


This book is a comprehensive introduction to electron-atom collisions,
covering both theory and experiment. The interaction of electrons with
atoms is the field that most deeply probes both the structure and reaction
dynamics of a many-body system. The book begins with a short account
of experimental techniques of cross-section measurement. It then intro-
duces the essential quantum mechanics background needed. The following
chapters cover one-electron problems (from the classic particle in a box to
a relativistic electron in a central potential), the theory of atomic bound
states, formal scattering theory, calculation of scattering amplitudes, spin-
independent and spin-dependent scattering observables, ionisation and
electron momentum spectroscopy. The connections between experimental
and theoretical developments are emphasised throughout.

Graduate students and researchers in atomic, molecular, and chemical
physics will find this text a valuable introduction to a subject of central
importance.





Cambridge Monographs on Atomic, Molecular,
and Chemical Physics 5

General editors: A. Dalgarno, P. L. Knight, F. H. Read, R. N. Zare

ELECTRON-ATOM COLLISIONS



Cambridge Monographs on
Atomic, Molecular, and Chemical Physics

1. R. Schinke: Photodissociation Dynamics
2. L. Frommhold: Collision-induced Absorption in Gases
3. T. F. Gallagher: Rydberg Atoms
4. M. Anzinsh and R. Ferber: Optical Polarization of Molecules
5. I. E. McCarthy and E. Weigold: Electron-atom Collisions



ELECTRON-ATOM COLLISIONS

IAN E. MCCARTHY

The Flinders University of South Australia

ERICH WEIGOLD

Australian National University

CAMBRIDGE
UNIVERSITY PRESS



CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521413596

© Cambridge University Press 1995

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 1995
This digitally printed first paperback version 2005

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

McCarthy, I. E. (Ian Ellery), 1930-
Electron-atom collisions / Ian E. McCarthy, Erich Weigold.

p. cm. - (Cambridge monographs on atomic, molecular, and
chemical physics; 5)

Includes bibliographical references.
ISBN 0 521 41359 1

1. Electron-atom collisions. I. Weigold, Erich. II. Title.
Ill Series.

QC793.5.E628M3 1995
539.7'57-dc20 94-16810 CIP

ISBN-13 978-0-521-41359-6 hardback
ISBN-10 0-521-41359-1 hardback

ISBN-13 978-0-521-01968-2 paperback
ISBN-10 0-521-01968-0 paperback



Contents

Preface xi

1 Introduction 1

2 Experimental techniques for cross-section measurements 4
2.1 Concept of cross sections 5
2.2 Measurement of total and integral cross sections 8
2.3 Measurement of differential cross sections 14
2.4 Ionisation 22
2.5 Polarised electrons 32
2.6 Polarised atom sources 39
2.7 Electron—photon correlation experiments 45

3 Background quantum mechanics in the atomic context 50
3.1 Basic mathematical constructions 50
3.2 Physical interpretation 58
3.3 Angular momentum 61
3.4 The Pauli exclusion principle 71
3.5 The Dirac equation 77

4 One-electron problems 81
4.1 Particle in a cubic box 81
4.2 The Schrodinger equation for a local, central potential 82
4.3 Bound states in a local, central potential 82
4.4 Potential scattering 87
4.5 Integral equations for scattering 98
4.6 Resonances 104
4.7 Relativistic electron in a local, central potential 111

vn



viii Contents

5 Theory of atomic bound states 115
5.1 The Hartree—Fock problem 116
5.2 Numerically-specified orbitals 120
5.3 Analytic orbitals 123
5.4 Frozen-core Hartree—Fock calculations 125
5.5 Multiconfiguration Hartree—Fock 126
5.6 Configuration interaction 128
5.7 Perturbation theory 133
5.8 Comparison with spectroscopic data 135

6 Formal scattering theory 139
6.1 Formulation of the problem 139
6.2 Box-normalised wave-packet states 142
6.3 Integral equation for the box-normalised collision state 143
6.4 The physical limiting procedure : normalisation 144
6.5 Transition rate and differential cross section 145
6.6 The optical theorem 146
6.7 Differential cross section for scattering 147
6.8 Differential cross section for ionisation 148
6.9 The continuum limit : Lippmann—Schwinger equation 149
6.10 The distorted-wave transformation 152

7 Calculation of scattering amplitudes 156
7.1 Antisymmetrisation 157
7.2 Reduced Lippmann—Schwinger equations 164
7.3 Potential matrix elements 168
7.4 The complete set of target states 178
7.5 The optical potential 179
7.6 Alternative methods for restricted energy ranges 190

8 Spin-independent scattering observables 199
8.1 Collisional alignment and orientation 200
8.2 Hydrogen 212
8.3 Sodium 225
8.4 Two-electron atoms 230

9 Spin-dependent scattering observables 235
9.1 Origin of spin-dependent effects 236
9.2 Combined effects of several polarisation mechanisms 241
9.3 One-electron atoms 247
9.4 Closed-shell atoms 252



Contents ix

10 Ionisation 261
10.1 Formulation of the three-body ionisation problem 263
10.2 Inner-shell ionisation 274
10.3 Ionisation near threshold 275
10.4 Excitation of autoionising resonances 279
10.5 Integrated cross sections 283
10.6 Total ionisation asymmetry 288

11 Electron momentum spectroscopy 289
11.1 Basic theory 289
11.2 Examples of structure information 300
11.3 Excited and oriented target states 307

References 310

Index 321





Preface

The advancement of knowledge of electron—atom collisions depends on
an iterative interaction of experiment and theory. Experimentalists need
an understanding of theory at the level that will enable them to design
experiments that contribute to the overall understanding of the subject.
They must also be able to distinguish critically between approximations.
Theorists need to know what is likely to be experimentally possible and
how to assess the accuracy of experimental techniques and the assumptions
behind them. We have aimed to give this understanding to students
who have completed a program of undergraduate laboratory, mechanics,
electromagnetic theory and quantum mechanics courses.

Furthermore we have attempted to give experimentalists sufficient detail
to enable them to set up a significant experiment. With the development
of position-sensitive detectors, high-resolution analysers and monochro-
mators, fast-pulse techniques, tuneable high-resolution lasers, and sources
of polarised electrons and atoms, experimental techniques have made
enormous advances in recent years. They have become sophisticated and
flexible allowing complete measurements to be made. Therefore particular
emphasis is given to experiments in which the kinematics is completely de-
termined. When more than one particle is emitted in the collision process,
such measurements involve coincidence techniques. These are discussed
in detail for electron—electron and electron—photon detection in the final
state. The production of polarised beams of electrons and atoms is also
discussed, since such beams are needed for studying spin-dependent scat-
tering parameters. Overall our aim is to give a sufficient understanding
of these techniques to enable the motivated reader to design and set up
suitable experiments.

Theorists have been given enough detail to set up a calculation that can
be expected to give a realistic description of an experiment. For scattering
this level of detail is only given for methods that take into account the
whole space of reaction channels, which is necessary in general to describe
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xii Preface

experiments. These are mainly the recently-developed momentum-space
methods, based on the solution of coupled integral equations, which have
given an excellent account of experiments in a sufficient variety of cases
to support the belief that they are generally valid and computationally
feasible. Calculations of ionisation have not in general reached this stage
of development, although kinematic regions are known where reactions are
fully understood within experimental error. These reactions are extremely
sensitive to the details of atomic structure and constitute a structure probe
of unprecedented scope and sensitivity.

While reactions are the subject of the book, an essential ingredient
in their understanding is the calculation of atomic structure. There is a
chapter describing many-body structure methods and how to obtain the
results in a form suitable for input to reaction calculations. This aims at
an understanding of the methods without giving sufficient detail to set up
calculations.

There is a chapter summarising background quantum mechanics from
the undergraduate level and developing aspects such as angular momen-
tum, second quantisation and relativistic techniques that are not normally
taught at that level.

For certain mathematical functions and operations it is necessary for the
physicist to know their context, definition and mathematical properties,
which we treat in the book. He does not need to know how to calculate
them or to control their calculation. Numerical values of functions such
as sinx have traditionally been taken from table books or slide rules.
Modern computational facilities have enabled us to extend this concept,
for example, to Coulomb functions, associated Legendre polynomials,
Clebsch—Gordan and related coefficients, matrix inversion and diagonali-
sation and Gaussian quadratures. The subroutine library has replaced the
table book. We give references to suitable library subroutines.

We would like to acknowledge the help of Dmitry Fursa, Jim Mitroy
and Andris Stelbovics in reading and criticising parts of the manuscript,
Igor Bray and Yiajun Zhou for special calculations, and particularly Win
Inskip for her patience, good humour and expertise in typing.

Ian McCarthy
Erich Weigold



1
Introduction

The detailed study of the motion of electrons in the field of a nucleus
has been made possible by quite recent developments in experimental and
calculational techniques. Historically it is one of the newest of sciences.
Yet conceptually and logically it is very close to the earliest beginnings of
physics. Its fascination lies in the fact that it is possible to probe deeper
into the dynamics of this system than of any other because there are
no serious difficulties in the observation of sufficiently-resolved quantum
states or in the understanding of the elementary two-body interaction.

The utility of the study is twofold. First the understanding of the
collisions of electrons with single-nucleus electronic systems is essential to
the understanding of many astrophysical and terrestrial systems, among
the latter being the upper atmosphere, lasers and plasmas. Perhaps more
important is its use for developing and sharpening experimental and
calculational techniques which do not require much further development
for the study of the electronic properties of multinucleus systems in the
fields of molecular chemistry and biology and of condensed-matter physics.

For many years after Galileo's discovery of the basic kinematic law of
conservation of momentum, and his understanding of the interconversion
of kinetic and potential energy in some simple terrestrial systems, there
was only one system in which the dynamical details were understood. This
was the gravitational two-body system, whose understanding depended
on Newton's discovery of the 1/r law governing the potential energy. By
understanding the dynamics we mean keeping track of all the relevant
energy and momentum changes in the system and being able to predict
them accurately.

For the next 250 years Newton's dynamics of force was applied with
incomplete success to many incompletely-observed systems. At the same
time an understanding of the relationship of momentum, energy, space and
time was developed by Maupertuis, Euler and Lagrange. The understand-
ing of processes involving the production and absorption of bosons began
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2 1 Introduction

with Maxwell's equations, although their significance in this sense was not
realised until Einstein's development of the photon concept. Atomic and
nuclear physics were born at the same instant, the discovery of the nucleus
by Rutherford (1911).

The early understanding of atomic systems came almost exclusively
from the observation of photons. In this sense atomic physics was like
astronomy. The physicist had to be content with the information the
system (with some encouragement from random excitation processes)
chose to give. The first development of dynamical probes, involving the
observation of internal energy changes in colliding systems, came in the
study of systems of nucleons where the huge energy changes (on the
scale of the energies of electronic matter) are easily observed. However in
nuclear physics one cannot hope to calculate dynamical details that agree
with experiment to better than about 10% from assumed two-body forces
because the creation of new strongly-interacting particles, particularly
pions, is not far away energetically in most observations.

The field of electron—atom collisions involves the observation of energy,
momentum and spin changes in colliding systems, governed for smaller
nuclei by the elementary electrostatic potential \/r and for larger nuclei
by additional relatively-small magnetic potentials understood in terms of
Maxwell's equations and special relativity. It involves one electron in the
initial state and one, two or (very occasionally) three electrons in the
final state. The observation is considerably aided by photon emission and

Table 1.1. Atomic units (h = m = e =1) and constants in terms of laboratory
units (Cohen and Taylor, 1987). The error in the final significant figures is
given in parentheses

Quantity

charge
speed
time
energy
mass
action
-
energy
length
energy
momentum

Significance

ey/4n/ftoc2 : electron charge
c : speed of light
lab. unit : 1 nanosecond
lab. unit : 1 eV
me2 : mass of one electron xc2

h : Dirac—Planck constant
e2/hc : fine-structure constant
optical unit : 1 cm"1 x 2nhc
tfo = h2/me2 : 1 bohr (a.u.)
me4/H2 : 1 hartree (a.u.)
h/ao : 1 inverse bohr (a.u.)

Magnitude

-1.602177 33(49) xlO"19C
2.997924 58 x 1010cm s"1

10"9s
1.602177 33(49) x 10"19J
0.51099906(15) xl06eV
6.5821220(20) x 10"16eV s
1/137.035 989 5(61)
1.239 84244(38) xlO"4eV
0.529177 249(24) x 10"8cm
27.211 396(81) eV
3.7289406(11) x 103eV/c
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absorption processes but they do not play a part in the collision dynamics,
since photons interact extremely weakly with free electrons.

The orders of magnitude of quantities involved in electron—atom col-
lisions are seen in table 1.1. The units that are used for the description
of experiments and of the individual atomic processes are chosen so that
the order of magnitude of numbers to be discussed is not very far from
1. In particular, distances characteristic of atoms are far too small to
observe directly, but energies and momenta are of roughly the same order
of magnitude as the corresponding laboratory units. It is natural therefore
to consider collisions in momentum space.

Experiments involve the counting of electrons and photons with par-
ticular energy, momentum and spin characteristics. The resulting proba-
bility distributions are described by quantum mechanics, which has been
the accepted language of physics for sixty years. Yet it is perhaps not
fully realised that for systems involving more than two elementary bod-
ies there has been very little serious testing of dynamical calculations.
Electron—atom collisions provide an ideal field for such testing because
it is possible to keep track of energy and momentum changes where the
potential creation of interacting particles is completely irrelevant. The
elementary two-body interactions require only electrostatic and occasion-
ally magnetic potential energy laws. In spite of this conceptual simplicity,
a numerically-convergent calculation of the dynamics of even the three-
body, electron—hydrogen, system was first implemented as late as 1993,
and this calculation is not consistent with all observations. The field is
very much alive.

The development of experimental techniques goes hand in hand with the
development of dynamical approximations and calculational techniques.
New types of observation require new approximations. The approxima-
tions are useful for deeper understanding only if they can be extended
outside the range of validity relevant to the original experiments. This
requires further experiments. The whole process is the subject of the book.



Experimental techniques for
cross-section measurements

Quantitative studies of the scattering of electrons by atoms began in
1921 with Ramsauer's measurements of total collision cross sections.
Ramsauer (1921) with his single-collision beam technique showed that
electron—atom collision cross sections for noble gas targets pass through
maxima and minima as the electron energy is varied, and can have
very low minima at low electron energies. The marked transparency
of rare gases over a small energy range to low energy (~1 eV) elec-
trons was also noted by Townsend and Bailey (1922) in swarm exper-
iments. This result was in total disagreement with the classical theory
of scattering, which predicts a monotonic increase in the total collision
cross section with decreasing energy. The Ramsauer—Townsend effect
provided a powerful impetus to the development of quantum collision
theory.

Although the history of electron impact cross-section measurements
is quite long, the instrumentation and the experimental techniques used
have continued to evolve, and have improved significantly in recent years.
Part of the motivation for this progress has been the need for electron
collision data in such fields as laser physics and development, astrophysics,
plasma devices, upper atmospheric processes and radiation physics. The
development of electron—atom collision studies has also been strongly
motivated by the need of data for testing and developing suitable theories
of the scattering and collision processes, and for providing a tool for
obtaining detailed information on the structure of the target atoms and
molecules and final collision products. It has been aided by advances
in vacuum techniques, sources of charged and neutral targets, progress
in electron energy analysis and detection, progress in the development
of electron sources (in particular the development of suitable sources
of polarised electrons), the development of tuneable lasers, and the use
of computers for online control of experiments and for data handling
and analysis. Refinements in the experimental techniques have made it
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possible to study individual processes which have had to be averaged over
in previous measurements.

We cannot in this chapter make a comprehensive coverage of all of
the experimental procedures presently being utilised. We will give a brief
overview of the major modern techniques. The emphasis will be on
differential cross-section measurements using single-collision beam—beam
scattering geometry, since these are the most widely used techniques. They
are versatile and also demonstrate most of the basic techniques involved
in cross-section measurements.

2.1 Concept of cross sections

The time-independent probability for the occurrence of a particular colli-
sion process is represented by the corresponding scattering cross section.
It characterises the scattering process and is well defined in most scattering
experiments. There are some situations when a time-dependent probability
must be considered and the normal definition of a scattering cross section
is not applicable.

2.1.1 Differential cross section

The effective interaction between an electron and an atom depends
strongly on the electron velocity as well as the scattering angle and the
nature of the process. The cross section, which measures the probability
that a given type of reaction will occur, will therefore in general depend on
both the incoming and outgoing energies and angles. Such cross sections
are usually called doubly-differential cross sections.

Fig. 2.1. Schematic diagram of a scattering experiment.
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In order to develop the concept of a cross section let us consider a
beam of monoenergetic electrons, of energy and momentum £o and ko
respectively, approaching a number of target particles as in fig. 2.1. The
uniform incident beam of Ne particles/(a.u.)2.s is directed along the z axis
and the Nt target particles are at the origin of the coordinate system. We
assume in this discussion that the target particles can be considered to
be at rest and that they are so massive relative to the incident electrons
that the laboratory and centre-of-mass systems are identical. Then the
number of particles Nt with energy between Et and £, + dE\ scattered per
second into the solid angle element dQ making an angle (#, (/>) defined by
the direction k* relative to the incident direction is given by

NidEidQ = d3(Ji(E0, Eu Q)NeNu (2.1)

where the subscript i denotes the particular excitation process leading
to final state i. For a discrete process it is usually possible to integrate
over the energy-loss profile, which reduces the double-differential cross
section d?oi/dEidQ to the (single) differential (in solid angle) cross section,
usually written as doi/dQ. Since the target may be degenerate, one
usually measures cross sections averaged over these degeneracies. Target
degeneracies can sometimes be removed by using either laser techniques or
inhomogeneous magnets to provide spin-selected targets (i.e. target atoms
in specific magnetic substates). Similarly the spin direction of the initial
and final electrons must in general be averaged or respectively summed
over. The use of spin-polarised electron beams and electron spin analysers
can remove the degeneracies.

2.1.2 Integral and momentum-transfer cross sections

Integration of the differential cross section over all angles yields the
integral <7j(£o) a n d momentum-transfer af1(Eo) cross sections. In many
situations the incident direction is an axis of symmetry (such as in the
scattering of unpolarised electrons by unpolarised atoms) and

o-i(Eo) = / dQ l j ' 9 —  = dO dcj) !' ?

J dQ Jo Jo dQ

(2.2)

CJM(EO) = 2TT T d ( J i ^ d \ i - h cos0] sinOdO.
Jo dQ ko

(2.3)
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2.1.3 Total cross section

The total cross section is obtained by summing and integrating over all
cross sections

jj dndE, (2.4)

The sum notation includes continuum states i.
If there is more than one particle emitted in the scattering process, and

one or more of these (electron, photon, etc.) are detected in coincidence
with the 'scattered' electron, then the cross sections are also differential
with respect to the energy and angular distributions of these 'secondary'
particles. Such measurements are called correlation measurements, since
the cross section depends on the correlation between say the angles (or
energies, or spin directions) of the final particles.

2.1.4 Polyenergetic incident particles

Up to the present we have assumed that our incident beam is monoen-
ergetic. Since the cross section often depends sensitively on the incident
beam energy, particularly near threshold or near a resonance, and the
incident beam is never strictly monoenergetic, we must extend our treat-
ment to cover the general case where we may not assume that the cross
section is that given by the mean corresponding to the mean of the energy
distribution.

Let n(Eo) be the number of projectiles of energy £o per unit volume
per unit energy interval, so that n(Eo)dEo is the number per unit volume
in the range £o to £o + dEo. The total incident flux is

/»OO  POO

O = / n(Eo)vodEo = / ®(E0)dE0. (2.5)
Jo Jo

The effective collision cross section is given by the reaction rate for
stationary targets by

^-7^— l-n{Eo)vodEo =

= -£^*>, (2-6)
where

Jo"
J r J r v —  poo / i~- \ j r * V^*'/

dEidLli Jo n(Eo)vodEo
One can similarly define average integral, momentum-transfer and total
cross sections.
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2.2 Measurement of total and integral cross sections

2.2.1 Total cross section

When a beam of electrons of current / enters a collision chamber con-
taining a target gas of uniform density n, the fractional loss of intensity is
given in terms of the total cross section GJ by

dl = -ajlndz, (2.8)

which yields the well known Lambert—Beer  law

oj = (n/Cy (2.9)
where t is the effective length of the electron path through the gas and IQ/IC

is the ratio of the beam intensity in front of and behind the absorption
cell respectively. From this it is also obvious that GJ has the dimensions
of area. Fig. 2.2 shows a schematic diagram of a linearised version of
the Ramsauer technique, which does not use magnetic fields, used by
Wagenaar and de Heer (1985) to obtain total cross sections for electron
scattering from Ar, Kr and Xe. They used a short collision cell with small
entrance and exit apertures and of adjustable length, which permitted the
use of higher target pressures, which in turn allowed a more accurate
determination of pressure. Total cross sections have been measured using
this technique since the measurements of Ramsauer (1921).

Care must be taken in designing the collision apparatus and electron
detector (normally a Faraday cup or retarding field analyser) to ensure
that equation (2.9) is applicable and small-angle scattering is eliminated
(Wagenaar and de Heer, 1985; Bederson and Kieffer, 1971). To allow for

Gas in

Electron
beam ' I vj

» To  Capacitance
manometer

Molybdenum
^platesnElectron

detector

^Collision
cell

Fig. 2.2. Schematic of the apparatus used by Wagenaar and de Heer (1985) to
obtain total cross sections for electron scattering from noble gases.
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scattering from the edges of apertures one usually measures the primary
beam current before (Jo) and behind (Ic) the scattering cell. The total cross
section is then derived by comparing the ratio Ic/h with and without gas
in the collision cell.

(/,//o)gas/(/c//o)vac = exp {-nUT\ (2.10)

It is obvious that n and £ have to be determined accurately, n is usually
determined by measuring the pressure, for example with a capacitance
manometer such as a baratron, taking care to allow for temperature
differences between the gas cell and the measuring region (Blaauw et al,
1980). Usually one has an effusive molecular flow through the entrance
and exit apertures, which leads to large density gradients in the gas, and
the product nt in the exponent of (2.10) has to be replaced by

(2.11)

where the integral is from the electron beam source to detector and a is
a correction factor which can in principle be calculated (Blaauw et al.9
1980; Wagenaar and de Heer, 1985). The quantity a depends critically on
the length, and hence Wagenaar and de Heer investigated a as a function
of £ making certain they took data in the region where a was essentially
equal to unity.

If the energy distribution of the primary beam is not narrow, one has
to allow for it in the manner discussed in section 2.1.4. Using this method
it is possible to measure oj as a function of £o with an accuracy of better
than 5%.

Instead of measuring the transmission of electrons one can measure
the transmission of the target particles in a crossed-beam experiment,
where a beam of electrons intersects a beam of target particles (Bederson,
1968). The recoil imparted to the target atom or molecule deflects it out
of the original beam and the decreased beam intensity is a measure of
the total cross section. Usually one uses a d.c. molecular beam and a
modulated electron beam and associated phase-sensitive detection of the
transmitted molecular beam. If the two beams are rectangular with a
common dimension /z, then (Bederson, 1968)

IshVaT = -——, (2.12)

where V is the average velocity of the target particles, Is and I A the total
scattered and incident atom beam fluxes and Ie the total electron beam
flux. Care must be taken in allowing for geometrical and flux distribution
considerations.
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The recoil technique is capable of yielding angular distributions with
velocity-selected targets. In addition it is particularly useful in studying
the change of spin states in a scattering process, since it is easier to
analyse the spin states of scattered atoms than those of electrons. Such
measurements are not discussed here but the reader is referred to the
articles by Bederson (1968) and Bederson and Kieffer (1971).

Crossed-beam techniques must also be used when the targets are chem-
ically unstable systems, such as hydrogen atoms. These techniques are
now being used in many laboratories and have become indispensable in
atomic collision physics.

The time-of-flight technique has been used in transmission experiments
to obtain total cross sections with extremely high energy resolution at low
energies (Land and Raith, 1974; Ferch et al, 1985; Raith, 1976). For the
low and intermediate energy range Kennedy and Bonham (1978) devel-
oped a nice technique which allowed total cross sections to be derived
simultaneously for all impact energies below 50 eV. A schematic represen-
tation of their time-of-flight apparatus is shown in fig. 2.3. An electron
pulse of 2000 eV with a 100 ps time width is directed at a graphite target.
Secondary electrons emitted at 90° are transmitted through the gas cell
to an electron detector, namely a microchannel plate electron multiplier.

Electron traps

Target

Triple magnetic
shield

-Gas inlet

f^—I Capacitance
Manometer

Electron detector

5 * Pump

Fig. 2.3. Outline of the time-of-flight apparatus used by Kennedy and Bonham
(1978) for total cross section measurements.
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The cell serves as both a gas cell and a field-free flight tube. The gas
cell had a length of 38 cm whereas the total flight path had a length of
45 cm. The fast pulse from the electron detector was used as the start
pulse for the time-to-amplitude converter (TAC) and a delayed trigger
pulse from the pulser used to sweep the 2000 eV electron beam across a
small aperture in front of the solid target was used as the stop pulse. A
time-to-amplitude converter produces an output analogue voltage pulse
whose height is proportional to the time difference between the start and
stop pulses, the pulse height being inversely proportional to the velocity
of the electron. A multichannel analyser (MCA) was used to record the
detected electron count rate as a function of electron velocity (or energy)
with and without target gas in the cell. The use of differential pumping of
the electron source and detector region as well as the low pressures used
(a few millitorr) meant that the effects of changing gas pressure on the
electron gun and detector are negligible. The low effective current in the
gas cell minimises any space charge and surface charging effects. Careful
calibration of the capacitance manometer resulted in a claimed accuracy
of about 3% in the measured total cross sections.

2.2.2 Integral cross sections

Integral cross sections for selected electron-impact excitation and ionisa-
tion processes have been largely obtained by measuring optical excitation
functions. These need to be corrected to a varying degree of accuracy for
effects such as cascade contributions and photon polarisation. The details
of the experimental procedures, sources of errors and data evaluation
have been discussed by Heddle and Keesing (1968).

The optical excitation function is the cross section, measured as a
function of energy, for observing a photon of energy et — ej, which is
emitted in the decay of the state i to the state j , which is normally the
ground state. Here et is the energy eigenvalue of the state i. Such a
photon is emitted after the state i has been directly excited by the electron
collision. If this were the only means of producing the state the optical
excitation function would be equal to the integral cross section o\ (2.2).
However the state i may also be produced by the decay of higher-energy
states f to i. These processes are cascades. If f can decay only to / the
cross section oy must be added to G\. If it decays to i with a probability
(branching ratio) r then we add roy.

The most useful measurements of optical excitation functions are made
for the first dipole excitation of an atom, which has an allowed photon
transition to the ground state. This excitation normally has a large cross
section o\. Integral cross sections for other states may be determined
relative to o\.
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The cross section o\ is often put on an absolute scale by considering
the generalised oscillator strength

f(K) = \{ex - e0)X2(fco/fci)(Ji(X), (2.13)

where K = ki —  ko is the momentum transfer and o\{K) is the differential
cross section. In the Born approximation for o\(K), which is given by
the first-order term of the Born series (6.74) and whose claims to validity
improve with increasing incident energy, /(0) is the optical oscillator
strength. This measures the rate of the photon decay and its value is well
determined by photon spectroscopy. Lassetre, Skeberle and Dillon (1969)
were able to show that f(K) converges to the optical limit even in cases
where the Born approximation does not hold.

In practice one either measures the angular distribution of the scattered
electrons and plots f(K) as a function of X2, and extrapolates the resulting
curve to K = 0 and fits this curve to the known optical oscillator strength
/(0), or one carries out the experiment at high impact energy and low
(preferably zero) scattering angle and assumes that the optical limit has
been achieved.

Angular distribution measurements for selected excitation processes
can be integrated over all angles to give integral cross sections. Such
measurements will be discussed in detail in the next section. The finite
angular resolving power, the angular dependence of the collision region
down to zero degrees, as well as the absolute calibration must all be known
in determining the integral cross section from d(Ti/dQ by use of (2.2).

2.2.3 Momentum-transfer cross section

Momentum-transfer cross sections are normally determined by the electron
swarm technique. A detailed discussion of the drift and diffusion of
electrons in gases under the influence of electric and magnetic fields is
beyond the scope of this book and only a brief summary will be given.
The book by Huxley and Crompton (1974) should be consulted for a full
description of the experimental methods and analysis procedures.

The technique involves high precision measurements of characteristic
transport properties, the transport coefficients, of an ensemble or swarm of
electrons as they drift and diffuse through a gas at pressure ranging from
a few torr to many atmospheres. The most commonly measured transport
coefficients are the drift velocity W\\, which is defined as the velocity of the
centroid of the swarm in the direction of the applied uniform electric field
E, the ratio DT/I* (where Dj is the diffusion coefficient perpendicular to
the electric field and \i is the electron mobility, defined as W\\E) and, when
a magnetic field B transverse to the electric field E is present, the ratio

(where W± is the drift velocity at right angles to E and B). For a



2.2 Measurement of total and integral cross sections 13

given gas all these coefficients are functions only of the ratio E/N (where
N is the gas number density), the gas temperature T, and when a magnetic
field is present, of B/N. The coefficients are related to the momentum-
transfer cross section and the relevant inelastic-scattering cross sections
by complex integral expressions involving the electron energy distribution
function. It is these expressions, coupled with a solution of the Boltzmann
equation to determine the distribution function, which form the basis of
the iterative procedure to derive cross section information.

A typical swarm experiment, to measure Dj/fi in this case, is shown
in fig. 2.4. Electrons from a suitable source enter a diffusion chamber
through a small hole (typically 1 mm diameter) and drift and diffuse in
a uniform electric field to a collector consisting of a central disk A\ and
surrounding annulus A^. The ratio of the currents received by A\ and Ai
is measured and Dj/ n found for the particular value of E/N and T from
a solution of the diffusion equation with appropriate boundary conditions.

The distribution of the positions and velocities of electrons at a given
instant can be found by solving the Boltzmann equation

dl
dt

+ v Vr / + a- VP / =
'coll

(2.14)

G2

11 Anode

r l2 A2

E
Field plates

Fig. 2.4. Schematic diagram of a swarm experiment to measure the ratio DT/H-
G\ is an electrode containing a small central hole and C is a collector containing
a central disk A\ and a surrounding annulus A^.
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where /(r,v, t) is the distribution function, a is the acceleration due to
external forces and (<3//<30coii is the collision-induced rate of change of the
number of electrons per unit volume of phase space. The solution normally
involves the assumptions that the fields are time independent, that spatial
gradient terms can be omitted and that the distribution in velocity space is
only slightly disturbed from spherical, i.e. the distribution can be expanded
in spherical harmonics with only the first two terms retained.

The analysis and experimental procedures are very demanding in ob-
taining accurate cross-section data and there are particular problems in
obtaining unique cross sections (see Huxley and Crompton (1974) and Ku-
mar (1984) for details). If only the elastic channel is open the momentum-
transfer cross section can be obtained reliably and accurately in some cases
(e.g. He, 2%). With the addition of inelastic channels the uncertainty in
the derived cross sections due to lack of uniqueness increases.

The transport coefficients depend on a balance between the rates of
acquiring energy from acceleration in the field and losing it in collisions.
Since this balance can be made very close the swarm technique is partic-
ularly suited for providing cross-section data at low electron energies.

2.3 Measurement of differential cross sections

2.3.1 Instrumentation

The measurement of differential electron—atom impact cross sections
began with the work of Ramsauer and Kollath (1932) who measured
the angular dependence of the elastic scattering of electrons for several
simple gases. A modern apparatus typically consists of an electron gun,
target gas source, and electron detector, shielded from strong electric and
magnetic fields and enclosed in a vacuum chamber. The chamber is
usually made of aluminium or non-magnetic stainless steel, and is lined
by //-metal shielding to attenuate stray a.c. or d.c. magnetic fields, such
as the Earth's field. The local d.c. fields are further attenuated to a few
milligauss or less by suitable pairs of Helmholtz coils located outside the
vacuum chamber.

Without the target gas, the vacuum in the chamber is usually maintained
at 10~7—10~ 8 torr by a suitable pump, which is usually either a well
trapped diffusion pump or a turbo-molecular pump. When the gas target
is introduced the vacuum is generally maintained at about 10~6 torr.

2.3.2 Electron sources and detectors

The apparatus of Ramsauer and Kollath (1932) is primitive by today's
standards. Excellent energy resolution and satisfactory beam intensity
can be achieved by utilizing energy-dispersing and direction-focussing
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properties of electrostatic fields of various geometries and by taking care
in the construction and operation of the apparatus. Vastly-improved
angular resolution was achieved by using detectors of great sensitivity
for the scattered electrons. Electron multipliers, including channeltrons
and microchannel plates, when operating in the pulse-counting mode, are
capable of measuring currents as low as 10~19A, a factor of 104 lower
than that detectable by the most sensitive electrometers.

The most frequently-used lenses in electron optics are aperture lenses or
tube (cylindrical) lenses. There is a substantial literature on the design and
characteristics of electron lenses and on charged-particle optics. Harting
and Read (1976), Hawkes and Kasper (1988) and Wollnik (1987) are
especially useful.

Any system whose transmission depends on the electron energy can be
used as a monochromator, and it is therefore not surprising that a large
variety of energy selectors are used (e.g. retarding field filters, Wien fil-
ters, Mollenstedt analyser, trochoidal, toroidal, parallel-plate, cylindrical,
and hemispherical analysers, etc.). At present the most widely-used anal-
yser is probably the 180° hemispherical analyser (Kuyatt and Simpson,
1967), although some other electrostatic analysers are capable of collect-
ing data simultaneously at several angles (Toffoletto, Leckey and Riley,
1985; Schnetz and Sandner, 1992). Analysers have also been designed to
simultaneously record data with good energy resolution over a wide range
of energies (e.g. Cook et a/., 1984), and more recently over a range of
both energy and angle (Storer et a/., 1994). Excellent reviews of many of
the different energy analyser designs currently in use have been given by
Read et al (1974), Sevior (1972) and Leckey (1987).

The most common source of electrons is a thermionic emitter, although
photoionisation sources are sometimes used. Typical thermionic emitters
include directly-heated thoriated tungsten or thorium-coated iridium fila-
ments and indirectly-heated oxide-coated cathodes. Electrons are extracted
from the source and formed into a well-collimated beam by a lens system.
They can then pass through a monochromator for energy selection before
being focussed and accelerated to the desired input energy £o with another
lens system incorporating a zoom lens. A similar zoom lens and electron
optics system prepare the electrons emitted from the collision region for
the scattered electron energy analyser. After transmission through the
analyser the electrons are detected by a suitable electron multiplier.

As an example a spectrometer with 12 meV resolution constructed
by Linder's group in Kaiserslautern (Weyhreter et a/., 1988) is shown
schematically in fig. 2.5. This instrument, which can operate down to 50
meV incident electron energy, is constructed of stainless steel and ceramics.
It employs double tandem hemispheres for energy selection and analysis.
A real aperture is placed between the two hemispheres to eliminate the



16 2 Experimental techniques for cross-section measurements

unwanted part of the electron flux after the initial dispersion. Apertures at
the entrance of the detector define the collecting volume. The acceptance
solid angle is defined by these apertures and the collision volume, which
is determined by the intersection of the incident electron beam and the
target gas beam. The effect of an extended scattering volume and finite
acceptance angles on any measurement must be treated carefully (see, for
example, Brinkmann and Trajmar (1981), Zetner, Trajmar and Csanak
(1990), Bedersen and Kieffer (1971), and Wagenaar and de Heer (1985)).
It is discussed in the following section.

The entrance optics to the analyser is usually chosen so that it can be
tuned to nearly constant transmission over a large energy range. The gun
optics is also usually chosen so that the beam can be focussed at the same
position with the same image size over a wide energy range. This is nec-
essary in order to avoid distortion of peak shapes and resonance features
and inaccuracies in the cross-section measurements. After transmission
through the analyser a simple lens transfers the electrons to the surface
of an electron multiplier, usually a channeltron, which is operated in the
pulse count mode.

Static gas targets such as those used by Wagenaar and de Heer (1985)
are usually unsuitable for differential cross-section measurements. These
days scattering experiments are carried out in a crossed-beam arrange-
ment. A large variety of beam sources are used. These range from effusion
from simple orifices or capillary arrays to supersonic nozzles, from ovens

ZOOM
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ELECTRON GUN
CHANNELTRON

DETECTOR

Fig. 2.5. Double tandem electron spectrometer for low energy electron—atom
differential cross-section measurements (Weyhreter et a/., 1988).
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for targets with low vapour pressure at room temperature to gas discharges
for beams of metastable atoms and free radicals. More recently, intense
cold atomic beams have been produced by laser cooling and trapping (e.g.
Metcalf and Straten, 1994). Beams of excited atoms can be prepared by
optical or electron impact excitation or by gas discharges. These, as well
as high-energy beam sources, are discussed fully in the literature, (e.g.
Pauly (1988)). State-selected beams (see, for example, Bergmann, 1988,
and Reuss, 1988), laser-excited aligned and oriented beams (e.g. Diiren,
1988) and magnetically spin-polarized beams (e.g. Iannotta, 1988) can all
be prepared routinely and reliably with present technology. The discus-
sion of these techniques, as well as the detection of the beams, velocity
selection etc., is largely outside the scope of this book. They are discussed
fully in the literature, for example Scoles (1988) and references therein.
A brief discussion of the preparation of polarised and laser-excited atom
sources is given in section 2.6.

The electron-impact spectrometer, such as that shown in fig. 2.5, can
be operated in a number of distinct modes. In the energy-loss mode the
impact energy £o and scattering geometry are kept fixed and the count
rate is measured as a function of the energy loss EL = £o —  Ei where Ei
is the energy of the scattered electrons leaving the target in state i. The
features in such energy-loss spectra are related to the energy levels of the
target and the scattered intensities are related to the corresponding cross
sections. If the energy loss EL is kept fixed and the incident energy is
varied the energy dependence of the cross section for a particular channel
can be measured. This can reveal structure, such as resonances and cusps,
in the cross section of the chosen process.

Energy-loss spectra can also be obtained by fixing the energy £,- of
the emitted electrons and varying the incident energy and energy loss
simultaneously. This gives information on each energy-loss feature at the
same impact energy above its own threshold. Finally, of course, in the
measurement of the differential cross section EQ, Ei and E are all kept
fixed and the scattering geometry (6) is varied.

2.3.3 Scattering geometry effects

In an ideal scattering experiment the collisions are assumed to occur at a
fixed point in space. In practice the collision volume is finite and the part
viewed by the detecting system generally depends on the scattering angle.
Care must therefore be taken in relating the scattered particle intensity to
the cross section.

In a typical crossed-beam experiment the electron beam intersects the
target atom beam at 90°. This is shown schematically in fig. 2.6, where
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Fig. 2.6. Typical scattering geometry (vertical cut) showing the intersection of
the atomic beam, electron beam, and viewing cone of the analyser. Ai and A2
are the apertures in the detector defining the viewing cone.

the atom beam is assumed to come from a capillary tube or array. With
a capillary array the beam typically has a full width at half maximum of
about a half of that with a single capillary tube of the same throughput
(Buckman et al, 1993). In either case the target flux is highest on the axis
of the beam and falls off uniformly away from the axis. Since the beam
diverges from the orifice, the flux also depends on the distance from the
orifice. The electron beam on the other hand can usually be considered
as essentially parallel in the vicinity of the collision region. Its flux also
depends on the distance from the axis of the beam, being maximum along
the axis. The intersection of these two beams within the view angle of the
detector represents the effective collision volume as seen by the detector
(fig. 2.6).

Thus the relation (2.1) between the differential cross section and the
number N,- of scattered particles detected per second with nominal energy
Ei at the nominal angle fi(0, (/>) becomes

= f f [n p(T)f{E09T)$(Ei9T)

dEtdil
(2.15)

where p(r) is the density distribution of target atoms, f(Eo, r) is the energy
and spatial distribution of the incident electron flux, and <!;(£,•, r) is the
response function of the detector for electrons of energy Ei scattered by a
target atom at position r.
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A detailed knowledge of the instrumental function and the target density
and electron beam flux distributions is required to extract the cross section
from (2.15). In general, however, some simplifying assumptions can be
made. For excitation of a discrete final state i it is usually possible to
integrate over the energy loss profile assuming constant system response
over the natural line width to give

~ = NiVa1, (2.16)dQ ' e I t '
where

Vtf= f [ I p(T)f(E0^(Eur)dE0dQd3r (2.17)
Jr JEQ JQ

includes all the instrumental and geometrical factors. Similarly if the cross
section is slowly varying in energy and angle with respect to the system
response (as for example in continuum processes at high energy), the cross
section evaluated at the nominal angle and energies may be removed from
the integral to give

In general, relation (2.17) can be simplified by assuming that the energy
distribution of electrons is independent of r and that the detector efficiency
depends only on £,- and not on r, i.e.

and
Z(Ei9T) = Z(Ei). (2.19)

In this case the integrals over the energy distributions and the coordinates
can be separated to give

VaiEu 0,4>) = C{Ei)V&(d9 0), (2.20)

with

/ / p(r)f(r)dQ(T)d3r (2.21)
Jr JQ(r JQ(r)

and
C(Et) = f f f(Eo)i(Ei)dEidEo. (2.22)

JEi JE0

Feff (0,4>) can be calculated from a knowledge of the density distributions
of the intersecting beams and the acceptance angles of the detector.
Its angular dependence has been calculated for a number of frequently
used scattering geometries and beam sources by Brinkmann and Trajmar
(1981). For a static gas target the correction has the familiar sin 9 form



20 2 Experimental techniques for cross-section measurements

down to low scattering angles, while for a well-collimated supersonic beam
Feff is essentially independent of 6 and <p. Appreciable corrections are
usually needed for target beams generated by orifices, tubes, and even
capillary arrays. With a knowledge of the angular dependence of Feff
the observed scattered intensity distribution can be converted to relative
differential cross sections.

Absolute values of the overlap integral Feff are quite difficult to ob-
tain since it is necessary to determine both the atomic beam density and
electron beam flux distributions. The use of rectangular beams of con-
stant flux density throughout the interaction volume greatly simplifies the
problem. With a carefully-designed Faraday cup it is then possible to
determine the electron flux distribution. The direct measurement of the
target gas density is often very difficult in beam—beam experiments (see
for instance Bedersen and Kieffer (1971) and Scoles (1988)). Even if Feff
is known absolutely, one still needs to determine C(£*) to obtain absolute
cross sections. The usual practice is to determine the angular dependence
of Feff and to determine the energy dependence of C(£*) and then to use
a normalisation procedure to fix the absolute scale.

2.3.4 Normalisation procedures

For atomic targets a convenient way of determining the average target
density and C(£;) is to carry out a low-energy elastic scattering differential
cross-section measurement and to use a phase-shift analysis to determine
the absolute cross section.

For potential scattering, the scattering amplitude can be expressed in
terms of phase shifts for partial waves (section 4.4.2 and equn. (4.88)). At
low energies the first few partial waves (characterised by orbital angular
momentum L < Lo) generally dominate the scattering. However, the
small-angle scattering often requires the inclusion of many higher-order
partial waves (Williams, 1975). The higher partial waves and small-angle
scattering arise from the long-range part of the scattering potential, which
is given by the polarisation potential V(r) ~ —oc/2r 4. For this potential the
higher-order phase shifts can be calculated with sufficient accuracy by the
Born approximation (see section 7.5.4), and the contribution for L > Lo
can be summed analytically to give a contribution fB° to the scattering
amplitude, which can be added to the contributions for L < Lo, to give
(see equn.(4.88))

£ 2ikf%>(0)\. (2.23)

The differential cross section is given by the absolute square of this
amplitude (4.48). Trial values of the phase shifts 5L are then varied to give
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best fit to the measured relative differential cross section. Once the phase
shifts are known, the cross section is determined on an absolute scale by
taking the absolute square of (2.23).

It is often better to do the normalisation on an elastic scattering
resonance (section 4.6), where the decay to the ground state can occur
through only one partial wave. This method was first introduced by
Gibson and Dolder (1969). Interference with the nonresonant background
generally introduces some complications (see Williams and Willis, 1975).
The modifications required in the analysis due to spin are discussed fully
by Andrick and Bitsch (1975).

Once the absolute cross section at a particular energy has been deter-
mined, a knowledge of the energy dependence of the response function
C(Ei) and of the electron beam flux may be used to derive absolute cross
sections at other energies and for inelastic processes (Williams and Willis,
1975).

Another commonly-used normalisation procedure is to use the relative
flow technique. In this method the elastic differential cross section for a
particular species may be obtained by comparing the scattered intensity
under the same conditions with that from another target with a known
cross section. It is important to ensure, for both the gas under study
and the reference gas, that the electron flux density and distribution, the
detector efficiency, and the target beam flux distribution are the same for
both gases during the measurement.

Under conditions of molecular flow through a capillary or a capillary
array, the unknown differential cross section is given by (e.g. Brinkmann
and Trajmar, 1981).

d^ do(o±i(e)P
da da ir(6) p9

where P is the gas pressure in the reservoir before the capillary, / the
scattered intensity, and the subscript r refers to the reference gas. Molec-
ular flow is difficult to achieve with reasonable flow rates, i.e. reasonable
data acquisition times. At higher flow rates with back pressures up to a
few torr the expression

(2.25)
da da

must be used (Trajmar and Register, 1984). Here N is the total flow rate
and the average thermal velocity has been replaced by the target mass
under the assumption that the two gases are at the same temperature.
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2.4 Ionisation

If the excitation is to the continuum, then a number of multidifferential
cross sections are possible. Consider, for instance, the single ionisation of
an atom A:

e(ko) + A —> e(k t) + e(k,) + A+, (2.26)

where k*, kM, and ko are the momenta of the free electrons. Here the
subscript i denotes the final continuum state of the target atom and
the momentum of the 'scattered' electron. The state i is defined by the
momentum k^ of the 'ejected' electron and the state \i of the residual ion A+
(which may be in the continuum). The indistinguishability of the electrons
is accounted for in calculations (see section 10.1). For experiments which
do not resolve angular momentum projections or observe polarisations,
this collision process is described by the so-called triple differential cross
section or the (e,2e) cross section. It is discussed fully in chapters 10 and
11.

2.4.1 Double-differential cross sections

If only one free electron, say the 'scattered' electron i, is detected and its
energy and angular dependence are measured, then the double differential
cross section is obtained. This is given by

(Pa _ ^ f

where the final ion states /i have been summed over (or integrated if
above the double ionisation threshold) and the angle of emission of the
undetected electron has been integrated over in the triple-differential cross
section. Such cross sections are measured (e.g. Miiller-Fiedler, Jung
and Ehrhardt, 1986; Goruganthu and Bonham, 1986; Oda, 1975) with
instruments similar to those discussed in section 2.3 (e.g. fig. 2.5). A
momentum selected projectile beam crosses a beam of target atoms at
90°, and the emitted electrons are analysed according to their energies and
momenta. The double-differential cross sections, which are discussed in
chapter 10, show some general features. The fast scattered electrons are
emitted into a narrow cone in the forward direction, with the angle of the
cone being smaller for larger impact energies. The slow ejected electrons
are emitted almost isotropically. The cross sections are normally put on
an absolute scale by extrapolating the generalised oscillator strength for
the incident electrons to zero momentum transfer (see section 2.2.2).

Accurate absolute measurements of double-differential cross sections
are quite difficult to make. Measurements carefully taken by competent
investigators often differ significantly. Kim (1983) gave a recommended
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set of cross sections obtained after using various asymptotic boundary
conditions and scaling laws to check the consistency of the available data.
More recently Rudd (1991) proposed a different interpolation procedure
to determine recommended cross sections for hydrogen and helium.

2.4.2 Single-differential cross sections

The single-differential cross section is obtained by integrating the double-
differential cross section over all angles of emission of the electron

M=I' (2.28)

The form of this cross section is shown in fig. 2.7. It represents the
energy loss spectrum integrated over all angles of the outgoing electrons.
Due to the indistinguishability of these electrons, the single differential
cross section must be symmetric about (Et + JB/i)/2 = (£o —  ^o)/2. The
resonances shown in the continuum part of the spectrum in fig. 2.7 are
schematic representations of autoionising transitions. At sufficiently high
impact energies £o the ion may be left with sufficient energy to emit
further electrons, leading to a distortion of the spectrum shown in fig. 2.7.

Single-differential cross sections are difficult to obtain in a direct mea-
surement and they are usually obtained by numerical integration of
the double-differential cross sections over all angles (2.28). The single-
differential cross section describes the energy distribution of secondary
electrons and is therefore important in modelling radiation damage, in
studies of stellar and upper atmospheric phenomena, plasma fusion work,

d<jj
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Fig. 2.7. Schematic representation of the single-differential cross section. The
threshold energy for ionisation is given by e0, the ground-state separation energy.
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electrical discharges and laser physics. The other single-differential cross
section, da/dQ, obtained from integrating the double-differential cross
sections over all energies, has little physical importance and has not been
measured.

2.4.3 Total-ionisation cross section

Integration of the single-differential cross section over energy from zero to
the maximum energy Et+E^ = £o~~^o gives the integral or total-ionisation
cross section. Since each ionising collision results in two indistinguishable
outgoing electrons

%dE, (2.29)
dE

Total-ionisation cross sections are easiest to obtain by direct measure-
ment (see section 2.2.2). Generally a well-collimated beam of nearly-
monoenergetic electrons is passed through a gas or vapour target, and
the positive ions formed are essentially all collected. It is necessary to
use a thin target to ensure no secondary ionisation is produced. Then the
collected positive current is given by (see equns. (2.8) and (2.11)).

/+=/(n/)eff<T./, (2.30)

where the apparent-ionisation cross section is the weighted sum of the
various possible multi-ionisation cross sections

Oal = a+ + 2<r2+ + 3<73+ + ...., (2.31)

where an+ is the partial cross section for producing n electrons.
The cross section oai represents a useful cross section for the production

of free electrons, and it can be obtained quite accurately (e.g. Tate and
Smith, 1932, and Rapp and Englander-Golden, 1965) since nondiscrim-
inating detectors with essentially 100% efficiency are used. At energies
below the double ionisation threshold the apparent cross sections will
yield the true integrated cross section 07.

To determine the cross section for production of ions of a given charge,
e/m analysis of the product ions is required. This requires that the ions be
extracted from the target gas, are collected, e/m separated and detected
with known efficiencies. It is difficult in these circumstances to ensure that
ionisation takes place in the absence of electric or magnetic fields, which
lead to uncertainties in the calibration process. Shah, Elliott and Gilbody
(1987) have developed a pulsed crossed-beam technique incorporating
time-of-flight spectroscopy for measuring partial-integral cross sections
an+ with high precision over a wide energy range. In this method a short
pulse of electrons is passed through a thermal energy beam of atoms in
a high-vacuum region. Immediately after the transit of the electron beam
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through the target beam, the slow ions of different charges are swept out
of the collision region by a pulsed electric field, and selectively identified by
their characteristic flight time to a particle multiplier detector. Great care
has to be taken to ensure high, equal and constant extraction efficiency.
The cross sections are then normalised to an accurate known cross section
at a suitable point.

2.4.4 Triple-differential or (ef2e) cross sections

The so-called triple-differential cross section is the measure of the prob-
ability that in an (e,2e) event an incident electron of momentum ko and
energy £o produces two electrons of energy and momenta Eu E^ and k,-,
k^ in the solid angles dQi(6i,(/)i) and dQ^O^cf)^) respectively. It is the
most kinematically-complete description of ionisation and provides the
most sensitive test of the theory of this process if no polarisations and no
angular momentum projections are observed. Many final-state configura-
tions are observed. If the momenta all lie in a plane the kinematics is said
to be coplanar, otherwise it is referred to as noncoplanar. The kinematics
can also be chosen to be symmetric (£* = E^ = (Eo —  e>)/2,9t = 0^) or
highly asymmetric (£, > E^ 9t ~ 0).

The measurement of an (e,2e) cross section requires the coincident
detection of two electrons with well-defined energies and angles of emis-
sion. Fig. 2.8 shows schematically the coincidence spectrometer used by
Weigold, Zheng and von Niessen (1991) and Zheng et al. (1990). Not
shown are the Helmholtz coils and magnetic shielding used to null out
the local magnetic fields. Two hemispherical analysers each with a five
element cylindrical zoom and retarding lens system are mounted on two
independently-rotatable horizontal turntables. The analysers can also be
rotated in the vertical direction about the interaction region by two in-
vacuum stepping motors. A third horizontal turntable is used for mounting
an electron gun (not shown). In the configuration shown in fig. 2.8 an
electron gun is mounted vertically below the analysers, the incident beam
being along the axis of rotation of the turntables.

Target gases or condensible vapours are admitted to the interaction
region via suitable nozzles, multichannel arrays or collimating apertures.
The system has also been designed to allow the interaction region to be
illuminated by light from a tuneable laser (Zheng et a/., 1990), permitting
the investigation of (e,2e) collisions with oriented and excited atoms. The
laser, atomic and electron beams all intersect at right angles.

Read and co-workers have recently used a coincidence spectrome-
ter with extremely flexible geometry (Murray, Turton and Read, 1992;
Hawley-Jones et a/., 1992). This is achieved by a design in which the
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Fig. 2.8. Schematic diagram of an (e,2e) coincidence spectrometer (Weigold et
al, 1991).

two electrostatic analysers rotate independently about a common vertical
axis while the electron gun rotates about a horizontal axis that lies in the
plane of rotation of the analysers. The Faraday cup and the hypodermic
needle used to produce the atomic beam rotate together with the electron
gun and associated monochromator. The gun, Faraday cup, atomic beam
and analysers are all directed towards the point of intersection of the two
rotation axes. A photomultiplier views the interaction region. It and the
Faraday cup are used for focussing and alignment purposes. A feature of
this spectrometer is the comprehensive computer interface which controls
and optimises all aspects of the spectrometer, from tuning the electron
beam and analysers and setting of the analyser positions to subsequent
data collection (Murray et al, 1992). This spectrometer yields more re-
liable and consistent results than was previously possible with manual
operation.

