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Preface

This book is devoted to the construction of a deductive theory of the
electron, starting from first principles and using a single mathematical 
tool, geometric analysis. Its purpose is to present a comprehensive the-
ory of the electron to that stage at which connection is made with the 
main approaches to the study of the electron in physics, in such a form 
that, once those have been derived anew, the reader can use them for
particular purposes. 

The electron has come, in the first century after its discovery, to be a 
fundamental element in the analysis of physical aspects of nature. It is 
at the basis of and gives its name to electrodynamics. Quantum theory 
is in practice modeled as a theory of the electron and its main examples 
are usually related to the behavior of the electron. Quantum electrody-
namics is the starting point for the development of the standard model 
in elementary particle physics. Even in general relativity the electron 
is an acceptable test particle (although the universality of general rel-
ativity makes almost any physical object an acceptable test particle). 
Therefore a book on the theory of the electron belongs to the melting
pot of physics (to use a concept of Professor P. O. Löwdin). 

The book is therefore directed to two types of audiences. Primarily 
to theoretical physicists not only in the field of electron physics but also 
in the more general fields of quantum mechanics, of elementary parti-
cle physics, and of general relativity. Of course, theoretical chemists
and quantum chemists are de facto involved in this branch of theoret- 
ical physics. The secondary audience is mathematicians in the field of 
geometric analysis, as they are always observing the applications of the 
field. The book is written, and in fact originated amongst, for an au-
dience of graduate students in the subjects mentioned in the paragraph 
above. Nevertheless, it presents a new, comprehensive, fundamental ap-
proach to the theory of matter, and as such it is relevant to scientists

xi



xii THEORY OF THE ELECTRON

working in theoretical physics or analyzing theoretical physics. In this 
sense the book has kept the structure of a paper, suitable for this au-
dience in mathematical physics, where physical reasoning is given more 
space than usual. 

In the introduction the methodology is described. In Chapter 2 the 
concept of space–time–action relativity theory is presented in a form 
suitable for this book and in Chapter 3 the mathematical structures 
which describe action are analyzed. Chapters 4, 5 and 6 deal with the 
theory of the electron in a series of aspects in which the geometrical 
analysis is more relevant. Finally, in Chapter 7 we present the form of 
geometrical analysis which was used in the book, we felt this was needed 
because of the broad range of topics which were covered and because of 
the range of mathematical structures which are implicitly or explicitly 
included.

We close this preface with a philosophical and methodological remark. 
The theory of the electron developed in this book is based in two main 
theoretical considerations: on the nature of a scientific theory; and on 
the elements to describe nature. Additionally, in order to construct. a 
mathematical theory a series of postulates about the geometry relating 
the elements to describe nature and its relations are supplied. In the 
first chapter we state that the theory to be presented has as its basic 
purpose the description of what can be observed, inferred, related and 
predicted to be observed within the fundamental limitations of the exper-
imental and theoretical purposes of science. We are not going beyond 
these limitations in any sense. This includes that we do not consider 
possibilities like trying to derive the fundamental concepts from other 
structures which can be supposed to be more fundamental. Also we are 
not assuming any particular model of the objects of nature based on 
hitherto unobserved entities. 

About the basic elements of the physical objects and phenomena in 
nature we assume that we have three: time; space; and action density. 
The first element, time, corresponds to a primitive concept which is 
universally accepted. In a theory like the one presented in this book 
this primitive concept is defined by its mathematical properties and by 
accepting, without explaining, that for physical nature time is an ever 
growing variable for any observer. The concept of space is defined 
using the same considerations as that for time, through its mathematical 
description; this requires a set of three independent, variables to be in 
agreement with our anthropological apprehension of nature, the values 
the variables can take are considered to be as large as needed for the 
description of physical phenomena. We are not, considering boundaries or 
global topology for space, nor relations of the global boundaries or global 
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topology with the properties of the physical objects. The third element of
physical nature which is considered here is given the, not very fortunate,
name of density of action, assuming it is a one dimensional variable to be
joined to the previous four in a geometrical unity. Man, as the scientific
observer, considers that physical objects exist in space–time and, as
time is always evolving, the observer naturally selects the evolution of
the object and the evolution of the relation between the objects with
respect to time as the dynamics of nature. One common observation is 
the permanence of these objects. A more scientific observation is the 
conservation of energy, in different ‘forms’ related to the description of 
those objects. Our actual knowledge of the physical objects is that, there 
is energy involved both in the existence of the object and in its relations. 
The concept of fields in physics has also defined the existence of an energy 
related to the field. Then, because fields and objects pervade all physical 
space–time, we have to accept that physics has come to the acceptance 
of an energy distribution, non-zero, at every point of space–time. This 
concept, hitherto not thoroughly explored, is, when joined with that
of space–time, what creates the concept of action density. We have 
refrained from the idea of giving this concept a new name because we 
want to emphasize that we are not starting from new concepts or from
new relations. We are systematically analyzing the geometrical relations 
amongst these three elements in order to construct a comprehensive
theory of matter. 

Also, when distributions of action in space–time are made to cor-
respond to the physical objects, we have to conclude that the perma-
nence of these objects as time evolves is related to a set of symmetry 
constraints on that action distribution. In our theory this is a set of 
self-generating symmetry constraints when the action distribution is de-
scribed in a form suitable for dealing with the existence and interaction
between the physical objects, and with the joint evolution of the objects 
and their interactions. 

There is a number of papers in the scientific literature which propose 
mathematical models whose properties reproduce the properties of some 
specific physical object. This is an important point, in the scientific 
analysis of nature because these analogical procedures are, in general, 
a good guidance for the analysis of the physical phenomena. But when 
a general theory of matter is involved induction from specific models 
is difficult, and in all cases it has been only partially successful. Here 
we proceed in a deductive form: from general concepts to particular 
properties, using as the basic example the electron. 

JK
Vienna, July 2000
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Chapter 1

INTRODUCTION

A comprehensive geometric theory of fields of carriers of energy is for-
mulated from the basic principles of relativity theory extended to include 
action (START). Its development is compared with the geometric con- 
tent of the electron theory. Our approach contains, being a deductive 
theory, results of general relativity, of density functional theory, wave 
function quantum mechanics, the classical theory of the electron, the 
description of the electron as a lepton in elementary particles theory, 
and of the fundamentals of both electrodynamics and electroweak in-
teractions. The formalism is a geometric self-contained theory for the 
electron fields. 

In a series of papers [89]-[127] we have reviewed the geometric content 
of both the classical and the quantum theory of the electron. There we 
analyzed some apparent duplicities or discrepancies, for example in the 
description of the energy content in the classical approach to the theory 
of the electron, or when considering the electromagnetic energy of the 
electron fields and the mass content of the electron as a particle, or the 
change in energies from separated particles to the bound case. In the 
analysis of the wave mechanics approach to the theory of the electron 
we also met some puzzling double descriptions both at the level of the 
quantum mechanics formulation and, for example, facts like the spin 
of the electron described as being contained both in the electron Dirac 
field and in the electromagnetic field of the electron. The multi-vector 
approach to the analysis of the electron's quantum mechanics was also
included.

approach to the theory of the electron which could discriminate between
various possible description seems to be required. 

We mentioned that it was generally accepted that a more fundamental 

We also presented 

1



2 THEORY OF THE ELECTRON

an intermediate analysis of several points. In the present book we shall
develop such an approach from first principles and from a very basic
geometric fomulation of physical nature, using as a starting point the
concept of the physical world being described as an energy distribution
over space, which from a relativistic point of view corresponds to an ac-
tion distribution over space–time. We have already developed the basis
of this approach for describing basic structures of physics, including an
analysis of general relativity, of quantum mechanics, and of the theory
of elementary particles. Here we shall use it as a basic frame of refer-
ence for constructing a comprehensive theory of the electron. We shall
develop this theory to cover most aspects of the theory of the electron,
including those related to the theory of elementary particles and to gen-
eral relativity. By necessity we shall have to consider basic problems
related to quantum electrodynamics, to gauge theory, and to the theory
of induced mass and charges.

1. THE NATURE OF A PHYSICAL THEORY

The present approach to the theory of the electron contains an inher-
ent consideration about the purpose of mathematical physical theories.
First it should be considered that it is accepted that there is a physi-
cal reality, knoweable by the observer, which should be described in its
contents, relations and predictions for future experiments by physical
theory. A complete theory should then not pretend to describe more 
than can be observed, inferred, related and predicted to be observed, 
within the fundamental limtations of those experimental or theoretical 
processes. An additional limitation arises from the finiteness of the data 
that can be handled accurately in a quantitative theory; this is a limi- 
tation related both to the observer and to the mathematical structure 
of the theory and its computational techniques as far as the existence of 
fundamental limitations at this level have to be either avoided or clearly 
stated.

In the prediction of future observations the analysis of all possibilities 
is fundamental. A theory, such as the one presented here, based on dis-
tributions has an inherent, probabilistic structure which is mixed with 
both probabilistic considerations about the description of a given state 
and with actual probabilities of the future observations, the disentangle- 
ment, of which can only be carried out when the roles of description and 
of prediction are analyzed specifically. 

Without this separation the entangled mathematical descriptions are 
to be considered as the carriers of information waiting to be used for 
specific purpose. 
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The mathematical description used has to be compatible with the ex-
perimental knowledge of the objects and their relations. An incomplete 
knowledge, either of fundamental or of practical origin, requires the con-
sideration of all different possibilities compatible with our observations. 
This is to be both part of the fundamental structure of the theory and 
of its practical use. The theory and its mathematical structure can not 
ignore its basic purpose, the understanding of the physical observations 
in terms of basic concepts and prediction of possible observations. 

From the considerations in this book Quantum Theory is basically 
the theoretical structure needed for the description of the distribution 
of energy amongst carriers. It is holistic by construction, in as far as all 
energy carriers and all forms of energy distribution per carrier have to 
be considered jointly, and also because the boundary conditions are a 
fundamental part of the description. 

Within this approach we shall consider that the best. available funda- 
mental description of matter is the one obtained by the use of relativistic 
quantum mechanics to study the electron, based on the Dirac equation 
and then our development of a theory, with deductive character, should 
recover at least all the results of this model of matter. 

2.
In Chapter 2 we present space–time–action relativity theory (START) 

in a form suitable for our present purposes, in Chapter 3 a formulation 
of action density functional theory, the concepts of carriers, of auxil- 
iary action amplitude functions, as derived from START, and a general 
formulation of a theory of interacting elementary particles. Then in 
Chapter 4 we present a theory of the electron. In Chapter 5 and 6 we 
analyze concepts of our present knowledge of the theory of the electron 
from the point of view and results of the previous chapters. In Chapter 
7 we provide one particular mathematical formulation, as used in the 
text, and some relevant historical and mathematical remarks about the 
theory of the electron. This last chapter presents an approach to geo- 
metric analysis which covers, in a unifying treatment, the study of the 
START geometry and the main topics related to spinors and twistors in 
the form needed for the analysis in the book. 

damental points of view. 

THE DEVELOPMENT OF THE THEORY 

For the development of the material we start from the following fun- 

We adopt the traditional (in physics) starting point of considering 
space–time as the geometrical frame within which physical phenom- 
ena are to be described. That is, we consider Einstein's space–time 
(ST) geometry, with its physical motivations. Therefore, as our pos- 
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tulates assume, space and time are geometrically unified by consid-
ering a geometric space with a quadratic form using the velocity of 
light c as the universal and fundamental constant, to express the time 
intervals as distances. Also we start by considering that there is a
Minkowski space–time (ST) frame with a coordinate parametrization
for each observer. 

We shall consider our formulation to be relativistic, and then the 
Minkowskian ST as described by each observer will be related to 
that of a different observer in relative uniform motion by the corre-
sponding Lorentz transformation (which are then both considered as 
basic: geometric notions). That is adopting space–time relativity the-
ory (STRT) as the fundamental geometrical frame for the description 
of the physical phenomena. 

For the description of physical phenomena, with their large variety 
of forms, the only common property which can be used universally 
is that, there is an energy density distribution associated with them, 
to be described by each observer at a given moment of time, as a 
distribution of energy in space. This distribution evolves with time 
and we then have a distribution of action (A) in space–time. 

The freedom of the observer to select the description of the energy dis-
tribution usually with specific, collective, or generic names is given a 
firm status if two observers can agree on the description of the energy 
distribution even if using a different partition (gauge freedom). This 
extends STRT to a niore general framework of space–time–action 
geometric space (STA) with a quadratic form, using a universal con-
stant k0 to transform action density ‘intervals’ into equivalent dis-
tances and simultaneously using a generalized transformation group 
KL (including the Lorentz transformations L as a subgroup) to re-
late the description of different, observers in relative uniform motion. 
This formulates a space–time–action relativity theory (START). 

This description is generally based on the permanence of some prop-
erties which characterize these energy carriers. An energy carrier is 
then an acceptable selection for the description as far as the carrier 
has some permanence, malting it an acceptable description. Crudely
speaking the classical carriers were objects which could be considered 
to be the same during the time that is needed for the interpretation of 
the physical phenomena: particles, droplets, rigid bodies, etc., which 
by definition had enough permanence to be considered carriers. In 
microscopic physics the carriers are molecules, atoms, nuclei, or ele-
mentary particles with the addition of elementary excitations and of 
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the photon and the weak interaction and color quanta. These carri-
ers of energy have also the required permanence, or carry at least, 
a set of conserved properties, which, when the carrier ceases to 
be an useful description, are to be found in the set of conserved prop-
erties of the carriers which are assumed to have resulted from the 
previous ones. 

In general the carriers considered to be fundamental are defined from
some asymptotic properties: the ‘free’ carriers. This is also the case in
classical physics as far as, for example, the concept of a, planet. starts 
with the definition of what would be that planet ‘free’ in space and 
then its orbital and other motions or deformations are introduced as 
modifications of the concept of the ‘free’ planet. The same is true in 
microscopic physics, where we use the concept of an isolated electron, 
nucleus, molecule, etc., as fundamental names for energy carriers and 
we keep the same basic definition when we consider a collection of 
carriers. For example, when we describe a helium atom either as a 
unit or as a composite unit of two electrons and one nucleus, assum- 
ing that in the beginning the electrons were each the same physical 
entities as two isolated electrons. There is a hierarchy of descriptions 
when the nucleus is considered as consisting of interacting baryons, 
each baryon conceived as what would be an isolated proton or an 
isolated neutron, and only when refining the dcscription the changes 
of the protons or of the neutrons would be considered. This concept, 
of carriers inherits one fundamental mathematical complication, the 
notion that for some purposes the approximation of the carrier as 
a point-like carrier can be fruitfully used, even if strictly speaking 
this is not allowed when adopting the Planck action as the minimal 
possible physical action.

But it has to be explicitly considered that there are no isolated carri-
ers nor point-like carriers. Then a fundamental theory of matter can 
not be based on these concepts or it will be biased from the begin- 
ning and will carry an insurmountable construction defect. One way 
of saying this is to accept as a basic postulate that, action can not be 
given or taken except in integer multiples of the fundamental Planck 
action constant h and, moreover, that no carrier can be isolated from 
the rest of the universe in a fundamental form, only that, the correc- 
tions to its description can be made smaller than some acceptable 
(for computational purposes) value. This last property is describable 
as the association of an analytical function with both the action and 
with the carrier fields. 
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The same properties which define the type of carriers which can be
considered as asymptotically free can also be used for giving accept-
able status to a new type of carriers which can not be isolated in
the sense above but which are useful enough because of their perma-
nence, in the sense of the permanence of their characterizing prop-
erties. The best known examples are phonons, second sound, or, at
a more fundamental level, the quark component of hadrons. None
of these carriers can exist in (even partial) isolation. Thus quarks
or elementary excitations and quasi-particles, for example composite
fermions, are acceptable carriers as far as a set of conserved properties
are associated with them.

As, from the beginning, we have adopted the ST geometry of the
space–time relativity (with the fundamental development and implica-
tions as in Poincaré (1905, 1906) and in Einstein, Lorentz, Minkowski
and Weyl (1952)) we have both the geometry of space–time and, because
in our construction energy–momentum by definition corresponds to the
tangent space of space–time in STA, we also have the geometry of the
energy–momentum tangent vectors. Our geometry then gives a direct
foundation of the use of the tangent space of space-time for the descrip-
tion of energy and momentum, provided the operators ∂m are applied
to the action distribution function a(x). We also give (using x Λ ∇x

and γµ v operating on a(x)) a geometrical meaning to angular momen-
tum, including, as we shall show, spin as a natural component of angu-
lar momentum. In fact, because of the STA geometric properties, for
a fundamental process, which in physics is a process associated with 
fundamental particles and their interaction fields, no energy–momentum, 
that is action, can be given or taken without angular momentum being 
exchanged. Then geometrically a field or a process where no angular mo-
mentum is involved must correspond to a composite field or a process 
where this quantity cancels. 

In the development of the theory we shall have to use a set of ap-
proaches. This is not related to our unique starting point but to the 
different postulates of the set of three theoretical approaches we want 
to derive from a single set of postulates. First Relativity Theory which 
considers a universal geometrical framework with test particles following 
geodesic trajectories. Second, Wave Function Quantum Theory which 
considers a (set of) particle(s) in the presence of an external potential, 
coupled through their charges (and in mutual interaction through the 
same set of charges). Third, Quantum Electrodynamics which consid-
ers a variable set of particles in interaction with quantized ‘interaction’ 
fields originated by the particles themselves or by an external collection 
of particle currents. 
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3. SOME METHODOLOGICAL
CONSIDERATIONS

There has been a large series of efforts to extend and unify the basic
theoretical structures of physics. Until recently, for several fundamental 
reasons, most approaches have studied massive (charged) particles with 
spin, where the electron is the main example. The purpose is twofold: 
first, to search for the basic underlying structure of the theory or model, 
within its different mathematical presentations in search of a common 
mathematical background; and second, the analysis of the underlying 
assumptions of each model or theory to see whether a unity of presenta- 
tion and mathematical procedures could be found by collecting together 
similar starting points or starting assumptions. 

This inductive approach has given first a classification of the main 
models for describing nature, and, second, a clear indication that there 
is only a reduced set of concepts which can be used in all cases. Sur-
prisingly, they are already encountered in classical physics, modified by 
two main concepts: a) that of a geometrical unity of space and time
through the use of a universal constant (the velocity of light c) and the
definition of a space–time geometry; and b) the fundamental concept
that all physical phenomena could be, in a fundamental form, described 
by the action associated with them, including the basic principle that 
action could only be given or taken away from a system as a multiple of
a fundamental universal unit of action (the Planck constant h). In both
cases the constants are not adimensional, that is they are not universal
numbers.

We present here a different approach, that of creating a theory with
a deductive character, from which the models and theories, which have
shown their utility in their present form, should be derived, from more
fundamental principles. The derived theories are also bounded by the
common analysis presented here and then, by necessity, interrelated and
enlarged. The fact that the theory here developed relates the basic
structures of physics is in itself a major advantage; moreover, we give
a firm theoretical structure to present theories and models. This is
important even if we are referring to theories and models which hitherto
have been given acceptable status both by their universality and by their
empirical success. 

We consider for the purpose of our analysis in this hook the following
basic structures which use concepts of, but go beyond, classical physics.

The Theory of Relativity which presents a geometrization, basically 
for the relation between observers, and a universal geometrical for-
mulation of gravitation. Despite the great success of restricted and 
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general relativity, it has not usefully been extended to include phe-
nomena like the electromagnetic, weak, and color forces, even if a 
large number of papers can be found in the literature where these 
cases are studied. 

Wave Function Quantum Mechanics, as applied to any collection of
matter fields with an assumed interparticle interaction or external 
potential, accepting that it can be used to describe most physical 
phenomena in atomic, molecular and condensed matter physics.

Quantum Electrodynamics has successfully described physical phe-
nomena in which the exchange of quanta of action is explicitly in-
volved. This approach has been successfully extended to the ex-
perimentally well tested standard model of elementary particles and 
their interactions. Particles and interactions fields, in this context,
are characterized by a set of conserved quantities. Quantum Elec-
trodynamics is related to Wave Function Quantum Mechanics but
structurally different. 

These three great structures of physics seem, each, to be possible start-
ing points for describing most of the physical phenomena which can be 
observed in the laboratory, and yet they are not in fact interchangeable 
and each has a well defined domain of applications.

Then our present theory of the electron, because both the ubiquitous 
presence of the electron field and the almost unlimited possibility of
using electrons directly or indirectly to measure, produce, or directly 
enter into a physical process, should be comprehensive and possess the 
basic characteristic of a scientific method based theory in physics: 

.— It should be very clear in the definition of its basic principles, basic 
mathematical structures and the rules for proceeding; 

.— It should allow the subdivision of the study of physical phenom-
ena into tractable parts with a clear definition of the purpose and the
limitations of these parts; 

.— On the other hand, it should be simple enough for its application to 
obtain, first, the basic relations, and, afterwards, the detailed practical 
description of physical phenomena;

.— Finally, it should be comprehensive, and we should then be able 
to derive the principles and limitations of all three basic mathemati- 
cal structures: general relativity, quantum mechanics, and the standard 
model, with a minimum of additional concepts, the ones which define 
the purpose of the derived theories. 

As these three main structures will be derived, in our approach, from 
basic principles the relation between the structures should also be clearly 



INTRODUCTION 9

presentable. The presentation includes the possibility of exploring what 
are the limitations in one approach which make it difficult to describe 
phenomena normally explained within the other approaches. 

We have selected as our basic concepts those of space (S), of time 
(T) and of action (A). This last selection is not the typical approach; 
even if in fact, almost any mathematical formulation in physics can be 
recast in terms of an action (or at least as an effective action called 
a Lagrangian) and then the requirement of the extreme value of this 
action in a given space–time domain takes the role of the guiding prin-
ciple. Most of the presentations do not consider action to be the basic 
variable but an auxiliary variable which is constructed from other in a 
sense, more basic quantities. The selection of these three fundamental 
concepts (STA) contains an implicit, geometrical, set of additional con-
cepts: the rate of change for a given physical system or subsystem of 
each one of the variables with respect to the other. Then three rates of
change are related to space and time and joined into a velocity vector or, 
through a parametrization, to a space–time four vector. Also four rates 
of change are related to the action of and its dependence on space-
time and joined into an energy momentum vector. One more vector is in 
fact implicit in the analysis, the current as a space–time vector, which 
is related to our concept, of the permanence of some physical entities 
(characterized by a set of parameters) in a space–time interval in such 
a way that the current describes the permanence of a set of parameters. 

From the considerations of the previous paragraph we immediately 
arrive at the basic concept that physical phenomena are associated with 
structures in a space–time–action geometry such that physical entities 
are described by distributions of currents in this geometry. As simple 
as this starting point is, it is nevertheless not easy to be considered a 
basic and sufficient starting point for the purpose stated above. Besides 
action not being traditionally a basic concept, and then energy and mo-
mentum not being traditionally considered as the space–time description 
of an action distribution, the concept of currents is also not considered 
to be a basic quantity as in general it is thought to correspond to a 
way of describing the behavior of the, otherwise undefinable, assumed 
physical entities. These physical entities are theoretically describcd by
the permanence of some set of parametrized properties in a space–time 
interval.

An additional fundamental principle gives its basic status to action: 
the principle that action can not be given or taken away from a system 
if it is not in multiples of the Planck constant h. Action is then not only 
the quantity that can be defined as an invariant for a given physical 
system, in a domain in space–time, independently of the state of motion 
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of the observer, but also the variable required by Planck’s principle,
which is the origin of quantum mechanics and quantum electrodynamics, 
to be unambiguously introduced into the theoretical framework. As 
action can only change in multiples of h the actual action related to 
a physical phenomena can not change continuously, therefore we can 
only describe continuous exchange of action between arbitrary selected 
parts of a system, with given arbitrary amounts of action allocated to 
each part. This continuous change of description will be accounted for 
within the theory and will be called ‘gauge freedom’. Otherwise actual
changes of action should always be an integer number of units of the 
action constant h. A physical system is by definition contained in a 
spacial volume and defined, with dynamic changes, for a characteristic 
length of time. 

Action will be described in STA, considering derivatives ∂A/∂xµ =
pµ, as the product of an intensive factor (energy-momentum pµ, µ =
0, 1, 2, 3) multiplied by an extensive factor (characteristic time or char-
acteristic distance) for each elementary physical entity which is chosen 
as a basis for description. As we have said above, the selection of the 
description should be open to the needs of the observer and then these 
quantities will depend on its selection. This will require that besides 
the principle of gauge freedom for the description we require a Prin-
ciple of Acceptable Choice of Description, that is, the choice of 
descriptions in terms of carriers and energy–momentum contributions 
per carrier which allow the observer to define the action distribution 
among the fundamental entities. As the definition of these fundamental 
entities is a form of describing the partition and distribution in space-
time of energy and momentum these fundamental entities will be called 
carriers, more precisely they should be called energy–momentum car-
riers. A carrier is otherwise characterized by a set of some conserved 
quantities. The intensive factors and the set of conserved properties are, 
in fact, the quantities guiding the more useful, acceptable, definition of 
carriers. This point will be discussed at some length. This distinction of 
intensive and extensive factors will also guide the structure of the equa-
tions. For example, when, for a given observer, a particular value of the 
time coordinate is considered, only intensive quantities can be related by 
the equations. Conversely, when the set of extensive quantities (space, 
time and action intervals) are directly considered, as in general relativity, 
the intensive quantities can only appear as the value they would have at 
given space–time–action points, and as a result the basic description is 
given in terms of a purely geometrical structure relating the extensive 
quantities. In both cases stationary state systems are privileged because 
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of their easier description and the permanence of the relations amongst 
the intensive quantities. 

The development of the theory for the electron will follow this scheme 
in such a form to obtain a comprehensive theory: 

SPACE + T I M E + ACTION

+

FUNDAMENTAL PRINCIPLES 

and

POSTULATES

START GEOMETRY 

General Relativity Quantum Mechanics Standard Model

In this program the principles refer to the existence of an unified ge-
ometry for space, time and action. The postulates, to the geometrical 
union of the manifold of those variables through the use of two universal 
constants c and K0. The geometry, we have called START, to that of 
the quadratic space which is obtained. Two additional principles intro-
duce the unit of action h in relation to the amount of action that can be 
given or taken from a system (usually described as energy and angular 
momentum being exchanged) and to a freedom of description of matter 
within START. The fact that the electron is taken as the fundamental 
concept is related to the particular conclusion that there should be a 
fundamental matter field for which the descriptions are more directly 
related and which can be described in the three structures we shall ex-
amine: General Relativity, Quantum Mechanics and Standard Model. A 
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constant with units of mass m0 = 1/ (ck0 ) can be defined in this geom-
etry which is the natural mass constant for this special matter field. m0

is then a relation of constants which defines this field to be fundamental, 
in our case it is immediately identified with the electron. Otherwise the 
title and the subtitle of the book could be interchanged and we could 
consider that we are proposing a fundamental theory of matter which by 
construction defines a basic carrier: the electron. The concept of carrier 
of action or of carrier of energy has been mentioned above and will be 
discussed several times. For a theory of matter, we have to define sets of 
carriers: independent carriers, interacting carriers, composite carriers, 
and elementary carriers. We shall find that the elementary carriers can 
correspond to irreducible representations of the solutions of the basic 
equations, or correspond to reducible representations. The electron will 
be presented as an elementary interacting carrier corresponding to an 
irreducible representation.



Chapter 2

SPACE–TIME–ACTION
RELATIVITY THEORY 

Our basic and more fundamental idea is that the physical world can 
be described as a distribution of action density in space–time. The 
properties of matter fields and their interaction are represented by the 
mathematical properties of this distribution. Action is considered as a 
fundamental variable, not as a quantity resulting from some calculation. 

In [125, 127] we analyzed a classical theory of fields in (complex) 
space–time geometry and arrived to the conclusion that this geometry 
corresponds to a unified space–time–action geometry. We started from 
three basic assumptions: a) The use of space–time as a basic frame 
of reference; b) The introduction of physical phenomena as an action 
density function over space–time; and c) The geometrical (vectorial) 
union of space, time, and action in a quadratic space where a relativistic 
condition ( dS)2 = 0 defines both kinematics and dynamics. The basic 
principles of this Space–Time–Action Relativity Theory (START) were 
formulated and related to our present knowledge of the basic structures 
of physics. We present here these concepts in a form directly useful for 
our purpose of developing a geometric theory of the electron. 

1. MOTIVATION FOR THE USE OF 
SPACE–TIME–ACTION GEOMETRY 

For the construction of the vector representation of the space–time–
action geometry we should start, by first considering some properties of 
the action density dimension. We have given in Chapter 1 a motivation 
for its use, and here we consider its geometric character. 

One, fundamental, initial consideration is that the concept of phase 
space (PHS), where energy–momentum is joined to time–space, has 

13
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proved useful and even basic (for example, in classical and quantum 
statistical mechanics) for the study of matter. Its symplectic structure 
is basic in quantum mechanics and it provides the more direct form of 
introducing the quantum of action h. Our theory should contain PHS 
in a natural form. An extremely subtle property in particular, for the 
analysis of the theory of the electron is that we must be reminded that 
there exists a numerical and dimensional relationship between the fun-
damental constants: 

(2.1)

relating the electron’s electrical charge e, the unit of action h and the 
numerical value of the velocity of light c, µ e the magnetic moment of
the electron, r Compton the Compton wavelength, r0 the classical electron 
radius, m0 the electron mass, s, an axial vector, the electron spin |s| =

/2, with s = es and defining the hypothetical Dirac monopole charge
gD , which we shall call only m-charge as a reminder of its auxiliary
theoretical character. These basic constants and relations should be 
explicit, and fundamental in the geometrical structure developed

In space–time geometry, spanned by the vectors {eµ; µ = 0, 1, 2, 3}
generating a geometry GST, the constants e and c are (units system de-
pendent but otherwise) invariant, scalar quantities. In particular they 
are invariant under proper or improper Lorentz transformations. Con- 
sider also that in the basic relations of electromagnetism a moving charge 
would appear as a four current 

(2.2)

where jµ = evµ with v = υµeµ the four velocity. The Maxwell equations
would then relate j to a vector four-potential A

(2.3)

and to the (bi-vector) electromagnetic strengths

(2.4)

On the other hand, if a quantity such as the m-charge gD existed there 
should be a pseudo-scalar gD that will, when moving, originate a tri-
vector current (usually called an axial vector four-current) k

(2.5)

here. 

v
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which will, through the natural extensions of the Maxwell equations to 
magnetic currents, originate an axial vector potential 

where (2.6)

here all indices ν, λ, ρ are different from each other. Then, geometrically,
the ‘constant’ gD must have a (real or imaginary) pseudo-scalar prop-
erty, that, is, defining the geometric quantity e4 = ie0e1e2e3, gD = gDe4

which results in k and B being axial vectors and will induce bi-vector
electromagnetic fields strengths Fm of m-like current origin

(2.7)

Here, in (2.5), (2.6) and (2.7), we have used the multi-vector scalar 
product, property ( eµen + eveµ) = gµv1 with 1 the scalar unit of the
geometric algebra and gµv the metric tensor. This is the reason for
having used the symbol gD = igDe0e1e2e3 in equation (2.5) above, that
is, the m-charge strength multiplied by the (imaginary to be linearly
independent) unit pseudo-scalar ie0e1e2e3. It is to be recall that the 
electroweak interaction theory is constructed using the concept of an
(imaginary) axial current for the electron, this being fundamental for
understanding the weak interaction (in computing this axial current we 
do not use the tri-vector γµvρ in the Dirac theory but the imaginary
tri-vector iγ5γµ, then we are not using the dual of the electron current,
computed with γ µ, we use a geometrically new type of current).

The electromagnetic field strengths arc considered as complex quan-
tities whilst the currents are considered real functions. 

Geometrically in relation to (2.1), to construct a geometric; theory of
the electron there are then two possibilities, either there is some unit 
magnitude geometric factor missing or quantities related to action are 
given, in relation to space–time, (real or imaginary) pseudo-scalar prop-
erties. We should remember that spin and the Compton radius are axial 
3-D vector quantities (that is bi-vectors in space–time). The analysis 
below will show that, if considered jointly with space–time, this second 
option is the more useful identification of the geometric properties of 
the action. Otherwise, when action is considered separately it is always 
properly represented as a scalar quantity. From the point of view of
units the action constant is then, geometrically, both the constant relat-
ing energy–momentum to space–time and the key to the construction of
an unified geometry of space, time and action. The new geometry below
is derived from the introduction of an action coordinate x4 = a(x) d0/h
where a is (i times) the density of action at a given point x of space-
time, h is Planck's constant and d0 is an invariant basic length to be
determined below, basically x4 = k0a(x).
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Remark. We use the traditional indices 0,1,2,3 for time and space,
also, when convenient the isomorphism between the Dirac gamma sym-
bols with the vectors in the geometry of space–time eµ ⇒  γ µ = γ(eµ)
and, when necessary, the representation of the γ µ either by real R(4)
or by complex 4 x 4 matrices C(4). In fact a special property of the
pseudo-scalar in space–time γ 5 = γ 0γ 1γ 2γ 3 is that γ 5γ µ = –γ µγ 5 (from
γ µγ n = –γ nγ µ, µ ≠ v) and then it has the same commuting proper-
ties with the generating vectors as the generating vectors among them-
selves. The linearly independent combination e4 + iγ 5, has the same
commuting properties. The multi-vector iγ 5 = γ(e4) is then the im-
mediate candidate to introduce an additional basis vector, adding one
more dimension and, through its use, obtain the five dimensional car-
rier space spanned by the basic vectors ev, u = 0,1,2,3,4 ( identified
as e0 γ 0, e1 γ 1, e2 γ 2, e3 γ 3 and e4 ⇒ iγ 5 ) with metric
guv = –diag(1, –1, –1, –1, –1). Its use allows the construction of a ge-
ometrical framework for the description of physical processes: a unified
space–time–actmion geometry GSTA, mathematically a vector space with
a quadratic form (see Chapter 7). Here we are implicitly assuming the
Majorana representation of the gamma matrices.

The product of e4 iγ5 with any element of the original space–time
Geometry GST is in the basis vector set a purely imaginary quantity
with the result that the 2(24) = 25 = 32 elements of the new (space-
time–action) geometry GSTA are equivalent to GSTA = GST ⊗ C. In the
GSTA geometry the coordinates are real numbers. This is discussed in
detail in Chapter 7.

The value of d0 we shall use below (taken from the theory of the
electron) will be d0 = rCompton = r0/2α, the Compton radius, where
r0 = e2 /m0c2, the radius that relates the mass of the electron to an
electromagnetic equivalent energy, and also r0 = µ/gDc the ratio of the
electron magnetic moment to the hypothetical Dirac m-charge. With
this choice the presentation of the theory will immediately be suitable
for the study of elementary particles. Nevertheless, we shall show that
the same units are practical in the study of gravitational interactions.
With this choice k0 = 1/m0c, a dimensional universal constant, provides
a geometric character, fundamental in the theory, to the rest mass of the

2. SPACE–TIME TO SPACE–TIME–ACTION
As stated in Chapter 1 our previous studies have followed an inductive

process, searching for and analyzing in a uniform mathematical form the
different geometrical structures in fundarriental physics. Here we directly
present a deductive type of theory.

electron m0.

⇒⇒⇒⇒

⇒
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2.1 FORMAL PRESENTATION 
The ideas developed in START (Space–Time–Action Relativity The-

ory) can be derived from the systematic use of the following principles 
and postulates.

First Principle: Constancy of the velocity of light in vacuum. In-
dependently of the state of movement of the source or of the observer
(Poincaré–Einstein Relativity [48]). 

First Postulate: There is a geometry, corresponding to space–time, 
where the First Principle is satisfied (Minkowski space–time with local 
pseudo-Euclidean structure). 

Second Principle: Constancy of the action corresponding to an
elementary physical phenomenon. Independently of the state of move-
ment of the phenomenon or of the observer. Each observer considers the 
physical entity as an amount of action A contained in a given space-time
volume Vobserver, A is a relativistic invariant. 

Second Postulate: There is a geometry corresponding to the union 
of space–time and action where the First and Second Principles are sat-
isfied (pseudo-Euclidean structure). 

Main Theorem KT: Complex Structure Theorem . The geometry 
where the Second Postulate is satisfied is a five-dimensional basis geom- 
etry, mathematically corresponding to a particular complexification of 
space–time.

Third Principle: The changes in action always occur as integer mul-
tiples of h. Equivalent to the action per cycle being an integer multiple 
of /2. (This has to be a constitutive part of the units and practical use 
of KT theorem).

The relation between a 5-dimensional geometry and the complexifica-
tion of the basis set has been briefly presented in the introduction and 
will be discussed below. 

Fourth Principle: The distribution of action in space–time corre-
sponding to a physical system is unique and any description of this 
distribution should be equally acceptable. 

Third Postulate: The equivalent acceptable descriptions of a phys- 
ical system are related by isometries and gauge transformations in the 
space–time–action geometric space corresponding to the Second Postu- 
late.

Proof of KT: We have the kinematical concept of trajectory (µ, ν =
0, 1, 2, 3) with a quadratic form 

(2.8)

ST
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generated by the dxµ and we want to include as a fifth coordinate the
dynamical concept of action and its distribution 

(2.9)

(2.10)

then write pµ = tan (µ) and join formally, defining –i2 = 1, into

to obtain from the real quadratic form 

,
(2.11)

(2.12)

(2.13)

or, in five-dimensional formulation 

where corresponds to the square of action. The basic dynamical 
equation is 

(2.14)

in a joint minimization of trajectory and action. Gravitation will re-
quire extremum (shortest) trajectories and the common procedure of 
Langrangian minimization, the minimization of action. The universal 
constant k0 expresses the action as an equivalent distance and (dx4 )2 =
(k0dA)2, with gυν = diag(–1,1, 1,1,1) defining the metric of the equiva-
lent five dimensional geometry basis vectors. Here the diagonal time-like
term g00 = –1 and the action term g44 = 1.

2.1.1

the set of basis vectors {eµ; µ = 0, 1, 2, 3; eµen = –eneµ}, such that 

ACTION DENSITY TO ACTION COORDINATE 
Consider the space–time points ( x0 = ct, c velocity of light, t time),

where an action density function ia (X) is defined as an equivalent length 

(2.15)

otherwise the amount A (x) of action in a unit space–time volume e0e1e2e3

(at X)

(2.16)

k 2
0 dA2
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representing the product of the space–time vectors by

(2.17)

combining the imaginary unit in (2.16) and the unit volume in (2.17)
define (here the notation A := B is not an equation relating A to B, it 
means that the object ( A) on the left is defined by the expression ( B)
appearing on the right) the additional basis vector 

(2.18)

is then the new basis element to go from STRT→START. This generates
the map

complex (2.19)

In general, for a set of multi-vector (functions) M = mAeA, where eA=
scalar, vector, bi-vector, tri-vector, pseudo-scalar, we have the complex-
ification

(2.20)

(2.21)

The basis multi-vectors are mapped 

and in fact the formal definition of e4 should have been written

(2.22)

with the, by construction, properties

(2.23)

This is a relativistic approach including action we have called START.
For the study of the units to be used in this unified geometry consider 

the definition 

,

(2.24)

and the relation between mass and k0 = d0/h = 4πrCompton/h = 1/m0c.
In general relativity, as analyzed below, this will imply that a unit cur-
vature of space–time in the action direction would correspond to that, 

→
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generated by an energy density proportional to the energy of the elec-
tron mass. The classical limit of the unification of action to space–time 
is obtained when K 0 → ∞ in a form similar to the classical limit, of the 
unification of space and time being obtained when c → ∞. Note that
k 0 >> c. The unification of minimal trajectories and minimal action
could also be relevant in the field of high energy physics. 

This set of principia and postulates, together with the geometric min-
imum action principle δ(dS2 ) = 0, defines the START theory. In this
approach: the physical world corresponds to a 4-dimensional surface 
in the space–time–action geometry; elementary phenomena to exchange 
of multiples of the elementary action h between distributions of action 
(provided that those exchanges preserve the local symmetry constrains); 
a creation of a pair of elementary particle fields (distributions) requires 
a vanishing sum of symmetry properties in the new fields (except for 
pre-existing constraints in the action distribution). These will be the 
guiding principles below. 

If in a specific system action is conserved, then in GSTA energy–
momentum is conserved, but overall conservation rules with local fluc-
tuations are not excluded by the formalism. 

3. THE REPRESENTATION OF THE START 
GEOMETRY

From the considerations above the fifth coordinate corresponds to the 
use of x4 to represent action density, not the accumulated action. Be-
cause action for a given amount of energy distribution in space would 
be an ever increasing function of time, even if changes local in time are 
meaningful, a natural representation could also be the use of a rate 
of change of action density over space–time. This will be distribu-
tion of energy in space moving in time. A representation closer to our 
common visualization of nature. In this representation large enough, 
stable in time, densities of energy at rest with respect to an observer 
will be seen as mass distributions. The definitions given, and that, we 
have a variable action density, allow the introduction of a series of oper-
ators for computing the dynamical quantities defined so far. First, the
energy–momentum operator p, which would then be, with the action 
units included in its definition, 

(2.25)

A more mathematical, less intuitive, representation would be that of 
the use of an auxiliary circular hypercomplex function Φ and its factor-
ization into auxiliary amplitudes to compute from it the action density 

^
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(2 .26)

where â(Φ) is the action density operator: ρ = ρ(X) is a carrier density,
γ 0 a time unit vector and i would be an appropriate multi-vector such
that i2 = –1.

The representation in (2.26) of the action density will be discussed 
in Chapter 3, it leads immediately to the concept of an auxiliary action
amplitude function and to the possibility of selecting the multi-vector
imaginary unit in relation to our third principle above. It is a fun-
damental indication that the generators of angular momentum are the 
(bi-vectors in STA) iγij and that angular momentum is expressed in the
same units as action see (2.1) above. Also has to be a multi-vector
valued function of the space-time coordinates X.

Here we can consider a fundamental concept related to our third prin-
ciple above. Because action has to be supplied or emitted in multiples of 
h, when a given energy ε0 or momentum p0 is considered a characteristic
associated time τ or distance λ are automatically defined in START:

(2.27)

from (2.25) ε0 and p0 are geometrically in the tangent space of ST and
the associated action in the e4eµ planes which, from (2.27), have sym- 
plectic structure. An area in a plane can be associated with a radius, a 
characteristic radius which should obey (2.27) in the form 

(2.28)

(2.29)

Then defining, as usual, = h/2π we can write (2.27) in the form

With the definitions in (2.26) the energy–momentum operator becomes 
the usual in Quantum Mechanics 

(2.30)

where    = γµ∂µ is the space-time gradient operator where µ = 0, 1, 2, 3.
We should remind the reader that our definitions here are the direct 
consequence of the principles above, not additional postulates. The for-
mulas (2.26) and (2.30) are a necessary starting point for characterizing 
the action distribution corresponding to our basic principles. 

The inclusion of γ 0 in (2.26) is needed to specify the observer’s frame
of reference to which the energy distribution is related as at rest. For 

a (X)
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that ‘observer’, as a reference point, time is the only evolving variable. 
With this presentation of our formalism we could recover the formulation 
of the quantum mechanics of the electron in terms of multi-vectors. See 
Chapters 3 and 5. 

4.
From our definitions we are considering two quantities: a given amount 

of action A distributed over a space–time volume VST corresponding
to an action density a(X) at point X in space–time; and second, the 
usual quantities energy dV ∂t a(X) and the corresponding momenta

dV ∂xi a(X). One of the basic relations in relativistic dynamics is the
transformation of the above quantities with respect to observers in rel-
ative motion with a relative velocity υ12.

THE KINETIC ENERGY IN START 

For observer 1 the energy can be written 

(2.31)

if by definition the energy corresponds to a mass m when we can con-
sider that for this observer that object is at rest and then no momenta 
are involved. In our formulation c2 is a universal constant, and then 
(2.31) is just a change of variables useful to make contact with standard 
approaches. From the definition 

(2.32)

we see that there is a geometrical constraint that any space variation 
of the action distribution, in the volume of integration, should be sym-
metric, for the observer in relation to which the distribution is at rest in 
order that the integral to vanish. In the case pi = 0 the whole object of 
mass m is considered at rest, independently of its internal description. 
Notice that it is not a point-like object, even if it can be considered small 
in relation to some characteristic distance. 

