Equatorial Spin-Up: Details

Since the problem is linear, the general solution can be constructed by superposing
special solutions. It is useful to consider zonal stress separately from latitudinal wind
stress. It also useful to make a distinction between stresses that are symmetric about
the equator and antisymmetric about the equator since all the individual equatorial
modes fall themselves into one or the other of these two symmetry categories. A
general function F(y) can be split into its symmetric and antisymmetric components
in latitude via
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Table 8.1 Characteristics of equatorial spin-up for various stresses. F and G denote purely zonal
and purely meridional stresses, respectively. The subscript “S” denotes a wind stress which is
symmetric about the equator while “A” denotes one which is antisymmetric

GS FA GA FS

Symmetry Asymm. Asymm. Symm. Symm.

Kelvin waves No No Yes Yes

Sverdrup flow u = v = 0 Nonzero u = v = 0 Nonzero

Yoshida flow: u,
φ linear growth
with t ; v 	= 0

– Yes – Yes

Yoshida flow: u,
φ steady; v ≡ 0

Yes – Yes –

Kelvin wave in
Yoshida flow

– – – Yes

Total v ≡ 0 Yes – Yes –

Western
boundary layer
decays with t

Yes No Yes No

FS(y) = 1

2
[F(y) + F(−y)];

FA(y) = 1

2
[F(y) − F(−y)];

F(y) = FS(y) + FA(y) (8.43)

so we lose no generality through this approach. Some of the general characteristics
of the four cases we will look at are summarized in Table8.1.

Meridional wind stress is easier to discuss than zonal because F = 0 produces
a number of useful simplifications. First, the Yoshida (x-independent) part of the
solution, regardless of the symmetry of the north-south wind, always has (i) v ≡ 0
with (ii) u and φ that are independent of time and (iii) no Kelvin wave. The final
steady state Sverdrup solution is also simplified because the currents depend upon the
latitudinal wind stress only in the form of ∂G/∂x , which is zero for an x-independent
stress. Thus,

uSverdrup = vSverdrup = 0; φSverdrup
y = G [F ≡ 0;Gx ≡ 0] (8.44)

In contrast, the zonalwind stress appears both undifferentiated and as its y-derivative,
so its x- independence does not prevent a non-zero Sverdrup flow. For realistic winds,
of course,G is generally a function of x and there are some steady currents associated
with it also.

It is also true for a latitudinal wind stress that v ≡ 0 for the total solution, that
is to say, v ≡ 0 for each of the long Rossby waves that are generated at the eastern
boundary aswell as for the other parts of the solution.The reason canbeunderstoodby
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inspecting Fig. 8.9: the long Rossby waves are piecewise constant in x , and therefore
are Rossby waves in the limit k = 0, even though the waves do have some variation
with x because of the jump discontinuities at the eastern boundary and at the front
x = XE − t/(2n + 1). In the limit k → 0, however, v, which is O(k)u, necessarily
goes to 0. Thus, the spin-up of the equatorial ocean in response to a switched-on,
x-independent meridional wind stress involves – excluding the very high frequency
inertial oscillations and coastally-trapped waves – only u and φ in the interior of the
ocean.

At first sight, this seems paradoxical since mass must normally be carried across
the equator so that the latitudinal height gradient can balance the north-south wind
stress. The resolution of this paradox is that the short Rossby waves of the western
boundary layer do indeed have nonzero meridional velocities. The simplest illustra-
tion of the role of these short Rossby waves is when G(y) is symmetric about the
equator because there are then no Kelvin waves; since the net mass flux (latitudi-
nal integral of u) is solely due to the Kelvin wave, the sole function of the western
boundary layer for asymmetric north-south stress is to redistribute mass.

Figure8.11 shows the response when the wind is from the south. The interior of
the flow is dominated, at least for small times, by the Yoshida, x-independent current,
which creates nonzero zonal velocity. Since the north-south stress is symmetric, the
Yoshida flow is antisymmetric. The final Sverdrup solution is one in which u = 0,
so the effect of the advancing front of Rossby waves, shown shaded in the figure,
is to reduce the zonal velocity to 0 – not instantly, but in a step-by-step process as
successively higher Rossby modes reach the point in question. Outside the western
boundary layer, the total current (excluding inertial oscillations) is

(u, v, φ) = (0, 0,
∫

G dy) −
∞∑

n=N+1

an R̄n (8.45)

2N + 1 ≤ t/(XE − x) (8.46)

The first term on the right in (8.45) is the final Sverdrup solution; the infinite series
is the sum of all the higher order Rossby modes that have not yet reached the point
in question. Note that R̄n is a vector with non-zero components for both u and φ,
so there is always a non-zero zonal velocity which becomes weaker and weaker as
N (x, t) increases with time at a fixed point x .

Behind the successive Rossby fronts, convergence occurs in the northern hemi-
sphere and divergence in the southern hemisphere, consistent with the reduction
in zonal velocity. The circulation is completed on the other side by the symmet-
ric north-south current in the western boundary layer. The dominant flow in that
boundary layer is along the wall; the net transport is northward. However, the Bessel
function oscillates with x , and therefore there is always recirculation and some flow
towards the south as shown in Fig. 8.11 also.

The spin-up problemwithG(y) antisymmetric about the equator is similar except
the response is now symmetric about the equator, and a Kelvin wave is excited at the
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Fig. 8.11 Schematic of the response to a symmetric north-south wind stress at various times.
Figure5 of Cane and Sarachik [2]

western boundary to bring u to zero there even though no Kelvin mode is present
in the unbounded Yoshida solution for any north-south stress. The mass transport is
more complicated; Cane and Sarachik [5] show that a mass surplus, i.e., mean sea
level higher than normal, develops at the eastern boundary while the Kelvin wave
lowers sea level as it propagates away from the western boundary. Eventually, the
Kelvin wave and Rossby fronts cross and the height begins to settle down towards
its steady-state value, but because the modes all have different velocities and also
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Fig. 8.12 Mass flux at a time t < XE when the wind is an antisymmetric north-south stress. Cane
and Sarachik [2], Fig. 6

different latitudinal structures, some mass sloshes back and forth across the basin for
rather a long time. Figure8.12 shows the mass flux associated with the Kelvin wave
and the Rossby front at a relatively early time.

The response for a zonal wind stress is more complex. In the first place, the curl of
the wind stress involves only the y-derivative of F , so there can be non-zero currents
in the Sverdrup solution, which is

u = (x − XE ) Fyy; v = − Fy

φ = (x − XE ) [F − yFy] + φ0
[Sverdrup flow; zonal wind stress] (8.47)

where φ0 = 0 if the forcing is antisymmetric about the equator, but otherwise may
be nonzero.

Dynamically, the growing-in-time unbounded, Yoshida solution — u and φ —
can be conceptualized as k = 0 Rossby waves (plus the Kelvin wave). The vector
functions R̄n(y) that will be used to write the solution to the general Yoshida problem
inChap.9 do in fact give theu andφ components forRossbywaves in the limit k → 0.
In this respect, the Yoshida response to a zonal wind stress is similar to that for a
meridional wind stress except that (i) the amplitude of the Rossby waves grows with
time only for a zonal stress and (ii) there is a steady, but non-zero v component
when the stress is zonal. (The steady v response to an x-independent zonal stress is
simply the usual, off-equatorial Ekman transport: the Coriolis torque on the steady v
balances the wind stress, and this is all that happens at high latitudes. However, this
v field also gives the v component of the Rossby waves.)

The significance of this is that the eastern boundary does not act on thesemodes as
a reflecting barrier since they carry energy away from it. Rather, the eastern boundary

http://dx.doi.org/10.1007/978-3-662-55476-0_9
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represents a cut-off of the forcing region, and the eastern boundary response is the
same as if the problem were done in a zonally unbounded ocean, but with the wind
stress non zero only west of x = XE . The eastern boundary response ūE is [ignoring
Kelvin waves for the moment]

ūE =
∞∑
n=1

an H(ξn)
{[t + (2n + 1)(x − XE )] R̄n + (0, ψn, 0)

}
(8.48)

where n = t + (2n + 1)(x − XE ) and where an = −rn , i.e., the coefficients of the
boundary reaction are identical with those of the x-independent Yoshida solution
except for sign. The result is that when ūE is added to the Yoshida solution ū I , the
factors of t cancel (ignoring the step-functions in (8.48)) to give a solution which is
independent of time and depends on x as (x − XE ). This sum is in fact none other
than the steady Sverdrup solution (8.47).

This would seem to imply simple, instantaneous spin-up, but we have ignored two
factors. One is the Kelvin wave, which complicates life considerably. When F(y) is
antisymmetric about the equator, however, the solution is free ofKelvinwaves, which
is why Cane and Sarachik [2] found it useful to consider this case separately from
a symmetric zonal wind stress [2]. The second neglected factor is the appearance of
step-functions in (8.48). At the eastern boundary, all the step functions are unity and
spin-up is instantaneous. Farther to the west, only a finite number of Rossby modes
have arrived, and the spin-up is therefore incomplete. However, as more and more
modes arrive, the flow adjusts closer to the Sverdrup solution.

Since the Sverdrup solution has nonzero zonal currents for all time, it is necessary
for the western boundary layer to redistribute mass for all time to insure that the
western boundary condition is satisfied, and to preserve mass continuity. When the
stress is meridional, however, the Sverdrup solution has u = 0, and so the western
boundary layer of short Rossby waves decays with time.

When a Kelvin wave is directly excited by the zonal wind stress, the western
boundary response includes a Kelvin wave to cancel it analogous to the Rossby
modes in ūE . Like these Rossby waves, the Kelvin wave grows linearly with time
until it feels the effect of the other boundary (at t = XE ); the width of the basin
therefore plays a role (for a symmetric stress) in how long the unbounded, secular
growth of the Yoshida solution will continue, and thus is an essential parameter in
determining the amplitude of the transient waves and of the Sverdrup currents. [Note
that the amplitude of u at the western boundary is directly proportional to XE ] for the
Sverdrup solution (8.47), but is independent of basin width (zero, in fact) in (8.45).]

An interesting special case is that in which F(y) = √
1/2ψ0(y). The unbounded,

Yoshida solution is

ū I = t M̄K − (4/3) t R̄1 − (1/3) (0, ψ1, 0) (8.49)

and the final steady-state solution is
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ū = ū I + (x − t)M̄K + (4/3)
{[t + 3(x − XE )]R̄1 +(0, ψ1, 0) − XE M̄K

}
(8.50)

The first Kelvin and Rossby terms in (8.50) arise directly from cutting off the forcing
at the boundaries, and cancel the corresponding terms in (8.49). The Kelvin wave
that is the rightmost term in (8.50) is the eastern boundary reflection of the sum of
the two Rossby waves. It is also an illustration of how Kelvin waves complicate the
picture: for a meridional stress or an antisymmetric zonal stress, no Kelvin waves
are present, and the steady solution does not involve any reflected waves at all.

Of course, it takes a certain amount of time — t = 4XE — for all the modes
present in (8.50) to be generated. This length of time is sufficient for the Rossby
modes to propagate clear across the basin (3XE ) and for the reflected Kelvin wave
to be present across the whole width of the ocean (another XE ), and is usually taken
to be “the” spin-up time for the equatorial ocean. In reality, however, these modes do
not settle down until a much larger time has passed. Figure8.13 shows the amplitude
of the Kelvin wave as a function of time for this forcing. The directly excited Kelvin
wave reflects as Rossby waves of all mode numbers which later reflect as Kelvin
waves. The overall conclusion is that, even without resorting to the quasi-normal
modes of Gent, there can be sloshing motions in the basin long after the theoretical
spin-up time of 4XE .

Fig. 8.13 Kelvin wave response at the western boundary, scaled by XE , to the zonal wind stress
F(y) = 21/2 ψ0(y) [solid line]. The part of the Kelvin wave which is the unbounded response is
dotted; the n = 1 Rossby component is dashed. From Cane and Sarachik [2], Fig. 10
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Fig. 8.14 Response to a uniformweakening of the tropical wind.Upper graph convergence, down-
welling and the formation of an east-west jet in the interior of the ocean (away from boundaries).
Lower panel There is downwelling and poleward flow along the entire eastern boundary associated
with a packet of Rossby waves and also upwelling at the western boundary generated as a packet
of equatorial Kelvin waves. [Coastal Kelvin waves, although excited, are assumed to have already
propagated away from the equator and out of the domain shown by the time of the sketch.] From
McCreary [8]
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8.10 Equatorial Spin-Up: Summary

If there are no Kelvin waves [true for a symmetric meridional wind stress or an
antisymmetric zonal wind stress], then spin-up is accomplished by Rossby waves
emitted by the eastern boundary, much as on the midlatitude beta-plane. The spin-up
is quick along the equator and slower and slower at higher and higher latitudes.

Kelvin waves complicate the picture considerably because they provide a means
for wave energy to slosh back and forth from one side of the basin to the other – in
the absence of Kelvin waves, the energy can only go west, there to be trapped in the
thinning, decaying western boundary layer. Spin-up to a true steady state is therefore
much longer when Kelvin waves are present than when they are not because one
must wait until the “ringing” of the basin has died out through losses to dissipation
and coastal Kelvin waves.

Figure8.14 is a schematic of the analytic El Niño model of McCreary [8].
Although the changes in wind stress are turned-on over a month rather than instanta-
neously, this time scale is short enough so that the results are virtually identical with
those for the idealized problems considered above. McCreary’s detailed results give
a qualitatively accurate model of El Niño despite all the assumptions and approxi-
mations inherent in the one-and-a-half layer, linear model.
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Chapter 9
Yoshida Jet and Theories of the Undercurrent

Abstract This chapter is focused firstly on the response of the ocean to an x -
independent wind stress that is turned on as a step function in time, first on the
f-plane and then on the equatorial plane. In contrast to the midlatitudes where the
steady-state flow is a geostrophically balanced jet perpendicular to thewind,Yoshida
showed, through an infinite Hermite series with explicit, analytical coefficients, that a
zonal wind stress would yield a zonal equatorial jet. The transient adjustment, which
is radiation of gravity waves, is also explicitly given. In the second half of the chapter,
four barotropic theories of the Equatorial Undercurrent are analyzed as a warmup to
the chapter where more realistic continuously stratified modes are explored.

If all you have are observations, that’s botany. If all you have is theory, that’s philosophy.

— Michael S. Turner, quoted in Scientific American, October (1990), p. 117

9.1 Introduction

The earliest work on equatorially trapped dynamical phenomenon is the now-classic
1959 paper of Kozo Yoshida (1922–1978) who showed that the wind could drive a
strong equatorial jet. TheEquatorial Undercurrent, then called theCromwell Current,
was a recent discovery: a strong, shallow jet with velocities as high as 1.5 m/s —
extraordinarily high for the sea — but with a very narrow latitudinal width of only a
couple of hundred kilometers — and centered right at the equator.

One other example of a strong, intense jet was known to oceanographers of the
day: the coastal jet analyzed by Jule Charney in 1955. There, the presence of a
boundary made possible a very strong, boundary-trapped jet. Away from the coast,
the Coriolis force tends to turn wind-driven motion so that the ocean quickly settles
into a balance in which the current is roughly perpendicular to the wind stress so that
the Coriolis force on the current balances the wind stress, halting the acceleration of
the water. Yoshida realized that at the equator, this mechanism must fail, just as it
does at a coast, because the Coriolis force goes to zero at the equator, permitting the
wind stress to accelerate the current without limit.

© Springer-Verlag GmbH Germany 2018
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In this chapter, we will first discuss the midlatitude equivalent of Yoshida’s prob-
lem to understand clearly what is and is not changed at the equator. Next, we will
discuss Yoshida’s equatorial solution. Finally, we will discuss modern theories of the
Undercurrent and the results of numerical models for it.

9.2 Wind-Driven Circulation in an Unbounded Ocean:
f-Plane

Themodel is the same as applied tomodel the coastal jet: the linearized shallowwater
wave equations on an f-plane. Because the model (and its solutions) are so simple,
we shall not retreat to the nondimensional formulation used for Yoshida’s problem
in the next section, but shall instead allow quantities to assume their dimensional
values. For conformity with the Yoshida jet, assume that:

1. flow is independent of x
2. wind stress only in the x-direction, and uniform in space and time
3. no coasts.

The dimensional symbols used are: g= gravitational constant, H =mean depth of
ocean, φ = sea surface height relative to mean sea level, f is the (constant!) Coriolis
parameter and F (= τ x/(ρ H )) represents the wind stress. The model equations are

ut − f v = F (9.1)

vt + f u = −g φy (9.2)

φt + Hvy = 0 (9.3)

Through straightforward algebra, one can reduce these three down to a single equation
for v:

vyy − f 2

gH
v − 1

gH
vtt = f

gH
F (9.4)

As true for any inhomogeneous differential equation, the general solution to (9.4)
may be separated into (i) a particular solution, which for a steadywind is independent
of time plus (ii) the general solution to the homogeneous form of (9.4), which is
necessary to satisfy the initial conditions. For a y-independent wind, the particular
solution is

v = −F/ f [steady solution; Ekman transport] (9.5)

This steady solution is commonly referred to as the “Ekman transport” because a
well-known result of Ekman theory is that the vertically-averaged wind-driven ocean
circulation is, away from boundaries, a steady circulation perpendicular to the wind
and in geostrophic balance with it. In point of fact, (9.1)–(9.3) can be obtained by
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vertically integrating the usual viscous Ekman model equations. Since the viscous
terms are the z-derivatives of the stress, their integral is simply the stress at the
surface of the sea. Consequently, it is quite legitimate to refer to (9.5) as the “Ekman
transport” even though the viscosity does not appear explicitly in our model.

The time-dependent homogeneous solutions satisfy, when the flow is independent
of y, the equation

vtt + f 2v = 0 (9.6)

with the general solution

v = A sin( f t) + b cos( f t) (9.7)

Elementary courses in dynamics analyze three simple balanced motions: pure
geostrophy, pure cyclostrophic flow, and pure inertial motion, which is a balance
between the pressure and centrifugal forces. Pure inertial motion consists of circular
trajectories, always moving in an anticyclonic direction, with a period equal to 2π/ f .
Equations (9.6) and (9.7) are a mathematical description of this pure inertial motion.

Thus, the general response of the ocean to a constant wind stress — away from
boundaries and with f constant — is the steady Ekman transport plus transient
inertial oscillations superimposed upon it. In a vertically integrated viscous model,
the steady circulation is unchanged from the inviscid barotropic solutions of (9.1)–
(9.3), but the inertial oscillations damp out quickly as shown by Fredholm a century
ago [1]. The short time scale found by Fredholm — the flow is within a few percent
of the steady solution within a period of π/ f after an impulsive turn-on of the wind
— justifies taking a time-independent wind stress; the ocean adjusts very quickly to
changes in the wind so that v is always close to the steady-state value given by (9.5)
where F is the instantaneous value of the wind stress.

When the wind is varying with y, both the steady and transient solutions will be
forced to vary on more or less the same length scale, and (9.4) must be retained in
full. Recall that the Rossby radius-of-deformation is

R ≡ √
gH/ f [“Rossby radius of deformation”] (9.8)

Equation (9.4) can be written as

vyy − 1

R2
v − 1

gH
v = f

gh
F (9.9)

Comparing the first and second terms, one see that vyy will be negligible in com-
parison to (−R−2v) unless F and therefore v are varying on a length scale at least
as small as the Rossby radius. However, the baroclinic Rossby radius is only about
100km even for the first baroclinic mode. Since the large scale atmospheric weather
patterns are varying only on much larger scales, it is quite reasonable to ignore the
y-variations in (9.9) for both the steady and transient parts of the solution.A hurricane
or other localwind systemmayproducewind-drivenflows forwhich the y-derivatives
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in (9.9) are important, but for the planetary scale flow, it is a good approximation to
take the local-in-time-and-space wind stress and pretend it is constant in both time
and space as done here.

The solution on the equatorial beta-plane bears many similarities to that on the
f-plane. There are again inertial oscillations, but these propagate latitudinally since
the equatorial beta-plane equations are not independent of y and spatially constant
solutions are not possible. There is again a part of the motion which is steady, and
directly proportional to the wind stress. However, in dramatic contrast to the steady,
perpendicular-to-the-wind flow found here, the Yoshida problem contains a jet which
is linearly accelerating — forever — in the x-direction. The equation beta-plane
changes the solution rather a lot.

9.3 The Yoshida Jet

The model is the same as in the previous section except that the geometry is now that
of the equatorial beta-plane. To simplify further, the x-wind stress is the constant,
one; since the problem is linear, one can obtain the solution for a different constant
wind stress F bymultiplying all the solutions given below by F . Themodel equations
are

ut − yv = 1 (9.10)

vt + yu + φy = 0 (9.11)

φt + vy = 0 (9.12)

The solutions take a simpler formwhen written in terms of the sum and difference
variables, S and D, so, taking the sum and difference of (9.10) and (9.12) as before,
we shall solve the set

St + R v = 1 (9.13)

vt + (1/2) (LS + RD) = 0 (9.14)

Dt − Lv = 0 (9.15)

where L and R are the raising and lowering operators defined in Chap. 3.
An alternative is to reduce these three equations down to one for v alone:

vyy − y2v − vtt = y (9.16)

We shall use both the three-equation and one-equation formulation as convenient.
To proceed with the triplet approach, the crucial next step is to introduce the

Hermite expansion of the trivial function, f (y) ≡ 1:

http://dx.doi.org/10.1007/978-3-662-55476-0_3
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1 =
∞∑

n=0

I2n ψ2n(y) (9.17)

where

I2n =
√
2π1/4

√
(2n)!

2n n! (9.18)

The equations of motion in spectral form are the single equation

S0,t = I0 (9.19)

plus the infinite set of triplets of equations

Sn+1,t − √
2(n + 1)vn = In+1 (9.20)

vn,t + √
(n + 1)/2Sn+1 − √

n/2 Dn−1 = 0 (9.21)

Dn−1,t + √
2nvn = −In−1 (9.22)

Because the constant one is symmetric about the equator, only evenHermite functions
appear in its expansions. Consequently, (if the initial conditions are symmetric about
the equator, too) we can dispense with the pair of equations that describe the forced
Yanai wave and restrict n in (9.20)–(9.22) to be an odd integer.

As for the f -plane problem, the solution can be split into a particular solution and
a homogeneous solution. The difference is that in the particular solution, now only
v is steady; Sp and Dp are growing linearly with time and so therefore are u and φ.
The necessity for this can be seen directly from (9.10), which reduces to

ut = 1 (9.23)

at the equator: u must increase linearly with time at y = 0 because no other term is
available to balance the wind stress. The particular solution will therefore be denoted
by subscript “sl”, which reminds us that timewise, the components are either steady
or linearly-growing.

It can be easily verified by direct substitution into (9.20)–(9.22) that the solution
is

Ssl = t

⎧
⎨

⎩
I0ψ0(y) −

∞∑

n=1,n odd

√
n

(2n + 1)
√
n + 1

In−1 ψn+1(y)

⎫
⎬

⎭
(9.24)

vsl = −√
2

∞∑

n=1,n odd

√
n

2n + 1
In−1 ψn(y) (9.25)
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Dsl = − t

⎧
⎨

⎩

∞∑

n=1,n odd

1

2n + 1
In−1 ψn−1(y)

⎫
⎬

⎭
(9.26)

while the corresponding homogeneous solutions are, assuming that thewind is turned
on impulsively with initial conditions of a state of rest, i.e., u = v = φ = 0 at t = 0,

Swaves =
∞∑

n=1,n odd

2n + 2

(2n + 1)3/2
sin

(√
2n + 1 t

)
In−1 ψn+1(y) (9.27)

vwaves =
∞∑

n=1,n odd

√
2n

2n + 1
cos

(√
2n + 1 t

)
In−1 ψn(y) (9.28)

Dwaves =
∞∑

n=1,n odd

2n

(2n + 1)3/2
sin

(√
2n + 1 t

)
In−1 ψn+1(y) (9.29)

where we have used the identity

In+1 =
√

n

n + 1
In−1 (9.30)

which follows from the definition of In . The homogenous solutions are waves and
so are labeled by subscript “waves”.

The y-dependent parts of the particular solution are shown in Fig. 9.1. The zonal
velocity is strongly concentrated around the equator, so the description of theYoshida
solution as a “jet” is very apt. By using the definition of the normalized Hermite
polynomials and the explicit solution given above, one can show that

usl = t
{
0.94 exp(−[1/2]y2) + f(y)

}
(9.31)

where it can be proved that

|f(y)| ≤ 0.15, ∀ y (9.32)

Thus, to an excellent first approximation, the jet has the latitudinal structure of a
Kelvin wave, a simple Gaussian decay away from the equator at exactly the same
rate as for a Kelvin wave.

Nonetheless, it is also obvious from the Fig. 9.1 that the north-south current is
very broad and decreases as |y| → ∞ very slowly. If we accept for the moment that
u decreases much more rapidly than v, we can return to the original shallow water
equations to deduce the correct asymptotic behavior of all three fields.
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Fig. 9.1 The time-independent particular solution components, usl , vsl and φsl . Because usl and
φsl are symmetric with respect to y = 0 while vsl is antisymmetric, the solutions are shown only for
y ≥ 0. The factors usl (y) and φsl (y) are multiplied by t to obtain u and φ for the time-dependent
solution

For large |y|, the time derivative of u in the x-momentum equation is negligible,
reducing this ODE to simply (−yv) = 1 or in other words

v ∼ −1/y, |y| 
 1 [“Ekman transport”] (9.33)

Recalling that f = y, we find that (9.33) is simply the Ekman transport: at high
latitudes, u � v, and the wind again drives a current perpendicular to itself as on the
midlatitude f-plane. (See Eq. (9.5).)

The height equation (9.12) is φt + vy = 0, which implies that

φ ∼ −t/y2, |y| 
 1 (9.34)

The y-momentum equation, yu + φy = 0, shows that

u ∼ −2t/y4, |y| 
 1 (9.35)

The increasing-with-time height and zonal velocity fields are needed for large y
because the variation of the Coriolis parameter with y requires v to decrease with y
even though the wind stress is independent of y. At a given northern latitude, more
fluid is flowing towards the equator than is coming in from the north to replace it, so
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this divergence requires a steady decrease in sea level as given by (9.34). Since this
change in sea level varies with latitude, the jet can settle into geostrophic balance in
the y-direction only if there is a weak zonal flow, also increasingwith time, to balance
it. Similar complications can be expected whenever the Ekman transport is forced to
vary with latitude, whether the reason is due to changes in f or latitudinal variations
in the wind. It is noteworthy, however, that the zonal flow and height both vary with
y more slowly than v, and are much smaller than v for large |y|. Outside the region
of the equatorial jet — for |y| ≥ 2, say — the flow is again that of time-independent
Ekman transport. Only around the equator does a strong zonal flow accelerate.

The free oscillations excited by the wind are shown in perspective plots in the
y − t plane in Fig. 9.7. The waves are inertial-gravity waves. The frequency of the
n-th mode is ω = ±√

2n + 1, which is equal to the value of the Coriolis parameter
at the turning point of the n-th Hermite function. (Mathematically, the turning points
are the places where the Hermite function changes from oscillation to exponential
decay, i.e., where the curvature of the function changes sign relative to the Hermite
function itself. Physically, the Hermite functions describe waves bouncing back and
forth between “walls” at the turning points.) If we examined the behavior of wave
packets on the equatorial beta-plane, we would find that they would slow down
and finally reflect back towards the equator off the turning latitudes. Thus, the free
modes shown inFig. 9.7 can still be legitimately interpreted as inertial oscillations: the
frequency is not equal to theCoriolis parameter because the Coriolis parameter varies
with latitude, but it is equal to the value of f in that neighborhood where the wave
spends the largest amount of time. (In reaching this conclusion, we are visualizing
the Hermite functions as the superposition of two travelling waves propagating in
opposite directions to form a standing wave between the turning points.)

On the midlatitude f -plane, the inertial oscillations would make the sea rise
and fall in place without latitudinal propagation, and a perspective plot similar to
Fig. 9.7 would simply show ridges and troughs parallel to the y-axis. The equatorial
beta-plane plots show tilted ridges and troughs, indicating propagation towards the
equator. However, the tilt is not very pronounced: again, the free modes resemble
pure inertial oscillations (Fig. 9.2).

Figure9.3 shows contour plots of the total currents [particular solution plus inertial
oscillations]. Moore and Philander [2] also consider (as we shall not) a wind stress
blowing north-south. In this case, the particular solution is time-independent: Only
the east-west component of the wind stress will drive an accelerating jet.

The contour plots provide some clarification of the free oscillations. At a given
latitude y, the plots resemble those for inertial oscillations for t < y. For larger t ,
however, equatorial disturbances have propagated sufficiently far from the equator
to superimpose themselves upon the inertial oscillations and mask their character.
(Note that y = ±t gives the characteristics of Eq.9.16.)

Ason themidlatitude beta-plane, onewould expect the inertialmodes to be quickly
damped by viscosity. At high latitudes, the flow would settle into the steady-state
Ekman transport perpendicular to the wind stress; along the equator, friction or drag
or nonlinear effects would eventually check the runaway acceleration of the zonal
wind. Nonetheless, an intense zonal current will form. Continental boundaries will
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Fig. 9.2 The homogeneous part of the height, φwaves(y, t), for the Yoshida jet. The zonal and
latitudinal currents are qualitatively similar to φ and therefore not illustrated

Fig. 9.3 The total velocity fields for theYoshida jet, i.e., the sum of the homogeneous and particular
solutions. The height, φ, is not shown because it is similar to u
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presumably deaccelerate and turn the current, but only rather close to land. Over
most of the width of the Pacific or Atlantic, neglecting the boundaries is a tolerable
first approximation. Despite its simplicity, the Yoshida jet does explain how very
strong currents like the Equatorial Undercurrent can form around the equator.

9.4 An Interlude: Solving Inhomogeneous Differential
Equations at Low Latitudes

The success of Hermite series has obscured two important realities which are here
explained before resuming our analysis of tropical jets: the Hermite series need sum
acceleration methods and there are three other useful strategies for the Yoshida jet.
Table9.2 catalogs some of these additional representations. We review each in turn.

9.4.1 Forced Eigenoperators: Hermite Series

If L is a differential operator associated with a complete set of Sturm–Liouville
eigenfunctions, then inhomogeneous differential equations whose operator is the
eigenoperator plus the identity operator can be trivially solved by an eigenfunction
series. The relationships

L φn = λnφn, & B(u) = 0, (9.36)

where L is the differential operator (eigenoperator), λn and φn are the eigenvalue
and eigenfunction and B is the boundary condition operator, imply that

Lu + qu = f (y) (9.37)

where q is a constant is solved by

u(y) =
∑

n

fn
λn + q

ψn(y) (9.38)

fn = < φn(x), f (x) >

< φn(x), φn(x) >
(9.39)

An elementary example is



9.4 An Interlude: Solving Inhomogeneous Differential Equations at Low Latitudes 201

L = d2

dx2
, B(u) = {u(0), u(π)} (9.40)

φn,xx = λnφn, φn(0) = φn(π) = 0 (9.41)

φn(x) = sin(nx), λn = −n2, n = 1, 2, . . . (9.42)

uxx − u = f (x), u(0) = u(π) = 0 (9.43)

f (x) =
∞∑

n=1

fn sin(nx) (9.44)

fn = 2

π

∫ π

0
f (x) sin(nx)dx (9.45)

u(x) =
∞∑

n=1

fn
−n2 − 1

sin(nx) (9.46)

TheHermite function is simpler because theHermite functions individually decay
as |y| → ∞ so no boundary conditions need be explicitly imposed. Note that ψn(y)
denotes a member of the orthonormal Hermite basis.

Hv = vyy − y2v (9.47)

Hψn = −(2n + 1)ψn (9.48)

vyy − y2v = f (y) (9.49)

f (y) =
∞∑

n=1

fnψn(y) (9.50)

fn =
∫ ∞

−∞
dy ψn(y) f (y) (9.51)

v(y) = −
∞∑

n=1

fn
(2n + 1)

ψn(y) (9.52)

Yoshida’s paper seems to have the first application of Hermite functions and series
to tropical oceanography. It was a great advance both in ocean physics and in ocean
mathematics.

Nonetheless, there are drawbacks to eigenfunction series. Eigenfunction series
decay very slowly unless certain conditions are satisfied. (For the sine eigenfunctions,
for example, an essential condition for rapid convergence is that the inhomogeneous
term f (y) is periodic.)

It can be shown directly from the parabolic cylinder differential equation (which
the Hermite functions solve) that the ψn(y) oscillate for |y| ≤ √

2n + 1 and decay
exponentially fast — Gaussian fast — for larger y. This implies that a Hermite
partial sum that includes ψN (y) but nothing higher will have negligible amplitude
for |y| >

√
2N + 1. (The points y = ±√

2n + 1 are the “turning points” for the
n-th mode, the points where oscillation in latitude changes to exponential decay in
y.) A necessary condition for fast convergence of a Hermite series is that f (y) decay
exponentially fast as |y| → ∞.
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9.4.2 Hutton–Euler Acceleration of Slowly Converging
Hermite Series

The inhomogeneous term in the Yoshida jet differential equation, f (y) = y, does
not decay with |y|. This implies that its Hermite coefficients cannot decrease with
degree n as confirmed by column two of Table9.1. Nevertheless, the Hermite series
for f (y) = y does approximate the linear function after a fashion as illustrated on
the left in Fig. 9.4. The approximation is highly nonuniform in space; it is zero and
therefore useless over most of the real axis but approximates f (y) = y over a finite
interval in y whose width increases steadily with increasing truncation.

Unfortunately the oscillations visible on the left in the figure, similar to the oscil-
lations of Gibbs’ Phenomenon in the Fourier series of a discontinuous function, mean
that the approximation is horrible.

For f (y) = y, the correspondingYoshida jet flow has very slow decay (or growth)
as |y| → ∞. This requires that the Hermite series converges very slowly. Theorems
by Hille, Delves, Bain and Boyd, reviewed in [4], prove that for the Yoshida jet the
normalized Hermite coefficients of f (y) = 1 decrease as n−1/4, those of vsl as n−3/4,
those of φp fall as n−5/4 and those of usl as n−9/4. That is to say, inverse power decay
with |y| rather than exponential decay with n implies that the coefficients of the cor-
responding Hermite function decrease algebraically with n, too. The unaccelerated
Hermite series is almost useless.

Fortunately,Hermite series in oceanography are amenable to so-called “sumaccel-
eration” or “sequence acceleration” methods. The partial sums of Hermite series
alternately overshoot and undershoot their limit. It follows that the average of the
partial sums truncated after N and N − 1 terms is a better approximation to the
limit than either of the partial sums from whence it came. This averaging of two
partial sums is a “Hutton acceleration”. The averaging can be repeated; when all
available partial sums are exhausted, the iterated Hutton acceleration is the “Euler
acceleration”.

Table 9.1 Normalized and unnormalized Hermite coefficients for f (y) = y [columns two
(normalized) and columns three (unnormalized)] and of the steady north-south current v(y) of
the Yoshida jet (columns four and five). y = ∑

anψn(y) = ∑
aunnormn exp(−y2/2)Hn(y);

v = ∑
bnψn(y) = ∑

bunnormn exp(−y2/2)Hn(y)

n an aunnormn bn bunnormn

1 2.66267 1.41422 −0.887557 −0.471403

3 3.26109 0.353550 −0.465870 −0.0505076

5 3.64601 0.0441942 −0.331456 −0.00 401765

7 3.93814 0.00368285 −0.262543 −0.000 245523

9 4.17703 0.000230176 −0.219844 − 0.0000121146

11 4.38091 0.0000115089 −0.190474 −5.00385E-7

13 4.55979 4.79536E-7 −0.168881 −1.77606E-8

15 4.71983 1.71263E-8 −0.152253 −5.52460E-10

17 4.86509 5.35199E-10 −0.139003 −1.5214E-11

19 4.99841 1.48665E-11 −0.128164 −3.8193E-13
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Unaccelerated Accelerated

Fig. 9.4 Left partial sums of the linear function, f (y) = y, using 10, 18 and 38 odd degree Hermite
functions [red dots, green dashes and solid black, respectively]. Right same except that the series
was accelerated bymultiplying the last 8 coefficients by (255/256), (247/256), (219/256), (163/256),
(93/256), (37/256), (9/256) and (1/256), respectively

In his Ph.D. dissertation, Dennis Moore introduced these methods to equatorial
oceanography. Although not explicitly described in his thesis, Moore applied four-
fold Hutton acceleration. The procedure is very simple: The last four terms in the
chosen truncation are multiplied by universal constants:

fN (y) ≡
N∑

n=0

anψn(y)

⇓ ⇓ ⇓
fN (y) ≡

N−4∑

n=0

anψn(y) + 15

16
ψN−3(y) + 11

16
ψN−2(y) + 5

16
ψN−1(y) + 1

16
ψN (y)

(9.53)

A thorough review is presented by Boyd and Moore [5] and Appendix A here.
Figure9.4 is a visual proof of the effectiveness of Moore’s series acceleration.

9.4.3 Regularized Forcing

An alternative strategy to prevent slow convergence in Hermite series solutions is
to modify the wind stress so that the regularized inhomogeneous term f (y) decays
exponentially with y for large latitude. Cane and Sarachik often utilized this strategy
by taking f (y) to be a Gaussian exp(−y2/W 2) or the first derivative of a Gaussian
where the width W is large. An advantage is that the exact Hermite coefficients are
known in explicit, analytic form (Appendix A). However, the forcing is modified at
all latitudes, even close to the equator. This “regularization error” can be reduced by
choosing large W , but one then needs a very large number of Hermite functions to
obtain a accurate answer.
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Fig. 9.5 Upper left a representative window. Upper right unmodified and windowed linear func-
tion, f (y) = y. Lower left regularization error. Lower right regularized and unmodified Hermite
coefficients for f (y) = y

Another option is to multiply the desired F(y) by a smoothed “top hat” or “box
function” such as

T (y; L ,w) = 1

2
{erf(L(y + w)) − erf(L(y − w))} (9.54)

When L is large, this window approximates one on y ∈ [−w,w] and zero otherwise
as illustrated in the upper left of Fig. 9.5. The difference between the windowed and
unregularized function is exponentially small, perhaps smaller than machine preci-
sion, over most of the interval y ∈ [−w,w]. Nevertheless, the Hermite coefficients
of large degree decay exponentially fast as shown in the lower right.

9.4.4 Bessel Function Explicit Solution for the Yoshida Jet

The differential equation

vyy − y2v = f (y) (9.55)

can be transformed by the change of coordinate ỹ = (1/2)y2 into a differential
equation whose homogeneous solutions are the

√
ỹ times a modified Bessel function

of ỹ. (Identity 9.1.52 on p. 362 of [6].) The transformed equation has the general
solution

v = CI
√
yI1/4((1/2)y

2) + CK
√
yK1/4((1/2)y

2) + vp(y) (9.56)
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vp =1

2
√
y

{
1

2
√
y

(
I1/4((1/2)y

2)

∫ √
zK1/4((1/2)z

2) f (z) dz

−K1/4((1/2)y
2)

∫ √
zI1/4((1/2)z

2) f (z) dz

)}
(9.57)

Because the K -Bessel function is singular at the origin, CK = 0. The remaining
constantCI is determined by the condition v(y) → 0 as |y| → ∞; it can be evaluated
by exploiting the known asymptotic approximations of the Bessel functions.

For the particular case of f (y) = y,

v = CI
√
yI1/4

([1/2] y2) + vp(y) (9.58)

CI = −1/4
√
2π Γ (3/4) = −.767916038651074 (9.59)

vp = 1/8
√
2π Γ (3/4) y5/2L1/4

([1/2] y2) ×
(
K3/4

(
1/2] y2) I1/4

( [1/2] y2) + K1/4
(
1/2 y2

)
I−3/4

( [1/2] y2)) (9.60)

whereL1/4(z) is the usual modified Struve function which solves z2uzz + zuz −(z2+
(1/16))u = {

23/4/(
√

π Γ (3/4))
}
z5/4.

Although these solutions appear complicated, routines to evaluate Bessel func-
tions are included in Matlab, Maple and all Fortran and C++ libraries. The Struve
function, which is sometimes omitted from numerical libraries, has power series and
asymptotic approximations and the integral representation

L1/4 (z) = 23/4

Γ (3/4)
√

π
z1/4

∫ π/2

0
dt sinh(z cos(t))

√
sin(t) (9.61)

The trapezoidal rule has a geometric rate of convergence for this integral. However,
these explicit Bessel–Struve solutions are not the only good non-Hermite option.

The function v found here is identical with vsl , the part of the north-south velocity
of the Yoshida flow which is independent of time

vsl = v (9.62)

usl = t (1 + yvsl) (9.63)

φsl = t
(−vy,sl

)
(9.64)

φsl/t = −1/24 y3/2
(
−6

√
2
√

πΓ (3/4) I
(−3/4, 1/2 y2

)
(9.65)

+3
√
2
√

πΓ (3/4)L
(
1/4, 1/2 y2

)
K

(
3/4, 1/2 y2

)
I
(
1/4, 1/2 y2

)

+3
√
2
√

πΓ (3/4)L
(
1/4, 1/2 y2

)
K

(
1/4, 1/2 y2

)
I
(−3/4, 1/2 y2

)

+3
√
2
√

πΓ (3/4)L
(
5/4, 1/2 y2

)
y2K

(
3/4, 1/2 y2

)
I
(
1/4, 1/2 y2

)

+3
√
2
√

πΓ (3/4)L
(
5/4, 1/2 y2

)
y2K

(
1/4, 1/2 y2

)
I
(−3/4, 1/2 y2

)

+4 y2 4
√
y2K

(
3/4, 1/2 y2

)
I
(
1/4, 1/2 y2

)

+4 y2 4
√
y2K

(
1/4, 1/2 y2

)
I
(−3/4, 1/2 y2

))
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Table 9.2 Properties of the Yoshida jet

Exact v = Yvhom(y) + vparticular (y)

Y −1/4
√
2π Γ (3/4) = −.767916038651074

vhom analytical vhom = √
y I1/4

([1/2] y2)
vparticular analytical vparticular = 1/8

√
2π Γ (3/4) y5/2L1/4

(
1/2 y2

) ×(
K3/4

(
1/2] y2)I1/4

( [1/2] y2) + K1/4
(
1/2 y2

)
I−3/4

( [1/2] y2))
Slope at the origin vy(0) dv/dy(y = 0) = −Γ (3/4)2/

√
2π = −0.59907011736

Large y series for v(y) v ∼ −1/y − 2/y5 − 60/y9 − 5400/y9 + . . .

Small y series for vhom y + 1
20 y

5 + 1
1440 y

9 + 1
224640 y

13 + . . .

Small y series for
vparticular

1
6 y

3 + 1
252 y

7 + 1
27720 y

11 + 1
5821200 y

15 + . . .

Table 9.3 Yoshida Jet Summary

Initial condi-
tions
Shallow water
eqs.

u = 0, v = 0, φ = 0
ut − yv = 1, vt + yu + φy = 0, φt + vy = 0

Solution Form
usl (y) =
=

u = tusl (y) + uwaves(y, t), v = vsl (y) + vwaves(y, t), φ =
t φsl (y) + φwaves(y, t)
−2

∑∞
m=0

1
(4m+3)(4m−1) Im ψ2m(y)

1 + yvsl

vsl(y) =
=

−2
∑∞

m=0

√
m+1/2
4m+3 Im ψ2m+1(y)

1/8
√
2π Γ (3/4) y5/2L1/4

([1/2] y2) ×(
K3/4

(
1/2] y2) I1/4

( [1/2] y2) + K1/4
(
1/2 y2

)
I−3/4

( [1/2] y2))
φsl (y) =
=

− ∑∞
m=0

4m+1
(4m+3)(4m−1) Imψ2m(y)

−(1/24) y3/2
(
−6

√
2
√

πΓ (3/4) I
(−3/4, 1/2 y2

)

+3
√
2
√

πΓ (3/4)L
(
1/4, 1/2 y2

)
K (3/4, 1/2 y)I

(
1/4, 1/2 y2

)

+3
√
2
√

πΓ (3/4)L
(
1/4, 1/2 y2

)
K

(
1/4, 1/2 y2

)
I
(−3/4, 1/2 y2

)

+3
√
2
√

πΓ (3/4)L
(
5/4, 1/2 y2

)
y2K

(
3/4, 1/2 y2

)
I
(
1/4, 1/2 y2

)

+3
√
2
√

πΓ (3/4)L
(
5/4, 1/2 y2

)
y2K

(
1/4, 1/2 y2

)
I
(−3/4, 1/2 y2

)

+4 y2 4
√
y2K

(
3/4, 1/2 y2

)
I
(
1/4, 1/2 y2

)

+4 y2 4
√
y2K

(
1/4, 1/2 y2

)
I
(−3/4, 1/2 y2

))

uwaves(y, t) = ∑∞
m=0 Imψ2m(y)

{
2m+1

(4m+3)3/2
sin

(√
4m + 3 t

) + 2m
(4m−1)3/2

sin
(√

4m − 1 t
)}

vwaves(y, t) = ∑∞
m=0 Imψ2m+1(y)

2
√
m+1/2
4m+3 cos

(√
4m + 3 t

)

φwaves(y, t) = ∑∞
m=0 Imψ2m(y)

{
− 2m+1

(4m+3)3/2
sin

(√
4m + 3 t

) + 2m
(4m−1)3/2

sin
(√

4m − 1 t
)}

Im = √
2π1/4

√
(2m)!
2m m! [coefficients of one, i.e., 1 = ∑∞

m=0 Imψ2m(y) ]

Tables9.2 and 9.3 summarize the explicit Yoshida jet solution.
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9.4.5 Rational Approximations: Two-Point Padé
Approximants and Rational Chebyshev Galerkin
Methods

Substituting a series of inverse powers of y into vyy − y2v = y gives

v ∼ −1

y
− 2

y5
− 60

y9
− 5400

y9
− 982800

y17
− 300736800

y21
+ . . . (9.66)

There are no undetermined constants and the expansion involves only every fourth
power of y.The factorial growth of the coefficients shows that this series is asymptotic
but divergent.

The homogeneous solution which is bounded at the origin has the power series

vhom ≈ CI (y + 1

20
y5 + 1

1440
y9 + 1

224640
y13 + . . .) (9.67)

The particular solution has the parameter-free expansion

vp = 1

6
y3 + 1

252
y7 + 1

27720
y11 + 1

5821200
y15 + . . . (9.68)

The constant CI cannot be determined soley from small y behavior, but rather one
must apply the large y asymptotic expansions to find that the solution is bounded as
|y| → ∞ only if

CI = vy(0) = − Γ (3/4)2√
2π

= −0.5990701170 (9.69)

The ODE has coefficients and inhomogeneous terms which are free of singularities
except at the origin (where v(y) is nonsingular) and at infinity, so the series have
infinite radii of convergence. In practice, roundoff error limits the usefulness of
the power series. The various expa nsions and identities for the Yoshida v(y) are
summarized in Table9.2.

It is possible to combine the small y and large y series into rational functions
called “two-point Padé approximants”. The approximation we shall denote v[3/4]
was constructed so that its power series matches the first four terms of the power
series of v(y) and also that its inverse power series matches the first four terms of
the asymptotic expansion for v(y).

v[3/4] = {−0.00466626y7 − 0.157887y3 − 0.0286541y5 − 0.599070y
}

/
{
0.0046662y8 + 0.028654y6 + 0.541761y2 + 1.0 + 0.148554y4

}
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Table 9.4 A Maple code to apply the Galerkin method with rational Chebyshev basis functions

restar t ; with(orthopoly ) ; with(LinearAlgebra ) ;
N:=3; L:=3; G:=Matrix(N,N, f i l l =0): a:=Vector(N, f i l l =0): ff :=Vector(N, f i l l =0):
SB:= (n,L,y) −> (L/ sqrt (L∗∗2+y∗∗2))∗U(n−1,y/ sqrt (L∗∗2 + y∗∗2) ) ;
f := y −> y;
for irow from 1 to N do
ff [irow]:= int (SB(2∗irow,L,y)∗f (y) / (L∗∗2+y∗∗2),y=−infinity . . infinity ) ;
for jcol from 1 to N do
R:= diff ( SB(2∗irow,L,y) ,y,y) − y∗y∗SB(2∗irow,L,y) ;

G[irow, jcol ]:= int (SB(2∗irow,L,y)∗R/(L∗∗2 +y∗∗2),y=−infinity . . infinity ) ;
od: od:
a:=LinearSolve(G, ff ) ;
v:=simplify(a[k]∗ SB(2∗k,L,y) ,k=1..N) ;

Alternatively, one can apply a standard Galerkin method using rational Cheby-
shev functions as the basis. The computer code is brief in Matlab or Fortran, and
briefer still in a computer algebra system. The basis functions are SB2n(y; L) ≡
(l/

√
L2 + y2)U2n−1

(
y/

√
L2 + y2

)
where Uj (x) denotes the j-th degree Cheby-

shev polynomial of the second kind. The choice of basis and of the map parameter L
and also why the SB j series converges exponentially fast whereas the Hermite series
converges only as n−3/4 are explained in [7]. The basis functions are orthogonal with
weight function 1/(L2 + y2) when integrated over the entire real axis. Table9.4 is
the complete Maple code to generate rational Chebyshev solutions of any order. The
most significant feature of the code is its brevity.

Truncating the n = 10 solution to three terms gives

vSB = −y
(440.8017 + 15.098y2 + 1.1412y4)

(9 + y2)3
(9.70)

The left of Fig. 9.6 shows that both approximations are graphically indistinguish-
able from the true Yoshida jet solution. Both are much simpler than lengthy Hermite
function series with Hutton or Euler acceleration and also simpler than Bessel and
Struve functions of order one-fourth.

The right panel of Fig. 9.6 shows that, in contrast to truncated Hermite series, the
rational function approximations are uniformly good approximations withmaximum
pointwise errors of only 0.0089 for the two-point Padé approximant and0.0058 for the
truncated SB series. Spectral approximations are notorious for their near-uniformity,
so it not surprising that the SB approximation, despite lower degree, is noticeably
more uniform than the Padé approximation, which is a composite of two very non-
uniform local approximations.

Hermite function series are a beautiful way to solve many problems in equatorial
dynamics. We have detailed alternatives in this section not to advocate a particular
methodology, but simply to point out that there are options and alternatives. Computer
algebra has made it almost childishly easy to convert traditional series expansion



9.4 An Interlude: Solving Inhomogeneous Differential Equations at Low Latitudes 209

Yoshida jet v & approximations errors

Fig. 9.6 The exact solution is comparedwith the pair of rational function approximations discussed
in the text. There are three curves plotted but the errors, shown on the right, are so small that it is
difficult to distinguish v(y) from its approximations

methods — power series, inverse power series, Chebyshev, Fourier and rational
Chebyshev spectral methods — into explicit analytic solutions [3, 8–10].

9.5 Unstratified Models of the Undercurrent

A rather confusing number of different theoretical explanations for the Equatorial
Undercurrent have been offered over the past sixty years. The problem in creat-
ing a canonical theory is that many different physical mechanisms are known to
be important. Provided certain essentials are included, one can then add in almost
anything else — lateral viscosity, vertical viscosity, nonlinearity, thermal effects —
and come up with a qualitatively reasonable theory of the Undercurrent. This relative
success of many competing theories is due in part to the physical uncertainties in the
free parameters of the model. One can vary the viscosity within the (large!) range
allowed by measurements, and thus vary the width and strength of the Undercurrent
until a good fit to observations is achieved. To add to the fun, the Undercurrent itself
shows considerable seasonal and interannual variability and also varies in the zonal
direction.

Nonetheless, considerable progress has been made. First, the “essentials” of the
Undercurrent are now known. Second, the simple, analytic or quasi-analytic unstrat-
ified models illustrate the roles of different mechanisms in the Undercurrent even
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though none of these models — because of the their neglect of other, equally impor-
tant physics — is a complete model of the Undercurrent. Third, “honest” Undercur-
rent models, i.e., stratified, nonlinear numerical models, have given a good picture
of how the different mechanisms come together. Because the stratified, nonlinear
models are necessarily rather complicated, we shall confine our attention to sim-
ple generalizations of Yoshida’s theory which like his theory use a single layer of
homogeneous fluid.

The “essential” ingredient of the Undercurrent is a zonal boundary and its con-
comitant east-west pressure gradient. Yoshida’s solution, which applies to an ocean
without boundaries, gives only a flow in the direction of the wind stress, i.e., west-
ward. This can be identified with the South Equatorial Current (SEC). Note that the
SEC, despite its name, actually straddles the equator. The Undercurrent, however,
flows underneath the SEC in a direction opposite the wind.

When the ocean flow is interrupted by a continent, the wind stress exerted by
the easterly Trade Winds will pile up water on the western coast of the ocean, and
thereby cause the sea surface to tilt from the east down towards the west.

9.5.1 Theory of Fofonoff and Montgomery (1955)

Theory One: Fofonoff and Montgomery [11]; also Veronis [12] and Cromwell [13].
Away from the equator, the hydrostatic pressure gradient created by the sea surface

tilt would be balanced by a geostrophic flow towards the equator in both hemispheres.
At the equator, however, the Coriolis force is zero, so there is nothing to balance the
east-west pressure. The result is that fluid flows straight down the pressure gradient.
Figure9.7 illustrates this situation.

The equatorial thermocline tilts opposite the sea surface so that the pressure gra-
dient below the thermocline is zero. It follows that if this simple idea is sensible, the
Undercurrent should be confined above (or at least near) the thermocline rather than
extending down into the deep ocean. In point of fact, the observed Undercurrent is
surface-trapped and decays rapidly with depth below 200m.

Fig. 9.7 Schematic of how the Equatorial Undercurrent is driven
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The second fundamental idea is also contained in this same simple picture. The
geostrophic flow that balances the zonal pressure gradient away from the equator
is obviously advecting mass towards the equator. The Ekman transport, however, is
directed away from the equator in both hemispheres (for a westward wind stress).
At the surface, the Ekman stress must win but the flow below the Ekman layer must
be towards the equator at some depths lest the tropical sea be denuded of water and
turned into dry land. The picture is then one of equatorial upwelling with divergent
flow away from the equator at the surface and convergent flow towards the equator
beneath. Because the pressure gradient is small or zero below the thermocline and
also because the thermocline is a stratification barrier to the upwelling created by
Ekman suction at the surface, we do not expect the lower convergent flow to extend
into the deep ocean, but rather to occupy a layer between the thermocline and the
bottom of the Ekman layer.

Conservation of potential vorticity implies, however, that as particles are advected
towards the equator, the decrease in f implies a gain in vorticity. A counterclockwise
deflection of particles moving towards the equator requires an eastward deflection
of the particles, just what is provided by the pressure gradient. Again, since the
meridional flow is found only above the thermocline, this picture is consistent with
the shallow depth of the observed Undercurrent.

In quantitative terms, if a particle starts at an initial latitude of y0, conservation of
vorticity shows that it will reach the equator with a velocity of

u = β y20/2 [dimensional] (9.71)

When y0 = 3o N., u = 100 cm/s at the equator, which is about the observed
magnitude of the Undercurrent.

This argument is only heuristic because, strictly speaking, it is the potential vor-
ticity which is conserved, and predictions from vorticity conservation will obvi-
ously be modified by the convergence/divergence occurring in the equatorial region
of upwelling. Still, it shows that a circulation which is highly localized about the
equator can produce the necessary velocities. The east-west pressure gradient exists
throughout the whole of the tropics (because the winds are from the east throughout
the whole of the tropics), so it will certainly tend to drive a geostrophic flow towards
the equator in the vicinity of ±3 degrees of latitude. A number of theories have tried
to go beyond these qualitative arguments to actually calculate an Undercurrent. We
shall discuss a representative sample.

9.5.2 Model of Stommel (1960)

Theory Two: Stommel [14].
Stommel’s model is classic Ekman layer theory in a single layer of incompressible

fluid — constant coefficient viscous terms plus depth-independent pressure gradient
terms — with three changes. First, the Coriolis parameter is allowed to vary with
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y. Since standard Ekman theory — and Stommel’s model — are solved point-by-
point, allowing no y or x variations in the solution, the Coriolis parameter appears
only parametrically in the Ekman equations anyway. Thus, looking at values of y for
which f is very small requires no changes per se in Ekman theory at all.

The second change is more important: the depth of the fluid is taken to be finite.
(In ordinary Ekman theory, the depth is taken to be infinite for the eminently sensible
reason that away from the equator, the Ekman layer is no more than 100m deep with
the wind-driven currents decaying exponentially with depth.)

The third change is that the lower boundary condition to taken to be one of no
stress rather than the seemingly more logical condition of no slip. The motive for
this is that it is silly to suppose that the Ekman layer actually extends all the way
to the bottom, 4000m down. Interpreting the Ekman layer as the water above the
thermocline; at the thermocline, a condition of no stress is more plausible than a
rigid boundary. However, this is still a very ad hoc assumption: in a 1-1/2 layer
model, there is a stress as the velocity jumps from its upper layer value to zero
across the thermocline. Stommel’s justification for choosing no stress is simply one
of mathematical simplicity: “making the bottom a plane of no stress has the virtue
of avoiding the necessity of calculating an additional functional layer at the bottom,
thus simplifying the analysis”.

With these assumptions, the model equations are

− f v = ν uzz − −(1/ρ) px (9.72)

f u = ν vzz − −(1/ρ) py (9.73)

where the pressure gradient terms are assumed to be constants and where the bound-
ary conditions are

uz = τ, vz = 0 z = 0 (9.74)

uz = 0, vz = 0 z = −H (9.75)

Now the usual infinite depth Ekman solutions have an e-folding scale of

De = √
2ν/ f (9.76)

As the equator is approached, f → 0, so the depth De → ∞, and the theory for an
infinitely deep ocean is singular.

With an ocean of finite depth, however — regardless of the lower boundary con-
dition — the singularity is removed. Instead, the Ekman layer simply fills the whole
of the fluid, or more accurately, the whole of the fluid which feels the wind stress.
Classical Ekman theory implicitly assumes that the eddy viscosity ν is constant at all
depths. In reality, its magnitude drops off steeply below the mixed layer in the upper
100m of the ocean so that it is only a thin layer that strongly feels the wind stress.
Stommel’s imposition of a no stress condition only a couple of hundredmeters below
the surface may be considered a crude way of allowing for this drastic decrease in
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Fig. 9.8 u(0, z) in
Stommel’s model, given in
units of |τ |H/(2ρν)

viscosity while still remaining consistent with the constant coefficient mathematics
of classic Ekman theory.

At the equator where f is zero, the x and y momentum equations become decou-
pled. The x momentum equation is the only one of interest since the wind stress is
assumed to be purely zonal. This reduces to a direct balance between the zonal pres-
sure gradient and the viscosity. Exactly this same balance occurs in the flow down a
pipe in engineering fluid mechanics, and the solution is the same in either case, pipe
flow or equatorial Ekman: the velocity is a parabolic function of the cross-stream
coordinate. In the present case, we have only half a parabola because we have only
one solid boundary, but the form is the same:

u = τ
H

2 ρ ν

{
(z + H)2

H
− 1

3

}
(9.77)

as illustrated in Fig. 9.8.
Stommel’s paper gives the finite-depth solution for general latitudes; this can

be used to calculate the total (latitudinally-averaged) transport of the Undercurrent
(though he does not do this himself).

9.5.3 Gill (1971) and Hidaka (1961)

Theory Three: Gill and Hidaka [15, 16].
Gill’s model is very similar to Stommel’s except for the addition of latitudinal

viscosity. This is a significant complication because the presence of y derivatives
implies that latitude can no longer be treated as a parameter, and the solution at one
latitude depends on what is happening at all other latitudes. Otherwise, he includes
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vertical viscosity, pressure, and Coriolis force, a wind stress acting only in the zonal
direction, and a boundary condition of no stress on the bottom of an ocean of finite
depth.

Gill divides the flow into a barotropic, depth-independent part (uI , vI ) plus a
depth-varying Ekman flow (u∞, v∞). He points out that by vertically-averaging the
equations of motion, one finds that with a sidewall, the vertically averaged velocities
in his model are zero; the hydrostatic pressure gradient produced by the tilting of
the sea surface balances east-west wind stress. It follows that the vertically averaged
transports of the barotropic and baroclinic parts of the flow must exactly balance.

Since Gill does not separate the flow into vertical modes, he uses a different
nondimensionalization than that given in Chap.2. Specifically, θ and λ below are
latitude and longitude in radians, and his nondimensional quantities (unprimed) are
related to the corresponding dimensional quantities (primed) by

z′ = Hz, u′ = τu/(2ΩH), v′ = τv/(2ΩH) (9.78)

w′ = τw/(2Ωa), φ′ = aτφ/H (9.79)

with the nondimensional parameters (Ekman numbers)

EH = A/(2Ωa2), EV = ν/(2ΩH 2) (9.80)

where A is the latitudinal viscosity, ν is the vertical viscosity, Ω and a are the
angular frequency and radius of the earth, and H the depth of the ocean. Note that
Gill employs the rather odd convention of defining τ to be the negative of the wind
stress. This is because a negative, i. e., westward, wind stress is normal near the
equator. The model equations become

− θ v + φλ = EH uθθ + EV uzz (9.81)

θ u + φy = EH vθθ + EV vzz (9.82)

uλ + vθ + wz = 0 (9.83)

subject to the boundary conditions

EV uz = −1, vz = 0 at z = 1 (top) (9.84)

uz = 0, vz = 0 at z = 0 (bottom) (9.85)

For a layer of homogeneous fluid, there is only the hydrostatic pressure which
isalways independent of depth. It follows that we can calculate the pressure gradient

http://dx.doi.org/10.1007/978-3-662-55476-0_2
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terms above by vertically-averaging the equations of motion. However, as already
pointed out earlier, the vertically-averaged velocities are 0, so the only allowed pres-
sure gradient is that which balances the applied wind stress. Thus, we can replace
the λ-derivative of φ by 0 and the θ -derivative by (−1) without approximation.

Away from the equator, the solution is rather obvious. (u∞, v∞) are the usualwind-
driven Ekman spiral with latitude θ appearing only as a parameter. The barotropic
part of the solution is

vI = −1/θ, uI = 0 (θ not small) (9.86)

This has the same form as the Ekman transport in our model of the Yoshida jet except
that because of Gill’s peculiar sign convention, the signs in (9.86) apply when the
wind stress is westward whereas in the Yoshida jet problem, the (−) sign for v was
correct only for an eastward wind stress. The truth is that (9.86) gives a kind of anti-
Ekman transport. It is simply the equatorward geostrophic current in balance with
the zonal pressure gradient created by the tilted sea-surface. It has exactly the same
form as the (non-geostrophic) vertically-averaged Ekman transport — but opposite
sign — because the total vertically-averaged velocity must be zero.

At the equator, however, (9.86) and the Ekman spiral are both apparently singular.
The depth independent solution satisfies the equations

− θ vI = EH uI
θθ + 1, θ uI = EH vθθ (9.87)

A useful trick is to identify uI and vI as the real and imaginary parts of a complex
velocity U . Next multiply the second part of (9.87) by i and add it to the first part to
give a single differential equation for the complex velocity. This is the same trick that
works in ordinary Ekman theory, and no wonder. The system (Eq.9.87) has exactly
the same form as that for conventional, wind-driven Ekman theory except they are
not constant coefficient so the resulting differential equation is Airy’s equation

EH uθθ − i θ U = −1 (9.88)

Gill’s paper gives both power series and asymptotic expansions for the solution
of (9.88) plus a thorough discussion of how it scales as a function of the horizontal
Ekman number. The Airy function solutions are graphed in Fig. 9.9. Figure9.10
summarizes the different components of Gill’s theory. There is strong equatorial
upwelling and a weak but deep undercurrent under a shallower but much stronger
flow towards the west.

A major shortcoming of Gill’s model is that the mass transport in the model
Undercurrent, which he shows is −πτ/β independent of the latitudinal or vertical
viscosities, is smaller than that observed by a factor of 5. Gill is not too distressed;
he notes that nonlinear effects can resolve the discrepancy. But this motivates the
next theory: both observations and linear theory show that nonlinear effects are very
important for the Undercurrent, so that a purely linear theory cannot hope to be
quantitatively correct (except by accident!).
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Fig. 9.9 uI and vI in Gill’s model. The coordinate is (EH )−1/3 θ where θ is latitude in radians

Theory Four: Charney, Charney and Spiegel [17, 18].
The basic equations and assumptions of Charney’s model are identical to Gill’s

except that (i) the latitudinal friction is ignored (ii) the nonlinear terms are included
and (iii) no slip lower boundary conditions are imposed although this is probably
less significant than the other two changes. Since, as already pointed out above
in the discussion of Gill’s model, the only quantity which is allowed to vary with x
is the pressure so that the pressure gradient can balance the wind stress via tilting of
the sea surface, we can set all the zonal derivatives of the velocity components equal
to 0 here and in all the Stommel and Gill models, too.

His model equations in dimensional form are

vuy + wuz − f v = −φx + ν uzz (9.89)

vvy + wvz + f u = −φy + ν vzz (9.90)

vy + wz = 0 (9.91)
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Fig. 9.10 The regions of Gill’s model along with schematic streamlines of the meridional flow.
The “Airy interior flow” is depicted in the previous figure; the analytic solutions are Airy functions.
The “corner region” is described by coupled partial differential equations in both latitude and depth;
numerical calculations by W.D. McKee appear as Figs. 2 and 3 of Gill [15]

Fig. 9.11 East-west velocity in the model of Charney [17] as a function of scaled depth [unit depth
= 150 m] for different values of the parameter c = ν/H2 √

Pβ

Naturally, Charney nondimensionalizes them, but it is not possible to find a single
nondimensional scaling such that all the terms in the above equations are of O(1)
everywhere;with its rigid lower boundary, hismodel has both upper and lowerEkman
layers with a geostrophic interior in between. Consequently, we will not repeat his
scaling here, but simply note that the one important parameter of his model is the
Ekman number defined by

c = ν

H 2 {τβ/(ρH)}1/3 (9.92)
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Fig. 9.12 Same as the
previous figure, but showing
the vertical velocity w as a
function of scaled depth [unit
depth = 150m] for different
values of the parameter
c = ν/H2 √

Pβ. Thick line
c = 1

30 , thin solid line

c = 1
4 , long dashes c = 1

9 ,
short dashes c = 1

16 .
Charney’s [17] model

Fig. 9.13 Schematic of the
meridional circulation in the
model of Charney [17]

The steady-state was computed by reinserting the local time derivatives in (9.89) and
then marching forward in time until the viscous terms had damped the transients.

For large c, Charney’s model is strongly viscous and linear. As shown in Fig. 9.11,
the flow is westward at all levels at the equator and there is no Undercurrent. The
physical explanation is that the tendency of the pressure gradient to drive an eastward
flow below the level of surface wind-driven westward flow is overwhelmed by the
very rapid diffusion of westward momentum from above. To put it another way, the
wind-driven Ekman flow extends all the way to the bottom when c is very large.
(J. McCreary has shown that a linear Undercurrent is possible, but only when stable
stratification is taken explicitly into account, as discussed later.)

When c is small, i.e., the flow is strongly nonlinear and the Ekman layers are
trapped near the boundaries, one finds that the flow is eastward at all depths at the
equator. Part of this effect is due to the equatorial upwelling: eastward momentum
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is advected from the Undercurrent up into the Ekman layer. Robinson [19] showed,
using perturbation theory, that the first correction to u is always eastward (for small
nonlinearity), whatever the direction of the wind. For small nonlinearity, however,
he showed that it was due to the divergence of the zonal momentum flux (Figs. 9.12
and 9.13).

Gill [20] gives a simple argument to explain this. In the vertically-integrated
x-momentum equation, the pressure gradient cancels the wind stress; this is true of
all the linear models discussed above, but it can be justified for nonlinear models as
first done by Charney [17], who pointed out that the nonlinear terms are important
onlywithin two or three degrees of latitude of the equator. Thewind stress varies little
on the latitudinal scale of the Undercurrent because the Trade Winds extend roughly
tenUndercurrentwidths ormore away from the equator. If the zonal pressure gradient
varies rapidly with y, this implies that the x-dependent part of p — not merely the
total pressure, but that part which is varying zonally — must be varying rapidly
with y also. This would create a huge nonuniformity in x which contradicts a basic
postulate of both theory and observations: that the Undercurrent varies slowly with
x . Thus, the zonal pressure gradient and wind stress approximately balance each
other even in the heart of the Undercurrent where the flow is strongly nonlinear.

Vertical integration of the equation of continuity with (i) assumption of no vari-
ations in x , which eliminates the ux term and (ii) rigid upper and lower boundaries,
which eliminate the boundary terms that result from the integration of the perfect
z-derivative, wz , gives the conclusion that the vertically-integrated north-south cur-
rent is 0 — which is a conclusion common to all four of the theories discussed here.
Thus, the vertically-integrated x-momentum equation reduces to (overbars denote a
vertical average)

ūt = −(ūv)y − ν uz(z = bottom)/H (9.93)

The important point is that the divergence of themomentumflux is always positive.
Looking at Fig. 9.14, which shows typical zonal and meridional flows for a nonlinear
model, one sees that in the upper ocean where the zonal flow is westward (negative),
the meridional flow is away from the equator (v > 0 in the northern hemisphere)
because the wind-driven Ekman circulation is stripping mass away from the equator.
Thus, uv < 0 in the upper ocean for y > 0. Near the bottom, meridional convergence
must occur to supply mass to the upwelling at the equator, but this is also the region
of the Undercurrent, so again uv < 0. It is possible for u and v to be of the same
sign in the northern hemisphere in the middle of the layer, but both u and v are small
there because they change sign somewhere in the middle, too. The conclusion is that
the vertically-averaged momentum flux will be negative in the northern hemisphere
and positive in the southern, and this will always give a divergence that is causing
eastward accelerations in a zone around the equator (and driving westward currents
at higher latitudes), regardless of the details of the model. Gill [20] notes that the
flanking westward currents on either side of the Undercurrent (and like it, well below
the surface) are often observed. What is more important is that nonlinearity greatly
intensifies and narrows the Undercurrent, increasing its total mass transport as well.
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Fig. 9.14 Upper left isotachs of zonal velocity. Contours of westward flow are dashed; the zero
eastward velocity contour is dotted. Right streamlines of the meridional circulation. Bottom latitu-
dinal momentum flux. Theory of Gill [20]

When the winds reverse, both u and v reverse so that the sign of the momentum
flux divergence is invariant. This implies that nonlinearity will weaken a westward
Undercurrent, and this is important because any good theory for the Undercurrent
must also explain why there isn’t one in the Indian Ocean when the winds are from
the west (Southwest Monsoon in summer).

In this vertically-averaged argument, the vertical andmeridional advection of east-
ward momentum do not explicitly appear even though we have repeatedly referred to
their role. These terms are implicit in the vertically-averaged momentum flux, how-
ever, because it is precisely the existence of the meridional circulation that creates
the negative momentum flux at almost all (northern hemisphere) levels in the model.

Numerous other models could be mentioned, but we will return to discuss the
Undercurrent in terms of stratified models later. Another limitation of our theory is
the omission of zonal boundaries: the Yoshida jet is for an unbounded ocean, and
the Undercurrent theories described above all assume that one is in the middle of the
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ocean so that x-variations can be neglected. Theremust, alas, be boundary layers near
the coasts where these x-variations are rapid and important. This, too, is something
we must later return to.

One final complication we ignored here is that of the effects of cross-equatorial
winds. Gill [20] describes a simple model due to W.D. McKee in which linear
(“Rayleigh”) friction is used to give a simple, but dissipative linear model. Its explicit
solutions show — in accord with observations and the numerical nonlinear study of
Charney and Spiegel [18]— that the Undercurrent tends to be moved off the equator
upwind. For example, the jet axis is sometimes observed to be a degree south of the
equator in the Indian Ocean when the winds are from the southeast.

In summary, there are three principal concepts in the Undercurrent. First, the wind
stress created by the Trade Winds causes a sea surface tilt which hydrostatically
creates an eastward pressure gradient; the Undercurrent then simply flows down this
gradient below the westward flow in the wind-driven surface Ekman layer.

Second, the surface Ekman transport is poleward, so by mass continuity, the
equator should be a region of strong upwelling, at least near the surface. (Note
that some models predict small downwelling cells near the bottom, centered on the
equator. These are tooweak to alter the vertically-averagedmomentumflux, however,
but may help to extend the Undercurrent a bit below the thermocline, as observed.)

Third, nonlinear effects narrow an eastward Undercurrent and increase both the
zonal velocity and the total mass transport. However, they weaken a (hypothetical!)
westward Undercurrent, perhaps explaining why none is observed (Table9.3).
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Chapter 10
Stratified Models of Mean Currents

Abstract The alternating surface jets and the Equatorial Undercurrent are important
features that have long challenged both numerical modelers and the perturbation
theorists. In this chapter, stratification and viscosity are added to the shallow water
jets found by Yoshida. The models of McCreary and McPhaden are ancient and
cannot fit observations as well as the ever-changing succession of ocean general
circulation models. Yet they are well worth a careful analysis to understand the
underlying mechanisms.

If many remedies are prescribed for an illness, you may be certain that the illness has no
cure.

— Anton Chekhov, physician, playwright and short-story writer

10.1 Introduction

Figure10.1 shows the major equatorial currents. The westward South Equatorial
Current (SEC), the westward North Equatorial Current (NEC) and the eastward
North Equatorial Countercurrent (NECC) which lies between them are all surface
currents that are reasonably well predicted by the 1–1/2 layer model of Busalacchi,
Takeuchi and O’Brien [1, 2]. Consequently, our attention in this chapter will be
focused on the Equatorial Undercurrent (EUC) and its two satellites, the Subsurface
Countercurrents (SSCC’s) which are sometimes contiguous with the EUC (western
Pacific) and sometimes separated from the EUC by bands of westward flow (eastern
Pacific). For clarity, we shall largely concentrate on the Pacific currents because these
are the most stable and the most studied, both observationally and theoretically, but
it should be emphasized that the EUC is found in all three oceans.

In Chap.9, we have already reviewed a number of attempts to explain the EUC
using barotropic models. These pioneering calculations are still useful in delineating
the major balance of forces in the EUC. The eastward pressure gradient, created by
the piling up of water along the western coast of the ocean, provides the driving
force for the current. The usual Ekman flow will strip surface water away from the
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Fig. 10.1 Schematic of equatorial currents in a latitude-height cross-section (mid-ocean)

equator in both hemispheres, forcing a secondary circulation with upwelling along
the equator itself. Finally, the barotropic and two-layer models show that nonlinear
effects are very important to the Undercurrent. In particular, nonlinear advection
tends to intensify and narrow an eastward Undercurrent, but to weaken a westward
Undercurrent. This may explain why no westward Undercurrent is found in the
Indian Ocean during the summer Southwest Monsoon, even though an eastward
Undercurrent is present during the Northeast Monsoon when the winds resemble the
normal trade winds.

The important role of nonlinearity is a modest limitation on the analytic theo-
ries discussed below: observations as well as the earlier theories imply that nonlin-
ear numerical models are essential to completely capture the physics of the EUC.
Nonetheless, McCreary [3] and McPhaden [4] approximate an EUC and the two
SSCC’s, respectively, with linear, analytical theories. The extension from the one
baroclinic mode — the 1–1/2 layer models discussed in earlier chapters — to a sum
over many baroclinic modes makes a vast difference in simulating these subsurface
currents, even though most of the other artificialities of the Cane–Sarachik analytic
articles are retained.

The east-west variations of the Undercurrent are an important test of a model.
Fig. 10.2 is an x − z section of isotherms across the Pacific. In the west, there is a
thick, well-mixed surface layer; rapid temperature variations occur between 150 and
250m down (notice that 15◦, 20◦, and 25 ◦C. isotherms are all scrunched up in this
region) whereas the temperature changes by only a couple of degrees between this
region and the surface. Eastward, the pycnocline becomes more and more shallow,
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Fig. 10.2 Schematic of isotherms in an equatorial plane (longitude-depth cross-section) in the
Pacific. The thermostad is marked by dots; the mixed layer, which lies above the closely-packed
isotherms at all longitudes, is also labeled

and even the 15 ◦C. isotherm, buried more than 200m down in the far west, nearly
breaks the surface in the east.