Coincidences are typically characterised by extremely low count rates.
In order to increase the count rates, the earlier single-channel coincidence
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spectrometers have been replaced by multiparameter detection techniques.
These have either been concerned with obtaining data at a number of
angles simultaneously (Moore et al, 1978) or by gathering data with
good energy resolution over a range of outgoing energies simultaneously
(Cook et al, 1984; McCarthy and Weigold, 1988, 1991; Lower and
Weigold, 1989). In the latter method electrons are passed through an
energy-dispersing element before impinging on a position-sensitive detec-
tor which determines the spatial coordinates of the detected electrons. The
position-sensitive detector usually consists of a chevron-mounted pair of
microchannel plates followed by a suitable position-sensitive anode. The
anode is usually a resistive anode which determines position arrival by
charge division (see fig. 2.8 and Fraser and Mathieson, 1981), but it could
also be treated as an RC delay line which determines position by measur-
ing differences in pulse rise times (Parkes, Evans and Mathieson, 1974) or
wedge-and-strip anode whose operation is also based on charge division
(Martin et a/., 1981). From the measured arrival position the energy of
the detected electron can be inferred.

Storer et al (1994) and Weigold (1993) have recently described a co-
incidence spectrometer (see fig. 2.9) which uses two-dimensional position-
sensitive detectors placed behind angle and energy-dispersing analysers.
This spectrometer can simultaneously measure with high resolution over
a wide range of angles and energies. The position of arrival of electrons
traversing the analysers is determined by charge division between the four

Position signal

Time signal

Toroidal Analyser

Position signal

Amplitude

Hemispherical
Analyser t Lens

Power supply

J
Computer

Fig. 2.9. Schematic view of the coincidence spectrometer of Storer et al (1994)
showing the hemispherical and toroidal energy and azimuthal angle analysers.
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corners of a two-dimensional resistive anode. All the data acquisition is
via an online computer, which determines the angle of emission and energy
of each detected electron, and corrects the coincidence timing information
for the flight time of the electrons through the two analysers. This timing
correction reduces the width of the coincidence peak significantly and
therefore improves the signal-to-noise ratio correspondingly.

The charges collected from the four corners of each of the two resistive
anodes are amplified and fed into a gated nine-parallel-input analogue-
to-digital converter (ADC) unit (fig. 2.10). Similarly fast pulses from the
backs of the microchannel plates are transmitted with suitable delays to a
time to amplitude converter (TAC) and the time difference output pulses
are fed to one of the inputs of the analogue to digital converter unit. A
gate signal from the time-to-amplitude converter opens the gates whenever
two electrons are detected within 100 ns of each other.

The multiparameter data-acquisition system has a tenth parallel data
channel which is used to store the setting of the beam energy in the
form of the difference between the incident energy and the mean of the
summed emitted energies. A dual-channel buffer memory module, one for
each analogue to digital converter, allows data conversion and subsequent
storage in one 8K 16 bit word buffer memory, while the second 8K
duplicate buffer is being read by the online computer. The buffer memory
is configured as a queue, with data being written and read in the same
order.

GATE SIGNAL FROM TAC

TMNG SIGNAL FROM TAC

RESITIVE ANODE
(HEMSPHERCAL ANALYSER)

RESISTIVE ANODE
(TOROIDAL ANALYSER)

NNE
PARALLEL
CHANNEL

ADC

TEN
PARALLEL
CHANNEL
BUFFER
MEMORY

MKRO-
PROCESSOR

PROGRAMMABLE
POWER SUPPLY

PLOTTER

PRINTER

Fig. 2.10. Schematic of the 'slow' pulse logic circuit of Storer et al. (1994). Not
shown is the fast timing and gating circuitry.
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The position of arrival, and hence the energy and angle of emission, is
then calculated for each pair of electrons and the corresponding time-of-
flight of each electron through the analysers is also calculated and used
to correct the coincidence spectrum. The software allows the data to be
displayed in a number of ways, and is also used to check the calibre of
the data and to provide instrumental checks.

A time window Atc is usually set to measure coincidence events and
another Att = RAtc is set to measure the uncorrelated or random back-
ground events. If the background timing spectrum is flat, the number of
true coincidence counts Nt accumulated in time T is given by

Nt = Nc- Nb/R, (2.32)

where Nc and Nb are the number of counts within the coincidence and
background windows respectively. Distortions of TAC background spectra
from the ideal flat distribution are treated in detail by Coleman (1979).
The statistical accuracy in the true coincidence counts is given by

ANt = [Nc + Na(l + l/i?)]1/2
? (2.33)

where Na = Nb/R is the number of accidental coincidence counts in the
coincidence timing window.

If n is the target gas density and / the incident current, the number of
true and accidental coincidences in time T can be written respectively as

Na = NsNe&tcT = C2Atc{nI)2T, (2.34)

where Ns and Ne are the scattered and ejected count rates respectively
and C\ and C2 are fully determined by the physics of the process and
the overall efficiency of the instrumental arrangement. The signal-to-
background ratio in a coincidence experiment is therefore given by

r = Ci/C2nIAtc. (2.35)

Thus reducing the incident current improves the signal-to-background
ratio but it also reduces the true coincidence count rate and therefore
increases the statistical uncertainty 5, where (from (2.33) and (2.34))

m i\wci , . (, , i\AA]1/2
m ( 1 3 6 )

6 " ~ T\nl ^V ' R

The advantage of small timing resolution Atc and large window ratio R
is immediately obvious, as is the usual dependence on the accumulation
time T. Increasing nl also improves the experiment until the second term
in (2.36) depending on C2 becomes dominant. Increasing Ci, by increasing
say the angular acceptance, or decreasing C2 by using constraints such as
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energy conservation (Lower and Weigold, 1989), will also lead to improved
results. This is discussed in some detail by McCarthy and Weigold (1991).

The measurement of absolute multidimensional cross sections, such as
(e,2e), is usually difficult to achieve with high accuracy due to the various
experimental difficulties associated with low pressure gas targets and elec-
tron optics. Relative cross sections to different ion states can be obtained
with much greater accuracy than the absolute values. The relationship
between the (e,2e) differential cross section and the experimentally observ-
able parameters is given by (see section 2.3.3)

Nt(E0,EhEfl,Cli,n)= [ [ [ [ I I p(T)f(Eo9T)Zi(EuT)
</r< JE0 JEt JEf, JQi JQ^

x

(2.37)

where Nt is the true coincidence count rate and r< indicates that the
integral over r is taken over the overlap between the collision regions r̂
and r^ seen by the detectors i and \i respectively. The other parameters
are discussed in section 2.3.3. The absolute scale is inferred from a direct
measurement of the quantities appearing in (2.37).

If the cross section is slowly varying in energy and angle with respect to
the detector response functions, and the detector efficiency depends only
on Eitti and not on r, and the energy distribution of the incident electrons
is independent of r, then using (2.19) we have

* ' (2.38)
i, E^)AEC'

where

/ / / ,r)dzr (2.39)
A< Mir) Ayr)

and

Z(Ei,Eil)AEc =
[
E§

x 5{E0 -e^- Et - EJdEodEidEp. (2.40)

AEC is the effective coincidence energy resolution and | the effective
coincidence detection efficiency.

The difficulty in determining absolute (e,2e) cross sections accurately
can be inferred from the difficulty inherent in determining accurately the
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quantities appearing in (2.37)-(2.40). Beaty et al (1977) and Stefani,
Camilloni and Giardini-Guidoni (1978) used crossed-beam techniques
which resulted in large uncertainties. Using a gas cell target and fixed
scattering angles of 45°, van Wingerden et al (1979,1981) were able to
obtain absolute cross sections with errors of only 20%.

The alternative approach has been to normalise the data to theory in
regions where the theory is believed to be accurately understood, Lahmam-
Bennani et al. (1987). If the (e,2e) cross section is measured over a large
enough angular range it can be integrated to give the double-differential
cross section (2.27), which is in turn put on an absolute scale by, for
instance, using the Bethe sum rule (Lahmam-Bennani et al, 1980), which
assumes the validity of the Born approximation. Alternatively the double-
differential cross section can be normalised to known elastic-scattering
cross sections (Avaldi et al, 1987a,b) or to the optical oscillator strength
at zero momentum transfer (Miiller-Fiedler et al, 1986, and Avaldi et al,
1987a,fc). The (e,2e) cross section can be normalised to the optical dipole
oscillator strength in the limit of zero momentum transfer (Lassettre et
al, 1969). This is only feasible for high incident energies and small E^
(Leung and Brion, 1985; Jung et al, 1985).

None of the above methods of normalisation provide accurate cross
sections for general kinematics in the low-energy regime, particularly near
threshold. Rosel et al (1992) have introduced a new technique to over-
come some of these limitations. They arrange the detector geometries
and viewing angles to ensure that both detectors are viewing the complete
intersection region of the incident electrons and atomic beams. They then
determine the effective target number and incident current by measuring
the total number of ions produced under identical conditions and normal-
ising to a known total ionisation cross section. The effective solid angles
and detector efficiencies (2.38—2.40) are then obtained by normalisation
to a known double-differential cross section. The double-differential cross
section is usually obtained by methods discussed in the previous para-
graph. To do this normalisation the energy resolution JAEQ + AEf for
the double-differential cross section measurements must be accurately de-
termined. This is usually done by measuring the width of the elastic peak
in an energy-loss spectrum. The coincidence energy resolution given in
(2.40) can be simplified if Gaussian profiles are assumed for the incident
and detected electrons. As discussed by Lahmam-Bennani et al (1985),
the full width at half maximum of the coincidence resolution is given by
the incident energy resolution convoluted with the product of the two
spectrometer energy resolutions.
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On the other hand the energy width of a binding-energy spectrum obtained
by varying one of the energies is given by

~ + AE?AE€ = AEJ)1 (2.42)

2.5 Polarised electrons

An ensemble of electrons is said to be polarised if there is a preferential
orientation of the electron spins. If there are iVj electrons with spins
parallel to a particular direction or axis of quantisation and N± with
spins antiparallel to that direction, then the component of the electron
polarisation vector P = (Px,Py,Pz) in that direction is defined by

J»»  (2.43,

|P| is called the degree of polarisation.

2.5.1 Polarised electron sources

The performance characteristics of various sources of polarised electrons
have been reviewed extensively (e.g. Kessler, 1985). These sources depend
either on the spin dependence of the interaction in the process in which
the free electrons are produced, or on the pre-polarisation of one element

-=+1/2

Fig. 2.11. The one-electron energy (E) vs momentum (fc) diagram for GaAs
near k = 0 showing the band gap Eg and the spin—orbit splitting of 0.34 eV in
the valence P band. Transitions with <r+ and o~ light from the P3/2 band are
indicated by solid and dashed lines respectively. The circled numbers represent
the relative transition probabilities.
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of the system involved in the production process. An example of the
former is Mott scattering, which will be discussed in the next section.
An example of the latter situation is the extraction of polarised electrons
from a ferromagnet. The principal methods are based on the spin—orbit
interaction, which splits energy levels in atoms or solids and results in
photoelectrons that may have significant polarisation (Fano, 1969; Kessler,
1985; Heinzmann, 1987).

A polarised electron source for crossed electron—atom beam scattering
experiments should ideally have both a high figure of merit and a high
brightness, which is the current density emitted into the unit solid angle.
The figure of merit is £ = PlJ , where Ie is the current in the beam. The
statistical accuracy of a spin-dependent measurement is proportional to
l/£. It is also generally advantageous to have a source with good energy
resolution and one which has the capability of frequent polarisation
reversal in a manner which does not change the electron optics.

The most widely-used source is the photoemission GaAs source (Gar-
win, Pierce and Siegmann, 1974; Pierce et al, 1980), the principle of which
is shown in fig. 2.11. The spin—orbit interaction splits the P -valence band
at the F point (k = 0 in the plot of one-electron energy E vs momentum
k) into fourfold degenerate P3/2 and twofold degenerate Pj/ 2 bands with
a separation of 0.34 eV.

The S1/2 conduction band is separated from the P3/2 band by Eg =
1.52 eV at F. Thus light with energy just above the gap energy can only
promote electrons from the P3/2 band to the Si/2 band. For circularly-
polarised light the selection rules are Am/ = +1 for right-hand (<r+) and
left-hand (<j~) light respectively. These transitions are shown in fig. 2.11
by solid and dashed lines respectively. The relative transition probability
from the nij = 3/2 state is, however, three times greater than from the
nij = 1/2 state. Thus there are three times as many electrons with
nij = —1/2 than with nij = +1/2 with o + light and vice versa for o~
light. If the GaAs crystal is coated with a caesium and oxygen layer it
is possible to reduce the positive electron affinity of the GaAs crystal to
negative values, which allows the electrons to escape. The theoretical limit
of P=0.5 based on the transition probabilities shown in fig 2.12 in practice
is never achieved. Spin-flip scattering processes in the crystal lower the
polarisation to typically 0.3—0.35. It has recently become possible to grow
strained GaAs crystals which have the m; degeneracy removed (Nakanishi
et a/., 1991, and Maruyama et a/., 1992). With these crystals it is in
principle possible to have P ~ 1, with measured values of P being as high
as 0.9 (Maruyama et a/., 1992).

The operation of a GaAs source is shown schematically in fig 2.12.
Right-hand (or left-hand) circularly-polarised light is incident on a nega-
tive-affinity GaAs crystal. The negative affinity is achieved by coating the
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crystal with caesium and oxygen in ultra-high vacuum conditions (Pierce
et a/., 1980). The longitudinally-polarised electrons are electrostatically
deflected by 90°, which does not affect the spin direction, thereby becoming
transversely polarised. The polarisation of the electron beam can be simply
reversed by reversing the polarisation of the light. The currents produced
by these sources are generally less than 10 \iA. Details of the preparation
of a suitable GaAs photocathode as well as the operation and performance
of the source can be found in the review by Pierce et al. (1980).

2.5.2 Analysis of polarised beams

The device commonly used for polarisation measurement, the Mott detec-
tor, is based on the well-known fact that electrons can be polarised and
their polarisation analysed by high energy large-angle scattering from a
heavy atom (Mott, 1929). An electron moving with velocity v with respect
to a charged scattering centre sets up an electric field E given by

E = - - ^ r . (2.44)
r ar

In the rest frame of the electron there appears a magnetic induction

B = - - v x E = - E x p, (2.45)
c c

Circularly
polarized
light

electrons

GaAs (NEA)

Fig. 2.12. Schematic of a GaAs source of transversely-polarised electrons using
photemission from a negative electron affinity GaAs crystal.
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where p is the electron momentum (atomic units are used). Due to the
electron spin S a spin—orbit contribution to the energy arises, given by

VSL = ~ H B = - - S B = ~ S • [E x p], (2.46)

ft is the magnetic dipole moment of the electron associated with its spin
operator S. Thus

where L = r x p is the orbital angular moment and the factor of 1/2
which has been included arises from a relativistic kinematic effect, the
Thomas precession, not included in the above non-relativistic derivation.
The relativistic derivation is given in section 3.5.2.

The resulting potential for an electron moving in the field of a charged
nucleus depends not only on its spin direction but also whether it passes
the nucleus on the right (L positive) or left (L negative) sides. As illustrated
in fig. 2.13, for a spin-up electron S • L and VSL a r e positive (negative)
depending on whether the electron passes on the right (left) of the nucleus.
Thus the electrons with spin up which pass the nucleus on the left are
scattered to the right with a stronger force than the ones passing on the
right and scattered to the left and vice versa for spin-down electrons.

Hence the intensity of scattering to the right is greater than that to the
left for spin up particles, and vice versa. The polarisation of an incident
beam of electrons can be determined from the scattering intensities / / and
Ir to the left and right by

(2.48)

The analysing power (Sherman function) S is a complicated function
of the electron energy, scattering angle and the atomic number Z. From
(2.47) and the form of the Coulomb potential V(r\ it can be seen that the

Fig. 2.13. Scattering of two electrons with spin up (out of scattering plane) by a
nucleus.
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spin—orbit term will be largest for high Z targets and close approaches to
the nucleus (high-energy large-angle scattering). The precise measurement
of S is difficult, with + 5 % being the best uncertainty normally achieved
in a careful experiment (e.g. Fletcher, Gay and Lubell, 1986).

The construction and operation of Mott polarimeters (or detectors) has
been fully described by Kessler (1985). In their most common config-
uration the detected electrons are scattered through +120° from a thin
gold foil target at 100—120 keV. The analysing power S of the foil is
calibrated by measuring the asymmetry for a number of foil thicknesses
and extrapolating to zero thickness, where S has been reliably calculated
to be 0.39 for 100 keV electrons. Multiple scattering reduces S for thicker
foils.

A variation of the Mott analyser, dubbed 'Mini-Motf because of its
relatively small size, has two electrodes in the vacuum chamber. Electrons
are accelerated to the inner electrode, scattered from the gold foil, and
then decelerated as they travel to the outer electrode, which is nominally
at ground potential. This arrangement has the advantages that it is easier
to discriminate against inelastically-scattered electrons, thus reducing mul-
tiple scattering effects, and that the detectors can be operated at or near
ground potential. This type of analyser has been realised in cylindrical

HeNe LASER
MOTT
DETECTOR

LIGHT MODULATOR/ ) ACCELERATOR
( § K (120 keV)

90° DEFLECTOR

GaAsP CATHODE

180° DEFLECTOR

Fig. 2.14. Schematic diagram of the apparatus used by Berger and Kessler (1986)
for their complete determination of the scattering amplitude for elastic scattering
of electrons by xenon.
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(Hodge et a/., 1979) and spherical forms (Gray et a/., 1984; Campbell et
a/., 1985). In the spherical geometry it operates effectively in the 20—60
keV range with a typical figure of merit S2I/Io of 2 x 10~5.

Typical experimental arrangements for polarised electron—atom col-
lision studies are shown in figs. 2.14 and 2.17. Fig. 2.14 shows the
arrangement used by Berger and Kessler (1986) in their complete analysis
of the scattering amplitudes, with respect to their magnitudes and relative
phases, for electron scattering from xenon. Circularly-polarised light from
a He—Ne laser produced the polarised photoelectrons from a p-doped
GaAso.6Po.4(lOO) crystal. The electrons were accelerated to 100 eV and
passed through a 90° electrostatic deflector, focussing lenses, and a deflec-
tion system rotatable about the atomic beam axis. Electrons elastically
scattered through an angle of 6 passed through a filter lens and a Wien
filter, accelerated to 120 keV and entered a Mott detector for polarisation
analysis. The GaAsP crystal has a larger band gap (1.82 eV) than GaAs
at the F point, which allows the use of the simple and reliable He—Ne
laser as the light source.

The magnetic coil shown in figs. 2.15 and 2.16 was used to orient
the electron polarisation vector P parallel to the axis of the analysing
target—Mott detector system. The deflection system is part of the dif-
ferential pumping stage which is necessary for the maintenance of the
required ultra-high vacuum in the source chamber.

HeNe
LASER

LIGHT
MODULATOR

,GaAsP CATHODE

0.5m
-MAGNETIC COIL

VALVES

TARGET FILTER
LENS

ACCELERATOR MOTT DETECTOR

Fig. 2.15. The vertical cross section of the apparatus used by Berger and Kessler
(1986). The pumping system is not shown.
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Fig. 2.16. The behaviour of the polarisation vector in the experiment of Berger
and Kessler (1986).

When the polarisation P of the incident electron beam is resolved into
the components P\\ and Pn to the scattering plane, the polarisation P' of
the scattered beam is given by (Kessler, 1985)

. (Pn + S)n +TF+ U(h x P)
PnS

(2.49)

where n is the unit vector normal to the scattering plane. In the experiment
of Berger and Kessler (1986) Pn = 0 and P = P,,, so that

P' = Sii + TP + U(h x P). (2.50)

When the Wien filter is switched off, the two pairs of counters in the
Mott analyser allow the simultaneous measurement of the two transverse
polarisation components Sh and U(nxP). When the Wien filter is switched
on the two polarisation components perpendicular to the magnetic field
B are rotated through 90° (P' -> P", see figs. 2.15 and 2.16), so that
the original longitudinal component TV is converted to a transverse
component (see Kessler,1985, for a discussion of the Wien filter and other
polarisation transformers).

The experimental arrangement used by Granitza et al. (1993) in their
study of spin effects in (e,2e) collisions on xenon is shown in fig. 2.17. The
polarisation analysis of the incident beam was in this case carried out
with a spherical mini-Mott detector, which is also shown in the figure.

Although the Mott detector is the most frequently used spin-polaris-
ation analyser, other types of analysers have been used (Kessler, 1985). We
mention here only one, namely the low-energy diffuse scattering analyser
of Unguris, Pierce and Celotta (1986). This compact and efficient analyser
is based on low-energy (150 eV) diffuse scattering from a high-Z target,
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Fig. 2.17. Schematic diagram of the apparatus used by Granitza et al. (1993)
to investigate spin effects in (e,2e) collisions on xenon. The source, differential
pumping stage, collision chamber and mini-Mott detector are shown.

such as an evaporated polycrystalline gold film, opaque to the incident
beam. By collecting scattered electrons over a large solid angle, a figure of
merit S2I /Io = 10~~4 is achieved in this analyser with an analysing power
S = 0.11. Because of its compact size this analyser is superior for many
applications.

2.6 Polarised atom sources

The preparation of spin-polarised atomic beams began with the pioneering
work of Gerlach and Stern (1924). It was extensively developed in the
1950s during studies of the hyperfine structure of atoms (Ramsey, 1956)
and later by nuclear physicists who were interested in the study of the
spin dependence of nuclear forces.

The basic idea in this work was to use inhomogeneous magnetic fields to
state select an atomic beam. The inhomogeneous fields used were usually
either the dipole field of the Stern—Gerlach type or hexapole fields. More
recently with the advent of lasers it has been possible to state select atoms
in a beam by means of optical pumping. With optical pumping it is
possible to prepare beams in state-selected excited states as well as the
ground state. The basic scheme for producing polarised beams of atoms
or molecules is sketched in fig. 2.18.

2.6.1 State selection by inhomogeneous magnetic fields

State selection and focussing of atoms by magnetic fields has been ex-
tensively reviewed over several decades (e.g. Ramsay, 1956; Reuss, 1988;
Ianotta, 1988), and only a brief description of a source of spin-polarised
hydrogen atoms will be given here.
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Fig. 2.18 Basic scheme for the production of a spin-polarised atomic beam.

The design and operating characteristics of a simple polarised atomic
hydrogen beam particularly suitable for crossed-beam experiments has
been given by Chan et al. (1988). The hydrogen atoms are produced from
molecular hydrogen by a radio-frequency discharge source. Microwave
and d.c. discharges and high-temperature tungsten or tantalum ovens
can also be used to produce ground-state beams of atomic hydrogen. The
beam is then collimated and passed through a permanent hexapole magnet,
chopped and passed through another permanent hexapole magnet. The
atoms with mj = —1/2 are defocussed and deflected out of the beam
entirely by the inhomogeneous magnetic field while those with mj = +1/2
execute elliptical trajectories about the axis and are transmitted.

Two components contribute to the total angular momentum F of the
atom, the nuclear angular momentum (spin) I and the electronic angular
momentum J, so that

F = I + J. (2.51)

With I and J we have associated a nuclear and electronic magnetic moment
respectively. In zero or weak external magnetic field the nuclear magnetic
moment HI interacts with the electronic magnetic field Bj with an energy
—  pi BJ. This coupling between I and J leads to a splitting of the atomic
level Wj into hyperfine levels Wp, one for each allowed value of J. This is
shown schematically in fig. 2.19. In a strong external magnetic field B the
coupling between I and J breaks down and they precess independently
about B. Since the electronic magnetic moment \ij is much larger than
the nuclear one (due to their respective gyromagnetic ratios) the electronic
energy —  \ij B is much larger than the nuclear one —  \i\ B. The resulting
energy level diagram, called a Breit—Rabi diagram, is shown in fig. 2.19.

The basic properties of Stern—Gerlach (dipole), quadrupole and hexa-
pole magnets for deflecting and focussing of atomic beams have been
discussed in detail in the literature (Reuss, 1988; Hughes et a/., 1972). A
hexapole state-selecting magnet has the advantage that for mj = +1/2
atoms the cylindrical beam shape is preserved in addition to acting as a
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Fig. 2.19. Breit—Rabi hyperfine energy level diagram for ground-state hydrogen,
showing the magnetic energy of the atom AW normalised to the hyperfine splitting
at zero field (S W).

lens. This means that by a suitable choice of parameters the atom density
can be optimised at the interaction region. A small solenoid placed axially
at the exit of the hexapoles is used to align the spins with the axis of
motion of the atoms, so that the atomic spins are perpendicular to the
intersecting electron beam. A magnetic spin rotator (Iannotta, 1988) at
the exit to the interaction region adiabatically rotates the atomic spins
into the transverse orientation, in preparation for polarisation analysis
by a Stern—Gerlach dipole magnet (Ramsay, 1956). The Stern—Gerlach
polarimeter permits detailed scanning of the beam profile and employs an
electromagnet, which allows it to be demagnetised. This is essential for
both beam intensity monitoring and centroid determination. The atoms
and molecules transmitted by the Stern—Gerlach unit are detected by a
quadrupole mass analyser, which determines the atomic and molecular
fractions in the beam.

The atomic polarisation state selection is greater than 0.99 in the high
field regions. However the magnetic field must generally be kept low in the
collision region (< 100 mGauss). The ground-state hyperfine interaction
reduces the effective polarisation of the atom to one half of its high field
state. In the low fields region the electron spin is again coupled to the
nuclear spin I. Thus the low-field electronic polarisation of a one-electron
atom after perfect high-field state selection is given by

PA = 1/(2/ + 1). (2.52)
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For atomic hydrogen / = 1/2 and PA = 0.5, for Cs / = 7/2 and PA =
0.125.

2.6.2 State selection by optical methods

Most of the basic ideas of atomic or molecular state selection by optical
means were formulated near the advent of the laser (e.g. Kastler, 1950,
and Dehmelt and Jefferts, 1962). However, widespread application of
the technique only took place in the late 1970s and early 1980s with
the availability of dependable tuneable CW and pulsed lasers. Only
laser radiation carries a sufficiently high spectral density for significant
manipulation of the thermal population of atomic (or molecular) levels in
a beam.

Selective population of the atomic levels by a one-photon process is the
most straightforward approach. This includes the preparation of excited
states of atoms. With polarised radiation the atomic ensemble will be
oriented or aligned. Sequential two-photon absorption can be used to
excite high-lying states, including Rydberg levels (Feneuille and Jacquinot,
1981) and the ground state (Baum, Caldwell and Schroder, 1980). Since
the excited states involved in optical pumping are shortlived (of the order
of 10 ns for optically-allowed dipole transitions), rate equations must be
used to establish the equilibrium populations. These have been discussed
in detail by many authors (e.g. McClelland and Kelley, 1985; Bussert,
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Fig. 2.20. Section of the hyperfine resolved level diagram for sodium.
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1986; and Farrell, MacGillivray and Standage, 1988). Most of the work
has been done with alkali-metal atoms. The relevant hyperfine resolved
levels for sodium are shown in fig. 2.20. From this it can be seen that the
band width of the laser must be narrow in order to resolve the hyperfine
transitions. With present technology this can be assumed to be typically
between 1 and 10 MHz. To achieve this over the long period required for
most scattering experiments, active stabilisation of the laser is necessary.
This can conveniently be done by arranging the laser to cross the atomic
beam at right angles (Doppler-free excitation) and using the fluorescence
from the collision volume as the feedback signal for optimisation. As the
laser frequency drifts, the fluorescence region will move from the central
region of the atomic beam, where the atoms have zero transverse velocities,
to a region where the Doppler shift due to the transverse velocity of the
atoms compensates for the drift.

In order to obtain a well-defined mp (or mj) distribution it is necessary
to use polarised light. The selection rules for dipole radiation are

AF = 0, +1, AmF = 0, +1, (2.53)
and for linearly and for circularly right- and left-hand polarised light

0,+l (2.54)
respectively. Thus pumping with circularly-polarised a+ or o~ light on a
two level system, such as Na(32Si/2, F = 2 —•  32P3/2, F = 3) enriches the
population in the mp = +F or mp = —F  state respectively. That this is so
for both the excited state and the ground state follows from the selection
rules (2.53, 2.54). In principle complete ground-state polarisation can be
achieved, but in practice the hyperfine splitting of the ground-state level
prevents all of the atoms participating in the pump process, and the beam
is not totally polarised. In order to achieve PA = 1 a Stern—Gerlach
magnet can be used to remove the F = 1 ground-state atoms (Dreves
et a/., 1981). Alternatively an acousto-optical modulator can be used to
frequency-shift part of the laser beam, and thus by crossing the atomic
beam at right angles with the two superimposed laser beams, complete
polarisation of the atoms can be achieved (Baum et a/., 1989), all of the
atoms accumulating in the mp = +Fmax or mp = —  Fmax levels with o+ or
G~ light, respectively. A radio-frequency field of the appropriate frequency
(1772 MHz for sodium) can also be used to transfer the F = 1 to the
F = 2 population while laser pumping the F = 2 (2Si/2) to Fr = 3 (2P3/2)
transition with a+ or o~ light (Dreves et a/., 1983).

The polarisation of the beam can be measured by a number of tech-
niques. Probably the most precise method is fluorescent monitoring.
Information on the polarisation of the ground state can be obtained from
the polarisation of the fluorescent light (Fischer and Hertel, 1982). Simi-
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larly the optical pumping can be monitored by observing the changes in
the properties of transmitted light. Often a separate weak probing beam
is employed. The anisotropy of y-ray emission by polarised radioactive
atoms in the beam has also been used to determine the polarisation of
the beam (e.g. Bonn et a/., 1975). The detection of y-rays is often cleaner
and easier than optical photons. Standard nuclear magnetic resonance
techniques are also sometimes used (Kuize, Wu and Happier, 1988).

The excited state in an optically-pumped two-level transition is obvi-
ously also polarised if o+ or o~ light is used. However, due to the short
lifetime (~ 10 ns for dipole transitions) the atomic beam will contain
fewer excited atoms than ground-state atoms. It is important to ensure
that the pumping laser has high power to ensure a sufficiently high and
well-defined stationary population of the excited state. This makes the use
of continuous-beam lasers preferable over pulsed lasers in most experi-
mental arrangements for collision studies. The population of the various
levels in optical pumping needs to be calculated by the use of rate equa-
tions. A detailed analysis for the case of the pumping of Na has been
given by McLelland and Kelley (1985) and Farrell et al (1988).

The alkali metals, in particular sodium and potassium, have played a
dominant role in providing state-selected collision partners through optical
pumping. The subject has been summarised in a number of excellent
articles such as Hertel and Stoll (1978), Fischer and Hertel (1982) and
Diiren (1988). The reason why the sodium and potassium transitions 2Sx/2,
F = 2 —>  2P3/2, F = 3 are particularly suitable examples of the optical
pumping technique is due to a number of factors. Firstly the efficiency of
excitation is high, with 62% of the beam particles being involved in the
excitation. Secondly the selection rule for spontaneous decay (AF = 0, +1)
prevents loss to the F = 1 ground state. Thirdly the separation between
the 2P3/2, F = 3 state and its neighbour, the 2P3/2, F = 2 state, is larger
than the line width of the laser. Some small loss to the F = 1 ground
state does occur due to the long tail of the Lorentzian line shape for the
2P3/2, F = 2 excited state.

Because of the short lifetime of the excited state, it is obvious that the
collision region must coincide largely with the optically-pumped region of
the atomic beam. Generally the arrangement is chosen so that the laser,
atomic, and incident electron beams all intersect at right angles (Hertel
and Stoll, 1974, 1978; Zheng et al, 1990). Multifrequency techniques,
which can be implemented by the use of acousto-optical modulators, can
lead to the excitation of an excited state from both ground states (Ertmer
et a/., 1985).

Metastable states have also been studied, in particular those of rare-gas
atoms. The beam emerging from a gas discharge or electron impact source
unfortunately generally contains atoms in more than one metastable state.
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For example, in a helium discharge metastable atoms in both the 21So
23Si states are formed. The 21So state can be depopulated by exposing
the beam to light from a helium discharge lamp, which emits light of
sufficient intensity in the 2lP\ —• 2 1So transition to excite all atoms in
the 21So state to the 21P\ level, which in turn decays to the I1 So ground
state (Fry and Williams, 1969). By circularly polarising the 23P - 23S
radiation in a discharge lamp, atoms can be accumulated in the mp = 1
state of the 23S level (Riddle et a/., 1981). This provides a polarised beam
of metastable states.

2.7 Electron—photon correlation experiments

2.7.1 Electron—photon coincidences —
angular and polarisation correlations

Electron—photon coincidence experiments have given a new insight into
the excitation of atoms (see chapter 8). In a typical (e,e'y) experiment,
electrons scattered with a fixed energy loss into a given narrow cone about
a certain angle are detected in delayed coincidence with photons emitted
into a narrow cone in some specified direction. Angular-correlation mea-
surements are then made by mapping the photon coincidence count rate
as a function of emission direction (Eminyan et a/., 1974). Alternatively
the polarisation of the emitted photon can be measured (polarisation
correlation), which yields similar information to the angular correlation
measurement.

The coincidence technique has been discussed in detail in section 2.4.4
and much of that discussion is valid for electron—photon coincidence
measurements. The coincidence technique offers the important advantage
of eliminating photon contributions from excited atoms produced by
cascading rather than by direct excitation. This depends on the band pass
of either the photon detector or electron detector being sufficiently narrow
to isolate the excited state being studied.

One hazard in (e,e'y) measurements which does not arise in (e,2e)
measurements is the potential for radiation trapping. If the photon
transition from the excited state is to the ground state, other ground-
state atoms in the atomic beam can resonantly re-absorb the emitted
photon within the interaction region or within the viewing angle of the
photon detector. The re-emitted photon on subsequent decay will have
characteristics (angular or polarisation dependence) which differ from that
due to the photon emitted in the electron impact ionisation process. This
can seriously degrade the data and great care must be taken to eliminate
the possibility of resonance trapping (McConkey, van der Burgt and Corr,
1992).
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The first electron—photon coincidence experiment with polarised elec-
trons was carried out by Wolcke et al. in 1984. The Miinster group
recently extended this work on the excitation of the 63Pi sublevels in Hg
from the 61So ground state (Goeke, Hanne and Kessler, 1989, and Sohn
and Hanne, 1992). As discussed in chapter 8, in a conventional (e,e'y) co-
incidence experiment it is possible to get information on the population of
magnetic sublevels of the excited atoms. With polarised incident electrons
the reflection symmetry in the scattering plane is, in general, broken. As
a result the charge-cloud distribution of the excited state may be tilted
(by an angle different from 0° or 90°) with respect to the scattering plane.
Such a charge-cloud distribution will in general emit elliptically-polarised
photons. It is, however, possible to determine the parameters that char-
acterise the anisotropic charge cloud distribution of the radiating atoms
from measurements of the linear polarisation of the decay photons.

Fig. 2.21 shows schematically the apparatus used by the Miinster group
(Sohn and Hanne, 1992). Circular-polarised light from an He—Ne laser is
used to produce longitudinally-polarised electrons from a negative affinity
GaAsP cathode, the source being in an ultra-high-vacuum chamber. The
electrons are made transversely polarised (in the z-direction) by electro-
static deflection through 90° after which they pass through a magnetic

He-Ne LASER

PHOTOMULTIPLIER

PILES-OF-PLATES
ANALYSER

3 SPECTROMETER

9e

PHOTOMULTIPLIER

MOTT DETECTOR

Fig. 2.21. Schematic diagram of the apparatus used by Sohn and Hanne (1992)
for (e,e'y) coincidence measurements on Hg {6lSo —>  63Pi) using polarised elec-
trons.
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coil system. This coil system can be used to rotate the polarisation vec-
tor by 90° into the y direction, which is perpendicular to the scattering
plane. The electrons then enter a differential pumping stage, are deflected
electrostatically through another 90° and pass through a second mag-
netic lens which does not rotate the polarisation vector. The polarised
electron beam is then decelerated from its transport energy (200 eV) to
the desired collision energy (8 and 15 eV) and focussed on the mercury
beam. Electrons that have excited the 63Pi state of mercury are analysed
and detected by a channeltron in coincidence with the ultra-violet 4.9 eV
photons from the 63Pi —  61So transition. The photon detector consists of a
pile-of-quartz-plates linear polarisation analyser, a wavelength filter and a
photomultiplier. The light is observed either in the y direction (perpendic-
ular to the scattering plane) or in the — x direction (in the scattering plane).
Quarter-wave plates, when inserted in front of the linear-polarisation fil-
ters, are used for determining the helicity a± (or circular polarisation) of
the emitted photons. The observed coincidence rates are functions of the
electron polarisation Pe(= Px or Py) of the incident electron beam and the
helicity and the linear polarisation are aligned along angles a = 0°, 45°,
90° and 135° with respect to the z (incident electron) axis. The shape and
size of the charge-cloud distribution are found to be sensitive functions of
the electron polarisation vector.

2.7.2 Time evolution of excited states

The coincidence measurements discussed in the previous section were
concerned with the total coincidence signal, i.e. the signal obtained when
the decay of a particular ensemble of states is integrated over. These
states are produced in a very short time (~ 10~15s) in electron impact
excitation, and can sometimes evolve in a complicated way. In the absence
of internal fields (e.g. the nlP states of helium) each of the \fm) states
decays with the same exponential time dependence exp(—yt), and the
coincidence technique can be used to yield the decay constant y of the
excited state (see Imhof and Read, 1977, and references therein). However,
if the excited state is perturbed by an internal (or external) field before
decay, then the exponential decay is modulated sinusoidally giving rise to
the phenomenon of quantum beats (Blum, 1981).

Quantum beats have been observed in a variety of experiments, partic-
ularly in beam—foil measurements. Teubner et al. (1981) were the first
to observe quantum beats in electron—photon coincidence measurements,
using sodium as a target. The 'zero-field' quantum beats observed by
them are due to the hyperfine structure associated with the 32P3/2 excited
state (see fig. 2.20). The coincidence decay curve showed a beat pattern
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superimposed on the exponential decay given by

Bi(cos(EF - EF)t + (j)FFf). (2.55)

The Bt contain information on the collision dynamics, in particular on the
alignment and orientation of the excited states.

Heck and Williams (1987) observed quantum beats in the decay of the
n = 2 states of atomic hydrogen. In the presence of an external electric
field the 2s and 2p states can be mixed and their correlation measured.
With an applied field of 250 Van" 1 the modulation periods should be
0.1 ns and 0.6 ns. They were able to observe the second beat period
corresponding to interference between the states which reduce to 2s\/2
and 2pi/2 in the field-free limit. Williams and Heck (1988) were able to
use the technique to determine many of the n = 2 state multipoles (section
8.2.4).

2.7.3 Superelastic scattering from laser-excited targets

An interesting and alternative technique to electron—photon coincidence
measurement of coherence effects in excitation processes is superelastic
scattering from laser-excited targets. This technique, first developed by
Hertel and Stoll (1974, 1978), can be thought of as the time inverse of the
(e,e'y) coincidence experiment,

+ Ao — • A* + e t

(2.56)

in which laser light excites target atoms, a beam of monoenergetic incident
electrons (ei) de-excites these atoms and is superelastically scattered in the
process. One advantage of this technique in those cases in which it can be
applied is that the count rates are typically several orders of magnitude
higher than in the equivalent coincidence experiments. The polarisation
of the laser may also be varied, allowing the preparation of excited atoms
in various mixtures of angular momentum states.

McClelland, Kelley and Celotta (1986) were the first to measure super-
elastic scattering in the configuration where the spins of both the incoming
electron and target atom were polarised, ensuring that the transitions
studied are transitions between well-characterised pure quantum states.
In particular they studied the superelastic scattering of spin polarised
electrons from the mF = 3 and mF = —3 states of Na 3 2Pi/2 atoms (or
the m/ = +1 and m^ = — 1 states on making the conventional assumption
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Fig. 2.22. Schematic of the polarised electron—polarised atom scattering appa-
ratus of McClelland et al (1986, 1989).

that the nuclear spin plays no significant dynamic role in the collision
process).

Their experimental arrangement is shown schematically in fig. 2.22.
Transversely-polarised electrons from a GaAs source are superelastically
scattered from excited sodium atoms in a beam of sodium atoms pumped
by a+ and o~ circularly-polarised light (see section 2.6). The polarisation
of the incident electrons is measured by a Mott analyser. Spin asymmetries
were measured as a function of the incident electron spin (up or down)
for both the m^ = +1 and m/ = — 1 states. From these measurements
it is possible to extract both triplet and singlet contributions to L±,
the angular momentum transferred in the collision perpendicular to the
scattering plane, and the ratio of triplet to singlet cross sections (see
chapters 8 and 9). Hertel, Kelley and McClelland (1987) developed a
general framework using density matrices for the analysis of collisional
alignment and orientation, studied by the scattering of spin-polarised
electrons from laser-excited atoms.



Background quantum mechanics
in the atomic context

The basic structure of quantum mechanics and its relationship to physical
measurements have been beautifully developed in the textbook of Dirac
(1958), which is one of the classics of physics literature. Here we sum-
marise the quantum mechanical ideas necessary for the background to
our development of the theory of electron—atom collisions. We introduce
notation relevant to our subject.

3.1 Basic mathematical constructions

3.1.1 States

A physical system, which may be part of a larger system, is associated
with a linear vector space whose elements are ket vectors

\A).

For each space there is a dual space of bra vectors

(B\
whose complex scalar products with the ket vectors are denoted by a
bracket

(B\A) = (A\B)\ (3.1)

The letters A and B denote quantities characterising the vectors. They
refer to dynamical aspects of the state of the system. The vectors are
called state vectors, a term which we abbreviate to states. The length of a
state vector, considered apart from related state vectors, has no physical
significance. We are free to choose it, a process known as normalisation.

The states are of two kinds, which require rather different treatments.
The specifying quantities A may be members of a discrete set counted by
an integer i9 in which case the state is denoted

50
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or they may be part of a continuum, that is they may take all values in a
continuous range of a variable x, in which case the state is denoted

3.1.2 Observables

The spaces of interest in physics are spanned by the eigenstates |a') of
real (that is self-adjoint) linear operators a, whose eigenvalues a! are real.
Such operators are called observables. The eigenvalue equation is

a|a') = o V ) . (3.2)

An important property of the eigenstates of real linear operators belonging
to different eigenvalues is that they are orthogonal.

( o V ) = 0, a' ^ a". (3.3)

States can be simultaneously eigenstates of more than one observable. In
this case the observables commute. If the simultaneous eigenstates of a
set of commuting observables form a complete set they span a new space
which is the direct product space of the spaces spanned by the eigenstates
of each of the observables in the set. The dimension of the new space is
the product of the dimensions of the spaces spanned by the eigenstates of
the individual observables.

The set of commuting observables can be considered as a new observ-
able. In this way we can extend the space associated with a particular
dynamical property of a system to a more general dynamical property of
that system or to dynamical properties of a larger system that includes it.

Examples of interest in atomic physics are the x, y9 z coordinates of an
electron. They can be considered as individual observables or the set of all
three may be considered as an observable r, the position of the electron.
The simultaneous eigenstates are

\x)\y)\z) = \r). (3.4)

Another relevant example is the eigenstate of the momenta of each of two
electrons.

IP1>IP2> = IP1P2>. (3.5)

Canonically-conjugate observables do not commute. Corresponding to
a generalised position coordinate q there is a generalised momentum p.
The commutation law is

qp-pq = in. (3.6)
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3.1.3 Representations

A set of numbers representing the states or observables is called a rep-
resentation. In the geometrical space of three-dimensional vectors r a
set of numbers representing r is the set of three coordinates xf, y'9 zf in a
system of orthogonal axes. We may consider the system of unit vectors
x', y\ i! in the directions of the axes as a basis for the representation of
r. A coordinate is the scalar product of r with one of the unit vectors. A
different basis is provided by a rotated set of axes. A vector is changed
into a new vector by operating with a 3 x 3 matrix. This concept is easily
extended to the spaces of quantum mechanics.

We first consider the space spanned by the eigenbras (i| of an observable
that has discrete eigenvalues. A state \A) is represented by the set of
numbers (coordinates) which are the scalar product of \A) with each of
the (i\. The representative of \A) is the set

It is convenient to normalise the basis states so that they obey the
orthonormality relation

(f\i)=Sn. (3.7)

The set |i) is an orthonormal basis.
The representative of an observable a is the scalar product of the bra

(z'| with the ket <x|i) formed by operating with a on \i). It is sometimes
called a matrix element

(?\a\i).

Consider two basis states \i) and \f). In view of the orthonormality
relation (3.7) we can expand \if) in the form

\i')=Xi\i)Si?=?:i\i)(i\if). (3.8)

We may consider 2j|i)(i| as an operator that operates on |i'). Equn. (3.8)
shows that it is the unit operator

Xi\i)(i\ = l. (3.9)

Any partial sum of (3.9) projects the corresponding states from the com-
plete set. It is a projection operator.

Equn. (3.9) is a special case of the representation theorem or closure
theorem, which is one of two important theorems that are used frequently
in formal quantum mechanics.

We now extend the theorem to a space spanned by the eigenstates |x)
of an observable whose eigenvalues form a continuum. An example is the
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momentum p of a free electron. The representation theorem becomes

|x') = I' dx\x)(x\x')9 (3.10)

where the integration is over the range of x. The orthonormality relation
is

(x\xf) =d(x-x'). (3.11)

This is called the 'delta function', although it is never used as a function,
since it is infinite if x = xf. It is better to consider it as a notation for an
integral.

\x') = I dx\x)d{x-xf). (3.12)

In the language of functions the definition of the delta function is

f(y) = Jdxf(x)S(x-y). (3.13)

We will need the representation of the delta function

lim J =• = 2nd(x - y), 3.14
e^o+ (x - y)2 + e2 y yh

which is a symbolic statement of the limit of the corresponding integral

A simple extension is the three-dimensional delta function d(x —  y),
whose definition is

= Jd3xf(x)S(x-yl (3.16)

where the integration is over the whole three-dimensional geometrical
space of the vector x.

Examples of representations in common use in atomic reaction theory
are the coordinate and momentum representations where, if the system
under study is a single electron, the basis states are the eigenstates (r| and
(p| of the position and momentum of the electron respectively. Examples
of discrete representations are also important. They will be left until later.

For some important observables the complete set of eigenstates contains
some discrete states |i) and some continuum states \x). A general statement
of the representation theorem is

J dx\x)(x\ = l. (3.17)



54 3 Background quantum mechanics in the atomic context

For ease of notation we often use the formal device of representing the
sum and integral of the representation theorem (3.17) by a sum over a set
i9 which is understood in part as a discrete notation for a continuum

Xi\i)(i\ = 1. (3.18)

Whenever it becomes necessary to treat the continuum explicitly we return
to the continuum notation which replaces part of the sum by an integral.

The second theorem of vital importance in formal quantum mechanics
concerns a function /(a) of an observable a. We call it the function theorem.
The theorem is stated as follows.

If |a') is an eigenstate of an observable a belonging to the eigenvalue
a7, that is if

*\at) = ay),
then a function /(a) of a obeys the eigenvalue equation

/(a)|aO=/(a')|a'>. (3.19)
The proof is simple for a function that can be expanded as a power series.
It is obviously true for linear combinations. For powers of a it is proved
by successive application of the following process

a V ) = a(a|a'}) = a(a'|a')) = a/a|a/) = a'2|a')-

For functions that cannot be expanded everywhere as a power series the
theorem becomes a definition that is used to complete the function at the
necessary points.

The use of the function theorem can be seen in conjunction with the
representation theorem. We choose the spectral representation of the
observable a, that is the representation in which the basis states are the
eigenstates (corresponding to the eigenvalue spectrum) of a.

/(a) = £a^(a)|a')(a'| = Sa,/(a')|a')(a'|. (3.20)

The theorem replaces the operator /(a), which cannot be described in a
computational algorithm, by numbers /(a'), which can. This is done at
the expense of introducing a large set of terms in the sum over a'.

3.1.4 The Schrodinger equation

The observable corresponding to the total energy of a dynamical system
is the Hamiltonian H.

H =K + V, (3.21)

where K is the total kinetic energy and V is the total potential energy. It
is of central importance in physics. Its eigenstates \^¥)  are the quantum
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states of the system. The eigenvalue equation for H is the Schrodinger
equation.

(E-H)\x¥)=0.  (3.22)

|*F) is not fully specified by (3.22). Its complete specification includes the
appropriate boundary conditions.

One-body systems of particular interest are the free spinless particle and
the spinless particle bound in a Coulomb potential Uc (the nonrelativistic
hydrogen atom). Spin is introduced in section 3.3.2. The state of a free
spinless particle is an eigenstate of momentum. It is completely specified
by the momentum p. The corresponding Schrodinger equation is

(E-K)\p)=0. (3.23)

The state of a spinless hydrogen atom is completely specified by the princi-
pal quantum number n, the orbital angular momentum quantum number
/ and the magnetic (projection) quantum number m. The Schrodinger
equation is

(en/m-K-Uc)\nSm)=0. (3.24)

3.1.5 Representations of particular interest

Here we introduce the notation to be used for the representations of some
state vectors and observables that are basic to our development of the
theory of electron—atom systems. We express all quantities in atomic units

h = m = e = 1,

where m and e are respectively the mass and charge of the electron.
The coordinate representation of the state vector of a system is its

(coordinate) wave function.

Free spinless particle (plane wave) : (r|p) = (2n)~3^2eip'r. (3.25)
Hydrogen atom : (r\n£m) = Wm(r)- (3.26)

The momentum representation of the state vector of a system is its
momentum wave function.

Free spinless particle : (q|p) = d(q —  p). (3.27)
Hydrogen atom : (q|n/m) = (/wm(q). (3.28)

It is often useful to transform from one representation to another.
Transformations are effected by the representation theorem. The trans-
formation between the momentum and coordinate representations is the
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Fourier transformation. For the hydrogen atom this is

= J d3r(q\r)(r\n/m)

*). (3.29)

A useful representation of the delta function is given by using the
representation theorem together with (3.25).

<5(r' - r) = (r'|r) = j d3p(r'|p)(p|r) = (2TT)-3 j d ^ ^ \ (3.30)

To formulate and solve the Schrodinger equation for a bound atom it is
usual to express the relevant observables in the coordinate representation.
Observables for the motion of an electron are represented by differential
operators.

x—momentum : (x'\p x\x) = (x'| —  i-̂ —|x) =  —i5(x'  —  x)—. (3.31)

Momentum : (r'|p|r) = -iS(r' - r) V . (3.32)

Kinetic energy : (r'|±p2|r) = -\8{rr - r)V2. (3.33)
Potential energy observables are represented by functions of geometrical

vectors such as r.

Coulomb potential Uc : (r'\Uc\r) = <5(r' - r ) - . (3.34)

The Coulomb potential is a special case of a local, central potential.
Local central potential U : (r'|C/|r) = S(r' - r)U(r). (3.35)

In problems involving the interaction of an electron with a system contain-
ing electrons an operator that frequently appears is a nonlocal potential.

Nonlocal potential V : (r'|F|r) = F ^ r ) . (3.36)

In scattering problems the initial and final detected particles are free if
the target is uncharged. The momentum representation of their motion
observables is particularly simple.

Momentum : (p'|p|p) = S(p' - p)p. (3.37)

Kinetic energy : (p'|±p2|p) = Stf - p)ip2. (3.38)
The momentum representation of a local, central potential is of interest.

Its calculation illustrates the use of the representation theorem and the



3.1 Basic mathematical constructions 57

delta function and also some calculus manipulations that are common.

<p'|L/|p> = Jd*rJdir'(J>y){r'\U\r)(r\i>)

= (2TT)-3 f d\ f dVA'-P'^Cr' - r)U(r)

= (2TT)-3 /dVK rL/(r ) , (3.39)

where
K = p - p ' .

By defining
x = K r

we can simplify this further.

(p'|C/|p) = (2TC)-3 [n dcp [ dx f°°dr r2 eiKrxU(r)
Jo J-\ Jo

= (2TT2)-1K-1 r dr r sinKrU(r). (3.40)
Jo

Note that the momentum representation of a local, central potential
depends only on K = |p —  p'|.

In the special case of a Coulomb potential we perform the integration
in (3.40) by introducing a convergence factor e~v* and taking the limit
fi -» 0 after the integration. We write (3.40) in the form

(p'luc\p) = {2n2K)~l lim Im / dr r
1

e~^~iK)r- r

n->o fi —  iK

= (2n2K2)-K (3.41)

3.1.6 Time development
The Hamiltonian H of a system may be represented in terms of the
differential operator d/dt. This is the analogue in special relativity of
the representation of the momentum in terms of V. Operating with the
observable H on an arbitrary time-dependent state |*F(f)) we have

^t (3.42)

This is the Schrodinger equation of motion.
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We may consider |*F(£)) as the result of operating on |*F(£o)) with the
time-development operator T.

= Tmto)). (3.43)
Since |*F(£)) is an arbitrary state for all t we may write an operator

equation for the result of substituting (3.43) in (3.42),

i^T HT, (3.44)
ot

which can be integrated using the initial condition T=\ for t = to.

T = e~iH{t-tQ\ (3.45)

For a dynamical system the total energy E is constant in time. Choose

= m (3.46)
where I1?) is the state of the system, given by the Schrodinger equation
(3.22). |*F) is an eigenstate of H with eigenvalue E. This choice results in

(3.47)

Since |*F(0) differs from |*F) by only a phase factor it always remains an
eigenstate of H. An eigenstate of the Hamiltonian of a system is called a
stationary state.

3.2 Physical interpretation

Suppose we have a dynamical system whose state |*F) can be calculated by
solving the Schrodinger equation with the appropriate boundary condi-
tions. An experiment is set up to observe a particular dynamical property
of the system corresponding to an observable whose eigenstates are |<D).

The experiment observes an ensemble of events, each with the same
initial conditions (as nearly as can be physically achieved). The number
n of observations of the system when it is in a particular state |G>) is
recorded. The number n, suitably normalised, is taken as an estimate of
the probability of finding the system in the state |O). The standard error
of the estimate is n1/2.