For an, in relative motion with respect to the first, observer 2 the same 
relations hold but this observer will anyhow determine that because the 
distribution is moving in his frame of reference there is an effective mo-
menta in the direction of the relative translation. Another change is 
that this observer will consider that the local values of the density func-
tion have increased in his frame of reference because the same amount 
of action is distributed in a smaller space–time volume. The energy for
this observer will be ε’=m’c2 = dV’∂t’ a'(X'), larger, as we shall see
below, than ε, given that in his frame of reference the derivatives have
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to be computed with respect of its own, shorter time intervals, dt’, where

(2.33)

For the observer 2 the measurement corresponding to the prime sys-
tem

(2.34)

The action A related to that physical entity is invariant 

(2.35)

because the density changes as the inverse volume 

(2.36)

but the integral is performed as the volume 

(2.37)

Then for the observer 1 in relative motion the action A corresponds to 
a smaller time ∆ t' and consequently the associated energy is m’c2 =
mc2 If the observer 1 calls the (for him at rest) energy ε
in his system ‘the mass’, 

mc2 = ε,

observer 2 concludes that in the moving system 

(2.38)

and also, because the prime system is considered in motion, he can call 
the energy ε’ the sum of the rest (mass) energy ε and the kinetic energy
εk which for the slow motion is approximated by the typical εk = mv2

term. Otherwise for the system in motion a characteristic length of the 
energy distribution has been changed from p0/h to together with
a characteristic time ε/h, → ε’/h, these quantities should be part of the
gauge-free description used in the theory. 

® with lim

®

= = 

p0' h/ ,
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Considering (2.38) again, we can write

(2.39)

and then in the low velocity approximation we can write

(2.40)

Here v will be the characteristic frequency of the Dirac equation, whereas
λ = p/h and vk will be the characteristic wavelengths and frequencies of
the Schrödinger equation as derived from START.

5. DYNAMICAL PRINCIPLES
In space–time–action geometry the main dynamical principle is that

all trajectories should be minimal. Defining the (square of the) differ-
ential (dS2) = (ds)2 – (da)2, where now gAB = diag (1, –1, –1, –1, –1),
(ds)2 = gµndxµdxn is the space–time differential and (da)2 the action dif-
ferential. We have, taking k0 → ∞, that in a first, non-united geometry,
approximation the minimal principle

(2.41)

could be separated into the kinematical principle of (general) relativity

(2.42)

and the principle of minimum action

(2.43)

Here we have defined 

(2.44)

as a modified space–time interval square which, in fact, corresponds to
considering a curved effective space–time as will be shown below. The
action interval square (da’)2 corresponds to some ‘inactive’ part of the
action in relation to a given description. 

For some phenomena, light as the main example, (2.42) and (2.43)
are separately obeyed given that (cdt)2 – (dx)2 = 0 and gµnpµxn = 0
because gµn = diag(1, –1, –1, –1) and ε = pc = hν = hc/λ. Otherwise,
the principle of minimal action is universally accepted in the formulation 
of physical principles. If (2.41) is accepted a geometrical model for mass 
appears in our theory. See Chapter 4. 
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5.1 STA TRAJECTORIES
Consider again the space–time–action (STA) space described by an 

observer’s basic flat STA geometry with local orthogonal vectors eA; A =
0, 1, 2, 3, 4; where e4 denotes the action coordinate corresponding to
gAB = diag (1, –1, –1, –1, –1). For this observer there are two types 
of trajectories to study fields: 

1) massive ( m0 parameter), that when at rest have STA interval 

, (2.45) 

which in fact defines k0 = 1/m0c in terms of m0 and c (in our case the
electron mass and the velocity of light); and

2) massless (e = hv, p = h/λ, c = λv parameters) for which x2 +

(2.46)

Here the action of one unit of action (µ = 0, 1, 2, 3) 

unit of action 

is a null valued function with the property (i = 1, 2, 3)

and

In both cases the local action density is A(x) = in space– 
time where cd is a numerical coefficient of geometrical origin (this will 
be relevant to the study of the families of elementary particles and their 
mass), ρ the normalized density of action of the carrier.

For the system we want to describe below the observer uses the 
START-Principle of Acceptable Choice formalism in a form in which 
the fields can be considered as a distribution corresponding to a ‘test’ 
carrier in the geometry induced by a ‘source’, for this purpose we use 
the solution of the equations for the STA geometry when each carrier 
in turn is described by applying the overall condition of null curvature 
RAB = 0 with 

for the observers’ frame of reference. We shall consider two approaches, 
the first one corresponding to General Relativity (next section) and the 
second corresponding to Density Functional Theory and Quantum Me-
chanics (Chapter 3). 

y2 + z2 = (ct)2 and a2 = 0 as a consequence
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5.2 GAUGE FREEDOM IN START 
In the description of the basic postulates we have, as shown in the 

KT theorem, introduced action as a complexification of space–time with 
the kinematical concept of trajectory (µ, v = 0, 1, 2, 3) with a quadratic
form

(2.47)

generated by the dxµ and the dynamical concept of action distribution 
(which in fact is introduced in a form equivalent to a fifth coordinate) 
starting from the usual basic relation 

(2.48)

writing pµ = tan Θ (µ) and formally joining into 

(2.49)

to obtain from the real quadratic form

(2.50)

a five-dimensional formulation (g µv = diag (–1, 1, 1, 1, 1) = –gAB) writ-
ten as

(2.51)

where is some equivalent interval square which corresponds to the 
square of action. The basic equation (2.50) is then 

(2.52)

where the space–time differentials dxµdxv become a factor and the f  λ 
are complex functions which should allow a gauge free description of the
action, introducing a phase factor ϕ with ϕϕ = 1

(2.53)

such that if the action is taken to consists of several contributions 

(2.54)

which defines 

k 0
2 dA2
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we can also define 

, (2.55) 

for the second term in the parenthesis of (2.53) to be 

(2.56)

with (2.54) containing the gauge freedom to describe the action. 

5.2.1 THE ELECTRON AS A GENERAL RELATIVITY 
TEST PARTICLE 

In general relativity, meant to be a comprehensive theory, the best 
known solutions are developed for the so called matter-free space and a 
test particle. We use this concept to show that (2.44) corresponds to the
description of the action distribution which agrees with the conceptual 
development of General Relativity. 

In our present theory there are two fundamental carrier structures: 
the massless fields and the massive electron field with basic relation 

(2.57)

where ∆ε is a gauge-free energy contribution and ε0 = m0c2 the energy, 
at rest relative to an observer, considered to be the mass of the carrier. 

The concept of test particle in general relativity in the Schwarzschild 
solution is compatible with the Newtonian limit for the interaction grav-
itational energy 

(2.58)

and, conceptually, with the use of the action square difference, writing 
ε = ε0 + ∆ε for large (classical limit) values of r

(2.59)

this corresponds to (da)2 – (da')2 if (da’)2 = (m0c2dt)2 also

(2.60)



,
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and substituting in (2.51) using k0 = 1/m0c and space spherically sym-
metric coordinates t, r, , φ we obtain

(2.61)

which is the Schwarzschild 1916 [168] metric in the limit of r >> MG/c2

(sometimes (2.61) is called the Eddington form [47], notice (1 – x )–1
 ≅

(1 + x), x << 1, this relation is also used below.).
It is customary to write [169]

(2.62)

or f (r) = 1 + b2 (r) and h (r) = 1 – b2(r), also for cr >> MG we obtain
the Schwarzschild relation f ≅ h–1, which can afterwards be used for all 
r in matter free space following the Einstein's definition which requires 
the curvature to be identically zero.

The result (2.61) shows that our approach provides a conceptual un-
derstanding of the role of sources carriers and test particles in general
relativity. It also shows the possibility of extending the analysis to cir-
cumstances more difficult to consider within the traditional approaches. 

Once we have obtained the Schwarzschild metric we can now find the 
curved hypersurface in START corresponding to the curved
space–time where the test particles are assumed to move. Formally we 
need to define a set of vectors eµ, µ = 0, 1, 2, 3, gµv = diag (1, –1, –1, –1),
and their reciprocal, in terms of a vierbein using the Minkowski space 
reference vectors 

For this obtain first the Fock–Ivanenko bi-vectors Ω(a) =
starting from the induced metric 

, (2.63) 

and h (r) =

θ
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and the inverse metric (both are diagonal)

(2.64)

From these two equations, it is clear how to construct an orthonormal 
system of vectors and dual vectors (in the Eddington’s representation) 

(2.65)

(2.66)

(2.67)

(2.68)

with the local vectors being 

(2.69)

(2.70)

(2.71)

Since our metric is diagonal, we can use the following relation (see Chap-
ter 7 and [169]) to compute the Fock–Ivanenko 2-vectors

(2.72)

where the index β is summed but α is not. From this one obtains

(2.73)

(2.74)

(2.75)

(2.76)
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To obtain the curvature 2-form we use its expression in terms of the 
Fock–Ivanenko 2-vectors

(2.77)

From this formula, we obtain 

(2.78)

In a similar fashion we obtain the Ricci curvature components 

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

therefore what are considered to be particular solutions of the Einstein 
equations can be directly obtained from our basic definitions. 

The extension of this analysis to the space–time regions where the 
sources are considered to be (as an action distribution) will be given in 
the next section. 

Notice that in (2.61), because of the use of k0, the test particle param-
eters have cancelled. This is the reason for this approach to be universal. 
As a result the solutions do not depend at all in the test particle consid-
ered, provided that its definition is the Einstein definition: a sufficiently 
small mass to be introduced into the system without noticeably disturb-
ing it. The action related to the intrinsic energy–momentum of the test 
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particle is ‘inactive’ in the analysis. Otherwise we could have introduced 
in (2.59), (2.60) and (2.61) other contributions to the action, but this 
can not be done in a universal form if they are of electromagnetic type 
(a factor e/m0 can not be removed). Anyhow, it is suggestive that it can
be done, new terms appear for that test particle, including cross terms
like (QM/r2) (e/m0) and others. Also in (2.61) there is a quadratic, re-
pulsive, term which can have physical significance, for distances smaller
than the ones where general relativity has been successfully tested.

The discussion above shows that one of the possible symmetries in
START is the transformation of position vectors y in START to a new
set {y = xueu; u = 0, 1, 2, 3, 4}

(2.84)

which describes the curvature of the space–time part necessary for rep-
resenting physical interactions, at the expense of defining ‘test’ carriers 
which are now considered as non-interacting amongst themselves, but 
defining the new representation (2.84) of position vectors and coordi-
nates in START. 

5.2.2 DESCRIPTION OF A SYSTEM THROUGH THE 
USE OF A TEST CARRIER 

Before passing to the next section we consider now the full system
with local energy density 

the first term corresponds to the test particle reference mass, the second 
to the interaction energy and the third M (X) c2 to the mass of the 
system we want to describe. For the purposes of the methodology of 
general relativity, from START, we use the term 
action allocated to the test particle by subtraction, from the total action
squared, of the system’s basic action (and of, by definition of test carrier, 
the carrier’s constitutive action): (εs (X) dt)2 – (ρ (X) m0c2dt)2,

(2.85)

∆a2k2
0
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the last two equalities are obtained from the particular value k0 =
1/ (m0c) we have found for this universal constant. This defines the
electron as a fundamental field in the study of matter including the 
analysis of general relativity. In (2.85) the analysis goes beyond the 
original terms, in those the nature of the test particle is not relevant to 
the definition of the curved space–time obtained from the distribution 
of neutral matter. We have two main regions for this term 

a) when r > RD with RD the largest radius for which M (X) ≠ 0, also
the mass of the system to be described M = M (X) dυ;

b) when r ≤ RD where the last two terms dominate.

Consider = (1 + b2 (r)) as above. The function b2 (r) describ-
ing the curvature is, for large r, dominated by the Schwarzschild term 
–2GM/rc2. For intermediate values, larger than RD, the second term
will also contribute. But for values r ≤ RD the third term (which in 
practice is considered as already corrected by the fourth term, even if it 
is not so) is the dominant contribution.

A formal definition 

gives

that is the derivative of this term with respect to the local flat, space 
metric tensor component coincides with the Einstein's postulate of the 
Energy–Momentum–Stress tensor Tµv being the quantity that causes the 
space–time curvature given that 

is the Einstein's curvature tensor, and as far as 

by construction. The use of this analysis for all terms Tµv gives then 
a derivation of the basic relations of General Relativity from START 
and from the conceptual postulates of Einstein. This procedure being a 
deductive approach which allows possible changes and extensions. The 

D
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relations above are in fact already an extension. From this point of 
view general relativity is, in its present form, a macroscopic theory cor-
responding to a geometric transformation which allows an acceptable 
description of physical phenomena as geometrical properties of space– 
time. The transformations are made in agreement with the Riemann 
concept of a manifold being more basic than the metric used to endow 
it with a geometrical structure. 

5.2.3 GENERAL RELATIVITY IN START 

tivity [49, 50, 51, 52] in START is the following: 
From our previous analysis, the structure equivalent to general rela-

In the flat space–time–action geometry a distribution of action is 
given and analyzed as corresponding to the total matter and interac-
tion fields (radiation) content. For a given observer at a given time 
this will appear as an energy, momentum, and stress distribution. 
The usual name for this is the energy–momentum–stress density ten-
sor, which according to the different descriptions may appear either 
as an energy–momentum vector in space–time (which has been trans-
formed to the coordinate frame of a given observer, that is, a vector 
function of a vector) or as the type of description which corresponds 
to a matter distribution where, besides the local energy–momentum 
density, the boundary conditions for each volume element introduce 
in the description the concept of pressures and shear stresses. 

Basically one obtains the structure corresponding to general relativity 
by the process of transforming this 1 + 3 + 1 geometrical description 
into the equivalent 1 + 3 description given by a curved space–time. 

Even if the projection of the surface in five dimensions as a four-
dimensional space corresponds to the curved space–time of general 
relativity, the physical meaning of this curved space–time is given by 
defining the trajectories of ‘test’ particles as the geodesics in this 4-D
space. The definition of the test particle is that of a sufficiently small 
and sufficiently small energy–momentum physical entity such that 
its trajectory can be considered as that generated by a moving point 
which will not noticeably change the assumed energy–momentum– 
stress distribution. An elementary particle in an otherwise macro-
scopic system will, in practice, fulfill these conditions. In our case 
the electron is to be considered the reference elementary particle. 

General relativity was constructed with gravitation as the basic in-
teraction; this is very important because gravitation has proved this 
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far to be universal, that is, any two amounts of energy, within ex-
perimental conditions, attract each other through a gravitational in-
teraction. This interaction is weak enough to be non-relevant in the 
study of elementary particles in themselves or for the study of atoms 
and molecules, that is, we do not know experimentally whether there 
arc gravitational effects in the structure of the elementary particles 
themselves. Even the basic question of whether gravitation, which
was discovered as an interaction between masses, plays a significant 
role in the determination of the mass itself has found no definitive 
answer. This point will not be discussed in this book even if we are
providing a theoretical structure which allows the consideration of 
this problem.

Other interactions than gravitation could also be included in general
relativity either as the arnount of energy–momentum they represent 
or as part, of the description of the energy–momentum which is at-
tributed as belonging to a given ‘test’ particle. See below. 

In the construction of the mathematical structure corresponding to 
quantum mechanics or to the standard model below, we shall not use
the concept of a curved space–time as a frame of reference. Therefore
we shall introduce gravitation only as a gauge field both in quantum
mechanics and in the standard model of elementary particles as deduced
from START. 

The analysis we have presented here corresponds to changing the sta-
tus of general relativity from a physical model to a part of a deductive
theory where a specific form of description has been selected: that of 
not using action as a fifth variable but as a guide for constructing the 
curvature of space–time to obtain the characteristic equations of general 
relativity. Once, as done below, other descriptions of the interaction have 

straightforward There is nevertheless a basic consideration: the explicit, 
introduction of electroweak and color interactions in the description of 
the action distribution requires the definition of the associated charges 
(electric, weak and color charge) of the test particle itself. Consider the 
following example. 

5.2.4

been introduced the equations for the general relativity formulation are 

A CHARGED PARTICLE IN GENERAL
RELATIVITY

A charged particle at rest which is acted on by gravitational and elec- 
tromagnetic interactions will have for the (attributed) total energy (at 
distances large enough such that the collection of masses with which the
test carrier interacts are collectively represented by the volume integral
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of a mass density M(r)) in the presence of the mass M = M(r)dυ,
the following description: 

Substituting this in (2.57)–(2.62) will change the functions f (r) and
h (r) into 

The analysis of these functions would lead to the following conclusions: 

1. Besides the attractive gravitational term there is a (quadratic) repul-
sive term which will dominate at intermediate distances. This repul- 
sive term, of the form which has been called by some experimentalists 
the fifth force, will act as an equivalent ‘cosmological’ constant which 
will force a distribution (considered to be a universe) to expand and 
will avoid gravitational (full) collapses of large matter densities. 

2. The electric part of the interaction depends explicitly in the e/m0

ratio of the test particle, and it can then not, be a universal behavior 
of a test particle, even if the basic geometry has a universal form. 
From this it is clear that no universal or global consequences can 
be derived from the geometry, as is customary in the cosmological 
analysis of the geometries related to the general relativity solutions. 

Otherwise, when the relations corresponding to general relativity are 
derived from START, those entering into the experimental proofs of the 
validity of general relativity (considered this far) are not changed and 
retain their validation status. Otherwise the extrapolations of general 
relativity to the analysis of cases that are not those included in these 
proofs are to be analyzed anew. 

For other interactions a choice (compatible with our principle of ac-
ceptable description choice (PAD)) would be that of studying the elec- 
tromagnetic, etc., field equations in a curved space background, which 
is the normal approach in GR. Then the field of local tetrads generate 
a dielectric tensor of ‘geometric’ origin for the electromagnetic fields. 

An important case of mathematical analysis is the description of the 
trajectory of a test particle in the presence of a massive rotating reference 

D
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system. Besides the Schwarzschild part there are two sets of terms: first 
those related directly to the rotation of the coordinate frame of reference 
relative motion; second the crossed terms of the rotation (considered as 
kinetic energy) and the gravitation potential energy. They are studied, 
for example, in the Lense and Thirring solution [135], which in START 
corresponds to the double product 

with υ = wr sin the angular velocity w being related to the angular
momentum J = Iw of the massive rotating system with moment of
inertia I = Mr 2, with equivalent rotation radius r and mass M. From
w = dφ/dt the term has the Kerr-like form

5.3 THE MATHEMATICALSTRUCTURE OF
GENERAL RELATIVITY FROM START

Once we have seen that an electron used as a test particle in the 
START geometry allows us to obtain the Schwarzschild metric we can 
now proceed to a systematic derivation of the structure of general rela-
tivity from START. 

The main considerations are the following. 

a) General relativity is a geometric theory describing the trajectories of 
test particles as the natural trajectories, geodesics, in curved space– 
time geometry. This is a fundamental postulate in the original for-
mulation of Einstein. 

b) The curved space–time is obtained by incorporating, within STA, 
space from the action part into the ST part. At the level of the test 
particle the action that was incorporated into the initially flat, space– 
time was the total additional action which is the result of considering 
that the rest of the system will have an interaction, gravitational in 
our example, with the test particle. This corresponds to the amount 
of action which would be described as belonging to the particle in 
classical mechanics when the particle is considered as being ‘acted’ 
upon by the gravitational field, in addition to the action resulting 
from the rest mass of the particle which was taken as a reference. 
The mathematical description of the fact, that the particle is now 
a non-disturbing test object is introduced by subtracting from the 
square of the total action the square of the action corresponding 
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to the direct description of the particle. That is, general relativity 
is a theory where the geometry describes everything that is to be 
described, through the curved space–time, and the test particle is 
only an auxiliary in this description. It was important that the STA 
geometry was created taking the electron as the reference fields and 
that an electron trajectory was also taken to create the concept, of 
test particle.

c) The quadratic form obtained was afterwards analyzed using intrinsic 
geometrical techniques to have, in accordance to the basic geomet- 
ric postulate of Einstein, a purely geometrical theory. When this is 
done it is understood that the basic equations, everywhere in space, 
are the transfer of the relevant action (squared) to the otherwise flat, 
quadratic form of space–time. Then in order to proceed in the re-
gions of space–time where Einstein considered that a distribution of 
matter existed we have to construct the equivalent action from the 
corresponding energy–momentum distribution of that matter which 
will determine the trajectory of the test particle in that region. For 
a theory in the continuum, (mainly when there is no warranty that a 
global Lorentz transformation can put adjacent points in space-time
distribution of energy–momentum in a diagonal form for a given ob-
server) the quantity to consider is the energy–momentum–stress ten-
sor ( ) . In fact is a vector-valued function of a vector, which 
can be, locally, brought into a diagonal form which is the equivalent 
energy–momentum of the distribution. This is the quantity that will 
be used in our equations below. 

d) If we proceed as in paragraph c) we shall have to follow the analysis of 
the new quadratic form to obtain the characteristics of the geometry, 
a lengthy and in some instances non unique procedure. Instead we 
can directly consider that the quadratic form defines the metric tensor 
of the new geometry, and then use the definition of the curvature 
from the metric tensor in the generated curved space-time, to obtain 
a relation between the curvature and the energy–momentum–stress 
tensor. The result is a derivation of the starting equations of Einstein 
which in his formulation are a basic postulate that the presence of 
matter induces the curvature of space–time. 

e) Once we have recovered the structure of general relativity from 
START we can go beyond, in the sense that we have shown that there 
were terms beyond the Schwarzschild solution in the basic equations. 
We can proceed either to go beyond general relativity in our descrip- 
tion of matter or to define more complicated test particles (particles 
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with charges) or to use the enlarged equations to study very sugges-
tive possibilities for general relativity, for elementary particle theory, 
and for cosmology. 

We now proceed to write in some detail the equations related to the 
five considerations above. 

5.3.1 THE METRIC IN GR 

GR is given through the use of the line element (here gµv =
the choice of action allocation to geometry and
space–time)

Once we have created the equivalent curved space–time the metric in 
from

corresponds to flat

(2.86)

which in turn defines local vector frames (up to a gauge transformation) 

such that 

(2.87)

with h (x) a vector-valued function of vectors usually represented through
a vierbein In general, from our complex type of structure,

(2.88)

In (2.62) 

with ∆ a the action being allocated to be represented as space–time
curvature.

Anyhow there are additional Lorentz boosts and rotations which can 
be applied, without changing dS2 to a set of reference functions h(0).
They are generated by the bi-vectors functions Ω (x) to obtain h =
Ω h(0). The set of fields {h(0) (x) , Ω (x)} define the local geometry of
the 4-D space–time ST (curved when action has been described as part 
of the carrier space ST). In this space the invariant volume is given by 
d4x

In terms of these fields the components of the covariant derivative for 
multi-vectors M are

where g = det (gµv).

(2.89)

GRg vµ

g0
µv

hv
µ .
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using

(2.90)

or

(2.91)

For a spinor ψ

(2.92)

and then the Ω (eµ ) appear as the Fock–Ivanenko gauge fields (see Chap-
ters 6 and 7). In this book we shall consider two types of gauge fields. 
The type Ω(eµ) which is a vector-valued function of a vector and the

type

(2.93)

(complex) vector and (complex) axial vector fields, which can also be 
considered as resulting from proper and improper Lorentz transforma-
tions R (the inclusion of action has enlarged the set of isometries to that
corresponding to complex Lorentz transformations), they all will obey

(2.94)

using RR = 1 and 

(2.95)

as the Lorentz transformation of the multi-vectors. For spinors 

(2.96)

and the basic gauged spinor field equation being 

(2.97)

requiring

(2.98)

where again 

(2.99)

as above. In (2.96) to (2.99) the Lorentz transformation R appears as 
a geometrical phase factor. In our theory below R can be R ∈ {K} a

~

~

~ ~ ~
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more general transformation belonging to the group of complex Lorentz
transformations K.

In practice the metric appears as an independent field in START which 
is defined according to the PAD, then once it is chosen the condition 
of flat STA is that the total curvature vanishes. Otherwise (from the 
integral of the selected contributions to action) 

(2.100)

with

(2.101)

we can derive the effective energy–momentum–stress density tensor, cor-
responding to the selected contributions to action, as

(2.102)

(the factor is needed for convention reasons); also, from the Ricci scalar 
curvature which results from the chosen line elements 

(2.103)

we obtain the equivalent to the Einstein basic equation 

(2.104)

Here we should stress that our formulation is not, neither for the grav-
itational part nor for the electromagnetic part, a Kaluza–Klein theory. 
Nevertheless, a change of variables in (2.104) would allow the formal 
writing of 

(2.105)

Notice that there are no particular considerations about torsion or other 
symmetry considerations. We only require a set of coordinates xµ cover-
ing the (curved or not) region of space–time around x, the existence of 
tangent vectors eµ = ∂µx allowing the definition of vectors in that space

and
coefficients of affine connection 

= = eν and of its derivatives in terms of the

(2.106)

~

e'µ ∂ µx' x x ν/ x'( )∂ ∂ µ

Γρ
ν µ
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such that 

(2.107)

where we define the covariant derivative of the (contravariant) compo-
nent of a vector. 

The connection coefficient may thus have symmetric part S,

(2.108)

and antisymmetric part (or torsion tensor T components),

(2.109)

which, being tensor components, can not be used to construct a gauge 
field.

The set of definitions above are usually related to the Riemann cur-
vature tensor 

(2.110)

(2.11 1) 

and Ricci contractions 

(see Frankel 1999), and to the concept of parallel transport along a curve 
xµ (τ)

(2.112)

using the arbitrary parameters τ, defining the curve along which the
vector V remains unchanged. 

This is when 

(2.113)

To find the curve itself the vector V is considered the tangent vector 
V µ → dxµ/dτ to the curve xµ ( ) to obtain from (2.113) the well known
condition for an extremum trajectory

(2.114)

The metric itself can be considered to be the symmetric functional 
g(,) of the basis vector pairs 

(2.115)
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in particular 

(2.116)

In terms of these quantities we can understand the formulation of GR
in the direct application of the Principle of General Covariance using
(2.116) and (2.113), as a geometrical guide, and the Principle of Equiva-
lence stating that at any point in space–time we can always find a local
frame in which the gravitational field vanishes and the trajectories of test
particles obey (2.113). Einstein guided his mathematical formulation of
the basic GR equations by the property that because the covariant di-
vergence of the energy–momentum–stress density tensor vanishes,

(2.117)

and then it had to geometrically correspond to the Einstein, vanishing 
covariant divergence, geometric tensor 

(2.118)

Our theory is otherwise a purely geometric theory where the descrip-
tion of space–time surfaces in STA is changed to that corresponding to 
that of a particular action density distribution following our principle of 
acceptable choice of description PAD. 

Otherwise, in our approach, where we have as basic equation δ (dS)2 =
0, the minimization procedure allows the derivation of other relations
when other quantities are considered as independent variables. The h,
Ω , or can be so considered. The use of as an independent variable
in particular establishes the fundamental relation between and gµv

which corresponds to the basic definitions of the Christoffel symbols 
in terms of the derivatives of the metric tensor components 

(2.119)

In relation to notation: we can use index notation, as in the last 
part of this section, or multi-vectorial notation above, or, when useful, 
a mixed notation like that at the beginning of this section. Geometric 
analysis allows a smooth transition between the different notations. 

5.4 LAGRANGIANS 
In this book we are analyzing the consequences of assuming an action 

density distribution to describe the physical world. There is a closely 
related function for the purpose of deriving the mathematical structures, 
that is, the Lagrangian of the system. The Lagrangian is obtained by 

Γνρ
µ Γνρ

µ

Γνρ
µ

Γνρ
µ
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adding to the equation of the action density a series of vanishing func-
tions multiplied by the set of factors known as Lagrange multipliers. 
They have the form of a choice of description. For example, to state 
that the particle density is factorized we write an additional term 

(2.120)

Here = na and the term in the square parenthesis vanishes, 
λa is the Lagrange multiplier which, for consistency, is the average energy
per carrier of type a, and when ( dS)2 is being optimized we perform the 
variation (for each carrier a can contain as many conditions as needed) 

(2.121)

The first term will give the condition that there is an energy for the 
system, the second an equation for the auxiliary functions a or for 
any other auxiliary variable. In short, a Lagrangian function contains 
a description of the action distribution amongst, carriers (which is 
added to the action itself) according to the principle of acceptable choice 
of description (PAD). 

5.5 PHASE SPACE 

we have, besides the geometrical space–time volume 
In START, because of its equivalent complex structure (2.10)–(2.11) 

(2.122)

the geometrical phase space volume 

(2.123)

corresponding to the ‘imaginary’ parts in (2.10) multiplied by ( h/k0 )4.
At a given time the usual consideration of phase space for an ensemble 
of n particles includes a collection of n phase space cells with a volume 

3 per particle and a volume VPhS for the system which could be: 

for fermions, 

for bosons. 

This can offer a direct connection with statistical (quantum) mechanics, 
which is not dealt with in this book. 
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5.6 THE GROUP OF SYMMETRIES IN START
In START, because of its equivalent complex structure (2.10)–(2.11) 

and its quadratic forms (2.45)–(2.46), we have, besides the geometrical 
space–time Poincaré group of transformations leaving the finite differ-
ence (dx0 )2 – (dx)2 invariant, an additional set of transformations related
to the more general quadratic form (dx0 )2 – (dx)2 – (dx4)2. The addi-
tional operations are: a translation in the e4 direction, three rotations in 
the eie4, i = 1, 2, 3 planes and one ‘boost’ in the e0e4 plane. These oper-
ations correspond to changes of the energy–momentum density, that is 
to a change of the local or global reference values of energy–momentum 
(see [127] where the full group is denoted as ≈ + i ).



Chapter 3

ACTION MATHEMATICAL STRUCTURES

We should now consider the mathematical structures in the space– 
time–action geometry we shall use to describe matter and interaction 
fields.

1. ACTION 
In this section we shall present the concept of Action Density Func-

tional Theory and discuss the origin and consequences of the formulation 
of an Action Amplitude Function Theory. 

In the space defined above we now introduce a dimensionless function 
K = K(X) defined at each point X of space–time. The properties of K
will be defined operationally. 

Here we have to make two crucial considerations about what we know 
about action and about quantum mechanics that will be basic for the 
systematic procedure presented in this section.

As we mentioned in the previous section, and have discussed else-
where [127], for each observer the concept of action distribution a (x, t)
is, for each given value t of the observer’s time coordinate, the distri-
bution ε (x, t) = ∂ta (x, t) of the energy attributed to physical phenom-
ena. Relativity theory showed that an energy–momentum content in a 
given volume presents an inertia M, mass, through the basic relation 
M = E/c2, this total energy content is independent of the form we have 
chosen to describe that matter. Let us, for example, start by consider-
ing that we have a free particle of a solid material. Which means that 
we have chosen a macroscopic point of view and a separation into the 
material itself and some external forces representing the mutual inter-
action between the material and the rest of the physical system. For 
some practical purposes this could be a sufficient degree of description 

45
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whcrc only shape and density will be required. We also know that if we 
consider that this piece of material is in motion relative to some measur-
ing device, quantum mechanics can be applied to the material as a unit. 
Otherwise we may consider that a solid particle consists of molecules in 
interaction, and that there is an effective interaction potential between 
the molecules (this is a very common case in the study, for example, of 
rare gas solids). Quantum mechanics should be applied again for this 
system of interacting molecules. If our decision is to describe the mate-
rial as electrons and nuclei we shall again apply quantum mechanics at
this level of detail in the description. Other steps, the study in terms of 
more and more fundamental physical entities are again admissible. In
every case we shall have a total energy which should be equal to the 
total energy of the previous steps and we shall have the practical choice 
of separation at any degree of description of: constitutional energy or 
mass, kinetic energy and, interaction energy. 

That is, quantum mechanics is a universal description of the 
phenomena, valid for any degree of detail we might have chosen for 
the description and can not be a property of the components but a 
basic property for the description of nature. Action and space–time are 
also fundamental concepts in the description of nature and not concepts 
dependent on the system we are describing. The relation between these 
quantities should also be a fundamental mathematical structure. Here 
we describe the close connection between the two. 

1.1 CARRIERS
For the study of the distribution of action we consider that: 
a) In the space–time–action picture, where the basic mathematical

properties of space–time are assumed to correspond to the physical space-
time, the action density is inhomogeneously distributed, corresponding 
to the different material objects to which this action corresponds, with 
all the inhomogeneities (objects in space) moving at the speed of light
c, basically in the time direction and, also in a possible relative motion 
in the spacial directions with speeds 0 ≤ υ ≤ c.

b) The matter-like energy distributions are to be considered as sources 
of (infinite extension, in principle) decaying deformations of action dis-
tribution of several types: first, a part A0 uniformly decaying with dis-
tance, which observers will interpret as gravitation; second, of a collec-
tion (A, B, C, ...) of vorticex fields, superimposed on the A0 part, which
can be felt selectively by responses of given internal vortices of the other 
matter-like distributions. This second property is not given a priori but
it is a consequence of the description of the objects as developed in the 
previous section. 
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c) We introduce now a third fundamental concept: energy carriers. At 
a macroscopic level the energy carrier is defined by a density distribution 
and by the integral properties of the distribution. We shall keep this 
concept without considering that the distribution could be reduced to a 
point singularity in space (line in space–time). We shall, anyhow, use 
the (not very fortunate) name carrier density for this quantity, the 
main reason being that its integral will be taken to be an integer. An 
extra reason is the definition of identical carriers as a density in a space 
volume Vs such that at time t = t'

and Et' = [Σb Eb]t' for a collection {b} of (by practical construction)
independent types of carriers. Below, in discussing quantum electrody-
namics, we shall allow the nb not to be integers, provided Et' is not
changed.

Carrier density and density of action should be gauge invariant physi-
cal quantities, thus we need to develop a procedure which can allow gauge 
freedom, that is, a procedure which allows for arbitrary, but correct and 
useful, descriptions. This is possible with the introduction of a probabil-
ity amplitude Ψ, required to contain the necessary information in a form
compatible to the basic concept that the energy–momentum components
are obtained by using the operator applied to the function which
describes the splitting of the action density into a carrier density ρ and
the action per carrier. The definition ρ = |Ψ|2 allows gauge indepen-
dence. A set of Lagrange conditions and multipliers has to be used to
define the carriers and their desired properties. This procedure can be
carried at any level of description, hence the universality of mathemat-
ical descriptions equivalent to the use of Wave Equations in Quantum
Mechanics.

Once we have established that we are: 1) defining a density of ac-
tion in space–time which corresponds to an energy density Et'/(x) in
space, where Et'(x) = for a fixed observer (for the
reason to use i see below in this section); and 2) using a universal
description, which allows a choice of the level of detail (for example: 
molecules→atoms→electron and nuclei to nucleons→quarks, provided 
that at each step the decision is formally made by selection of the type 
of ‘particle’, the type of interaction between carriers and what is to be 
considered the internal energy of the carriers) we can now proceed to 
the steps creating a practical (action) density functional theory. 

The energy density, assuming indistinguishable independent car-
riers of a given type, at, a. given time t' is written as a product ρ(x)ε of
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a carrier density and a (global) energy per carrier

(3.1)

where we have defined the energy density E(x), the carrier density ρ(x),
the (by the definition of carriers) actual local kinetic energy per carrier 
kin(x), the external and average internal potential energy per carrier
V(x), the correction to the average kinetic and potential energy per
carrier arising from the statistics of the type of carriers under consider-
ation Vxc(x), this term is needed to define independent carriers, and a
local energy ε0(x), a basic term required to compensate for any differ-
ence in the sum of the previous terms with respect to the average energy
per carrier ε, this term defines that the carriers are indistinguishable
among themselves. Density functional theory (DFT as originally
proposed by Thomas and Fermi) describes the self-organization of the
system with density ρ(x) in the presence of some external potential.

In (3.1) we are, in fact, defining the carriers. First, when we consider 
the energy density to be given by the product ρ(x)ε of a density of carri-
ers and an average energy per carrier (the same for all) in a form which 
makes them indistinguishable. In that integral the domain of integra-
tion defines the system of carriers, within this domain all are equivalent. 
In the last term, when we refer to the kinetic energy we consider these 
carriers to be independent carriers, that is the reason for the last func-
tion being required to compensate both for the definition of carriers and 
for considering them as independent carriers. When we enter into the 
theory of the electron we shall consider that within our START formal-
ism there are some elementary carriers (they will be identified as either 
massless fields or the electron field), all other carriers will correspond to 
less fundamental descriptions and then will require either the last terms 
in (3.1) or a procedure, described below, of introducing gauge fields and 
the action associated with them. 

1.2 THE DENSITY AS THE BASIC VARIABLE 
It is convenient to define the action in a form which distinguishes the 

part corresponding to the self-organization of the distribution and the 
part which corresponds to the ‘external’ influences on the distribution. 

The volume (in space) of integration is considered large enough for 
the ‘kinetic’ energy to be internal, that is there is no need to change 
the integration domain as a function of time. If the external influence 
is represented by the external potential v(X) we can write for the total
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(invariant) action 

(3.2)

where the functional εI[ρ(X)] corresponds to the energy of the distri-
bution of carriers ρ(X). This functional εI has the interesting property
that at any fixed time t = t’

(3.3)

This is a basic relation in Action–DFT as far as there is an intrinsic 
definition of the external potential. This shows the tautological nature 
of the concept of carriers, once they are defined the external potential 
is defined through the definition of the carriers themselves by εI[ρ(X)].
The tautological cycle is closed when given v(X) and ρ(X) the kinetic
energy and the interaction terms define εI[ρ(X)].

From the definition in section 1.1 we can extend the description to
consider a set {b} of types of carriers, each with density ρb.

1.3 INTRODUCING GAUGE FREEDOM FOR 
THE DESCRIPTION OF THE ENERGY 

The fact that we are arbitrarily defining the terms above requires the
possibility of changing the description of the energy partitioning with-
out changing the description of the density. The density ρ(x) is required
to be gauge invariant] whereas the description of the energy (action) is
gauge dependent. This is achieved by constructing the energy density
as the product of an average energy per carrier ε with two conjugated
quantities Ψ(x) and Ψ†(x) such that ρ(x) = Ψ†(x)Ψ(x) is gauge invari-
ant. Here we have defined an auxiliary quantity which can be essentially
written in terms of the basic action a0(x) and the action introduced by
the gauge freedom φ(x) both in units of , as

(3.4)

where we are restricted, by definition, to 

(3.5)

showing the gauge freedom of the description of the energy associated 
with the carrier. By definition, at all position points x we have the same
energy per carrier ε which only in the simplest cases would be the sum of
a constitutional, a kinetic and a potential energy part in the traditional 
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sense. A well known example is the case of electron density functional
theory where the kinetic energy is assumed the kinetic energy of the free 
electron gas and then the additional term ε0(x) in (3.1) will contain,
among other energy contributions the difference between the actual ki-
netic energy and the free electron gas term. The term ε0(x) in (3.1) exists
either from the incomplete description of the other terms, the usual case, 
or from inaccuracies in the computational procedure. It acts locally to 
distribute the density in the form which minimizes the total energy and 
corresponds then to a variational procedure in the formulation of the
theory. In the definition above, if kin(x) + V(x) + Vxc(x) + ε0(X) are
properly defined, then we should require that = 0. We
have then recovered the equivalent to the Hohenberg–Kohn Theorems 
[140] and the Kohn–Sham minimization procedure [130] as the definition
of this two terms 

(3.6)

allows the direct self-consistent determination of ρ(x) and ε (see [58]).
The constant ε is otherwise the rate of change of the energy in the process
of removing one (average) carrier. 

In the formalism, by formal inversion with a resolvant G of the oper-
ators in the equations OΨ = 0 which the action amplitudes Ψ obey, we
can define a useful self-consistency relation

(3.7)

where

this introduces both, the response function of the system G(x, x'), and
the effective potential which would be caused either by fluctuations of 
the density or by differences in the local definition of energy per carrier. 
This reaction would propagate to all points of the distribution to achieve 
stability.

1.4
The auxiliary function Ψ in (3.1) is identical to the standard quantum

mechanical in the case of a ‘one’ carrier system, otherwise we should
consider it as the function which represents the gauge dependent, square 
root of the density of action, obeying the equations (here ε → ε–mbc2

in a non-relativistic approximation) 
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(3.8)

where we have defined an effective operator, using µ = i ∂µ

(3.9)

such that the system’s energy, non relativistic limit, is to be obtained 
from

(3.10)

defining, variationally, the effective potential

(3.11)

(3.12)

then (3.8) reads 

(3.13)

Note. Now we quote something which should, in fact, be a result of
some considerations of the next section. From the definition of a set of 
auxiliary functions below, we obtain for the last term: 

(3.14)

which is equivalent to identifying ε with an average eigenvalue ε and to
the optimization of 

(3.15)

using a set of auxiliary functions φi, with the index i running through all
possible forms of extracting one carrier from the system (∇ 2 = ∂i∂i, i =
1, 2, 3) 

(3.16)
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which will define the elementary excitations of the system corresponding 
to the removal of one carrier with rate of change of the energy εi

(3.17)

this is equivalent to the Kohn-Sham procedure and the use of the Kohn– 
Sham effective Hamiltonian in standard DFT (for a ground state
calculation usually wi = 1, i = 1, ..., N and wi = 0, j > N, εj > εN)

(3.18)

The use of auxiliary functions is further discussed in the next sections.

Corresponding to (3.8) we have the final equation (see [102, 58]) 

(3.19)

where we have defined the effective potential [172] 

(3.20)

The first, two of the last three terms correspond to the correct addi-
tional kinetic energy density, and the last one, as above, to the symmetry 
constraint potential arising from the local in space comparison between 
the actual values of the energy necessary to remove one electron from 
the system and the average energy per carrier: 

(3.21)

if carriers of type b are indistinguisliable they all have the same energy 
per carricr ε; here above the εi refer to the process of changing the
system from that of N to that of N –1 carriers, the set {εi, i = 1, ..., N}
corresponds to the set (of rate of change of) energies for which the system 
will respond when a quanta of action is given to the original (N carriers)

1.5 RELATION OF ACTION DENSITY 
FUNCTIONAL TO ACTION AMPLITUDE 
MECHANICS

We now proceed formally to show that the procedure within START 
described here is equivalent to the one within the usual postulation of the 

system.

hKS
i (r)
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wave equation approach to quantum theory. In the rest of this section we
follow lines which have been defined in the reports at several conferences 
[127]. We do not use the low kinetic energy limit, here.

(1) We have defined, for the representation of the physical system, an
adimensional density of action K(X) at each space-time point

(2) The action is factorized, for its study, into a density n(X) and a
local average action per carrier k(X) in units of , the use of this
average is required when n(X) = Σb ρb(X),

K(X) = n(X)k(X). (3.22)

(3) The energy of the system E(X) = is obtained from
this action density or, in general, 

(3.23)

for the energy–momentum four-vector ∏. This equation is in fact.
the defining equation for K. Notice that pµ(X) contains two types of
terms: one from the derivatives of k(X); and one from the derivatives
of n(X); they are accounted for, systematically, below.

(4) To see the correspondence to the space–time–action geometry (STA) 
we remind the reader that the fifth axis of this geometry was labelled
by e4 := ie5 and that e5 := e0e1e2e3 is the unit four-volume in space–
time, then the density 

(3.24)

per unit space–time volume. We see that this quantity is a pure imag- 
inary complex number. Note also that action acquires a negative sign 
from (ie5)(–ie5) = (e5)2 = –1, this was important in the previous
chapter, section 5. 

(5) This action distribution representing the physical system has two 
sources of gauge dependence: (a) the dependence on the definition of 
the reference space–time hypersurfaces in the STA space, a depen-
dence related to gravitation; and (b) the dependence on the arbitrary 
(either by incomplete knowledge or by practical decision) choice of 
the type(s) of field(s) whose density is represented by n(X) and, by
definition of the fields, their energy contributions. Here we should 
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consider from very simple, one type of action carriers, to compli-
cated cases like a system of fields representing an electron e– and
a W + (which could also be a neutrino ν, where the description of
the system should include a complete range of possibilities. To solve
this description problem we introduce again a description and gauge 
dependent auxiliary function 

(3.25)

depending on a set of coordinates, which allows us to write for the 
action density 

(3.26)

which for a single carrier N = 1 is 

(3.27)

(6) The self-consistent properties of Ψ(X;{xi, ti; i = 1, . . . , N})
(3.22) to (3.27) are then (concepts like temperature and free energy
are not introduced in this book): 

a) From the simplest case, that of the homogeneous distribution of 
action with an assumed single carrier, where (defining k = ∏/ )

(3.28)

and therefore

(3.29)

defining the auxiliary reference energy-momentum m. Then in-
troducing the multi-vector operator D0 = the basic equa-
tion is 

(3.30)

Which shows that the auxiliary function Ψ has the same initial
properties as the standard wavefunction in quantum mechanics. 
Note that DΨ = mΨ requires that Ψ should be a particular type
of multi-vector (Chapter 6). It is now immediate that the descrip-
tion freedom corresponds to the gauge theory approach, where 
the ‘Lagrangian’ density is related to K(X), the Ψ are gauged
and the D0 operator is enlarged to the covariant derivative D,
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to keep K(X) gauge invariant. The equation D0D0Ψ = m2Ψ is
secondary at this level.

b) In the case of several, amongst themselves, identical carriers we 
can now construct the Ψ as a complete set of permutations of φi

auxiliary functions Ψ = Σp(–1)p ∏(i) φi(xi, ti) and define the po-
tentials V and Vxc accordingly or, as defined below, use a more
complicated expression for Ψ and a (simpler) expression for V
and Vxc in terms of an interacting carriers definition of Ψ, here
V should contain the sum of the inter-carrier interactions. See
the next subsection. Here we have a fundamental consequence 
of the amplitude function Ψ being a multi-vector obeying (3.29): 
the product of functions has to be invariant under the Lorentz
group and the sum over all possible permutations p includes the
sign factors which forces the Ψ to be antisymmetric on the ex-
change of any pair (i, j) and as a result invariant. For the form
corresponding to an electron a special form of the many carri-
ers action amplitude function will be obtained (see [45] in this
respect).

c) The case of several types of carriers corresponds to (sums and) 
products of descriptions of type b). Products describing indepen-
dent descriptions and sums describing alternative descriptions. 

d) The use of a description of an evolving systern with changing 
types of carriers defines interaction Lagrangians in which the sum 
of products of descriptions of type b) are used to represent, our 
uncertainty in the actual distribution of action, keeping never- 
theless the K(X) invariant. (Note, however, that a Lagrangian
defines the ‘active’ part of the action density and also explicitly
includes the symmetry constrains).

e) A special case, a frequent situation, is that of a stationtry sys-
tem. Such a system often corresponds to an unlimited number
of carriers, but the carrier density is normalized either to N = 1 
or to a current corresponding to one incoming carrier. Then an
additional probabilistic consideration is incorporated when the 
weights of the different contributions is interpreted as probabili- 
ties of different configurations, or the outgoing currents of carri-
ers, as probabilities Pa of different processes a. This is specially 
and numerically allowed by the normalization procedure itself, 
given that probabilities should obey Σa P a = 1. 