Below the pycnocline in the east, however, is another thick layer, the “thermostad”,
which is the name applied to a layer of very uniformwater of 34.9 parts-per-thousand
salinity and 13 ◦C. temperature found between 150 and 300m downwith a latitudinal
extent of about 5 ◦ N. to 5 ◦ S. This well-mixed sub-pycnocline is shaded in Fig. 10.2.
Agood baroclinicmodelmust therefore explain two uniform layers: the thick, surface
mixed layer in the west and the equally thick and equally uniform thermostad in the
east.

In the past there was considerable debate about whether the Equatorial Undercur-
rent was or was not in geostrophic balance. The definition of geostrophic flow can
be extended to the equator itself by noting that φy must vanish at the equator if the
geostrophic zonal velocity is to remain finite. L’Hopital’s Rule, which is equivalent
to expanding both the numerator and denominator in Taylor expansions about y = 0,
then gives

u(y = 0) ≈ φyy(y = 0) (10.1)

The question still remains: Do the observations support geostrophy?
Figures2 and 3 of Lukas and Firing [5] [not shown] give an emphatic answer:

Yes! Tahiti and Hawaii lie very near the samemeridian, but differ in latitude by about
40 degrees. The “Hawaii-Tahiti Shuttle” simply steamed back and forth along the
equator between these two islands, collecting the most detailed and complete set of
mid-ocean measurements of the y − z cross-section of the mean currents obtained
up to the mid-80’s. Lukas and Firing show that the maximum absolute difference
between the zonal velocity computed by geostrophy from the pressure field and the
flow measured directly by a Profiling-Current-Meter (PCM) is less than 20% of the
maximum current in the EUC. Since there are observational errors in both φ and u,
this is an upper bound on the geostrophic error; the actual ageostrophic flow may be
much weaker.
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In the rest of this chapter, we shall concentrate on explaining these observational
characteristics using the analytic theories of McCreary [3, 6] [for the Undercurrent]
and McPhaden [4] [for the Subsurface Currents]. Both studies make somewhat arti-
ficial assumptions and neglect nonlinear terms so as to make it possible to separate
variables. The solution is then a double sum over all baroclinic modes and over all
latitudinal modes. First, however, we begin with a simple model in which Hermite
functions are unnecessary.

10.2 Modal Decompositions for Linear, Stratified Flow

The mathematics problem is to solve a single partial equation in the three spatial
coordinates in a domain that is either unbounded in both x and y, or is a strip
that is unbounded in latitude but confined by two straight coastlines parallel to the
y-axis. The flow is assumed to be steady-state. The first step is to reduce the three-
dimensional boundary value problem to an infinite set of two-dimensional problems
by expanding the solution in the baroclinicmodes described inChap.3. As inChap.2,
we use special forms for the viscous damping and diffusion so that separation of
variable is possible.

The latitudinal dependence is usually represented as Hermite series. McCreary
found that one hundred baroclinic modes and seventy Hermite functions resolved all
his cases; this resolution was affordable even on the number-crunching hardware of
forty years aago.

The equations of McCreary’s [3] model for the Undercurrent are the same as
Eqs. (2.29) and (2.30) with the time derivatives suppressed (because the forcing is
assumed to be steady). Baroclinic mode by baroclinic mode, the equations for the x
and y dependence of the coefficients of the m-baroclinic mode are

Aλm um − f vm + φm,x = Fm (10.2)

Aλm vm + f um + φm,y = Gm (10.3)

Aλ2
m φm + um,x + vm,y = 0 (10.4)

with the dependent equations

ρm = φm (ρM/g) (10.5)

wm = A λ2
m φm (10.6)

Here, λm is the eigenvalue of the vertical structure differential equation, A is the
viscosity coefficient, and ρM is the mean density of the ocean (a constant). The
variables {um(x, y), vm(x, y), φm(x, y),wm(x, y), ρm(x, y)} are the coefficients of
the vertical structure functions in the expansions of u, v, etc., in terms of the baroclinic

http://dx.doi.org/10.1007/978-3-662-55476-0_3
http://dx.doi.org/10.1007/978-3-662-55476-0_2
http://dx.doi.org/10.1007/978-3-662-55476-0_2
http://dx.doi.org/10.1007/978-3-662-55476-0_2
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modes; note that wm must be multiplied by the integral of ζm(z) and ρm by zm,z(z)
while the other three are multiplied by the vertical eigenfunction zm(z) itself. The
Fm and Gm are the projections of the wind stress forcing onto the m-th baroclinic
mode, with the normalization zm(0) = 1,

Fm = τ x zm(0) /

∫ 0

−D
z2m dz (10.7a)

Gm = τ y zm(0) /

∫ 0

−D
z2m dz (10.7b)

where τ x and τ y are the x and y components of the wind stress vector and z = −D
is the bottom of the ocean. Although this formulation can handle quite general wind
stress distributions, we specialize to a purely zonal wind stress and further take the
stress to be the product of a function of x times a function of y, i.e.,

Fm = τm X (x) Y (y) (10.8)

where τm is a constant.
One complication introduced by stratification is that the parameter-eliminating

nondimensionalization employed for the “1–1/2 layer” model of earlier chapters is
different for each different baroclinic mode. One can go ahead anyway, but then
the wind stress parameters, viscosity and frequency (for a time-dependent problem)
are all different from mode to mode, which is rather confusing. Most workers have
therefore imitated meteorological practice and employed a nondimensionalization
which is the same for all baroclinic modes. This implies that A, τ , and the frequency
σ (if there is one) are the same for each mode, but it also implies that the eigenvalue
of the vertical structure equation will appear in many places in our equations.

The normal choice inmeteorology is to use the radius of the earth a as the horizon-
tal length scale, take the latitudinal coordinate to be latitude (measured in radians),
and use 1/(2Ω) as the time scale where Ω is the angular frequency of the earth’s
rotation. With this choice, λm = ε, Lamb’s parameter for that particular mode. For
oceanographic purposes, itmight bemore convenient (since the low latitudinalmodes
are confined within an equatorial zone that is far smaller than the radius of the earth
a) to nondimensionalize all the modes using the Lamb’s parameter-dependent scal-
ing appropriate to the first baroclinic mode. In this case, λm in the formulas below
would be interpreted as the ratio of Lamb’s parameter for the n-th mode to that for
the first baroclinic mode. The choice matters not a whit as long as one is consistent.
However, either way, it will be necessary to carry around factors of β(≡ d f/dy) and
λm throughout the rest of our analysis.

Let y denote the latitudinal variable of the chosen mode-independent nondi-
mensionalization. We can then define the nondimensional argument of the Hermite
functions,

ξ ≡ a0 y (10.9)
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where
a0 = √

β λ1/4 (10.10)

where the subscript “m” has been omitted in the last two equations for notational
simplicity.

The Hermite functions ψn(ξ) satisfy the differential equation (in y!)

ψn,yy − λ β2 y2 ψn = −a2n ψn (10.11)

where
a2n ≡ a20 (2n + 1) (10.12)

The latitudinal width varies as O(1/
√
m) where m is the vertical mode number.

Figure10.3 illustrates a typical Hermite function for each of the first fifty vertical
modes with the width assumed to narrow as predicted by the estimate. Mode fifty has
a latitudinal width which is an order of magnitude narrower than the first baroclinic
mode.

Fig. 10.3 The latitudinalwidth of theHermitemodes of a stably stratified ocean is strongly sensitive
to the vertical wavenumber with the scalefactor shrinking approximately as s ∼ 1/

√
m where m is

the vertical mode number. (The precise curve of width versus m depends on the assumed vertical
stratification profile.) The waterfall plot shows ψ6(

√
my); each slice graphs a different vertical

eigenmode m
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Algebraic reduction of the system of three shallow water wave equations to a
single equation for v alone yields:

vxx + vyy − i(β/ω)vx + [λ(ω2 − β2y2]v = λβyF + i(1/ω)Fyx (10.13)

where the complex frequency ω is defined as

ω = −iλA (10.14)

Note that this convention — time dependence proportional to exp(+iωt) — is
opposite to the frequency convention assumed elsewhere in these notes.

Expand both sides of (10.13) in terms of Hermite functions, i.e.

v(x, y) =
∞∑
n=1

vn(x) ψn(ξ); F(x, y) =
∞∑
n=1

Fn(x) ψn(ξ) (10.15)

WARNING: Remember that the scale factor for ξ is different for each baroclinic
mode; this implies that we must repeatedly calculate the expansion coefficients for
each mode even when F(x, y) is of separable form. The expansion coefficients vn(x)
satisfy the ordinary differential equations

vn,xx − i(β/ω)vx − [a2n − λ ω2]v = τa0
{
λ1/2[ξY ]n X (x) + i(1/ω) [Yξ ]n Xx (x)

}
(10.16)

where X (x) and Y (y) are the factors of the zonal wind stress for the m-th baroclinic
mode: F(x, y) = τm X (x)Y (y)where we have dropped the subscript on the constant
τ in (10.16).

The sums in (10.15) start with n = 1; the reduction to a single equation for v
omits the Kelvin wave entirely and introduces a spurious branch for the n = 0 Yanai,
so we must return to these waves later. Parenthetical note: if we had assumed a
non-separable wind stress, the only complication would be that the function X (x) in
(10.16) would be different for each latitudinal mode number n.

For simplicity, we shall omit the subscript “m” denoting the baroclinic mode
number in the rest of this chapter, except where it might cause confusion.

Up to now, the approximations are only those so carefully delineated in Chap. 2.
All the approximationsmade in the rest of the chapter are alterations of (10.2)–(10.4).

10.3 Different Balances of Forces

McCreary [6], in the absence of any accepted terminology for describing the different
balances of forces in a baroclinic mode, introduced some terminology of his own
which is summarized inTable10.1.Heomitted a label for the system (10.17)–(10.19).

http://dx.doi.org/10.1007/978-3-662-55476-0_2
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Table 10.1 Definitions of balances in baroclinic modes. A is the viscosity coefficient and λm is
the eigenvalue of the m-th baroclinic mode. All definitions except the first are from McCreary [6]

BJERKNES

− f vm + φm,x = Fm
f um + φm,y = Gm

Aλ2m φm + um,x + vm,y = 0

EKMAN BALANCE:

(PSEUDO-EKMAN omits the terms in braces)

[Aλm um ] − f vm = Fm
{Aλm vm} + f um = Gm

Aλ2m φm + um,x + vm,y = 0

SVERDRUP BALANCE: A vertical mode in which the dominant balance is

− f vm + φm,x = Fm
f um + φm,y = Gm

um,x + vm,y = 0

YOSHIDA BALANCE: (independent of x)

(PSEUDO-YOSHIDA omits terms in braces)

Aλm um − f vm = Fm
{Aλm vm} + f um + φm,y = Gm

Aλ2m φm + vm,y = 0

We shall call this the “Bjerknes” approximation because J. Bjerknes [7] [see also
the review by Hendershott [8]] made a similar approximation to describe ultra-long
Rossby waves.

10.3.1 Bjerknes Balance

It is useful to study the approximation of neglecting the terms proportional to λm in
the momentum equations only:

− f vm + φm,x = Fm (10.17)

f um + φm,y = Gm (10.18)

i ω λm φm + um,x + vm,y = 0 (10.19)

This approximation is more drastic than the “long wave” or “latitudinal geostro-
phy” approximation employed in earlier chapters because the ‘long wave” approx-
imation demanded geostrophic balance in one horizontal coordinate only. The
Bjerknes approximation is legitimate only when both the x and y length scales
are large in comparison to the Rossby radius of deformation:
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Lx >> 1/a; Ly >> 1/a (10.20)

1/a ≡ 1/( f λ1/2 ) = Rossby radius (10.21)

As might be expected, the Bjerknes approximation fails in many situations where
latitudinal geostrophy is highly accurate, but because of its simplicity, it is still useful
to analyze its consequences.

This Bjerknes Balance system can be reduced to the single equation, dropping
the baroclinic mode number m for notational simplicity,

vx − i
ω λ f 2

β
v = i

ω λ f

β
F − 1

β
Fyx (10.22)

or using ω = −i Aλ,

vx − A λ2 f 2

β
v = A λ2 f

β
F − 1

β
Fyx (10.23)

The general solution is

Q = − i
−ωλ f 2

β
(10.24)

= − A λ2 f 2

β
(10.25)

vx − Qv = F (10.26)

v = ,ג− exp(Qx) + exp(Qx)
∫ x

−∞
dx ′ exp(−Qx ′)F(x ′) (10.27)

where � is a constant determined from the boundary condition. Since we have made
the long wave approximations, all homogeneous solutions have westward phase and
group velocities and the correct boundary condition is v(∞) = 0.

An enlightening special case is a top-hatwind stress, constant everywhere between
|x | < L and zero elsewhere

F(x, y) =
{

0, |x | > L
1, x ∈ [−L , L] (10.28)

v = exp(Qx)

{∫ x

−∞
dx ′ exp(−Qx ′)F(x ′) −

∫ ∞

−∞
dx ′ exp(−Qx ′)F(x ′)

}

ג = (exp(QL) − exp(−QL))/Q (10.29)

v = exp(Qx)

⎧⎨
ג−⎩ +

,ג− x < −L
(exp(−Qx) − exp(QL))/Q, |x | < L

0, x > L
(10.30)
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10.4 Forced Baroclinic Flow in the “Bjerknes”
Approximation

Bjerknes’ approximation describes only ultra-long Rossby waves which have a west-
ward group velocity. Consequently, we only need to impose a single boundary con-
dition: the solution eastward of the region of the wind stress must be zero. This is
automatically guaranteed by setting

v(x = ∞, y) = 0 ∀y (10.31)

Since Q is proportional to f , and f increases with latitude, it follows that we
can make the exponential in (10.29)–(10.30) vary with x as fast as we wish simply
by moving to a sufficiently high latitude. Conversely, the solution will break down
for sufficiently large |x | because the y-dependence of f implies that the solution
is varying in y at a rate that varies directly with x . Thus, Bjerknes’ approximation
is never uniform over all space. This limitation is discussed in greater detail in
Schopf et al. [9]; these authors useBjerknes’ approximation—which is not dispersive
with respect to either zonal or latitudinal wavenumber — as a starting point for an
analysis of ray paths on the equatorial beta-plane.

When ω is pure imaginary, the Rossby waves simply decay exponentially west-
ward of the patch of wind stress.

Figure10.4 illustrates weak, strong and intermediate damping for steady flow
(σ = 0) with the wind stress in the form of a “tophat”, i.e., constant over some finite
patch of water. Since there is no propagation or decay in y, there is no coupling from

Fig. 10.4 Limiting cases of
forced “Bjerknes” flow. Thin
black curve: Weak damping
(λA → 0) [Sverdrup flow].
Thick green curve: Strong
Damping (λA → ∞)
[Pseudo-Ekman flow]. Red
dashed curve: Intermediate
Damping. The wind stress is
(−1) on x ∈ [−4, 4]. Q= 5
for strong damping, 1 for the
intermediate case, and 1/5 for
weak damping. Note that Qv
is plotted so that the maxima
for all three cases coincide
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one latitude to another and the problem is essentially one-dimensional, so it suffices
to graph the solution as a function only of x .

When the damping is weak (smallQ), the e-folding scale of the decaying Rossby
waves is large in comparison to the width of the wind stress patch. This limit is

v ≈ − (1/β)

∫ x

∞
Fyx dx

′ = Fy/β [Sverdrup flow] (10.32)

Figure10.4 shows the opposite limit of strong damping as well. The Rossby
waves decay rapidly before crossing the wind patch. Although we can derive the
results in this limit from the integrals in (10.29)–(10.30), too, it is simpler and more
illuminating to return to (10.17)–(10.19). Since ω appears in (10.19) as a multiplier
of the φ term, it follows that φ << u, v in this limit. Then the pressure gradient
terms drop out of the horizontal momentum equations, leaving what McCreary calls
a “pseudo-Ekman” balance:

v ≈ −F/ f (10.33)

In a vertically-averagedmodel,wewould omit the “pseudo”: Eq. (10.33) is always
true for the vertically-averaged meridional velocity in the classic Ekman problem.
However, we have actually solved the shallow water wave equations for a single
baroclinic mode; these equations are not vertically-averaged. As McCreary points
out, assuming that (10.33) is true on a mode-by-mode basis — instead of simply for
the sum of the modes after averaging — is a fairly drastic approximation. It implies
that the whole mixed layer moves as a slab at right angles to the wind stress, and the
Ekman spiral is suppressed.

In the real ocean, weak damping — Sverdrup balance — is a good assumption
for the lowest few modes. However, since viscosity is scale dependent, the strength
of the vertical viscosity increases rapidly with the baroclinic mode number, so the
high order modes must inevitably be strongly damped, implying a pseudo-Ekman
balance.

10.4.1 Other Balances

In the rest of this section, we will pursue models that make less drastic assumptions.
However, the methodology will remain quite similar. Again the low order baroclinic
modes satisfy one type of balance while the high order modes are governed by a
quite different sort of dynamics.

McCreary [3, 6] used awind profile “representative of steady trades in the Pacific”
by picking a zonal wind stress in the form

F(x, y) = τ X (x) Y (y) (10.34)

where τ = −0.5 dyn/cm2 and
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X (x) ≡
{
cos(πx/Δx) |x | ≤ 0.5Δx

0 |x | > 0.5Δx
(10.35)

Y (y) ≡ (
1 + y2/(Δy)2

)
exp(−y2/(Δy)2 ) (10.36)

where Δx = 5000km and Δy = 1000km. For small y, this wind stress is almost
y-independent like many of the idealized profiles employed before. The wind stress
is confined to a patch that extends over half the longitudinal width of the ocean
(Fig. 10.5). Leetmaa, McCreary and Moore [10] show that this shape is surprisingly
close to the observed mean wind stress in the Pacific and the maximum is about
0.5dyn/cm2. This localized wind stress is different from the x-independent stresses
of earliermodels, but still drives anUndercurrent that extends across thewhole ocean.

In order to separate variables, McCreary was forced to assume (unrealistically)
that the viscosity ν and diffusion κ are both equal to A/N 2 where N 2(z) is the Brunt-
Vaisala frequency and A is a constant. If there is a surface mixed layer (i.e., a layer
of uniform density), the viscosity coefficient is infinite there. ν dips to a minimum
νmin just below the thermocline— the thermocline is always accompanied by a large
positive spike in N 2 — and then gradually increases downward into the deep ocean
where N 2 is slowly decreasing. McCreary somewhat arbitrarily adjusted A so that

equator

Fig. 10.5 Top Schematic of the model of McCreary [3], showing the location of Sects. 10.1–10.6,
the ocean boundaries, etc. The shading marks the extent of the wind; the thin line is the longitudinal
profile of the wind stress. The wind is almost independent of latitude. The wind stress is everywhere
westward (or zero) with a maximum of (1/2) dyn/cm2 in the center of the basin. Redrawn after
McCreary [6]. (Note that although the ocean extends from 140 ◦ E. to 80 ◦ W., 140 degrees in toto,
only 70 degrees of longitude are shown here)
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Fig. 10.6 Density profiles in g/cm3 versus depth in meters for McCreary’s model. The curve
labeled “1” has [unrealistically] a linear gradient at all depths below the mixed layer. The dashed
curve “2” has a mixed layer in the upper 75m of the sea where the density ρ = ρ0, a constant;
at greater depths, ρ = ρ0 + (1/200) {1 − exp(−(z + 75m)/1000m)}. The five uppermost profiles
are more realistic and are employed in most of his calculations. All have ρ = ρ0 in a mixed
layer of thickness H and at greater depths ρ = ρ0 + (3/1000) {1 − exp(−(z + 75m)/200m)} +
(1/500) {1 − exp(−(z + 75m)/1000m)} where the mixed layer depth H = 0, 50, 75, 100m and
150m. The thick dotted curve, the middle of this group of five, is McCreary’s benchmark. His
analytical formulas are cataloged as a reminder that density profiles are always empirical, that is,
are freehand sketches disguised as formulas. Redrawn after Fig. 2 of McCreary [6]

νmin = 0.55 cm2/s for each of the density profiles illustrated in Fig. 10.6. The thicker
curve is representative of the Pacific Ocean and is used for the results graphed in the
rest of his article.

Despite the approximations, the model Undercurrent is a surprisingly faithful
qualitative representative of what is observed. There is an eastward equatorial jet
with the core just below themain thermocline perhaps 120m down. [The thermocline
in themodel, the thick curve in Fig. 10.6, is 75munder the surface.] There iswestward
flow, a model South Equatorial Current, at the surface. The jet is strongly confined
about the equator with a latitudinal e-folding width of only about 200km. Like the
real thing, the Undercurrent is only O (100m) thick. The maximum strength of the
Undercurrent is about 150cm/s slightly to the east of the wind stress maximum. The
Tahiti-Hawaii shuttle observed a peak Undercurrent of only 90cm/s, but 153W. is
somewhat west of the wind maximum, so the jet maximum in the model is certainly
in the right ballpark. As is also observed, there is westward flow at all depths below
the model Undercurrent.
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As noted in Sect. 10.1, one of the more useful results of the NORPAX shuttle was
to show conclusively that the EUC is geostrophic. The model Undercurrent (and all
the other zonal currents) are in geostrophic balance (of the usual u = −(1/ f )φy sort)
even a slight distance from the equator, and they are consistent with the more general
geostrophic relation (10.1) at the equator itself.

In the interior sections (2–4), the meridional circulation is consistent with simple
Ekman transport in the sense that there is strong upwelling along the equator and
poleward flow near the surface. Because of the strong stratification, however, the
return flow towards the equator does not occur in a deep layer, but rather is strongest
only 100m down. The largest north-south velocities — just below the thermocline
in the return flow, and not in the surface current — are O(10cm/s). The upwelling
just above the core of the Undercurrent is as large as 0.025cm/s. These maxima are
achieved in Sect. 10.3 where the wind is also a maxima; the flows in Sects. 10.2 and
10.4 are similar but noticeably weaker.

There is also aweak downwelling underneath theUndercurrent. Since eachmerid-
ional cell has amirror image in the other hemisphere, the overall pattern is four-celled;
two in each hemisphere stacked on top of each other.

Outside the region of wind stress, cross-Sects. 10.1 and 10.6, all three velocity
components are relatively weak, but the overall pattern persists. In particular, there
is an Undercurrent at longitudes with a westward current at the surface, and there
is also a four-celled circulation pattern. However, the usual upwelling along the
equator is replaced by a weak down-welling in cross-Sect. 10.1 near the western
boundary although the pattern of meridional velocity is qualitatively the same as
under the wind stress. East of the wind, there is still upwelling at the equator, but the
meridional velocity pattern is reversed in sign at all depths.

These changes in meridional circulation are to be expected. The equation of conti-
nuity, wz = −(ux + vy), tells us that upwelling and downwelling require horizontal
convergence or divergence at some level in the water column. Within the region of
wind stress, this convergence occurs because Ekman transport in the surface bound-
ary layer is strippingwater away from the equator. Outside the area of the wind patch,
convergence still occurs because the zonal currents must deaccelerate to 0 at both the
eastern and western boundaries, so ux will drive meridional cells. Maximum diver-
gence occurs near the eastern edge of the wind patch and maximum convergence
near the western edge even though the stress is small near the edges.

The density field is consistent with thermal current balance for the zonal jets,
but it also has a number of highly unrealistic features (McCreary [3] provides no
graphs). As discussed in Chap.2, there is necessarily a density inversion at the base
of themixed layer wherever there is downwelling. (The reason is that the perturbation
density ρ = 0 at the surface and throughout the mixed layer. A downwelling particle
therefore has its density jump from 0 to some finite value. One can account for the
density jump that occurs when a particle upwells into the mixed layer because the
mixing coefficients are ∞ in the mixed layer. There is no mechanism to cause a
density jump when a particle’s density changes below the thermocline in a region
of rather modest diffusion, so the model becomes physically unreasonable.) As his
contour plots make painfully clear, there will be one region of static instability off

http://dx.doi.org/10.1007/978-3-662-55476-0_2
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the equator in the central ocean and everywhere in the western part of the sea. There
is another region of instability below the core of the Undercurrent in the central and
eastern ocean.

McCreary notes that these regions of static instability coincide with the two layers
of strong mixing in the real ocean: the thick surface mixed layer in the west and
thermostad in the east. His precise phrase is “It is interesting that …”; he does not
make any stronger claim because the model really is screwing up the density field
in these regions, and agreement with reality is likely to be more coincidence than
cause.

The upper left panel of Fig. 10.7 compares the zonal velocity at points in mid-
ocean, right at the equator — for three different cases with wildly different viscosity
coefficients. The vertical profile of ν is the same for all three runs, but the magnitude
is roughly 10 times stronger than the benchmark case for the curve marked “High”
and about 8 times weaker for the graph labeled “Low”. As the viscosity weakens, the
Undercurrent becomes stronger, closer to the surface, and thinner, but the qualitative
shape of the surface westward flow, a thin eastward jet, and slow westward flow in
the deep ocean – remain unaltered. The maximum speed of the Undercurrent and its
depth and width and so on all vary more slowly than 1/ν1/2. The e-folding scale in
latitude (not graphed) varies by only a factor of 2 as ν changes by a factor of 75, so
it is even less sensitive than the depth profile of the jet.

This slow variation with the diffusion is very comforting because eddy viscosity
coefficients andMcCreary’s artificial way of including them in the model are correct
only in order-of-magnitude. On the other hand, the thinness of the jet labeled “Low”
shows that the viscosity is a parameter of the problem. There are many geophysical
phenomena which have well-defined limits as ν → 0. The Equatorial Undercurrent
in McCreary’s model is not one of these since it seems to be tending towards a δ-
function at the thermocline in the limit of vanishing damping. The viscosity does
seem to be essential to the EUC’s physics. (Alas!)

The upper right panel of Fig. 10.7 compares the zonal jets at the same points for
three different mean density profiles. The dark curve is the benchmark; the graphs
labeled “1” and “2” correspond to the two profiles with the same numbers shown in
Fig. 10.6. The mixed layer is the same for all three profiles, but the density differs
drastically below the thermocline. Profile “1” has a constant Brunt-Vaisala frequency
at all depths below the thermocline in contrast to the benchmark and the real ocean
for which N 2 decreases rapidly with depth. Nonetheless, we obtain Undercurrents of
similar shape and magnitude. Although not visible from the graph, there is no sign
that the latitudinal width of the current changes at all.

This is very comforting. Since the errors in measurement in density are tiny in
comparison to those in the diffusion – the difference between the exact profile and the
thick curve used for the benchmark is surely small in comparison to the difference
between the benchmark and “1” — we conclude that variations and errors in mean
density belowwill have little effect onmodeling theUndercurrent. Note that since the
viscosity coefficient is inversely proportional to the Brunt- Vaisala, the insensitivity
to density in the deep ocean simultaneously implies insensitivity to values of the
diffusion in the deep sea. It is only changes in ν in the upper ocean that matter.
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Fig. 10.7 Upper left Zonal current at mid-ocean: Effects of varying viscosity. After Fig. 5 of
McCreary [3]. Upper right Zonal current at mid-ocean: Effects of varying ρB(z) below the ther-
mocline. The thick solid curve is the benchmark. After Fig. 6 of McCreary [3]. Lower left Zonal
current at mid-ocean: Effects of different mixed layer depths. Thick curve benchmark (mixed layer
depth = 75m). The curve for no mixed layer has a surface flow so strong it woudl be off-scale
were it not reduced by a factor of 10 as indicated by the label. Figure7 of McCreary [3]. Lower
right Zonal current at mid-ocean: Effects of varying boundaries. Thick curve benchmark with both
eastern and western boundaries. “E”: eastern boundary only. “W”: western boundary only. “N”: no
boundaries. Figure8 of McCreary [3]

Unfortunately, we have not yet explored the consequences of variations in the
depth of the thermocline. He compares five runs that are identical except for using a
different density profile corresponding to one of the unlabelled graphs of Fig. 10.6.
This shows that the depth of the mixed layer is an important parameter. With a
shallow thermocline, the Undercurrent becomes stronger and more shallow, but its
thickness in depth and its latitudinal width are unchanged. The highly sensitive part
of the flow is the surface flow: it increases by a factor of 7 as the thermocline depth
decreases from 150 to 50m. When there is no mixed layer, the westward surface
velocity increases to over 14m/s! Clearly, a mixed layer of at least 50–75m in depth
is necessary to obtain a reasonable surface flow.
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Since all the one-layer theories of the Undercurrent depend entirely upon a west-
ward boundary where water was piled up by the wind to create an eastward pressure
gradient extending some hundreds of meters deep, it is rather shocking that we
obtain pretty much the same Undercurrent without boundaries as with. For a baro-
clinic ocean, the crucial mechanism for driving an Undercurrent is the fact that the
wind stress is a patch of finite size.

To be sure, the boundaries are important. They drastically reduce the strength
of the westward surface flow, and the westward flow underneath the EUC — the
“Equatorial Intermediate Current” as it is usually called — disappears completely
in the absence of coasts. This is rather ironic; the westward surface flow was the
current that was always easily explained as being directly forced by the wind, but
the coasts are far more important in determining its magnitude than they are for the
Undercurrent.

Looking carefully at the curves, we can assess the relative importance of the two
coasts out in mid-ocean. At all levels, the difference between the solution with an
eastern boundary (“E”) is two or three times larger than the difference between the
benchmark and the flow with only a western boundary. More irony: although it is the
western boundary where water is piled up by the wind stress, the eastern boundary
is a good deal more important throughout the whole depth of the ocean. The moral
seems to be that fairy tales spun of one layer models are no substitutes for summing
many baroclinic modes.

We must note one qualification: The preceding figures are all samples in mid-
ocean. Boundaries are obviously much more important at the edges of the ocean.
However, this does not alter the fundamental conclusion that coastal effects are not
responsible for creating the Equatorial Undercurrent.

10.5 The Sensitivity of the Undercurrent to Parameters

As McCreary [3] notes, a description of the balance of forces for the model as a
whole is not very illuminating; a better approach is to look at the balance of forces
within a given baroclinic mode. We already know that viscosity will be important
for the high order modes, but not for the lowest few. We have already seen above
that viscosity plays an essential role in the dynamics of the Undercurrent; we cannot
obtain an Undercurrent which is as thin as observed without including many high
order modes [3].

One possible approach would be to locate the baroclinic mode which is “on
the fence” between an inviscid dynamics versus a viscous balance of forces; for
McCreary’s benchmark, this is n = 8. One could then make graphs of the sum of
the first 8 modes and then a separate graph of the sum from n = 9 to ∞. This in
and of itself would not be too helpful, however, because we already know that both
partial sums are important. McCreary therefore adopts an alternative approach of
taking infinite sums of modes which satisfy one of the lower three balances listed in
Table10.1.
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Figure9 of McCreary [3] shows a pure baroclinic Ekman flow. McCreary defines
this to be a flow in which the pressure gradients have been omitted for all baroclinic
modes. (In classical Ekman theory, of course, the pressure forces are retained, but
the approximation is made that these pressure terms are independent of depth, i.e.,
barotropic. However, the barotropic mode is omitted from all the sums presented
in this book because it is never equatorially trapped. Consequently, McCreary’s
definition actually is consistent with classical Ekman theory.)

At first glance, Fig. 9 of his article looks okay aside from the complete absence
of the Undercurrent (which was, after all, what we were trying to model!), but the
latitude scale is kilometers rather than meters, and the contour interval is not meters
per second, but kilometers/sec. The flow in the center of the jet exceeds earth escape
velocity!

We can understand why omitting the pressure gradients leads to such hilariously
wrong results by writing down the x and y momentum equations for “baroclinic
Ekman flow”:

Aλu − f v = F (10.37)

Aλ v + f u = 0 (10.38)

Solving (10.38) for v and substituting into (10.37) gives

{
A λ + f 2/(Aλ)

}
u = F (10.39)

or equivalently
u = AλF/

{
A λ + f 2/(Aλ)

}
(10.40)

Now with realistic values of the viscosity, the term A2λ2 is extremely small in com-
parison to f 2 at all latitudes except within a few hundred meters of the equator; thus,
the denominator of the factor in square brackets is approximately 1/[y2 + ε2] where
ε << 1. Now a representation of the Dirac delta-function is

δ(y) = (1/π) lim
ε→0

{
ε/[y2 + ε2]} (10.41)

so it follows that u as given by (10.41) is proportional to (1/ε) times this represen-
tation of the δ-function for small but finite ε. In the limit of vanishing viscosity, the
amplitude of the zonal flow goes to infinity while the width of the jet goes to 0.

McCreary gives a full discussion of Ekman flow, but since our purpose is scientific
understanding rather than comedy, it seems appropriate to move on to more realis-
tic cases. The Ekman flow shows quite clearly, however, that baroclinic pressure
gradients are indeed essential to modelling the Undercurrent, just as in the simple
one-layer models discussed in Chap.9. The reason that it is possible to obtain an
Undercurrent even in the absence of boundaries is that a finite wind patch will create
the necessary pressure field.

http://dx.doi.org/10.1007/978-3-662-55476-0_9
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The next simplified flow, that of Yoshida balance in which the x-derivatives are
omitted, reiterates this point about the primacy of the zonal pressure gradient. The
Yoshidamodel retains the pressure gradient in y, butMcCreary’s Fig. 9 shows that the
Undercurrent is still completely absent from a sum of modes that each have no zonal
pressure force. The latitudinal width of the currents has been greatly improved; the
y-scale is now kilometers. However, the velocity scale is still kilometers per second:
the flow velocity still exceeds the escape velocity of the earth!

The reason for these absurdly large zonal velocities is the omission of the zonal
pressure gradient. Without it, the zonal wind stress can be balanced only by the
Coriolis torque, (− f v), and by diffusion. However, the Coriolis force is zero at the
equator, so the zonal wind accelerates to a magnitude limited only by the strength of
the viscosity: u(y = 0) = F/(Aλ), which is an enormous value for the lowest few
modes.

Nonetheless, the Yoshida balance is important because one can show that for
sufficiently large values of the vertical mode number n, the x-derivatives do indeed
drop out, and theYoshida balance is a good approximation to the high order baroclinic
modes.

It would have been nice to have found a simpler way to show that strong damping
makes the x-derivatives important, but this is difficult because in this limit, the zonal
wavenumber becomes larger at the same time we are trying to show that the x-
derivatives become small.

Nonetheless, note that it is plausible the x-derivatives are important because the
dynamics in the presence of strong damping is local. The general solution for forced
baroclinic modes is “non-local” in the sense that the response depends upon integrals
of the wind stress. Thus, one can have a flow even where there is no wind stress
because the propagation of Rossby and Kelvin waves can carry the effects of the
stress far from the patch of wind. When the mode is strongly damped, however, the
waves decay so rapidly that the flow cannot be influenced by distant events, but only
by the local stress. The Yoshida flow, which is proportional to F(x, y) itself rather
to integrals over x , certainly displays this expected local behavior.

The opposite limit of vanishing damping gives the Sverdrup balance listed in
Table10.1. The corresponding solutions are

v = −(1/β)Fy [Sverdrup flow] (10.42a)

u = (1/β)

∫ x

∞
Fyydx

′ +
{
(1/2)λ1/2 τψ0(ξ) Y (y = 0)

∫ ∞

−∞
X (x ′)dx ′

}
(10.42b)

φ =
∫ x

∞

{
F − yFy

}
dx ′ +

{
(1/2)τψ0(ξ) Y (y = 0)

∫ ∞

−∞
X (x ′)dx ′

}
(10.42c)

The terms in the curly braces are present only for an unbounded ocean. When there
is a coast, the expressions in braces are omitted and we have the equatorial Sverdrup
solutions (8.39) and (8.42) ofChap.8. In the absence of land, imposition of a radiation

http://dx.doi.org/10.1007/978-3-662-55476-0_8
http://dx.doi.org/10.1007/978-3-662-55476-0_8
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condition does not exclude the constant of integration (independent of x) that was set
to zero in the earlier chapter because we imposed u(x = XE ) = 0. However, initial
value experiments with a finite wind McCreary [3] show that, via the radiation of
Kelvin and Rossby waves, the ocean spins up to Sverdrup flow (10.42a). The spin-up
is not uniform in time; distant regions never come to a steady state in finite time since
all the flow is being driven by a finite patch of wind, and it takes time for waves to
carry the effects of the wind to remote areas where there is no wind.

McCreary’s Fig. 11a contrasts the Sverdrup flow for a bounded versus and
unbounded ocean. The coastal boundary condition is extremely important for this
mode [m = 1] even though it has a relatively minor effect on the solution as a whole
as in the previous section.

No y − z cross-section for a pure Sverdrup flow is shown because it is too boring
to need one. With boundaries, the sum over vertical modes can be done explicitly —
note that without the terms in braces, the Sverdrup flow is independent of baroclinic
mode number m — and one finds that the currents are confined entirely to the
surface mixed layer. If the wind has no curl, there are not even currents: baroclinic
pressure gradients everywhere balance the stress (again, provided there are coastal
boundaries). In an unbounded ocean, the extra terms make it possible to obtain an
Undercurrent – in the form of a δ-function just under the thermocline.

The conclusion of looking at these limits is that neither Sverdrup nor Yoshida
flow will do: the observed Undercurrent must be a sum of a few modes that are only
weakly damped in combination with an infinite sum of higher order modes that are
as viscous as if the sea were molasses.

McCreary’s Fig. 11b illustrates this transition from Sverdrup to Yoshida flow. The
m = 8 mode is a hybrid of the two; for McCreary’s viscosity, the e-folding scale for
the Kelvin wave is exactly equal to the width of the wind patch.

One noteworthy characteristic is the strong equatorial trapping of the m = 15
mode. The equatorial Rossby radius, 1/a0, is 380km for the m = 1 mode, far larger
than the observed width of the Undercurrent. For them = 15 mode, the same scale is
only 134km (with McCreary’s stratification profile). The narrowness of the Under-
current is therefore a direct consequence of the narrowness of the jets in the higher
baroclinic modes— and the fact that they, too, and not just the lowest mode or modes
are important to the Undercurrent.

10.6 Observations of Subsurface Countercurrents
(Tsuchiya Jets)

The Subsurface Countercurrents (SSCC’s) occur on the flanks of the thermostad,
the 150m-thick layer of water of very uniform temperature (about 13 C.) and salinity
(34.9 parts per thousand), which is found in the western Pacific between 150 and
300m underneath the surface in the band between 5 N. and S. (McPhaden [4]). These
jets are often called the “Tsuchiya Jets” in the literature because of Tsuchiya [11].
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Their speed is O(20 cm/s) and the transport is 0(5–10 sverdrups). Compared to the
0(1m/s) flow and 20–50 sverdrup transports in the EUC, the SSCC’s are rather weak.
[A sverdrup is one million cubic meters/second.] Nonetheless, the SSCC’s are stable
and well- defined flows and currents similar to them have also been identified in the
Atlantic. (They have not been found in the Indian Ocean, but because the dynamics
there is dominated by the monsoon, the Indian Ocean is very wierd in comparison to
the Atlantic and Pacific.) More important, the SSCC’s are subsurface features that
can only be explained with baroclinic models, so they furnish a useful test of our
understanding of the effect of density stratification on low-latitude dynamics.

In the central and western Pacific, the SSCC’s are driven deeper by the downward
tilt of the thermocline. This is a reminder that the “Subsurface” adjective in their
name is meant quite literally; they are always below the thermocline. In the west, the
SSCC’s are closer to the equator and contiguous or nearly contiguous with the EUC.
In the east, the SSCC’s are farther from the equator and are usually separated from
the EUC by thin bands of westward flow (extensions of the “Equatorial Intermediate
Current”, which is the westward flow underneath the EUC) as shown schematically
in Fig. 10.1. In the Tahiti-Hawaii Shuttle data, however, (which is mid-ocean, circa
153 ◦ W.), the EUC and the SSCC’s blend into one another.

10.7 Alternate Methods for Vertical Structure
with Viscosity

McPhaden’s [4] model of the SSCC’s is an analytical sum-over-vertical-modes sim-
ilar to McCreary’s; a fuller discussion is in McPhaden [12]. There are, however,
a number of important differences: (i) No boundaries (ii) Constant N 2, ν, and κ

[Brunt-Vaisala frequency, diffusion and thermal conduction coefficients] and (iii)
Newtonian cooling instead of vertical diffusion. The reason for the first restriction,
no boundaries, is that McPhaden’s solutions have the form

v(x, y, z) =
∫ ∞

−∞
dk exp(ikx)

∞∑
m=0

vn(k, y, z) (10.43)

where

vn(k, y, z) =
6∑
j=1

an, j (k) zn, j (z; k) ψm(ξ) (10.44)

where the six vertical structure functions z j are the linearly independent solutions
to the sixth order ODE (10.45) below and similarly for the other variables (plus a
contribution to u and φ from the Kelvin wave). The only way a series like (10.44) can
vanish for all y is if the coefficient of each Hermite function is 0. Since the integral
over k cannot normally be done in closed form, the condition that each um(x, z) = 0
at x = 0 or x = XE leads, even if we could somehow ignore the coupling between
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different latitudinal modes, to a set of linear equations in 6Nquad unknowns where
Nquad is the number of quadrature points used to perform the numerical integration
over k. Unfortunately, we cannot ignore the coupling; wemust solve a banded system
in which all the different modes are coupled, but now each row has O(24 Nquad)

unknowns instead of just 4.
Worse still, we probably do not have enough degrees of freedom in the vertical to

justify setting up such a system, never mind solving it. If, for example, we excited
only a single wavenumber k, or if the vn(z) were somehow independent of k (they
are not!), then we would have to choose the 6 numbers amj so as to make um(0, z)
vanish for all z. This is impossible except in degenerate cases. McCreary’s model
evades this problem by expanding u(x, y, z) in a complete, infinite set of vertical
modes first.

The second restriction, to constant Brunt-Vaisala frequency and constant damping
coefficients, is necessary so that the single equation for v – sixth order in z and second
order in x and y – will be constant coefficient in z, which is essential for applying the
method of separation-of-variables. The vertical structure functions are not those of
McCreary, which are the same as for an inviscid ocean of the same density structure,
but rather are the six linearly independent solutions of

zzzzzzz + E1 [(2m + 1)/L + k] zzz + ikE2 z = 0 (10.45)

where E1, E2, and L are constants defined in terms of N 2, K , A, andβ. For simplicity,
McPhaden imposes the lower boundary conditions as z = −∞ [another difference
fromMcCreary, who used a finite lower boundary] by discarding the three solutions
that grow with depth and keeping only the three, one quasi-geostrophic mode and
two viscous-dominated modes, which decay with depth.

The third restriction, which is to replace the usual thermal diffusion by a
Newtonian cooling, i.e.,

(KTz)z → −(K/D2) T (10.46)

where D is a constant with units of depth, is also necessary for separating variables.
In mid-ocean, far from boundaries, McPhaden’s model works fairly well, at least

for the EUC and SSCC’s. It is, however, inherently more limited than McCreary’s
because we cannot impose coastal boundaries, not even straight ones. Further, it is
more difficult to relate the structure ofMcPhaden’s model to the 1–1/2 layer concepts
we have been using throughout this work because McCreary’s vertical modes are the
same as for an inviscid ocean, and McPhaden’s are not. For this reason, we shall not
derive McPhaden’s model in detail.

It must, however, receive at leastmention in passing. First, it is successful for some
currents and second, it shows that there are alternatives to McCreary’s approach for
including viscosity in a separable, analytical modes.
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10.8 McPhaden’s Model of the EUC and SSCC’s: Results

McPhaden [4] forced his model using a steady wind stress with a Gaussian shape in
latitude and a sinusoidal shape in x with a wavelength of 20,000km. As noted in the
previous section, the model does not (and cannot) have zonal boundaries. The results
at the longitude of the maximum zonal wind stress are plotted in Figs. 5 and 10 of
McPhaden [4]. Note that because the forcing is symmetric about the equator, u and
φ must also be symmetric while v and the vorticity ζ are antisymmetric about y = 0.
Consequently, McPhaden has only plotted the solutions for the northern hemisphere.

The upper left-hand panel shows success! There is an Equatorial Undercurrent
(EUC) of about 120cm/s eastward sandwiched between surface westerly flow and
an Equatorial Intermediate Current (EIC) of about 5cm/s westward. The band of
eastward flow is not a single jet of circular cross-section but rather extends off the
equator. There is no band of westward flow separating the SSCC’s from the EUC as is
found in the western Pacific, but that is all right: the graphs are intended to represent
mid-ocean where the EUC and the SSCC’s blend smoothly into one another. The
region of deep eastward flow on the right of (a) is thus a credible model SSCC. It
shouldbenoted that a similar tongueof eastwardflowcanalsobe found inMcCreary’s
results.

A major flaw of the model, however, is that the SEC, the surface westward flow,
is ridiculously large. McPhaden notes that this is a consequence of using a constant
stratification and viscosity coefficient. McCreary’s model does not fail in this way
because he is able to include a surface mixed layer; the strong vertical viscosity of
the upper 75m reduces the SEC to a reasonable magnitude. [12] [unpublished thesis]
carried out some experiments with a strong near-surface viscosity (by modifying his
model) and found that it did indeed reduce surface currents without affecting the
flow in the deeper ocean.

As in McCreary’s model, the zonal pressure gradient is essential to the eastward
currents; again as in McCreary’s model, it is perfectly possible to obtain such a gra-
dient without coastal boundaries provided that the wind patch is finite (or oscillating
in x , as here). The model agrees well with the NORPAX Shuttle data where both are
negative, but the reversal below the core of the EUC is about 4 times weaker in the
model than in the data. Oops!

As expected, the velocities reveal the expected Ekman divergence at the surface,
but this is a strong flow confined to the upper 20m. At the level of the EUC, there is
a convergent flow towards the equator which is driven by the zonal pressure gradient
off the equator; this reverses at the depth of the SSCC because the pressure gradient
reverses, but v is too weak because φx is.

Why does the pressure field imply convergent flow at the EUC level? His figures
show clearly that the pressure gradient is very broad in latitude whereas the eastward
zonal flow is narrow. (The pressure is broad because the wind stress driving it is.)
It follows that at a latitude of 3 degrees, for example, the zonal velocity term in
the x-momentum equation is very small, but φx is not. The only term available to
balance the pressure is the Coriolis torque on the north-south flow, so the result is
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equatorward drift where the pressure gradient is negative and poleward, divergent
flow where the pressure gradient is positive.

McPhaden helpfully provides balance-of-forces graphs. It is in fact the normal
state of affairs in the ocean for Coriolis force to balance pressure gradient; only at
the equator do we get a non-geostrophic zonal flow driven directly by a zonal wind
stress.

The zonal flow in hismodel is in almost perfect geostrophic balance at all levels; at
480 m, the difference between f u and φy is less than the thickness of the curves. The
zonal momentum equation is more complex. At high latitudes (where high means
anything larger than 2 degrees) there is a balance between the pressure gradient and
the Coriolis torque as already explained. Nearer the equator, the Coriolis force is
small and the balance is between the pressure gradient and diffusion of momentum,
which reiterates the importance (unfortunately) of themomentumdamping for steady
zonal flows.

McPhaden offers the vorticity balance to explain the SSCC’s. Within two degrees
of the equator, he shows that there is a boundary layer in which downward diffusion
of cyclonic vorticity balances the poleward advection of planetary vorticity (β v).
The divergence term is negligible in this boundary layer because ( f wz) is forced
to vanish at the equator itself. Outside this boundary layer, the dominant balance of
forces changes: the diffusion is negligible and the advection of planetary vorticity is
balanced by vortex stretching.

This high latitude convergence tends to intensify the vertical temperature gradient.
Within two degrees of the equator, however, there is a compensatingmass divergence
with a maximum at about ±1.5 degrees of latitude. This only reduces the vertical
temperature a little, producing a thermostad-like area which is too weak and too
narrow (|y| ≤ 2 degrees versus the observed |y| ≤ 5 degrees). Nonetheless, thermal
current balance requires eastward flow on the flanks of this thermostad, i.e., the
SSCC. A contour plot of the vorticity shows that the latitudinal shear of the EUC is
the source of the cyclonic vorticity that diffuses downward to drive the divergence.

Because of the symmetry with respect to the equator, this vorticity is zero at
the equator itself. Consequently, the strongest divergence and the resulting eastward
flow occurs not at the equator but a couple of degrees away from it. Once the SSCC
is established, its off-equatorial location implies that the source of vorticity for the
deeper flow is considerably further from the equator than for the EUC, so the deep
SSCC is displaced further away from the equator than the part of the SSCC which is
just below the Undercurrent. Observations illustrated in his article show quite clearly
that the SSCC is displaced further and further from the equator as we go deeper. The
same trend is very much in evidence in the corresponding mid-ocean zonal velocity
contours for McCreary’s model.

McPhaden’s earlier [12] paper also used an alternative diffusion model in which
he obtained separability by adding two z-derivatives to both the momentum and
thermal damping, giving a biharmonic (fourth order viscosity) for the momentum
equations and an ordinary (second order) diffusion for the heat equation. The result
was qualitatively similar to McCreary’s [3, 6] model and to McPhaden’s [4] dif-
fusion/Newtonian cooling calculation. We can thus end this section on the positive
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note that linear calculations give an Undercurrent and contiguous SSCC’s for a wide
range of conditions. Coastal boundaries are not very important (in mid-ocean!), so
McCreary’s assumption of straight, north-south running coasts is not an important
defect except near land. McCreary andMcPhaden were both forced to assume rather
artificial forms for the damping in order to separate variables, but since three differ-
ent artificial forms all give the EUC/SSCC pattern, this is probably not too harmful
either.

10.9 A Critique of Linear Models of the
Continuously-Stratified, Wind-Driven Ocean

Despite their qualitative success, the McCreary/McPhaden models do have some
serious flaws. First, they fail near the coasts; sloping boundaries (McCreary) or
any boundaries at all (McPhaden) can only be included at the cost of separability.
Nonetheless, it is perfectly possible to numerically extend linear models to realistic
coastlines.

The second flaw is that both McCreary and McPhaden are obliged to force their
dissipation into a straitjacket. The former has wildly unrealistic density inversions
below the thermocline; the latter must employ a quite unrealistic constant Brunt-
Vaisala frequency and depth-independent damping. One could choose depth-variable
damping and mean density independently, but this generates a non-separable BVP
in y and z. Schneider and Lindzen [13] have done this for axisymmetric atmospheric
flows, but their method has not been applied to the ocean in a boundary-free, one-
zonal-wavenumber formulation like McPhaden’s.

Why has no one made these obvious linear extensions? Figure10.8, which shows
results of the three-dimensional numerical model of Philander and Pacanowski [14],
is part of the reason: the third major flaw of the analytical models is that they neglect
nonlinear effects. It is clear from the figure that the nonlinear terms are numerically

Fig. 10.8 Depth-latitude section at the east-west center of u for a numerical model employing a
basin 5000kmwide. The contour interval is 10 cm/s. Only a small part of the computational domain
is illustrated. Left linear case, instantaneous flow at day 300. Right nonlinear integration, average
of days 300–350. Sketched based on computations of Philander and Pacanowski [14]
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important; the intensity and shape of the nonlinear EUC are strikingly different from
those of its linear counterpart. The jet core is much narrower in latitude, but taller in
depth. In addition [not shown in our sketch, but clear in the plots of Philander and
Pacanowski which show the entire computational domain], the nonlinear SSCC’s
are separated from the EUC by bands of westward flow as is observed in the eastern
Pacific. The linear numerical calculation and the models of both McCreary and
McPhaden completely miss these regions of westward flow.

In consequence, the attitude seems to have been that if one had to lose the con-
ceptual power of independent, separable modes, then one might as well move on
to general, time-dependent, nonlinear numerical models instead of building equally
complicated but much more limited linear boundary value models.
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Chapter 11
Waves and Beams in the Continuously
Stratified Ocean

Abstract The equatorial ocean features deep jets that oscillate rapidly with depth.
One possible mechanism for creating these jets is the propagation of wind-driven
waves deep into the interior. However, the jump in density at the main thermocline
will reflect waves. Deep penetrating waves, on the other hand, will bounce off the
bottom. Using ideas borrowed from quantum scattering, vertical beams are analyzed
through a mix of theory and number-crunching.

“Ex umbris et imaginibus in veritatem” “From shadows and appearances into truth”

— Tombstone of Blessed John Henry Cardinal Newman

11.1 Introduction

11.1.1 Equatorial Beams: A Theoretical Inevitability

A classic laboratory experiment to illustrate the generation of gravity waves is to
oscillate a disk-and-rod in a tank of density-stratified water. The layering is produced
by making a dozen bottles of salt water of varying salinity. Each is added to the tank
slowly, a steady drip rather than a pour, so that each new, lighter layer does not
disturb the denser layers lying placidly below. The resulted stairstep density profile
is smoothed by patience, that is, by allowing sufficient time for diffusion of salt to
smooth the discontinuous jumps in density. Jiggled up and down at a controllable
frequency by an electricmotor, the oscillating disk-and-rod are a periodic forcing that
generates internal gravity waves. The forcing is resonant, and therefore generates a
large amplitude response, when the frequency of the oscillator matches the intrinsic
normal mode free oscillation frequency of gravity waves.

The result is that the response is dominated by vertically-and-horizontally-
propagating beams shown schematically in Fig. 11.1.

The angle of the beams is controlled by the frequency of the forcing relative to
the Brunt–Vaisala frequency. When the frequency is greater than the Brunt-Vaisla
frequency, the beams disappear and the response is localized in the neighborhood of
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Fig. 11.1 In this side view
of a tank of a stratified fluid,
a localized forcing, here a
disk on the end of an
oscillating rod, will generate
beams of internal gravity
waves. The double-headed
arrow shows the
up-and-down oscillations of
the rod

the disk, decaying exponentially wih distance away from the forcing. Mowbray and
Rarity [1] combined a detailed theoretical analysis with careful laboratory experi-
ments that generated half a dozen beautiful photographs of beams. Turner’s book
reprints some of their photographs as Fig. 2.7 of Plate II and makes some approxi-
mations to give a very readable analysis of beams [2].

When the frequency of the gravity waves is N cos(θ) where N is the Brunt–
Vaisala frequency, the particles osciilate along slanting planes which make an angle
θ to the horizontal. The physics is that of a frictionless particle accelerating down a
ramp (“inclined plane” in freshman textbooks) which makes an angle θ where θ = 0
is a horizontal ramp and θ = π/2 is a vertical ramp. The acceleration is reduced to the
gravitational constant g times sin(θ) because when the gravitational force is resolved
into components parallel and perpendicular to the ramp, only the component parallel
to the ramp, g sin(θ), accelerates the particles. Similarly the frequency of gravity
waves can bemuch smaller than the Brunt–Vaisala frequency if the particles oscillate
in nearly horizontal planes.

Seasonal and other periodic wind stress variations will repeat Mowbray and
Rarity’s lab experiment on a planetary scale.When the forcing is at the surface instead
of the deeps, the upward-radiating beams are absent and the “X-beam” is replaced
by a pair of beams with the shape of an upside-down letter “v” or an uppercase
Greek “Lambda”. Mowbray and Rarity and also Turner neglected Coriolis forces. It
therefore behooves us to understand beams in the equatorial ocean.

The principal observational focus of this discussion will be the vertically
oscillating deep jets or features discovered by Luyten and Swallow [3]. (It is now
thought that inertial instability ofmean jets is the primary generator of thesemotions.)

http://dx.doi.org/10.1007/978-3-662-55476-0_2
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However, theory (and the Mowbray and Rarity experiments) show that the trop-
ical ocean ought to be beamy, and the study of beams is therefore a Theoretical
Inevitability.

11.1.2 Slinky Physics and Impedance Mismatch, or How
Water Can Be as Reflective as Silvered Glass

A spring in the shape of a helical coil of wire is a popular children’s toy known in
America as a “Slinky”. For a high school audience, Slinkies are splendid illustrations
of wave physics. The helical springs support both longitudinal and transverse waves.
A shake of the wrist suffices to launch a wave pulse. The wave packets travel slowly
enough so as to be easily observed by eye, but not slowly so as inducee sleep. My
high school yearbook shows photographs of myself and other honor physics students
deploying very long slinkies in the hallways.

Our Slinkies were very long because some were actually two coils of different
stiffness joined end to end. The purpose of these double Slinkies was to illustrate
that the notion of a subsurface ocean mirror is not crazy.

“Mechanical impedance” is an engineer’s term for how much a structure resists
motion when a time-periodic force is applied. The impedance of a light spring is low,
meaning a small child can easily excite a big wave. A spring made of thick wire,
all else the same as for the light spring attached to it, has a large impedance. The
boundary between the thin and thick wire is a place of impedance mismatch, a point
where the wave propagation properties change.

A wave that is tall on thin wire cannot be tall on thick wire because much more
energy is required to make a wave of a given height on the stiff spring than on the
thin. Yet the wire cannot tear and energy and momentm must be consered.

The limit of an infinitely stiff spring is easiest to analyze because a very stiff spring
does not move at all, and the joining point becomes a rigid boundary condition, a
homogeneous Dirichlet boundary condition. The boundary does not move because
the incoming wave reflects as an outgoing wave of equal amplitude but opposite sign.
The two cancel identically at the interface for all time.

In the opposite limit of a perfect impedance match across the interface, that is, no
change in properties of the wave-transmitting material from one region to another,
the incoming wave propagates across the interface without change.

The most realistic situation is a finite change of impedance. As shown in the
schematic, Fig. 11.2, the incoming wave is partly transmitted and partly reflected.

This wave physics is not restricted to Slinkies. Who has not looked out a window
from the interior and seen his image reflected from the glass, superimposed on the
exterior view? The air-to-glass transition is also a jump in impedance.

Indeed, rigid boundaries are always unphysical because no boundary is perfectly
clamped. Fortunately, the fraction of transmitted wave may be so tiny that the math-
ematical accuracy of the rigid boundary condition approximation is very high. So-
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IncidentTransmitted

Fig. 11.2 A popular educational aid to illustrate partial reflection and partial transmission consists
of two long springs tied together; one of the pair is much stiffer than the other because it is made of
much thicker wire. Here, the stiff spring is on the left. Shaking the right end of the pair of springs
(“Slinkies” to American children) generates either transverse or longitudinal waves that propagate
leftward. (Only transverse waves are shown here.) The “impedance mismatch” between the two
springs implies that at the interface where the two springs are tied together, part of the incident
wave is reflected as a right-moving wave of the opposite sign, and part is transmitted to propagate
leftwards in the stiff, heavy spring

called “penalty” boundary conditions, which treat an island as a part of the ocean
with a very high viscosity, are often very useful for numerical modeling.

Thus, if wave-relevant properties of the medium such as the static stability vary
drastically, ocean water may be highly reflective without turning into concrete or
milk chocolate.

11.1.3 Shallow Barriers to Downward Beams

Sharp variations in the coefficients of a wave equation can reflect some or most of the
energy of an incident wave packet. This implies that the very rapid density variations
in the thermocline could stop wind-excited waves as surely as light bouncing off
polished silver. If this is in fact what happens, then studies of vertical beams in the
abyss are physicallymeaningless and surface forcing cannot explain the deep internal
jets. Gent and Luyten argued that this in fact is true: that the thermocline is a mirror
and that vertical beams are a figment of the imagination [4].

The same question was important in meteorology. Early work in atmospheric
dynamics and numerical weather forecasting made heavy use of rigid lid boundary
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Fig. 11.3 The Eady model is an idealized troposphere, 10–15km thick [left]. The static stability,
proportional to the Brunt–Vaisala frequency, jumps at the interface (right). The question mark is
over the equivalence of the two rather different scenarios: Does the tropopause behave as a mirror,
too?

conditions. It is obviously absurd, outside a science fiction novel, to imagine that the
tropopause is a rigid layer of glass or plastic.1

Nevertheless Erik Eady posed his famous model, the simplest for baroclinic insta-
bility, in a troposphere bounded by rigid upper and lower boundaries. Early numerical
models, limited to a handful of vertical levels, did the same. The true motive for the
rigid upper lidwas desperation: the growth rate of Eadymodes falls exponentially fast
as the rigid roof is (mathematically) moved upwards to infinity; a two-layer model
cannot implement a sponge layer nor a radiation condition for a multichromatic
spectrum of upward-propagating waves (Fig. 11.3).

Lindzen, Batten, and Kim (1968) showed, however, that the tropopause is as
transparent as glass to most waves [5].

11.1.4 Equatorial Methodology

The linear, analytical model of this chapter is the same as that employed in Chap.9;
the major difference is simply that we will allow the complex frequency ω to have a
real part, representing a periodic forcing, instead of merely the imaginary part that
is due to viscosity and thermal diffusion. The three major technical issues are (i)
defining “beam”, (ii) the ability of surface-forced waves to propagate through the

1In Isaac Asimov’sFoundation series, the galactic capital, Trantor, has a population of over a trillion
and is completely roofed-in. Even the highly imaginative Dr. Asimov would not have placed the
roof 10–15km above ground level!.

http://dx.doi.org/10.1007/978-3-662-55476-0_9
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spike of huge Brunt–Vaisala frequency at the thermocline and (iii) the structure of
narrow beams of waves propagating zonally and vertically through the ocean.

The statement that a localized surface forcing will excite beams just like the
Mowbray–Rarity laboratory experiment is a little lie. The experiment generated only
Coriolis-free gravity waves whereas the large-scale forcing in the tropical ocean will
excite a great diversity of waves. Strong dispersion will rapidly destroy much of
the coherence of the response. In contrast, the nondispersive Kelvin and weakly
dispersive long Rossby waves will retain their coherence.

Thus, when we talk of vertically propagating beams, we are implicitly focusing
on a wave packet in a particular latitudinal mode. The general linear solution will be
a superposition of many such mobile wave packets.

A related issue is an error analysis that up to now has heavily relied upon vertical
normal mode expansions. A coherent, vertically propagating wave packet can always
be decomposed into a series of eigenfunctions of the vertical structure equation,
but such expansions will converge slowly for beams and it is difficult to extract
much information or insight from the normal mode expansion. We must keep these
complications inmind aswe follow the rest of the discussion of vertically propagating
beams. Kelvin beams will do a “star-turn” in what follows.

Sharp variations in the coefficients of a wave equation can reflect some or most
of the energy of an incident wave packet as surely as armor plate. If this is in fact
what happens, then it implies that (i) the vertical beam studies of McCreary [6] and
Rothstein, Moore and McCreary [7] are physically meaningless and (ii) it is impos-
sible for surface forcing to explain the deep internal jets. However, the reflectivity of
the thermocline is sensitive to both the shape and strength of the thermocline and to
the vertical wavelength of the waves. Our first order of business will therefore be to
compute the reflection coefficient of a model thermocline. In the rest of the chapter,
we will then discuss ray paths and vertically propagating beams.

Although the discussion will focus almost entirely on reflection due to stratifica-
tion, shear layers can also reflect (Grimshaw) [8].

11.2 Alternate Form of the Vertical Structure Equation

The three fields u, v, and φ are all proportional to a vertical structure function z(z)
that is an eigensolution of

[zz/N 2(z)]z + λ z = 0 (11.1a)

subject to
zz(0) = zz(−D) = 0 (11.1b)

Unfortunately, the presence of the first derivative in (11.1a) is rather awkward; it is
much easier to calculate and interpret reflection coefficients for an equation without
a first derivative. Fortunately, the function G(z)which gives the vertical structure for
the vertical velocity w satisfies the simpler equation
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Gzz + λ N 2(z)G = 0 (11.2a)

with
G(0) = G(−D) = 0 (11.2b)

[Note that as in earlier chapters, we omit the subscript m denoting the baroclinic
mode number wherever it is possible to do so without causing confusion. Strictly
speaking, λ, z(z), and G(z) should all have subscript “m”.]

The proof of (11.1b) begins with the integral equation (2.23)

zz + λ N 2(z)
∫ 0

−D
z(z′) dz′ = 0 (11.3)

which is just the vertical integral of (11.1a). Since the vertical structure of w is given
by the integral of z(z) as shown in (2.20), (11.3) becomes

zz + λ N 2(z)w = 0 (11.4)

Equation (11.4) immediately justifies the boundary conditions (11.2b). If we now
differentiate (11.1a) with respect to z and then use (11.4), we obtain (11.2a).

11.3 The Thermocline as a Mirror

Gent and Luyten (1985) argued that the sharp increase of density in the thermocline
layer, which creates a large spike in a graph of N 2(z), is an almost perfect reflector of
wave energy except for very short waves which are destroyed by viscosity [4]. Their
model has the virtue of great simplicity, but it has some limitations, too. It seems
likely that enough energy does leak into the deep ocean to justify the discussion of
vertical beams later in the chapter. Nonetheless, the thermocline does reflect at least
some of the energy of the surface-excited waves, and it is important that we try to
get a feel for how this partial barrier alters the wave spectrum.

This issue of reflection-by-changes-in-static-stability first became important in
meteorology. Observations clearly show that most of what we think of as “weather”
stops at the tropopause, the thin layer where the static stability rapidly increases
from the modest value of the troposphere to the significantly larger stability of
the stratosphere. Most early weather prediction models therefore stopped at the
tropopause, imposing conditions mathematically equivalent to a rigid lid (usually
dp/dt = 0) either there or at p = 0 (for a model using pressure as the vertical
coordinate). The confinement-to-the-troposphere of the weather seemed to argue the
happy coincidence that the rigid upper boundary condition which was analytically
or numerically necessary was also conistent with both observations and wave theory.

Lindzen, Batten, and Kim (1968) showed, however, that the tropopause is as
transparent as glass to most waves [5]. To be sure, there is very little mass exchange

http://dx.doi.org/10.1007/978-3-662-55476-0_2
http://dx.doi.org/10.1007/978-3-662-55476-0_2
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between the troposphere and stratosphere, but small-amplitudewaves transmit energy
without transportingmass.Years later, this same controversywas argued for the ocean
thermocline.

Gent and Luyten solve (11.2a). This is identical with the Schroedinger equation
if we identify (λ N 2(z)) with (E − V (z) where E is the energy (the eigenvalue) and
V (z) is the potential energy, as a quantum mechanics scattering problem. They con-
sider several idealized models of the Brunt–Vaisala frequency, but for our purposes,
it will suffice to solve

Gzz + {
E − V (z)

}
G = 0 (11.5)

where
E ≡ M2

1 ; V (z) ≡ − M2
2 sech

2(z) (11.6)

with
z ≡ σ z; λ N 2(z) = {E − V } σ2 (11.7)

where E , σ, M1, and M2 are all constants.
The reason that it is possible to scale out the σ dependence and compute the reflec-

tion/transmission coefficients for (11.5) in closed form is that the quantummechanics
scattering problem ignores finite boundaries. Instead, one solves the problem on the
interval z ∈ [−∞,∞]. As |z| → ∞, the differential equation reduces to

Gzz + E G = 0 (11.8)

which, since E = M2
1 is a constant, has the asymptotic solution

G = α exp(iM1 z) + β exp(−iM1 z), z → ∞ (11.9)

G = γ exp(iM1 z) + δ exp(−iM1 z), z → −∞ (11.10)

where the α, β, γ, and δ are constants. Since our interest is how the spike in the
thermocline both reflects and transmits downward propagating waves, we demand
a downward propagating wave of unit amplitude (α = 1) and impose a radiation
condition below the thermocline, δ = 0, so that the only waves in the deep ocean
are those transmitted downward from the thermocline. Then |β|2 is the reflection
coefficient and |γ|2 is the transmission coefficient (Fig. 11.4).

Numerically, we choose boundaries at z = ±Ξ where Ξ is sufficiently large so
that the sech2(z) term is negligible away and impose the conditions

Gz + i M1 G = exp(iM1 Ξ)

(iM1)
z = Ξ (11.11a)

Gz − i M1 G = 0 at z = −Ξ (11.11b)



11.3 The Thermocline as a Mirror 257

Fig. 11.4 Schematic of the
Gent–Luyten Scattering
problem. The Brunt–Vaisala
frequency N 2 has a big spike
at the thermocline where the
density increases very
rapidly with depth. Note that
in the analogous quantum
mechanics problem, the
positive spike in N 2 is
equivalent to scattering off a
potential well
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The operator on the L. H. S. of (11.11a) annihilates the reflected wave, thereby
allowing β to be arbitrary (until we have solved (11.5)), but it forces α = 1. The
operator in the radiation condition in the deep ocean, (11.11a, b), annihilates the
downward-propagating wave, leaving γ arbitrary, but it imposes δ = 0 so that there
are no upward-propagating waves beneath the thermocline. Using second order finite
differences on (11.5) and one-sided differences on (11.11a) gives a tridiagonal matrix
problem which can be solved by band-Gaussian elimination in O(5N ) multiplica-
tions where N is the number of grid points (Lindzen and Kuo) [9]. A slower but
spectrally accurate algorithm is described in Boyd [10].

For the sech2 potential, it is possible to compute the reflection coefficient in closed
form as

R =
1 + cos

(
2π

√
M2

2 + 1/4

)

cosh(2πM1) + cos

(
2π

√
M2

2 + 1/4

) (11.12)
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Because of the cosine factors, R is a rather complicated oscillatory function of both
M1, the strength of the Brunt–Vaisala frequency in the deep ocean, and M2, which
measures the intensity of the spike in N 2 at the thermocline.

This same scattering problem – with the sech-squared profile and the analytic
reflection coefficient — was solved by Mied and Dugan [11, 12] for nonrotating
gravitywaves. They give some excellent perspective plots of the reflection coefficient
as a function of both parameters. Another good reference from a quantummechanics
viewpoint is Morse and Feshbach (p. 1657) [13]; the problem was first solved by a
physicist namedEpstein in 1930 for the scattering of electromagneticwaves.Analytic
calculations of R are also possible when the profile is generalized so that the Brunt–
Vaisala frequency asymptotes to different constants above and below the thermocline.

Fortunately, one simplification of this messy two-parameter reflection coefficient
is that when the scale of the wave becomes small in comparison to the width of
the Brunt–Vaisala frequency peak, (11.5) can be solved by the WKB approxima-
tion. This predicts that the reflection coefficient is zero to all orders in the relevant
small parameter, which is the ratio of the slow variation of the “potential” to the fast
variation of the wave phase (equal to the local wavelength divided by 2π.) (Hyperas-
ymptotic methods show that the tiny reflection is proportional to the exponential of
the reciprocal of the small parameter [14–16].) This short wavelength limit is math-
ematically equivalent to M1 >> 1; (11.12) then shows that we can make a stronger
statement. Because of the hyperbolic cosine factor in the denominator of (11.12),
the reflection coefficient decreases exponentially as M1 increases. A more refined
hyperasymptotic WKB treatment, which requires locating “turning points” in the
complex z-plane, shows that this is in fact a general result: for any smooth potential,
the reflection decreases exponentially fast as the wavelength decreases.

Unfortunately, for small M1, the WKB approximation cannot be justified. How
small must M1 be before the “potential well” generates a significant amount of
scattering? The key physical parameter is the ratio of the thickness of the “potential
well” to the asymptotic wavelength. If we (arbitrarily) define the thickness of the
sech2(z) to be the distance between the two depths where the potential has decreased
to 1/2 of its maximum value, which is 1.76, then noting that the vertical wavelength
is 2π/M1, we can define the thickness/wavelength parameter

q = 0.28M1 ≡ thickness/wavelength (11.13)

Although R itself is a function of both M1 and M2, we can put an upper bound
on R which is a function only of M1, i.e., of the vertical wavelength outside the
thermocline zone. Replacing the cosine functions in (11.12) by ±1, whichever leads
to the largest value of R, gives the upper bound:

R ≤ 2/ {cosh (2πM1) − 1} ∀ M1, M2 (11.14)

The bound is graphed in Fig. 11.5.
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Fig. 11.5 Upper bound on
the reflection coefficient R
from a sech-squared
potential. The reflection
coefficient bound is
analytically given by
R ≤ 2/ {cosh (2πM1) − 1}

Upper bound on Reflection Coefficient
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Wesee that evenwhen the thickness of the potential is only 1/10 that of the asymp-
totic vertical wavelength, no more than half of the incident energy can be reflected.
With the parameters Gent and Luyten (1985) employ (an asymptotic Brunt–Vaisala
freqency squared of 10−5s−2, a thermocline half-maximum-to-half-maximum thick-
ness of 88m), we conclude that all waves with wavelengths shorter than 800m —
equivalent depths greater than 1.8cm — will pass freely through the thermocline.

For longer wavelengths, reflection may occur, but the reflection coefficient is
oscillatory. However, both M1 and M2 are implicitly proportional to the equivalent
depth so that they go to zero together as the vertical wavelength increases to give

R ≈ 1.0, M1, M2 << 1 (11.15)

Figure11.6 gives the reflection coefficient as calculated by Gent and Luyten as a
function of equivalent depth. Table11.1 shows the equivalent depths for the first ten
baroclinic modes of the ocean along with bound on the reflection coefficient as given
by (11.14). Where the bound is larger than 1 (which is impossible), we have replaced
the limit given by (11.14) by 1, that is to say no bound at all.

Collectively, the figure and table show that the lowest few modes have such large
asymptotic wavelengths that they can be strongly reflected by the thermocline — or
not, depending on the precise vertical wavelength and strength of the spike of the
thermocline. However, the equivalent depths for near-perfect transmission are in the
range of m = 4 and higher; the first three modes will be strongly reflected.

We have gone through the sech2 model at some length to show that the reflection
is characteristic of the wave scattering generated by a narrow region of rapid change,
even if that change is described by a very smooth analytic function. Figure11.7
shows that if we replace the idealized profile by an observed profile, prepared by
K. O’Neill from Indian Ocean data, we obtain strong reflection even for asymptotic
wavelengths as short as 500m (= equivalent depth of 1cm = baroclinic mode number
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Fig. 11.6 Left two profiles of Brunt–Vaisala frequency; the thick solid curve is typical of the
tropical ocean while the thin dashed curve is representative of the middle latitudes. Right plot of
the ratio of the transmitted energy to the incident energy as a function of equivalent depth for the
equatorial profile (solid) and middle latitude N 2(z) (dashed). The labels “1st”, “2nd”, etc., mark
the equivalent depths of the lowest few baroclinic modes. Redrawn after Gent and Luyten

Table 11.1 Bounds on reflection coefficients. The equivalent depths for the first four baroclinic
modes for the Atlantic are taken from Moore and Philander [17]. The remaining 6 were estimated
by assuming that the equivalent depths decrease as l/m2. The asymptotic vertical wavelengths were
computed using N 2 = 10−5/s2 (far from the thermocline) to facilitate comparison with Gent and
Luyten (1985). The bound Rmax is defined by (11.14). Lv is the vertical wavelength. The parameter
q, which is the ratio of thickness of the thermocline to the vertical wavelength, is defined by (11.13)

m h (cm) Rmax LV (m) q

1 60 1. 4900 0.018

2 20 1. 2800 0.031

3 8 1. 1800 0.049

4 4 1. 1250 0.07

5 2.5 0.75 1000 0.088

6 1.7 0.43 820 0.11

7 1.3 0.29 720 0.12

8 1.0 0.19 630 0.14

9 0.8 0.13 560 0.16

10 0.64 0.08 500 0.18
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Fig. 11.7 Left observed N 2 profile from the Indian Ocean (dashed) and the idealized equatorial
profile used in the calculation of the previous graph (solid). Right Transmission coefficient versus
the equaivalent depth for the observed Indian Ocean Brunt–Vaisala frequency (dashed) and for the
equatorial profile of the previous figure (solid). After Gent and Luyten

8) because of scattering from the little wiggles and other small scale features with a
scale of a few meters superimposed on the main peak with a width of 50–60 m. For
comparison, the sech2 profile and the corresponding transmission coefficient are also
shown in Fig. 11.7 as dashed curves. Although the two Brunt–Vaisala frequencies
look rather similar to the eye, the transmission coefficients bear not the slightest
resemblance to one another. This clearly shows the paramount role of small-scale
features in reflecting downward-propagating waves.