The physical interpretation of quantum mechanics is as follows. The
probability amplitude / of finding the system in the state |<D) is

/ = <®m (3.48)
The corresponding probability P is

p =N~1\f\2. (3.49)

The normalisation N is
N = 0F|¥). (3.50)
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We normally abbreviate 'probability amplitude' to 'amplitude'.

3.2.1 Examples of probability amplitudes

Bound states are normalisable. If we represent all the coordinates of the
system by x then the coordinate representation of N is

N= /"<fecOF|x)(x|¥). (3.51)

The integrand is the probability of finding the system with coordinates x.
If the integrand tends rapidly enough to zero when all parts of the system
are remote from the centre of mass then the integral is convergent. |*P) is
defined by choosing N=l. The total probability is 1.

Unbound systems, such as an electron scattered by a hydrogen atom, are
not normalisable, since there is a finite probability of finding the electron
anywhere in space. The normalisation of the states of an unbound system
will be discussed in chapter 6 on formal scattering theory.

For a bound one-electron system the amplitude for finding the electron
at the point r is

The observation of an electron at a sufficiently well-defined point is
impossible experimentally, since we cannot resolve the necessary distances
of order 10~9cm. It is possible to observe the probability of finding an
electron with momentum p using a good, but necessarily imperfect, probe
(McCarthy and Weigold, 1983). The corresponding amplitude is

Kinetic energies corresponding to atomic values of p are of order 10 eV
and it is easy to observe momenta with accuracy better than 10%. The
momentum p of a bound electron is observed by knocking it out of its
bound state with an electron of high momentum po and observing the
final momenta p^ and p#. We then have p = PA + PB — Po  by conservation
of momentum, assuming that the collision is the only way of transferring
momentum. The function Kpl1?)!2 observed in this way for the hydrogen
atom is shown in fig. 3.1.

The most important type of amplitude is a transition amplitude for
an observable V that changes the state |\P) of a system to F]*F). The
amplitude for finding the transformed system in the state |O) is

Such an amplitude is often called a matrix element, even if the states are
eigenstates of observables with continuous eigenvalues.
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Fig. 3.1. The probability of finding an electron with absolute momentum p in
a hydrogen atom, observed by measuring the complete kinematics of ionisation
events at the total energies shown (Lohmann and Weigold, 1981). The curve
shows the square of the momentum-space wave function.

3.2.2 A physical beam of electrons

Consider a system consisting of a beam of electrons and a target, whose
individual state vectors are \xp) and |O) respectively. The state vector
of the whole system is |*F). According to the interpretation (3.48) the
amplitude for observing the system in the state |Ot/?) is

We now consider the state vector \xp) of the beam. The momentum of
each electron is defined as nearly as possible by the experiment to be p in
the z direction. The coordinate representation of its state vector might be
considered to be an eigenstate of momentum.

(r|V> = (r|p) = (3.52)

The probability of finding the electron would then be the same anywhere
in space and in particular at any point on the z axis.

At first sight it would appear to be impossible to represent one electron
by such a wave function because an electron is localised in space, say at a
point on the z axis zm, even if we do not observe zm. This is true also of
a clump of electrons in a beam, which may have a maximum density at
zm. We may consider zm as being given for example by the time of flight
of the clump from a source position ZQ. A localised beam clump may be
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represented by a linear combination of terms (3.52) called a wave packet.

, pm, wy^x-z™\  (3.53)

where pm is the central momentum of the wave packet and W is its width.
The probability of observing the system is

AT|(v>®|¥)|2 = N Id3r' f d3r I dxf f dT{\p\xr){^\x')
V ) ? (3.54)

where the normalisation N is discussed in section 6.4.
The wave-packet structure of the beam affects only the factor

= (2n)-3 J d3pr J d3pF*(V\i>m,
(3.55)

In fact in a normal experiment we have no knowledge of zm at all on
a scale of positions that are comparable to the position characteristics of
an electron—atom system, which are of the order of 10~ 7cm. All we know
is that the electrons are in the apparatus, whose scale is of the order 10
cm. We must therefore integrate (3.55) over zm, obtaining the factor

(2TT)-3 I d3zme^-^z- = 8(p - p'). (3.56)

We now have

(ip\r')(r\xp) = Jd3p|F(p,pm, W)l2e-*' I>r (3.57)

and the probability of observing the system is
2 = Ny>p|F(p,pm, ^)|2|(p<D|¥)| 2. (3.58)

We may thus consider a beam experiment as a collection of beam
experiments, each having an eigenstate of momentum as its initial state
and a weight |F(p,pm, W)\2 in the collection. The weight is taken into
account in estimating the experimental error.

3.3 Angular momentum
Since atoms are strongly affected by the central potential of the nucleus, an
important part in electron—atom collision theory is played by states that
are invariant under rotations. From the general dynamical principle that
invariance under change of a dynamical variable implies a conservation
law for the canonically-conjugate variable we expect rotational invariance
to imply conservation of angular momentum. Hence angular momentum
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is very important in atomic theory. We summarise important results in
the theory of angular momentum. The reader is referred to Merzbacher
(1970) for an elementary treatment and to Brink and Satchler (1971) for
more advanced details. Useful relationships are given by Rotenberg et al.
(1959).

3.3.1 Orbital angular momentum

The orbital angular momentum observable L is defined by

L = r x p . (3.59)

By applying the commutation rule (3.6) we obtain the commutation rules
for the cartesian components of L. We continue to use atomic units in
which h = 1. The rules are

LxLy - LyLx = iLz (3.60)

and two other equations obtained by cyclic permutations of x9y9z. We
may also obtain the operator identities

L2 = (r x p) • (r x p) = r2p2 - r(r p) p + 2ir • p (3.61)

and

L2LZ - LZL2 = 0. (3.62)

The representation of the kinetic energy of an electron in spherical polar
coordinates is obtained from (3.61). It is

K = IP2 = 4 V * + 5 L 2 A 2 , (3.63)

Since L? and Lz are commuting observables they have simultaneous
eigenstates \£m), which obey the eigenvalue equations

l)\fm),
UYm) = m\tm), (3.65)

where £ is a positive integer or zero and

-t < m < /. (3.66)
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3.3.2 Spherical harmonics
The coordinate representation of \fm) is

) = y,w(f). (3.67)

The functions Y^m(j) are the spherical harmonics, which are given in terms
of the associated Legendre polynomials P^m(x). For m > 0

0)**. (3.68)

Some important properties of the spherical harmonics are as follows

^(Ml^-lfr^M), (3.69)

7 /0 (090) = \
where P<?(x) is a Legendre polynomial.

The spherical harmonics have been defined so that they are orthonor-
mal. J (3.71)

The addition theorem relates spherical harmonics with different argu-
ments.

r) = ̂ ± - W • r)- (3-72)
The parity of Y^m(r) is given by

YU-f) = (~l/lVm(f). (3.73)

If t is even/odd l>m(r) has even/odd parity, that is it is even/odd under
space reflection.

Because of the frequent occurrence of the factor [(2/ + 1)/4TI]1//2 in
equations involving spherical harmonics, simpler equations are obtained
for the renormalised spherical harmonics

3.3.3 Total angular momentum and spin
A more-general type of angular momentum operator J obeys the same
commutation rules (3.60) as L. These rules follow from rotational invari-
ance. They are

JxJy-JyJx = iJz (3.75)
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and two other equations obtained by cyclic permutations of x9y9z. The
simultaneous eigenstates of J2 and Jz satisfy the equations

J2\jm)=j(j + l)\jm),

Jz\jm)=m\jm), (3.76)

where j is a half integer or zero and

-j<m<j. (3.77)

We sometimes abbreviate the description of \jm) by calling it an 'eigenstate
of J with eigenvalue / . Atomic states are characterised by the total angular
momentum quantum number j .

A special case of the observable J is the spin s of an electron, which
has the eigenvalue j = s = 1/2. It is conveniently expressed in terms of
the observable a.

s = i<r. (3.78)

The spin has no coordinate representation. It constitutes three degrees of
freedom of an electron that are independent of the position or momentum
degrees of freedom. The corresponding space is spin space. It has
dimension 2. The spin representation of the eigenstates may be written
either as spin wave functions or as vectors in spin space called spinors.

(3.79)

The spin observable has a matrix representation in terms of the Pauli
matrices, which operate on states in spin space.

° ~A /J M. (3.80)
3.3.4 Vector addition of angular momenta

In many cases we encounter systems made up of two or more parts, each
with angular momentum. For example they may be two electrons or the
orbital and spin angular momentum of a single electron. Suppose the
total angular momentum J is the vector sum of two angular momenta Ji
and J2.

J = J i + J 2 . (3.81)

The (2j\ + l)-dimensional space of Ji is spanned by the eigenstates \j\m{)
of J2 and J\z; similarly for J2.
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The eigenvectors \jm) of J2 and Jz are elements of the product space
of simultaneous eigenvectors of the commuting observables J2,J\z,J2^2z-
The (2y'i + I)(2j2 + l)-dimensional product space is partitioned into sub-
spaces of dimension 2j + 1, where

\ji-j2\<j<ji+J2- (3.82)

Each subspace is labelled by its value of j . The dimensions of all the
7-subspaces sum to (2y'i + I)(2j2 + 1). The y-subspace is spanned by 2j +1
vectors \jm) with vector index m, where

-j <m< j. (3.83)

Vectors \jm) are linear combinations of the simultaneous eigenvectors

\jiJ2mim2) = \jimi)\j2m2) (3.84)

that also span the y-subspace. They may be expanded using the represen-
tation theorem.

\jm) = ̂ mim2\jiJ2mim2)(jiJ2mim2\jm). (3.85)

The expansion coefficients are the Clebsch—Gordan coefficients. We often
abbreviate the meaning of (3.85) by saying that it expresses the coupling
of the angular momenta j \ and 72 to j .
Equation (3.81) implies that

Jz=Jlz+J2z. (3.86)

Hence the eigenvalues of these observables are additive.

m = m\ + m2- (3.87)

This relationship means that one of the sums in (3.85) is redundant. We
include it, however, for symmetry and consider that the Clebsch—Gordan
coefficient contains a factor <5m(mi+m2). It also means that j \ + 72 + j is an
integer.

Some important properties of the Clebsch—Gordan coefficients follow.
They are real.

(jiJ2m1m2\jm) = (jm\jij2mim2). (3.88)

Two orthonormahty relations are given by the representation theorem.

= (fm'\jm)
(3.89)

(3.90)
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The properties of the Clebsch—Gordan coefficients under rearrangement
of indices are best described in terms of the 3-j symbols in section 3.3.5.

An important example of vector addition (or coupling) occurs in the
construction of the state of an electron including the spin. This is

\{jm) =^\tli)\\v)({\liv\jm). (3.91)

We keep the quantum number f in the notation for the state because it
is necessary to keep track of the parity, which is a property of coordinate
or momentum space (represented here by the orbital eigenstate) and has
nothing to do with spin space. The coordinate-spin representation of
(3.91) may be called a jj coupling function because of its use in states
for systems of several electrons where the total angular momentum is
obtained by vector addition of the angular momenta J of each electron.

<r<r|O'm> = ^v(/^v|;m)y^(r)Z!/2((T). (3.92)

3.3.5 The 3-j, 6-j and 9-j symbols
Because of the large number of angular momentum observables involved
in the state vectors of systems of more than one electron, it helps greatly
in keeping track of the quantum numbers to express the coupling of
angular momenta in terms of the symbols of Wigner, which have useful
symmetries.

In order to understand formal relationships the basic coupling of two
angular momenta is expressed in terms of the Clebsch—Gordan coeffi-
cients. In setting up the algebra for computation it is more convenient
to use the 3-j symbols. Calculations of the Wigner symbols and the
Clebsch—Gordan coefficients are found  in subroutine libraries. See, for
example, Soper (1989).

The 3-y symbol is expressed in terms of the Clebsch—Gordan coefficient
by

l m ) , (3.93)
where we use the notation

7^(27- + l)i/2 (3.94)

The j indices obey the triangle inequality (3.82) and (3.87) means that the
m indices sum to zero.

The symmetry properties of the 3-j symbols are
no change made under an even permutation of columns,
multiply by (—l)/i +A+; for a n oc|d permutation of columns,
multiply by (—iyi+h+J for  a change of sign of all the m indices.
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Transition amplitudes involving states of several coupled angular mo-
menta involve products of Clebsch—Gordan coefficients with a sum over
the m indices. Such amplitudes cannot depend on the m indices, which
are changed by changing the arbitrary directions of the coordinate axes.
The m-independence of such amplitudes is expressed by m-independent
coefficients, the 6-j symbols.

f h h h 1 y- (_{)s (h h h \ (h A h \
\A A h) j^£ \mi m2 m3j\m1 n2 -n3 J

A 72 A \ (A A 73
-n\ m2 n3 J \ n\ —n 2 m3

S = A + f2 + A + n\ + n2 + n3.
The symmetry properties of the 6-7 symbols are
no change made under interchange of columns or of any two numbers
in the bottom row with the corresponding two numbers in the top row.

Sometimes the potential observables giving transitions between two-
electron states do not depend on the spins of the individual electrons.
Potentials such as the two-electron Coulomb potential act only on the
coordinate or momentum-space degrees of freedom and therefore couple
orbital angular momentum states |A/ii), Vi^i)- The state of the total
angular momentum J involves coupling the orbital angular momenta to
L and the spins to S and then coupling the resultant states to J. This is
called the LS coupling representation.

Magnetic potentials act through the interaction of magnetic moments
and magnetic fields. The one relevant to atomic collisions is the spin—or-
bit potential, which couples the orbital and spin angular momenta of one
electron to 71 and those of the other electron to j 2 . The resultant states
are coupled to the total angular momentum quantum number J. Such
states belong to the jj coupling representation. The angular momentum
eigenstate of the first electron for example is the state lAjimi) of (3.91).

The coefficients for the transformation from the LS representation to the
jj representation are proportional to the 9-j symbols. The transformation
is

1 ^2 L
1 52 S

7172 I 71 72 J ,
(3.96)

The m indices are not explicitly shown in (3.96) because transition am-
plitudes do not depend on them. The elimination of the m indices is
discussed further in section 3.3.7 in the context of the Wigner—Eckart
theorem.
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3.3.6 Spherical tensors
Any quantity that transforms under rotations in the same way as the total
angular momentum eigenstate \jm) is called a spherical tensor T^. A
tensor operator of rank k is written

Tk.

It is an operator with 2k + 1 components

7}, -k<q<k.

Tensor notation is very useful in considering the computation of ampli-
tudes involving angular momentum coupling.

Examples of spherical tensors are

Y£i(r) = YLM(r) = <r|LM),

,y{r)xl%). (3.97)
Adjoints of tensor operators require some discussion. The adjoint of a

linear operator is the transposed complex conjugate.

Tjt = (-l)p+k-qTllq. (3.98)

Here p is an arbitrary integer, which does not affect the transformation
properties under rotations. It is impossible to make a consistent universal
choice of p and still keep some of the notation conventions necessary for
easy comparison of the present notation with published work. If k is a
half odd integer, p is defined to be zero. If k is an integer, p is defined to
be-fc.

The tensor product is the tensor generalisation of the basic angular
momentum coupling definition (3.84,3.85). We combine two tensors R%,
and Sk to form a tensor TQ in the following way.

[Kj x Sj]§ = T* = l.qqlR^Sk
q(k'kq'q\KQ). (3.99)

The scalar product is a special case of the tensor product with k! = /c,
K = 0, k integer. It uses a slightly different convention. We put

i ? q. (3.100)
The scalar product is written as

Rk-Vk = Xq(-l)qRkUk (3.101)
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An example of the scalar product that is used in electron—atom collision
theory is the multipole expansion of the two-electron Coulomb potential.

, r )CV)-C 1 ( r ) , (3.102)

vi(r\r) = rxJri+\ (3.103)

where r< and r> mean the lesser and greater of r', r respectively.

3.3.7 Matrix elements and the Wigner—Eckart theorem

We have remarked that the invariance of transition amplitudes under rota-
tions of the (arbitrary) coordinate axes requires that they are independent
of the m indices.

The dependence on the m indices of the amplitude for the transition
between states \JM) and \J'M') of total angular momentum due to a
tensor operator TQ has a remarkably simple form in which the indices
M'9M and Q all appear in a single 3-j symbol. It is given by the
Wigner—Eckart theorem.

(JfM'\T%\JM) = {-\)J'-M'^Ml
 K

Q
 J

Myf\\TK\\J). (3.104)

The m-independent amplitude {Jf || TK || J) is called the reduced matrix
element.

The simplest example of the Wigner—Eckart theorem  is given by the
Gaunt integral over three spherical harmonics, which is the matrix element
for the transition between eigenstates \£m) and \fm!) of a single orbital
angular momentum observable due to a tensor operator Yfa. We prefer to
use the renormalised tensor operator C^, which simplifies the expression.

= ??/-1(L/MmK/m/)(//0|L/00). (3.105)

Using the rules of section 3.3.5 this reduces to

Another useful reduced matrix element is for the interaction of electrons
whose states involve spin—orbit coupling.

) (3-107)
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The last factor in (3.107) expresses the fact that the transition represented
by the amplitude must preserve parity. This is automatically ensured in
(3.106) by the property

jj *\ =0 if /' + L + / isodd. (3.108)

The two-electron spin-angular matrix element of the Coulomb potential
(3.102) is given by

(j[f2fm'\& • &\ju2jm) = 5fJ6« m(-l

x (j[ II Cx || jx)<J2 || Cx || j 2 ) . (3.109)

Here we have omitted the orbital (parity) indices ( for brevity of notation.

3.3.8 Time reversal

The operation of time reversal interchanges the initial and final states
of a colliding system. The invariance of collision amplitudes under time
reversal is the principle of detailed balance. It is observed to hold for
electron—atom collisions. We are interested in finding the form of the
time-reversal operator 6 and its effect on electron states.

If H is real the Schrodinger equation of motion (3.42) is

t)> H*\V*(t)) iW\t))

Therefore |xF*(r)> obeys the time-reversed Schrodinger equation of motion.
The time-reversal operator 6 is the complex conjugation operator u.

6 = u. (3.111)

Examples of the operation of time reversal on spin-independent states
are given in the coordinate representation.

The free particle is represented by

<r|0|p) = (27i)-3/V*-r = (r| - p ) . (3.112)

Time reversal changes the direction of the momentum.
The eigenstate of orbital angular momentum is

) = Y;jj) = (-l)m<rK ~m). (3.113)

Time reversal changes the sign of the m index and multiplies by (—l) m.

A magnetic potential may not be real. An example is the spin—orbit
potential. This is due to the coupling of the magnetic moment of the
electron to the solenoid magnetic field caused by the orbital motion of its
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charge about a centre. It is Vs(r)a • L. The coordinate representation of
a • L is

—ia  - (r x V).

We look for an operator U that has the property that l/|xP*(t)) obeys
(3.110) when H is a • L. That is we require

^ t ) ) . (3.114)

Putting J = J<T in the angular momentum commutation rules (3.75) we
can verify that

U = Gy9 (3.115)

where the matrix representation of oy is given by (3.80). The time-reversal
operator for spin states is

6 = <ryu. (3.116)

We find the effect of 9 on the spin eigenstates (3.79) by using their
representation as vectors in spin space.

•(i)-(??)(*)-(!
•(!)-(! o)GH(J)-

This is summarised by

0*yv)=(-IVZ-CV). (3.H8)
The effect of 9 on the angular momentum state of an electron with

spin is seen by using the relations (3.91,3.93) and the symmetry of the 3-j
symbol under change of sign of all the m indices. As we did in (3.98) we
introduce an arbitrary phase factor independent of j and m, obtaining

0\fjm) = ( - i y - m | < / -m). (3.119)

In general, time reversal changes the sign of the m index and multiplies
by a phase factor.

3.4 The Pauli exclusion principle

In the problem of N identical electrons interacting with each other in
the Coulomb potential of a nucleus, the Pauli exclusion principle plays a
crucial role. If we consider the possible states of one electron interacting
with the rest of the system the exclusion principle means that a state
cannot be occupied by more than one electron.
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In this section we set up an algebraic structure to ensure that the
many-electron states we will consider obey the exclusion principle.

3.4.1 Independent-particle configurations

We consider the subspace of N-electron states with the same total angular
momentum and parity, denoted respectively by j and (. Since these states
are orthogonal to states with different *f/? the subspaces are independent
and the problems of the interaction of states are separate.

Each tj subspace is spanned by a complete set of independent-particle
configurations. A configuration is a state in the product space of N one-
electron states. The one-electron states \/J) are solutions of one-electron
problems. It is obviously sensible to choose a one-electron problem to
produce states that are closely related to the states of an electron in the
interacting system. For example, bound states should occupy roughly the
same volume of coordinate space as the atom. How to choose the bound
states will be left until chapter 5. For the purpose of the present discussion
the word 'orbital' will refer to a one-electron state.

Orbitals |/i) are characterised by their quantum numbers n^tC^j^m^.
Orbitals in the positive-energy continuum are characterised by momen-
tum p^ instead of the principal quantum number n^. In each case we
characterise them by the integer //. In the present context no confusion is
caused by using a discrete notation for the continuum.

\v) = \P^nJnmti) : continuum,
: bound. (3.120)

The zth electron is characterised by its position—spin coordinates. The
corresponding basis state in the coordinate—spin representation is abbre-
viated thus.

<*1 = (r^-|. (3.121)

To describe the TV-electron system we select N orbitals from the set |/j),
characterised by integers £ = l,..,iV. An element of the product space is
given in the coordinate—spin representation by

N

where Pn is a number that depends on the permutation r\ of the electrons
among the orbitals.

Since the electrons are identical no one permutation is physically dis-
tinguishable from another. Consider the element \p) of the AT-electron
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product space consisting of the antisymmetric sum of all possible permu-
tations. This is the normalised determinant

|p)=(iV!)-1/2det(zK). (3.123)

Note that continuum orbitals are normalised in the sense discussed in
section 6.4. If two orbitals |£) are identical the determinant vanishes
because it has two equal columns. No two electrons can be in the same
orbital. The iV-electron state \p) therefore obeys the Pauli exclusion
principle. We call it a configuration.

The eigenstate \fjj) of the N-electron Schrodinger equation for the fj
subspace may be expanded in configurations

\f/j)=Xp\p)(p\f,j). (3.124)

This is the configuration-interaction representation. It is antisymmetric
in all the coordinates and spins. Antisymmetry is a requirement for all
JV-electron states.

3.4.2 Creation and annihilation operators

We now develop a formalism that enables us to preserve antisymmetry
in expressing different AT-electron configurations \p), obtained by different
selections of N orbitals from the set \fi), in terms of a chosen base configu-
ration |0). We arrange the orbitals \fi) in increasing energy order, orbitals
with the same energy being ordered by increasing quantum numbers. A
sensible choice for the configuration |0) is the one in which the first N
orbitals are occupied.

The configurations are expressed in terms of the occupation-number
representation, where they are characterised by the occupation numbers
n^ of the orbitals \/LI). n^ is either 1 or 0. The base configuration is

|0) = |111..11000...). (3.125)
N states

An example of a different configuration, obtained by annihilating an
electron in the orbital |3) and creating one in the orbital \N + 2) is

|p> = 1110..11010..). (3.126)
N states

In general iV-electron configurations \p) are obtained by annihilating elec-
trons in M orbitals with n^=l in |0) and creating electrons in M different
orbitals with n^=0 in |0). In other words we change the occupation
numbers from 1 to 0 in M orbitals and from 0 to 1 in M different orbitals.

We create or annihilate an electron in a particular orbital |a) by operat-
ing on a configuration \p) with a creation operator a\ or an annihilation
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operator <2a. In defining the creation and annihilation operators we char-
acterise the configuration \p) simply by the occupation number na of the
orbital whose occupation number is to be changed.

\p) = \n*). (3.127)

The creation operator a\ is defined by

al\na) = (-1)F«(1 - n a)\na + 1). (3.128)

If n a = l , a\ gives zero. If na=0? a\ gives an (N + l)-electron configuration
in which na=l. Pa is the number of occupied orbitals with \i < a. We
understand this by considering the evaluation of the (JV + 1) x (N + 1)
determinant a\\p). We add terms obtained by multiplying each element in
turn of the column a by its cofactor N x N determinant. The terms have
alternating signs, the sign of the first term being (—l) Pa.

The annihilation operator aa is defined by

a«\n a) = (-l)P ana |na - 1). (3.129)

If na —  0, aa gives zero. If na = 1, aa gives an (N— l)-electron configuration
in which na = 0.

In many-body problems we are normally concerned with systems that
have a fixed number of electrons. In order to preserve the electron
number N we must operate on the configuration \p) with equal numbers
of creation and annihilation operators. We now develop the algebra of
these operators. First we consider products of creation and annihilation
operators for one orbital |a).

aa<4|na) = |na) if na = 0,
= 0 if na = l. (3.130)

<4fla|wa) = 0 if na = 0,

= \na) if na = 1. (3.131)

We therefore have the commutation rule

aaal + alaa = l. (3.132)
In considering changes of occupation number in two different orbitals

|a) and |/?) we characterise the configuration \p) by two occupation num-
bers na and np.

\p) = \nanp). (3.133)

The operation of aa and a^ gives a non-zero result only if na = 1, np = 0.

1)). (3.134)
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When these operators act in the reverse order we have

4aa\n«n p) = aJ(-l)p« |K  - l)np). (3.135)
The number of occupied orbitals with p < /? for the (N— l)-electron
configuration on the right-hand side of (3.135) is one fewer than for the
original configuration \p). We apply the definition (3.128) of the creation
operator at to (3.135) to obtain

flJ^M/j) = ( - l ^ - ^ - l ^ l K - l)(nfi + 1)) = -ajpln.np). (3.136)

The commutation rules (3.132,3.136) are combined into a set of rules
that constitute the algebra for ensuring antisymmetry in a many-fermion
problem.

fla4 + 4 f l a = d«P' (3.137)
aaap +apaa = 0, (3.138)

Note that equation (3.131) means that

N« = ala a (3.140)

is a real linear operator whose eigenvalue is na. It is the number operator.
This means that a\ and aa are adjoints of each other and justifies the
adjoint notation.

3.4.3 Symmetric operators

Electron—atom collisions involve (N + l)-electron configurations with N
electrons initially in the ground state of the target atom and at least
one electron in an orbital of the scattering continuum, for example an
eigenstate of momentum or plane-wave state. These configurations are
transformed by one- or two-electron operators, which are additive for
electrons and symmetric in the electron coordinates. One-electron opera-
tors include the kinetic energy K and one-electron potentials V such as
the electron—nucleus potential. The electron—electron potential is a two-
electron operator. We find a form for the operators, the second-quantised
form, which gives a method for the calculation of antisymmetrised matrix
elements.

We first consider the symmetric one-electron operator T, which is the
sum of operators tu i = 0, N, for each electron. A useful example of U is
the bare nucleus Hamiltonian Ki + Vu where V\ is the electron—nucleus
potential. The second-quantised form for T is found by considering matrix
elements for (N + l)-electron determinants \pf), \p) of orbitals selected
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from a set |/j), |v). We introduce the position—spin coordinate x,-, which
stands for the set *uou a n d the notation x,-, which stands for all the
position—spin coordinates except x*. The total coordinate set is x. We
expand the matrix element (p'\T\p) in these coordinates and introduce
the expansion of each determinant in the product of the elements (x,-|v) of
the ith row and their cofactors (xj|av|p), remembering that normalisation
requires a factor (N + 1)~1//2.

(p'\T\p)

= ]C fdxi Idxi I dx\ idxi{pf\x^(xf
ixf^ti\xixi)(xixi\p)

r
I)"1 Y, dx

N

, l (3.141)

The second-quantised form of the one-electron operator T is therefore

l . (3.142)

We now consider the special case where the orbitals |/i), |v) come from
the complete orthonormal set of eigenstates |a) of t.

t\z) = t » . (3.143)

The form (3.142) of T now becomes the operator that measures the total
value of T, in view of (3.140).

T = XAaat'a = 2Ma. (3.144)

We now revert to the more-general set of orbitals \/i)9 |v) and expand
them in the set |a), obtaining

/ 4 . (3.145)
Comparing (3.144,3.145) we find the following operator transformation

al =l 4
= Zvav(a|v). (3.146)
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The symmetric two-electron operator V is given in terms of the electron-
electron potentials vap by

v = E M = fc*p(N*Np - NJapJv^. (3.147)

From the definition (3.140) of Na and the commutation rules (3.137,3.138)
we find

NaNf - NaSaP = a\a\apa*. (3.148)

On applying the transformation (3.146) we obtain the required form for
V.

V = \ E^pe alalapaa(fiv\v\pa). (3.149)

The convention for writing two-electron matrix elements is that \x and o
belong to one electron, v and p to the other.

Note that the commutation rules (3.137—3.139) and the symmetric oper-
ators (3.142,3.149) have been derived from properties of determinants. We
have not assumed that the orbitals |ju), |v) are orthogonal. In evaluating
matrix elements care must be taken to keep track of the scalar products
of orbitals that are not orthogonal, such as bound orbitals and plane
waves. The AT-electron target configurations are conveniently normalised
by (3.123). The normalisation of the continuum orbitals is discussed in
chapter 6.

3.5 The Dirac equation

The relativistically-covariant description of the motion of an electron in
quantum mechanics was first given by Dirac (1928). We consider the
relativistic motion of an electron in the potential of an atom.

3.5.1 The free electron

The Schrodinger equation of motion (3.42) for an electron is

ijt\tp{t))=H\tp(t)). (3.150)

For a free electron the Hamiltonian H is the total energy, given in atomic
units by

H = K + c2 = c(p2 + c2)1/2. (3.151)

Note that we are departing from the more-usual relativistic convention
by featuring the kinetic energy K rather than the total relativistic energy.
This enables us to maintain a consistent notation where we use E for the
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eigenvalue of K. We use the value of the fine-structure constant e2/hc to
find c in atomic units.

c = 137.035 99. (3.152)

If we consider the coordinate representation of p2 (3.33) we see that
(3.150) is not covariant because the time derivative appears linearly while
the space derivatives in V2 do not. In a covariant equation p must occur
linearly in H. A sufficiently-general form is

H = coL-p + pc2. (3.153)

The eigenvalue equation for H is the Dirac equation.

[E - COL • p + c2(l - P)]\xp) = 0. (3.154)

We find relations satisfied by a and P by requiring \\p) to be a solution
of the relativistic Schrodinger equation obtained from (3.151).

[(E + c2)2 - c2p2 - c4]\xp) = 0. (3.155)

Multiplying (3.154) on the left by E + COL • p + c2(l + P) we obtain

[E + COL • p + c2(l + P)] [E - COL • p + c2(l - P)]\ip) = 0. (3.156)

Expressing the operators in (3.156) in cartesian components and compar-
ing (3.155,3.156) we find the following relations.

..2 ..2 ..2 n2 1a x = <*y = a z = P = h
otxocv + ocvax = OCVGCZ + oczav = GCZCCX + ocxocz = 0 ,

axp + fax = ayp + pay = azjS + )8az = 0. (3.157)
The Dirac matrices are ax, cty, az, p. The simplest representation has four
dimensions. We choose /? to be diagonal.

0
* = • * ; ) .<<-(£ _°i)-

where the Pauli matrices a are given by (3.80). \\p) is a four-component
spinor.

3.5.2 Electron in a central potential

We choose a reference frame in which the nucleus is stationary and the
vector potential A is zero, and consider a scalar potential V(r). The Dirac
equation becomes

[E - V - COL • p + c2(l - P)]\xp) = 0. (3.159)

It is interesting to consider the angular momentum. The total angular
momentum J is conserved, since the potential is rotationally invariant. In
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order to consider the time conservation of operators it is useful to use the
Heisenberg equation of motion for time-dependent operators

Vt = T-{vT, (3.160)

which follows from (3.42—3.44). Here  T is the time-development operator.
The equation is

i^i=VtHt-Htvt. (3.161)

Conserved operators commute with the Hamiltonian. We want to know if
the orbital angular momentum L (3.59) is conserved. Consider Lx, using
the commutation relations (3.6) and equn. (3.161).

= ex • [(ypz - zpy)v - p(ypz - zpy)]
= ic(ocypz - cczpy). (3.162)

L therefore does not commute with H although, of course, it commutes
with V(r). We now consider the four-dimensional quantity

" ) •Ho ) (3163)
Its rate of change is given by

i-^- = -2ic(ayPz - (xzpy), (3.164)

which follows from (3.153,3.158,3.163). The quantity

J = L + S, (3.165)

where
S = ±£, (3.166)

is therefore conserved. S represents an intrinsic angular momentum of
the electron, which is called spin. The spin thus arises naturally from the
Dirac equation.

It is convenient to write the four-component spinor \xp) as two two-
component spinors

Using (3.158) the Dirac equation (3.159) becomes
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This may be written as two coupled two-component equations.

(E - V + 2c2)\xp2) - co • p|v>i) = 0. (3.169)
Note that the small component \\p2) is of order v/c times \\pi).

In order to understand the boundary conditions for solving these equa-
tions we consider the plane-wave (V = 0) solutions. The free-electron
state is given in the coordinate—spin representation by

(w|vp) = ( co p ] (<x|±v)(r|p), (3.170)
\ £ + 2c2/

where (ffl̂ v) is the two-component spinor (3.79).
We now consider the coupled equations (3.169) in more detail. Elimi-

nating \xp2) we have

(E —  JOIT/H) = ^(o - p)(l H—  2 )~1(<T • p)lvi). (3.171)

This equation may be written to first order in (E —  V)/2c2 as a two-
component Schrodinger equation for \xp\).

(E-K-UR)\ip1)=0, (3.172)
where K is the non-relativistic kinetic energy

K = \v2 (3.173)
and UR is the relativistic potential

v4 1 dV d 1 1 dV
UR = V - -t-j j + "T — S ' L* (3.174)

For £=1000 eV the use of (3.172) involves neglecting terms of order
10~6. Apart from V the last term in (3.174) is the most significant. It
is the spin—orbit coupling term, which can change the sign  of the spin
projection of a scattering electron. The second term is the relativistic
correction to the kinetic energy. The third term has no classical analogue.



4
One-electron problems

Methods for calculating collisions of an electron with an atom consist
in expressing the many-electron amplitudes in terms of the states of
a single electron in a fixed potential. In this chapter we summarise
the solutions of the problem of an electron in different local, central
potentials. We are interested in bound states and in unbound or scattering
states. The one-electron scattering problem will serve as a model for
formal scattering theory and for some of the methods used in many-body
scattering problems.

4.1 Particle in a cubic box

This problem is important in formal scattering theory. A cubic box of side
L is represented by a potential F(r), which has a constant value (say zero)
inside the box and is infinite at the box boundary. This means that the
particle cannot be found outside the box. The coordinate representation
of the Schrodinger equation is

[£ + ±V2 - V(r)]ip(r) = 0. (4.1)

The equation can be separated in the x9 y9 z coordinates, each equation
being similar.

xp(T) = X(x)Y(y)Z(z). (4.2)

We consider the x equation for illustration. The origin is at one corner of
the box.

X(x) = 2Vx(x)X(x). (4.3)

For 0 < x < L the solutions are

X(x) = sin pxx or cos pxx. (4.4)

81
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After imposing the boundary condition X(x) = 0 at x — 0 and L, and
requiring continuity if a similar box is placed at L, we obtain a countable
set of solutions

X(X) = sin - ^ x , nx = 0,1,2,.... (4.5)

The solution of the three-dimensional problem is

= sin x sin -y sin z. (4.6)
L LJ LJ

The significance of this solution is that placing a box round an experi-
ment involving a free particle changes the continuum of eigenstates of p
into a complete countable set given by

px = 2nnx/L, etc. (4.7)

A complete countable set of eigenstates spans a Hilbert space, for which
the algebra is a simple extension of the linear algebra of a finite space.
We have no algebra for the continuum.

4.2 The Schrodinger equation for a local, central potential

The kinetic-energy operator separates in spherical polar coordinates into
radial and angular observables given by (3.63). The Schrodinger equation
for a local, central potential is therefore

[E + ±V2 - \l?/r2 - V(r)]R(r)X(r) = 0. (4.8)

We can rewrite the radial equation in terms of a simpler differential
operator than V^ (3.64) by solving for the function

u(r) = rR(r). (4.9)

We choose a particular eigenstate (3.65) Y/m(?) of L2 and replace L2 by
its eigenvalue, obtaining the radial equation

d2

dr2 r2 2(E-V(r)) (4.10)

If £ is negative, (4.10) is an eigenvalue problem with solutions un<?(r) and
eigenvalues ent?. If E is positive the solution with the correct boundary
conditions is a linear combination of angular-momentum eigenstates.

4.3 Bound states in a local, central potential

In atomic physics we encounter one-electron bound states with different
types of boundary condition. For the first type the electron is completely
confined to a spherical box, near the boundary of which the potential
is negligible. The second type involves a potential which falls to zero
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with increasing r faster than the Coulomb potential Zr"1. The Coulomb
potential is a special case, which must be treated separately. Coulomb
boundary conditions occur when the potential has an arbitrary form for
r < ro but is given by Zr~l for r > ro. A Coulomb potential modifies
free-particle states everywhere.

4.3.1 The spherical box

We consider a spherical potential which is zero up to r = a, where it is
infinite. The radial boundary condition results in the radial equation (4.10)
being an eigenvalue problem with eigenvalues en{ which are positive with
respect to the zero of energy. We define a wave number k by

(4.11)

The radial equation is

£_S£+i)+4,llw(r)_a (4.12,
dr2 r2 J

Since (4.12) is a second-order equation uns has two independent forms,
which are most easily understood when t = 0 (s-state). In this case

uno(r) = sin knor or cos knor. (4.13)

For the sine solution the radial wave function

Rn0(r) = r-xUrt(r) (4.14)

is regular at the origin. The cosine solution is called the irregular solution.
The generalisation of uno(r) to arbitrary positive integers t is given

by the regular and irregular Ricatti—Bessel functions Us(p) and V{(p)
respectively. They satisfy (4.12) with

P = Ktr (4.15)

and are expressed in terms of the spherical Bessel and Neumann functions
js(p) and n/(p) by

= PJAP\
= -pnt{p). (4.16)

The important properties of these functions are given for example by
Antosiewicz (1973) and calculations are in subroutine libraries, for example
Barnett et al. (1974).

The boundary conditions on un/(r) are that it is zero at r = 0 and a.
This gives a finite set of values kn/ in analogy with the one-dimensional
solution (4.5).

. (4.17)
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The integer n is defined in atomic physics to be the principal quantum
number. The number of nodes in the radial function, including those at
r = 0 and a, is n—£+\. The functions are labelled by the old spectroscopic
notation nx, where x is

for t values
0,1,2,3,4,.-. •

43.2 Short-range potentials
For a short-range potential there is a point ro beyond which the potential
can be considered to be zero. A bound particle has a negative energy
eigenvalue en/ and we define the absolute value of the imaginary wave
number i/W by

Pn, = -€**• (4.18)
The radial equation is

For r > ro the solution is given by the appropriate linear combination of
the regular and irregular Ricatti—Bessel functions of imaginary argument.
Putting

P = ifar (4.20)

we see that in the case / = 0 the solution

eip = cos p + i sin p (4.21)
decays to zero at long range as e~^n°r. The generalisation of this to integer
t is

p\ rtr), (4.22)

where HJ?+\p) is the Ricatti—Hankel function that decays exponentially
for large imaginary p. Its long-range form is e~^r.

The solutions of (4.19) are found by numerical integration of the differ-
ential equation up to ro with a chosen value of /?„/. It is necessary to repeat
the solution, hunting for an eigenvalue en^ for which the function un^(r)
and its derivative are equal respectively to H^~\ipn^ro) and its derivative.
Alternatively the boundary condition may be given by matching internal
and external solutions at two external points ro and r\. Which of these
methods is used depends on the algorithm used for solving the differential
equation.
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For a short-range potential added to a Coulomb potential, such as we
might have in a one-electron model of an atom, the external Ricatti-
Hankel function of (4.22) is replaced by a solution of the bound Coulomb
problem, discussed in the next section.

4.3.3 The Coulomb potential

For the purpose of normal atomic collision problems the state of an
electron in the hydrogen atom is given by the solution of the problem
of an electron bound in the Coulomb potential. We choose the nucleus
to be infinitely massive for simplicity, although there is no difficulty in
eliminating the consequent errors of order 10~3 by transforming to the
system in which the centre of mass is the origin and the particle has the
reduced mass memul{me + m#).

The radial equation for nuclear charge Z is

d2

un/(r) = 0. (4.23)

It cannot be solved by the methods of section 4.3.2 because there is no
point ro beyond which the potential is negligible. The solutions are special
functions, which we call hydrogenic orbitals. They are described below.

The normalised hydrogenic orbitals are

r2z (n-/-iv 11/2

Un/(r) = - —  [H
(
 l)' f/+lI%$(p)e-"\ (4.24)

[ n 2n{(n + /)!} J
where

p = — r (4.25)

and L%+/(p) is an associated Laguerre polynomial.

( n ^ 1 f c ) ! ( 2 ^ + 1

The forms of wn/(r) for n = 1 and 2 (see also fig. 4.1) are

2s : Z3/22"3/2r(2 - Z r ) r Z r / 2 ,
2p : Z5/224-l/2r2e~Zr/2. (4.27)

The energy eigenvalues en^ are given by the Rydberg formula

e^ = -\Z2ln2. (4.28)
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2 \ A 6 8 10 12 K 16
r(a.u.)

Fig. 4.1. The three lowest-energy orbitals un^(r) of the hydrogen atom.

4.3.4 Matrix solution for a bound state

The problem of a single electron in an atom may be approximated by
that of an electron in a local, central potential with the Coulomb form at
large distances. The bound radial eigenstates un/(r) of an electron in such
a potential may be expanded in a basis set f^(r) of radial functions, each
of which is square integrable and is normalised.

rW*(r)]2 = l.Jo
We write the radial Schrodinger equation (4.10) in the form

(erf - H,)urf(r) = 0,

where

2 + V(r).

(4.29)

(4.30)

(4.31)

We consider the subspace of radial states belonging to the angular-
momentum index /, which we drop from the notation for the states.
un/(r) is the coordinate representation of a state \n).

Unt(r) = (r\n).

The basis set of radial states is given by

fjdr) = (r\j).
The expansion of the eigenstate n is written

(4.32)

(4.33)

(4.34)
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The set of normalised orbitals may not span the ( subspace of eigenstates
of an electron in the potential. If not, the basis \j) includes the positive-
energy continuum, which will be discussed in section 4.4.

The radial Schrodinger equation (4.30) is written using the notation of
(4.30,4.32) as

(en,-H,)\n)=0. (4.35)

We use the representation theorem for the basis states \j) and form the
matrix element with the bra vector (i\.

Xj(i\en,-H,\j)(j\n)=0. (4.36)

This is formally a matrix eigenvalue problem with eigenvalues en,. The j
component of the corresponding eigenvector is {j\n).

We consider it as the problem of diagonalising a finite matrix, the
computation of which is available in subroutine libraries, for example
Anderson et a\. (1992), by truncating the basis to a finite set of states \j).
The eigenvector components (j\n) are fully defined by requiring that the
eigenvectors \n) are normalised.

Consider the eigenvector components (j\n) for lower-energy eigenvalues
and for basis states \j) that have large components in eigenvectors for
higher-energy eigenvalues. For a well-chosen basis such components are
small so that the truncation is justified for low-lying states.

The elements of the Hamiltonian matrix are written as integrals by
returning to the coordinate representation.

(i\en, - HAj) = f ° drMr)[en, - H,]fjt(r), (4.37)
j u

where H, is given by (4.31).
The hydrogenic orbitals (4.24) are linear combinations of Slater-type

orbitals ft/(r) whose normalised form is parametrised in terms of positive
integers nu and exponents £#. It is

Mr) = [(2nt,) !]"1/2(2G/)^+1/2rn^-^r. (4.38)

These orbitals are often used as the basis for a more-general problem,
since only a relatively-small number of them are needed to represent the
low-lying states well and the integrals (4.37) are analytic, making the
computation of the Hamiltonian matrix elements fast. The hydrogenic
orbitals themselves constitute a better basis since they are orthonormal.

4.4 Potential scattering

The scattering of a spinless electron from a local, central potential is a
prototype for scattering problems involving complex targets. The scatter-
ing is of course elastic since the potential has no degrees of freedom that
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can be excited. The problem defines precisely the one-electron continuum
functions for positive-energy electrons in the potential.

4.4.1 Differential cross section

In a scattering experiment a beam of electrons of momentum k hits a
target. We consider the target to be represented by a potential V(r).
Electrons are observed by a detector placed at polar and azimuthal angles
0, (j) measured from the direction of the incident beam, which is the z
direction in a system of spherical polar coordinates (fig. 4.2). For a central
potential the problem is axially symmetric. Relevant quantities do not
depend on </>. The detector subtends a solid angle

da = smOdOdcj). (4.39)

The observed quantity is the number of electrons detected in a particular
energy range (E,E + dE) in unit time. For elastic scattering

E = \k2. (4.40)

The number of detected electrons is proportional to the incident beam
flux, which is an accident of the experiment, not a property of the
scattering process. The quantity that describes the scattering process is
the differential cross section.

da _ number of electrons detected per unit time
dil number of incident electrons per unit area per unit time' (4.41)

It has the dimensions of area.
The electron in a scattering problem may be found anywhere in space.

Its wave function therefore cannot be normalised in the sense that the

k

Fig. 4.2. Schematic diagram of an elastic scattering experiment.
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probability of finding it somewhere in a finite volume is unity. Instead it
is normalised to plane-wave incident flux. If there is no target, the state
of the electron is |k). Its coordinate representation is

(r|k) - (27t)-3/yk-r.

The probability flux for a wave function xp{t) is

j(r) = (20~ V ( r ) V V(r) - ip(r) V tp'(r)].

For xp(r) = e'k r

j(r) = k.

(4.42)

(4.43)

(4.44)

The wave function of the electron is distorted (fig. 4.3) from its plane-
wave form by the potential V(r). It is called a distorted wave ;^+)(k,r).
The coordinate representation of the scattering state is

(rly^~Vk)) = (27c)~3//2ŷ ~l"Vk r) (445)

The distance of the detector from the target is very large on an atomic
scale. The target therefore looks like a point and the scattered wave at
large distances is a spherical outgoing wave. The superscript (+) in the
notation for the state indicates that the large-distance (asymptotic) form
of the distorted wave is

elkr+f(9)e—,  r 00. (4.46)

\ '"

3-

Fig. 4.3. Surfaces of equal phase (wave fronts) at intervals of n in the wave
function for the elastic scattering of 200 eV electrons by the static potential of
argon, plotted on a plane through the scattering axis. The radial scale is marked
in a.u.



90 4 One-electron problems

For later purposes we are sometimes interested in the time-reversed dis-
torted wave, which has ingoing spherical-wave boundary conditions

p-ikr
X

{-\K r) — - e* T + /* ( 0 ) — ,  r —> oo. (4.47)

The amplitude f(6) of the scattered wave relative to the incident wave is
the scattering amplitude. It is defined as follows. The number of scattered
electrons in the volume between r and r + dr in the solid angle dQ is

oikr
\f(6)—\ zrzdrdQ = \f(6)\zdrdQ.

r
The number scattered into dQ per unit time is

where in atomic units the velocity dr/dt is k. Using (4.41,4.44) we find

da
(4.48)

The total cross section is

<jT = J dQ\f(9)\2. (4.49)

4.4.2 Partial-wave expansion

For a central potential it is natural to expand the scattering wave function
/+)(k,r) in orbital-angular-momentum eigenstates. We first consider the
case of zero potential where the wave function is a plane wave (4.42),
which takes the form

(r|k) = (2n)-3/2eikrcosd (4.50)

in the coordinate system where z = k.
The expansion

(r|k) = XLMfLM(k,r)(r\LM)(LM\k) (4.51)

is a solution of the free-electron Schrodinger equation which becomes,
using (3.63),

1"/LM(/c,r)(f|LM)(LM|k)=0. (4.52)

In fact we know from (4.50) that the radial solution is a function of
kr and from (4.52) that it is independent of M. Using the transformation
(4.9) to simplify the differential operator we find that the radial equation
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is
d2 L(L

UL(kr) = 0, (4.53)

where UL(kr) is the regular Ricatti—Bessel function  of (4.16).
We now use the addition theorem (3.72) for spherical harmonics to

obtain

(r|k) = (27r)-3/247T(/cr)-1SL(2L + l)ALUL(kr)PL(cos 9). (4.54)

We find the constant AL by comparing (4.16,4.50,4.54) with the identity
(Merzbacher, 1970)

eikrcos 9 = Z L ( 2 L + i )^-L( / c r )pL( c o s ey (4.55)

The expansion (4.51) is the partial-wave expansion. Our final form is

(r|k) = (2/7i)1/2(/cr)-1i:LMiLt/L(/cr)(f|LM)(LM|k). (4.56)

When the scattering potential V(r) is not zero, the only change is the
radial equation, which becomes

^ | 0 . (4.57)

The distorted wave is

<r|ZW(k)> = (2/7i)1/2(/crr1ZLMiLWL(/c?r)(f|LM)(LM|k). (4.58)

4.4.3 Solution of the radial equation

To solve the radial equation (4.57) we first choose a point ro such that
the potential has its long-range form for r > ro. The space is divided into
internal and external regions by ro. We rewrite V(r) as

V(r) = U(r)-z/r, (4.59)

where U(r) = 0 for r > ro and z is the net charge of the target. The
Coulomb potential affects the solution at all distances r. The radial equa-
tion is integrated numerically from r = 0 and matched to its external form,
either by equating internal and external functions and their derivatives at
ro or by equating the functions at two points ro and r\ > ro, depending
on the algorithm used for the internal solution.

The external form of the radial wave function is a solution of (4.57)
with the potential —z/r. The  uncharged target (such as an atom) is a
special case z = 0. It is convenient to rewrite the radial equation in terms
of the variable

p = kr (4.60)
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using the Coulomb parameter

Y] = —z/k.

The transformed radial equation for the external region is

L(L
_

dp2

uL(p) = 0.

(4.61)

(4.62)

It has two independent, regular and irregular, solutions which are the
Ricatti—Bessel functions  UL{P) and VL(p) of (4.16) in the case z = 0. The
solutions are the Coulomb functions (see also fig. 4.4)

regular Coulomb function :
irregular Coulomb function : GL{Y\, p).

It is not necessary for the physicist to know how to compute the
Coulomb functions. They are found in subroutine libraries, for example
Barnett et al. (1974). A sufficient idea of their form is obtained by putting
rj = L = 0 in (4.62), when they are seen to be sinp and cosp respectively.
The potential terms dilate or compress the sine and cosine waves, resulting
in an overall phase shift at long range.

Fig. 4.4. Regular and irregular Coulomb functions for L = 0 and 10, r\ = 0 and
-0.5.
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The forms of the Coulomb functions for very small and very large r are
important

, P ) , P

, p) — • sin (p - Ln/2 - f]ln2p + a L\

(4.63)

, p) — • cos (p  —  Ln/2 —  r\\n2p + aL)9 p — • oo. (4.64)

Notice that the term r\\n2p in the large-r form is a phase that depends on
r at all distances. The large-r form is not valid for any range relevant to
computation. The quantity ox is the Coulomb phase shift, defined by

oL = arg T(L + 1 + ir]). (4.65)

For a charged target the boundary condition (4.46) is generalised. The
incident wave is a Coulomb wave (the solution of the Schrodinger equation
for a Coulomb potential) and the scattered wave is outgoing for large r.
The form of the outgoing and ingoing solutions is seen from (4.64). We
denote these solutions using superscripts (+) with the same meaning as in
(4.46,4.47).

H{-\rj, p) = GL(ri9 p) - iFL(rj, p). (4.66)

The external solution for the partial wave L is

uL(k, r) = FL(ri, kr) + CLH{+\n, kr\ r > r0, (4.67)

where CL is the partial scattering amplitude. The radial equation is solved
by matching this to the internal solution, thus determining the complex
number CL.

In computing the internal solution the starting value of u^ik, r) at very
small r is arbitrary. The normalisation is given by (4.67). However, in
order to avoid computational problems associated with large and small
numbers it is convenient to use the first of equns. (4.63) as the starting
condition.

4.4.4 The asymptotic region

Scattered particles are observed at distances of the order 107 times the
average radius of an atom. At such distances the long-range forms of the
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wave functions are valid. This is the asymptotic region. It is characterised
by different parameters for different purposes. The parameters are deter-
mined by the matching of internal and external solutions for each partial
wave.

We first consider the case of a real, short-range potential. The radial
function is the solution of a real differential equation. However, we know
that its external form (4.67) is complex. It must therefore have the form

uL(p) = e^vdp), (4.68)

where <̂>L is a real constant and VL(P) is real. We consider only the
asymptotic forms of all the wave functions. Using (4.64) in our particular
case 77 = 0 we write

VL(P) —> A Lsin(p - Ln/2) + 5Lcos(p - Ln/2), (4.69)

Putting

AL = cos(5L,
BL = sin(5L, (4.70)

we have
vL(p) —+ sin(p - Ln/2 + S L). (4.71)

The real number SL is the phase shift. The real number

KL = tanSL = BL/AL (4.72)

is the K -matrix element.
The phase shift is non-zero for only a finite number of partial waves.

For large enough L the repulsive term L(L + l)/r 2 in the radial equation
(4.57) (the centrifugal barrier) is so large that the potential is insignificant.
The wave function ui(k,r) is essentially zero at ro. The external function
has no irregular part so that BL = 0 in (4.69) and dL = 0.

Another useful way of understanding the partial wave for a real poten-
tial is that it consists of an ingoing wave H^\p) and an outgoing wave
whose magnitude is the same because no flux is lost, but whose phase
may be given by a phase factor SL with respect to it. SL is the S-matrix
element. The S matrix is unitary. We write the partial wave UL{P) using
the asymptotic form of (4.66).