All these descriptions obeying the principles above show the intrin- 
sic connection between the postulates of START and the structure and 
interpretation of wave quantum mechanics. 
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1.6 DESCRIPTION IN TERMS OF
INTERACTING CARRIER FIELDS 

The basic description, which could be used to construct a geometric 
theory applicable to the electron in terms of carriers (carrier fields in 
practice in the sense above where Nmi =
equivalent interacting carriers: 

1) At each point the density ρi (of the carrier field i) is endowed of
a self energy expressed as its mass mi; a spin si; and a collection of 
charges (one for every gauge field g).

2) The definition of associated charges is given by considering that 
all carriers i are subjected to local external potentials Vi(x) repre-
senting the ‘rest of the universe’ effects where 

(3.31)

the theory of a particular type of carrier should create, not postulate,
the values of the charges. Note that Vi (x) is local.

3) All the N equivalent fields i are supposed to have an independent
carriers local kinetic energy contribution kini (x).

4) There is an intercarrier pairwise potential energy (i ≠ j)

(3.32)

which is proportional to the products of the charges and to a function 
of the set of four velocities ui and of the distances rij between points
of the fields related to the carriers, the basic example being the elec-

rest (ui . uj/c2) = 1, this being the fundamental definition of an
interaction as a force which decays as the surface of a sphere with 
the source at the center, that is the capability of a source to do work 
is constant on the surface of, for an observer concentric, spheres and 
its surface integral a constant proportional to the source strength. 
We justify this approach below. 

tromagnetic case qi
(e) q j

(e) (ui . uj/c2 )/rij, where for carriers at relative

5) Other interaction terms, depending on the masses or spins of the 
fields. Until now there has been no reason nor practical use of more 
complicated terms, such as terms depending on products of charges 

v ρimidV, etc.) is that of N

qi
(g)

{qi

( g )
}
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of different gauge fields In practice, for non-elementary car-
rier fields, three body terms and ‘effective’ charges have been used, 
this being perhaps a guide to establishing that a carrier is not ele-
mentary. When rij is large with respect to a measure of the extent of
the distribution of both the i and the j field, an equivalent distance
between the center of distribution (equidistant) can be used in 
practice, which allows us to consider the fields i and j as equivalent 
to point-like objects and the use of simplified forms of the definitions
of the V(g) in (3.31).

The use of (at least) 1), 2), 3) and 4) induces either: 

a) the use of a non local function of a set of coordinated {xi}, that is
Ψnon–local = Ψnon–local({xi; i = 1, ..., N}); or

b) the local formulation obtained by the introduction of this non-
locality as a self consistent local potential (which strictly speaking
would require for its calculation the knowledge of Ψnon–local, consid-
ered now as an auxiliary calculation procedure). 

Case a) is similar to standard quantum mechanics where the auxiliary
function Ψ is constructed as sums of products of sums (Σ Csr∏bi Σ ar )
of basic functions. The last sum corresponds to an assumed reference in-
dependent carrier. The products correspond to considering a set of those 
reference carrier distribution as an independent carrier field scheme and 
the first sum to account both for the statistics induced by the condition 
of relativistic invariance of the set of auxiliary fields (see Duck and Su-
darshan [45]) and for all possible forms of response of the system to the 
possibility of removing one carrier from it with the condition ∆A = nh.

Case b) corresponds to keeping the local Ψ(x) and introducing the
result of the non-local interaction as corrections to the kinetic energies 
obtained from (x) and as an equivalent, average, local, inter-carrier
potential, where also the effect of the from relativistic invariance required
statistics and of the full response of the system are included. This last 
term is equivalent to what is known as the local exchange-correlation
potential in standard DFT. The remaining term is equivalent to the one 
which was introduced [102, 58] in the study of Ψ(x) for a many electron
system.

1.6.1 THE INDEPENDENT GAUGE FIELDS 
APPROACH

This is not the only set of possibilities, a third major line of approach
can be developed to study processes in a form which is useful mainly 

.qi
(g) q j

(g' )

r ij
o
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in connection with high energy physics and the study of elementary
carriers. It consists in formulating an independent carrier approach using 
an action related to the local effect of the gauge fields into the carrier
fields through terms 

(3.33)

the scalar product of the vector A(g) and the vector dxi, or ui = dxi/dt
if energy is computed. This is achieved at the expense of allowing inde-
pendent existence of the gauge interaction fields. This quantum
field theoretical approach has the advantage of allowing the possibil-
ity of describing the gauge fields independently of the source or target 
particle-like carrier fields, and introduces the quantization of this gauge 
interaction fields which carry energy–momentum, spin and geometrical 
information of the possible source or target fields. Their interactions 
induce geometric phases in the carrier fields [159]. 

The gauge interaction fields are assigned a gauge independent field 
strength

(3.34)

introducing geometrical conditions, and an action density of the gauge
field itself 

(3.35)

to be added to the particle-like carrier’s field action density. The sum 
is a local action and a local energy–momentum by consequence. In the 
case where there are no carriers which can respond to the quanta of the 
gauge fields the pass from case 1) to case 3) is straightforward by partial
integration using a source equation ( 2 = ∂µ∂µ, µ = 0,1,2,3)

(3.36)

It must be stressed that the energy related to (3.35) will require in 
general the integration over volumes much larger than those of the inte-
gration of ρi(x). In both cases 1) and 3) the energy related to external
sources of gauge fields should be added, because only the action related 
to the system of carriers {i} has been included. This defines external
sources as carriers not included in the domain of integration in (3.1). 

There are technical difficulties in approach 3), which is in principle 
equivalent to quantum field theory based on quantum electrodynamics
as the simplest case and equivalent to Maxwell theory in the classical 
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formulation. Some of them would disappear if a hybrid approach were 
taken, using 1) and allowing (3.35) for the description of the external 
influences. The problems related to the non-abelian character of the 
gauge fields would require nevertheless the use of the special mathemat-
ical techniques now in use in the standard model of elementary carriers. 
Pairwise interactions and gauge fields (not including free ‘real’ carriers 
of the interaction fields) are equivalent dual formulations which should 
be explicitly followed, without mixing or repeating descriptions. 

The description here developed requires, at least, the analysis of two 
particular cases: 

1) the consideration of the low energies limit, without gauge field real 
carriers;

2) the consideration of large inter-carrier separations.

In the first case the current jµ is given by ρuµ with u = u(x) and
u2 = uµuµ = c2, then for the description of the dynamics the energy
density is given not by the sum of the kinetic energy and the mass
energy (moc2)i but by the energy–momentum miu2 and the interaction
energy

(3.37)

That is, from (3.37), each particle-like carrier is a test paticle-like carrier 
with respect to the others. Then for each (test) particle-like carrier j
we can define and ‘external’ electromagnetic field (usually known as the 
retarded potential) 

(3.38)

completely defined by the set of distributions {ρk(xk), qk, uµ(xk); all
k}, that is: there is no need to consider new degrees of freedom for

the (x),and these quantities depend on the sources, not on the test
particle-like carrier (one at a time). Test particle-like carriers could have
zero charge. 

The second point is related to the interaction between two or more car-
riers in relative motion when the final action can be described by a simi-
lar system of carriers but with n units of angular momentum exchanged, 
∆l = ±nh, and a corresponding energy change ∆ε = Σm nmhvm with
Σm nm = n. This real exchange of energy and angular momentum pro-
cesses then correspond to quantized emission or absorption of energy; 

A(j)
µ
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there is nothing in the basic principles forbidding these processes and 
they obey the third principle. The puzzling fact is that the processes 
can be described by Aµ(x) fields also and then the (carriers in inter-
action) picture above is transformed into a dual description where the 
gauge fields can also acquire independent physical existence. The fields 
Aµ(x) corresponding to the pairwise interaction are Aµ4 terms in the
STA geometry, not to action density (A 44) terms, although an energy
momentum tensor can be defined from their space–time derivatives. The
set {nm} is not conserved in the presence of carriers, in so far as all pos-
sibilities to describe action have to be included. We are then forced to 
systematically enlarge the formalism to include these possibilities. This 
accounts for the fact that experimentally we can produce light and han-
dle its energy by interactions with the appropriate set of carriers. Also, 
for description purposes, it is common to consider these energy quanta 
hvm carrying angular momentum h, as a sort of independent light beam
which is deflected, or reflected, or refracted, even if this is not what ex-
periment supports, because the description of reflections and refractions 
is, at the fundamental level the description, absorption and re-emission
of the quanta. 

The existence of these quanta stems from the theory being analyzed 
from the special mathematical structure of the interaction field car-
rier (corresponding to the photon) which obeys (3.37) and (3.38) self-
consistently by elimination of the qk in a circuitous analysis inverting
(3.38) and substituting in (3.37). 

1.7 THE INDUCED PROBABILISTIC 
INTERPRETATIONOFΨ

Because the auxiliary functions describing the action contributions
will either appear as products of functions ϕiϕ2 ... or as sums of func-
tions φ1+ φ2 + . . . the use of the derivatives in D as operators originate
both a probabilistic interpretation and, in fact as a consequence, a sys-
tematic method of obtaining Ψ.

In fact for a product ϕ1ϕ2, because D (aϕ1ϕ2) = a[(Dϕ1)ϕ2+ϕ1(Dϕ2)]
the energy-momentum contributions will appear as sums of independent
terms. Also, because D(aφ1 + bφ2) = aDφ1 + bDφ2, the energy contri-
butions from a sum of functions appears as a weighted sum of dependent
contributions. This is typical of probability theory and a probabilistic
language will faithfully be useful to describe the total action.

The auxiliary function acquires a hierarchy of forms and uses:
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a) The simple form Ψ(X) for the density of action, this requires the def-
inition of carriers as equivalent, the same ε for all, and independent,
the same V(x) for all.

b) The simple product Ψ(X) = ∏(a) a(X),the index ‘a’ running over
all types of carriers, for each type εa and Va(x) as in the single type
case. This corresponds to a set {a} of carrier fields in a stationary
state which allows the determination of {Va (x)} using the definitions
of the previous section. 

c) The matrix form Ψ(X; {x i, ti; i = 1, ...,}) for equivalent, interacting
This allows the inclusion of the inter-carrier interactioncarriers.

potential Vij(xi, ti; xj, tj) besides ε and V(x).

d) The general form with auxiliary functions Φnst is given by

for each type t of carrier and state s of that carrier n.

The auxiliary function in the case d) is equivalent to the use of the
so called Configuration Interaction method in atomic and molecular 
physics. Its restrictions reduce to c), b), and a). The sum of prod-
ucts Σs cs ∏n are equivalent to the use of the Slater determinants for
fermions, the c5 accounting for the statistics in the sense of the Pauli
exclusion principle [45]. 

In (3.39) the sum corresponds to considering alternative contribu-
tions to the action, whereas the products correspond to considering in-
dependent contributions to the action. This is originated in the need
to consider either real alternatives or alternatives stemming from our 
fundamental or practical ignorance of the state of the system. 

In all cases the coefficients and other parameters of the auxiliary ac-
tion amplitude function can be determined by the dynamic principle of 
minimal action as considered in Chapter 2 above. 

It is important to remark that the action distribution in space–time 
as a description of matter agrees, without actual limitations, with our 
present experimental and theoretical knowledge of matter and interac-
tion fields. 

From the set of considerations above we also have to include a sym- 
metry between the space and time distributions’ dependence, including 
a distribution form in time even if each observer only considers a cross 
section (sometimes called a time slice) of that distribution in his own 
frame of reference. 
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In relation to our construction of the auxiliary function Ψ we can then
use a trial set of contributions to the action

(3.39)

with the ϕj also a composition of functions representing some contribu-
tions to the action, the chain derivative

(3.40)

will allow the optimization of the description, then a variational principle 
for energy exists which is, in Action Density Functional Theory, the 
equivalent to the Hohenberg–Kohn Theorems [83]. 

1.8 QUANTUM MECHANICS FROM START 
An additional probabilistic concept, different from the one described 

above, arises from the algebra of the operators themselves, because the 
action being xµpµ, and its operator â = xµpµ = we then,
from the chain rule for derivatives, obtain the operator 

(3.41)

with the well known Heisenberg limitation (and the basis of his for-
mulation of Quantum Mechanics), introducing an uncertainty in our
possibilities of knowing (not the action but) the factors of the action, 
separately, for a given action distribution, up to the small but highly 
significant value of . Because this is a fundamental restriction on the 
description of the action distribution, this uncertainty is presented as 
a basic property of matter, independent of our choice of the form for 
describing it. We remind the reader that we are within the gauge-free
use of START, and that we have not postulated quantum mechanics, 
only Planck's rule ∆A = nh.

The fundamental relation (3.41), which in our approach is given by 
construction of the START geometry and the introduction of the action 
density function, was found sufficient by Pauli in 1926 [145] for deriving 
the quantum mechanics of the hydrogen atom. This, and similar exam- 
ples, show that our approach is both compatible with, and contains, the 
basic principles of Quantum Mechanics. 

The study of the different probabilistic and statistical contents in 
quantum theory is an active subject, see for example Isham [84] or 
Görnitz [71]. Here we have only considered stationary states and not, 
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the two additional complementary problems: the first refers to the use 
of stationary states to analyze evolving dynamical systems (considering 
the different contributions to the stationary state as different situations 
in time, from an assumed past to a selected future state of the system, 
where the probabilities are considered the ratios of incoming channels to 
outgoing channels and special care has to be taken in the identification 
of the channels and their probabilities); the second refers to the use of 
the analysis of stationary states for the study of equivalent oscillating 
systems (where the probabilistic weights are identified with the ratios of 
the frequency in which the different configurations are to be found, if a 
series of experiments were performed). These complicated probabilistic 
interpretations, not discussed in this book, have often been the origin 
of considering that the predictions of the quantum mechanical approach 
contradict our classical experiences.

1.9 SOME REMARKS ABOUT THE
FORMALISM

We have presented an action–density functional formalism, developed 
it, and shown that not only a standard density functional theory is re-
covered —and that in a sense it is more fundamental than wave function 
wave mechanics— but also that the analysis of the mapping of the den-
sity matrix into a density allowable for density functional theory [98, 58] 
requires the introduction of auxiliary terms which represent the internal 
symmetries of the system. 

Several otherwise basic principles of quantum mechanics are then nat-
ural structures in the approach developed here for describing matter as 
a distribution of action in space–time (energy distribution over space). 

In the separation of carriers discussed here the interaction of a carrier 
with itself in the form called self-exchange, is by construction to be ruled 
out. If a diagrammatic procedure were used, diagrams relating a carrier 
with itself are also to be ruled out. Nevertheless, in a system a ‘real’ 
interaction carriercan be created as a result of energy transfer in a
pairwise process and the emitted carrier could be reabsorbed by any one 
of the other carriers present in the system; this real process interaction 
has to be included in the present theory. 

2. CURVATURE 

In START the geometrical union of energy–momentum space to a
carrier space, above, has allowed a re-derivation of the proportionality
between stress–energy–momentum and curvature. 
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There are at least two approaches to the Riemann curvature tensor. 
One is space intrinsic and the second considers the notion of an extrinsic 
normal to the space. The corresponding formulas are, for the intrinsic 
formulation,

(3.42)

defining the Riemann (–Christoffel) curvature tensor in terms of the 
Christoffel symbols, and, for the second approach, the Gauss identity 

(3.43)

derived from the Leibnitz rule 

(3.44)

using the embedded curved spaces quadratic form, where a normal n is
considered,

(3.45)

Pαβ being the scalar product which computes the n component of the
variation of a vector eα(X) when translated by dxβ in the eβ(X) direc-
tion. This definition of is then based on the assumed existence of
a normal n to a space M ∈ X. The consequence of the introduction of
the action coordinate (ST→STA) is: a normal n exists at every point.

As the normal direction to space–time has the dimension of action,
then (3.45) corresponds to computing the rate of change of action, that
is energy–momentum, in relation to the local curvature of space–time.

The STA geometry is assumed to have a null Ricci tensor: a.R(aΛb) =
R(b) = 0 obtained by contraction of the usual curvature R(a Λ b) =

with the bi-vector functions Ω ((b),x)
being the local Lorentz group connections DaB = a B + Ω(a) x B in
the STA space. The corresponding 5-dimensional (flat space) Einstein
tensor would be GAB = eA . (R(eB) – RgABeA) = 0. From Campbell
(1926) [23] any analytic (N – 1)-dimensional manifold can be nested in
an N-dimensional flat manifold R(b) = 0. We can use now the well
known geometric procedure of dividing the 5-D metric tensor GAB into
a 4-D geometric part and an 1-D induced energy part. We obtain from 
R(b) = 0, by direct substitution, the components of G(a) rewritten
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as geometry and action, in the form G(a) = kT(a) with T(a) in the
canonical form eµ . T(ev) = (p + p)uµuv – pgµv, µ, v = 0, 1, 2,3. The
complex space–time line element becomes 

where the space–time standard line element ds2 = gµvdxµdxv acquires
the necessary values for representing different physical conditions of the 
system. We use now the Kaluza–Klein-like [88, 129] identification of the 
energy density and electro(weak) potential Aµ = G4µ/G445 to obtain
dS2 = gµvdxµdxv – m2(dx4 + A µdxµ)2 rewritten as

The definition of m2 above corresponds to the norm of a scalar product. 
In the five dimensional space we set the equivalent 4-D metric tensor 

(3.46)

Here the square of the action density appears as the sum of mass terms 
and an interaction fields term kµkµ = 1 and the Aµ are weighted STA
bi-vectors.

This is a straightforward procedure to show the physical implications 
of using STA geometry: 

1. We consider the formalism above for an equivalent simple solution 
of the Einstein equations in the presence of dust matter. 

2. If we interpret STA as complex coordinates in the way described 
above, we show that the Einstein equations are a condition for the 
relationship between the real part and the imaginary part of the line 
element, once (3.46) is defined. 

3. A set of constants appears as a basic property of matter, which in 
our approach is related to k0 in (2.10)

4. The use of the space–time–action (STA) geometry allows the con-
struction of an equivalent, if the concept of test particle is introduced 
as in the previous chapter, to a generalization of the Kaluza–Klein 
theory (see, for example [186, 187]) with both induced matter and 
interaction fields. 
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3. MATTER, GEOMETRY AND MINIMAL 
TRAJECTORY CONDITION 

The procedure to analyze the model as a geometric theory of matter 
has gone through the following steps: 

1) Assume space and time geometrically unified in Minkowski space– 
time manifold M.

2) Provide it with a full geometric structure. 

3) Introduce action density and define action as a fifth geometrical 
coordinate. Obtain its full geometry. Enlarge the isometries of space-
time to a full Complex Poincaré (With the complex Lorentz group as 
a subgroup). 

4) Project out a physical (in general curved) local M manifold, as in
Chapter 2. Define a test particle. 

5) The projection has Induced Energy Density from the considerations 
of the previous section above. In fact an action density has been 
defined at every point of space–time when M is defined. 

And will proceed now through: 

6) Provide a stable structure to the energy density through a chi-
ral constrain to the massless matter fields, this projection is de- 
scribed below in the section referring to matter and interaction fields.
This implies that when a pair of carriers are created from a given 
amount of energy the symmetries of the carriers should add to zero: 
∆q = q1 + q2 = 0, ∆s = 0, etc., some of these symmetries are known
in the literature as internal symmetries. Also when energy is trans-
ferred from one carrier to the other the intermediate carrier should 
contain the change in symmetries of the first and produce changes in 
symmetries of the second, the best known example is the spin of the 
photon, ± , taken or given to the carriers. 

7) The procedure then generates charges, and, through gauging, inter-
action fields 

8) Every point of the matter fields is a source of a geometric wave, owing 
to the continuity of the distribution of action in space–time, required 
by assuming analyticity. This wave, described by the Kaluza–Klein- 
like extension of the Einstein equations, is here related to the descrip- 
tion of action in space–time. In classical physics it corresponds to the 
infinite extension of the gravitational and the electromagnetic fields. 
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9) To transform this geometrical theory into a physical theory, useful for 
describing observed matter, the resulting structures should possess all 
the symmetries of the (enlarged, as we discuss in the next chapter) 
Standard Model. See next chapter. 

The mathematical structures presented here have to be related to our 
perception of the physical world; the observer analyses a system through 
changes of action produced or induced in the observer system. This set 
of changes are associated with both the energy–momentum tensor of the 
distribution and with its possible responses. 

A basic quantity is the conservation law implicit, in the equations 
defining the distribution. For a reference system we have, at every point 

D • (ρυ) = 0, (3.47)

which endows the distribution with a set of trajectories along which a set
of quantities have conserved values. For other quantities an average value 
can be computed along the trajectories; special examples are the average 
space–time position and the average velocity, allowing the definition of 
an equivalent, center of mass, trajectory and the velocity of the motion 
of this special point with respect to some frame of reference. This allows 
the definition of internal (center of mass as a reference) description of 
the distribution and an external (co-moving with the center of mass)
description.

The set of world lines depends (causally in space–time, that is, as 
retarded interactions) by construction on the boundary conditions. 

The lowest energy of a non-interacting distribution would correspond 
to the most extended one. As a consequence, following our principle 
of minimum action for a system of indistinguishable identical carriers, 
the most extended distribution should be found unless in (18) terms of 
the type V(x) or Vxc(x) favor a self-organization into a more compact
distribution. An example in real nature is to be found in the atoms in
which the larger the nuclear charge Z the smaller the ionic size for. a
given number n ≤ Z of electrons; there –Ze2/r can be considered as
the external potential. 

Another consequence is that singularities and discontinuities in the 
distribution should not appear in the present theory as they would 
be sources of diverging contributions to the energy–momentum An 
interaction-free steady state distribution should be space-time symmet- 
rical to allow coherent descriptions by different observers. 

To make the connection with accepted concepts consider a distribution 
ρ with the lowest inhomogeneity, we shall take it to tend to zero ∂ρ/∂x →
0 or if ρ(x) = ρ0 = n/V 0 in a large volume V 0 then ρ0 → 0 with vanishing
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momentum terms. If as a result of some interactions ρ (x) , ρ(x) = n
but locally ∂ρ/∂x ≠ 0, an energy term related to momentum will appear,
in the u << c approximation (using again ε = ε0 + ∆ε)

(3.48)

for the energy increase. For a symmetric distribution of that type of
carriers (even if n = 1) 

(3.49)

and the increase in energy has to be considered as internal energy. This 
process requires an external system providing the balance in change 
in action, say a second type of carriers, in respect to which the first 
type can exchange (at least for description purposes) energy. For a 
non-trivial theory this has to be allowed. A mathematical modeling 
of the interaction would be that of carrier 2, possessing an interaction 
capacity in the domain V 0. In our gauge freedom description we need
to introduce a gauge field B(2) which will interact with carrier 1 with
a strength q1B(2). The description has to be gauge-free also for carrier
2 then we have to allow for the term q2B(1) to be used for carrier 2.
The simplest gauge field created by a source carrier distribution at rest
in some frame of reference S would be spherically symmetrical to avoid
spurious direction dependence with constant total force in concentric 
volume surfaces 

(3.50)

bc/4π will characterize the carrier in respect to the auxiliary gauge field.

If b(c) = 4πq(c) then the energy (per unit carrier density) between
carriers is q1q2/r. Our knowledge of the real physical world tells us that
this simple picture is a useful first approximation, at least, at the level of
elementary carriers. Below we shall analyze this approach to construct
a theory of the electron and we postpone to that point a further analysis 
of this possibility. Back to the problem of the extra energy in building 
up a concentrated carrier density, the first, conclusion is that the carrier 
density will not increase in a region unless there is some interaction which 
makes this possibility feasible. Here we should remember that Lorentz 
transformations (boosts) will result in the observer at rest considering 
that characteristic length of moving field will appear shorter, this is a 
purely geometric phenomena in STA. 

See next sections.
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For further analysis start with a neutral action distribution, with no 
symmetry constrains, and allow it to split into n+ +n– carriers n+ = n–

with symmetrical opposite constraints (called + and –) with a distance 
inverse (linear) rate of energy expenditure needed 

(3.51)

Every point of each distribution acquires a velocity with respect to 
the common center of mass υ(i)(x) where i represent the type of carrier.
The kinetic energy increases 

(3.52)

where E(ji) is the equivalent force of carrier j over carrier i and by
partial integration and definition of the solenoidal and rotationless parts
in (3.33) to (3.38), that is space–space and space–time bi-vectors in STA

(3.53)

we obtain 

(3.54)

provided we can put (1/µ 0) df(B x E) = 0, where this last surface
integral represents the flux of auxiliary field energy on the surface f of
the volume V. The correct units are included in µ0 and ε0 and we have
used an electromagnetic like notation. 

An special case arises when the auxiliary field is not constant in time 
(the simpler oscillatory case is best suited for our purpose) and then from 
the definitions an oscillatory B field induces a perpendicular oscillatory
E field and vice versa and an effective self-current is created from

jself–current = (3.55)

the analysis can be carried out for this case and an energy density 

(3.56)
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can be defined, together with an energy flux P(x)

(3.57)

and an angular momentum flux 

(3.58)

It is important to remark that even if the energy attributed to the ro-
tational part B is small the quantities of interest depend basically in its 
contribution. The procedure (3.55) to (3.58) defines what we have called 
above an independent existence interaction carriers. 

Before entering to the formal presentation of the geometric theory 
of the electron we must mention that we have presented elsewhere the 
construction of a theory of lepton and quark fields [89, 105, 117] using 
chiral geometry for the formulation of the multi-vector generalization 
of the Dirac factorization of the four dimensional d’Alembert operator

written in the Lorentz invariant form 
(notation remainder: we use ∇2 = ∂i∂i; i = 1,2,3) 2 = D2 = ∂µ∂µ,

(3.59)

in order to show the relation to the Dirac’s original factorization in the 
simplest, possible form. In (3.59) the are either the fundamental or 
generalized (reducible representation) Dirac γ µ matrices. We have shown
[127] that these fields constitute a set with all the known properties of 
an elementary carrier’s family, the fields they represent are: massless 
or massive after interactions are considered; and charged (integer or 
fractional). There the collection of the constructed fields have weak 
charge and color, and in general the characteristics usually postulated 
on phenomenological basis like composites being colorless, confinement, 
etc., here being immediate consequences of the defining equations. 

The principal change from the standard model is that we are dealing 
there with a theory where the equations have, as constitutive parts,
a series of conditions reproducing what the phenomenological approach 
showed to be necessary. The conditions are related to the basic prop-
erties of an action density distribution over space–time as a frame of 
reference to describe physics. 

Because of the appearance or not of the iγ5 factors, the fields have
definite chiral properties. One of the most relevant consequences for 
our present purpose is that the electron field in the theory may have 
both chiralities simultaneously and therefore can be massive, charged 
(reference charge ±1) and weak charged. 

Γ(f)
µ
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4. CENTER OF MASS COORDINATES AND 
HAMILTONIAN FORMALISM 

We include this short discussion to show that relativistic invariance 
can be properly handed, otherwise we refer the reader to Barut 1991. 

For the study of the procedure described in this section consider the 
action distribution generated by the following, gauge dependent as shown 
below, total energy: 

(3.60)

corresponding to a set of N similar carriers in interaction, and to an 
interaction field through Aµ and Fµv. Here similar carriers are defined 
as carriers with identical mass and differing only in the signs of their non 
contributing to the action symmetry constraints. The action related to 
the intrinsic angular momentum is the contained by definition in mi. In
order to see explicitly that (3.60) is a one-time coordinate (the same for
all carrier fields) equation, we now separate center of mass and relative 
coordinates. We define (following the notation of Barut as closely as 
possible) the total center of mass momentum Pµ by the vector 

(3.61)

and N (N – 1) /2 relative momenta pij, not all independent, such that

(3.62)

where are constant mass ratios such that 

(3.63)

αij
k
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If we insert (3.62) into (3.60), using, from γ µ = γ (eµ), the dot product
notation γ • n = γ µnµ , the kinetic energy then becomes

(3.64)

where

(3.65)

(3.66)

Now, because of the relation (3.63) we find that the component of ∆
parallel to nµ vanish:

(3.67)

We can also split into components parallel and perpendicular to nµ:

(3.68)

where only Pµ
⊥

contribute. For nµ = (1000), it means = 0 and only
the three-dimensional vector part pij of the relative momenta enter the 
equation.

ij

Hence we can write (3.60) as a wave equation 

(3.69)

ij
µ

pij
µ

Λij
0
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with

(3.70)

We shall now pass to the Hamiltonian form of our covariant N-body
equation (3.69). The Hamiltonian can be identified with the component 
of Pµ parallel to nµ, i.e., P • n, which is just Pij for n = (1000). We 
therefore decompose the four vectors pµ and Γ µ also as in (3.68):

(3.71)

(3.72)

The normal component Pµ⊥ is the kinetic momentum of the center of
mass. Hence,

(3.73)

or, multiplying the equation from left with we can isolate P||

(3.74)

where, since 

(3.75)

we have put 

(3.76)

(3.77)

(3.78)

(3.79)

Γ ||
–1 ,
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For n = (1000) we have the simpler equation 

(3.80)

This is indeed a generalized Dirac Hamiltonian with a pair interactions
of the Breit-type plus self-interaction terms.

For two-carriers it becomes from H = P0

(3.81)

For three carriers, with relative momenta Pij = pj – pi, we obtain from
(3.62) and (3.63) 

(3.82)

Hence

(3.83)

and the three-body Hamiltonian becomes 

(3.84)

Detailed properties of the two-body problem as well as some aspects of 
the three body problems have been discussed by Barut. 

4.1 GAUGING OF THE TWO CARRIERS 
SYSTEM

As mentioned in the previous chapter, we consider the use of an aux-
iliary amplitude function Ψ approach for the study of the fundamental
problem of the gauging of the two carriers system. 

This is a very important analysis because it shows the role of the
definition of a fundamental carrier as that physical object wich will be



ACTION MATHEMATICAL STRUCTURES 75

observed if far from the rest of the objects. We transform the description 
of two carriers to that of two interacting carriers. 

In the previous section, on the Hamiltonian Formalism, for two car-
riers, 1 and 2, we had to consider a multi-carrier amplitude function
Ψ = ψ1 ⊗ ψ2 which was written above as Ψ = ({xc}; c = 1, ..., n) indi-
cating that a set of carriers can be described by an amplitude function
depending in a set of coordinates xc for each carrier. For the physi-
cal description a set of operators like pc = ih∂µ and of energy con-
tributions V ({xc}). This brought the additional concept of reducible
representations of the geometrical quantities. The matrices of this 
representation are required to obey (upper index corresponds to carrier 
index, lower index to space–time coordinate components, Greek letters 
for space–time and Latin letters for space) 

(3.85)

and the (per carrier) bi-vectors, etc., can be defined 

etc.. (3.86)

In the previous section we have used a collective symbol αc for all of
a given carrier field, as that discussion followed the work of Barut using 
an early type of notation. These objects commute 

(3.87)

We also define the pseudo-scalar as the product of the 4 + 4 = 8 vectors 
associated with the two carriers. We also define = for each
carrier and the global 

(3.88)

In this presentation the allowed set of algebraic solutions Ψ for the
system are constructed, as in Chapter 6 below, from pairs of double
projections, one double projector for each carrier, and have a matrix
structure which can be represented by an equivalent column matrix, as
the outer product of the representative column matrices for each carrier. 
For each carrier the column matrix has four entries as a result of the
use for each carrier of the double projection  (1 ± γ 0) (1 ± iγ12) as in
Chapter 6. 

, etc.. 

µ

µ

Γc
µ

Γio
c

Γ i
5 Γ 0 Γ 1 Γ 2 Γ 3

i i i i

1
2

1
2



76 THEORY OF THE ELECTRON

The first column describes carrier 1 and the second carrier 2, taken a
given mass projector and a given spin projector of the system, in that 
case for the two carriers system with zero total spin 

and then we can, for the two particle auxiliary function ψ define 

a procedure equivalent to the use of the joint double projector 

The extension allows the definition of a set of double projectors from S↑↑

and its factorization 

such that

which allows us to obtain by projection (1 ± iΓ12) (1 ± iΓ 12) from a
general solution the set of all four possible spin choices.

In the previous section we have used this technique to study the case 
of two and three carriers fields as special cases of the general formalism. 
Here we use the zero total spin case only. 

Defining the space–time gradient operators 

rewriting the free carrier equation 

as

and using the properties 

and

1
2

1
2

1 2
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we can formally sum for the two ‘free’, non-interacting carriers, to obtain 

(3.89)

where we have used the joint coordinates 

The (projected by spin) amplitude function ψ corresponding to the de-
scription of two independent carriers can, by definition, be factorized

to obtain from (3.89), using the projector S↑↓ to ensure the correct spin
for each carrier, the amplitude function ψc

(3.90)

now following our procedure of redistributing the energy in a gauge-free
form we transform (3.89) by a phase factor rotation. This requires us 
to understand the gauging properties of the equation by studying its 
behavior under Lorentz transformations. 

For the transformation of the basic equations above into the gauged 
equations, where the action is shared through an interaction, consider a 
pair of Lorentz transformations R1 and R2 acting as 

and their action on the amplitude function

,

which is induced by the application of R1R2 to (3.89) or (3.90). For the 
analysis of the two carriers system consider the particular case 

where by definition of space–time volume 

such that R1 and R2 are Lorentz boosts in the γ 3 direction, with opposite
signs and rotations in the γ 12 plane, also with opposite signs. With this 
choice x → x’ = R2R1xR1R2 corresponds to induced separation of the

~ ~
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carriers in the z direction with a synchronized rotation of the spin plane 
(perpendicular to z). This can be compensated if the new amplitude 
function ψ' obeys a gauged equation

(3.91)

For an observer the new situation is that of ψ' describing two interacting
carriers in relative motion, with their spins having a relative additional 
rotation. The carriers have acquired kinetic energy and generated a 
reciprocal interaction proportional to qc. If the total energy is required
to be constant for all values of the joint position x, then the Ac obey
the Maxwell equations. This is clarified in Chapter 6, section 5, where 
spin and electromagnetic interactions are analyzed. The final step is to
define A1 and A2 from (3.38) to substitute this terms in (3.91) to obtain 
a pairwise interaction term as in (3.37). 



Chapter 4 

THE THEORY OF THE ELECTRON 

We have already stated that there is no doubt that, the Dirac equa-
tion for the electron provides a sound starting point for the theory of 
the electron field both in the presence of electromagnetic and of weak 
interactions. The interaction fields are obtained as gauge fields of the 
matter field. Here we proceed to construct a theory of the electron 
from START and, because the Dirac equation is obtained from the first 
steps, the development of the theory will mostly appear as a theoretical 
derivation of the standard theory where the geometrical characterization 
of the different concepts (postulated in the Dirac theory) defines them 
and, most important, limits their usage. We are not otherwise proposing 
or justifying specific models or pictures of the electron, we only propose 
a geometric, fundamental, theory. 

A fundamental reference for our present purposes in relation to the 
geometric content of the electron theory, is the 1929 work of Fock and 
Ivanenko [62] and the ones related to the discovery (1929–1935) of the use 
of a geometric approach based in recognizing the Dirac matrices algebra 
as a representation of abstract Clifford algebras to study the Maxwell 
field and the formulation of the Dirac theory [76]. This is important 
because the algebraic solution of the Dirac: equation gives a clue to the 
geometric meaning of many physical quantities. This is the subject of 
Chapters 5 and 6 below. 

1. CARRIER FIELDS WITH ELEMENTARY 
TRAJECTORIES IN START 

We shall now proceed to develop a theory for fields of carriers, embed-
ded in the space–time–action geometry, with the simplest characteristic 
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allowed by START. At the end we shall show that the properties of these 
fields correspond to the experimental known properties of the electron 
then, within START, we are developing a theory of the electron. 

There are two types of fundamental trajectories in START, the ones 
defined by 

(4.1)

dS2 = 0, ds2 ¹ 0, da2 ≠ 0 (4.2)

dS2 = 0, ds2 = 0, da2 = 0,

corresponding to massless fields, and the ones defined by 

with ds2 – da2 = 0.

The first one correspond to the cases of massless fields because the tra-
jectories correspond to light-like paths and the energy–momentum rela-
tionship E = pc, combined with the light-like trajectories, ensure that 
da2 = 0, that is

(4.3)

(4.4)

(cdt)2 – (dx)2 – (dy)2 – (dz)2 = 0

(Edt)2 – ((pxdx)2 + (pydy)2 + (Pzdz)2) = 0,

whereas the second type of trajectories correspond to the particular case 
where, using m0c2 = E = hv and the particular choice of metric for the
action coordinate k0 = d0/h = 1/m0c (where we have by definition a
correspondence between d0 and m0 ), we have the relationship 

(4.5)(cdt)2 – (K0m0c2dt)2 = (cdt)2 – (da)2 = 0.

Then either we construct a theory with the first type of fields only 
(all starting fields are massless), or we construct directly a theory for a 
particular field where we have a rest mass m0. The standard model of 
elementary carriers has a mathematical structure corresponding to the 
first type of approach, all fields are massless before interaction. The com-
mon theory of the electron and the practical use of the Dirac equation 
have shown that for all properties which are not related to weak interac-
tions, the direct use of the consideration of the electron as a carrier with 
mass m0 is a useful approach. Here we shall start with the second ap-
proach and in a second step show its extension to the first approach and 
then, by necessity, the inclusion of the electroweak interactions. We shall 
follow this procedure because we shall be analyzing different concepts in 
each case and because at the end there is no contradiction. 

2. GAUGE FREE DESCRIPTION OF AN 
ENERGY DISTRIBUTION

According to our choice of description we consider an (considered 
at rest in some system) energy distribution ε(X) = ρ(x)ε such that
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∂ε/∂t = 0, through the density of n carriers

(4.6)

and an average energy per carrier, for a free carrier ε = m0c2. If the
description corresponds to free carriers the relation (4.5) above is equiv-
alent to moc2 = hv0 with a proper frequency v0. For n = 1 we require
that the density is normalized within a domain V at instant t' for ob-
server S

(4.7)

The normalization then corresponds to the definition of all the points of
the distribution ρ as corresponding to the domain of the field of that type
of carriers. We mentioned above that the requirement of an equal energy 
per carrier, of a given type, corresponds to defining a given domain 
as the space-time volume where we have a system of indistinguishable 
carriers. From the normalization (4.6) itself it also follows that the 
proper frequency is not a property of the distribution but a property 
of the carrier which is being described. Likewise, for an observer in 
relative motion a wave length will appear which is not a property of the 
distribution but a property of the carrier.

Of course, this distribution is at rest only with respect to one frame
of reference S with space-time coordinates {xµ; µ = 0, 1,2, 3 and x0 =
ct}. For any other frame of reference S(0) we must consider a Lorentz
transformation R where X = xµeµ → X' = RXR–1.

Associated with each matter field there is an energy–momentum field
eµpµ(x) (summation convention is used), denoting by X = eµxµ points
in the S observers frame of reference, such that from the covariance of 
the energy momentum vector 

(4.8)

assuming that there exists a (local) frame where the energy–momen-
tum is the one corresponding to that of a carrier’s density at rest. The 
frame is related to the observers frame eµ through the local Lorentz 
transformation

(4.9)

then (4.8) becomes 

(4.10)

e (o)
µ

e (o)
µ
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we multiply (4.10) by R(x) on the right

(4.11)

As, a crucial step in our program, we now give a definition to the
field distribution of the carriers, where: 1) the distribution is at rest in 
some frame of reference Σ(0) and for each point the space–time trajec-
tory is given by the vector and we shall allow 2) for the field to 

have a possible spin S with plane of reference (we should recall
here that for any multi-vector M the local Lorentz transformations is
R(x)MR–1(x)). For this purpose we now use the multi-vector double
projector P+

 ←

 , with the properties

(4.12)

to obtain a projected transformation 

(4.13)

Here the ie1e2 factor is to be kept for further reference to the fact 
that P+↑ was chosen as the appropriate projector, other choices could
have been made. The up arrow refers to e12 as the direction of spin up 
and the plus sign to the choice of ‘positive’ mass m0.

The representation of the eµ defines the value of the spin, the standard
representation corresponds to |S| = h.

From our definitions of the gauge-free representation of ε(X) = ρ(x)ε,
there is an action amplitude function (a multi-vector Dirac spinor in fact,
as discussed in the next, chapter) in the space–time–action algebra, allow-
ing us to obtain pµ directly. We introduce the action amplitude function
ψ(x) from the definition in equations (3.23) to (3.30), a procedure which
requires from (4.12) 

(4.14)

with A(x) containing the basic information about the action, such that
(4.13) can finally be written, through the use of the operator pµ = ih∂µ,

(4.15)

where the i = has been cancelled on both sides of (4.13). In the
reference ‘rest’ frame of the field R(x) = 1 and free from gauge fields
A(x) should be such that

(4.16)

STA,

e0
(0)

e1 e 2
(0) (0)

1
2

√ –1
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Our analysis here shows explicitly the multi-vector content of the
Dirac spinor. The wavefunction (4.14) explicitly contains then 3 main
contributions: the existence of the carriers’ field in A(x), the relative
motion of the carriers’ field in R(x) and the reference time direction
corresponding to a preferred sign of m0 and spin in P+↑.

This is a derivation from first principles of the (until now only postu-
lated) Dirac equation, being also an explanation of the geometric reason
to consider a multi-vector equation which goes beyond the multi-vector
analysis which was done (when wave function relativistic quantum me-
chanics was first developed) by solving the Dirac equation in terms of
multi-vectors. The ψ ∈ STA then contains a local Lorentz transforma-
tion and the information that a fixed time direction e0 and a given plane
e1e2 has been taken as an overall reference. But, yet another element of
information should be contained in A(x); from the normalization consid-
eration ρ0dx = 1 the quantity |A(x)|2 should have the dimensions of
a density, A(x) then contains: a) a factor; b) a gauge phase factor to
allow for both interaction and freedom of description (discussed below) ;
and c) a basic gauge factor f with the effect of the rest mass in (4.15)
of the carrier which should f → 1 for a massless field.

Quantum mechanics is more general than (4.15), our analysis is in
fact a starting point applied here to the election as elementary matter,
spin , fields, as a particular case, because the projector P+↑ and its
eigenvector ie0e1 e2 was chosen as a reference. The general solution of
(4.15), if P+↑ is not explicitly introduced in (4.15), will be an algebraic
solution wave function ψ of the standard form, discussed in more detail 
below, it contains four minimal ideals into one single wave function,
but the amount of information is redundant as discussed in Chapter 5.
Each ideal contains a symmetry constrain, the sum has none. It is also
important to note that the vector operators on the left and on the right
of (4.13) are both geometrically odd, then the geometrically even and
geometrically odd parts of ψ are linearly independent. 

Because of the freedom to select, any useful description of carriers
A (x) can be given general multi-vector properties.

2.1 GAUGING OF THE DESCRIPTION OF 
THE DISTRIBUTION 

We can now proceed to the gauging of the auxiliary function intro- 
duced in (4.14) and the corresponding gauging of the equation (4.15). 
Here a very special situation arises because we can either use a scalar 
phase or in general any multi-vector phase compatible with (4.15). Be-
cause the operators have on both sides an odd number of vectors (either 
eµ or e012) we can introduce a phase factor on both sides which has an

√ρ

1
2 ,
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even number of vector factors without any internal contradiction. That 
is the allowed phase factors are 

the presence of the i in the pseudo-scalar phase is necessary to ensure
that eiφ is a phase factor.