Gent and Luyten [4] conclude: “For realistic buoyancy profiles, very little, about
10%, of the surface energy flux reaches the deep equatorial oceans”. This has several
implications.

First, they assert “the observed, very low frequency, small vertical scale deep jets
cannot be explained by linear wave theory either as caused by surface forcing or by
instability in the main thermocline”. An alternative theory for the Luyten–Swallow
features, inertial instability, is discussed in the Chap. 13.

Second, WKB analysis, which is widely used by observationalists to interpret
wave data, must be employed with great caution. Standard WKB predicts that a
“potential well”, i.e., variations in N 2 that never change the sign of N 2, can never
cause any reflection whatsoever. (As noted above, it is possible to compute the tiny
reflection coefficient by applyingWKB on paths in the complex plane, but this shows
that the reflection coefficient is exponentially small in the thickness/wavelength ratio;
in other words, the reflection coefficient always decays exponentially fast as the

http://dx.doi.org/10.1007/978-3-662-55476-0_13
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wavelength decreases). It follows that for those equivalent depths or vertical wave-
lengths where in fact strong reflection is occurring, the WKB approximation is hor-
ribly wrong. In particular, it overestimates the vertical energy flux into the ocean.

In addition, it also will give very poor fits to wave dispersion curves. The WKB
analysis predicts only downward phase propagation; the numerical solution shows
that the mode may be more aptly described as a vertical standing wave. The tiny
residual phase propagation may badly underestimate the phase velocity of the two
component waves, one propagating downward and one upward, which superpose to
form the standing wave.

Thus, the Gent–Luyten paper will blow up several major lines of inquiry, if true.
But is it right?

11.4 The Mirror-Thermocline Concept: A Critique

TheGent–Luytenmodel is very simple and certainly raises some important issues, but
it does have a number of defects. The first is that it calculates reflection/transmission
coefficients on the unbounded interval z ∈ [−∞,∞]. The real ocean, however, is
bounded, and the boundary is extremely close to the thin layer which is causing the
scattering.

As explained in Sect. 10.3, both the numerical and analytical calculations of scat-
tering coefficients assume that the asymptotic solution, far from the “potential well”
or thermocline, is a sinusoidal plane wave. However, this is only the mathematical
posing of the problem. Physically, we must imagine that the asymptotic solution is a
wave packet, that is to say, a planewavemodulated by an amplitude factor A(z, t) that
varies slowly with position and is exponentially small for sufficiently large distances
away from the center of the wave packet:

G(z, t) = A(z, t) exp(i Nλ1/2z − i ω t) (11.16)

The shape of A(z, t) depends on the initial conditions and is arbitrary except for
the requirements that (i) A(z, t) varies slowly compared to the “carrier wave”
exp(i Nλ1/2z − i ω t) and (ii) is exponentially small for large |z − cgroupt | so that
the wave packet is really a packet (see further discussion in Chap. 17 for envelope
solitary waves.)

If A(z, t) varies sufficiently slowly with z, then all reflection/transmission of the
packet is determined entirely by the complex exponential in (11.16), and the exact
shape of A(z, t) is then totally irrelevant. To put it another way, if we compute the
Fourier transform of (11.16), the effect of the “envelope” factor A(z, t) is to smear out
the spectrum, which for a simple plane wave is a δ-function spike at k = Nλ1/2, into
a peak of finite width and height. However, as A(z, t) becomes broader and broader,
the peak in the Fourier spectrum becomes narrower and narrower. If we calculate
the transmission/reflection coefficients as outlined in the previous section for each of
the components of the peak in vertical wavenumber, we find that if the peak of N 2 is

http://dx.doi.org/10.1007/978-3-662-55476-0_10
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sufficiently narrow, then R(vertical wavelength) is approximately the same for all of
them. However, we can make the Fourier spectrum as narrow as we want by taking
the “envelope” function A(z, t) to be sufficiently broad in z. We can then speak of a
single reflection coefficient for the wave packet as a whole and ignore the envelope
function in calculating that reflection coefficient by the method explained above.

This may all seem a rather long-winded digression. However, since no experi-
mental or observational configuration is really infinitely long, the substitution of the
wave packet for an infinitely long plane wave is absolutely essential for the concep-
tual reasonableness of the scattering problem. A wave packet can reflect, but a plane
wave extends to infinity in both directions and simply is.

However, the thermocline is only about 75 m below the surface of the equatorial
sea and the shortest wave in Table11.1 is 500 m in wavelength. It is not possible to
meaningfully insert a wavepacket of such longwaves into such a short space between
the sea surface and the thermocline. Particle physicists do not have this problem; even
a cyclotron a few centimeters in diameter has a scale enormous in comparison to the
size of an atomic or nucleonic potential well. Wind-driven waves in the equatorial
ocean, however, do not constitute a properly-posed unbounded scattering problem.
We really need to consider the effects of the upper boundary.

The first effect of the boundary is that the thermocline variations in N 2 extend
all the way to the surface. There is no interval between the surface and thermocline
where one can approximate G(z) as a plane wave. The whole concept of a reflection
coefficient is rather poorly defined without such a layer where the wave tends to a
simple, analytic form.

Even if we ignore this difficulty, we must consider the effects of re-reflections.
Since the upper boundary condition is w = 0, i.e., a rigid lid, the sea surface is a
mirror, a perfect reflector. Consequently, any wave which is reflected by the thermo-
cline will need travel upward no more than a hundred meters before bouncing off the
sea surface. If, for example, we pretend that the scattering problem is well- defined
and that we calculate a transmission coefficient of only 25%, the remaining 75% of
the incident energy will quickly reflect off the top of the ocean. Then 25% of that,
or 18.75% of the initial energy, will penetrate the thermocline on the rebound, so to
speak. An additional 14% of the initial energy will enter the deep ocean after two
reflections from the thermocline and two from the surface. Viscosity will ultimately
limit the effectiveness of this repeated reflection process, of course, but after two
reflections, more than 57 % of the surface-forced energy has reached the deep sea in
spite of a reflection coefficient of only 25 %.

It is worrying enough that the reflection coefficient is not well defined and that
it is a significant underestimate of the energy that actually penetrates the deep, but
there is still more left out: the forcing that excites the wave in the first place. Implic-
itly, the Gent–Luyten theory supposes the energy is input directly at the surface so
that one need only solve an unforced, homogeneous differential equation with an
inhomogeneous upper boundary condition. In reality, the turbulent stresses carry
the momentum transferred from the wind throughout the whole depth of the mixed
layer. The earliest study of wind-driven equatorial motions, Lighthill (1969), in fact
distributed the wind stress as a body force acting on the whole of the mixed layer
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[18]. This is obviously crude, even though we don’t understand the dynamics of the
turbulent transfer well enough to do much better, but Lighthill’s artifice serves as a
metaphor for what is certainly reality: that the forcing extends deep into the mixed
layer, and that one should not be solving a homogeneous wave equation until one is
quite far down.

The “equatorial beamers”, discussed in later sections, are naturally unhappy with
the Gent–Luyten paper because it would put them out of business. Moore and col-
laborators have recalculated the reflection coefficients when the forcing is a body
force extending below the surface into the region of the spike in N 2. An extended
forcing layer magnifies the reflection coefficients by a factor of 2–5 times compared
to a forcing limited to z = 0. It is obviously a lot easier for forced waves to penetrate
the barrier of the thermocline when the forcing itself, like a Trojan horse, extends
halfway into that barrier. Themodel of Rothstein et al., which we shall discuss below,
allows for variable N 2, and they do obtain interesting surface-driven motion in the
deep sea. Their model does include both viscosity and the proper boundary con-
ditions, so it has more credibility than the idealized quantum mechanics scattering
problem.

Another issue is that it is difficult to justify the statement “deep jets cannot be
explained ... by instability in the main thermocline” in the abstract of their paper
when they have not in fact solved any sort of a stability problem.

Finally, there is the issue of choosing a propermodel thermocline.Gent andLuyten
note that a smooth profile like their idealized sech2 is probably a proper choice
for annual forcing while the observed profile analyzed by O’Neill is appropriate
for calculating the reflection of higher frequency waves. The reason is simply that
wiggles and bumps in the N 2 profile that have a short scale in space also probably
have a short persistence in time, too. This clouds the whole issue considerably.

A number of authors have in fact considered the propagation of waves (usually
non-rotating gravity waves, for simplicity) through a Brunt–Vaisala frequency pro-
file that consists of a constant plus a fluctuating random component. Examples are
McGorman and Mysak (1973), and Tang and Mysak [19, 20] and Mysak’s review
[21]. Their conclusions, obtained through two rather different methods, would take
us too far afield to derive, but the punchline is that the mean wave field decays expo-
nentially as it propagates through the thermocline because of repeated scattering by
the small-amplitude, random inhomogeneities in the density. It would be very useful
to repeat this sort of calculation for forced planetary waves in the equatorial ocean
if one could obtain data on the spectrum of the Brunt–Vaisala fluctuations and allow
for the finite boundary effects and the distributed forcing.

The overall conclusion is that the Gent–Luyten paper has asked an important
question which equatorial oceanography must continue to address.
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11.5 The Zonal Wavenumber Condition for Strong
Excitation of a Mode

The explicit mode-by-mode solution for McCreary’s model is given in Chap.10, and
will not be repeated here. It is important, however, to recall that all the terms are
proportional to integrals of the form

I ≡
∫ x

L
X (x) exp(−ikx) dx (11.17)

where X (x) gives the x-dependence of the wind-stress. Strictly speaking, k, L , and
I should all have double subscripts to denote the baroclinic and latitudinal mode
number, but we shall omit them in this section for the sake of notational simplicity. It
is difficult to make general statements about (11.17), but the lower limit L is always
±∞. A sense of the magnitude of I can be obtained by taking the other limit to
be infinite also, which converts (11.17) into the Fourier transform X(k) of the wind
stress.

A well-known general property of Fourier transforms is the “Heisenberg Uncer-
tainty Principle”. This states that if x is the characteristic length scale of X (x) —
in our case, it will be the width of the wind patch, assuming that the wind stress is
smooth— andΔk is defined to be the width of the Fourier transform X(k), i.e., X(k)
decays rapidly for |k| ≥ Δk/2, then the two widths are related via

Δx Δk ∼ 2 π [Heisenberg Uncertainty Principle] (11.18)

A good discussion of this principle in quantum mechanics (where the wavenumber
k is interpreted as the momentum) is given in Merzbacher [22].

This principle implies that high zonal wavenumbers will not be excited by a wind
patch of width Δx = 5, 000km. In words,

|k| =
√
k2r + k2i ≤ 2π/Δx (11.19)

is a necessary condition for a mode to strongly respond to the wind.
McCreary provides a graphical interpretation of this condition. His lower axis is

k divided by the baroclinic mode dependent scale factor a0 so that the thin slanting
curves, which show the dispersion relation for various latitudinal modes including
both Rossby and Kelvin waves, are correct for all vertical modes. The possibility of
nondimensionalizing each baroclinic mode so as to eliminate λ (or E) as an explicit
parameter implies that the shape of each dispersion curve is independent of the
baroclinic mode number n; one curve describes all Kelvin waves provided that we
appropriately rescale k and σ for each mode.

The one complication that we cannot evade is that if we drive the motion by
forcing at a fixed dimensional period — a year, for example, then the corresponding
nondimensional values of σ will be different for each baroclinic mode.

http://dx.doi.org/10.1007/978-3-662-55476-0_10
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The Kelvin waves of the first 20 baroclinic modes lie between the crosses, but
only the first four latitudinal mode 1 Rossby waves and only the lowest one or two
baroclinicmodeRossbywaves of latitudinal modes 3 and 5 can strongly couple to the
wind. For the latitudinal mode number 5 Rossby mode, it is rather silly to talk about
“vertical beams” because it is a good approximation to represent the whole of that
part of the solution which involves this Rossby wave as being in the first baroclinic
mode alone. Consequently, for the high latitudinal mode number Rossby waves, one
should talk about “vertical modes” rather than vertical beams. The behavior of these
latitudinalmodes in a baroclinicmodelwill differ little from that of the corresponding
wave in the 1–1/2 layer, which forced all the energy to be in the first baroclinic mode.

For the Kelvin waves, however, it is a rather different story. The 1–1/2 layer model
is amuch less satisfactory representation ofKelvinwaves of annual period because so
many waves of this species are strongly excited by the wind, but completely filtered
from our earlier model. It is difficult to visualize exactly how so many contributions
from so many different modes add up if we stick with the discrete series representa-
tion. It is useful to pretend that the distribution of vertical wavenumber is continuous
and this is the approach taken in later sections; this makes it possible to identify
Kelvin wave beams propagating down into the deep ocean.

The topic of equatorial beams is a relatively narrow one in the sense that we will
be concerned almost entirely with beams of Kelvin waves and n = 1 mode Rossby
waves. The higher Rossby waves have very small amplitude in the higher baroclinic
modes. The same is true of gravity waves. McCreary’s figure shows that beams are
also confined to low frequencies. For a forcingwith amonthly period, only the gravest
Kelvin mode will be strongly forced, and no Rossby waves at all. There is also a
spectrum of mixed Rossby-gravity waves of intermediate m which can be strongly
excited, but these all have m > 10, and thus would be fairly strongly damped by
viscosity, and only that part of the zonal wind stress which is antisymmetric about the
equator (or the symmetric part of themeridional stress) can force them.Consequently,
we shall only be interested in exploring equatorial beams for periods on the order of
a year or longer.

Note that we have been implicitly assuming that the wind stress — at least the
annual component of the wind stress — is a smooth function so that Δx is the width
of the wind stress. If the wind patch is highly oscillatory or has a lot of small scale
structure, thenΔx in the Uncertainty Principle would have to be taken to be the scale
of the variability of the stress, even if the total width of the stress were much larger.
Such variations would excite a much broader range of wavenumbers than indicated
in McCreary’s graph. However, it is also true that low frequency motions generally
have much less small-scale spatial structure than high frequency motions. In any
event, we lack the data to improve much upon the cosine wind patch.
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11.6 Kelvin Beams: Background

The two pioneering articles on equatorial beams are McCreary [6] and Rothstein,
Moore, andMcCreary [7]. Although theMcCreary paperwas published first, we shall
begin with Rothstein et al. because their model is simpler, and addresses fundamental
issues rather than details. Their paper concentrates on Kelvin waves only whereas
McCreary also discusses beams of Rossby modes. Their work is further restricted in
that they do not include side boundaries, but instead use a model ocean 50,000km
wide (sic!). McCreary describes the bottom and side reflections of beams.

The Rothstein et al. model is almost identical to McCreary’s model of the Under-
current except that (i) the forcing frequency is taken to be (σ = 2π/(one year) instead
of 0 (ii) there are no coastal boundaries and (iii) the wind stress is applied as a body
force over a mixed layer 50m thick instead of being applied as a surface boundary
condition on ∂u/∂z and ∂v/∂z. The first change does not alter the mathematics at
all; it merely adds a real part to the complex frequency ω that we carried throughout
our calculations in Chap.10 anyway. The alteration in the stress implies that

τm = (τ0/H)
∫ 0
−H zm(z) dz∫ 0

−D zm(z)dz
(11.20)

where H is the depth of the mixed layer. The corresponding coupling constant in
McCreary [23] and Chap.2 replaced the numerator integral (and 1/H ) by zm(0).
This avoids Gibbs’ phenomenon as discussed earlier; since the stress is now an
inhomogeneous term in the Navier-Stokes equations, it is possible to take uz = vz =
0. In either case, the wind stress provides inhomogeneous terms in the set of shallow
water wave equations for each mode, so none of our equations are changed except
(11.20) itself.

Let cgx and cgz denote the zonal and vertical group velocities. Standard ray theory
then implies that θe, the angle that the ray paths make to the horizontal is given by

tan(θe) = cgz/cgx (11.21)

The dispersion relation for Kelvin waves is

σ = k/λ1/2 = k N / m̃ (11.22)

where the vertical wavenumber m is given by

m̃ = N λ1/2 (11.23)

Equation (11.23) is exact for constant Brunt–Vaisala frequency N , but it is also true
in the sense of a WKB approximation to the vertical structure Eq. (11.2a) even when
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N 2(z) is varying slowly with depth. The zonal and vertical group velocities are given
by the k and m derivatives of G. Performing the differentiations gives

tan(θe) = −k/m̃ = −σ/N [beam angle] (11.24)

for waves with downward group velocity and upward phase velocity. Like ordinary,
non-rotating gravity waves, Kelvin waves have vertical group and phase velocities
which are of opposite signs. Because Kelvin waves are nondispersive with respect to
zonal wavenumber (but not with respect to m̃!), the zonal group and phase velocities
are equal.

The lines of constant phase in the x − z plane have a slope given by for any waves,
regardless of their dispersion relation, by

tan(θp) = −k/m̃ (11.25)

Comparing (11.25) with the first form in (11.24), we see that θe = θp for all k and m̃:
the lines of constant phase are parallel to the beams. Put another way, this implies
that we will not see variations along the beam, but only perpendicular to it.

This happy coincidence implies that the beams will show up clearly no matter
what quantity we choose to graph. The contours of all quantities will run parallel to
the beam; large values mark the core of the beam.

It is important to observe that the conclusion θe = θp is true for Rossby waves as
well. Since Rossby beams exist only for very low frequencies, we can legitimately
make the “long wave” (alias “latitudinal geostrophy”, alias “low frequency” approx-
imation). This gives a dispersion relation identical to that for the Kelvin wave except
that a numerical factor of +1 is replaced by −1/(2m + 1). Since this numerical
factor does not change the dependence of the frequency on k and m, everything else
follows just as for the Kelvin wave. Only the sign and slope of the beam and phase
lines are altered:

tan(θe) = tan(θp) = (2m + 1)σ/N
[Rossby waves of latitudinal modem;

downward group velocity]
(11.26)

Note that since Rossby waves carry energy westward as well as downward, and since
the R. H. S. of (11.26) is very small, the actual slopes are approximately given by
θe ≈ π − |tan(θe)|where the tan(θe) is used as a shorthand for the R. H. S. of (11.26).

The slopes are extremely shallow: with N 2 = 0.005/s2, which is about right for
the deep ocean, the Kelvin beams sink only 400m in a distance of 10,000km, the
width of the Pacific Ocean. This is the reason for the artificial 50,000km ocean of
Rothstein et al. (1985): without coastal boundaries to reflect the beams, the Kelvin
waves can reach the 2000m level, just halfway to the bottom, only by traveling a
zonal distance greater than the circumference of the earth! Rossby waves travel at
steeper angles, but them = 1 Rossby beam still sinks only 1200m in a zonal journey
of 10,000km. We conclude that reflections from coasts are extremely important, but
for the moment will postpone a discussion of their role.
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11.7 Equatorial Kelvin Beams: Results

Figure11.8 shows the Kelvin beam for the benchmark case: the mixed layer depth
(which is always also the depth of the “body force” exerted by the wind on the water)
is 50 m, the Brunt–Vaisala frequency is a constant 0.005/s, and there is no viscosity.
Because the beam slope is so small, the plot is 25,000km wide in x — double the
width of the real Pacific. The real part of the complex-valued zonal energy flux
is graphed. Figure11.9 illustrates the contributions of each mode to the vertically
integrated zonal energy flux.

The beam is clear and well-defined, but its latitudinal extent L is wider than that
of the wind patch,Δx . Figure11.10 is a schematic which helps to explain why. Since
the wind stress is applied as a body force throughout the whole mixed layer, all of the
shaded rectangle in the diagram serves as a source of waves. In addition, a ray which
is emitted up from the lower right hand-corner of the box, as denoted by the arrow,
will reflect off the sea-surface and generate a downward-propagating ray that marks
the eastern limit of the beam. We must always remember that while the zonal group
velocity of a Kelvin wave is always eastward, a forcing source within the ocean will
generate Kelvin waves with vertical group velocities of both signs. The diagram thus
predicts

Fig. 11.8 Kelvin beam
along the equator. The
drawing is a schematic, but
the slope is about right for an
ocean of constant
N 2 = 0.000025s−2.
Contours of �(uφ∗)
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Fig. 11.10 Schematic of the geometry of a beam. H is the depth of the mixed layer; since the
forcing is a body force over the entire depth of the mixed layer, this is also the depth of the forcing
reigon.Δx is the width of the wind patch. The forcing region, a rectangleΔx × H , is shaded.wzonal
is the longitudinal width of the beam, which is wider than the wind patch for reasons explained in
the text. Hbeam is the vertical thickness of the beam. θe is the angle of the beam with respect to the
horizontal

wzonal = Δx + 2Harctan(θe) ≈ Δx + 2HN/σ (11.27)

Hbeam = wzonal tan(θe) ≈ Δσ/N + 2H (11.28)

where wzonal is the east-west wind of the beam. Thus, the beam width is sensitive
to the width of the mixed layer as well as to that of the wind patch. The apparent
narrowness of the beam on the unrealistically large scale of Fig. 11.8 hides the fact
that beam is more than 5,000km across, wider than the whole of the continental
United States.

Figure11.9 illustrates the amplitudes (in terms of zonal energyflux) for the vertical
modes. The spectrum is dominated by intermediate mode numbers with a maximum
aroundm = 10 and an exponential fall-off for higherm with almost no contributions
from m > 35. The reason why intermediate m are important is that for an annual
period, σ/N is so small that even with a broad wind patch, the vertical extent of
the beam T is only a couple of hundred meters. This is small in comparison to the
depth of the ocean, so many vertical modes are necessary to represent the narrow
beam. It is not obvious, however, why the m = 1 mode has a very small amplitude
in comparison to m = 10 as is true of most Fourier expansions, even for narrow
functions. This is what the graphs show, however.

Increasing the depth of the mixed layer broadens the beam (i.e., increases both
wzonal and Hbeam) and the peak in the spectrum shifts to smaller m. Halving the
mixed layer depth to 25 m broadens the spectrum and also shifts the peak to largerm
(around m = 12). The effects are not dramatic, however; wzonal and Hbeam and the
beam spectrum are all primarily determined by the width of the wind patch Δx with
a weaker sensitivity on H .

The viscosity is a far more significant parameter. Figure11.11 is a summary of
many cases analyzed in detail by Rothsstein, Moore and McCreary, to which we
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Fig. 11.11 Schematic of the
effects of strong viscosity on
Kelvin beams. Black
contours small or zero
viscosity. Red dashed same
isolines with large viscosity

width

0m

500m

1km

10,000 km

leave the details. Note that strongly viscous beams are localized near the surface.
Dissipation, aswell as impedancematching, can confine equatorialwaves to a shallow
surface layer. Philander and Pacanowski [24] used large viscosity and provide further
illlustrations of surface-localized viscous beams.

Note also the shallowness of the beam. Although the domain is three times wider
than the Pacific Ocean, the graph shows only the upper quarter of the ocean. It is
likely real beams bounce off continental sidewalls before striking the bottom except
in shallow parts of the oceans. This shallow angle of descent is a strike against
simple beam theories. More realistic theories must incorporate sidewall reflections,
more accurate models of wind stress forcing, and so on. Dynamic oceanographers
must tolerate a messiness, an untidiness, that is not present in the crystallinity of
general relativity or particle physics, which are very hard, but untroubled by the
fractal unpredictability and microstructure of the ocean edges.
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Chapter 12
Stable Linearized Waves in a Shear Flow

Abstract Instability is not the only trick of waves interacting with mean flows.
Equatorial waves may be refracted by the currents and absorbed at critical surfaces
where the phase speed matches the mean current. Atmospheric sciences pioneered
such studies in the 60s; here, similar perturbative and arithmurgical methods are
deployed in the ocean. Linearized about a mean flow that varies with both latitude
and depth, the dynamics can be reduced to a single second order partial differential
equation of mixed elliptic-hyperbolic type. This can be solved numerically by finite
differences accompanied by sparse direct eliminationmethods. (Iterativemethods are
unreliable because the equation is of mixed elliptic-hyperbolic type.) The numerical
computations are credible if care is taken near the critical surfaces where the mean
flow matches the phase speed of the waves. The same wave-in-bivariate-mean-shear
problems can also be attacked analytically by multiple scales perturbation theory.
The horrendous algebra usual to this approach is enormously reduced by invocation
of wave-mean flow conservations laws.

Because philosophy arises from awe, a philosopher is bound in his way to be a lover of
myths and poetic fables. Poets and philosophers alike being big with wonder.

St. Thomas Acquinas (1225-1274)

12.1 Introduction

The tropical ocean is riddled with jets: the Equatorial Undercurrent, the South Equa-
torial Current, the North Equatorial Counter-Current and so on. To a first approx-
imation, these currents are “mean” in the sense of being independent of both time
and longitude. To understand the various instabilities of these currents and also to
understand how the currents distort neutrally-stable waves, the essential first step is
to solve the equations of motion as linearized about a mean flow.

These linearized studies of tropical waves in the ocean and atmosphere fall into
five main categories:
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1. Multiple scales perturbation theory for flows with vertical shear
2. Numerical studies of neutral waves in two-dimensional shear
3. Instability of latitudinal shear: analytical and numerical studies
4. Instability of flows varying in both latitude and depth: numerical only

A crucial point is that much of “shear effect physics” for Rossby waves carries
over directly from the middle latitudes to the tropics. The same is true for gravity
waves; however, because of their higher phase speeds,mean current effects on gravity
waves are muchmore limited than for Rossby waves. The Kelvin wave will dominate
our discussion because this mode has no midlatitude counterpart.

Linearized inviscid wave equations in fluids are usually singular whenever the
phase speed matches the zonally-averaged mean flow. This motivates the following:

Definition 12.1 (Critical Latitude/Level/Surface) A spatial surface where the zonal
mean longitudinal velocity U (y, z) and the phase speed match,

U (y, z) = c (12.1)

is a “critical surface”. If the mean current is a function U (y) of latitude only, the
critical surface is usually labeled the “critical latitude”; similarly, if U is a function
only of height or depth, U (zc) = c defines the “critical level” zc.

If the amplitude of the wave is sufficiently small compared to the viscosity or
unsteadiness of the wave (Dickinson [1]), then the critical latitude is linear and
a Rossby wave impinging on such a critical latitude is completely absorbed. The
wave amplitude rises steeply as the critical latitude approached, so if damping and
transience are weak, the critical latitude may be dominated by nonlinearity; the wave
is then completely reflected by a nonlinear critical latitude, level or surface.

This wave physics developed for Rossby waves on the midlatitude beta-plane
carries over to the equatorial beta-plane without change.

In this chapter, we shall begin by discussing the eigenvalue problem when the
mean currents are idealized as functions of latitude only.

12.2 U( y): Pure Latitudinal Shear

Our model is the 1-1/2-layer model, that is, the nonlinear shallow water wave equa-
tions in the equatorial beta-plane approximation. Denoting the zonal wavenumber
by k and the phase speed by c as before, the equations are linearized about a zonal
mean east-west current U (y) and a mean depth field 1 + Φ(y):

ik(U − c)u + (Uy − y)v + ikφ = 0 (12.2)

ik(U − c)v + yu + φy = 0 (12.3)
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ik(U − c)φ + iku + vy + ℵ {
ikΦ(y))u + Φ(y)vy

} − � yU v = 0 (12.4)

where the mean flow and height field are in geostrophic balance:Φy = − yU (y) and
where subscript y denotes differentiation with respect to latitude. In the literature,
this system has actually been applied in three flavors. The full shallow water model
with all its conservation laws is obtained by setting the flags ℵ = � = 1 (Ripa and
Marinone [2]). A similar set of equations can be derived by assuming U is a func-
tion of latitude only and then separating variables in the linearized equations for a
continuously stratified atmosphere: the “separation-of-variables” set used by Boyd
[3, 4] and Boyd and Christidis [5–7]. Other authors such as Bennett and Young [8]
and Zhang and Webster [9] have solved the intermediate system that depends only
on U (y) and not also on Φ(y) by setting ℵ = 0.

To solve these equations by a shooting method, it is convenient to reduce them to
two equations in two unknowns by solving the x-momentum equation for u in terms
of the other two variables. The equation for φy is derived from the y-momentum
equation while that for vy is just the equation of continuity with u replaced by its
expression in terms of v and φ. Let us introduce

w = k(c −U (y)) (12.5)

Also replace Uy by Γ (y). One obtains

vy =
{
k
y − Γ

w(y)
+ �

yU

1 + ℵΦ

}
v +

{
i

w(y)

1 + ℵΦ
− ik

k

w(y)

}
φ (12.6)

φy =
{
iw(y) − i

y(y − Γ )

w(y)

}
v − y

k

w(y)
φ (12.7)

In turn, this systemcanbe reduced to a single equation in eitherφ or v. To obtain the
equation for v, one can solve (12.6) for φ and substitute the result into (12.7) to obtain
a second order equation in v only. Unfortunately, the resulting differential equation
for nonzero ℵ and � and the similar equation in φ only are horribly complicated.
This explains why simplified models with either or both of ℵ and � equal to zero
have been more widely used than the full shallow water equations. Because of their
complexity, we shall omit these one-unknown equations, but see Boyd [3] for the
ℵ = � = 0 case.

When the mean shear is weak— this always excludes critical latitudes— regular
perturbation series, that is, power series in some measure of the shear strength, have
been usefully applied by Boyd [3, 4], McPhaden and Knox [10] and Greatbatch [11].

Dickinson [12] analyzed linear critical latitudes for midlatitude waves and
obtained solutions in shear flows in terms of hypergeometric functions andWhittaker
functions. Obtaining explicit solutions in terms of simpler transcendentals has proved
impossible.
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WKB methods with asymptotic matching to local solutions that are Bessel func-
tions of order one in the neighborhood of the critical latitude were very successful
for midlatitude Rossby waves (Dickinson and Boyd [12, 13]). Unfortunately, efforts
to extend this to the Kelvin wave have so far failed.

12.3 Neutral Waves in Flow Varying with Both Latitude
and Height: Numerical Studies

When the mean zonal wind is allowed to be a function of both latitude and height,
it is still possible to reduce the system of linearized equations to a single partial
differential equation for the eddy geopotential Φ ′. There are two complications.

The first is that the ensuing second order partial differential equation has excru-
ciatingly complicated coefficients, imposing serious perils of coding and/or algebra-
in-the-derivation errors. This complexity has motivated various authors to makemul-
tiple ad hoc approximations. For example, Holton [14] solved

y2 − w2

S

{
Φ ′

zz − Φ − σΦ ′
z − σ

2
Φ ′

}
+ (y2 − w2)

{
(1 − y2)

y2 − w2
Φ ′

y

}

y

+
{
k

w

y2 + w2

y2 − w2
− k2

1 − y2

}
Φ ′ = −i

y2 − w2

w
{(Q/S)z − (Q/S)} (12.8)

whereΦ ′ is thewave geopotential and S(z) is the static stability, Q(y, z) is convective
heating and ω̂(y, z) = ω − kU (y, z). Even though he assume that themeanwind has
the restrictive formU (y, z) = Ũ (z)(1 − y2) and furthermore neglectsUy compared
to y, he still obtains a very messy two-dimensional PDE which is of mixed elliptic-
hyperbolic type.

Similarly, McPhaden, Proehl and Rothstein [15] apply the long wave (meridional
geostrophy) approximation. The resulting PDE f or the pressure is still so ghastly that
they write it only in symbolic form as Apyy + Bpyz + Cpzz + Dpy + Epz + F = 0
and then display the disheartening equations for the coefficients, some so lengthy as
to be split over multiple lines.

Schoeberl and Geller [16, 17] derived a quasi-geostrophic wave equation simpler
than those of Holton and of McPhaden, Proehl and Rothstein. Even so, they were
forced to publish a corrigendum [18] after an error was discovered in their waves-
in-shear code.

The numerical solution of the nonseparable two-dimensional wave equation is
straightforward. Centered, second order finite differences yield a block tridiagonal
matrix problem. If the grid is a tensor product of M points in latitude and N in depth,
the MN × MN matrix has the structure of an N -dimensional tridiagonal matrix —
all elements Hi j are zero except for the diagonal and the first superdiagonal and
first subdiagonals, Hj j , Hj, j+1 and Hj+1, j—except that the tridiagonal elements are
M × M matrices. The usual fast recurrences for solving a tridiagonal system still
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apply with division interpreted as solving an M-dimensional matrix problem. The
cost is roughly O((2/3)NM3) operations nd O(NM2) memory storage. Lindzen
and Kuo [19] give a good description. Boyd [20] observes that since “fill-in” occurs,
there is no penalty for using a high order discretization in one coordinate.

A modern reader, at least with a good background in numerical analysis, is likely
to snort with disgust and throw the book across the room at this point. Direct
methods like block Gaussian elimination are very old-fashioned and an order-of-
magnitude slower compared to modern iterative methods. Indeed, multigrid yields a
solution for the Poisson equation on anM × N grid is just O(MN ) operations where
the proportionality constant is O(102). Unfortunately, the two-dimensional waves-
in-shear PDE is generally of mixed elliptic-hyperbolic type. As explained in [21],
this wrecks most iteration schemes.

Today, it is not necessary to code a block-tridiagonal solver. Sparse matrix solvers
are available in most software libraries.

It is common to impose a radiation boundary condition: waves propagate freely
upward to be dissipated off the grid in the thermosphere [atmospheric models] or
downward into the abyssal ocean to be dissipated before completing a round trip to the
surface [ocean]. Matsuno [22] smoothly tapered his mean wind to a separable form,
solved the one-dimensional eigenproblem, projected his finite difference solution
onto the discrete eigenfunctions, and imposed the analytical radiation condition of
upward propagation only. Similar tricks are now in widespread use as the “perfectly
matched layer” strategy.

It is much simpler and equally effective to impose a “sponge layer”. If the physical
ocean is of depth z = −H , one can extend the model to depth z = −(H + L) and
add a rapidly increasing artificial dissipation in the unphysical regime. As long as
the scale of the wave, which is roughly the wavelength W divided by 2π , is small
compared to the spatial scale of variations in the damping, the spurious reflection
induced by the dissipation will be exponentially small in the ratio of scales, and the
sponge layer will almost completely absorb the wave.

Durran, who devotes the entirety of his 44-page Chap.9 to “nonreflecting bound-
ary conditions”, is a comprehensive discussion [23].

The remaining numerical complication is also both an essential part of the physics
and a numerical obstacle: the wave equation is all its various forms is singular at
the critical surface where U (y, z) = 0. Finite differences and spectral methods and
so on explicitly assume that the solution is smooth, but the flow is logarithmically
singular at the critical surface. When the mean shear is a function of latitude only,
Dickinson showed that the singularity is of the form y log(y).

When U (y) allows reduction to an ordinary differential equation, it is easy to
calculate the phase speed c by detouring the path of integration into the complex
plane [6, 24–26]. However, this not helpful for boundary value problems. A more
general strategy is add a little bit of damping to smear out the singularity into a thin
internal high-gradient layer of finite thickness and then apply a change of coordinate
that concentrates grid points in the vicinity of the near-singularity (Boyd [27]).

Modifying the momentum equations with a simple undifferentiated term such
that

http://dx.doi.org/10.1007/978-3-662-55476-0_9
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ut = . . . ⇒ ut = . . . − αdampingu, (12.9)

and similarly for the other equations of motion, is called a “Rayleigh friction” in the
momentum equations and “Newtonian cooling” in the temperature equation. This
is preferable to adding viscous terms because viscosity raises the order of the PDE
whereas Rayleigh friction and Newtonian cooling do not.

Some examples of equatorial waves with critical latitudes in a flow U (y) are
given in [27]. For Rossby waves, eddy fluxes are towards the critical latitude from
the side where U (y) − c is positive; there is no flux on the other side, and the wave
decays exponentially with distance from the critical surface on the “flux-free” side.
The absorption of energy and momentum at the critical latitude is a major form of
wave-mean flow interaction. Rossby waves generically provide eastward accelera-
tion; Kelvin waves produce positive mean accelerations and these propositions are
true for both equatorial waves and global modes. However, the acceleration need not
be everywhere one-signed [27].

12.4 Vertical Shear and the Method of Multiple Scales

[OfLindzen’s treatment of equatorialwaves in vertically-varying shear bymultiple scales
perturbation theory] “The most complicated damned thing I’ve ever seen.”

Robert E. Dickinson, private communication (1974)

Lindzen [28] and Holton [14, 29, 30] etc., performed numerical studies of equato-
rial waves in flow that was varying with both latitude and height. However, Lindzen
made an important observation. The vertical wavelength of three-dimensional solu-
tions to Laplace’s tidal equations is inversely proportional to ε. This implies that
ε → ∞ not only implies equatorial trapping and a narrowing of latitudinal scale.
The equatorial beta-plane limit is also the short vertical wavelength limit.

Lindzen’s numerical study confirmed his belief that the scale1 of the vertically-
propagating atmospheric waves of interest was only O(1 km), an order of magnitude
smaller than the vertical scale of variation of the winds. Comparison of his perturba-
tive results (Lindzen [31, 32]) with his numerical computations indeed showed close
agreement.

The analysis is complicated for two reasons. First, direct imposition of the usual
multiple scales nonsecularity condition leads to terrifying amounts of algebra. This
chirugery can be greatly reduced by applying conservation laws (Boyd [33] and
Andrews and McIntyre [34].)

The second difficulty is the variation of the latitudinal scale with height, and this
cannot be fixed because it is fundamental to the physics. Without mean shear, the
vertical wavelength is specified as a function of frequency by the explicit dispersion

1The wave scale is not the wavelength, but rather the wavelength divided by 2π ; cos(kz) varies
on a length scale of 1/k since each differentiation extracts a factor of k, i.e., uzz = −k2u, but the
wavelength is 2π/k.
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relation for equatorial waves. The obvious strategy is to insert the local Doppler-
shifted frequency into the dispersion relation, thereby defining a local vertical
wavenumber which varies slowly with height on the same scale as the mean zonal
wind. One can then apply the well-known WKB method to the vertical structure
equation. This is what Lindzen did.

However, Lamb’s parameter ε controls both the vertical wavelength and the lati-
tudinal scale of the wave. The perturbative approximation must therefore expand or
contract latitudinally with height at the same time that the local vertical wavenumber
is changing with height, too.

The “slow” vertical scale is defined as

τ ≡ s z (12.10)

where s is the strength of the vertical shear. The “fast” variable is defined by the
indefinite integral of the local vertical wavenumber

ẑ =
∫ z

f̃ (z′) dz′, f̃ (τ ) ≡
√
N 2 ε(τ ) − 1/4 (12.11)

where N 2 is the usual Brunt-Vaisala frequency. All this is identical with applying
the WKB method [35] to the usual (atmospheric) vertical structure equation.

The wave variables are treated as functions of both ẑ and τ as if they were inde-
pendent so that

∂

∂z
= s

∂

∂τ
+ f̃ (τ )

∂

∂ ẑ
(12.12)

In contrast, the mean zonal wind and vertical stratification are only functions of the
slow variable τ . Defining the Doppler-shifted frequency by

ω̂(y, τ ) ≡ k(U (y, τ ) − c) (12.13)

it follows that

dω̂

dz
= s

dω

dτ
(12.14)

The slowly-height-varying latitudinal coordinate is

ξ ≡ ε1/4θ (12.15)

where θ is latitude. Figure12.1 illustrates the simultaneous contraction of both lat-
itudinal width and vertical wavelength as the Doppler-shifted frequency varies. To
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Kelvin wave in slowly−varying shear

Latitude  y

 

wave
scale

mean shear
scale

Fig. 12.1 Schematic isolines of a field such as the wave’s zonal velocity for an equatorial wave in
slowly-varying vertical shear. Note that the latitudinal scale contracts when the vertical wavelength
contracts. For simplicity, the latitudinal structure is that of a Kelvin wave, but the same qualitative
picture applies to any mode. If the sign of the shear is reversed, the vertical wavelength will grow
with height instead of the contraction with increasing z illustrated here

lowest order, ε is calculated from the usual equatorial wave dispersion relation,
given analytically earlier for waves linearized about a resting atmosphere, merely by
replacing ω by the Doppler-shifted frequency:

ε = f (k, ω) → ε = f (k, ω̂(z)) (12.16)

For conceptual purposes, the variation of the mean wind and therefore the variation
of ω̂ are assumed to be slow and thus z should be replaced by τ in applying the
method of multiple scales. For numerical purposes, that is, for graphing the multiple
scales solution, z is applied without modification or approximation.

The effects of variations of the mean flow in latitude cannot be treated by multiple
scales perturbation theory, but regular perturbation series in powers of the strength
of the horizontal shear have been developed by several authors [3, 4, 10, 11, 27, 36].

As explained in Sect. 8 of [3], it is very important to note that the multiple scales
solution (at lowest order) is almost identical to the wave solution without vertical
shear. The changes induced by vertical shear are merely a parametric dependence
on the slow variable τ and the replacement of z by the WKB fast variable ẑ. Thus,
the north-south velocity is

v ∼ A(τ )P(ξ) exp(i ẑ) exp(ikx + ωt) (12.17)
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where P(ξ) is a Hermite function ψn and the amplitude A(τ ) varies only with the
slow height variable. Latitudinal shear will modify P(ξ) but this shape change can
be calculated at a given height by using the mean zonal wind at that height. The only
dependence of the lowest order multiple scales solution which is not determined by
the no-vertical-shear theory is the dependence of the amplitude A on the slow height
variable τ .

Oh, dear. This is where Lindzen [31, 32] descends into the Infernal Regions of
Very Lengthy Algebra. Lindzen himself suggested a remedy after his student Boyd
[33] generalized the Eliassen-Palm and Charney-Drazin wave-mean flow interaction
theorems [33]: apply these conservation laws [4]. Andrews and McIntyre indepen-
dently proved similar theorems and worked out a conservation-law-simplified theory
for equatorial waves in shear in the same year [34, 37].When dissipation is neglected,
the conservation law is nondivergence of wave flux:

dφ′w′

dz
= 0 (12.18)

where φ′w′ is the usual vertical energy flux and where we have modified the original
(2.13) of [4] to a form appropriate for oceanography.

Dissipation can be included, but there is, unless the damping is very strong, a
near-cancellation in the wave fluxes that forced Andrews andMcIntyre to proceed to
first order in s, the vertical shear strength. Boyd [4] showed that this is unnecessary
if the wave-driven acceleration of the mean zonal flow is rewritten to analytically
remove the cancellations as in his (8.10).

Unfortunately, the Equatorial Undercurrent has a small vertical scale which is
roughly the same as the wave scale. However, asymptotic methods are successful
(often) when the relevant perturbation parameter [here, the ratio of wave and vertical
shear length scales] is O(1) as illustrated by many examples in Bender and Orszag
[35] and Miller [38].

The only application of multiple scales to equatorial waves in the ocean is Ponte
[39].

Long and Chang [40] is a rare oceanographic article that cites Lindzen’s work.
Multiple scales perturbation theory is indeed applied by Long and Chang, but to the
quite different problem of a nonlinear Kelvin pulse propagating along a shoaling
thermocline.

Constantine and Johnson have kept the perturbative tradition in the ocean alive,
barely, [41, 42]. Madja and his “Courant School” have devastated whole forests
applying advanced mathematics to the tropical atmosphere and air-sea interaction. It
is ironic that algebra-intensive methods have faded even as the capacity for computer
algebra has grown exponentially both in computer cycles and in the sophistication
and in the variety of the software tools and library routines to exploit them.
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Table 12.1 Shear Effects on Stable Equatorial Waves: Selected References “U (y)” denotes use
of the 1-1/2-layer model for oceanic applications. Perturbation theory has not yet been applied to
two-dimensional mean flows, U (y, z).

Reference Remark

Philander [43] U (y);

Philander [44] U (y);

Philander [45] U (y); all wave species; numerical

McPhaden and Knox [10] 1-1/2-layer model; numerical eigensolutions
for Kelvin and gravity waves; perturbation
series for Kelvin wave concentrates on low
wavenumber

McPhaden, Proehl and Rothstein [15] U (y, z), Kelvin only; long wave (meridional
geostrophy) approximation

Constantin and Johnson [41], Johnson [42] nonlinear wave-mean flow interaction with
EUC

Selected references are cataloged in Table12.1.
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Chapter 13
Inertial Instability, Pancakes and Deep
Internal Jets

Abstract The necessary conditions for inertial instability, alias symmetric instabil-
ity and centrifugal instability, are very easily satisfied near the equator if dU/dy(0) �=
0, that is, if there is nonzero latitudinal shear at the equator. Inertial instability is
the primary suspect in the formation of (“pancake”) alternating jets in the tropical
stratosphere and of deep internal jets in the equatorial ocean. Particle models, Taylor-
Couette flow, and instability criteria are reviewed. The “gamma-plane” approxima-
tion is analytically soluble. Its prediction of a dynamical equator shifted from the
geographical equator is confirmed by more realistic models. The large zonal scales
and short vertical length scales of theory are amply confirmed in both pancake insta-
bilities and deep internal jets.

There are well documented cases of structures near the equatorial stratopause, with a vertical
wavelength of about 10 km, bearing a strong resemblance to unstable modes of the linear
stability theory (e.g.Hitchman et al. [1],Hayashi, Shiotani andGille [2], Smith andRiese [3]).

There seem to be several large-amplitude events of inertial instability per year.

Stephen D. Griffiths, introduction [4]

Equatorial deep jets are a ubiquitous feature of the circulation in all three oceans, since
their original discovery by Luyten and Swallow [5] in the western Indian Ocean.

p. 347 of Hua, Moore and Le Gentil [6]

13.1 Introduction: Stratospheric Pancakes and Equatorial
Deep Jets

Inertial instability has a short verticalwavelength and a longor zero zonalwavelength.
It thus generates layers of jets that alternate in direction. The Nimbus 7 satellite,
launched in 1978, carried among other instruments the cryogenically-cooled Limb
Infrared Monitor of the Stratosphere (LIMS). Before the last of the coolant boiled
away, long before the satellite itself decayed into a flaming fireball in 1994, LIMS
detected “vertically stacked temperature extrema of alternating sign” in the equatorial
lower mesosphere, to quote the abstract of Hitchman, Leovy, Gille and Bailey [1].

© Springer-Verlag GmbH Germany 2018
J.P. Boyd, Dynamics of the Equatorial Ocean,
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Dubbed “pancakes”, these alternating layers of hot and cold are coherent with winds
of alternating sign which could not be directly seen by the radiometer. The Pancakes
were seen in periods of strong cross-equatorial shear. “Their occurrence is confined
to regions of very weak or negative inertial stability [as measured by a diagnostic
(13.1)] and their meridional to vertical aspect ratio, meridional structure and zonal
spectrum are consistent with disturbances predicted by inertial instability theory [1].”

In the deep ocean, similar vertically stacked structures of alternating signwere dis-
covered by Luyten and Swallow [5] and dubbed “deep internal jets” [5]. Hua, Moore
and Le Gentil [6], amplifying their quote above, [6] note (p. 347) that “Equatorial
deep jets are a ubiquitous feature of the circulation in all three oceans.”

Inertial instability, sometimes misleadingly called “symmetric instability”, can
occur at all latitudes, but is especially common and important at low latitudes. The
reason is that the fundamental criterion for the instability is

f

(
f − dU

dy

)
< 0 (13.1)

at some latitude whereU (y) is the mean zonally-averaged current. Since the Coriolis
parameter f is zero at the equator and small in the tropics, it is particularly easy for
the mean shear to overcome f at low latitudes and trigger the instability.

In addition, inertial instability is the Great Symmetrizer. Like other instabilities, it
tends to correct whatever condition created it. The instability criterion shows that the
mean flow can return to stability everywhere only if the shear is zero at the equator.
However, if there is no shear at the equator, then the mean flow U (y) — and to stay
in geostrophic balance, the mean height field Φ(y) also — must be symmetric with
respect to the equator, at least at low latitudes.1

One is reminded of Sherlock’s remark about the “curious incident of the dog in
the night”. When Watson replies, “but the dog did nothing in the night”, Holmes
responds, “that was the curious incident”. In a similar way, inertial instability may
play a powerful role in the ocean and atmosphere even when absent.

To understand inertial instability, we shall describe a hierarchy of models of
increasing complexity: first particle and parcel arguments, then Boyd’s “equatorial
gamma-plane” approximation, and finally vertical structure, numerical models and
observations.

13.2 Particle Argument

13.2.1 Linear Inertial Instability

Elementarymeteorology andphysical oceanography classes discuss three elementary
pairwise balances of forces in steady horizontal flow: geostrophic, cyclostrophic and

1The first three terms in the Taylor series for U (y) must be symmetric, but higher order terms may
violate the symmetry without breaking down geostrophy or the stability of U (y) at the equator.
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inertial. The last neglects pressure forces as well as all nonlinear terms. Textbooks
such as Holton andHakim [12] show that in pure inertial flow a blob of fluidwill orbit
anticyclonically with a frequency equal to the local value of the Coriolis parameter.

Inertial instability adds a single ingredient: linearization about a spatially-varying
mean current. For expository simplicity, we assume that the mean flow is zonal and
the shear is purely latitudinal, but one can rotate the horizontal coordinate system
for a mean flow with arbitrary orientation. Only the local value of shear and local
value of the Coriolis parameter are relevant because the neglect of pressure gives
equations which are independent of the horizontal coordinates:

ut − ( f −Uy)v = 0; vt + f u = 0 (13.2)

(A particle sliding frictionlessly on a rotating sphere, as opposed to a blob of fluid,
is well-described by these equations because the particle dynamics is intrinsically
pressure-free.)

Eliminating v gives
utt + f ( f −Uy)u = 0 (13.3)

In pure, shear-free inertial motion, a parcel of fluid loops round and round in
anticyclonic circles. If the blob is given a small eastward velocity in the northern
hemisphere, then Coriolis force creates a southward force, always perpendicular to
the velocity, that turns the velocity without altering its magnitude.

When sgn( f −Uy) = sgn( f ), the motion is periodic in time; the shear merely
increases or decreases the frequency. When

f ( f −Uy) < 0, [Necessary Particle Condition for Inertial Instability] (13.4)

the velocity grows exponentially with time as exp(σ t) where the growth rate is

σ = √− f ( f −Uy) (13.5)

u(t) = A exp(σ t) + B exp(−σ t), v = −( f/σ)A exp(σ t) + ( f/σ) B exp(−σ t).
(13.6)

13.3 Centrifugal Instability: Rayleigh’s Parcel Argument

We can pass from particle to parcel by applying a century old analysis of Lord
Rayleigh’s to the Taylor-Couette apparatus. This is an annular shell of liquid con-
fined between two concentric cylinders which can be spun independently by electric
motors. If one cylinder is fixed while the other spins at a constant speed, the flowwill
settle into a steady-state that solves the diffusion equation, a roughly linear variation
of tangential velocity with radius. The flow is in cyclostrophic balance with inward
pressure exactly counteracting the outward centrifugal force (Fig. 13.1).
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If a blob of fluid is displaced radially, the pressure will almost instantly adjust to
the change in ambient pressure by radiating sound waves. A radial push, however,
will not change the tangential velocity. If the inner wall is stationary and the outer
cylinder is rotating, a parcel originating near the inner cylinder will have small
angular momentum. Displaced farther from the center of the apparatus, the parcel
will feel the same strong inward pressure force that balances the strong centrifugal
force acting on the fast-moving fluid near the outer wall. However, the blob displaced
outward towards the spinning outer cylinder does not have large tangential velocity
to generate a strong centrifugal force. The strong ambient pressure overcomes the
outward centrifugal force to push the blob back towards its original radius. A high-
angular momentum blob displaced inward will be restored to its original radius by
the strong centrifugal force acting on the blob to push it outward. Either way, the
blobs are still moving when they cross their original radii. The overshoot creates
waves known as “inertial oscillations”.

In contrast, when the inner cylinder is moving, a high velocity blob, pushed out-
ward, moves into a low pressure force environment. Strong centrifugal force acceler-
ates the blob outward. The flow is unstable because perturbations are amplified and
accelerated. Similarly, slow-moving fluid initially near the unmoving outer cylinder
will be hurled inward by the strong pressure force near the inner cylinder.

In summary, a flow with absolute angular momentum increasing radially outward
is stable, but mean angular momentum decreasing outward is unstable. A careful
quantitative discussion of Rayleigh’s argument, with further embellishments by von
Karman, is given in Yih’s textbook, pp 450–459 [7].

For large-scale atmospheric and oceanic flows, Coriolis force is more important
than centrifugal, but the concepts are little changed.

With a bit of handwaving, we can make some inferences about the ensuing
inertially-unstable normal modes.

First, the Taylor-Couette apparatus is axisymmetric. The observed “Taylor roll
vortices” are indeed independent of the angular coordinate θ in the usual (r, θ, z)
cylindrical coordinate system. This argument is only semi-good because so-called
“spontaneous symmetry breaking” is possible in many physical systems. Indeed, at
high rotation rates, the axisymmetric Taylor roll vortices bifurcate intowavy vortices.
Still, spontaneous symmetry breakingneeds additional physics to break the symmetry
– here unstable Kelvin waves and gravity wave physics will do the honors — so a
strong tendency to axisymmetry is characteristic of inertial instability.

The vertical scale of inertially-unstable roll vortices is a vexing question.However,
a large vertical scale makes no sense because the fundamental mechanism is about
what happens in the horizontal. Indeed, one might expect that the unstable waves
would have a very short vertical scale limited only by diffusion because this would
minimize the ratio of useless up-and-down flow relative to the radial (latitudinal)
motion. This is more or less what is observed in normal mode calculations with
some caveats noted below.2

2The solution to the diffusion equation, ut = νuxx with homogeneous Dirichlet conditions u(0) =
u(π) = 0 is u(x, t) = ∑∞

n=1 an(t = 0) sin(nx) exp(−νn2t). This explicitly shows that diffusion
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13.4 Equatorial Gamma-Plane Approximation

Boyd [8] showed that, after linearization about amean zonal current on the equatorial
beta-plane, the atmospheric dynamics reduces to a single equation for v alone

vyy − 2Γ (y)k

ω

(
ε

ε − k2/ω2

)
vy +

{
k

ω

(
β − Γy

) − k2 − 2Γ k

ω

(
ε

ε − k2/ω2

)
k

ω
(βy − Γ )

−ε
[
βy(βy − Γ ) − ω2

]}
v = 0

This is a mess; the analogous equation derived from the nonlinear shallow water
equations includes many additional terms all from the mean, latitudinally-varying
height Φ(y) which is omitted from the atmospheric analog, and is even messier.

Fortunately, Boyd [8] showed by means of a perturbation series in the parameter
kω that this ODE can be simplified. His simplified equation comes in three flavors.
His simplified equation for Rossby waves, his (4.12), will not be discussed here. The
second version, cubic in the frequency or phase speed, which mixes the Kelvin and
n = 0 gravity modes together, is analyzed later in this chapter. In this section, we
will concentrate on the version appropriate for gravity modes.

Definition 13.1 (Equatorial Gamma-Plane Approximation) Treat the Doppler
-shifted frequency ω̂(y) as a constant except that dU/dy = Γ is treated not equal to
zero but instead as a constant.3 The ODE for the n-th-south wave current is

vyy − ε
{
βy(βy − Γ ) − ω2

}
v = 0 (13.7)

Although quadratic shear was analyzed in [8, 9], it is helpful to concentrate on a
linear shear, U (y) = Γ y where Γ is a constant.

This mimicks the way the usual midlatitude beta-plane treats the Coriolis para-
meter — as a constant except where differentiated, and then defining d f/dy = β

where the derivative β is treated as a constant,
This gamma-plane approximation is very convenient because the eigenfunctions

and eigenvalues can be found analytically.

Theorem 13.1 (Generalized Parabolic Cylinder Equation) The eigenfunctions of

vyy + {
A + By − Cy2

}
v = 0 (13.8)

are given by, introducing

(Footnote 2 continued)
and viscosity are highly scale-selective in that shorter spatial scales are damped more rapidly than
lower wavenumbers. Thus, viscosity and/or diffusion will kill the growth of very short vertical
wavelengths while allowing larger vertical wavelengths to grow exponentially.
3The reader is warned that other, quite different meanings have been applied to “gamma-plane” by
later authors.

http://dx.doi.org/10.1007/978-3-662-55476-0_4
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Fig. 13.1 Schematic of centrifugal instability in the Taylor-Couette apparatus of nested cylinders.
Only part of the two concentric cylinders is shown. Left two panels the stable case in which the
outer cylinder rotates at a constant speed Ω while the inner cylinder is stationary; the basic state
angular momentum increases with radius in polar coordinates (r, θ) centered on the rotation axis
common to both cylinders. A parcel of low angular momentum, pushed radially outward, is restored
to its original radius near the stationary inner cylinder by the strong inward pressure force near the
outer cylinder. Right unstable case in which the inner cylinder rotates at a constant speed Ω while
the outer cylinder is stationary; the basic state angular momentum decreases with radius in polar
coordinates. A blob pushed outward has higher angular momentum than its surrounding ambient
fluid, and the strong centrifugal force, opposed only by a weak inward pressure force, accelerates
the blob farther from its original radius

ξ = 4
√
C

(
y − B

2C

)
(13.9)

v = ψn(ξ), n = 0, 1, 2, . . . (13.10)

with the eigencondition

2n + 1 = A/
√
C + B2/(4C3/2) (13.11)

Appendix of Boyd [8].

Here

C = εβ2 (13.12)

B = εβΓ (13.13)

A = εω2 (13.14)
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ξ = 4
√

ε
√

β

(
y − 1

2 β
Γ

)
(13.15)

ω2 = (2n + 1)
β√
ε

− Γ 2

4
. (13.16)

13.5 Dynamical Equator

Figure13.2 shows how shear shifts the peak of an equatorial mode, here the north-
south velocity of the n = 0 Yanai wave, from the geographical equator to a shear-
dependent “dynamical equator”. The Hermite functions are centered a the point
where the scaled coordinate ξ is zero:

ydyn.eq = 1

2 β
Γ (13.17)

Meteorologists have been familiar with the notion of a “dynamical equator”. In
idealized models of the Hadley circulation, the updraft is centered on the equator.
The convergence of moist, warm air into this upwelling leads to a band of clouds that
rings the globe, the Inter-Tropical Convergence Zone (ITCZ). However, the center
is not at the equator, but shifts with the seasons with a mean position several degrees
north of the geographical equator.

Fig. 13.2 In the
gamma-plane
approximation, the lowest
order solutions are still
described by Hermite
functions, but shear alters the
width of the functions. Shear
also translates the symmetry
point of each Hermite
function to
y = ydny.eq = Γ/(2 β)

[solid curve]
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13.6 Gamma-Plane Instability

One possiblemode of instability is that when the frequency is specified, and specified
as a real constant, the dispersion relation will yield complex-valued eigenvalues
for one or more modes. Recall that Lamb’s parameter ε is, when inserted into the
vertical structure equation, the square of the nondimensional vertical wavenumber.
A complex-valued eigenvalue implies the vertical wavenumber is complex-valued,
too, and therefore the mode does not merely oscillate with height or depth, but rather
decays as it propagates, a “damped oscillation”, or grows exponentially with height
while oscillating. However in the gamma-plane approximation

ε = (2n + 1)2 β2

{
ω2 + Γ 2/4

}2 (13.18)

It is immediately obvious that the right-hand-side, with every parameter squared, is
positive definite. Fixed-frequency, complex-valued Lamb’s parameter inertial insta-
bility is impossible (Fig. 13.3).

One might suppose that this would prohibit growing-in-time instability, too, but
rearranging this same gamma-plane dispersion relation gives

1 2 3
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shear strength S
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gravity wave
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mixed Kelvin-gravity

mixed Kelvin-gravity
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Fig. 13.3 When the gamma-plane is generalized to include one additional term so that the dispersion
relation becomes a cubic polynomial in the frequency, sufficiently strong shear causes the Kelvin
mode and a gravity wave mode to merge, forming an unstable complex-conjugate pair of modes
for larger shear strength. The nondimensional zonal wavenumber k = 1/100, but cross-sections for
other small to moderate k are similar
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ω =
√

(2n + 1)
β√
ε

− Γ 2

4
(13.19)

This predicts temporal instability whenever

Γ 2 > 4
√

(2n + 1)

√
β

ε1/4
(13.20)

Unfortunately,
√

ε is proportional to the vertical wavenumber. No matter how weak
themean latitudinal shearΓ , sufficiently short verticalwavelengths, that is, baroclinic
modes of sufficiently high baroclinic mode number, are always unstable.

In reality, vertical viscosity and diffusion, whose effects grow quadratically with
vertical mode number, will reshape the growth rate so that the inertial-instability-
with-viscosity growth rates peak at a small but finite vertical scale. Indeed, both
mesospheric “pancakes” and oceanic “deep internal alternating jets” are vertically
oscillating with short vertical wavelength.

13.7 Mixed Kelvin-Inertial Instability

TheKelvinwave is unstable due to a critical latitude instabilitywith a growth rate that
is an exponential function of the reciprocal of the square of the strength of the shear.
This is discussed in the next chapter. For strong shear, the complicated relationship
between the Kelvin wave and the lowest gravity modes becomes more intricate still.

In the absence of shear, the mode which matches the equatorial beta-plane in the
limit that Lamb’s parameter ε → ∞ becomes the lowest symmetric inertial-gravity
wave as ε → 0. Longuet-Higgins gave a clear analysis of this smooth transition in
[10]. Equatorial oceanographers have rightly resisted the temptation to relabel this
wave as the “mixed Kelvin-gravity” wave; ε is always huge and the small-ε limit is
irrelevant for baroclinic modes in the sea.

When the shear is strong, even on the equatorial beta-plane, the Kelvin wave will
merge with a lowest latitudinal mode gravity wave to form a complex conjugate
pair of modes, one unstable, for larger shear. The gamma-plane needs to be general-
ized slightly to the “uniform gamma-plane”, which identical with the gamma-plane
latitudinal velocity equation except for one additional term (boxed):

vyy − ε
{

k
ω

+ βy(βy − Γ ) − ω2
}
v = 0 (13.21)

For small zonal wavenumber k or high frequencyω, this term is negligible. However,
increasing shear greatly increases the frequency of the Kelvin wave until it merges
with an n = 0 gravity wave with instability for larger shear. A fuller analysis is given
in Boyd and Christidis [11] where it is shown that by careful tracking of modes as
the shear strength varies that the mode which merges with the gravity wave is indeed
the mode which is the Kelvin wave for zero shear.
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13.8 Summary

The history of inertial instability is rich with irony. Deep alternating jets were first
discovered in the ocean by Luyten and Swallow in [5], but the first steps toward a
theory were made by three atmospheric scientists, Boyd, Dunkerton and Stevens,
a few years later before there was any convincing evidence of inertial instability
in meteorological observations. The discovery of “pancake instabilities” circa 1987
vindicated the atmospheric dynamicists, but another decade would pass before the
magisterial theory-numerical-experiment article of Hua, Gentile and Moore made a
convincing case that the ocean equatorial jets were the offspring of inertial instability.

Although the paper of Hua, Gentile and Moore and also the recent atmospheric
articles of Griffin are full of insights, and Plougonven and Zeitlin have followed the
instability into the nonlinear regime, the heart of inertial instability is captured in the
simple equatorial gamma-plane model of Boyd, Dunkerton and Stevens. Latitudinal
shear is the star; vertical shear, though strong, is only amodifier. The instability eats at
the shear that spawned it and in so doing is a strong force for local symmetrization of
the flow with respect to the equator. The concept of a “dynamical equator”, shifted
by cross-equatorial shear away from the geographical equator, was introduced by
Boyd in [8, 9]. It is prominent in both the numerical simulations of Hua, Moore and
Le Gentil and later authors. In their abstract, Hua, Moore and Le Gentil write,“a
meridional shear of the basic state leads to a vertical stacking of equatorially-trapped
zonal flows of alternate signs, with a new centre of symmetry located at the dynamical
equator.”

The short vertical scale of inertial instability is an essential part of the dynamics
in both the deep equatorial ocean and in the tropical middle atmosphere. A good way
to provoke a riot among tropical dynamicists is to strongly assert a single cause for
what exactly determines the vertical scale and avoids the “ultraviolet catastrophe” of
the arbitrarily short vertical wavelengths predicted by the simplest theories of inertial
instability.

The alternative name for this phenomenon, “symmetric instability”, is not entirely
appropriate for the tropics because the most unstable waves are not usually of zero
wave number, but merely ultralong in the east-west direction. Nevertheless,the slow
variation in longitude, as opposed to the very fast oscillations in depth, is an important
theoretical simplifier.

The vanishing of the Coriolis parameter allows inertial instability to flourish in
equatorial regions in amanner impossible at higher latitudeswhere inertial instability
is found only in violent frontal zones.
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Chapter 14
Kelvin Wave Instability: Critical Latitudes
and Exponentially Small Effects

Abstract The Kelvin wave has a critical latitude instability in a linear shear,
U (y) = Γ y. There is no neutral curve, but instead with viscosity neglected there
is instability for all |Γ |, however small. A power series in Γ is useless because
�(c) ≈ 0.14

Γ 3 exp
(− 1

Γ 2

)
which goes to zero faster than any finite power of Γ as

Γ → ∞. To capture “beyond-all-orders” effects, Hermité-Padé approximants, expo-
nential asymptotics and numerical methods that loop off the real axis are applied to
a hierarchy of models to illuminate this peculiar instability of this most important
mode.

One remarkable fact of appliedmathematics is the ubiquitous appearance of divergent series,
hypocritically renamed asymptotic expansions. Isn’t it a scandal that we teach convergent
series to our sophomores and do not tell them that few, if any, of the series they meet will
converge? The challenge of explaining what an asymptotic expansion is ranks among the
outstanding taboo problems of mathematics.

Gian-Carlo Rota, p. 222 of his book Indiscrete Thoughts [1]

Kelvin wave instability is conceptually challenging because the growth rate is
exponentially small in the reciprocal of the small parameter. Because exp(−1/ε2)
goes to zero faster than any finite power of ε(= 1/Γ ), the instability is invisible
to a power series in the small parameter. A million terms of the power series, nay,
even a billion terms, will yield only a real phase speed. Such power-series-invisible
effects are said to be “beyond-all-orders” [in powers of ε]. A subfield of applied
mathematics dubbed variously “hyperasymptotics” or “exponential asymptotics” has
developed to interpret and calculate such “beyond-all-orders effects” as catalogued
in the review article [3] and books [4, 5]. Unfortunately, Rota’s quote is still true
twenty years later even though [6] shows that only undergraduate mathematics is
needed to understand it.

Kelvin wave instability is a tale of two regimes. When the shear strength is large,
the Kelvin wave becomes mixed up with inertial gravity waves. This part of the story
already has been told as part of the discussion of inertial instability. Here, we focus
on the “beyond-all-orders” instability.

© Springer-Verlag GmbH Germany 2018
J.P. Boyd, Dynamics of the Equatorial Ocean,
https://doi.org/10.1007/978-3-662-55476-0_14
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Fig. 14.1 Imaginary part of
the phase speed for a
conventional instability
[dashed]. Both a growing
mode and a decaying mode
bifurcate at a certain value of
the parameter. Imaginary
part of the phase speed for
the Kelvin wave instability
[solid]

parameter


(c

) 
When the shear is weak, the Kelvin wave may have a critical latitude far from

the equator where its amplitude is exponentially small. A critical latitude is a point
where the mean currentU (y)matches the phase speed c. It has long been known that
critical latitudes play a critical role in instability [7, 8]. (The imaginary part of the
phase speed shifts the critical latitude off the real y-axis, but does not diminish the
importance of the critical latitude.) Because the Kelvin wave decays exponentially
fast away from the equator, the growth rate for a critical latitude instability will be
exponentially small in the distance of the critical latitude from the equator. This
requires us to dive into the depths of hyperasymptotics.

Figure14.1 shows, as the dotted curves, the usual transition to instability. At
some finite value of a parameter Γ , two neutrally stable modes merge to become a
complex-conjugate pair for larger S. The phase speed for both modes has a square
root singularity at the critical point, Γ = Γc. Because the first derivative of a square
root is a reciprocal square root which is unbounded as the singularity is approached,
dc/dΓ (Γc) = ∞.

In contrast, theKelvin instability has no transition point. In the absence of viscosity
or other dissipation, the wave is unstable for all shear strengths, however small.
Note that because the growth rate is exponentially small in the reciprocal of the
shear strength, growth is significant only for large and moderate shears. For small
shears, even a tiny amount of dissipation (physical or computational) will suppress
the instability.

14.1 Proxies and the Optical Theorem

The most direct path to a good theory would be to imitate the program successfully
carried out for Rossby waves with critical latitudes by Dickinson, Boyd and Lindzen
and Rosenthal [9–11] and for singular wave equations in plasma physics and many
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other fields as skillfully cataloged by Adam [8]. Over most of the domain, a WKB
approximation is satisfactory. The crucial final step to a globally-valid analytic solu-
tion is to apply the method of matched asymptotic expansions to join the WKB
solution to a local solution around the critical latitude in terms of Bessel functions.
Unfortunately, this game plan has proved too difficult for the Kelvin wave. However,
much has been learned from simple proxies and numerical studies.

Boyd and Natarov investigated a proxy, a Sturm-Liouville Eigenproblem of the
Fourth Kind [10], the “Hermite-with-Pole” equation

uyy +
{

1

y − 1/ε
− y2

}
u = λu (14.1)

where λ is the eigenvalue. This is very similar to the Rossby wave eigenproblem
studied by Dickinson and Boyd. However, it is not a Kelvin wave model except in
the sense that it is an eigenproblem on the equatorial beta-planewith a critical latitude
singularity. Nevertheless, much has been learned about this exemplar, and perhaps
we shall eventually know as much about the Kelvin wave.

Boyd and Natarov proved the following theorem [12]. By analogue with similar
theorems in particle physics, they dubbed it the “Optical Theorem”. Note that their
theorem is considerably more general than stated here, and is based on a theorem
proved in [10].

The theorem employs a Rayleigh friction δ. This is necessary in the theorem
because generically, solutions to geophysical wave equations have logarithmic sin-
gularities at the critical latitude. For neutrally-stable waves, as in the theorem below,
the singularity is on the real axis. Adding a small amount of dissipation, such as the
“Rayleigh friction” used in the theorem, is necessary to resolve the ambiguity of the
branch cut — should it be in the upper y-plane or the lower half-plane? This subtlety
is explained by Dickinson [9, 13] and Boyd [10]. Friction is necessary only when the
singularity is otherwise on the real axis as in the Hermite-with-pole equation; when
the phase speed has an imaginary part, the critical latitude is shifted off the real axis
and the correct choice of branch is any branch cut which does not cut the real axis.

Theorem 14.1 (Optical Theorem) Let the differential equation be

uyy +
{

1

y − 1/ε − iδ
− y2

}
u = λu, y ∈ [−∞,∞] (14.2)

where δ > 0 is the coefficient of Rayleigh friction. Then in the limit δ → 0+,

�(λ) = −π
|u(yc)|2∫ ∞

−∞ |u(y)|2 dy (14.3)
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where the critical latitude is yc = −1/ε.
Proved by Boyd and Natarov [12].

For the lowest mode, u(y) ∼ exp(−[1/2]y2) and �(λ) ∼ 1, just like the Kelvin
wave. A WKB approximation combined with matched asymptotic expansions and
the optical theorem give

�(λ) ∼ √
π exp

(
− 1

ε2

)
{1 − 2ε log(ε) + ε log(2) + γ Γ + . . .} (14.4)

Thus, the exponential smallness for this eigenproblem can be captured by explicit
analytical approximations.

One remarkable and unexpected fact is that the imaginary part of the eigenvalue
is proportional to the square of the eigenfunction at the critical latitude, not to the
eigenfunction itself. Is the same true of the Kelvin wave?

14.2 Six Ways to Calculate Kelvin Instability

An analytical answer is not known, but it is straightforward to perform numerical
experiments by solving

ik(U − c)u + (Uy − y)v + ikφ = 0 (14.5)

ik(U − c)v + yu + φy = 0 (14.6)

ik(U − c)φ + iku + vy + ℵ {
ikΦ(y)u + Φ(y)vy

} − � yU v = 0 (14.7)

As noted earlier, meteorologists obtain an equation set of this form by the method of
separation of variables in a continuously stratified atmosphere, and then the factorsℵ
and � are zero. Oceanographers usually rationalize their depth-independent models
from the 1-1/2-layer model.When linearized about a state of rest, the two approaches
give the same linear equations. When linearized about a flow with mean currents,
however, the equivalency breaks down. Much of the earlier work on equatorial insta-
bility has solved the “atmospheric” equations, that is, the trio above with ℵ = � = 0
as in the articles by Boyd and Christidis [2, 14]. Others have solved these equations
with ℵ = � = 1. These differences must be kept in mind in comparing different
studies.

Six ways to compute �(c) are listed in Table14.1. Four are useless, but two work
well. We discuss each in turn.
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Table 14.1 SixWays to Calculate the Imaginary Part of an Eigenvalue That Is Exponentially Small
in 1/Γ where Γ � 1 Is a Small Parameter

Numerical integration on real axis Fails; singularity exponentially near real axis

WKB with matched asymptotic expansions Fails; too complicated

Γ power series [“Rayleigh-Schrodinger”] Fails; always real-valued

Padé Approximants Fails; always real-valued

Hermite-Padé approximants Success! Hermite-with-Pole

“ ” Success! Gauss-Stieltjes integral [15]

Spectral method in z ≡ y − i Success! [14, 16, 17]

Conventional numerical methods solve the differential equation on a computa-
tional interval which is the real axis. These can be dismissed almost immediately.
When |�(c)| is very tiny, the critical latitude is almost on the real axis, a computational
land-mine.

As noted earlier, WKB-with-matched-asymptotic-expansions has been very suc-
cessful in midlatitude applications, but on the equatorial beta-plane the technical
difficulties have so far been insurmountable.

The other four methods will be discussed in more detail in the following sections.

14.2.1 Power Series for the Eigenvalue

Boyd, Greatbatch, McPhaden and Knox and others have applied power series in the
strength of the shear [18–21]. Boyd employed computer algebra to go to second
order; thirty-six years later, modern computer algebra (CAS) allows one to go to
much higher order. The critical latitude does not create any problems in computing
terms of the series and the expansion is demonstrably asymptotic to the solution
although such expansions are usually divergent. Unfortunately, even an expansion
to the billionth-order would give no direct information about �(c(Γ )) for the Kelvin
wave!

Observe that the power series for the exponential of a reciprocal of the small
parameter is trivial and useless:

exp(−q/Γ )

exp(−q ′/Γ 2)

}
∼ 0 + 0Γ + 0/Γ 2 + · · · (14.8)

where q, q ′ > 0 are constants. The reason is that

lim
Γ →0

dk

dΓ k
exp (−q/Γ ) = 0, k = 0, 1, 2, . . . (14.9)
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References [22, 23]. Since these derivatives are the coefficients of the Taylor series
of exp(−q/Γ ) about Γ = 0, (14.8) follows.

Exponentials-of-a-reciprocal are invisible to power series. The destabilizing,
exponentially tiny �(c) is said to lie “beyond-all-orders” in Γ . When beyond-all-
orders effects appear, the power series not only miss the exponentially small terms
but are usually divergent as well.

Padé approximants can cure the divergence [24], but Padé approximants derived
from power series with real coefficients are real, too, for real Γ and thus also fail
utterly to yield beyond-all-orders imaginary parts.

14.2.2 Hermite-Padé Approximants

Hermite observed in the 19th century that to approximate a function f (x) one can
define an approximation f[K/L/M](z) to be the solution of the quadratic equation

PK (z) f[K/L/M](z)2 + RL(z) f[K/L/M](z) + QM(z) = 0 (14.10)

where the polynomials PK , RL , and QM of degrees K , L , and M are chosen so
that the power series of f[K/L/M](z) matches that of the “target” f (z) through the
first K + L + M + 1 terms. Such generalizations of ordinary Padé approximations
are called “Hermite-Padé” approximants [15, 25, 26]. The solution to a quadratic
equation can be complex even if its coefficients are real.