UL(P) •  fy[e-Hp-Ln/2) _ SL€i(p-Ln/2)y (4 73)

Comparing (4.67,4.73) we have

(4.74)

CL = JXSL - 1). (4.75)
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We now express SL in terms of the phase shift SL. We note that
(4.64,4.66,4.67) give the asymptotic form for UL(P)

ei(l>L[ALsm(p - Ln/2) + BLcos(p - Ln/2)] = [(1 + fCL)sin(p - Ln/2)
+ CLcos(p-Ln/2)]. (4.76)

We therefore have, by comparing coefficients of the sine and cosine
solutions,

k <477>
(478)

Comparing (4.72,4.74,4.78) we find that

The phase 0L of the partial wave (4.68) is found by expressing (4.78) in
real and imaginary parts and comparing the result with the expression

CL = ei(t>LBL, (4.80)
obtained from (4.76). We have

CL = BLcos(j>L + iBLsin(t)L = y ^ j + * y ^ y , (4.81)
Li LI

from which we find (with the appropriate choice of zero phase)
tanc/>L = KL,

4>L = SL. (4.82)
The phase of the scattering wave function for a real potential is constant
and equal to the phase shift.

The asymptotic form of the distorted wave x(+)(k>r) is written using
(4.45,4.58) and the addition theorem (3.72).

X(+)(k, r) —• (fer)- 12;L(2L + l)iLei5Hrn{kr - Ln/2 + dL)PL(cos6). (4.83)
If the potential V(r) is a pure Coulomb potential the asymptotic partial

wave is given by the regular Coulomb function (4.64), apart from a
constant phase factor. We strictly have no incident plane wave since the
Coulomb potential modifies the wave function everywhere. We make the
normalisation of the Coulomb distorted wave xp^k^r) analogous to that
of (4.83) by choosing the phase factor to be the Coulomb phase shift OL-

V,(k,r) —> (/cr)" 1ZL(2L + l ) i V *
x sin(/cr - Ln/2 - r\\n2kr + <rL)PL(cos0). (4.84)
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We denote the Coulomb scattering function for all r by a notation analo-
gous to (4.42).

(4.85)

The partial wave form of the scattering amplitude for a short-range
potential is found by comparing the asymptotic partial wave form (4.45,
4.58,4.76) of the distorted wave ^+^(k,r) with the asymptotic expression
(4.46).

eipcose+f(9)kp-1eip

= p~lyLL{2L + l)fL[(l + iCL)sin(p - Ln/2) + CLcos(p - LTT/2)]PL(COS0).

(4.86)

Subtracting the asymptotic expression for the plane wave

eipcos0 — > p"12L(2L + l)*Lsin(p - LTC/2)PL(COS0), (4.87)

and using (4.75,4.79) we find

f(0) = (2f/c)-12:L(2L + l)(SL - l)PL(cos0) (4.88a)

= fe"1XL(2L + l)eidLsmSLPL(cos9) (4.88b)

= /c"1SL(2L + l)CLPL(cos6). (4.88c)

Since SL = 0 for L > Lo the scattering amplitude is a finite sum of partial
wave terms for L < Lo.

The total elastic cross section OE is obtained from (4.88) by using (3.70)
and the orthogonality of the spherical harmonics.

aE = JdQ\f(9)\2 = (n/k2)ZK(2L + l)\SL - 1|2 (4.89a)

= (4TT//C2)SL(2L + l)sin25L (4.89b)

= (4TT//C2)I:L(2L + 1)|CL|2. (4.89c)

We now generalise to the case where the potential V(r) has the Coulomb
form at long range. We must add the Coulomb scattering amplitude
(Schiff, 1955)

/c(0) = ^ ^ln(sin20/2+2K7O) ( 4 9 Q)
2/csin 9/2

to the scattering amplitude for the short-range potential U(r) with
Coulomb boundary conditions. This will be fully explained in chapter
6 on formal scattering theory, but it is obvious for U(r) = 0.



4,4 Potential scattering 97

The asymptotic form of the partial wave is obtained by using the
Coulomb forms (4.64) in (4.69) and making arguments analogous to those
leading to (4.83). We obtain

X{+)(Kr) —+ (/cr)" 1SL(2L + l)iLei{(7L+SL)sm(kr - Ln/2 - r\\x)lkr
+ °L + SL)PL(cos9). (4.91)

The distorted wave for the full potential V(r) of (4.59) is

<r|Z<+>(k)> = (2/7i)1/2(/cr)-1i:LMfL^uL(/c,r)(r|LM)(LM|k). (4.92)

The scattering amplitude is

f(0) = fc(9) + (2 i fc r 1 2 L ^M2L + 1)(SL - 1)PL(COS0), (4.93)

or forms in terms of different scattering parameters analogous to (4.88).
The S -matrix element is still defined in terms of the phase shift by

SL = e2idL. (4.94)

The total elastic cross section and the forward (9 = 0) differential cross
section are infinite.

We now make a further generalisation to the case where U(r) is a
complex potential. A negative imaginary potential absorbs probability
flux, so that the S matrix is no longer unitary (4.73,4.79) and the phase
shifts are no longer real. In electron—atom scattering a loss of flux from
the elastic state occurs when inelastic scattering or ionisation are possible.
These are generically termed reactions and the total cross section for
exciting them is the total reaction cross section OR.

oR = (7r/k2)ZL(2L + 1)(1 - |SL|2) (4.95a)

= (4TT//C2)ZL(2L + l)(ImCL - |CL|2). (4.95b)

By setting
SL = HL + IVL (4.96)

and using (4.75,4.79) we find that

I m C L - | C L | 2 = | ( l - e - 4 v L ) . (4.97)
The total reaction cross section (4.95b) is zero if SL is real.

The total cross section for a short-range potential is given by (4.89c,
4.95b).

aT = oE + oR = (4TT//C2)SL(2L + l)ImCL. (4.98)

The imaginary part of the forward scattering amplitude is given by (4.88c).

= /c~1SL(2L + l)ImCL = (k/4n)oT. (4.99)
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This important relationship is the optical theorem. The imaginary part of
the forward scattering amplitude is proportional to the total cross section.

4.5 Integral equations for scattering

In the previous sections the potential scattering problem has been defined
in terms of a Schrodinger differential equation with outgoing spherical-
wave boundary conditions. The description and computational methods
are analogous to those used for one-electron bound-state problems. In this
section we see that the whole problem in the coordinate representation
can be written in terms of a single integral equation, which in many ways
is easier to understand physically than the differential equation.

A large breakthrough in physical transparency and ease of computa-
tion is achieved by expressing the problem as an integral equation in
momentum space. The reason for this is that scattering experiments mea-
sure momenta, not positions, so that the momentum-space description
parallels the experiment.

The potential scattering Schrodinger equation is

[£<+> ~K]\X
i+\k)) = V\xi+)(k)). (4.100)

The superscript (+) indicates outgoing spherical-wave boundary condi-
tions. We will show that this corresponds to adding to £ a small, positive
imaginary part, which will tend to zero. We multiply on the left by the
inverse of the differential operator to obtain the formal solution

l (4.101)
The plane wave |k) has been added to give the correct boundary condition.
When V = 0, |^+)(k)) = |k). The inverse differential operator is the
resolvent or free-particle Green's function operator and is denoted by Go.

|^+)(k)> = |k) + G0(£(+))F|Z(+)(k)). (4.102)

We first replace the resolvent by a number by introducing its spectral
representation and using the function theorem. At the same time we
introduce the coordinate representation.

= <r|k> + J d'r" J d\> J </3/c'(r|k') fc(+)2
2_ fc/2 (k'|r')

(4.103)

The superscript (+) on k denotes the addition of a small positive imaginary
part to k. The coordinate representations of a plane wave, a distorted
wave, and a local, central potential are given by (3.25), (4.25) and (3.35)
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respectively. The coordinate-space integral equation is

X(+)(k, r) = e*r + J </VGo(£(+); r, r')F(r')*(+)(k, A (4.104)

The Green's function Go(£^; r , r r ) is defined by

G0(£<+>;r,r') = {2n)~' j d \ ' ^ - ^ ^ ^ \ (4.105)

In evaluating the Green's function we give a mathematical meaning to
the (+) superscript. It is convenient to make the transformations

K = kfp,
a = kp. (4.106)

We perform the angular integrations in (4.105) and replace o^2 by o2 + ie,
where 6 is a small positive quantity that will tend to zero.

G0(£(+);r,r /) = (27c2p)-1 lim / dK—. = .  (4.107)
-̂+0+ Jo o1 —  Kl + ie

The integrand of (4.107) has poles at a + ie/2 and —a —  ie/2. We evaluate
the integral by the method of residues. The result is translated into our
original notation by inverting the transformation (4.106). It is

*7c|r-r'|
G0(£(+);r,r ') = -{2n2prlneiG = -(27T)"1- - , (4.108)

|r —  r I
which is an outgoing spherical wave propagating from r' to r.

If we had replaced e by — e  we would have had an ingoing spherical
wave

-*7c|r-r'|
G0(£(-);r,r ') = -(2n]T1- . (4.109)

Ir-r'l
This is the time-reversed Green's function, which gives the equation cor-
responding to (4.104) for the time-reversed distorted wave j^~)(k,r).

The coordinate-space integral equation (4.104) gives great insight into
quantum mechanics and its description of the potential-scattering process.
We consider the elastic-scattering wave function x^+\k, r) as the probability
amplitude for finding the electron at the point r. It is expressed by
(4.104) as the sum of probability amplitudes for the electron reaching r
by alternative paths. First it may reach r directly. This is the plane-wave
inhomogeneous term. It may also reach r' (with amplitude ^+)(k,r'))
and propagate from r' to r as a spherical wave, the amplitude for the
propagation occurring being V(r'). The integration adds the spherical-
wave contributions from all the points rr. The equation (4.104) is equivalent
to Huygens's description of wave propagation.
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The asymptotic form of (4.104) gives the scattering amplitude (4.46). If
r »  rr (4.108) becomes

Jk(r-r'cos6)
G0(£( + ) ;r ,r ' )—> -(27T)" 1 , r » r\  (4.110)

where 6 is the angle between r' and r. If r is the position of the detector
then 9 is also the angle between r' and k', which is the outgoing momentum
whose absolute value is k.

The asymptotic form of the scattering wave function (4.104) is

/

Jkr
d3r'e-ik'r> F ( r ')z(+)(k? r')] e (4.111)

which is the same form as (4.46) with the scattering amplitude given by

f(9) = -(In)-1 IVrV*'rV(ry+)(k,r') (4.112a)
= —(27r) 2<k/|T|k>. (4.112b)

Equn. (4.112b) defines the T matrix for potential scattering. It is the
operator that gives the amplitude for the transition from the initial state
|k) to the final state |k'). It is the operator whose matrix elements are
primarily calculated by scattering theory.

(k'\T\k) = (k'\V\X
{+\k)). (4.113)

It is useful to compare the partial-wave T-matrix elements with the
other scattering parameters discussed in section 4.4.4. The partial-wave
expansion of (4.112b) is

= -7c2L(2L + l)TL(/c)PL(cos 6). (4.114)

Comparing (4.114) with (4.88) we have

TL = -^-T(SL - 1) = -^-e^sindL = ~CL. (4.115)
link nk nk

The momentum-space integral equation is the Lippmann—Schwinger
equation. It is an equation for the T matrix. We multiply (4.101) on
the left by V, take the matrix element for the eigenstate (k'| of the final
momentum, and introduce the spectral representation of K.

(kf\V\x{+\k)) = (k'\V\k)

[ ^ (4.116)
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The definition (4.113) of the T matrix gives

(k'|T|k) = (k'|F|k) + Jdik"(k'\V\k")E{+) [ ifc//2 (k"|T|k). (4.117a)

We can write (4.117a) in a representation-free operator formalism as

T(£( + )) = V + FG0(£( + ))T(£( + )) . (4.117b)

Much insight into the scattering process is given by (4.117a,b). For
small values of the potential T is approximated by V. This is the
Born approximation. In fact the T-matrix element can be calculated
knowing only the potential matrix elements, given a method of solving
the integral equation. Note that k" in (4.117a) takes all possible values
including k" ^ k. The T-matrix element <k/r| T|k) is a generalisation of
the corresponding quantity in (4.112b). The amplitude (k'|T|k) for the
energy-conserving scattering process is on the energy shell, or simply on
shell. (k"|T|k) in (4.117a) is half off shell since ±/c2 = £, but fc" is arbitrary.

Introducing the momentum representation into the representation-free
form (4.117b) defines the fully-off-shell T-matrix element (k"|T(£W)|k')
which comes from solving the Schrodinger equation for energy E^ and
forming the T-matrix element for momenta k" and k\ which are unrelated
to each other and to E.

The solution of the integral equation (4.117a) is accomplished by first
making a partial-wave expansion to reduce the problem to integral equa-
tions in the radial dimension. The partial-wave expansion of the T- or
F-matrix element is illustrated for V.

= f d3r(k'\T)V(r)(r\k")

\xi2 1
" ) TT E rLULik'r){k'\L'M')(L'M'\r)
7 I / Kr L'M'L'M

x V(r)
/2 \ 1 / 2 1

x [-) —Z LMiLUL(k"r)(r\LM)(LM\k")

- -LLM(k'\LM)(k'\\VL\\k")(LM\k"), (4.118)

where the reduced (M-independent) potential matrix element is

(k'\\VL\\k") - - ^ JdrUL(k'r)V(r)UL(k"r). (4.119)
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The integral term on the right-hand side of (4.117a) is expanded thus

fdk"k"2 fdk" £ (k'\L'M')(k'\\Vu\\k")(L'M'\k") l
 a

J J L'M'LM L ~ 2k

x (k//|LM)(fc"||7L||/c)(LM|k). (4.120)

We use the orthonormality of the spherical harmonics in (4.120) and
write the integral equations for the coefficients of (k'\LM) {LM|k) in the
expanded form of (4.117a).

(k'\\TL\\k) = (k'\\VL\\k)+Jdk"k"2(k'\\VL\\k")E(+) [ lkfi2(k"\\TL\\k).

(4.121)
The radial integral equations (4.121) are solved for each partial wave L
and the half-oflf-shell solutions substituted in the equivalent of (4.118) for
the T matrix. The on-shell solutions are in fact the TL of (4.115), from
which the scattering amplitude and cross sections can be calculated.

In solving (4.121) we use the result for integration through a pole.

w^y=pidE"Sj' -
where P denotes the Cauchy principal value. We eliminate the numerical
difficulty of the principal value integration by using the result

E"^W'=0 (4123)

to subtract oflf the pole.
We replace the integration by a quadrature rule with points kt and

weights w,, i = 19N. We add the on-shell value of k to the set of
quadrature points, calling it feo.

N

(kiWTLWko) = (ki\\VL\\h) + Ew7[/c72^II^H/c;)(/cyil

-ni/co(/cd|FL||/co)</co||TL||/co}; i = 0,N. (4.124)

The computational form (4.124) of the partial-wave integral equation
(4.121) is a finite matrix equation of the form

(l-K)T = V, (4.125)

which is solved by inverting the kernel matrix <5y —  Kij (Anderson et al,
1992). The on-shell element (/co||TL||/co) of the solution vector < >
is the partial T-matrix element TL of (4.115).
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Equn. (4.119) for the partial-wave potential matrix element shows why
only a finite number of partial-wave T-matrix elements contribute to the
scattering. For very large L the centrifugal barrier means that U^kr) is
appreciably greater than zero only for values of r greater than ro, beyond
which V(r) is effectively zero. Note also that there is a range of L for
which (kr\\VL\\k") is so small that the Born approximation is valid

(/col|TL||/co) = (/co||FL||/co). (4.126)
For the solution of the integral equation V(r) is necessarily a short-

range potential. It may be complex. If V(r) is of the form (4.59) the
Coulomb part is included with the left-hand side of the Schrodinger
equation (4.100), which becomes

[£(+) - K - Fc]|Z«(k)> = U\ X
i+)(k)), (4.127)

where
Vc(r) = -z/r. (4.128)

The integral equation is constructed from

> 1 (4.129)

The (7 = 0 state is now a Coulomb scattering state | k^ ) (4.85). The
analysis is the same as that leading to (4.117) except that the spectral
representation of the inverse differential operator now has a basis of
Coulomb scattering states, which is not complete until we include the
hydrogenic bound states, whose radial forms are given by (4.24).

Another development of the situation where the plane-wave represen-
tation is adequate is the physically-obvious fact that the final state is the
time reversal of the initial state. It is necessary to define the T-matrix
elements by

<kJ->|T|k<+>} = (kJ->|[/|ZW(k)). (4.130)
Here the physical and time-reversed Coulomb scattering functions are
denoted respectively by |kj^). The time-reversal operator is given by
(3.111). It is simply complex conjugation. However, we must also reverse
the direction of k', since the time-reversed function has k' going towards
the scattering centre.

The analogue of (4.117) is

+ / ^ < k } - ) | t / i k ? - ) ) £ ( + )
 l_ x_k,l2 <k?-)£(+) _ x_k,l2 <k?

). (4.131)
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Note that the spectral representation of the Green's function has the
basis states |k^~)) for two reasons. First, it is necessary to have the small
quantity e in the definition of the Coulomb wave negative in order to have
a positive-definite small quantity in the denominator of (4.131). Second,
it gives a T-matrix element in the integrand that enables us to close the
integral equation. The set |k^~~)) is not complete without the Coulomb
bound states \X). In order to close the integral equations we need more
equations

(4.132)

To compute the potential matrix elements we use the partial-wave
expansions of the Coulomb scattering functions in the analogue of (4.118).

(4.133)

In fact only a finite number of bound-state functions are needed for
convergence. The role of each bound state in the numerical solution is as
another quadrature point for the appropriate value of L.

The complete T-matrix element for the full potential V is not (4.130),
since for U = 0 we still have scattering by the Coulomb potential. We
must add the T-matrix element for Coulomb scattering.

= <k'|Fc|k«> + (k}-)|T|kW). (4.134)

A formal derivation of (4.134) is given in chapter 6 on formal scattering
theory.

4.6 Resonances

Scattering cross sections may be quite smooth functions of the incident
energy but sometimes, particularly at low energy, a rapid variation is
observed over a small range centred at ey and of width F r, before and
after which the cross section has its smooth value. In such a case it
may be observed by fitting phase shifts to the cross-section data that
the phase shift SL for a particular partial wave L is responsible for the
rapid variation and the others vary smoothly. The phenomenon is called
a resonance with orbital angular momentum L at energy ey with width
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Fr. Overlapping resonances in different partial waves or even in the same
partial wave may be responsible for more-extensive energy fluctuations.

We first consider a single resonance in isolation. Equn. (4.89b) shows
that the contribution to the total cross section from the partial wave L
(the partial cross section OL) has its maximum value at E = er, where

SL(er) = TT/2. (4.135)

The partial T-matrix element (4.115) has the resonance value

TL(er) = - - L (4.136)
nkr

where kr is the momentum corresponding to ey.
The partial-wave Lippmann—Schwinger equation is (4.121). We retain

the convention that k is on shell, that is

\k2 = E. (4.137)

According to the residue theorem applied to the k" integral the scattering
is determined by the poles of the partial T-matrix element in the complex
k" plane. The existence and positions of the poles are of course determined
by the details of the potential V, but we will assume that there is a pole
corresponding to complex energy ey —  \iTr. The magnitude of the partial
T-matrix element varies rapidly with values of E near the pole and we
can consider ey as the resonance energy. For the cross section we need
only consider the on-shell partial T-matrix element

TL(E) = (k\\TL\\k). (4.138)

We assume that it has the form near E = er

TL(E) = R
 A. , (4.139)

at least for values of E somewhere near the pole. For physical scattering
E is of course on the positive real axis.

For E = ey we can compare (4.139) with (4.136)

TL(er) = -i2^ = - i - L (4.140)
1 r nkr

The residue Rr is given by

Rr = ^j-. (4.141)

The on-shell partial T-matrix element is

= TA — i — •  (4-142)
2nkr E-er + \iTr
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The partial cross section is given by (4.49,4.114,4.115).

n= (2L+l)u
I* (4.143)

This is the Breit—Wigner single resonance formula (Breit and Wigner
1936). The resonance is centred at ey. The full width at half maximum is
rr.

The differential cross section is given by (4.48,4.112b,4.138) and the T
matrix equivalent of (4.118). The scattering amplitude f(E,6) is

/ ( £ , 9) = - T T 2 L ( 2 L + l)TL(E)PL(cos9). (4.144)

It may be written as the sum of a resonant term and a slowly-varying or
direct term.

, 9) = - - n (21/ + l)Tv(E)Pv(cos9)

= fr(E90)+fD(E90). (4.145)
The complex factor in fr has a large negative real part near resonance for
E <er and a large positive real part for E > er. The difference between
the differential cross section and its non-resonant value has a rapid sign
change at resonance.

The differential cross section at 33° near an elastic resonance is illus-
trated in fig. 4.5 for a calculation of electron scattering by the hydrogen
atom. This resonance has L = 1 with the electrons in a state of total spin
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Fig. 4.5. The differential cross section at 33° near a resonance £o=9.77 eV, T=8.9
x 10~3eV, L = 1, S = 1 in a calculation of electron—hydrogen elastic scattering.
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It is interesting now to give some physical interpretation to resonances
and poles of the T matrix. A resonance may be considered as a state
of the compound electron—target system that we are representing in this
section by our potential scattering problem. The state has a definite orbital
angular momentum L. Its energy is not quite definite. The probability of
finding the compound system with a certain energy E is maximum at ey
but has a Lorentzian distribution (4.143) of full width at half maximum
rr.

We can apply the uncertainty principle, which is an approximate scat-
tering theory, to a resonant state. Corresponding to the uncertainty Fr in
energy it has an uncertainty xr in time, given by

Yrxr ~ h. (4.146)

The difference between a resonant state and a bound state is that a bound
state has negative energy. Therefore it cannot decay. The corresponding
pole is on the negative real E axis. A resonant state has enough energy
to decay at least into the target system and an electron with the initial
kinetic energy. The lifetime is xr. In a real system there may be excited
target states into which decay is also allowed.

The residue theorem applied to the k" integral in (4.121) tells us that
scattering is entirely due to poles in the T matrix. Poles that are far below
the positive real E axis correspond to resonances with large widths. There
may be a set of poles with mean widths much larger than their mean
spacing in the real E dimension. The corresponding scattering amplitude
has a slow energy variation. The compound system has a correspondingly
short lifetime. The minimum lifetime is the time it takes the electron to
cross the target region. For a 1 eV electron this is of order 10~15s. In
these circumstances the scattering is called direct.

The resonance illustrated in fig. 4.5 has a width 0.008 91 eV, corre-
sponding to a lifetime of 7.39 x 10~14s. This is much longer than the
direct lifetime, justifying the concept of a resonance as a compound state
with a characteristic lifetime. The physical constants that enable these
calculations to be done easily are

me2 = 0.511xl06eV (mass of the electron),
ft = 6.58xKT16eV s,
c = 3xl010cm/s,

a0 = 0.529 xlO~8cm (Bohr radius of the hydrogen atom). (4.147)

4.6.1 Wave packet scattering

In this section we consider a thought experiment that can be realised
in practice only in a limiting case, but gives valuable insight into the
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scattering process. We assume that there is some imperfect time and
energy resolution in the experiment so that we write the time-dependent
beam amplitude as the time development of the wave-packet form (3.53),
which we rewrite for the purposes of this section as

£o(r, t) = (2TT)-3/2 / d3kF(k, k0, W)efkiMQ)e-iEt/h. (4.148)

We have used the expression (3.47) for the time development of a state
vector, choosing to = 0. E is the kinetic energy corresponding to k. In this
section we keep h and the projectile mass m explicitly in the notation for
clarity.

The beam starts at the point ro. Its wave packet factor F(k, ko, W) is
centred in momentum at ko and characterised by width W. We assume
that it travels in the direction

ko = - ro (4.149)

with velocity

vo = hko/m. (4.150)

With the notation (9k9<l>k) a n d (0,0) for k and ko respectively we choose
the wave-packet factor to have the form

F(k,k0, W) = (27cfe2sin0fcrM(0fc)O(fc,fco, W). (4.151)

With this form the wave packet is
poo

£o(r, t) = ( 2TT) - 3 / 2 / dfcO(fc,fco, W)eik{rQ+r)e-iEt/h. (4.152)
Jo

We now transform the integration variable in (4.152) from momentum
k to kinetic energy E. In order that this transformation be linear we make
a simplifying approximation. We drop the final term in the following
expansion of E

E = (H2/2m)[2k • k0 - k2
0 + |k - k o | 2 ] . (4.153)

The nonlinear relationship due to the final term causes the wave packet to
spread as it propagates. Dropping it assumes that W is so small that the
detector can be placed close enough to the scattering target to neglect the
spread. Note that only for a photon wave packet is E strictly proportional
to k : E = hck. The physical situation that we will ultimately consider is
that W tends to zero. In section 3.2.2 we showed that the absence of time
resolution in an experiment results in the experiment being equivalent
to an incoherent superposition of independent experiments, each with an
incident plane wave, i.e. an incident wave packet of zero width.
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We transform the integration variable in (4.152) to £ using

k = E/hvo + \k0 , dk/dE = {hvo)-\ (4.154)
obtained from our approximation to (4.153). Defining the wave-packet
factor in energy by

A(£,£o,<5) = (hvoy^iKko, W) (4.155)
the incident wave packet becomes

/•OO

f o(r, t) = (2n)-3/2eikoiro+r)/2 / dEA(E, £0, S)eiEX, (4.156)
Jo

where
r)/vo-t]/h. (4.157)

There is an explicit shape for the wave-packet factor A(E,Eo,S) which
leads to very easy evaluation of the integral in (4.156). This is the
Lorentzian form

where
ES=EO- id/2. (4.159)

We extend the lower limit of integration to —oo,  an approximation that is
justified in the ultimate limit d —>  0.

For X < 0 the integrand of (4.156) vanishes for large imaginary energies
if we choose a contour in the lower-half £-plane, which encloses the pole
at Es- For X > 0 the contour is in the upper-half £-plane enclosing the
pole at E*d.

() () , X < 0,
= -(2nr3/2eik^+r)/2eiE*x , X > 0. (4.160)

Recalling the definition (4.157) of X we see that the wave packet
propagates with velocity vo. The probability of finding a beam particle at
a point r is

r, t)\2 = e^+r)/hv,e-5t/h^ t>(ro + r)/v0,

t<(ro + r)/vo. (4.161)
The probability builds up exponentially in time to t = (ro + r)/vo, after
which it decays exponentially. The decay-time constant is T = h/d. For the
Lorentzian wave-packet shape (4.158) the uncertainty principle is an exact
relationship if the energy uncertainty is the full width at half maximum S
and the time uncertainty is the decay time T.
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According to (4.46) the scattered wave packet £(r9t) is a linear super-
position oi f(E,d)r~~1elkr for different k with the same coefficients as those
of eikr in (4.148). Again using (4.149,4.151,4.154,4.155,4.157) we have

/
Jo
/ dEA(E,E0,S)f{E,6)eiEX. (4.162)
o

From (4.162) we see again that the scattered wave depends entirely on the
poles in the scattering amplitude. We consider a single pole at

Er = er- iTr/2 (4.163)

for which f(E,d) is given by (4.142,4.144).

f(E, d) = -2L^X E^l/Licosd). (4.164)

The scattered wave packet is obtained by using the explicit form (4.158)
in (4.162).

r,t) = -{2n)-V\2L + \){krr)-x PL(COS0) / dE
OD 8/2n

-ES)(E-E'S)

For X > 0 our integration contour in the upper-half £-plane encloses
only the pole at E*d. The scattered wave packet is proportional to elE**x

as in the unscattered case (4.160). At times before the wave-packet centre
reaches the scattering centre the wave packet is propagated without change
of shape. Another name for this condition is causality. Disturbances due
to the target appear after the centre of the wave packet has reached the
target. Causality requires the scattering amplitude to be analytic in the
upper-half £-plane.

Analytic properties of the scattering amplitude are better discussed in
terms of the variable k rather than £, which has the square-root ambiguity.
The variable in the Lippmann—Schwinger equation is k. We have used
E because of its formal simplicity, but we could have made the whole
argument starting with (4.152) and using k as the integration variable.
We would have found that the scattering amplitude is analytic in the
upper-half /c-plane and the poles are on the second energy sheet.

For X < 0, i.e. after the centre of the wave packet has reached the
target, the scattered wave packet is

{(r, r) = -j^jr&x ~ iS^
E5 - Er (£o - er

The residue Ru in (4.166) is obtained by comparing (4.165,4.166).
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Much can be learnt from (4.166). First we can use it to interpret the
resonance at Er physically. The limit S -> oo corresponds to a sudden
excitation of the target in comparison with times characteristic of the
target, in this case

rr = n/rr. (4.167)

The time spectrum of the scattered electron in this limit has the shape
^-rv/fc JYIQ lifetime of the compound electron—target system in the
resonant state is xr. We have derived the same result for a detailed
scattering theory that we knew already from the uncertainty principle.
The uncertainty relation (4.146) becomes an exact equality (4.167) if Fr is
the full width at half maximum and xr is the lifetime.

The differential cross section, obtained by integrating |£(r, t)\2, given by
(4.166), over time, is

da = RLrRl[(Eo - er)2Tr/2 + (Fr + d)2(Tr/2 + d)/4]
dQ 2F r [ (£ 0 -^ ) 2 + (rr + (5)V4]2 * K' '

In the usual scattering experiment 3 —>  0 and (4.168) reduces to the Breit-
Wigner form (4.143). Equn. (4.168) also tells us under what conditions the
wave-packet width is significant in the experiment. We must have exper-
imental time resolution h/d such that S is comparable to the resonance
width Fr. The width in this case is the sum of Fr and S.

While we have developed the theory of wave-packet scattering and
resonances in the context of potential scattering of electrons it is easy
to generalise. In particular there is no reason why the scattered particle
should not be a photon. In this case the wave packet does not spread
and the formalism is valid for general values of 5. Wave packets are
known whose widths correspond to a lifetime of order 10~~7s, which is
easily resolved with nanosecond electronics. Such wave packets arise in
the photon decay of many atomic states. The time spectrum of detected
photons is given by |£(r,f)|2 for X < 0. We see from (4.166) that this
involves an interference between a term whose lifetime is h/S and one
whose lifetime is rr. The resulting time oscillations have been observed
experimentally. They are called quantum beats.

4.7 Relativistic electron in a local, central potential

In the previous part of the chapter we expressed the problem of an electron
in a local, central potential in terms of radial equations and eigenstates
of orbital angular momentum. In generalising to the case where the
electron obeys the Dirac equation (3.154) we remember that spin and
orbital angular momentum are coupled.
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The spin—orbital eigenstates (3.92) are conveniently written as eigen-
states of an operator k.

fc = < r L + l. (4.169)

Since

(x-L = J 2 - L 2 - S 2 , (4.170)

the eigenvalues of k are

* = ±U+j), for t = J±i (4171)
It is useful to use the notation ?.

f + ? = 2j. (4.172)

£ and ? differ by 1. The eigenstates of k are written in the coordinate—spin
representation as

where

^H?f(r)Xl%). (4.174)
Besides the eigenvalue equation for k

kxKm = -KX™ (4.175)

we have the relationship

o ' Htcm = -X-Krn- (4.176)

To understand (4.176) we observe that a f is a pseudoscalar. It does
not change j and m since it is scalar under rotation, but it is odd under
inversion so it changes the parity. We see from (4.172,4.174) that x-Km has
the opposite parity to XKM since the corresponding values of/ differ by 1.
Our understanding is completed by applying the operator {a f)2 = 1 to
XKITI-

We are now in a position to express the Dirac Hamiltonian in terms of
radial operators and a four-component spin—orbital operator K defined
by

(4.178)
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We recall the definitions (3.158,3.163) of a, /? and E. Making use of (3.32,
3.59, 3.157) and the vector operator identity

we find

[dr r
and write the free-electron Hamiltonian (3.153) as

H = -ic(a-f)[|: + i(l-j8X)l+1

(4.179)

(4.180)

(4.181)

The one-electron state \xp) is written in the coordinate—spin representa-
tion as two two-component spinors.

(4.182)

\rp) is a simultaneous eigenstate of H + V(r) and X. The latter is seen by
applying (4.175,4.177) to (4.182), obtaining

(4.183)

0 0\ 2°
Applying (4.176,4.183) to (4.184) we have the two coupled equations

= -K |V>-

The Dirac equation in two-component form is

0 < f f W _ . / 0 -c
at 0 ) dr l

(E-V + 2c2)f(r) ~ = 0. (4.185)

The coupled radial equations (4.185) are the relativistic analogue of
(4.19) for bound states and (4.57) for scattering states. In order to set
up partial-wave integral equations corresponding to (4.121) we need the
partial-wave form of the free-electron state (3.170). This is set up by
generalising (4.56) to include the spin and using it in the partial-wave
expansion of (3.170), which becomes a four-component spinor.

coa
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where

H?- (4187)

Inverting the momentum—spin form of (4.174) and using the momentum
form of (4.176) yields

x( *« M&°) . ) . (4.188)

The integral equations for relativistic potential scattering are conve-
niently written in terms of a four-dimensional notation for the four-
component spinor |vp).

|vp> = |p«>, a = 1,4. (4.189)

The Dirac equation (3.159) is written in analogy to (4.100) as

(E+c2- H)|zJ+)(p)> = K|zJ+)(p)>, (4.190)
where H is given by (3.153). The T-matrix element is

(p'a\T\pp) = (p'a\V\X
(;\p)). (4.191)

The coupled integral equations analogous to (4.117) are

where E(q) is the relativistic kinetic energy for momentum q. The partial-
wave form of the integral equations is obtained from (4.192) by general-
ising (4.118) using (4.188).



5
Theory of atomic bound states

The problem of N bound electrons interacting under the Coulomb at-
traction of a single nucleus is the basis of the extensive field of atomic
spectroscopy. For many years experimental information about the bound
eigenstates of an atom or ion was obtained mainly from the photons
emitted after random excitations by collisions in a gas. Energy-level dif-
ferences are measured very accurately. We also have experimental data
for the transition rates (oscillator strengths) of the photons from many
transitions. Photon spectroscopy has the advantage that the photon in-
teracts relatively weakly with the atom so that the emission mechanism
is described very accurately by first-order perturbation theory. One dis-
advantage is that the accessibility of states to observation is restricted by
the dipole selection rule.

Photon spectroscopy associates two numbers with the pair of states
involved in a transition, the energy-level difference and the transition rate.
The correlated emission directions of photons in successive transitions are
determined trivially by the dipole selection rule. In most cases it is im-
possible to solve the many-body problem accurately enough to reproduce
spectroscopic data within experimental error and we are left wondering
how good our theoretical methods really are.

Because our description of differential cross sections for momentum
transfer in a reaction initiated by an electron beam depends on our ability
to describe both the structure and the reaction mechanism, scattering pro-
vides much more information about bound states. This is even more true
of ionisation. The information is less accurate than from photon spec-
troscopy and is obtained only after a thorough understanding of reactions,
the subject of this book, is achieved. The understanding of structure and
reactions is of course achieved iteratively. A theoretical description of
a reaction is completely tested only when we know the structure of the
relevant target states with accuracy that is at least commensurate with
that of the reaction calculation. The hydrogen atom is the prototype

115
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target from this point of view, although important relativistic effects can
be tested only in larger atoms.

We are concerned here with the use of the theoretical descriptions of
atomic eigenstates in the calculation of a reaction. It is necessary to know
in principle how the structure calculations are done and to know the detail
of the different forms that can be adapted to reaction calculations.

5.1 The Hartree—Fock problem

Many-body structure calculations are done in terms of one-electron states
|a), which we call 'orbitals' to distinguish them from the states of the
iV-electron system. One-electron states are discussed in chapter 4. The
simplest states in the iV-electron space are independent-particle configura-
tions \p) whose coordinate—spin representation consists of antisymmetric
products (determinants) of orbitals. The coordinate—spin representation
of a normalised configuration \p) is

(run • 'TNaN\p) = (iV!r1/2det(r^|a). (5.1)

All the eigenstates \f/j) of an atomic Hamiltonian H that have the
same values of the quantum numbers j (total angular momentum) and t
(parity), collectively called the symmetry, belong to the symmetry manifold
// . The use of the quantum number € to represent the parity is related
to its use to represent the total orbital angular momentum if spin—orbit
coupling is neglected. In general, atomic states are not eigenstates of total
orbital angular momentum but if it is even/odd their parity is even/odd.
Useful values of/ are 0/1 for even/odd parity. If we consider the solution
of the structure problem as the diagonalisation of the Hamiltonian in a
matrix representation using a basis of states with various symmetries, the
problem reduces to independent problems for each symmetry manifold,
since states with different symmetries are orthogonal. We consider a
particular symmetry manifold and omit the indices // .

The Hartree—Fock problem in its simplest form (Hartree, 1927; Fock,
1930) consists in finding the best orbitals |a) so that the configuration \p)
approximates as closely as possible the lowest-energy eigenstate of H in
the symmetry manifold {}. This is done using the variation theorem.

Consider a state |/) in the space spanned by the eigenstates of a
Hamiltonian if, which belong to the symmetry manifold tj. If the
variational energy

M! r 5 2 ){ }

is a minimum, then |/) is an eigenstate of H belonging to the minimum
eigenvalue. The theorem is proved by considering the minimum value EQ
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of E.
(fo\H\fo)E° = if \ 'olJo)

If l/o) is varied by adding +e|g), where |g) is a state in the same space
and e is a small positive number, then £o changes to £o + <5£o, where

(5£0 > 0. (5.4)

Substituting |/o) + e\g) for |/) in (5.2), the inequality (5.4) becomes

+e((g\E0 - H\f0) + (fo\Eo - H\g) ± e(g\E0 - H\g)) > 0. (5.5)

Since E$ is the minimum value of £,

(g\E0-H\g)<0. (5.6)

Using the Hermitian property of H we have

e(g\E0 - H\g) < 2(g\E0 - H\f0) < ~e(g\E0 - H\g). (5.7)

Since |g) is arbitrary we choose

|g)=(Eo-H) | /o) . (5-8)
Allowing e to tend to zero we find

</o|(£o-H)(£o-H)l/o)=O (5.9)

and hence
(£o-H) | /o)=O. (5.10)

The theorem is the basis of the variational method of approximating
the lowest eigenstate of a particular symmetry manifold. We choose a
trial form of | /) , which is varied to minimise (f\H\f) with the constraint
that (/|/) = 1. The form of |/) that gives the minimum is the best
approximation.

We now apply the variational method to the AT-electron problem. In
order to ensure antisymmetry we express the iV-electron Hamiltonian in
the occupation-number representation.

l (5.11)

where t is the Hamiltonian K + V for the interaction of one electron with
the nucleus and v is the electron—electron potential.

The best configuration \p) of the form (5.1) is found variationally. We
vary \p) by adding e\8p)9 where 6 is a small positive number. The problem
is to choose orbitals |a) such that

(5p\H\p)=0. (5.12)
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The configuration \Sp) is chosen by annihilating an electron in an occupied
orbital \rj) (rj < N) of \p) and creating one in an unoccupied orbital
| £ ) ( £ > N). We choose the set of orbitals to be orthonormal. This ensures
that (Sp\p) is zero so that \6p) is normalised to first order in e.

\5p)=ea\an\p). (5.13)

Using (5.11,5.13) the condition (5.12) becomes

We evaluate the matrix elements of (5.14) using the commutation rules
(3.137-3.139), remembering that £ > N and r\ < N.

A systematic way of evaluating matrix elements of a string of creation
and annihilation operators is to choose an operator that gives zero when
operating on the ket and move it to the right until it operates on the
ket. In the case of (5.14) we move the annihilation operator a<*, which
gives zero when operating on \p) since the orbital \E) is unoccupied in \p).
Each time we exchange a^ with an operator a^ we produce a new term
involving +<5{£. A term resulting from an odd/even number of exchanges
is positive/negative.

The variational condition (5.14) becomes

(Z\t\ri) + \ EJLI««MOJ>  - <™*0  - U\m) + (ZZ\v\iO)
= 0, £>N,r]<N. (5.15)

We now define a one-electron operator, the Hartree—Fock Hamiltonian
HHF-

N

HHF = E
to f=i

In obtaining (5.16) from (5.15) we have used the fact that we can exchange
the orbitals in both the bra and ket of a two-electron matrix element, which
represents an integration over dummy coordinate—spin variables. HHF  is
a one-electron operator since we sum over orbitals |£). Equation (5.16)
shows that we can diagonalise HHF in the space of occupied orbitals
only, since it has no matrix elements connecting occupied and unoccupied
orbitals. Performing the diagonalisation we have

N

(i\t\ri) + D^SMOf) - (Z£\v\riO) = €n(Z\n), Ln<N. (5.17)
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The en are eigenvalues of HHF- We interpret them as the one-electron
energies of the orbitals \rj) in the independent-particle model.

An alternative way of understanding (5.17) is that it results from the
minimisation of (p\H\p) subject to the constraints

(r,\r,) = 1 for all to). (5.18)
The €rj are the Lagrange multipliers for the constraints.

It is important that the orbitals \r\) that satisfy (5.17) are orthogonal for
different eigenvalues en. We can use them to construct an orthonormal
set with which to express the many-electron problem. We have assumed
orthogonality in deriving (5.17). We now show that this is consistent by
considering (5.17) as an equation for the matrix elements formed for the
bra orbital \t\ from a Schrodinger equation for \r\). The set of such
equations for N different \rj) is called the Hartree—Fock equations.

(5.19)

where the Hartree—Fock potential is
N

(5.20)

The operator P exchanges the electrons in the orbitals |f) and \r/). The
Hermitian conjugate equation of (5.19), replacing \r\) by |£), is

(Z\(ee-t) = (Z\V. (5.21)

This equation is true because P may operate either on the bra or ket vec-
tors of a two-electron matrix element with the same result since only a re-
definition of dummy integration coordinates is involved. From (5.19,5.21)
we form the matrix equations

z (5.22)

which are subtracted to yield the desired result

(5.23)

Equn. (5.17) is a formal statement of the Hartree—Fock problem in the
simplest, single determinant, form. We must find orbitals that satisfy the
equation.

A configuration in the independent-particle model may be of either
the closed-shell or open-shell type. In the former the N electrons occupy
all the orbitals of the lowest-energy sets with the same symmetry and
principal quantum number n, called shells. In the latter some orbitals with
particular values of the projection quantum numbers are unoccupied. The
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symmetry of a state that is either a closed shell or has one electron in an
open shell outside a closed-shell core (such as in the simplest model of
an alkali-metal atom) is sufficiently determined by a single configuration.
For more-general symmetries linear combinations of configurations with
different sets of projection quantum numbers are necessary to give the
symmetry. We will not discuss these cases, since we are interested in
the Hartree—Fock problem  as a means of generating orbitals to obtain a
basis of configurations for diagonalising the Hamiltonian, rather than as
a model for open-shell states.

Hartree—Fock calculations  are done using the coordinate—spin repre-
sentation for the orbitals. For the relativistic Hamiltonian this is written
in two-component form (4.182) as

where x stands for the set of position and spin coordinates r, a. The
radial functions are called radial orbitals. If it is sufficient to use a
nonrelativistic Hamiltonian with a spin—orbit potential (3.174),  we use
the large component of (5.24) in the 77-coupling description. It may
be appropriate to use the orbital- and total-angular-momentum quantum
numbers ( and j9 which are equivalent to K (4.171). If the spin plays no
part except in the Pauli exclusion principle it is more economical to use
LS coupling, for which the one-electron function is

famvix) = r-lunAr)Ytm{i)l\'\°)- (5.25)
The object of solving the Hartree—Fock equations  is to determine a set
of orbitals that are self-consistent in the sense that they are solutions of
the set of equations (5.19) when the same orbitals are used to construct
the potential (5.20), called the self-consistent field.

5.2 Numerically-specified orbitals
The coordinate—spin representation  of the Hartree—Fock equation (5.19)
is

(6, - t)<j>n{x) = f dxfV(x\x)^(xf). (5.26)

This is an extension of the Schrodinger equation for a bound state to
include the nonlocal potential

V{x\*) = £[/dx"<t>\{x")v{x\xf)^(xrf)d{xr -x)- <t>\&W,x)
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The notations for integration and the corresponding £-function refer to
the set x of coordinate—spin variables. The first term of (5.27) is the direct
potential due to the screening of the nucleus for the electron in orbital
\rj) by the other electrons. The second term is the exchange potential.
Note that the term for |£) = \rj) cancels between the direct and exchange
potentials. The potential v(x',x) is the two-electron Coulomb potential
|r' —  rl""1. In the relativistic case there are additional magnetic terms
—a!  • a|r' —  rl"1 that are small and make little difference. The relativistic
treatment of electron—electron interaction can only be approximate. It is
discussed by Brown (1952).

5.2.1 Nonrelativistic Hamiltonian

For the nonrelativistic case with neglect of spin—orbit coupling we separate
the space and spin parts of the coordinate—spin representation of the
orbital

^mv(x) = v^m(r)Zv1/2(^)- (5-28)
The spin functions vanish from the formalism due to their orthonormality.
The exchange term however has a factor (vj|v^) restricting its effect to
pairs of electrons with the same spin projection. Equn. (5.26) becomes an
integrodifferential equation in coordinate space, which is reduced to an
equation in the radial variable by the methods of sections 3.3 and 4.3. The
coordinate-space Hartree—Fock equation for a closed-shell structure is

= E /
(5.29)

where Z is the charge of the nucleus. The factor 2 in the screening
potential is due to the fact that there are two spin states (singlet and
triplet) for each pair of electrons with position-space quantum numbers
n, / , m.

We do not pursue the reduction of (5.29) to radial integrodifferential
equations, beyond noting that it is analogous to (4.10). The angular-
momentum reduction of two-electron matrix elements is given essentially
by (3.109). Two-electron matrix elements are treated fully for scattering in
chapter 7. A numerical method for solving integrodifferential equations is
given by Sams and Kouri (1969). Details of the numerical Hartree—Fock
calculation are given, for example, by Froese-Fischer (1977). The resultant
numerical quantities used in electron—atom reaction calculations are the
radial orbitals unj(r) of (5.25), which are specified by the computation on
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a radial grid. A computer program for Hartree—Fock calculations  is part
of the basic equipment of an atomic theory group. A good example is the
program of Chernysheva, Cherepkov and Radojevic (1976).

5.2.2 Relativistic Hamiltonian

The Hartree—Fock problem with  the Dirac Hamiltonian (3.153) is called
Dirac—Fock.  The coordinate—spin representation  of the orbital \rj) is

*'w -(£$)• (530)
This is substituted into (5.19) to obtain

(5.31)

We substitute the Dirac Hamiltonian (3.153) into (5.31), obtaining

[e, - VN(x) - V(x)]Pr,(x) + J dx'VPP(xr,x)P,(x')

+ Jdx'VQP(x',x)Qv(x') - ica- V Qn(x) = 0,

[en + 2c2 - VN(x) - V(x)]Qv(x) + J dxfVpQ(xJ,x)P^x/)

+ J dx'VQQ(x',x)Qr,(x') - ica- V Pn(x) = 0. (5.32)

Here the local screening potential is

V{x) = Y.Jdx> ]pt&W, x)Pc(x') + <2CVM*', X)GC(X')] . (5.33)

There are four nonlocal exchange potentials

VpP(x',x) = /

(5.34)
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The electron—nucleus potential  is not quite trivial. For larger atoms the
radial functions that are large at the nucleus are affected by the finite
charge distribution of the nucleus. It is sufficient to use the potential for
a uniform charge distribution of radius R

r2

= - - , r > R. (5.35)

Equns. (5.32) are reduced to coupled integrodifferential equations in the
radial variable by techniques analogous to the derivation of (4.184) with
the use of the angular-momentum algebra of section 3.3, which will be
applied in detail to two-electron matrix elements in chapter 7. Details
of the Dirac—Fock theory  are given by Grant (1970). The resulting
quantities used in electron—atom reaction theory are the large- and small-
component radial orbitals gnK{r) and /nK;(r) of (5.24), which are specified
by the computation on a numerical radial grid.

5.3 Analytic orbitals

The extension of the matrix solution of section 4.3 for one-electron bound
states to the Hartree—Fock problem  has many advantages. It results
in radial orbitals specified as linear combinations of analytic functions,
usually normalised Slater-type orbitals (4.38). This is a very convenient
form for the computation of potential matrix elements in reaction theory.
The method has been described by Roothaan (1960) for a closed-shell or
single-open-shell structure.

We illustrate the method by applying it to the simplest closed-shell
form (5.29) of the Hartree—Fock problem.  The radial orbitals un^(r) are
expressed as a linear combination of basis radial orbitals fu{r).

un,(r) = Y,Ci,nfAr)- (5.36)
i

The basis one-electron wave functions are

Ztfm(r) = r- \Mr)y,m(*) . (5.37)

We define a matrix notation, omitting explicit reference to the coordinate
r.

Wm = E i XtfmCtfn = Ifmtyn, (5.38)

where Xsm is a r o w vector whose components are all the basis functions
lUm* a n d c/n is a column vector whose components are the corresponding
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coefficients c,/w. The overlap matrix S/ is defined by

| Z i 7 m ) , (5.39)

where N<? is half the number of electrons in the shell / .

Nj = 2/ + 1. (5.40)

The vectors c^n are normalised by

c J ^ C , = Ntdjn. (5.41)

The matrices t/ for the bare-nucleus Hamiltonian t are defined by

Ui} = iV-1Zm(Zl/m|r|Z7/m). (5.42)

In order to take into account the two-electron interaction terms we
define a supermatrix notation that we illustrate for t/. The components of a
supervector t are the matrix elements t^j in dictionary order. Supervectors
are transformed by supermatrices. We need the supermatrix V, defined by

m'm

(5.43)

We apply the variational method to the total energy in order to obtain
linear equations for the vectors c^n. From a set of trial vectors c;n that
satisfy the normalisation constraint (5.41) we compute the density matrix

D, = 2^4 (5.44)
and form the supermatrix D, analogous to V. The potential supermatrix
P is defined by

P = VD. (5.45)

We now revert to considering the supervectors as a collection of matrices
for / . The eigenvalue equations for each / , corresponding to (5.29), are

( 6 , n S , - V - P ^ ) c ^ = 0. (5.46)

These equations are solved, yielding a new set of trial vectors. The process
is repeated until the new set agrees with the previous set to a prescribed
limit of accuracy. In this way we achieve a self-consistent solution.

The simple closed-shell problem is generalised to open-shell cases by
Roothaan (1960) and Roothaan and Bagus (1963). The present formalism
gives an introduction to the generalisations.

If the basis radial orbitals f^(r) are Slater-type orbitals (4.38), each
is characterised by nonlinear parameters, an exponent £# and a power



5.4 Frozen-core Hartree—Fock calculations 125

ntf. These are chosen to span the space required to describe the occupied
states. The choice can be optimised to lower the total energy £, but
this is a laborious process requiring a complete Hartree—Fock calculation
for each variation. An extensive investigation of this has resulted in the
tables of Clementi and Roetti (1974) for the low-lying states of neutral
atoms, positive ions and isoelectronic series of ions up to Z=54. These
eigenvectors have been very sensitively verified by the (e,2e) reaction
(chapter 11) and form an excellent start for structure calculations.

It is of course possible to solve the Dirac—Fock problem with a linear
combination of analytic orbitals. However, owing to the rapid variation
of the orbitals near the nucleus it requires an awkwardly-large basis. If
an analytic representation is convenient for a reaction calculation it may
be obtained by a least-squares fit to a numerical orbital.

5.4 Frozen-core Hartree—Fock calculations

Hartree—Fock calculations may be performed to find sets of orbitals
describing the lowest-lying states of different symmetry manifolds of an
atom. It is found that each different state has a closed-shell core whose
orbitals are closely independent of the state.

A frozen-core calculation involves choosing a particular state (for ex-
ample the one lowest in energy), performing a Hartree—Fock calculation
to find the best orbitals, then using the orbitals of the core to gener-
ate a nonlocal potential (5.27), which is taken to represent the core in
calculations of further states.

A good example is provided by the alkali-metal atoms, which consist
of one electron outside a closed-shell core in the single-configuration
model. If the frozen-core approximation is valid a frozen-core calculation
of the orbital occupied by one electron will give the same result as a
Hartree—Fock calculation and the core orbitals will not depend on the
state.

Table 5.1 illustrates the frozen-core approximation for the case of sod-
ium using a simple Slater (4.38) basis in the analytic-orbital representation.
The core (Is2 2s2 2p6) is first calculated by Hartree—Fock for the state
characterised by the 3s one-electron orbital, which we call the 3s state. The
frozen-core calculation for the 3p state uses the same core orbitals and
solves the 3p one-electron problem in the nonlocal potential (5.27) of the
core. Comparison with the core and 3p orbitals from a 3p Hartree—Fock
calculation illustrates the approximation. The overwhelming component
of the 3p orbital agrees to almost five significant figures.

The main use of the frozen-core approximation is to generate an or-
thonormal set of orbitals for use as a basis in structure or reaction
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Table 5.1. Comparison of a frozen-core (FC) calculation for the sodium 3p orbital
with a Hartree—Fock (HF) calculation of the same state. The basis column gives
the parameters /?,/ and £,y of the basis Slater orbitals (4.38). The other columns
give the coefficients c^n (5.36). The frozen core is the 3s Hartree-Fock core

Is
Is
2s
2s
3s
3s

2p
2p
3p

S-BASIS

12.584 30
9.438 84
3.85928
2.39434
1.25277
0.74608

P-BASIS

5.47723
2.56267
0.60021

ls(FC)

-0.375 898 51
-0.63135216
0.00127765

-0.00240605
0.00084005

-0.000402 36

2p(FC)

0.335 38693
0.73461411
0.00823816

ls(HF)

-0.375 885 65
-0.63135466
0.001 233 73

-0.00237809
0.00083200

-0.00039905

2p(HF)

0.336135 70
0.73466486
0.00007673

2s(FC)

-0.02317636
0.329 536 58

-0.767448 66
-0.327025 79
0.013 388 39

-O.OO5O85 8O

3p(FC)

-0.034383 71
-0.06101847
1.00282721

2s(HF)

-0.02307814
0.32926509

-0.76625348
-0.328 35068
0.013 815 58

-0.00501498

3p(HF)

-0.03153400
-0.055 10417
1.002869 53

calculations, rather than as a model for an atomic state. The example
of table 5.1 is rather extreme, since the 3s and 3p states are orthogo-
nal because of symmetry and independent Hartree—Fock calculations are
appropriate.