In START the presence of the ie5 = e4, γ(ie5) = iγ 5 phase is the
reason for chirality of the currents of carriers being a basic property of 
nature as shown by the properties of the set of elementary carriers. This 
can be clearly seen with the induced gauging of the operators

, (4.17) 

the gauging fields having the multi-vector composition (inducing chiral-
ity and local tetrads), using the representation γ (eµ) = γ µ

(4.18)

the labels are given because from the analysis of the Standard Model 
of elementary carriers, compared to our own, the gauging has electro-
magnetic, weak, color and gravity parts. The first two terms carry the 
index (d) because they are relative properties. Then the wave function
becomes upon gauging (ϕ a reference spinor)

(4.19)

with the phase factor being a multi-vector

(4.20)

the particular, relative, combinations for the phase, the iγ5 terms, gen-
erate in our recent work, isospin and color and the γαβ generate (as first
shown by Fock and Ivanenko) the local Lorentz transformation which

In (4.17) a more general representation of the vectors eµ is proposed
Γ(f) (eµ) = Γ(f) which for the case of the electron is Γ1 = γ µ and for 
other series (families (f)) is a reducible representation Γ (f) = γµ ⊗ (1 ⊗

are a description of the effects of gravity. 

1 ⊗ ...)2(f–1)products.

µµ

µ
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2.2 THE ELECTRON FIELD AS A SUM OF
MASSLESS FIELDS 

In the considerations of the previous sections the mass of the car-
rier appears from the particular selection of a field where the density 
corresponds to a density of paths in the space–time–action geometry. 
For comparison with the standard model of elementary carriers it seems 
preferable to start by considering massless fields, that is, fields which in 
our geometry obey the second postulate because they have space–time 
differential squared (ds)2 = 0 and action differential square (da)2 = 0.

For this purpose we start by considering two massless fields L0 and
R0 for spin , then by necessity of fixed chirality the first is left handed
and the second is right handed. A sum of these two fields will also obey 

introducing a gauging of the action through a gauge factor, wc shall use
now the following: 

Theorem LK (Liu and Keller [136]). There exists a suitable complex 
vector kµ such that if Ψ0 = L0 + R0 satisfy the massless Dirac equation 
iγ µ∂µΨ0 = 0, then Ψ = (Ψ0) exp(i k µ dxµ)will satisfy the massive
Dirac equation iγµ ∂µΨ – mΨ = 0. Here

(4.21)

where πµ  = R0 γµ R0 ,πµ  = L0 γµ L0 , πµ  = πµ  + πµ  =Ψ0 γµ Y0 .
The phase factor exp(i m kµdxµ) corresponds exactly to our defi-

nition in (4.7) of a carrier with one given energy mc2 at every point of
the distribution. The unit vector kµkµ = 1 is needed to preserve rela-
tivistic covariance. The definition (4.21) shows the dependence on the
mixing of the different handedness fields when Lorentz transformations 
are performed. For a field at rest with respect to the observer the only 
component of k will be k0 = 1. We see then that even the mechanism for 
symmetry breaking implied in (4.21) is of purely geometric nature. It 
can be cast anyhow in the form of a gauge field, as in section 5 below, as 
any other geometric contribution to the phase. Otherwise any interac- 
tion field which could be coupled to either L0 or R0 will have to be acted 
by the same phase factor and then this mechanism for creating rest mass 
should be universal. This will be used in section 5 in the description of 
the electroweak interactions, there when the weak interaction acts on 
the electron (positron) the corresponding carrier W– (W+) will carry 
away not only the charge of the field but also the coupling in the form 
of mass. See (4.76) in 6.4 below. 

the massless wave equation. For the construction of the massive field,

1
2
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The fact that the carriers acquire mass from geometrical considera-
tions should be reflected in any combinations of fields which can be at
rest with respect to an observer. Only the total number of contribu-
tions can change, and then the masses of other elementary fields would
be forced, by the present theoretical Considerations, to be expressible as
some algebraic function of the mass of the electron or at least through
a mechanism similar to our LK theorem (see [136]and [131,132]).

2.3 ELECTRODYNAMICS 
For the electrodynamics of the electron within our formulation it is

important to emphasize that we only have to particularize the analysis
given above (description in terms of interacting carriers Chapter 3) to
the case where the charge of the carrier q = e , as far as the rest of
the analysis is general and does not need any change for the case of
the electron. See also Chapter 6, section 5 . This is in agreement with
our principle of acceptable description. The fact that the electron itself
has been chosen as a carrier gives the basis for renormalization to be
a guiding principle in quantum electrodynamics. There the variable
number of quanta of the different carrier fields is an additional gauge
freedom.

3. THEORETICAL DESCRIPTION OF THE 
ELECTRON IN START

It is convenient to summarize the resulting model for the electron
when, in the description of a field, the basic properties of mass, spin
and charge are included. The action distribution is given a set of geo-
metrical symmetries by requiring that the field corresponds to the most,
elementary field in START (see the discussion in Chapter 5, section 1).

The rest energy of the field, resulting from an integration where 
ρdx = 1, is m0c2, and obeys a wave equation in the START geom-

etry, the simplest representation corresponds to spin h/2, its coupling
to receive action from another field is given by e, the ratio e/m0 corre-
sponding to the rate of change of energy with action per unit energy of
the original field. Correspondingly, when action is given to other fields
the strength of this action is also proportional to e. When work can be
clone on or by the field, by absorbing or by creating a quanta of the inter-
action field (redistributing the action), the emitted or absorbed energy
per elementary action corresponds to a change of spin equal to h, or to a
corresponding change in angular momentum of orbital origin. We have
to make a clear distinction between actual energies given to the field
with relative energies which are described by a gauge field, even if in
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both cases the description of energy demands the definition of a frame
of reference with respect to which one carrier acquires more energy at
the expense of the energy of the environment.

The elementary fields described by the model are required to be cre-
ated or annihilated by at least pairs of fields with mutually canceling
symmetry properties. Then a collection of fields, where no other fields
are present which can cancel the symmetry properties of this collection,
will correspond to stable matter. The distributions will exist in space
but can only be created and annihilated in units of action, that is that,
the change in spin has to be a multiple of h/2 and the change in energy
with respect to a reference observer must correspond to hv. When fields 
at rest in a frame of reference are created (annihilated) the energy of the
distribution is hv = m0c2. These conditions originate the notion of car-
rier within the theory, a concept that will be even closer to the classical
limit if the distribution domain is small compared to the distances in-
volved in the global experimental observation. We can change the form 
of the action distribution in a continuous form, but we can not change 
the existence of the distribution except, in a quantized form. At the 
same time it is now clear that at the level of the elementary fields (first,)
quantization corresponds to a type of description considering processes 
where the properties of the distributions can be changed, and second 
quantization to processes where distributions are created or annihilated. 

3.1 THE LOCAL STRUCTURE OF THE 
ACTION DENSITY 

The basic postulate for the theory of matter and interactions fields 
here presented is the existence of a distribution of action, with certain 
geometrical characteristics, in a region of space-time.

For massless fields a local system of vectors, at each point, defines 
the geometric characteristics: a vector a in direction e4 for the intensity 
of action; a vector in direction e0 for the (unavoidable) time direction.
The rate of change of a with respect, to time being the density of en- 
ergy of the massless field ε = ρ(X)hv. The remaining three directions
are internally defined in this case because all massless fields are chiral,
including the interaction fields. One of the space-like directions corre-
sponds to the direction of propagation of the massless field, with mo-
mentum p = ρ(X)h/λ parallel to velocity. The remaining two space-like
directions define the plane of the spin, perpendicular by definition to the 
propagation direction. This is the local structure of the action density 
corresponding to massless matter and interaction fields, this structure 
is by no means trivial and is reflected in the gauging properties of the 
description of the field. We should stress here that every point of the 
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distribution is given the same set of local properties. The gauge freedom 
can only change the relative values of these sets of vectors at different 
space–time points with the condition that the local structure has to be 
respected. Chirality and the relation ε'/p' = c are basic features of the
description of the massless fields, the primed energy momentum compo-
nents related to the unprimmed ones by a Lorentz transformation. 

For massive fields the local structure is similar except that the set of
three space-like vectors, even if their directions are related to momentum 
and spin, offers now the additional gauge freedom of the direction of the 
spin plane being orientable, independently of the momentum direction. 
In fact, for the electron there is at least one local frame of reference 
where p = 0 and, according to our principles above, ∂a/∂t = m0c2 also
|(dx4)2| = (dx0)2. For the massive fields, the electron being our example
here, we then have that for a general observer there is a current j which is
related to the local frame where the carrier field is at rest (frame vectors

) through a Lorentz transformation 

(4.22)

showing that to each point of the distribution corresponds a current j,
this being one of the basic properties of the matter field. The direction 
of the current and the direction of the momentum are two different 
quantities, the current being related to the transformation of the local 
frame of reference and the momentum to the rate of change in space 
of the action distribution. In a similar form the spin s is related to
a spin plane in the local frame of reference γ 12 by the same Lorentz
transformation

(4.23)

Idealized currents can be considered for computational purposes. The 
best known example being perhaps that of a plane wave, even if in 
practice no actual currents of matter or radiation can be approximated 
by such a current, except for a very small region of space, and, moreover, 
only in the case where the actual current corresponds to a (steady) 
current of matter or radiation, consisting of a large number of matter or 
radiation units. 

Because our description of matter and its interactions has as starting 
point a definition which corresponds to a definite picture of nature, there 
is a temptation to interpret several consequences of the theory as physi-
cal descriptions of nature, even if in many cases they are only one form 
of description among many, or if they correspond to an approximate de-
scription useful for calculations but not to a comprehensive description 

(0)
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of the different phenomena. In the other extreme we can analyze the dif-
ferent features of the theory in relation to well established mathematical 
models. Our theory reproduces the mathematical structure of density 
functional theory and the mathematical structure of quantum mechan-
ics, then the calculational procedures can be carried on, having either 
of both presentations as a guide, given that the mathematical structure 
allows it. A basic difference is that we are using a continuous model 
for matter: a distribution of action where every point is endowed of a
geometrical feature.

The local geometrical feature could also be modeled as a specific type 
of structure in space-time: there exists, at every point of the distribution 
( a mapping arising from the complex structure of space–time–action)
an object corresponding to a spin , Lense and Thirring or Kerr-like
spinning particle. The Kerr geometry itself can be considered as a spe-
cial type of string, as has been discussed in length by Burinskii [22].
The main difference is that while Burinskii and other authors, since the
pioneering paper of Carter [27], consider the Kerr geometry (a geomet-
ric structure reduced to a point) as the particle itself and then do not
use a continuous description of matter, our presentation starts with the
distribution and only afterwards the local properties of the distribution
could be recognized to correspond to a local spin Kerr-like geometry.
Our theory is nevertheless an abstract geometrical description, with no 
intention to present a model. In our approach the distribution of action
presents at every point a structure defined by the Dirac equation it-
self, providing geometrical constraints to the action, with a local weight
ρ(X). Below we discuss this local (abstract) structure in some detail.

4. DENSITIES AND CURRENTS OF THE
ELECTRON

We have obtained the (electromagnetic field) gauged equation for the 
action amplitude auxiliary wave function ψ of an electron:

(4.24)

in terms of the A = γηAη the electromagnetic potential vector.
In complex geometry the complex conjugate M of a multi-vector M

is the complex conjugate of each coefficient of each multi-vector basis in
the sum representing M. That is given (i < j < k < m)

(4.25)

(4.26)

1
2

1
2
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where Mi1i2...in denotes the complex conjugate of Mi1i2...in. Similarly
define the complex reverse M+ of a complex multi-vector M as the
complex conjugate of M and the reverse of the order of all products of
vectors generating the basis multi-vectors, for (4.25) above

(4.27)

If M+ = M then M is Hermitian, and if M+ = M then M is unitary.
The complex scalar product defined above becomes

(4.28)

again (M+B)0 designates the (0-vector or) scalar part of M+B. See
[169].

We use now the Fock and Ivanenko equation for curved space in-
troducing the Fock-Ivanenko Ω (a) bi-vector fields coefficients. Locally
the Dirac equation for curved space becomes the gauged with non-
commuting fields

(4.29)

Rewriting the covariant derivative D = gµ µ of a multi-vector M in
the form

(4.30)

We write (4.29) as

(4.31)

where the gauging fields (other terms could be added as discussed above,
not included here to avoid the discussion of their chiral nature and their
breaking of the chiral symmetry) 

(4.32)

We now follow the usual steps to obtain the several currents. From 
the complex reverse of (4.29), one gets an equation for ψ+

(4.33)
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The set of Ωη are real bi-vectors (that is with real coefficients) and i
appears in the vector gauge field A

(4.34)

and

(4.35)

To obtain the vector current we multiply (4.35) from the right by ψ and 
multiply (4.31) from the left by ψ+ and sum the resulting equations to 
obtain the η component of the current equations in curved space–time

(4.36)

as the scalar part of (4.36). As the scalar part is symmetric in the 
product of any two Clifford numbers the ()0 projection (scalar part) of
the two last terms will cancel out to obtain 

(4.37)

For the index free multi-vector ψ the covariant, derivative ψ;η is equal to 
ηψ. Furthermore by construction γ;η = 0. Then (4.37) becomes

or

(4.38)

Allowing the definition of the current J = jµγ µ, where

(4.39)

can be interpreted as a conserved current satisfying 

(4.40)

A multi-vector interpretation of (4.39) is obtained from the use of the 
fact that one may exchange the order of the product, of two Clifford 
numbers before projecting out the scalar component without changing 
the result. Then 

allowing the definition of the current components 

(4.41)

α
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considering = δα, as the vector part of the multi-vector product 
ψψ+. That is

(4.42)

with M an angular momentum field and K an axial current.

of ψψ+ (Gordon 1928).
The Gordon decomposition is an analysis of the bi-vector components 

Following Gordon analysis 

(4.43)

is reinterpreted in terms of 

or considering again covariant derivatives 

(4.44)

From the complex reverse of this last equation we obtain for ψ+

(4.45)

to obtain 

The main point of the analysis arises from the basic geometrical defini-
tion γηγv = γηv + γηvI, to rewrite (4.43) in the form

(4.46)

Since γ ; v = 0, the first pair of terms on the right-hand side of (4.46)
may be combined into a single terms (ψ+γηvψ);v. In addition, if we
project out the scalar component of both sides of (4.46), the last pair of 
terms will cancel out. We then have 

(4.47)

η

ηv
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Following the Gordon interpretation the first term on the right hand
side of (4.47) can be interpreted as the proper current:

(4.48)

It is fundamental that JINT is covariant and satisfies a continuity equa-
tion.

Above the (antisymmetric) bi-vector M

(4.49)

is defined. It obeys 

(4.50)

Gordon also defined the second term on the right hand side of (4.47) as
a convection current JCONV:

(4.51)

which separately satisfies a continuity equation given that 

(4.52)

The proper current J INT is an internal current of the action distribution 
allowing the Mvη to be interpreted as the electric and magnetic dipole
moments of it. A reference system can be defined where the principal 
components are 

(4.53)

and

(4.54)

with sz the z-th component of the spin of the distribution.
The full set of currents is 

(4.55)

where the (imaginary) axial current is mentioned in Chapter 2. The aux-
iliary amplitude wave function ψ is not an eigenfunction of iγ5 then the 

η

η

η
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last two terms do not correspond to gauge-free conserved currents, only 
the left handed part or the right handed part separately. 

We have mentioned above the general gauge transformation for ψ.
We have a non-abelian gauge group (this is more clearly seen with the
analysis of Snygg 1997, chapter 8 [169]). If all physically measurable
information stored in the wave function ψ is also stored in the product 

must be considered equivalent to the
wave function ψS where S is any differentiable unitary Clifford number
containing the information compatible with our Principle of Choice.

ψψ+, then the wave function ψ

Then substituting

(4.56)

where ψ is a solution of (4.31). The ψ' should be of

(4.57)

where, by a gauge transformation 

(4.58)

then as vI = 0

(4.59)

and

(4.60)

from this relation it follows that 

and from the definition of the Ricci curvature

(4.61)

In particular if Gη = Ω η – (ie/hc) AηI, then

(4.62)
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Since S commutes with I, it then follows that the left hand side of (4.61)
is also equal to – (ie/hc) FvηI. But there are solutions of (4.62) more
general than Ωη  – (ie/hc) AηI, in particular the ones we have used to
study the electroweak interaction, although as we mentioned above they 
break the chiral symmetry. 

The curvature equation has been extended to include the geometric 
field intensities 

as already noted by Fock 1929. 

electron as a stable carrier. 

5. THE ELECTROWEAK INTERACTION OF 

This set of currents describe the symmetry constrains defining the 

THE ELECTRON FIELD
In order to understand the interactions of a field we have to con-

sider first that the name ‘interactive’ itself expresses a relative property, 
the relation existing between two carrier fields which should have some 
gauge freedom of description allowing them to be considered together,
as expressed in one of the sections above. We saw the case of the electro-
magnetic interaction. In the description of the gauging of the electron 
field we already mentioned the possibility of considering bi-vector valued 
phases or pseudo-scalar valued phases. The bi-vector-valued phases were 
found long time ago, by Fock and Ivanenko, to correspond to gravita- 
tional interactions. Here we shall describe the electrowcak interaction as 
an extension of the electromagnetic case. We shall show that it corre-
sponds to a pseudo-scalar valued phase. For this purpose we first need 
to consider the partner of the electron in the weak interaction: the neu- 
trino, next section, before analyzing the electroweak theory within our 
formalism.

5.1
We develop here a theory of the neutrino which is the natural com-

plement of the formulation we have developed above for the electron.
We mentioned that we can define the electron field in an operational

form: it is that field Ψe which obeys the Dirac equation (and its gauging)

THE THEORY OF THE NEUTRINO 

(4.63)

then the field has the correct mass, charge and spin density (of course 
magnetic and electric moment when gauged by the electromagnetic field). 
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The neutrino is considered to be massless, spin , and uncharged,
then without magnetic or electric moment and allows no gauging by the 
electromagnetic field. We propose then an operational definition: the 
neutrino field corresponds to that field which obeys the equation

, (4.64)

with Dn such that the neutrino, besides being massless ( m = 0 in (4.64)) 
is also neutral, no electromagnetic gauging (coupling) allowed and has 
the correct spin and chirality (left handed). 

This properties are obtained from the definitions 

(4.65)

where we should remark that from the metric and the anticommuting 
properties of the basis vectors 

(4.66)

(4.67)

Also, if a mass term m ≠ 0 were included in (4.64), the spurious term
Dnm – mDn ≠ 0 would prevent the use of m ≠ 0 .

Additionally from (4.64) and (4.65) the requirement iγ5Ψv = –Ψv, for 
the neutrino imposes the condition for it to be a left handed carrier field.
(Dn would be the operator for the right handed antineutrino field).

With respect to the gauging of the wave function Ψv and the operator
Dn, it is immediate that a term γ 0qnA 0g can not be cancelled by a
gauge factor g = eia(t)/h acted upon by ihiγ5γ0∂0 as far as =  –hγ5γ0∂g =

On the other hand a term γ 5γ 0 Aaxial gaxial will be cancelled by such
a term. As in the case of the electron fields both possibilities are open, 
an axial electron current and an axial neutrino current can interact, this
being the origin in our theory of the electron of the possible full elec-
troweak interaction of the electron, but for the neutrino the interaction 
is restricted to the weak part (axial current only) and for the dual of the 
electron charge, that is gD being the proper coupling constant. 

5.2 THE ELECTROWEAK INTERACTION OF 

–a' (t)γ 5γ 0g.

THE ELECTRON AND THE NEUTRINO 
Now, from the description of the neutrino as above, and the possibility 

of both the electron left and right handed fields to be gauged by a pseudo-
scalar-valued phase, a Lagrangian can be written in which both fields 

1
2

k

k

0
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are together, the gauging of one corresponds to the opposite gauging of 
the other: 

(4.68)

with the set of new gauge fields W–, W+, [W–, W+] = Z0
 carrying four 

physical properties: charge; angular momentum; vector (SU (2)) struc-
ture; and the possibility of interacting with carriers possessing a weak 
charge. Because this field interacts only with the left handed neutrino 
and the left handed part of the electron field, or the right handed anti-
neutrino and the right handed part of the positron field, the weak field 
itself will have to interact with the mass producing phase factor of the 
LK theorem, then it will acquire mass from the same mechanism as the 
electron field (these matters are presented and analyzed in [105, 116]). 

6.

6.1 INTRODUCTION 
As a generalization of the geometrical model of the electron we are 

developing a theory of elementary particles, reproducing the standard 
model (SM), which is derived from an analysis of wave equations in STA, 
using chirality as a basic symmetry. Besides a complete reproduction of 
SM and of its auxiliary conditions, our theory provides a systematic 
extension to SM and a geometrical theory of matter. 

A fundamental concept here is that the current theory of elementary 
particles stresses the relations between fields. This is either by consider-
ing interactions or by considering (this is equivalent) decays. The most 
important properties are then relative (between fields). 

For this purpose we start from the equivalent complex formulation of 
space-time and show that the natural structures in this geometry are 
associated with a set of equations for energy and for massless carriers 
fields by allowing a series of factorizations of the Laplacian operator and 
associated Dirac-like equations; this set of related equations generates
three families of elementary particles with the experimentally observed 
lepton and quark content for each family and the experimentally ob-
served electroweak color interactions and other related properties, when
a gauge transformation of the different fields is performed and their 
relative gauging properties are compared. In this stage of the theory
the factorizations 2 = • and the related Dirac-like

equations = 0 are studied and their symmetries are given.

The Γ µ generate the three families, the ∂µ  generate the observed lep-

FORMULATION OF A THEORY OF 
ELEMENTARY PARTICLES FROM START 

(f)
(d)
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ton and quark content of the families, this results from the inherent 
symmetry restrictions introduced by ( d, f ) in the equations and in the 
wavefunctions, and from the geometrical restrictions on the gauging, on 
the wave equations, and on the wavefunctions.

We have discussed elsewhere the use of multi-vectors as generators
of Lie groups, as well as the generation of a multi-vector Dirac equa-
tion, see for example [101, 103, 104], where we analyze the construction
within C1,3 of frequently used groups as for example SU(2,3), SU(3) or
SU(2). Also the integration of spinors and multi-vectors in a geometric
superalgebra [105, 107, 109].

In contrast to the usual approach to SM, the properties for the dif-
ferent, fields of the model are consequences of the relative properties of 
the equations, amongst themselves and in relation to space–time, and 
therefore they do not need to be postulates of the theory. Also we have 
shown that the formulation includes all possibilities open with higher-
dimensional geometries, including the gauging of the geometry to gen-
erate (a gauge theory of) gravitation and, in fact, what has been called 
theories of induced (energy) matter and charges [5, 88, 129, 186, 187].

As mentioned above, all multi-vectors are operators on themselves
and on their spinors. The best known examples are γ0, generating the
parity inversion P; the tri-vector γ 123, generating the time inversion
T; the bi-vector γ0i generating the Lorentz boosts ; the bi-vector γij,
generating the space rotations ; the tetravector γ 5, generating the
duality transformation D; and the complex tetra-vector iγ 5, generating
the chirality projection.

The pseudo-scalar unit in space–time is γ 5 = In com- 
plex space–time the equivalent, 5-dimensional pseudo-scalar is the pen-
tavector i (= γ01234 =

Section 6.2 deals with some properties of the coniplexification of space-
time. Section 6.3 with the study of chiral symmetry in complex space–
time. Section 6.4 with the structural consequences of using complex
space–time and their relation to phase space, induced energy concepts
and to the process of creations of carriers.

The procedure we describe is equivalent to the following steps: 
1) To assume a Minkowski space–time Manifold M;
2) To provide it with a Geometric Structure; 
3) To obtain its Complexification (4-D ‘transforms’ into 5-D) ;
4) To project out a Physical (in general curved) local M Manifold;
5) To show that the Projection has Induced Energy Density; 
6) To provide a Stable Structure for the Energy Density through a 

Chiral Constraint on the Massless Fields for Matter; 

√ –11).
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7) To show that the Procedure generates Charges, and, through Gaug-

8) To analyze the consequences derived from the fact that every Point

9) Show that the Resulting Structures reproduce the Enlarged Stan-

This equivalence is retaken in the concluding section.
Below we shall use a basis vector eµ or its γ-representation γ (eµ) = yµ

ing, Interaction Fields; 

of the Matter Fields is a Source of a Geometric Wave;

dard Model.

indistinctly.

6.2 COMPLEX SPACE–TIME GEOMETRY 
In the auxiliary coordinate spanned by en+1 in STA there are two 

types of contributions: the one, arising from a global reference action

tan(ai)x i; and the other related to the gauging in the complexification
of the ei n+1 planes given by xi Ai. In the correspondence between the 
geometry and physics l is related to curvature and the Ai to the gauge
fields as in the electromagnetic case. All the degrees of freedom of Gp,q,
p + q = n are complexified, that is, we also have complex bi-vectors,
tri-vectors, etc.. In particular, we have the mapping in space–time of a 
vector p = pµeµ such that p2 = pµpµ = m2, with m a real number, to
p' = xµiγ 5eµ, where |p'|2 = pµpµ = m and | A |2≡ (AA* + A*A), or
to p'' = xµ(1 cos(n + t(µ)) π + ig5 sin(n + with n and t(µ)
integers and obtain again |p''|2 = m2, which in the study of the physical
problems would correspond to the mixing of vector currents and axial
vector currents, as in the theory of electroweak and color interactions. 
See (4.71) and (4.72) below. 

6.3 CHIRAL SYMMETRY IN COMPLEX

value e = affecting all space–time directions = +

SPACE–TIME
We assume in accordance with the previous section that a local ob- 

all

b) In this frame γ 5 = γ 0γ 1γ 2γ 3 is both the duality transformation
operator and the pseudo-scalar (γ 5)2 = –1.

It is important that another observer can use a different coordinate
system related by a, Lorentz transformation L, where the fundamental 
properties (iγ 5)2 = 1 and γ 5γ µ = –γ µγ 5 are also preserved, together
with a) and b). 

server describes space–time by an orthonormal tetrad: 
and

1
2
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The handedness operator H = iγ 5 can be used to construct the chi-
rality projectors PR and PL:

where PR = (1+iγ 5), PL = +(1 – ig5) or PR,L = (1 + ±H).
If a coordinate transformation ψ5 → (γ5)' is allowed where a), and

consequently b), is not preserved (that is, if the determinant z of the
transformation is not z = +1) then H ≠ i(γ 5)' showing that a chirality
operator H = i(g5)’/z, with H2 = 1 in all frames has to be used. Here we
shall assume H = ig5, because of the restriction a) and the assumption
that we have selected a ‘right’ handed frame of reference. The PR and PL

can better be considered numbers of a new mathematical field, complex
space–time, with basis 1 and H, in an hyper-complexification of the
Clifford algebra. H is coordinate invariant.

6.4 CHIRAL GEOMETRY THEORY OF 
ELEMENTARY PARTICLES 

Using spinors, vectors, and multi-vectors we shall now construct a 
theory of lepton and quark fields using the possible multi-vector general-
ization of the Dirac factorization of the Laplacian (the four-dimensional
d’Alembert operator 2= ∂µ∂µ). As in the particular study of the neu-
trino, we start by considering the Klein–Gordon equation and its factor-
ization

(4.69)

which requires that 

(4.70)

we can have then a set of choices, either: 

1) any value of m and D† = D (the standard Dirac operator D0);

2) or in the case where m = 0 the possibility D† ≠ D also become
acceptable. Here we shall use the hyper-complexification of the field 
generated by 1 and H. The recent work using q-deformed Clifford
algebras also falls in this category. 

In multi-vector algebra the Dirac operator is the standard vector op-
erator (using the vectors γ µ) D → D0 = γµ∂µ (sometimes D → γ0 D0 =
g0µ∂µ is used, which in fact was Dirac’s original choice of 'alphas').

1
2
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When gauging the D will become covariant derivatives, to include the
effect of the interaction fields. 

The basic requirement D†D = DD† = ∂µ∂µ limits the choices of D.

Here they will be written in the Lorentz invariant form D(d,f) =
in order to show the relation to Dirac’s original factorization in the sim-
plest possible form. The are generalized (reducible representation) 
Dirac γ µ matrices, see below. The limitation is so strong that the only
possible choice is where the multi-vector iγ 5, which has the same ac-
tion on all gµ, that is iγ 5γ µ = –γ µiγ 5, is used (see Keller [105], page
158 and following). Using, in the following paragraphs, for simplicity
of notation, a reference frame F in which a free field momentum is
p = p0γ 0 + psγs with ps being the spatial part of the momentum and
γ s = (γ 1 + γ 2 + γ 3)/ we define the hyper-complex differential

(4.71)

with n and integers, a choice which results in the simplest multi-
vector. Here, to take the electron as a reference, we use n = 1.

Then, in the particular frame F we have the ‘diagonal’ structure:

(4.72)

The vectors, which are represented by the standard γ µ matrices, cor-
respond to an irreducible representation of C1,3 and have been found
to be useful for writing the wave equations of the fundamental family 
(eR, eL, v L, {uL, dL; color}) of elementary particles. The electron re-
quires a combination of two fields e– = (eR,eL) for the standard phe-
nomenology of electroweak–color interactions. The study of the electron
family suggests that for the second and third families a more general, 
reducible representation of C1,3 could in fact be needed. They are col-
lectively denoted by 

From the considerations above we emphasize that Lorentz transfor-
mations change the multi-vectors

The Γ µ can all be written as exterior products of the γ µ, γ 5, iγ 5 and
1, for example a fundamental representation would be (⊗ represents
exterior product)

→ but not the .

√ 3,

t d
µ

Γ(f).µ

∂µ
(d)Γ µ

(f) Γ' µ

(f)
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other different, but equivalent representations, being also possible. The 
corresponding spinors would then be the (totally antisymmetric) exterior

Where the ψi are 2(f–1) constant Dirac spinors which correspond to
extra mathematical (that is internal) degrees of freedom of the diracon
fields. Their spin should add to zero (f integer). The total antisymmetry
of ψ(f) limits the value of f to f = 1, 2, 3, otherwise the spinorial exterior 
product is null.

The degeneracy nf of the representations of the Γµgives statistical
weight to each family: n1 = 1, n2 = 4 and n3 = 24. This will result in
factors for the terms of the mass matrix.

The elementary fields thus described are mathematically composite,
but still elementary in the sense that they can not be decomposed exper-
imentally into some (not existing) components. No size of the particle is 
required by the theory, they are representations of the basic elementary 
fermion equations, no space–time structure is involved, there is only 
the mathematical complexity of the wave functions. Each family has
an internal relationship to the fundamental family f = 1 and the same 
SU(3)color ⊗ SU(2) ⊗ U(1) symmetry. No additional gauge interaction
field is needed to relate the different families. They are algebraic families
of otherwise structureless leptons and quarks. The algebra of the

has been developed and studied by Królikowski [131, 132], as well as the
consequences for the phenomenology of the elementary particle families. 

Here we should remember that the idempotents (1 ±iγ 5) correspond
to the operators selecting handedness (or chirality) in space–time al-
gebra. The set of are then restricted forms of handing the chiral 
symmetry of the different fields. The values given in table 1 below re-
fer to the reference momentum above, they show the relation between 
the fields, the actual numbers will be those obtained after a rotation 
in relation to a common observer. The relative chiral symmetries of the
fields are the relevant quantities. The properties are relative properties,
only the relations are meaningful, not the actual components which are 
frame of reference dependent (or even coordinate dependent if general
transformations are allowed). The group of these relations is the math- 
ematical structure of physical interest. It is a SU(2) ⊗ SU(3)c structure
for each f. The U(1) additional symmetry is related to the standard
gauge freedom of the wave function. 

products ψ(f) = ψ(x) Λ (ψ1 Λ ψ2 Λ ... )2(f–1)products.

The basic equations for the set of spinor fields being 

(4.73)

where the sub-index d stands for (symmetry constrained Dirac fields)
Diracons.

Γ µ
(f)

1
2

tµ
d
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The actual wave functions can be written Ψ(0) = RΨ, where R is a
local boost and rotation from the frame of reference where the are
defined to the frame of reference of the observer. Because of the Clifford 
algebra outermorphism 

~ ~

(4.74)

We can write 

(4.75)

and then a special frame of reference definition is consistent with a def- 
inition in any observers frame of reference 

Table 1. The Symmetries Generated by the Set of Numbers 

The weak interaction carries W±(±2, ±1, ±1, ±l) information in re-
lation to the tµ numbers, with SU(2) symmetry.

The color interaction carries Gcc’ (0, ±l, ±l, ±l) information in rela-
tion to the tµ numbers, with SU(3) symmetry.

An example of carrier interactions would be

v0 + W – → e– or (–1, 000) + (2,1,1,1) → (1, 1, 1, 1),

for leptons and 

+ Grb ® or (–1, –1, 0, –1) + (0, 1, –1, 1) → (–1, 0, –1, 0), 

for quarks. 
We have shown [91, 96, 105] that they constitute a set with all the 

known properties of an elementary particle's family, the fields they rep- 
resent can be: 

D (d,f)
(0)†

tµ
d
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— massless or massive after interactions are considered; 
— charged (integer or fractional); 

and (as is discussed in [105] pages 158 and following) the collection of 
the fields constructed with (4.71) and (4.73) have weak charge and color, 
and in general the characteristics, usually postulated on a phenomeno-
logical basis, such as composites being colorless, confinement, etc. being 
immediate consequences of the defining equations. 

The principle change from the usual presentation of the Standard 
Model [35, 57, 67, 69] is that now the equations have, as constitu-
tional parts, a series of conditions which the phenomenological approach 
showed to be necessary. The conditions are here related to the basic 
properties of space-time as a frame of reference to describe physics. 

Because of the appearance, or not, of the iγ 5 factors in (4.72), the
fields have definite chiral properties. Only one field in the theory may 
have both chiralities simultaneously, and therefore can be, as a free field,
massive, charged (reference charge ±1), and weak charged: this is iden-
tified as the electron field. The different values of the index f, the family 
number, generate the families. 

The resulting theory is a chiral geometry theory of charge, isospin
and color. The theory has a Lagrangian formulation which reproduces 
all aspects of the standard theory. Even if the Higgs mechanism has, in 
its first approximation, the same motivation as in the standard theory, 
it has a purely geometric character in the present analysis. 

The Lagrangian in the standard model for a fermion field with elec-
troweak interactions and a symmetry breaking mass term is reproduced 

from the considerations above 

(4.76)

where the τi(i = 1,2,3) are Pauli matrices, Φ is a field corresponding to
the LK Theorem and Bµ and are U(1) and SU(2) gauge fields. A
further analysis of the fields in (4.76) shows that the coupling constants 

Aµ
i
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g and g' correspond to the electromagnetic constant e and to its dual
(axial) pair. 

To (4.76) we should add the energy corresponding to the neutrino, 
the energy corresponding to the interactions fields and the possibility of 
the neutrino and the electron interacting via the axial current, which
by definition is also the basic current of the neutrino from its chiral
properties as a massless field. The neutrino, as mentioned above, can
not interact with its polar current without violating space–time symme-
try. The equations and Lagrangian for the different fields are given by 
the corresponding application on the analysis in Chapter 3, where we 
discuss how to introduce constrains and how to relate currents to the 
corresponding gauge fields created by those currents. 

Confinement results, within the theory, from the requirement that 
the Lorentz symmetry should not be broken even at local level. The 
same requirement gives rise to the colorless condition for hadrons, the 
new feature is that hadrons should be both globally and locally color-
less. Fractional charges are also a natural consequence of the gauging 
properties of the Lagrangian. 

The theory shows the reason for chirality being a basic property of 
nature as shown by the set of elementary carriers. This can be clearly 
seen with the gauging of the Diracon equations, following the discussion 
for the electron, 

(4.77)

the gauging fields having, by selection in agreement with ∂µ the multi-
vector composition 

that is, the combined gauging has 1 + 2 + 3 + 6 parts given, when inter-
acting with other carrier fields, electromagnetic, weak, color, and gravity 
parts. The first two terms carry the index (d) because they are relative 
properties. Then the wave function becomes upon gauging (ϕ a reference
spinor).

(4.79)

with the phase factor being a multi-vector

(4.80)

(4.78)

(d)
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the particular, relative, combinations for the phase, the iγ 5 terms, gen-
erate isospin and color and the gab generate the local Lorentz transfor-
mation which are a consequence of gravity. The symmetries of 

generate the well known SU(3)c ⊗ [SU(2) ⊗ U(1)]ew standard model.
The electroweak–color relative properties can be illustrated comparing 

the following complex currents vector for massless fields obeying (4.77). 
For a massless field (j0)2 = (jf)2 flowing, in the 8 cases below, in the
vf direction

(4.81)

from the property (e4)2 = 1 we see that if we make the replacement
jf → jfe4 the current j8 will be transformed into current j1 and the
currents j5,6,7 into the currents j2,3,4 respectively, corresponding to the 
SU(2) symmetry and an equivalent type of transformation will transform
the sets {2,3,4} and {5, 6,7} within themselves corresponding to the
SU (3)c symmetry.

The semi-empirical mass matrix (based on Królikowski [131, 132]) for 
the families of elementary carriers has a very interesting form in its first 
approximation:

m (f,d) = N fmd (5.75 (1- (1-f) Kf /c2
f) + effect of nondiagonal terms),

(4.82)

with Nf = and md = where nf is the degeneracy of the

spinors in the outer product of ψ, m0 the electron mass, nc the number 
of color degrees of freedom: 1 for v, e– and 3 for the quarks; and Qd the
charge of the lepton or quark field. Then the masses are all, in a first 
approximation, proportional to the electron mass. That is, the action 
density is multiplied by this factor of geometrical origin. The factor 

suggests that the additional interaction is directly related to the 

family's wave unction as mentioned above, cf = 2f – 1 the number of
nf c2

f

Q4
d
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electronic, gauge, field as of a self-interaction origin. The induced mass 
and charge discussions below are related to this point. The creation
of a pair of elementary carriers at a given point, and its subsequent 
separation, involves the creation of their gauge fields, is the factor 
for the energy required to create the carrier’s electromagnetic field, an 
inseparable field from the concept of the existence of the carrier, whereas 

should correspond to geometric self interaction. 

In the theory we have presented here the physical properties are now 
a constitutive part of the wave equations. The relative properties are 
clearly shown [105] when super-matrices describe a collection of fields. 
Off diagonal terms couple them amongst themselves. 

We have seen that space–time and its TM (complex) allow enough 
degrees of freedom to construct a theory of elementary particles and 
their interactions. Specially important is that all known interactions are 
properly described. No additional isospin space is therefore needed, it 
is generated by the relative properties of the fields, the same applies to 
the color space. 

Nucleons like proton or neutron and mesons are, within this theory, 
composite fields but elementary carriers. In fact these composite ‘ele-
mentary’ particles cannot, even if enough energy is available, be split 
into smaller components; the requirement of rotational invariance forces 
the ‘colorless’ combination of quarks, even to the smallest possible ex-
perimental probe size. 

Otherwise the use of STA and its equivalent complex space-time,
which results in a five-dimensional geometry, with 32 degrees of free-
dom, allows the construction of a theory with both induced matter and 
interaction fields and the new features consisting in a natural existence 
of the SU(3) ⊗ SU(2) ⊗ U(1) theory for the elementary particles fields.
The main difference is that here we do not have a model (corresponding 
to the Standard Model) but a theory of the elementary carriers and their 
interactions fields, where the SM is a natural structural part. 

6.5 MASSES AND GEOMETRIC ANALYSIS 

We consider here the problem of the masses of fundamental particles 
considering the electron as the reference field. We follow the ideas and 
analysis of Królikowski in a form suitable to our theory of carriers. 

Introduction. The fundamental contribution of Królikowski [131,
132], independent but immediately relevant, to our theory, was the study 
of the puzzle in particle physics of the occurrence of three families of 

Q 2
d

Q 4
d
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leptons:

(4.83)

and quarks:

(4.84)

differing by (apparently nothing but) their masses. It has been impor-
tant to consider the CERN measurements of total decay width for Z0

gauge boson, manifesting itself as a resonance at circa 91 GeV of Center
of Mass energy in the process 

e+e- → Z0 → anything, (4.85)

showing that the number of different neutrino versions, lighter than 
mz 46 GeV, is just three. This result, followed by others, strongly

suggests that the number of all lepton and quark families is equal to
three if all neutrinos are light (or massless). 

The basic consideration is that there should be several approaches 
to understand the different fields that can be described by the Dirac 
equation (using Γ . B = Γ µBµ)

(4.86)

where the geometric meaning of the gamma symbols is kept

(4.87)

The gΓ . A should represent the standard-model coupling, identical for
all versions, while the mass operator M may depend on the version. Kró- 
likowski relates a set of versions with the three experimental families of 
leptons and quarks. In this set the argument expresses the idea of alge-
braic composedness of fundamental fermions, similar but different from 
the familiar notion of spatial composedness (so useful, for instance, in 
the case of pseudo-scalar and vector mesons built up of quark–antiquark 
pairs moving in the physical space). 

Geometric composedness. Consider, in a systematic approach, 
the spatial composedness in the familiar Duffin-Kemmer-Petiau equation 
describing a particle with spin 0 ⊗ 1 (for instance, a pseudo-scalar or
vector meson). In the free field case, it can be written in the form 

(4.88)

1
2
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where and are two commuting sets of Dirac matrices, 

(4.89)

Here, the pairs  (γ1+γ 2) are represented by the 16 x 16 Duffin-Kemmer-
Petiau matrices. 

It can be readily seen that (4.88) may be considered as a point-like
limiting form of the following two-body wave equation (Królikowski 1987, 
1988):

(4.90)

where (for simplicity) masses could be assumed equal: m1 = m2 (de-
scribing, for instance, a pair of a quark and an antiquark of the same
sort). The internal interaction S(x) in (4.90) can be related to the more
familiar internal interaction I(x) appearing in the Bethe-Salpeter equa-
tion through the formula 

(4.91)

Then, any of these two four-dimensional integral operators allows to 
calculate, step by step, a three-dimensional integral operator playing 
the role of internal interaction V(x) (internal interaction energy) in the
one-time two-body wave equation having the conventional form of the 
state equation. This equation (Królikowski 1955, 1956), reduces to the 
familiar Salpeter equation (Salpeter 1952) in the case of an instantaneous 
internal interaction. 

Representations. He explores what would happen if in (4.88) the 
commuting γ1 and γ2 are replaced by anticommuting γ1 and γ2 (Kró-
likowski 1986):

(4.92)

instead of (4.89). Note that the Clifford algebra (4.92) could be repre-
sented by 

(4.93)

with γ µ, 1 and γ 5 = iγ0γ1γ2γ3 being the usual Dirac 4 x 4 matrices.

γ 1 γ2
µ µ

1
2

µ µ

µµ µ µ
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In the case of (4.92), the counterpart of the Duffin-Kemmer-Petiau
equation (4.88) (with the convenient coefficient 1/ in place of 1/2), 

(4.94)

might be considered as a point-like limiting form of the two-body wave 
equation

(4.95)

but the latter, in contrast to (4.90), could not be derived from the con-
ventional quantum field theory. This is a consequence of the fact that 
the particle kinetic energy operators in the Fock space (γ i . Pi + m)
all commute, if they are derived from the field kinetic-energy operator

so, in such a case, all must commute for 
different i (at least, when massive particles are considered; if an inter-
action with an external scalar field is introduced, also massless particles 
cannot escape from this conclusion). 

Thus, while (4.94) (with (4.92)) may be investigated for some hypo-
thetical particles, it cannot be considered as a point-like limiting form
of a two-body wave equation following from the conventional field the-
ory. So,ψ = (ψα1α2) displays an algebraic structure that, now, does not
coexist with any spatial internal structure, at any rate, in the frame-
work of the conventional quantum field theory (Królikowski 1991). This 
illustrates, therefore, the notion of geometric composedness.

The logical relationship between the notions of spatial composedness
and geometric composedness reminds the, as discussed above, relation- 
ship between the notions of orbital angular momentum and spin. In fact,
in these cases we have to do with similar acts of geometric structure re-
lated to some notions of spatial character.

It is important to note that due to the Clifford algebra (4.92) the
matrices

(4.96)

appearing in (4.94) satisfy the Dirac algebra (4.87). This implies that
(4.94) has the form of the Dirac equation (4.86) (in the free case). Thus,
the hypothetical particles described by (4.94): when coupled to the mag-
netic field: should display (magnetically “visible”) spin though any of
them is a composite of two algebraic partons of spin . There exists, 
therefore, another (magnetically “hidden”) spin . It is related to the 

√ 2

1
2

1
2
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matrices – ) also fulfilling the Dirac algebra (4.87) and 
anticommuting with the matrices Γ µ in (4.96).