Boyd and Natarov showed that quadratic Hermite-Padé approximants are suc-
cessful for the imaginary part of the eigenvalue of the Hermite-with-pole equation
and also for the exponentially small imaginary part of the Gauss-Stieltjes integral,

σ(ε) ≡ lim
δ→0

∫ ∞

0
exp

(− t2
)
{

1

t − [1 + iδ]/ε + 1

t + [1 + iδ]/ε
}
dt (14.11)

14.2.3 Numerical Methods

Exponentially small quantities are best computed by applying spectral methods,
which have an exponential rate of convergence.

When the growth rate is very small so that the critical latitude is very near the
real axis, disaster will strike any orthodox numerical method. Boyd showed, with
later improvements by Gill and Sneddon [14, 16, 17, 27, 28], that the problem
could be removed by using an integration in the complex plane that detours around
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Computational coordinate z=y-i Δ

ℜ(y)

ℑ(y)

⊗

⊗

Kelvin

RossbyΔ

Fig. 14.2 Schematic of a numerical method which is applied in the computational coordinate
z ≡ y − iΔ where Δ > 0 is a real constant. The continuity of the numerical solution along the
dashed computational path for real z implicitly forces the branch cuts (thick cross-hatched lines)
to pass to infinity in the upper half-plane. The Rossby cut then crosses the real axis, forcing an
unphysical jump for real y

the singularity in the lower half-plane. For Kelvin wave instability and mean shear
profiles which generate only a single critical latitude, it suffices to displace the path
downward by a constant as illustrated in Fig. 14.2.

The spectral series are in rational Chebyshev functions, TB(z; L), where L > 0
is a user-choosable constant, the “map parameter”, and

z = y − i Δ (14.12)

where Δ > 0 is a user-choosable constant. Table14.2 and the references show that
for sufficiently large truncation N of the spectral series, results are independent of N
and the other numerical parameters. The computations for Fig. 14.4 and Table14.2
were performed using a rational Chebyshev (“TB functions”) pseudospectral method
[28–30].

Each term in a TB series is bounded by its Fourier coefficient. Fig. 14.3 shows
the exponential convergence of the coefficients of the rational Chebyshev series.
Even though the smallest coefficient computed and illustrated for this truncation of
N = 125 is only smaller than the imaginary part of the eigenvalue by about a factor
of 250, this truncation gives �(c) correct to the first ten decimal digits.
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Fig. 14.3 Rational Chebyshev coefficients for the Kelvin wave for the shear strength Γ = 1/5.
Δ = −3/2, the Chebyshev map parameter L = 4 and computations were performed in 48 decimal
digit precision in Maple. The eigenvalue was calculated as 1.01979580135824120796448050 + i
1.530896590561E-14 where all the digits in bold face are correct

14.3 Instability for the Equatorial Kelvin Wave
in the Small Wavenumber Limit

Boyd and Christidis observed that one can eliminate the zonal wavenumber k as a
parameter, greatly simplifying the numerical problem, when the zonal wavenumber
is small. The reason is that when k is very small compared to one, the long wave
approximation of assuming meridional geostrophy is accurate. (It is exact for the
Kelvin wave in the absence of shear.) The y-momentum equation becomes

yu = −φy (14.13)

With ℵ = � = 0, the zonal momentum equation and height equation become

− ikU (y)φy + ikcφy + (Uy − y)yv + ikyφ = 0 (14.14)

ikyU (y)φ − ikycφ − ikφy + yvy = 0 (14.15)

Now introduce
ṽ ≡ v/k (14.16)

The two equations now have k as a common factor of every term

− ikU (y)φy + (Uy − y)ykṽ + ikyφ = −ikcφy (14.17)

ikyU (y)φ − ikφy + kyṽy = ikycφ (14.18)
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Dividing by k, we obtain an eigenproblem which is independent of k; the only
remaining parameter is the shear:

− iU (y)φy + (Uy − y)yṽ + iyφ = −icφy (14.19)

iyU (y)φ − iφy + yṽy = iycφ (14.20)

14.3.1 Beyond-All-Orders Rossby Wave Instability

Is there a Rossby wave instability with growth rates exponentially small in the shear
strength? Tung [31] shows that the answer is No! There is a neutrally-stable contin-
uous spectrum.

When a numerical strategy — spectral, finite difference or finite volume or what-
ever — discretizes a differential equation into an algebraic eigenproblem, thematrix
will necessarily only have discretemodes. Formodeswhose phase speed lies between
the minimum andmaximum ofU (y), and thus (unless unstable) have critical latitude
singularities on the real axis, the matrix eigensolver obediently spits out a finite num-
ber of discrete eigenvalues in the range c ∈ [min(U ),max(U )] as well as discrete
modes that are nonsingular because their velocity is outside this range of the mean
flow. Varying N , the number of degrees of freedom, reveals that these discrete-but-
continuous modes are not converged and indeed never converge as N → ∞.

Kasahara [32] plots these spurious modes in his Fig. 5 anyway, but states in the
caption, “The dots in the continuous spectrum have no physical significance, but they
are plotted merely to show what Galerkin’s method gives when one tries to represent
singular, continuum modes in terms of a finite set of Hough functions.” [32, 33].

As explained in [14], the complex integration path method of Boyd and Christidis
seems to offer the ability to calculate discrete Rossby modes, but this is an illusion.
Because the sign of the phase speed of Rossbywaves is opposite that ofKelvinwaves,
the branch point for these discrete Rossby modes is in a different half-plane. The
spectral method calculates solutions that are smooth on the numerical integration
path. This implies that the branch cut for the Rossby waves must cross the real axis,
implying that these modes have unphysical jumps on the real axis.

The Rossby spectrum is indeed continuous for c ∈ [min(U ),max(U )]. There are
no discrete modes except those whose phase speeds c lie outside the range of values
of the mean wind.1

1For example, the zonal wavenumber one, lowest symmetric latitudinal free oscillation known as
the “five day wave” is readily observed because its westward phase speed of 90m/s greatly exceeds
the magnitude of tropospheric mean winds [34].

http://dx.doi.org/10.1007/978-3-662-55476-0_5
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Fig. 14.4 The curve is actually the superposition of two curveswhich are visually indistinguishable.
One connects the imaginary of theKelvin phase as computed by a pseudospectral rationalChebyshev
method for the mean currentU (y) = Γ y in the “long wave” approximation of Boyd and Christidis
[2]. The other is the empirical fit �(c) ≈ 0.14 exp(−1/Γ 2)/Γ 3

14.3.2 Beyond-All-Orders Kelvin Wave Instability in Weak
Shear in the Long Wave Approximation

Figure14.4 shows the imaginary part of the phase speed as calculated by a very
accurate pseudospectral method. Under the black curve is a red dashed curve which
fits the numerical results so well that the red curve is invisible. The fitted curve is

�(c) ≈ 0.14

Γ 3
exp

(
− 1

Γ 2

)
(14.21)

The 0.14/Γ 3 is empirical; a futureWKB/matched asymptotics theorywould presum-
ably establish this or something like it on a firm deductive basis. The exponential
factor is consistent with the behavior of the eigenvalue of the Hermite-with-pole
equation: the growth rate is proportional to the square of the amplitude of the Kelvin
mode at the critical latitude.

For further graphs and discussion, see Boyd and Christidis [2, 14].

14.4 Kelvin Instability in Shear: The General Case

Although primarily focused on critical latitude effects on (neutrally-stable) midlat-
itude Rossby waves, Boyd [35] does contain one section on equatorial waves in a
mean flow that varies with latitude only. Fig. 13 of [35] shows a Kelvin wave in
moderate shear, calculated in spherical coordinates; the critical latitude is only five
degrees from the equator, but the imaginary part of the phase speed is very small.

http://dx.doi.org/10.1007/978-3-662-55476-0_13
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Two features are noteworthy. Rossby waves, at least the low order modes, are one-
sided; there is no amplitude forU (y) − c < 0 except an exponentially decaying tail
with zero latitudinal fluxes (Boyd [10], gives further details) [10, 35]. In contrast, the
Kelvin mode has a large secondary lobe on the poleward side of the critical latitude.

Kelvin waves transfer positive momentum to the mean flow when absorbed near
a critical latitude. Rossby waves have opposite phase speed and acceleration. The
net acceleration of the mean flow is negative equatorward of the critical latitude, but
there is a negative acceleration spike just poleward of the critical latitude. Lindzen
observed that the mode behaves like a fusion of Kelvin and Rossby modes (private
communication, 1975). There is no easy way to quantify such insights. However,
resonances between pairs of contra-rotating modes have become the primary theo-
retical paradigm for barotropic and baroclinic instability. Perhaps a reader will devise
a similar theory for Kelvin/Rossby resonance instability.

References

1. Rota G (2008) Indiscrete thoughts, 2nd edn. Birhauser, Boston, p 280
2. Boyd JP, Christidis ZD (1982) Low wavenumber instability on the equatorial beta- plane.

Geophys Res Lett 9:769–772
3. Boyd JP (1999) The devil’s invention: asymptotics, superasymptotics and hyperasymptotics.

Acta Appl 56(1):1–98
4. Boyd JP (1998) Weakly nonlocal solitary waves and beyond- all-orders asymptotics: general-

ized solitons and hyperasymptotic perturbation theory, mathematics and its applications, vol
442. Kluwer, Amsterdam, p 608

5. Segur H, Tanveer S, Levine H (eds) (1991) Asymptotics beyond all orders. Plenum, New York,
p 389

6. Boyd JP (2005) Hyperasymptotics and the linear boundary layer problem: why asymptotic
series diverge. SIAM Rev 47(3):553–575

7. Lindzen RS (1988) Instability of plane parallel shear flow (toward a mechanistic picture of
how it works). Pure Appl Geophys 126(1):103–121

8. Adam JA (1986) Critical layer singularities and complex eigenvalues in some differential
equations of mathematical physics. Phys Rep 142(5):263–356

9. Dickinson RE (1968) Planetary Rossby waves propagating vertically through weak westerly
wind wave guides. J Atmos Sci 25:984–1002

10. Boyd JP (1981) A Sturm-Liouville eigenproblem with an interior pole. J Math Phys 22:1575–
1590

11. LindzenRS,RosenthalAJ (1981)AWKBasymptotic analysis of baroclinic instability. JAtmos
Sci 38:619–629

12. Boyd JP, Natarov A (1998) A Sturm-Liouville eigenproblem of the fourth kind: a critical
latitude with equatorial trapping. Stud Appl Math 101:433–455

13. Dickinson RE (1970) Development of a Rossby wave critical level. J Atmos Sci 27(4):627–633
14. Boyd JP, Christidis ZD (1983) Instability on the equatorial beta-plane. In: Nihoul J (ed) Hydro-

dynamics of the equatorial ocean. Elsevier, Amsterdam, pp 339–351
15. Natarov A, Boyd JP (2002) Shafer (Hermite-Padé) approximants for functions with exponen-

tially small imaginary part with application to equatorial waves with critical latitude. Appl
Math Comput 125:109–117

16. Gill AW, Sneddon GE (1995) Complex mapped matrix methods in hydrodynamic stability
problems. J Comput Phys 122:13–24



References 309

17. Gill AW, Sneddon GE (1996) Pseudospectral methods and composite complex maps for near-
boundary critical latitudes. J Comput Phys 129(1):1–7

18. Boyd JP (1978) The effects of latitudinal shear on equatorial waves, part I: theory and methods.
J Atmos Sci 35:2236–2258

19. Boyd JP (1978) The effects of latitudinal shear on equatorial waves, part II: applications to the
atmosphere. J Atmos Sci 35:2259–2267

20. Greatbatch RJ (1985) Kelvin wave fronts, Rossby solitary waves and nonlinear spinup of the
equatorial oceans. J Geophys Res 90:9097–9107

21. McPhadenMJ, Knox RA (1979) Equatorial Kelvin and inertia-gravity waves. J Phys Oceanogr
9(2):263–277

22. Abramowitz M, Stegun IA (1965) Handbook of mathematical functions. Dover, New York
23. Olver FWJ, Lozier DW, Boisvert RF, Clark CW (eds) (2010) NIST handbook of mathematical

functions. Cambridge University Press, New York
24. Bender CM, Orszag SA (1978) Advanced mathematical methods for scientists and engineers.

McGraw-Hill, New York, p 594
25. Baker GA Jr, Graves-Morris P (1996) Padé Approximants, part II, extensions and applications,

encyclopedia of mathematics, vol 14, 2nd edn. Cambridge University Press, Cambridge, p 762
26. Boyd JP (2002) Chebyshev polynomial expansions for simultaneous approximation of two

branches of a function with application to the one-dimensional Bratu equation. Appl Math
Comput 143:189–200

27. Boyd JP (1985) Complex coordinate methods for hydrodynamic instabilities and Sturm-
Liouville problems with an interior singularity. J Comput Phys 57:454–471

28. Boyd JP (2001) Chebyshev and fourier spectral methods. Dover, New York, p 680
29. Boyd JP (1987) Spectralmethods using rational basis functions on an infinite interval. J Comput

Phys 69:112–142
30. Boyd JP (1987) Orthogonal rational functions on a semi- infinite interval. J Comput Phys

70:63–88
31. Tung K (1983) Initial-value problems for Rossby waves in a linear flow with critical level. J

Fluid Mech 133:443–469
32. Kasahara A (1980) Effect of zonal flows on the free oscillations of a barotropic atmosphere. J

Atmos Sci 37(5):917–828
33. Kasahara A (1981) Corrigendum: effect of zonal flows on the free oscillations of a barotropic

atmosphere. J Atmos Sci 37:3284–3285
34. Madden R (2007) Large-scale, free Rossby waves in the atmosphere — an update. Tellus A

59(5):571–590 (correnction in the same journal, vol. 60 (2008), pg. 394)
35. Boyd JP (1982) The effects of meridional shear on planetary waves, part II: critical latitudes.

J Atmos Sci 39:770–790



Chapter 15
Nonmodal Instability

Abstract The classic theory of Orr, Farrell, Trefethen, Boyd and others for non-
modal growth and decay in non-equatorial flow is reviewed. Long-established argu-
ments show that nonmodal perturbations must always decay as t → ∞. However,
plane Couette flow is always unstable in the laboratory in a broad range of Reynolds
numbers where all normal modes are stable. Orr pointed out in 1907 that nonmodal
disturbances may exhibit a transient growth that may push their amplitudes to such
large values that secondary instabilities are triggered, leading to self-sustained turbu-
lence. Farrell greatly generalized Orr’s theory to baroclinic flows, with and without
sidewalls. Trefethen and collaborators invented toy models that rigorously demon-
strate Orr’s conjecture, and also related transient growth to nonnormality of dis-
cretizationmatrices and from thence to similar properties in the differential operators
they represent. How do these scenarios play out in the tropics? Boyd and Christidis
have made a tentative beginning at answering this question, but this chapter is less a
review of equatorial dynamics than a research agenda.

It accordingly appears that, in this simple case, although the disturbance, if sufficiently small,
must ultimately decrease indefinitely, yet, before doing so, it may be very much increased
... [Indeed] the ratio of increase may be made as great as we like.

William McFadden Orr (1866–1934) (1907, p. 32 [1]).

15.1 Introduction

Linearized stability theory has traditionally focused almost exclusively on discrete,
exponentially-growing normal modes. However, the general initial-value solution to
linearized equations with mean shear flow has three parts:

1. Discrete neutral modes
2. Unstable normal modes with exponential growth [and a complex conjugate mode

which decays exponentially]
3. A continuous spectrum of waves.

© Springer-Verlag GmbH Germany 2018
J.P. Boyd, Dynamics of the Equatorial Ocean,
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The discrete neutral modes are stable and will be not be discussed here. However,
the continuous spectrum or “continuum modes” can trigger instability.

The discrete normal modes are collectively a sum. The continuous spectrum can-
not be described as being proportional to exp(ik[x − ct]) except as an integration
over the phase speed c with limits ranging from the minimum value of the mean
current U (y) to the maximum value of U (y). All the continuum modes are singular
at the critical latitude where the phase speed c equals U (y). Tung [2] and Kasahara
[3] discuss the theory and numerics of the continuous spectrum.

Sir William Thomson [27], five years before he became the first Lord Kelvin,
showed that as t → ∞, the continuous spectrum always decays. Consequently, it
was long assumed that for instability theory, only discrete modes mattered.

However,WilliamMcFaddenOrr [1] showed that there could be a transient growth
stage before the final decay begins. He deduced, correctly, that sometimes the tran-
sient would become so large that the linearization would fail, and nonlinearity could
lead to self-sustaining turbulence.

In this chapter, we give an introduction to his ideas. Modern thinking is that the
“Orr Mechanism” is fundamental not only to turbulence initiated by the continuous
spectrum, but plays an essential role in some types of exponentially-growing normal
mode instability [4]. We shall end by describing early work on nonmodal insta-
bility on the equatorial beta-plane by Boyd and Christidis. However, the role of the
continuous spectrum in instability at low latitudes is still but imperfectly understood.

15.2 Couette and Poiseuille Flow and Subcritical
Bifurcation

One motive for the continued interest in Orr’s work is the failure of normal mode
instability for two widely studied mean flows illustrated schematically in Fig. 15.1.

Definition 15.1 (Plane Couette flow) A flow problem in which the mean flow varies
linearly between two infinite parallel plates. These plates are in steady, relative
motion, driving the flow.

Definition 15.2 (Plane Poiseuille flow) The steady flow between two parallel plates
is Poiseuille flow. (Cylindrical Poiseuille flow is the flow in an infinitely long straight
pipe). The flow is driven by a steady pressure gradient. The velocity profile is a
parabola—maximum at themidpoint between the boundaries and zero on all bound-
aries.

Linearized stability theory predicts that for infinitesimal amplitude perturbations:

• plane Poiseuille stable for all Re < 5772
Experimentally, unstable for Re > 10001

1Re > 2000 in really careful experiments.
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Fig. 15.1 Velocity profiles for a pair of much-studied two-dimensional flows. Top Couette flow,
which is a steady flow which varies linearly with the cross-channel direction, driven by moving
walls. Bottom Poiseuille flow, which is a steady flow whose velocity is a parabola, zero at both rigid
walls

• plane Couette stable for all Re
Experimentally, unstable for Re > 350

These two flows are said to exhibit “subcritical bifurcations” in the sense that
instability due to finite amplitude perturbations arises for parameter values where
all infinitesimal amplitude perturbations are stable (Chapman [5], Schmid [6]). In
contrast, baroclinic instability is a supercritical bifurcation. Small finite amplitude
perturbations grow only when the vertical shear is larger than the critical value for
infinitesimal perturbations.

Subcritical bifurcations are a great challenge to experimentalists. Fitzgerald [7]
gives a good review of the work of Hof, Treacher andMullin, who built a pipe almost
sixteen meters long, 785 times the diameter of the pipe, to minimize endpoint effects
and maximize experimental control. They defined the amplitude of the perturbation
as the perturbing injected flux divided by the steady flux down the pipe. A relative
perturbation of only 0.007 was sufficient to trigger instability at a Reynolds number
of 2000; the threshold varied inversely with amplitude. Earlier experimenters had a
terrible time getting even close to the critical point because even very tiny pertur-
bations can trigger turbulence. The dismal failure of linear normal mode instability
theory is often labeled the “Sommerfeld Paradox”.

15.3 The Fundamental Orr Solution

Orr offered an explanation for subritical bifurcation through a (non-equatorial)
explicit solution. Themodel is the inviscid barotropic vorticity equation on an infinite
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domain on themidlatitude f-plane [Cartesian coordinateswith constant Coriolis para-
meter f ] linearized about a zonalmean shear flow that varieswith latitude only,U (y).
For simplicity, β = 0, but Tung [2] and Boyd [8] have shown that the beta-effect is
secondary. The essential physics is that vorticity ζ is conserved following themotion:

Theorem 15.1 (Orr Solution in an Unbounded Domain) 1. The general solution to

∂ ζ

∂t
+U (y)

∂ζ

∂x
= 0, ζ = ∇2 ψ (15.1)

is
ζ(x, y, t) = ζ(x −U (y)t, y, t) (15.2)

2. If the mean current is written as U (y) = SŨ (y) where S = max |u(y)|, the
maximum mean current in the domain, the solution is a function of St, and not S or
t separately, so that the role of S is merely to alter the timescale without changing
anything else. This theorem is true for general initial conditions.

3. Linear Couette Flow is the special case

U (y) ≡ S y, S is a constant (15.3)

A useful special solution is the “Advected Cosine”:

ζ ≡ Λ(x, y, t, k, S, φ) = cos(kx − kS[t − φ]y) (15.4)

= {cos(kx) cos(kS[t + φ]y) + sin(kx) sin(kS[t − φ]y)}

where φ is an arbitrary constant phase factor. The corresponding streamfunction is

ψ = − ζ

k2 + k2S2[t − φ]2 (15.5)

As t → ∞, ψ ∼ O(1/t2) while the zonal velocity u = −ψy decays as O(1/t).
This gives a two-parameter family of solutions where the zonal wavenumber k

and the phase constant φ are effectively the only parameters.

Proof The first and third propositions follow by substituting the assumed solution
into the equation and canceling common factors until it is clear that the function is
indeed a solution. The second proposition is proved by making the change of coor-
dinate τ ≡ St , which transforms the problem to ζτ + yζx = 0. This is independent
of the shear strength S. �
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15.4 Interpretation: The “Venetian Blind Effect”

The rotation of isovorts in the “Advected Cosine” resembles the opening and closing
of thewindow treatment known as “venetian blinds”.When the slats are parallel, light
can stream into the room, but the room can be darkened by rotating the slats until they
touch one another. The isovorts at different times for the “Advected Cosine” solution
very much resemble a cross-section of the slats in venetian blinds as illustrated in
Fig. 15.2.

If the phase constant φ is chosen so that at t = 0, the contours of constant vor-
ticity are tilted against the shear, that is, run northwest-to-southeast when dU/dy is
positive, then the zonal velocity and streamfunction will amplify until the isovorts
are rotated to run due north-south. For larger times, the isovorts continue to rotate
clockwise (as viewed from above) when S > 0 and the streamfunction and velocity
decay.

Fig. 15.2 Isovorts (contours of constant vorticity) for a plane wave solution to the barotropic
vorticity equation, linearized about a mean shear flow. The arrows in the middle panel show the
mean, advecting velocity. The isovorts rotate about (x = 0, y = 0) [where the mean flow is zero
and particles do not move]. When the isovorts are tilted against the mean shear (left panel), the
streamfunction and velocities AMPLIFY until a maximum amplitude is reached when the isovorts
are parallel to the y-axis (middle panel). The streamfunction and velocities DECAY when the tilt
is WITH the SHEAR. The phase φ is chosen so that at t = 0, the tilt is against the shear. (S = 1,
β = 0) From Boyd [8]
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The vorticity is conserved and therefore its magnitude never changes. However,
the Poisson equation connecting ψ and ζ implies that for a sinusoidal vorticity, the
streamfunction is ζ/κ2 where κ = √

k2 + m2 is the total wavenumber. The zonal
wavenumber k is invariant under advection by a zonal mean wind. However, the
latitudinal wavenumber m changes with time. When the isovorts rotate parallel to
a meridian, the meridional wavenumber m reaches a minimum of zero, and the
streamfunction is a maximum. For very large time, the continued clockwise rotation
of the isovorts (for S > 0) causes the north-south wavenumber m to grow without
bound, so κ grows without bound and the streamfunctions decays proportional to
1/κ2.

15.5 Refinements to the Orr Solution

Boyd [9], Tung [2] and Yamagata [10] generalized Orr’s solution to include the
beta-effect. This produces a westward movement at a rate which varies with time
because the north-south wavelength varies with time. However, the beta-effect does
not modify the growth and decay of the waves.

Farrell [11] showed that adding sidewalls requires thin irrotational boundary layers
to enforce the boundary conditions. However, again growth and decay are unaltered.

Farrell [11–13] and Butler and Farrell [14] showed that the Orr mechanism works
similarly when the shear is vertical instead of horizontal, bounded only by a lower
boundary in a semi-infinite atmosphere.

There is nothing sacred about trigonometric functions as shown by the following.

Theorem 15.2 (Streamfunction Rotation) Let f (z) denote a univariate function
and let g(z) be a bounded solution to gzz = − f . Let (X,Y ) denote a new, rotated
coordinate such that the Y axis is the result of rotating the y axis by an angle Θ in
a clockwise direction. If the angle Θ is chosen so that tan(Θ) = (t + φ), then the
contours of the sheared function will all parallel the rotated Y -axis. Then

ζ = f (x − y[t + φ]) = f

(
1

cos(Θ)
X

)
(15.6)

whereφ is an arbitrary constant phase and the corresponding solution for the stream-
function is

�ψ = −ζ, ψ = 1

1 + [t + φ]2 g
(

1

cos(Θ)
X

)
(15.7)
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Proof From any elementary physics or computer graphics book

∣∣∣∣ XY
∣∣∣∣ =

∣∣∣∣ cos(Θ) − sin(Θ)

sin(Θ) cos(Θ)

∣∣∣∣
∣∣∣∣ xy

∣∣∣∣ ⇔
∣∣∣∣ xy

∣∣∣∣ =
∣∣∣∣ cos(Θ) sin(Θ)

− sin(Θ) cos(Θ)

∣∣∣∣
∣∣∣∣ XY

∣∣∣∣ (15.8)

The line implicitly defined by x − yt = 0 has a slope equal to 1/t . If we draw a
triangle with unit hypotenuse, one vertex at the origin, and two sides that lie on the
old and new y axes, the vertex on the X axis is (x = sin(Θ), y = cos(Θ)); the line
from the origin to this point has a slope of 1/ tan(Θ). This requires that tan(Θ) = t .
Then

z ≡ x − yt (15.9)

= cos(Θ)X + sin(Θ)Y − [− sin(Θ)X + cos(Θ)Y ]t (15.10)

= [cos(Θ) + sin(Θ)t]X + [sin(Θ) − cos(Θ)t]Y (15.11)

= [cos(Θ) + sin(Θ) tan(Θ)]X + [sin(Θ) − cos(Θ) tan(Θ)]Y (15.12)

=
[

1

cos(Θ)
cos2(Θ) + sin2(Θ)

1

cos(Θ)

]
X (15.13)

= 1

cos(Θ)
X (15.14)

It is explained in classes in computer graphics that a shearing transformation is not
merely a rotation but rather a combination of this with a deformation. Because the
function f (z) is univariate, the deformation is a simple dilation [stretching] by the
factor of 1/ cos(θ). The form of the Laplace operator is left unaltered by rotation:
For any smooth function u(x, y),

∂xx + ∂yy = ∂XX + ∂YY (15.15)

Nevertheless, the shearing transformation amplifies the streamfunction by the square
of the dilation factor. This factor can be expressed in terms of t via a trigonometric
identity:

1

cos2(Θ)
= 1 + tan2(Θ) (15.16)

= 1 + [t + φ]2 (15.17)

�

Thus, a single ridge of vorticity described by f = exp(−z2) will experience the
same transient growth as the “Advected Cosine” if aligned against the shear at the
same angle.
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15.6 The “Checkerboard” and Bessel Solution

The Advected Cosine solution shows clearly that temporary growth is possible even
in a flow, such as linear Couette flow,which has no unstable normalmodes. It is surely
true that if a wave disturbance grows sufficiently large that linearization about the
mean flow is no longer trustworthy, then linear theory cannot disprove the possibility
that the linearly stable flow will achieve self-sustaining turbulence.

However, this is a long way from proving that nonmodal instability is significant.
Boyd [8] pointed out that an initial perturbation tilted against the flow is rather
artificial; a more realistic initial perturbation is a standing wave in latitude, that is, a
superposition of waves tilted both against the shear and with the shear.

15.6.1 The “Checkerboard” Solution

He was thus motivated to consider the initial condition

ζ(x, y, 0) = cos(kx) cos(my) (15.18)

The exact (linearized) solution is, with Λ(x, y, t, k, S, φ) ≡ cos(kx − kS[t − φ])

ζ(x, y, t) = 1

2
{Λ(x, y, t, k, S,m/(kS)) + Λ(x, y, t, k, S,−m/(kS))} (15.19)

This is illustrated in Fig. 15.3.

Theorem 15.3 (Growth of the Checkerboard)

1.
max |ψ(t = m/(kS))|

max |ψ(t = 0)| ≈ 1

2

(
1 + m2

k2

)
(15.20)

2. Large growth requires
m >> k (15.21)

(Boyd [8])

Shepherd [15] and Boyd and Christidis [16] showed that if the initial condition
was a broad distribution of wavenumbers, growth would be small. Growth requires
a latitudinal scale much smaller than the zonal scale.

Shepherd used Bessel functions to examine what would happen if the initial
disturbance was a superposition of many wavenumbers, restricted to certain sectors
of the k − m plane.
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Fig. 15.3 The vorticity (top three panels) and streamfunction (lower three panels) for a standing
wave initial condition (“Checkerboard Solution”) at t = 0, t = 1 and t = 2 with zero beta effect,
S = 1, andm/k = 2.Theheavydashed lines connect the same set of highvorticity or streamfunction
centers throughout the evolution of the flow. The advection causes the heavy dotted lines to rotate
clockwise until, at t = 2 [right panel], these lines parallel the y axis to produce a state reminiscent
of the middle (t = 0) panel of Fig. 1. The number of streamfunction contours increases from left-
to-right in the lower panels because the streamfunction amplifies by approximately a factor of 5.
From Boyd [8]

In spite of the mathematical rigour and plausibility of the critiques of Boyd,
Shepherd and Christidis, Farrell’s revival of Orr’s ideas has made many converts to
the notion that nonmodal instability is the reason that plane Couette and Poiseuille
flows are experimentally turbulent for Reynolds numbers where normal mode theory
predicts stability. Boberg and Brosa [17], Reddy and Henningson [18], and Gus-
tavsson [19], who independently arrived at similar ideas, helped to propagate these
concepts in engineering fluid mechanics.

There are several developments that have strengthened this argument:

1. The Dandelion Strategy
2. Transient Growth of Three-dimensional Perturbations
3. Rigorous Analysis of Nonlinear ODE Systems and the Importance of Nonnormal

Matrices
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15.7 The Dandelion Strategy

One thing that literature would be greatly the better for
Would be a more restricted employment by the authors of simile and metaphor.…
What does it mean when we are told
That the Assyrian came down like a wolf on the fold?
In the first place, George Gordon Byron had enough experience
To know that it probably wasn’t just one Assyrian, it was a lot of Assyrians.

Ogden Nash in his poem Very Like a Whale

A flow is perturbed not by a single perturbation, but by a lot of perturbations
in succession. It is unlikely that a single perturbation will be strongly tilted against
the shear. It is obviously much more likely that such a wave will be found in an
ensemble of a hundred thousand perturbations than just one. What seems to happen
is that sooner or later, a perturbation that can grow by orders of magnitude occurs,
and then — kaboom!

In a sense, fluid mechanics is as profligate of perturbations as nature is with seeds.
A dandelion scatters its seeds on the wind, and almost all perish. But one seed that
grows another dandelion is enough to sustain the species. One perturbation out of
thousands is enough to trigger self-sustaining turbulence.

15.8 Three-Dimensional Transients

Squire’s Theorem (1933) asserts that for exponentially growing normal modes in
a non-rotating inviscid, two-dimensional flow perturbations always grow faster
than three-dimensional perturbations. This focused attention for decades on two-
dimensional eigenmodes called “Tollmien-Schlicting” modes, which have turned
out to be remarkably illusive in laboratory experiments. However, Squire’s Theorem
does not apply to the continuous spectrum.

Indeed, a common feature of turbulence is streamwise vortices, that is, vorticity
whose vorticity vector is parallel to themean flow as illustrated in Fig. 15.4. These are
extremely effective in generating streamwise streaks of anomalous velocity which
are also ubiquitous in experimental turbulence. Butler and Farrell [14] showed that
three-dimensional perturbations to plane Couette flow could grow by over a factor of
a thousand. Chapman [5] provides both an excellent review and an improved theory
for the linear development of streamwise velocity streaks, [5].
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Fig. 15.4 Schematic of streamwise vortices (helical trajectories) in a vertically sheared flow in the
x-direction, indicated by the thick lines and arrows

15.9 ODE Models and Nonnormal Matrices

The six page article by Trefethen, Trefethen, Reddy and Driscoll [20] is a very
good review that also invented a coupled pair of nonlinear ODEs that evolve to
self-sustaining chaos (“turbulence”) from a tiny perturbation. Although linearized
dynamics shows that the perturbation must always decay as t → ∞ in the linearized
approximation, the nonlinear dynamics is that the perturbation is amplified in a
transient stage until secondary instabilities initiate the unending chaos.

Trefethen and collaborators noted that nonmodal instability can be greatly gen-
eralized (and divorced from an exclusively fluid mechanics context). Observe that
linearizing about a time-independent basic state and discretizing the spatial depen-
dence will always yield a linear system of coupled ODEs in time for the evolution
of the perturbation u

du
dt

= A u (15.22)

where A is a square matrix whose elements are independent of time. This is true
regardless of whether the original nonlinear problem has any connection to fluid
mechanics or not; it is true whether the spatial discretization is finite difference,
spectral or finite volume. The linearized system is known in dynamical systems
theory as the “tangent model” [to the nonlinear system] and its general solution is
the “tangent propagator” or “tangent propagator”.

The behavior of this abstract, linear instability problem depends tremendously
on whether the matrix A has the property of being normal. Whenever A is normal,
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nonmodal instability is impossible. The formal definition of this crucial matrix prop-
erty is the following.

Definition 15.3 (Normal/Nonnormal) An N × N matrix is “normal” if it has N
orthogonal eigenvectors, equivalent to diagonalizability. A matrix that isn’t normal
is “nonnormal”.

Normality is important because of the following.

Theorem 15.4 (Uncoupling and Energy Norm) 1. If the matrix A is normal, then
by making a change-of-basis for N-dimensional space to the eigenvector basis,

u = Q a ↔ a = Q∗ u (15.23)

the system of ODEs is transformed to the uncoupled system

da
dt

= Λ a (15.24)

or equivalently in components
da j

dt
= λ j a j (15.25)

with the exact solution
a j (t) = a j (0) exp(λ j t) (15.26)

where a j (0) = Q∗
j · u0 and where u(t = 0) = u0.

2. The “energy norm” of the system ||u||2 is

||u||2 =
N∑
j=1

[a j (0)]2 exp(2λ j t) (15.27)

This implies the following.

Theorem 15.5 (Stability of a System with a Normal Matrix) Let A be a normal
matrix with elements which are independent of time. Assume the conditions and
conclusions of the previous theorem apply. Represent the solution in the eigenvector
basis as u = ∑N

j=1 a j (t)Q j with the Q j as the eigenvectors of A. Then if

�(λ j ) < 0 for all j (15.28)

it follows that
d||u||2
dt

< 0 (15.29)

and the amplitudes of u in the eigenvector basis, a j (t), decay monotonically with
time proportionally to exp(−|�(λ j )|), that is,
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d|a j |
dt

< 0 (15.30)

Thus, when the matrix of a constant coefficient linear system of ODEs is normal,
stability theory is very boring and straightforward, and completely controlled by the
eigenvalues.

Some types of matrices are always normal.

Theorem 15.6 (Matrix Categories That Are Normal and Diagonalizable) The fol-
lowing categories of matrices are always unitarily diagonalizable and normal:

1. real symmetric
2. Hermitian
3. skew-symmetric
4. skew-Hermitian
5. unitary
6. circulant
7. any of the first four plus a multiple of the identity matrix

Proof pg. 187 of [26].
Unfortunately, the matrices that arise in hydrodynamic stability are often very,

very nonnormal, allowing spectacular transient instability. Chapter 7 of the book
by Trefethen and Embree [21] is a good description of this general theory of non-
modal/nonnormal dynamics as applied specifically to fluid mechanics.

15.10 Nonmodal Instability in the Tropics

Boyd and Christidis [16] is the only study of transient growth on the equatorial beta-
plane. They considered only the barotropically-stable linear shearU (y) = Sy where
S is a constant and U is the mean zonal current. They found the following notions
from earlier, midlatitude investigations of Yamagata [10], Tung [2], Farrell [11] and
Boyd [8] are still true on the equatorial beta-plane:

1. The Rossby wave spectrum in a linear shear is continuous, not discrete.
2. Lines of constant phase rotate clockwise as viewed from above for S > 0.
3. The latitudinal scale tends to zero as t → ∞.
4. There is little latitudinal spreading of the initial disturbance.
5. A latitudinally-concentrated wavepacket will move north while growing and will

move south while decaying (S > 0); the southward motion will eventually cease,
leaving the packet “stalled out” at a particular latitude.

The following conclusions are modified or qualified:

1. The wave energy decays algebraically with time as 1/t2 as t → ∞.

http://dx.doi.org/10.1007/978-3-662-55476-0_7
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2. A sinusoidal wave tilted against the shear (phase lines running northwest-
southeast for S > 0) will amplify for a finite time before entering the asymptotic
decay stage.

The first part of their study was to solve the shallow water equations, linearized
about a linear shear flow, for initial conditions that were a Rossby wave of zonal
wavenumber k and latitudinal mode number n as given by the usual formulas for the
eigenmodes of an ocean with no mean flow. The rationale is that gravity modes are
not drastically modified by the shear, so the no-mean-flow Rossby initial condition
would still excite little gravity wave activity. Higher mode Rossby waves are better
and better described, as the mode number n increases, by the midlatitude beta-plane
over most of the latitudinal range where they have significant amplitude; this was
confirmed by numerical experiments. Therefore the interesting question is: How do
the lowest couple of modes behave?

The answer is that equatorial Rossby waves behave very much like waves on the
midlatitude beta-plane except for the two differences noted above. The disturbance
moves south of the equator (if S > 0), narrows in latitudinal scale, and tilts more
and more with the shear as illustrated in Fig. 15.5. The first alteration is that the
energy decays with time for large time at a rate intermediate between 1/t and 1/t2.
The slope of decay is monotonically increasing, so there is a suggestion that for
very large times, the expected 1/t2 decay occurs, but even for a nondimensional
time of 200, which is much longer than the trans-Pacific crossing time for the n = 1
and n = 2 Rossby waves, the observed decay is enigmatically slower. The second
unexpected finding is that there is no sign of transient growth.

These puzzling differences motivated Boyd and Christidis to retreat to the mid-
latitude beta-plane where the linearized streamfunction equation is

ψxxt + ψyyt +U (y)
(
ψxxx + ψyyx

) + (
β −Uyy

)
ψx = 0 (15.31)

The initial condition was

ψ(x, y, t = 0) = exp(ikx) exp(−(1/2)y2) Hn(y) (15.32)

Fig. 15.5 Contours of the height field for t = 0, 30 and 90 [left to right] when the shallow water
equations, linearized aboutU (y) = Sy, are solved for an initial conditionwhich is the n = 1Rossby
mode (of an ocean with no mean motion) and k = 0.1. Note that the east-west scale is greatly
compressed
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For a linear shear,U (y) = Sy, it is convenient to introduce the parameters τ = kSt ,
B = β/(kS). The phase function is

Φ ≡ arctan {(τ + m)/k} − arctan (m/k) (15.33)

The streamfunction then has the exact solution

ψ(x, y, t) = 1√
2π

exp(ikx − iyτ)

∫ ∞

−∞
dmA (m)

exp(−imy + i BΦ)(k2 + m2)

k2 + (m + τ)2

(15.34)
where the Fourier transform of the initial condition is

A (m) = i n exp(−[1/2]m2)Hn(m) (15.35)

(The Hermite functions are (to within a factor of i) their own transform.)
The factor i BΦ encapsulates the usual phase behavior of Rossby waves; this

produces the southward movement of the disturbance evident in Fig. 15.5 and is
well understood. This is true even though the Fourier transform A is broad in m,
not narrowly peaked about some wavenumber m0 as usually assumed in ray-tracing
(Yamagata [10]).

The critical factor is

Λ̃(m, k, τ ) ≡ k2 + m2

k2 + (m + τ)2
(15.36)

When k << 1,Λ(m, k, τ ) grows to amaximumofm2/k2. Therefore, consistentwith
the Orr solution, large growth is possible for individual latitudinal wavenumbers m.
However, here the initial condition is a broad spectrum in m. Boyd and Christidis
show that because the amplitude is exponentially small for the fast-growing large m
waves, the integrated spectrum decays monotonically with time.

We have already pointed out the limitations of this analysis: random perturbations
may have spectra more or less regular than that of a Hermite function, and eventually
one such perturbation may amplify enough to violate the linearization and create
self-sustaining finite amplitude turbulence.

15.11 Summary

An alternative viewpoint for explaining subcritical bifurcation and resolving the
“Sommerfeld Paradox” has gained adherents. Laboratory experiments long ago
showed the existence of coherent structures, persistent, long-lived and organized,
within the frothing fury of turbulence. Waleffe, Cvitanovic, Viswanath, Li and Lin
and many others have numerically calculated these coherent structures [22–25].
Although unstable, these coherent structures organize the flow and also provide a
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route for transition to turbulence from very small initial perturbations. The coherent
structures approach is not incompatible with linear nonmodal instability, but linear
theory is always focused on the infancy of turbulence whereas the unstable coherent
structures concept tells stories about the adolescence and maturity of turbulence.

There has been no follow-up to the work of Boyd and Christidis on nonmodal
instability in the tropics. There has been no work at all on calculating unstable
coherent structures nor in exploring the role they might play in equatorial dynamics.
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Chapter 16
Nonlinear Equatorial Waves

Abstract Nonlinearity spawns a plethora of phenomena. Inweakly nonlinear theory,
each wave has the Hermite function latitudinal structure of infinitesimal amplitude
waves and likewise the vertical structure of a baroclinic eigenfunction. East-west,
equatorial waves are free both to propagate and also to evolve; the zonal-and-time
amplitude function, A(x, t), satisfies one of several generic PDEs or PDE systems.
Each one-space-dimensional PDE is derived by themethod ofmultiple scales or other
singular perturbation procedure. In the absence of mean currents, the Kelvin mode is
nondispersive, steepens and “breaks”when the slope becomes vertical; Anoshear

Kelvin (x, t)
evolves in obedience to the physics of the inviscid Burgers’ equation. Mean currents
induce weak dispersion and the Kelvin wave then forms roundish solitary waves with
a longitude-and-time structure described by the Korteweg-deVries (KdV) equation.
Rossby waves are weakly dispersive, and only weakly dispersive, with or without
mean currents, and the latitudinally symmetric modes are governed by the KdV
equation, too. The n = 1 Rossby soliton is stable even for large amplitude, a pair of
contra-rotating anticyclones that resembles middle latitude vortex pairs (“modons”;
“Lamb-Chaplygin dipoles”), even to a volume of recirculating fluid, trapped within
the coherent structure, if the amplitude is sufficiently large. Higher mode Rossby
solitons are “weakly nonlocal” in the sense that they radiatively decay by emitting
zonally-sinusoidal waves of smaller latitudinal mode number whose amplitude is an
exponential function of the reciprocal of the amplitude of the soliton. This expo-
nentially small radiation lies “beyond-all-orders” in the amplitude parameter and
therefore must be calculated by “exponential asymptotics”. Lastly, selected numer-
ical studies of idealized nonlinear wave dynamics, not necessarily small amplitude,
are reviewed.

It is a small irony to dub nonlinear phenomena nonsomething when they constitute by far
the most common class of things in the universe. . .. This is like referring to the class of
animals that are not elephants as non-elephants.

Arthur Fisher and Stanislaw Ulam

© Springer-Verlag GmbH Germany 2018
J.P. Boyd, Dynamics of the Equatorial Ocean,
https://doi.org/10.1007/978-3-662-55476-0_16

329



330 16 Nonlinear Equatorial Waves

16.1 Introduction

It has been said that the great idea of the nineteenth century was that everything was
linear; the great idea of the twentieth century is that everything is nonlinear. The great
oceanographer Henry Stommel once observed that perhaps there should be special
prayers not only for the mariners who go to sea but also for those who study the sea
as well.

Equatorial oceanography was born around 1959 with the publication of Yoshida’s
work on equatorially-trapped zonal jets, described by infinite series of Hermite func-
tions with explicit coefficients. The first half century of the study of equatorially-
trapped dynamics has had the same reliance on linear thinking as the physics and
fluid mechanics of the nineteenth century. It is not unjust to say that linear thinking
is the infancy and youth of all physical sciences. But oceanography cannot live in its
cradle forever.

Nonlinear theory for the tropical oceans has employed two families of tools:
numerical simulations of idealized scenarios and reductive singular perturbation the-
ory, which is “reductive” in the sense that the output is a model of three-dimensional
reality that is a partial differential equation in one space dimension plus time such
as the Korteweg-deVries (KdV) equation. Most of this work has employed the non-
linear shallow water wave equations, also known as the one-and-a-half layer model,
on the equatorial beta-plane.

ut − y v + φx = −u ux − v uy

vt + y u + φy = −u vx − v vy
φt + ux + vy = −u φx − ux φ − v φy − vy φ (16.1)

whereu and v are the eastward andnorthward currents andφ is the height (or pressure)
field. This is also called the “one-and-a-half-layer” model because it describes a
two-layer fluid in the hydrostatic approximation when the lower layer is infinitely
deep. The height φ is then the thickness of the upper layer or equivalently, the
depth of the interface between the two layers. These equations have already been
nondimensionalized.

Marshall andBoyd [1],Ripa [2] andGreatbatch [3] have extended this perturbative
framework to a continuously stratified fluid. We shall describe their analysis in the
next section. We shall continue with the much larger body of perturbation theory
applied to the one-and-a-layer model just described. In later sections, we shall return
to describe numerical simulations.

As cataloged in Table16.1, each type of linear wave dispersion determines a
corresponding category of interesting nonlinear behavior. Reductive perturbation
theory is a tool for classification as well as computation.
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Table 16.1 Dispersive categories and nonlinear species

Categories Nondispersive Weakly dispersive Strongly dispersive

Definitions Nonlinear � �
dispersion c
independent of k

Nonlinearity ≈
dispersion
c(k) = c(0) + O(k2)
k � 1

Nonlinearity �
dispersion
c(2k) − c(k) ∼ O(1)

Nonlinear behavior Frontogenesis and
wave-breaking

Bell solitons Envelope solitons

Evolution equation One-dimensional
advection (ODA)

Korteweg-deVries
(KdV)

Nonlinear
Schroedinger (NLS)

Wave species Kelvin (no shear)
ultralong Rossby

Kelvin-in-shear long
Rossby

Yanai, gravity short
Rossby

16.2 Weakly Nonlinear Multiple Scale Perturbation Theory

16.2.1 Reduction from Three Space Dimensions to One

Singular perturbation theory is a very general tool that can describe many nonlinear
wave phenomena. The nonlinearity is assumed to be sufficiently weak so that nonlin-
ear effects can be calculated by a power series in a parameter ε which is proportional
to the amplitude of the wave. A crucial point is that weakly nonlinear theory is deeply
rooted in linear theory.

Equatorial waves are trapped in both latitude and depth. This implies that when
the wave amplitude is small, nothing very interesting happens in those two coordi-
nates. However, the waves freely propagate east and west. Weak nonlinearity will
only reshape the longitudinal structure of the waves slowly, but the accumulation of
small changes can lead to large alterations over time. The Kelvin wave, for example,
steepens in the absence of dispersion-inducing mean currents.When the nonlinearity
is O(ε)where ε � 1, the changes on a O(1) time scale will be small. On a long time
scale, however, the Kelvin wave steepens and steepens until it breaks, that is, devel-
ops a vertical slope ux = ∞. Astronomers call such slow, accumulating changes
“secular effects”, and the term has become universal in perturbation theory.

“Reductive perturbation theory” collapses three-space-dimensional reality into
nonlinear partial differential equations in just one space dimension plus time. As
shown schematically in Fig. 16.1, each weakly nonlinear solution is the product of
factors in depth and latitude which to lowest order are the same as in linear theory
multiplied by a factor of longitude and time which satisfies one of these simplified
“reduced” nonlinear partial differential equations.

It is usually necessary to approximate other complications such as dispersion by
a perturbative expansion also.
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Fig. 16.1 In weakly nonlinear theory, the lowest order is the product of three functions. One factor
is a vertical mode [left, represented by the baroclinic mode of a 1-1/2-layer model], which is a
function only of depth. Another multiplier is Y(y) [a Hermite function or the sum of two Hermite
functions] and finally multiplied by a function of longitude x and time t . The z and y factors are the
solutions to linear Sturm–Liouville eigenproblems. The third, longitude-and-time factor, A(x, t),
is the solution to a nonlinear evolutionary reduced PDE such as the KdV, MKdV, or NLS equations

In the absence of resonance, modes that are distinct in linear theory, and therefore
do not interact, do not interact at lowest order in weakly nonlinear theory either.
Resonance, however, may produce O(1) interactions between different modes on
an O(1) time scale, so resonant triads, second harmonic resonance, long wave reso-
nance, Landau poles and sideband instability will all be treated in due course.

The reduced one-dimensional PDEs form a fairly small set. These same equations
have been derived in many different branches of physics because each is generic for
a certain category of behavior as will be developed equation by equation in what
follows.

Although these equations are one-space–dimensional, they collectively capture a
verywide range of nonlinear behavior. Equatorial wave dynamics seems to follow the
principle that EverythingNot Forbidden isObserved; thoughnot all listed phenomena
have been observationally confirmed, theory predicts:

1. Kelvin frontogenesis and breaking
2. Rossby solitary waves of KdV type
3. Rossby solitary waves of MKdV type and also mixed cubic-and-quadratic non-

linearity
4. Rossby radiating solitons [“weakly nonlocal solitons”] (latitudinalmode number

n > 2);
5. Kelvin round solitons
6. envelope solitary waves
7. sideband instability
8. resonant triad instability
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Fig. 16.2 Projections of nonlinear terms onto vertical modes. Each mode is shown schematically
as little graphs with depth as the vertical axis. The vertical line in the middle of each graph is
the axis of eigenfunction values. The higher modes [lower right] have vertical nodes where the
eigenfunction is zero at each depth where its curve intersects the axis. Top: the single baroclinic
mode of the nonlinear shallow water wave equations, also known as the 1-1/2-layer model, is a
step function. The product of two step functions as in a nonlinear term is the same stepfunction,
so nonlinearity in the baroclinic mode remains entirely confined within that vertical mode. In a
continuously stratified mode, the product of two baroclinic modes is an infinite series including the
barotropic mode [independent of depth, the first mode to the right of the equals sign in the lower
schematic] plus a summation over all the denumerable infinity of baroclinic modes

9. second harmonic resonance
10. long wave/short wave resonance
11. double triad resonance
12. corner waves

We will define and elaborate each of these phenomena in the rest of the chapter.

16.2.2 Three Dimensions and Baroclinic Modes

Almost all theory has been confined to the 1-1/2 layer model in which the tropical
ocean is idealized as a two-layer model in which the lower layer is infinitely deep and
therefore motionless. There is only a single baroclinic mode; its vertical structure
is a step function, nonzero only above the thermocline. There is no coupling to the
barotropic mode because in the nonlinear terms, the product of a step function with
another step function is again a step function. Thus the nonlinearity projects entirely
onto the baroclinic mode.
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Only Marshall and Boyd [1] and Ripa [4] have reached beyond the 1-1/2 layer
model with perturbation theory, but some useful conclusions have been reached even
so. The linear, fully separable model of Chap.2 is most easily extended to weak
nonlinearity by employing a Galerkin method in which, just as in linear theory, all
fields are expanded in the eigenfunctions of the vertical structure equation and a
Galerkin discretization is applied. The modes are not step functions. The product of
the first baroclinic mode with itself projects onto the depth-independent barotropic
mode plus an infinite series of baroclinic modes as shown schematically in Fig. 16.2.
This has two effects that are filtered by the 1-1/2 layer model:

1. Nonlinearity is weakened relative to the 1-1/2-layer model by a factor of one
minus the fraction of the square of the first baroclinic mode that projects onto that
mode, a projection that would be 100% in the nonlinear shallow water model.

2. The barotropic mode is not equatorially trapped, so nonlinear projection onto this
mode is a mechanism for equatorially-trapped motion in baroclinic modes to leak
energy to extratropical latitudes.

Figure1 of [5] is a good illustration of radiative decay of baroclinic equatorial
Rossby solitons, theoretically predicted by Marshall and Boyd [1], through leakage
into the barotropic mode. The solitary wave remains coherent for a very long time
in spite of the leakage.

Dispersion plays a key role in the story. When infinitesimal amplitude waves of
different wavelengths 2π/k (where k is the wavenumber) travel at different phase
speeds c(k), a soliton-like isolated peak, the superposition of many different waves
exp(ik(x − c(k)t)), will spread out into small peaks and troughs (“disperse”) like
runners in amarathon (Fig. 16.3). Nonlinearity often acts as an anti-dispersion, steep-
ening the wave until, if dispersion is absent, the wave “breaks” (that is, develops a
near-infinite slope or becomes multivalued) (Fig. 16.4).

16.3 Solitary and Cnoidal Waves

Solitary waves are among the most interesting phenomena of nonlinear dynamics
since they have no linear counterparts [6, 7].

Definition 16.1 (solitary wave/soliton) A “solitary wave” or “soliton” is a localized,
finite amplitude disturbance in which dispersion and nonlinearity balance to create
a steadily translating wave of permanent form.

As amplified below, theory predicts that solitons of various wave types should be
easily generated, and numerical models bear this out, at least for Rossby and Kelvin
solitary waves of Korteweg-deVries type. The strength of the linear dispersion deter-
mines the form of the solitary waves – or even whether they exist – so the next
section will present an overview of the role of dispersion. We will then take up
each of the three major cases in turn: no dispersion [frontogenesis and breaking],

http://dx.doi.org/10.1007/978-3-662-55476-0_2
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weak dispersion [bell solitons and KdV dynamics], and strong dispersion [envelope
solitons and NLS dynamics].

After solitary waves, we will turn to resonant triad interactions and turbulence.
There has been some useful preliminarywork by Loesch and collaborators, Ripa, and
a discussion by Salmon, and many articles by Majda and his collaborators, but the
collective interactions of equatorial modes are complicated and poorly understood.

Later, we shall explain why “solitary wave” is the worst appellation in fluid
mechanics.

Definition 16.2 (cnoidal wave) A “cnoidal” wave is a periodic generalization of
a solitary wave. It, too, is a finite amplitude disturbance in which dispersion and
nonlinearity balance to create a steadily translating wave, but the requirement of
“localization” is replaced by the weaker constraint of spatial periodicity. A soliton is
a special case of a cnoidal wave: it is the limit that the spatial period goes to infinity
for fixed amplitude or the limit that the amplitude goes to infinity (and the width of
the peak to zero) for fixed period.

Purists like tomake a distinction between “solitarywave” and “soliton” by restrict-
ing the latter to solitary waves which collide elastically, that is, do not lose energy
either to each other or to daughter waves during collisions. We shall use these terms
as synonyms, however. It is now known that “solitons” in this narrow sense exist
only for certain one-dimensional partial differential equations that approximate two-
and three-dimensional systems. The solitary waves of the full equations, as opposed
to those of the models, always seem to lose energy in collisions (at least in fluid
mechanics), so the distinction between “solitons” and “solitary waves” is of only
academic interest.

Purists also restrict “cnoidal” to those periodic waves which can be expressed in
terms of the elliptic “cn” function. Modern research has found many periodic wave
disturbances which are generalizations of solitary waves, and which tend to a train
of evenly spaced solitary waves in the limit that the solitons are tall and narrow in
comparison to the spacing between them. Most of these spatially periodic waves
cannot be expressed in terms of elliptic functions, but we shall call these “cnoidal”
waves, too.

Amuch more detailed treatment of solitons and cnoidal waves will be given in the
later sections on the phenomenology of the time-and-one-space-dimensional PDEs
that fall out of reductive singular perturbation theory.

16.4 Dispersion and Waves

Themain tool of our theoretical analysis will be small amplitude perturbation theory.
This method would seem to be quite restrictive. We shall see in our discussion of
modons, however, that the expansion is quite accurate even for rather large ampli-
tude solitary waves. This is a common property of singular (as opposed to regular)
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= + + + ...

=

1-1/2 layer model: product of baroclinic mode   = baroclinic mode

With continuous stratification, product of the 1st baroclinic mode
is an infinite series of baroclinic modes plus barotropic mode

+

x

x

Fig. 16.3 Dispersion in amarathon race. Top runners at the startline.Bottom near the finish a couple
of hours later.When runners, like waves of different wavenumbers, travel each at his/her own pace,
what once was concentrated disperses

perturbation expansions: the first non-trivial approximation is usefu1 even when the
“small” parameter isn’t particularly small.

The effects of nonlinearity can be quite profound, however, even when the wave
amplitude is tiny. Equatorial waves are trapped in latitude (by Coriolis forces) and in
depth (by the finite thickness of the ocean) and have the structure of standing waves
in both y and z.1 Consequently, weak nonlinear effects will not significantly change
either the latitudinal or vertical structure of the waves. This is very important, and we
cannot emphasize it too much. Because of this lack of modifications in y and z, we
can still classify equatorial modes in the nonlinear theories discussed below in terms
of the same scheme as for their linear counterparts — a breaking first baroclinic
mode Kelvin wave, a solitary n = 3, second baroclinic mode Rossby wave and so
on.

In the zonal direction, however, the waves propagate freely. The distortions cre-
ated by nonlinearity gradually accumulate as the wave travels until the x-structure
of the pulse has been altered almost beyond recognition, even though the nonlinear
terms may remain small in comparison to the linear terms throughout the whole
passage.

1In the 1-1/2 layer model, the waves have the vertical structure of the first baroclinic mode, which
is independent of depth in the thin upper layer and zero in the thick layer below the thermocline.
Nonetheless, it is true, just as for the continuously stratified model, that waves can freely propagate
only in the zonal direction. Whether the waves are sinusoidal with depth, or instead propagate as a
ripple on the thermocline, does not change the argument.
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Fig. 16.4 Solutions evolving from the initial condition u(x, t = 0) = sin(x) when there is no
wave dispersion. Left side One-dimensional advection equation, ut + uux = 0. Right side Burgers’
equation ut +uux = νuxx with ν << 1 so that the frontal zone appears as jump discontinuity to the
eye. For both equations, the flow “breaks” at at t = 1, that is, develops a point where ux = ∞ [ODA
Eq.] or ux = O(1/ν) [Burgers’ Eq.]. The physics of nonlinear steepening in fluids is well-captured
by these onespace-dimensional equations as discussed in Sect. 16.7

Astronomers call this successive addition of small effects “secular” behavior, and
the term has been borrowed by applied mathematics in general. For example, if we
calculate the orbit of an asteroid, and make an error of only 0.1% in the period on a
time interval equal to one orbit, the accumulated error will be small after a few orbits.
If we wait 500 periods, however, the small error in the period will be multiplied by
a factor of 500, and the true position of the asteroid may be half a revolution out of
phase with the prediction.

In a similar way, weak nonlinearity will cause an equatorial Kelvin wave pulse to
steepen along its leading edge and flatten and expand on its trailing edge. Because
the nonlinearity is assumed to be small, the rate of steepening/expansion is also
small. Given enough time, however, (and ignoring damping) the leading edge will
inevitably develop an infinite slope and the wave will break.
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Thus, it is important to understand nonlinear effects, but the confinement of equa-
torial waves in both y and z implies that we describe this nonlinearity through one-
dimensional theories. That is to say, the latitudinal and vertical structure of the waves
will be, to lowest order, the same as for linear waves, but the y and z factors will be
multiplied by an amplitude A(x, t) which satisfies a nonlinear equation in a single
spatial dimension (longitude) such as those in Fig. 16.4 or (with dispersion) the KdV
and NLS equations discussed below.

There is an amusing irony in this automatic one-dimensionality for equatorial
waves. John Scott Russell discovered solitary waves in a canal when generated by
a horse drawn barge that stopped abruptly when it hit an underwater obstacle, and
Korteweg and deVries showed that the physical confinement of the waves by the
sides and bottom of the canal meant that the solitary wave could be described by
the one-dimensional partial differential equation that now bears their name. Their
model equation has since been applied to a vast range of phenomena, but no one
except antiquarians is much interested in barge canals and analysts have had to make
a variety of imaginative assumptions to fit their problems into the one-dimensional
corset. Although the equatorial beta-plane is one of the most recent applications of
the KdV equation, it is also one of the very few for which we can use a channel
model without apology.

However, which one-dimensional model is appropriate depends upon the relative
strength of nonlinearity and dispersion. In the absence of a mean shear, the equatorial
Kelvin wave is nondispersive. This implies that there is nothing to counteract the
nonlinear steepening, so the fate of the wave — unless it hits a coast first, or is
strongly damped — must be frontogenesis and wavebreaking.

When the dispersion is non-zero but weak, then this can be balanced directly
against the nonlinearity to create single-crested solitons which solve the Korteweg-
deVries equation. In the physics literature, these are often called “bell” solitons
because the solitary wave has but a single peak, and rather resembles a bell or a
Gaussian as illustrated in the upper right of Fig. 16.5. For equatorialRossbywaves and
for Kelvin waves in the presence of a dispersion-creating mean shear, the dispersion
goes to zero as the zonal scale goes to infinity. Consequently, however weak the
amplitude, it is always possible in KdV physics to create a solitary wave provided
the pulse is sufficiently wide in longitude.

The third case is strong dispersion, which we may define to mean that two waves
of wavenumbers k and 2k differ in phase speed by an amount which is 0(1) [instead
of 0(k2) as for long Rossby waves]. Gravity waves, the Yanai or mixed Rossby-
gravity mode, and short Rossby waves are all strongly dispersive in this sense.
Because the dispersion is large, it is not possible to balance it directly against small
nonlinearity. An initial condition of a single pulse with a broad Fourier spectrum
(as shown schematically on the left of Fig. 16.6) would simply be ripped apart by
dispersion unless the wave amplitude was so large that perturbation theory fails.

Nonetheless, there is an escape clause: if we consider a wave packet in the narrow
sense of a spatially-localized disturbance whose Fourier spectrum is sharply peaked
about a particular wavenumber kc, as shown on the right in Fig. 16.6, then the packet
will spread slowly because all its components have approximately the same phase
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speed c(k). We can balance this weak linear spreading of the packet against the self-
focusing effect of weak nonlinearity to create a solitary wave with many crests and
troughs: an “envelope soliton”.

The x-dependence of the wave packet is shown schematically in Fig. 16.7 and is
of the form

exp[ikx − iw(k)t]A(x, t)

The frequency w(k) satisfies the linear dispersion relation; k is simply the peak
of the Fourier amplitude as illustrated in Fig. 16.6. The factor A(x, t), which is the
dotted line in Fig. 16.7, is called the “envelope” because it bounds themany crests and
troughswhichmake up the packet. The envelope satisfies theNonlinear Schroedinger
(NLS) equation and travels at a rate equal to the linear group velocity plus a small
nonlinear correction. The crests and troughs move within the envelope at the linear
phase velocity c(k), appearing at one side of the envelope, moving through the packet
from front-to-back or vice versa, and then disappearing into the exponential tail on
the other side of the envelope like the moving steps of an escalator.

In the next few sections, we will deal in turn with each of these three cases:
no dispersion, weak dispersion, and strong dispersion, and outline the mathematics
which converts the qualitative concepts described here into quantitative theories.

Fig. 16.5 When
nonlinearity is strong (large
ε) and the wave is a long
wave (small δ), the Rossby
wave will steepen
(frontogenesis) [upper left].
When δ is large and ε small,
the disturbance will disperse.
When nonlinear steepening
and dispersive spreading
balance, the result is a “bell”
solitary wave
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Fig. 16.6 Left the absolute
value of the Fourier
Transform of a bell soliton.
Although not marked on the
schematic, the envelope of a
wave packet, whether linear
or nonlinear, is similar. Right
same but for the entire
wavepacket, which is the
product of the envelope with
a sinusoidal carrier wave.
The peaks are at the
wavenumber kc of the carrier
wave and −kc

Fig. 16.7 A wavepacket (in
the narrow sense used in this
book) [right] is the product
of a sinusoidal “carrier
wave” [upper left] with a
slowly-varying (in both time
and space) “envelope”
[dashed, left bottom]
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16.4.1 Derivation of the Group Velocity Through the Method
of Multiple Scales

Whitham’s book gives a marvelously lucid treatment of the linear dynamics of a
wavepacket using Fourier Transforms followed by stationary phase/steepest descent
asymptotics [8]. As a preliminary to the nonlinear analysis using multiple scales
perturbation theory, it is useful to apply the same methodology to linear, dispersive
wave packets.

To illustrate the generality, we shall analyze wavepackets for the one-dimensional
PDE

ut + L u = 0, L =
∞∑

j=0

a2 j+1
∂2 j+1

∂x2 j+1
= ω

(
−i

∂

∂x

)
(16.2)

The linear dispersion relation is

ω(k) ≡
∞∑

j=0

a2 j+1(−1) j k2 j+1 (16.3)

Our goal is to understand the further evolution of a slowly-varying plane wave:

u(x, t) ∼ A(εx, εt) exp(ikx − iw(k)t) + c.c. (16.4)

where “c. c.” denotes the complex conjugate. (“Further evolution” is necessary
because the multiple scales analysis may not apply for small times, but for suffi-
ciently large time, dispersion will widen the disturbance into one which is varying
slowly in space and time (modulo the carrier wave) as also shown by Whitham.)

With ε � 1 as the small parameter, the slow variables are

ξ ≡ εx, τ ≡ εt (16.5)

∂

∂t
→ ∂

∂t
+ ε

∂

∂τ
(16.6)

L →
∞∑

j=0

a2 j+1
∂2 j+1

∂x2 j+1
+ ε

∞∑

j=0

(2 j + 1)a2 j+1
∂2 j

∂x2 j
∂

∂ξ

→ iω

(
∂

∂x

)
+ ε

∂ω

∂k

(
−i

∂

∂k

)
∂

∂ξ
(16.7)

where we used the identity that the product of (2 j + 1) derivatives becomes
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(
∂

∂x
+ ε

∂

∂ξ

)
. . .

(
∂

∂x
+ ε

∂

∂ξ

)
= ∂2 j+1

∂x2 j+1
+ 2 j + 1ε

∂2 j

∂x2 j
∂

∂ξ
+ O(ε2)

O(ε0): w(k) = ω(k)

O(ε1):
∂A

∂τ
+ ∂ω

∂k
(k)

∂A

∂ξ
= 0 (16.8)

whose general solution is A(ξ, τ ) = A(ξ − [∂ω/∂k]t). Using the standard defin-
ition of the group velocity, cg(k) ≡ ∂ω/∂k, and rewriting in terms of the original
coordinates gives

A(ξ, τ ) = A(ε[x − cg(k)t]) (16.9)

where cg(k) = ∂ω/∂k(k).
Thus, the envelope A propagates at the group velocity. Later, applying the

same multiple scales methodology, we shall explore how nonlinearity modifies this
wavepacket dynamic.

16.5 Integrability, Chaos and the Inverse Scattering
Method

Reductive perturbation theory for equatorial dynamics yields a number of one-space-
dimensional PDEs that are “exactly integrable” in the sense ofHamiltoniandynamics.
Integrable PDEs can be solved by the so-called inverse scattering method” which
has the fairly amazing ability of solving nonlinear PDEs through a series of steps
that require solving only linear operations.

Books likeWhitham [8] andYang [9] describe integrability and inverse scattering.
Here, we must be content with a catalogue

• Integrable equations never have chaotic solutions in the sense of dynamical sys-
tems theory.

• Classical inverse scattering applies to an unbounded interval; there is a general-
ization called “finite gap” or “polycnoidal wave” theory that applies with periodic
boundary conditions

• N-Polycnoidal wave solutions can be very complicated when N is large where N
is the number of independent phase variables each of the form ζ j = k j [x − ct t] +
φ j . Nevertheless, N-polycnoidal waves are always quasi-periodic, alias multiply-
periodic, and therefore always lack the continuous distribution of frequencies
which is an essential property of true chaos.

• In the the 60s, there was a brief flurry of optimism that “Inverse Scattering Solves
All” but it is now known that this is not true.

• Most nonlinear PDEs and wave systems are not integrable and have chaotic solu-
tions in at least some parametric domains.



16.5 Integrability, Chaos and the Inverse Scattering Method 343

• Integrable systems and their elliptic function and hyperelliptic function solutions
are relatively well understood.

• The inverse scatteringmethod is rarely used to calculate the transient, non-solitonic
solutions because of its complexity; a Fourier pseudospectral program, which may
contain fewer than twenty lines, is the simplest way to graph KdV solutions.

• Inverse scattering, because its steps are linear, has been very valuable for proving
theorems and qualitative analysis, as we shall amplify below.

16.6 Low Order Spectral Truncation (LOST)

Low Order Spectral Truncation (LOST) is a surprisingly useful tool that underlies
much of the theory for nonlinear waves presented later in this chapter. The classic
books by Kantorovich and Krylov [10] and Finlayson [11] are mathematical hymns
to the power of LOST. Sometimes LOST is effective simply because the solution is
very smooth. A remarkably large number of phenomena are well approximated by
parabolas.

EdLorenzwas a great exponent of the philosophy of “maximum simplification” as
he called it. His 1960 model of planetary scale instability and vacillation was the res-
onant triad equation set [12]. Another trio of equations, whichmade him the founding
father of dynamical systems theory and chaos in 1963 [13], was a three-mode trunca-
tion of a Fourier Galerkin discretization of two-dimensional convection. The system
of five ordinary differential equations in time, the Lorenz–Krishnamurthy Quintet,
was a valuable theoretical model of the slow manifold and its exponentially small
nonexistence [14–17]. All are rich fruits of this philosophy of “maximum simplifica-
tion”, which is the belief that insights gained from the simplest possible models, even
if numerically inaccurate, can extend to much more complex and realistic models.

However, in many other applications including all those which will be discussed
later in this chapter, theoryprovides a plausible rationale for the numerical accuracyof
truncating a spectral expansion at very loworder. Examples fromequatorial dynamics
include

1. resonant triads
2. Kelvin frontogenesis
3. Rossby and Kelvin solitary waves
4. nonlinear wavepackets captured by sparse Fourier discretizations as encapsulated

in the Nonlinear Schrdinger Equation (NLS)

For example, the central idea of resonant triad theory is that when the wave ampli-
tude ε is small, the time-periodic exchanges of energy between non–resonant waves
are tiny. However, waves that are in mutual resonance have secular interactions. That
is, the matching of phase speeds, which is the definition of resonance, implies that
interactions are not periodic in time, but rather can steadily accumulate change until
resonant modes are altered by O(1) amounts over an O(1/ε) time scale. Truncating
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the Fourier expansion to just the threewaves inmutual resonance is therefore sensible
in the limit that ε → 0,

Similarly, the One-Dimensional Advection Equation (ODA) for Kelvin waves is
the truncation of a Hough-Hermite Galerkin discretization to just the Kelvin waves.
Ripa [18], who derives the nonlinear Hough-Hermite discretization of the shallow
water equations in great detail, explains in the same article that a truncation to Kelvin
waves andonly toKelvinwaves is sensible because allKelvinwaves of different zonal
wavenumbers are inmutual resonance. For dispersivemodes, different wavenumbers
k must be treated independently. All Kelvin waves proportional to exp(ikx) for
various k translate eastward at the same phase speed c = 1 and have the same
latitudinal structure independent of wave number.

Such justifications apply only to weakly nonlinear flows. When the amplitude
is strong, resonances are not required and wave-wave interactions are as subtle as a
besieging army battering through the gate of a castle and storming the fortress.

It is nevertheless remarkable howmuch of what passes for nonlinear wave theory,
celestialmechanics and perturbation theory of all kinds is really a LowOrder Spectral
Truncation combined with a rationale, either resonance or maximum simplification,
for discarding most of the modes of an honest Galerkin discretization.

16.7 Nonlinear Equatorial Kelvin Waves

In the absence of mean currents and mean-flow-induced dispersion, the Kelvin wave
is nondispersive on the equatorial beta-plane.2 The zero-dispersion weakly nonlinear
dynamics applies to a pulse that is the product of the usual latitudinal structure of
the linear Kelvin mode — zero north-south velocity, Gaussian u and φ with u = φ

—multiplied by the longitude-and-time factor A(x, t):

u = φ = A(x, t) exp(−[1/2]y2); v ≡ 0 (16.10)

The longitude-and-time factor A(x, t) satisfies the so-called “One-Dimensional
Advection” (ODA) equation, also known as the “Inviscid Burgers” equation:

At + Ax + 1.225AAx = 0 [ODA Eqn.] (16.11)

The solution for a continuously stratified flow is the same except for multiplication
by a vertical baroclinic mode. This equation has been derived in multiple ways:

2The restriction to the equatorial beta-plane is necessary because spherical geometry induces
dispersion as shown first by Zhou and Boyd [19]. They discuss the effects of this dispersion
on the nonlinear dynamics in [20]. The leading terms of the large-ε series on the sphere are
c ∼ 1 + (1/4) ε−1/2 + (1/8) ε−1 + (

(3/32) − s2/16
)
ε−3/2; only the −(s2/16)ε−3/2 term is

dispersive, so the sphere-induced dissipation is very weak unless the zonal wavenumber s ∼ ε−3/4

or larger. Longuet-Higgins [21] gives the first two terms as his (8.27).

http://dx.doi.org/10.1007/978-3-662-55476-0_8
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1. Strained coordinates perturbation theory (Boyd, 1980) [22]
2. All-harmonics Kelvin self-resonance (Ripa 1982, 1983) [18, 23]
3. Multiple scales perturbation theory [24]
4. Theory-Plausible Low Order Spectral Truncation (LOST) (Ripa [18], and this

book).

These different derivations offer different insights into the underlying physics
so we shall return to them as we proceed. Since the One-Dimensional Advection
equation is also applicable to Rossby waves in the regime where nonlinearity �
dispersion, we shall generalize (16.11) to

ut + cux + buux = 0 (16.12)

by allowing c and b to be mode-dependent constants.

16.7.1 Physics of the One-Dimensional Advection (ODA)
Equation: ut + cux + buux = 0

Equation (16.12) can be solved exactly via the method of characteristics. The key is
to realize that (16.12) is in the form of the conservation equation

Du/Dt = 0 (16.13)

where D/Dt is the usual “total” or “convective” time derivative of fluid mechanics
if we identify the advecting velocity with (c + bu). Equation (16.13) implies that u
(and the combination [c + bu]) are constant following the motion. If u is constant,
however, then a fluid particle will simply move in a straight line at whatever was its
initial velocity. Each trajectory in the x − t plane will be a contour line of u(x, t).
The PDE can be solved graphically by drawing these straight contour lines with a
ruler or other straight edge as in Fig. 16.8.

If the initial condition is

u(x, t = 0) ≡ Q(x) (16.14)

for some arbitrary function Q(x), then a particle which is at x = ξ at t = 0 will have
u = Q(ξ) forever, and its trajectory is the line x = ξ + [c + bQ(ξ)]t .

In the language of computer graphics, the equations

x = ξ + [c + bQ(ξ)]t (16.15)

u(x, t) = Q(ξ) (16.16)

are, at a given time, an explicit parametric description of the curve in the x −u plane
which is the solution. The solution over a finite time interval is a parametric surface
in x − t − u space parameterized by (ξ, �); the three parametric equations are
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x = ξ + [c + bQ(ξ)]� (16.17)

u(x, t) = Q(ξ) (16.18)

t = � (16.19)

The parametric representation is nonsingular even after developing folds or pleats.
A folded surface u implies the function is multi-valued as a function of (x, t).