5.5 Multiconfiguration Hartree—Fock

Up to this stage we have been concerned with the use of the variational
method for calculating atomic orbitals to provide an independent-particle
model that is as realistic as possible. We now turn to a variational method
of approximating the lower-energy eigenstates in the spectrum of an atom.

The variational foundation for the approximation is understood by
varying the state \f) in the JV-electron space by e|g), where e is a small
positive number. The variational energy E (5.2) becomes E + SE. We
consider only quantities of first order in the small quantities e and 5E.

{f\f)2SE = e(f\f)((f\H\g) + (g\H\f)) - e(f\H\f)((f\g) + (g\f)) + O(e2).
(5.47)

Since H is Hermitian, any state \i) that makes SE zero to first order
satisfies the eigenvalue equation for H

= 0. (5.48)
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Conversely any eigenstate of H makes the first-order variation SE of E
zero.

The eigenstate \i) is characterised by the quantum numbers n/J,m. The
total-angular-momentum quantum number is j and its projection is m.
The parity is denoted by a number { that is 0 or 1 for even or odd
parity respectively. The principal quantum number n specifies which state
of the £j manifold we are concerned with. If spin—orbit coupling is
neglected it is convenient to use n/,s, where t and s are the total-orbital-
angular-momentum and spin quantum numbers, and the corresponding
projections. We use the generally-valid total-angular-momentum and
parity specification in general discussions.

The multiconfiguration Hartree—Fock procedure is concerned with a
particular symmetry manifold {j. It is therefore necessary to specify an
eigenstate only by the principal quantum number n. The eigenstate \n) is
expanded in a set of Nr symmetry configurations \r) that belong to the
same manifold. That is they are eigenstates of parity and total angular
momentum with quantum numbers /, j , m.

\n)=Xrcnr\r). (5.49)

The symmetry configurations are linear combinations of single determi-
nant configurations \p) that have the required quantum numbers. They are
formed by coupling the angular momenta of the configurations. Normally
all symmetry configurations are formed from a common set of orbitals.

The computational procedure is to solve the equations that give 5E = 0,
subject to the constraints

(rf\r) = 6*,
£ r 4 = 1, (5.50)

which are represented by Lagrange multipliers. The eigenstate \n) is
represented in coordinate—spin space by a set of orbitals, defined by
(5.24) or (5.25), and the coefficients cnr,r = l,Nr.

An optimal-level calculation optimises on the variational energy of
a particular eigenstate \n). The calculation must be repeated for each
eigenstate. Faster computations, in which individual eigenstates are not
completely optimised, involve optimising on different linear combinations
of the variational energies for the different eigenstates.

For the relativistic Hamiltonian the procedure is called multiconfigu-
ration Dirac—Fock. A computer program for structure calculations in
this approximation has been described by Grant et al. (1980). The non-
relativistic procedure has been described by Froese-Fischer (1977) and
implemented by the same author (Froese-Fischer, 1978).
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5.6 Configuration interaction

The coordinate—spin representation  of the states \n£jm) of an iV-electron
atom or ion can be expanded in an M-dimensional linear combination
of single-determinant configurations \pk) (5.1). This is the configuration-
interaction expansion. The orbitals |a) forming the determinants are
represented as orthonormal square-integrable functions (/>a(x).

We denote the atomic eigenstate \n<?jm) by |i) and the configuration-
interaction expansion by

|i)=L*|p*)(p*|i>. (5.51)

The configuration-interaction approximation to \i) results from diagonal-
ising the atomic Hamiltonian H in the M-dimensional basis \pk).

=0. (5.52)
k'k

If the states |i') and |i) belong to different symmetry manifolds, char-
acterised by the quantum numbers f,j9 then the Hamiltonian matrix
element is zero. It is economical to consider the diagonalisation in a
particular symmetry manifold and we will begin our discussion in this
way. The basis states fa) are now symmetry configurations consisting of
linear combinations of configurations which have the symmetry / / of the
manifold.

5.6.1 The hydrogen atom

In one sense the hydrogen atom is a trivial case since the symmetry
configurations are one-orbital determinants and in any case the exact
eigenstates are known. However, we use it to illustrate the answer to
a nontrivial question. How well can the lower-energy eigenstates of an
atomic system be represented by an M/-dimensional square-integrable
basis for each symmetry manifold? We remember that a complete set of
atomic states includes the ionisation continuum.

The diagonalisation problem for the symmetry manifold t (neglecting
spin—orbit coupling)  is

( i % - i J | i ) = 0 , (5.53)

where

<r|i> = (r\Mm) = r'lu^(r)YU^) (5.54)

and
Mi

(5.55)
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We choose the Laguerre basis

' ' W + 1 £ + 2 r ) , (5-56)

where the associated Laguerre polynomial Lj^[2(Ar) is defined by (4.26).
We choose X = 2 so that £io(r) is the radial orbital uio(r) of the ground
state (4.27). The radial orbitals u^(r) are known as the Sturmians (Roten-
berg, 1962). They are sometimes called 'pseudostates'.

The eigenvalue e,- of the JW>-dimensional diagonalisation problem is
of course not equal to any of the hydrogen bound-state eigenvalues et
in general, but for the states of lower energy it comes closer as M/ is
increased. We use the closeness of £,- to the corresponding e,- as a measure
of the quality of the approximation to the eigenstate of hydrogen.

Table 5.2 shows the number of hydrogen states for each / , represented by
the principal quantum number n of the highest state, whose eigenvalues
are given by the Sturmian expansion of dimension M within different
relative-error tolerances S. (It turns out that the dimension of the required
expansion is independent of /.) The table confirms that the expansion
of the lower atomic states in a square-integrable basis converges with the
basis size and gives an idea of the rapidity of convergence.

5.6.2 The Hartree—Fock basis

It is sensible to choose the basis orbitals |a) that form the basis con-
figurations in an optimal way. The symmetry configuration that most-
closely approximates the lowest-energy state of the ij manifold is the
Hartree—Fock configuration |ro), in which the lowest-energy orbitals are
occupied. The basis orbitals include ones that are unoccupied in |ro). They
may be calculated as eigenstates of the Hartree—Fock equation (5.26).

Table 5.2. The highest principal quantum number for an eigenstate of hydrogen
whose eigenvalue is approximated within the relative-error tolerance S by a
Sturmian expansion of dimension M (adapted from Bray, Konovalov and
McCarthy, 1991a)

M 3 = 10"14 5 = 10~7 8 = 10~4

7
10
20

100

1
1
2
6

1
2
3
7
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The Hartree—Fock basis  has a particular significance. The eigenstate
| ft) of the / / manifold is represented by the configuration sum

\n)=Xk\rk)(rk\n). (5.57)

We sort the terms of (5.57) into partial sums of configurations involving
\x one-electron excitations, that is \i electrons are annihilated in |ro) and \i
electrons are created in unoccupied orbitals. The partial sum for \i in \n)
is denoted \n^) and the expansion (5.57) becomes

|ft) = I j j ty) . (5.58)

The Hamiltonian matrix elements are

where

|no> = l*o> = ko). (5.60)
The Hartree—Fock basis  is defined by the relations (5.12,5.13), which
become in the present notation

(ro\H\n1) = (ri1\H\ro)=O. (5.61)

Therefore there are no terms of first order in the number \i + /z of
excitations in the representation (5.59) of the Hamiltonian.

5.6.3 Practical calculations, natural orbitals

The configuration-interaction representation of the lower-energy states of
an atom is the iV-electron analogue of the Sturmians in the hydrogen-
atom problem. We choose an orbital basis of dimension P, form from
them a subset of all possible N-electron determinants \pk)9k = 0,Mp,
and use these determinants as a basis for diagonalising the N-electron
Hamiltonian. It may be convenient first to form symmetry configurations
\rk) from the \pk).

There are many ways of obtaining an orthonormal set of orbitals.
The solution of the Hartree-Fock equations (5.26) for the ground state
produces self-consistent occupied orbitals and a set of unoccupied orbitals
into which electrons are excited to form the basic configurations \rk),k =fc 0.
The unoccupied orbitals are not optimised in any sense for the description
of excited states and in fact provide a bad description since they have
boundary conditions that result in their extension too far from the main
matter distribution in coordinate space.

The unoccupied orbitals that give the best convergence of the configu-
ration-interaction problem with increasing number M of configurations
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are the natural orbitals, first discussed by Lowdin (1955). They are
obtained by considering the quantity

>y(0,0) = (0|ajov|0>. (5.62)

This is the one-electron density matrix in orbital space for the ground state
|0). For the present purpose we call it the density matrix. It is manifestly
Hermitian. Therefore it is possible to find a unitary transformation U of
the orbitals \[i) that diagonalises it. The new orbitals |a) are the natural
orbitals

|a) = U\ix)9 (5.63)

for which
k . (5.64)

In practice it is necessary to truncate the configuration basis \r^) to
a dimension M < Mp. Satisfactory results are achieved by including
all single and double excitations to unoccupied orbitals |a) from the
highest-energy major shell in the Hartree—Fock configuration. Examples
of LS-coupled Hartree—Fock configurations |po) are

magnesium : Is22s22p63s2,
argon : Is22s22p63s23p6. (5.65)

In these cases we consider configuration-interaction calculations that allow
excitations from the n = 3 orbitals. Electrons involved in the excitations
are called active electrons.

Satisfactory convergence is achieved by using the natural orbitals for the
(ns)2 electron pair in the highest-energy major Hartree—Fock shell. These
orbitals are found by modelling the atomic ground state as a two-electron
pair in the frozen-orbital self-consistent field of the other electrons. The
ground state is a spin-singlet, ( — 0, even-parity state, denoted  1Se (the
symmetry nomenclature is described in section 5.8). The two-electron
basis configurations are denoted for orbitals \m), \n) in the tCa manifold by
\mn)sa. The configuration-interaction expansion of the ground state is

We consider the sum for each / a separately, since orbitals for different / a
are orthogonal, and drop the subscript / a temporarily.

The density matrix is

) = YJ crtrfCmn(rriri\alap\nm). (5.67)
m'n'mn
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The result of annihilating the electrons in different orbitals a, /? is

a = m,f} = m : yap(O9O) = ] P
n'n n

<x = m,p = n : ya^(0,0) = ^ c m n ' C m n ( n V ) = ^cmmcmn. (5.68)
n'm m

Therefore if the orbitals are chosen so that the off-diagonal density-matrix
elements are zero, then cmn is diagonal and the natural-orbital expansion
is

Natural orbitals are indicated by a bar. There are considerably fewer
configurations in (5.69) than in (5.66).

While natural orbitals chosen in this way do not diagonalise the density
matrix simultaneously for all electron pairs in the major shell or for
excited atomic eigenstates |/), it is found in practice that they occupy
the part of coordinate space one would expect of excited one-electron
states in a singly-charged potential, off-diagonal coefficients cmn are small,
and the configuration-interaction calculation is sufficiently convergent
in the dimension M of the configuration basis. The natural orbitals
for one-electron states that are occupied in |ro) are very similar to the
Hartree—Fock orbitals.

In finding the natural orbitals numerically the coefficients cmn must be
known. They are of course found by diagonalising the Hamiltonian in
a configuration basis of dimension M, so nothing has been gained. In
practice the natural orbitals are found for a smaller configuration basis
and the most important of these are used in the full-scale calculation.

5.6.4 Methods of diagonalisation

Much economy in the size of the Hamiltonian matrices to be diagonalised
is achieved by diagonalising independent blocks of the same symmetry.
Here the basis configurations are the symmetry configurations |r^). They
are formed from the determinants \pk) by angular-momentum coupling
techniques (Racah, 1942), assisted by the coefficients of fractional parent-
age for atomic n£j shells. For a reasonably-large number of active electrons
and shells over which they are distributed the coupling becomes very com-
plicated and the computational algebra proliferates. A computer program
for configuration-interaction calculations using a symmetry-configuration
basis has been described by Hibbert (1975).

An alternative approach that is well-adapted to modern computing is
simply to use a basis of determinants \pk) of the same parity. Since
determinants are eigenstates of Jz (or Lz and Sz) as well as J2 (or L2 and
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S2) this is called the m-scheme. The diagonalisation of the Hamiltonian of
course generates eigenstates of definite symmetry. The inefficiency is due to
the fact that matrix elements connecting basis states of different symmetry
are zero so that the Hamiltonian matrix is sparse. However, the lower-
energy eigenstates of large, sparse matrices may be calculated using the
Lanczos (1950) algorithm, which can handle matrices of dimension M=50
000 quite easily. This technique for configuration-interaction calculations
was pioneered by Whitehead et a\. (1977) for nuclear structure and adapted
for atomic structure by Mitroy (Mitroy, Amos and Morrison, 1979; Mitroy,
1983). It removes the need for calculating angular-momentum coupling
coefficients, which are absorbed in the eigenvector elements.

5.7 Perturbation theory

While the multiconfiguration methods lead to large and accurate de-
scriptions of atomic states, formal insight that can lead to a productive
understanding of structure-related reaction problems can be obtained
from first-order perturbation theory. We consider the atomic states as
perturbed frozen-orbital Hartree—Fock states.  It is shown in chapter 11
on electron momentum spectroscopy that the perturbation is quite small,
so it is sensible to consider the first order. Here the term 'Hartree—Fock'
is used to describe the procedure for obtaining the unperturbed determi-
nantal configurations \pk). The orbitals may be those obtained from a
Hartree—Fock calculation of the ground state.  A refinement would be to
use natural orbitals.

The Hartree—Fock problem is written  as

(Ek-K)\Pk)=0. (5.70)

The Hartree—Fock Hamiltonian  is written as a sum over electrons with
coordinate—spin labels  s.

K = ZS(KS + VS + Us), (5.71)

where Ks is the one-electron kinetic energy, Vs is the electron—nucleus
potential and Us is the (possibly refined) Hartree—Fock potential for the
ground state.

The iV-electron Hamiltonian is

H = K + V, (5.72)

where we subtract the Hartree—Fock potential from  the two-electron
potential to obtain
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The symmetric two-electron residual potential is defined by

vst = vst-(Us + Ut)/(N-l). (5.74)

The Schrodinger equation for the atomic state |i) is written in the form

= (Ei-Ei + V)\i). (5.75)

If the perturbation V is reduced to zero then £,- is the same as the
Hartree—Fock energy  Et. This is used to define the label / for a Hartree-
Fock configuration |p,-). It is the configuration of the same symmetry as |i)
whose energy E\ is nearest to £*. The residual electron—electron potential
V splits the Hartree—Fock energy levels  so that there is more than one
atomic state for every Hartree—Fock state.

We define projection operators P,- and Qt by

Pi\i) = \Pi), (5.76)
Pi + Qi = I- (5.77)

This gives the state |i) in the form

\i) = \pt) + Qt\i)
- (5.78)

We multiply the Schrodinger equation (5.75) on the left by the inverse of
the Hartree—Fock operator  to obtain

^ (5.79)

This is substituted into (5.78) to obtain, with the aid of the function
theorem (3.19),

\i) = \Pi) + E IPki-sr^riPklEi - Et + V\i). (5.80)

Equn. (5.80) can be formed into a set of equations to be solved for
(pk\Ei —  Et + V\i) in analogy to (4.101,4.116), but a close approximation
is given by the first iteration, which we write using the second-quantised
form (3.149) of the symmetric two-electron operator V as

10 = \Pt) + £ \Pk) E .<g/?|8|yg> {pkloaapafallpt). (5.81)
k+i ocpyd ey-res-ecc- €p

In practice we eliminate the problem of the possible degeneracy of one-
electron orbitals with different angular-momentum projections by sum-
ming over the angular-momentum states to isolate the reduced matrix
elements. This is simple in relevant special cases.
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It is significant that the relevant two-electron matrix elements are those
for double excitations, which are of the same order in the number of
excitations as those usually considered in the configuration basis of a
configuration-interaction calculation.

5.8 Comparison with spectroscopic data

Since the description of a reaction is based on the description of the
atomic states involved, it is important to see how well our structure
methods match the data of photon spectroscopy. The symmetry of an
atomic state for which LS coupling is a good approximation is denoted

where X is a capital letter of the old spectroscopic notation S,P,D,..
denoting the total orbital angular momentum /, the left superscript 2S + 1
is the spin multiplicity, the right superscript n is either e or o, indicating
even or odd parity, and the right subscript j is the total angular momen-
tum. The indices n and/or j are sometimes omitted when no confusion
results. The state is sometimes further identified by a principal quantum
number n placed before the symmetry symbols. If spin—orbit coupling is
significant we use the notation

where j is the total angular momentum and the parity is indicated by +.

Table 5.3. One-electron separation energies for the lower-energy states
of sodium (units eV). Experimental data (EXP) are from Moore
(1949). The calculations are FCHF, frozen-core Hartree—Fock;
and POL, frozen-core Hartree—Fock with the phenomenological
core-polarisation potential (5.82)

State

32S
A2S
52S

32P
42p

52P

32D
42D

42p

EXP

5.139
1.948
1.024

3.038
1.387
0.795

1.523
0.856

0.851

FCHF

4.956
1.910
1.009

2.980
1.370
0.787

1.515
0.852

0.850

POL

5.140
1.947
1.022

3.040
1.387
0.795

1.522
0.856

0.851
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For atoms with more than a few electrons, practicable calculations
involve freezing some of the orbitals to form a frozen core. Sodium is
a prototype for this approximation since the calculation of the state of
one electron with a frozen Is22s22p6 core does not require configuration
interaction. Table 5.3 shows the one-electron separation energy calculated
in the Hartree—Fock approximation for the 3 2S ground state (where the
active electron is in the 3s orbital) and in the frozen-core Hartree—Fock
approximation for the excited states. Quite large errors occur in com-
parison with experiment for the lower states. These must be due to the
neglect of excitations from the core (core polarisation). It will be shown
for scattering in section 7.5.4 that polarisation may be described by an
attractive potential whose long-range form is r~4. We therefore show the
separation energies obtained by including a phenomenological potential
of the form (Zhou et a/., 1990)

l - e" ( r / r o ) 6 ] , a = 0.99, r0 = 1.439, (5.82)

where all quantities are expressed in atomic units. We expect the inclusion
of this potential to give a structure model that provides a good test of
reaction calculations.

Magnesium requires at least a two-electron configuration-interaction
calculation with a frozen Is22s22p6 core. We give a detailed example of
a large calculation (Mitroy, 1983) and the results of other calculations to
show how well structure calculations can describe spectroscopic data.

The calculation of Mitroy started by calculating the Hartree—Fock
approximation to the ground state |3s2 1Se), where we denote the states
by the orbitals of the two active electrons in the configuration with the
largest coefficient, in addition to the symmetry notation. The calculation
used the analytic method with the basis set of Clementi and Roetti (1974)
augmented by further Slater-type orbitals in order to give flexibility for
the description of unoccupied orbitals. The total energy calculated by this
method was —199.614 61, which should be compared with the result of a
numerical Hartree—Fock calculation, —199.614 64.

The n=\ and 2 shells were frozen at the ground-state Hartree—Fock val-
ues. The orbital set included the 4s, 3p, 3d, 4 / and 5g natural orbitals and
3p, 3d, 4s, 4p, 4d, 4/ , 5s, 5p, 5d, 5/ orbitals from frozen-core Hartree—Fock
calculations to provide representations for states whose dominant config-
uration is 13s nt). This set was again augmented by extra ad hoc orbitals
to increase flexibility. The full set contained 24 orbitals (6 s-type, 7 p-type,
6 d-type, 3 /-type, 2 g-type) which were all orthogonalised using the
prescription for two orbitals \a) and \b)

<6[|a)-|6)(6|fl)] =0. (5.83)
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We first consider the ground state. Table 5.4 shows the coefficients of
some of the more-important configurations. This gives an idea of the
importance of correlations in lower-energy atomic states.

Table 5.5 illustrates the accuracy available for energy calculations by
showing the one-electron separation energy calculated in the detailed
example (Mitroy, 1983), the multiconfiguration Hartree—Fock method
of Froese-Fischer (1979) and the natural-orbital configuration-interaction
method of Weiss (1967), compared with experimental values. The status
of structure calculations is shown, for example, by the ground state where
calculations agree within a factor 10~~3 but differ from experiment by 0.11
eV, an energy comparable with the resolution of a scattering experiment.

In addition to energy levels, transition rates are available experimentally
for pairs of states where the transition satisfies the dipole selection rule.
The status of atomic spectroscopy is illustrated in table 5.6 for the lowest

Table 5.4. Expansion coefficients of the
dominant configurations for the ground state
of magnesium in the calculation of Mitroy
(1983)

Configuration

3s2

3s4s
4?
3p2

3d2

Coefficient

0.9646
0.0271

-0.0405
0.2563

-0.0280

Table 5.5. The one-electron separation energies of the lower-energy states
of magnesium. EXAMPLE, Mitroy (1983); MCHF, Froese-Fischer (1979);
NOCI, Weiss (1967); EXP, experimental data compiled by Moore (1949)

STATE

3s2 lSe

3s3p 3P°
3s3p lP°
3s4s 3Se

3s4s xSe

3s3d {De

3s3d 3De

EXAMPLE

0.276 83
0.181 38
0.119 61
0.092 49
0.082 18
0.070 64
0.062 25

MCHF

0.276 60
0.181 34
0.119 49
0.092 53
0.082 13
0.071 13
0.062 61

NOCI

0.2765
0.1815
0.1192
0.0924
0.0821
0.0668
0.0622

EXP

0.280 99
0.181 25
0.121 28
0.093 28
0.082 78
0.069 56
0.062 48
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Table 5.6. Transition rate (optical oscillator strength) for the lowest two
dipole transitions in magnesium. EXP: experimental data of Kelly and
Mathur (1980)fl], Liljeby et al. (1980)[2], Lundin et al. (1973)f3], Lurio
(1964)[4], Smith and Gallagher (1966)[5], Smith and Liszt (1971)[6],
Mitchell (1975)[7]. EXAMPLE: Mitroy (1983). MCHF: Froese-Fischer
(1979). NOCI: Weiss (1974)

Upper state Lower state EXP EXAMPLE MCHF NOCI

3s3p lP 3s2 lS 1.83 ±0.08 [1] 1.74 1.76 1.75
1.83 ±0.18 [2]
1.75 ±0.07 [3]
1.85 ±0.07 [4]
1.80 ±0.05 [5]
1.86 ±0.03 [6]

3s4p lP 3s2 lS 0.19 ±0.02 [1] 0.104 0.117
0.102 ±0.22 [2]
0.18 ±0.04 [6]
0.109 ±0.008 [7]

two dipole transitions in magnesium. Not only do experiments sometimes
disagree within the quoted errors but there may be significant differences
between structure calculations. The calculated transition rate is sensitive to
the representation of the states. Here it is calculated by the dipole-length
method where the transition strength is

N

S = Y^\(n'^jW\Y,Lk\nSjm)\2. (5.84)
m'm k=l

The primed quantum numbers represent the final state. The coordinate
representation of the length operator Lk for the kth electron is

Lk = rk. (5.85)

In summary, structure calculations can obtain 1 or 2% agreement
with accurate optical data. A broader perspective is given in chap-
ter 11 by electron momentum spectroscopy. Hartree—Fock calculations
agree with one-electron momentum densities within experimental error,
but configuration-interaction calculations agree only qualitatively with
detailed data on correlations.
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Formal scattering theory

We have considered the measurement of observables in electron—atom
collisions and the description of the structure of the target and residual
atomic states. We are now in a position to develop the formal theory of
the reaction mechanism. Our understanding of potential scattering serves
as a useful example of the concepts involved.

Reactions are understood in terms of channels. A channel is a quantum
state of the projectile—target system when the projectile and target are
so far apart that they do not interact. It is specified by the incident
energy and spin projection of the projectile and the quantum state of the
iV-electron target, which may be bound or ionised.

The reaction mechanism is studied by considering targets whose descrip-
tion is simple and, at least from the spectroscopic point of view, believable
within an accuracy appropriate to the scattering experiment. Hydrogen
is the obvious example, although experiments are difficult because of the
need to make the atomic target by dissociating molecules. Sodium is a
target for which a large quantity of experimental data is available and
whose structure can be quite well described for the lower-energy states.
When the reaction mechanism is sufficiently understood the reaction may
be used as a probe for the structure of more-complicated target or residual
systems.

6.1 Formulation of the problem

Scattering theory concerns a collision of two bodies, that may change
the state of one or both of the bodies. In our application one body
(the projectile) is an electron, whose internal state is specified by its
spin-projection quantum number v. The other body (the target) is an
atom or an atomic ion, whose internal bound state is specified by the
principal quantum number n and quantum numbers j , m and t for the
total angular momentum, its projection and the parity respectively. We

139
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are also concerned with singly-ionised states of the target, specified by the
internal quantum numbers of the separated electron and the residual ion
and their relative momentum. The state of relative motion of the projectile
and the target is specified by the relative momentum k. We assume that
the nucleus is so massive that its kinetic energy may be neglected.

In a collision experiment we have an incident beam of electrons of
kinetic energy £o- If one spin projection predominates then the beam is
polarised, the polarisation P being given in terms of the intensities Iv of
electrons with projection v. The intensity is the number of particles per
second incident on unit area normal to the beam direction.

P = ^ ^ . (6.1)
il/2 H-i-1/2

The target atoms are usually in a beam whose kinetic energy is negligible.
In the final state one or two electrons are detected with specified kinetic

energies and in specified directions so that their momenta are known. The
numbers of electrons per second in a particular range of energies and solid
angles are recorded. The polarisation of the final-state electron beams (or
related observables) may or may not be observed.

The total Hamiltonian H of the projectile—target system is partitioned
into a projectile—target potential V 9 whose range must be short compared
with the Coulomb potential, and channel Hamiltonian K. In the case
of a charged target there is a residual Coulomb potential Vc, which is
subtracted from V and added to K.

H = {K + VC) + {V-VC). (6.2)

The channel Hamiltonian governs the system at macroscopic separation
distances, in particular the injection and detection distances of the exper-
iment. It consists of the kinetic-energy operator Ko of the electron and
the Hamiltonian Hj of the target.

K = Ko + HT. (6.3)

We develop scattering theory using the ideas of Gell-Mann and Gold-
berger (1953), starting with the case VQ = 0. The case of a charged target
will be considered later. Modifications to the notation are trivial.

The sytem is observed before and after the collision in time-dependent
channel states |<&,•(£)). The channel index i stands not only for the channel
quantum numbers n, j9 m, / , v but also for the relative momentum k,-.
The entrance channel is denoted by i = 0. The Schrodinger equation of
motion for the channel i is, in atomic units,

ijt\<S>i{t))=K\®i{t)). (6.4)
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The normalised stationary channel state corresponding to an energy eigen-
value Ei is |<D,-), where

\®i(t)) = e~iE^i). (6.5)

The channel Schrodinger equation is

(E-K)\<bi)=0. (6.6)

A necessary condition for K is that it is separable in the translational
coordinates of the projectile and all other coordinates. We may therefore
write the more-explicit form for the stationary channel state

l®i> = \i%), (6.7)
which applies if i is a discrete (bound target state) channel. If i is a
continuum (ionised target state) channel we write

l®i) = 1 A M (6.8)
where n denotes the quantum state of the residual ion and the spin
projections of the continuum electrons, and k^ is the relative momentum
of the residual ion and the target electron. At this stage we distinguish
projectile and target electrons for illustration. We must keep in mind that
the states are antisymmetric in the coordinates and spins of all electrons.

The Schrodinger equation of motion for the collision problem is

jj j t ) ) . (6.9)

The stationary state for the collision is |*F/)5 where

\Wj(t)) = e-^'Wj). (6.10)

The Schrodinger equation for the collision is

(E-H)\¥j)  = {E-K- V)\Vj) = 0. (6.11)
The collision state |*F/) is in a one-to-one correspondence with the channel
state |$y), the entrance channel for the collision. The physical collision
state is |*Fo)> but the index j is needed for some formal purposes when we
use the spectral representation of H.

It is useful to keep in mind a simple problem for illustration. This is
potential scattering (section 4.4), i.e. scattering of a spinless particle by a
short-range potential V. The coordinate representation of the scattering
quantities is, in atomic units,

= F(r)<5(r'-r),

(ko,r). (6.12)
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The relationship of the mathematical constructions to the physical
situation is given by the interpretation of section 3.2. The amplitude for
detecting the channel state |O,-(f)) at time t for the collision state |*Fo(O) is

fi0(t) = (QiWoit)). (6.13)

The corresponding probability is

m(t) = \Mt)\2No\ (6.14)

where the normalisation is

No = CFoWIW)}. (6.15)

Since probability is conserved No is constant in time.
At this stage we encounter a mathematical difficulty. Continuum states

are not normalisable in the conventional sense No=l. In fact we have
no algebra for continuum states. The algebra of Hilbert space, where a
basis has discrete eigenvalues, is applied by modifying the physical system
we are considering. We enclose the whole system in a cubic box (section
4.1) of side L. Eigenvalues of states in the box are discrete. At the end
of the analysis we take the continuum limit L —•  oo. The experimental
observables turn out to be independent of L. For box-normalised states
the index i stands for a countable set of quantum numbers representing
the internal states of the target and projectile and the relative motion in
the box.

6.2 Box-normalised wave-packet states

We are interested in the rate of transition from the entrance channel |<X>o(O)
to the exit channel |<Dj(t)) caused by the interaction V. We choose t = 0 to
be the time at which the collision occurs and consider the mathematical
representation of the dependence of the collision state |*Fo(O) on |Oo(T)),
its state at time T in the distant past (on an atomic scale) when the
system was so well separated that the potential V did not act. Applying
the time-development operator (3.45) we have

|^oW)=^^" T ) l ^>o(T) ) . (6.16)

However, this does not represent the physical situation. The system does
not start suddenly at T. The beam is switched on over a finite period T.
We therefore represent |*Fo(O) as the time development of a wave packet
prepared with an exponentially-increasing weight eeT, where

e = 1/T. (6.17)

The exponential form is chosen for mathematical convenience, since it
leads to an integral that can be evaluated. The exact form of the wave
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packet is physically unimportant. We have seen in our discussion of the
wave-packet description of beams (section 3.2) that a scattering experiment
should be described by an initial eigenstate of momentum. In order to
achieve this we will take the limit e —>  0+ at the end of the analysis. The
wave-packet collision state is

(6.18)

Note that in the time-reversed situation the beam is switched off over a
finite period x and the weight factor of the wave packet is e~eT.

The experimental situation is that times characteristic of an experiment
are of the order 10~~9s, while the time characteristic of an atomic collision
is, for example, the time it takes an electron projectile to traverse an atom.
This is of the order 10~~16s. It is therefore physically reasonable to consider
the limit x —>  oo or e -» 0+. Experiments involving time resolution have
been devised with resonant states whose lifetimes are greater than 10~9s.
Such experiments must be described by explicit wave packets rather than
the formalism of the present section. An example is given in section 4.6.

The double limit e —>  0+, L —•  oo must be taken in such a way that the
whole system is inside the normalising box at all times, x is the length of
the incident train of particles divided by their velocity v. We require

x < Lv~\ (6.19)

When x and L both tend to infinity

e^L-3 —> 0. (6.20)

This is the quantity that is relevant to our derivation.

6.3 Integral equation for the box-normalised collision state

The integration over T in (6.18) may be performed formally to obtain

\V$\t)) = e~im '* l<Po)- (6-21)
JLLQ — i i + l€

We have used (6.5) to introduce the stationary channel state. From
equations (6.2,6.6) we have

(£o-tf)|<Do) = -F|<Do). (6.22)

We use (6.22) to obtain from (6.21) the box-normalised wave-packet
collision state at t = 0.

^ = |Oo) + -= ^T-r-Vm). (6.23)
LQ n + le
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This is an explicit expression for the collision state in terms of the corre-
sponding channel state. The difficulty is in the integral operator. We can
turn this into numbers by introducing the spectral representation of H,
but a knowledge of this requires a solution of the problem. To obtain a
form that leads to a solution we use the operator identity

on the last term of (6.23), with
A = Eo -H + ie, B = E0-K + ie, (6.25)

to obtain
1

EQ - H + ie

Eo-K
This is substituted into (6.23) to obtain the integral equation for the
collision state

| ^ ( 0 ) ) = |Oo> + 1——  V\¥ 0
e\0)). (6.26)

ho — K  -j-ie
Here the spectral representation of the integral operator is known. The
difficulty is in solving the integral equation.

6.4 The physical limiting procedure : normalisation
The key quantity in the calculation of experimental observables is the
collision amplitude (6.13). The box-normalised collision amplitude for the
wave packet is given for t = 0 by using (6.26).

—  IV -f" 16

= S*+v FX^4 } > (6-27)
Eo —  Et + ie

where
$ ¥\ (6.28)The significance of this expression is that the divergent integral (6.13) over

all space has been replaced by an integral over the finite volume in which
V is nonzero, and other quantities that are easily handled.

We first consider the limit L —•  oo, applied to R^\ We normalise both
the channel and collision states of (6.28) in the same way by considering
the part of |O,-) that describes the relative motion of the projectile and
the target. After taking the limit this is an eigenstate of momentum |k,-),
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according to (6.7). Its coordinate representation is a plane wave (3.25), i.e.
(2TT)~3/2 elkiT. Since the probability of the state is uniform over the whole
box, the box normalisation is L~3/2. The properly-normalised wave-packet
quantity that is independent of L is

T$=\im(L/2n)3R$. (6.29)
Li • O O

Next we turn to the normalisation No of the collision amplitude. Intro-
ducing the unit operator for the channel space into the definition (6.15) in
the wave-packet case we have

N0 = ZK^WI^WX®.^)!^^)) = z.-l/S?(0l2. (6.30)
Using (6.27) in (6.30) we find, after some complex-number arithmetic,

h$ ^£Y (6.31)

Since R$ is of order L~3 and e^Lr3 - •  0 (6.20) we have

lim No = 1. (6.32)
L->oo

The limit e —•  0+ is kept in the formalism. We introduce a notation for
it below. The important quantity in this limit is the T-matrix element

Ti0=lim^\ (6.33)

We continue the formal development in terms of the box-normalised
quantities.

6.5 Transition rate and differential cross section

We first consider the transition rate to a particular final state i. The
transition rate at t = 0 is given by (6.14,6.27).

w,o = ^| / j o
e ) (O) | 2 . (6.34)

In order to evaluate it we need an identity obtained by writing the time-
dependent collision state in (6.13) as the time-development of the collision
state at t = 0 and using (6.5).

£ ^ (6.35)
We differentiate (6.35), use (6.2,6,28) and set t = 0.

|/)0
e)(0) = -iRg>. (6.36)
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After some complex-number arithmetic we find for the box-normalised
quantities

*• - Sbl2****® + vhnn^l (637)

The case of forward scattering i = 0 is special. It is treated in the next
section. Defining Rio by

RiO = lim tfj? = (2n/L)3Ti0, (6.38)

we have, in view of (3.14),

2
2 (6.39)

Now the finite value of e corresponds to a finite uncertainty in the
energy of the initial state. We may consider the transition as involving a
collection of initial states in which the number of states in the interval
dEo is p(Eo)dEo, where P(EQ) is the density of states. From this point of
view the transition rate is given by

wi0 = inlRal2 f dEod(Eo - Ei)p(E0)

= 2n\Rm\2p(Ei). (6.40)

This expression is the exact form of Fermi's Golden Rule, familiar in
time-dependent perturbation theory where |*FQ (0)) is approximated by
|®o) (Merzbacher, 1970). p(Ei) is the density of final states.

In the discrete notation for box-normalised channels the differential
cross section a® for the transition 0 -» z is defined as the transition rate
(6.39) divided by the incident flux vL~3.

tf;o = WioL3v~x. (6.41)

We will see in sections 6.7 and 6.8 that this is independent of L in
particular cases so that the limit L —•  oo is well defined.

6.6 The optical theorem

The transition 0 —•  0 is forward scattering. The total cross section is

*>• (6.42)

The optical theorem expresses the fact that the normalisation No is con-
stant in time. This means that the rate of depletion of the entrance channel
woo is equal to the sum of the transition rates to the other channels.
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Formally this is seen by differentiating (6.30) and using (6.34).

No = 2^ — 1 / - 0 (U)| = 2-iW/o = U. (6.43)

Hence

-woo =

We calculate woo by substituting (6.27) in (6.34) and using (6.36).

(6.45)

The second term vanishes by (6.20) in the double limit and we have in the
limit e - • 0+

-2ImRoo = Y,™M'  (6-46)

We multiply by L 3 ^ 1 and use (6.41,6.42) and the definition (6.29,6.33) of
Too-

aT = -(2/v){2n?lmToo- (6.47)

The total cross section is proportional to the imaginary part of the forward
scattering amplitude.

6.7 Differential cross section for scattering

In the case of scattering the channel states of relative motion are defined
by the momentum of one electron relative to the collision centre of mass,
which is at the nucleus if we neglect the kinetic energy of the nucleus. To
obtain the differential cross section we use the form (6.40) for w,o in the
definition (6.41).

We must first find the density of final states, which we characterise in
terms of the relative momentum &,-. The permitted values of k; in the
normalisation box are given by (4.7).

kix = 2nnx/L and similarly for y and z. (6.48)

There are (L/2n)3d3ki states in the range d3ki about k*. Many different
final states belong to the same energy channel, defined by the channel
kinetic energy £*, but have different directions given by the polar angles

p(ki)dEi = (L/2n)3d% = (L/lnfkfdkiSinOdddcj). (6.49)

We transform the integration variable from £, to fc*.

dEt = ktdkj. (6.50)
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The density in momentum of final states is

p(ki) = (L/2TT) 3MQ, (6.51)

where the element of solid angle dQ is defined by

dQ = sinedOdcf). (6.52)

The experiment measures the rate of transition into a solid angle dQ
subtended by the detector at scattering angles 6, (j). The energy channels
U 0 are defined by energy resolution. In atomic units the relative velocity
v is /co. We use the notation dai(9, 0) for the differential cross section in
this experiment. The definition (6.41) becomes

dai(6,(t)) = wioL%1. (6.53)

We obtain wi0 by using (6.29,6.33,6.51) in (6.40) and find

^ f \ \ } ^ . (6.54)

The differential cross section is independent of L, the size of the normali-
sation box.

The calculation of TJO for potential scattering has been discussed in great
detail in section 4.5. This is a particular case of the present discussion
which is useful for illustration. The differential cross section in this case
is given by (4.48,4.112b).

The differential cross section is defined for experiments that do not
resolve angular-momentum projections or observe polarisations. States
with different values of these observables are degenerate. We average over
initial-state degeneracies and sum over final-state degeneracies. In the
absence of details of the states this is denoted by 2 ^ . The final form of
the differential cross section is

(6.55,

6.8 Differential cross section for ionisation
In the case of ionisation the channel states of relative motion are defined
by the momenta kM, kz of the two electrons. Our derivation parallels closely
the derivation for scattering in section 6.7.

It is convenient at this stage to redefine the notation for energy. We
drop the channel index from the total energy £, since it is the same in
all channels. This is expressed for example by the energy-conserving delta
function in (6.39). We now use a subscripted energy variable to refer to the
kinetic energy of an electron, for example in channel 0 or i. The density of
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final states is the energy density of states specified by the electron kinetic
energies E^ Ei with the energy-conservation condition

E = E0 + e0 = Efi + Et. (6.56)

The number of final states in the range cPkpCpki about kM, k* is

p(kfi,ki)dE^dEi = {L/2n)6d3kfid3kid(E -E^- Et)
= (L/2n)%kidEfldEidQfldQid(E- E^- Et). (6.57)

The differential cross section is again obtained from the expression (6.40)
for the transition rate w*o. However, in the case of ionisation the continuum
limit of |Oj) in the definition (6.28) of R$ is (6.8), which has two plane
waves. The analogue of (6.29,6.33) for the limit as e —•  0+ of the properly-
normalised quantity independent of L is

7>(ko, kM, k,) = lim (L/2nf2Ri0. (6.58)
L—>oo

We therefore have the following expression for the differential cross section

^ )

x dE^dEidQ^dQidiE-E^-E^kQ1. (6.59)

Accounting for degeneracies in the initial and final states the differential
cross section becomes

^ k / , , k 0 | 2 . (6.60)

6.9 The continuum limit : Lippmann—Schwinger equation

In this section we first summarise the meaning of the notation for the
channel and collision states with box normalisation and in the continuum
limit L —•  oo. We then define notation for the limit e -> 0+ and write the
corresponding integral equations.

With box normalisation the channel states |O;) are countable. For
discrete target states the index i stands for the internal quantum numbers
/t,7,m,/, v of the target and projectile and the box quantum numbers
nix,niy,niz characterising the relative motion. When L —>  oo the box
quantum number set is replaced by the momentum continuum kz. The
limiting procedure is summarised as follows

<£i) = \inixniyniz) — •  |ik,-), L — •  oo. (6.61)

For a continuum target state the internal quantum numbers i include the
set n for the residual ion state and electron-spin projections and the box
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quantum numbers n^n^.n^ for the motion of the freed electron. The
limiting procedure is summarised by

\<S>i) = lim^n^n^nixniyniz) — • l /^k; ) , L —> oo. (6.62)

The same meaning is given to the relative motion described by the
collision state |*F^(0)). For this state we must also consider the limit
e —>  0+. Introduction of the energy width e enabled us to write an
integral equation (6.26) for the collision state. The limiting procedure is
represented by

^ ^ ) . (6.63)

The channel subscript 0 indicates that the entrance channel for the collision
is |O0).

The e —•  0+ limit of the integral operator of (6.26) is represented by

Note that (6.64) expresses the redefinition of energy (6.56). We drop
the channel subscript from the total energy E since it is the same in all
channels in the limit e —•  0+.

The operator (6.64) is called the resolvent or Green's function operator

(+) x - (6-65)

In the illustrative case of potential scattering equn. (4.107) shows that the
coordinate representation of Go(E^) is a spherical outgoing wave. We
may generalise this to the coordinate representation for channel i, using
(6.3) with Vc = 0.

where
%kf = E-€i. (6.67)

This is an outgoing spherical wave in channel i.
The time-reversed collision state and Green's function operator are

denoted by
^ ! ^ ) , (6.68)

The coordinate representation of (6.69) for channel i is an ingoing spherical
wave, generalising (4.108).
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The e —>  0+ limit of the integral equation (6.26) is the Lippmann-
Schwinger equation

The T-matrix element is given by (6.28,6.29,6.33).

Tio = (®,-|T|<Do> = (®i\V\¥Q
+)). (6.71)

In the limit L -> oo the index i has become a convenient discrete notation
including the projectile continuum for channel j , defined by (6.7), or
including the projectile—target continuum when the notation is defined
by (6.8). We will retain this notation for formal convenience, but use
the more-explicit forms (6.7,6.8) when it is necessary to specify electron
momenta. The more-explicit form for the T-matrix element is

(MT|Oko) = (MK|^o
+)(ko)). (6.72)

We form the T-matrix element (6.72) in the integral equation (6.70)
and expand in the complete set of channel states \jkf) to obtain the
Lippmann—Schwinger equation for the T-matrix element.

(kz|T|0k0) = {ki\V\0k0) + Xj J d3k'(ki\V\jkf)

' . (6.73)

Note that the integration over k' involves all momentum values since
\jk') form a complete set of eigenstates of K. Not all momentum values
conserve energy. The corresponding V- and T-matrix elements are half
off shell, while the F-matrix element in the kernel of (6.73) is fully off
shell. We use the channel subscript j to denote the physical (on-shell)
momentum k7 of the projectile in channel j (6.67). The solution of (6.73)
is the complete set of half-off-shell T-matrix elements, which includes the
physical (on-shell) T-matrix element T;o (6.71) that is used to calculate the
differential cross section (6.55). For continuum target states the channel
index j is a discrete notation for the target continuum and the notation Z,
represents the corresponding integral. The potential-scattering analogue
of (6.73) is (4.117).

Some of the early calculations of electron—atom scattering assumed
that the potential was small compared with the total energy so that it is a
good approximation to iterate the Lippmann—Schwinger equation (6.73).
Using the notation (6.65,6.71) the resultant series

(<D;|T|O0) = (®i\V + VG0V + VGoVGoV + • •  -|O0>. (6.74)
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is the Born or perturbation series. The first order is the Born approxi-
mation. In electron-atom scattering the Born series is strictly divergent
(Stelbovics, 1990) but it can sometimes give useful results.

A significant improvement is achieved by the unitarised Born approxi-
mation, which neglects the real part of the resolvent in (6.73), but keeps
the imaginary part, given by the identity (4.122) for integration through a
pole.

<MT|0k0) = (MF|0k0) - inJlj J&j(kAV\jTLj)(kjj\T\Oko). (6.75)

This approximation relates on-shell amplitudes for all the channels, since
the imaginary part of (4.122) conserves energy.

Subsequent chapters will be concerned with non-perturbative solutions
of the Lippmann—Schwinger equation.

6.10 The distorted-wave transformation

It would be convenient for solving the Lippmann—Schwinger equation
(6.73) if we could make the potential matrix elements as small as possible.
For example, we could hope to find a transformed equation whose iteration
would converge much more quickly. This is achieved by a judicious choice
of a local, central potential U, which is called the distorting potential since
the problem is reformulated in terms of the distorted-wave eigenstates of
U rather than the plane waves of (6.73). An important particular case of
U is the Coulomb potential VQ in the case where the target is charged.
The Hamiltonian (6.2) is repartitioned as follows

H = (K + U) + (V-U). (6.76)

By multiplying (6.70) on the left by the channel Schrodinger operator
(+) —  K we obtain the form of the Schrodinger equation that embodies

the correct collision boundary conditions. Using (6.76) this becomes

(£(±) _ K - U)\¥± ]) =(V- U)\¥± ]). (6.77)
The homogeneous equation is written using (6.3) as

(£(±) _ K0 - U - HT)^) = 0. (6.78)

It is separable in projectile and target operators

(£(+)_ Ko _ J7)|k(±)) = 0 ,
(ei-HT)\i)=0. (6.79)

The solution \%\^) of (6.78) is the distorted-wave channel state. Its more-
explicit form is written in analogy to equn. (6.7) for the channel state, with
the distorted waves \k\^} replacing the plane waves |k,-). It is convenient
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to use the same notation for the more-general distorted waves as we used
for Coulomb waves in (4.129).

IzP) = I*!*)- (6-80)
The transformed integral equation, corresponding to (6.77), is given for

physical boundary conditions indicated by the superscript (+).

(6.81)

We may arrive at this equation by repeating the derivation of this chapter
for the Hamiltonian (6.76).

We also have an integral equation corresponding to (6.78). We write it
for the time-reversed bra vector (x\~^\ using analogous arguments. Note
that the resolvent for the bra vector is the complex conjugate of the
resolvent analogous to (6.70).

h t } l K . (6.82)
Using the operator identity (6.24) we write the corresponding explicit
expression for (#• |.

ti) l
K u . (6.83)

In the distorted-wave formalism we denote the T matrix by T.

(®i\T\®o) ^ (®i\V\¥0
+)). (6.84)

W e subs t i tu te (6.81) in to (6.84) a n d use (6.83) to ob ta in

)>- (6-85)

The first term of (6.85) is the T-matrix element for elastic scattering by
the potential U. If U is the Coulomb potential VQ it is the Rutherford-
scattering T-matrix element. The second term is the distorted-wave
T-matrix element for which we solve the distorted-wave Lippmann-
Schwinger equation formed from (6.81). Its explicit form is written by
expanding in the complete set of eigenstates of K + U. This may include
projectile bound states \X) defined by

(€X-Ko-U)\X)=O. (6.86)

We use time-reversed scattering eigenstates so that the corresponding
small imaginary energy adds to the one signified by £ ( + ) in the resolvent
to make the limit well-defined. The distorted-wave Lippmann—Schwinger
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equation is

i\V-

J
J A

+)) = (li\V-U\0k{
0

+))

d3k'(Ai\ V - U\jk^)E{+)_*_ik,2 4

X ^ / < + ) ) . (6.87)

The driving term of (6.87) is the distorted-wave Born approximation
(DWBA). If i ̂  0 the T-matrix element in the DWBA is

(MT|0k0) = ( k ^ i F - U\0k{
0% (6.88)

where the distorted waves are calculated in the potential U according to
the first of equations (6.79). Their calculation has been discussed in detail
in section 4.4.

Up to this stage the distorting potential U has been arbitrary. We now
derive an optimum form for it. According to (6.85) the exact explicit form
for the T-matrix element in the case i =/= 0 is

(MT|Oko> = <kH,-|K - C/|^+)(k0)). (6.89)

We choose U so that |04+)) is as close to |^+)(ko)) as possible. To
accomplish this we first project the explicit form of (6.81) onto the target
ground state |0) and expand in the complete set of target eigenstates \j).

(6.90)

The approximation requires the second term of (6.90) to be small. Making
the approximation the second term becomes

1
E(+)-eo-Ko-U

{0\V-U\0)\k(
0
+>).
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The approximation is consistent if we choose

U = (0\V\0). (6.91)

The optimum choice of U is the ground-state average of the projectile-
target potential V. Note that the set of integral equations (6.87) can only be
closed if the choice of U is unique. However, the choice of the ground-state
average gives a DWBA T-matrix element (6.88) that is not time-reversal
invariant. If we want to use the DWBA as an approximation to the T-
matrix element, as distinct from using the distorted-wave representation as
a numerical aid in solving the integral equations, it is advisable to satisfy
time-reversal invariance by calculating I k ^ ) in the average potential for
the target ground state |0) and \k\~^) in the average potential for the
excited state \i).



7
Calculation of scattering amplitudes

The background for the details of multichannel scattering calculations
has now been established. We consider methods based on the integral-
equation formulation of chapter 6. These momentum-space methods have
proved accurate at all energies in a sufficient variety of situations to justify
the belief that they can be generally applied. In some situations sufficient
accuracy is achieved without resorting to the full power of the integral-
equation solution. The methods used in these situations are distorted-wave
methods. Their relationship to the full solutions will be examined in a
simplified illustrative case. A brief outline will be given of alternative
methods based on a coordinate-space formulation of the multichannel
problem.

There are two characteristic difficulties of multichannel many-fermion
problems. The first is that computational methods can of course directly
address only a finite number of channels whereas the physical problem has
an infinite number of discrete channels and the ionisation continuum. The
second is that the electrons are identical so that the formulation in terms
of one-electron states must be explicitly antisymmetric in the position (or
momentum) and spin coordinates.

We first show how to set up the problem within the framework of formal
scattering theory using antisymmetric products of one-electron states. The
problem is then formulated in terms of the calculation of reduced T-
matrix elements relating the absolute values of initial and final momenta
in different angular-momentum states. This depends on a knowledge of
the corresponding potential matrix elements, whose calculation we treat
in detail. We then show how the target continuum is accounted for in the
scattering formalism.

156
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7.1 Antisymmetrisation

The scattering problem is formulated in terms of one-electron states, which
we call orbitals to distinguish them from the JV-electron target states and
the (iV+l)-electron collision and channel states of scattering theory. The
space of collision states is spanned by products of JV+1 orbitals, which
we explicitly antisymmetrise in this section.

In formulating the problem antisymmetrically we describe it by the
Schrodinger equation equivalent to (6.70).

(E-K-V)\¥+\k))=0.  (7.1)

This equation formally includes the scattering boundary conditions.
We introduce the antisymmetric multichannel expansion

^ ; ^ (7.2)

We are not interested in the spin projection v of the projectile at this stage
and will drop it from the notation until it is needed.

7.1.1 Reduction to direct and exchange amplitudes

The antisymmetric multichannel expansion is

\¥ 0
+\k)) = S;4li), (7.3)

where a£ creates an electron in the continuum orbital \Uj(k)). The
antisymmetrised coupled differential equations corresponding to (7.1) are

Zj(k'i\(E-H)aL\j)=0. (7.4)

The coordinate—spin representation  of the (N + l)-electron state ajjj)
is a linear combination of determinants whose first column consists of
elements (xr\u^+\k)). Subsequent columns have elements (xr|a) for orbitals
| a) occupied in the corresponding configuration. Rows are characterised
by xr, r = 0,N. It is written in the notation of (3.141) as an expansion
over products of the elements (xr\u^~\k)) of the first column and their
cofactors (xr\j) in the determinants comprising a^j).

(x\al\j) = (N + 1)-1/2 f2(-ir{xr\j)(xr\u^(k)). (7.5)

In terms of this notation the bra channel state in (7.4) is

<k'i|x) = (k'|xo><Po>. (7.6)
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It is not necessary to antisymmetrise the bra state. Since E—H is  symmetric
the amplitude (7.4) with an explicitly-antisymmetrised bra simply involves
a redefinition of dummy integration coordinates.

The coupled equations (7.4) are equivalent to

/ dxo(i\xo)(E —  H)(xo\j)(xo\u^\k))

N
+ ^ ( - l ) r / dxo{l\xo)(E - H)(xr\j)(xr\u{+\k)) = 0, (7.7)

where the sum in (7.5) has been substituted into (7.4) in two parts. In
the first part the coordinate of the projectile is the same (xo) in the
representations of the channel and collision states. This is the direct term.
The N remaining terms are exchange terms, the r = 1 term being

XX = -Jdxo(i\xo)(E-H)(x1\j)(x1\u{+\k)). (7.8)

For the rth term in the sum we interchange the coordinates x\ and xr.

Xr = (—l) r / dxo(i\xr - -x\ - -XN)(E —  H)(xoxr • 'XN\J)(XI\UJ (k)). (7.9)

To restore cyclic order we take a permutation of order 1 in the coordinate
ket and a permutation of order r —  2 in the bra. Since \i) and \j) are
antisymmetric

Xr=Xx (7.10)

and (7.7) becomes

-Njdxo{i\xo)(E-H)(xi\j){xi\uy-\k)) - 0. (7.11)

We now partition the Hamiltonian as in (6.2,6.3), in order to have a
convenient form for expressing (7.1) as a Lippmann—Schwinger equation
(6.73).