Note further that the matrices (4.96) may be represented in the con-
venient form 

(4.97)

if the representation (4.93) is changed into 

(4.98)

So, (4.94) can be rewritten as 

(4.99)

where the second Dirac bispinor index α2 is free. Such an equation is 
known as the Dirac form (Banks 1982) of the Kähler equation (Kähler 
1962).

A sequence of equations for spin carriers. Therefore the 
Dirac algebra (4.87) admits the remarkable sequence N = 1, 2, 3, ... of
representations

(4.100)

where the vectors i = 1, 2, 3, ... , N, satisfy the sequence N = 1, 2, 3, ...
of Clifford algebras 

(4.101)

With the matrices (4.100), (4.86) gives us a sequence N = 1, 2, 3, ... of
Dirac-type equations (Królikowski 1990, 1992). Of course, for N = 1 
(4.86) (with the vectors (4.100) inserted) is the usual Dirac equation, 
while for N = 2 it is equivalent to the Dirac form of the Kähler equation 
already discussed above (in the free case). For N = 3, 4, 5, ... it provides 
us with new Dirac-type equations. 

Except for N = 1, the representations (4.100) are reducible since they 
may be realized in the convenient form 

(4.102)
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with γ µ and 1 standing for the usual Dirac vectors which can be rep
resented by 4 x 4 matrices. In fact, for any N > 1 one can introduce,
beside ≡ Γ µ given in (4.100) N – 1 other Jacobi-type independent
combinations ...,

(4.103)

such that 

(4.104)

(from (4.100) and (4.101)). In particular, for N = 3 one may use the 
representation

(4.105)

In the representation (4.102), the Dirac-type equation (4.86) for any 
N can be rewritten in matrix index notation as

(4.106)

where Mij = δijM. Here, = ( a1a2...aN) carries N Dirac bispinor
indices αi, i = 1,2, ... , N, of which only the first one is affected by the
Dirac matrices Γ µ and so is coupled to the particle's momentum and to
the standard model gauge fields (among others, to the electromagnetic 
field). The rest of them are free. Thus, only a1 is ‘visible’, say, in the 
magnetic field, while a2, ... , αN are ‘hidden’. In consequence, a particle
described by (4.86) or (4.106) can display, say, in the magnetic field only
a ‘visible’ spin , though it possesses also N – 1 ‘hidden’ spins .

Because the Γ µ are representations of the space–time multi-vectors
the Lorentz group transformations can be applied to the field described
by (4.86) or (4.106) for any N. The form is not a relativistic
covariant for N > 1, though (4.86) with Γ µ ≡ implies that always

(4.107)

In contrast, the form is a relativistic vector for any
N, but (4.86) with Γ µ ≡ shows that the current density conservation
of

(4.108)

implies N to be odd. 

...
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Thus, the geometrical meaning of the quantities and the probability 
interpretation of the current of carriers requires that (i) only the odd
terms

(4.109)

should be present in the sequence of the Dirac-type equation (4.86) (if 
these are considered as wave equations), and (ii) the carrier current 
should have the form 

(4.110)

Here, ηN is a phase factor making the parity Ph

(4.111)

Hermitian. Since due to (4.108) Ph is a constant of motion, Królikowski
remarks that one can consistently impose on the amplitude function
in (4.86) the constraint 

(4.112)

in order to guarantee the probability density to be positive: 

(4.113)

Exclusion principle. The Dirac-type equation (4.86) with Γµ ≡ 
distinguishes the visible bispinor index α2 from N – 1 hidden bispinor
indices α1, . . . , αN. About the latter indices, appearing in this scheme
on the equal footing, Królikowski remarks that they represent physi-
cally non-distinguishable degrees of freedom obeying the Fermi statis-
tics along with the Pauli exclusion principle. Then, the wave functions 

= ( α1α2 αN ) in the sequence (4.109) of the Dirac-type wave equa-
tions should be completely antisymmetric with respect to the indices
a2, ... , αN. This implies that the sequence (4.109) must terminate at
N = 5,

N = 1, 3, 5, (4.114) 

leaving us with three and only three terms (4.114) in the sequence. 
In the case of N = 5 our exclusion principle requires that

(4.115)



114 THEORY OF THE ELECTRON 

Thus, in this case there are 4!= 24 equivalent nonzero components (car-

rying the index a), all equal (up to the sign) to one Dirac function
This reduces the Dirac-type equation to the usual Dirac equation. Here,
of course, spin is and it is provided by the visible spin, while four 
‘hidden’ spins sum up to zero. 

The case of N = 3 is more complicated since then one should consider
five candidates for relativistic covariants,

(4.116)

(4.117)

(4.118)

Here, C denotes the usual charge conjugation matrix that in the chiral 
representation, where γ 5 = diag(1, 1, –1, –1), may be written as

(4.119)

Making use of (4.105), one can write the parity (4.111) in the form 

(4.120)

where in the chiral representation 

(4.121)

Then, the constraint (4.112) implies that, 

(4.122)

(4.123)

Thus, the constraint (4.112) and our exclusion principle (requiring that 
acb) loads to the conclusion that from all components abc

only

(4.124)

and

(4.125)

.

= – 
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may be non-zero. Then, after a simple calculation, 

(4.126)

(4.127)

(4.128)

But, the Lorentz invariance of the vector given in (4.127) requires 
that = 0 since = 0 for µ = 1, 2, 3. Hence a14 = 0. In this way, we 
can see that all components abc must vanish except those in (4.124). 
So, in this case there are 4 equivalent non-zero components (carrying 

the index a), all equal (up to the sign) to the Dirac function This
reduces again the Dirac-type equation to the usual Dirac equation. Here,
spin is evidently and it is given by the visible spin, two ‘hidden’ spins
being summed up to zero. 

Concluding, in each of the three allowed cases N = 1, 3, 5 there exists 
one and only one Dirac particle (for any given color and up/down weak 
flavor described by the theory above). So, it is natural to connect these 
three versions of the Dirac particle with the three experimental families 
of leptons and quarks. 

Amplitude functions. As for the wave functions with N = 1, 3, 5 the 
number of equivalent nonzero components (carrying the visible bispinor 
index) is 1, 4, 24, respectively, the following overall wave function com-
prising three sectors N = 1, 3, 5 (or three fundamental-fermion families) 
may be constructed: 

(4.129)

Here, the sector-weighting (or family-weighting) matrix 

(4.130)

appears.

Mass Spectral Formula. The three-family wave function (4.129) 
implies the following form of the mass matrix for any triple of funda-
mental fermions ordered in one line in (4.83) and (4.84): 

(4.131)
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Here, H denotes a Higgs coupling strength matrix, while ω is given as
in (4.130). So, there are four different matrices (4.131) corresponding 
to triples of neutrinos, charged leptons, up quarks and down quarks, 
respectively.

Among all 12 fundamental fermion masses, the masses me, mµ, mt

of charged leptons e-, µ–, t– are the best known. On the base of some 
numerical experience, Królikowski proposes the following phenomeno-
logical ansatz (in two options) for the matrix H in the case of charged 
leptons:

, (4.132) 

with

, (4.133) 

where N = 1,3,5. Here, M0 > 0 and ε2 denote two real constants
independent of N. Then, the eigenvalues of the mass matrix (4.131) 
take the form 

(4.134)

since the Dirac masses are defined as non negative (a priori, the second
option seems to be more attractive). From the system of three equations 
(4.134) Królikowski obtains in terms of experimental me and mµ the
predictions (in two options) for the mass mτ, 

, (4.135) 

and for the parameters M0 and ε2,

, (4.136) 

and

(4.137)
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There is an excellent agreement between the predictions (4.135) for
mτ and its experimental value

(4.138)

cited for several years by Particle Data Group (1992) or

(4.139)

reported recently by Beijing Electron-Positron Collider Group (Qi 1992)
and ARGUS Collaboration (Albrecht 1992), respectively. 

In the picture which emerges from the argument, any fundamen-
tal fermion with N = 1, 3, 5 is composed of one ‘visible’ spin and 
N – 1 = 0, 2, 4 ‘hidden’ mutually cancelling spins , the latter forming 
relativistic scalars. This is the analysis of Królikowski which in our the-
ory represents, from the algebraic structure, both a magnetic self–energy 
and the relation of other elementary carriers to the fundamental carrier
field of the electron. 
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Chapter 5

GEOMETRY AND THE ELECTRON 

1. INTRODUCTION

The experiments of Gauss and Weber in the 1830’s on Ampère’s law
led to the concept of the electron and the atomic cores, before the con-
firmation by J. J. Thomson in 1897, as the carrier of negative charge
and the first studies of these particles determined it to be a (point)
charge with well defined trajectories and with a well defined charge to
mass ratio. The charge q = –1.602 x 10–19 Coulomb and the mass
m0 = 9.108 x 10–31 kg. Then the electron was to be defined as a mas-
sive charged particle, point-like up to the experimental accuracy of that
time. In fact, in the years 1846–1856 Weber developed a relative velocity
dependent generalization of Ampère’s law that led him in 1871 to the
theoretical recognition of the existence of the charged atomic nucleus
and oppositely charged orbiting electrons. In 1855 Weber determined
the constant velocity, equal to to be known as Weber’s constant.
Bernard Riemann, observing the Weber experiment, noted that the value
of c is close to the velocity of light determined by Fizeau.

Weber (1871 [182]) arrived at. the charge to mass ratio and proton–
electron mass ratio, derived the formula e2/mc2 known as the classical 
electron radius, and identified the nuclear binding force for which there 
was no empirical evidence until the 20th century. Weber also pointed out 
in 1871 that his constant velocity must represent a limiting velocity 
for electrical particles. This early history of atomic science was presented
by Hecht (1996) [78]. The name electron was introduced in 1874 by 
G. Johnstone Stoney one year after the publication of the Treatise on 
Electricity and Magnetism by James Clerk Maxwell in 1873. 

119
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Let e and e' denote the charges and let m and m' be the masses. 
Weber denotes by f the acceleration not caused by mutual action of 
particles. Then the Weber law (1871) for the force between two charged 
particles in relative motion led him to the following comment: 

From this its results that the law of electrical force is by no means as 
simple as we expect a fundamental law to be ... . The particles do not by 
any means always repel each other; (relativity theory cleared up these 
relations 35 years afterwards). 

These considerations were soon confronted with a basic problem: a 
charged particle generates an electrostatic field of intensity E(r) which
contains an electromagnetic static field energy 

(5.1)

where a is the radius of an spherical distribution of the charge q, that is 
(without magnetic field contributions) 

(5.2)

It is well known that, as for a point particle a → 0, the energy of
the electromagnetic field diverges. Moreover, the self-interaction of the
field with the particle could also be considered Uself(a) = +kq2/a as
an additional divergent quantity. When in the 20th century the mass-
energy relation was discovered it was thought that Uem(a) could be the
origin of the electron’s mass

(5.3)

which defines a quantity r0 = 2a, and if ma = m0, then

(5.4)

These models replace the electron’s mass by the electron’s radius pa-
It is also well known that further refinements give for the rameter.

spherical distribution of charge moving with velocity υ

(5.5)

(5.6)
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where γ = for the electromagnetic energy ∈em and the
electromagnetic moment Pem. A discussion of these problems (Poincaré
1906 [149], Abraham and Lorentz 1909 [1], Cohen and Mustafa 1986
[36], Lozada 1989 [137], etc.) is still a live subject in the literature. No
structure or size has been found for the electron this far, the distribu-
tion related to it can be made as small in volume as available energy
allows.

The picture of the electron was more complete when it was discovered
that besides its current jµ and its associated mass m0, another property, 
the electron's magnetic moment µe, had to be introduced (Stern and
Gerlach 1921). This vectorial quantity in the presence of an external
magnetic field H = can have only two values µs =
(notice the change of units q → e). The well known ideas of Pauli (1921)
and of Goudsmit and Uhlenbeck (1925) conveyed to the introduction of
the electron's intrinsic angular momenta, or spin, = 

Then already by 1925 the electron was to be considered as a massive 
charged particle with spin s and magnetic moment µe. A few years later 
quantum mechanics was introduced, and it was found that the theory 
of Dirac (1928) gives a correct description of the electron in the sense 
that it provides useful calculational procedures for the electron in the 
one particle approximation. Of course, it was a great success that the 
equation also described the positron. The latest definition of the electron 
could be then operational: An electron is a particle ( a carrier field in our 
approach) obeying Dirac's equation with charge –e and mass m0. The 
same equation introduces both the spin and the correct magnetic moment 
of the electron as a structural consequence. 

Users of the Dirac equation can work with many-electron, fermion 
systems, if the self-Coulomb problem is avoided. Frequently this is done 
by solving at the same time the statistics problem through the systematic 
consideration of exchange and the Pauli exclusion principle, a common 
practice between atomic, molecular, and solid state physicists. 

In this book we have, on the other hand, not separated the problem 
of the electron and its electromagnetic fields, this in order to search 
for new understanding of the electron's observed nature. Also we have 
shown that the natural mathematical formulation is given in terms of 
multi-vector algebra. 

We could, otherwise, try to avoid the explicit reference to the elec-
tromagnetic fields, (Schwarzschild (1903) [167], Tetrode (1922) [176], 
Fokker (1929, 1932) [64], Wheeler and Feynman (1949) [188] or Suther-
land (1989) [170]). 
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2. GEOMETRY AND THE ELECTRON 
Here we analyze the different possibilities of studying the electron, 

in the single carrier (particle) approximation, mainly from the point of 
view of the space–time multi-vector geometry. Different points of view 
of the electron and their relation to geometric algebras are confronted. 

We further assume that any physical quantity in the space–time should 
correspond either to a scalar (for example, a charge), a vector (the elec-
tron current or the energy–momentum) which, in principle, is a time
component of a tensor, or the electromagnetic potentials Aµ (from which 
the electromagnetic magnetic field intensities can be derived by, outer 
differentiation), bi-vectors (as the electromagnetic field intensities), tri-
vectors (the axial currents) or pseudo-scalars (the space–time hyper-
volume itself or quantities related to chirality). We have reminded 
the reader of these examples to illustrate that the STA algebra is al-
ready the basis for the study of the electromagnetic field or of the 
properties usually associated with the electron matter field itself. It
has been shown that specific combinations of multi-vector quantities 
are associated with spinors M, see, for example, Flugge (1947 [59]) or
Hestenes (1975 [80]) or Boudet (1985 [18, 19, 20]). These multi-vectors
are considered to belong specifically to the electron matter field, see 
[13, 21, 32, 29, 59, 74, 79, 141]. 

Those multi-vectors M correspond to ideals in the algebra [59]. By 
right multiplication by a constant (unit) minimal ideal ηi (a minimal
ideal of the space–time geometric algebra corresponds to a spinor, the 
projection used here to the inverse Cartan map [26, 103]), the ideal M

reduces to the well known Dirac spinors . We have shown [105] that 
the particular choice ηM,i of the constant multi-vector minimal ideals,
where each i corresponds to a combination of signs in (1 ± g0) (1 ± ig12),
in matrix representation: 

or the ‘column’ spinor equivalent ηi, for example for i = 1

and = (1000) such that 

, etc., 

(5.7)

(5.8)

¨
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results in the reconstruction of the multi-vector M corresponding to a 
spinor set { } 

(5.9)

and the standard Dirac theory can be faithfully mapped, Cartan map, 
to a multi-vector form of the Dirac theory ([85, 86, 139, 140, 59, 160, 
161, 162], see also next chapter). 

The multi-vector representing the electron obeys the Dirac wave equa-
tion (eigenvalue equation). The results obtained with the standard pro-
cedure of solving the Dirac equation with a column matrix representation 
of the spinor are not different from the results obtained with the multi-
vector procedure. All results related to that formulation are kept in 
the new formulation: orthogonality, interference, dispersion, diffraction, 
etc.. Moreover, the statistical nature of the interpretation of the the– 
ory is enriched in the sense that we shall be working at two ‘statistical’ 
levels:

1) The wave nature of the fields of multi-vectors and their sum resulting 
in interference; and 

2) The distribution nature of the different multi-vector fields which in 
the standard theory, and more widely used interpretation, are taken 
to be the ‘probability density’ of finding the particle at a given point,
ρ, the probability density of finding the particle with a current j or
a spin s, etc.. We should not forget that, as considered in Chapters
3 and 4, the theory for a collection of particles should be treated 
within many-body quantum theory with its particular set of premises 
and rules, densities being replaced by density matrices in which the 
fermion statistics are fully included. In our approach ρ is the carrier
density.

A set of rules for the formalism in terms of multi-vectors and for 
the interpretation of the results computed with the theory allows the 
unambiguous calculation of the quantities obtained with the standard 
procedures. Nevertheless, a richer physical structure of the theory, ex-
pressed in terms of multi-vectors, has been shown to exist, in particular, 
in relation to our basic claim that the matter and interaction fields are 
both parts of one single physical reality. 

Electromagnetism has been known for a long time to be a theory which 
can be constructed entirely from multi-vectors (Mercier 1932 [139, 140]). 
The now well known discussions of Hestenes (1966) [13, 77, 79, 80, 81] or 
Casanova (1976) [28, 29, 30, 31] illustrate its structure. The matter fields 



124 THEORY OF THE ELECTRON 

enter into the theory as charge–current distribution densities jµ → (p, J).
Nevertheless as the mapping multi-vectors → spinors is possible and the
electromagnetic field needs a maximum of six quantities to be defined 
(spinors allow the use of six independent parameters), electromagnetism 
could also be considered a theory constructed through the use of Dirac 
spinors [24, 25, 39, 101, 103, 104]. Here, mainly to emphasize our point 
of view of matter fields as distribution of multi-vectors, we shall take 
the two possible formulations: the theory to be cast in terms of multi-
vectors and in their multi-vector ideals. See below for the particular 
construction F =

In brief, for our analysis leading to the ideas below, we are either using 
the inverse Cartan map (Crawford 1985 [37], see also [103]) or we use 
the Cartan map to analyze the multi-vector theories for matter fields. 

The currents J (for example those generated by the electron field) 
can, in general, be decomposed into their solenoidal jsol and irrotational j
parts (see section 4 of previous chapter). In Dirac’s theory the solenoidal 
parts contain two components: one which is intrinsically solenoidal; and 
a second which is solenoidal only with reference to the boundary condi-
tions and the observer’s frame of reference. Then the electron sources 
of the electromagnetic fields are described in fact by a set of seven basic 
quantities:

and (5.10) 

We have already reminded the reader that an electron cannot exist 
without its electromagnetic fields, that is, it exists with an electrostatic 
field generated by the electron’s charge, an intrinsic magnetic field
generated by its intrinsic solenoidal current and an additional mag-
netic field generated by the, extrinsic, electric current. We should re-
member that the intrinsic solenoidal current is explicit when the Dirac 
current is analyzed via the Gordon decomposition, (see Ohanian 1986 
[143]). A satisfactory theory for the electron which is also a satisfactory 
functional definition of the electron should be obtained when the sources 
and the interaction fields are considered as a unit. Such a theory would 
be in accordance with a philosophical point of view that a physical en-
tity is constituted by whatever is observable of it (an observation being 
understood as all that we can infer through experiment). The intrinsic 
solenoidal current, of the electron implicates (see the detailed discussion 
of Ohanian (1986)) not only a magnetic moment but also an angular 
momentum

(5.11)
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then in (5.10) above jsol could also be replaced by an angular moment 
field S(x). Dirac’s theory shows that the magnitude of S(x) is

S(x) = Sρ(x), (5.12)

then only the direction of S(x) is independent of ρ(x) but not its mag-
nitude, this is one of the most important features of the geometrical 
content of the electron theory. It says that, even if the analysis of an 
electron distribution shows some solenoidal current, there is a curl of 
the distribution at every point and, as is well known in vector analysis, 
the overall intrinsic solenoidal current is the result of the application of 
Gauss’ theorem to the ensemble. Then an analysis of the spin as result- 
ing from a macroscopic current is mathematically correct but physically 
misleading: every point of the distribution contains the same amount of 
angular momentum per unit density. 

There is no indication whatsoever of a structure giving rise to spin 
and in fact a spin field S = g12 * = r g12

-1 is one of the most 
fundamental quantities of the theory 

In all experiments performed up to date an electron appears as a dis-
tribution of charge, currents and electromagnetic (electroweak, in fact,) 
fields. Most problems arise from the attempt to rationalize the exper-
imental facts starting from a point particle idea as the basis for the 
interpretation of experiment or for the interpretation of the results of 
the now standard quantum mechanical calculations. Experiment shows 
that there is no internal structure of the electron, but the experiment 
does not disagree with the existence of distribution. The ‘interpretation’ 
of the distribution is a fundamental question of quantum mechanics, not 
of the electron theory. That is, there is no experiment resolving the elec-
tron ‘cloud’ into instantaneous positions of a ‘point’ particle, nor, at the 
same time is there any evidence at all of a possible excitation of internal 
structures of an electron. 

We could speak in terms of electromagnetic quantities alone. The 
densities, which we commonly refer to as the sources, can be substituted 
by electromagnetic quantities through the integral form of the Maxwell
equations. For example to relate E and ∇ . E

(5.13)

or to relate ∇ x H and ∇ . E for time independent E,

(5.14)

and we can even think of the electromagnetic potentials Aµ as quantities 
related to the sources in special forms 

→
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(5.15)

We can then assume that besides the field intensities E and H we have 
a vector distribution 

(5.16)

(5.17)

and the energy–momentum related to this vector being 

(5.18)

(5.19)

Here m0 appears as a parameter providing the correct dimensions and 
v’ corresponds to the relative velocity between the inertial system where
∇ . E has been computed and that of the observer. In equation (5.6) the
quantity γ is to be computed from v’. Remember that relativistically E
and H can not be separated, nor have they a unique formulation, in fact 
they can always be expressed as Lorentz transformations and duality 
rotation of a reference bi-vector H = See below. 

The energy–momentum distribution of the electron will be given by 
(5.18) and (5.19) when E, H, and ∇ .E are those (additive) quantities re-
ferred to the particular electron under consideration. E and H are to be
used only in relation to other particles. Equations (5.16,5.17, 5.18, 5.19)
are nevertheless insufficient,. Also the electromagnetic field of the elec-
tron extends to infinity, making this approach more complicated, even 
if allowed by the Principle of Choice in our theory. 

2.1 MAPPING: SPINOR TO / FROM
MULTI-VECTOR

We briefly reproduce here what was presented elsewhere (Keller and 
Viniegra 1992). The direct and inverse Cartan maps between Dirac 
spinors and space–time multi-vectors, a procedure which incorporates 
Fierz identities and the Boudet- (1985) relations, have- allowed us to show
the explicit relations. Here = , and ρA = , where the γA

are here any of the 16 Hermitian multi-vectors of the complex Dirac 
algebra, such that the corresponding real numbers are 

(5.20)
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related through the Fierz identities 

(5.21)

(5.22)

(5.23)

(5.24)

(here Mµ = Mvguv). Through the use of Crawford’s inversion theorem 
(Crawford 1985) the mentioned above can be constructed 

(5.25)

where φi is an arbitrary phase and hi is a reference constant, spinor, 
which projects the multi-vector M = ρAγA into the space of the Dirac
spinors. This multi-vector M is the one which corresponds to the ad-
ditional vectors and other quantities in the extended matterinteraction
field theory proposed above. The multi-vectors obey the Dirac like equa-
tion (remember the ηi are constant)

(5.26)

where is a multi-vector and the operator ( – egµ Aµ ) is a
space–time vector operator. = Σi obeys the Dirac algebraic
equation for a particular set of values of the . The relative phases φi

have to be given in such a form that M =< >0= m cos β.

2.2
There is an analysis of the structure of the field associated with the

electron which acquires special meaning in START, that of a local struc-
ture of the field’s geometry in space–time. In fact, because the action
coordinate allows the repeated use of space–time-like hyperplanes we can
consider an auxiliary function f (r; a) projected into one point, (x; 0) of
space-time: r = |(x’; a) – (x; a) |; that is a projection of a function of r
at a into a point at a = 0, the value of a could otherwise be a = a (k)
below.

Let us compute the spin of a de Broglie wave (de Broglie 1943 [43]) 
which we write here in the form proposed by Mackinnon (1981) [138] 

SPIN, DE BROGLIE WAVES, AND MASS 

(5.27)
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Mackinnon proposed a particular case with f(r) = (sin kr)/kr but, f(r)
can be in general a spherical Bessel (Newman) function. The momentum 

of the field is

(5.28)

(5.29)

and, for g(x, t) corresponding to a particle at rest

(5.30)

which represents a circular flow of the field in the Λ
circulation has a singularity (zero density weight nevertheless) at the 
origin. The angular momentum is given by 

(5.31)

and again the second term, spin, will be the relevant quantity. If we
assume f to be normalized then the integral of the spin part would be
trivially of magnitude /2. As for a de Broglie wave packet k = m0c/ ,
then the same prefactor f(r) that generates the mass generates the spin
of the total wave. This seems to be the real origin of the structural parts 

A different, probabilistic, problem is related to the interpretation of
the total ψ as a probability amplitude. As mentioned above each point 
in the space where the electron is considered is given the same factor m0

and s = /2 for mass and spin magnitude. These properties are obtained
by mapping a generating function f (r; (x, a)) into the space–time point
(x, a = a0), the space–time of the observer describing nature. This is an
allowed procedure in a geometrical theory as the one presented in this 
book.

The interpretation of f(r) is consistent with the discovery that Zit-
terbewegung is mapped by a circular (helical) current for an electron at 
rest (in displacement). The classical pictures generated by space–time 
algebra act as ‘localizer’ of currents. This is seen both for bound states 
(see the discussion of the atomic calculation as plane solution in the 
book of Casanova (1976)) or for the traveling waves (Hestenes 1990 [82], 
Vaz and Rodrigues 1993 [181]) as Zitterbewegung .

plane x        y. The ^^

π 2 2discussed above.   N   o  t i c  e   t h  a  t     4     r   ( f (  r ) )      = 0 as r → 0.
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The prefactor f(r) provides, additionally, a connection with the stan-
dard model of elementary particles as far as

(5.32)

and it corresponds to a standing spherical wave. eikr /kr is an outgoing
spherical wave and e–ikr/kr an incoming spherical wave. Given a spin
direction they will have opposite helicities and the standing spherical
wave will be the realization of the well known sum of a left handed
and a right handed wave. The ±i factor in the exponent would be the
eigenvalue of the γ5 operator. This is related to action as discuss in the
previous chapter. 

This procedure is not directly related to the mapping of other types
of functions into the one describing the electron directly as a solution
of the Dirac equation. An example described at some length below is
the formation of non-dispersive waves for the relativistic wave equation
(Maxwell) started at least with the work of Bateman (1915) [12]. But one
should not be confused with the fact that the solution Φ of the 2Φ = 0
may be given with Φ belonging to any of the Dm,n representations of
the Lorentz group. 

2.3 THE 1929 WORK OF FOCK AND 
IVANENKO

As we have mentioned above, the geometric, Clifford algebraic, con-
tent of the Dirac equation and the corresponding electron theory was 
clearly and explicitly discussed by V. Fock and D. Ivanenko in 1929. 
On the 20th of May 1929 a physics conference took place in Karkov 
(Ukranie) where Fock and Ivanenko presented the idea that the Dirac 
matrices had a pure geometrical meaning. The theory was developed in 
a series of 4 papers: 

(A) V. Fock and D. Iwanenko, Über eine mögliche geometrische Deu-
tung der relativistischen Quantcntheorie, Z. fur Physik 54, 798 (1929); 

(B) V. Fock and D. Iwanenko, Géométrie Quantique Linéaire et De-
placement paralléle (presented by Maurice de Broglie) , C.R.. Acad. Sci-
ences (Paris) 188, 1470, (1929); 

(C) V. Fock, Geometrisierung der Diracschen Theorie des Electrons, 
Z. für Physik 55, 261 (1929) and; 

(D) V. Fock, Sur les Equations de Dirac dans la Théorie de Relativité 
générale, C.R. Acad. Sciences (Paris), 189, 25 (1929). 

In the paper (C) the Dirac equations were given a general relativistic 
invariant form and the gauge invariance of general relativity and electro-

¨
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magnetism were recognized as having a geometrical meaning by them- 
selves and a proper place in the geometric description of the physical 
world: gravitation through the Ricci coefficients and electromagnetism 
through, an independent geometrical quantity, the four potentials. In 
papers (A) and (B) they explicitly wrote

(5.33)

as a linear differential form whose square ds2 should be equal to the
Riemann ordinary quantity. They proposed calling this point of view of
geometry linear quantum geometry. They also proposed that the
Dirac spinor should be considered as a new geometric quantity (called 
semi-vector, following L.D. Landau). In short, they proposed that the
purely geometric quantities should be the Dirac algebra set of element’s 
and to consider them as operators. This allowed Fock and Ivanenko
to consider all geometric transformations related to special and general 
relativity. Having found the geometric meaning of the Dirac γA matrices
they had no problem in formulating the theory in general coordinate
system.

de I'Academie des Sciences’ (1929B) paper these Rusian physicists state 
that in Riemannian geometry the fundamental quadratic form ds2 ex-
plains gravitation, but for quantum and electromagnetic phenomena new 
geometric notions are needed ( “... notions géometriques nouvelles et
étrangéres á la géometrie de Riemann”). They propose: 

“...Le caractére géometrique des operateurs αk de Dirac a été sig-
nalé par les auteurs de cette Note [Paper (1029 A) Ueber eine mögliche 
geometrische Deutung der relativistischen Quantentheorie] qui ont pro-
posé d’introduire les opérateurs analogues aux matrices de Dirac dans
la géometrie et de considérer la forme différentielle linéaire

In the first section of their ‘ Comptes Rendus Hebdomedaires des Seances

(5.34)

dont le carré donne le ds2 ordinaire de Riemann” ... .
There is little doubt that this is the birth of the space–time geometric 

analysis within geometric Clifford algebra concepts. 
In the second section of (1929 B) they state that from the n-tuple γ v

of orthogonal directions at each point of space we can define the Dirac 
spinor ψ , which they call ‘demi-vecteur’. Then, in analogy to the parallel
displacement of a vector studied by Levi–Civita, the parallel displace-
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ment of a semi-vector can be used to start linear geometry 

(5.35)

where the cv are now operators (matrices) on the Φ and the dsv the
infinitesimal displacements defined in (5.33)

(5.36)

and if αv αµ + αµ αv = 2δµ v and the Av = Ψ†av Ψ behave as vector 
components, then 

(5.37)

where δAv should otherwise be of the relativistic from

(5.38)

if the are the Ricci coefficients, or 

(5.39)

then

(5.40)

the gµ commuting with the αv and

(5.41)

a condition which, in modern Clifford algebra language defines the Φµ to
be the bi-vectors associated with the Poincaré group. Think for example 
of the αv = γ0γµ as bi-vectors in a space–time ‘cut’ of a vector set γ v,
then to describe space–time general connections from point to point the
Φµ would in general, be Φµ = with = representing a field 
of space–time transformations for curved reference space–time relative 
to an arbitrary reference γ v. Fock and Ivanenko go on to consider the
special case gµ = 0 and Φ = such that φµ

 will be considered
to correspond to the electromagnetic vcctor potential and the covariant 
derivative being written 

(5.42)
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giving a geometric meaning to the electromagnetic field. 
V. Fock, in his extensive paper ‘Geometrisierung der Diracschen The-

orie des Elektrons’ (Zeitschrift für Physik, 55, 261–277 (1929)), clearly
states: 1) the geometric meaning of the Dirac γ µ as vectors; 2) the for-
mulation of the Dirac theory in general relativity; 3) the geometrical 
meaning of the electromagnetic field as a connection; and 4) the gauge 
theory formulation of gravitation and electromagnetism as geometric 
fields. Fock had just reviewed the algebra of bi-spinor quantities and, 
studying velocity in particular, found relations, which are now known in 
a general form as Fierz identities, and their transformation properties 
which he clearly related to the transformation properties of spinors. 

The Clifford algebra behind the Fock line of analysis is, however, not 
clear and is by far not explicit. The reason for this is that he failed to 
discover that his ‘quantum geometry’ should in fact be the standard
space–time geometry, or at least a realization of it. It was not until 
the work of Mercier in the early 1930’s that this was clearly seen. An 
additional problem arose from his analysis being based in the Dirac αµ

matrices, and then space-time vectors were represented by quaternions, 
which actually correspond to bi-vectors. The concept of vector and bi-
vector is then mixed throughout the paper. This is common in practice 
because both the ‘normalization’ and the velocity vector vµ =

are based on considering a reference vector γ 0 (or αµ = γ 0γ µ).
Two basic relations are nevertheless the key point in the analysis of 

the geometry being constructed; the construction of the local γ-matrices
tetrad (here = = = = 1)

(5.43)

(his equation (23)) and the treatment of those γ µ matrices as vectors in
curved space–time

(5.44)

(his note to his equation (43)) when he is constructing the Dirac field 
energy–momentum tensor. 

2.4 THE DISCOVERY OF THE 
MULTI-VECTOR WAVE FUNCTION 

Later in the 30’s, came the pioneering papers of Sommerfeld (1939), 
Sauter (1930), Mercier (1934, 1935), etc.. The great difference is a clear 
distinction between what is geometry and what is a physical proposition. 
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Mercier discussed electrodynamics from the same geometric, Clifford 
algebraic, point of view . The thesis and two papers of Mercier (1934 
and 1935) are crucial to formulating the equations of electromagnetism 
in Clifford algebra. He even went to consider thermodynamics from this 
point of view. Mercier had no doubt that he was dealing with space– 
time geometry and that the Clifford algebra approach was not to be 
circumscribed to relativistic quantum mechanics. 

The work of Sauter is important because by recognizing that in the 
solution to the Dirac equation each of the columns of a 4 x n matrix
is a solution of the equation, a minimal left ideal, we could then think 
of 4 x 4 matrices as solutions, and then the solutions and the operators
would then be members of the same algebra of square matrices, now 
known to represent the space–time geometric algebra. 

Sommerfeld recognized that the Dirac equation can be solved without 
any representation of the Dirac algebra, and that then the solutions are 
explicitly members of the Dirac algebra. 

Finally, in the work of Hestenes (1966), we find that the geometrical 
meaning of most quantities was clearly separated from other types of 
contributions.

2.5 ON THE ALGEBRAIC DIRAC EQUATION 
We consider here aspects of the multi-vector form of the electron’s 

wave equation. See, for example, [59] and Proca A. (1930a,b,c), Sauter F. 
(1930), Mercier A. (1934, 1935), Eddington A.S. (1936), Sommerfeld A. 
(1939), Riesz M. (1946, 1953, 1958), Quilichini P. (1957), Ravsevskii P.K. 
(1957), Teitler S. (1965a,b,c, 1966a,b), Hestenes D. (1966, 1975, 1979), 
Casanova G. (1970, 1976), Boudet R. (1971, 1974, 1985), Salingaros N. 
and Dresden M. (1979), Greider T.K. (1980), Keller J. (1982a,b, 1984, 
1986a,b, 1991), Keller J. and Megy F. (1984), Crawford J.P. (1985), 
Keller J. and Rodríguez-Romo S. (1991), Snygg (1997). A recent analysis
of some of these works can be found in [115, 125]. 

2.5.1
Here we want to show explicitly the multi-vector content of the Dirac 

spinor. We first rephrase some material from the previous chapter. To 
start, let us consider that associated with each matter field, corresponding 
to the field associated to a spin particle, there is an energy–momentum 
field eµpµ(x), such that, denoting by x = eµxµ points in the observers
frame of reference, 

THE STRUCTURE OF THE WAVE FUNCTION 

(5.45)
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assuming that there exists a (local) frame where the energy momentum 
is tho one corresponding to that of a particle at rest. The frame is 
related to the observers frame eµ through the local Lorentz transforma-
tion

(5.46)

then (5.45) becomes 

(5.47)

we multiply (5.47) by R(x) on the right,

(5.48)

and use the multi-vector double projector P+↑ , with the properties

(5.49)

to obtain 

(5.50)

Here, the ie1e2 factor is to be kept for further reference to P+↑ having
been chosen as the appropriate projector, other choices could have been 
made. The up arrow refers to γ 12 as the direction of spin up and the 
plus sign to the choice of ‘positive’ mass m0.

Now assume that there is a function 

(5.51)

where is the Dirac space-time algebra and such that (5.50) can be
written, allowing us to use the operator representation pµ = ,

(5.52)

where the i has been cancelled on both sides of (5.50). In the refer-
ence ‘rest’ frame of the field R(x) = 1 and A(x) should be such that

∂µA (x) = m0cA(x) e0e1 e2.
The wave function (5.51) then explicitly contains three main contri-

butions: the existence of the particles’ field in A(x); the relative motion
of the particles’ field in R(x); and the reference to a preferred sign of m0

and spin in P+↑.
This derivation from first principles ([105]) is also an explanation of 

the geometric reason for considering a multi-vector equation (which goes 
beyond the multi-vector analysis which was done, at the beginning of 
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relativistic quantum mechanics, by solving the Dirac equation in terms
of multi-vectors). The ∈ C1,3 then contains a (local) Lorentz trans- 
formation and the information that a fixed time direction e0, a given
duality rotation (discussed below) and a given plane e1e2 have been
taken as an overall reference. By definition of carrier, the normalization
is j0dτ = 1, V being some reference volume.

2.5.2 THE CARTAN MAPPING APPLIED TO THE 
DIRAC EQUATION 

For the inverse procedure start now from the Dirac equation for mas- 
sive spin fields 

(5.53)

where Ψ(x) ∈ the space-timespinors and eµ∂µ ∈ C1,3 is the gradient
operator. Consider again the constant reference spinor η† such that,

(5.54)

and post-multiply (5.53) by η† on the left hand side and by η†P+↓ie0e1e2,
on the right hand side (this is done to introduce into the equations the
definitions (5.54)) to obtain 

(5.55)

the obvious definition 

(5.56)

brings (5.55) into (5.52). The relations (5.56) correspond to the Cartan 
map, and to the inverse Cartan map respectively (Crawford (1985) and 
[103]). For massless fields a different choice of the spinor defined in (5.54) 
should be made.

We now use the matrix representation of the geometric superalgebra 
K [109, 107], an example of Z2 to illustrate the mathematical struc-
ture of (5.52), its equivalent standard form (5.53) and the new type of 
symmetries that are immediate in K-algebra.

The basis vectors eµ which are usually represented by the traceless γ µ

matrices, being elements of order 2 in Z2 are now represented by the 
traceless supermatrices 

(5.57)

^

^
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The Dirac spinor corresponds in geometric superalgebra to elements
of order 

and (5.58) 

The reference, spin up, positive mass spinor η obeying γ 0γ 12η = –iη
corresponds to 

and , (5.59) 

with η† = (1000) in the standard representation of the γ µ matrices. It
has, as mentioned above, the property

(5.60)

Here again (5.60) is an example of the Cartan map: spinors → multi-
vectors expressed in K algebra.

The standard Dirac equation (free space)

, (5.61)

is immediately mapped into the multi-vector Dirac equation, thus:
a) multiply (5.61) on the right by (remind is constant and =

η†iγ 0γ 1γ 2) v 

,

(5.62)

and b) define φ = Ψη† to obtain

, (5.63)

an equation where only multi-vectors occur, where again our choice for η
of the reference positive mass and spin up, is explicitly shown, to obtain 
the projected Dirac (algebraic) equation in super-algebra form: 

(5.64)

It is clear that (5.64) is block diagonal and that the super-algebra here 
appears as redundant, that is in (5.64) we do not need, in practice, to 
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use the more general element φ = but the procedures (a) and

(b) above are general and other options are open if super-algebra is used 
and not solely the upper left block. 

As mentioned above, this mapping would not give back what is con-
sidered the more general standard solution of the Dirac equation in the 
multi-vector form. In fact, the multi-vector algebraic solution for the 
Dirac equation in free space is often written 

(5.65)

where ρ is a scalar density, β a duality rotation angle, and R' a space-
time rotation. As we mentioned, this ψ is, in fact, a multi-vector with 
four independent, left ideals related in a specific phase (here the bar
denotes complex conjugation) which can be represented by a full 4 x 4
matrix, with the following structure

, (5.66) 

with

, (5.67) 

and

(5.68)

The Ω 1 and Ω 2 were denoted by δ and iπ in (5.20). The Cartan mapping
should then be, as mentioned before, 

(5.69)

where each Ψi is each one of the columns of (5.67) and the ηi are row
matrices which have zeros everywhere except at position i. Then a full

†
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even multi-vector is reconstructed in (5.69). The phases of the Ψi are
adjusted to give (5.69) the structure (5.65). 

The direct solution of (5.64), given by (5.66) generates ψ = 

with R ' = Re ,where R is the rotation introduced in (5.46)
above and the exponential in γ 1γ 2 has been the origin of most of the dis-
cussions presented below where the fundamental role of the spin bilinear 
form is considered. 

In our theory above we have presented the explanation: spin and 
action have similar axial properties and proportional to each other; also, 
for the electron within our geometry the spin density is immediately
mapped through the Compton radius /2 = |s| = m0crCompton.

2.5.3 ON THE BILINEAR COVARIANTS IN THE 
DIRAC THEORY 

In the Cartan and inverse Cartan mappings above we have used the 
well known bilinear covariants, given by (5.20), in the standard spinor 
formulation of the Dirac theory, they all correspond to densities of tensor 
quantities of the general form

(5.70)

where the subindex A corresponds to the multi-vector characters and 
the γA should be Hermitian matrices, that is with a factor i =
included whenever necessary. But in the multi-vector formulation there 
is a second set of bilinear covariants which correspond to quantities which 
are also relativistic covariants and can be (as are the TA(x) above) gauge
invariants: they are constructed from the inverse of the wave function 
multi-vector

(5.71)

which can be unambiguously defined for the multi-vector form. In this 
case we will not be dealing with densities TA(x) = (correspond- 
ing to the TA of the standard approach as discussed, for example, by
Casanova (1976)) but with structural numbers of the theory, of the
general form 

(5.72)

They have been discussed by Daviau (1989 [39]) where he found that, 
from the canonical form of the Dirac algebraic wave function, the gauge 
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invariant and covariant structural numbers of the theory are 

(5.73)

(5.74)

(5.75)

This A covariants should really be taken as intensive quantities, they do 
not depend on the electron density ρ. In terms of Daviau these quantities
are remarkable because their intensity is rigorously the same both where 
the electron field has a high density or where it has a vanishing density. 
They can be studied in the multi-vector formalism because it is in this
formalism where ψ is invertible. 

A quantity like 0 = f0 is the one that seems, in principle, associated
with the mass term of the electron theory. In the analysis below a 
mapping of the Dirac equation will be presented, discussed and compared 
with the approach of Daviau and Lochak (1991 [41]) (see also Daviau 
1993 [40]) where they use densities of bilinear forms and then have to 
speak in terms of ‘a variable mass term’. 

As in the case of the ordinary Dirac bilinear forms, so well known 
because of the Pauli–Fierz identities, we can use the inverse Cartan 
map on the intensive bilinears and start from the Dirac spinor and the 
corresponding mapping of the inverse Dirac multi-vector:

and then (5.76) 

2.6 APPENDIX 
This section is included to show the further possibilities of gauge free-

dom and of the freedom of choice of acceptable descriptions according 
to the PAD. It is otherwise not essential for the analysis of the basic 
theory of matter as presented in this book. 

2.6.1 THE BI-VECTOR/SPINOR MAPPING 
There were two series of papers, which were almost equivalent, devel-

oping the idea of a mapping of the Dirac equation into a Maxwell-like
form, it is that the Dirac equation could be written in the form F = 0. 
Simultaneously, the idea was introduced that the basic Maxwell equation 

(5.77)
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which in multi-vector algebra is a relation between the divergence of the 
bi-vector F and the vector J can be mapped into a Dirac like equation
for a ‘spinor’ which can generate the bi-vector F in the multi-vector
bilinear map

(5.78)

The equation takes a special simple form in the case of J = 0.
The work of Campolattaro (1980) started with the analysis of the 

Maxwell equation by writing F in the equivalent bilinear form 
corresponding to (5.78) above, and by simple replacement into the Maxwell 
equation (5.77) together with the use of the constant ΨΨ = b, he ob-
tained the Dirac-like, non-linear, equation for Ψ.

In his two following papers Campolattaro (1990) pursued his map-
ping and showed that the inverse procedure can be used for the Dirac
equation, arriving at the Maxwell-like equation obeyed by an F defined
in exactly the same form as equation (5.77).

In what can be thought of as a completely independent work, Daviau
proposed in 1988 that both the Dirac and the Maxwell equations could
be generalized and mapped into each other in such a way that it is clear
that they are mathematically equivalent (provided we fix the solutions
by the use of subsidiary constrains) and interchangeable for the Dirac
or for the Maxwell fields (Daviau (1989) [39]). This paper made full
use of space-time Clifford algebra, whereas the work of Campolattaro
considered the Dirac matrix ring algebra and spinors, F was represented
by him in component tensor form. The related problem of presenting 
the Maxwell equations in Dirac form has also been considered (Keller 
1993 [114]). 