As a means to evaluate u at a specific space-time point, the parametric solution
has the disadvantage that it is only an implicit solution. The complication is that
(16.20), the trajectory equation x = ξ + [c + bQ(ξ)]t must be solved for ξ(x, t)
before u can be evaluated from u(x, t) = Q(ξ [x, t]). Platzman [25] showed that for
the special case of a sinusoidal initial condition, the characteristic equation is the
Kepler equation of celestial mechanics and is solved by an infinite series of Bessel
functions due originally to Bessel. (See Fig. 16.9 and its caption.)

The best numerical strategy is to expand the initial condition Q(ξ) as a Cheby-
shev series,

∑
qnTn(ξ). This only needs to be done once. Note that ξ = T1(ξ) and

x can be interpreted as xT0 in the Chebyshev series. It is then trivial to obtain the
Chebyshev coefficients of the polynomial P(ξ ; x, t) whose zeros give the character-
istic coordinate ξ as a function of x and t . For example, when Q(ξ) = − sin(πξ),
ξ ∈ [−1, 1]

P(ξ [x, t) = −(x − ct)T0 + (1 − 0.569t)T1(ξ) (16.20)

+ 0.6669 t T3(ξ) − 0.1043 t T5(ξ) + 0.00684 t T7(ξ) + . . .

The roots are the eigenvalues of theChebyshev companionmatrix as described, along
with strategies for simple, adaptive Chebyshev interpolation, in Boyd’s book [26].

Fig. 16.8 Contour plot of
solutions for the
One-Dimensional Advection
equation, begun from
u(x, 0) = − sin(x). The
isolines of u(x, t) are straight
lines; these isolines are also
the particle trajectories. The
solution is triple-valued for
some x for t > tB where the
time of breaking tB = 1



16.7 Nonlinear Equatorial Kelvin Waves 347

The implicit solution (16.20) is a full description of the wave before breaking.
Figure16.8 is an x − t plot that shows that the straight lines which represent the
velocity-conserving trajectories of fluid particles, again shown in a reference frame
moving at the linear velocity c so that all motion seen in the plot is due to nonlinearity.
When two or more straight lines intersect so that the ODA solution is multi-valued
for larger times and the wave breaks.

Nonetheless, it is possible to deduce much simply from the form of the implicit
solution.

Definition 16.3 (Breaking) Solutions of the one-dimensional advection equation are
said to “break” at a time tB when ∂u/∂x = ∞ for some x at the time tB and the slope
is finite for all smaller t .

Theorem 16.1 (Time of Breaking)

tB = − 1

Q′(ξmin)
(16.21)

where x = ξmin is the point where Q(x) has its most negative slope (Whitham [8])

Proof:

ux = Q′(ξ [x]) ∂ξ

∂x
(16.22)

= Q′(ξ [x]) 1

1 + t Q′(ξ [x]) (16.23)

Fig. 16.9 Solutions to theOne-DimensionalAdvection (ODA) equation for various times beginning
with the sinusoidal initial condition. The coordinate system is moving at the linear phase speed so
as to keep the developing front centered at the spatial origin. For this special initial condition,
Bessel found an infinite series solution which converges for t < 1 where t = 1.22 t : A(x, t) =
−2

∑∞
n=1

{
Jn(nt)/(nt)

}
sin(nx) (The 1.22 is the coefficient of the nonlinear term in the One-

Dimensional Advection equation for the Kelvin wave)
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by differentiation of x[ξ ] = ξ + t Q(ξ)] with respect to ξ . The denominator is zero,
implying ux is infinite, at the time give in the theorem. �

Figure16.9 shows different stages in the evolution of a wave that was a sine
function at t = 0, presented in a frame of reference moving at the linear phase
velocity c. Equation (16.20) shows that each part of the wave travels at its own speed,
c+ u, so that the nonlinear disturbance cannot be characterized by a single velocity.
The crest travels fastest, and gradually overruns the lower and slower moving parts
of the wave in front of it. The trailing edge of the crest, however, lags behind the
maximum. The net result is that the leading edge [for a Kelvin wave, the eastward
edge] of a crest steepens while the trailing edge is stretched and rarified. At t = 1.22,
the leading edge has steepened to the point of an infinite slope where u = 0 — the
wave breaks.

16.7.2 Post-Breaking: Overturning, Taylor Shock or “Soliton
Clusters”?

After an infinite slope develops, several fates are possible. An infinity is usually the
signature of omitted physics. The breakingKelvin wave has different futures depend-
ing on what new physics becomes important. Figure16.10 shows three alternatives.

A similar steepening occurs when waves break on a beach and for nondispersive
waves in general. However, what happens after the wave breaks varies from one
wave species to another. Ordinary water waves continue to steepen, the wave height
becomesmulti-valued, and thewave eventually collapses into foam. In the conceptual
model of the equatorial ocean as a one-and-a-half-layermodel,multi-valued breaking
is an overturning of the main thermocline, a violent mixing of the layers above and
below the main pyncocline.

Later, we shall show that mean shear induces dispersion in the Kelvin wave. The
simplestmodel is theKorteweg-deVries (KdV) equationwhich appends a third deriv-
ative to the One-Dimensional Advection equation. Breaking is impossible because
the third derivative scales with a high gradient layer of thickness δx as O(1/[δx]3)
whereas the nonlinear term contains only a first derivative and grows more slowly
(as O(1/[δx])). Dispersion always wins as δx → 0. Lax and Levermore famously
analyzed the zero dispersion limit. First, a triangle-shaped pulse with a near-vertical
leading edge evolves, well-described by the ODA equation, and then dispersion
finally becomes significantly strong to forestall a discontinuity at the leading edge,
and the triangular pulse dissolves into many thin, tall solitary waves.

With all due espect to the eminence of Lax and Levermore, their picture as applied
to theocean is a silly fantasy.TheKdVequation is a longwave approximation; thevery
tall, narrow solitary waves of the Lax-Levermore zero dispersion limit have Fourier
spectra that decay slowly with wavenumber and therefore have lots of amplitude for
k � 1. Since the KdV equation is derived by a Taylor expansion of the phase speed
c(k), the reduction of three-dimensional fluid dynamics to the one-dimensional KdV
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Fig. 16.10 The One-Dimensional Advection equation predicts an infinite slope in finite time, but
in physics, predictions of infinity usually indicate that additional physical mechanisms are activated
near the time of unboundedness. The figure shows three such additional mechanisms

equation must fail. Dispersion may indeed limit the slope of the Kelvin wave but a
more complicated model than the KdV equation is necessary.

16.7.3 Viscous Regularization of Kelvin Fronts: Burgers’
Equation And Matched Asymptotic Perturbation
Theory

Adding a little viscosity to the One-Dimensional Advection equation changes it into
Burgers equation whose solutions are always single-valued (Fig. 16.11).

For Burgers equation, as opposed to the full three-dimensional hydrodynamic
equations, D.G. Crighton and colleagues in acoustics [27] and Boyd showed through
singular perturbation theory that the frontal zone is well-approximated by the hyper-
bolic tangent, the so-called “Taylor shock” [28]. Figure16.12 shows the triple-valued
post-breaking solution of the One-Dimensional Advection equation, the single-
valued Burgers solution and the Taylor shock that describes the frontal zone. Because
the frontal zone has width proportional to the (small) viscosity coefficient ν, graph-
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Fig. 16.11 Burgers’ equation: u(x, 0) = −sin(x) with the viscosity ν = 1/100. Same as Fig. 16.9
but as a waterfall plot, extended beyond the time of breaking with viscous regularization of the
singularity (i.e., as a solution to Burgers’ equation)
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Fig. 16.12 The post-breaking solution of the One-Dimensional Advection equation (green dashes)
is compared with the Taylor shock (red curve, −tanh(x/(2ν))) and with the solution to Burgers
equation (black). The latter is well-approximated outside the frontal zone by one branch of the
One-Dimensional Advection equation (green dashes) and well-approximated in the neighborhood
of the front by the Taylor shock as shown more clearly in the zoom plot in the lower figure
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ical clarity requires the zoom plot [lower graph] that shows only the neighborhood
of the front. The Taylor shock is indeed a remarkably good approximation to Burg-
ers’ solution in the frontal zone. Away from the front, however, Burgers’ solution is
well-approximated by the appropriate branch of the solution to the One-Dimensional
Advection equation [8, 28].

Greatbatch [3] finds that post-breaking equatorial Kelvin waves propagate as a
kind of hydraulic jump [3]. Fifteen years later, Fedorov and Melville performed
more numerical studies and also developed a hydraulic jump/undular bore model
of steadily-propagating equatorial Kevin waves [29]. However, there is no obvious
reasonwhy theKelvinwave could not develop an overhanging tongue and collapse as
a plunging breaker. The single-valued solution to the shallow water wave equations
cannot represent a triple-valued reality. An accurate post-breaking description of the
Kelvin wave is an Open Problem.

16.8 Kelvin-Gravity Wave Shortwave Resonance:
Curving Fronts and Undulations

Figure16.13, which shows the contours of the height field near but before the time of
breaking, shows that front has a strong curvature. This effect is completely missed
by the perturbative analyses of Boyd [22] and Ripa [18]. As stressed earlier, the
lowest order perturbative solutions are always in “separable form”, being the product
of a factor of depth times a factor of latitude times a bivariate function A(x, t)
which satisfies a one-space dimensional partial differential equation such as the One-
Dimensional Advection equation or Burgers’ equation. This constraint is relaxed at
first order, but curvature due to the first order solution should be almost invisible.
The curvature looks as big as a leading order effect, which is possible only if the
perturation theory of Boyd [22] is wrong or incomplete somehow.

In fact, Boyd’s early theory is deficient. An implicit assumption of his analysis
was the lack of resonance except for the interaction of the Kelvin wave with itself.
In the long wave limit, Kelvin waves are indeed not resonant with any other wave
species. Unfortunately, in the short wave limit, k → ∞, the phase speed of eastward-
propagating gravitywaves tends to one fromabove.Using a simplemode that retained
just four latitudinal modes, Boyd [30] showed that short wave Kelvin-Gravity
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Fig. 16.13 Left Contours of the height/pressure field at t = 6.67 from the initial condition u = φ =∑∞
m=−∞ 1

3 sech
2((1/2)[x−20m]), v ≡ 0.Right Same but showing the contours of the x-derivative

of φ. Numerical solution to the nonlinear shallow water equations on the equatorial beta-plane

resonance was responsible for both the westward curvature of the Kelvin front and
also for undulations westward of the front [not visible in the figure.]

Fedorov and Melville [29] independently arrived at the same conclusions. Their
article deserves some criticism. They asserted twice that bothBoyd andRipa assumed
meridional geostrophy a priori. This is not true; rather, perturbation forces the low-
est order solution to be in geostrophic balance. Meridional geostrophy is relaxed
in higher order. Their paper omits all mention of Boyd [30], who had scooped their
main conclusion that gravity wave resonance cause frontal curvature and undulations
westward of the front. Their theory of Kelvin wave hydraulic jumps is unobjection-
able, but implicitly assumes that viscosity arrests the steepening of the Kelvin front.
This is by no means certain or even likely. Boyd dodged this problem by focusing
on time-evolution of the front near but before the time of breaking.

A four-mode analysis of resonance and undulations is not the same as a theoretical
analysis for the shallow water equations and a steadily-translating undular bore is
not a description of the complex frontogenesis that preceded it. A full analysis of the
Kelvin/short-gravity-wave resonance is an Open Problem (Table16.2).

16.9 Kelvin Solitary and Cnoidal Waves

TheKelvinwave becomes dispersive in twoways. First, replacement of the equatorial
beta-plane by spherical geometry will induce dispersion: cKelvin ∼ 1+(1/4) ε−1/2+
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Table 16.2 Nonlinear Kelvin waves: selected references

Reference Remark

Bouchut, LeSommer and Zeitlin [31] Equatorial modons colliding elasticallywith
Kelvin waves

Boyd [22] Derivation of inviscid Burgers equation

Boyd [32] Kelvin solitons; mean-current-induced
dispersion

Boyd [30] Numerical study of Kelvin frontogenesis

Boyd [33] 4-mode model

Chen and Boyd [34] Nonlinear Kelvin wavepackets

Fedorov and Melville [29] Kelvin fronts and hydraulic jump theory

Fujiwara, Yamamoto, Hashiguchi, Horinouchi
and Fukao [35]

Radar observations of turbulence due to
breaking Kelvin waves In tropical tropopause

Greatbatch [3] Kelvin wave fronts and nonlinear spin-up

LeSommer, Reznik and Zeitlin [36] Numerical study of response to localized
perturbation

Long and Chang [37] Propagation of an equatorial Kelvin wave in a
varying thermocline

Matsuura and Iizuka [38] Nonlinear Kelvin waves via a pair of equations
like Stern’s treatment of coastal waves

Milewski and Tabak [39] Dispersion due to finite depth; Kelvin solitons

Ripa [18] Kelvin wave frontogenesis as simultaneous
resonance with all its harmonics

Ripa [4] Wave-wave interactions and chaos

Ripa [2] Nonlinear Kelvin pulses across the Pacific
Ocean

Ripa [40] Ray-tracing

Stepanov and Novotryasov [41] Kelvin frontogensis

Zheng and Susanto Yan, Liu and Ho [42] Observation of equatorial Kelvin solitary
waves in a slowly varying thermocline

(1/8) ε−1 + (
(3/32) − s2/16

)
ε−3/2 + O(ε−2); the ε−3/2 correction includes a term

depends on the wavenumber s.
Second, Boyd [32] noted that latitudinal shear of the mean zonal current will

induce dispersion. Boyd [32], Greatbatch [3], G.-Y. Chen and Boyd [34] have all
analyzed shear-induced Kelvinmode dispersion using perturbation theory with shear
strength as the small parameter.

Figure16.14 is a numerical solution of the full nonlinear shallow water equations
on the equatorial beta-plane that qualitatively verifies these perturbative analyses. A
Kelvin mode with the longitudinal structure of a KdV solitary wave was superim-
posed on a mean current that at least crudely mimics the South Equatorial Current.
Although there is a little dispersion during the early stages because it was not possible
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to initialize with the exact soliton, Fig. 16.14 shows the initial structure is remarkably
persistent.

The essential role of the zonally-independent mean current in inducing dispersion
canbedemonstrated by repeating the integrationwith all the sameexcept for omission
of the mean flow. Figure16.15 shows that within fifteen nondimensional time units
— about 1/7 of the time interval of the previous plot — the wave has broken.

The leading order effect of mean shear is to modify the One-Dimensional Advec-
tion equation by adding a linear third derivative term to convert it into the Korteweg-
deVries equation.However, the shear-induced dispersion isweak. Experimentally, all
sufficiently large amplitude Kelvin waves break. It follows that it is useful— indeed,
essential - to analyze the solutions of (16.11) before proceeding to the more compli-
cated KdV equation which governs Kelvin waves of small and moderate amplitude.

The derivation of the Korteweg-deVries equation for Kelvin waves is similar to
that for Rossby waves given in detail below. However, the details are more com-
plicated because of the necessity of including mean flow and/or sphericity, so the
interested reader is referred to [32].

One issue is worth a comment here. The KdV perturbation theory is always in
principle a longwave approximation, that is, the zonal scale is large compared to

Fig. 16.14 Amplitude of the Kelvin mode versus time for numerical integration of the nonlinear
shallow water equations on the equatorial beta-plane. (Note that a coordinate system moving at
a constant velocity was used to keep the solitary wave centered on the graphs.) The zonal-mean
(x-independent current) was U (y) = −(1/2) exp(−(25/64)y2) (1 − (25/64) y2)(1 + (25/36)y2)
in geostrophic balance with the mean height field Φ(y) = (1/2) exp(−(25/64)y2) ((512/225) +
(25/18)y2 + (25/72)y4). (Note that total column height is h = 1 + φ(x, y).) Superimposed
on this was a Kelvin wave with the longitudinal shape of a KdV soliton: v ≡ 0, u = φ =
0.12sech2(0.7x) exp(−(1/2)y2). The computational domain, x ∈ [−50, 50], was ten times larger
than what is shown in the graph to minimize endpoint effects. The time interval, which is roughly
two-and-a-half times the Pacific-crossing time for the Kelvinmode, was chosen to show the stability
and persistence of the Kelvin solitary wave on a long time scale
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Fig. 16.15 Same as the
previous figure except that
zonal-mean current is
omitted, and the length of the
time integration is shortened
from 100 to 15

one when the perturbation parameter is small. For solitary waves, the amplitude
is proportional to the inverse of the square of the zonal scale; this scaling allows
nonlinear steepening and dispersive spreading to balance so that the soliton neither
steepens nor spreads but merely translates. Since the latitudinal scale is O(1) [the
decay scale of exp(−(1/2)y2) for the Kelvin mode], the KdV theory in principle
applies only to zonally-elongated disturbances.

Figure16.16 shows the contours of the zonal velocity of the Kelvin solitary wave
depicted in Fig. 16.14. The near-circularity of the contours is not an illusion; this
bivariate function can be approximated to within a relative error of less than 8% by
the radially-symmetric function usym(x, y) = 0.12 exp(−(1/2)[x2 + y2]).

In later sections, we shall exhibit roundish, large amplitude Rossby solitary waves
that are nevertheless well described by perturbation theory. Because the Kelvin wave
is non-dispersive except for the weak dispersion induced by the mean shear flow,
this is especially true of this mode. Small amplitude Kelvin mode solitary waves and
cnoidal waves really do have zonal elongation with east-west scales larger than the
north-south decay scale; the point is simply that large zonal scales and elliptically-
shaped contours are not necessary for conceptual and even quantitative accuracy of
the KdV model for Kelvin waves.

As explained most clearly by Bender and Orszag [43] through a plethora of well-
chosen examples, singular perturbation methods are often qualitatively accurate, and
sometimes quantitatively, too, even when the small parameter is not small. Large,
round Kelvin and Rossby solitons are thus not exceptional.
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Fig. 16.16 Contours of the initial zonal velocity u for the Kelvin solitary wave whose projection on
the Kelvin mode is shown two figures previously, u = 0.12sech2(0.7x) exp(−(1/2)y2). (Strictly
speaking, the Kelvin soliton is the final flow after the initial, non-solitonic transients have radiated
away. These transients are negligibly small so that the initial, factored Kelvin height field is a very
good approximation to that of the final Kelvin soliton.) The zonal factor, which has the shape of a
KdVsolitarywave, canbe approximatedwith amaximumrelative error of only 7.6%by theGaussian
function that is the latitudinal structure, that is, sech2(0.7x) − 1.032 exp(−(1/2)x2)| ≤ 0.076

16.10 Corner Waves and the Cnoidal-Corner-Breaking
Scenario

The KdV equation is misleading and atypical in that it allows solitary waves of
arbitrarily large height and arbitrarily narrow width. In contrast, surface gravity
waves, cnoidal waves and solitons in water have a maximum height, and all taller
waves break.

The boundary between breaking and nonbreaking, steadily-propagating waves
usually is a wave with the following structure.

Definition 16.4 (CornerWave) A corner wave is a steadily traveling nonlinear wave
in which the wave height function u(x − ct) has a peak or trough which is also a
slope discontinuity.

More than a century and a half ago, Stokes demonstrated that the largest surface
water wave was a corner wave with the sides making an angle of 120◦. Table16.3
catalogues a considerable body of work on corner waves in various wave equations,
most of which are intended to model water waves.

Chen and Boyd showed by numerically solving the nonlinear shallowwater equa-
tions that large amplitude equatorial Kelvin waves always break [34]. However,
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their studies clearly showed Kelvin solitary and cnoidal waves, stable and steadily-
propagating, for smaller amplitude. (See also Fig. 16.14.)

Boyd confirmed the existence of distinct small amplitude and large amplitude
regimes by specializing the Equatorial Four-ModelModel of [30] to traveling waves.
This model is LOST, that is, a drastic truncation of a Hermite-Galerkin discretization
of the equatorial shallowwater wave equations. For a steadily-propagating wavewith
phase speed c, the Four-Mode Model reduces to a quartet of coupled, quadratically
nonlinear ordinary differential equations in the coordinate X ≡ x − ct .

(1 − c)S0X + 0.6124 S0 S0X
−0.4083 (S0 S2)X +2.4495 S2 S2X +0.5443 ℵX D0 + 2.1773ℵX S2

−0.2041 D0 D0X −0.2041 (S0 D0)X +0.1361 (D0 S2)X = 0 (16.24)

Table 16.3 Examples of systems with corner waves and the CCB scenario

Equation or wave name Equations Sources

Equatorial

Equatorial waves
Barotropic Mode

Kt + KKx = γ
{
Y (t)ei x + Y (t)e−i x

} ;
Yt = −γ K̂ (x = 1, t)

[24]

Equatorial Waves
Baroclinic Mode

3 coupled PDES in (x, t) [24]

Resonant Triads, One
Nondispersive

ut + uux = 2Re (ikab exp(−ikx));
at = −iωabûk ; bt = −iωbaûk

[44]

Equatorial Kelvin
(4-mode Model)

4 coupled PDEs in x, t [33]

Equatorial Kelvin
(shallow water)

3 coupled PDEs in x, y, t (shallow water
Eqs.)

[20]

Non-equatorial

Surface Irrotational
Water Waves

Euler equations in x, z [45–48]

Edge Waves on Vortex
Patches

Two-space-dimensional Euler equations
(x, y)

[49]

Camassa–Holm ut−uxxt+(2κ+3u−2uxx )ux−uuxxx = 0 [50–52]

Ostrovsky–Hunter (ut + uux )x = u [53, 54]

Gabov/Shefter–Rosales (ut + uux )x = ∫ 2π
0 cos(x − y) u(y) dy [55, 56]

Whitham (ut + uux )x = pb2 ×{
u − ∫ 2π

0
b cosh(b {|X−y|−π } )

2 sinh(πb) u(y)dy
} [57, 58] [8, 59]
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(1 − c)S2X −ℵX −0.051031 S0 S0X
+0.3062 (S0 S2)X +0.8845 S2 S2X −0.2722 ℵX S0 − 0.1361 ℵX D0

+0.01701 D0 D0X −0.1021 (S2 D0)X +0.017010 (S0 D0)X = 0 (16.25)

− cℵXXX + 2S2X − 1

2
D0X + 0.2722ℵXX ( S0X + 2S2X − D0X )

+0.2722ℵXXX ( S0 + 2S2 − D0) = 0 (16.26)

− (1 + c)D0X +2 ℵX

+0.2041 (S0 S0X + (S0 D0)X ) −0.1361 (S2 [D0 + S0] )X

+0.8165 S2 S2X +0.5443 ℵX (S0 − 2 S2) −0.6124 D0 D0X = 0 (16.27)

Fig. 16.17 CCB Scenario. The corner wave is the largest nonbreaking wave. When the amplitude
is less than the amplitude of the corner wave, steadily-propagating solitary waves and their spatially
periodic generalizations, cnoidal waves, are possible. When the amplitude is larger than the corner
wave amplitude, marked by the horizontal tic mark on the axis, all waves steepen and break or
steepen and propagate as a bore or hydraulic jump
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S2 is for example the coefficient of ψ2(y) in the Hermite series for the sum variable
S; the north-south velocity variable v1 is replaced by the new unknown ℵ = ∫ X v1
so that all four unknowns are symmetric in X . This system is just simple enough that
the formidable numerical challenges of computing singular traveling waves — the
corner wave is not only discontinuous in its first derivative, but is also the terminus
of a branch of solutions that simply stops in a fashion that has no counterpart in
bifurcations in finite-dimensional systems — can be overcome as detailed in [33].

In summary, neither the breaking-but-no-traveling-waves physics of the One-
Dimensional Advection equation nor the traveling-waves-but-no-breaking fluid
mechanics of the Korteweg-deVries equation are complete pictures of Kelvin wave
dynamics. Rather, the equatorial Kelvin wave is but one of many wave species that
exhibit the “Cnoidal/Corner/Breaking (CCB) Scenario”. For small amplitude, there
are travelingwaves analogous to the cnoidalwaves of theKorteweg-deVries equation,
culminating in a limiting wave of maximum amplitude which has a discontinuous
slope (“corner”) while all waves larger than the corner wave break, that is, develop
infinite slopes in the absence of viscosity as illustrated schematically in Fig. 16.17.
Surface water waves with purely gravitational forces are the most familiar example;
the CCB Scenario was clearly delineated by Stokes in 1847 [45]. However, all the
wave species studied in the articles in Table16.3 have been shown to be described
by the Cnoidal/Corner Wave/Breaking Scenario also (Table16.4).

16.11 Rossby Solitary Waves

“. . . if a physical system is capable of supporting solitary wave motions then such
motions will invariably arise from quite general excitations.”

— T. Maxworthy [72], p. 52.
Constructing a model that incorporates both nonlinear effects and dispersion

requires a double perturbative expansion. Nonlinearity vanishes as the wave ampli-
tude A(x, t) goes to zero, so A (strictly speaking, max |A(x, t)|) is one perturbation
parameter. The linear dispersion relation for Rossby waves is approximately

c = −1/(2n + 1 + k2) (16.28)

which shows that all Rossby waves of a given latitudinal mode n have the same
phase speed – the definition of non-dispersive – to within 0(k2) if k is small. Thus,
k2, or equivalently, 1/L2 where L is the zonal length scale of the disturbance, is our
second, independent perturbation parameter.

We obtain the Korteweg-deVries equation merely by computing both expansions
to lowest non-trivial order and then adding the corrections. Because we keep only
O(A) and 0(1/L2) and neglect all cross-terms, which are of the much smaller mag-
nitude O(A/L2), the contributions of the two different perturbations are completely
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Table 16.4 Rossby solitons: selected references

Reference Remark

Bouchut, LeSommer and Zeitlin [31] Equatorial modons colliding elastically with Kelvin
waves

Boyd [60] Derivation of KdV and [antisymmetric modes] MKdV

Boyd [61] Derivation of NLS Eq., which admits envelope solitons

Boyd [62] Large amplitude (modons)

Williams and Wilson [63] Numerical confirmation of (i) Ease of exciting solitons
(ii) Near-elastic Rossby soliton collisions (iii)
Radiative decay of higher n mode [nonlocal] solitons

Boyd [64] Radiative decay of nonlocal Rossby solitons

Boyd [65] Review of nonlinear equatorial waves

Boyd [66] Monopoles and dipoles in AEW approx

Boyd [67] n = 3 nonlocal Rossby soliton

Boyd [33] 4-mode model

Boyd [68] Numerical experiments: tilted modons and nonlocal
soliton radiation

Greatbatch [3] Kelvin wave fronts and nonlinear spin-up

LeSommer, Reznik and Zeitlin [36] Numerical study of response to localized perturbation

Long and Chang [37] Propagation of Kelvin & Rossby waves in a varying
thermocline

Ma [69, 70] Numerical studies of wave packets and North Brazil
Current retroflection eddies

Matsuura and Iizuka [38] Nonlinear Kelvin waves via a pair of equations like
Stern’s treatment of coastal waves

Ripa [40] Ray-tracing

Zhao, Fu and Liu [71] Envelope soliton in shear flow

independent. We can compute the dispersive correction from the linear shallow
water wave equations, the same model that we solved exactly in Chap.3. Similarly,
the nonlinear contribution can be evaluated quite independently of the dispersion.3

Since solitons are waves for which the dispersion and nonlinearity are of compa-
rable magnitude, we shall take a shortcut by defining a single perturbation parameter
ε and impose the conditions that

A ∼ O(ε) (16.29)

L ∼ O(1/εl/2) (16.30)

3Boyd [32] is an amusing illustration of this independence; the nonlinear coefficient of the KdV
equation for Kelvin waves in a shear flow was calculated four years earlier in Boyd [60]! This
old computation could be recycled because the dispersion modifies the nonlinear term only if we
proceed in the double expansion to a higher order than that which gives the Korteweg-deVries
equation.

http://dx.doi.org/10.1007/978-3-662-55476-0_3
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which insure that these two effects are both included. The derivation closely follows
Clarke [73] and Boyd [60] and uses the singular perturbation technique known as
the “method of multiple scales”. For those unfamiliar with this, we refer the reader
to Nayfeh [74] and Bender and Orszag [43]. Other references given in Table16.4.

The equations we solve are the usual nonlinear shallow water set derived in
Chap.3:

ut + uux + vuy − yv + φx = (16.31a)

vt + uvx + vvy + yu + φy = 0 (16.31b)

φt + ux + vy + (uφ)x + (vφ)y = 0 (16.31c)

The phase speed of solitary waves is the sum of two components: the linear,
nondispersive phase velocity for the mode in question plus the (small) correction
due to the perturbations. It is convenient to shift into a coordinate system moving
with the linear, nondispersive phase velocity for the chosen wave mode so that all
time variations will be due to the perturbing effects of nonlinearity and dispersion.
Defining

s = x − c0t (16.32)

where c0 is given by (16.41) below, the equations of motion become

ut + (u − c0)us + vuy − yv + φs = 0 (16.33a)

vt + (u − c0)vs + vvy + yu + φy = 0 (16.33b)

φt − c0φs + us + vy + (uφ)s + (vφ)y = 0 (16.33c)

In the method of multiple scales, we normally define both “fast” and “slow”
variables. Because of the change of coordinate (16.32), however, we have no “fast”
variables, but only the “slow” variables4

ξ = ε1/2s (16.34)

τ = ε3/2t (16.35)

The unknowns are expanded as

u = ε[u0(ξ, y, τ ) + εu1(ξ, y, τ ) + . . .] (16.36)

v = ε3/2[v0(ξ, y, τ ) + εv1(ξ, y, τ ) + . . .] (16.37)

φ = ε[φ0(ξ, y, τ ) + εφ1(ξ, y, τ ) + . . .] (16.38)

The formal way of deriving the exponents of ε in (16.34)–(16.39) is to allow each
unknown to have a symbolic exponent, substitute in (16.33), and then match powers.

4Notational warning: ε in this section is not Lamb’s parameter but is the perturbation parameter.

http://dx.doi.org/10.1007/978-3-662-55476-0_3
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The conditions that (i) the lowest order set of equations be the linear, “long wave”
or “meridional geostrophy” approximation and (ii) that the dispersive and nonlinear
terms all appear at first order then force us to choose the exponents as given above.

The physical explanation of (16.34) is that we choose the “slow” zonal variable
ξ so that a unit length scale in ξ corresponds to a scale of L ∼ 1/ε1/2, which in
turn implies a dispersion that is 0(ε). The scaling of τ implies that the phase speed
will be altered by an amount of 0(ε) by the nonlinear-and-dispersive correction; the
extra ε1/2 is needed because the phase speed correction must be multiplied by the
inverse of the zonal length scale to convert it to a frequency correction. Finally, the
reason for the extra factor of ε1/2 multiplying v0 is that the meridional velocity for
an ultra-long Rossby wave is O(1/L) smaller than u and φ.

The lowest order set, the unperturbed equations, are

−c0u
0
ξ − yv0 + φ0

ξ = 0 (16.39a)

yu0 + φ0
y = 0 (16.39b)

−c0φ
0
ξ + u0ξ + v0y = 0 (16.39c)

which are identical to the linear, “long wave” or “meridional geostrophy” approx-
imation. The only change from the full linear equations is the neglect of the time
derivative in the north-south momentum equation, but this one omission is sufficient
to (i) filter out all gravity waves and the mixed Rossby-gravity wave and (ii) make
Rossby waves nondispersive as explained in Chap.4. The solutions derived there are

v0 = Nn Aξ (ξ, τ )ψn(y) (16.40a)

u0 = Nn A(ξ, τ )

{
1

1 − c

[
n + 1

2

]1/2

ψn+1(y) + 1

1 + c

[n
2

]1/2
ψn−1(y)

}

(16.40b)

φ0 = Nn A(ξ, τ )

{
1

1 − c

[
n + 1

2

]1/2

ψn+1(y) − 1

1 + c

[n
2

]1/2
ψn−1(y)

}

(16.40c)

where the Nn are the normalization constants and where the phase speed is

c0 = −1/(2n + 1) n ≥ 1 (16.41)

The major difference from the “long wave” or “meridional geostrophy” solutions
given in Chap.4 is that the wave amplitude is no longer a constant, but rather a
function A(ξ, τ ) of the “slow” variables which will be determined only at the next
order in perturbation theory.

Note also that v depends on the ξ -derivative of A(ξ, τ ) whereas u and φ depend
on A(ξ, τ ) itself. This ξ -differentiation is equivalent to the factor of (ik) that would

http://dx.doi.org/10.1007/978-3-662-55476-0_4
http://dx.doi.org/10.1007/978-3-662-55476-0_4
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multiply v in the analogous solutions for a disturbance with a single zonal wavenum-
ber.

Matching powers of ε gives the first order set:

−c0u
1
ξ + yv1 + φ1

ξ = −u0τ − u0u0ξ − v0u0y (16.42a)

yv1 + φ1
y = c0v

1
ξ (16.42b)

−c0φ
1
τ + u1ξ + v1y = −φ0

τ − (u0φ0)ξ − (v0φ0)y (16.42c)

As in all perturbation theories, the left-hand side of the first order set is identical
with that of the zeroth-order set. We can reduce this system down to the single
equation

vyy + (−1/c0 − y2)v = F4 (16.43)

where, identifying the R. H. S.’s of (5.14) as F1, F2, and F3, respectively,

F4 = [1 − 1/c20](yF1 + c0F2ξ ) + yF1/c
2
0 + yF3/c0 + F1y/c0 + F2y (16.44)

Because (16.43) has a homogeneous solution, the forced boundary value problem
has a finite solution if and only if F4 is orthogonal to the homogeneous solution, i.e.,

∫ ∞

−∞
d yψn(y) F4(ξ, y, τ ) = 0 (16.45)

The integration removes the y-dependence, but F4 depends on ξ and τ through
A(ξ, τ ) and its derivatives. Since (16.45) must hold for all ξ and τ , this condition
demands that A(ξ, τ ) must satisfy a differential equation which turns out to be the
Korteweg-deVries equation:

Aτ + a(n)AAξ + b(n)Aξξξ = 0 (16.46)

Now that the dummy scaling variable ε has served its purpose, we can set it equal
to 1 and also change variables back to the earth-fixed coordinate system to obtain
the equivalent equation

At + c0(n)Ax + a(n)AAx + b(n)Axxx = 0 (16.47)

One striking feature of the KdV coefficients and also the latitudinal structure
functions given by (4.14) — is that they are functions only of the latitudinal mode
number n. Consequently, a(n) and b(n) for all possible cases can be summarized for
the first 20 modes by Table1 of Boyd (1980c).

http://dx.doi.org/10.1007/978-3-662-55476-0_5
http://dx.doi.org/10.1007/978-3-662-55476-0_4
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16.12 Antisymmetric Latitudinal Modes and the Modified
Korteweg-deVries (MKdV) Equation

There is one modest complication. If we neglect the equatorial currents, we find that
the nonlinear coefficient of the KdV equation is zero for all even n, that is to say, for
all modes which have u and φ that are antisymmetric about the equator. This does not
imply that nonlinear effects are nonexistent for these modes, merely weaker. Boyd
[60] shows that by extending the perturbation theory to one higher order, one can
derive the so-called “Modified” Korteweg-deVries (MKdV) equation [60]. This is
identical in form to (16.47) except that the nonlinear term is A2 Ax , that is, a cubic
nonlinearity instead of quadratic.

For several reasons, we will omit further discussion of the antisymmetric modes.
First, nonlinear effects are weaker for these waves than for the symmetric modes.
Second, explicit calculation shows that these equatorial waves do not form solitons.
Third, the symmetric component of the equatorial forcing is considerably stronger
than the antisymmetric component (except in the Indian Ocean). Fourth, mean zonal
currents—unless symmetric with respect to the equator—will invalidate theMKdV
analysis by creating a small, non-zero coefficient of quadratic nonlinearity. Unfor-
tunately, this shear-induced current is sensitive to the mean flow profile.

The mixed cubic-and-quadratic KdV/MKdV equation does have a solitary wave
known in analytical form. Let f and g be numerical coefficients. The amplitude S
parameterizes the entire branch of solutions [actually, two branches] which are most
easily expressed in terms of the derived parameter

q ≡ 12gS2 (16.48)

Then

uXXX + ( f 2g u2 + f u − c)uX = 0 (16.49)

is solved by

c = 4S2 (16.50)

u = 12S2(μ + 1)/(cosh2(SX) − μsinh2(SX)) (16.51)

provided that

μ = −1 − 1/q ± √
1 + 2q/q) (16.52)
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16.13 Shear Effects on Nonlinear Equatorial Waves

The effects of shear on nonlinear equatorial waves have not been thoroughly studied.
Boyd [32] shows one method in calculating the shear-induced dispersion for equa-
torial Kelvin waves. Greatbach [3] illustrates an alternative scheme for calculating
the correction to the linear, nondispersive phase speed. Both these articles treated the
shear using a form of perturbation theory, but other studies such as Redekopp [75]
have demonstrated that the nonlinear/dispersive perturbation theory goes through
with only minor changes even when the shear is incorporated directly into the zeroth
order equations and these are solved numerically.

The qualitative behavior of the waves, however, will not be altered by the mean
current because this merely alters the numerical coefficients a(n) and b(n). We note
that at least in the absence of shear, the signs of the coefficients are such that equatorial
Rossby and Kelvin solitary waves are always positive. In other words, these solitons
are crests in the language of the shallow water wave equations and thicken the upper
layer by lowering the thermocline in the context of the 1-1/2 layer model.

16.14 Equatorial Modons

Independently, Stern [76] and Larichev and Reznik [77] showed that the quasi-
geostrophic equations on the midlatitude beta-plane had a class of nonlinear exact
solutions which Stern named “modons”. Flierl et al. [78], McWilliams et al. [79],
Boyd [80], Shen [81], McWilliams and Zabusky [82], Mied and Lindemann [83,
84], McWilliams [85] and Boyd [80, 86] were but the beginning of a new subfield
of geophysical fluid dynamics.

The analytic theory of modons is most easily derived in a frame of reference
moving with the nonlinear phase velocity of the vortex. Flierl et al. [78] label the
streamlines in this moving coordinate system as “streaklines”, and show that modons
must always have a patch of closed streaklines. The outermost closed streakline plays
a pivotal role in the theory. The streaklines outside this curve extend to infinity where
the isolated vortex has decayed to infinitesimal amplitude. Because the dynamics
must be linear at infinity, the potential vorticity must be a linear function of the
streamfunction along all these open streaklines. Within the region bounded by the
outermost closed streakline, however, the relationship between the potential vorticity
and streamfunction cannot be determined by the “far field” behavior of the vortex
and in general is very complicated.

When the outermost closed streakline is a circle of radius a on the midlatitude
beta-plane, however, one can show that the ad hoc assumption that the potential
vorticity is a linear function of the streakfunction � on the closed streaklines, too,
gives a consistent solution. The streamfunction is of the form

ψ = f (r) sin(θ) (16.53)
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in terms of polar coordinates (r, θ) centered on the modon. Tribbia [87] and Verkely
[88–91] have added corrections for the earth’s sphericity to modon theory, but still
within the framework of quasigeostrophy and an outermost closed streakline that is
a circle. No attempts to extend the potential vorticity ideas to the shallow water wave
equations have yet succeeded. Until such a generalization works, labelling an equa-
torial beta-plane solution as a “modon” will probably be controversial. Nonetheless,
when theKorteweg-deVries theory ofBoyd [60] is cranked up tomoderate amplitude,
the solitary waves bear striking similarities to modons.

Boyd [62] extended the earlier analysis by explicitly solving the first order
Eq. (16.40) for the special case of solitons in the n = 1 Rossby mode to obtain

u = A[−9 + 6y2]e−(1/2)y2 + c1Ũ 1(y) + A2U 1(y) (16.54a)

φ = A[3 + 6y2]e−(1/2)y2 + c1Aφ̃1(y) + A2φ1(y) (16.54b)

where

c1 = −0.395B2 [First order correction to phase speed] (16.55)

and

A(x, t) = 0.771B2sech2{B[x − (c0 + c1)t]} (16.56)

(Note that A(x, t) is not energy-normalized, unlike the previous section.) The
functions V 1(y), U 1(y) and φ1(y), the latter pair both with and without tildes, are
given in in Boyd [62]. The parameter B will be called the “pseudowavenumber”
since its reciprocal is the zonal length scale of the soliton, but note that the square of
B also gives the amplitude of the solitary wave. This coupling between zonal scale
and the amplitude is essential so that the effects of dispersion and nonlinearity are
in balance for the soliton.

The first order solutions show that whenever B ≥ 0.53, a region of closed streak-
lines will form. Figure16.18 illustrates the streaklines for the n = 1 Rossby soliton
for B = 0.6. Boyd [62] explains that the first order corrections are only about 12%
of the magnitude of the zeroth order soliton computed in Boyd [60], so the graph,
although approximate, should be fairly accurate.

The similarities between an equatorial soliton-with-closed-streaklines like that
shown in Fig. 16.18 and a modon include:

1. dipolar vorticity: two equal and opposite centers of rotation
2. streaklines are symmetric about the north-south axis
3. streaklines are antisymmetric with respect to the east-west axis
4. the solitary wave propagates east-west only and remains centered on the same

latitude circle
5. the fluid inside the closed streaklines is bound to the wave, and must forever

recirculate within the region circumscribed by the outermost closed streakline
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6. the phase speed is outside the range of speeds for a linear Rossby wave of any
zonal scale

7. the outermost closed streakline is a circle (or nearly circular).

The first five similarities are obvious from Fig. 16.18. The last two require some
comment.

The dynamics of the “far field”, that is to say, of regions far from the center of
the vortex where the solitary wave has decayed to very small amplitude, are always
governed by the linear equations of motion. This in turn implies that given the phase
speed c of the disturbance, we can expand the soliton in terms of the linear normal
modes and then use the linear dispersion relation to determine the asymptotic zonal
structure for each mode. Of course, we cannot know the coefficients of the modal
expansion of the soliton for large radii until we have computed the solitary wave
everywhere. Nevertheless, if the linear dispersion relation predicts that some normal
modes have a real wavenumber k for c equal to the phase speed of the soliton,
then this implies that the solitary wave – or at least the part which projects onto
those linear modes – will oscillate instead of decay. Unless c is such that the linear
wavenumbers k are complex for all latitudinal modes, the soliton will extend, at

Fig. 16.18 Streaklines [streamlines in the coordinate system moving with the soliton] for n = 1
equatorial Rossby soliton for an amplitude about 20% larger than the threshold for closed recircu-
lation. The outermost closed streakline, the bound between the pool of recirculating fluid and the
exterior flow, is the thick curve. The top and bottom streaklines are representative of streaklines
exterior to the recirculating core. In the moving reference frame, the flow on exterior streaklines
is everywhere eastward, the zonal velocity asymptoting as |x | → ∞ to −c, the negative of the
westward phase velocity of the modon in the earth-fixed coordinate
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least with small amplitude, to infinity instead of being an isolated vortex.5 This
requirement for complex wavenumbers means that c must be outside the range we
obtain by varying k over the real numbers and computing the phase speed. Thus, (vi)
is not an accidental similarity between modons and equatorial Rossby solitons, but
rather the consequence of an argument that applies with equal force to many classes
of isolated disturbances.6

The outermost closed streakline in Fig. 16.18 differs from a perfect circle by
only about 2%, but (vii) nonetheless represents a heuristic concept rather than a
theorem. The reason that the recirculating regions for modons is always bounded
by a circle in modon theory is a limitation of the analysis, not the physics. Ma and
Boyd [92] numerically computed modons whose outermost closed streakline was
an ellipse extending to rather high eccentricities. McWilliams [85] has shown that
numerically-generated modons have a much richer structure than described by the
theory (including small oscillations in time), but the shape of the patch of fluid which
is bound to the wave is disk-like.

To reiterate this point, we did something rather peculiar: computed the equatorial
soliton in polar coordinates centered on the equator, and then computed the coeffi-
cients of the Fourier expansion of the latitudinal and zonal velocities (unpublished).
A little calculus will show that for a streamfunction in modon form – a function
of r multiplied by sin θ – the derivatives in Cartesian coordinates, which give the
x and y velocities, should have Fourier coefficients in θ which are all zero except
for (a) the coefficient of sin(θ) for the north-south current and (b) the constant and
cos(2θ) terms for the zonal flow. The graphs show that these coefficients completely
dominate the expansion. The maximum of b4(r) for v is only 12% of the coefficient
of sin(θ) and the maximum of a4(r) for the x velocity is only 5.5% of the largest
value of a0(r), the component of the zonal flow which is a function only of radius.
Although we have slightly mixed our metaphors – or at least coordinate systems –
by expanding Cartesian velocities in polar coordinates, the conclusion is straightfor-
ward: in spite of the spatial homogeneity created by the variable Coriolis parameter,
the equatorial soliton has a structure that closely resembles that of a modon (see
also [68]).

The Korteweg-deVries theory implies that modon-like solitons should be readily
generated by strong impulsive events like El Nino; this is born out by the numerical
models. However, modon theory predicts the existence of eastward-traveling vortex
pairs and the KdV analysis does not. Before we turn to modons in numerical models,
we will first consider an improvement of the KdV theory that predicts solitary waves
traveling both east and west.

5Tribbia [87], Verkely [88–91] and [on the midlatitude beta-plane (Boyd, [86])] generalize the
notion of a “solitary” wave by considering modons which will violate this constraint that c outside
the linear range [86–91]. These quasi-solitons are global, but the amplitude outside a small circle
is less than 10% of the maximum of the vortex, so the modon has a well-defined local peak in spite
of the fact that it extends in the form of small ripples over the whole planet. Such “weakly nonlocal
solitons” are discussed in length in Sect. 16.18.
6The “envelope” solitons that solve the Nonlinear Schroedinger (NLS) equation are an exception
that we will explain in later sections.
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16.15 A KdV Alternative: The Regularized Long Wave
(RLW) Equation

16.15.1 The Useful Non-uniqueness of Perturbation Theory

Peregrine [93] and Benjamin, Bona, and Mahony [94] independently pointed out
that the Korteweg-deVries equation has poor numerical properties in the sense that
the time step must decrease as the third power of the spatial grid size. The problem
is that the dispersion relation for the linearized KdV equation is

c = c0 − b(n)k2, b = 4n(n + 1)

(2n + 1)4
(16.57)

which shows that the phase speed increases without bound as k → ∞. (Water waves
traveling faster than the speed of light?) However, the KdV equation is derived via
perturbation theory. Equation (16.57) is an approximation to the true linear dispersion
relation with an error O(k4). Therefore, it is equally consistent with perturbation
theory to replace the KdV equation by another equation which approximates the
dispersion relation to the same order of approximation in the zonal wavenumber k.
In particular, they suggested the Regularized Long Wave (RLW) equation:

At + c0Ax + a(n)AAx − [b(n)/c0]Axxt = 0 [RLW Eq.] (16.58)

which is identical with the KdV equation except for the linear dispersive term, the
triple derivative.

A long wave approximation is a power series approximation to a transcendental
dispersion relation ω(k). Padé approximants are alternative approximations which
are rational functions PM/N whosenumerator anddenominator polynomials of degree
M and N , respectively, are chosen so that the first (M + N ) terms of the rational
function match the first (M + N ) terms of the function being approximated, ω(k)
(Bender and Orszag [43]). The KdV linearized dispersion relation and the RLW
dispersion relation are the [2/0] and [0/2] approximations to ω(k). The altered
linear dispersion relation profoundly changes the CFL limit from proportional to N 3

for KdV to linear in N for RLW.
Before discussing the phenomenology of the KdV equation, it is useful to note

that the apparent uniqueness of this reductive model, a one-dimensional window into
three-dimensional reality, is only apparent. Because the perturbative theory is a long
wave approximation, it does not pretend to describe what happens to the short zonal
wave part of the Fourier spectrum in longitude.

The advantages and disadvantages of the RLW equation, discussed in more detail
below, are the following:

Virtues
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1. Much larger CFL timestep limit for explicit time-marching schemes [two orders
of magnitude, a factor of O(N 2)]

2. Much greater fidelity to the linear dispersion relation for Rossby waves
3. Explicit approximation to eastward-propagating modon-like solitons

Flaws

1. Not an integrable system and therefore lacking the conservation laws and freedom
from chaos of an integrable model like KdV

2. Inelastic soliton-soliton collisions
3. Not solvable by the inverse scattering method.

For numerical purposes, the RLW equation is greatly preferable to the Korteweg-
deVries equation because the largest stable time step is directly proportional to the
spatial grid size rather than to its cube, as true of the KdV equation.

For analytical purposes, however, the KdV equation is preferable because it can
be solved exactly via the so-called “inverse scattering” method whereas the RLW
equation is not, and the mathematical properties of its solutions are much less well
understood.

However, for Rossby waves, there is an extra physical reason for preferring the
RLW equation; the dispersion relation for Rossby waves is a rational function to a
high degree of approximation. If we substitute the explicit forms for c2 and c0 into
the RLW equation,we obtain as the linear RLW dispersion relation

c = − 1

(2n + 1 + k2[1 − 1/(2n + 1)2])

which is identical, except for the small correction term proportional to 1/(2n + 1)2

which multiplies k2, to the approximate Rossby wave dispersion given in Chap. 3,
cRossby ≈ −1/(2n + 1 + k2).

KdV soliton-soliton collisions are “elastic’ in physics jargon in the sense that
the entire energy is recycled into the solitons themselves; no debris or decaying,
dispersing transient is left behind. RLWcollisions, alas, leave tiny small-scale ripples
in the wake of collisions.

Bona, Pritchard and Scott [95] resolved a controversy through a very careful
numerical study. Zoom plots were needed to shown the remnants, which are so small
as to be invisible on graphs that show the full height of the solitary waves themselves.

The inelasticity implies that the RLW is not integrable, the inverse scattering fails,
and chaotic behavior is possible.

http://dx.doi.org/10.1007/978-3-662-55476-0_3


16.15 A KdV Alternative: The Regularized Long Wave (RLW) Equation 371

16.15.2 Eastward-Traveling Modons and Other Cryptozoa

One conceptual value of the RLW model is that it allows solitons traveling both to
the east and the west – just like midlatitude modon theory. To date, the RLW equation
is the only equatorial model that predicts eastward-traveling modons.

For the n = 1 Rossby mode, Boyd [62] shows that the RLW solitons are

A(x, t) = −2.31B2 c sech2[B(x − ct)] (16.59)

where

c = −(1/3)/(1 − 1.184B2) (16.60)

When B > 0.92, the solitary wave has a φ field that is everywhere negative and
the disturbance propagates eastward with c > 0 — again a phase speed outside the
linear range, which is −1/3 ≤ c < 0.

Modons of either sign are a pair of equal but opposite vortices; for westward-
traveling modons (and n = 1 equatorial solitary waves) the northern vortex spins
clockwise while the southern vortex is counterclockwise so that their mutual inter-
action propels the pair at a faster-than-linear speed to the west.

Eastward-traveling vortex pairs must be of the opposite sign, but there is an addi-
tional constraint: the vortices must be sufficiently strong to drive the pair eastward
in spite of the linear tendency for phase propagation to the west. Otherwise, the net
phase speed will fall within the linear range and the disturbance will radiate, at best
a “nonlocal solitary wave” in the terminology of Sect. 16.18. This need for strong
nonlinearity explains why eastward-traveling solitons exist only for large values
of B.

Equations (16.59) and (16.60) must be taken with many grains of salt because the
perturbative treatment of nonlinear effects for such large amplitude (B2 > .85) is
unreliable.

The Madden–Julian Oscillation in the tropical atmosphere has a dipole structure
with eastward propagation. In hopes of imitating the MJO, Wedi and Smolarkiewicz
employed a meandering northern boundary as forcing for their numerical model in a
rectangular domain. For a limited range of parameters, they did coax vaguely dipolar
eastward-moving structures.Convectively-modified eastwardmodons?Perhaps [96].
But the ocean does not have a moving corrugated wall in the subtropics, and they
were tireless tweakers.

In cryptozoology, a “cryptid” is a specieswhose existence is conjecture, folklore or
speculation, as yet unconfirmed by highly credible observations. Eastward modons
should exist as unforced free modes. Despite independent searches by Boyd and
Jun-ichi Yano (private communication), eastward-traveling equatorial vortex pairs
remain an intriguing cryptid.
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16.16 Phenomenology of the Korteweg-deVries Equation
on an Unbounded Domain

16.16.1 Standard Form/Group Invariance

The KdV equation with arbitrary coefficients can always be reduced to a convenient
standard form through the following group invariance theorem.

Theorem 16.2 (KdV Reduction to Canonical Form) The KdV equation with arbi-
trary coefficients, but written in a frame of reference moving at the linear long wave
speed c0,

Aτ + FAξξξ + GAAξ = 0, (16.61)

is related to the solution u of the canonical form

ut + uxxx + �uux = 0 (16.62)

by

t = τ (16.63)

x = 1

F1/3
ξ (16.64)

u = G

� F1/3
A (16.65)

In most of our numerical simulations, we choose � = 1, but to describe the
computation of soliton parameters it is convenient to use Whitham’s convention,
� = −6.

16.16.2 The KdV Equation and Longitudinal Boundaries

The perceptive reader may be somewhat perplexed by boundary conditions for an
equation which is third order in space. These concerns are physically misplaced
because the KdV and RLW equations are both “one-way wave equations”. Each
equation has only a single time derivative and therefore the linear dispersion is
single-branched; the waves propagate in one direction only for a given longitudi-
nal wavenumber k. Dennis Moore showed in his Harvard thesis half a century ago
that long equatorial waves reflect from the western boundary of a tropical ocean
as a Kelvin wave plus short (small longitudinal wavelength) Rossby waves with
eastward group velocities. Such a complete change of modal identity can only be
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accommodated by a system of equations rich enough to allow both two-way wave
propagation and a plethora of latitudinal modes.

It follows that it is sensible to discuss KdV (and RLW) phenomenology only on an
unbounded domain or a periodic interval. In mid-ocean, far from coastal boundaries,
the choice of boundary conditions is irrelevant and one may use whatever bound-
ary conditions are mathematically convenient and non-reflective. Such mid-ocean
models are often called “process” models because simulations that are free of coast-
lines cannot imitate a complete ocean, but are useful in studying processes (such as
nonlinear frontogenesis and soliton formation).

A related question is: Does the neglect of boundaries in the inverse scattering
method compromise the usefulness of the KdV model? No. The appendix of Boyd
[62] explains that the neglect of boundaries is consistent with the perturbation theory
provided that one uses the shape of the wave after it has left the coast to initialize the
KdV model.

Boyd [60], recent monographs like Ablowitz and Segur [97] and geophysica-
11y-oriented reviews like Malanotte-Rizzoli [98] and Hammack [99–101] all give
good discussions of the solutions of the KdV equations, so in this section, we shal1
describe only the major conclusions.

The Korteweg-deVries equation and the Nonlinear Schroedinger equation,
described later, can be solved exactly for general initial conditions by the so-called
“inverse scattering” method. The simplest case is that in which the boundaries are
ignored and the spatial interval is idealized as [−∞,∞], but a later extension, usu-
ally called the “finite gap” or “N-band” method (Osborne [102], Haupt and Boyd
[103, 104]) does the same job when the boundary conditions are spatial periodicity
[102–104].

The great usefulness of “inverse scattering” is that it shows that solitons — far
from being “curiosities” — are created by quite arbitrary initial conditions. Indeed,
rather special initial data (such as A(x, t = 0) ≤ 0 for all x) are required to prevent
the formation of at least one soliton. What happens is that the flow evolves in such
a way that part of the disturbance settles into a balance between nonlinearity and
dispersion (as t → ∞) even if the initial condition was very far from such a balance.

The general solution on x ∈ [−∞,∞] is the sum of two components: (i) a finite
number of solitary waves and (ii) an oscillatory wavetrain, which gradually disperses
with the amplitude decreasing as 1/t1/2. If we use the coordinate system moving at
the unperturbed phase speed c0, then the solitons drift westward of the origin – that
is, the solitons propagate faster westward than any linear Rossby wave – while the
oscillatory wavetrain expands eastward as it disperses. Thus, the two parts of the
solution separate as t → ∞, which makes it easy to identify them as shown in
Fig. 16.19.

The oscillatory wavetrain is much like the general solution of the linearized KdV
equation. The usual large-time theory of dispersive linear waves, ably explained in
Whitham [8], predicts that most of the wavetrain will decay as 1/

√
t . Closest to the

initial pulse and traveling at c0, the linear long wave speed, is a caustic proportional
to t−1/3Ai(constant[x − c0]/t1/3) where Ai(z) is the usual Airy function. Ablowitz
and Segur ([105]) show that nonlinearity modifies the wave train in a variety of ways,



374 16 Nonlinear Equatorial Waves

some subtle, but the most important is the replacement of the parameter-free Ai(z),
which solves Aizz − zAi = 0, by the second Painleve Transcendent PI I (z), which
solves PI I,zz − zPI I −2P3

I I = 0 [106]. Remarkably, the nonlinear first trough decays
as t−2/3 whereas the linear caustic decays as t−1/3 as already noted.

In contrast, the soliton is something completely new: a species that has no coun-
terpart in a linear calculation. Figure16.20 compares three KdV solutions to show
this contrast. The positive initial condition has the exact shape of a solitary wave, so
the nonlinear solution merely propagates at constant speed without change in form.
The initial shape is the final shape. Dispersion opposes frontogenesis to produce a
wave of permanent, unvarying form.

The second and third solutions were both initialized by the negative of the solitary
wave, an “anti-soliton” initialization. The linear and nonlinear troughs both disperse.
The red curve of intermediate thickness is the linear solution, obtained by omitting the
advective term in the KdV equation. The thick green curve is the nonlinear solution.
It resembles the linear solution at a later time; with sign reversed from the soliton,
nonlinearity is now working with, rather than against the dispersion to produce an
accelerated “superlinear dispersion”.

For special initial conditions, either the solitons or the wavetrain may be missing,
but unless A(x, 0) is carefully contrived, both will be present. However, for a rather
large class of initial conditions – a smooth, positive semi-definite initial condition of

Fig. 16.19 The general solution of KdV consists of one or more solitary waves propagating faster
than c0 plus a dispersing transient which moves slower than c0. The overlap between the solitary
wave and the transient decreases exponentially fast with time because of the non-zero phase speed
difference between the transient and the solitons and the exponential decay of the solitary wave with
increasing distance from its peak. The solution is shown in a frame of reference that moves at the
linear long wave speed c0, i.e., X ≡ x − c0t . Warning: in this figure and the rest of this section, the
usual KdV convention is employed in which the solitary waves move to the right, and the transients
disperse leftward. For Rossby waves, rightward=westward



16.16 Phenomenology of the Korteweg-deVries Equation … 375

Fig. 16.20 Three solutions to At +AAx +Axxx = 0. The thin positive curve is the initial position of
the solitary wave A(x, t) = 192 sech2(16[x−64t]). The reference frame is moving so the soliton is
stationary. In contrast, the initial condition of the negative of the soliton labeled “initial anti-soliton”,
evolved with time. If the nonlinear terms are omitted, the thick red curve results. Nonlinearity
generates a rather different solution shown as the thin green line; nonlinearity accelerates dispersion
of a negative initial feature

moderate or large amplitude is one such class - - thewavetrain isweak and the solitons
inherit more than 90% of the initial energy. This class includes initial conditions for
which nonlinearity dominates dispersion so that the flow initially evolves according
to the nondispersive One-Dimensional Advection (ODA) equation.

To emphasize the interchangeability of the KdV and RLW models, we here mix
KdV and RLW examples at random.

Figure16.21 shows an RLW integration from an initial condition which was a
soliton (shown as the thin, dashed green curve) multiplied by a factor of one-half.
This destroys the balance between nonlinearity and dispersion, but the flow evolves
to an exact nonlinear/dispersion balance. The initial disturbance sheds a transient
whose caustic is the rightmost trough, and the tall peak widens slightly to weaken
dispersion and then propagates rightward, separating farther and farther from the
transient. (At the time shown, the soliton is still close to the caustic, but continuing
the integration to larger time shows that the right peak is a soliton.) Most of the
energy of the initial condition, even though the initial state is not a soliton, is carried
away by the short, fat solitary wave that develops.

An initial condition with much larger amplitude will be equally imbalanced, but
nonlinearity initially dominates dispersion as shown in Fig. 16.22. The leading (right-
ward) edge steepens. Dispersion finally comes into play when the disturbance has
developed a steep front: the crest abruptly dissolves into solitons at the very moment
we expect the front to break, but then dispersion becomes important when the length
scale in the frontal zone has become very narrow. Themonotonic wave profile breaks
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Fig. 16.21 The tall thin green curve: an RLW solitary wave. Thick red curve: the actual initial
condition, which is half the soliton. The thick black curve shows the shape of the solution at a
later time. Note that the RLW solution, which actually propagated far to the right, has been shifted
leftward for visualization to align the short, fat evolved soliton [black] with the taller, narrower
non-solitonic initial condition [red]. The dispersive transient is also shown shifted and in black

up into many solitons. The envelope of the peaks resembles a right triangle. It can be
proved through inverse scattering that maximum height can be no more than double
the highest point on the initial condition, but a near-doubling is evident. The five
peaks still weakly overlap at t = 50. The inset shows that the peaks are solitary
waves; because they are ordered tallest-and-fastest to the right, the five solitons will
become farther and farther apart as t → ∞.

For a smooth, positive definite initial condition, almost all the initial energy goes
into its solitons even from a far-from-solitary-wave initial profile.

Boyd [60] dubbed this“soliton dominance”: solitary waves are not special or
exotic, but sometimes are almost all that there is. A mathematician would shudder at
such a heuristic concept because it is easy to contrive counter-examples7; the win-
dowed sine initial condition illustrated in Fig. 16.23 generates both a large transient
as well as a pair of solitons. Nonetheless, the inverse scattering method has made it
clear that for the Korteweg-deVries equation, solitons are not a curiosity, but often
the only thing.

7A negative definite initial condition or a multi-signed A(x, 0) of very small amplitude or short
zonal scale will disperse almost completely as t → ∞.
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Fig. 16.22 The solitons that
emerge from an arbitrary
initial condition, such as the
“top hat” shown as the
dashed lines here, can be
predicted by calculating the
bound states of the
Schrödinger equation using
the initial condition as the
Schrödinger potential
energy. Even when the peaks
are still overlapping, as at
t = 50, here the asymptotic
state (insert) is foreordained

Fig. 16.23 N = 512 grid
points on x ∈ [−400, 400]
for u(x, 0) =
−0.9 sin([π/20][x +
300])(1/2) {erf(x + 320
+ 20) −erf(x + 320 − 20)}

16.16.3 Calculating the Solitons Only

Calculating the dispersing, transient part of theKdV solution by the inverse scattering
method is very difficult, even though all the steps are linear. Computing just the
amplitudes, widths, speeds and energies of the solitary waves that will emerge from
a given initial condition is relatively easy. Following Whitham [8], assume that the
KdV equation has been reduced to the canonical form

ut + uxxx + uux = 0 (16.66)

with the initial condition
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u(x, 0) = Q(x) (16.67)

The linear eigenvalue problem

uxx −
{
E − 1

6
Q(x)

}
u = 0, x ∈ [−∞,∞] (16.68)

is identical with the stationary Schroedinger equation of quantum mechanics with
E the eigenvalue equal to the energy of an eigenmode and the KdV initial condition
furnishing the potential energy. The complete spectrum of the Schroedinger solutions
consists of a continuous spectrum, which determines the dispersing transient in the
KdV solution, plus a countable number of discrete modes, which physicists call
“bound states”. If Q(x) is negative definite, a “potential barrier”, there are no bound
states and it can be proved that the initial condition generates no solitary waves.
If Q(x) ≥ 0, a “potential well”, there is always at least one bound state. If the
energy eigenvalues are written in terms of a new variable Bn as En = −B2

n , then the
asymptotic solution of the KdV equation from an initial condition that generates N
Schroedinger bound states will consist of N solitary waves each of the form

un(x, t) = 12B2
n sech

2(Bn[x − 4B2
n t + ϕn]) (16.69)

where ϕn is a phase constant that requires knowledge of the continuous spectrum
also.

Thus, by solving aone-dimensional, linear eigenvalue problem, one can determine
the number, amplitude, width and speed of all the solitary waves that will emerge
from a given KdV initial condition Q(x).

Calculating the dispersing transient [and soliton positions] from the continuous
spectrum is much harder; the integral equation procedure has now been replaced in
modern practice by a Riemann-Hilbert problem, but this is still much more difficult
than a one-dimensional eigenvalue problem. In practice, the non-soliton parts are
usually calculated by a Fourier pseudospectral/Runge–Kutta method that makes no
use of the inverse scattering method whatsoever.

Fortunately, the dispersing transient is as ephemeral as smoke.

16.16.4 Elastic Soliton Collisions

The speed of a solitary wave is proportional to the square of the height of pulse.
Parenthetically, note that the width is inversely proportional to the square root of the
amplitude. A tall, narrow soliton will therefore overtake all shorter, broader solitary
waves eventually. What then?

Zabusky and Kruskal discovered more than half a century ago that KdV soli-
tay waves collide elastically, that is, the solitary waves nvariably emerge from a
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collision unchanged in shape, speed and energy, altered only by a phase shift. A
KdV solitary wave can no more be collisionally reduced to two-thirds of a solitary
wave or a collection of dispersing waves or wave debris than an electron can be trans-
formed by collisions into two-thirds of an electron. Zabusky and Kruskal coined the
term “soliton” as an appelation for the solitary wave to emphasize this particle-like
property.

The inverse scattering method proves that KdV soliton-soliton collisions are
always “elastic” in this sense. Figure16.24 illustrates a typical case.

There is an explicit, closed-form solution which describes all possible KdV solu-
tions that begin and end with N solitary waves. Unfortunately, the N -soliton is a
messy ratio of the determinants of matrices whose elements are exponential func-
tions of time and space with N different arguments. We therefore leave the details
to Whitham [8].

16.16.5 Periodic BC

The linear dynamics of the KdV equation with periodic boundary conditions with
period P is easy. Expand the initial condition as a Fourier series:

u(x, 0) = Q(x) =
∞∑

n=1

an cos(n[2π/P]x) +
∞∑

n=1

bn sin(n[2π/P]x) (16.70)

Fig. 16.24 Waterfall plot in the x − t plane of two KdV solitary waves with collision.
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Then the general solution to ut + uxxx = 0 is

u(x, t) =
∞∑

n=1

an cos(n[2π/P][x − cnt]) +
∞∑

n=1

bn sin(n[2π/P][x − cnt])

(16.71)

where

cn = −4π2

P2
n2, n = 1, 2, . . . (16.72)

The sine and cosine of the same wavenumber can be combined into a single term:

an cos(n[2π/P][x − cnt]) + bn sin(n[2π/P][x − ct]) = An cos(n[2π/P][x − cnt] + ϕn)

An =
√
a2n + b2n

ϕn = arctan(bn/an) (16.73)

In practice this series must be truncated at n = N for some user-chosen N . Although
there is only a single spatial variable, the linear solution can also be regarded as
infinite-dimensional (or with truncation, N -dimensional) function of the phase vari-
ables

ζn ≡ n
2π

P
(x − cnt) + ϕn (16.74)

There is a spatially-periodic generalization of the inverse scatteringmethodwhich
is known variously as the “method of finite gap solutions”, the “method of finite
band solutions”, the “periodic Nonlinear Fourier Transform” and “periodic inverse
scattering”. The KdV equation is fully integrable in the Hamiltonian dynamics sense
with an infinite number of discrete conservation laws. The theory asserts that in the
nonlinear case as for the dynamics of its linear, infinitesimal amplitude solutions, (i)
There exists solutions with N phase variables ζn and (ii) The solution evolving from
an arbitrary initial condition can be approximated arbitrarily well by an N -phase
solution for sufficiently large N and wisely chosen solution parameters.

This is an astoundingly bold statement. It is well-known that chaos, which is not
periodic and cannot be represented as an N -phase function, is ubiquitous in realistic
fluid systems. One would imagine that, even with the neglect of explicit forcing
and dissipation, the interaction of one solitary wave with another would somehow
accelerate and deaccelerate interacting pulses in such a way as to destroy any simple
dependence on steadily translating phase variables. The assertion is nonetheless true.

The N -phase solutions have a multiplicity of names, but here they will be labeled
“N -polycnoidal waves” with “cnoidal”, “double cnoidal” and “triple cnoidal” for
the N = 1, N = 2 and N = 3 cases.
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The ordinary cnoidal wave is a combination of elliptic functions and can also be
written as a ratio of theta functions. N -polycnoidal waves with N > 1 are N -variate
hyperelliptic functions that can be written as ratios of N -variate theta functions.

Alfred Osborne’s Nonlinear Ocean Waves and the Inverse Scattering Transform
is the definitive treatment [102]. Unfortunately, although his book is very readable,
it is always a bad sign when the chapters on applications begin on pg. 570. He
shows that one can analyze nonlinear water waves as thoroughly as linear waves
and demonstrates that the Nonlinear Fourier Transform is as useful as the usual
Fourier Transform. However, one must take a one-semester reading course to follow
Osborne’s path. A good introduction which requires no knowledge except a general
grasp of wave theory and a feeling for ordinary Fourier series is Boyd and Haupt
[103, 104]. Although the author has written half a dozen papers on polycnoidal wave
theory, [103, 104, 107–111], it is necessary to leave most details to the references.
There are, however, some basics that are both easily explained and significant for
understanding nonlinear waves in the tropical ocean.

16.16.6 The KdV Cnoidal Wave

Korteweg and de Vries themselves discovered single-phase exact nonlinear solutions
to the KdV equation. Because the solutions were a simple function of the elliptic

Fig. 16.25 The KdV cnoidal wave as a function of x (for fixed time) and amplitude a. For small
amplitude (foreground), the cnoidal wave is sinusoidal. As the amplitude increases, the peaks
become taller, narrower, and more soliton-like
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function whose symbol is “cn”, they recalled the Greek termination “-oidal” mean-
ing “similar to” or “like” and dubbed these spatially periodic traveling undulations
“cnoidal waves”.

These form a one-parameter family of shapes where one widely used parameter is
the “elliptic modulus”, m ∈ [0, 1]. Cnoidal waves are infinitesimal amplitude linear
sine waves for small m and are arbitrarily tall and narrow peaks, well-approximated
by shape of a KdV soliton, in the limit m → 1 as illustrated in Fig. 16.25.

16.17 Soliton Myths and Amazements

16.17.1 Imbricate Series and the Nonlinear Superposition
Principle

Assertion 16.1 (Nonlinear Superposition) For many types of cnoidal waves
described by elliptic functions, the cnoidal wave is the exact superposition of solitary
waves.

A function G(x)which is spatially localized and decays sufficiently fast as |x | →
∞ such as solitary wave, can always be “periodized” or “imbricated” to generate a
spatially periodic function with arbitrary period P . First, make an infinite number of
copies of G(x). Second, space the copies a distance apart over the entire real axis

fP(x) ≡
∞∑

m=−∞
G(x − mP) (16.75)

The “imbricate series” clearly has the required spatial periodicity, that fP(x + P) =
fP(x) for all real x .
One important but rarely discussed piece of mathematical folklore is that every

periodic function has an imbricate series. The justification for this claim is the Poisson
Summation Theorem, which asserts that the pattern function is the Fourier Transform
of the function which, evaluated at the integers, gives the Fourier coefficients.

When the solitons are narrow compared to the spatial period, P , it is obvious that
the periodization of the solitary wave will be an approximate solution to the wave
equation with period P . The solitary waves have an overlap which is exponentially
small in 1/P; when P � 1, the overlap is negligible and the periodic solution may
be approximated on an interval around each peak by just the solitary wave itself.

The imbrication of the KdV solitary wave is both banal and bizarre. It is banal
because every localized lump has an imbricate series, and the imbrication of solitons
must be a good approximation to a periodic functionwhen the spatial period P is large
compared to the soliton width. It is bizarre because the KdV cnoidal equation obeys
a nonlinear superposition principle: the KdV cnoidal wave is not approximately the
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sum of an infinite series of evenly spaced solitary waves; it is exactly the sum of an
imbricate series of solitary waves for all amplitudes!

This remarkable fact was discovered by Toda in 1975 [112] using the infinite
product for the theta function whose second logarithmic derivative is the cnoidal
wave; Gerald Whitham in his next-to-last published paper gave an elementary proof
in 1984 [113] of what was true “to my amazement, at least”. Boyd [108] and Zaitsev
[108, 114] also gave different proofs of the “Toda Miracle”.8

Denote the spatial period by P and normalize the KdV equation to

uxxx − cux + uux = 0 (16.76)

The phase speed is

c = M − 24
ε

P
+ 4 ε2 − 24 ε2

∞∑

n=1

cosech2( n P ε ) (16.77)

and u(X) [where X ≡ x − ct] is given by either the imbricate series [top] or Fourier
expansion [bottom]

u(x) = M − 24
ε

P
+ 12 ε2

∞∑

j=−∞
sech2 (ε(x − P j))

= M + 12
4π2

P2

∞∑

j=1

n

sinh
(
nπ2

ε P

) cos ([2π/P]nx) (16.78)

where M and ε > 0 are arbitrary constants. (The solution is given in terms of elliptic
functions in [108], Appendix D of [116] and most books on nonlinear waves.)

Note that M is merely an additive shift added simultaneously to both u(x) and
c. The statement that the cnoidal wave is the exact superposition of solitary waves
is true only with a slight qualification. The Fourier series has zero mean, that is,∫ P
0 u(X)dX = 0. However, solitary waves are positive definite; the imbrication of
solitons has a nonzero mean. A group invariance theorem states that the sum of a
solution to the KdV equation with an arbitrary constant M is also a KdV solution if
the same constant is added to the phase speed, as easily proved by substitution into
the differential equation. The additive factor of − 24 ε

P converts the imbricate series
of solitary waves into the zero mean cnoidal wave.

One reason that the imbricate series is useful is that it converges rapidly when
its pattern function is narrow and the Fourier coefficients decay slowly while the
Fourier series is fast when the solitons are very wide and strongly overlap. The
elliptic modulus m = 1/2 is where the Fourier series and imbricate series converge

8I was as surprised as Whitham, but made heavy use of the Nonlinear Superposition Principle in
my work on polycnoidal waves [108–111, 115].
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at equal rates. This parameter value is thus a boundary between the soliton and sine
wave regimes.

16.17.2 The Lemniscate Cnoidal Wave: Strong Overlap
of the Soliton and Sine Wave Regimes

Assertion 16.2 (StrongOverlap of Soliton andSineWaveRegimes)Aperiodic struc-
ture that is well-approximated by the pattern function of its imbricate series may also
be well-approximated by a rapidly convergent Fourier series.

The case of equal convergence rates for Fourier and imbricate series has a special
name, the “lemniscate” case. Gauss coined the names “cosine-lemniscate” and “sine-
lemniscate” in 1797 [117].

The lemniscate cnoidal wave is u(X) = −0.95493 + 2.08975 cn2(.5902X;m =
1/2) where X = x − ct is the spatial coordinate in a frame of reference moving with
the wave. For period 2π , the Fourier series is

u(X;m = 1/2) = 1.039 cos(X)+0.090 cos(2X)+0.0058 cos(3X)+ . . . (16.79)

which shows the very rapid convergence of the Fourier series; the second harmonic
is less than one-twelfth the amplitude of cos(X). For this special case, the zero-
mean cnoidal wave has an exact phase speed of −0.95493. The phase speed of an
infinitesimal amplitude cosine wave, ccos = −1, is in error by only 4.7%, consistent
with the fact that its Fourier series is dominated by just one term. The phase speed
of a solitary wave (with correction so that the mean of the imbricate series is zero) is
csol = 1− 6/π = −0.90986, which is in error by the same 4.7% but in the opposite
direction. The imbricate series is

u(X) = − 6

π
+ 3

∞∑

m=−∞
sech2 ((x − Pm)/2) (16.80)

as illustrated in Fig. 16.26. The KdV cnoidal wave for this value of the elliptic mod-
ulus is equally cosine and soliton.