N N

H = J2(Kr + Vr) + J2 Vrs = (*0 + HT) + (V0 + £ VOr), (7.12)

where Vr is the electron—nucleus potential  for electron r and the target
Schrodinger equation is

(€j-HT)\j)=0. (7.13)
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Using (7.11) the direct amplitude of (7.4) becomes
N

<yi\E - ej - K0\ju{+\k)) - ^(k ' i l iV- 'Fo + i^|7iij+)(k)>. (7.14)
r=\

The first term of (7.14) is the inverse of the Green's function of (6.73).
We will express the potential term using orbitals |a) for |i) and |)8) for \j)
that are occupied in the configuration-interaction basis of determinants.
This is done by expanding the target states \i) and \j) in the orbital
elements |a) and \P) of the first row and their cofactors aa\i) and ap\j).
The annihilation operator takes care of the possibility that an orbital is
not occupied in a particular determinant by giving zero for such a term.
Using the fact that all terms of the r sum are equal the direct amplitude is

(7.15)

The detail of the derivation of the potential term is given below for the
exchange case.

Note that the potential (7.15) is uncharged, since there is one nuclear
charge for each electron charge. For electron—ion scattering  Vo is replaced
by Vo —  C/OJ where the distorting potential I7o is charged so that

(7.16)

The exchange amplitude is written using (7.11) in (7.4). It is

(7.17)

This is a matrix element of a nonlocal potential Vx(xo9x\)9 which we
express by splitting H into two terms.

-N dxoi(i\xo)(E -HT - voi)(xi\j)

N
+ N / dxoi(i\xo)(Ko + Vo + Y,vor)(xi\j). (7.18)

r=2r=2

We first apply the target Hamiltonian symmetrically to \i) and \j) to
replace it by \{et + ej). Vx is thus manifestly hermitian. We then apply
the orbital-cofactor expansion to the first term, which becomes

- Y$\"Up\J)(*\xi) [E - \(€i + ej) - roi] (xo\P). (7.19)

For the second term of (7.18) we treat the part in Ko + Vo similarly.
The sum over r is treated by applying the same argument that resulted in
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(7.10) to find that each term is equal to the i;o2 term. This time we make
two successive orbital-cofactor expansions obtaining

= J2 d5t°
aPyd J

x (x2\d)(xo\P)(xon\asap\j)

|iS). (7.20)
afiyd

Note that the indices on x denote the coordinates that are omitted from
the set.
Applying the commutation rules (3.137—3.139) we obtain

{i\a\a]adap\j) = (i\alap\j)5ys - (i\a\ad\j)dh. (7.21)

Here we have assumed that aj|y) is always zero. This is strictly true only
if \y) is occupied in \j) as it would be if \i) = \j) or if it is an orbital of an
inert core. This approximation is further discussed below equation (7.23).

The nonlocal potential (7.20) is written, after interchanging the sum
indices /? and d in the last term of (7.21), in terms of the operator Ho-

zy<yMy»<xolj8)

(7.22)

From (5.17) we see that Ho is formally identical to the Hartree—Fock
Hamiltonian.

A useful simplification of (7.22) is achieved if we choose the orbitals |a)
and \p) to be eigenstates of Ho with eigenvalues e-a and ep.

(ep-H0)\P)=0. (7.23)

Ho is the Hamiltonian chosen to be best suited for modelling the target
states. If a single determinant is a sufficiently-accurate model for \j)
then the definition (7.22) is self-consistent if Ho is the Hartree—Fock
Hamiltonian. However, the self-consistent potential is not the same for
all target states \j). The one-electron potential is discussed in chapter 5.
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An appropriate potential for many cases is the frozen-core Hartree—Fock
potential with the addition of a core-polarisation term.

We substitute the nonlocal potential terms (7.19,7.22) in the amplitudes
of (7.4), using symmetry in (7.22) to replace Ho by ^(ea + ep). The
explicitly-antisymmetric form of the coupled equations (7.4) is

I,j(k'i\E - ej -K0- V\juf\k)) = 0, (7.24)

where the potential matrix element is given by (7.15,7.19,7.22).

^ (k'\P) [E - \{et + ej + 6a + ]

(7.25)

This equation defines a nonlocal projectile—target potential V for use in
the Lippmann—Schwinger equations (6.73) corresponding to (7.24). The
factor {i\a\ap\j) relates the orbitals to the target states. It is an extension
of the one-electron density matrix (5.62). We call it the density matrix. The
first and second terms of (7.25) are the direct and two-electron-exchange
terms. The third term is the one-electron-exchange term, which is nonzero
because \u^~\k)) is not orthogonal to any of the orbitals |a). The notation
convention used for the two-electron states |ak), which are unsymmetrised,
is that the outermost one-electron state belongs to the coordinate xo, the
innermost to x\. Subscripts indicate the space to which the operators
apply.

7.1.2 Validation of the exchange potential

The antisymmetric multichannel expansion (7.3) of the collision state
|*FQ (k)) has a serious difficulty. It is not unique. This is seen by
considering the orbital-cofactor expansion (7.5) in the elements of the
|w^(k)) column. If we add A(xr\(x) to (xr\uj(k))9 where the orbital
| a) is occupied in all the determinants comprising \j)9 we are adding
determinants with two identical columns, which are zero. Therefore
|u^(k)} is ambiguous, at least with respect to the addition of a linear
combination of occupied orbitals.

The removal of the ambiguity in the context of formal scattering theory
was first achieved by Stelbovics and Bransden (1989) in the case of a
one-electron target. They give references to related considerations in a
coordinate-space formulation of the problem. The method was extended
to a square-integrable representation of the target (e.g. equn. (5.53)) by
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Stelbovics (1991). A general unique formulation for hydrogen has been
given by Stelbovics (1990). Here we generalise the formulation to the case
of an JV-electron target.

Using (7.5) the antisymmetric multichannel expansion for M target
states is

M

(x\¥ 0
+\k)) = (N + I)-1/2 £ ^(-ir(xr|;)(xr|M;+)(k))

/ > (7-26)

where the unsymmetrised multichannel expansion is
M

<x|v4+)(k)> = X>r|;)(xr |i4+)(k)). (7.27)
7=1

The ambiguity is removed by requiring that all terms (—If (x\ipl. +\k)) of
(7.26) be identical. This is a stronger condition than overall antisymmetry.

|VJ+)(k)> = |vJ+)(k)> for all r. (7.28)

The existence of the |y>£+)(k)) in (7.28) is assured if the Pauli exclusion
principle applies.

The expansion (7.27) can be considered as the application of a target-
state projection operator I r, whose coordinate representation is

M
^ (7.29)

In order to obtain a formulation in terms of individual orbitals we make
the orbital-cofactor expansion of the determinants comprising (xr\j) in
the elements (xs|a) of the row s.

4) ^ (7.30)

The symmetry condition is expressed by making the expansion equivalent
to (7.26), with s replacing r, followed by the expansion (7.30) of (xs\j) in
the elements (xr|a) of the row r. The representation of \\pfr \k)) changes
sign on interchanging r and s.

(7.31)

The symmetry condition (7.31) is applied to the E amplitude of (7.24).
For consistency with (7.18) we choose r = 0 and 5 = 1. We first choose



7.1 Antisymmetrisation 163

the operator Jo to expand both the bra and ket, and use the definition
(7.26,7.28) to obtain

J dx(k'i\Io\x)E(x\Io\rp{
o

+)(k))

J ajG

According to (7.31), (7.32) is equivalent to the analogous expansion ap-
plying I\ to expand the bra.

We avoid the difficulty of computing the overlap (k' | i^(k)) in (7.32) by
multiplying E by the orbital projection operator Jo, whose coordinate-spin
representation is

Y (7.34)

We multiply (7.32) (with the inclusion of (7.34)) by an arbitrary constant
N9 and add and subtract equivalent terms given by (7.32,7.33). The
potential matrix element (7.25) is replaced by

{k'i\v\ju{;

- B)E - \{et + ej + ea ^ 4 ]
(7.35)

The one-electron form of (7.35) is given by Bray and Stelbovics (1992b).
A detailed discussion of the effect of different choices of 6 has been

given for a hydrogen target by Stelbovics (1990). The full solution of the
Lippmann—Schwinger equations (6.73) consists of half-off-shell T-matrix
elements in addition to the on-shell elements that describe scattering
processes. Half-off-shell T-matrix elements for a particular scattering
problem may be used in distorted-wave Born approximation solutions of
a larger problem. In the numerical solution of the Lippmann—Schwinger
equation using a finite basis of orbitals the choice of 9 is important. The
choice 9 = 0 is a special case for which the off-shell T-matrix elements
are numerically unstable although the on-shell elements are normally
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calculated accurately. Any other choice of 6 gives stable solutions both
on and off shell. A useful choice is 9 = 1.

Use of the potential (7.35) in solving the coupled Lippmann—Schwinger
equations (6.73,6.87) corresponding to (7.24) is a unique and numerically-
valid description of the electron—atom scattering problem in the context
of formal scattering theory.

7.2 Reduced Lippmann—Schwinger equations

The coupled Lippmann—Schwinger equations (6.73) are reduced for com-
putation to coupled integral equations in one radial dimension by exten-
sion of the angular-momentum techniques leading to equn. (4.121). The
distorted-wave representation (6.87) is essential for charged targets and
gives vital numerical simplification for targets whose description includes
a closed-shell core. It is necessary to describe the reduction only for the
plane-wave representation (6.73) with reference to the obvious extension
to (6.87).

7.2.1 jj coupling

The 77-coupling representation is generally useful in the reduction of
the Lippmann—Schwinger equations since it applies to situations where
spin—orbit coupling is not negligible. The quantum numbers used in
the representation are defined in table 7.1. Primed and double-primed
quantities are used to distinguish different angular-momentum states.

The channel state |/k) is described by quantities that determine the dif-
ferential cross section (6.55) and other experimental observables described

Table 7.1. Quantities describing jj-coupling states

Principal quantum number of target state
Total angular momentum of target state
Corresponding projection
Parity of target state
Absolute momentum of projectile
Spin projection of projectile
Total angular momentum of projectile
Corresponding projection
Orbital angular momentum of projectile
Corresponding projection
Total angular momentum
Corresponding projection
Overall parity

n
j
m

k
V

J
M
L

P
Q
n



7.2 Reduced Lippmann—Schwinger equations  165

in chapters 8 and 9. They are the projectile momentum k and spin projec-
tion v and the target-state quantum numbers n,/,y, m described in section
5.1. The projectile state is represented by a partial-wave expansion (4.188).
The quantum numbers of the projectile partial wave and the target state
are coupled to total angular momentum P and parity n. The 77-coupling
expansion of the potential matrix element is

<kVn7'/m'|F|<,mvk)= E E E
L'n'J'M' LfiJM PQ

x (k'\L'n')(L'yv'\J'M')(J'fM'm'\PQ)(k'L'J'n7'f || VPn \\ j(nJLk)
x {PQ\JjMm){JM\L\nv){Ln\k). (7.36)

The T-matrix element is expanded similarly. The reduced V- and T-
matrix elements are obtained by inverting (7.36) using the orthonormality
relations (3.71) of the spherical harmonics and (3.89) of the Clebsch-
Gordan coefficients.

{k'L'J'n'ff || VPn || jtnJLk)

= fdk! fdk E E (L'fi'\k')(J'M'\Lfl
lfi'v')(PQ\J'fM'm')

J J n'M'm'v' iiMmv

x (kfvfn7ffm'\V\n^jmvk)(JjMm\PQ)(L\iuv\JM)(k\Liii). (7.37)

The reduced Lippmann—Schwinger equations  are obtained by expand-
ing all the amplitudes of (6.73) according to (7.36) and again using the
orthonormality relations (3.71,3.89) to eliminate the integral over k and the
sum over Clebsch—Gordan coefficients  in the expansion of the projection
operator

Zjj<nLf\jk')(k'j\.

They are equations for the coefficients of the product of spherical
harmonics and Clebsch—Gordan coefficients  in the sums analogous to
(7.36).

||

f
TPn || jfnJLko) = (kL'J'n'/'f || VPn \\ j/nJLk0)

dk'k'2{kL'J'n7'f || VPn || f'S"n"J"L"k')

(k'L"J"n"rJ" II Tr* II JtnJLko). (7.38)£(+) _ e" - ifc/2

There are independent sets of equations for each total angular momentum
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P and parity n. The numerical solution of (7.38) is analogous to the
solution of (4.121), described by (4.124).

In solving the distorted-wave integral equations (6.87) the potential
matrix elements are calculated using distorted waves for the potential U
(6.79), with appropriate phases (4.133), to replace the plane waves. In the
channel states \ik) the plane waves |k) are replaced, where appropriate, by
bound states \X) of U whose quantum numbers are N,L,J. The integration
over the momentum k is replaced by a sum over the bound-state index L
If the distorting potential U is positively charged, as it must be for electron
scattering by a positive ion, there are infinitely-many bound states. The
sum over X is, however, rapidly convergent and may be cut off at N ~ 5.

\jtnJLk) -> \jSnJLN). (7.39)

7.2.2 LS coupling

For small atomic targets the spin—orbit potential (3.174) may  be neglected.
The target states may be described by LS coupling. This introduces an
economy in the number of channels to be coupled since there is no
spin—orbit splitting  of the target states whose orbital angular momentum
is / . The description of the reduced Lippmann—Schwinger equations
parallels that for jj coupling. The quantum numbers used in the repre-
sentation are defined in table 7.2.

Table 7.2. Quantities describing LS-coupling states

Principal quantum number of target state n
Orbital angular momentum of target state t
Corresponding projection m
Spin of target state 5
Corresponding projection a
Absolute momentum of projectile k
Spin projection of projectile v
Orbital angular momentum of projectile L
Corresponding projection \i
Total orbital angular momentum K
Corresponding projection M
Total spin S
Corresponding projection N
Total angular momentum P
Corresponding projection Q
Overall parity n
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The LS-coupling expansion of the potential matrix element is

(kVnV'm'sV

L'fi'K'M'S'N' LfiKMSN PQ

x {K'SrM'N'\PQ)(k'L'n7's'K'Sf || FPjt || SKstnLk)(PQ\KSMN)
x (SAT|isvff)(KM|L^m)(L/i|k). (7.40)

If the potential cannot change the total spin S and orbital angular mo-
mentum K the reduced matrix element becomes

{k'L'n'Zs'K'S' || VPn || SKstnLk)
= (k'L'n'f's' || VKSn || stnLk)5KIK8s,s (7.41)

and (7.40) reduces, using the orthonormality of the Clebsch—Gordan
coefficients (3.90), to

f'v V/'mVc'l F|«/ms<xvk)

(k'|LV} (L'fn'm'\KM) (±s'vV|SJV)

x {k1 Line's' || FKSTT || s/nL/c)(iSiV|^5vo")(iCM|L/jum)(L/i|k). (7.42)

The reduced potential matrix elements are obtained by inverting (7.42).

{k'Uritfsf || Fxsrc || s/nLk)

/

^ /» ^̂  ^

dkr dk y^ y^ (Lf^\kf)(KM\Lf/f^mf)(SN\lsfvfaf)
J ,*j^ , z^G

x (k^V/WsV/|F|n/ms(Jvk)(i5V(j|SN)(L/ium|KM)(k|L/i). (7.43)

The reduced Lippmann—Schwinger equations are

(kL'rtt's' || TXSTT II s/nLko) = {kL'rit's' \\ VKSn II s<?nLk0)

+ J2 t dk'ka(kL'ritfsf || VKSn II s"fn"L"k')
L"n"t"s" **

x £ W _ ^ _ i f e / 2 ( / c r L V W || TK5, || s/nL/co). (7.44)
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7.3 Potential matrix elements

The solution of the reduced Lippmann—Schwinger equations requires the
calculation of potential matrix elements that are the off-shell analogues
of the Born approximation, or the distorted-wave Born approximation
if the potential U of (6.76) is not zero. To derive the reduced potential
matrix elements (7.37,7.43) we require the full potential matrix elements
(7.36,7.40). For the two-electron states we use the more-general //-coupling
case to illustrate the derivation of the reduced potential matrix elements.
For LS coupling we give the results. The derivations are analogous. We
again consider the plane-wave representation in detail, noting the changes
necessary to implement the distorted-wave representation. We generalise
the potential-scattering case (4.118).

The coordinate—spin representation of an eigenstate of the momentum
k of an electron with spin projection v is written in partial-wave form as

( 2 \ 1/2 i ^

- j — ^2i LUL(kro)(jo\Lij)((To\jv)(Lfi\k). (7.45)
This form is used in the LS-coupling representation of the potential matrix
element. For jj coupling we use

(rO(To|vk) =(-) r- J2 iLUL(kro)(wo\UM){JM\L\fiv)(Lfi\k)
\ 7L / i\ if) r T, ,

(7.46)

obtained from (7.45) by inverting the definition (3.92) of (?o<ro \LJM)
using (3.90).

For inclusion of the target states it is useful to define a further reduction
of the notation by separating the radial coordinate of the projectile from
the projectile-spin—angle and target coordinates. The variables displayed
in the state vectors indicate the context of the reduced notation. The
coordinate—spin representation of an (N + l)-electron state is given in the
notation of (7.26) as

2\1/2 1
) E E iLU(k)( II PUL)(PQ\JjMm)

Kr° P

x (JM|L^v)(L/i |k). (7.47)

The reduced notation is expressed by inverting (7.47) using (3.71,3.89).

PUL) = J2(xo\*)fo°o\LJM)(JjMm\PQ). (7.48)
Mm
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The target states are expressed, according to equn. (7.35) for the full
potential matrix elements, in terms of orbitals |a) and |j8). The quantity
that relates the orbitals to the target states \ir) and |i) is the m-scheme
density matrix (ir\a\ap\i). Its transformation properties under rotations
are important in finding the reduced potential matrix elements.

The notation used to represent the orbital in coordinate—spin space  is

= rYlua(ri)<Ji°i\*Jama). (7.49)
The reduced notation for orbitals is

(ri<ri || a) = (?i<ri || njja). (7.50)

Since the orbital a\\0) transforms under rotations as \jama)9 the orbital
creation and annihilation operators behave as follows in view of (3.98).

a\ transforms as \jama)9

ap transforms as (—^)^~ mii\jp —mp)- (7.51)

We form the tensor product (3.99) of the two operators, using (3.93)
to express the Clebsch—Gordan coefficient  as a 3-j symbol and using the
symmetry properties of the 3-j symbol.

ja k jp ) a\ap. (7.52)

For inverting relationships involving 3-j symbols it is useful to note the
3-j equivalent of (3.89,3.90).

E ( h h f \ (h h J \ 7-2
\m\ mi m ) \m\ mi m

72 / h h J\( h h
J \m[ mr

2 m J U i ^2

We use (7.54) to invert the tensor relation (7.52).

a\ap = (-iy--«-  y l ( k k jp) Tk
Q. (7.55)

a p v ; ^ \ ~ m a q mp) *^ \ m a q mp

For the target states we use the notation
\i) = Wjm), (7.56)
||i) = \Wj). (7.57)
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The reduced density-matrix element is defined in terms of T* by the
Wigner—Eckart theorem (3.104).

q (Jm q £ ) HI Tfc HO. (7.58)
It is

The reduced density-matrix element for LS coupling is found similarly,
treating the orbital and spin factors independently.

7.3.1 Direct matrix element

The coordinate representation of the potential in the direct matrix element
of (7.35) is

-l ! !
ro |ro —  ri |

' " (7.60)

where

Vx (7*0,7*1) = - J - T ^0^(7*0 —  T*I). (7.61)

The multipole expansion of the Coulomb potential is given by (3.102,
3.103).

The direct reduced potential matrix element in jj coupling is calculated
by substituting the full potential matrix elements into (7.37) with the
continuum orbitals given by (7.46), the bound orbitals by (7.49), the two-
electron potential by (7.60) and the reduced density-matrix element by
(7.59).

(k'L'J'riff || V$n || jtnJLk) = f dk' f dk

E E (
L'J'M'LJMii'v'nv

x
m'm
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/ drorl / dr\r\ df0 d?i d3a0 /
/ 9 \ 1/2 i

" TF~ E ^^ ( fcVoJ^ 'M
V7T/ /CTo _,J7^_, ^

/ J M
yU J M

x rf 1wa(ri)(4;ama|fi(7i)

(2\1'2 1 v - r - - - 1
x — -— } i: (77-(/cro)(ro<To|LJM)(JM|Li//v)(L// |k). (7.62)

V n J Zero _r^_
L/I/M

The spin—angle integrations are performed by (3.104,107). We use the
orthogonality of the spherical harmonics (3.71) and the Clebsch—Gordan
coefficients (3.89). Expressing the Clebsch—Gordan coefficients as 3-j
symbols by (3.93) the direct reduced potential matrix element becomes

(k'L'J'rit'f || V$n || jtnJLk) =

-Mr -rj

x(-l)«^_- a n
 J^)WMJ). (7.63)

The direct radial matrix element is

R?UL*f$(k'>k) = ^7friL~L J dr° J driuL'(k'ro)ua(ri)v%(ro,ri)

x up(n)UL(kr0). (7.64)

We use (7.52,7.58,7.59) to obtain the relation between the m-scheme and
reduced density-matrix elements

x ( j" k jf>) (f\atap\i). (7.65)
\-ma q mpj a p i
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This is substituted into (7.63). The projection quantum number sums over
four 3-j symbols reduce to a 6-j symbol by (3.95).

The final form for the direct reduced potential matrix element is

{k'L'J'rit'f || V?n || jtnJLk) =

(7.66)

Note that the reduced matrix elements of C^ (3.107) imply the parity
selection rule.

The direct reduced potential matrix element for LS coupling is given by
Bray et al. (1989). In this case the integrations over the spin coordinates
(To and o\ result in the factor (v/|v)(va|vig), which prohibits spin flip.

(fe'L'nVV || VgSn || sfnLk) =

*' K

L k)

^ i | | i ) W , (7.67)
where the radial matrix element is again given by (7.64) and the reduced
density matrix element is defined analogously to the 77-coupling case.

7.3.2 Exchange matrix elements

The reduction of the exchange potential matrix element to the form used
for computation parallels that for the direct term. We exchange the
coordinates ro, ffo a n d n , o\ in the kets of (7.37).

The coordinate representation of the two-electron potential in the ex-
change matrix elements of (7.35) is

-i>oi(|ro - ri|) + e = + e
|r r |

where

vf(ro,n) = - ^ r + eSMS(r0 - n), (7.69)

•ep). (7.70)
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The expression analogous to (7.63) is

{k'L'J'n'S'f || Vfn || jtnJLk) =

—  m a rj

where the exchange radial matrix element is

M' -n

(.\{i\alaa\i), (7.71)

x up(r0)UL(kri). (7.72)
We cannot now use the relation (7.65) directly but must use (7.55,7.58,

7.59) to represent the m-scheme density-matrix element. The final form
for the exchange reduced potential matrix element is

(k!L'J'v[ff || V§K || jtnJLk) =
J' J

x (L'f || Cx || tpipWaU II CA || LJ)
xR^ik'MfWy^Wi). (7.73)

The corresponding expression for the LS-coupling representation is
g s/nLk) =

J I ijf II r1^ II / \ / / ii r ^ ii r \

*J{ " H ^ ^ 4 1 1 0 I|L)

k)(?\\yi;\\i), (7.74)
4 h *J{

where the reduced density matrix element is obtained analogously to
(7.59), treating orbital and spin degrees of freedom separately. Details are
given by Bray et al (1989).

For LS coupling it is noteworthy that the direct potential cannot change
the spin of the target state while the exchange potential can. The total
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spin iS does not change for LS coupling, whereas it can change in jj
coupling because of the spin—orbit potential.

The potential matrix elements for the distorted-wave representation
(6.87) of the Lippmann—Schwinger equations are calculated by replacing
UL(kr) in the radial matrix elements (7.63,7.72) by the appropriate solution
of the Schrodinger equation for the local, central distorting potential J7o-
In the case of scattering by an ion C/o has charge Z, given by (7.16). This
means that its form for large r is Z/r. Scattering solutions are eWLuiJ{k,r)
(4.92). Bound solutions are u^iS?) (4.23), where the quantum numbers
N,L are described by (7.39).

7.3.3 The density matrix in special cases

In this section we show how to calculate the m-scheme density-matrix
element (i'\a\ap\i) in cases of particular interest. We also show the sim-
plifications to the potential matrix elements that follow when the density
matrix is particularly simple.

One-electron target
For hydrogen or a hydrogenic ion the target states \i) are one-electron

orbitals |a). The density matrix is

(if\alap\i) = di,0CSip. (7.75)

The expression (7.59) for the reduced density matrix has been defined
so that in this case it is given by (7.53) as

V II 1% II 0 = WJJ,- (7-76)

The LS -coupling case is particularly simple because the target spins
s',s are each 3. The potential is spin-independent so the spin coupling
is independent of the space coupling. Writing the space-direct and
space-exchange amplitudes of the coupled Schrodinger equations (7.24)
as D and E respectively we have

{tiMSNWSNlftvoV!) (^vMlSJVWJI^o!) = 0. (7.77)
We rearrange the exchange spin-coupling coefficient thus.

< ± ± ^ ' > 1 + s < H M V ) (7.78)

On factoring out the spin-coupling coefficients we obtain

D + (-l)sE = 0. (7.79)

We thus have independent sets of coupled equations for the singlet (S =
0) and triplet (S = 1) cases with potential matrix elements (7.67,7.74)
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given by

Vs = vD +(-l)sVE. (7.80)

Inert target
Configuration-interaction calculations for most atoms are practicable only

if they are treated in terms of a few active electrons and a single-
determinant closed-shell core, for which £ = j = 0. The core is inert
in the sense that the configuration basis omits configurations with
unoccupied core orbitals.

Labelling the orbitals 1,..JV the density matrix for an inert target is

(f\alap\i) = (O|flN.-flifl^fll.-flJr|O). (7.81)

Each time we move a\ \i places to the left and ap v places to the right
we obtain a term

J_1flJ+1..fl^|O) = S^dpyd^. (7.82)

The potential matrix element is

(k'i'\V\ik) =
a/?

(7.83)

This is a sum of diagonal terms, one for each orbital. The potential
operator V is given by (7.35) and includes direct terms and one- and
two-electron exchange terms.

For a closed-shell target the LS-coupling case again simplifies. For
the orbital ji the spin integrations give factors (vo|vo)(v^|v^) for the
space-direct matrix element and — (vo|v M)(v |̂vo) for the space-exchange
matrix element. Since vM is equal to VQ for only half the orbitals we have
for space-orbitals a

(7.84)

Closed shell + 1 electron
We represent the inert closed-shell core by \C) and consider the states

\i)=at\C). (7.85)
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The density matrix is evaluated by applying the fermion commutation
rules (3.137-3.139).

iif\alap\i) = {C\a,a\apa\\C)
i (7.86)

The potential matrix element consists of a hydrogenic term and, if the
matrix element is diagonal, a sum of core terms similar to the case of
an inert target (7.83).

(kY|F|ik) = (k>|F|vk) + X » | F | p k > . (7.87)
peC

Closed shell + 2 electrons
The state \i) is represented by a linear combination of determinantal

configurations |p), each of which has an occupied closed-shell core \C)
and two active electrons.

- (7-88)

P

The configuration \p) is

\p)=ala\\C). (7.89)
Primed quantities denote the state \f).
The density matrix is a linear combination of configuration density
matrices.

iif\a\ap\i) = £ ( i V > ( p V ^ P > ( p l O . (7.90)
P'P

Each configuration density matrix is evaluated by repeated application
of the fermion commutation rules. It includes normalisation factors
Fp',Fp given by coupling to the symmetry of \i')9 \i).

(p'\a\ap\p) = Fp'Fp(8^dplldvfv —  da^dpvdv^ —  S^d^d^y + d<xv'dpv<>iifn)

+ {pf\p){C\a\ap\C). (7.91)

The expression (7.91) is the density matrix for two active electrons
added to the core term (7.82).

We now find the normalisation factor for a two-electron configuration,
using the notation ~\x for the shell quantum numbers n^^j^.

4|0) = l/Zm )̂ = In/^j^mj,). (7.92)
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The symmetry configuration is denoted by

FP\p) = \(n^nJn)(n^vJv)J

, / J a J l O ) . (7.93)
mv

The normalisation is given by

^lal\O). (7.94)

Application of the fermion commutation rules gives

(O|aV'0/i'4flJl°) = <VA'v - <Vv<5v> (7.95)
For the first term of (7.95) the sum rule (3.89) gives 1. The second
term is nonzero only for Ji = v, in which case we rearrange the left-
hand Clebsch—Gordan coefficient and again use the sum rule to obtain
(—l) Jdjiv if J is even. Odd J is forbidden for electrons occupying orbitals
with identical radial parts, i.e. in the same shell. The normalisation
factor is

Fp = (l + ^ v r 1 / 2 . (7.96)

The potential matrix element is

p'p

x (<5a/

(7.97)

7.3.4 r/z^ spin—orbit matrix element

The spin—orbit potential (3.174) is

±l^-L, (7.98)

where Vo is a central potential for the projectile. A reasonable choice
of central potential is the electron—nucleus potential plus the direct part
of the electron—electron potential given, for example, by (7.87) or (7.95).
In practice the latter has a small effect on scattering since its gradient is
small.
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This form for the spin—orbit potential acts only in diagonal direct
potential matrix elements. It may be considered as an additional term in
the potential (7.61)

= -(L + l)VSL(ro)dMS(ro-n), L = J-\. (7.99)
The eigenvalues of a • L are given by (4.171).

7.4 The complete set of target states

Coupled integral equations for a finite set of channels cannot represent
the scattering situation exactly since there is a countably infinite number
of bound target states and the ionisation continuum. We discuss two
ways of circumventing this difficulty. The first is the convergent-close-
coupling method. It approximates the complete set of target states by the
configuration-interaction expansion of section 5.6. It is in principle con-
vergent with increasing number of basis configurations. The computation
becomes very laborious for larger atoms. The second is the coupled-
channels-optical method, in which coupled Lippmann—Schwinger equa-
tions are solved for a finite set of eigenstates of the target Hamiltonian.
The coupling potential is the optical potential, which formally accounts
for channels outside the set. The method is feasible for all atoms. Its
implementation involves an approximation that has internal verification
for discrete channels but whose validity for the target continuum depends
on comparison either with experiment or with the first method in cases
where it is practicable. It is discussed in section 7.5.

7.4.1 The convergent-close-coupling method

This method simply involves the solution of the Lippmann—Schwinger
equations (6.73) or (6.87) with the potential matrix elements (7.35).
The states |i) are not eigenstates of the target Hamiltonian. They are
configuration-interaction states or pseudostates obtained by diagonalising
the target Hamiltonian in a square-integrable basis as described in section
5.6.

So far the method has only been fully tested for one-electron atoms. In
the case of hydrogen a complete check is available for a very restricted
subset of angular-momentum states, namely LS-coupled collision states
with / = K = 0. This is the Temkin-Poet problem (Temkin, 1962;
Poet, 1978, 1981). The three-body potentials are separable in the radial
coordinates. This enables a convergent numerical solution to be obtained.



7.5 The optical potential 179

Early numerical investigations of the close-coupling method for the
Temkin—Poet problem were made with coordinate-space solutions of cou-
pled equations using pseudostates obtained by diagonalising the hydrogen
Hamiltonian in a Slater-function (4.38) basis. Burke and Mitchell (1973)
showed that the singlet amplitude was converging with increasing basis
size, except at energies near anomalously-varying basis-dependent fea-
tures called pseudoresonances. Similar observations were made by Oza
and Callaway (1983), who used an averaging technique to smooth the
amplitudes over the pseudoresonances.

The use of a finite-basis expansion to represent the continuum is rem-
iniscent of the use of quadratures to represent an integration. Heller,
Reinhardt and Yamani (1973) showed that use of the Laguerre basis
(5.56) is equivalent to a Gaussian-type quadrature rule. The underlying
orthogonal polynomials were shown by Yamani and Reinhardt (1975) to
be of the Pollaczek (1950) class.

Bray and Stelbovics (1992a) addressed the question of whether the
method of using the Sturmians derived by diagonalising the hydrogen
Hamiltonian in a Laguerre basis converges in practice, and in particular
whether pseudoresonances are a necessary feature of a finite-basis method.
They found complete agreement with Poet (1978, 1981) for scattering and
ionisation channels at all energies using up to 30 Sturmians. With a
sufficiently-large basis there are no pseudoresonances.

There is no difference in principle between the integral equations (6.73)
for the Temkin—Poet problem and those for higher angular momenta.
The method is thus established as a convergent calculation of electron-
atom scattering. The Temkin—Poet solution is restricted to the zero-
angular-momentum case, whereas the convergent-close-coupling method
is perfectly general.

7.5 The optical potential

The Lippmann—Schwinger equations (6.73) are written formally in terms
of a discrete notation |i) for the complete set of target states, which
includes the ionisation continuum. For a numerical solution it is necessary
to have a finite set of coupled integral equations. We formulate the
coupled-channels-optical equations that describe reactions in a channel
subspace, called P space. This is projected from the channel space by an
operator P that includes only a finite set of target states. The entrance
channel |Oko) is included in P space. The method was first discussed
by Feshbach (1962). Its application to the momentum-space formulation
of electron—atom scattering was introduced by McCarthy and Stelbovics
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(1983&). Here we generalise the symmetric formulation of Bray, Konovalov
and McCarthy (1991c), which applied to one-electron targets.

The coupled-channels-optical equations are formally analogous to the
Lippmann—Schwinger equivalent  of (7.29) in which the coupling poten-
tial includes the potential V (7.40) and a polarisation potential V^ that
describes the real (on-shell) and virtual (off-shell) excitation of the com-
plementary channel space, called Q space. The total coupling potential is
the optical potential

K(G) = V + ViQ\ (7.100)
so called because early applications to the elastic scattering of nucle-
ons by nuclei reminded physicists of the scattering of light by a cloudy
(absorptive) crystal (refractive) ball.

The polarisation potential is complex and nonlocal. The imaginary part
is due to on-shell amplitudes for the excitation of Q space from P space.
At long range the potential is real. We will show its relationship for
large r, where it is due to virtual dipole excitations, to the classical dipole
potential —a/2r 4 where a is the polarisability.

7.5.1 The formal polarisation potential
The channels to be included in P space are the entrance channel, those
for which we want to describe experimental observations and others that
are so strongly coupled that numerical investigation shows their inclusion
to be necessary.

The channel projection operator P and its complementary operator Q
have the following properties

P+<2 = 1, P2 = P, Q2 = Q, PQ = QP=0. (7.101)
They are defined in terms of the projection operators P and Q for the
Af-electron target space as follows.

P=IP , Q=IQ, (7.102)

where / is the identity for the one-electron orbital space.

They obey relations analogous to (7.101).
The collision Schrodinger equation (7.1) is written

(£(+) _ H)\¥ 0
+\k)) = 0. (7.104)

The coordinate—spin representation of H (7.12) is symmetric in the coor-
dinates xr of the N + 1 electrons and (x|*Fo+*(k)) is antisymmetric. The
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boundary condition is

^ + ) = (xo|vk)(xo|0>, (7.105)

where |0) indicates the entrance-channel target state, usually the ground
state, and the projectile spin projection v has been restored to the
projectile-state notation. The channel projection operators (7.101) sat-
isfy

\imJx\P\¥+\k))  = <xo|vk)(xo|O), (7.106)J

+\k))=limJx\Q\¥+\k))=0.  (7.107)

We insert P + Q in (7.104) and premultiply by P and Q respectively to
obtain

- H)P\¥+\k)) = PHQ\¥ 0
+\k)), (7.108)

- H)Q\¥^~\k))  = QHP\¥ 0
+\k)). (7.109)

Using the boundary condition (7.107) we write (7.109) in the form

ei^+)(k)} = QGQ(E^)QHP\¥+\k)) 9 (7.110)

where the g-projected Green's function Gg(£(+)) satisfies

<2(£(+) - H)QGQ(EM) = Q. (7.111)

Since P and Q spaces are orthogonal we have

QHP = QWP, (7.112)
where W is the symmetric two-electron operator

W = 5> , - (7.H3)
r<s

The P-projected Schrodinger equation is written by substituting (7.110) in
(7.108).

P(E{+) - H - V{Q))P\¥ 0
+\k)) = 0. (7.114)

The polarisation potential V^ is given by
7<G) = WQGQ(EW)QW. (7.115)

Since H is symmetric V^ is also a symmetric two-electron operator

e (7.H6)
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We may therefore use the arguments of section 7.1, replacing (7.1) by
(7.114) to obtain the explicitly-antisymmetrised set of P-projected coupled
Schrodinger equations analogous to (7.24,7.35).

- ej -K0- 7<e>)P|jii<+)(k)) = 0, (7.117)
j

where the optical potential V^ is given by

x [(
+ <ak'|(l - 6)E - fa + ej + ea + ep) - v^lfiu^))]- (7.118)

The two-electron optical potential is given by (7.116) as
v^ = voi+v{Q\ (7.119)

7.5.2 The coupled-channels-optical equations

The integral equations corresponding to (7.117) are obtained by using
the unsymmetrised multichannel expansion (7.27), considering (7.117) as
a projection onto the channel state (k'i| of

P(£(+) -K)P\\p{+\k)) = PF( e )P|4+ )(k)). (7.120)
Here we have used (7.102,7.103) to replace the channel projection oper-
ators by the target projection operators. Since (7.120) contains the same
information as (7.117) this projection onto the channel space has not
destroyed the symmetry.

Using the boundary condition (7.105) and the notation (6.7) we write
the integral equation corresponding to (7.120) for a particular entrance-
channel momentum ko.

lv>S+)(ko)> = |0k0) + p{E{+l_K)pPV^P\xp{+\k0)). (7.121)

The P-projected T-matrix element is defined by

(ki\T\0k0) = (k,-|PF(2)p|4+)(k0)), i E P. (7.122)
Substituting (7.121) into (7.122) we obtain the P-projected Lippmann
Schwinger equations

<ki|T|Oko> = ( Y,J

+ _ i- _ ifc/2 <kVl r|Oko>, i G P. (7.123)
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These are the coupled-channels-optical equations, which are formally iden-
tical to (6.73) except that the channels are restricted to P space and the
potential V is replaced by the optical potential V^ (7.118). The exten-
sion of (7.123) to the distorted-wave representation is analogous to the
extension of (6.73) to (6.87).

The formal coupled integral equations (6.73) and their explicitly-anti-
symmetric form (7.35) require a discrete notation for the target contin-
uum. In (7.123) discrete notation is used only for discrete states and the
continuum states in the expansion of V^ may be treated by integration.

7.5.3 The Q-space weak-coupling approximation

The optical potential, defined by (7.111,7.115) can only be calculated
exactly if we can solve the whole collision problem to find the spectral
representation of H. We must approximate it as closely as possible with
the rationale that, since strongly-coupled channels are treated explicitly in
P space, a reasonable approximation for the remaining channels should
not cause significant errors in the amplitudes for the excitation of P -space
channels from the entrance channel.

Our first task in constructing the reduced matrix elements of the polar-
isation potential is to find the reduced matrix elements of the g-projected
Green's function (7.111). Using the notation (7.48) we have

(L'fi'P || Q(E{+) - H)QGQ(E{+)) II PiJL) = (L'J'fP \\ Q \\ PUL).
(7.124)

The reduced form of the projection operator Q is found by considering
its coordinate—spin representation.

(ro<ToXolg|xo<Toro} = / d3/c££(ro<xo3co|ivk)(kvi|xo<roro)
v ieQ

= Y, [dk-rf
o-lUL{k^)UL(kro)rolYlPa'o*i> II PiJL)

PUJ U
 ieQ

x (LJiP || xo<TOro>, (7.125)

where we have substituted (7.47) into the first line of (7.125), performed
the integration over k and summed over projection quantum numbers.
The reduced form of Q is written

Q = £ ] T / O L II PUL)(LJiP ||, (7.126)
PU ieq
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where the radial identity in the space of the continuum electron is defined
by (7.125) and written

IOL = - f dk\UL(k))(UL(k)\. (7.127)
n J

In choosing the partition xo,xo of the set x of coordinate—spin variables
we have broken the symmetry of the problem. It will be restored by explicit
symmetrisation of the expression for the optical potential.

Equn. (7.124) defining the reduced form of the g-projected Green's
function GQ(E^) is written using (7.127) and equating terms in the P
sum.

£ £ (L'J>i'P II 'OL'(£(+) - H)IOL' II P?J"L")
i»€QL"J"

x {L"J"i"P || GQ(E{+)) II PiJL)

= $i'i<>J'J<>L'Ll0L- (7.128)

We partition the Hamiltonian using the second form of (7.12) and defining
the interaction of the projectile with the target electrons by

r. (7.129)

It is convenient to eliminate the factor r^1 from the coordinate represen-
tation of the projectile state and use the radial Hamiltonian (4.10).

,d2 L(L + 1)
K"L = - 2 T I + , 2 • (

ar0 zr0

The first factor in (7.128) becomes

(L'J'i'P || /OL ' (£ ( + ) - H)I0L» II Pi'f'L"

= / O L ' ( £ — €['  —

-huijUJ'iP || vo || P*"J"L")/OL". (7.131)

We now make the approximation of weak coupling in Q space for the
reduced matrix elements of VQ in (7.131).

(L'fi'P || VQ || Pi'f'L") = Voprj'LirotfwSj'jvSuL*. (7.132)

This approximation neglects the coupling of channels within Q space. The
integral equations (7.123) of course couple channels within P space and
P-space channels to g-space channels. The reduced matrix element (7.132)
involves a state-dependent local, central potential, whose definition is a
further part of the approximation.
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Substituting (7.131,7.132) in (7.128) we obtain the expression for the
Green's function

(L'J'i'P || GQ(E^) II PUL) = dndrjdULIoLGoPijL(El+))IoL, (7.133)

where
Ep) = E0-ei = $kl (7.134)

and the coordinate representation of GOPUL is given by

(£<+) - K0L -V0- VoPutiGoPudEW; 4 r0) = d(r'o - r0). (7.135)

This is the definition of the Green's function of a local, central potential.
The solution of (7.135) is

GOPUUE™  ; 4 r0) = -K'f^k^) [gPl7L(/c,-r>) + i/Pl7L(/c,-r>)], (7.136)

where / and g denote respectively the regular and irregular solutions,
discussed in section 4.4.2, of

(E{+) - K0L - V0PijL)upijL(kir) = 0. (7.137)

The approximation to the Q-projected Green's function is based on the
unsymmetrised expression (7.133). We explicitly symmetrise it to obtain

PiJL) {G^^ + GMI) (LJiP II •
PLJ

The reduced matrix element of the two-electron polarisation potential
(7.115,7.116) is

(kfLfJ'i\\v$Pn{l-X)\\iJLk) = \ £
PL"J" i

UOO rOO

dr'o / droik'L'J'f || ooi^o) || Pi"J"L")Gwi,,rlu,{E(+); r'0,r0)Jo
x {L"J"i"P || voi(ro)(l-X) || ULk)

+ / dr[ / dn(k'L'J'if || Poi(ri) || P?J"L")GlPm»(E$ )\ r[,n)
Jo Jo

x{L"J"i"P || t?oi(ri)(l - X) || iJL/c)} , (7.139)

where the operator X exchanges the coordinates of the projectile and
target orbital in the sense of (7.118).
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In order to implement the approximation to the optical potential we
must choose a form for the potential VOPUL (7.132) in which the Green's
function is calculated (7.135). We choose different types of potential for
the discrete and continuum channels of Q space, projected respectively by
Q~ and Q+. For Q~ space we choose the average potential for the target
state \i). Its coordinate representation is obtained from (7.48,7.63,7.66)

POO

x <»•  II 7a/» II  0 / dnua{n)vD
x{rQ,n)up{n). (7.140)

In (7.140) we have added the electron—nucleus potential to the definition
(7.132), using (7.61).

The weak-coupling approximation (7.132,7.140) can be verified within
the context of the coupled-channels-optical method. Equns. (7.123) may be
solved with a particular channel, defined by the target state |i), included
in either P space or Q~ space. If it is in P space the channel i is
fully coupled. The approximation is verified if the two solutions agree.
In practice the lowest dipole-excited channels should be included in P
space with the experimentally-observed channels, but the approximation
is closely verified for higher channels in Q~ space. However, computation
of (7.123) is not difficult and it is common to include all discrete channels
in P space that are necessary for convergence.

For continuum channels the radial orbitals wa in (7.140) are not bounded
and the integral is divergent. The choice of radial functions in (7.136)
must be based on intuition obtained from a study of ionisation, which is
treated in chapter 10. A necessary condition for a reasonable distorted
wave in the distorted-wave Born approximation for ionisation is that it
should be orthogonal to the initial state in the ionisation amplitude. For
computational simplicity we set VOPUL equal to zero and orthogonalise
the resulting Ricatti—Bessel functions to all the states of P space using
(5.83).

7.5.4 The long-range dipole polarisation potential

Important effects in electron—atom elastic scattering are due to the long-
range polarisation potential that results from virtual excitation of dipole
channels. For illustration it is sufficient to follow Allen, Bray and Mc-
Carthy (1988) in considering the large-angular-momentum contribution to
the elastic T-matrix element from the excitation of a single / = 1 orbital
with radial part u\(r) from a single / = 0 orbital with radial part uo(r).
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The elastic reduced T-matrix element TL for LS coupling is a solution of
(7.44).

The case under consideration requires special values of the angular-
momentum quantum numbers in the reduced potential matrix elements
(7.67), namely t = 0, {' = X = 1, L = K, Lf = L + 1. The corresponding
direct radial matrix element (7.63) may be written

droUv(kro)UL(qro)

r -2 r°
\r0 / dririMi(ri)Mo(L Jo
r0 I™dnrfu^uoin)}.  (7.141)

J J

x

For notational convenience we have replaced fco and k! in (7.44) by q and
k respectively. Since the radial orbitals are negligible beyond a value of
r\ that we call r^ the second term of (7.141) is negligible for ro > r^. We
consider only the case L > qr^, for which

)C/L(^o), (7.142)

j»= r ^irmi(ri)iio(ri), (7.143)
Jo

since U^qro) is negligible for ro < r^.
For L » r̂oo we make the following approximations.

i) The direct reduced potential matrix elements are so small that the
second Born approximation is valid,

ii) The exchange radial matrix elements (7.72) are negligible since each
radial integration is cut off by the bound orbitals.

iii) The on-shell potential matrix elements, which give the imaginary
parts and on-shell subtractions in the multichannel analogue of (4.124),
are negligible. This is justified below equn. (7.150).

iv) The entrance-channel or static potential matrix element is small since
the average potential in the entrance channel is of short range.

With these approximations the elastic reduced T-matrix element of (7.44)
is

{ 2 2 } (7-144)

where V^ are the contributions to the integrand of (7.44) in the second
Born approximation TL = VL, with Lr = L + 1 respectively. The on-shell
momentum x is defined by

\x2 = E0 + €0-eh (7.145)
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where 60 and 61 are the energies of the ground and dipole-excited states
respectively and £0 is the incident kinetic energy.

Using the special values of the angular-momentum quantum numbers
in (7.67) we find

2 * ^ ' ' ' 1 ' L > > 9 r » < 7-146>

where the radial matrix elements (7.142) corresponding to V^ are

R±(k,q) = P{kq)ll\n/2) f°drr'1 JL±l+l/2(kr)JL+l/2(qr). (7.147)

Here we have converted the Ricatti—Bessel functions  of (7.142) to cylin-
drical Bessel functions in order to make use of analytic identities (Luke,
1973).

UL{p) = {np/2)il2JL+l/2{p), (7.148)

Substituting (7.146) in (7.144) we obtain

(7.149)

adial matrix elements R^ may be evaluated analytically using the
identity

dn ' ' •CWM-jy r(i-(v-,)/2)r(v + 1)

[ ^ ^ J] (7.150)
where a < /? and F is the hypergeometric function (Oberhettinger, 1973).
The k integration in (7.149) may then be evaluated numerically. The
expression (7.150) enables us to see how to approximate (7.149) accurately.
The function \(L + \)R~l2 + LR^2] is sharply peaked at k = q and peaks
more sharply as L increases. The reason for this is the factor (cc/P)v,
which becomes (k/q)v fork<q and (q/k)v for k > q. It is this peaking
that makes the on-shell radial matrix elements relatively small, since the
on-shell value k = x is substantially different from q.

The approximation for the elastic T-matrix element is

1" - \
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which may be evaluated using the orthonormality identity

dkkJn+1/2(kr')Jn+i/2(kr) = d(r> - r)/r. (7.152)

We substitute (7.147) into (7.151) to obtain

L (2L + 3)(2L + 1 ) ( 2 L 1 ) ' l3)(2L

where the polarisability a is given according to (7.143) by

a = 2p2/3(e1-e0). (7.154)

The polarisability is additive for all orbital pairs and dipole channels.
The result (7.153) was first derived by O'Malley, Spruch and Rosenberg

(1961). It is identical to the first Born approximation T-matrix element
for scattering from the local polarisation potential

Va(r) = - a /2 r 4 . (7.155)

This is

7 f = [dq[ f dq^(LMtf)(q[\Va\4(q\LM)
J J M

drr-3JL+1/2(qr)JL+1/2(qr), (7.156)= — /<
2qJ

which may be evaluated to yield (7.153). It is valid for large angular
momenta.

We may consider long-range elastic scattering to be due to a polarisation
potential that is strictly nonlocal, but is equivalent to (7.155) in the sense
that it gives the same T-matrix element or phase shift.

This result is very useful in solving the coupled integral equations (7.38)
or (7.44). It enables us to cut the calculation off at angular momenta
where the Born approximation is valid for dipole channels, where the T-
matrix elements for nondipole excitations are negligible, and where elastic
T-matrix elements may be validly extrapolated by (7.153). The Born
approximation for dipole channels may be evaluated analytically enabling
their T-matrix elements to be summed over all angular momenta.

The range of validity of the approximation (7.153) can be understood
from a comparison (Allen et a/., 1988) of TL, calculated by solving (7.44)
for two states, with T^ at different energies. This is illustrated in fig.
7.1 for a small-polarisability case, the Is —  2p excitation of hydrogen
(a = 2.9596, e\ — eo  = 10.2 eV) and a large-polarisability case, the
35 —  3p excitation of sodium (a = 176.63, e\ —  eo = 2.1 eV). At the
excitation threshold x2 = 0, TL = T^ for all L where the second Born
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12

hydrogen 1 s, 2p
sodium 3s, 3p

400 500

(i)Fig. 7.1. Comparison of TL with the approximation TK
L

} (7.153) for the 2p
excitation of hydrogen and the 3p excitation of sodium. Curves are drawn for
the energies (eV) indicated (Allen et al, 1988).

approximation is valid, roughly L > 20. As the energy increases the
angular momentum above which Ti is within a few percent of T |
increases to some hundreds. The distance at which (7.153) is valid is of
order 100 a.u.

7.6 Alternative methods for restricted energy ranges

The convergent-close-coupling and coupled-channels-optical methods for
electron—atom scattering apply to all atom or ion targets at all energies.
Their computational practicability has been demonstrated for hydrogen
and alkali-metal targets. A simpler coupled-channels-optical calculation
involving equivalent-local approximations in the optical potential has been
successfully applied to these and two-electron targets, giving a strong
indication of the probable validity of the more-detailed method for larger
atoms. This model is designed to apply well above the ionisation threshold,
but is quite successful at all energies.

The distorted-wave Born series, obtained by iterating the distorted-wave
Lippmann—Schwinger equations (6.87), has been discussed in section 6.10.
Its validity is expected to improve with increasing energy. Approximations
in the spirit of the convergent-close-coupling method involve choosing
pseudostate bases to satisfy theoretical criteria that depend on the energy
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range. Results are basis-dependent but a judicious choice of basis in par-
ticular circumstances is capable of an excellent description of experimental
data.

At energies below the first excitation threshold the variational principles
discussed for bound states in chapter 5 can be extended to scattering
(Callaway, 1978). We do not discuss this because of its restricted validity.
However, there is another extension of bound-state methods into the
positive-energy range that applies at least up to the ionisation threshold
and somewhat beyond. This is the jR-matrix method. Its possible extension
to higher energies is discussed.

Examples of the application of all these methods are given in chapters
8 and 9. In this section we outline the methods.

7.6.1 Distorted-wave Born and related approximations

The driving terms of the distorted-wave Lippmann—Schwinger equations
(6.87) are the distorted-wave Born approximation for the excitation of
each target state \i) from the ground state. This is a weak-coupling
approximation, which ignores the coupling of all but the entrance and
exit channels. The first iteration of (6.87) produces the distorted-wave
second Born approximation, whose implementation involves all channels.
A related approximation that again involves all channels is the unitarised
distorted-wave Born approximation, so called because the S-matrix (4.73),
generalised to many channels, is unitary in the approximation, thus con-
serving probability flux. Here the real parts of all the Green's functions in
(6.87) are set to zero, reducing the integral equations to a set of coupled
algebraic equations in which the on-shell imaginary parts account for the
influence on one channel of real excitations into other channels. In refer-
ring to the Lippmann—Schwinger equations (6.87) it is useful to consider
them in the sense of the convergent-close-coupling method as a finite set
of equations that can be expanded to convergence for the excitation of
low-lying states.

It is possible to estimate the validity of the various distorted-wave
approximations by investigating a two-channel model. Fig. 7.2 does this
for the 3s and 3p channels of sodium at an incident energy of 54.42 eV.
The approximations for the differential cross sections (6.55) are compared
with the solution of the two-channel integral equations. The distorted-
wave Born approximation is semiquantitative for the 3p channel but not
for the 35 channel since it ignores the strong effect of dipole coupling
(section 7.5.4). The distorted-wave second Born approximation involves
coupling and therefore represents the 35 channel better, although it is not
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e-SODIUM 3p

CC
UDWB
DWSB

• DWBA

120 180 0 60
Scattering angle (deg)

Fig. 7.2. Distorted-wave approximations to a two-channel (CC) calculation of
electron—sodium scattering. UDWB, unitarised distorted-wave Born; DWSB,
distorted-wave second Born; DWBA, distorted-wave Born (Bray et al, 1989).

noticeably better for the 3p channel. The unitarised distorted-wave Born
approximation is very good in both channels.