The Campolattaro reinterpretation of the Dirac equation for
Let us consider the Dirac equation for the free the free electron. 

electron, i.e., 

(5.79)

By multiplying equation (5.79) on the left by Ψγv one has (γ vµ =
–γ µv)

(5.80)

Using Sµv = equation (5.80) reads

(5.81)

and
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By taking the Hermitian conjugate of equation (5.81), one has

(5.82)

and by adding equations (5.81) and (5.82) one obtains, for the antisym- 
metry of Sµv

(5.83)

Similarly, by multiplying equation (5.79) on the left by Ψγ5γv and by
repeating the steps followed in the previous lines, one has 

(5.84)

Equations (5.83) and (5.84) are completely equivalent to the Dirac equa-
tion (5.79). Therefore one has, by using the results expressed by equa-
tions (5.79-5.84) above, that the Dirac equation is equivalent to the 
Maxwell equations for an ‘electromagnetic field’ Fµv defined by 

(5.85)

and thence 

(5.86)

generated by the two currents 

(5.87)

and

(5.88)

the first, electronic in nature and the second magnetic monopolar, or 
simply monopolar. The gauge conditions are automatically satisfied 
because each of the four components of the Dirac spinor satisfies the 
Klein–Gordon equation and the current mΨγµΨ is conserved.

The work of Daviau and the analysis of Rodrigues et al.
As the use of STA allows a more comprehensive treatment, or at least
a simple account, we shall follow the Daviau approach. He starts by
showing that a matrix representation of the complex space–time Clifford
algebra allows a straightforward analysis of several relations in (STA). He 
analyses scalars, vectors, bi-vectors, axial vectors, and pseudo-scalars in 
some detail in order to have a quick reference to the relationship between 
them. He also writes the gradient operator for space–time in matrix form 
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and describes the dot product of that operator with each of the multi-
vector fields. He can then write the analysis (which was already known 
some 60 years before from the work of Mercier (1932)), to proceed to 
the (for him) obvious space-time generalization of the Maxwell equation 
for the case where: 

a) The current is enlarged to have both a vector and tri-vector parts 
J = Jv + Jt. As we know the tri-vector part, the dual of the vector part,
can be interpreted in Maxwell theory as a current of magnetic monopoles 
in the sense that the electric and magnetic fields are dual to each other. 

b) In a second step Daviau generalizes the concept of the bi-vector
F to study the possible inclusion of the full even part of the space– 
time algebra F = Fs + Fb + Fp, which, in the analysis of the equivalent 
to spinors in space-time algebra, corresponds to a spinor which can
be written ψ = and interpreted as a weight  a duality 
rotation phase eg5b/2 and a Lorentz transformation R. Here no mass
term is needed. 

The two successive generalizations yield both a generalized Maxwell
theory and the possibility of interpreting F as generated by the Ψ and
then the possible mapping of the Maxwell equation into a Dirac-like
equation for Ψ.

But before doing this mapping he first proceeds to map the algebraic
form of the Dirac equation back into a Maxwell-like form by interpreting 
the solution of the Dirac equation as the sum of a scalar, an electric, a
magnetic, and a pseudo-scalar part. 

The algebraic manipulations behind these mappings are much better 
understood following the analysis presented by Vaz and Rodrigues (1992,
1993, 1994) because they start not by mapping the equations but, by
examining the consequences of the free Maxwell equations F = 0 when

We shall follow the analysis of Rodrigues and Vaz (RV) starting from
F = bψγ1γ 2ψ*.

the multi-vector

(5.89)

and for the electromagnetic field writing H ≡ bρ with ρ ≤ 0, we then
have the formal 

(5.90)

(5.91)

the bi-vector which we consider to obey the free Maxwell equation: 

RV then look for solutions of (5.91) of the form (5.89); they consider 
that since (5.90) is valid when F is non-null (F2 ≠ 0) then planewave
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solutions of (5.91) are excluded (since in this case F2 = 0). This is 
already an important consideration about the difference between the 
Dirac and Maxwell fields even if both can be described by (5.91) for the 
source-free case. RV proceed to consider the trivial non-null solution 
of (5.91) given by F = constant, the case when b and ρ in (5.90) are
constants or related in a special form. They suppose first b, ρ and β to be
constants. From (5.90) in (5.91) RV obtain the non-linear Heisenberg-
like spinor equation:

= const., (5.92) 

with

(5.93)

From RR* = R*R = 1 it follows that (∂µR)R* + R(∂µR*) = 0, and
Hestenes (see Hestenes 1991) writes

(5.94)

(5.95)

where

Since we have supposed ρ and β constant, (5.94) can be written as

(5.96)

using ∂µR* = R*(R∂µR*). If we introduce (5.96) into (5.93) and define
the intensive, structural, multi-vector bilinear, 2-form S as

(5.97)

where the constant is identified by RV with the (reduced) Planck
constant, then (5.92) acquires the relevant, (non-linear) form:

an intensive or structural relation which, because {b, ρ} = const., can be
written

(5.98)

RV point out that (5.98) is an interesting result: it is equivalent to the 
free Maxwell equations (5.91) under the above assumptions. The Daviau 
covariant S corresponds to spin. 
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Given that both S and Ω µ are 2-forms, the product SΩ µ in (5.98)
results in the sum of a scalar, a 2-form and a pseudo-scalar that is

(5.99)

where ρµ, Eµ,αβ and rµ are scalars. Consider as a guide the coun-
terpart of an electron at rest in the Dirac algebraic equation, then

( /2)γ12) also Ω 0 = 2(∂oR)R* = = 0,i = 1,2,3 and
SΩo = m0c, SΩ i = 0 or – = 0.

Then the product SΩ µ reduces to only one scalar constant and (5.98)
becomes the Dirac equation, the same is true if a more general R is used
than that of an electron at rest. The more general analysis of RV follows:
Let us first suppose that SΩ µ possesses only a scalar part then

R = and (R* = R = = ( /2) Rγ1γ2R

(5.100)

Now, given the velocity field u, defined as

(5.101)

that let us define the mass m in such a way that

(5.102)

to obtain

(5.103)

When we insert (5.100) into (5.98) and then use (5.103), we eventually
end up with a linear equation:

(5.104)

for a free particle (electron).
At this point RV go beyond the 1980 Campolattaro analysis and in-

troduce what is, in fact, a mathematical basis to consider interaction
fields. In fact, the equations below could also be derived by gauging.
Campolattaro considered this extension in Campolattaro (1990a and b). 
Now RV go on assuming b, ρ and β to be still constant, but instead
of supposing that SΩµ possesses only a scalar part they use its general
expression, (5.99): 

(5.105)

,

=  ~

so ρυ = ψ γ 0 ψ *
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where A µ and Bµ are

(5.106)

(5.107)

with ∈Vσρτ = +1(–1) for even (odd) permutations of [0, 1, 2, 3] while
∈vσρτ = 0 when two indices are equal. Here A and γ5B play the role
of electromagnetic potentials when external (electromagnetic) fields are
present: the potentials associated to an electric charge e and a magnetic
monopole γ 5g, respectively. Here we can recall, as we have mentioned
above (see Sutherland (1989) [170]) that there is a gauge for the Dirac
equation in which the mass term disappears explicitly. They now define, 
in analogy with (5.102), 

(5.108)

where r = rµγ µ, then (5.98) assumes the form:

(5.109)

A later analysis shows that ρ and β are constants only if A and B are
also constants in (5.105). 

Campolattaro, Daviau, Vaz and Rodrigues approaches.  Since
the early work of Fock and Ivanenko it is clear that spinor formulations 
and multi-vector spinor formulations can be mapped into each other, 
although they are not strictly equivalent, as we have discussed above in 
the previous chapters. Vaz and Rodrigues (1993) have recently shown 
the faithfulness of the mapping, and we present here the main steps 
they followed. Vaz and Rodrigues (1993) wrote in detail the proof of the 
equivalence between the non-linear (multi-vector) spinor equation for the 
Maxwell field and the equivalent equation derived by Campolattaro for 
the Dirac equation to transform it into a Maxwell-like equation, which 
are in fact different because Campolattaro uses Ψ, which is the Dirac
column spinor, and Vaz and Rodrigues (Daviau) use an (algebraic) ma- 
trix spinor with four columns. The analysis of Vaz and Rodrigues goes 
as follows: 

a. They write the Dirac spinor in the column matrix representation 

Y = , (5.110)
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(5.11 1) 

b. They substitute into the Campolattaro equation 

(5.112)

and then they transform that equation into an equation for column ma-
trices

(5.113)

(5.114)

to obtain 

(5.115)

Thus equation (5.112) is explicitly 

(5.116)

c. For the non linear equation of Vaz and Rodrigues 

(5.117)

with

(5.118)
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they write the ψ in full 

,

(5.119)

and by direct substitution they obtain a 4 x 4 matrix equation 

(5.120)

or, in terms of components, 

(5.121)

Comparison of (5.116) with (5.121) shows that every column of (5.121) 
obeys the Campolattaro equation. But it should be stressed that the ψ
of Daviau is a multi-vector, and as such it has additional geometrical 
content.

The mapping of the Daviau–Vaz–Rodrigues F into the Campolattaro 
F12 = Ψγ12Ψ is not reduced to what was presented in (5.111-5.121)
above, because ψ = Σi as discussed in IV and then 

I (5.122)

and then, besides the terms another 12 terms i ≠ j are
to be considered for the construction of the multi-vector F. We repeat,
the multi-vector F contains more information than the minimum needed 
to satisfy the Campolattaro equations, equivalent to the Dirac equation 
by construction. As presented above the F is equivalent to the multi- 
vector solution of the Dirac equation. 

In an interesting extension of their analysis Rodrigues, Vaz and Re-
cami (1993) continue the study of F = 0 when the canonical form
ψ =              is not restricted. 

RVR pass to the most general case, by eliminating the restriction that 
b is constant, to obtain: 

(5.123)
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which generalizes the non-linear equation (5.92), letting ρ and β be
variables here, they 

(5.124)

which, using (5.97), results in: 

(5.125)

RVR rewrite the left hand side of (5.125) in order to have 

(5.126)

The left hand side of (5.126) vanishes once R is required to satisfy 
(5.98) (which was written in terms of ψ because ρ, β were there supposed 
to be constants) we must then have [K being a constant]

(5.127)

which implies that F is proportional to Rγ1γ2R*. Equation (5.127),
therefore, implies a (non-null) constant field F. Notice, incidentally, 
that in (5.127) it must be either β = 0 or β = π, since b is a scalar,
and this is a consequence of supposing R to obey the Dirac algebraic
equation.

Putting (5.127) into (5.125), RVR finally obtain the generalized spinor
equation

(5.128)

0 ≡ And again, if SΩ µ has only a scalar part, (5.128) 
can be written -according to our previous discussion— as

(5.129)

which is a (non-linear) generalized Dirac equation. RVR show that if
one applies the Dirac operator to the above equation one obtains 
[ 2 ≡ ∂µ∂µ ]

(5.130)

with  ψ
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where

(5.131)

The term Wψ can be easily calculated in the rest frame. The result, is 
that it vanishes, i.e.,

(5.132)

Then (5.130) assumes the interesting, simple form 

(5.133)

This is a non-linear Klein–Gordon equation, which exactly coincides 
with the equation proposed by Gueret and Vigier (1982), and possesses 
localized, non-dispersive solutions. The term is usually called 
the ‘quantum potential’. Following Gueret and Vigier (1982) and also 
Mackinnon (1981) one can propose 

(5.134)

and then 

(5.135)

which is just the case discussed by Mackinnon (1981). In particular, 
(5.135) admits a non-trivial solution, representing a non-dispersive soli-
ton (localized wave-packet) which moves undeformed with subluminal 
speed.

Let us recall here that in 1915 Bateman had looked for ‘solitonic’ 
solutions of Maxwell equations.

RVR further notice that when we replace SΩ µ in (5.128) by its full 
expression (5.99), containing a scalar, a 2-form, and a pseudo-scalar part, 
(5.128) then its most general form 

(5.136)

Actually, (139) is a particular case of (153), valid when the non-linear
term can be neglected. 

Maxwell-like bi-vectors. Given an electromagnetic field F, from
the Rainich (Misner–Wheeler) theorem, it is deduced that 

, (5.137)
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where ψ is a multi-vector spinor field (whose canonical form is ψ =
ρ1/2eγ5β/2R). Rodrigues and Vaz showed that even supposing b, ρ and
β to be not constant, correctly represents the electromagnetic field, the
field solves the free Maxwell equations (without sources) F = 0. 

On the other hand, F can be written 

(5.138)

where b ≡ K/ρeβγ5 and where Φ ≡RAo(t) is a Dirac spinor field which
satisfies the (linear) Dirac equation. 

Those spinor fields are then related by the rest mass factor; the reader 
should be reminded here that for an electron there is at every point x
a factor m0 and a spin in as a structural part, then both are
acceptable operators, also γ 12

Φ = ±iΦ and ±im0Φ =

(5.139)

and in particular, for the 'electron solutions' (i.e.,for β = 0), by:

(5.140)

which coincides, as shown by RV, with a well known expression in de
Broglie's theory of double solution. (For the positon one would obtained

was the electron (total) quantum-probabilistic wave-function, but the
multi-vector Φ (which obeys the Dirac equation) was a physical wave.

An important remark of the RV approach, is that the multi-vector
spinor field Φ is related to the rotor part of ψ and therefore has only
6 degrees of freedom, the same as the electromagnetic field F (while ψ
possesses 8 degrees of freedom) and, in this case, the spinor field Φ could
ultimately be analyzed having an electromagnetic nature, as suggested
by equations (5.137) and (5.140). For instance, the basic equation (5.90)
or (5.137) shows the strict relation existing between the non-null elec-
tromagnetic field F (present in the absence of sources) and the electron
wave-function ψ.

They conclude that many of de Broglie's ideas concerning the inter-
pretation of quantum mechanics should be seriously revisited, whilst
the language of Clifford algebras appears to be particularly convenient 
for that purpose. In this and the previous chapter we have carried out 
this analysis. 

ψ = –γ5ρ1/2Φ).Let us recall that in such as de Broglie's theory ψ



Chapter 6 

ALGEBRAIC ANALYSIS OF THE 
ELECTRON THEORY 

1. THE ALGEBRAIC SOLUTION OF THE
DIRAC EQUATION 

We have mentioned that we are using the analysis of all our quan-
tities within either the geometry of space–time, ST, or the geometry 
of the space–time–action space, STA. Both are defined as spaces with 
a quadratic form, this induces a multi-vector geometry and a particu- 
lar form of geometric analysis (see next chapter and[128] and references 
therein). This is often overlooked, even if used in practice. The main 
reason is the immediate use of a representation of the algebra and the 
analysis through the use of the 32 Dirac matrices (or in terms of the 
Pauli matrices, or an indice notation arising in general from the Pauli 
algebra and its spinors). 

We briefly review here the algebraic solution to the Dirac equation.
We follow for example the textbook of Flugge [59]. 

We want to solve the Dirac equation (λ = 0,1,2,3)

(6.1)

gauged to represent the presence of an external potential V (z). Define
= m0c/ to rewrite 

(6.2)

The solutions can be written 

(6.3)

151

¨
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obeying

(6.4)

and f (x, y) arbitrary. Because (6.4) only contains γ 3 and γ 0, we can use
the multi-vector function 

(6.5)

to find a solution in which

(6.6)

where Γ is any constant multi-vector. Defining the multi-vector σz com-
muting with γ 3 and γ 0

(6.7)

the solution u can be an eigenspinor of σz

(6.8)

where

(6.9)

The two possible solutions are 

(6.10)

and for a given V (z) we have to solve the coupled set of equations

(6.11)

with the definitions 

(6.12)

and

(6.13)
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then

(6.14)

with current and density for the projection 

a) (6.15)

given by 

(6.16)

and three similar results for the linearly independent combinations 

b) (6.17) 

c)

d)

The solutions a) and b) have mutually cancelling constraints, the same
as the pair of solutions c) and d). The set of solutions is complete, then 
any other solution can be written as a linear combination of this set of 
solutions.

For the purpose of our description in the text we can now consider a
sum of two spinors solutions, say a) + b), but with V(a)(z) = –V(b)(z)
and V(a) (z) = V(a) (z; reciprocally V(b) (z) =V(b) (z;
to describe now a pair of interacting carriers. The system not being
totally defined until some distribution ρ(i) (x, y, z, t) is given and V (z)
can be properly defined. Externally, for each pair, the system will appear
as a constrain free, but stable, distribution.

2. TWISTORS AND CARRIERS 
We use a twistor approach starting frorn basic definitions to show both 

the twistor content of geometric analysis and the structure of gauged field 
solutions in the electromagnetic case. 

See the next chapter for a formal presentation of twistors in terms of 
multi-vectors.

2.1 INTRODUCTION 
One of the comprehensive developments of the idea of spinorization 

of the phase space has been achieved in twistor theory [147]. Using 

a),a)a, a,
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the condition of masslessness the twistor approach established a deep 
relation between phase space variables of massless spinning particles 
and spinor wave functions. In this formalism the equations of motion of 
massless particles have been transformed into algebraic equations over 
oscillator ladder operators of the helicity. 

The success of the twistorial description of massless particles has in-
spired several authors to apply this tool also to the construction of a 
twistorial representation of the phase space of massive spinning par-
ticles. Dirac’s bispinors contain two independent Weyl spinors, and 
in that sense keeps twice as much information. This induces the idea 
[178, 179, 180, 15, 16, 17] of constructing a dynamics of massive spinning 
systems using pairs of twistors corresponding to (two) massless particles. 
It turns out that (a double) phase space of classical massless object may 
serve as a building block for the construction of the irreducible phase 
space of a massive spinning particle. In some sense the massive spin-
ning particle obtained by the reduction procedure may be regarded as 
a bound (confined) system of two directly interacting massless spinning 
constituents.

The development of this approach in the quantum case requires the 
transformation of the Dirac equation into an algebraic system of equa- 
tions over twistor variables. In the best approach to this program one 
has to exchange the mass parameter in the Dirac equation with two mu-
tually complex conjugated values. This complex value arises as a simple 
consequence of the bispinor representation of momentum in the Dirac 
equation. The same result is obtained using the bispinor representation 
of the momentum in the basis of Dirac gamma matrices, in that case 
starting from Pauli-Fierz identities, we obtain a Dirac like equation in 
six dimensional momentum space, two components corresponding to the 
complex mass parameter. (Let us note that these components accept an-
other interpretation if bispinors are substituted by twistor coordinates 

In this section we examine both representations: the spinorial with 
well known van der Waerden symbols; and the vectorial expressed in 
terms of Dirac gamma matrices. In this way the bridge between the 
twistorial description of massive particle and the concept of screws (in-
troduced in [118, 121]) is established. 

In Section 2, for the convenience of the reader, we simply summarize 
the assumptions and definitions used in the twistor’s theory of massless, 

In Section 3 we build the twistor phase space for the massive spin 

[119]).

spin carriers. 

carriers. We show that the twistor reprcscntation of momentum de-
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mands a modification of the Dirac equation introducing a complex mass 
parameter.

In Section 4 the equation of motion of Lorentz–Bargmann–Michel– 
Telegdi in twistorial phase space deduced in full detail. 

Several parts at the beginning of our presentation should be consid-
ered as an analysis and comparison of otherwise known formulations (see 
for example [122]).

2.2 MASSLESS CARRIERS
For the convenience of the reader we simply summarize the assump-

tions and definitions used in the twistor theory of massless fields. In 
the Minkowski space-time a particle M is described by the total four-
momentum pµ, total angular momentum Mµv and its helicity s. Here,
for practical purposes, the indices for space–time coordinates are Greek
or lower Latin letters {µ, v, c, d = 0, 1, 2, 3}, the indices for two compo-
nent spinors are capital Latin letters {A, B, C = 1, 2}. Under the action
of the Poincaré group the components of the pair (pµ, Mµv) transform
covariantly. Regardless of whether a particle possesses mass or not, it 
will be called point-like if we have a splitting 

, (6.18)

with xµ representing its position and with Sµv representing intrinsic
spin, such that

(6.19)

The masslessness of a system is expressed by the property 

(6.20)

(6.21)

Using these relations we obtain that the Pauli–Lubanski four-vector

is proportional to pµ Sµ = spµ, with the factor of proportionality s being
the helicity of the massless object. Equations (6.18–6.21) also imply that 
if s ≠ 0 then xµ may be taken as any point on a null hyperplane defined
by xµpµ = d, where d is a translationally dependent Lorentz scalar. 

To obtain a twistor formulation of these relations corresponds to find-
ing their (Weyl) spinor structure. The real four-momentum satisfying 
the zero rest mass condition (6.20) can be expressed as matrix factor-
ization of the Hermitian matrix

(6.22)
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where πA is the usual Weyl spinor. Thus the spinor πA carries the infor-
mation on the momentum of massless particles. To give a spinor repre-
sentation of the six-angular momentum one needs an additional spinor 
ωA carrying the information of space-time coordinates. It is defined as

(6.23)

where ωA is also a four-translation dependent Weyl spinor. Then the
skew-symmetric angular momentum Mµv is defined as (∈AB being the
spinor metric)

(6.24)

Its dual, can be written 

(6.25)

The quantities s and d also may be consistently expressed as functions
of ωA and πA

(6.26)

The twistor Zα is directly defined as the mathematical object with
components

represented in the complexified Minkowski space-time CM picture as
the locus of all complex points XAA '. When the solution XAA ’ of (2.6)
lies on a real null plane, Zα is a null twistor. Twistor indices are raised
and lowered by transposition ( )T and complex conjugation: Zα twistor
has the simple conjugate Zα of components

so that contractions, of which the simplest representative is ZαZα, are
invariant under twistor transformations. This invariant has the form 

(6.27)

Comparing (6.27) with (6.26) we find that the twistor norm expresses 
twice the value of helicity 
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Then in twistor formalism the classical and quantum motions of a free 
massless and spinning relativistic particle may be described as a direct 
product of two Weyl spinors endowed with natural symplectic structure.
This structure in twistor coordinates is given by

The relations (6.22-6.25) express the transformation of momentum and
angular momentum under the map (xµ,pv) → (ωA,πA’) = (Zα) at the
algebraic level. The Poincaré-covariance of the pair (ωA, πA’) implies the
Poincaré-covariance of the pair (pµ, Mµv). Let us now treat (ωA, πA’) as
the Poincaré-covariant coordinates of a point in four-dimensional com-
plex vector space T. T is a symplectic vector space equipped with global
Poincaré-covariant canonically conjugate coordinates: –iωA and
or, equivalently, –iπA’ and fulfilling the following Poincaré-covariant
canonical Poisson algebra

(6.28)

Within the definitions (6.22-6.24) it is a straightforward tedious task 
to check that the canonical Poincaré-covariant Poisson bracket relations 
imply the Poincaré-covariant Poisson bracket realization of the algebra 

In the twistor formalism the equations of motion for massless fields 
accept the form of algebraic equations, given in the language of creation 
and annihilation operators (represented by twistor variables). The Weyl 
equation for a free massless particle for spin is given by 

where Φ is the holomorphic function of ωA.

2.3 MASSIVE CARRIERS 
We have seen in the previous section that the twistor description of 

the system is immediately available if the components of momentum sat-
isfy the masslessness condition. One should define a similar fundamental 
object for the description of massive systems as well. When the spinor 
structure of the momentum is realized the condition of masslessness is 
transformed into Weyl algebraic identities. With the same aim one can 
obtain a bispinor representation of the momentum of massive particles, 
satisfying the relativistic relation between momentum and mass, if the
Weyl algebraic identities may be extended for the massive Dirac equa-
tions.

Let us examine the momentum structure of the massive particle for 
the Dirac equation
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Employing the chiral basis of Dirac γ-matrices where γ 5- diagonal in their
van der Waerden description, we have considered as representations of
basis vectors for space–time

,

with (σµ)AA ' the van der Waerden symbols, corresponding to Pauli ma-
trices

The Dirac bispinor Ψ over Weyl spinors is given by

,

Therefore in that description the Dirac equation becomes equivalent to 
the set of two equations 

(6.29)

(6.30)

or

(6.31)

(6.32)

where

(6.33)

From these equations we obtain 

(6.34)

or

(6.35)

In (6.35) the momentum of the massive particle is given in the bispinor 
representation which has been directly deduced from the Dirac equation. 
Within conventional field theory the dynamical equations of motion for 
the massless particles (fermions) are understood as a consequence of the 
limit m → 0 reducing the equations of the massive particles into the
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equations of massless particles. One of the primary example of such 
transformation is the reduction of Dirac equation onto Weyl equations. 
In that case by putting m = 0 one obtains the splitting of the Dirac equa-
tion into two independent parts, where (only) one of the parts (namely 
left, handed) has been accepted as an equation for the neutrino. Since
the other part (right handed) for the case m = 0 has to disappear, it 
is natural to suggest, that from m = 0 it follows uA = 0, or vice versa 
Accordingly the expression for PAA' has to be reduced to the formula 
(6.22). It may be realized if in (6.35) we put 

and thus we obtain the bispinor representation of the momentum for the 
massive particle

(6.36)

This representation implies that the mass is given by 

(6.37)

with f = ( A' = ( A ηA).
Using the spinor representation (6.36) one may build two sets of iden-

tities, which after appropriate quantization of twistor variables has to 
give back the Dirac equations. The first set of equations is given by 

(6.38)

The second has the form 

(6.39)

It is easy to see the difference between (6.38–6.39) and the value m/
in (6.30-6.32): in (6.38-6.39) we have instead the conjugations of the
complex value f. One may use polar representation f = m eiφ. In this
approach the problem of interpretation of the angle φ appears. Vaz and
Rodrigues [181] had observed an interesting interpretation of the values 
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m cos(φ) and m sin(φ): these values would be that of longitudinal and 
transversal masses, respectively.

Let two massless carriers be described by two twistor fields

(6.40)

respectively. The pair of twistors (Zα, Wα) represents global Poincaré-
covariant coordinates of a point in an eight-dimensional complex sym- 
plectic vector space T x T which defines a phase space for the two mass-
less particles. Coordinates of (ωA, pB’) fulfill its own canonical Poincaré-
covariant Poisson bracket algebra introduced in (6.28) and so do the
coordinates of (λA, ηA’).

Assume now that the two massless particles form a massive and, in
general, spinning point-like system. From now on we thus treat T x
T as a reducible phase space of a massive and, in general, spinning 
physical system. However, it is necessary to remark that the two spinors 
contained in the Dirac's bispinor have different natures, one belongs to a 
right handed and the other to a left handed basis system. In accordance 
with this identification we identify the linear momentum four-vector of 
massive particle as 

(6.41)

where p1 and p2 are momenta belonging to the left and right handedness 
massless particles, and 

(6.42)

The complex coordinate of the 4-position ZAA ' we define as solution of
the system 

(6.43)

Remembering πAπA = 0, and ηAηA = 0, we look for ZAA' in the form

(6.44)

Substitute (6.44) into (6.43) to obtain

(6.45)

use the definition of f given in (6.37) to find

(6.46)
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This gives the solution of (6.43) as 

(6.47)

We find the real and imaginary coordinates as real and imaginary parts 
of ZAA ’ correspondingly. The real part is given by

(6.48)

For the imaginary part we obtain 

(6.49)

Using the canonical and covariant twistor coordinates we define the 
Poincaré-invariant functions according to the following recipe 

(6.50)

We then see the correspondence to the Dirac wave function as the 
bispinors defined by 

, (6.51) 

,

from which the MEXOR, corresponding to the massive spinning particle, 
is constructed in [121]. One may build the basis of four orthonormal 
vectors given by 

,

(6.52)
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And one may expand the vector YAA' using the basis
, obtaining

, (6.53) 

the coefficients of the expansion are defined by 

(6.54)

Substitute Y AA ' from (6.49) and taking into account the formulae for
{e, k, a, a} we obtain

Introducing (6.52) and (6.54) into (6.53) we get 

Now let us redefine the basis in vectorial rep-
resentation via Dirac matrices. For that purpose we introduce the fol-
lowing projective operators 

Remembering the correspondence given in (3.26) we obtain the mapping 

tion to vectorial representation 

from the spinorial representa-

(6.55)

In this basis the formulae for vectors pµ, yµ are given by

The T x T is 16-dimensional and up to now we have identified 11 + 4 
variables associated with the massive spinning point-like system. The 
sixteenth variable is provided by the angle of rotation of a space-like 

and
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two-plane in terms of the orthogonal unit four-vectors. This two-plane
polarization may be chosen to be 

(6.56)

for µ ≠ 0, and

(6.57)

for µ = 0. Also we define 

(6.58)

for µ ≠ 0, and

(6.59)

for µ = 0. 
In the vectorial basis these values are written as 

Using the condition m2 = pµpµ and the definition of the orbital an-
gular momentum Mµv = xµpv – xvpµ one may construct the relation

(6.60)

(6.61)

from which one finds 

as the coordinates of the position four-v or. If we substitute the defi-
nition of orbital angular momentum into the Pauli–Lubanski four-vector 
formula (6.21) we obtain Sµ = 0. This value is non-trivial if total angu-
lar momentum consists besides orbital part also spin part (see, (6.18)). 
Our goal is to define the spin part by extending the coordinate part. For 
that purpose let us before consider the massless case. In that case we 
expect that 

(6.62)
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To provide this relation we shall look for the structure of the spin part
in the following form 

(6.63)

with

(6.64)

Substituting this into (6.21) we obtain 

(6.65)

with (yvpv) = –s.

case, to obtain 
We suggest that the spin part has the same structure in the massive 

(6.66)

The definition of Pauli–Lubanski four-vector is also based on the sug-
gestion that the total angular momentum is the sum of two operators 
constructed in analogy with the massless case

(6.67)

where

(6.68)

Let us substitute this formula into the Pauli–Lubanski formula. We 
write

(6.69)

For the Pauli–Lubanski formula we then obtain 

(6.70)

where s1 = (e + k), s2 = (e – k). So, we need to calculate only the
expression

(6.71)
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Using the spinor representations of pv and (*Mcd) which are defined by

(6.72)

and

(6.73)

we find 

(6.74)

(6.75)

Collecting all these terms we find 

(6.76)

where we have used 

(6.77)

Substituting all these formulae into (6.75) we obtain 

On the other hand according to (6.71) we can write 

(6.79)

(6.78)
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Indeed the formulae (6.69) and (6.79) are in agreement if we take into 
account, the representation of YAA' given in (6.57). As a result we obtain 
following expression for the Pauli–Lubanski vector 

(6.80)

In the vectorial representation this formula is given by 

(6.81)

in addition we have 

(6.82)

The vectors pµ, sµ, eµ, fµ form then the set of mutual orthogonal vectors. 
The spin vector squared is given by 

(6.83)

The canonical Poincaré-invariant twistor Poisson algebra on T x T im-
plies the following physically meaningful Poincaré-covariant commuta-
tion relation

(6.84)

Thus xµ and pµ are conjugate variable but, as we shall see in a moment, 
they are canonically conjugate if and only if the system is spinless. 

Defining the total angular four-momentum

(6.85)

we obtain an important identity

(6.86)

In the conclusion of this section let us demonstrate the connection the 
bispinor representation of momentum with the de Sitter surface equa- 
tion. Define two vectors with following coordinates 

(6.87)
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Construct the bilinears of ηµ, ηµ by using Dirac gamma matrices 
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(6.88)

For these values given the important following algebraic identity holds

(6.89)

That is the de Sitter surface equation. Furthermore in conformity with
the definition (6.88) one may write also 

(6. 90 )

with

(6.91)

Comparing (6.91) with (6.38-6.39) we obtain P4 = –2if2, P5 = 2f1.

2.4 EQUATIONS OF MOTION 

Bargmann–Michel–Telegdi equations.

Poincaré invariants m2 and s2

We shall now study the equations of motion known as the Lorentz– 

Consider the generating function of motion as a simple sum of two 

(6.92)

Taking into account the definitions (6.50) we can write 

(6.93)



168 THEORY OF THE ELECTRON 

The essential point is that the values a, f, k, e must be constants of mo-
tion, which implies the following form of the Hamiltonian function in 
the variables of twistors 

(6.94)

The corresponding Hamilton equations for the twistor variables have the 
form

(6.95)

with that choice, the canonical flow is described by the following equa-
tions of motion 

(6.96)

where Iαβ is the antisymmetric tensor whose unique nonzero components
are

Taking into account the expressions 

(6.97)

we obtain the equations of motion 

(6.98)
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The corresponding complex conjugated equations are 

(6.99)

(6.100)

Now we shall modify these equations in such a way that. a, f, k, e remain
constants of motion, choosing the four-velocity to remain parallel to the 
four-momentum, then the resulting equation for the four-momentum
becomes the usual Lorentz force equation. In other words, we require 

(6.101)

Following [15, 16, 17] we suggest the next twistor equations in the exter- 
nal electromagnetic field, from the results below the set is an algebraic 
form of the Dirac equation: 

(6.102)

In coordinate representation we obtain

(6.103)
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The corresponding complex conjugated equations with external electro-
magnetic potential have the form

(6.104)

where Zα = . And in coordinate representa-
tion are given by 

(6.105)

Let us put the external electromagnetic field in spinor notation as follows 

(6.106)

The functions gα, hα in spinorial components are chosen as

, (6.107) 

where the spinors γA, δA’, k , are given along particle’s wordline lo-
cation. Spinors γA, δA', KA, may also be expressed as

(6.108)

where ξB’ ς B, ρB are new variable spinors.
Now let us begin our explicit calculations. The condition 

yields

(6.109)

A   θ A
"

θ A
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Here we have used the identity 

(6.110)

Inserting δA’, A’ from (6.108) we obtain 

(6.111)

As far as ξB’ are independent of the electromagnetic field
this relation is to be fulfilled for arbitrary choice of µA’B’. Then the
following equation must be satisfied 

=constant ∈ A’B’ . (6.112)

We find two kinds of solutions 

(1):

(2):

Now let us check the compatibility of the equations (6.102–6.105) with 
the Lorentz equation

(6.1 13) 

Substituting on the left side Pa by its expression in twistor coordinates
one obtains

(6.1 14) 

For the left hand side of (6.113) we then obtain 

(6.1 15) 

For the right hand side of (6.113) write

eFAA'BB' PBB' = i

= i

= i

(6.116)

θ

spinors ψ B' ,
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Where there is a cancelation because 

(6.11 7) 

Let us check with the same procedure the independence of e and k from
the evolution parameter 

(6.118)

Write

(6.119)

Taking into account the definition a = for the first part 
we obtain 

(6.120)

Remind ωA AA’)  to  find

(6.121)

Thus to fulfill (6.117) and (6.121) the following relations should hold: 

(6.122)

= iπA '  (X AA'+ iY
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In the Appendix we explicitly demonstrate that these relations, together 
with equations for twistors (6.102–6.105), imply the following equations 
of motion: 

(6.123)

(6.124)

From (6.123) it follows that the gyromagnetic ratio is necessarily equal 
to two. Equations (6.124) describe the evolution of the vectors tetrad in 
the polarization plane.

Appendix
Let us deduce the equations 

(6.125)

from twistor equations with the electromagnetic field interaction. Re-
member the definitions of EAA' and FAA' to compute EAA'

(6.126)

(6.127)

The expression in the first brackets of (6.127) is (–)sFAA', whilst the
expressions in the last brackets (6.127) are as follows

(6.128)



(6.129)
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Equating the corresponding terms we obtain 

Now let us calculate 

In the bracket {..} for the part (I) 

(6.130)

(6.131)

For the part (II) we obtain 

(6.132)
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Let us examine the parts (I) and (II) with interaction. We obtain for 
the part (I) 

(6.133)

and for the part (II)

(6.134)

Joining the results above and taking into account the factors 
1/ , k, aa we obtain 

(6.135)

For the part without interaction we have 

(6.136)

Multiplying by the factor 1/ we obtain: sEAA'. Substitute the 
expressions (6.135-6.136) into the right side to get 

Finally let us check the equation for the spin 
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Where

• (6.137)

Again let us calculate separately two terms in the bracket {..}. For the 
part (I) 

(6.138)

For the part (II) 

(6.139)

Now let us examine the parts (I) and (II) with interaction. We obtain 
for the part (I) 

(6.140)
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and for the part (II) 

(6.141)

Joining (6.139–6.141) and taking into account the factor k/2, we obtain 

(6.142)

which gives the expected relation 

This has to be seen in connection with the discussion of the two carriers 
system in Chapter 3. The boosts represented either the attraction or the 
repulsion of the carriers and the rotations were related to this formula 
which shows that the electromagnetic interaction carries an action over 
the spin. The two boosts were required to cancel in order to maintain 
the momentum of the original system and the two rotations were also 
required to cancel in order to maintain the original angular momentum 
of the system. 
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Chapter 7

GEOMETRICAL ANALYSIS 

1. INTRODUCTION 
This chapter is included for the sake of completeness. It describes the 

mathematical techniques which have been useful for studying the differ-
ent approaches which are unified in the present theory, and the basic 
techniques used in the development of the theory. In particular, it is 
shown that geometry includes, in a natural form vectors, multi-vectors,
spinors, and twistors, tools which some authors utilize as independent.
The unity of the presentation should help to find the connections between 
theoretical approaches in the study of the basic structures of physics. 

1.1 THE GEOMETRIC PROGRAM 
Geometric analysis is that part of mathematics which is useful to solve 

geometrical problems. This definition is not void as there is a possibility 
of defining, beyond an intuitive approach, what is a geometrical problem. 

This is more clearly seen if we write a hierarchy of problems and 
numbers such that a higher step includes the previous ones but contains
a question which can not be solved within the domain of the previous 
steps.

The natural numbers are those required when questions such as ‘if
we have n object's of a given kind and we add m objects of the same 
kind then we want to know the total number of objects n + m = p'. This
relation is closed by asking the reciprocal question: ‘if we have n' objects
and we want. to have a total of p' objects, how many more objects m’ do
we have to have to obtain p'?'. This enlarges the natural numbers to the
integers and allows the definition of a negative integer instead of the
conceptually more restricted question of defining the inverse operation 

179
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(+ ⇒ –) and requiring p > m

Proceeding further, if we start by saying that we have m'' objects a
number n'' of times, then we have a total of p'' objects, the concept of
multiplication including that of sum, has been created. 

now we can ask again a reciprocal question: if we have p''' objects, and 
we want to consider them to be obtained from r sets of m''' object’s each, 
we introduce the concept of rational numbers r such that

the name arising froni the possibility of representing r by the definition
of the inverse operation (x /)

Similarly the exponentiation includes the multiplication and the process 
of obtaining the root’s generates the concept of irrational numbers. By 
requiring that any one of all these operations can be performed on a set 
of numbers we now have the concept of the field of real numbers which 
includes irrational, rational and integers. But as we also have to allow 
the operation of obtaining the square root of a negative number (and 
questions like all a and b such that a2 + b2 = 1) includes, for the purpose
of our analysis, the imaginary numbers and the field has been enlarged 
to the complex field. 

Standard algebra and calculus correspond to the study of the previous 
questions and numbers if the operations of integrals and derivatives are 
defined through the introduction of the concept of function, which to 
this level are complex-valued functions of complex numbers. 

Now we can define what, is a geometric question. A geometric ques- 
tion is a question related to the process of considering the existence of a 
quadratic form (which can be a function) and the basic geometric ques- 
tion of factorizing the quadratic forms as the product of two linear forms 
which are called vectors. This can be traced back to the fundamental 
geometric relation (measuring in the Earth’s surface) the Pythagoras 
Theorem (which is in fact a diagonal non degenerate quadratic form) 
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when we write

(7.1)

(7.2)

q = x2 + y2 and r = xe1 + ye2,

with

where

r • r = q1,

and

(7.3)

and its generalization to N-dimensional cases. Note that, e1e2 ≠ ei and
is defined by (7.5) below. This is what will be discussed below. The con-
cept of function will be generalized to geometric objects valued functions
of geometric objects and the discipline called Geometric Analysis. It
turns out, as discussed below, that this problem has been considered
from a series of starting points of view and that there is a particular
one originated by Grassmann and analyzed by Clifford, known today as 
Clifford Algebra which is a backbone of this analysis because the Clif-
ford algebra is by construction an algebra that allows the introduction 
of linear forms which factorize a quadratic form as in (7.2). Of course
this is the highest step of the hierarchy we consider here and all the 
previous steps are to be included. The analysis of Riemann (1854) of a 
N manifold with a quadratic form is also included. 

But there is a peculiarity in Geometric Analysis which is crucial to 
understanding its power as a mathematical tool. If M is a geometric 
number in an N-dimensional geometry G0 we can define a mapping

(7.4)

of the product of a complex number a + ib and the geometric number 
M through the introduction of two more geometric basis elements eN+1

and J together with the previous set of N elements {ea; a = 1, ..., N}
and the centralizer unit element 1 where {ei; i = 1, 2, ..., N + 1}

(7.5)

and

all
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which in fact, results in an (N + 1)-dimensional geometric algebra over 
the real field. For particular geometries there is an advantage in writing 
the element eN+1 as eN+1 := Je1e2 ... eN, (i2 = –1), then J = i1, as in
Chapter 2. This possibility avoids the necessity of explicitly considering 
complex analysis because (in our approach) geometric real analysis is 
sufficient. Anyhow we shall discuss this point at some length, given that 
for practical purposes (and by the very definition of complex algebra as 
an algebra closed over a given set of operations) complex analysis can 
not be avoided. 

The basic N-dimensional (carrier) space is by definition a Rieman-
nian or a pseudo-Riemannian manifold. In the Grassmann program the 
elements s1 geometrically represent scalar quantities, the Σi viei vector
quantities, the Σi,j pijeiej planes, the Σi,j,k Vijkeiejek volumes, etc..
We shall then be dealing in a restricted form with differentiable mani-
folds and their geometry. But even if restricted it is directly useful for 
the study of large class of problems in classical and quantum mechan- 
ics, either in non-relativistic or in relativistic approaches (restricted and 
general relativity) and as such in elementary particle physics. 

From the mathematical point of view this approach is useful in al-
gebraic geometry, Lie group theory, homogeneous spaces, probability 
theory, differential equations, and in that part of differential geometry 
which is associated with Riemannian geometry. The relations and re-
sults are equivalent and can be cast in the form of tensor calculus, suffix-
free (when the indices refer to coordinates) calculus, calculus of exterior 
forms, moving frame methods or Clifford algebra methods. Spinors and 
twistors exist by definition (for N ≥ 2) and have a natural and direct
expression in the created multi-vector algebra or as (not necessarily in-
cluded in the multi-vector algebra) minimal ideals. 

The possibility of a straightforward procedure for the embedding (in 
a (N + N')-dimensional geometry) of the (carrier space) N-dimensional
manifold, allows the simultaneous considerations of classical differential 
geometry with an embedding space or of the intrinsic approach to the 
study of the curvatures. In the same form the concept of fibre bun-
dle and connection have an immediate use and representation. All this 
characteristic makes the approach described here specially useful for the 
purpose of the mathematical modelling of the physical phenomena. The 
formulation bypasses many aspects of the formal structure needed for 
the completely general study of differentiable manifolds, through the 
systematic use of the defining quadratic form and its factorization. 

An important feature of the procedure followed here is that from the 
definition (7.4) the complex structure G of the multi-vector space G0

with original multi-vector dimension m = 2N has dimension 2m = 2N+1,
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and then, by Campbell’s 1926 theorem, if the N-dimensional carrier vec-
tor space of G0 is curved it can be locally embedded in its own complex-
ified structure with an equivalent, could be assumed flat, N + 1 carrier
vector space of G.

In the complex structure of the multi-vectors of the geometry G wc
can alternatively define a complex structure vector space by considering
a c-vector X and define (see, for example, Willmore 1998, pp. 152)

and (7.6) 

The c-vector has structure

(7.7)

associating a set of N complex numbers with the basis of generators of
G given by (7.5), then (7.6) defines the linear endomorphism

J(X) = iX, (7.8)

which allows the Proposition (5.1.1) of Willmore 1998 and then the direct
use of his analysis of ‘Complex and Almost Complex Manifolds’. Our 
presentation here will follow a different path which permits the extension
of the previous presentations, we shall not consider complex coordinates 
and then the canonical complex structure induced by (7.8) is not used
as such. Instead we shall consider, for the modelling of physical objects,
the geometric interval 

dS = (1 + ip(υ))dxυ, (7.9)

and the real quadratic interval 

(7.10)

which corresponds to (7.9) through the use of real quadratic form, 

(7.11)

Another concept we want to introduce is that of a ‘degenerate’ geometry. 
This is the case when a basis set of vectors is defined which is not, linearly 
independent. In fact in that case the quadratic form (in two dimensions, 
higher dimensional cases follow by straightforward extension)

(7.12)
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corresponds not to cos = 0, as in the orthonormal case, but to cos = 1.
The linear form 

(7.13)

which obeys the equivalent of (7.12) for q = r, r , with r.r = q1 requires

(7.14)

Then the quadratic form is diagonal in the new variables but one of the 
coefficient is zero (this is called a degenerate quadratic form) 

An special case arises when {qij = 0, all i, j} corresponding to the usu-
ally called Grassmann geometry. In all cases we are requiring the pos-
sibility of diagonalizing the otherwise symmetric quadratic form and in 
all our applications a non-degenerate geometry is considered. 