When John Scott Russell discovered solitary water waves in 1834, most scientists
of the time thought he was crazy. G. G. Stokes calculated a perturbation series
for the cnoidal wave to prove that nonlinear waves must be periodic rather than the
single, isolated crest as asserted by Russell. However, Toda and later Boyd,Whitham
and Zaitsev [108, 112–114] by different means all proved that the cnoidal wave of
the Korteweg-deVries equation can be written – without approximation and for all
amplitudes – as a sum of evenly spaced solitary waves plus a constant:
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Fig. 16.26 TheKdV lemniscate-cnoidal wave. The left two panels compare the cnoidal wave [solid
in the upper panel only] with its one-term Fourier approximation, −4.14 cos(2X) [dashed in both
left panels] and the Fourier term 0.35 cos(4X) [solid in lower left panel]. Upper right the cnoidal
wave is solid and its lowest imbricate approximation, −7.64+ 12sech2(X), is dashed in both right
panels. The second imbricate approximation [including the first order approximation] is solid in
the lower right panel

A(x, t) = −24s/π +
∞∑

n=−∞
12s2 sech2[s(x − ct − nπ)] (16.81)

And yet the lemniscate cnoidal wave is only a small perturbation of a linear sine
wave.
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16.17.3 Solitary Waves Are Not Special

Assertion 16.3 (Solitons from Special Initial Conditions Only) It is false that special
initial conditions, that is, initial conditions that are a set of measure zero in the
parameter space, are necessary for solitary wave generation.

First, since the solitary wave requires an exact balance between two compet-
ing influences — dispersion, which broadens a wave disturbance, and nonlinearity,
which can steepen and focus it — it seemed that the soliton was merely an oddity, a
laboratory card-trick. In the words of Scott et al. [118], the soliton was

long considered a rather unimportant curiosity. . . Since it is clearly a special solution to the
partial differential equation, many have assumed that somewhat special initial conditions
would be required to launch it and, therefore, that its role in the (general) initial value
problem would be a minor one at best.

The “soliton paradox” is that solitary waves were first discovered in nature, and
solitons have since been observed in an enormous variety of fields — plasmas,
nonlinear optics, condensed matter physics, and many others. If solitary waves are
just “curiosities”, why are they so readily observed? The answer is thatmany physical
systems evolve to an exact balance between nonlinearity and dispersion even though
the initial condition may have been far from such a balance.

A solution to the Korteweg-deVries (KdV) equation in which nonlinearity is
initially stronger than dispersion will steepen. But when the shortest spatial scale is
L(t), nonlinearity is O(ampli tude/L) but dispersion is O(1/L3(t)). Frontogensis
will reduce the spatial scale until dispersion and nonlinearity balance — solitons.

If dispersion is initially the stronger, then L(t) will increase as the disturbance
becomes smoother.With its inverse cubic dependence on scale, dispersion diminishes
more rapidly than nonlinearity until the two are in balance – small solitons! Theory
and numerical experiment show that in many situations, the solitons dominate the
solution, even from spectacularly unsolitonic initial conditions.

16.17.4 Why “Solitary Wave” Is the Most Misleading Term
in Oceanography

Assertion 16.4 (Soliton Loneliness) It is false that solitary waves must be far from
any other disturbance to merit the label of “soliton”.

“The label “solitary wave” is a terminological atrocity. A flowwith many closely-
spaced peaks may be the superposition of solitons which have only a weak mutual
interaction in spite of close proximity: for solitary waves that decay exponentially
as |X | → ∞, the interaction between two solitons separated by P must fall expo-
nentially fast with P . Therefore, restricting the genera “solitary waves” to the class
of isolated peaks, “alone on a wide, wide sea”, is far too narrow.
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“Solitarywave” is a translation of ‘onde solitaire”whichwas introduced by Joseph
Boussinesq (1842–1929) in 1871 in [119].What wonderful sounds! “Onde solitaire”.
It is poetry disguised as terminology.

Water wave theorists were not misled. Walter Munk and Joseph Keller showed
their viewpoint in their titles: “The solitary wave theory and its application to surf
problems” [120] and “The solitary wave and periodic waves in shallow water” [121].
Michael Stiassnie and D. Howell Peregrine analyzed water waves propagating into
shallower water using Trains of Solitary Waves (TSW’s) as the major theoretical
construct: “Thus periodic waves can be accurately represented by a train of soli-
tary waves,” as Peregrine wrote in a later invited review [pp. 154] of [122]. Costa,
Osborne et al. take this a step further with observations of “soliton turbulence” in
shallow water waves observed in Currituck Sound, North Carolina; the periodic ver-
sion of the inverse scattering method, described in Osborne’s book [102], allows an
unambiguous identification of the solitary waves as solitons.

However, John Kindle’s fine study of Trains of Equatorial Rossby SolitaryWaves
generated by fluctuating wind stresses in the Pacific was published only as a book
chapter [123]. A longer version submitted to Journal of Physical Oceangraphy was
not accepted because most blue water oceanographers could not accept the notion of
a Train of Solitary Waves.

16.17.5 Scotomas and Discovery: The Lonely Crowd

Assertion 16.5 (The Lonely Crowd) Solitary waves are as ubiquitous as beetles
and cockroaches, hiding in plain sight. Solitons are not discovered in new, exotic
parameter ranges but rather are seen in familiar environments by “prepared minds”.

John Scott Russell discovered solitary waves in 1832 with no technology except
his own eyes. For how many thousands of years have men and women looked at the
sea, incognizant? Indeed, homo erectusmust have seen solitary, isolated wave peaks
rolling down a brook or rushing floodwaters more than a million years ago, but it
is easy to forgive those small-brained, illiterate hunter-gathers for their failure of
recognition. It is much more remarkable that even in the Age of Technology solitary
waves of various species have continued to be cognitively invisible.

In medicine, a “scotoma” is a blind spot, such that some objects in the field of
vision are there but invisible. Oliver Sacks applied this medical term to a “knowledge
gap”, a selective blindness to a part of the scientific literature. For example, Tourette’s
syndrome, though discovered in the 1880s, was a scotoma in medical thinking until
interest was revived by Sacks’ work with L-dopa. Similarly, the Fast Fourier Trans-
form (FFT) was a numerical analysis scotoma. Runge’s article of 1903 [124] and
the massive Fourier analysis efforts at Sir Edmund Whitaker’s mathematics lab in
Edinburgh were well summarized in 1913 by Carse and Urquart [125], but somehow
faded into invisibility, forgotten, until the FFT was rediscovered quite independently
of all earlier work by Cooley and Tukey in 1967.
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Mark Ablowitz is a distinguished kymologist9 who, among a lifetime of wave
studies, examined the mathematics of polycnoidal waves. Double cnoidal waves
have, in some parameter ranges, a characteristic Y-shaped pattern of ridges. To his
great astonishment, on a family visit to the ocean, he observed and photographed
precisely the shapes he and his collaborators had foretold, hyperelliptic functions
incarnate in salt water. Subsequently he and Douglas E. Baldwin have made many
photographs and videos that can be observed on their websites and their article [126].
Careful research turned up only a single earlier photograph of such ridges, published
nearly forty years prior to [126]. In their conclusions, they write

We report that X- and Y-type shallow water wave interactions on a flat beach are frequent,
not rare, events. Casual observers can see these fundamental wave structures once they know
what to look for.

The title of the classic sociology treatise, The Lonely Crowd, is a sort of metaphor
for solitary waves. We understand that the throngs jostling on a busy street in Beijing
or NewYork are close but unrelated and indifferent. Jostling dense wavepackets may
be equally noninteracting and dynamically isolated.

The Sapir-Whorf Hypothesis is that language shapes our thinking and leads to
blind spots, scotomas of the mind. Benjamin Whorf was an MIT-educated chemical
engineer who worked as a fire inspector for the Hartford Insurance company while
simultaneously studying and collaborating with Yale linguistics professor Robert
Sapir. His two worlds collided in an industrial waste holding tank. The factory work-
ers called it “The Pool.” Connotations of ponds, harmless. The workers often sur-
reptiously flicked spent cigarette butts into the pond. A more accurate name would
have been,” A tank of highly flammable industrial waste which will erupt in a fireball
when touched by even a tiny ignition source, such as a cigarette that was not quite
extinguished.” The Hartford had to pay millions of dollars when “The Pool” burned
down the factory; hundreds of workers lost their job.

The connotations of “solitary” are equally misleading. The very word seems to
convey an image of a single, isolated peak, surrounded on all sides and for vast
distances by flat, undisturbed water. However, numerical experiments have shown
that solitons can quite happily coexist with a background of small amplitude waves
and that they also retain their identity, shape, and phase speed when cheek-to-jowl
with other solitary waves.

Keller, Munk, Peregrine and Ablowitz saw solitary waves in multipeaked, ever-
fluctuating wave trains because their “prepared minds” discarded the connotations
of that badly chosen label, “solitary wave”, and saw the true dynamics in the water
(Table16.5).

9“Kymology” is the study of waves, from the Greek “κυμα”, “wave”.
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Table 16.5 A bibliography of weakly nonlocal solitary waves

Reference Remark

Williams and Wilson [63] Numerical confirmation of (i) ease of exciting
solitons (ii) near-elastic collisions of Rossby
soliton collisions (iii) radiative decay of higher
n mode [nonlocal] solitons

Boyd [64] Radiative decay of nonlocal Rossby solitons

Segur, Tanveer and Levine [127] Collection on exponential asymptotics

Boyd [65] Review of nonlinear equatorial waves

Boyd [128] Review of nonlocal solitary waves

Boyd [66] Monopoles and dipoles in AEW approx.

Boyd [116] Far-ranging book on all forms of exponential
smallness

Boyd [67] n = 3 nonlocal Rossby soliton

Boyd [68] Numerical experiments: tilted modons and
nonlocal soliton radiation

Boyd [33] 4-mode model

Yang [9] Monograph on nonlinear waves good treatment
of “embedded solitons”

16.18 Weakly Nonlocal Solitary Waves

16.18.1 Background

Williams and Wilson [63] numerically confirmed most of the KdV/Rossby soliton
theory of Boyd [60, 61]. For the n = 1 latitudinal mode, there was good qualitative
agreement even at large amplitude. Solitary waves of different amplitudes collided
elastically, just as predicted.10

Initialization of the flow with the lowest order perturbative approximation to the
n = 3 solitary wave yielded, for small amplitude, a very robust coherent structure.
After a transient adjustment in which the quadrapole vortex sheds a little radiation,
the equilibrated soliton translated steadily without change in shape or amplitude for
a very long time.

At moderate amplitude, however, the solitary waves in latitudinal modes n = 3
and higher radiated sinusoidal Rossby waves of mode number (n − 2) and rapidly
decayed. Boyd [64, 116] noted that the nonlinear phase speed of the n = 3 solitary
wavematches the linear phase speed of small amplitude sinewaves in the n = 1mode
of zonal wavenumber k ≈ 2. The resulting resonance forces the radiative decay of
the solitary wave through emission of the resonant waves of lower latitudinal mode.

The amplitude of the emitted waves is an exponential function of the reciprocal
of the soliton amplitude parameter ε. The reason the radiation is so small is that

10In this context, “elastic” means that no energy is lost to transient radiation; rather, the solitary
waves colllectively have the same energy both before and after all soliton-soliton collisions.
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its strength depends on the amplitude of the solitary wave at k = 2. The Fourier
Transform of sech2(εX) is

∫ ∞

−∞
exp(ikx) sech2(ε x)dx = π

ε2

k

sinh (πk/(2ε))
(16.82)

This is proportional to exp(−q/ε) for ε � 1 where q = π/2. Resonance ampli-
fies forcing but does not create a response ex nihilo; the resonant radiation must
be proportional to this tiny portion of the core of the soliton which has the same
wavenumber as the resonant radiation.

The solitary wave is radiating for all amplitudes and there is no stability threshold.
However, the rate of emission is so small for small ε as to be invisible in Williams
and Wilson’s numerical solution.

The leakage includes Rossbywaves of all lower odd n, but the amplitude ofmodes
lower than (n−2) is exponentially small compared to emission in the (n−2) mode,
so only a single mode of radiation was detectable.

Such radiatively-decaying soliton-like structures have a common appellation.

Definition 16.5 (Weakly Nonlocal Solitary Wave) A steadily-translating, finite
amplitude wave that decays to a small amplitude oscillation (rather to zero) as one
moves away from the core of the disturbance.

The author’s earlier book [116] and reviews [107, 128] and the book edited by
Segur, Tanveer and Levine [127] and other references in Table16.5 show that such
generalized solitary waves are at least as common as classical solitary waves.

Some are so-called “micropterons” for which the far field resonant radiation is
a finite power of the amplitude of the core of the solitary wave. The equatorial
Rossby nonlocal solitary waves are “nanopterons” because the sinusoidal radiation
in latitudinal mode (n − 2) has an amplitude which is an exponential function of
the reciprocal of the amplitude of the core of the solitary wave, a KdV soliton in
latitudinal mode n.

Williams [5] has shown through numerical solutions of a baroclinic model that
solitary waves in the n = 1 latitudinal mode and the first baroclinic mode are weakly
nonlocal through radiative leakage into the barotropic mode [5]. Higher latitudinal
modes should similarly leak to the barotropic mode, and thence escape to the extra-
tropics.

The radiation is emitted by the soliton whenever its phase speed matches that of
a small amplitude wave of any species. Figure16.27 shows as unshaded the phase
speeds which allow classical, nonradiating solitary waves.

16.18.2 Initial Value Experiments

Boyd ran his equatorial beta-plane model with an initial condition equal to the n = 3
zeroth-order solitary wave (Boyd [22]) for ε = 1/3 [B = 1/3 in the notation of
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the earlier article]. Results are shown in a frame of reference which moves at the
predicted phase speed of the solitary wave, csol = −1/7 − 0.08ε2, so that the core
of the coherent structure remains centered at x = 0.

Figure16.28 shows that the expected wavepacket does indeed emerge. The ampli-
tude of the radiation is very small, however, and only the north-south current is readily
visible. The radiation is noticeably more confined in latitude than the core of the soli-
tary wave, which has the structure of the second lowest second symmetric mode. It
follows that the radiation lies almost entirely in the n = 1 mode as predicted.

The resonance condition is

csol = −1

k2 + 3
(16.83)

where the right-hand side is the (approximate but very accurate) dispersion rela-
tion for infinitesimal amplitude n = 1 Rossby waves of zonal wavenumber k. This
predicts the wavelength of the emission to be

kres = 2

√
1 + 0.14ε2 − 0.235ε4

1 + 0.56ε2
(16.84)

which is kres ≈ 1.895 for ε = 1/3.
By multiplying the wavepacket by a windowing function, it is possible to take

the Fourier transform of the packet with minimal contamination from the core of the
solitary wave. When the north-south current is expanded in Hermite functions, the
j-th coefficient is the sum of three latitudinal modes. However, because our initial
condition is a nonlinear Rossby wave, the gravity wave modes are only weakly
excited. It is thus a good approximation to take the amplitude of the n = 1 Hermite
coefficient of v as the amplitude of the n = 1 Rossby mode. Figure16.29 shows

Fig. 16.27 Isolines of the
north-south velocity at
t = 400. Negative-valued
contours are dashed.
Computations were
performed in a
frame-of-reference moving
at the
perturbatively-predicted
phase speed of the solitary
wave, so the quadrapole
pattern which is the core of
the soliton remains centered
at x = 0. The computational
interval extended from
x ∈ [−80, 80], but only part
of this domain is illustrated
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Fig. 16.28 Classical Rossby
solitary waves are possible
only when their phase speed
lies in one of the unshaded
regions, that is, ouside the
range of infinitesimal
amplitude waves. Coherent
structures with phase speeds
in the shaded regions will be
weakly nonlocal and
radiatively decaying

Fig. 16.29 Left coefficient of ψ1(y) in the expansions of v(x, y, t = 400) after windowing; the
window function was W (x) ≡ {erf(x − 25) − erf(x − 75)}. Right panel Fourier Transform in
longitude of the windowed waveacket. The vertical dashed line marks the resonant wavenumber,
k = 1.9

the Fourier transform of the windowed wavepacket indeed has a peak close to the
predicted k = 1.895.

The group velocity in an earth-fixed frame of reference is cg = (3−k2)/(3+k2)2.
The group velocity relative to the core of the solitary wave, and therefore in the
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moving reference frame,

crelativeg ≈ 1

7
+ 0.08ε2 + k2res − 3

(k2res + 3)2
(16.85)

which is approximately 1/6. Thus, over the length of the integration, which is 400
nondimensional time units, the emitted radiation should spread eastward relative to
the solitary wave about 66 spatial units, which is only a slight underestimate.

The one puzzle is that the envelope of the wavepacket does not show a constant
amplitude, as expected, but instead diminishes to almost nothing close to the solitary
wave. Similar fluctuations have been seen in other weakly nonlocal solitary waves
such as the φ4 breather [116], but the cause is not understood.

16.18.3 Nonlinear Eigenvalue Solutions

It is also possible to solve for the n = 3 mode as the steadily-translating solution
to a nonlinear eigenvalue problem. In an ocean basin, this is rather artificial: such
steadily-propagating coherent structures are east-west symmetric with respect to the
center of the core, and thus have small amplitude n = 1 sine waves west of the core.
This is possible only in a land-free ocean where the eastward-radiating n = 1 waves
are free to expand around the globe until they reach the core from the west.

In spite of its artificiality, such nonlinear eigensolutions (with periodic boundary
conditions in the east-west) have been very useful in the general theory of nonlocal
coherent structures as reviewed in Boyd’s monograph [116]. The outside-the-core
oscillations of the nonlocal solitary waves confirm that the radiation is an intrinsic
part of the dynamics, and not merely a transient feature that might disappear from
an initial-value calculation if only it were run longer.

Figure16.30 shows the result of such a computation. (The numerical intricacies
are described in Boyd [67, 129, 130].) The rather eccentric value of the phase speed
was the result of initializing the iteration with the perturbative solution of Boyd [60]
for the n = 3 mode with B = 3/8, that is, the east-west structure proportional to
sech2(0.375[x − ct]). Other calculations, not shown, demonstrate that the amplitude
of the n = 1 oscillations falls exponentially fast with decreasing amplitude in the
core of the structure. For sufficiently large core amplitude (or negative c), the far
field oscillations are as big or bigger as the core, at least in the north-south flow, and
the solitary wave is no longer “weakly” nonlocal.

For this moderate amplitude, however, we have confirmation that this latitudinal
mode indeed has weakly nonlocal solitary waves. The eigensolutions are fully con-
sistent with the initial value experiments of Williams and Wilson [63] and our own
initial-value experiments here.

The general theory of weakly nonlocal waves has many subtleties, such as those
associatedwith the quantization effects of periodic boundary conditions. These issues
are fully explained in the monograph [116] and the review articles [107, 128].
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Fig. 16.30 Nonlinear eigenvalue solution for c = −0.15411: the north-south current at a particular
latitude, y = 1.125, is plotted versus longitude. The calculation used a 48× 24 grid with centered
eighth-order differences on the domain x ∈ [0, 4.25W f ] ⊗ y ∈ [0, 6] where W f = 2π/kres is the
predicted wavelength of the far field oscillations in the n = 1 latitudinal Rossby mode. u and φ

were assumed symmetric with respect to both the x and y axes; v was doubly antisymmetric

16.19 Tropical Instability Vortices

Tropical instability vortices (TIVs) are strong oceanic anticyclones as much as
500km in diameter that are centered 4–5◦ north of the equator, embedded between
theNECC (eastward) and the SEC (westward) (Fig. 16.31). TIVs are largely confined
above the thermocline and have little amplitude below one hundred and fifty meters.
Kennan and Flament [131] are a very careful observational study [131] from which
Fig. 16.31 was derived. TIVs were first discovered in the Pacific, but are seen in the
Atlantic also.

Recall that the mean zonal currents in the tropics are alternating zonal jets: west-
ward South Equatorial and North Equatorial currents (SEC and NEC) and the east-
ward Equatorial Undercurrent (EUC) and eastward North Equatorial Countercurrent
(NECC). Each June, after the southeast trade winds strengthen, the equatorial cur-
rents accelerate and upwelling intensifies. “Tropical Instability Waves” (TIWs) with
a wavelength about 1000km spontaneously appear and persist through the boreal
fall and winter to fade out in March. Tropical Instability Waves were first detected in
current meter records as meanderings of the Atlantic South Equatorial Current (SEC)
[133] and in satellite infrared images as cusplike deformations of the North Equator-
ial Front (NEF) in the Pacific ocean by Legeckis [134]. They were also subsequently
identified in various observations, including in situ measurement of velocity [135,
136], in situ measured sea temperature [137], remote satellite measured SST [138,
139], surface dynamic height [140], surface wind [139], as well as sea colors [141].
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Fig. 16.31 Currents in a Tropical Instability Vortex (left) and the zonally-averagedmean flowU (y)
(right). Sketched using the data of Flament et al. [132] to constrain the centroid, maximum velocity
of the vortex and mean current, etc

These measurements gave various wavelengths, and periods, in ranges of 600–2000
km and 16–40 days, respectively [136].

In the PacificOcean, cusplike deformations appear on both north and south bound-
aries of the cold tongue. But in the Atlantic Ocean, they usually only show on the
north boundary. The cusplike deformations on the north boundary are related to
coherent anticyclonic vortices centered about 5◦N which are labeled as “Tropical
Instability Vortices (TIVs)“ [131, 132, 142].

Despite an extensive multi-decadal literature many fundamental questions about
TIW/TIV kinematics and generating mechanisms still remain unclear. Rather than
one broadbanded process, the TIWs are bichromatic. The first spectral peak has
periods around 15–23 days, is most prominent in meridional velocity, and has been
observedwithin a fewdegrees of the equator [131, 132, 135–137].The second species
has a period of roughly one month and has been observed in sea surface height,
thermocline depth, velocity, and subsurface temperature centered about 5◦N [131,
132, 137, 140, 143]. These two types ofTIWscan appear in the ocean simultaneously.
Flament et al. [131, 132] observed two drastically different propagation speeds of
TIWs at the same time, 0.8 ms−1 along the the equator and 0.3 ms−1 along 4.5◦N .

The generation of TIWs is generally thought to be associated with the instabil-
ity of the intense zonal currents present in the equatorial ocean. However, there
is no consensus. TIWs may be spawned by barotropic instability of the horizonal
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shear between South Equatorial Current (SEC) and North Equatorial Countercur-
rent (NECC)/Equatorial Undercurrent (EUC) [136, 141, 144, 145]. On the other
hand, vertical shear in the equatorial jets is also strong. TIWs may be generated by
baroclinic instability from the vertical shear of the South Equatorial Current or by
a mixed barotropic-baroclinic instability [146–148]. The apparent existence of two
species of TIWs does not make it easier to explain their origins.

In an effort to explain the coexistence of these two very different types, especially
the surface trapped Yanai-type TIWs, Zhou and Boyd [149] studied nonlinear TIW
development in a shallow-water model with initial mean states from the Pacific
Ocean. During the early linear stage, the most unstable mode determined by the
background mean currents dominates from 8◦S to 8◦N . As this mode grows, the
wave component centered 5◦N rolls up into nonlinear vortices and then stabilizes
the backgroundmean substantially.Meanwhile the wave component near the equator
assumes its own identity as a fast-moving neutral Yanai wave. The wave center near
6◦S becomes distinct from the wave centered at 5◦N with a slower phase speed. So
instead of a single instability, now there are three waves with three different phase
speeds.

Yet this theory still remains to be tested in a realistic 3-D model and in obser-
vations. The variance of wind stress was not included. In the real equatorial ocean,
the primary cause of the change of zonal current is the change of wind stress and
nonlinearity may only be secondary. However, the essential point of [149] is that
the wave components at different latitudes of an initially single TIW may decouple
if the background mean changes no matter whether it is due to the change of wind
stress or due to the nonlinearity. The faster Yanai-type waves near the equator are
not necessarily directly arising from the instability of the background currents. Such
decoupling process may explain why the cross-equatorial structure of the SST front
or SSH is sometimes phase locked and sometime not.

Using Lindzen’s wave over-reflection theory, Proehl [150] argued that TIWs arise
by extracting energy from the background state through varying mixes of baroclinic,
barotropic, and Kelvin–Helmholtz mechanism rooted in the critical layer and there-
fore attempting to classify the instability through energy conversion was misleading.
However, theory lags. Part of the reason is that five different paradigms or perspec-
tives on barotropic and baroclinic instability compete in the literature.

The last interesting question regards the coherent anticyclonic TIVs in the shear
between SEC and NECC. How do they remain quasi-steady (except for a steady
westward phase propagation) for months before dying out in the western Pacific
ocean? Flament et al. [132] found that the inteior potential vorticity is almost zero,
and suggested this may be fossilized inertial instability. Examining 3-D Lagrangian
trajectories in the Atlantic, Dutrieux et al. [151] found that while TIVs are highly
coherent throughout their lifetime, up to 50% of their water may be renewed over one
rotation of the vortex. They suggested that TIVs are a hybrid of an isolated vortex
with trapped fluid and a dispersive linear wave that propagates without recirculation.
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MatureTIVs are like solitarywaves. Theories of vortices in a shear zone, originally
developed for the Great Red Spot of Jupiter,11 are applicable to TIVs [75, 152–156].

16.20 The Missing Soliton Problem

Rossby solitons turn out to be robust solutions in a non-linear 1.5-layer equatorial ocean
model. Not only are they maintained when explicitly initiated, but they can also be caused
by reflection of any Kelvin wave, irrespective of how it was generated. In particular, a
temporal weakening of easterly trade winds, modelled here by a temporal patch of westerly
winds, generates such a Kelvin signal. …

They have however never been observed so far although observations of internal gravity
solitons are common [157, 158]. It might be that the signal is so weak in the real ocean
that it disappears in other wave signals. Another explanation may be that nobody has ever
attempted to extract a Rossby soliton signal from observational data.

T.R.F. Feitsma and H.A. Dijstra [159].
The n = 1 equatorial Rossby solitarywave is a dipole, two contra-rotating vortices

of equal strength, propelling each other westward at a faster-than-linear speed.When
mean currents are omitted, the dipole soliton is readily generated in a numerical
model. Kindle [123] and Greatbatch [3] showed that changes in wind stress, even
uniform changes over a huge area whose shape bears not the slightest resemblance to
a Kelvin or Rossby wave will nevertheless excite one or more dipole Rossby solitary
waves. Williams and Wilson applied forcing at twenty degrees of latitude, expecting
to generate an imitation of theGreat Red Sot of Jupiter, but excited equatorial solitons
instead [63]! This accident led them to investigate equatorial soliton collisions and
experimentally discover that higher latitudnal mode solitons are weakly nonlocal and
radiatively decaying as discussed in Sect. 16.18.

Indeed, the n = 1 Rossby solitary is so easily generated, and the perturbation
series so accurate, that the equatorial soliton is now widely used as a test case to
validate numerical models [160–163],

Williams and Wilson made the equatorial solitons go away by adding the alernat-
ing zonal jets that dominate the Jovian atmosphere. It seems likely the alternating
equatorial jets are equally villanous for dipole solitons straddling the terrestial equa-
tor, but other factors are important also. There has not as yet been a thorough study.

However, Vaid, Gnanaseelan and Salvekar [164], validating earlier numerical
and observational studies they review, found a dipole of Rossby waves appearing
seaonally in the equatorial Indian Ocean [164]. These authors note that these Rossby
waves are stronglymodulated bymean currents, reinforcing the remarksmade earlier
here that future Rossby soliton studies have a desperate need to include mean flow.

11TheGreat Red Spot of Jupiter is an anticyclonic vortex embedded between alternating jets at about
twenty degrees S. latitude. The vortex has been spinning for as long as there have been telescopes
to observe it, nearly four centuries.
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Chapter 17
Nonlinear Wavepackets and Nonlinear
Schroedinger Equation

Abstract Wave packets in the narrow meaning of the word denotes pulses that are
the product of a “carrier wave” (with the three-dimensional structure of an infin-
itesimal amplitude sine wave) multiplied by an “envelope” or “modulation” func-
tion that slowly varies in both space and time and satisfies the cubically-Nonlinear
Schroedinger (NLS) equation. The coefficient of the nonlinear terms, the “Landau
constant”, has many discrete singularities at various carrier wave wavenumbers k;
each pole is the mark of a resonance. Long wave/short wave resonance, second har-
monic resonance and resonant triad interactions are all discussed. To illustrate the
connections between different PDEs, the KdV equation for a given weakly disper-
sive mode is derived from the NLS equation. Lastly, selected numerical studies of
idealized nonlinear wave dynamics, not restricted to small amplitude, are reviewed.

It is a common experience that asymptotic calculations tend to give errors which are far
smaller than one might have reasonably expected.

Carl M. Bender and Steven A. Orszag on p. 340 of their book [1]. The context is a matched
asymptotics treatment of an eigenvalue problem which becomes increasingly accurate as the
mode number increases; for this example, even the ground state eigenvalue is accurate to
within about 3%.

17.1 The Nonlinear Schroedinger Equation for Weakly
Nonlinear Wavepackets: Envelope Solitons, FPU
Recurrence and Sideband Instability

Wave packets are pulses that are the product of a “carrier wave” (with the three-
dimensional structure of an infinitesimal amplitude plane wave) multiplied by an
“envelope” or “modulation” function that slowly varies in both space and time
and satisfies the cubically-Nonlinear Schroedinger (NLS) equation. The Nonlin-
ear Schroedinger (NLS) equation is second order in space, first order in time and
cubically nonlinear. It is not an equation for the longitude-and-time dependence of
a wave, but rather is an equation for the envelope of a wave packet. Its solution is

© Springer-Verlag GmbH Germany 2018
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usually complex-valued because the complete x − t factor is not A(x, t) but rather
A(x, t)C + complex conjugate where C = exp(ikx + iωt) is the usual carrier wave
of a wavepacket.

In the next subsection, we show how very general initial conditions evolve under
linear wave dispersion to the form of a “carrier wave”multiplied by a slowly-varying
“envelope” or “modulation”. Generically, the NLS equation describes how nonlin-
earity modifies the evolution of the envelope. In purely linear dynamics, dispersion
always causes the envelope to widen in space, varying more and more slowly with
increasing time, and simultaneously shrinking in amplitude. Nonlinearity can either
accelerate linear dispersion (“defocusing”) or oppose it, allowing in the “focusing”
case the formation of envelope solitary waves.

The NLS approximation fails when the “carrier wave” is resonant with other
waves. Later, we shall discuss each of these types of resonances in turn. The nonlinear
coefficient of the Nonlinear Schroedinger equation is called the “Landau constant”
and is a function ν(k)of thewavenumber k of the carrierwave. Each resonance creates
a pole in ν(k). Each latitudinal mode/baroclinic mode has its own NLS dynamics;
thus, the Landau constant is really a countable double infinity of functions.

Marshall and Boyd [2] derive the NLS for equatorial waves. Multiple scales
perturbation theory is applied in a fashion quite similar to the KdV derivation given
earlier. Instead of copying their analysis here, we show the conceptual skeleton in a
much simpler context by deriving the NLS equation from the KdV equation.

Our derivation will follow Johnson [3, 4], who showed that in the long wave
limit, the dynamics of wavepackets in the Korteweg-deVries (KdV) equation could
be described by the Nonlinear Schrödinger (NLS) equation. Marshall and Boyd [2]
wrote a program to compute the NLS coefficients for equatorially-trapped planetary-
scale ocean waves and then derived the KdV coefficients directly from those of the
NLS equation. Tracy, Larson, Osborne and Bergamasco [5, 6] and also Osborne’s
book give a very readable analysis of the connection between the NLS and KdV
periodic inverse scattering methods for wavepackets.

17.2 Linear Wavepackets

Before analyzing nonlinear wavepackets, it is helpful to first understand the sim-
pler case of infinitesimal amplitude waves. In a spatially-uniform medium without
boundaries, a one-dimensional wave disturbance can always be represented as a sum
of Fourier integrals, one for each branch of the dispersion relation, of the form [7]

u(x, t) = 1

2π

∫ ∞

−∞
U (k̃) exp(i k̃x − iw(k̃)t) dk̃ (17.1)

where w(k̃) is the dispersion relation for a given branch. For a wavepacket in the
narrow sense, as used here, the Fourier transform amplitude is sharply peaked about
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some wavenumber k̃ = k. Without approximation, the integral can be rewritten as
the product of a “carrier wave” factor,1

E(x, t) ≡ exp(i[kx − ω(k)t]) (17.2)

and an “envelope” A(x − cgt, t) where

cg(k) ≡ ∂w

∂k
(k), [Group velocity] (17.3)

Introducing a spatial coordinate in a frame of reference moving at the group velocity,

ζ ≡ x − cg t, (17.4)

the wavepacket is
u(x, t) = E(x, t)A(ζ, t) (17.5)

where A(ζ, t) is given exactly by, replacing k̄ by κ ≡ k̄ − k,

A(ζ, t) = 1

2π

∫ ∞

−∞
α(κ) exp(iκζ − iΩ(κ)t) dκ (17.6)

where the Fourier amplitude is

α(κ) ≡ U (k + κ) (17.7)

and the new frequency is

Ω(κ) ≡ w(k + κ) − w(k) − cg(k)κ (17.8)

The derivation is merely a matter of splitting off the first two terms in the Taylor
series of w(k + κ) about k.

The crucial point is that the envelope is described by a Fourier integral of exactly
the same form as the integral for u(x, t) itself except that the spatial coordinate is
now in a frame of reference which is traveling at the group velocity and the amplitude
and frequency functions have been redefined.

Because α(κ) is sharply peaked about κ = 0 if the envelope is sufficiently wide
in ζ , it is legitimate to expand the frequency in a power series in κ and retain only the
first few terms. This is equivalent to the multiple scales expansion of the next section
where the perturbation parameter is the ratio of the narrow scale of the carrier wave,
1/k, with the broad scale of the envelope. The approximation of Taylor-expanding
Ω up to a finite order is equivalent, without additional approximations, to replacing
the true wave equation satisfied by A(ζ, t) by the approximation

1E is used for the carrier wave in this chapter only to be consistent with Johnson.
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At−i
1

2
wkk(k) Aζ ζ − 1

6
wkkk(k) Aζ ζ ζ + i

1

24
wkkkk(k) Aζ ζ ζ ζ + 1

120
wkkkkk(k) Aζ ζ ζ ζ ζ +. . . = 0

(17.9)

Example: Linearized KdV

ut + cux + buxxx = 0 (17.10)

where b and c are constants.

w = kc − bk3 wk = c − 3bk2, wkk = −6bk, wkkk = −6b (17.11)

Ω(κ) = −3bkκ2 − bκ3 (17.12)

Thus, the envelope of a linearized KdV wave packet satisfies the equation

At + i3bkAζ ζ + bAζ ζ ζ = 0 (17.13)

The partial differential equation for the envelope of a weakly nonlinear wavepacket
in the KdV equation will be identical except for additional terms, nonlinear in the
envelope, which will be derived in the next section.

17.2.1 Perturbation Parameters

There is some arbitrariness in the definitions of the perturbation parameters because
phrases like “width of the envelope” are meaningful only in order-of-magnitude.
Nevertheless, the following choices are reasonable. The dispersion parameter λ is
the ratio of the length scale of the carrier wave, 1/k, to the width 1/β(t) of the
envelope:

λ(t) ≡ β(t)/k [Dispersion Parameter] (17.14)

The nonlinearity parameter will be defined to be

μ(t) ≡ max
x

|A(x, t)| (17.15)

For sufficiently large time, as discussed below, the wavepackets of the KdV equation
are always widening, implying that as t → ∞, β(t) ∼ O(1/t) is a decreasing
function of time. To conserve the total energy of the wavepacket, the envelope must
simultaneously decrease as O(1/

√
t). [This square root is counterintuitive, but recall

that the total, integrated energy, which must be constant in time, is proportional to
the square of the amplitude but is linear in the width of the envelope.] The ratio of
the nonlinear to dispersive terms in the NLS equation is
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nonlinear

dispersive
∼

(
μ2

λ2

)
∼ O (t) , t → ∞ (17.16)

Thus, the envelope evolves more and more slowly as time increases, but such evolu-
tion as there is becomes increasingly dominated by nonlinearity.

17.3 Derivation of the NLS Equation from the KdV
Equation

The most general perturbation expansion is a double series in which both the nonlin-
ear parameter and dispersion parameter are allowed to vary independently. However,
the most interesting regime [arguably the only interesting regime] is when the non-
linearity and dispersion are of comparable importance. We shall henceforth assume
this, thereby collapsing a double series into an expansion in a single parameter ε.
However, the resulting series will still be accurate when nonlinearity � dispersion
or vice versa so as long as the larger effect is sufficiently small.

The KdV equation is

ut + cux + auux + buxxx = 0 (17.17)

where a, b, and c are constants. To focus on weakly nonlinear wavepackets, assume
that the lowest order approximation is

u(x, t) ∼ ε A(ζ, τ ) exp(i[kx − ω(k)t]) + C. C. (17.18)

where ε << 1 is the perturbation parameter and k is the zonal wavenumber of the
“carrier wave” andwhere C. C. denotes the complex conjugate of the preceding term.
The frequency, phase and group velocities of the carrier wave are specified by the
linear KdV dispersion relation as

ω = kc − bk3 → cp(k) = c − bk2 & cg(k) = c − 3bk2 (17.19)

where the “slow” space and time variables are

ζ ≡ ε (x − cg(k)t), τ = ε2t, τ̃ = ε3t, τ = ε4t (17.20)

The factor A(ζ, τ ) is the called the “envelope” and will evolve according to the NLS
equation or its generalization. Different powers of ε (from the scalings of Eqs. 17.18
and 17.20) also give legitimate limits, but a posteriori our choices turn out to be the
ones such that nonlinearity and dispersion are of equal magnitude.

Through the method of multiple scales [3, 8, 9], one can show that the weakly
nonlinear wavepacket has an asymptotic expansion of the form
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u = ε

∞∑
j=0

ε j
j+1∑
m=0

A jm(ζ, τ, τ̃ , τ ) Em + C. C. (17.21)

where E is the “carrier wave”:

E(x, t) ≡ exp(i[kx − ω(k)t]) (17.22)

For notational simplicity, write A01 = A(x, t). The terms which are independent
of the carrier wave are known collectively as the “long wave” components; the
terms proportional to E±m are the m-th harmonics except for m = 1, which is the
“fundamental” A(x, t).

Derivatives are interpreted by applying the chain rule:

∂

∂t
→ ∂

∂t
−ε cg

∂

∂ζ
+ ε2

∂

∂τ
+ε3

∂

∂τ̃
+ε4

∂

∂τ
,

∂

∂x
→ ∂

∂x
+ ε

∂

∂ζ
(17.23)

In a minor (and common) abuse of notation, the same symbols x and t are used for
the “fast” space and time variables as for the original coordinates.

Matching powers of ε and the carrier wave exponential E shows that at
O(ε j+1Em), A jm solves an equation of the form

{
ik3bm [1 − m2] }

A jm(ζ, τ ) = R j,m (17.24)

where the expression in braces is [(∂t + c∂x + b∂xxx )Em] /Em and where R j+1,m

denotes theO(ε j Em)part of the “residual” function,which is the result of substituting
the expansion into the KdV equation and then dividing by the common factor of ε.

Form = 1, i.e., the fundamental, the left-hand side of Eq. 17.24 is zero. Therefore,
the perturbation scheme fails unless R j,1 = 0 for all j ≥ 0. This set of “nonsec-
ularity” conditions determines the linear dispersion relation at lowest order j = 0,
regurgitates the usual linear definition of group velocity (cg ≡ ∂ω(k)/∂k) for j = 1,
and demands that A evolve according to the NLS equation to satisfy R2,1 = 0.
Figure17.1 is a visual summary. The next two orders give expressions for the time
derivatives of A on the very slow (τ̃ ) and ultra-slow (τ ) time scales.

The longwave components are independent of the “fast” variables; because deriv-
atives with respect to the slow variable ζ are multiplied by ε, A j0 appears in the
residual only at one order higher in ε than the harmonics of the same magnitude in
ε, A jm , m > 1. The longwave components satisfy equations of the form

3bk2A j0
ζ = R j,0 (17.25)

It turns out that after some manipulation, the longwave component of the residual
can always be written as the derivative of an expression with respect to ζ . This allows
us to integrate with respect to ζ (trivially) and obtain an explicit expression for A j0.



17.3 Derivation of the NLS Equation from the KdV Equation 411

Fig. 17.1 Schematic of NLS perturbation theory. The O(ε) solution, the “fundamental”, and its
complex conjugate, interact to produce three terms at O(ε3). The interaction of the fundamental
with itself generates the second harmonic; similarly, the self-interaction of the complex conjugate
of the fundamental yields the complex conjgate of the second harmonic. The interaction of the
fundamental with its complex conjugate gives the long wave component. This lacks the rapidly-
varying carrier wave [(hence the label “long wave”] and is pure envelope, the absolute value of the
square of the envelope A of the envelope. None of the O(ε2) terms is resonant with the fundamental.
At next order, the interaction of the fundamental with its second harmonic gives a third harmonic
(proportional to exp(3ikx − 3iw(k))) [not shown] plus terms which have the same dependence on
the fast carrier wave as the fundamental, and therefore are resonant. Linear operators that are partial
derivatives of the slow time and space derivatives are also resonant at this order. The resonance
disappears, and secular terms therefore are absent, only if the sum of the resonant terms is zero.
This sum is the NLS equation

The lowest non-trivial solution is to compute the O(ε2) longwave and second har-
monic components and then R2,1 = 0 yields the NLS equation. This was previously
derived in Appendix C of [8], closely following [3]. Here, we extend the analysis
two orders higher.

This introduces two minor technical complications. First, it is very helpful to
remove time derivatives from the higher order residuals by replacing Aτ by invoking
the NLS equation it solves. Second, for the longwave components, it is necessary
to manipulate the simplified residual into the form of a ζ -derivative so that the
expression for A j0

ζ can be integrated. This requires repeated use of identities such
as AA∗

ζ ζ = (AA∗
ζ )ζ − Aζ A∗

ζ where the asterisk denotes complex conjugation; for-
mally integrating the residual in ζ , these identities can be equivalently interpreted as
repeated integration-by-parts.

A∗ will denote the complex conjugate of A. Then

A10 = − a

3bk2
|A|2, A12 = a

6bk2
A2 (17.26)

A20 = i
a

3 b k3
{
AA∗

ζ − A∗Aζ

}
, A22 = i

a

3 b k3
A Aζ , A23 = a2

48 b2 k4
A3

(17.27)
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A30 = a

3 b k4
{
AA∗

ζ ζ + A∗Aζ ζ − Aζ A∗
ζ

}
(17.28)

A32 = − a3

432b3 k6
A3 A∗ − a

6bk4
A2

ζ − a

3bk4
AAζ ζ (17.29)

A33 = i
a2

12 b2 k5
A2 Aζ (17.30)

A34 = a3

432b3 k6
A4 (17.31)

At O(ε3), one obtains the usual NLS equation:

Aτ + i3 b kAζ ζ − i
a2

6 b k
A |A|2 = 0 (17.32)

At higher order, oneobtains variations in A on longer timescales. Themost convenient
procedure is to simply combine these slow and ultra-slow time tendencies with the
NLS equation to obtain the Generalized-NLS (GNLS) equation

Aτ + i3 b kAζ ζ − i
a2

6 b k
A |A|2 [Generalized-NLS]

+ bAζ ζ ζ − a2

2 bk2
A2A∗

ζ − a2

3 bk2
|A|2Aζ

+ i
a4

864b3k5
|A|4A + i

2a2

3bk3
A2 A∗

ζ ζ

− i
a2

6bk3
(
Aζ

)2
A∗ + i

a2

3bk3
Aζ A∗

ζ A = 0

(17.33)

where the second line is the correction atO(ε4) and the last two lines are that atO(ε5),
respectively. (Our approximation, (17.26–17.32) above removes the long wave and
fundamental parts of the residual at O(ε5) to eliminate these secular terms, but not
the higher harmonics.)

The perturbative solutions at various orders will be compared with exact KdV
solutions in the next-to-last section below.

17.3.1 NLS Dilation Group Invariance

The NLS equation with arbitrary coefficients can always be reduced to a convenient
standard form through the following group invariance theorem.

Theorem 17.1 (Reduction of NLS Equation to Canonical Form) The NLS equation
with arbitrary coefficients, but written in a frame of reference moving at the linear
long wave speed c0,
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iAτ + FAξξ + G|A |2 A = 0, (17.34)

is related to the solution u of the canonical form

iut + uxx + 2|u|2 u = 0 (17.35)

by

t = G

2
τ (17.36)

x =
√

G

2F
ξ (17.37)

u = A (17.38)

Proof Substitution of the assumed form into the partial differential equation followed
by cancellation of the parameters. �

17.3.2 Defocusing

The NLS equation has two qualitatively different cases which cannot be converted
into one another by any rescaling of space, time or amplitude. When the signs of
the dispersive (Aζ ζ ) and nonlinear terms are the same, nonlinearity and dispersion
can balance so as to create an envelope solitary wave. When the signs of the disper-
sive and nonlinear terms are opposite, nonlinearity accelerate dispersion, a sort of
“superlinear” dispersion.

In the KdV regime, the signs of the dispersive coefficient,−3bk, and the nonlinear
coefficient, a2/(6bk), are always opposite independent of the signs and magnitude
of the coefficients a and b of the KdV equation. Envelope solitary waves are impos-
sible even though the KdV equation has solitary waves consisting of a single crest.
Dispersion and nonlinearity both act to widen the envelope, at least in the asymp-
totic limit as t → ∞. (The envelope may compress for a finite time interval if the
initial conditions are appropriately contrived, but will always widen and shrink in
amplitude for sufficiently large time.)

Kevrikis, Frantzeskakis and Carretero have recently published a tome of four
hundred pages devoted entirely to the physics of the NLS defocusing case [10].
Their book, Yang [11] and Osborne’s [12] treatise supply many details omitted here.
Osborne puts much more emphasis on water waves. His first great contribution was
the discovery of large amplitude internal gravity solitons in the Andaman Sea [13].
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17.3.3 Focusing, Envelope Solitons and Resonance

The veins and arteries of the internet and landline telephony are fiber optical cables
which transmit information as pulses of light. Unfortunately, dispersion is inexorable
in linear physics. Repeater stations are needed every ten to twenty kilometers to
amplify and narrow the light wavepackets lest dispersive spreading overlap Mrs.
Jones’ gossip with Dr. Paciorek’s order to sell ten thousand dollars worth of cocoa
futures to the ruination of both the social and financial life of the republic.

Lasers, though, can generatenonlinearwavepackets.Although the scale and speed
of planetary equatorial ocean waves is vastly different from the tiny streaks of bright-
ness whizzing down a glass highway, both are governed by the NLS equation.

Envelope solitary waves are localized wave packets that do not disperse. Tremen-
dous effort has been expendedonunderstanding thenonlinear dynamics ofwavepack-
ets in the hope that networks with vast numbers of repeaters may soon be replaced by
repeater-free fiber optics carrying nothing but envelope solitons. Although nonlinear
wavepacket dynamics has been greatly generalized for water waves and especially
fiber optics, NLS theory still lies at its heart.

The NLS equation is solvable by the inverse scattering transform. The solitary
waves as in the KdV case are each associated with a discrete eigenvalue of the
eigenproblem whose potential energy function is the initial condition for the time-
dependen PDE.

A full description of NLS phenomenology must be left to the books by Jianke
Yang [11] and Alfred Osborne [12]. However, we can and should briefly review the
following major types of NLS solutions.

1. uniform envelope (nonlinear plane wave)
2. soliton generation threshold
3. cnoidal and dnoidal waves
4. double soliton
5. elastic collisions
6. breathers
7. polycnoidal waves
8. sideband instability and FPU recurrence

By elementary rescalings, the NLS equation with general coefficients can be
reduced to the canonical form used by Yang [11], which we shall employ to catalog
NLS phenomena:

iut + uxx + 2|u|2u = 0 (17.39)

17.3.4 Nonlinear Plane Wave

It must be always remembered that the solution to the NLS equation is merely the
envelope of the wave packet, and may therefore be complex-valued. The nonlinear
plane wave is
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u = A exp(i2A2k2t) (17.40)

where the envelope A is a constant. When multiplied by the carrier wave, the product
of envelope and carrier wave is still sinusoidal in space and time. The uniform
envelope represents merely an adjustment to the wavenumber and frequency of the
carrier wave. For most purposes, the uniform envelope is of no interest whatsoever.
However, slightly altered carrier waves play a fundamental role in the theory of
sideband instability as described below.

17.3.5 Envelope Solitary Wave

NLS solitons must be described by the phrase “envelope solitary wave” because
these are not a single peak, but rather are many peaks and valleys traveling together
as a coherent structure.

The discrete eigenvalues of a scattering problem determine each solitary wave
emerging from a given initial condition, just as for the KdV equation, but the NLS
scattering problem has eigenvalues which in general are complex-valued. Let ξ and
η be the real and imaginary parts of the eigenvalue. The envelope soliton is then

u(x, t) = 2ηsech(2η(x + 4ξ t − x0)) exp
{−2iξ x − 4i(ξ 2 − η2)t + iσ0

}
(17.41)

where the parameters x0 and σ0 are the initial position and phase of the soliton. The
peak amplitude of the envelope is 2η while its velocity is −4ξ .

The factor

u(x, t) = 2η exp
{−2iξ x − 4i(ξ 2 − η2)t + iσ0

}
(17.42)

is a sine wave, identical in form to the carrier wave. Indeed, it has also the form of
the nonlinear plane wave and like it, is merely a slight adjustment to the wavenumber
and frequency. For every soliton with carrier wave of wavenumber k that is traveling
at speed −4ξ plus the linear group velocity cg(k), there is a stationary solitary wave
(ξ = 0) associated with wavenumber k + 2ξ . The degree of freedom represented
by ξ does not increase the span of the single-soliton solutions and as such should
largely be ignored.

17.3.6 NLS Cnoidal and Dnoidal Waves

The spatially periodic solutions to the NLS equation solve the boundary value prob-
lem

uxx − w u + 2 u3 = 0. (17.43)
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where w is a constant. This has two classes of solutions, dubbed the “dnoidal” and
“NLS cnoidal” waves. For both classes, c = (uxx + 2u3)/u independent of x , which
is sometimes a convenient alternative to the elliptic integral formulas below.

DNOIDAL BRANCH

The parameters are the spatial period P and the shape/elliptic modulus parameter
S ∈ (0,∞]. The “dnoidal wave” is so-called because its envelope is proportional
to the elliptic function dn. For weak waves, this branch asymptotes to a constant.
Define ε ≡ (π/P)S. Then

u(x) = ± ε
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Note that these series converge for all S; the ranges shown merely indicate where
each series is most efficient.
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CNOIDAL BRANCH

The cnoidal branch is approximated by a cosine function for small amplitude. The
parameter ε ≡ (2π/P)S which differs by a factor of two from the definition that is
convenient for the dnoidal wave.
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where mell = k2ell .
Note that c becomes negative for small amplitude waves.
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For both branches of periodic traveling waves, the Nonlinear Superposition Prin-
ciple applies: The pattern function for the imbricate series of the dnoidal and NLS-
cnoidal waves is the hyperbolic secant function, the shape of envelope solitarywaves.

17.3.7 N-Soliton Solutions

There is an analytical formula for an exact N -soliton solution, too messy to be
repeated here (but see [11]). If the real parts for all the discrete eigenvalues are
distinct, then the envelope solitons travel at different speeds. Like KdV solitary
waves, their collisions are elastic as illustrated in the left panel of Fig. 2.1 on page
35 of Yang [11]. Just as for the collisions of KdV solitary waves, NLS collisions
do phase-shift and position-shift the solitary waves; the post-collison trajectory of
each is parallel to the pre-collision trajectory but they do not coincide as illustrated
in Fig. 17.2.

17.3.8 Breathers

Boyd’s Law of Parametric Probability: A Set of Measure Zero Occurs About Half the Time.

When the NLS inverse scattering eigenproblem has two eigenvalues and the real
parts of the eigenvalues are equal, the two solitary waves do not separate, but instead
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Fig. 17.2 The white dashed
and dotted curves extend the
trajectories of the two
solitary waves as they would
move in the absence of the
collision; these curves make
it easier to see the position
shifts created by the
soliton–soliton collision

propagate as a single coherent structure. This travelingwave is not steady state except
for translation, but instead oscillates in timewith a period ofπ/(η2

1−η2
2)where η1 and

η2 are the imaginary parts of the scattering eigenvalues. Because the periodic heaving
up and down of this bound state of solitons resembles, at least to the imaginative, the
rising and falling of the chest during respiration, such nonlinear waves are known as
“breathers”.

Onemight suppose that breathers would be very rare since it is obviously a special
constraint that the real parts of the scattering eigenvalues should be equal. However,
as expressed by the humorous quote at the beginning of this subsection, special
species of events that occupy only a tiny part of parameter space often are common
in applications. It is in fact very easy to generate breathers. Figure17.3 shows a
breather generated by an initial condition which is the imbrication of 2sech(x).

More complex breathers are possible. Merely increasing the initial condition by
a factor of 3/2 gives a bound state of three solitary waves. The breather is non-
translating and is centered at x = 0 for all t . The plot of u(0, t) shows that this large
amplitude breather is periodic in time, but has two distinct minima in each period.
(Fig. 17.4)

17.3.9 Modulational (“Sideband”) Instability, Self-focusing
and FPU Recurrence

In the focusing case, sign(nonlineari t y) = sign(dispersiveterm), the sine wave,
which is the uniform envelope u(x, t) ≡ constant , is always unstable. This insta-
bility is variously called “modulational instability”, “sideband instability”, or the
“Benjamin–Feir” instability [14].
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Fig. 17.3 The periodized initial condition u(0, t) = ∑2
m=−2 2sech(x − 8πm) gives rise to a

breather which is a nearly sinusoidal function of time as illustrated by the time series of u at the
center of the domain [left plot]. The shapes of u(x, t) over a half period are illustrated on the right

The reason for the name “sideband instability” is that this instability begins as
an interaction of a sinusoidal wave with two perturbations that are waves whose
wavenumbers are only slightly different from those of the primary (large amplitude).
Waves with wavenumbers very similar to a carrier wave of wavenumber k are said
to be “sidebands” of the primary wave.

Most of the hard work of understanding sideband instability from first principles
has already been accomplished by deriving the NLS equation.

What happens when resonant triad instability does not occur? It turns out that
there is another possibility: Sideband instability. The key idea is that waves with
wave numbers close to that of the primary wave will necessarily have frequencies
close the primary wave, too. Thus these near-neighbors or “sidebands” are always
in a sense weakly resonant with the primary wave.

Sideband instability has a growth rate proportional to the square of the amplitude
of the primary wave instead of the amplitude itself. The reason is that the quadratic
nonlinear interaction between two waves of O(a) amplitude, both with k ≈ k0,
will generate waves of O(a2) amplitude a sum of k ≈ 0 [long wave component] and
k ≈ 2k0 [second harmonic]. The quadratic interaction of the second harmonic or long
wave with the primary wave will then generate a resonant wave with wavenumber
k0 and O(a3) amplitude. The growth rate of this resonant wave at the expense of the
O(a) primary wave is O(a2). In ordinary resonant triad interactions, the resonant
wave is O(a2) and the growth rate is linear rather than quadratic in the amplitude of
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Fig. 17.4 Same as previous figure except that the periodized initial condition was u(0, t) =∑2
m=−2 3sech(x − 8πm), a factor of 3/2 larger. The breather is time periodic as shown by the

graph of u(0, t) [left plot], but there are two distinct minima on each period. The right plot shows
u(x, t) for five different times that are inflection points in the time series

the primary wave. Sideband instability will inevitably be swamped by resonant triad
instability if the latter occurs. When there is no resonant triad instability, however,
the sideband instability mechanism can be extremely important (Fig. 17.5).

The pioneering study was a joint experimental-theoretical work by T. Brooke
Benjamin and J. Feir [14]. Their analysis was restricted to plane waves, using a
single wave as the basic state and then examining the effects of small sinusoidal
perturbations with almost the same wave number. We can greatly streamline the
labor, however, by using the Nonlinear Schroedinger equation instead as our starting
point where the NLS equation is

i Aτ + r Axx + ν|A|2A = 0 (17.56)

Since we are interested in the stability of a plane wave, we shall look for solutions
in the form

u = A(x, t) exp(ik[x − cp(k)t]) + c.c. (17.57)
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The basic state, equivalent to that of Benjamin and Feir, is almost equivalent to taking
A0 equals constant.Wemust say “almost” because the phase speed cp(k) that appears
in the phase factor is that computed from the linear dispersion relation. In reality,
nonlinearity will change the frequency of the wave, so we must allow our basic state
A, call it A0, to be a function of time. The exp(ikx) factor is already exactly what we
want in the wave, so we can take A0 to be independent of space. The NLS equation
reduces to

i Aτ + ν|A|2A = 0 (17.58)

This equation, defining

a ≡ |A0| : a constant (17.59)

has the plane wave solution

A0 = a exp(iδt), δ ≡ νa2 (17.60)

Let us now perturb this plane wave by setting

A = A0 + Δ, |Δ| � 1 (17.61)

Substituting this into the NLS equation (17.56) and linearizing about A0 gives

iΔt + Δxx + νA2
0Δ

∗ + 2νa2Δ = 0 (17.62)

Assume that Δ has the specific form

Δ = A+ exp(iμx) + A− exp(−iμx) (17.63)

Contrary to what one might reflexively imagine, it is not necessary that A+ and
A− be complex conjugates because the solution of the NLS equation itself is usu-
ally complex-valued. When we synthesize the solution of the original problem, we
automatically include A∗ so that u will be real even if A is not. Thus, A+ and A−
are completely independent quantities. Physically, the assumed form for A consists
(of three wavenumbers k, k + μ, k − μ) plus their complex conjugates. The wave
numbers k ± μare said to be the “sidebands” of wavenumber k, provided that μ is
small compared to k. We shall see that in fact μ must be small for instability.

If we substitute (17.63) into (17.62) and match factors of exp(iμx), we get
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i
d A0

dt
+ δA0 = 0 (17.64)

i
A+
dt

− rμ2A+ + 2δA+ + δ exp(2iδt)A∗
− = 0 (17.65)

i
d A−
dt

− rμ2A− + 2δA− + δ exp(2iδt)A∗
+ = 0 (17.66)

The mutual interaction of A+ and A− will actually excite small forced components
with wave numbers (k ± 2μ) and so on, but these will be an order of magnitude
smaller than the principal sidebands, and thus it suffices to solve the trio of equations
above. The first of these, of course, is already been solved by A0 = a exp(iνa2t) but
is repeated for completeness.

To solve this coupled set, it is convenient to define

ε = rμ2 (17.67)

The coupled set becomes

i
d A0

dt
+ δA0 = 0 (17.68)

i
A+
dt

− εA+ + 2δA+ + δ exp(2iδt)A∗
− = 0

i
d A−
dt

− εA− + 2δA− + δ exp(2iδt)A∗
+ = 0

Further simplification follows by taking the complex conjugate of the last equation
in (17.68) so that are unknowns are consistently A+ and A∗−,

− i
d A∗−
dt

− εA∗
− + 2δA∗

− + δ exp(−2iδt)A+ = 0 (17.69)

To eliminate the pesky factors of exp(2iδt), define

A+ ≡ exp(2iδt) A+ (17.70)

This reduces (17.68) to a pair of coupled constant coefficient differential equations
in A∗− and A+, which can be solved by the usual device [for attacking constant
coefficient ODEs] of assuming that both unknowns are proportional to exp(iλ t).
The resulting pair of algebraic equations has a nontrivial solution if and only if the
determinant of the matrix vanish, i.e.,

det

(∣∣∣∣(−λ − ε) δ

δ (λ + 2δ − ε)

∣∣∣∣
)

= 0 (17.71)

which happens only at zeros of the “characteristic polynomial” of the matrix,
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λ2 + 2δλ + δ2 + 2δε − ε2 = 0 (17.72)

with the solution

λ = −δ ± √
ε(ε − 2δ) (17.73)

Thus, there is instability whenever (i) |ε| < 2|δ| and (ii) the NLS coefficients are of
the same sign. Recall that ε ≡ rμ2 and δ ≡ νa2 and note that sign(r) = sign(ν)

for the focusing case. It follows that ε and δ are of the same sign. (The radical is
unchanged if the signs of both ε and δ are simultaneously switched, so it is only their
relative signs that counts.) Differentiating the radical with respect to ε shows that
the maximum growth rate occurs when

ε = δ (17.74)

max((λ)) = δ (17.75)

Translating these results into r , ν, a and μ, we find that

1. The necessary and sufficient condition for instability is that the NLS dispersive
and nonlinear coefficients r and ν have the same sign.

2. Wavenumber of maximum instability is

μmax = a

√
ν

r
(17.76)

3. Maximum growth rate is

max((λ)) = νa2 (17.77)

where a is the amplitude of the fundamental, ν is the Landau constant, r is the
coefficient of Axx in the NLS, σ ≡ νa2, ε = rμ2 andμ is the sideband wavenumber.

The most striking fact about the necessary and sufficient condition for instability
is its simplicity. For the KdV equation, the NLS equation has ν and r with opposite
signs, so the KdV wave train is always stable. However, the Landau constant has
frequent sign changes for finite wavenumber k, so there are wide ranges in parameter
space where Rossby waves are modulationally unstable.

However, the result of sideband instability is not chaos. Rather, after the transient
appearance and disappearance of localized peaks, the solution returns to a very close
approximation of the initial condition. This is called “Fermi-Pasta-Ulam” [FPU]
recurrence after those who discovered it in discrete lattice crystal dynamics. Yuen
and Ferguson showed that for the NLS equation with periodic boundary conditions, a
small amplitude plane wave generates only a single peakwhose rise and fall is simply
periodic as illustrated in the left panel of Fig. 17.5 [15]. A larger amplitude plane
wave destabilizes a larger number of sidebands. As the growth of some sidebands
weakens the primary wave, the wavenumber of the most unstable sideband changes,
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Fig. 17.5 Sideband instability of the uniform plane wave [green]. Left plane wave amplitude was
1/

√
2. Right same except that the initial condition was multiplied by a factor of four. For both, the

instability was triggered by the perturbation 0.0001 cos(x) and the spatial period was 2π

and other sidebands rapidly amplify, leading to a complex, but not chaotic evolution
as shown on the right in Fig. 17.5.

The general solution to the NLS equation with periodic boundary conditions can
be approximated arbitrarily well by a multivariate hyperelliptic function with a suf-
ficiently large number of periods. It is not necessary to be struck dumb by the appar-
ent impenetrability of hyperelliptic functions and the Nonlinear Fourier Transform.
(Although Osborne’s book is very readable given its length and complex subject, it
is difficult to imagine hyperelliptic functions and integrals being widely taught in
American physical oceanography programs.) Classic concepts like linearized insta-
bility and soliton dynamics can identify the coherency within the sea of complexity.

17.4 KdV from NLS

The NLS equation is usually derived by perturbation theory from a system of equa-
tions farmore complicated than theKdVequation.However, if thatmore complicated
system can be approximated in the longwave limit by the KdV equation, then the
KdV equation must be consistent with the limit k → 0 of the NLS equation. It
follows that if we denote the nonlinear coefficient of the NLS equation by ν(k), then

ν(k) ∼ a2

6bk
↔ a = √

lim
k→0

{6bkν(k) } (17.78)

where a is the coefficient of the nonlinear term of the KdV equation. Thus, the
“Landau constant” ν(k) always has a simple pole at k = 0 when the longwave
(k → 0) limit is described also by the KdV equation.

The dispersive coefficient of the KdV equation must be consistent with the linear
dispersion relation for both the underlying system and the KdV equation itself and
is therefore always

b = −(1/6)ωkkk(k = 0) (17.79)
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whereωkkk denotes the third derivative of the frequency with respect to wavenumber.
The expression for the nonlinear coefficient of the KdV equation is thus completely
determined by the longwave limits of the linear dispersion relation and of ν(k) and
can be rewritten

a = √ −ωkkk(0) lim
k→0

{kν(k) } (17.80)

Thus, if one has a computer program to evaluate ν(k), then it is not necessary to
write separate software or redo the usual KdV derivation to obtain the coefficients of
the KdV model. The dispersive and nonlinear coefficients of the KdV equation are
always given by (17.79) and (17.80).

Marshall andBoyd [2],who illustrate this principle for equatorially-trappedwaves
in the ocean, show that something even stronger is true. Wave packets exhibit other
kinds of resonances including longwave/shortwave resonances and second harmonic
resonances. These, too, generate poles in the Landau constant as a function of k, and
the coefficients of the “long wave/short wave” system and of the “second harmonic”
system fall out from the linear dispersive theory plus the residue of ν(k) at the
resonance pole.

The mathematics of the pole of the Landau constant at k = 0 is clear, but what
is the physics? The answer is that as k → 0, the phase speeds and group velocities
of the second harmonic (wavenumber = 2k) and the longwave (wavenumber zero)
differ from those of the fundamental (wavenumber = k) only by O(k2). Thus, as
k → 0, these three components are increasingly close to resonance. This resonance
in turn forces the Landau constant to grow as k → 0.

There is one mildly misleading aspect to the pole: The amplitudes of the higher
order terms in the multiple scales series increase inversely with k, too. Thus, the
timescale for nonlinear interaction does not decrease to zero as at a true singularity,
but rather the perturbation expansion collapses, with higher terms as large as the
fundamental, for sufficiently small k.

17.4.1 The Landau Constant: Poles and Resonances

The nonlinear coefficient of the NLS equation is called the “Landau constant” and
denoted by ν(k;m, n). It depends on the longitudinal wavenumber k of the carrier
wave plus the latitudinal and vertical mode numbers. In weakly nonlinear perturba-
tion theory, each field is the product of the NLS solution (for the envelope of the
wavepacket) multiplied by a sinusoidal function of x and t (the “carrier wave”) mul-
tiplied by a latitudinal factor and a depth-dependent function which are the same
north-south and baroclinic modes as in linear wave theory.

As explained in Marshall and Boyd [2], the Landau constant is the sum of messy
integrals that are the products of the usual linear latitudinal and baroclinic modes.
The underlying principles are simple and the integrals are nonsingular and therefore
are easy numerical quadratures, but the bookkeeping is tedious and best left to their
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Fig. 17.6 Landau constant versus zonal wavenumber k for the lowest symmetric latitudinal Rossby
mode in the first baroclinic mode. Calculated by the methods of Marshall and Boyd [2]. The
dispersive coefficient of the NLS equation (dashed) is everywhere positive for k ∈ [0, 2.7] with
simple zeros at both endpoints of this interval. Thewavepackets change from focusing to defocusing
and back again over small intervals in the middle of the wavenumber range illustrated

article. The important point is that ν(k) has both smooth, nonsingular sign rever-
sals plus many poles, especially for Rossby waves as illustrated by the particular
but representative case of the lowest latitudinal, lowest baroclinc Rossby mode in
Fig. 17.6.

Each of the Landau poles is associated with a resonance. In the long wave limit,
k → 0, for Rossby waves, the KdV equation applies as shown above and there is
always a pole. The reason is that Rossby waves become nondispersive as k → 0 and
thus every Rossby longitudinal wavenumber is in resonance with every other for a
given latitudinal and vertical mode number. Each long/wave short wave resonance,
second harmonic resonance, and triad resonance is also a pole.

It is unfortunate that the parameter space is so chopped up by resonances. The
behavior of Rossbywavepackets will not be simple. It also behooves us to thoroughly
understand each species of resonance, and we shall now discuss each in turn.

17.5 Weakly Dispersive Waves

The failure of the NLS perturbation theory as k → 0 is rather disconcerting because
the KdV equation is usually derived as a longwave approximation. Thus, there is
only a narrow range of small k where the wavenumber of the carrier wave of the
wavepacket is sufficiently small that the KdV equation is a good model, and simul-
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taneously so large that the NLS model is accurate. The NLS/KdV connection would
seem to be much ado about a very narrow parameter range.

However, the equatorial Kelvin wave in the ocean, which was the target of our
investigation [16], is quite different. In the absence of a mean flow, the Kelvin wave
is nondispersive. Latitudinal variations in the mean east-west ocean currents induce
a weak dispersion in the Kelvin mode, but to second order in the strength of the shear,
the dispersion relation is quadratic in the east-west wavenumber. It follows that the
third derivative term in the KdV equation captures the correct dispersive behavior
for the Kelvin wave even when the wavenumber is not small.

One consequence is that KdV-type Kelvin solitary waves are not restricted to long
zonal scales (highly anisotropic solitons, much wider east-west than north-south);
the KdV equation is a good approximation in describing “round’’ solitons of equal
longitudinal and latitudinal width. A second consequence is that oceanic equatorial
Kelvin wavepackets are captured for the entire interesting range of parameters by
deriving the NLS equation from the corresponding KdV approximation.

Similar comments apply to other species of waves. When the waves are nearly
nondispersive, the KdV approximation will apply to moderate as well as long length
scales. The NLS approximation derived from the KdV equation will similarly have
a wide range of applicability.

17.6 Numerical Experiments

Chen and Boyd [17] carried out interesting experiments which were repeated and
expanded by the second author in recent months. Althoughmany variations in ampli-
tude and width of the envelope were tried, the discussion will concentrate on one
representative case which evolved from the initial condition

u(x, 0) = 6μ sech(λx) cos(x + π/3) (17.81)

where the nonlinearity and dispersion parameters are μ = 1/10 and λ = 1/10.
The domain has periodic boundary conditions where the period P = 128π . The
Generalized-NLS with quintic nonlinearity (17.33) and also the KdV equation were
solved by a Fourier pseudospectral method with 1024 grid points, combined with a
fourth order Runge–Kutta time marching method with a time step of 1/400 on the
interval t ∈ [0, 200]. The high spatial and temporal resolution for the Generalized-
NLS equation is, except for ease of programming, quite unnecessary; the whole point
is that the envelope A(ζ, τ ) varies slowly with both space and time.

Figure17.7 compares the initial and finalwavepackets, showing that the amplitude
has decreased to almost exactly one-third of its initial value. The width has increased
by roughly the square of the reciprocal of the amplitude decrease, approximately a
factor of nine. The packet has become so wide that, thanks to the periodic bound-
ary conditions, packets centered on neighboring periods are now overlapping. The
scalloping or wiggliness of the envelopes near the edges of the periodicity interval
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Fig. 17.7 The tall solid
curve is the initial envelope.
(Because the solution is
A exp(ikx) + A∗ exp(−ikx),
we show twice |A(x, 0)|.)
The thick dashed curve is the
envelope at t = 200. The
thin curve is the KdV
solution at t = 200. The
GNLS-predicted solution
was also plotted, but is
graphically indistinguishable
from the exact solution. All
plots were scaled by dividing
by the maximum initial value
of the KdV solution
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at t = 200 is the spoor of this overlap-of-packets; we have done many experiments
with both the GNLS and standard NLS equations, and this wiggliness-at-the-edges
always seems to develop when the packet widens beyond the edges of the periodicity
interval.

Figure17.8 shows the evolution in the errors of the Fourier coefficients with time.
Tracking the errors in the envelope cannot be done by comparing it to the numerical
KdV solution because the latter is the product of the envelope of the carrier wave
plus all the higher harmonics. Instead, the solution of the quintic Generalized NLS
equationwas used as the “exact” solution to approximate the errors in the perturbative
solutions at each order. Zeroth order included only A(ζ, τ ), first order added A10 and
A12, and so on. Clearly, the method of multiple scales has been successful with good
uniformity in time.

Figure17.9 compares the initial and final Fourier coefficients with the predicted
Fourier coefficients. The predicted fourth harmonic (rightmost dashed bump) is an
order of magnitude too small, but all the higher harmonics have decreased consider-
ably over time both in the perturbative prediction and in the true KdV solution. The
very dramatic narrowing of the longwave component, which is the leftmost bump,
is also predicted with quantitative accuracy by perturbation theory.

Figure17.10 compares the absolute values of the final coefficients of the KdV
solution with the errors in absolute value of the third order perturbative prediction.
Another intriguing surprise is that the absolute errors in Fourier coefficients are
largest for the fundamental (that is, in the wavenumber range k/2 to (3/2)k where
here k = 1). Because of the large size of the fundamental, this is also the range
where the relative error is smallest. The relative errors are about 1 part in 10,000.
For the fourth harmonic and above, the relative error is very large. Overall, though,
the perturbation theory does well for this case where the perturbation parameters
are 1/10.
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Fig. 17.8 The curves are the
maximum differences in the
absolute values of the
Fourier coefficients of uKdV
and u( j) where j is the
perturbative order. The errors
have been scaled by dividing
by the maximum Fourier
coefficient at each time
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Fig. 17.9 The absolute values of the initial and final Fourier coefficients are the thin line with
circles and the thick solid line, respectively. The GNLS-predicted coefficients are also shown as the
dashed curve, but are difficult to distinguish from the exact coefficients except under the fourth and
fifth harmonics (wavenumber > 3.5)
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Fig. 17.10 The thick solid line is the absolute value of the Fourier coefficients of the KdV solution
at the final time, just as in the previous figure. The lower curve (dashed) is the difference between the
absolute values of the coefficients of the KdV solution and the prediction of third order perturbation
theory. Note that for the fourth harmonic, k ∈ [−3.5, 4.5], and larger wavenumber, the error merges
with the coefficient curve so that the relative error for the fourth and higher harmonics is close
to 100%

Although the dramatic narrowing (in wavenumber space) of the longwave com-
ponent is well-captured by the perturbation theory, we have not been able to arrive
at a simple heuristic explanation. Perhaps the reader will be more ingenious!

Similarly, we do not understand why the fourth harmonic is an order of magnitude
larger than predicted by perturbation theory, nor why it dips to near-zero amplitude
at a wavenumber of 4k, right in the center of the harmonic.

We performed the usual experiments, halving the timestep and also independently
doubling the width of the spatial domain, but these puzzling features were unaltered.

17.7 Nonlinear Schroedinger Equation (NLS) Summary

We have shown the following:

• The NLS equation derived from the KdV equation is always the defocusing case;
envelope solitary waves cannot form in the KdV solution.

• NLS perturbation theory is here explicitly extended to two orders beyond the NLS
equation itself [95].

• The Generalized-NLS (GNLS) equation, which describes the evolution of the
envelope, is quintically nonlinear and third order in space.
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• A special quirk of the KdV equation is that the Generalized-NLS, when carried
to one order beyond the usual NLS, captures the linear dispersion of the KdV
equation exactly. For packets of finite amplitude, however, there is some small
error because the nonlinear terms cannot exactly represent the nonlinearity of the
KdV equation.

• The nonlinear coefficient of the NLS equation has a pole in k as the wavenumber
k of the carrier wave tends to zero.

• The residue of this pole gives an explicit expression for the nonlinear coefficient
of the KdV equation and vice-versa.

• When the underlyingwaves are onlyweakly dispersive, as true of equatorialKelvin
waves in the ocean, the KdV equation is an accurate model even for waves of
moderate or short length scale. The NLS-from-KdV theory then has a similarly
large region of validity.

• Our numerical experiments show good agreement between the NLS/GNLS per-
turbation theory and the exact KdV wavepacket for small and moderate times.

17.8 Resonances: Triad, Second Harmonic and Long-Wave
Short Wave

Although the triad interaction is a basic paradigm of modern fluid dynamics, mul-
tiple rationales have appeared in the literature, and none is entirely satisfactory.
One useful perspective begins with a Hough–Hermite discretization of the nonlinear
shallow water equations, that is, a Galerkin spectral method using the normal modes
(Hough functions) of the linear shallow water equations as the basis functions. Ripa
[18] and Tribbia [19] show that a normal mode spatial discretization of a quadrat-
ically nonlinear system of partial differential equations will yield a big system of
quadratically nonlinear ordinary differential equations in time [18, 19]. If the zonal
factors of the basis function are of the form ak(t) exp(ikx) plus its complex cojugate
a∗

−k exp(−i x), the product of a1 with a2 will appear in the equation for da3/dt if and
only if k1 + k2 = ± k3 where the sign ambiguity arises because each basis function
is accompanied by its complex conjugate. However, the dependence on depth and
latitude implies that each pair of interacting longitudinal wavenumbers is a double
infinity of three-dimensional basis functions, and the wavenumber k may be any
real number.