In implementing distorted-wave Born approximations choices of the
distorting potentials other than the ground-state average (6.91) may be
made in an attempt to improve realism. Choosing the final-state average
potential for the final-state distorted wave restores time-reversal invari-
ance. More coupling may be included by calculating the distorted waves
in various approximations to the optical potential. Choices of distorting
potentials that describe experimental data better in particular cases are
discussed by Madison, Bray and McCarthy (1991). The approximation is
not sufficiently detailed to take them seriously.

In applying the distorted-wave second Born approximation we have the
same difficulty as in calculating the optical potential. We must calculate
the spectrum of the Green's function of (6.87). The first iteration of (6.87)
is written as

- U) ?(V-U)\0k{
0

{+))
K u

(7.157)
The g-projected Green's function (7.111) in the polarisation potential
(7.115) contains the collision Hamiltonian H, but practical implementation
of it involves the weak-coupling approximation (7.132). A second-Born
calculation is equivalent to a calculation of the polarisation potential
with Q=l and VQPUL being the reduced matrix element of U. This has
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been done for hydrogen by Madison et al (1991) with an unsymmetrised
Green's function but explicitly-antisymmetrised channel states. The use of
different potentials in the three factors of the second-order term of (7.157)
was found to affect cross sections appreciably.

If we introduce the complete set \j) of target states into (7.157) the
second-order term becomes

g(k<->i| V - U\j) £ ( + ) _ l_Ko_v 01V - l/10k<+)). (7.158)

The closure approximation consists in replacing €j by an average energy
ec, thereby eliminating the target states by the closure or representa-
tion theorem (3.17). This approximation has been calculated for example
by Kingston and Walters (1980) for hydrogen. Tests of its validity are
described by Madison, Winters and Downing (1989). The closure ap-
proximation is compared with explicit calculations for the n=2 states
of hydrogen that omitted exchange amplitudes. They found errors of
50—100% in the second-order amplitude for the 2s excitation at larger
scattering angles. Much of this error is due to the closure treatment
of nearby states. The approximation improves if excitation amplitudes
for low-lying states are calculated explicitly in some approximation and
subtracted from the closure sum.

The unitarised eikonal—Born series (Byron, Joachain and Potvliege,
1982) is a nonperturbative scattering method valid at energies higher than
several times the ionisation threshold. It is based on the many-body
generalisation of the Wallace (1973) amplitude, which has the advantage
that the corresponding S matrix is unitary. Its disadvantage is that it does
not take proper account of the long-range dipole polarisation potentials.
This is remedied by replacing the second-order Wallace amplitude by
the plane-wave second Born amplitude in the direct partitions of the
electron—hydrogen problem. Exchange amplitudes are calculated from
the direct amplitudes by suitably partitioning the Lippmann—Schwinger
equations.

Stelbovics (1990) has shown that there is no energy for which the Born
or distorted-wave Born series converges. The reason is that the one-
electron exchange potential in (7.35) depends linearly on the energy. This
potential acts only in reduced Lippmann—Schwinger equations where the
total angular momentum is close to that of the basis orbitals describing
the target states. The Born series converges at higher angular momenta.
The divergence shows up numerically in the iteration of the reduced
Lippmann—Schwinger equations for low angular momenta. The correct
solution is of course obtained by the matrix methods (4.125). The iteration
of the scattering equations involves half-off-shell T-matrix elements and
its divergence does not imply that on-shell amplitudes diverge. There
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are strong indications from comparison with experiment for hydrogen
(Madison et al.9 1991) that the distorted-wave second Born approximation
is valid at energies higher than several times the ionisation threshold.

7.6.2 The equivalent-local coupled-channels-optical method

The weak-coupling approximation to the polarisation potential (7.115,
7.116,7.119) may be summarised as

- e ( - \qL

xOF<->(q',q)|t;L/k). (7.159)

Here we have summed the partial-wave series whose terms are represented
by (7.139). The first term of (7.159) is the polarisation potential due to the
discrete part Q~ of Q space. The second term is due to the ionisation space
<2+, and l^-^q^q)) is the exact solution of the Schrodinger equation for
an ionised channel.

The amplitudes in (7.159) can be calculated analytically in certain ap-
proximations (McCarthy and Stelbovics, 19836). This allows a sufficiently-
fast computation for performing the integrations by a multidimensional
method such as the diophantine method (Conroy, 1967). For Q~ space
|q(~~)) is approximated by a plane wave. For <2+ the slower electron is
represented by a Coulomb function (4.85) orthogonalised by (5.83) to the
bound orbital in the same amplitude, and the faster electron by a plane
wave. The direct amplitudes factorise into an electron—electron amplitude
and a structure transform involving the target orbitals. It is necessary
to make the same factorisation to approximate the exchange amplitudes.
This is an equivalent-local approximation for the exchange part of the
two-electron potential.

Computation is too laborious for the necessary range of k',k, so a
further approximation is necessary. The polarisation potential matrix
element is calculated only at about 10 points in the variable K, where

K = |k - k'|, \k2 = E - e0. (7.160)

This is achieved by an angular-momentum projection, whose LS-coupling
form is

^ \ f f ) . (7.161)
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The calculation is done for the one-dimensional functions

U,»MK)  = J2 (Wm'™ym) f dK(k'i\v {Q)\jk)rr(rm"\K). (7.162)
m"m'

Again this is an equivalent-local approximation since the momentum
representation (3.40) of a local potential depends only on K.

This approximation has been shown to have at least semiquantitative
validity over the whole energy range. It is unacceptable only for excitations
involving a change of target spin s in the LS -coupling representation. Here
exchange amplitudes make the only contribution and the factorisation
approximation is too severe.

7.6.3 Pseudostate approximations to the target spectrum

For some years the method in widespread use for the electron—hydrogen
problem was to solve the coupled integrodifferential equations of the co-
ordinate representation with the appropriate boundary and orthogonality
conditions (Seaton, 1973). This was so laborious that the use of Stur-
mians as a discrete approximation to the target spectrum could not be
implemented to convergence.

The diagonalisation of the hydrogen Hamiltonian in a Slater-function
(4.38) basis has been reviewed by Callaway (1978) in the context of
variational solutions of the integrodifferential equations. This basis has
useful features. The inclusion of all the Slater functions necessary for the
radial eigenstate un^(r) produces exact eigenstates for principal quantum
numbers up to n in the t manifold. The remainder are pseudostates,
which represent the higher discrete states and the continuum. Since Slater
functions are not orthonormal there are linear-dependence difficulties
that severely limit the size of the basis for which the diagonalisation is
numerically feasible.

With such pseudostate expansions the T-matrix elements are basis-
dependent. Choosing a basis is an art, which can be assisted by fitting
the results of approximate calculations that are relevant to the problem
under consideration without actually treating the basis parameters as
phenomenological fitting parameters for the experiment to be described.

For energies up to just above the ionisation threshold Callaway (1978)
determined the basis by variational considerations, including the fact
that for elastic scattering below the first inelastic threshold each phase
shift can be approximated to arbitrary accuracy since the best basis
yields the largest phase shift. It proved feasible to find a basis that
gave an excellent description of elastic and inelastic scattering in the
energy region where the cross sections fluctuate rapidly due to resonances
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(Williams, 1988). At higher energies where larger bases were needed the
calculation was simplified by calculating the optical potential for higher
pseudostate excitations. Callaway and Unnikrishnan (1989) obtained
excellent agreement with elastic scattering experiments from 30 eV to 400
eV in this way.

For higher-energy reactions involving the n=\ and 2 states of hydrogen,
van Wyngaarden and Walters (1986) determined the pseudostate basis to
agree with plane-wave second-Born calculations in the closure approxima-
tion. Very good agreement was obtained for a wide range of experimental
data.

Madison and Callaway (1987) compared the results of pseudostate
calculations with those of explicit distorted-wave second-Born calculations,
omitting exchange amplitudes. They concluded that it is possible to find
basis sets of a managable size whose results are quite close to the second-
Born results at the energy of detailed investigation and which give close
results also at different energies.

Pseudostate calculations have the advantage over Born and optical-
potential methods that they constitute a numerically-exact solution of a
problem. The problem is not identical to a scattering problem but can
be made quite realistic for useful classes of scattering phenomena by an
appropriate basis choice. The state vectors, or equivalently the set of half-
off-shell T-matrix elements, for such a calculation contain quite realistic
information about the ionisation space.

7.6.4 The R-matrix method

The i?-matrix method is a multichannel generalisation of the calculation
of potential scattering described in section 4.4.3. It was introduced by
Wigner and Eisenbud (1947) to describe neutron-nucleus reactions at low
energy. Its application to electron—atom scattering has been described by
Burke and Robb (1975).

The (N + l)-electron collision problem is solved in a sphere of radius
a, which is chosen to be larger than the distance beyond which the radial
orbitals of a chosen set of bound states become negligibly small. The
solution is essentially a configuration-interaction method where the basis
configurations consist of determinants of bound orbitals representing the
N target electrons and continuum orbitals for the continuum electron.
The radial continuum orbitals are solutions of a potential problem

2 + 2V(r) + k2
NL I uNL(r) = ] T XNN>L uN>L{r\ (7.163)

r J N>
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with the boundary conditions

uNL(0) = 0, duNL(a)/dr = 0. (7.164)

The quantities ANN'L are Lagrange multipliers ensuring that the continuum
orbitals are orthogonal to bound orbitals of the same symmetry. The
basis is given further flexibility by including short-range (N + l)-electron
functions to allow for possible resonant states of the (N + l)-electron
system.

The internal solutions are matched at r = a to solutions of the scattering
problem in the external region. Here it is a simple coupled-channels
problem in which exchange and target-correlation terms are negligible.
The matching matrix is the R matrix.

The method describes reactions quite well at energies below the thresh-
old of the lowest target state omitted from the basis. Apart from the short-
range (N + l)-electron functions it is an alternative numerical method for
solving the coupled-channels problem. However, it omits virtual excitation
of the continuum, which has a significant effect, even at very low energies.
It has the computational feature that the time-consuming internal solution
is independent of the incident energy. To vary the energy in small steps
it is necessary only to solve the external and matching problems, both of
which are relatively fast.

The ^-matrix method may be extended to higher energies by a method
introduced by Burke, Noble and Scott (1987). Here the basis for solving
the internal (JV + l)-electron problem includes two continuum orbitals,
one representing a target electron in an ionised state. In contrast to the
convergent-close-coupling method the introduction of a large number of
continuum states to the target basis does not result in smoothly-varying
T-matrix elements. The T matrix for an increasingly-large basis has
increasingly-many sharp fluctuations that are again called pseudoreso-
nances. Fig. 7.3 shows the real part of the 3P° elastic-scattering T-matrix
element in a calculation for hydrogen with 2438 basis configurations in-
volving orbital angular momenta for each orbital up to 3. The sphere
radius is 25 a.u.

The intermediate-energy i?-matrix method averages the T-matrix ele-
ments over energy using a Lorentzian averaging function of width / .

*>-;<i=W+i*- (7JSS)

The averaged T-matrix element (T(E)) is given by

POO

(T{E)} = / dE'p(E - E')T(E') = T(E + il). (7.166)
J—00
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Fig. 7.3. The real part of the 3P° elastic-scattering T-matrix element in the
intermediate-energy K-matrix calculation of Scholz, Scott and Burke (1988).

As / tends to zero the averaging procedure corresponds to evaluating
the T-matrix element just above the branch cut on the real energy axis.
It is numerically possible to choose such a large basis that the width /
can be reduced to a value for which each averaged T-matrix element
is independent of / . Such a calculation, however, involves enormous
computational labour. The method has not yet been implemented up to
the angular-momentum values required for a realistic calculation.



8
Spin-independent scattering observables

To understand an electron—atom collision means to be able to calculate
correctly the T-matrix elements for excitations from a completely-specified
entrance channel to a completely-specified exit channel. Quantities that
can be observed experimentally depend on bilinear combinations of T-
matrix elements. For example the differential cross section (6.55) is given
by the absolute squares of T-matrix elements summed and averaged over
magnetic quantum numbers that are not observed in the final and initial
states respectively. This chapter is concerned with differential and total
cross sections and with quantities related to selected magnetic substates
of the atom.

In the study of electron—atom collisions there has been a constant
emphasis on increasing the state selectivity of the particles in both the
initial and final states. Thus while total cross section measurements define
the initial kinetic energies, measurements of differential cross sections as
a function of angle give additional information on the final momentum
states of the separating particles. Added state selectivity is obtained
through the use of spin-polarised electrons, or spin-polarised atoms, and
with spin analysis of scattered particles (see e.g. Kessler (1985)). The
great progress that has been made with the use of spin-selected particles
will be discussed in the next chapter. Much of the progress that has been
made has been for the case of elastic scattering.

8.1 Collisional alignment and orientation

The status for inelastic collisions is a little less satisfactory than for
elastic collisions. Collisional excitation of atoms involves excited states
with several magnetic substates. Standard total or differential cross
section measurements sum over the magnetic substates, and thus give no
information on the shape of the excited state and direction of the angular
momentum transferred to the excited atom. These can be determined in
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collisional alignment and orientation studies, which avoid these sums and
therefore access detailed information not available by other techniques.
The term atomic alignment is used to describe the shape of the excited-
state charge cloud and its direction of alignment in space, whereas the
term orientation refers to the direction and magnitude of the angular
momentum transferred to the atom during the collision.

The study of alignment and orientation of atoms by electron impact
has yielded a wealth of detailed information on the mechanism and dy-
namics of electron—atom collisions. Information on atomic alignment
and orientation after a collisional excitation process can be obtained
by electron—photon coincidence experiments or alternatively by scatter-
ing from laser-excited atoms. Fano and Macek (1973) summarised
the methods for extracting the dynamically-relevant observables from
photon—electron coincidence experiments, allowing these observables to
be disentangled from the geometry of each experiment and from the quan-
tum numbers that are not relevant in the collision process. The scattering
from optically-pumped targets, which represents the time-inverse experi-
ment, may be similarly exploited by using a suitable modification of their
theory (Macek and Hertel, 1974).

Complete information requires the detection of the polarisation of the
emitted decay photon for any given scattering angle of the electron, and
the relative momentum of the particles before and after the collision. In
favourable cases a complete set of excitation amplitudes for the excited
atomic states, including their relative phases, can be determined. This
allows a much closer comparison to be made with scattering calculations,
thus providing very stringent and constructive tests for the further de-
velopment of scattering theories. The progress that has been achieved
in these alignment and orientation studies has been the subject of many
reviews and progress reports, of which the most comprehensive is the re-
view by Andersen, Gallagher and Hertel (1988). These excitation studies
have recently been supplemented by studies of ejected electrons, which in
some circumstances can yield similar information. They are discussed in
chapter 10.

8.1.1 Basic experimental schemes

There are two equivalent experimental arrangements for determining the
alignment parameters of an excited atom A\ in the process

Ao + eo(ko, v0) -> Ai + et(kh v,-), (8.1)

where |0) and \i) describe the states of the atom before and after the
collision respectively, and vo and v,- are the initial and final spin projections
of the electron.
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The first arrangement uses photon—electron coincidence techniques.

Ao + eo -» A[ + e\ \
i > coincidence. (8.2)
Ao + yj

The second, time-reversed, process uses scattering of electrons by atoms
optically pumped by a laser, i.e.

y + AQ -> At (optical pumping)

et+At^Ao + eo. (8.3)

Both methods can give identical information on At excited in process
(8.1). The schemes for measuring directional correlations between two
particles resulting from a collision process by coincidence techniques are
discussed in some detail in chapter 2. Similarly details of optical pumping
techniques can also be found in chapter 2.

8.1.2 General concepts

We now introduce the general concepts and definitions behind studies of
alignment and orientation in electron—atom collisions. Let us consider
the scattering process (8.1) in some detail. We must first understand the
concept of coherence. We illustrate it by considering the initial state of
the atom

|0) = Wjm). (8.4)

This state depends on the magnetic quantum number m, which is defined
by choosing a particular orientation of the coordinate frame. A randomly-
oriented gas target has equal probability of an atom being found in any
magnetic substate. The target contains an incoherent sum of magnetic
substates. If we now choose a different coordinate frame the magnetic
substates are linear combinations of those for the new frame.

m'

The original magnetic substates are a coherent superposition of the new
set, which we may consider as a basis for representing the magnetic
substates.

The target part of the entrance-channel state |Ovoko) is a coherent
superposition of magnetic substates defined by an arbitrary choice of co-
ordinate frame. It is transferred into another fully-coherent superposition
of states in the exit channel |ivjkj). The scattering amplitude is defined as
a generalisation of (4.46), so that its absolute square is the corresponding
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differential cross section. Equn. (6.55) gives the scattering amplitude in
terms of the T-matrix element.

fi0 = (27T)2(/cI-//co)1/2(k/v^1T|Ovoko). (8.6)

The scattering amplitude may be considered as a matrix in the space of
magnetic substates of the target and projectile: the scattering matrix. The
excitation process is coherent since the collision time is much shorter than
any characteristic time associated with the excited state.

In the terminology of Bederson (1969, 1970), a 'perfect scattering ex-
periment' is one which completely determines the scattering matrix. In
this case both ko and k, and all the quantum numbers of the atom and
electron before and after the collision are measured. This is only achieved
in exceptional cases. Normally at least some amplitudes are averaged
or summed over and much less detailed information is available. In
this chapter we limit ourselves to the case where the spin states of the
electrons are not determined and must therefore be averaged over. In
such cases the particles after the scattering process cannot be described
by pure states, but only by mixed states, i.e. by a superposition of basis
states that is only partially coherent and may even be fully incoherent.
One must, however, be careful in describing the degree of coherence or
incoherence in a collision process, since statements about the degree of
coherence depend on the choice of coordinate frame and basis states used
to describe the scattering process.

The least ambiguous and most appropriate description of the atom
after the collision is in terms of the density matrix (Blum, 1981), whose
elements are bilinear combinations of scattering amplitudes for different
magnetic substates. For the sake of simplicity we restrict ourselves to
the most common case, in which the target is initially in an S state and
the excitation involves the transfer of one electron from an s orbital to a
p orbital in the independent-particle approximation. In atoms with one
active electron the transition is 2S — 2P. If there are two active electrons
it is {S —  lP. We use the LS-coupling scheme.

The scattering amplitudes or density matrix elements required for the
description of the excited states are given with respect to a suitable
reference frame. The optimum solution is to use a frame-independent
parametrisation of the dynamical information, closely related to the sym-
metry process.

The atomic charge cloud after excitation and the collision kinematics
are illustrated in fig. 8.1. The scattering plane is defined by ko and k,-.
From parity conservation it can be seen that the scattering plane is a
plane of symmetry. Parity conservation also requires that the orbital
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Fig. 8.1. Schematic representation of the collisionally-induced charge cloud in
a P -state atom. The collision plane is determined by the ingoing and outgoing
electron momenta ko and kt. The excited atom is characterised by the alignment
angle y, its inherent angular momentum (£y) = (L±), and the shape of the charge
cloud P/. The direction of emission of the photon and its polarisation vectors are
also shown.

angular momentum component of the atom in the excited state satisfy
bf\ \\ = 0. The final angular momentum (or orientation), for colliding
particles with no initial orientation, must be perpendicular to the collision
plane. It is conventionally denoted by L±. If the excited state is in a
nonisotropic distribution of magnetic substates (as shown in fig. 8.1), it
also has an alignment. The standard frame of reference used in most
calculations is called the collision frame with the zc axis parallel to ko,
the xc axis in the scattering plane and perpendicular to zc, and the yc
axis perpendicular to the scattering plane. This is the frame shown in fig.
8.1. The so-called natural frame (Hermann and Hertel, 1982) has xn = zc
along the incident direction, zn = yc perpendicular to the scattering plane
and parallel to the only symmetry axis, namely the momentum transfer.
A third frame, called the atomic frame, is sometimes used. Here the
xa axis is chosen parallel to the symmetry axis of the charge cloud and
za = zn = yc.

In addition to a choice of coordinate frames we have a choice of basis
sets. For atomic p-orbitals we could choose the 'atomic' basis set defined
by the magnetic quantum numbers m, i.e. |po)> \P\) and |p_i), or by the
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collision-frame orbitals \px), \py), and \pz). They are related by

\Py) = IPO). (8-7)

S.i.3 State and scattering parameters and their
relation to angular-correlation measurements

We now describe a formalism that allows us to relate the observables
extracted from angular correlation experiments (and their time inverse) to
atomic state and scattering parameters. As discussed earlier we will for
the sake of illustration restrict ourselves to the most common case, where
the initial state of the atom is an S state, and the excited state is a P state.
We will also assume for the moment that explicit spin-dependent forces
can be neglected during the collision so that the scattering is adequately
described in the LS-coupling scheme and changes in spin are caused by
electron exchange only. Since collision times are of the order of 10~14s
at intermediate energies, and decay times for atoms in excited states are
~10~9s, the excitation and decay can be treated as independent processes.

The transition (8.4) is completely characterised by the scattering ampli-
tudes (8.6) normalised according to

l/iol = °"i0? (8.8)

where a® is the differential cross section for the indicated transition.
For brevity we characterise the scattering amplitudes in the following
discussion by the orbital angular momentum quantum numbers of the
excited state only, omitting those of the ground state, which is usually an
S state.

The amplitude for excitation of a state with orbital angular momentum
/ can be described in general as a coherent superposition of amplitudes
for degenerate magnetic substates.

fi = Xmffm- (8.9)

The fsm are complex amplitudes for the excitation of the state \nfmv).
Observables for the state \i) are related to |/,-|2. We can generalise this
to observables for different excited states \i) and \i')9 which are expressed
in terms of all bilinear combinations /V/* of the scattering amplitudes.
Because in this chapter we restrict ourselves to cases where no spin analysis
is performed on the electrons, and we are interested in the orbital states
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of the excited atoms A\ immediately after the interaction, we must sum
and average over the final and initial unobserved spin projections.

>

Neglecting the nuclear spin, the spin-unresolved excitation of a P state is
fully described by the density matrix.

/ ( /n/ i i ) (/n/i'o) </n/r_i> \
P= (/io/n) (/10/10) </io/r_i> • (8.H)

\ ( / i - i / n ) (/i-i/io) <fi-ifU)J
The density matrix p contains all the information on the state of the
excited subensemble of atoms At immediately after the excitation. The
diagonal elements of p are the differential cross sections

Pmm = (ijYml2) = Gm (8.12)

where om denotes the cross section for excitation of the state |/m), and
the trace of p gives the total differential cross section

which is the cross section normally determined from measurement of the
scattered electron current alone.

Not all of the off-diagonal elements of p are independent, since her-
miticity requires that

Pmm>=P*m>m- (8.14)
This, together with the normalisation (8.13), means that the excited state
is described by eight real parameters.

Reflection invariance provides further constraints, the total wave func-
tion of the two colliding particles retaining reflection symmetry through
the collision plane. Since we have already assumed that electron spin plays
no role in the collision, this means that the reflection symmetry of the
excited P state is the same as that for the original S state, i.e. symmetric.
Thus the coefficient of the antisymmetric \py) orbital in the expansion
of the excited state must vanish. From (8.6) we see that this requires
/ n = —  / i - i . In general reflection symmetry requires that the elements of
the density matrix satisfy the condition (Blum and Kleinpoppen, 1979)

Pmm' = (-If'pm-m' = {-if+m
 P-m-m'• (8.15)

p is then specified by five real parameters, for example pn = c\, poo = o"o,
p10 = (fnfl0) (which is complex) and pi_i = (fnfl-\) (which is real from
conditions 8.14 and 8.15). It follows that five independent measurements
must be made in order to completely determine the density matrix. Only
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two ((Jo and a) can be determined in experiments with axial symmetry. The
determination of the remaining three requires coincident measurement of
the electrons and photons.

The five independent parameters can also be chosen so that two of
them give the shape of the charge cloud of the excited state shown
schematically in fig. 8.1 (e.g. the height h or width w and length t\
one gives the alignment (i.e. the angle y), one its orientation or angular
momentum expectation value (Lj_), and the final one is the differential
cross section (8.13).

A convenient parametrisation due to Hermann and Hertel (1980) is

(8.16)

Together with the total differential cross section (8.13) these parameters
completely specify the density matrix.

With reflection invariance / i_ i = —f\\ and pi_i = {fnf\-\) =  —&i
and cos0 = — 1 in (8.16). In the case of  2S — 2P transitions in an atom
with one active electron (as in atomic hydrogen), the corresponding four
independent magnetic substate parameters are generally taken to be those
defined by Morgan and McDowell (1977), i.e.

a = do + 2*i, I = <70/<7, R = Re(/io/n)/<7, / = Im(/1 0/n)/(J. (8.17)

The off-diagonal elements of p give a measure of the interference
that exists between the various magnetic substates following excitation,
since they contain information on the relative phases of the excitation
amplitudes. The normal convention is to say that coherent excitation has
occurred if the corresponding off-diagonal elements of p are not zero.
Incoherent excitation is said to have taken place if the density matrix is
diagonal in m.

If the photons and scattered electrons are detected independently of
each other, the incident-electron-beam direction is an axis of symmetry,
and the excited ensemble must also have this axial symmetry. Then all
the off-diagonal terms of p are zero (Blum, 1981). Coherently-excited
magnetic substates can only be produced by excitation processes, such
as (8.2), which are not axially symmetric. The determination of these
off-diagonal elements of p has been the main goal of electron—photon
coincidence experiments.
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8.1.4 Completely-coherent excitation of P states

In certain cases, as in singlet—singlet  1S — {P transitions in an atom
with two active electrons, where so = s,- = 0, the electron spin remains
unchanged during the collision (vo = v*) and the sum over electron spin
in equn. (8.9) is superfluous. Thus

In this case we have from equns. (8.15,8.16)

cosfl = - 1 (8.19)

and
cos2^ + sin2(/> = 1 (8.20)

so that x = </> is then the relative phase between /io and f\\. p is thus
specified in terms of three parameters, which can be chosen in the manner
of Eminyan et al. (1974), to be a, X = y and x (8.16), where

(7 = (70 + 2(71, 2 = y = (70/(7,

If 3P states have been excited from a lS ground state, again three
parameters are sufficient for a complete specification of the excited system,
since only one spin channel with total spin 1/2 is allowed and equn. (8.10)
again reduces to a single term (8.18).

8.1.5 State multipole description

The above description of the excited states in terms of excitation ampli-
tudes is frame and basis set dependent. A more convenient description
is in terms of state multipoles. It can be generalised to excited states of
different orbital angular momentum and provides more physical insight
into the dynamics of the excitation process and the subsequent nature of
the excited ensemble. The angular distribution and polarisation of the
emitted photons are closely related to the multipole parameters (Blum,
1981). The representation in terms of state multipoles exploits the inher-
ent symmetry of the excited state, leads to simple transformations under
coordinate rotations, and allows for easy separation of the dynamical and
geometric factors associated with the radiation decay.

State multipoles are components of a spherical tensor, which is the fol-
lowing tensor product (3.99), averaged over unobserved magnetic quantum
numbers.

' V f;m), (8.22)



208 8 Spin-independent scattering observables

where t and £' are the orbital angular momenta of final states |i) and \if).
It is assumed that the orbital angular momentum of the initial state |0)
is 0. The Clebsch—Gordan coefficients impose conditions on the tensor
operator T*(^V) of rank k and component q through the restrictions

k<f + ^ -k<q<k. (8.23)

The monopole (k = 0) is proportional to the differential cross section

= (7/V27TT, (8.24)

the three parameters of rank 1, (T^(/Y)) with q = +1,0, are the compo-
nents of the orientation vector, and the five parameters of rank 2 are the
components of the alignment tensor. For / ' = f = 1 these are the only
components that contribute.

The physical meaning of the first-rank tensor can be seen when these
are related to the components of the mean angular momentum vector (*f).
With the help of the Wigner—Eckart theorem one can show that

^ ° = J T ( O , (8-25)

where the 'spherical' vector components of (*f} are defined by (see 8.7)

(Ui) = + - W * > + *W), <*>> = (̂ z). (8.26)

If the system is oriented we mean that (*f) ^ 0 . For axially symmetric
systems only, (̂ o) = (fz) a n d hence (TQ( / / ) ) is nonvanishing. For the
case shown in fig. 8.1 where no axial symmetry exists and only {£y) =£ 0,

is the only nonvanishing element of rank 1.
Hermiticity imposes further constraints. For ( = 1 there are only

five independent multipoles, e.g. (To
o), (T/), (T2

2), (T}),(T§)9 with (T/)
imaginary and the components of the alignment tensor real (Blum, 1981).
When reflection invariance holds in the collision plane the state multipoles
can be related to the orientation O and alignment parameters A, first
introduced by Happer (1972) and Fano and Macek (1973), through
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—t-A 29 (8.28)

where

3 0

For completely coherent excitation and {' = t = 1 one obtains the
following relation between the state multipoles and the parameters a, X, x
(8.21).

-0\ _ ° ITU _ {-/*\n__ :^./Tn n^*,, / T 2 \ °(To
o> = -=, (T{) = +ia(ty)/2 = -ioy/M\-lCi*mx9 (T2

2) = -(X -

<T2) = - (Tva( l -A)cos Z , (T0
2) = - ^ ( 1 - 3A). (8.29)

V6

8.7.6 Characterisation of emitted radiation

We now consider the radiative decay of the excited ensemble of atoms.
The angular distribution and polarisation of the emitted photons can be
conveniently described in terms of the Stokes parameters / , r\\, Y\I, and
j/3 (Born and Wolf, 1970). The emitted photons can be observed in the
direction ii making polar angles 6 and azimuthal angles (/> with respect
to the collision frame (fig. 8.1). It is convenient to choose the coordinate
system in which the direction of observation ii of the radiation is chosen
as the z axis. The polarisation vector of the photons is restricted to the
plane perpendicular to ii by the two unit vectors ?i = (9 + 90°, 4>) and
?2 = (0,<t> + 90°). The direction ?i is conveniently chosen to lie in the
plane spanned by ii. If / is the intensity of light emitted in the direction
ii and I(y) the intensity transmitted by a linear polariser oriented at an
angle y with respect to the ?i-axis, then the Stokes parameters are defined
by

+ J(90°), (8.30a)
- 7(90°), (8.30b)

where r\z is the degree of linear polarisation with respect to the ?i and
?2-axes,

7^ != 7(45°)-7(135°), (8.30c)

where r\\ is the degree of linear polarisation with respect to two orthogonal
axes oriented at 45° to the ei-axis, and

Ir,2 = !+-!-, (8.30d)
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where r\i is the degree of circular polarisation, /+(/-) denoting the intensity
of light with positive (negative) helicity, or right (left) circular polarisation.

In order to specify the polarisation of the emitted radiation, Born and
Wolf (1970) introduced the degree of polarisation

P = y/r,l + r,l + nl (8.31)
and the coherence-correlation factor

l ip (8.32)
where |/i| is called the degree of coherence and /? the effective phase
difference. In general these parameters are restricted by

P<1 \fi\<l. (8.33)

The equality sign holds if the radiation results from a transition between
two pure atomic states, such as a 1P —>  *S transition. Then the radiation
is said to be completely coherent. An experimental measurement of P or
| \i| allows us to obtain some information on the coherence properties of
the excitation process.

The Stokes parameters are directly related to the state multipoles char-
acterising the ensemble of excited-state atoms. Explicit equations are given
by Blum and Kleinpoppen (1979), who also give equations where the ef-
fects of fine and hyperfine structure are taken into account. As discussed
in subsection 8.1.3 five parameters are in general required for determining
the excited state. These can be the cross section a and the four Stokes
parameters, which are all independent of each other.

For lP —  {S transitions, however, the excited atoms are completely
described by three parameters as discussed in subsection 8.1.4. Thus in
this case the four Stokes parameters are not independent quantities and
only three measurements are required for a complete determination of
the excited state, e.g. a, I and Ir\2> The intensity of light radiated in the
transition |i) —• |/) and emitted into a solid angle dQ at (0,0) measured
by an ideal detector sensitive only to polarisation ? in the time interval
t9t + dt, is given by

/(? ,0 , ( />)- | ( / |?T| i ) |V^, (8.34)

where y is the decay constant.
Expressing the Stokes parameters in terms of the parameters cr, X and x

(8.21) one obtains for a XP - 1 S transition (e.g. Slevin, 1984)

cos 6 —  sin 9cos2<f>) -

(8.35a)
(8.35b)
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n</>} (8.35c)

= - C { - ( 1 - / l ) [s in 2 0 - (1 + cos20)cos2<£] - 2,sin2d
2

—  yX{\ — A)cos#sin2#cos(/>},  (8.35d)

where

<0 I| r || S)\2(-l)e-yt. (8.36)

Equations similar to (8.32) can be derived in terms of state multipoles or
other parameters. They completely specify the radiation field and show
how the properties of this field are related to the dynamical observables
of the collision. In practice the time evolution of the excited state is not
measured, since it is of no interest in determining X and %, and the total
integrated intensity is usually determined experimentally. This means that
the factor e~yt in C is replaced by 1/y.

Two different kinds of measurements can be made in order to determine
X and x-

i) Angular correlation measurements where the angular correlation be-
tween the scattered electron and emitted photon is measured without
regard to the polarisation of the light (e.g. (8.35a)).

ii) Polarisation correlation measurements in which the polarisation of
the emitted photons is determined. The degree of circular polarisation
is given by dividing expression (8.35c) by (8.35a) and for ii in the y
direction (9 = <£ = 90°)

= - < L L > , (8.37)

where we have used (8.29) in the second line. The relation rj2 = —(L±)
follows from conservation of angular momentum. Since the final
^ o state is spherically symmetric, the photons must carry away the
angular momentum of the excited state.

A measurement of circular polarisation also gives the sign of x and (L±)9
whereas the measurement of the angular correlation alone (expression
(8.35a)) does not. Similarly at 9 = <\> = 90° the Stokes parameters for
linear polarisation are given by

1/3 = 2X - 1, (8.38)

and

til = -2y/jj(r--j)cosx. (8.39)
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For transitions in the vacuum ultraviolet it is usually easier to measure
angular rather than polarisation correlations, due to the difficulty in
measuring polarisation in this wavelength region.

Instead of X and % it is informative to choose the electron impact
coherence parameters, which describe the excited-state charge cloud shown
schematically in fig. 8.1. In the absence of spin-analysis they are (P/)
describing the relative difference between the length t and width w, (y)
describing the alignment and (L±) describing the orientation. In terms of
the Stokes parameters the electron impact coherence parameters are

(Li.) = - i , 2 . (8.40)

8.2 Hydrogen

The electron—hydrogen problem is the prototype for electron—atom scat-
tering calculations. It has both characteristic difficulties: identical elec-
trons and the target continuum. Its simplification is that no approxima-
tions need to be made to obtain an orbital description of the target states.
However, this does not over-simplify the scattering problem, since equn.
(7.35) shows that all electron—atom scattering problems may be formu-
lated in terms of potential matrix elements that are linear combinations
of single-orbital problems with coefficients given by a calculation of the
target structure.

8.2.1 Differential cross sections

For a hydrogen target scattering is purely elastic up to the n—2  excitation
threshold at 10.2 eV. The ionisation threshold is 13.6 eV. Fig. 8.2
compares experimental differential cross sections for elastic scattering at
low energies with the coupled-channels-optical calculation, which describes
the data excellently. Since the excitation and ionisation thresholds are
atypically high for hydrogen it is tempting to consider it as a case where
low-energy scattering may be easy to describe by a coupled-channels or R-
matrix calculation that accounts for virtual excitation to discrete channels
but not to the continuum. That this is not the case is shown at the lowest
energy 0.582 eV in fig. 8.2 by comparing the full calculation with one
that omits the continuum and another that omits all nonelastic channels.
The continuum must be included, even at very low energy, to achieve
satisfactory agreement with experiment.
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120 160
Scattering angle (deg)

Fig. 8.2. Differential cross section for the elastic scattering of electrons on hydro-
gen. Circles, Williams (1975); solid curve, coupled-channels-optical calculation;
long-dashed curve, one channel with discrete polarisation potential only; short-
dashed curve, one channel without polarisation potential. Adapted from Bray et
al (1991b).

The energy at which the most comprehensive range of experimental
quantities has been observed is 54.4 eV. This energy tests scattering
theories quite severely because it is well above the ionisation threshold
but not so high that one might naively expect Born terms to dominate the
amplitudes. Fig. 8.3 compares the experimental differential cross sections
for the Is, 2s and 2p channels with various calculations. The experimental
data for the Is channel have been obtained by cubic spline interpolation
in the data of Williams (1975). We note first that the convergent-close-
coupling calculation achieves close, but not perfect, agreement.

It is perhaps as interesting to compare the approximate calculations
with the convergent-close-coupling calculation as with experiment. The
one that takes all channels into account most completely is the coupled-
channels-optical calculation (Bray, Konovalov and McCarthy, 1991c) in
which P space consists of the n=l , 2 and 3 channels. It agrees closely,
but not completely, with the convergent calculation and similarly with
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Fig. 8.3. Differential cross section for electron scattering to the Is, 2s and 2p
states of hydrogen at 54.4 eV. Experimental data for Is are interpolated (Williams,
1975), for 2s and 2p they are taken from Williams (1981). Calculations are: solid
curve, convergent close coupling (Bray and Stelbovics, 1992b); long-dashed curve,
coupled channels optical (Bray et a/., 1991c); short-dashed curve, distorted-wave
second Born (Madison et <?/., 1991); chain curve, intermediate-energy R matrix
(Scholz et al, 1991); dotted curve, pseudostate method (van Wyngaarden and
Walters, 1986).

experiment. All channels are also described by the 18-pseudostate cal-
culation of van Wyngaarden and Walters (1986) in which the Is, 2s and
2p states are exact target states. Similar agreement is achieved. The
intermediate-energy /J-matrix calculation of Scholz et al. (1991) only uses
the full method up to total angular momentum K=4 and simpler approx-
imations beyond. The need for a full solution in this case is assessed
by comparing the more-complete approximations with the distorted-wave
second Born calculation of Madison, Bray and McCarthy (1991). Dif-
ferences are not large. In fact the spread of disagreement of all these
calculations is no larger than the experimental error.

The coupled-channels-optical method is a completely ab initio method
that has been shown to be computationally feasible at all energies. It
is compared with experimental differential cross sections for the n=\
and 2 channels at a range of energies in figs. 8.4 and 8.5. Here P
space consists of the n=l , 2 and 3 channels. The contribution of the
polarisation potential may be assessed in these figures by comparing the
curves calculated by coupling the six lowest-energy channels with and
without it.

Significant discrepancies exist for absolute differential cross sections
between all calculations on one hand and all experiments on the other.
The implications for using the hydrogen target as a test of scattering
theory are serious. An attempt to resolve the difficulty was made by
Lower, McCarthy and Weigold (1987), who reported very accurate direct
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Fig. 8.4. Differential cross section for the elastic scattering of electrons on
hydrogen. Experimental data: Callaway and Williams (1976) and Williams
(1976a, 1981). Solid curve, coupled channels optical; broken curve, six-state
coupled channels (Bray et a/., 1991c).

measurements of the ratio of n=\ to n=2 differential cross sections at
three angles. They are compared with earlier measurements and with
calculations in table 8.1. Once again the calculations are in excellent
agreement with each other and in reasonable agreement with the new
experiment but the ratios are not so different from those of the earlier
experiments that they suggest a trend.

8.2.2 Integrated and total cross sections

Calculations that take all channels into account to describe scattering give
values for the total cross section in addition to differential and integrated
cross sections for particular low-lying channels. The total cross section
is calculated from the entrance-channel T -matrix element by the optical
theorem (6.47). This provides an important check on the validity of the
description of higher channels without which a calculation of a limited
subset of cross-section data cannot be taken seriously.
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Fig. 8.5. Differential cross section for the unresolved 2s and 2p excitations of
hydrogen. Experimental data: E < 50 eV, Williams (1976a); E > 50 eV, Williams
and Willis (1975); solid curve, coupled channels optical; long-dashed curve,
six-state coupled channels (Bray et al, 1991c); short-dashed curve, intermediate-
energy R matrix (Scholz et al, 1991). From Bray et al. (1991c).

The difficulties associated with making an atomic-hydrogen target have
precluded direct measurements of total cross sections for hydrogen. Es-
timates may be made by adding the best available estimates for the
integrated cross sections of particular channels and the total ionisation
cross section.

There are only isolated measurements of integrated cross sections, but
there are absolute measurements of differential cross sections. We adopt
the procedure of using the coupled-channels-optical calculation of Bray
et al. (1991c) to interpolate and extrapolate these measurements, since it
agrees quite well with differential cross sections in figs. 8.4 and 8.5.

For the is channel we estimate the integrated cross section from the
differential cross sections of Williams (1975). These estimates are com-
pared in table 8.2 with the results of the three calculations considered in
this section. The calculations are in close agreement but the experimental
estimates are significantly higher at 54.4 eV and 100 eV.
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Table 8.1. The ratio of n—1  to n=2 differential cross sections for hydrogen.
The experimental cases are LMW, Lower, McCarthy and Weigold (1987);
W/WW, Williams (1975) for n=l and Williams and Willis (1975) for n=2;
vW/WW, van Wingerden et al. (1977) for n=l and Williams and Willis (1975)
for n=2. Calculations are CCO, coupled-channels-optical (Bray et al. 1991c);
CCC, convergent-close-coupling (Bray and Stelbovics 1992b); vWW, pseudostate
method (van Wyngaarden and Walters, 1986)

case

LMW
W/WW
vW/WW

CCO

ccc
vWW

30°

11.4+0.7
9.8±1.2
10.1+1.0

12.3
10.5
13.0

100 eV

45°

14.5+0.8
15.6+2.7
14.4+2.1

18.6
17.2
19.3

60°

14.8+0.8
11.7±1.6
12.0+1.7

17.5
17.5
18.2

30°

25.4+1.4
25.6+3.4
29.7+3.5

29.0
—

28.4

200 eV

45°

28.8+1.5
26.4+6.6
29.9+5.8

33.9
—

34.4

60°

35.8+2.5
25.7+3.6
32.6+4.5

32.6
—

31.0

For the summed n=2 channels there are absolute differential cross sec-
tion measurements by Williams (1976a) and Williams and Willis (1975).
Estimates of the 2s and 2p integrated cross sections are obtained here by di-
viding the n=2 estimate in the ratio given by the coupled-channels-optical
calculation. They are given in table 8.2. Once again the calculations
agree quite closely but the experimental estimates are high at 54.4 eV and
100 eV. There is an independent measurement of the 2p integrated cross
section at 54.4 eV by Williams (1981). The result is 0.89+0.08 TT^, which
compares with the estimate 1.01+0.09 nal of table 8.2.

To estimate the total cross section for hydrogen we use the n=\ and 2
estimates above. For n=3 we interpolate in the direct measurements of
integrated cross sections by Mahan, Gallagher and Smith (1976). For
higher discrete channels we use the roughly-valid rule that integrated cross
sections for principal quantum number n are proportional to n~3. Very
accurate measurements of the total ionisation cross section have been
made by Shah et al. (1987). These total cross section estimates are shown
in table 8.3 in comparison with the three calculations we are considering.

The comparison of theory and experiment in table 8.3 is somewhat un-
satisfactory. The coupled-channels-optical and pseudostate calculations
agree with each other and with the convergent-close-coupling calculation
within a few percent, yet there are noticeable discrepancies with the exper-
imental estimates. The convergent-close-coupling method calculates total
ionisation cross sections in complete agreement with the measurements
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Table 8.2. Integrated cross sections (%a\) for the Is, 2s and 2p
states of hydrogen. Experimental values (EX?) are obtained
as described in the text. Calculations are: CCO, coupled
channels optical (Bray et al., 1991c); CCC, convergent close
coupling (Bray and Stelbovics, 1992b); vWW, pseudostate
method (van Wyngaarden and Walters, 1986)

£o(eV)

Is
19.6
54.4
100
200

2s
19.6
54.4
100
200

2p
19.6
54.4
100
200

EXP

3.25+0.32
1.27+0.13
0.61+0.06
0.21+0.02

0.112+0.016
0.076+0.007
0.046±0.004
0.026+0.003

0.64+0.09
1.01+0.09
0.73+0.06
0.47+0.05

CCO

3.45
1.00
0.46
0.20

0.109
0.0545
0.0414
0.0251

0.617
0.729
0.630
0.443

CCC

0.96
0.45
—

—
0.0675
0.0446

—

—
0.719
0.624

—

vWW

—
—

0.480
0.197

—
0.0651
0.0404
0.0250

—
0.739
0.638
0.446

of Shah et al (see chapter 10). The discrepancies are therefore in the
integrated cross sections for scattering.

We summarise the situation for integrated and total cross sections by
remarking that direct absolute measurements of these quantities are very
important for testing scattering theories. There is room for doubt that
present estimates are sufficiently accurate.

8.2.3 Magnetic sub state parameters

Detailed measurements of the magnetic substate parameters X, R and
/ (8.17) have been made for the 2p channel. Our example considers
these parameters at 54.4 eV. They are more sensitive to the calculation
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column

£o(eV)

19.6
54.4
100
200
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i.3. Total cross sections (na\) for
headings are as in

EXP

4.55+0.45
3.34±0.33
2.21+0.22
1.40+0.14

table 8.2

ceo
4.81
2.85
2.06
1.28

hydrogen.

ccc
—

2.71
1.96
—

The

vWW

—
—

2.13
1.31
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method than the differential cross sections in the sense that the spread of
disagreement is larger.

Fig. 8.6 compares experimental data with the same calculations as were
illustrated in fig. 8.3. The disagreement between different calculations
and between calculations and experiment is larger at larger angles, but the
experiment is very difficult in this region. No calculation reproduces the
low experimental values of X and R beyond 80°. The disagreement be-
tween the two integral-equation methods, convergent-close-coupling and
coupled-channels-optical, is again smaller than the corresponding experi-
mental error.

8.2.4 State multipoles

The measurement of the complete set of state multipoles for the n=2 states
of hydrogen at 350 eV has been reported by Williams and Heck (1988).
The electron scattering angle was 3°. The scattered electrons with 10.2

40 80 120 160 0 40 80 120 160 0 40 80 120 160

SCATTERING ANGLE (DEGREES)

Fig. 8.6. The magnetic substate parameters A, R and / (8.17) for 54.4 eV electron
scattering to the 2p state of hydrogen. Squares, Weigold, Frost and Nygaard
(1979) and Hood, Weigold and Dixon (1979); circles, Williams (1981,1986). The
theoretical curves are as for fig. 8.3.



220 8 Spin-independent scattering observables

Table 8.4. State multipoles at E0=350 eV, 6=3° for the n=2 excitation of
hydrogen using positive, negative and zero electric fields. The experimental data
are due to Williams and Heck (1988). Errors in the final significant figures
are given in parentheses. Calculations are: CCO, method of Bray, Madison and
McCarthy (1990); and vWW, van Wyngaarden and Walters (1986)

Multipole

Re(T0
1(10))

Mrjao))
Re(T1

1(10))
1111(7/(10))
Im(T/(ll))
<7o(ll)>
(7?(11)>
(T2

2(ll))
A
R
I
G2s/V2p
<72P(a.u.)

<72s(a.u.)

+250 Vcm"1

0.17(71)
0.82(62)
0.87(33)

1.9(3)
0.36(9)

—
—
—
—
—
—

0.087(14)
—
—

-250 Vcm-1

0.77(88)
0.29(74)
0.36(31)
1.90(47)
0.22(8)

—
—
—
—
—
—

0.055(17)
—
—

zero field

—
—
—
—

0.34(1)
6.5(8)

-7.3(8)
-10.7(8)
0.11(3)
0.21(1)

-0.010(3)
0.030(1)
24.1(11)
0.73(5)

CCO

0.421
1.20
1.19
2.69

0.508
7.03

-6.42
-10.57
0.085
0.197

-0.016
0.035
23.11
0.82

vWW

0.39
1.15
1.02
2.6

0.31
6.99

-6.46
-10.54

—
—
—

0.032
23.05
0.74

eV energy loss (2s and 2p states) were measured in coincidence with the
10.2 eV photons either from the fast decay of the 2p state or the delayed
Stark-quenched 2s state. An external electrostatic field mixed the 2s
and 2p states, permitting the observation of their coherence by measuring
the linear and circular polarisation of the photons. In-plane angular
correlations for a zero electric field determined the 2p-state multipoles.

Table 8.4 shows the state multipoles in comparison with the coupled-
channels-optical calculation (Bray, Madison and McCarthy, 1990) and the
pseudostate calculation of van Wyngaarden and Walters (1986).

8.2.5 The resonance region

A resonance r in an electron—atom system occurs  at total energy ey with
width r r . It corresponds to a pole in the reduced T-matrix element Tpn
at a complex energy E = er —  \iTr. For potential scattering the T-matrix
element is given by (4.142). The resonance index r corresponds to the
symmetry Pn, where P is the total angular momentum and n is the parity,
and a principal quantum number identifying the particular resonance in
the symmetry manifold. In the case of a hydrogen target it is convenient
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to use LS coupling, for which the symmetry is characterised by the total
orbital angular momentum K and electron spin S using the spectroscopic
notation of section 5.8.

A resonance has much in common with a bound state of the electron-
atom compound system, which is represented by a pole on the negative
energy axis. For hydrogen the compound system is the negative ion H~~.
The relationship of the low-energy resonances for hydrogen to states of the
compound system is illustrated in the independent-electron approximation
by fig. 8.7. The illustration considers only s orbitals and represents a
state of H~ by the orbital pair msns. The notation msoos means that the
second electron's energy is at the limit n = oo of the Rydberg series and
is just unbound. In such a state the one-electron state ms is an exact
state of the hydrogen atom. Note that the ground state of the H~ ion is
bound by 0.754 eV.

The resonance illustrated in fig. 8.7 has the Hartree—Fock configuration
2s2,s and symmetry 1S. The compound system in this state can decay by
an electron dropping into the ground state of H (lsoos). The system gains
9.55 eV, which appears as kinetic energy of the second electron. The
process is called autoionisation. The resonance is at a projectile energy
Eo = 9.55 eV or a total energy e = -4.06 eV.

e (eV) State

0050x05

-3.40
-4.06 2s2s

-13.61 IS005

-14.36 1S15

Fig. 8.7. Energy level diagram of the H ion showing states where Hartree—Fock
configurations have two s orbitals.
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Between the 2s2s and 2soos states there is a sequence of resonances
with Hartree—Fock configurations 2sns, n =  3, oo. They occur just
below the n=2 threshold at 10.20 eV in £o and condense to this energy.
A similar sequence of *S resonances occurs just below each inelastic
threshold. Similar sequences occur in the other symmetry manifolds with
Hartree—Fock configurations consisting of different orbitals.

Since the compound system for a resonant state has an electron that is
unbound initially and finally, resonances may be investigated by a scat-
tering calculation. Methods of calculation that are appropriate for rapid
energy dependence are the K-matrix method (Burke and Robb, 1975),
the variational pseudostate method (Callaway, 1982) and the coupled-
channels-optical method (McCarthy and Shang, 1992). Of these only
the last two methods treat the target continuum, which must be taken
into account at all energies to obtain correct absolute cross sections.
The coupled-channels-optical method uses the same optical potential and
quadrature points for an energy range over which the optical potential
changes imperceptibly. Only on-shell and half-on-shell potential matrix
elements need to be recalculated when the energy is changed in this range.

The T-matrix element for a particular reaction may be represented
perfectly generally by a linear combination of resonance terms (Bloch,
1957), most of which overlap considerably. The methods we have
considered in chapter 7 may be put into this form. Most resonances
in the expansion are artifacts of the expansion and have no individual
physical manifestation, but some of the ones lowest in energy are isolated,
at least from others in the same symmetry manifold. They appear as
anomalies in the energy dependence of cross sections.

Resonances may be found in a reaction calculation by searching the
complex energy plane for poles in the reduced T-matrix elements or by
using a generalisation to the particular compound system of the potential-
scattering rule that the phase shift passes through n/2 as the energy is
varied over the resonance. The ones that have physical manifestation
appear as visible anomalies in the energy dependence of the reduced T-
matrix elements for each symmetry. The parameters of such a resonance
can be found by fitting a partial cross section of the form suggested by
(4.145) over a small energy region near resonance.

or = \aE + b + C + *d
r n\2- (8.41)

E —  er + iTr/2

Tables 8.5 and 8.6 show resonances that have been identified experi-
mentally and theoretically for hydrogen below the n=2 and 3 thresholds
respectively. The orbital angular momentum of a resonance may be iden-
tified by the fact that the resonant reduced T-matrix element for elastic



8.2 Hydrogen

Table 8.5. Resonance energies and widths for electron—hydrogen
elastic scattering below the n—2 threshold. Column headings for
experimental data are: Williams, Williams (1976b); Warner, Warner
et al. (1986). Errors in the last significant figures are shown in
parentheses. Column headings for calculations are: PS, pseudostate
method (Seiler, Oberoi and Callaway, 1971); R-matrix, Pathak,
Kingston and Berrington (1980); CCO, McCarthy and Shang (1992)

223

Symmetry

Energies (eV)
lS

3S
1P

3P
'D

Widths(10"3eV)
lS

35
'P

3P

Williams

9.557(10)
—
—
—
—
—

9.735(10)
—

45.0(5)
—
—
—
—
—

6.0(5)
—

Warner

9.549(13)
—
—
—
—
—

9.736(13)
10.115(13)

63.0(8)
—
—
—
—
—

5.0(2)
6.0(2)

PS

9.574
—

10.178
10.151

—
10.185
9.768
10.160

54.0
—
2.3

0.02
—

0.02
8.0
7.7

i?-matrix

9.557
—

10.177
10.147

—
10.176
9.741
10.126

52.0
—
2.6
—
—
—
7.1
8.8

CCO

9.553
9.875
10.172

—
9.531
10.177
9.743
10.144

48.0
8.9
2.4
—
9.1

0.04
4.5
6.9

scattering (4.145) does not contribute to the differential cross section at
an angle for which the corresponding Legendre polynomial is zero. An
example is shown in fig. 8.8 which compares differential cross sections at
30° and 90° over the first *S and 3P resonances below the n=2 threshold.
The 3P resonance has no contribution at 90°.