Symplectic geometries are also not considered here. There is, in fact, 
a mapping of syrnplectic geometries into a complex geometry and, from 
our previous considerations into a 2N-dimensional real geometry. Our
mapping is given by (7.10) where the symplectic related variables are pµ

and dxµ, in pairs (or xµ and dpµ in its case). (7.9) is the mapping to
a complex geometry and (7.5) the mapping to a real (2N-dimensional,
non-symplectic) geometry. 

1.2 ANALYSIS 
A frequent approach in mathematical physics is the use of the geomet-

ric concept of one-dimensional, two-dimensional or three-dimensional
spaces and of space–time as a frame of reference for the description of 
matter and interaction fields. In this paper we shall show that this corre-
sponds to postulating a specific approach to geometry and to geometrical 
analysis. Space–time, in particular, not only describes our perception 
of physical nature, but is also a powerful analytical mathematical tool 
itself. Adopting space–time should imply that its structure and symme-
tries correspond to observed characteristics of the matter and interaction 
fields under consideration. If a contradictiori or insufficiency were found 
a wider reference frame should then be constructed and used, which, 
however, actually does not seem to be the case. 

The purpose of this chapter is to present and develop an applied math- 
ematics tool suitable for describing this type of geometries and the fields 
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representing matter and interaction in these geometries. A common fea-
ture which allows this program to be developed is the existence of a 
quadratic form {gij; i,j = 1, ..., n} for the n-dimensional ‘carrier’ space.
As we shall show it is the very existence of this quadratic form that
allows the definition of planes, volumes, hypervolumes, etc., in one mul-
tilinear algebra: the geometric algebra. A second, crucial, step is the 
introduction of dual coordinates and dual vectors allowing t h e introduc-
tion of multi-vector linear functions and derivative operators and then 
of an extension of real and complex analysis to the case considered here: 
geometric analysis. 

The fact that linear functions and derivative operators are defined 
requires the study of their eigenfunctions in general. This part of the 
program brings spinors and twistors into geometric analysis; these ge-
ometric elements are defined in terms of their analytic and symmetry 
properties, md, once their structural relations are found, extended to 
the concepts of screws and mexors. 

In section 3 polynomial algebras are embedded into the geometric 
algebra. The remaining sections treats fundamental aspects of the geo-
metrical analysis. 

Geometric analysis, GA, is then a specific applied mathematics tool 
which should be practical and sufficient for the purpose stated above.
If differential geometry is comprehensive then GA should be contained 
in it. Otherwise we show here that GA contains, with an economy of
postulates and principles, universal Clifford algebras (like the Pauli com-
plex algebra of 3-D space or the Dirac real algebra of space–time), non-
universal Clifford algebras (such as the algebra of quaternions), geometry 
generating algebras (such as spinors in the Cartan map or twistors in the 
twistor program) and algebras of analytical n-dimensional Riemannian
manifolds which can then, by Campbell's theorem, be locally embed-
ded in an (n + 1)-dimensional carrier space of null curvature (as in the
Kaluza–Klein theories and their extensions, our physical approach above 
being not of this type). The minimum value of our program is its capac-
ity of coherence and relation of the matheniatical structures mentioned 
in this paragraph, the systematic generation of their extension and of 
new structures.

1.3 THE MULTI-VECTOR ALGEBRA 
As mentioned above, our formulation refers to and includes the al-

gebras proposed by Grassmann and Clifford. We first recall that in 
textbooks related to algebras or to geometry (see e.g., Frankel T., 1997; 
Nakahara M., 1990; Porteous I.R., 1981, 1994, 1995) a standard ap- 
proach to define a Clifford algebra is the following: 
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Let Rn be an associative algebra (over ) with unit element I, generated
by an n-dimensional vector subspace Vn. If (,) denotes any real symmetric
quadratic form on Vn, and if Vn has a basis e1, ..., en satisfying

ejek + ekej = 2gjkI, (7.15)

where gjk := ej, ek , then Rn = R(Vn ) is called the Clifford algebra generated
by V n, induced by means of the quadratic form , .
Some authors refer in a limiting form to Clifford Algebra as an algebra gener-
ated by a set of n mutually anti-commuting square matrices.

From here on we shall use the symbol C n for a real Clifford algebra
generated by n elements ei, i = 1, ..., n) without a specific definition of

the quadratic form; the symbol will be used for a complex Clifford
algebra generated by n elements ei, i = 1, ..., n without a specific def-
inition of the quadratic form. When a quadratic form is diagonal with
respect to p positive and q negative elements gii, p + q = n, the nota-

tion will be or This far there are no requirements for the
quadratic form , : it can be Euclidean, pseudo-euclidean, symplectic,
degenerate, etc.

As an example, consider a Clifford algebra generated by an n-dimensional
vector space Vn with a quadratic form , identically 0. Then it is evident
that we have, by necessity, generated a new set of elements ejk correspond-
ing to the anticommuting products (the symbol Λ is introduced to stress that
independently of the chosen quadratic form, we consider here the totally asso-
ciative (and antisymmetric in its basis vectors) part of the product (denoted
in general by A Λ B for any A and B in C p,q), that is for vectors a and b,
using the symbol to denote a definition, a Λ b (ab – ba)),

ejk ej L ek = –ek L ej, (7.16) 

for all j, k, and of course (ej Λ ej) = 0. The resulting Clifford algebra, once
all possible totally anticommuting products of 2, ..., n vectors are considered,
is simply the exterior algebra, denoted by Λ(V n) in the following, based on
the original vector space Vn, the total algebra being of dimension 2n. The
exterior product of a vector by itself is by definition not to be included.

In general C n is generated by products of the form eiej ... ek. Each
(ej)2 is a multiple of gjj times the identity, and thus commutes with all
elements ∈ Rn, i.e., there is no need to consider expressions containing
a repeated basis vector ej. From the above anticommutation properties
(7.16) we need to consider only ordered products eij...k = eiej ... ek, i <
j < ... < k. It is then obvious that as a vector space (i.e., neglecting
the product structure), the Clifford algebra R(Vn) is isomorphic (≈) to
the exterior algebra Λ(Vn) or R(Vn) ≈ Λ(un) and thus of dimension 2n.
This requires that no ei can be represented by products of the remaining
ej(j ≠ i).
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For example, the (complex) Pauli algebra, as a vector space, is isomorphic 
to the exterior algebra on 3 with an abstract basis given by σ1,s2, and
σ3, where σ1σ2σ3 = iI and the exterior product can be represented by the
product of Pauli matrices, that is, by products of matrices defining a faithful
representation of the basis vectors. 

In an exterior algebra the real coefficients, that is the scalars, span
a one-dimensional subspace. In a Clifford algebra the scalar multiples 
of the unit, element I form a one-dimensional subspace which can be 
identified with the coefficient field . 

In order to form a Clifford algebra with generators e1, ..., en and a 
quadratic form , , we simply consider all new elements, eij...k = eiej ... ek

with i < j < ... < k, obeying relation (7.16). Some examples:

(1) » is simply the algebra of real numbers, the unit element I being
selfevident.
(2) Similarly let V 1 be a 1-dimensional vector space with the basis e1, and
consider the (negative-valued) quadratic form e1,e1 = –1. Thus we have
obtained a 2-dimensional vector space with a formal basis consisting of {I, e1} ,
e1 satisfying the a negative metric in (7.16), (e1)2 = (–1)I. From this defini-
tion the basis element. e1 can then be called i, such that (e1)2 can be identified
with the real number –1, with again the unit element I being selfevident,
and the 2-dimensional vector over is simply the algebra of complex numbers
a + bi, »

Since the early papers of Grassmann in the last century (Grassmann,
1844), the algebra described here was recognized as such, and in fact 
named a geometric algebra: the product of two non-collinear vectors 
corresponds to a unit plane; the product of three mutually non-collinear
vectors to a volume, etc.. This program was given the name 'extensions 
program' by Grassmann himself. 

In section 9 we briefly describe the historically more relevant develop-
ments of this program in the Nineteenth and Twentieth century, starting 
from the pioneering paper of Caspar Wessel, presented to L 'Académie 
Royale des Sciences et des Lettres de Danmark in 1797 (French transla-
tion 1897). 

The vector algebra and analysis of Gibbs is an useful applied mathe-
matics tool constructed for 3-D space where it is possible for a bi-vector 
to be faithfully represented by an axial vector and a volume by the triple 
(pseudo) scalar product. It can not be generalized to dimensions larger 
that 3 and it does not exist in 2-D.

In this century the main contributions to the use of geometric algebras 
in physics first of all came from the use of the Pauli algebra in the theory 
of spin, and second from the use of the Dirac algebra in the study of the 
electron, and from that of space–time. Fock and Ivanenko (Fock V., 
1929; Fock V. and Iwanenko D., 1929) were the first ones to realize that 
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the Dirac algebra was a representation of geometry. Unfortunately they
coined the name Quantum Geometry, only afterwards was it recognized
as a space–time geometric algebra by a large series of authors, amongst
whom probably the more relevant were: Proca A., 1930 a,b,c; Sauter
F., 1930; Mercier A., 1934, 1935; Eddington A.S., 1936; Sommerfeld A.,
1939; Riesz M., 1946, 1953, 1958; Schönberg M., 1956; Quilichini P.,
1957; Ravsevskii P. K., 1957; Teitler S., 1965a,b,c, 1966a,b; Hestenes
D., 1966, 1975, 1979; Casanova G., 1970, 1976; Boudet R., 1971, 1974,
1985; Salingaros N. and Dresden M., 1979; Greider T. K., 1980; Keller
J., 1981-1999; Crawford J. P., 1985.

In the last decade the number of papers on this topic has increased
considerably, and there is at least one journal (Advances in Applied Clif-
ford Algebras) and a series of books and of conferences with proceedings
devoted to geometric algebra (for example Altmann S. L., 1986; Artin
E., 1957; Baylis W. E., 1996; Benn I. M. and Tucker R. W., 1987; Brackx
F., Delanghe R. and Serras H., 1993; Chisholm J. S. R. and Common
A. K., 1986; Habetha K., Dietrich V. and Jank G., 1998; Keller J. and
Oziewicz Z., 1997; Micali A., Boudet R. and Helmstetter J., 1991; Snygg, 
1997; ), often using names like space–time Algebra (Hestenes D., 1966), 
Geometric Algebra, Clifford Algebras, Quaternionic Algebras, or less fa-
miliar names such as Manifolds with Grassmann Algebras or manifolds
with Grassmann variables. Also very frequently a matrix representation
of the algebras is considered rather than the abstract algebra itself, in 
particular if the names of Pauli or Dirac are associated with. 

Below we shall give a special emphasis to the study of space–time 
in which (because of historical reasons) we use also the Dirac γ µ as
symbols for the basis vectors eµ. The elements γA of the Dirac–Clifford
algebra C 1,3 are then the dimensionless totally antisymmetric Grass-
mann numbers: γA = γ i Λ γ j Λ ... . Here the basic Clifford numbers (γ µ;
µ = 0, 1, 2, 3) generate a Clifford algebra by means of a Clifford product
such that the metric is defined by (γ 0)2 = –(γ 1)2 = –(γ 2)2 = –(γ 3)2 =
1. If an arbitrary element of the Clifford ring is denoted by γA;

to a complexification of the basis γA + iγA; γA Remembering
that, e.g., in the Dirac case γ 0,iγ 12 and iγ 5 are Hermitian, this clearly
indicates that in physics the use of a complex version of a particular ge-
ometry is frequently needed and therefore will be introduced right, from 
the beginning of our present analysis.

A = 1, ..., 2n; p + q = n, then complexification of → refers
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1.4 SPINORS AND TWISTORS 
The simplest mathematical objects which are eigenfunctions of the

3-D rotation group and the 4-D Lorentz group are the spinors η and η+

(Cartan E., 1981) and of the 4-D Poincaré group are the twistors (Pen-

where [r] denotes the integer part of r) are then fundaniental for the un-
derstanding of the symmetries of geometric spaces and for the construc-
tion of the mathematical structures modeling nature in these spaces. 
Their definition and properties is therefore a basic task in geometric 
analysis.

The Cartan map allows the inverse construction: the reconstruction 
of the multi-vector algebra M as a bilinear mapping of the spinor and 
twistor space: MA = where MA ∈ M, Î , ηa ∈ η and

The projection of the minimal ideal and the bilinear reconstruction of
multi-vectors is naturally contained, as a super algebra with its structure 
represented by the matrix relation, Si ∈ ,

rose R., 1967). This with basis elements 

,

in geometric analysis. This part of the program is the subject of the last
sections of this chapter.

1.5 GEOMETRIC ANALYSIS 
Consider the following steps.

1.5.1
Consider a set of n coordinates, collectively denoted by X (here the

definition of patches and coordinates on patches is assumed, see also 
section 10 below):

SELECTION OF A RN MANIFOLD

(la) A manifold is transformed into a real quadratic space by introducing
a quadratic form (usually associated with the names: scalar product, square, 
quadratic norm or quadratic polynomial) , where for any arbitrary pair xi,xj ∈
X:

(7.17)

such that aijx ix j ∈, even if any one of the factors is not necessarily a
real number The aij are defined as the elements of a (generalized) quadratic
matrix of dimension n (aij = aiaj ∈Ξ* and xixj ∈X, such that p' (Ξ*, Ξ) ∈

), where the xixj are members of the (multi-vector) algebra Ξ defined in (lb)
(below), although in general they and the aij are taken to be real numbers.
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(1b) The geometrical meaning of X is introduced by means of a linear form 

(7.18)

such that 

(7.19)

The geometry generated via (7.17) is fulfilled by squaring the linear form in
(7.18). This procedure, as mentioned in the introduction, defines the math-
ematical elements corresponding to the antisymmetric product of the αi as
new algebraic elements belonging to a ring generated by the collection of all
possible totally antisymmetric products of the αi.
(1c) The above definitions allow the {x i} to be not only real variables, but also
more general mathematical entities such as complex variables, quaternionic 
variables, Grassmann variables, other non-commuting variables, etc., such that
xixj ∈Ξ , with Ξ*Ξ ∈ . Simultaneously the set {αi} can be represented by
a standard non-commuting basis, called ei = e(αi) in (7.23) below, or by
more general elements compensating the departure of the set {x i} from the
standard choice as real numbers. This is the geometrical map of the algebras
now named q-deformed or quantum algebras.

1.5.2 GEOMETRIC SPACE 
Because the above paragraphs (1a–c) define an outer algebra with a 

quadratic form, we can now identify the ai in terms of the ei as genera-
tors from their antisymmetric products of the basis of a Clifford algebra 

with p + q = n, which automatically introduces a geometric space
and its metric. The Clifford algebra is then generated by a set of (anti-
commuting) elements {ei = ei 1}, i = 1,2, ..., n, with r denoting the
rank or number of factors in the geometric product defined below, con-
sidered as basis vectors with a metric gij1 = (eiej + ejei), defined also
below, such that by definition eiej = –ejei + 2gij1, where 1 denotes
the unit element. The Clifford ring is then generated by the repeated
geometric product of arbitrary pairs of elements ei and ej,

(7.20)

The resulting product can be separated into a symmetric and an anti-
symmetric part; it is customary to denote these operations as clot and 
wedge parts of the product (it is unfortunate to call them products):

(7.21)

A set of basis vectors ei, ej, ek, .. ∈ eµ = is called orthonormal
if the metric is diagonal with p assuming the value +1 and q the value 

r
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–1, or, equivalently, 

gij = diag (1, ..., 1(p), –1, ..., –1(n)). (7.22)

A geometry, based now on a Clifford ring, is generated when the coor-
dinates are introduced in the following manner, using the summation
convention of upper and lower repeated indices 

x → x = xiei, (7.23)

i.e., a geometric space with the properties of the corresponding Clifford
algebra by multiplication of coordinates.

Other definitions of a metric tensor gij are, of course, also acceptable
and correspond to a different set of n generators from those of the Clifford
ring. This allows null vectors or symplectic scalar products to be used
as basis vectors or as basic quadratic forms. They all can be mapped
into a Clifford ring defined as above. Thus a full linear algebra with 2n

degrees of freedom can be generated. This in turn is equivalent to the
following propositions: 

The real algebra of an n-dimensional quadratic space is a 2n-dimensional linear
algebra. In the following this algebra will be called a geometric space. 

As can be seen from (7.23) the variable x carries geometrical infor-
mation by either defining a set of operators which project relevant in-
formation from the manifold, or, because of the geometry provided by 
the ei and their properties.

In a quadratic space the manifold Rn can be viewed in terms of a
patchwise set of n coordinates {xi; i = 1, ...,n} and, additionally a dual
set of n coordinates {xi; i = 1, ..., n}. These two collections of possi-
ble coordinates induce, in fact, a metric for the geometry of the mani-
fold. From these sets of coordinates we can define the basic operators

= 1, ..., n} creating thus the geometry = n) as

(7.24)

with

(7.25)

where the basic definition (see 5.1 below) is the operator relation 

(7.26)
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Relation (7.26) is similar to that amongst forms and vectors in differ-
ential geometry. 

The properties which will be assigned to the vectors ei, in our case a 
Clifford algebra, provide a geometry for the manifold. The basic mani-
fold has no geometry, only a set of coordinate patches, unless a relation 
for thex, see (7.23), is defined from a given Rn. Different geometries
can be created by assuming different properties of the basic operators 
creating the vectors, and from the properties of the vectors themselves.

1.5.3 PRODUCTS AND MULTIPLICATION TABLES
In the Clifford ring the multiplication table is usually given by group-

ing repeatedly the so called geometric multiplication into symmetric and 
antisymmetric parts and by introducing the, totally antisymmetric in 
their indices, symbols e...

(7.27)

Our main example is the geometric algebra of space–time R1,3

generated by the Clifford algebra of the set of four vectors eµ

(7.28)

and for all {µ, v, λ,ρ}= 0,1,2,3.
This defines the basic multi-vectors eµv... , totally antisymmetric with

respect to the interchange of the vector indices µ, v,.... The number 
of indices defines the grade or blade of basis multi-vectors. In the same 
example, consider a Dirac spinor (dual spinor †) as a member of
the minimum left (right) ideal of the geometric algebra of space– 
time (see section 9). Multi-vectors have a representation in terms of 

have four (complex) degrees of freedom Ψ → where the ψ
a

are
basis spinors and a = 1, 2,3,4. Below we show that we can use the
correspondence (a = 1) → (R, ↑), (a = 2) → (R, ↓), (a  = 3) → (L, ↑) and
(a = 4) → (L, ↓), that is, right (R) and left (L) handed spinors of spin up
(↑) and down (↓), or chiral representation. If we write eiej = ei.ej+eiΛej

then the symbol . and the symbol Λ clearly refer to operator relations.
For other applications we shall, additionally, allow an exterior Kro-

necker product ei ⊗ ej of the irreducible multi-vectors ea.

the Dirac spinors eµv... → . The Dirac spinors themselves
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Because of the definitions in (7.24) and Representations of x.
(7.25) a representation of x can equivalently be given as

(7.29)

in the form ‘induced’ by the derivation operators. A possible rep-
resentation of ei, which explicitly includes its operator character, is 
ei = the dot indicating the specific operation to perform. 
Clearly enough a different definition of the commuting properties of the 
xi, or of the operators, modifies this representation, although some def-
initions could be equivalent. 

1.5.4 MAPPINGS AND TRANSFORMATIONS

tion of n chosen coordinates of the following kind
Consider a differentiable (divergence ∇x’ can be defined) transforma-

(7.30)

where the coordinates x’ contain now some particular characteristics.
Clearly enough, whilst for the vector x, ‘anchored’ to some local origin
of coordinates, we have (7.30), for an arbitrary ‘free’ vector v ∈ Rn, a
modified vector v’ is obtained from

(7.31)

considering the divergence of x’ in the direction of v as v’ = (v . ∇)x’.
Since not all transformations are related to coordinate transforma- 

tions, therefore we have to study the general cases. Because there arc 
various forms of proceeding we can define the following set of four inter-
related functions (explicitly presented in section 8 below)

(7.32)

either to change from primed coordinates to unprimed coordinates and 
vice versa (passive transformation) or to change the vector fields them- 
selves (active transformations). In this context the inverse operation 
corresponds to the definition 

( 7.33 ) 

The dual operations fD and allow such a change when both f(v)
and v are expanded in relation to some particular vectors, the adjoint
operation will be discussed in section 8 below. 

This kind of procedure relates a particular geometry Gp,q associated
with a manifold Rn to the manifold itself. Given that Gp,q has 2n degrees
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of freedom, which in turn corresponds to the 2n elements of the
geometry Gp,q contains an implicit set of 2n fields XM(x) (complex or
real functions of the carrier space x), where M has 2n values according
to the construction XM (x)eM and {eM; M = 1, 2, ..., 2n} is a complete
basis of the Clifford algebra.

1.5.5 ANALYSIS 

Once a particular geometry Gp,q is chosen one can use basic operators 
such as transformation operators, differential operators, integral oper-
ators, and other special operators in order to study the structure and 
the symmetry of both the geometry Gp,q(Rn, and the geometrical
fields constructed over Gp,q. The definition (7.26) is basic here.

We could, of course, consider the use of the complexification of the 
basis of Gp.q. It should be noted, however, that, this is different from 
constructing a geometry from an n-dimensional complex space n. In 
the former case one embeds the manifold into a Clifford algebra
p’ + q’ = n + 1, such that the number of degrees of freedom changes from
2n → 2 x 2n = 2n+1, then complexification of a geometry corresponds
to a change from a n to a n+1 carrier manifold whcrc the new degree
of freedom can be a trivial coordinate with simplified topology (nota-
tion remark: we are using the symbol n for the carrier manifold and 
the symbol n for the resulting multi-vector algebra with 2n degrees of
freedom) .

1.6 SUCCESSIVE COMPLEXIFICATION 

As a complexification of an n-dimensional basic geometry Gn is equiv-
alent to an (n + 1)-dimensional basis geometry Gn+1 we can obtain
successive, nested algebras and geometries by complexification of lower 
dimensional ones. Because every resulting geometry can itself be com-
plexified, the algebras and geometries can be nested in even groups. This 
brings into the study of a n-dimensional space with complex structure
the concepts of higher-dimensional spaces (Kaluza T., 1921, Klein O.,
1926, Weyl H., 1952, Wesson P. S., 1999). Otherwise the geometries are 
in all cases multilinear over the field of the real numbers, there are no 
complex or imaginary coordinates being used and the symbol i such that 
i2 = –1 refers to the definition of the elements of the ring gener-
ated by the eu in terms of another ring generated by some given ek

with ∈ 
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1.7 REPRESENTATIONS OF GEOMETRIES
Geometries can be represented by sets of square matrices M(m) of

dimension m such that the geometrical product is faithfully represented
in terms of matrix multiplication. Since there are 2n degrees of freedom
in a chosen geometry, a representation in terms of real square matrices
implies dimension of m = 2[((n+1)/2)]. In many cases, however, the use of
complex square matrices is more convenient. In going from n → n+1

this is achieved by the step {M(m x m)} → {M(m x m)( 1 + i)} with
a suitable matrix representation of 1 and i (see Porteous I. R., 1981
and the review by Keller J., 1993). Spinors and twistors are faithfully
represented by M(1 x m) and M(m x 1) for their duals.

2. THE EXAMPLE OF SPACE–TIME
The best known example is the standard reduction chain of even sub-

algebras corresponding to the geometries of (in the geometrical sense)
complex space–time, space–time, 3-D space, 2-D space and 1-D space,
respectively:

(7.34)

where Dc = is the complex Dirac algebra, D = is the Dirac 
algebra, Pc the complex Pauli algebra, P the Pauli algebra, C' =
the complex algebra and R = is the real algebra, each with 2n

elements, n = 5, 4, 3, 2, 1, 0, respectively. 
Complexification is obtained by formally writing

or, equivalently Dc = D ⊗ C , etc.. Nesting then corresponds to formally
considering the ‘real’ part only, namely D = Re(Dc), Pc = Re(D), P =
Re(Pc), C = Re(P) and R = Re(C). From here on an ‘even’ part refers to
those basic geometric elements obtained by an even number of products
of the basis vectors.

For a faithful representation with Dirac symbols γΑ = γ (eA) we first.
require the five basic vectors of Dc to be of the form using u, υ.,
m, n, w = 1, ..., 5 and i = i1

(7.35)

such that its even part corresponds to 
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Consider now spinors χa and the Cartan map eA = Dc and
D share the same spinor basis, namely Dirac spinors. Pc and P have,
both, two independent representations based on Pauli spinors (usually
denoted by (χ↑L, χ↓L) and (χ↑R, χ↓R), called ‘dotted’ and ‘undotted’,
respectively). The spinor basis of C1 and R1 is a trivial complex number
or a real number, respectively. For the case of twistors see section 8
below.

In the possible use of the geometry for the study of mathematical 
structures in physics it is important to emphasize here that in quanturri
mechanics all rotations in the representation of Dc are quantized (in the 
standard formulation of quantum mechanics, (Keller J., 1985)) and that.
changes in the spinor basis χα → χα + correspond to supersym-
metry changes, using the matrix operators (defined in the introduction),
see, e.g., [105]. In general =

In this respect consider that not only the elements iγ 0iiγ 0j = γ ij repre-
sent rotation generators, but also terms like iγ 123iγ0 are rotations in
and have a physical meaning. In fact, the energy operator H =
contains three factors: (1) i corresponds to the eigenvalue of an operator
turning into a Hermitian operator; (2) the ‘scale’ determines the
unit of ‘action’ (here the product of energy and time of one elementary 
physical action); and (3) with respect to the multi-vector aspect. the 
derivative ∂t can geometrically be replaced by γ 0 if γ 0 is the unit time 
vector. Then from the definition of dual vectors γ 0γ 0 = 1 corresponds ge-
ometrically to the derivatives ∂tt. Using the dual vector γ 0 =
(here we should recognize as –γ 0123 = –γ 5, from = –1), then
from γ 0 = – Λ γ 123γ 5 it follows that → We furthermore
remind the reader that i can be viewed also as an eigenvalue α5 of γ5,

(7.36)γ 5F = a5F ; γ 5γ 5F = = –F or a5 = i,

where the F are suitable eigenfunctions.
As mentioned above, all (multi)-vectors can simultaneously be re-

garded as operators, the best known examples are: γ 0, generating the
parity inversion P; the tri-vector γ 123, the time inversion T; the bi-
vector γ 0i, the Lorentz boost's ; the bi-vector γ ij, the space rotations
R: the tetravector γ 5, the duality transformation D; and the complex
tetravector iγ 5, the chirality projection.

in complex space–time, however, it is simply the pentavector i (= 1
in In fact, Dc can be regarded both as the complexification of the 
space–time geometric algebra or as a five-dimensional space whose even 
subalgebra corresponds to space–time.

In space–time the pseudo-scalar unit is given by γ 5 =
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2.1 CHIRAL SYMMETRY IN COMPLEX

It is assumed that, a local observer describes space–time by

SPACE–TIME

(a) an orthonormal tetrad of (γ0)2 = –(γ1)2 = –(γ2)2 = –(γ3)2 = 1, and
γµγv = –γvγµ all µ ≠ v. In this frame of reference we define:
(b) the handedness of γ 5 = γ 0γ 1γ2γ 3, which is both the duality transformation
operator and the pseudo-scalar (γ 5)2 = –1.

It is important that another observer can use a different coordinate
system related by a Lorentz transformation L, where together with (a)
and (b) the fundamental properties, (iγ 5)2 = 1 and γ 5γ µ = –γ µγ 5 are
also preserved.

The handedness operator H = iγ 5 can be used to construct the chi-
rality projectors PR and PL such that 

(7.37)

where PR = (1 + iγ 5), PL = (1 – iγ 5),or PR,L = (1 + ±H).
If a coordinate transformation γ 5 → (γ 5)’ is allowed where (a), and

consequently (b), is not preserved (that is if the determinant ζ of the
transformation is not ζ = +1) then H ≠ i(γ 5)' shows that a chirality
operator H = i(γ 5)’/z, with H2 = 1 in all frames has to be used. Here we
shall assume that H = iγ 5, because of restriction (a) and the assumption
that, we have selected a ‘right’ handed frame of reference. The PR and PL

can better be considered as numbers of a ‘new’ mathematical field, with
the basis 1 and H, in an hyper-complexification of the Clifford algebra. 
Clearly, H is coordinate invariant. 

2.2 DEGENERATE REPRESENTATIONS 
The basis vectors can be written in terms of degenerate representa-

tions Γ µ which in turn can be written as exterior products of an ir-
reducible basis. For (complex) space–time as an example, we can use 
as generators γ µ,γ 5, iγ 5 and 1, and a reducible representation (here ⊗
represents exterior product) can be formulated as (see Królikowski W.,
1990, 1992): 

(7.38)

The corresponding spinors would then be the totally antisymmetric, 
exterior 2(f – 1) products (f) = (x) Λ ( 1 Λ 2 Λ ...), where the i are
2(f –1) constant Dirac spinors which correspond to extra mathematical,
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that is internal, degrees of freedom. Their spin should add to zero (f
integer). The total antisymmetry of (f) limits the value of f to f =

1, 2, 3, otherwise the spinorial exterior product is null.

2.3 MASSLESS WAVE EQUATIONS
The actual wave functions can be written as Ψ(0) = RΨ where R

is a local boost and rotation from the frame of reference in which the 
transformations , see below, are defined with respect to the frame
of reference of the observer. Because of the following outermorphism 

~

(7.39)

we can write 

(7.40)

In this case a definition of a special frame of reference is consistent with 
a definition in any observers frame of reference, i.e., the Dirac operator 
D0 = γ µ∂xµ γ µ∂µ can be generalized and gauged (Keller J., 1991,
1994. 1994b) to

(7.41)

which in terms of the above frame of reference generates deductively the 
so called Standard Model of elementary particle physics.

2.4 STRUCTURAL CONSEQUENCES OF 
USING A COMPLEX SPACE-TIME
ALGEBRA

Besides being a mathematical tool in many branches of physics , in-
cluding the possibility of generating the (local) Standard Model, the 
use of a complex space–time algebra has relevant consequences for large 
scale or small scale physics. All applications refer to the fact that we 
have now both a five dimensional basic geometry and 25 = 32 degrees of 
freedom. We present here, also as an example, the geometric basis for 
generating mass and charges (Keller 1999).

Consider a space (R5 structured with a ≈ ≈ Clif-
ford algebra; in Chapter 2 the choice was induced by the complexi-
fication of to be which we have denoted by
and called a geometry. The Clifford algebra imposes a metric gAB =
diag (1, 1, –1, –1, –1) which we shall transpose for historical and math-
ematical reasons to gAB = diag (1, –1, –1, –1,1). This geometry is con-

~
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sidered as void of matter, and therefore assumed to have a Ricci tensor 

(7.42)

where the bi-vector function R of the bi-vector a Λ b

(7.43)

is the curvature, the a, b being vectors of a basis set and using the 
cross product AB – BA = A x B, if A , B are bi-vectors we can use
A x B = –(γ 5A) . B. The bi-vector functions Ω((b),x) being the local
Lorentz group connections such that the covariant derivative of a bi-
vector B

(7.44)

in the (curved or flat) space of G( ).

space condition 
The corresponding 5-D Einstein tensor is then given by the Ricci flat 

(7.45)

In the following we use the result of Campbell (1926), namely, that,
any analytic (N – 1)-dimensional manifold can be locally nested in an
N-dimensional flat manifold R(b) = 0.

Furthermore, let us define the complex space–time interval in the
faithful representation 

(7.46)

where the fifth dimension has been introduced as a geometrical conse-
quence of the complexification with a unit vector γ 4 = –iγ 5, and where
i = was introduced, purposely, in order to show the complexifica-
tion of the algebra. The element γ 5 = γ 0γ 1γ 2γ 3 is then a space–time
pseudo-scalar and 

(7.47)

By projecting from (7.46) an ordinary space–time metric tensor, 

(7.48)

using the projectors PA = such that g44 = g4A = 0, ∀ A, the
complex space–time line element becomes 

,
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which is the starting point of the induced mass and charges theories.

in the table below:
Examples for the mathematical structures in space–time can be found

1) the generating vectors set γµ;
2) the 16, arbitrary, elements γm;

4) the translation operators = 0;
5) the projection operators = +1;

3) the rotation operators = –1;

6) the group structures Gnmγm = γ n.

Frequently (multi-)vectors are used also as generators of Lie groups
(Porteous I. R., 1981), as well as to generate (multi-)vector equations and
to construct groups from these (multi-) vectors (in particular the most
frequently used groups U(1), SU(2,3), SU(3) or SU(2). (See Keller J.
and Rodriguez-Romo S., 1991). Another frequent procedure is the inte-
gration of spinors and multi-vectors in a geometric superalgebra (Keller
J. and Rodriguez A., 1992).

This ends our presentation of space–time geometry as an example, we
continue now with geometric analysis. The case of spinors and twistors
is presented below.

3. POLYNOMIAL ALGEBRAS. GROUPS.
MATRIX REPRESENTATIONS

The process of constructing a geometry over a Rm carrier space is
related to some special cases of polynomial algebras (see Weinberger
1989). Otherwise polynomial algebras can be embedded into geometric
algebras.

Let, P2(x) be a second order polynomial of the following form

(7.49)

where the aij are elements of a symmetric matrix. Consider further that 
the linear form 

(7.50)

satisfies the condition [158] 

(7.51)

then the set of coefficients {αj} has to satisfy the following properties:

(7.52)
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(7.53)

where I denotes the identity element in {αj} and [,]+ anticommutators.
The set of coefficients {αj} is called an associative algebra. Two special
cases carry famous names we have encountered above as our departing 
considerations, namely 

(7.54)

(7.55)

as the so called Grassmann algebra and 

as the so called Clifford algebra. It easily can be seen from the require-
ment, that even the simplest relativistic Hamiltonian H = (p2 + m2) ,
p being the momentum operator and m the mass of the system, that 
exactly the case of the Clifford algebra is needed in tackling the problem 
of the linearization of the square root: 

(7.56)

In the following first the case for m = 2 and 3 (Pauli spin theory)
is discussed by considering the smallest groups with Clifford algebraic 
structure and only then in a similar way the Dirac problem (m = 4) is
addressed.

3.1 THE PAULI GROUPS

given by
For m = 2 the smallest set of elements αi that shows group closure is

(7.57)

This group is of order 8 and has 5 classes (Ci), namely C1 = {I}, C2 =
{–I}, C3 = {±α1}, C4 = {±α2}, C5 = {±α1α2}. There are therefore 5
irreducible representations ,i = 1, 5) of dimensions ni such that 

(7.58)

This implies that 4 irreducible representations , i = 1, ... , 4) 
have to be one-dimensional and one two-dimensional. Since one dimen-
sional representations are commutative, i.e., do not satisfy the conditions 
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of a Clifford algebra, only the two-dimensional representation 
is of help. The matrices for this irreducible representation are listed 
below:

(7.59)

Using this set of matrices it is easy to show that it indeed forms a 
representation of and that these matrices are Clifford algebraic. 
For the case of m = 2 the problem of the linearization of the square root, 
is therefore solved: 

(7.60)

For m = 3 the smallest set of elements σi forming a group is given by

(7.61)

The order of this group is 16. It has 10 classes, namely 

(7.62)

and therefore 10 irreducible representations,

(7.63)

, i = 1, 8) are one-dimensional and two of which 8 , i =
9,10) are two-dimensional. Again only the two-dimensional irreducible 
representations are Clifford algebraic. 
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For α1 and α2 one can use the same matrix representatives as in the 
m = 2 case,

(7.64)

provided that the corresponding matrix for α3 is defined by 

(7.65)

The second two-dimensional irreducible representation is by 

the way the complex conjugate representation of . It is rather 
easy to proof that these two irreducible representations are indeed non 
equivalent.

For the m = 3 case the problem of the linearization of the square root,
reduces therefore to the following matrix equation: 

(7.66)

The matrices 

(7.67)

carry a famous name. They are the so-called Pauli spin matrices, usually 
(as indicated in the last equation) denoted simply by (σ1, σ2 and σ3. For
m = 2, 3 the corresponding groups are called Pauli group (as indicated
by the indice P).

3.2 THE DIRAC GROUP

smallest group
For m = 4 the following subset of the Clifford algebra forms the

(7.68)

where ‘traditionally’ the elements αi are usually also denoted by γ µ. The
order of this group is 32. It has 17 classes, 
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(7.69)

and therefore 17 irreducible representations. As can be checked in anal-
ogy to (7.58) 16 of these irreducible representations 

are one-dimensional and one is four-dimensional Again only 
the matrices of the four-dimensional irreducible representation satisfy 
the conditions of the Clifford algebra. The following matrices

, i = 1, ... , 16) 

(7.70)

(7.71)

where the σi are the Pauli spin matrices and 12 is a two-dimensional

unit matrix, are irreducible representatives of the elements αi ∈ G .
These particular representatives, usually denoted simply by αi and β,
are called Dirac matrices, G

3.3 RELATIONS BETWEEN THE DIRAC

3.3.1 THE SUBGROUP STRUCTURE 

the Dirac group.

GROUP AND THE PAULI GROUP

The Dirac group contains the Pauli groups as subgroups, 

(7.72)

whereby G is a normal subgroup in G and G . This 

implies that in a coset decomposition of G in terms of G , ,

(7.73)

the left, and right cosets are identical, 

(7.74)

and that G

noted for a moment as Ci

consists of complete classes of G , see (7.69), de-

(7.75)

,
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It should bc noted that 
since

is not a normal subgroup in ,

(7.76)

3.3.2 SUBDUCED REPRESENTATIONS 
The set of matrices 

and

of course also forms a representation for and , respectively, 
which, however, is reducible. Such representations are called subduced 
representations. Reducing these two representations (for example by 
means of the orthogonality relation for characters), one finds the follow-
ing decompositions into irreducible representations: 

(7.77)

and

(7.78)

Since the irreducible representation of always subduces 
only the group of the Pauli spin matrices (and their complex conjugates), 
there is no way to deal with the problem posed by (7.50) in terms of 2 x 2
matrices only, i.e., to linearize properly the square root for
a three-component vector p! In other words: there is no other ‘truly’
relativistic description other than the one using the Dirac matrices. 

One can summarize the properties of these three groups very com-
pactly in the short table below: 

m

2
3
4

Group-
order

8
16
32

2m+1

# of 
classes

5
10
17

m2 + 1

# of one-
dimensional

irreps
4
8
16
2m

# of two- 
dimensional

irreps
1
2
0

# of four-
dimensional

irreps
0
0
1

(7.79)



206 THEORY OF THE ELECTRON 

The so called fundamental theorem of Dirac matrices, namely, that a 
necessary and sufficient condition for a set of 4 matrices to be Dirac 
matrices, i.e., to be irreducible and Clifford algebraic, is that they have 
to be obtained via a similarity transformation W from the matrices in 
(7.70)–(7.71):

(7.80)

is in the context of the Dirac group nothing but Schur’s lemma for irre-
ducible representations.

4. DERIVATION OPERATORS 
An important point of the presentation of geometric analysis in Keller 

and Weinberger (2000) is the clear distinction between the (at least,) four 
different types of derivation operators: 

a) With respect to the carrier n-dimensional space coordinates;
b) With respect to the carrier space basis vectors; 
c) The change of a function F (M) of a multi-vector M with respect

to a given multi-vector A;
d) The change of a function F(M') of a variable multi-vector M' with

respect to a variable multi-vector Z'.
The first type corresponds to the standard partial derivative ∂xi and

from a complete set a Laplacian operator can be defined which usually 
is now considered to be the Dirac operator. 

The second is particular to geometric analysis given that the position 
vectors in the carrier space can be written as 

x = xiei,

and then we can have either ‘active’ changes generated by ∂xi or ‘passive’
changes generated by ∂ei, that is, by a change in the description of the
basis vectors themselves.

The third is also particular to geometric analysis given that we can
explore the changes of the function F(M) with respect to restricted
changes of M of the form M → M + τA.

The fourth type of change is the generalization of the complex deriva-
tive ∂zf (z) with z = x + iy, by defining a variable Z' = Σa (Z')a ea

where the different (Z’)a replace x and y in complex analysis.
There is a big simplification, though, in the sense that all four cases 

can be considered as particular forms of a general derivation operator 
of the type introduced by Peano in 1888[146]. Then by discussing the 
case c) we cover the different situations. We shall anyhow discuss case 
b) in particular for its basic importance in the use of geometric analysis 
in quauntum mechanics. 
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4.1 THE DERIVATION IN GEOMETRIC 
ANALYSIS

In geometric analysis one very often deals with functions F(M) of the
variable (multi-)vectors M , considering a change when M changes in a 
given ‘direction’ A. The following quantity (Peano 1888),

is then a constrained rate of change when the (multi-)vector variable
has a fixed form of change. This is the natural extension of the standard 
derivative (or M = A = x) or the complex derivative (using M = Z =
x1+yI, I2 = –1) which are in fact written in the same form using A = x
or A = Z. Since any (multi-)vector of rank r can be decomposed in a
basis of m elements γ(m,r),

(7.81)

it is quite obvious to consider the γ(m,r) components of the derivative.
First define the scalar part of the geometric product of two (multi-
)vectors A and B as A*B and demand that this operation has precedence
over other, not explicitly defined by parenthesis, then we can define 

(7.82)

as a scalar, then rank preserving, operator on the function F of the
multi-vector M. The operator defined by (7.82) being rank preserving, 
A and the symbol ∂M are to be understood as having the necessary
multi-vector structure in order to allow A * ∂M to be a scalar operator.

Equation (7.82) allows the definition of a (multi-)vector-valued oper-
ator and the definition (Keller 1993) of a reciprocal (multi-)vector space 
(called dual also, as above, given their operator character): 

(7.83)

in terms of the operators

(7.84)

where the symbol V above γ k denotes a factor that has to be removed
from the product and we admit that the explicit outer product operates 
on either side: 

(7.85)
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(here a more explicit notation would be γ kγ i (gkjγ j) * γ i, the matrix
gkj being the inverse of the matrix gjk) with the reciprocal vectors gen-
erating also a Clifford algebra. In (7.84) we are assuming an orthogonal
set {γ µ} and the outer product is implied. The operator definition,

(7.86)

explicitly shows the multi-vector character of ∂M as a sum of (multi-
)vector valued combinations of scalar operators, from the definition

(7.87)

where the subindex (k . ..ji) is a tensor-like index necessary to construct
the (multi-)vector-valued operator which otherwise is index free. 

The Leibnitz differentiation rule. Consider now the derivative 
of the scalar part of the product of two (multi-)vectors M and B. The

scalar part of the product will be denoted by 
o
, B =

Bm’
gm’ and M = Mmγm, where the r = γm belong to the r-blade

of the geometry. This derivative is then given by

(7.88)

The scalar product γm' * γm will be denoted below as ηmm’ = ηm’m.
Then, using ∂M → γm∂Mm, we obtain

(7.89)

In this context it must. be recalled that also r = γm by construc-
tion. This shows how the result of the derivation can be viewed as a 
projection of B in the space of the basis of M.

Clearly enough the Leibnitz rule for differentiation must be followed.
Suppose from M = Mmγm we define the scalar operator γm * ∂M ≡
∂Mm . Consider now the typical example of the function F(M) = (M2 +
AM + B) with A and B being constant (multi-)vectors and r

Consider further the substitution M → M + τγm with r = γm. The
= M.
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limit of the difference 

(7.90)

is then to be compared with the algorithm 

(7.91)

In the same form we can define the The multi-vector Laplacian. 
reciprocal operator

(7.92)

and the (invariant) multi-vector Laplacian, 

(7.93)

which corresponds to the ordinary Laplacian if restricted to {m }r = {µ}, 
with {µ} corresponding to the set of generating vectors of the geometric 
algebra.

4.2 GEOMETRIC DERIVATIVE 
In the geometry which has been discussed up to now we introduced

the use of the dual frame of operators γα, which map vectors into scalars,
defined as  γαγβ  = γβγα = and thus corresponds to a derivative ∂γa ,
i.e., both γαγβ = and therefore ∂γα γβ = can be equivalently used.
This operators follow the Leibnitz rule for differentiation when applied 
to a multi-vector.