Thus the dynamics can always be described as an infinite number of triad interac-
tions in the sense that the time derivative of the coefficient an(t) of the n-th normal
mode (here, a Hough–Hermite vector of functions) is driven by a sum of terms each
the product of a numerical “interaction coefficient” Injk with the product of two other
coefficients, a jak .

Thus, a trio of wavepackets will exchange energy between themselves. In the
absence of resonance, constructive interference will turn to destructive interference
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Table 17.1 Resonances: selected references

Reference Remark

Boyd [20] Triads involving long Rossby waves

Boyd [8] Derivation of NLS equation, which admits
envelope solitons and second harmonic and
long wave/short wave resonances

Boyd [21] Long wave/short wave resonance

Boyd [17] Second harmonic resonance

Boyd [22] Radiative decay of nonlocal Rossby solitons

Boyd [23] Review of nonlinear equatorial waves

Boyd [24] 4-mode model

Boyd [25] Numerical experiments: tilted modons and
nonlocal soliton radiation

Greatbatch [26] Kelvin wave fronts and nonlinear spin-up

LeSommer, Reznik and Zeitlin [27] Numerical study of response to localized
perturbation

Domaracki and Loesch [28] Triad resonance; triad wave packet PDEs

Loesch and Deininger [29] Systems of interlocking, interacting triads

Marshall and Boyd [2] Nonlinear equatorial waves in 3D
continuously-stratified ocean

Madjaa, Rosales Tabak and Turner [30] Topographic resonance coupling Kelvin and
other equatorial waves

Raupp, Silva Dias [31] Atmospheric waves

Raupp, Silva Dias, Tabak and Milewski [32] Atmospheric triads

Bates and Grimshaw [33] Resonances between barotropic and baroclinc
modes

in a cyclic dance. The changes of one half-period are reversed on the next half-period.
If the wave amplitude are small, the exchanges remain small, bounded and boring.

If the triad of waves satisfy resonance conditions, this simply means that the
wavepackets always remain in phase as they propagate. Even tiny waves can be dras-
tically reshaped by nonlinearity through these nonperiodic exchanges. Astronomers
call such steadily accumulating nonperiodic changes and exchanges “secular” effects.
Articles on equatorial resonances are collected in Table17.1.

It is impossible to analyze such a plethora of terms; how then can one justify trun-
cating this PDE to a trio of ordinary differential equations in time to three equations
in the three unknowns?

Lorenz’ answer was his Principle of “Maximum Simplification”, which is that
much may be learned from studying the most drastic truncation of a spectral model
that has nontrivial physics, even if not qualitatively realistic. His 1960 article solved
the triad equations [34] because a trio of mutually interacting waves is the simplest
Low Order Spectral Truncation (LOST) that cycles energy between modes.

Bretherton [35] and Domaracki and Loesch [28] use multiple scales perturbation
theory to justify the retention of one triplet of waves. In this framework, interactions
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of the resonant waves remain perpetually in phase whereas nonresonant interactions
are periodic in time. For very tiny amplitudes, only the resonant, secular interactions
are significant. The logic is consistent, but not well-attuned to reality. Energy may
leak from mode to mode, even without resonances, like water seeping from com-
partment to compartment of a torpedoed ship, whose shockwave-sprung bulkheads
are no longer watertight. In practical terms, Lorenz’ type thinking must underlie the
relevance of the triad model.

Multiple scales perturbation theory yields an integrable trio of partial differential
equations that describes spatially localized wave packets traveling at the linear group
velocity (altered slightly by nonlinear corrections) of each packet [28]. Bers, Kaup
and Reiman [36], Kaup [37] and Martin and Segur [38] provide a comprehensive
introduction. Here we shall follow the usual practice and discuss only disturbances
with spatially uniform envelopes.

What falls out of the theory is a six degree of freedom system that contains one
wavenumber as a parameter plus a “detuning parameter” δ that measures closeness
to resonance. Ripa [18] solves the general case, but the complex-valued solutions of
his study are not enlightening. Following standard practice, we shall restrict further
attention to the system of three real-valued equations in three unknowns in which
the phases of the waves are perfectly in phase so as to maximmize the strength of the
interaction. Little generality is lost because both “imperfect resonance” (w1 +w2 =
±w3+δ, δ �= 0), and imperfect phasematchingweaken thewave interactionswithout
changing the qualitative behavior. We shall refer to the resulting canonical system
as “Triply-Simplified” because, to summarize, we impose three specializations:

1. Plane waves [rather than wave packets]
2. Resonance is perfect [detuning parameter/s δ = 0]
3. The phases of the (ever-oscillating) triad components are such that the unknowns

are all-real-valued and the rate of energy transfer is maximized.

Recall that, with variables nondimensionalized so as to eliminate Lamb’s para-
meter ε, the dispersion relation for equatorial waves of zonal wavenumber k and
latitudinal mode number n, linearized abut a state of rest, is

w3 − (k2 + 2n + 1)w − k = 0 (17.82)

Including both positive and negative k and w, the resonance conditions are

w1 + w2 + w3 = 0 (17.83)

k1 + k2 + k3 = 0 (17.84)

The approximate dispersion relations from Chap.3 can be invoked to simplify a
rather complicated algebraic problem:

w = −k

k2 + 2n + 1
{1 + Δ} , |Δ| ≤ 0.039

(n + 1/2)2
, n ≥ 1, [Rossby]

http://dx.doi.org/10.1007/978-3-662-55476-0_3
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w =
√
k2 + 2n + 1 {1 + Δ} , |Δ| ≤ 0.141

n + 1/2
[gravity waves] (17.85)

or the improved approximation

w = ±
√
k2 + 2n + 1

{
1 ± k

(2 (k2 + 2n + 1)3/2

}
{1 + Δ} (17.86)

|Δ| ≤ 0.021

(n + 1/2)2
[improved gravity waves] (17.87)

The system consists of three copies of the dispersion relation plus the two res-
onance conditions. We can specify one wavenumber and all three latitudinal mode
numbers arbitrarily and then havefive equations in five unknowns.Adetailed analysis
of the resonance conditions for general triads is given in Sect. 17.13.

Second harmonic resonance and longwave/short wave resonance are special cases
in which two of the three waves are identical. The nonlinear coefficient (“Landau
constant”) of the NLS equation is singular at both types of resonances.

17.9 Second Harmonic Resonance

Definition 17.1 (Second Harmonic Resonance) Second Harmonic Resonance is a
special case of triad resonance in which two of the three waves are identical (“fun-
damental” mode of wavenumber k) while the third is the “second harmonic” of the
“fundamental”, that is, the wavenumber of the third component is 2k. For equatorial
waves of mode numbers m and n, the condition for second harmonic resonance is

w(2k,m) = 2w(k, n) (17.88)

where n is the latitudinal mode number of the fundamental andm is themode number
of the second harmonic.

Second harmonic resonance has a two-fold significance. First, this resonance
always transfers energy monotonically (in time) and irreversibly from the fundamen-
tal to the second harmonic, and is thus a mechanism of long-to-short-wave cascade.
Second, the nonlinear coupling coefficient (“Landau constant”) in the Nonlinear
Schroedinger equation has a pole at each second harmonic resonance.

Equatorial second harmonic resonance for the nonlinear shallow water beta-plane
model has been studied by Loesch, Domaracki andDeininger [28, 29], Ripa [39–42],
Boyd [8, 17] and Marshall and Boyd [2]. Denoting the frequency and wavenumber
of the fundamental by w and k, the resonance conditions are
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w3 − (k22n + 1)w − k = 0 (17.89)

8w3 − (8k2 + 4m + 2)w − 2k = 0 (17.90)

This system can be solved exactly as explained in [17]. The sole non-trivial real
root is

k =
√[

2

3
(n − m)

] [
1

1 − 9/q2

]
(17.91)

where q is the parameter

q ≡ 4(2n + 1) − (2m + 1) (17.92)

Detailed analysis shows the following:

1. The latitudinal mode number m of the resonant second harmonic is always odd.
2. Resonance is possible only between (a) two Rossby waves or

(b) two westward-traveling gravity waves
3. Rossby–Rossby resonance is

k =
√[

2

3
(n − m)

] [
1

1 − 9/ {4(2n + 1) − (2m + 1)}2
]

(17.93)

≈
√
2

3
(n − m) (17.94)

4. Westward Gravity–Westward Gravity resonance is

m = 4n + 1 (17.95)

k = 1

2

√
n + 1/3 (17.96)

5. The gravity waves resonance formulas for n = 0 generate the mixed Rossby-
gravity wave results for n = 0.

When the resonant waves are sine waves or wavepackets with very broad
envelopes, the triad ODEs collapse to the pair

d A

dt
= − I A H, &

dH

dt
= I A2 (17.97)

where A(t) and H(t) are the amplitudes of the fundamental and second harmonic,
respectively. The general solution is

A(t) = a sech(aI (t − t0)), & H(t) = − a tanh(aI (t − t0)) (17.98)
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where a and t0 are arbitrary constants, the constants of integration needed to fit the
two initial conditions.

Irrespective of these, the second harmonic always drains all the energy monoton-
ically from the fundamental.

17.9.1 Landau Constant Poles

If the n-th latitudinal mode Rossby wave or westward-propagating gravity wave
becomes resonant with its own second harmonic at wavenumber k = kres , then the
Nonlinear Schroedinger model that approximates the evolution of the envelope of
a wavepacket becomes a busted, inaccurate model. This breakdown manifests itself
as a simple pole in the nonlinear coefficient, the “Landau constant”, at the resonant
wavenumber:

ν(k) ≈ R

k − kres
, R = I 2

2
{
cg(2k,m) − cg(k, n)

} (17.99)

17.9.2 Barotropic/Baroclinic Triads

On the equatorial beta-plane, the barotropic mode is not trapped latitudinally. How-
ever, the usual one-and-a-layer model has no coupling to the barotropic mode. When
the stratification is continuous and the nonlinear terms are projected onto the vertical
eigenmodes, energy injected into the barotropic mode is not confined to the equator,
but instead is irreversibly lost to extra-tropical latitudes.

Boyd showed that on a spherical earth, equatorial trapping is proportional to ε+s2

where s = 0, 1, 2 . . . is the integral zonal wavenumber and not merely ε alone as on
the standard equatorial beta-plane; it is possible for barotropic (ε = 0) waves to be
equatorially trapped if the zonal wavenumber is large, an effect completely missed
by the classic equatorial beta-plane (see Sect. 3.12).

Bates and Grimshaw devised an “extended equatorial beta-plane” which retains
this equatorial trapping due to the zonal wavenumber [33]. This allows them to
analyze resonant coupling between baroclinic and barotropic modes that are both
equatorial.

Although motivated by atmospheric applications and therefore slightly outside
the scope of this work, it would be remiss not to note similar barotropic/baroclinic
equatorial wave studies by Biello and Majda [43–45].

http://dx.doi.org/10.1007/978-3-662-55476-0_3
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17.10 Long Wave/Short Wave Resonance

Definition 17.2 (Long Wave/Short Wave Resonance) A packet of ultralong Rossby
waves is resonant with a packet of short westward-traveling Rossby waves or short
westward-traveling gravity waves when the resonance condition

cp(0,m) = cg(k, n) (17.100)

is satisfied where the ultralong Rossby wave is of latitudinal mode number m and
cp(0,m) is its phase velocity in the zero wavenumber limit and the short wavepacket
has carrier wavenumber k and latitudinal mode number n. “Long” and “short” refer
to zonal wavenumber; the ultralong Rossby packet has a carrier wavenumber of zero,
that is, its carrier wave is the trivial function C ≡ 1.

Recall that cp(0,m) is also the group velocity since Rossby waves are nondis-
persive in the k = 0 limit, and the group and phase velocities are identical for
nondispersive waves; the resonance condition could thus be equivalently stated as an
equality of group velocities. The resonance is then obvious: it demands that in linear
dynamics, the short and long wavepackets must travel westward at the same (group
velocity) speed.

Their nonlinear dynamics is described by

i At + (1/2)ωkk Axx = νL A B (17.101)

Bt = −μ (|A|2)xx (17.102)

where A, which is usually complex-valued, is the amplitude of the short wave packet
and B, which is real-valued, is the longitude-and-time dependence of the longRossby
wave group. The second wavenumber derivative of ω(k) is denoted by ωkk(k). Note
that this system is written in the coordinate system moving at the common speed of
the two wavepackets.

Boyd [46] provides a full derivation of these equations on the equatorial beta-
plane. The Long Wave/Short Wave equations are an integrable system that can
be solved by the inverse scattering method (Benney [47], Ma [48] and Ma and
Redekopp [49].)

Boyd’s study noted that

1. The latitudinal mode number m of the long Rossby waves is always odd, or
equivalently, the long wave mode must always be symmetric with respect to the
equator.

2. From the usual Rossby wave dispersion relation, it follows that cp(0; n) =
−1/(2n + 1)

3. For a given pair of latitudinal mode numbers (m, n), the carrier wave number of
the resonant short waves, if Rossby waves, is

k2 = −(2n + 1) −
(
m + 1

2

)(
−1 + √

2m + 16n + 9
)

[Rossby short wavepacket]
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where it is necessary for a Rossby–Rossby resonance that m > n and m is odd.
4. If the short wave packets are westward-traveling gravity waves, the resonant

carrier wave number is

k =
√
2n + 1

2m + 1
+ 1

2
√
2n + 1

(17.103)

where again the long Rossby wave must be symmetric with respect to the equator
(m odd.)

Ma and Redekopp [49] and earlier authors they cite show that the LSR equations
have the following properties:

1. Spatially localized solitons which are the union of an envelope soliton traveling
in concert with a long Rossby bell soliton.

2. Coherent structures with shortwave envelopes that are uniform except for a spa-
tially localized “hole” at the location of a KdV-type long wave soliton.

3. Phase-jump solitons where, for the short wave packet, only the transition in phase
is spatially localized; this transition always travels in resonance with a KdV-type
solitary wave.

4. The spatially uniform short wave envelope is always unstable; it breaks up into
spatially localized solitary waves.

5. On the spatially periodic domain, Fermi-Pasta-Ulam (FPU) recurrence periodi-
cally cycles the disturbance from uniform envelope to a train of solitary waves
and back again, endlessly.

6. An initial condition which is purely a packet of short waves is always unstable
with respect to the long waves which will grow linearly with time; the reverse is
not true.

7. A pulse of ultralong Rossby waves will not trigger unstable growth of the short
wavepacket, but will merely produce oscillations in the phase of the short wave
wavepacket.

The one-sided character of instability— the short wave is unstable while the long
wave disturbance is not— is consistentwith general resonant triad theory.Domaracki
and Loesch [28] observed that it is always the wave of highest frequency which is
unstable. Recalling that the long Rossby waves of mode number have a phase speed
c = −1/(2m + 1) and that for all wave species ω = kc, it follows that the limit
k → 0 is also a zero frequency limit. Thus, the long Rossby disturbance will never
be the highest frequency part of a long wave/short wave resonance.

Boyd [21] gives extensive tables of the resonances.
There has been no identification of long wave/short wave resonance in either

observations or numericalmodels.However, this type of resonance has been observed
in many non-geophysical systems.
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17.10.1 Landau Constant Poles

Due to long wave/short wave resonance, the NLS Landau constant of the NLS equa-
tion for latitudinal mode n will have a pole of the form:

νNLS = − νL

ωkk
μ

1

k − kres
(17.104)

17.11 Triad Resonances: The General Case Continued

17.11.1 A Brief Catalog of Triad Concepts

To return to the general triads, it is useful to summarize some important properties.

1. The resonance conditions are a system of polynomial equations that can be
reduced to a single equation in a single unknown of at most sixth degree.

2. Each combination of three latitudinal mode numbers plus the single continuous
parameter, which by convention we take as one of the wavenumbers, generates
as many as eighteen solutions.

3. All species and all mode numbers can participate in one or more triads.
4. Modes can only interact as a triad if the sum of their latitudinal mode numbers

is odd.
5. The interaction coefficients of a triad are the coupling constants of a Hough–

Hermite Galerkin discretization. These are given explicitly in the appendix of
[28]; the analytical formulas are extremely lengthy.

6. Ripa [18, 39] analyzes various “non-local” resonances, that is, resonances that
couple long waves (small zonal wavenumber) to triad modes of large zonal
wavenumber.

7. One type is “Bragg scattering” in which a short gravity wave is scattered into a
short gravity wave traveling in the opposite direction through the catalysis of a
long Rossby wave.

8. Many triads overlap in the sense that modes participate in more than triad. It is
therefore necessary to analyze chains of ten to one hundred modes as illustrated
in Fig. 1 of [29].

9. Most of the energy in these chains remains in the modes of lowest latitudinal
wave number such as the Kelvin wave, Yanai mode and n = 1 Rossby wave.

10. In midlatitude resonances, the unstable mode whose interaction coefficient is
different from the other two (and therefore the unstable mode) is the mode of
intermediate totalwavenumber;Ripa claims for equatorial triads that the unstable
mode is always the mode of intermediate “slowness” [the reciprocal of the phase
speed].

11. Multiple scales perturbation theory yields a trio of partial differential equa-
tions that are a completely integrable system (solvable by the inverse scattering
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method) for the wavepackets traveling at the nonlinear-modified group veloc-
ity appropriate to each latitudinal mode, provided that the wavenumbers and
frequencies of the carrier waves satisfy the resonance conditions.

12. When the triad components are plane waves and also the resonances are exact
(as opposed to near-resonances with non-zero detuning parameters) and lastly
the phases of the three modes are in phase for maximum energy exchange, the
amplitudes of the waves satisfy a trio of three quadratically-nonlinear ODEs in
time that (i) can be solved explicitly for all initial and parameter values in terms
of Jacobian elliptic functions and (ii) are identical with Euler’s equations for the
three angles of rotation about the orthogonal principal axes of a freely-falling
body.

We amplify on some of these topics in what follows.

17.11.2 Rescalings

Theorem 17.2 (Triply-Restricted Triad Equations) In their most general, phase-
locked perfectly resonant form, the triad equations are

d A1

dt
= − I1 a2 a3

d A2

dt
= I2 a1 a3

d A3

dt
= −I3 a1 a2 (17.105)

where the constant I j are all the same sign. Without loss of generality, we assign
the mode whose interaction coefficient is different in sign from the other two to be
“mode 2”.

Through the change of unknowns

A1 = 1√− I2 I3
a1 (17.106)

A2 = 1√
I1 I3

a2 (17.107)

A3 = 1√− I1 I2
a3, (17.108)

the triad equations are reduced to the canonical form
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da1
dt

= − a2 a3

da2
dt

= a1 a3

da3
dt

= − a1 a2 (17.109)

Theorem 17.3 (Triad Invariants) 1. If g(t)(= [a1(t), a2(t), a3(t)]) is a solution to
the canonical triad equations, then so is

λg(λ[t + ϕ]) (17.110)

for arbitrary translation [phase shift] ϕ and dilation λ, both constants independent
of time. In other words, the triad solutions are invariant with respect to translation
and dilation.

2. The triad conserves both energy and enstrophy. However, it is more convenient
to work with new invariants that are linear combinations of the energy and enstrophy.
These convenient invariants are

F1 ≡ a21(t) + a22(t) (17.111)

F2 ≡ a21(t) + a23(t) (17.112)

Proof For proposition one, the basic idea is to substitute (17.110) into the triad
equations and cancel out all factors of λ and ϕ see [23]. The invariance of F1 follows
from multiplying the first triad equation by a1, the second by a2 and adding. The
left-hand side is

a1
da1
dt

+ a2
da2
dt

= 1

2

(
d(a21 + a22

dt

)
(17.113)

= 1

2

dF1

dt
(17.114)

The right-hand side is

− a1a2a3 − (−a1a2a3) = 0 (17.115)

It follows that dF1/dt = 0 as claimed, and similarly for the time-independence
of F2. �

The triad equations conserve both energy E and enstrophy F . Surfaces of each
are triaxial ellipsoids in the three-dimensional space spanned by the triad unknowns
(modal amplitudes) {a1, a2, a3} where “triaxial” means that all three axes are in gen-
eral unequal. Linear combinations of E and F give new invariants F1 and F2 which
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Triad: Invariant  Cylinders

Fig. 17.11 The initial conditions determine two infinitely long cylinders which are invariant sur-
faces in the sense that the trajectory must always lie on both surfaces so that energy and enstrophy
are conserved. This implies that all trajectories are periodic since the trajectory must lie on the
closed curve where the invariant cylinders intersect

depend on only two coordinates and are therefore easier to visualize. As illustrated in
Fig. 17.11, the isosurfaces of the new invariants F1 and F2 are infinitely long cylin-
ders parallel to one of the coordinate axes; these can be regarded as ellipsoids in
which one axis is infinitely long.

Once the initial conditions have placed the trajectory on a particular cylinder, it
must remain on that cylinder forever. To be on both cylinders simultaneously, the
trajectory must lie wholly on the closed curve which is the intersection of the two
cylinders. This curvemayalwaysbeparameterized in principle by time.The existence
of the two invariants is sufficient to show that the solution is always periodic. Note,
however, that trajectories with infinite periods are allowed.

17.11.3 The General Explicit Solutions

Theorem 17.4 (Explicit Solutions to the Triply-Simplified Triad Equations) First,
adopt the convention that mode two is the one whose interaction coefficient is
opposite in sign to the other two where the “interaction coefficient” for mode j
is da j/dt/

∏3
k=1,k �= j ak . Assign mode one to be the larger of the two other modes at
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t = 0, that is, adopt the convention that |a1(0)| ≥ |a3(0)|. The general solution to
da1
dt

= − a2 a3

da2
dt

= a1 a3

da3
dt

= − a1 a2 (17.116)

can be expressed in terms of elliptic functions with elliptic modulus

mell = a2(0)2 + a3(0)2

a2(0)2 + a1(0)2
(17.117)

as

a1 = Λ
2K

π
dn(Λ

2K

π
(t + φ);mell)

= Λ

{
1 + 4

∞∑
n=1

qn

1 + q2n
cos (2nΛ(t + φ))

}
(17.118)

a2 = √
mell Λ

2K

π
sn(Λ

2K

π
(t + φ);mell)

= Λ 4
∞∑
n=1

qn−1/2

1 − q2n−1
sin ((2n − 1)Λ(t + φ)) (17.119)

a3 = √
mell Λ

2K

π
cn(Λ

2K

π
(t + φ);mell) (17.120)

= Λ 4
∞∑
n=1

qn−1/2

1 + q2n−1
cos ((2n − 1)Λ(t + φ)) (17.121)

where

Λ = π

2 K (mell)

√
a2(0)2 + a3(0)3

mell
(17.122)

φ = 1

Λ

π

2 K (mell)
dn−1

(
a1(0)

Λ

π

2K (mell)
;mell

)
(17.123)

The solution is periodic in time with the period

P = 2π

Λ
(17.124)

where K (mell) is the complete elliptic integral of the first kind.
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Note: sn(u,mell) and cn(u,mell) are periodic with period 4K in u and 2π in y
where u = 2K (mell)/π . The function dn is periodic with period 2K in u and π in y.

Proof Application of the standard elliptic function derivative identities. The identity
sn2 + cn2 = 1, which is true for all t and all mell is used to obtain the formula for Λ.
The phase φ follows from evaluating a1(0) and then solving for φ. �

To impose general initial conditions, a three-step procedure is necessary. First,
determine the elliptic modulus from mell = (a2(0)2 + a3(0)2)/(a2(0)2 + a1(0)2).

Second, define α j (t) ≡ a j (t;mell,Λ = 1). Replace t by t + φ, and increase the
phase φ in small steps until α1(π)/α2(φ) in the formulas given above match the ratio
in the desired initial conditions, a1(0)/a2(0). Third, compute Λ = a1(0)/α1(φ).

17.12 Linearized Stability Theory

One interesting question is: Which components are stable to small perturbations? In
the context of linearized instability theory, this is equivalent to the question: If most
of the initial energy is in a single component and the initial amplitude of the other
two is smaller by O(ε) where ε � 1, what happens?

Because of our convention that a1 is always initially the larger of the two modes
with negative interaction coefficients, there are only two cases: most of the energy
in a1 or alternatively most of the energy in a2. Let the large amplitude component
have initial amplitude B. The equation for the time derivative of the big component
has the two smaller components on the right-hand side and is therefore O(ε2). It is
thus consistent to take the big component to be a constant to first order. The other
two equations, neglecting terms that are quadratic in the perturbation, are

Case I: Stability of the dn component

da2
dt

= B a3

da3
dt

= −B a2 (17.125)

These reduce to the single equation

d2a3
dt2

+ B2a3 = 0 (17.126)

This has oscillatory solutions: components a2 and a3 execute a dance with ever-
small amplitudes while a1 oscillates slightly in response, but never varying by more
than O(ε2) from its initial value B. Case II: Instability of the sn component
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da1
dt

= −B a3

da3
dt

= −B a1 (17.127)

These reduce to the single equation

d2a3
dt2

− B2a3 = 0 (17.128)

This has one solution which grows exponentially with time:

a3(t) ∼ constant exp(Bt) (17.129)

as well as a stable solution that decays at the same rate. The linearized instability
theory is not uniformly valid, but fails when the perturbations are sufficiently large.
However, when two modes are initially small compared to the third, unstable (a2)
component, the elliptic functions greatly simplify. For further simplicity, shift the ori-
gin of the time coordinate, t = 0, to coincide with a node of one of the perturbations.2

The initial conditions are then

a1(0) = ε B, a2(0) = B, a3(0) = 0 (17.130)

mell = 1 − ε2 + O(ε4) (17.131)

Λ = B {1 + O(ε2)} (17.132)

φ = − K (1 − ε2)

B

≈ log(ε/4)

B
(17.133)

When the elliptic modulus mell ≈ 1, the peaks of the hyperbolic functions in the
imbricate series are very narrow compared to the temporal period. The amplitudes
of the growing perturbations are smallest in between the peaks of the sech functions.
It is a good approximation, roughly halfway between each peak, to replace each
infinite series of hyperbolic functions by just the two nearest neighbors (three nearest
neighbors for a2) so that

2Recall that the triad system is translation-invariant.
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Fig. 17.12 Instability. The a2 component, initially at unit amplitude, is unstable to small perturba-
tions in the other two components. There are three regimes, separated by the vertical dashed dividing
lines. The leftmost-regime is controlled by the initial conditions, abbreviated “IC” on the graph,
more than by the dynamics of the differential equation. On this log/linear plot, exponential growth
is a straight line on the graph as occurs in the middle regime where linearized stability theory is a
good description of the flow. Solid-with-circles a2. x’s: a1. Asterisks a3

a1(t) ≈ Bsech(Bt + log(ε/4)) + Bsech(Bt − log(ε/4))

a2(t) ≈ − Btanh(Bt + log(ε/4)) + (B/2) tanh(Bt − log(ε/4))

+ (B/2) tanh(Bt − 3 log(ε/4))

a3(t) ≈ − Bsech(Bt + log(ε/4)) + Bsech(Bt − log(ε/4)) (17.134)

Figure17.12 graphs the solution for a typical case. For small t , the initial con-
ditions (“IC”) dominate. The amplitude of the third mode a3 is small compared to
a1 because a3(0) = 0. For intermediate time, both perturbations grow exponentially
in time; on the log-linear plot, exponential growth is a straight line with positive
slope. For larger times, nonlinear equilibration slows the growth of a1 and a3 and the
unstable component begins to fall rapidly. Finally, the perturbations a1 and a3 reach
finite (but no longer small) maxima.

17.12.1 Vacillation and Index Cycles

It was observed by the Bergen School in the 1920’s that atmospheric storm intensity
(for so-called “synoptic scale” cyclones and anticyclones) increased and decreased
with an irregular period whose order-of-magnitude is about two weeks. Such oscil-



17.12 Linearized Stability Theory 447

lations in magnitude became known as the “index cycle” because synoptic meteo-
rologists developed an index to quantify these oscillations.

In laboratory experiments, such as those of Fultz, Pfeffer and coworkers, and
theoretical studies, such as those of Pedlosky, Loesch, Nathan and others, related
oscillations were noted and dubbed “vacillation”.

The triad equation exhibits vacillation or index cycle behavior in the sense that
its instabilities do not grow without bound nor asymptote to a steady magnitude.
Rather, after the perturbations have reached a maximum, they begin to decay while
the unstable component begins to recover. The elliptic function solutions show that
the amplitudes of the three Fourier components oscillate forever.

The analogy with real index cycles or vacillation is not perfect. Triad vacillation
is always periodic. In more complex models, vacillation and index cycles are chaotic
with an irregular separation in time between neighboring maxima of any of the
components. Still, the fact that amplitude oscillations occur at all in the simplest and
most regular model, the triad equations, tells us that we should not be shocked or
even surprised to see similar oscillations in the atmosphere and ocean.

17.12.2 Euler Equations and Football

Euler showed that the angles of a freely-falling body evolved in time according to a
system of three equations identical in form to the triad equations:

dω1

dt
= (I2 − I3)

I1
ω2 ω3

dω2

dt
= (I3 − I1)

I2
ω3 ω1

dω3

dt
= (I1 − I2)

I3
ω1 ω2 (17.135)

where the ω’s are rotational angles with respect to rotation about each of the three
principal axes of rotation and the I j are the corresponding moments of inertia. Euler
performed a linearized stabilized analysis identical to that presented above. Rotation
about the axis of intermediate moment of inertia is unstable.

An airborne (American) football is an amusing illustration (Fig. 17.13). Two of
the moments of inertia are equal; both correspond to end-over-end rotation. By a
slight modification of the linearized analysis given earlier, one can show that motion
about the axes of equal moments is unstable whereas rotation with respect to the long
axis is stable.

The stability of rotation about the axis which goes from one “point” of the football
to the other is the quarterback’s friend. It would be quite impossible to throw a
“spiral”, as football players refer to a pass which rotates only about this long axis as
it flies through the air, were it not for the stability of this motion. (As the quarterback
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Fig. 17.13 An American
football can rotate about
three orthogonal axes of
rotation. When the football is
airborne, the rotation rates
about each axis are coupled
by nonlinear ordinary
differential equations
identical to the resonant triad
equations. Rotation about the
long axis that connects the
pointed ends of the ball
(“spiral”) is stable. Rotation
about the other two axes
(“end-over-end”) is unstable

Long axis
stable
rotation

Short axes:
end-over-end
unstable

snaps his arm forward, his wrist and fingers almost invariably apply a little end-over-
end motion to the ball, too.) The end-over-end wobble tends to damp out, rapidly,
not through friction or viscosity but rather through nonlinear energy transfer to the
spiral rotation.

The instability of end-over-end motion is the reason that so many field goal tries
that look good when the ball leaves the kicker’s foot hook badly to the left or the
right and miss the goalposts. A kicking motion gives the ball an initial rotation which
is almost purely end-over-end and therefore unstable. As the ball sails towards the
goalpost, more and more of this motion is converted into a spin about the long
axis of the football. This spiralling motion makes the ball hook like a Lionel Messi
soccer strike, initially far left of the goal, deliberately hit off-center to spin and thus
curve back to land just inside the goal. Sometimes when a TV camera is mounted
high above the goalposts, one can actually pick up the rotation of the football as it
approaches the goalposts and observe that it usually has a noticeable “spiral” motion
superimposed on the end-over-end tumble by the time it nears the goalposts.

17.12.3 Lemniscate Case

The Fourier series and imbricate series converge at the same rate when mell = 1/2,
the “elliptic lemniscate”. The triad solutions for this case with a temporal period of
2π are illustrated in Fig. 17.14. The leading terms of the Fourier series show very
rapid convergence:

a1(t) = 1 + 0.172 cos (2 t) + 0.007469 cos (4 t) + 0.000322 cos (6 t) (17.136)

a2(t) = 0.8691 sin (t) + 0.03594 sin (3 t) + 0.001553 sin (5 t) (17.137)

a3(t) = 0.7971 cos (t) + 0.03593 cos (3 t) + 0.001553 cos (5 t) (17.138)
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Fig. 17.14 A resonant triad
for the elliptic modulus
mell = 1/2, the lemniscate
case. Note that a1(t) [thick
solid black curve], the
component proportional to
the elliptic function“dn”, is
equal to the constant one
modulated by fluctuations
whose amplitude is only
0.18. a2(t) [red dashed] and
a3(t) [green dotted] look a
lot like sin(t) and cos(t)
because to a good
approximation, they are
sin(t) and cos(t)

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

time

a1

a2

a3

Even for this weakly nonlinear case, there is considerable cycling of energy
between two modes. Strongly nonlinear, mell → 1 triads are (ironically) best
analyzed by linear dynamics as illustrated in Sect. 18.12 and as pointed out by
Leonard Euler a quarter of a millennium ago.

Note this is a stable oscillation as predicted by the linearized instability theory of
the previous section. Linearizing abouta1(t) = 1predicts thata1 will remain constant
to lowest order while a2(t) and a3(t) are both sinusoidal with a phase difference of
π/2. The amplitudes are undetermined by the linearized analysis except that a2(t)
and a3(t) should have equal amplitudes. The Fourier series for the lemniscate case
shows that the amplitudes of sin(t) in a2(t) and of cos(t) in a3(t) are 0.869 and 0.797,
respectively, which are not equal, but differ by only 9%.

17.12.4 Instability and the Lemniscate Case

The lemniscate case is also the boundary between stability and instability. When
the elliptic modulus mell = 1/2, the minimum of a1 [dn function] just touches the
maximum of a2, the sn function. For mell < 1/2, the dn component is always larger
than the other two throughout the entire temporal period. For such small elliptic
moduli, it only makes sense to linearize about a1 because it is always the largest, but
we saw in the preceding section that linearizing about a1 [dn] yields only stability.

Whenmell > 1/2,a2 is larger thana1 for at least a small interval around theminima
of a1, and linearizing about a2 is now sensible at least in this time neighborhood. But
the linearized analysis of earlier sections yields only instability.

Figure17.15 is identical to Fig. 17.14 except that the elliptic modulus has been
increased tomell = 0.99994420407, or equivalently the parameter S in the analytical
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Fig. 17.15 A resonant triad
for the elliptic modulus
mell = 0.9999442. The
instability occurs on the
interval enclosed by the
vertical dashed lines,
t/P ∈ [1/4, 1/2]; the curves
have been thickened in this
interval
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solutions has been increased from one to four. The instability analyzed earlier unfolds
over only one-fourth of the complete period, marked on the diagram as the interval
between the dashed vertical lines and also by thickening the curves for each unknown.
When t is equal to one quarter of the temporal period, a3(t) is zero, a1(t), the dn
function, is at its very small minimum, and a2(t) is large and almost steady. Over the
next quarter-period, a1(t) and a3(t) grow exponentially until a2(t) begins to change.
Over the remaining three-quarters of the period, the triad cycles back to its starting
point in endless vacillation.

17.13 Resonance Conditions: A Problem in Algebraic
Geometry

Definition 17.3 (Triad Resonance Conditions) Three equatorial waves are said to
be in triad resonance when both the frequencies and the wavenumbers satisfy the
following five constraints.

w3
1 − (k2 + 2n + 1)w1 − k = 0 (17.139)

w3
2 − (k2 + 2m + 1)w2 − k = 0 (17.140)

w3
3 − (k2 + 2p + 1)w3 − k = 0 (17.141)
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w1 + w2 ± w3 = 0 (17.142)

k + k2 ± k3 = 0 (17.143)

where (n,m, p) are latitudinal mode numbers (always integers) and where the con-
tinuous parameter is k1, which is written as k [unsubscripted] to emphasize its role
as parameter.

The system consists of three copies of the dispersion relation plus the two res-
onance conditions. We can specify one wavenumber and all three latitudinal mode
numbers arbitrarily and then have five equations in five unknowns. By using the two
linear equations, the resonance conditions can be reduced to a polynomial system of
three polynomials in three unknowns. Bezout’s Theorem states that the three cubics
have at most a total of 27 solutions. The multiple branches incorporate all the wave
species except for the Kelvin wave andYanai waves, which require special treatment.

To proceed, arbitrarily choose the signs in the linear equations to be positive, and
and choose the unknowns to be (w1,w2, k3) in the reduced system. The trio of three
equations in three unknowns is then

w3
1 − (k2 + 2n + 1)w1 − k = 0 (17.144)

w3
2 − ({k + k3}2 + 2m + 1)w2 + k + k3 = 0 (17.145)

− (w1 + w2)
3 + (k23 + 2p + 1)(w1 + w2) − k = 0 (17.146)

plus the back-solve constraints

w1 + w2 = −w3 (17.147)

k + k3 = −k2 (17.148)

This system is simpler than the general case of three cubic polyomials in three
unknowns because the first cubic is not a function of all three unknowns but only
one. We can therefore solve this cubic for w1(n; k) independently of the rest of the
system, either numerically or by using the perturbation series from [50]:

wRossby
1 = − k

2n + 1 + k2

{
1 + k2

(n + 1 + k2)3
+ 3

k4(
2 n + 1 + k2

)6 + 12
k6(

2 n + 1 + k2
)9 + · · ·

}

wGW
1 =

√
2n + 1 + k2

{
±1 + 1

2

k

(2n + 1 + k2)3/2
∓ 3

8

k2

(2n + 1 + k2)3

}

where the expansion applies to both eastward-traveling and westward-traveling with
different choices of sign.
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The resultant3 of the two remaining copies of the dispersion relation with respect
to k3 is a sixth degree polynomial in w2:

R = p6w
6
2 + p5w

5
2 + p4w

4
2 + p3w

3
2 p2w

2
2 + p1w2 + p0 = 0 (17.149)

where

p6 = 4w1
2 − 4 k2

p5 = − 12w1 k
2 + 8mw1 + 12w1

3 − 8 pw1

p4 = 4 k2 + 4 k2m − 14 k2w1
2 + 4m2 + 20w1

2m − 20 pw1
2

− 8mp + 4 kw1 + k4 + 13w1
4 + 4 k2 p + 4 p2

p3 = −16w1
3 p + 16w1

3m + 8mw1 k
2 + 8m2w1 − 16 pw1 m − 8w1

3k2 + 8w1
2k

+ 8 pw1 k
2 + 6w1

5 + 8 p2w1 + 2 k4w1 + 8w1 k
2

p2 = − 4 pw1 k + 4mw1
2k2 + 4 pw1

2k2 + 6w1
3k − 4mw1 k − 3w1

2 + k4w1
2

− 2w1
4k2 − 4 kw1 + 4w1

4m − 4w1
4 p

+w1
6 + 4m2w1

2 − 2 k3w1 − k2 + 4 k2w1
2 − 8 pw1

2m + 4 p2w1
2

p1 = 2 pw1 − 3w1
3 + 2w1

4k − 4w1
2k − 4 pw1

2k − w1 k
2 − 2mw1 − 2 k3w1

2 − 4mw1
2k

p0 = w1
2 + 2 pw1

2 + kw1 − w1
4 + k2w1

2 (17.150)

Ripa previously showed that the resonance definitions could be reduced to a
polynomial of sixth degree.

17.13.1 Selection Rules and Qualitative Properties

Theorem 17.5 (Triad Mode Number Selection) When the normal modes are lin-
earized about a state of rest, the interaction coefficients of a trio of waves is zero
unless the sum of the latitudinal mode numbers is odd. To put it another way, the
modes of a resonant triad must fall into one of the following symmetry classes:

1. Sym/Sym/Sym
2. Sym/Antisym/Antisym

Proof This theorem was known to Domaracki and Loesch and to Ripa, who state it
less formally. The crucial point is that if two modes have both the same latitudinal
symmetry, then quadratically nonlinear terms involving these will necessarily be
symmetric with respect to the equator. (When both modes are antisymmetric, the
negative signs that arise in both modes individually when reflected about the equator
cancel in the quadratically nonlinear product.) If we then take the inner product of

3The resultant of two bivariate polynomials in the unknowns (x, y) is the determinant of the so
called Sylvester matrix which is formed from the coefficients. The resultant with respect to x is a
function of only the single variable y; its zeros are all possible y-values of the zeros of the system
of two polynomial equations in two unknowns [50].
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such pairs of nonlinear terms with a mode which is antisymmetric with respect to
the equator, the integral will be zero because it is the integral over all y of a triple
product which changes sign when reflected about the equator. All integrals over
y ∈ [−∞,∞] of antisymmetric functions with an inner product weight which is
symmetric with respect to the equator will be zero because the integration over the
hemisphere where the integrand is positive will be canceled by integration over the
other half-interval where the integrand is equal in magnitude but opposite in sign.

Similarly, the nonlinear terms that are the interaction between two modes of
opposite symmetry are antisymmetric with respect to the equator and therefore
yield a nonzero interaction coefficient only when multiplied by an antisymmetric
mode. �

Ripa introduces the “slowness”,

s ≡ k

w
= 1

c
(17.151)

and asserts that the mode of intermediate slowness is always the unstable mode.
Ripa has a good discussion of “nonlocal” triads, by which he means triads com-

posed of modes with frequencies of different orders of magnitude, such as strong
interactions among short gravity waves catalyzed by a long Rossby wave.

17.13.2 Limitations of Triad Theory

Resonant triad theory has multiple severe limitations. The first is that there are so
many resonances and near-resonances that focusing on a single triad is as useless
at focusing on a single bubble in turbulent convection. Worse still, a single wave
may be resonant in more than one triad, allowing energy to leak from one triad
to another. Such chains of mutually resonant triads are a major theme of Loesch
and Deininger [29]. Their Fig. 1 is a closed system of forty-eight triads. Richard
Deininger, who drew the diagrams as an undergraduate, regarded the task as his own
personal Twelve Labors of Hercules (private communication 1980). Contemporary
dynamicists, though armed with much faster floating point arithmetic and vastly
superior graphics, will likely be equally exhausted.

The second limitation is that resonance is a small amplitude concept. If we define
a significant energy exchange to be, say, the halving of the energy initially in a given
mode, then in the limit of infinitesimal amplitude, the rate of energy transfer tends
to zero and perfect resonance is required. If the resonance is imperfect in the sense
that

w1 + w2 + w3 = δdetuning (17.152)

the direction of energy will reverse sign after a time interval of Pexchange =
O(1/δdetuning). The total amount of energy exchanged is the product of the amplitude
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ε of the components of the triad multiplied by Pexchange. As the amplitude increases,
therefore, more and more triads join the dance of large energy exchanges. For suf-
ficiently large amplitude, every trio of modes is strongly fluctuating, and “selective
resonant transfers” must be replaced by an adjective like “wave turbulence” [51].

17.14 Solitary Waves in Numerical Models

Kindle [52], Greatbatch [26], Williams and Wilson [53] and Boyd [25, 26, 52, 53]
have all shown that it is easy to generate Rossby solitary waves in numerical models.
We will discuss some sample results from each in turn.

Kindle [52] tested the analytical theory of Boyd [20] by using the lowest order
perturbative soliton as the initial condition for a 1-1/2 layer model. To the extent that
the perturbative solution is accurate, the twin troughs4 should propagate westward
without change in shape. The soliton is of moderately large amplitude; the maximum
thermocline displacement (off the equator) is 1/4 the undisturbed layer thickness and
B = 0.48,which is 90%of the threshold for recirculation.Nonetheless, the prediction
is highly accurate. Only the very small ripples left behind as the soliton propagates
westward indicate error as shown in his Fig. 2a. By contrast, Fig. 2b shows that the
corresponding linear solution has dispersed into a shallow pair of troughs followed
by two prominent crests and a long train of gradually diminishing oscillations. Again
as predicted, the nonlinear solution has traveled as far westward in 120days as the
linear solution in 160days.

KdV theory also predicts that an initial condition which reduces the thickness of
the upper layer, that is, one of opposite sign from the soliton,will exhibit “superlinear”
dispersion: the nonlinearity will defocus the peak so that wave energy spreads more
rapidly in x , faster than for the linear solution. Kindle confirmed this prediction by
making another run with an initial condition of the same structure but opposite sign
(as in Fig. 16.20).

Kindle’s other experiments generated Rossby solitons by the reflection of aKelvin
wave from the eastern boundary of the ocean after the latter had been excited by
a transient wind stress which was applied to a zonal patch of finite width in the
western part of the sea. His results are too extensive to fully describe, but in a typical
experiment, a wind stress of 0.5 dynes/cm2 applied for a month in a wind patch
6,000km across generated a soliton with B = 0.46; the half-maximum-to-half-
maximum zonal width of the solitary wave is about 1200km. The soliton amplitude
is determined by the product of the strength of the wind stress and the zonal width
of the region where the stress is applied.

Long duration events (two months or more) generate multiple solitary waves.
In Kindle’s idealized El Niño, the width of the wind patch was only 2,000km, but
in contrast to the experiment above, the eastward wind stress was left on for the

4In the 1-1/2 layer formalism, a crest in φ is equivalent to a thickening of the upper layer, and
therefore a trough in the thermocline. Kindle has chosen to illustrate the thermocline trough.

http://dx.doi.org/10.1007/978-3-662-55476-0_16
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duration after being switched on at t = 0. The result was two solitons with B = 0.43
and B = 0.33, respectively, with the larger solitary wave leading its little brother
westward as predicted by KdV theory.

One interesting conclusion is that wind stress events which are very broad in x
or t or both can nevertheless create solitary waves which have much smaller space
and time scales. (For example, the experiment with the wind stress 6,000km across
generated a reflected Rossby soliton only one-fifth as wide as the patch of wind.)
Part of the explanation is that the linear group velocity of the Kelvin wave is three
times that of the Rossby wave. A Kelvin pulse of width W will be reflected in a time
interval of length W since the Kelvin wave has unit speed. However, the reflected
Rossby wave will have width W /3 because this is as far as the leading edge of the
Rossby packet can travel before the trailing edge leaves the coast. In addition to
this linear contraction of the pulse, the nonlinearity will further focus the crest – it
is precisely this nonlinear focusing that balances the dispersion to make the soliton
possible.

Nonetheless, this threefold compression-by-reflection is very important. Kindle
[52] notes that “it appears Rossby solitary waves may be most easily generated by
the reflection of Kelvin waves from the eastern boundary”. His experiments showed
that it is possible to generate Rossby solitons directly by an eastward wind stress, but
only when the stress is narrow and of short duration. The compression-by-reflection
mechanism is very important in converting very large scale wind stress events into
intense, small-scale solitons.

In the numerical work of Greatbatch [26], the wind is turned on impulsively over
thewhole basin and left on.As inKindle’s calculations, the reflectionof aKelvinwave
from the eastern boundary will generate solitons as shown by his Fig. 3.5 However, if
the wind stress changes extend all the way to the eastern boundary, this coast will act
as a soliton- wavemaker beginning the instant the (westward) wind stress is turned
on. He shows that the result is a pair of solitons which completely dominate the flow
field. The corresponding linear solution is missing the two vortex pairs – the solitons
– that are the most striking and intense features of the nonlinear flow.

The conclusion is amusing. The inverse scattering theory of theKorteweg-deVries
equation shows that an initial condition will normally generate at least one soliton
unless the flow at t = 0 is everywhere of the wrong sign. For the bounded ocean,
not even this escape clause exists: Greatbatch obtains solitons for either sign of the
wind stress as long as the transient wind extends as far as the eastern coast. In this
sense, solitons are more readily found in equatorial waves than in non-rotating water
waves even though the latter is where solitary crests were first observed.

Greatbatch also generated a strong equatorial mean flow in his experiments, and
generalized the theory of Boyd [20, 54] to include the doppler-shifting and other
effects of a mean latitudinally-varying current. He found good agreement between

5Note that source of the incident downwelling Kelvin wave is different. A wind stress event which
is confined to a patch will generate such a wave from the eastern edge of the patch if the wind
is eastward. A global wind stress will excite a thermocline-deepening Kelvin wave at the western
coast of the ocean if the wind stress is westward.
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the predicted and observed soliton phase speeds after correcting for the mean flow.
His numerical experiments also show that the solitons are very stable and persistent
even when the mean current is very strong. He shows a case with a mean flow so
that intense that it is actually unstable, breaking down into meanders. Nonetheless,
a train of solitary waves forms, and they propagate westward with little change in
form.

The bottom panel also shows that there is a broad patch of dead water between the
two solitons. The exact solution for the KdV solitary wave shows that the amplitude
of the soliton decreases exponentially fast as one moves away from the peak, so two
solitons can be very close together in a geographical sense, and yet have only an
exponentially small overlap so that they are truly “solitary”.

Westward-propagating vortex pairs (“modons”) are highly unstable on the mid-
latitude beta plane, but the equatorial wave guide stabilizes vortex pairs that straddle
the equator, even when given a strong initial tilt. As discovered byWilliams andWil-
son and explained theoretically by Boyd, higher latitudinal mode solitary waves are
weakly nonlocal through radiation of sinusoidal Rossby waves of lower latitudinal
mode number. The amplitude and wavelength of the radiation are in good agreement
with nonlocal soliton theory.

The interaction of free Rossby waves with the semi-transparent equatorial
waveguide and the ensuing wave-mean flow interaction are described in Reznik
and Zeitlin [55].

Andrew Madja has written many articles on nonlinear dynamics with Biello,
Dutrifroy, Rosales and numerous other collaborators [30, 43–45]. Most have an
atmospheric motivation, and therefore are properly excluded here, but fortunately
Majda has been a prolific writer of reviews [56] and books with [57, 58] as the most
relevant. Majda is a Grand Master of applied mathematics and it is fortunate that we
can read his perspective in his own voice, unfiltered.

17.15 Gerstner Trochoidal Waves and Lagrangian
Coordinate Descriptions of Nonlinear Waves

In 1802, Frantiŝek Josef Gerstner (1756–1832) discovered a family of exact solu-
tions for nonlinear water waves [59, 60]. His solution using Lagrangian rather than
Eulerian coordinates was independently discovered by Rankine in 1863 [61]. Marie-
Louise Dubreil-Jacotin (1905–1972) extended Gerstner’s solution to stratified fluids
[62]. Chia-Shun Yih (1918–1997) showed that Gerstner’s solution also described
edge waves, that is, waves propagating parallel to a straight coastline on water of
depth varying linearly in the direction normal to the coast [63].

However, in a review of the history of water waves, Craik wrote “The Gerstner
wave solution was long overlooked; even today it is usually regarded more as a
curiosity than a result of practical importance because the wave is not irrotational.”
[p. 3 of [64]]
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In 2001, two events revived interest in the long-dormant theory of Gerstner waves.
First, a highly influential computer graphics paper showed that multiple copies of
Gerstner’s analytical formulas were a superb way to generate realistic water waves.
This method is now very widely used, motivated entirely by plausible appearance
rather than any pretense of scientific accuracy. The other event was strictly mathe-
matical when, to quote [65]: “A mathematical analysis of Gerstner’s solution was
performed by [Adrian] Constantin in [66] which investigated rigorously, for the first
time, the evolution of the fluid domain under the propagation of Gerstner’s wave. It
was shown, using a mixture of analytical and topological methods, that it is indeed
possible to have a motion of the whole fluid body where all the particles describe
circles with a depth-dependent radius — the fluid domain as a whole evolves in a
manner which is consistent with the full governing equations.”

This touched off a flurry of work in the mathematics community on Gerstner
waves which has still not subsided.

Constanin himself gave this field a second wind when he found Gerstner solutions
on the equatorial beta-plane [67], which in turn triggered further works by himself
[68–71] and and a dozen others [72–75]. Sastre-Gomez’ paper is a good review that
also proves that Constantin’s (2012) solution actually exists [73].

Unfortunately, although a couple of papers have appeared in the Journal of Physi-
cal Oceanogrphy, the authors have been entirely mathematics professors publishing
mostly in mathematics journals.

Jan Erik Weber’s paper that sought Gerstner waves in the laboratory wrote in the
abstract, “A comparison with experimental data for the drift of thin plastic sheets in
wave tanks is made, showing that the presence of viscosity-modified Gerstner waves
cannot be ruled out on the basis of these observations.” Cannot be ruled out? And
the last sentence of the article is “Like Gerstner [4], we have assumed that the wave
field is present initially. The eventual generation of Gerstner waves in a viscous fluid
from a no-wave state has not been discussed here. This intriguing matter should be
further investigated by combining laboratory experiments and theoretical analyses.”

It is astounding that such basic questions as how to generate the waves is still wide
open. The initialization question has in fact always discouraged studies of Gerstner
waves because the waves are strongly vortical whereas conventional water wave
models are of irrotational waves, which is what wind etc., normally generate.

There is a need for an oceanographic Freeman Dyson to reconcile two wildly
different formalisms. The British physicist famously showed that the renormaliza-
tion schemes of Feynman and Schwinger, enormously different in appearance and
philosophy, would in fact always give the same answer.6 So far, equatorial waves in
Lagrangian coordinates and nonlinear equatorial waves in Eulerian coordinates have
lacked a Great Reconciliation.

6Luck as well as Dyson’s brilliance played a role in the Great Quantum Electrodynamics Renormal-
ization Reconciliation. Dyson thoroughly learned Schwinger’s approach during a lengthy summer
school at the University of Michigan where Schwinger was a prominent lecturer; he learned Feyn-
man’s formalism while carpooling with the older physicist on a three day cross-country trip where
there was little to do, in those days before auto entertainment systems, except discuss quantum
physics.
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17.16 Potential Vorticity Inversion

The nonlinear shallow water wave equations have a conserved potential vorticity

q ≡ (ζ + y)/(1 + φ) [Potential Vorticity]

where ζ is the usual relative vorticity. Middle atmosphere dynamicists have recently
shown that the potential vorticity plays a central role in flow in that region. In par-
ticular, it is possible to “invert the potential vorticity” so as to deduce the winds,
pressure, density, and so on from this single scalar quantity.

Unfortunately, this concept doesn’t work very well on the equatorial beta-plane
even in the simple case of linear dynamics. The linearized potential vorticity is

qlinear ≡ ζ − y φ when |ζ |, |φ| � 1 (17.153)

Since the Rossby modes are strongly rotational whereas the gravity waves are
strongly divergent, but have comparatively little vorticity, one might legitimately
hope to expand an observed distribution of linearized q in Hermite functions and
then deduce the amplitude of each Rossby mode from this under the assumption that
the contributions of the gravity waves are negligible.

The bad news is that the Kelvin wave, which is probably the single most important
mode in equatorial dynamics (because it is the gravest, and therefore the most easily
excited) has no linearized potential vorticity as proved in the next section. In conse-
quence, the observed q-field gives us no information whatsoever about the Kelvin
wave.

17.16.1 A Proof that the Linearized Kelvin Wave Has Zero
Potential Vorticity

The potential vorticity of the nonlinear shallow water equations is

q = ζ + y

1 + φ
(17.154)

The relative vorticity ζ = vx − uy simplifies to ζ = −uy because the north-south
velocity is identically zero for the Kelvin wave.When the wave is small, 1/(1+φ) ≈
1−φ+O(φ2).Neglecting terms that are quadratic in thewave amplitude, the potential
vorticity of an infinitesimal amplitude Kelvin wave is

qKelvin ≈ −uy − yφ (17.155)

Because u = φ exp(−y2/2), uy = −yu = −yφ, the terms cancel identically giving
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qKelvin = 0 (17.156)

as asserted in the previous subsection.

17.17 Coupled Systems of KdV or RLW Equations

Replacement of the KdV equation by the RLW equation corrects only the dispersion
relation to O(k2); substituting the RLW equation for KdV does nothing to correct the
proportionality between S, v, and D. However, the effects of finite zonal length scale
on the latitudinal structure of S, v and D are non-secular; they do not increase with
time or with distance away form the boundaries; they are always small corrections if
the zonal scale is large.However, the difference between a dispersivewave packet and
a nondispersivewave packet will become greater and greater as the packet propagates
along because the dispersion, even if weak, will eventually cause the packet to break
up and spread whereas the nondispersive packet will merely travel on, its shape in x
forever unchanging.

The nonlinear terms can be incorporated into the factors F1 and F3 of the linear
shallow water equations in a similar heuristic manner: the procedure is to simply
evaluate them using the linear, nondispersive solutions to specify the latitudinal
structure. Since the eigenfunctions of the linear shallow water wave equations are
a complete set, it has been pointed out independently by Kasahara [76] and Ripa
[39] that one can use them as Galerkin basis functions in exactly the same way as
one would use trigonometric functions, Hermite functions, or spherical harmonics
[39, 76]. The complications are that (i) each eigenfunction has three components,
i.e., the eigenfunctions are 3-vectors, and that (ii) the eigenfunctions are different
for each different zonal wavenumber. The advantage is that one can jettison gravity
wave functions and keep only the Kelvin and Rossby wave basis functions which is
basically just what we’re doing with the long wave approximation. Thus, this ad hoc
philosophy for treating the nonlinear terms can be given a rigorous justification, too.

Unfortunately, the latitudinal structure of Rossby waves is also a function of k.
The denominators of (1 + c) and (1 − c) in (16.40) tend to 1 as k → ∞ in contrast
to the their long wave limits of 2/3 and 4/3 (Fig. 17.16). This moderate error does
not alter the fact that the RLW model is a better model than the KdV equation for
equatorial Rossby waves. In particular, if we solve an initial value problem, the RLW
equation will correctly propagate energy both east andwest of the initial pulse, which
is impossible with the KdV equation. The structure of the wavefront with eastward
group velocity will not be quite right: the u and φ fields will have a component of
ψ2(y) that is a little too small while the contribution of ψ0(y) is exaggerated. The
nonlinear modifications to the ripples will be wrong, too, but if the initial condition
has a long zonal scale, the eastward-propagating part of the disturbance will be of
small to moderate amplitude, and the poor treatment of nonlinearity may not matter
either.

http://dx.doi.org/10.1007/978-3-662-55476-0_16
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Fig. 17.16 The latitudinal
structure functions for the
east-west velocity u and
height field φ for the n = 1
[lowest symmetric] Rossby
mode in the limits of zero
wavenumber (k = 0) and
infinite wavenumber
(k → ∞), the “short” wave
limit. The long wave
structure functions are
φlong =
3/8

√
2e−1/2 y2

(
2 y2−3

)
4√π

and

ulong =
3/8

√
2e−1/2 y2

(
2 y2+1

)
4√π

A strength of the long wave approximation is that in the limit of very large zonal
scale (small k), the vector eigenfunctions of the shallowwaterwave equations become
independent of k. Instead of having to take a discrete sum or Fourier integral over
zonal wavenumbers, we can lump the x and t dependence of a given latitudinal mode
into an amplitude function An+1(x, t)which ismultiplied by the appropriate function
of y to give the components of S, v, and D (or u, v and φ as you please). By doing
so, we are making an O(k2) error in the nonlinear terms, but we greatly simplify the
problem. It is certainly better to include the nonlinear terms in an approximate way
than to neglect them entirely as done in the linear long wave model.

Thus, we conclude that it is possible to generalize the linear, long wave model
to a “pseudo-long wave” set that includes both dispersion and nonlinearity without
sacrificing the advantages of (i) filtering out gravity waves and (ii) lumping the x − t
dependence of a given Rossby mode into a single amplitude function. Analytical
solutions of this extended long wave model are probably not possible, but it is very
easy to integrate numerically (at least in the RLW form).

Whybother? The answer lies in the foci and caustics of the linear, longwavemodel
for normal modes in a basin, discussed in Chap. 6 above. Even if the amplitude is
small and dispersive effects weak over most of the ocean basin, both nonlinearity and
dispersion must inevitably become important at caustics and foci because the wave
amplitude is blowing up along them, and the length scale of wave variation is tending
to 0. The “pseudo-long wave” model would be a cheap tool for understanding how
dispersion and nonlinearity modify the linear results of Cane and Sarachik [101].
It must be noted, however, that the full nonlinear shallow water wave equations are
themselves relatively inexpensive to integrate with today’s computers. The benefits
of normal modes can be easily retrieved by post-processing whose first step is to
expand the fields in Hermite functions.

http://dx.doi.org/10.1007/978-3-662-55476-0_6
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Appendix A
Hermite Functions

Abstract Hermite functions play such a central role in equatorial dynamics that it
is useful to collect information about them from a variety of sources. Hille-Watson-
Boyd convergence and rate-of-convergence theorems, a table of explicit formulas
for the Hermite coefficients of elementary functions, Hermite quadrature and inte-
gral representations for the Hermite functions and so on are included. Another table
lists numerical models employing Hermite functions for oceanographic and meteo-
rological applications. Recurrence formulas are provided not only for the normalized
Hermmite functions themselves, but also for computing derivatives and products of
powers of y with Hermite functions. TheMoore-Hutton series acceleration and Euler
acceleration for slowly-converging Hermite series are also explained.

Just because there’s an exact formula doesn’t mean it’s necessarily a good idea to use it.

— Lloyd N. “Nick” Trefethen, FRS

A.1 Normalized Hermite Functions: Definitions and
Recursion

The normalized Hermite functions ψn have the orthogonality property that

∫ ∞

−∞
ψn(y)ψm(y) dy = δmn (A.1)

where δmn is the usual Kronecker δ, which is one when m = n and zero otherwise.
The Hermite functions can be efficiently computed using a three-term recursion
relation from two starting values:

ψ0(y) ≡ π−1/4 exp(−(1/2)y2); ψ1(y) ≡ π−1/4
√
2 y exp(−(1/2)y2) (A.2)

ψn+1(y) =
√

2

n + 1
y ψn(y) −

√
n

n + 1
ψn−1(y) (A.3)
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Table A.1 Normalization factors for the Hermite functions
The normalization factor isdn = π1/4 2n/2

√
n!where the orthonormalHermite functions are related

to the unnormalized Hermite functions a ψn(y) = exp(−[1/2]y2) Hn(y)/dn where

n dn = π1/4 2n/2
√

n! 1/dn

0 1.331335 0.751126

1 1.882792 0.531126

2 3.765585 0.265563

3 9.223761 0.108416

4 26.088736 0.038330

The unnormalizedHermite polynomials Hn are ill-conditioned in numerical appli-
cations, but have coefficients which are integers (TableA.1).

The relationship between normalized and unnormalized Hermite functions is
given in TableA.1.

ψ0 = π−1/4 exp(−(1/2)y2)

ψ1 =
√
2

π1/4
y exp(−(1/2)y2)

ψ2 =
{√

2 y2 − 1√
2

}
π−1/4 exp(−(1/2)y2)

ψ3 =
{√

4/3 y3 − √
3y

}
π−1/4 exp(−(1/2)y2)

ψ4 =
{√

2/3 y4 − √
6y2 +

√
6

4

}
π−1/4 exp(−(1/2)y2)

ψ5 =
{

2

15

√
15 y15 − 2

3

√
15y3 +

√
15

2
y

}
π−1/4 exp(−(1/2)y2) (A.4)

The lowest few ψn(y) are graphed in Fig.A.1.
The Hermite functions satisfy recursion relations which are very useful in appli-

cations such as
y ψn = √

(n + 1)/2ψn+1 + √
n/2ψn−1 (A.5)

The first derivative can be computed by either of the recurrences

dψn

dy
= −√

(n + 1)/2ψn+1 + √
n/2ψn−1, n ≥ 0 (A.6)

dψn

dy
= − y ψn + √

2n ψn−1 n ≥ 0 (A.7)
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These must be initialized by the derivatives of ψ0 and ψ1 which are

dψ0

dy
= − 1√

2
ψ1; (A.8)

= −yψ0 (A.9)

= −y π−1/4 exp(−(1/2)y2) (A.10)

For the derivative of ψ1, an explicit formula is easier than the recurrences

dψ1

dy
= √

2
{
1 − y2

}
ψ0 (A.11)

= √
2π−1/4 exp(−(1/2)y2)

{
1 − y2

}
(A.12)

A.2 Raising and Lowering Operators

The similarity of the results of the operations of differentiation and of multiplication
by y make it possible to define so-called “raising” and “lowering” operators. The
motive for these names is self-explanatory in that the raising operatorR,when applied
to a Hermite function of degree n, gives a result which is proportional to the Hermite
function of the next highest degree. Similarly, the lowering operator L reduces the
degree of a Hermite function by one.

R ≡ (d/dy − y) [“raising operator”] (A.13)

Rψn = −√
2(n + 1) ψn+1 (A.14)

L ≡ (d/dy + y) [“lowering operator”] (A.15)

Lψn = √
2n ψn−1 (A.16)

The Hermite eigenoperator

H ≡ d2

dy2
− y2; Hψn = −(2n + 1)ψn (A.17)

can be written in terms of the raising and lower operators as

H ≡ 1

2
{RL + LR } (A.18)

The operations of differentiation and multiplication by y can also be expressed in
terms of the raising and lowering operators:
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yψn = 1

2
(L − R) ψn (A.19)

= √
n/2ψn−1 + √

(n + 1)/2ψn+1 (A.20)

d

dy
ψn = 1

2
(L + R) (A.21)

= √
n/2ψn−1 − √

(n + 1)/2ψn+1 (A.22)

A.3 Integrals of Hermite Polynomials and Functions

The identity for derivatives can be interpreted as a recurrence for the integrals of the
Hermite functions

∫ y

dy′ψ0 =
√√

π
1√
2
erf

(
1√
2

y

)
(A.23)

∫ y

dy′ψ1 = −
√
2√√
π
exp

(
− 1

2
y2

)
(A.24)

∫ y

dy′ψ2 = −ψ1 +
√
1

2

∫ y

dy′ψ0(y′) (A.25)

= −ψ1 + π1/4

2
erf(y/

√
2) (A.26)

∫ y

dy′ψ3 = −√
2/3ψ2 + √

2/3
∫ y

dy′ψ1(y′) (A.27)

= −√
2/3ψ2 − 2√

3
ψ0 (A.28)

∫ y

dy′ψn+1 = −
√

2

n + 1
ψn +

√
n

n + 1

∫ y

dy′ψn−1(y′)− (A.29)

The unnormalized Hermite polynomials Hn obey simpler identities

∫ x

0
Hn(y)dy = 1

2(n + 1)
(Hn+1(x) − Hn+1(0)) (A.30)

∫ x

0
exp(−y2)Hn(y)dy = Hn−1(0) − exp(−x2) Hn+1(x) (A.31)
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A.4 Integrals of Products of Hermite Functions

Integrals of products of three or more Hermite functions are ubiquitous in the weakly
nonlinear theory of equatorial waves, and sometimes to calculate projections in linear
theory, too. Generalizing the work of Busbridge [1] and Azor, Gillis and Victor [2],
Ripa [3] gave asymptotic formulas both for the Hermite functions themselves and
for the integral of the product of J Hermite functions with a Gaussian of arbitrary
width [3]. Because of their complexity, these formulas are not repeated here.

A.5 Higher Order and Symmetry-Preserving Recurrences

From these two fundamental recursions for ψn and its first derivative, a number of
higher order identities can be obtained. Examples are

ψn,yy = {− (2n + 1) + y2
}

ψn (A.32)

ψn,yyy = {− (2n + 1) + y2
}

ψn,y + 2 y ψn (A.33)

The Hermite functions of a given symmetry can be generated by a recurrence that
connects only functions of that symmetry:

√
2ψ2 = {

y2 − 1
}
ψ0 (A.34)

√
6ψ3 = {

y2 − 3
}
ψ1 (A.35)

√
(n + 1)(n + 2)ψn+2 = {

y2 − (2n + 1)
}
ψn − √

n(n − 1) ψn−2, n ≥ 2
(A.36)

where the starting values ψ0(y) or ψ1(y) are given by Eq.A.2.
This same recurrence can also be re-written as an expression for y2 ψn:

y2 ψn = 1

2

√
(n + 1)(n + 2)ψn+2 +

(
n + 1

2

)
ψn + 1

2

√
n(n − 1) ψn−2, n ≥ 2

(A.37)
This is useful in deriving Hermite–Galerkin discretizations of differential equations.

Similarly

y4ψn = 4
√

(n + 1)(n + 2)(n + 3)(n + 4)ψn+4 + 4(n + 3/2)
√

(n + 1)(n + 2)ψn+2

+ 3(1 + 2n + 2n2)ψn + 2(2n − 1)
√

(n − 1)n ψn−2 + √
(n − 3)(n − 2)(n − 1)nψn−4, n ≥ 4

(A.38)

The special cases are
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Fig. A.1 Hermite functions ψn(y) versus y and degree n. The functions have been scaled so that
max(ψn)(y) = 1

y4ψn = 4
√

(n + 1)(n + 2)(n + 3)(n + 4)ψn+4 + 4(n + 3/2)
√

(n + 1)(n + 2)ψn+2

+ 3(1 + 2n + 2n2)ψn, n = 0, 1
(A.39)

y4ψn = 4
√

(n + 1)(n + 2)(n + 3)(n + 4)ψn+4 + 4(n + 3/2)
√

(n + 1)(n + 2)ψn+2

+ 3(1 + 2n + 2n2)ψn + 2(2n − 1)
√

(n − 1)n ψn−2, n = 2, 3
(A.40)

Note that the special cases are the general case if we define all Hermite functions
of negative degree to be identically equal to zero (Fig.A.1).

A.6 Unnormalized Hermite Polynomials

These are defined by the starting values

H0 = 1; H1 = 2 y (A.41)

and the recursion
Hn+1 = 2 y Hn − 2 n Hn−1 (A.42)
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These satisfy the differentiation law

Hn,y = 2n Hn−1 (A.43)

and the orthogonality integral

∫ ∞

−∞
exp(−y2) Hm Hn dy =

{
π1/2 2n n! [m = n]
0 [m �= n] (A.44)

H0 = 1

H1 = 2y

H2 = 4y2 − 2

H3 = 8y3 − 12y

H4 = 16y4 − 48y2 + 12

H5 = 32y5 − 160y3 + 120y (A.45)

Because many formulas are simpler when expressed in terms of unnormalized Her-
mite polynomials—note the absence of square roots andπ from (A.41–A.43)— they
have been listed here. However, the unnormalized functions increase very rapidly
with N as shown by (A.44) and TableA.3, so we shall use only the normalized
Hermite functions ψn in the rest of this work (TableA.2).

ψn(y) ≡ exp(−[1/2]y2)Hn(y)
1

π1/4 2n/2
√

n! (A.46)

Equivalently,

exp(−[1/2]y2) Hn(y) = π1/4 2n/2
√

n!ψn(y) (A.47)

A.7 Zeros of Hermite Series

Theorem A.1 (Hermite Companion Matrix) Let fN (x) denote a polynomial of
degree N written in “Hermite form” as

fN (x) =
N∑

j=0

a j Hj (x) (A.48)

or a function that is a truncated series of Hermite functions,
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fN (x) =
N∑

j=0

a j ψ j (x) (A.49)

where ψ j (x) = exp(−[1/2]x2) Hj (x). (Note that the Gaussian factor that is part of
the definition of the Hermite functions has no effect on the zeros of the sum of the
series.) Then all roots of fN (x), both on and off the canonical expansion interval,
x ∈ [−∞,∞], are eigenvalues of the N × N matrix H whose elements are

Hjk =

⎧⎪⎪⎨
⎪⎪⎩

(1/2)δ2,k, j = 1, k = 1, 2, . . . , N

( j − 1)δ j,k+1 + 1
2δ j,k−1, j = 2, . . . , (N − 1),

(−1) 12
a j−1

aN
+ (N − 1)δk,N−1, j = N

(A.50)

where δ jk is the usual Kronecker delta function.

For a quintic polynomial,

∣∣∣∣∣∣∣∣∣∣

0 (1/2) 0 0 0
1 0 (1/2) 0 0
0 2 0 (1/2) 0
0 0 3 0 (1/2)

(−1) a0
2 a5

(−1) a1
2a5

(−1) a2
2a5

(−1) a3
2a5

+ 4 (−1) a4
2 a5

∣∣∣∣∣∣∣∣∣∣
(A.51)

[4, 5].

A.8 Zeros of Hermite Functions

The roots of the n-th Hermite function are important because they are the quadrature
points for the Hermite–Gauss numerical integration scheme (next section) and also
are the collocation points for Hermite function pseudospectral schemes for solving
differential equations. ψn(y) has n real zeros on the interval spanned by the turning
points, y ∈ [−√

2n + 1,
√
2n + 1].

The average separation between zeros on this interval is asymptotically
(as n → ∞)

average j (yroot
j+1 − yroot

j ) ∼ 23/2/
√

n (A.52)

min
j

(yroot
j+1 − yroot

j ) ∼ π√
2

1√
n

(A.53)

The average is thus (4/π) greater than the minimum.
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The zeros may be numerically calculated by specializing the Hermite companion
matrix to aN = 1 while all other a j = 0. Then all roots of ψN (x) are eigenvalues of
the N × N tridiagonal matrix H whose elements are

Hjk =
{

(1/2)δ2,k, j = 1, k = 1, 2, . . . , N
( j − 1)δ j,k+1 + 1

2δ j,k−1, j = 2, . . . , N
(A.54)

where δ jk is the usual Kronecker delta function.
For a quintic polynomial,

∣∣∣∣∣∣∣∣∣∣

0 (1/2) 0 0 0
1 0 (1/2) 0 0
0 2 0 (1/2) 0
0 0 3 0 (1/2)
0 0 0 4 0

∣∣∣∣∣∣∣∣∣∣
(A.55)

[4, 5].

A.9 Gaussian Quadrature

A.9.1 Gaussian Weighted

∫ ∞

−∞
exp(−y2)g(y) ≈

N∑
j=1

w j g(y j ) (A.56)

w j = 2N−1N !√π

N 2[HN−1(y j )]2 (A.57)

= 1

N exp(y2j )[ψN−1(y j )]2 (A.58)

A.9.2 Unweighted Integrand

∫ ∞

−∞
f (y) ≈

N∑
j=1

w j f (y j ) (A.59)
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w j = exp(y2j )w j (A.60)

= exp(y2j )
2N−1N !√π

N 2[HN−1(y j )]2 (A.61)

= 1

N [ψN−1(y j )]2 (A.62)

A.10 Pointwise Bound on Normalized Hermite Functions

Theorem A.2 (Bound on Hermite Functions)

| ψn(y) | ≤ 0.816 (A.63)

(From Abramowitz and Stegun [6], p. 787.)

Equation (5.2) of [7] shows that |ψn(y)| is asymptotically no smaller than
0.63n−1/12, so the bound (A.63) is a tight one in the sense that it overestimates
the maximum of ψn(y) by at most a factor of 2 for all n ≤ 200. The bound also
proves the following:

Theorem A.3 (Hermite Truncation Error)

| f (y) −
N∑

n=0

an ψn(y) | ≤ 0.816
∞∑

n=N+1

|an| (A.64)

A.11 Asymptotic Approximations

A.11.1 Interior Approximations

“Cosine Approximations”: n >>, |y| <
√
2n + 1

ψ2n(y) ∼ (−1)n

√
(2n)!

π1/42n n! cos
{√

4n + 1 y
} 1{

1 − y2/(4n)
}1/4 (A.65)

∼ (−1)n0.56419 n−1/4 cos
(
2

√
n y

) 1{
1 − y2/(4n)

}1/4 (A.66)
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ψ2n+1(y) ∼ (−1)n

√
(2n)!