Consider, for example, the generator γαβ of the rotations and Lorentz 
boosts operator R and of the connections Ω (a) where a is a given arbi-
trary vector 

~

and (7.94) 

used to rotate a (multi-)vector M = γA ∈ {1, γ µ, ... .} ,

(7.95)
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in the plane spanned by γα and γβ, with Ω(a) defining as above the
transformation of the ordinary derivative of a multi-vector into a covari-
ant derivative. In (7.95) R leaves fA(x) unchanged, but transforms the
Clifford numbers γA → = RγΑR–1. Alternatively, we can, as very
often is the case, write the complementary transformations as

~ ~ 

(7.96)

where an equivalent rotation fA(x) → (fA(x))' = RfA(x) is used such
that γA → γA, and R is generated by

(7.97)

The (multi-vector) algebra equivalent to (7.97) implies a change of 
the frame of reference, namely the passive transformation generated by 

(7.98)

where the operators ∂γµ = γ µ , and where, in an orthonormal frame of
reference, the operators γ µ = (γ µv γ v)*, with γ µv = diag(1, –1, –1, –1). 
Since for a proper space–time rotation we require gαα = gββ = –1,
(7.98) yields 

(7.99)

which in turn shows the correspondence between (7.98) and the genera-
tors of (7.94). If for position vectors x = xαγα eqs. (7.97) and (7.98) are
applied simultaneously with angles θ and – θ, they cancel each other.

A complete representation of the rotations of the Poincaré group is 
therefore given by 

(7.100)

Other examples for operators including derivatives are constructed in a 
similar form (Liu and Keller 1996). 

5. STEPS TO BUILD A COMPLEX 
SPACE (–TIME) 

In the following we first illustrate the procedure of building a complex 
space(–time) in one and two dimensions, where the basic ideas can be 
visualized, then we present the general case. 

~
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5.1 ONE- AND TWO-DIMENSIONAL CASES 
Consider a one-dimensional geometry G1,0 spanned by the vector e1

and the unit scalar 1, such that = 1 is the Clifford ring (±1, ±e1)
of that geometry. The usual complex plane is commonly represented as 
z = x1 + iy, with the property i2 = –1, that is, in practice the ring has
been enlarged to (±1, ±e1, ±i) but, at the same time, is restricted by
convention to (±1, ± i). The complex plane is otherwise isomorphic; to

(7.101)

or,

(7.102)

where for a proper and faithful representation we require 

(7.103)

and

(7.104)

to have the ring , where again 

(7.105)

Hence the ‘even’ part (even number of products) of the ring is 
(±1, ± e1 n+1) and can be represented, using tan = xn+1 /x1 = A1 by
z → z = e1z or the mappings:

(7.106)

5.2 HIGHER-DIMENSIONAL CASES 
A special situation arises for higher-dimensional spaces, n ≥ 2 in

which a full collection of ‘complex’ planes is generated by products of the
form eien+1 (i = 1, ... , n). In particular, we have the collection of complex
points {p(i), i = 1, ..., n} with coordinates (xi, xiAi), where Ai =d tan i.

As can be seen only one extra vector, 

is needed to complexify the algebra, generating in turn a collection of 
(bi-) vectors ii =d eien+1.
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The possibility of mixed metrics is to be considered as a special 
case, because if for some k the ek n+1 are such that (ek n+1)2 = +1
then we have a hyperbolic complex plane k and Ak = tanh k. The
isomorphism ≈ can be exploited to obtain the largest
possible number of ordinary complex planes where again Aj = tan j.
Here we have deliberately used the same notation as in the formula
above. We see that in the auxiliary coordinate spanned by the en+1 

there are two types of contributions: the one, arising from a reference
value to = + tan(ai)x i, called l above; and the one

related to the complexification of the ei n+1 planes given by xi A i. In
the correspondence between the geometry and physics l is related to the 
curvature, and the Ai to the gauge fields such as the electromagnetic 
case (Kaluza–Klein or more general, string or superstring, theories). All 
degrees of freedom of Gp,q, p + q = n are complexified, that is we also
have complex (bi-, tri-, etc.) vectors. In particular we have the mapping 
in space–time of a vector 

(7.107)

such that 

(7.108)

with m being a real number, to 

(7.109)

where

(7.110)

and

(7.111)

or to 

(7.112)

with n and t(µ) being integers. In this case we again obtain |p'' | 2 = m2,
which in the study of physical problems would correspond to a mixing 
of the vector currents with the axial vector currents, as in the theory of 
electroweak and color interactions.
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5.3 EMBEDDING
In space–time we have a R4 carrier manifold which we want to study

geometrically by endowing it with a or Clifford algebra as
local geometric structure. There are, however, several possible embed-
dings of this manifold in the Clifford algebra, the best known examples
are R4 → → xµγ µ, µ = 0, 1, 2, 3, and its space–time ‘cut’ xµγ 0γ µ,
µ = 0,1,2,3. The first is the general case, the second the choice of
an observers reference frame with γ 0 being the time like vector of the
observer. Another common example is R → xµeµ; eµ =
µ = 0, 1, 2, 3, on which the vierbein eµ is defined in terms of the (local)
coefficients Induced matter and charge is obtained by allowing

(x) → (x,x4) (Wesson, 1999, Keller, 1999). Other mappings, suit-
able for special purposes, are allowed, of course.

6. MAPPING COMPLEX INTO REAL 
GEOMETRIC SPACES

We have defined above a real geometry by means of a definition of 
its local geometrical properties corresponding to a Clifford Algebra 
of signature gab = diag (1, ..., lp, –1, ..., –1q), p + q = n, containing 2n

elements. We then showed that its complexification, containing 2n+1

elements, can be represented by a Rn+1 carrier manifold which acquires 
a real geometry by the definition of its geometrical properties through a 
Clifford Algebra This is achieved by creating an n-dimensional
metric tensor from the (n + 1)-dimensional equivalent geometry:

, (7.113) 

with µ,v = 1,2, ..., n + 1, where the are in practice n-dimensional
because, by definition = 0, and, in particular = 0. The
last equality shows the splitting of the complex term into a basic part 
kµkv and a relative part

The vector kµ was introduced by Liu and Keller (1999) in their study
of the gauge properties of the Dirac wave equation. We reproduce here
their Theorem 1, to show the relation of this vector to the mass of a
particle’s field: 

There exists a suitable complex vector kµ such that if Ψ0 ≡ L0 + R0 satisfies
the massless Dirac equation iγ µ∂µ Ψ0 = 0, then 
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satisfies the massive Dirac equation iγ µ∂µΨ – mΨ = 0. Here

,

where

and R0 and L0 refer to transposed complex conjugate functions. 

Relation (7.113) is obtained from a local decomposition of the space 
into a part tangential to the original Rn manifold and a perpendicular 
part by means of the (multi-) vector projectors P⊥ and 1 – P⊥. The
geometry of G ( Rn; n = p + q) is not restricted to a flat space but
can be any space which is n-dimensional and analytical, and can using
Campbell's theorem (Campbell J. E., 1926), be locally embedded in
a Rn+1 geometrical (flat) space. The coordinates are then given by

= + and the real scalar product is defined by (AB* + A*B).
For many applications it is necessary to generate a real line element 

which, with the decomposition into a parallel and a tangential part to 
Rn is defined as dS2 = + (gn+1,µdxµ)2, with = being
the line element of the n-dimensional real space (time), which, as should
be noted, by definition has no (n + 1)th component.

7. LINEAR VECTOR TRANSFORMATIONS 
A linear vector (or in general a multi-vector) transformation f maps

a vector (multi-vector) a into another vector (multi-vector) a' whose
components are linear functions of the original vector. In this subject in
relation to the basic underlying Clifford algebra the books of Hestenes
and Sobczyk (1984), Gilbert and Murray (1991) and of Baylis (1996) are
basic references, the last one containing also a rich list of references. It
is convenient to write a given transformation into a canonical form

(7.114)

where

(7.115)

the reciprocal vectors γ v used above being defined by

(7.116)
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Combining (7.114)–(7.116), 

(7.117)

implying linearity and using an implicit summation convention, 

(7.118)

the usual tensorial components fµv are obtained from 

(7.119)

It is then clear that linear transformations as defined here are vector 
valued functions of a vector and that the second rank tensor fµv is the 
result of obtaining the µ-th component of the transformation of the v-th
basis vector, 

(7.120)

By using (7.115) and (7.118), we can write the canonical form of the 
operator f in geometric algebraic terms as 

(7.121)

The inverse transformation defined as ff–1= f–1f = 1, namely

(7.122)

exists if f is not singular, see also below. 
An important concept is that of the dual transformation, 

(7.123)

or

(7.124)

It should be noted that for a symmetric transformation f ↔ fD. The
transformation is to be applied to every vector factor of a multi-vector)
such that 

(7.125)

is an equivalent transformation for a multi-vector.
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Special cases are the generators γ µv for orthogonal transformations
and the (rotation and boost) transformations they generate: 

(7.126)

For a multi-vector A,

(7.127)

one then obtains A' given in terms of γ iγ jγ k . . . γm. Furthermore, if =
Rγ i R–1, we can write the product as

(7.128)

A very important case is the determinant. For a pseudo-scalar γ 12...n

we can write:

(7.129)

provided that the pseudo-scalar is invariant under orthogonal transfor-
mations. In this case only scale factors enter. We should remind the 
reader that the determinant of a matrix is invariant under a similar-
ity transformation, its value is given by its principal axis representation 
value where 

(7.130)

When the transformations are generated by, or are chosen to be related 
or to induce a derivable transformation of coordinates.

(7.131)

with the coordinates x' containing now some particular characteristics,
‘anchored’ to some local origin of coordinates, we induce from an ar-
bitrary ‘free’ vector v ∈ Rn, a vector v', formally obtained from the
relation

(7.132)

considering the divergence of x' in the direction of v as v' = (v . ∇)x',
that is this time the mapping is generated by the coordinate transforma-
tion, otherwise we could invert the relations and search for the coordinate 
transformation which induces the transformation of v given by (7.132). 
This is in fact the geometrization process which corresponds to general 
relativity and to gauge principles considered as geometric transforma-
tions of a carrier space. 
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7.1 RESTRICTED TRANSFORMATIONS
By a restricted linear transformation one means as a restriction of the 

map generated by the transformation f(v) to some subspace
of the vector valued functions f of the original vectors v.

The simplest formulation would be to consider a restriction of the 
type where one vector of the source space, say ai, is mapped into one
and only one vector bi, of the same magnitude, of the target space

where || || denotes absolute magnitude and we have otherwise a free linear 
mapping of all other vectors VR . a = 0 into . b = 0.

If v = VR + a and v' = + b, with the conditions given above, we
define

and

and the reciprocal vector a+ through

a+a = 1.

The original linear transformation then becomes ( is proportional to bi

or = k(i)bi)

(7.133)

where the coefficient ci = (–1)i–1, and the number of linearly indepen-
dent vectors ai is the dimension of the basis n.

In tensor language the decomposition in (7.133) corresponds to the 
standard decomposition of a matrix into blocks. For the determinant of 
the transformation we have 

(7.134)

which, by successive application of (7.134), gives the well known result 

(7.135)

which in turn is sometimes considered to be the definition of the deter-
minant, of a matrix. Here ∈µv ... is the totally antisymmetric symbol with
respect to the indices. 
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We can also define the derivative with respect to a linear function 
f(a). Using the linearity with respect to a the j-th component should be
proportional to (a.ej) such that f can also be expanded into components

(7.136)

The main relation is equivalent to a cancelation of the action of f,

(7.137)

Multiplication by a.ejei, and in comparing with (7.136) one obtains,

or,

(7.138)

and, from the definition of fD:

(7.139)

8. IDEALS, SPINORS, TWISTORS, AND 
BEYOND

For a geometry G(Rn, p + q = n) for which an in general com-
plex matrix representation M can be constructed by using M(m x m)
square matrices, where m = 2(n/2)–1, and for which the geometric prod-
uct is faithfully represented by matrix multiplication rules, we can con-
sider left ideals and right ideals simply as one of the columns or
one of the rows of those matrices acting from the left or from the right

and (7.140) 

Furthermore, since by definition m is an even number, one can construct 
a matrix with only one non-zero column (or a matrix with only one 
non-zero row) in terms of direct application of u combinations of m/2
mutually commuting projectors {Pi; Pipj = PjPi} to any matrix M(a):

(7.141)

~
There are (m/2) combinations of projectors Pi and Pi, i = 1, ..., m/2

(7.142)
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where γ iγ j = γ jγ i by definition. This corresponds to every column (row)
of the matrix M(a) being itself a left (right) ideal:

(7.143)

That only one column (row) is non-zero in makes these ideals iso-
morphic and mathematically equivalent, to the spin (dual spinor) spaces

. The spinors can be used as a basis to construct a representation 
of the geometry, 

(7.144)

a procedure which should be called a Cartan map [46, 49]. 

write:
As the relationships are independent of representations we now can 

(a) A left ideal in a given geometry is generated by multiplication on the 
right with m/2 linearly independent mutually commuting projectors Pu =
(P1 ...Pm/2)u. Equivalently, using a transposed definition a right ideal is ob-
tained.
(b) The {Pu, u = 1, ..., m} forms then a complete basis for the ideals space in
the geometry. 
(c) Every member of the ideal can in turn be analyzed by projecting its com-
ponents, which in turn correspond to the customary spinor components 

(7.145)

(d) If a spinor basis set is defined by u = 1, ..., m,} (where m is even by

definition) we can write 

(7.146)

such that 

(7.147)

corresponds to the Cartan map. The symmetries of (7.147) are the geometrical 
basis of the methods called supersymmetries [49, 50] as mentioned in the 
introduction.

8.1 TWISTORS AS GEOMETRIC OBJECTS 
A basic idea is that instead of considering a complex space (space– 

time) we should start from a more fundamental, complex formalism 
such that points and the space (space–time) continuum will be derived 
concepts. The basic objects were called twistors. Once they are defined, 
we show that twistors correspond to well defined geometrical objects. In 

,
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space–time, in particular, they can be completely described as members 
of the multi-vector algebra ⊗ corresponding to the carrier space
R1,3.

The inverse logical derivation is that they can be used to generate 
the idea of space–time Penrose and collaborators showed that the fun-
damental mathematical objects should be conformally invariant This
space is the projective twistor space constructed out of null geodesics
and their (‘half’) complexification (see below) to obtain the three dimen-
sional complex projective space CP3. A point in this space is defined by
the pair (WA, ∏A’) which is required to obey (here A and A' are Pauli
spinor indices, ZAA' and XAA' are (complex and real) four dimensional
vectors in the Pauli algebra, that is X = = XAA’ where

Pauli basis spinors (transpose spinors)), 
are the Pauli matrices with = –1, σ0 = 1 and the 

and

with the complex vector and the Pauli spinor ∏A’ fixed and λA  

variable; ∏A’ is a spinor conjugated to ∏A’. If we now consider a real
space–time point (in spinor notation) XAA' then the projective twistor
(iXAA’∏A’ , ∏A’) defines a real null geodesic through XAA’ in the di-
rection ∏A∏A’ as described below. But the motivation of the twistor
theory is to derive the concept of a space–time point. Twistor theory
was afterwards used to describe zero rest mass fields and subsequently
to construct space–time from some (deformed) twistor space.

Let us first show the geometric nature of the twistors, they are mem-
bers of the (complex) Clifford algebra of space–time.

Consider a Dirac spinor . We know that it is a member of the
minimum left ideal of the geometric algebra of space–time R1,3

generated by the Clifford algebra of the set of four vectors γ µ. Multi-
vectors have a representation in terms of the Dirac spinors γµv ... →

. The Dirac spinors themselves have four (complex) de-
grees of freedom Ψ → where the are basis spinors and a =
1, 2, 3,4. Below we show that we can use the correspondence: (a = 1) → 
(R,↑), (a = 2) → (R, ↓), (a = 3) → (L, ↑) and (a = 4) → (L, ↓), that is
right (R) and left (L) handed spinors of spin up (↑) and down (↓), or a
chiral representation.

All elements Mp ∈ M = {γ µ, γ µv, γλµv,γ 5; 1, i1} of the (complex)
Clifford algebra, called (complex) multi-vectors, such that = MpMp =

are
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1 can be used to construct projectors p = (1 + Mp), –p = (1 – Mp)
with = 0 and p + –p = 1. The combination of four commuting
projectors { p, –p, q, –q} suffices to classify the Dirac spinors

(7.148)

where , given that 

(7.149)

There are two Mp (complex, or in fact imaginary) commuting unit
multi-vectors iγ 5 and iγ 12 (that is (iγ 5)2 = (iγ 12)2 = 1 and γ 5γ 12 =
γ 12γ 5) which are very convenient for an analysis of spinors; they generate
the indice correspondence mentioned above for handedness and for spin.

Now the construction generated by the projectors R = (1+iγ 5) and
Tx = 1 + γ 5x, with the position vector x = xµγ µ, µ = 0, 1, 2, 3 applied
to a spinor , is called a reference twistor ηx associated to x and ψ

(7.150)

where ∏ =
∏ is a right handed Dirac spinor which can be represented ∏ →

, as the couple of a Pauli ξ (usually called Weyl) spinor and zero.

The adjoint spinor ∏ = (ξ*, 0) = (ξ*1 ,ξ*2 ,0,0 ).
The transpose twistor, starting from ψ   =  ψ†γ 0 and considering R =
(where Mk = (ΣA aAγA)k = Σa(aA)*γA, the star is used to indicate

complex conjugation) is

product, for x real, (7.151) 

is such that the scalar product 

(7.152)

because

(7.153)

That is, it represents the expectation value of the (dual of the) position 
γ 5x with respect to spinor ∏. The outer product

(7.154)
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here q = ∏ ∏ is the right handed part of a null vector Q = (a single
outer product of Dirac spinors or of Weyl spinors can only correspond
to fixed handedness null vectors), that is the presence of 

(7.155)

gave origin to the Penrose interpretation of a twistor as a composite of a 
null vector q and a ‘flag’ γ 5xq, as far as a bi-vector represents an oriented
surface. The multi-vector corresponding to the twistor is 

(7.156)

it contains the projection Q → q = In (7.154) we have γ 5x =
–xγ 5 and –γ 5q = iq because q is a right handed projection.

A supermatrix representation of the above relations, although super-
fluous, is very helpful to visualize the different structures. The vectors

(7.157)

here the σi are the positive square Pauli matrices (σi)2 = 1, σ1σ2σ3 =
i 1 and σiσj = iσk; i, j, k = 1,2, 3 cyclic.

The hypervolume γ 5 = i = σ1σ2σ3 , then the

twistor

remark (7.158)

where x = , and is the left-handed quaternion conju-

gate of . The use of the multi-vector ηx or of the twistor spinor ηx
can be done indistinctly. can also bereplaced by a multi-vector as
discussed in [127]. 

We then see that the admitted geometrical interpretation considers, 
as a result, not the vector x but its three-dimensional projection
and, moreover, the factor i = σ1σ2σ3 is the three-dimensional volume
element.

Let us now obtain the scalar products corresponding to what Pen-
rose calls the twistor invariant, the product of two twistors when the 
transpose is taken considering that we can define = –γ 5 (as is obvi-
ous from the representation (7.157) of γ 5 in terms of gamma matrices). 
Then instead of (7.151) we define the adjoint η as follows

(7.159)
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and consider the product of two twistors: 

a) Corresponding to the same spinor and to the same vector real x

(7.160)

This is obviously invariant under multiplication of ηx by a complex 
factor, then from the eight degrees of freedom (four complex numbers) 
only six are geometrically significant and (7.160) reduces them to 
five real parameters. These parameters can be chosen to correspond 
too to the direction of the null ray (the light trajectory) and to its 
intersection with a base hyperplane t = 0. 

b) Corresponding to the same spinor , but to two different vectors x
and x'

(7.161)

which will be zero if it corresponds to a point where two (real x = x') 
light rays intersect. This is what could correspond to a definition 
of a point from twistors. For variable x' and fixed x we define a
congruence usually called the Robinson congruence.

Let us now consider the multi-vector twistors ηx and their generaliza-
tion. Notation reminder: the multi-vector twistor 

(7.162)

where q is a null vector considered (by definition not included in (7.151))
supported at the position x. The obvious generalization is, both q
and x, to be allowed to become arbitrary (complex) vectors.

8.2 REPRESENTATION OF THE POINCARÉ
GROUP

The equations describing physical relations in space–time (or in ordi-
nary three-dimensional space) should be covariant under both Lorentz 
transformations L and changes of origin d of the coordinate system.
This set of operations, called the Poincaré group, of which rotations and 
changes of origin in ordinary three-dimensional space are subgroups, is 

The group product is {L2, d2} {L1, d1} = {L3, d3}. In the geometric
algebra of space–time R1,3 (the Clifford algebra denoted R1,3 or ) 
a position vector χ0 = χµγ µ is transformed (d is a vector and Ln the
exponential of a bi-vector)

characterized by the pair {L, d}.

(7.163)
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or

(7.164)

(7.165)

defining (the tilde operation reverses the product, of two multi-vectors)

(7.166)

The ‘multiplication’ of the Poincaré group is well defined but cumber-
some. There are several representations, some of which are reasonable to 
handle. For example the use of the matrix form (here the Li are square 
matrices and the χi and di column matrices, the are row matrices)

, (7.167) 

,

and

, (7.168) 

then

, (7.169) 

clearly shows that the ‘product’ of group elements are elements of the 
group. Group multiplication is matrix multiplication here. 

In geometric algebra there is a representation of the elements of the 
group which allows geometric multiplication as the group (non abelian)
multiplication

For this geometric algebra representation we use the product of the
elements (1 + εd) and L which, separately have as group multiplication,
the geometric product

and (7.170)

where d3 = d2 + d1 and εd2εd1 = 0 requiring that either {ε2 = 0, εd =
dε} or {ε+ε_ = 0, ε+d = dε_ }. In the first case ε2 = 0 is a nilpotent
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operation commuting with the vectors d. In the second case ε+(ε–) is a
projector operator 

(7.171)

which can be written in terms of a unit multi-vector e, e2 = 1 which,
ed = –de, anticommutes with the vectors d. The ε+ = (1 + e) and
ε = (1 – e). In general a suitable {ε;ε2 = 0, εd = dε} or {e; e2 =
1, ed = –de} can only be found in an algebra of a dimension higher than
the Clifford algebra Rp,q corresponding to the space Rp,q. The formal
definition of ε or e is enough for the purpose of studying the Poincaré
group but the possibility of physical usefulness or insight would be lost.

In the Dirac algebra D corresponding to R1,3 one usually admits its 
complexification, corresponding to the use of R0,5 R2,3 R4,1, that
is, Dc = {R1,3 ⊗ iR1,3 R0, 5}. The commonly used operators iγ5 =
iγ 0γ 1γ 2γ 3 and iγ 12 = iγ 1γ 2 are good examples of this complexification
of the algebra. It is iγ 5 which has the property iγ 5γ µ = –γµiγ 5 and
(iγ 5)2 = 1 required for the use in (7.171) and (7.172). Then the group
of translations Γ has two isomorphic representations Γ : d → d', which
are (1 + ) and (1 + ) where

and

(7.172)

and

Here the and are the operators for right handed and left handed 

The Lorentz transformations L = by angles in the 
projection, respectively: = + = R0 + L0.

planes γ µv act as

(7.173)

do form a multiplication group 

(7.174)

which can be used to construct, together with the (1 + εd), a set of two
representations of the Poincaré group.

The representations of the Poincaré group are 

(7.175)
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and (A = L, R, using = and = )

(7.176)

also

The invertible operators (1 + ) become then an important part of
the study of the invariances and the symmetries related to relativistic
quantum theory of particle and interaction fields. Their use to con-
struct a new representation of the Poincaré Lie algebra is thus both
straightforward and clarifies the reason for some features of the theory
of elementary particles. The relations could have been the best starting
point for the instruction of a theory of twistors. We should remember
that any spinor can be written = and that = .

When we work in the realm of the Clifford algebras the complexifi-
cation of a space corresponds to the increase of only one dimension in
the space of basis vectors. Basis vectors should all anticommute among
themselves. Other procedures, besides complexification, like duplexifi-
cation or doubling, play a similar and equivalent role.

8.3 SCREWS AND MULTI-VECTOR SCREWS 
Let us analyze the possibilities open. The need for q to be a null

vector stemmed from its introduction as a single outer product of a 
spinor ∏ and its conjugate ∏. On the other hand x could have been null
or general 

(7.177)

where = is either one of the idempotent left or right hand-
edness projectors, in particular we could have defined q = for Y
such that q is a null vector. But in (7.177) we want to allow Y to be a
general complex vector) 

(7.178)

where ξa (and ξb) are a general basis set for Dirac spinors (and adjoint
Dirac spinors) Yab ∈ C . If q = PLY γ 0 = ∏∏ then Y = P↑Y , (remember
that up and down are only relative, otherwise free, directions).

~
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The presence of g0 in the definition of q from Y is necessary to connect,
with (7.151) and (7.162) because q corresponds to a space–time ‘cut’ of
a vector qv (a space–time ‘cut’ is the multiplication of a multi-vector
by a time vector γ 0)

(7.179)

Where the space–time quaternions Σµ = γ µγ 0 = γ µ0 can be represented
by block diagonal matrices, the same as q, with σµ in the main diagonal,
while the γ µ and the particular time vector γ 0 were represented in (7.157)
by block diagonal matrices with σµ in the second diagonal. Σµ = γ µγ 0 →

; µ = 1,2,3 while Σ0 = 1. In (7.177) we find all elements

of the Dirac (complex space–time) algebra. The Y are odd (so is PLY)
and the XY are even (the same as γ5XP LY), the presence of γ5 makes

all elements, upon which it acts, become their dual: scalars to pseudo-
scalars; vectors to tri-vectors; and space–space bi-vectors to space–time
bi-vectors.

Here is where the discussion of part C, about the full Poincaré group
is now directly relevant. The factors (1 + γ5XP A) are representations of
the translations group

is then a full (complex) multi-vector.

(7.180)

Reminder: = = 0, where B ≠ A. These
factors also commute with the rotations

(7.181)

where X'' = R(X) and Y'' = R(Y) are the rotated vectors.
That is, the vector X is a position (fixed frame) vector, whereas Y is a

free frame (sometimes called just ‘free’) vector Y, or, in the original, the
twistor ∏, is to be acted on by rotations but not by translations. Then it
should represent a physical phenomenon and Y is not a position vector. 
In geometry Y is a vector which should be associated with magnitude
or direction, not with position.

If a twistor or our new objects, in fact a special combination of a vector 
and its product with a position vector, should become a field over x, it
is the chiral part P AY = YA that should become YA(X), even in the case
where both Y, x ∈C 4. That is, the free vector (representing a vectorial
magnitude field) is the part that carries the position dependence and x
is the part that anchors the field.
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In the use of the (multi-vector) twistors an integration over x averages

We can, moreover, take the imaginary phase out of the definition of
the multi-vector pair, represented by γ 5 in (7.150) and (7.177); and keep

the field and an integration over Y averages over the (auxiliary) field.

the pair we shall call screw Sx,y

(7.182)

The screws are also faithful, nontrivial, representations of the Poincaré
group. The factor (1 + ) is invertible (the factor (1 + ) was
also invertible) and the factor Y can also be invertible. Consider

(7.183)

because , also

if (7.184)

A uniform screw would be where Y = Y (X) = R(X) (X)
with (X) a rotation generator linear in X. In Clifford algebra rotations
are generated by the bi-vectors γ ij(i, j = 1, 2, 3), their general form
is (X) = exp( σij(X)γ ij ). The uniform rotation would be a linear

dependence on some X1 = aX0, such that σij
 = + Then the

screw will correspond to rotations in the plane γ ij proportional to the
displacement, of the vector X according to the scalar product (XX0)scalar.
We could also consider the screw to describe a helical path. The new
objects are suitable candidates for robotics, vision analysis, or models of
angular momentum carrying objects. Here we shall consider an electron
field to be represented by combinations of screws. In (7.178) we can,
of course, consider that Y is a multi-vector, all multi-vectors having
the same decomposition, given by (7.178). The considerations of this
paragraph applying equally to all multi-vectors given that rotations are
multi-vector grade concerning functions. A multi-vector spinor will be
used to represent an electron in the next section.

A final, geometrical, consideration. If X is a position vector and q a
null vector, only the line where q is embedded can be known because
we do not really know X but only the product Xq and this product is
unchanged is we replace X → X + αq, the scalar part is increased in
α(q) = 0 and the bi-vector part in, αq Λ q = 0. Only if X itself is null
then X Λ q/(X. q) = and we can know the point, of ‘support’ of the
null vector q by the null vector X.

This is the geometrical model of the original twistors, null rays sup- 
ported by null rays. 

.
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If in the generalization we consider non-null vectors supported by
non-null vectors, the product has a scalar part XµYµ which changes if
we charge X → X+αY because α(Y)2 will no longer be zero, then the
product XY and the knowledge of Y determines X completely. We can,
from the analysis of the generalized twistor, find the support position
vcctor X and the supported free vector Y. The twistor η (see (7.150))
has a dual ηD. We have seen that η has 4 complex components, they
may be labeled ηα, α = 1,2,3,4, η0 also has 4 operator components
ηα, α = 1, 2, 3, 4 and, being a function and a conjugated operator pair,
they obey the commutation relations

(7.185)

useful to construct field theories.

8.4 MULTI-VECTOR SCREW FOR THE
ELECTRON FIELD

Let us now present as a final example the form in which a multi-
vector screw can contain all the information we know to be necessary to
describe an electron at the single particle level.

First, let us recall the physical content and the geometrical content of
the (multi-vector) wavefunction . . A free electron wavefunction can
be written (see Keller 1997a) in the well known form (see Casanova 1976
for a discussion)

(7.186)

where ρ is the statistical weight ( is the amplitude) of the wave func-
tion at a point X, then the probabilistic nature of the wavefunction is
contained in ρ. The factor eβγ5 with β the Takabayashi angle is the
way to determine if we are describing a particle or its antiparticle and
the rotor R0 describes a rotation in the spin plane γ 12 corresponding to
intrinsic angular momentum of the particle's field at point X

(7.187)

Then this factor, the rotor R0, contains the first quantization proper-
ties of the electron. An arbitrary wave function would be = with
R a Lorentz transformation, which can be taken to be R(X), to describe
the gauge interactions of the electron. We have described elsewhere how 
R can also describe the full electroweak interaction, and not only the 
electromagnetic and gravitational parts. 

vector Y of the electron can be incorporated in the full complex multi- 
Now the position vector of the electron X and the normalized spin 



230 THEORY OF THE ELECTRON 

vector screw M

(7.188)

We propose to call this complex multi-vector a MEXOR or the Multi-
vector to represent the Electron and its position X space–time vectOR.
(We have also chosen this name for obvious geographycal reasons!) and
it is the geometric object which completely represents a massive, inter-
acting, spinning electron as will be analyzed in the next section.

But first let us connect with the already known concepts of Dirac 
spinor and twistor. 

The Dirac spinor basis , i = 1, 2, 3, 4, and the transpose obey 

(7.189)

they can generate the multi-vectors as

(7.190)

in particular, = with k = {a,b} in (7.190) above and we can

represent = ( ) , where ξ and π are Weyl spinors and conjugated

spinors respectively. And conversely any multi-vector can be projected 
into a Dirac spinor 

(7.191)

(see Keller and Rodríguez 1991). 
Then the multi-vector contains, in fact, four components which

actually correspond, if we take the chiral basis representation, to the 
right handed spin up or down and to the left handed spin up or down 
components. In a 4 x 4 matrix representation of each column
corresponds to each one of these four possibilities as a reference. And, 
from the use of the chirality projectors (7.150) 

(7.192)

we can write the MEXOR M in (7.188) as the multi-vector twistor pair 

(7.193)
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and then for each basis spinor ; k = 1,2,3,4 to project → =
as the four sets 

or

(7.194)

with

and each Mk can describe an electron as a sum of two twistors in refer-
ence to each of the four Dirac spinors for the electron being given. 

8.4.1 A ONE PARTICLE FORMALISM FOR THE 
ELECTRON BASED ON MEXORS 

Once the MEXOR corresponding to an electron has been defined we 
can use the analysis of twistors above to show that the formulation in 
terms of mexors contains some key new features for the determination 
of the theory of the electron. 

We shall show that the Dirac equation with mass m ≠ 0 for is a con-
sequence of having introduced the MEXOR. This is related to (7.193) not
being Poincaré-covariant directly, but only its separated left and right
handed parts ML and MR are faithful representations of the Poincaré
group.

The twistor product of the Mk with itself and with its adjoint then 
has several terms which have different meanings: 

and

All of them related, however, to the analysis of section 3 above. We 
form combinations of the type of bilinear covariants and invariants with 
the form MkγAMk, related to the Dirac theory with the γA the Hermitian 
operator obtained from the Clifford algebra (7.28).

The γA will contain three types of information. First that information
related to geometric quantities: γ µ for vector quantities like momentum 
or γ µv for bi-vector quantities like angular momentum or electromagnetic 
field strengths; second the twistor or spinor ‘metrics’: εAB is given by δ1

and the twistor metric by γ 1, the twistor conjugation is given by iγ 5γ 0

~
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represented by ; and third the projection which selects from 

the spinor or from the twistor the desired components, for example given 

and then selects the basic spinor from the twistor (in the usual twistor
notation Zα = (WA,πA’) → = (0, πA’) and = (WA, 0).

First, remember that because in twistors we have, by definition,

and (7.195)

from which we can form the invariant, using the twistor metric mαβ,
ω0 = = , and we can also extract the complex vector Z
from the twistors and the representation of the γ µ basis vectors of the
Clifford algebra 

(7.196)

with

and (7.197) 

we also obtain Y called the Pauli–Lubanski, or spin space–time, vector.
This is more clearly shown if we form the momentum vector 

(7.198)

resulting in 

(7.199)

which is the momentum part, of the Gordon decomposition of the cur-
rents. The normalization of the ψ is given by (7.201) below; and then
check that Y obeys

(7.200)

Furthermore, from the existence of the cross products in (7.198) we find 
that

(7.201)

then for the determination of the wavefunction ψ the massive Dirac
equation has to be used with the value of m resulting from (7.201). This 
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is in agreement with the Higgs postulate that mass is to be obtained 
from the coupling of the left handed and the right handed parts of the 
electron’s field. 

The cross products of the terms with ( )L and ( )R define a couple
of vectors e1 and e2 which together with the normalized Y and P form
an orthonormal tetrad with P and Y gauge invariant but e1 and e2 only
defined up to a rotation angle in the plane they generate. 

As we can recover the spinors from the twistors = and 
= , then = + and all bilinear quantities and 

analysis of the standard theory are recovered. It is also clear that the
fundamental differential equation becomes the Dirac equation applied to 
ψ. The bispinor ψ can also be mapped into a spinor pair

We can also map one of the two twistors, say the left handed, into 
a right handed twistor, by straightforward conjugation and then the 
MEXOR will result equivalent to a twistor pair as in the analysis of the 
massive particle with spin made by Tod (1975, 1977); Tod and Perjes 
(1976) and Bette (1984, 1988, 1989) with all their results recovered by
the MEXOR approach. 

Finally from the gauge freedom of the spinor → R(x) and of the
twistor ZAA' → ZAA' + λAπA’ we introduce through R(x) the gauge
fields, and through the results (changes in Z given by the terms λAπA’)
describe the changes the gauge fields produce in Y and in the e1 and e2

vectors, besides the well known changes the gauge fields produce in the
momentum vector P. This can also be described as a sum of spinors 

(7.202)

and therefore as the coupling with new MEXORS 

(7.203)

or their corresponding decomposition into a sum of (two additional) 
twistors.

We have described above how if the mass of the electron is given the 
masses of the other elementary particles are then describable in terms of 
numbers associated to the representations on the Dirac Clifford algebra. 

The gauge approach to interactions is expressed in Clifford algebra 
with the use of the representations of the Lorentz transformations L
given by (7.163) above. They are the R multi-vectors generated by the 
exponentiations of the bi-vectors (λ ≠ {µ ≠ v})γmv
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(generators of the Lorentz transformations) which rotate vectors in the 
plane µ = v they represent and leave vectors orthogonal to that plane
unchanged.

The action on multi-vectors is 

with

For example, applying with (γµ v)2 = –1, we obtain

corresponding to a rotation by an angle of of the vectors in the plane
µ = v. Whereas the action on spinors is

corresponding to a rotation by an angle in the plane µ – v.
These rotations and boosts change the energy–momentum of the par-

ticle represented by the field. Moreover, they change the components 
of the basic geometric quantities of the theory, in particular the local 
tetrad: X, Y, e1 and e2. From this point of view the action of the gauge
fields is equivalent to local deformations of the reference space–time. 
This type of analysis constitutes, in fact, a total geometrization of the 
gauge fields and of the interactions they represent. 

The changes in the spinor are 

and then the changes in the MEXOR, assuming that the vector Y is also 
acted upon by the gauge rotor R, as Y → Y' = RYR, is

with Z' = X + iY' and then writing Z' = Z + Y' – Y

but in practice Y is not used and the last term drops out. This shows that 
in principle the gauge fields correspond to the addition of a new MEXOR 
resulting from the change in the spinor part. Therefore the physics of 
the new model is in fact a manifestation of the spinor transformation 

~
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(gauge phase factors). The interaction field strengths Fµv change the 
energy momentum

and induce a precession of the spin vector and an additional rotation of 
the spin plane 

where ω is the spin angular velocity /2mc.

9. HISTORICAL NOTES ABOUT 
GEOMETRIC ALGEBRA AND CALCULUS 

The history of vector algebra and then of vector geometry is usu-
ally known (see the book of Crowe 1992) but often misunderstood, and 
characterized by, numerous ‘rediscovery’. 

9.1 NINETEENTH CENTURY 
The idea of constructing a geometric algebra was started by 

9.1.1 WESSEL 

Danemark, 1797 (French translation 1897) 
In a presentation to L’Academie Royale des Sciences et des Lettres de

With the main concepts: 

‘...... the direction of all lines in the same plane can be expressed 
analytically as their lengths ....’, 

and achievements: 

to define the rules for such operations; 

to demonstrate their applications in 2D; 

to define the directions of lines in 3D; 

solve plane and spherical polygons; 

formulae for spherical trigonometry (3D). 
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9.1.2 GRASSMANN 
In his ‘Ausdehnungslehre’, Leipzig 1844. He introduced: 

the geometric product: AB Λ AC = parallelogram;

“... as my father has conceived it in his RAUMLEHRE...”;

non-commutativity: AB Λ AD = – AD Λ AB;

extensions, volumes and hyper-volumes: AB Λ AC Λ AD Λ ...;

the geometric product in correspondence to two of previous products,
one being the symmetric part, the other one the antisymmetric part:
(AB )(AC ) = AB • AC + AB Λ AC ;

AC • AB;
the symmetric part usually being called dot product AB • AC =

bi-vectors generate rotations; 

magnitudes: (AB)(AB) = (AB )2 = (length)2; length is a (positive)
magnitude.

9.1.3 HAMILTON 
In his ‘Lectures on Quaternions’: ‘It is proper to state here that 

a species of non-commutative multiplication for inclined lines (äussere 
Multiplikation) occurs in the very original and remarkable work of Prof. 
H. Grassmann ... after years had elapsed from the invention and commu- 
nication of quaternions... too late to acknowledge it ... perfectly distinct 
and independent ...’ (Dublin 1853). 

There is an algebra of quaternions (a subalgebra of the 3-D space 
geometric algebra) where: 

i, j, k, and 1 are considered together, hence the word ‘quaternions’;

(ring);i2 = j2 = k2 = ijk = –1

ij = –ji ; jk = –kj ; ki = –ik;

i1 = 1i, etc..;

Applications to geometry and mechanics: 

where, for example, the quaternion equation q1q2 = q3, with q1 being
an operator let us say for rotation, is a member of the algebra (but
he fails to discover bi-vectors or to understand Grassniann), etc..; 

Definition of the equivalent Dirac Operator. 
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9.1.4 CLIFFORD 
One algebra with variable number n of generator elements:

e1, e2, ..., en,

= = ... = = +1, 

= = ... = = –1; 

The acceptance of the Grassmann product with clear distinction of 
the symmetric and antisymmetric parts; 

Joins in with Grassmann and Hamilton in one formal algebra, ex-
tending Hamilton’s multi-vector analysis. 

9.1.5 PEANO 
In his 1888 book extends the work of Grassmann, defines the different 

mathematical objects formally and, by creating the concept of multi-
vector derivative, enlarges the geometric algebra to geometric analysis. 

9.2 TWENTIETH CENTURY 
Recognition that there are 2n geometrical elements in metric spaces
with n dimensions.

Use of mixed metrics. Description of curved spaces.

Distinction from general manifolds (differential geometry was a great,
step forward). 

Use of extensive and intensive variables (in electromagnetism D, H
are extensive odd 2,1 forms; E, B intensive even 1,2 forms, etc.). 

Vectors and Forms. 

Recognition of Gibbs vector analysis as a mapping hidden in the 
concepts of polar vector, axial vector and pseudo-scalar triple scalar 
product.

Reciprocal Spaces. Phase Space. 

Geometric Operators. Point Groups. 

Generators of Continuous Groups. 

Thorough analysis of Representation. 

Spinor and twistor spaces as minimal ideals in the algebra. 

Use of concepts as Grassmann variables and q-deformed algebraic 
structures.
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9.3 EARLY TWENTY FIRST CENTURY
We estimate that initially it will consist of 

Unification and understanding of different approaches as selective
points of view of basic geometries. 

Clear distinction of the mathematization level: geometry, statistics, 
etc.. Use of Functions, Functionals, Operators, Super-operators (in 
the form proposed by P. O. Lowdin), etc., to analyze the use and the
structure of the mathematical models. 

10. BASIC DEFINITIONS 
As we have required some well known mathematical concepts their

definitions are presented here for purposes of completeness (see, for ex-
ample, Frankel 1997). 

Manifolds
An n-dimensional (differentiable) manifold Mn (briefly, an n mani-

fold) is a topological space which is locally Rn in the following sense. It
is covered by a family of local (curvilinear) coordinate systems

consisting of open sets, or 'patches', U and coordinates xU in U, such
that a point p ∈ U ∩ V which lies in two coordinate patches will have its
two sets of coordinates related differentiably

(If the function fUV are C∞, that is, infinitely differentiable, or real
analytic, we say that M is C∞, or real analytic).

Definitions related to a Manifold
Let M be any set (without a topology) that has a covering by subsets

M = U V ..., where each subset U is in one-to-one correspondence
φU : U → Rn with an open subset φU(U) of Rn. By requiring that each
φU(U 

∪

V) is an open subset of Rn, we require that fVU,

i.e.,

is differentiable (we assume it is known what it means that a map
from an open set of Rn to Rn is differentiable). Each pair U, φU defines

∪

∩ 
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a coordinate patch on M; to each p ∈ U ⊂ M we may assign the n
coordinates of the point φU(p) in Rn. For this reason we shall call φU a
coordinate map.

Complex Manifolds
A complex manifold is a set m together with a covering m = U V ...,

where each subset U is in one-to-one correspondence φU : U → with
an open subset φU(U) of the complex n-space . We then require that
FVU mapping sets in into sets in is complex analytic, Thus if we
write fUV in the form of wk = wk(z1, ..., zn), where zk = xk + iyk and
wk = uk + iuk, then uk and vk satisfy the Riemann–Cauchy equations

with respect to each pair (x r,y r). Briefly speaking, each wk can be
expressed entirely in terms of z1, ..., zn, with no complex conjugates zr

appearing. The resulting manifold is called an n-dimensional complex
manifold, although its topological dimension is 2n.

Definitions related to a Ring
A ring (R, +, .) is a set of elements R = {a, b, c, ..., ..} closed under two

binary operations , namely addition (+) and multiplication (.), satisfy-
ing the following properties (the identity element for addition is denoted 
by 0): 

(a) (R, +) is an abelian group;

(b) the multiplication is associative: a . (b . c) = (a . b) . c;

(c) a . (b+c) = a . b + a . c and (b+c) . a = b . a + c . a.

As in the case of groups, it is conventional to write ab instead of
a . b. A ring will be denoted simply by writing the set R, with the
multiplication and addition being implicit in most cases. If R ≠ {0} and
multiplication on R has an identity element, i.e., there is an element 
1 ∈ R with a1 = la = a for all a ∈ R then R is said to be a ring an
with identity. In this case 1 ≠ 0 (see, see the proposition below).

Proposition.
Let R be a ring. Then for arbitrary elements a,b,c ∈ R the following rules
apply:
(1) a0 = 0a = 0;

(3) ab = (–a)(–b);
(4) a(b – c) = ab – ac and (a – b) c = ac – bc;
(5) If R has an identity then (–l) a = –a;

(2) (–a)b = a(–b) = –(ab);

(6) 1≠ 0.

If a ≠ 0 and b ≠ 0 are elements of R such that ab = 0 then a and b
are called zero divisors of the ring R. If R has an identity, an element

∪ ∪
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a ∈ R is a unit (unit element) if a has a multiplicative inverse, that, is
there is a b ∈ R with ab = 1 = ba. R* denote the set of all units of R.
R* is a group, called the group of units of R.

Field
A ring R with identity is a division ring if R* = R/ {0}, i.e., every

non-zero element of R has a multiplicative inverse. A field is a commu-
tative division ring. 
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