π1/42n n! sin
{√

4n + 3 y
} 1{

1 − y2/(4n)
}1/4 (A.67)

∼ (−1)n0.56419 n−1/4 sin
(
2

√
n y

) 1{
1 − y2/(4n)

}1/4 (A.68)

Phase errors accumulate with increasing |y| because the local wavenumber is not√
2n + 1 but

√
2n + 1 − y2 as incorporated into the WKB method>

“WKB Approximations”: n >>, |y| <
√
2n + 1

ψ2n(y) ∼ (−1)n0.56419 n−1/4 cos
( √

2n + 1P(y/
√
2n + 1)

) 1{
1 − y2/(4n)

}1/4

ψ2n+1(y) ∼ (−1)n0.56419 n−1/4 sin
( √

2n + 1P(y/
√
2n + 1)

) 1{
1 − y2/(4n)

}1/4

where

P(Z) ≡
∫ Z

0
dx

√
1 − x2 (A.69)

= (1/2)Z
√
1 − Z2 + (1/2) arcsin(Z) (A.70)

= Z − (1/6)Z3 − (1/40)Z5 − (1/112)Z7 − (5/1152)Z9 − (7/2816)Z11 + · · · , |Z | ≤ 1

= π/4 − (
√
22/3)(1 − Z)3/2 + (

√
2/10)(1 − Z)5/2 + (

√
2/112)(1 − Z)7/2 +

(
√
2/576)(1 − Z)9/2 + (5

√
2/11264)(1 − Z)11/2, |1 − Z | ≤ 2 (A.71)

Note that these interior approximations are most accurate for small |y|, and fail
very close to and beyond the turning points, |yt | ≈ √

2n + 1. The coefficients of the
cosine and sine factors are the exact values of ψ2n(0).

A.11.2 Airy Approximation Near the Turning Points

TheHermite functions change from oscillatory behavior, as described in the previous
subsection, to monotonic, exponential decay at the “turning points”,

yt ≈ √
2n + 1 (A.72)

In the vicinity of the turning points, the Hermite functions are approximated in terms
of the Airy function Ai(z) as
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Fig. A.2 Asymptotic approximations to Hermite functions of various degrees N . The horizontal
scale extends to the turning point for each mode. Only the positive interval y ∈ [0, √2N + 1] is
graphed because Hermite functions are always either symmetric or antisymmetric with respect
to the origin, and thus the graph for negative y would be the mirror image of that for positive
latitude. (Mirror image with a sign flip when N is odd.) The cosine approximation is exactly what

the name implies except for a slow amplitude modulation by a factor of
{
1 − y2/(4n)

}−1/4
. The

approximation is very accurate for small y, but develops a phase error as y increases. The WKB
approximation almost perfectly captures this phase variation, and breaks down only very close to
the maxima of ψN closest to the turning point. The Airy approximation is indistinguishable from
the Hermite function near the turning point, but becomes inaccurate for small y. In the upper left
hand panel, N = 2, which is hardly a “large” value of N , but the asymptotic approximations are
very good anyway

ψn(y) ∼ 1.260 (2n + 1)−1/12 Ai
{
sign(y) 1.260 (2n + 1)1/6 |y − yt |

}
(A.73)

Uniformly valid approximations, valid not only near the turning points but in wider
domains, can be found in the handbooks [6, 8]. These are of much greater complexity
than those presented here, alas.However, Fig.A.2 shows that the simpler non-uniform
approximations are extremely accurate. This in turn implies that the conceptualmodel
of Hermite-as-sine-wave between the turning points is sound.
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A.12 Convergence Theory

Boyd’s book [9] contains a thorough discussion of numerical use of Hermite func-
tions. Here, we give a brief summary of how the rate of convergence of a Hermite
series depends upon the analytical properties of the solution. In general, both the rate
at which the function decays along the real y axis and also the location of singular-
ities of f (y) in the complex y-plane affect the asymptotic behavior of the Hermite
coefficients. Some preliminary definitions are helpful. Note that the limits in the
convergence theorems are usually supremum limits.

Definition A.1 (Exponential order of real axis decay) The “exponential order of
real axis decay” k is the least upper bound of j for which

f (y) = O
(

e−p|y| j
)

(A.74)

for some constant p as |y| → ∞ along the real axis. The function is said to be
“Sub-Gaussian” or “Super-Gaussian” respectively if

k < 2 [“Sub-Gaussian”] (A.75)

k > 2 [“Super-Gaussian”] (A.76)

Definition A.2 (Algebraic order of real axis decay) The algebraic order of real axis
decay j is the least upper bound of j for which

f (y) = O
(
1/|y| j

)
(A.77)

as |y| → ∞ along the real axis. Note that j = ∞ if the exponential order of decay
is greater than zero.

Definition A.3 (Algebraic order of convergence) The Algebraic order of conver-
gence q is the largest number for which

lim
n→∞ | an | nq < ∞, n  1 (A.78)

where the an are the coefficients of the series. (For a Fourier series, the limit must
be finite for both the cosine coefficients an and the sine coefficients bn .)

Alternative definition: if the coefficients of a series are an and if

an ∼ O[1/nq ], n  1 (A.79)

then q is the algebraic order of convergence.

Definition A.4 (Infinite order convergence) If the algebraic order of convergence k
is unbounded – in other words, if the coefficients an decrease faster than 1/nk for
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any finite power of k – then the series is said to have the property of “infinite order”,
“exponential”, or “spectral” convergence.

Alternative definition: If

an ∼ O[exp(−qnr )], n  1 (A.80)

with q a constant for some r > 0, then the series has infinite order or “exponential”
convergence.

The equivalence of the second definition to the first is shown by the identity

lim
n→∞ nk exp(−qnr ) = 0, all k, all r > 0 (A.81)

([6], p. 68). The reason for giving twodefinitions is that (A.80),which ismore obvious
and easier to understand, does not cover all possible cases. The terms “exponential”
and “infinite order” are synonyms and may be used interchangeably.

Definition A.5 (Exponential index of convergence) The “exponential index of con-
vergence” r is given by

r ≡ lim
n→∞

log | log(| an |) |
log(n)

(A.82)

An equivalent definition is that if s and q > 0 are constants and

an ∼ O(s exp[−qnr ]), n  1, (A.83)

then the “exponential index of convergence” is the exponent r .

If the algebraic order of decay j is finite, then the Hermite coefficients will decay
algebraically with n also, and have a finite algebraic order of convergence. In general,
each increase of j by one will increase the algebraic order of convergence q by 1/2.
A simple integration-by-parts arguments shows that

q ≤ ( j/2) − 1 (A.84)

if f (y) has no singularities on the real y-axis, but this boundmay be too conservative;
the functions that give various fields in the Yoshida jet satisfy q = j/2 + 1/4 as
explained in [7]. References to convergence theory are cataloged in Chap.17, Sect. 4,
of [9]. The most important point about algebraically-converging Hermite series is
that for small q they are almost useless without a summability method as explained
in the next section.

Theorem A.4 (Hille’s Hermite Width-of-Convergence Strip)

(i) The domain of convergence of a Hermite series is the infinite strip about the
real y-axis bounded by

|Im(y)| = w (A.85)
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(ii) For an entire function, that is, f (y) which has no singularities except at infinity,
the width is

w =
{∞

0
if k > 1
if k < 1

(A.86)

(iii) For singular functions, that is, functions with poles and/or branch points at a
finite distance off the real axis, let τ denote the absolute value of the imaginary
part of the location of that singularity which is closest to the real y-axis, and
let p denote the constant in the definition of real axis decay. Then

w =
⎧⎨
⎩

τ

smaller of [p, τ ]
0

if k > 1
if k = 1
if k < 1

(A.87)

Theorem A.5 (Hermite Rate-of-Convergence)
(i) If the strip of convergence has a finite width w, then

an ∼ O
(

e−w
√
2n+1

)
, (A.88)

that is, subgeometric convergence with exponential convergence index r = 0.5.
(ii) For entire functions with order of real axis decay p [i. e., functions decaying as
fast as exp(−constant |y|p) as |y| → ∞], the exponential convergence index r is

r = p/(2 [p − 1]) (Super-Gaussian, that is, p > 2) (A.89)

r = p/2 (Sub-Gaussian, that is, p < 2)

(iii) Geometric convergence is possible only for entire functions and only for these
two cases:

1. f (y) has p = 2 [Gaussian decay], that is, decay along the real axis proportional
to exp(−Qy2) where Q need not equal 1/2]

2. f (y) is Super-Gaussian (p > 2) and the scaling factor α is varied with the
truncation N as described in Boyd [7] where the scaled basis is the set of ψn(αy)

where α > 0 is independent of y.

(iv) If the function f (y) decays algebraically with y so that

f (y) ∼ O
(
1/|y|δ) as |y| → ∞ (A.90)

and if the function has p continuous derivatives on [−∞, ∞] (with the (p+1)-st
derivative continuous except at a finite number of points), then

an ∼ O

(
1

nq/2

)
(A.91)

where
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q = smaller of [p + 3/2, δ − 5/6]. (A.92)

Equation (A.91) only gives a lower bound on the convergence rate; it is known
that the Hermite coefficients for f (y) ≡ 1 converge as O(n−1/4) even though (A.91)
can guarantee only that the coefficients will diverge no faster than n5/12.

Part (i) was proved by Hille [10–13], building on earlier work by G.N. Watson,
(ii) and (iii) by Boyd [7], and (iv) by Bain [14]). Hille gives additional theorems not
quoted here in [15, 16].

Several conclusions emerge from this convergence theory. When a spectral series
— an ordinary Fourier or Chebyshev expansion — is used on a finite interval, the
coefficients decrease at least as fast as a geometric series (r ≥ 1) unless the function is
singular or discontinuous on the expansion interval itself. This is not true for Hermite
series except for the special case that (i) f (y) is entire and (ii) the function decays
as a Gaussian. Thus, the popular choice of exp(−by2) as a factor in wind stresses
and models of mean currents is eminently sensible on at least two accounts: (i) the
Gaussian is one of the handful of functions for which the Hermite coefficients are
known analytically and (ii) it belongs to the very special class of functions whose
Hermite expansions converge geometrically fast.

The second conclusion is that Hermite functions without series acceleration and
summability methods are likely to be a very poor numerical tool except for problems
on the open ocean with forcings which decay exponentially as |y| → ∞. If the
forcing decays only algebraically with y, the coefficients of the Hermite expansion
will decay only algebraically. Even if the forcing is localized, theHermite coefficients
will still have (small!) finite algebraic order of convergence in the presence of eastern
or western boundaries since the coastal Kelvin waves that run up and down the coast,
generated by reflection of equatorially trappedwaves, are not themselves equatorially
trapped and decay only algebraically away from the equator.

This has not prevented successful use of Hermite series to solve many problems,
but it is usually necessary to employ summability methods as discussed in the next
section.

A.13 Abel–Euler Summability, Moore’s Trick,
and Tapering

When the function f (y) decays only algebraically with |y|, the convergence of
the Hermite series is extremely slow, and thousands of terms may be necessary to
obtain an accurate answer. Unfortunately, coastal Kelvin waves always decay as
O(1/|y|1/2), so any problem with boundaries will require special tricks.

Boyd and Moore discuss a family of such tricks. Define the n-th partial sum
formally as

SN ≡
N∑

n=0

an ψn(y), (A.93)
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The goal is to compute the limit

S ≡ lim
n→∞ SN (A.94)

During his doctoral studies, Dennis Moore observed that such slowly converging
series typically have alternating partial sums. If SN−1 undershoots the sum, then
SN > S. It follows that the average of these two partial sums,

TN ≡ (SN−1 + SN ) /2 [Once-averaged Partial Sums] (A.95)

is a better approximation to S than either SN−1 or SN . (In the literature of sequence
acceleration schemes, this averaging is called “Hutton’s” Method.)

The once-averaged partial sums TN also alternated in Moore’s equatorial appli-
cation. This suggested a second round of averaging:

VN ≡ (TN−1 + TN ) /2 [Twice-averaged Partial Sums] (A.96)

=
N−2∑
n=0

an ψn(y) + (3/4) aN−1 ψN−1(y) + (1/4) aN ψN (y) (A.97)

Applying the averaging four times gives

SN ≡
N−4∑
n=0

an ψn(y) + (15/16) aN−3 ψN−3(y) + (11/16) aN−2 ψN−2(y)

+ (5/16) aN−1 ψN−1(y) + (1/16) aN ψN (y) [Moore’s Averaging Method]
(A.98)

Morse and Feshbach (Chap.4 of [17]) give a very good discussion of repeated
averaging in the context of summing the asymptotic expansion for the exponential
integral.

Boyd later observed that repeating the averaging process until all available terms
are exhausted is “Abel–Euler Summability”, also known as “Euler acceleration of
series”.

Abel’s inspiration is to observe that the series

f (y) =
∞∑

n=0

an ψn(y) (A.99)

is a special case (ζ = 1) of the more general function

f (y; ζ ) =
∞∑

n=0

ζ n an ψn(y) (A.100)
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If the an are decreasing very slowly (algebraically) with n, this implies that, regarded
as a power series in ζ , f (y; ζ ) has a radius of convergence of unity. That is, for
|ζ | < 1, the series converges exponentially (not algebraically) fast whereas for |ζ | >

1 the sum diverges to infinity exponentially fast. The original sum, f (y; ζ = 1), thus
corresponds to evaluating the series at a point on its radius of convergence. This
in turn implies that f (y; ζ ) must have a singularity — that is, a branch point or
pole such that all sufficiently high order ζ -derivatives of f (y; ζ ) are infinite at the
singularity — on the circle |ζ | = 1 in the complex ζ -plane. However — and this is
very, very important — the fact that the original series f (y) is alternating implies
that the singularity must be at ζ = −1, that is, on the side of the circle of convergence
directly opposite the point where we want to evaluate f (y; ζ ), ζ = 1.

The reader is entitled to ask: So what? The answer is that because f (y; ζ ) is a
power series in ζ , one may attack the sum (A.100) using every tool in the arsenal
of complex variable theory for “analytically-continuing” a power series beyond its
radius of convergence. In particular, one may invoke a second idea: Euler’s transfor-
mation of a power series. Euler introduced a new variable (conformal mapping of ζ

to z) via

z ≡ 2ζ

ζ + 1
⇔ ζ = z

2 − z
(A.101)

and then showed that the first N terms of the ζ -series could be rearranged into the first
N terms of a power series in z merely through linear recursion. Since the singularity
at ζ = −1 is mapped to z = ∞, the point where we must sum f (y; ζ(z)) to recover
the original series (A.99), ζ = 1, is well within the radius of convergence of the
transformed series in z. Conformal mapping in general and its great value in physics
and engineering are reviewed in [18, 19].

Boyd and Moore [20] explain how this transformation of power series is equiva-
lent to repeated averaging of partial sums. They also present numerical examples
to illustrate the great effectiveness both of Moore’s four-fold averaging and the
exponentially-convergent Euler acceleration method.

TableA.2 collects the weights for averagings of various orders. The fourth row
contains the weights that Moore applied in his thesis to the last four terms of each
series.

The n-th Hermite function is exponentially small for |y| >
√
2n + 1. Conse-

quently, any finite truncation of the Hermite sum of a function like f (y) = 1 is
necessarily non-uniform in space. The N -term truncated (but unaccelerated) sum
will be corrupted by oscillations for small y. FigureA.3 shows that Moore–Hutton
weighting can purge the spurious oscillations for small y. The error is non-uniform
in latitude: acceleration fails near the “cliff” where the highest terms in the sum reach
their turning latitudes and then fall exponentially for larger |y|. This “cliff” is located
roughly at

√
2Nhighest + 1 where Nhighest is the degree of the Hermite function of

highest degree retained in the truncation. (Most Hermite sums in the various theories
presented earlier are sums over even degree Hermite only or over odd degree only, in
which case Nhighest is roughly double the number of terms N in the series.) One can



Appendix A: Hermite Functions 483

Table A.2 Hutton/Euler coefficient weights wM j ; the M-th row gives the weights for an M-fold
Hutton averaging. A series with term

∑N
n=0 an is accelerated by being evaluated as

∑N−M−1
n=0 an +∑M

j=0 wM, j aN−M+ j . The user may choose any M ≤ N

M j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

0 1 − − − − − − − −
1 1 1/2 − − − − − − −
2 1 3/4 1/4 − − − − − −
3 1 7/8 1/2 1/8 − − − − −
4 1 15/16 11/16 5/16 1/16 − − − −
5 1 31/32 13/16 1/2 3/16 1/32 − − −
6 1 63/64 57/64 21/32 11/32 7/64 1/64 − −
7 1 127/128 15/16 99/128 1/2 29/128 1/16 1/128 −
8 1 255/256 247/256 219/256 163/256 93/256 37/256 9/256 1/256

obtain a good approximation for any finite range in latitude by taking a sufficiently
large number of terms in the series and applying the acceleration.

A.14 Alternative Implementation of Euler Acceleration

The phase speed for Rossby waves can be expanded in a power series in k2 derived
by substituting

c =
∞∑
j=0

c2 j k
2 j (A.102)

into the cubic equation

c3 − (ν + k2)c − 1 = 0 (A.103)

where

ν ≡ 2n + 1 (A.104)

The cubic polynomial has a triple point when k2 = −ν, so the series converges
only for k ≤ √

2n + 1.
The radius of convergence can be greatly extended, probably to the entire positive

real k-axis, by replacing k2 by the new small parameter ð1 and expanding in powers
of ð.

1This symbol is the old Anglo-Saxon letter “eth” and is part of the standard AmericanMathematical
Society symbol set.
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Fig. A.3 The errors in a fifteen term Hermite approximations to the “trivial function” f (y) ≡ 1,
both with and without series acceleration. All odd coefficients are zero, so the sums include terms
in {ψ0, ψ2, . . . ψ28} only. All Hermite functions in a sum of the first N even functions (up to and
including ψ2N−2(y)) are exponentially small for y >

√
4N − 3. The top error curve is that of the

unaccelerated series. The middle curve applies Moore’s thesis trick, which is weighting the last
four terms of the series by multiplying the terms by 15/16, 11/16, 5/16 and 1/16. The thick curve
(bottommost error curve) applies eight weights to the last eight terms of the series

k2 = ð
ν

1 − ð
⇔ ð = k2

k2 + 2n + 1
(A.105)

This parameter replacement is often simpler than weighting the original power series
as described in the preceding section.

A.15 Tapering

A second, alternative trick is what we shall call “Gaussian tapering”. For the Yoshida
jet, the slow convergence arises because the wind stress is a constant at all latitudes
(and therefore non-decaying in |y|). “Tapering” means multiplying the wind stress
by exp(−Δy2) to force exponential decay in |y|. If Δ � 1, the wind stress will
differ little from one except at high latitudes, but the Hermite series will convergence
exponentially fast.
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Boundaries generate coastalKelvinwaves, alas.However, Cane andMoore (1981)
have shown in the latitudinal geostrophy (a. k. a. “long wave” or “low frequency”)
approximation, the sum of the Kelvin mode and its boundary reflection can be calcu-
lated in analytical closed form, so Hermite expansions are needed only to calculate
the “particular solution”, which does not involve the boundaries. Consequently, the
series of papers by Cane and Sarachik have employed this artifice of the “Gaussian-
tapered” wind stress extensively: for the particular solution, any stress that decays
exponentially fast for large |y| will yield exponentially convergent Hermite series.
Although other forms of tapering could be used, the Gaussian is simple and partic-
ularly well-suited to Hermite expansions as discussed in the section on convergence
theory, Sect.A.12.

A.16 Hermite Functions on a Finite Interval

Remarkably, Hermite functions can also be applied successfully on a finite interval.
Since this is a very active research frontier, but not directly relevant to equatorial
dynamics, we leave the topic to [21–26].

A.17 Hermite–Galerkin Numerical Models

Many articles in tropical oceanography and meteorology employ Hermite series. In
TableA.4, we have collected a selection of articles that are primarily numerical, or
pay a lot of attention to numerical issues in building geophysical models.

Hermite functions have not conquered the world because the Fast Fourier
Transform (FFT) cannot be used to manipulate them with blazing speed as true
of Chebyshev polynomials and Fourier. In domains that are not the tensor-product
of one-dimensional intervals, global spectral methods can only be applied with diffi-
culty. For multiply-connected oceans, Chebyshev single-domain methods have been
replaced by Legendre polynomial spectral elements. There are no Hermite spectral
elements.

Even so, the simplicity of Hermite spectral methods and the close connec-
tions between basis functions and physics will likely ensure that Hermite number-
crunchers never entirely disappear. As reviewed in [9], Hermite functions are very
popular in plasma physics, especially for the Vlasov equation, and in quantum
mechanics, where Hermite functions are the eigenfunctions of the quantum harmonic
oscillator.
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Table A.3 Hermite Function Series
For completeness, some expansions are given in more than one way. Equations marked with CS
use the functions α2n+1 introduced by Cane and Sarachik (1976). Equations marked with A denote
the asymptotic form of the coefficients as n → ∞. Note that most expansions involve only even
degree Hermite functions (symmetric about y = 0) or odd degree Hermite functions; often the form
of coefficient is for a2n rather than an , so this is clearly marked. f (y) = ∑∞

n=0 an ψn(y) Dn(y)

denotes the usual parabolic cylinder function. The numbers α2n+1 ≡ √
2n + 1

√
(2n + 1)!/ (2n n!)

are auxiliary coefficients used extensively by Cane and Sarachik

f (y) an

exp
{
−[1/2]y2 + i

√
2by

}
an = π1/4 exp(−[1/2]b2) in bn√

n!
1 a2n = π1/4

√
2

√
(2n)!
2n n!

= π1/4
√
2 α2n+1 /

√
2n + 1 CS

∼ 1.682 (2n)−1/4 [n → ∞] A

y a2n+1 = π1/4
√

(2n+1)!
2n−1 n!

= 2π1/4 α2n+1 /
√
2n + 1 CS

= 2π1/4Λn

∼ 2.378 (2n)1/4 [n → ∞] A

exp(−b2 y2) a2n = π1/4
√
2√

1+2b2

√
(2n)!
2n n!

∣∣∣ 1−2b2

1+2b2

∣∣∣n

∼ 1.682
√
2√

1+2b2
(2n)−1/4

∣∣∣ 1−2b2

1+2b2

∣∣∣n [n →
∞] A

exp
(−[1/2][(1 − c2)/(1 + c2)]y2

)
a2n = π1/4

√
1 + c2

√
(2n)!
2n n! c2n

= π1/4
√
1 + c2 α2n+1 (2n + 1)−1/2 c2n CS

∼ √
1 + c2 n−1/4 c2n [n → ∞] A

y exp
(−[1/2][(1 − c2)/(1 + c2)]y2

)
a2n+1 = π1/4(1 + c2)3/2

√
(2n+1)!

2n+1/2 n! c2n

= π1/4 2−1/2 (1 + c2)3/2 α2n+1 c2n CS

∼ 0.8409 (1 + c2)3/2 (2n)1/4 c2n [n → ∞] A

exp(−[1/2]y2)/(b2 + y2) a2n =
(−1)nπ1/4

√
(2n)!

b exp(−[1/2]b2)2−[n+1/2] D−(2n+1)

{
b
√
2
}

∼
(−1)n 1.7724

b exp(−[1/2]b2) n1/4
exp

{−b
√
4n + 1

} [n →
∞] A

A.18 Fourier Transform

The Hermite functions are (to within a factor of i n) their own Fourier transform.
Consequently, one can sometimes easily obtain the Hermite series of a function
f (y) by calculating the Hermite expansion of its Fourier transform F(k) and then
multiplying the coefficients by i n . If we define the forward and inverse transforms
via
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Table A.4 Hermite function numerical models of the ocean and atmosphere

References Comments

Anderson [27] Time-dependent model of the tropical ocean

Tribbia [28, 29] Hough–Hermite Galerkin method

Boyd and Moore [20] Euler sequence acceleration of algebraically-converging
Hermite series with applications to oceanography

Marshall and Boyd [30] Equatorial ocean waves

Smith [31] Hermite–Galerkin model of tropical ocean

Holvorcem [32], Holvorcem and
Vianna [33, 34], Vianna and
Holvorcem [34]

Hermite Summation methods including bivariate
Green’s functions; integral equations

Tse and Chasnov [35] Hermite for vertical coordinate Convection in unstable
layer surrounded by unbounded stable layers; Fourier in
x, y

Meiron, Moore and Pullin [36] Fourier-Hermite basis for two-dimensional Stuart vortex
arrays

Majda and Khoulder [37] Atmospheric applications

Shamir and Paldor [38] Global nonlinear model exploiting that spherical
harmonics have Hermite asymptotic approximation

F(k) ≡ (2π)−1/2
∫ ∞

−∞
exp(iky) f (y)dy, (A.106)

f (y) ≡ (2π)−1/2
∫ ∞

−∞
exp(−iky) F(k) dk (A.107)

then

i n ψn(k) ≡ (2π)−1/2
∫ ∞

−∞
exp(iky) ψn(y)dy, (A.108)

Thus, the Hermite functions are, to within i n , their own Fourier transforms.
For the Hermite functions of degree 4n, i4n = 1 so thatψ4n(y) is “self-reciprocal”

with respect to the Fourier Transform. Conversely, a function which is Fourier Trans-
form self-reciprocal has a Hermite series expansion involving only the Hermite func-
tions whose degree is an integer multiple of four.

When the argument of the Hermite polynomials is changed from y to y/
√
2, the

transforms are modified as follows

1√
2π

∫ ∞

−∞
cos(ky) exp

(
− y2

2

)
H2n

(
y√
2

)
= (−1)n2nk2n exp

(
−k2

2

)
(A.109)

1√
2π

∫ ∞

−∞
sin(ky) exp

(
− y2

2

)
H2n+1

(
y√
2

)
= (−1)n2n+1/2k2n+1 exp

(
−k2

2

)

(A.110)
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These transforms are essential to the Hermite Distributed Filter (HDAF) for
accelerating slowly convergent Fourier series and Chebyshev polynomial expansions
invented by Jared Tanner [39].

A.19 Integral Representations

ψn(y) = 21+n/2

√
n! π3/4

exp([1/2]y2)
∫ ∞

−∞
exp(−t2) tn cos {2yt − (n/2)π} dt

(A.111)
Source: Abramowitz and Stegun [6], p. 785.

ψn(y) = 2n/2

√
n! π3/4

exp(−[1/2]y2)
∫ ∞

−∞
exp(−t2) (y + i t)n dt (A.112)

Source: Gradshteyn and Rhyzik (1965), p. 1033.

ψn(y) =
√

n!
i 21+n/2 π5/4

exp(−[1/2]y2)
∮

C

exp(−z2 + 2zy)

zn+1
dz (A.113)

whereC is a circle of radius a in the complex z-planewhere a is positive but otherwise
arbitrary. Source: Abramowitz and Stegun [6].



Appendix B
Expansion of the Wind-Driven Flow in Vertical
Modes

Abstract The wind-driven ocean circulation has a convergent expansion in vertical
normalmodes even though allmodes individually have zerowind stress at the surface.
This appendix explains that themismatch between homogeneousNeumannboundary
conditions on the eigenmodes and inhomogeneous boundary conditions on the series
sum does have observable consequences (the sum over the barotropic mode and the
baroclinic modes converges slowly) but not fatal consequences, which would be
non-convergence.

Why do our ideas about the ocean circulation have such a peculiarly dreamlike quality?

— Henry Stommel, title of a pamphlet published by Stommel on his own printing-press
in the 1950s, said to be highly influential among ocean theorists although never published
in another form, as noted on pp. xvi–xvii of [40].

The eigenfunctions of any Sturm–Liouville eigenproblem must satisfy homoge-
nous boundary conditions; a differential equation boundary value problem ceases
to be an eigenproblem whenever the boundary conditions and/or the differential
equation itself are inhomogeneous.

Consistent with this, the eigenfunctions of the vertical structure equation satisfy
homogeneous Neumann boundary conditions. Each baroclinic mode is stress-free.
However, thewind-driven ocean circulation is a huge and essential part of ocean flow.
Nonzero wind stress implies nonzero vertical derivative at the sea surface, directly
contradicting the property of all baroclinic modes of zero vertical derivative and
therefor zero stress at the surface. A more precise statement is the following:

Definition B.1 (Wind Stress Boundary Condition Paradox) Denote the components
of the wind stress vector at the sea surface by (τ x , τ y) and let ν denote the viscosity.
The upper boundary condition is then

uz = τ x/ν; vz = τ y/ν (B.1)

However, the eigenfunctions (baroclinic modes) of the vertical structure equation
individually satisfy no-surface-stress boundary conditions, that is, homogeneous
Neumann boundary conditions at the ocean surface:

© Springer-Verlag GmbH Germany 2018
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https://doi.org/10.1007/978-3-662-55476-0
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zm,z = 0 at z = 0 (B.2)

The paradox is: How can an infinite series of Sturm–Liouville eigenfunctions sum
to non-zero surface wind stress when the vertical derivative at the sea surface is
individually zero for each term in the series?

Obviously, it is impossible for the normal mode expansion to accurately repre-
sent the derivatives of u and v right at the surface. However, the theory of spectral
expansions shows that a mis-match between the u(z) and the expansion functions at
a single point need not prevent the expansion from converging everywhere else.

The best way to show this is through a specific example.When the static stability is
constant, the baroclinic eigenfunctions are cos(nπ z/D)where n is the vertical mode
number and D the ocean depth. (The depth-independent constant in the eigenfunction
series is the barotropic mode.) When the flow is steady and variations in the Coriolis
parameter are ignored, we obtain the classical Ekman solution

v(z) = b exp(−αz) sin(αz − π/4) (B.3)

where α and b are constants. Since our interest in this appendix is solely in the
mathematical properties of the expansion of v(z) as a Fourier cosine series, we shall
normalize by setting b = 1, D = π . Then

v(z) = (1/2)a0 +
∞∑

n=1

an cos(nz) (B.4)

where

an = (2/π)

∫ π

0
v(z) cos(nz)dz (B.5)

= 1√
2π

n

{
1

α2 + (α + n)2
− 1

α2 + (α − n)2

}
(B.6)

∼ 0.900α n−2, n → ∞ (B.7)

and where we have neglected terms from the bottom (z = −π ).
The O(n−2) convergence rate shows the heavy price that must be paid for the

mis-match between the vertical modes and the wind-driven flow: the Fourier series
converges very slowly. In a numericalmodel, onewould switch toChebyshev polyno-
mials to obtain an expansion which converges exponentially fast in n. When solving
problems via separation-of-variables in any branch of physics, however, this alge-
braic convergence with n is a common burden that must be accepted philosophically.
The reward is that we can analyze the ocean on a mode-by-mode basis instead of
having to immediately resort to three-dimensional numerical models.

FigureB.1 with α arbitrarily chosen as 3.5 show that the vertical modes expansion
most emphatically does work. In the left panel of Fig.B.1, the sum of the first 50



Appendix B: Expansion of the Wind-Driven Flow in Vertical Modes 491

-0.6 -0.4 -0.2 0

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

z

v

0 2 4

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

z

dv/dz

Fig. B.1 Left panel Comparison of the exact solution [solid line] for v(z), the component of Ekman
flow parallel to the wind stress, with the sum of the first 50 terms in its Fourier cosine series, which
is marked by black disks. Note that only the upper quarter of the ocean is shown for clarity even
though the expansion is accurate over the whole depth of the sea. Right panel same as the left except
that the first derivative is illustrated. Note the very steep slope of the Fourier series (oscillating solid
line) near z = 0, which corresponds to the surface of the ocean, and note also that the first peak
overshoots the exact derivative of v(z) (smooth solid line) by about 9%. These are the characteristic
spoor of Gibbs’ Phenomenon

vertical modes is almost indistinguishable from that of the exact Ekman flow in spite
of the mis-match of the first derivatives at the surface. The right panel shows that the
Fourier series for the first derivative also converges below the surface even though
the sum of the series is zero to all orders at z = 0 where the exact first derivative has
its largest value.

The derivative series is composed only of sine functions, and these are antisym-
metric with respect to z = 0. Consequently, the Fourier sine series for the derivative
converges to a function whose value jumps from −5 for z < 0 to +5 for z > 0.
This jump discontinuity in the first derivative, although it has only a mathematical
existence — the flow fields are always well-behaved and smooth — causes the coef-
ficients of the derivative series to decrease only as O(1/n). Near the surface z = 0,
the first peak of the derivative series overshoots the exact derivative by about 9%
— the famous Gibbs’ Phenomenon [9, 41]. As more terms are added to the series,
this 9% overshoot remains, but the first peak below the surface moves upward as N
increases, closer and closer to the surface— and the series converges more and more
accurately to u(z) at all lower depths.

The assumption of constant N 2 is poor for the actual ocean, but this is mathemat-
ically irrelevant: if we used the actual eigenfunctions of a realistic stratification, the
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Fig. B.2 Errors in the approximation of dv/dz for the same series as shown in the right
panel in the previous figure. Note that the vertical scale has been increased by a factor of
five to show the entire depth of the ocean. The dots show the errors in the unaccelerated
series. The dashed curve is the fourfold Hutton acceleration used by Moore. The thick solid
curve is the eightfold Hutton acceleration; the last eight terms of the series are weighted by
{255/256, 247/256, 219/256, 163/256, 93/256, 37/256, 9/256, 1/256}, respectively

general theory of Sturm–Liouville eigenfunctions shows that we would obtain the
same O(1/n2) convergence for the coefficients and the same Gibbs’ Phenomenon
for the first derivative near z = 0.

Series acceleration methods have been very useful for speeding up the conver-
gence of slowly-converging series as discussed inAppendixA.Acceleration schemes
weight the last k terms for some user-chosen k. Moore showed the usefulness of the
k-fold Hutton acceleration in his thesis.

In the limit that all N terms in the N -th partial sum are multiplied by accelera-
tion weights, the iterated Hutton scheme becomes the Euler acceleration [20]. The
good news is that very rapid, even exponential convergence can be recovered, but
the improvement is spatially nonuniform. This is not a flaw for the Hermite series
illustrated in Appendix A; the Hermite sums are only unaccelerated for large lat-
itude y where the equatorial beta-plane is invalid anyway. For Hermite series, the
Moore/Hutton/Euler acceleration is an unqualified success.

Unfortunately, the same is not true for eigenfunction series in depth. FigureB.2
shows that series acceleration can greatly reduce error in the depths, but there is no
improvement near the surface.

Even so, the conclusion is that in spite of the paradox of mis-matched first deriva-
tives at the surface, the expansion into vertical normal modes is a useful and success-
ful tool even for flows with non-vanishing wind stresses provided only that we are
careful to take enough terms in the expansion, and defeat the rather slow O(1/n2)

convergence through a series acceleration method.
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Vertical normalmodes in the atmosphere are verydifferent because the atmosphere
is semi-infinite, not bounded, and the impedance mismatch at the tropopause reflects
most wavelengths only weakly. Even the purely numerical use of vertical modes is
not straightforward [42–44].



Appendix C
Potential Vorticity, Streamfunction and
Nonlinear Conservation Laws

Abstract The nonlinear shallow water equations on the equatorial betaplane are
blessed with valuable conservation laws. Potential vorticity conservation, among
its other merits, justifies potential vorticity (PV) inversion but one must be careful:
the Kelvin wave has zero potential vorticity and therefore is vorticity-invisible. The
quasi-geostrophic streamfunction is replaced by an exact conservation law for the
“mass streamfunction”. Bernoulli’s Principle is useful in the theory of equatorial
modons and coherent structures. Pseudomomentum conservation has not yet seen
extensive applications.

Proofs are to mathematics what spelling (or even calligraphy) is to poetry.
— Vladimir I. Arnold in Mathematics: Frontiers and Perspectives, edited by

V.I. Arnold, M. Atiyah, P.D. Lax and B. Mazur. American Mathematical Society
(2000).

C.1 Potential Vorticity

The nonlinear shallow water equations have a number of conservation laws (Ripa
[48]).

Theorem C.1 (Potential Vorticity) The potential vorticity for the equatorial shallow
water equations is

q ≡ vx − uy + y

h
(C.1)

Denote the dissipation and/or wind stress terms in the momentum equations by
F = (F1, F2).

qt + uqx + vqy = 1

h
ẑ · curlF (C.2)

In the absence of dissipation and momentum forcing, the potential vorticity is con-
served following the motion:

© Springer-Verlag GmbH Germany 2018
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Dq/Dt = 0 (C.3)

where D/Dt = ∂t + u∂x + v∂y is the usual “total” or “particle-following” deriv-
ative. In other words, in the absence of dissipation and forcing, each blob of fluid
preserves its value of q as it moves.

For small amplitude waves, the potential vorticity deviation from its mean value
q = y is given by

q ′ = vx − uy − yφ (C.4)

Although the relative vorticity
ζ = vx − uy (C.5)

is a sum of three Hermite functions for each mode, the potential vorticity for the n-th
mode is proportional to a single Hermite function, ψn(y).

C.2 Potential Vorticity Inversion

For middle latitude dynamics, potential vorticity q is a kind of alchemical elixir.
“Potential vorticity inversion” is the jargon for deducing horizontal and vertical
velocities, pressure, temperature and density from this single enchanted field. As
shown by Hoskins, McIntyre and Robertson [45] and many sequels, the errors are
small away from the equator even for three-dimensional flow.

Unfortunately, potential vorticity inversion has a serious flaw on the equatorial
beta-plane even in the simple case of linear dynamics: the infinitesimal amplitude
Kelvin wave has zero potential vorticity. Because Rossby modes are strongly rota-
tional whereas the gravity waves are strongly divergent, but have comparatively little
vorticity, onemight legitimately hope to expand an observed distribution of linearized
q in Hermite functions and then deduce the amplitude of each Rossby mode from
this q-series under the assumption that the contributions of the gravity waves are
negligible.

The bad news is that the Kelvin wave is invisible to potential vorticity. Because
it is the lowest and simplest equatorial mode, the Kelvin wave probably is more
strongly excited and more energetic than any other equatorial mode. Thus, a purely-
q inversion scheme is doomed to failure.

However, because of its simple structure, the Kelvin wave can be estimated by
taking the inner product of ψ0(y) with the nondimensional zonal velocity and height
fields. The rest of the low-frequency motion can be inverted from the potential vor-
ticity.

Unfortunately, the poor quality of oceanic data compared tometeorological obser-
vations has discouraged Kelvin-plus-q inversion. The potential vorticity requires
derivatives of the horizontal velocity, and these are hard to obtain accurately from
noisy, sparse data.
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C.3 Mass-Weighted Streamfunction

C.3.1 General Time-Varying Flows

Two-dimensional flow is incompressible if and only if ux + vy = 0. One can then
replace the two velocities by a single quantity, the streamfunction ψ̃ , such that u =
−ψ̃y and v = ψ̃x . Unfortunately, the equation of continuity in the shallow water set
is

ht + (uh)x + (vh)y = 0 (C.6)

where h is the total depth of a column of fluid. Because the free surface (or in the
one-and-a-layer model interpretation, the thermocline) is free to move up and down,
the divergence of the horizontal velocity is usually non-zero. However, it is possible
to generalize the concept of a streamfunction as follows.

Definition C.1 (Mass-Weighted Streamfunction) The mass-weighted streamfunc-
tion for the shallow water equations is a function ψ(x, y) such that

uh = −ψy −
∫ x

ht (x ′, y) dx ′, vh = ψx (C.7)

The reason for the name is that the derivatives of the mass-weighted streamfunc-
tion do not give the horizontal velocities, but rather quantities uh and vh which give
the total mass transport in a fluid column.

Although h complicates the formulas, ψ always makes it possible to reduce the
nonlinear shallow water equations to two equations (the momentum equations) in
two unknowns (ψ, h). Unfortunately, the equatorial two-equation set is rather messy
and has not been employed in any investigations to date.

C.3.2 Streamfunction for Steadily-Traveling Waves

For the special case of waves steadily-translating at a phase speed c, however, the
mass-weighted streamfunction equations simplify to

uh = −ψy + c φ, vh = ψx [Steady-Translation Only] (C.8)

(Note that equatorially-trapped motions cannot be steadily-translating in any direc-
tion except longitude; a wave that propagates at an angle to either meridians or
latitude circles will be refracted by variations in the Coriolis parameter and there-
fore cannot merely translate; a steady north-south velocity would eventually make
the (un-refracted) disturbance a non-equatorial wave.)
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C.4 Streakfunction

For steadily-traveling waves, it is convenient to define a modified streamfunction:

Definition C.2 (Streakfunction) The streakfunction Ψ (x, y) is the streamfunction
for flow in a coordinate system moving at the phase speed c so that the traveling wave
is stationary in this reference frame. The streakfunction is defined by

Ψ ≡ ψ + cy (C.9)

or equivalently by

(u − c)h = −Ψx , vh = Ψx [Steady-Translation Only] (C.10)

The difference (u − c) is the east-west velocity in the moving reference frame.
Thus, the streakfunction allows the simple statement: themass-weighted velocities in
the moving reference frame are simply the y and x derivatives of the mass-weighted
streakfunction.

One important distinction between ψ and Ψ is that for equatorially-trapped
motions, ψ decays to zero as y → ∞ whereas Ψ asymptotes to cy, and thus is
not equatorially-confined.

The contours or isolines of the streamfunction and streakfunction are known as
“streamlines” and “streaklines”, respectively. In the moving reference frame, the
velocity vector is tangent to a streakline at every point on the streakline.

Theorem C.2 (Streakfunction Properties)

1. For a steadily-translating disturbance moving east-west at a constant phase speed
c, q-conservation is equivalent to:

(a). The Jacobian of q and Ψ is zero:

J (q, Ψ ) = 0 ⇔ −Ψy qx + Ψx qy = 0 (C.11)

(b). The potential vorticity is a function of the streakfunction only, that
is, for some function F,

q = F(Ψ ). (C.12)

2. If the disturbance is a “localized” disturbance which tends to zero at infinity, then
on “open” streaklines, that is, isolines of Ψ that extend to spatial infinity where
u, v, φ → 0,

q = Ψ

c
≡ F(Ψ ) [Open Streaklines Only] (C.13)

Boyd [46].
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As discussed in Chap. 17, at least one branch of Rossby solitary waves has q =
Ψ/c everywhere, and not merely on the exterior of the largest closed streakline.
However, there is also at least one branch of solitons where the relationship between
q and Ψ is nonlinear in the interior of the outermost closed streakline. The break in
functional form for q(Ψ ) from q = Ψ/c on the exterior to a nonlinear function of
Ψ in the interior implies that the potential vorticity is not smooth, probably with a
discontinuity in gradient on the outermost closed streakline.

The quantity B defined below is a close cousin of the usual Bernoulli function
h + (1/2)u2 + (1/2)v2. Themodified functional has some properties similar to those
of the streakfunction, though it is a different quantity.

Theorem C.3 (Modified Bernoulli Function)

1. The modified Bernoulli function

B ≡ 1

2
cy2 + φ + 1

2

([u − c]2 − c2 + v2
)

[Modified Bernoulli Function]

(C.14)
is exactly conserved following the motion for a steadily-translating disturbance
moving east-west at a constant phase speed c. B-conservation is equivalent to:

(a). The Jacobian of B and Ψ is zero:

J (B, Ψ ) = 0 ⇔ −Ψy Bx + Ψx By = 0 (C.15)

(b). The modified Bernoulli function is a function of the streakfunction
only, that is,

B = G(Ψ ) (C.16)

for some function G. (Moore and Niler [47], note that G(Ψ ) = d F/dΨ where
F(Ψ ) is the streakfunction-vorticity functional of the previous theorem [47]).

2. If the disturbance is a “localized” disturbance which tends to zero at infinity, then
on “open” streaklines, that is, isolines of Ψ that extend to spatial infinity where
u, v, φ → 0, G(Ψ ) must be quadratic

B = 1

2 c
Ψ 2 ≡ G(Ψ ) [Open Streaklines Only] (C.17)

Proofs and applications can be found in [46, 47].

C.5 The Streamfunction for Small Amplitude Traveling
Waves

For small amplitude disturbances such that uh ≈ u, vh ≈ v, the streamfunction rela-
tionships (C.8) simplify to

http://dx.doi.org/10.1007/978-3-662-55476-0_17
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u = −ψy + c φ, v = ψx [Steady-Translation Only] (C.18)

The definition of v in terms ofψ implies that the streamfunctionmust be the x-integral
of v. It follows that for a traveling wave in the n-th latitudinal mode,

ψ(x, y, t) = A(x − ct) ψn(y) (C.19)

for both gravity and Rossby waves.

v = d A(x − ct)
dx ψn(y)

By applying the recurrence relations for yψn(y) and dψn/dy, one finds — with
no approximations except for linearization about a state of rest —

u = A(x, t)

(
−dψn

dy
+ 1

1 − c2

{
−c2

dψn

dy
+ c y ψn

})
(C.20)

φ = A(x, t)

(
y ψn + 1

1 − c2

{
c2y ψn − c

dψn

dy

})
(C.21)

This can be rewritten as

u = −dψ(x, y, t)

dy
+ cφ = − 1

1 − c2
dψ(x, y, t)

dy
+ c

1

1 − c2
y ψ(x, y, t) (C.22)

φ = yψ(x, y, t) + cu = 1

1 − c2
y ψ(x, y, t) − c

1

1 − c2
dψ(x, y, t)

dy
(C.23)

These relationships apply to all species of equatorial waves, subject only to the
approximation that |A(x − ct)| � 1 so that quadratic terms in A can be ignored. If
the magnitude of the phase speed is small — which is true only for Rossby modes
— then the expressions for u and φ can be approximated as

u ≈ −A(x, t)
dψn

dy
+ O(c) = dψ(x, y, t)

dy
+ O(c) (C.24)

φ ≈ A(x, t) y ψn + O(c) = yψ(x, y, t) + O(c) (C.25)

which are the usual relationships between u and φ in quasi-geostrophic theory.
Unfortunately, the phase speed for the gravest (n = 1) Rossby mode is as large as

−1/3 for waves of large zonal scale, and this phase speed is not particularly small.
Furthermore, the streamfunction for the linearized Kelvin wave is identically zero
(just like the north-south velocity of the Kelvin mode), so the streamfunction is a
useless concept for this mode.
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Even when c isn’t small, and even for gravity waves [but not the Kelvin mode], it
is always possible in linearized wave theory to deduce u, v and φ from ψ . However,
only for small |c| are these relationships the same as in quasi-geostrophic theory.

C.6 Other Nonlinear Conservation Laws

Ripa [48] gives three additional conservation laws as follows.

Theorem C.4 (Zonal Momentum Density) The zonal momentum density per unit
mass,

M ≡ h(u − (1/2)y2) (C.26)

solves
Mt + (uM )x + (vM )y + φx + φ φx = hF1 (C.27)

where F1 denotes the sum of the wind stress and dissipation terms in the x-momentum
equation.

Theorem C.5 (Energy Density) The energy density,

E ≡ 1

2

{
hu2 + hv2 + φ2

}
(C.28)

solves

Et + {
u

(
φ + (1/2)φ2 + E

)}
x + {

v
(
φ + (1/2)φ2 + E

)}
y = (u F1 + v F2 )

(C.29)
where F1 and F2 denotes the sums of the wind stress and dissipation terms in the
x-momentum and y-momentum equations.

Theorem C.6 (Zonal Pseudomomentum) The zonal pseudomomentum,

P ≡ uφ − 1

2

(
vx − uy − yφ

)2
h

(C.30)

solves

Pt + {u (u + P)}x + {v (u + P)}y + 1

2

{
φ2 − u2 − v2

}
x

= u F1 − (
vx − uy − yφ

)
ẑ · curl(F)

(C.31)
where F = (F1, F2) is the vector of the sum of the wind stress and dissipation terms
in the x-momentum and y-momentum equations.

Conservation laws are essential to the instability criterion analyzed by Fruman
and Shepherd [49].



Glossary

Like Adam, naming the birds and the flowers

— J.J. Sylvester [of his invention of many mathematical terms]

aeroarithmomancy “Numerical prediction of weather or climate”. (From the Greek
αερo “air”, αρθμoσ , “number”, and μαντεια, “divination”.)

anasterAplanetwhich is not orbiting a star. (From theGreek “αwithout” andαστερ

“star”.) Also known as a “rogue planet”, “nomad planet”, “free-floating planet”,
“starless planet”, or “orphan planet”. Also applied to free-floating objects whose
identity (planet versus very dim brown dwarf) is uncertain.

antisymmetric If a function is such that f (x) = − f (x) for all x , it is said to be
“antisymmetric with respect to the origin” or to be of “odd parity”.

arithmurgy Synonym for “number-crunching”. (From the Greek αρθμoσ , “num-
ber”, and –εργ oσ , “working”.)

backscatter (in turbulence) Nonlinear transfer of energy from high wavenumbers
to low wavenumbers, also known as “upscaling”.

basin resonance See quasi-normal mode.

basis set The collection of functions which are used to approximate the solution of a
differential equation. The Fourier functions {1, cos(nx), sin(nx) for n = 1, 2, . . .}
and the Chebyshev polynomials {Tn(x), n = 0, 1, . . .} are two examples of basis
sets. The elements of a basis set are “basis functions”.

bell soliton A solitary wave which has a sech-like or “bell”-like shape such as the
soliton of the KdV Equation.

beyond-all-orders Catch-all term for any effect or property whose magnitude is
exponentially small in 1/ε where ε is a small parameter. Such terms as exp(−1/ε)
are smaller than εn for any finite value of n as ε → 0, and therefore cannot be
calculated by a power series expansion in ε. Beyond-all-orders effects are invisible
to power series in ε.
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beyond-all-orders perturbation theory Perturbative methods that calculate terms
which are exponentially small in 1/εwhere ε is the perturbation parameter [Synonym:
“hyperasymptotic perturbation theory”.]

bifurcation point A point where two branches of a solution u(α) cross. Synonym
is “crossing point”. For both α > α limit and α < αlimit, two different solutions exist
whichmeet at the bifurcation point.Newton’smethod fails at a bifurcation point, but it
is possible to “shoot the bifurcation point” or switch branches. (When “bifurcation” is
used in a broader sense, a “crossing point” is also called a “trans-critical bifurcation”.)

breather A class of solitary wave in which the coherent structure has a standing
wave oscillation superimposed upon its translational motion, if any. The function
u(x, t) = sech(εx) sin(ωt) has the form of a breather.

chirugery Paper-and-pencil calculations, literally “handwork”: A term popular in
medicine from the Greek χειρ, “hand”, and –εργ oσ , “working”.

cnoidal wave A spatially-periodic generalization of a solitary wave. The term was
coined by Korteweg and deVries, who showed that the KdV equation had exact
solutions that could be expressed in terms of the elliptic cosine function, whose
abbreviation is “cn”. (“-oid” is Greek for “like”, so “cnoidal” means “cn-like”.) By
extension, this term is now applied to similar steadily-translating, spatially periodic
solutions, regardless of whether these are described by the “cn” function or not.

collocation points The grid of points where the residual function must vanish. Syn-
onym for “interpolation points”.

compatibility conditions A countably infinite set of constraints on the initial con-
ditions of a time-dependent partial differential equation which are necessary for the
solution to be analytic everywhere in the space-time domain. Example: an incom-
pressible flow will be strongly singular at t = 0 if the initial condition is divergent
at some point in the fluid, and will have discontinuities (vortex sheets) at rigid walls
if the initial velocity does not satisfy the no-slip boundary condition of vanishing
at the walls. If the initial flow does not satisfy additional constraints, the flow will
be singular, but the discontinuities are postponed to higher and higher derivatives
as more and more of the infinite set of compatibility conditions are satisfied. The
constraints are different for each partial differential equation.

completeness A basis set is “complete” for a given class of functions if all func-
tions within the class can be represented to arbitrarily high accuracy as a sum of a
sufficiently large number of basis functions.

Couette flow A mean flow which varies linearly between the boundaries. “Plane
Couette” flow is the exact steady flow between two infinite plates, one stationary and
the other moving parallel to it.

cryptidAconjectured phenomenonwhich is presently supported only by speculation
or by observational evidence insufficient for refereed journal publication. (From
zoology.)
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cryptospectral An (apparently) non-spectral algorithm which incorporates spectral
features, or is a hybrid of spectral methods with others. An example is the low-order
polynomial interpolation employed as part of the semi-Lagrangian advection scheme
in many spherical harmonic weather models: because the models are dealiased, the
polynomial interpolation has near-spectral accuracy and is therefore “cryptospec-
tral”.

dipole vortex A pair of contra-rotating vortices, i. e., a cyclone and anticyclone,
functioning dynamically as a single coherent structure.

direct matrix method A non-iterative algorithm for solving a matrix equation, as
in the phrase “fast direct methods”. Examples include Gaussian elimination, Crout
reduction, Cholesky factorization, LU factorization, skyline solver, and static con-
densation.

double cnoidal wave An alternative name for the 2-polycnoidal wave, that is, a
nonlinear wave which is independent of time except for steady translation due to
two independent phase variables. In other words, u(x, t) = u(X, Y ) where X ≡
k1(x − c1t) and Y = k1(x − c1t) where k1, k2, c1 and c2.

downscaling One-way transfer of information from a global model to a higher res-
olution limited-area model; also used in a broader sense to describe energy transfer
or information transfer from large scales to small. Also called “forward scattering”.

envelope solitary wave A nonlinear wave packet which is the product of a spatially
localized function (“envelope”) that propagates at the group velocity cg together
with a sinusoidal factor (“carrier wave”) which travels at the phase velocity cp. The
function sech(x − cgt) sin(k[x − cpt]) has the structure of an envelope solitary wave
where the sech function is the envelope and the sine function is the carrier wave.

equivalent depth (i) In the one-and-a-layer model, the equivalent depth is the actual
mean thickness of the upper layer multiplied by the fractional density difference
between the two layers. (ii) With continuous stratification, Lamb’s parameter ε, a
nondimensional eigenvalue of linearized wave equations, can be converted to an
“equivalent depth” Heq via Heq = (4Ω2a2/g)ε−1 where g is the gravitational con-
stant, Ω = (2π/84000)s−1 and a is the earth’s radius.

FFT Abbreviation for Fast Fourier Transform.

fold point Synonym for limit point.

forward scatter (in turbulence) Nonlinear transfer energy from low wavenumbers
to high wavenumbers. Also called downscaling. Dominant energy cascade in turbu-
lence; see also backscatter.

geometric convergence A series whose coefficients are decreasing as

an ∼ α(n)pn ↔ α(n) exp[−n | log(p)|]) n → ∞ |p| < 1

has the property of “geometric convergence” where α(n) denotes a function that
varies algebraically with n, rather than exponentially, such as a power of n. The
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reason for the name is that the terms of a geometrically convergent series can always
be bounded by those of a geometric series, that is, by the terms of the power series
expansion of a/(b + x) for some a and b where these are constants. (All convergent
power series have geometric convergence. All Chebyshev series for functions which
have no singularities on x ∈ [−1, 1] (including the endpoints) also have geometric
convergence).

Gibbs oscillations When a discontinuous function is approximated by a spectral
series truncated at N terms, the sum of the truncated series visibly oscillates with a
wavelength which is O(1/N ). These oscillations are also called spectral ringing.

Gibbs Phenomenon When a discontinuous function is approximated by a spectral
series truncated at N terms, the sum of the truncated series overshoots the true value
of the function at the edge of the discontinuity by a fixed amount (approximately
0.089 times the height of the jump), independent of N . Gibbs Phenomenon includes
Gibbs oscillations.

Hough functions “Hough functions are the eigenfunctions, linearized about a state of
rest, of Laplace’s tidal equations, which are also labeled as the shallow water equa-
tions on the sphere. The name honors Sydney Samuel Hough, FRS (1870-1923),
whose life is described in Dyson (1923) in Hough (1897, 1898). His name is pro-
nounced “Huff”.

hydroarithmomancy Synonym for “numerical prediction of ocean flow” or “com-
putational fluid mechanics”. (From the Greek υδρo “water”, αρθμoσ , “number”,
and μαντεια, “divination”.)

hyperasymptotics A form of beyond-all-orders perturbation theory in which the
error is reduced below the superasymptotic error by appending one or more terms
of a second asymptotic expansion with different scaling assumptions than those of
the primary series. Loosely applied to all beyond-all-orders methods.

imbricate seriesA series for a spatially periodic function which is the superposition
of an infinite number of evenly spaced identical copies of a “pattern” function A(x).
It may be shown that all periodic functions have imbricate series in addition to their
Fourier expansions, and often the imbricate series converge faster. Imbricate series
may be generalized to an arbitrary number of dimensions.

implicit (time-marching) A time-integration scheme in which it is necessary to
solve a boundary-value problem to compute the solution at the new time level. The
Crank–Nicolson method (“trapezoidal rule time-marching”) is an example.

implicitly-implicitAlabel for a time-dependent partial differential equation inwhich
the time derivative is multiplied by a differential operator L so that it is necessary
to solve a boundary value problem at every time step even to apply an explicit time-
marching scheme.

infinite order convergenceA spectral series possesses the property of “infinite order
convergence” if the error decreases faster than any finite inverse power of N as N ,



Glossary 507

the number of terms in the truncated series, increases. A synonym for “exponential
convergence”.

interpolant An approximation PN−1(x) whose free parameters or coefficients are
chosen by the requirement that

f (xi ) = PN−1(xi ) i = 1, . . . , N

at a set of N grid points. The process of computing such an approximation is inter-
polation.

isola For a nonlinear equation that depends upon two parameters, α and τ , an “isola”
is a one-parameter family of solutions, parameterized by some quantity s, such that
(α(s), τ (s)) is a simple closed curve in the α − τ plane. (From Latin “insula”,
“island”, through Italian “isolato”, “isolate”.) Sometimes restricted to such a closed
contour shrunk to a single point, an isolated solution.

KdV Equation The Korteweg-deVries equation, At + a Ax + bAAx + d Axxx = 0
where a, b and d are constants that depend on both the latitudinal and baroclinic
mode numbers.

Lamb-Chaplygin dipoles. See modon.

kymology The study of waves. (From the Greek “κυμα”, “wave”).

limit point A point where a solution u(α) of a nonlinear equation curves back so
that there are two solutions for α on one side of α = α limit and no solutions on the
other side of the limit point. As the limit point is approached, du/dα → ∞. Special
methods [“pseudoarclength continuation” or “globally convergent homotopy”] are
needed to “turn the corner” and march from the lower branch through the limit point
onto the upper branch or vice versa. Synonyms are “fold point”, “turning point”, and
“saddle-node bifurcation”.

localized, spatially A label applied to a wave or wave disturbance whose amplitude
decreases rapidly as |x | → ∞.

long wave approximation See meridional geostrophy approximation.

low frequency approximation See meridional geostrophy approximation.

meridional Of or pertaining to variations in the north-south direction. Synonym for
“latitudinal”.

meridional geostropy approximation Neglect of vt in the linear shallow water
equations or neglect of all terms except yu and φx and perhaps the wind stress in the
nonlinear equations of motion. Also known as the “long wave approximation” or
“low frequency approximation”.

micropteron A weakly nonlocal solitary wave whose far field radiation is an alge-
braic, non-exponential function of the width of the core. (From the Greek μικρoσ ,
“small”, and πτερoν, “wing”.)
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MKdV Abbreviation for the Modified Korteweg-deVries equation ut + u2ux +
uxxx = 0.

modon A dipole vortex, composed of two contra-rotating vortices of equal strength,
which steadily translates as a coherent structure Also known as “Batchelor dipoles”
or more accurately, as “Lamb-Chapyglin Vortex Pairs”.

monopole vortex A spinning cylindrical column of fluid in which the vorticity [curl
of velocity] is one-signed in the vortex core.

nanopteron A weakly nonlocal solitary wave whose far field sinusoidal radiation
is an exponentially small function of the amplitude of the core. (From the Greek
νανoσ , “small”, and πτερoν, “wing”.)

NLS Abbreviation for the Nonlinear Schroedinger equation i At + (1/2)Axx ±
A|A|2 = 0. The envelope of a wave packet evolves as a solution to this equation.

optimally-truncated asymptotic series If an asymptotic series is divergent, then
for a given ε, the error decreases as more terms are added up to some Nopt (ε) and
then increases. The “optimal truncation” is to include only those terms up to and
including O(εNopt (ε)). An optimally-truncated series is said to be a superasymptotic
approximation.

parexic analysis Neologism of Cornelius Lanczos for the art of approximation;
coequal with pure analysis and numerical analysis as one of three branches of applied
mathematics in Lanczos’ thinking. (From the Greek “parexic”, “nearby”, from the
roots “para” παρα [“almost, quasi”] and “ek” εξω [“out”]. From the preface of
Applied Analysis (1956) [?], which he says is a book of “parexic analysis”.

parity A symmetry of functions such that either f (x) = f (−x) for all x (“symmet-
ric with respect to the origin”) or f (x) = − f (−x) for all x (“antisymmetric with
respect to the origin”). A symmetric function is said to be of “even parity” while an
antisymmetric function is said to be of “odd parity”.

periodic A function f (x) is “periodic” with period L if and only if

f (x + L) = f (x)

for all x .

Poiseuille flow A mean flow which is parabolic between the boundaries. “Circular
Poiseuille” flow is the flow in a pipe; the mean velocity is a quadratic function of
radius. “Plane Poiseuille” flow is the flow between two infinite, stationary parallel
plates, driven by a pressure gradient parallel to the plates.

pseudospectral An algorithm which uses interpolation of the residual function to
determine the coefficients of a spectral series that approximates the solution to a
differential or integral equation. Synonyms are “orthogonal collocation”, “discrete
ordinates” and “method of selected points”.
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quasi-normalmodeA solution to the inviscid shallowwater wave equations is a true
normal mode if it oscillates forever. A solution is a quasi-normal mode if it decays
by irreversibly radiating energy out of the equatorial region to higher latitudes so
slowly that the decay time scale is large compared to the period of oscillation. Also
called “basin resonance”.

residual function When an approximate solution uN is substituted into a differen-
tial, integral, or matrix equation, the result is the residual function, usually denoted
R(x; a0, a1, . . . , aN ). The residual functionwould be identically zero if the approx-
imate solution were exact.

roninA perpetual postdoc, a scientist lacking a tenure-track or civil service position.
(Japanese for a samurai who lacks a feudal lord, a very deplorable state.)

Rule of Many Names Although it is exasperating that the same thing may have
different names in different fields, the importance and breadth of a concept, species
or discovery can be measured by the number of times it has been independently
discovered and named.

semi-implicit (time-marching) A time-integration method that treats some terms
implicitly and others explicitly. Such algorithms are very common in hydrodynamics
where diffusion is treated implicitly but the nonlinear advection is explicit; this avoids
inverting large systems of nonlinear algebraic equations at each time step. Outside
of geophysics, usually called implicit-explicit (IMEX).

separableAn adjective applied to a partial differential (PDE) equationwhich denotes
that the PDE can be split into a sequence of ordinary differential equations including
Sturm–Liouville eigenproblems. The procedure for reducing a PDE to ODEs is the
“method of separation of variables”.

skew-symmetric A matrix A is skew-symmetric if and only if its tranpose is its
negative, that is, AT = −A. All eigenvalues of a skew-symmetric matrix are pure
imaginary or zero. Similarly, an operator is skew-symmetric if its adjoint is its neg-
ative; it, too, has pure imaginary eigenvalues.

silverback A senior professor or scientist. From anthropology where the label was
first applied to senior members of a troop of primates, later extended from chim-
panzees to anthropologits.

sparse matrix A matrix whose elements are mostly zero. The opposite of a dense
or full matrix.

spectral (i) A catch-all term for all methods (including pseudospectral techniques)
which expand the unknown as a series of global, infinitely differentiable expan-
sion functions. (ii) In a narrower sense, it denotes those algorithms that use only
the expansion functions and their integrals and recurrence relations (as opposed to
pseudospectral methods, which need the values of the functions on a grid of inter-
polation points).

spectral blocking The (spurious) accumulation of energy at or near the smallest
resolved scales. Common in nonlinear hydrodynamics; also arises when the CFL
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limit is violated only for the shortest resolvable scales. The signature of spectral
blocking is that the graph of log |an| versus degree n rises instead of falls with n near
n = N , the truncation limit. The usual remedy is to add a little dissipation which
is highly scale-selective, damping only wavenumbers or coefficients close to the
truncation limit.

sponge layer A common strategy for computing flow in an unbounded domain is to
impose a boundary at large but finite distance L (“domain truncation”). To absorb
waves near the artificial barrier and thus prevent spurious reflections from corrupting
the solution everywhere, a large artificial viscosity is often added in the neighborhood
of the artificial boundary. The regions of large damping are called “sponge layers”
because they absorb the waves.

subcritical bifurcationAbifurcation inwhich the flow is unstable to finite amplitude
perturbations for smaller values of a parameter, such as the Reynolds number Re,
than the stability boundary of infinitesimal amplitude perturbations.

supercritical bifurcationAbifurcation in which the stability boundary in parameter
space is the stability of infinitesimal amplitude perturbations.

superasymptotic error If an asymptotic series is divergent, then for a given ε, the
error decreases as more terms are added up to some Nopt (ε) and then increases. If the
error of optimally-truncated series, broken off at Nopt (ε) is an exponential function
of 1/ε, such as exp(−q/εr ) where q and r are positive constants – the usual case —
the optimally-truncated series is said to be a superasymptotic approximation.

weakly nonlocal solitary wave A steadily-translating, finite amplitude wave that
decays to a small amplitude oscillation (rather to zero) as one moves away from the
core of the disturbance, or that decays by never-ceasing radiation of small amplitude
waves whose phase speed matches that of the coherent structure.

zonal Synonym for “longitudinal”, adjective pertaining to the east-west direction.
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A
Approximations

flat ocean bottom, 22
hydrostatic, 17
incompressibility, 17
linearity, 18
long wave, 73
neglect of horizontal viscosity, 17
no stress at sea bottom, 22
rigid lid, 21
special form for mixing, 19
temperature=mean surface temperature,
21

time-independent bottom temperature,
22

B
Baroclinic modes, 30, 31
Barotropic mode, 30
Bernoulli function,modified

conservation theorem, 499
Beyond-all-orders perturbation theory, 301–

302, 306–308
Bjerknes balance, 229
Bound on Hermite Functions Theorem, 474
Burgers Eq., Inviscid, 344–349

C
Cnoidal/Corner Wave/Breaking Scenario,

357
Coastal/equatorial analogies, 87
Coastal Kelvin wave, 100
Coastally-trapped waves, 88, 92
Continuous spectrum, 311
Corner waves, 356–359

Critical latitude, see critical latitude
Critical surface

definition, 274

D
Deep internal jets, 7

and inertial instability, 286–294
and stratospheric Pancake Instabilities,
286

Definitions
algebraic order of convergence, 477
basin resonance, 117
cnoidal wave, 335
corner wave, 356
cryptid, 371
equatorial Gamma-plane approximation,
289

infinite order convergence, 477
long wave/short wave resonance, 437
nonnormal matrix, 322
normal matrix, 322
order of real axis decay, 476, 477
plane Couette flow, 312
plane Poiseuille flow, 312
quasi-normal modes, 117
second harmonic resonance, 434
streakfunctions, 498
subcritical bifurcation, 313
triad resonance conditions, 451
wind stress boundary condition paradox,
489

Dispersion relations
analytical approximations, 49
exact solution to cubic eq., 45
series, 50

Dynamical equator, 291
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E
Ekman balance, 229, 240
Elliptic functions, 416–417

explicit resonant triad solutions, 443
lemniscate cse, 449
triad resonance, 445

El Nino/ENSO, 8–9
Equator,dynamical, see dynamical equator
Equatorial beta-plane

definition, 16
relationship to sphere, 65

Equatorial Undercurrent (EUC), 3
Charney,Charney & Spiegel models,
213, 216

Fofonoff and Montgomery model, 210
Hidaka (1961) and Gill models, 214
Stommel model, 212
unstratified models, 209–221

Equivalent depth
definition, 27, 505

Euler acceleration, 202
of Hermite function series, 480
of vertical mode series, 492

G
Gamma-plane approximation, 290–293

definition, 289
Mixed Kelvin-inertial instability, 293

Glossary, 503
Gulf of Guinea upwelling, 9

H
Hermite functions

analytic series solutions to ODEs, 200
asymptotic approximation, 474
bound: |ψn(y)| ≤ 0.82, 474
companion matrix, 471
convergence theory, 476
definition by 3-term recurrence, 465
Fourier transform, 486
Gaussian quadrature, 473
Hermite-Galerkin numerical models,
485

Hermite series with explicit, analytic
coefficients, 485

Hille’s width-of-convergence strip theo-
rem, 478

integra representations of, 488
integrals, 468
normalization factors, 466
raising & lowering operators, 467
rate-of-convergence theorem, 478, 479

series acceleration, 480
symmetry-preserving recurrences, 469
truncation error theorem, 474
unnormalized [integer coefficients], 470
zeros of Hermite function, 472
zeros of Hermite series, 471

Hough functions, 55
Hough-Hermite functions, 35–65

as initialization method, 61
as orthonormal basis functions, 54

Hough, S. S., FRS, 55
Hutton series acceleration, 202, 491
Hyperasymptotics, see beyond-all-orders

perturbation theory

I
Imbricate series, 381
Inertial instability, 286–294

dynamical equator, 291
Instability

Kelvin wave, 297–308
beyond-all-orders-perturbation the-

ory, 301
Hermite-Pade approximants, 302
numerical methods, 302
optical theorem, 298
small zonal wavenumber, 305

nonmodal, 311–326
Checkerboard solution, 318
Dandelion Strategy, 320
Orr solution, 314
tropics, 323–325
Venetian blind effect, 315

sideband, 418
Integrable wave equation, 342
Inverse scattering method, 342
Island scattering, 132

K
Kelvin solitary waves, 352
Kelvin waves

coastal, 100
frontogenesis, 344–352
nonlinear, 344–355

Korteweg-deVries Eq. (KdV Eq.)
calculating solitons as Chroedingeer Eq.
bound states, 377

cnoidal wave, 380
reduction to canonical form, 371
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L
Lamb’s parameter

definition, 27
Lemniscate cnoidal wave, 383
Long wave approximation

and Kelvin waves, 72
boundary conditions, 75
definition, 71
error analysis, 74
initial value problem, 77–78

Long wave/short wave resonance, 437–440
and poles in Landau constant ofNLSEq.,
426, 439

coupled bell and envelope solitons, 438
LowOrder Spectral Truncation (LOST), 343

M
Mean currents

McPhaden’s stratified model, 242, 245
stratfied models, 248
Surface Countercurrents (SSCC), 242
unstratified models, 209–221

Meridional geostrophy approximation, see
long wave approximation

Method of images (to solve PDEs), 79
Mixed Kelvin-Inertial Instability, 293
Mixed Rossby-gravity wave

definition, 53
Monsoons, 5
Moore’s trick, see Hutton series acceleration
Multiple scales perturbation theory, 359–363

derivation of group velocity, 339
dimensional reduction, 331

N
Nondimensionalization, 32
Nonlinear Schroedinger Eq. (NLS Eq.),

405–406, 409–431
breather solitary waves, 417
defocusing case, 413
derivation from KdV Eq., 409
derivation of KdV from NLS, 424
dilation invariance, 412
dnoidal & cnoidal waves, 416
envelope solitons, 415
FPU Recurrence, 418
Landau constant poles and resonance,
425

multiple solitons, 417
numerical illustrations, 427
plane wave, 414
sideband instability, 418

Nonlinear superposition principle, 381
Normal modes

Hough-Hermite functions, 35
North Equatorial Counter-Current (NECC),

3
North Equatorial Current (NEC), 3

O
One-and-a-half-layer model, 30
One-Dimensional Advection Eq. (ODA),

344–349
Optical theorem, 299
Orr solution for wave linearized about linear

shear, 314

P
Polycnoidal waves, 342
Potential vorticity

conservation theorem, 495
inversion, 496

Prolate spheroidal functions, 65
Pseudo-Ekman balance, 229
Pseudomomentum conservation theorem,

501

Q
Quasi-geostrophy, 69
Quasi-normal modes, 115–132
Quotations

Acquinas, St. Thomas, 273
Arnold,V. I., 495
Bender, C. and Orszag, S., 405
Boyd, John P., 161
Dickinson, Robert E., 278
Fisher, A. and Ulam, S., 329
Fresnel, Augustin, 141
Griffiths, Stephen D., 285
Hua, Moore and Le Genil, 285
Kepler, Johannes, 35
Lamb, Sir Horace, 15
Lax, Peter, 1
Nash, Ogden, 320
Newman, Blessed John Henry Cardinal,
249

Orr, W. McF., 311
Polanyi, John, 69
Rota, Gian-Carlo, 297
Schramm, David, 87
Stommel, Henry, 489
Thompson, Philip D., 105
Trefethen, L. N., 465
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Turner, Michael S., 191
Wunsch, Carl, 141

R
Ray-tracing, 92, 100
Reductive perturbation theory

see multiple scales perturbation theory
331

Reflections from boundaries, 105–136
Eastern boundary, 80, 111, 112
in long wave approx., 79, 114
wave scattering by islands, 132
Yoshida jet, 168

Resonant triads
second harmonic resonance, 437

Rossby waves
modons, 364
propagation mechanism, 102
topographic, 102

S
Separation of variables, 23–27
Sideband instability, 418
Solitary waves

elastic collisions, 378
envelope soliton, 338, 415–416
equatorial modons, 364–368

eastward, 370
Kelvin solitons, 352
long wave/short wave resonance, 438
mixed cubic-and-quadratic nonlinerity,
363

Modified Korteweg-deVries Eq.(MKdV
Eq.), 363

NLS breathers, 417
nonlinear superposition principle, 381
Regularized LongWave Eq. (RLW), 368
relationship with cnoidal waves, 381–
384

Rossby, 359
three space dimensions, 333

Somali current, 5
South Equatorial Current (SEC), 3
Streakfunction properties theorem, 498
Streamfunction,mass-weighted

general time-varying flows, 497
streakfunction, 498

Surface Countercurrents (SSCC), 242
Sverdrup balance, 230, 233
Symmetry

latitudinal symmety, 42
longitudinal parity, 40

T
Theorems

approximate dispersion relations, 49
bound on Hermite functions, 474
explicit triad elliptic function solution,
443

generalized parabolic cylinder equation,
289

growth of the checkerboard solution, 318
Hermite companion matrix, 471
Hermite rate-of-convergence, 478
Hermite truncation error, 474
Hille’s Hermite width-of-convergence
strip, 478

Hough-Hermite orthogonality, 56
KdV reduction to canonical form, 371
long wave/Meridional Geostrophy
approximation, 71

modified Bernoulli function conserva-
tion theorem, 499

optical theorems, 299
Orr solution in unbounded domain, 314
potential vorticity conservation, 495
ratio of meridional kinetic energy to
zonal kinetic energy, 64

reduction of NLS eq. to canonical form,
412

streakfunction properties, 498
streamfunction rotation, 316
triad invariants, 441
triad mode number selection, 453
zonal moementum density, 501
zonal pseudomomentum, 501

Thermocline
definition, 1
seasonal see sw, 10

Timescale ratios of Rossby and gravity
waves, 50

Timescale separation
Rossby vs. gravity, 77

Topographic Rossby waves, 102
Triad resonance, 431–434, 440–454

analogy with football, 448
general explicit solution, 443
lemniscate case, 449
limitations of triad theory, 454
linearized instability theory, 445
mode number selection, 453
solving the resonance conditions, 451

Two-layer model, 1–2, 29

U
Upwelling
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Gulf of Guinea, 9

V
Vertical beams, 249–270

Kelvin beams, 267–270
Slinky physics, 251

Vertical modes
and viscosity, 19, 244
Bjerknes balance, 229
Ekman balance, 229, 240
Gibbs’ Phenomenon, 492
pseudo-Ekman balance, 229
series acceleration, 489
slow convergence of series of, 492
stratified flow models, 226
sverdrup balance, 230, 233
Yoshida balance, 241

Vertical structure equation, 24

W
Waves

neutral in mean shear
latitudinal shear, 274–276

multiple scales perturbation theory,
278–281
numerical studies, 276–278

Wind-driven equatorial flow
Atlantic-Pacific differences, 158
impulsive forcing, 161–190
multiple reflections (“ringing”), 156
periodic forcing, 141–159
spin-up, 179–190
Sverdrup flow, 177

Wind stress boundary condition paradox,
489

Y
Yoshida balance, 241
Yoshida jet, 191–209

analytic infinite series solution, 194
exact solution in Bessel functions, 204
summary, 221
surface Ekman transport, 221
with boundaries, 168

Z
Zonal momentum density theorem, 501
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