Fig. 8.8 shows that the coupled-channels-optical method with the
equivalent-local polarisation potential (McCarthy and Shang, 1992) gives
a good semiquantitative description of the experimental data of Williams
(19766) for elastic differential cross sections below the n=2 threshold.
At energies just below the n=3 threshold the resonances affect the n=2
excitations. Fig. 8.9 shows the energy dependence of the integrated cross
sections for the 2s and 2p channels. Since a resonance is a property
of the compound system, not the channel, the resonances observed in
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Table 8.6. Resonance energies Eo(eV) and widths F(10 3eV) for the
electron—hydrogen 2s and 2p channels below the n=3  threshold. The experimental
data are due to Williams (1988). Errors in the last significant figures are shown
in parentheses. Column headings for calculations are: PS, pseudostate calculation
by Callaway (1982); R-matrix, Pathak, Kingston and Berrington (1980); CCO,
McCarthy and Shang (1992)

Symmetry

"s
XD
' P
3F
3D
'S
3 P

r

1P
3F
3D
JS
3 P

EXP2p

11.722(9)
11.807(9)
11.902(6)
11.925(2)
11.997(5)
12.029(5)
12.040(6)
12.049(4)

45(9)
45(8)
33(10)
4(2)
10(3)
9(3)
10(4)
7(3)

EXP2s

11.724(12)
11.803(9)

—
11.926(2)
12.00(5)

12.024(5)
12.036(4)
12.048(4)

37(8)
37(8)

—
4(2)

15(10)
9(3)
10(4)
7(3)

PS

11.7218
11.8048
11.8929
11.9255
11.9949
12.0272
12.0369
12.0532

38.89
44.46
32.5
2.96
10.2
8.31
8.31
6.57

R-matrix

11.7218
11.8049
11.8930
11.9258
11.9952
12.0273
12.0370
12.0534

40.93
43.52
34.13
3.10
10.5
7.89
8.25
5.82

CCO2p

11.726
11.805
11.892
11.927
11.996
12.028
12.037
12.047

39.0
49.4
29.7
3.7
10.0
9.5
12.7
7.9

CCO 2s

11.726
11.803
11.891
11.927
11.996
12.030
12.038
12.046

37.0
47.8
30.9
3.5
12.0
9.8
13.0
7.9

both channels should be identical. Table 8.6 shows that they are very
similar experimentally and in the coupled-channels-optical calculation.
Fig. 8.9 shows also that a pseudostate basis can be found that gives an
excellent description of the 2s and 2p integrated cross sections below the
n=3 threshold. The coupled-channels-optical calculation included the
channels 1,2,3,4s; 2,3,4p and 3,4d in P space and only the continuum in
Q space. Its semiquantitative success shows that the equivalent-local
approximation for the polarisation potential, which is designed for higher
energies, has sufficient validity at low energy to reduce the absolute cross
section from the over-large values obtained by omitting the continuum to
values near the experiment. Similar over-large values are obtained by
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the 15-state i?-matrix calculation of Fon, Aggarwal and Ratnavelu (1992),
which also omits the continuum.

8.3 Sodium

The calculation of electron—sodium scattering gives a good example of
the treatment of a many-electron target by a practical method. The
potential matrix elements (7.35) may be treated, according to (7.87), as
matrix elements for scattering by two potentials, an electron—electron
potential and an electron—core potential. In practice the one-electron
exchange terms are negligible in the electron-core potential. We describe
the core by the same model as we use for the electron-core bound-state
problem in section 5.8. This is a frozen-core Hartree—Fock potential
with the addition of a polarisation potential (5.82). The parameters
of the polarisation potential are determined phenomenologically from
bound-state data. This reflects an incomplete treatment of the structure
problem, but not of the scattering problem. In fact it is interesting to

Fig. 8.8. Differential cross section at 30° and 90° for electron-hydrogen elastic
scattering below the n = 2 threshold. Experiment, Williams (1976b); solid curve,
coupled channels optical (equivalent local) (McCarthy and Shang, 1992). From
McCarthy and Shang (1992).
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0.6 -

Fig. 8.9. Integrated cross section for electron scattering to the 2s (above) and 2p
(below) states of hydrogen below the n=3 threshold. The positions and quantum
numbers of resonances are shown on the upper scale. Experiment, Williams
(1988); solid curve, coupled channels optical (equivalent local) (McCarthy and
Shang, 1992); long-dashed curve, pseudostate method (Callaway, 1982); short-
dashed curve, 9-state coupled channels.

see if the treatment of the scattering problem is so accurate that it can be
used as a probe for structure determination.

Sodium has another advantage as a test for scattering and structure
calculations. A very wide range of experimental data is available. This
includes spin-dependent measurements of scattering and magnetic substate
data, which will be described in chapter 9. In this section we consider
only differential, integrated and total cross sections.

8.3.1 Differential cross sections

Relative differential cross sections for the 3s and 3p channels at several
energies have been measured by different groups. These are shown
in figs. 8.10 and 8.11 in comparison with a coupled-channels-optical
calculation for which P space consists of the 3s, 3p and 3d channels and
the polarisation potential treats all Q space channels to convergence. A
3s, 3p, 3d coupled-channels calculation has been included to assess the
effect of Q space.

Experimental differential cross sections are put on an absolute scale by
first normalising to the differential cross section for the first dipole transi-
tion (3p). The integrated cross section for this transition is determined by
numerical integration using differential cross sections measured as close
to 9 = 0 as possible, supplemented by shape extrapolation based on a cal-
culation. Integrated cross sections are determined in ways that ultimately
depend on measurements of the optical oscillator strength (5.84). They
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Fig. 8.10. Differential cross section for elastic electron scattering on sodium.
Open circles, Lorentz and Miller (1991); closed circles, Srivastava and Vuskovic
(1980); crosses, 54.4 eV, Allen et al. (1987), and 100 eV, Teubner, Buckman and
Noble (1978); solid curve, coupled channels optical; broken curve, 3-state coupled
channels (Bray et a/., 199W). From Bray et al (199W).

are discussed in section 8.3.2. For the data shown in fig. 8.11 those of
Srivastava and Vuskovic (1980) and Teubner et al. (1986) are normalised
to the integrated cross sections of Enemark and Gallagher (1972), those of
Buckman and Teubner (1979) to the optical oscillator strength and those
of Lorentz and Miller (1991) to the coupled-channels-optical calculation.

All the experimental differential cross sections agree with each other and
the calculation over at least three orders of magnitude at angles less than
about 20°. However, there are large discrepancies between experiments
at larger angles. The calculation agrees well with the data of Srivastava
and Vuskovic at lower energies and with Lorentz and Miller at higher
energies.

In general Q space does not have a very large effect on cross sections.
This is true also of later calculations (illustrated in chapter 9) where P
space includes discrete channels up to convergence. Differential cross
sections do not critically test the need to include the ionisation continuum
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in the calculation. Total cross sections give a better test of the treatment
of the continuum.

8.3.2 Integrated and total cross sections

At most energies differential cross sections have been measured to quite
small angles. Very little theoretical extrapolation is required to obtain
an integrated cross section. Normalisation of relative differential cross
sections to independent measurements of integrated cross sections can be
carried out quite accurately. Because of the relatively-large differential
cross sections at small angles the integrated cross section is essentially
determined by this angular region where the angular distributions of the
three experiments discussed in section 8.3.1 agree in shape.

There are measurements of integrated cross sections that are indepen-
dent of differential cross sections for the 3p channel. Enemark and
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Fig. 8.11. Differential cross section for electron scattering to the 3p state of
sodium. Open circles, Lorentz and Miller (1991); closed circles :,Srivastava and
Vuskovic (1980); crosses, 22.1 eV; Teubner et al. (1986), other energies Buckman
and Teubner (1979); calculations are as for fig. 8.10. From Bray et al. (1991J).
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Table 8.7. The integrated cross section o^v for the 3p channel
of electron—sodium scattering and the total cross section
aT (10~16cm2). EXP (G3P), interpolation in the data of
Enemark and Gallagher (1972); EXP (oT), Kwan et al.
(1991); CCO, coupled-channels-optical calculation (Bray et
al, 1991d)

229

£(eV)

4.1
5.9
10.8
20.7
30.7
40.8
50.8
60.9
76.1
100

3p channel

EXP

30.8+1.3
32.1+1.7
32.0+1.4
28.7+1.0
25.2+0.9
22.1+0.6
19.8+0.5
18.0+0.4
15.7+0.2
13.2+0.2

CCO

30.0
30.6
30.8
27.6
23.6
21.0
19.3
17.7
15.1
11.3

total

EXP

67.1+14.1
66.5+14.0
55.9+11.7
43.3±9.1
32.6+6.8
30.0+6.3
26.2+5.5
22.9+4.8
22.0+4.6

—

CCO

89.5
78.6
61.1
49.1
40.5
34.6
31.6
28.8
24.6
—

Gallagher (1972) measured the relative optical excitation function at en-
ergies from 2.5 eV to 1003 eV. After subtracting cascade contributions
estimated from experiment, the 3p integrated cross section was normalised
to the Born approximation (calculated from the known optical oscillator
strength) at 1003 eV. Since this dipole transition dominates the reaction
cross section at high energy and the Born term dominates the T-matrix
element, this normalisation is reasonable. Further confirmation is given
by the fact that the generalised oscillator strength is independent of inci-
dent energy up to quite large values of K2 (Buckman and Teubner, 1979),
where K is the momentum transfer. This is the prediction of the Born
approximation. The data are compared with the coupled-channels-optical
calculation in table 8.7.

Absolute measurements of total cross sections have been made by beam-
transmission techniques. The results of Kwan et al (1991) are compared
with the coupled-channels-optical calculation in table 8.7. In most cases
the coupled-channels-optical cross section is within one standard deviation
of the experimental result.
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8.4 Two-electron atoms

The calculation of electron scattering on atoms whose structures can be
represented by two electrons and an inert closed-shell core is an example
of the general case where a configuration-interaction calculation of the
target states is required. The prototype is helium, a pure two-electron
target.

8.4.1 Helium

Since helium occurs naturally as an atomic gas it has been used for many
years as a target for electron-collision experiments. However detailed
calculations involving approximations for the complete set of target states
have been performed only by the equivalent-local coupled-channels-optical
method, described in section 7.6.2.

Fig. 8.12 shows the example of 50 eV electron scattering to the three
lowest singlet states (McCarthy, Ratnavelu and Zhou, 1991). In the
calculation P space consisted of ten channels: 1,2,3* S; 2,33S; 2,3{P;
2,33P; 31/). Polarisation potentials for ionisation were included for all
couplings in the n=\ and 2 subspace. The basis used in the configuration-

Scattering angle (degrees)

Fig. 8.12. Differential cross section for the l1^, 2XS and 2XP states of helium
and electron impact coherence parameters (8.40) for the 2lP state at £o=5O
eV. Experimental data for differential cross sections are: l1^, Register, Trajmar
and Srivastava (1980); 21S,21P, Cartwright et al. (1992). Experimental data
for electron impact coherence parameters are: crosses, McAdams et al. (1980);
squares, Beijers et al. (1987); plus signs, Eminyan et al. (1974). Solid curves,
coupled channels optical (equivalent local) (McCarthy et al, 1991); broken curve,
distorted-wave Born (Cartwright et al, 1992). From McCarthy et al. (1991).
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interaction representation of the P -space target states consisted of all
allowed excitations in the space defined by the 1,2,3,4s; 2,3,4p and 3d
Hartree—Fock orbitals, with higher excitations allowed for by s,p and d
pseudo-orbitals.

The calculation describes the differential cross sections and 2lP elec-
tron impact coherence parameters quite well. For the 2lP differential
cross section it is contrasted with a variant of the distorted-wave Born
approximation, first-order many-body theory, where the distorted waves
are both calculated in the initial-state Hartree—Fock potential.

The equivalent-local form of the coupled-channels-optical method does
not give a satisfactory description of the excitation of triplet states (Brun-
ger et a/., 1990). Here only the exchange part of the polarisation potential
contributes. The equivalent-local approximation to this is not sufficiently
accurate. It is necessary to check the overall validity of the treatment
of the complete target space by comparing calculated total cross sections
with experiment. This is done in table 8.8. The experiments of Nickel
et al. (1985) were done by a beam-transmission technique (section 2.1.3).
The calculation overestimates total cross sections by about 20%, due to
an overestimate of the total ionisation cross section. However, an error
of this magnitude in the (second-order) polarisation potential does not
invalidate the coupled-channels-optical calculation for low-lying discrete
channels.

8.4.2 Magnesium

The example of magnesium at £o = 40 eV illustrates the application of the
coupled-channels-optical method to a two-electron atom with a core. It

Table 8.8. Total cross sections for
electron-helium scattering. CCO,
coupled-channels-optical (equivalent
local) method (McCarthy et al.,1991);
experiment, Nickel et al. (1985). Units
are 10~16cm2

£o(eV)

30
40
50
80

100
200

CCO

2.69
2.23
2.06
1.46
1.38
0.76

Experiment

2.391+0.072
2.001+0.060
1.715+0.051
1.269+0.038
1.120+0.034
0.734+0.022
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is necessary first to construct the configuration-interaction states describ-
ing the target. The basis used (Mitroy and McCarthy, 1989) consisted
of Is, 2s and 2p orbitals calculated in the Hartree—Fock approxima-
tion for the (3s2)1 Se ground state, 3s, 3p, 3d, 4s and Ap orbitals defined
by Hartree—Fock calculations of the (3sn£) xL states and 3p, 3d and 4s
orbitals obtained by performing a natural orbital transformation on a
large-basis configuration-interaction wave function for the ground state.
All these orbitals were orthogonalised to each other. The size of the
basis is restricted by computational constraints, since it is necessary to
calculate potential matrix elements for every orbital pair in the scatter-
ing calculation. Nevertheless the structure calculation is a considerable
improvement on Hartree—Fock, as shown in the energy-level table 8.9.
Energy levels obtained by a configuration-interaction calculation with the
above basis are compared with experiment and a large multiconfiguration
Hartree—Fock calculation. It is interesting to contrast the configuration-
interaction results in table 8.9 with those of a much larger calculation in
table 5.5, which achieves very close energy agreement with experiment and
other large structure calculations. The optical oscillator strength (5.84)
for the 3*P state of table 8.9 is within 2% of the multiconfiguration
Hartree—Fock value.

The coupled-channels-optical calculation of Zhou (1992) had a P space
consisting of the following 10 channels: 3,4,5*5'; 43Se; 3,4,5^°; 3,43P°;
3lDe. The equivalent-local polarisation potential for the continuum was
included in the following couplings: 31Se-31Se

9 3lP°, 33P°, 4{Se; 3lP°-
3lP°, 31De,41Se;41Se-41Se.

Magnesium is much more like sodium than helium, since the reaction
cross section is dominated by the first dipole excitation. The respective
integrated cross sections for the 2XP, 32P and 3lP states of helium, sodium

Table 8.9. Energies (in a.u.) of the lowest-lying singlet
states of magnesium. HF, Hartree—Fock; MCHF,
multiconfiguration Hartree—Fock (Froese-Fischer\ 1975);
CI, configuration interaction (see text); EXP, Moore
(1949)

State

(3s2)lSe

(3s3p)1P°
(3s4s)1Se

(3s3d){De

(3s4p)lP°

HF

-0.2427
-0.0994
-0.0755
-0.0548

MCHF

-0.276 60
-0.119 49
-0.082 13
-0.071 13
-0.055 66

CI

-0.274
-0.114
-0.079
-0.065
-0.052

05
73
57
76
16

EXP

-0.280
-0.121
-0.082
-0.069
-0.055

99
28
78
56
55
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and magnesium are about 0.09, 22.1 and 11.3 real. T ^ e corresponding
excitation energies are 21.2, 2.1 and 4.3 eV. An experiment with very
small statistical errors by Brunger et al. (1988) observed the relative
differential cross section for the 3lP° state of magnesium. As was the
case for the corresponding experiment at 54.4 eV for sodium by Buckman
and Teubner (1979) (fig. 8.11) there is close shape agreement with the
coupled-channels-optical calculation over four orders of magnitude at
small angles, but agreement worsens at larger angles. The comparison is
made in fig. 8.13. In this connection the close agreement of the coupled-
channels-optical calculation with spin-dependent data for sodium at all
angles (chapter 9) is perhaps significant.

The experimental data of Brunger et al. (1988) and those of an earlier
experiment by Williams and Trajmar (1978) for the 3{P° state were nor-
malised by equating the integrated cross section (obtained by integrating
under the extrapolated differential cross section) with the result of the
optical excitation experiment by Leep and Gallagher (1976). This mea-
surement included cascades, which contribute about 10 per cent according
to the coupled-channels-optical calculation. It was normalised originally at
1400 eV to the generalised oscillator strength from a Born-approximation
calculation by Robb (1974), which used configuration interaction. The
coupled-channels-optical value of 11.3 nal for the 3XP0 integrated cross
section (12.4 nal w ^ h cascades) is to be compared with the optical-
excitation estimate of 15.70 + 0.16 nal.

Also shown in fig. 8.13 are comparisons of the differential cross sections
of the coupled-channels-optical method with the experimental values of

0 60 120
Scattering angle (deg)

Fig. 8.13. Differential cross section for electron—magnesium scattering at  EQ =
40 eV. Open circles, Williams and Trajmar (1978); closed circles, Brunger et al
(1988); full curves, coupled channels optical (Zhou, 1992).



234 8 Spin-independent scattering observables

Williams and Trajmar (1978) for the 3{S and 33P channels. The figure
gives a good idea of the present state of theory and experiment for all but
the most-detailed investigations. There is a need for more experimental
data and for a full coupled-channels-optical calculation.

In the absence of independent measurements of the total cross section
the total ionisation cross section gives an estimate of the validity of
the equivalent-local polarisation potential used for the coupled-channels-
optical calculation of fig. 8.13. The calculated value at 40 eV is 5.2 nal,
compared with 4.66+0.47 nal measured by Karstensen and Schneider
(1975).



9
Spin-dependent scattering observables

In the last chapter we discussed how our understanding of electron impact
excitation of atoms has substantially improved in recent years. Sophisti-
cated experimental techniques are available for revealing sensitive details
of the collision process, in addition to providing accurate and reliable
differential and total cross section data. These details include the shape
and inherent angular momentum of the excited atoms after the scatter-
ing process, measured as a function of the scattering angle and incident
energy. These studies have provided stringent tests of current scattering
theories, particularly at intermediate energies and backward angles.

In conventional collision experiments the strong Coulomb interaction
generally masks the much weaker relativistic spin-dependent interactions.
The role of the spin-dependent interactions, such as the exchange and
spin—orbit interactions, has also been clarified by sophisticated measure-
ments with spin-polarised electrons and/or spin-polarised targets, some-
times employing spin analysis after the collision process (Kessler, 1985,
1991;Hanne, 1983).

Such measurements were first applied with considerable success to elas-
tic scattering. Indeed one was able to discuss experiments which would
determine all the theoretically calculable amplitudes (Bederson, 1970). For
inelastic processes, such measurements necessitate the simultaneous ap-
plication of spin selection techniques and the alignment and orientation
measurements discussed in the previous chapter. The experiments have be-
come feasible with the advancement of experimental techniques. The first
successful differential electron impact excitation study with spin-polarised
electrons and alignment and orientation measurements was performed by
Goeke et al. (1983) for the e-Hg case. McClelland, Kelley and Celotta
(1985, 1986) carried out a systematic study for superelastic scattering of
polarised electrons from polarised laser-excited Na (32P) atoms. This sys-
tem is essentially a two-electron collision system in which spin exchange
is the dominant spin-dependent interaction. It thus allows one to obtain

235
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information on the alignment and orientation parameters for both the
singlet and triplet contributions.

A polarised electron beam is one with a preferred orientation of the
electron spin direction. If there are JVj electrons with spin components
parallel to a given direction and iV| with spins antiparallel to that direction
then

is the component of the electron polarisation vector P in that direction.
|P| is the degree of polarisation.

The use of polarised beams in collision studies has enabled experimen-
talists to perform very detailed tests of theoretical models, particularly
with regard to the role of electron exchange and the spin—orbit inter-
action in spin-dependent scattering. We will now briefly discuss the role
of these interactions before using the general density matrix method to
describe the more general case where more than one mechanism may
contribute to the spin-dependent effects.

9.1 Origin of spin-dependent effects

9.1.1 Spin—orbit interaction

The role of the spin—orbit interaction (i.e. relativistic effects) can be most
clearly observed when an unpolarised beam of electrons is scattered by
spinless heavy atoms and the polarisation of the electrons is observed after
the collision. We can consider an unpolarised beam as a mixture of two
equal fractions of opposing spin directions. We can choose this arbitrary
spin direction to be perpendicular to the scattering plane. In this direction
the polarisation remains unchanged in the scattering process. This can
easily be seen if we consider the electric field which electrons experience in
their rest frame. The positively-charged scattering centre (nucleus) moves
with a velocity —v with respect to the electron and there is an electric
field E between them. Thus the current that is represented by the moving
charge produces a magnetic field B = E x v/c which acts on the magnetic
moment of the electron. This field is perpendicular to the scattering plane
since E and v lie in the scattering plane. If the polarisation P of the
incident electron is not parallel or antiparallel to B, the magnetic moment
associated with P will experience a torque causing P to precess. Thus only
if the polarisation is perpendicular to the scattering plane does it retain
its direction.

The cross sections for scattering of the two beams with opposite po-
larisation differ from each other because of the spin—orbit part of the
scattering potential, which is proportional to the scalar product L S of the
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electron's orbital and spin angular momenta. The scattering potential will
therefore be either higher or lower for spin-up electrons (ef) or spin-down
electrons (e j) depending on which side of the atom they pass, since this
changes the sign of L (see section 2.5.2 and fig. 2.13). The differential cross
sections will therefore be slightly different for the two spin directions. The
scattered beam will thus in general be polarised, with the polarisation
given by

P' = SP(9)a, (9.2a)

where

P' = fc|i=^i (9.2b)

is the polarisation function and ii is the unit vector normal to the scattering
plane. For the present purpose we denote the differential cross section by
a.

The polarisation will be particularly high where one of the two cross
sections has a deep and sharp minimum, so that its value is small compared
to the other cross section at the same angle. The positions of these minima
due to diffraction (see e.g. figs. 8.10, 8.13) are determined by the effective
radius of the atom, which in turn depends on the effective potential. This
produces a small shift in the position of the minimum depending on the
spin direction. Thus near the minimum of the complete differential cross
section a(8) = O]{6) + 0^(6) there will be a small angular region where
either 0^ or CTJ dominate in turn, leading to large Pf which changes its
sign between the two minima.

The above comments for an unpolarised incident beam are obviously
still valid for any partially polarised beam (|P| < 1). Since the cross
sections for e | and ej, scattering are different, the relative proportion, i.e.
the polarisation, will change with scattering. An existing polarisation P
can be analysed through a left—right asymmetry in the differential cross
section since the contribution of the spin—orbit term to the scattering
potential differs in sign for the two directions.

The polarisation function Sp(9) and the asymmetry parameter SA(9)
(also known as the analysing power or Sherman function) are identical
and denoted by S for elastic scattering, due to time-reversal invariance
of the projectile—target interaction (Kessler, 1985). S is a complicated
function of the electron energy £, atomic number Z of the target and the
scattering angle. The Mott detector, which uses scattering by a high Z
material, is often used to determine the polarisation of a beam of electrons
(see section 2.5.2). The precise measurement of S is, however, difficult.
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With careful measurements and analysis, Fletcher et al. (1986) were able
to obtain a best value for the uncertainty in S of +5%.

9.1.2 Electron exchange

The role of exchange scattering can be observed most clearly when po-
larised electrons are scattered from a target of polarised light atoms. If
one observes a spin-flip process like

e T +A I—> e 1 +A f, (9.4a)

then it is most likely due to exchange between the incident electron and
the atomic electron, since other spin-dependent interactions are negligible
in light atoms. The amplitude for this process is usually defined to be g.
Electrons can, of course, also be scattered by the direct process

e T +A 1—-> e  T +A j , (9.4b)

where no change in spin direction occurs. This process is described by the
direct scattering amplitude / . In any scattering process / and g must of
course be added coherently, and only the relative phase y between them
can be observed.

If explicitly-spin-dependent forces, such as the spin—orbit interaction,
are negligible, the cross section for scattering of electrons of polarisation
Pe by a one-electron target of polarisation P A is given in terms of the
cross section ou for an unpolarised beam by (McClelland, Kelley and
Celotta, 1987),

o(0) = ou(0) [l - ,4ex(0)Pe • PA] , (9.5)

where

ou = ^l/l2 + i|g|2 + \\f - g\2 = \\f + g\2 + | | / - g|2. (9.6)

Here / + g and f —  g are the singlet and triplet amplitudes respectively.
The exchange asymmetry is given by (Kessler, 1985)

l/ + g|2~l/-gl2

The polarisation of the scattered electrons is given by

p , _ (1 - | / | 2 M I ) P A + (1 ~ |g|2/*ii)Pe + *(/g* ~ /*
P

For an unpolarised target (PA = 0)

P; = (1 - lg|2/<rM)Pe (9.8b)
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and the incident electron beam is partially depolarised by exchange with
the unpolarised target electrons. If the target is polarised and the initial
beam is unpolarised, the electron polarisation after scattering is

P; = (1 - I / I 2 / ^ ) P A . (9.8C)

For a complete experiment yielding |/|, \g\ and y, one has to measure au
and three observables. The measurement of the asymmetry, which from
equn. (9.5) is given by

A(9) = m ^ l l , (9.9)

(where the subscripts denote cross sections for antiparallel and parallel
polarisation vectors) gives information on cosy (equn. (9.7)). Measuring
the polarisation component normal to Pe and PA gives information on
siny through the term in fg* —  f*g in (9.8a). Measurements with one of
the colliding beams unpolarised gives information on |/|2 and \g\2 (equns.
(9.8b) and (9.8c)). Measurements of this kind have been performed for
elastic scattering (e.g. McClelland et a/., 1987, 1990), inelastic scattering
(e.g. Baum, Raith and Schroder, 1988) and ionisation (e.g. Crowe et al,
1990). Some of these measurements will be discussed later.

It is possible to observe the polarisation P^ of the scattered atoms
rather than performing the measurements on the electrons. P^ is given by
(9.8a) on interchanging Pe and PA- Such measurements have been carried
out in a series of pioneering experiments by Bederson and co-workers
(Bederson, 1973).

9.1.3 The fine-structure effect
Hanne (1976, 1983) showed that electron scattering from individual fine-
structure states of a multiplet can lead to significant polarisation effects,
even for unpolarised very light targets for which the spin—orbit interaction
is negligible. The target states of a fine-structure multiplet for spin s and
orbital angular momentum t are distinguished by their total angular
momentum j . In the absence of explicit spin-dependent interactions these
effects depend on (a) nonvanishing orbital angular momentum orientation
of the target (i.e. (Lj_) =̂ 0), (b) electron exchange, and (c) resolution of
fine-structure levels in the final and/or the initial state. The sum of the
contributions over the entire multiplet, i.e. the 'average' polarisation and
asymmetry, vanishes.

The physical mechanism underlying the fine-structure effect can be
seen if we consider say the excitation of the 23Po,i,2 fine-structure states
of helium from the singlet ground state I1 So. This can only occur by
exchange processes, since in the 3P; states the atoms have their electron
spins aligned, while in the singlet state they are antiparallel. As discussed



240 9 Spin-dependent scattering observables

in chapter 8, excitation of a P state by electrons scattered through a certain
angle will in general leave the atoms with an orbital angular momentum
orientation (L±) normal to the scattering plane (see fig. 8.1).

Let us assume that our detection system can select electrons from a
single fine-structure state, say the 3Po state. Atoms in this state have
their spins and orbital angular momenta antiparallel to each other, so
that (S±) = —  (Lj_). Since the 3 P ; states can only be excited from the ^o
ground state by exchange, the process must take place by the capture of
an electron with spin orientation opposite to that of the ejected electron
and parallel to that of the other bound electron. Thus when the spin
orientation of the incident electrons corresponds to that of the excited
state, the excitation probability is higher than in the opposite case. If, as
in fig. 8.1, the scattered electron leaves {L±) oriented 'up' from the plane
of scattering, then (S±) is oriented 'down'. Thus the 'down' component
of the incident beam will be preferentially scattered through the given
angle. Indeed for total atomic orientation, (S±) = 1, the cross section o-j
for spin-up electrons to excite the 3Po fine structure level vanishes. The
resulting asymmetry, which depends on the scattering angle and energy,
can be shown (Hanne, 1983) to be in this case given by

A = ^ ^ = - < L L ) = (S±). (9.10)

The fine-structure effect also results in a polarisation of the scattered
electron. Since the spin-down electron is preferentially captured, the atomic
spin-up electron is preferentially released, and the electron arriving at the
detector has an average spin-up component, i.e. positive polarisation, and
indeed

P' = -A = (L±). (9.11)

We see that a measurement of the asymmetry of a scattered polarised
beam or the polarisation after scattering of an initially-polarised beam
yields directly the orientation (L±) of the excited atomic state. This is
usually obtained by coincidence experiments (chapter 8). The above case
is, however, a special case and in more complicated situations the two
techniques yield complementary information.

The existence of the fine-structure effect has been demonstrated for
sodium (Hanne, Szmytkowski and van der Wiel, 1982; McClelland et
al, 1985; Nickich et a/., 1990) using the time-reversed arrangement. A
polarised electron beam is superelastically scattered from sodium atoms
excited to 32Pi/2 or 32P3/2 states by a single-frequency laser. McClelland
et al. (1985) measured the spin asymmetry of polarised electrons that
de-excite unpolarised atoms from the 32P3/2 fine-structure state over the
angular range —35° < 9 < 35°. As expected from reflection symmetry, the
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asymmetry for scattering to the left (positive angles) differed only in sign
from that for scattering to the right.

9.2 Combined effects of several polarisation mechanisms

9.2.1 Generalised formalism for the scattering
of polarised electrons by unpolarised targets

For heavy targets one usually has to take into account exchange and
spin—orbit interactions as well as internal spin—orbit coupling in the
target. We will now follow the approach of Bartschat and Madison (1988),
who applied the formalism of reduced density matrices to describe the
scattering (either elastic or inelastic) of polarised electrons by unpolarised
targets. We treat the case where only the scattered electrons are observed
and the target electrons may have spin and orbital angular momentum in
the initial and/or final state.

We will again work in the collision system where the z-axis of quan-
tisation is parallel to ko and the scattering plane is the zx-plane (see fig.
8.1). We can write the density matrix (Blum, 1981) for the final state as

vov°mom°

where pv>Vopm'mo describes the preparation of the initial state, i.e. of the
projectile electrons and the target atom. The density-matrix elements con-
tain the total information that can be obtained from the scattering process
for a given set of elements pv>VQpm'm describing the initial state. If only
the scattered electrons are observed, the corresponding reduced density-
matrix elements for the outgoing electrons are obtained by summing over
the atomic quantum numbers.

pv;v,.(k0 = ]T pffl(ki) = £ < v X ; v,vo)pv;vo, (9.13)
fa v'ovo

where we have defined
1 J2 (9.14)

For spin 1/2 particles there are 16 possible combinations of (V-VQVJ-VO)
and therefore 32 real (or 16 complex) parameters. From (9.14) it can be
seen that hermiticity requires that

;vi)*. (9.15)
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Reflection invariance with respect to the scattering plane (i.e. parity
conservation) yields the further restriction that

x f(-mi -Vi;-m0 -v0). (9.16)

where 11/ and Ilo are the parities of the final and initial atomic states. It
therefore follows from (9.14) that

<vM; v ^ = ( - i r^ + v o-vo ( _ v ; _ v / ; _ v , _vo). (9.17)

Equns. (9.15) and (9.17), which correspond to (8.14) and (8.15), restrict
the number of parameters so that only eight independent parameters
are required to characterise in general the reduced density matrix of
the scattered electrons. In special situations the number of independent
parameters can be reduced even further as discussed earlier.

The differential cross section for scattering of unpolarised incident
particles is

/ (9.18)
v/vo \ JO * )

The differential cross section for the scattering of polarised incident
particles is given by

a(9) = trp(kO = E E W ; W P v ; v 0 . (9.19)

The spin density matrix of the projectiles is given in terms of the
polarisation vector Pe = (Px,Py,Pz) by (e.g. Kessler, 1985).

Using this and the relationships (9.15) and (9.17) one obtains

= 1 PySA), (9.21)

where the asymmetry function has been defined to be

A ~ rr ^2 2 ' 2 2 /

(9-22)
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The expectation value of an observable 0 referring to the scattered
electrons alone is given by tr[pO]/trp-. Thus the polarisation component
Pf

y normal to the scattering plane after the collision is given by

T - P ' ^ m / 1 1 . 1 1 \ i _ / 1 1 . 1 1 \ i : p [ / 1 1 . 1 1 \ / 1 1 . 1 1 \ 1
lPy(T(0) = ( - j j , 2 2/ + \ "2 ~~2 > 2 " 2 / + lPy [\""2 ~2 > 2 V ~ \~22 > 2 ~2/J-

(9.23)
For the case of no polarisation component perpendicular to the scat-

tering plane before the collision (Py = 0) we get

i \ \ (9.24)
m.mo

which defines the polarisation function Sp. In contrast to the discussion
in section 9.1.1, the asymmetry (9.22) and polarisation function (9.24) are
no longer described by the same Sherman function S.

We can rewrite (9.23) in the form
P'y = (Sp + TyPy)/(l + SAPy\ (9.25)

with Ty being a real parameter given by

l y —  ° u [ \ 2 I ' l l ' \ 2 2 ' 2 2 / J *

The observable Ty (—1  < Ty < 1) describes the contraction or even
inversion of the original component of polarisation normal to the plane.
Not only au and Sp but also Ty and SA can therefore be measured with
projectiles that have no polarisation component in the scattering plane.

Performing the corresponding analysis for the polarisation components
in the scattering plane one obtains (Bartschat, 1989)

P'x = (TXPX + UxzPz)/(l + SAPy) (9.27)

and
P'z = (TZPZ + UZXPX)/(1 + SAPy), (9.28)

where the signs have been chosen so that for the special case of elas-
tic scattering from targets with zero angular momentum the results are
obtained in terms of the normal STU parameters, defined by equations
(9.34).

Thus, in addition to the three observables au, SA, and Sp, one needs the
following five observables to describe in general the change in polarisation
caused by scattering of spin 1/2 particles by an unpolarised target:

T

,- -±,m0 -\)f(mi\,m-\)\, (9.29a)
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(9.29b)

i i _ i i \
2 2 ' 2 2/

X

—  /(m,- —4,  mo —4)

"" — K e \2 ~V 2 2/

1

(9.29c)

(9.29d)

The polarisation P' after scattering of an electron beam with initial po-
larisation P = (Px,Py,Pz) is then given by

] y (9.30)

/

/
/ /

/

/ / /
k/

1'

1 +

V , + u x z p z
S,,Py

Fig. 9.1. Physical meaning of the generalised STU parameters and the polarisa-
tion function Sp and asymmetry function SA for scattering of a beam with initial
polarisation P, the final polarisation being P\ The contraction parameters Tx, Ty
and Tz describe the change of initial polarisation along the three axes, while the
U parameters describe the rotation in the scattering plane.
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Here Tx, Ty, Tz describe the change in length of the polarisation compo-
nents, while Uxz and Uzx describe the rotation of the polarisation in the
scattering plane. This is shown schematically in fig. 9.1.

9.2.2 Elastic scattering from a spinless target

For elastic scattering from a target with jo = jt = 0 we get from (9.18),
after dropping the arguments m,- = mo = 0,

i^)l2 + l/(-ii)l2, (9.31)
where we have used the relation

f{yu vo) = ( - l ) 1 -^ - v o / ( _ v . ? _Vo)? (932)

which follows from the more general relation (9.16). With the notation for
the spin-flip amplitude /(—3,  3) = g and for the non-spin-flip amplitude
/ ( i , i ) = / , one obtains

*«i(0) = l/l 2 + lgl2- (9.33)

It similarly follows from relations (9.22) and (9.24) that

S(9) = SA = SP = —  I m 1 " 1 1 ^ * ' 1 *

Jg*-f*g

From equns. (9.29) and (9.32)

Ty = 1, (9.34c)

and

U(9) = Uxz = Uzx = \L\\f2' (9 3 4 d)
In this case one must measure four independent observables for a complete
experiment, namely the absolute differential cross section, the Sherman
function S, and two polarisation components to yield T and U.

The case of elastic scattering from targets with arbitrary angular mo-
mentum jt = jo is more complicated. Bartschat (1989) considered this
case in detail and showed how, in general, six independent parameters
are needed to describe completely the scattering process, time reversal
invariance leading to the following relations between the observables.

SA = SP=S (9.35a)
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and
Uxz - Uzx = tan(9(Tz - Tx). (9.35b)

9.2.3 Inelastic scattering from jo = 0 to j \ = 0

This case is a generalisation of the elastic scattering case. Taking into
account the parities of the initial and final states one readily obtains

SA = UoUiSp, (9.36a)
Ty = lion,, (9.36b)
Tx = UoUtTz, (9.36c)

Uxz = n0IliUZX9 (9.36d)

showing that the process is again determined by four observables. Thus
for the excitation of a 3PQ state from a ground XSQ state (as in He or Hg),
SA = —Sp.

From equn. (9.30) we see that the y component of final polarisation for
a 0 —•  0 transition is given by

Sp + noHtPy
y i + nnSP/ l }

which gives for a totally polarised beam with Py = 1 (using n ^ n ? = 1)

Py = n o n / ? (9.38)

giving a complete reversal of polarisation for a ^ Q —>  3PQ transition.

9.2.4 Pure exchange scattering from spin 112 targets

Applying the above formalism for pure exchange scattering from spin 1/2
targets such as the alkali-metal atoms, we obtain for elastic scattering

*u(0) = \ [i/(ii> \\)\2 + mi - i , \ 4)i2 +1/( j 4'-52)i2

+ i / H i \ 4)i2 + i/HiHDi2 + i/(-i -v-\4)i2]- (9-39)
Of the 16 terms in (9.18) for j \ = jo = 1/2, 10 can be omitted because

they violate conservation of total spin angular momentum on the basis of
pure exchange scattering, leaving only the above six terms. Recalling the
definitions in section 9.1.2 of the direct and exchange amplitudes / and g
(equns. (9.4a) and (9.4b) respectively) one has

f f/i 11 i\

g-J\2 2' 22^'
f-g=f(\i\\\ (9.40)
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The last relationship follows from the fact that both the direct and
exchange processes contribute to the amplitude for

e T +A !-> e T +A |,

and therefore one must have a coherent superposition of the amplitudes.
With these definitions one readily obtains equn. (9.6) for ou.

9.3 One-electron atoms

Scattering from alkali-metal atoms is understood as the three-body prob-
lem of two electrons interacting with an inert core. The electron—core
potentials are frozen-core Hartree—Fock potentials with core polarisation
being represented by a further potential (5.82).

The coupled-channels-optical calculation gives generally-good agree-
ment for cross sections although, in the test case of sodium, experiments
for larger-angle differential cross sections disagree with each other so
strongly that they do not really test the calculations. In particular, inclu-
sion of the ionisation continuum is not critically tested.

For electron scattering on lighter alkali-metals, spin asymmetry is due
to the Pauli exclusion principle, not to relativistic effects. It tests the
relationship between direct and exchange elements of the calculation.
Since it is a ratio it is easier to measure accurately than the differential
cross section, which varies over many orders of magnitude in the case of
sodium.

9.3.1 Lithium

The theoretical treatment of asymmetry is rather generally tested for
lithium by the energy-dependent measurements at three angles of Baum
et al (1986) for the ground (2s) state and Baum et al. (1989) for the
first-excited (2p) state.

Fig. 9.2 compares the experiments with the coupled-channels-optical
calculation of Bray, Fursa and McCarthy (1993). Here P space consisted
of 13 channels, polarisation potentials for ionisation being calculated for
all couplings in the first eight channels. Full convergence is achieved
with these truncations. The effect of the continuum is seen by comparing
the full calculation with a 13-state coupled-channels calculation. The
continuum has a significant effect after the ionisation threshold at 5.4 eV
and brings the calculations into good agreement with experiment.
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Fig. 9.2. Spin asymmetries for electron scattering to the 2s and 2p states of
lithium plotted against incident energy for the indicated scattering angles (Bray
et al, 1993). Is experiment, Baum et al. (1986); 2p experiment, Baum et al. (1989);
full curve, coupled channels optical; broken curve, 13-state coupled channels.

9.3.2 Sodium

The investigation of sodium as a critical test of the theoretical treatment of
scattering is given a new dimension by the spin-dependent measurements
of Kelley et al. (1992) in elastic and superelastic scattering experiments
with polarised electrons on the polarised 3s and laser-excited 3p states. Not
only have asymmetries been measured for these states, but spin-dependent
observations of the magnetic substate parameter L± have been made for
the 3p state.

The most comprehensive set of data is available at a 3s-channel energy
of 20 eV. The experimental and theoretical situations are summarised
in fig. 9.3. Asymmetries are shown for the 3s and 3p channels. Singlet
and triplet differential cross sections are obtained from spin-independent
measurements by using these asymmetries. Also shown are the singlet,
triplet and spin-averaged values of L±.

The coupled-channels-optical calculation converges at 15 channels in P
space with polarisation potentials for the continuum included for all cou-
plings in the first six channels. The effect of the inclusion of the continuum
is shown by the 15-state coupled-channels calculation. The distorted-wave
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Fig. 9.3. Electron—sodium scattering at 20 eV in the 3s channel (Bray and
McCarthy, 1992). Circles 3s, McClelland, Kelley and Celotta (1989); circles
3p, Kelley et al. (1992). Differential cross sections (multiplied by asymmetries)
are: squares, Srivastava and Vuskovic (1980); diamonds, Lorentz and Miller
(1991). Full curves, coupled channels optical; long-dashed curves, 15-state coupled
channels; short-dashed curves, distorted-wave second Born (Madison et al, 1992).

second Born calculation of Madison, Bartschat and McEachran (1992)
includes the continuum in representing the second-order term. Comparing
it with the full calculation tests the need for full coupling in P space.

The need for inclusion of the continuum or for full coupling is not very
obvious for the triplet reactions, which dominate the spin-independent
data. It is the asymmetry that provides the critical test of theory. Very good
agreement with experiment is obtained by the full coupled-channels-optical
calculation, but the other two calculations are qualitatively incorrect, even
giving the opposite sign for the 3p asymmetry. These conclusions hold
for experimental—theoretical comparisons at 1.0, 1.6, 4.1, 12.1 and 40 eV
(Bray and McCarthy, 1992).
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scattering angle (deg)

Fig. 9.4. Elastic asymmetry for electron—sodium scattering at 1.0 and 1.6 eV
(Bray and McCarthy, 1992). Circles, Lorentz et al. (1991); full curves, 15-state
coupled channels with core-polarisation in the bound states; broken curve, the
same reaction calculation omitting core polarisation.

Essentially-complete agreement with experiment is achieved by the
coupled-channels-optical calculation. We can therefore ask if scattering is
so sensitive to the structure details in the calculation that it constitutes a
sensitive probe for structure. The coupled-channels calculations in fig. 9.3
included the polarisation potential (5.82) in addition to the frozen-core
Hartree—Fock potential. Fig. 9.4 shows that addition of the polarisation
potential has a large effect on the elastic asymmetry at 1.6 eV, bringing
it into agreement with experiment. However, in general the probe is not
very sensitive to this level of detail.



9.3 One-electron atoms 251

30 60 90
e (deg)

120 150 180

Fig. 9.5. Asymmetry function SA for superelastic scattering from the (3p)2Pi/2
(• and ) and (3/?)2P3/2 (o and —) states of sodium at an incident electron
energy of 12 eV. The theoretical curves are from a 4-state ^-matrix calculation
by Bartschat (1991a), and the experimental points are from Nickich et al. (1990).

9.3.3 The fine-structure effect

An example of the fine-structure effect, caused by the interplay of exchange
scattering and atomic fine-structure splitting (section 9.1.3), is shown
in fig. 9.5, where the measured asymmetry function SA in superelastic
scattering from the 3p2P1°/23/2 states of sodium (Nickich et a/., 1990) is
compared with a recent 4-state i?-matrix calculation by Bartschat (1991a).
In the pure fine-structure effect, which assumes that the total orbital
angular momentum L and total spin S are separately conserved in the
collision, transitions between fine-structure levels are described by purely
algebraic recoupling techniques. This leads to some simple relations
between polarisation parameters for such transitions (Bartschat, 1989).
Thus the polarisation, asymmetry and rotation functions all vanish when
averaged over all fine-structure states. As can be seen in fig. 9.5 the simple
relationship

SA( P1/2) = —2SU( Py 2)

is verified both theoretically and experimentally.
For heavier atoms the pure fine-structure effect is expected to break

down due to relativistic effects. In the very heavy open-shell target
atom thallium (Z=81) the ground-state atoms populate only one of the
fine-structure levels, and the effect may be important at low energies.
In an K-matrix calculation using magnetic potentials derived from the
Dirac equation, Goerss, Nordbeck and Bartschat (1991) showed that
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for 5 eV scattering from thallium the fine-structure effect dominates the
polarisation mechanism.

9.4 Closed-shell atoms

9.4.1 Elastic scattering

Elastic scattering of polarised electrons by spinless targets has been sys-
tematically studied for quite some time. The reason is that it is possible to
do the perfect elastic scattering experiment by the measurement of four
observables, namely ou{0\ S(0), T(6) and U(6) (equns. (9.31) and (9.34)).
Fig. 9.6 shows the results obtained by Berger and Kessler (1986) for xenon
at 60 eV. The data for the Sherman function S were taken from Berger
et al. (1982), and the data for GU, used in evaluating the moduli of the
scattering amplitudes and their relative phases, from Register, Vuskovic
and Trajmar (1986) and Williams and Crowe (1975). From equns. (9.33)
and (9.34) it follows that

(9.41a)
[au(l-T)/2]12 (9.41b)

1 (9.41c)

where / = f{\,\) and g = f{—\,\)  are the non-spin-flip (direct) and
spin-flip amplitudes respectively, and 71 and 72 are their phases. Thus the
relative phase 7 can be obtained from S and U alone.

The measured values of S, T and U as well as the derived scattering
amplitude parameters |/ | , |g|, and 7 are compared with the results of
several calculations in fig. 9.6. Haberland, Fritsche and Noffke (1986) do
their calculation within a Kohn—Sham type one-particle theory (Kohn
and Sham, 1965) including exchange, treating the scattering process as an
(N+l)-electron problem, which is solved self-consistently. Awe et al. (1983)
in their relativistic calculation use energy-dependent equivalent-local ex-
change potentials with various local density approximation forms for
exchange and correlation contributions. McEachran and Stauffer (1986)
use a relativistic form of the Schrodinger equation, with the static and
relativistic potentials derived from relativistic Hartree—Fock wavefunc-
tions, while the polarisation potential is obtained from a non-relativistic
polarised-orbital calculation. Exchange is included exactly for the large
component of the scattered wavefunction. The agreement between theory
and experiment is quite good, although there are a number of discrepan-
cies. These are reduced at higher energies (Berger and Kessler, 1986).
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Fig. 9.6. Angular distribution of 5, T and U and the derived moduli and
relative phases of the scattering parameters for elastic scattering from Xe at 60
eV. Experiment: o, Berger and Kessler (1986); H, Mollenkamp et al. (1984) and
Wiibker, Mollenkamp and Kessler (1982). Absolute measured differential cross
sections used in the derivation of the moduli |/| and |g|: •, Register et  al. (1986);
m Williams and Crowe (1975). Theory: —, McEachran and Stauffer (1986);

, Haberland et al. (1986); - - -, Awe et al. (1983).

The data show that the differential cross section is dominated by the
direct scattering amplitude / ; the modulus for the spin-flip amplitude g is
in general an order of magnitude smaller. Thus the spin—orbit interaction
has only a small influence on the cross section, which is mainly influenced
by the Coulomb interaction, exchange, and charge-cloud polarisation.

9.4.2 Inelastic scattering: electron—photon coincidences

As discussed in the last chapter, electron—photon (e, e'y) measurements
yield much more information on the scattering process than simple inelas-
tic differential cross section measurements. In particular the population
of magnetic sublevels can be obtained, which can be visualised by the
corresponding charge-cloud probability distribution (fig. 8.1). The set of
parameters discussed in the last chapter must be enlarged when polarised
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electrons are used, since reflection symmetry with respect to the scatter-
ing plane may be broken. Thus the charge-cloud distribution may be
tilted by an angle e with respect to the scattering plane. This is shown
schematically in fig. 9.7, which shows an example of the charge distribution
p(6, (/>) of an atom with anistropically populated magnetic sublevels. Such
atoms will, in general, emit elliptically-polarised photons on de-excitation.
It is in fact possible to determine the parameters that characterise the
anisotropic charge-cloud distribution of the radiating atoms from mea-
surements of the linear polarisation of the emitted photons (Bartschat et
a/., 1981). Sohn and Hanne (1992) recently reported the results of such
an electron—photon coincidence experiment with polarised electrons. This
follows on from the earlier work of Goeke et al (1988, 1989).

In their experiment, a beam of transversely-polarised electrons (Pe =
Py or Px) excited the 63Pi state of mercury, and electrons inelastically
scattered through the polar angle 9Q were detected in coincidence with
photons from the 63Pi —  61So transition emitted either in the y direction
(normal to the scattering plane) or in the — x direction (in the scattering
plane). The coincidence count rates 7(a,Pe) and 7((j±,Pe) depend on the
polarisation of the incident electron beam and the linear polarisation of
the photons along the angles a = 0°,45°,90° and 135° with respect to the
incident (z) axis and the helicities o±, determined respectively by rotatable
linear polarisation and circular polarisation filters. It is then possible to
derive six Stokes parameters or light polarisation components (Pi * • •  Pe),
and six spin up—down asymmetry parameters ^4(a,P e) depending on the
emitted photon direction and angles a and helicities a±. For light emitted
in the y direction, we define (see equn. (8.30))

(9.42a)
7(0°)+ 7(90°)

Fig. 9.7. Schematic of the angular dependence of a charge-cloud distribution of
an atomic state excited by polarised electrons. The tilt (e) out of the scattering
plane must by parity conservation be zero if Px = 0.
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= 7(45°)-7(135°)
2 7(45°)+ 7(90°) l '

which are the Stokes parameters for unpolarised electrons. For light
emitted in the x-direction we have

= 7(45°, +PX)- 7(135°, -Px)
5 7(45°, +PX) + 7(135°, -Px) y- '

P4 is again a Stokes parameter for unpolarised electrons. P5 and P6 must
be zero if Px = 0. This can be seen by taking a mirror reflection in
the scattering plane. Nonzero values of P$ and Pe would violate parity
conservation if Px = 0, since the electron beam geometry would remain
unchanged unless there is an x-component of Pe. Similarly the tilt (e) in
the charge-cloud distribution out of the scattering plane indicated in fig.
9.7 must vanish unless Px =£ 0.

The spin up—down asymmetries are defined by
7(a,+P,)-7(a,-Py)

Due to parity conservation A(OL)X = 0 for a = 45° and 135°. These
parameters can be related to the state multipoles (T^(j)) (8.22) describing
the atomic state, which depend on the electron polarisation components
as follows (Bartschat et al, 1981)

q P z . (9.44)

Here we have simplified the state multipole notation (8.22) to show only
the angular momentum of the excited state.

Since the absolute differential cross section for scattering by unpolarised
electrons was not determined by Sohn and Hanne, they analysed their
results using normalised state multipoles defined by

where jo(= so = /o) = 0 and jt = j = I. The observables of their
experiment can be written in terms of 11 normalised state multipoles,
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namely

ImTfi, T2"0, ReT2"1; ReT2"2 for Pe = 0
# , R e r £ forPe = Pj,

forPe = Px.
7 $ , , ReTj

(9.46a)
(9.46b)
(9.46c)ReT^JmT^JmT;

Except for ImT^* these observables can be derived from the measured
Stokes and asymmetry parameters (9.42, 9.43) as shown for instance by
Sohn and Hanne (1992).

The angular distribution of the charge cloud of an atomic state (nor-
malised to (T0

0(;))u) is given by (Blum, 1985; Sohn and Hanne, 1992)

p(9, - m\kq) Tkq(j)Yjm,(9, (9.47)
kqmm'
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Fig. 9.8. Stokes parameters for the Hg(63Pi —  6%) transition after electron-
impact excitation at £0=8 eV. Pi — P4  are for unpolarised electrons and P5 and
P6 are normalised to Pe = Px = 1. Experiment, Pi,P4 (Goeke et al, 1989),
P2,P3,P4,P5 (Sohn and Hanne, 1992); theory, Bartschat (1991b).
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where (Jjni —m\kq) is a Clebsch—Gordan coefficient. Since the normalised
state multipoles depend on Pe (9.44, 9.45), the charge-cloud distribution
depends on Pe. Using the intermediate coupling scheme to describe the
Hg*(6s6p63Pi) state, Sohn and Hanne show that its normalised charge-
cloud distribution is given by

- 1) + ReT22sin20cos2</>

- ReT2isin20cos(/> + ImT2isin20sin(/> - ImT22sin20sin2(/> , (9.48)

where a (= 0.985) and /? (= 0.171) are the intermediate coupling coefficients
in the expansion of the excited-state wave function in terms of pure LS-
coupling states involving the 6s and 6p orbitals

(9.49)

In fig. 9.8 the experimental results for the Stokes parameters P2, P3, P5,
P6 (Sohn and Hanne, 1992) and Pi and P4 (Goeke et a/., 1989) are shown
together with theoretical results of a relativistic i?-matrix calculation by
Bartschat (1991b). The parameters Ps,P6 and the asymmetry parameters
(fig. 9.9) are normalised to Pe = 1. The large values of these latter
spin-dependent parameters show the importance of exchange and the
spin—orbit interaction in the excitation of Hg*(6 3Pi) by electron impact.

Fig. 9.10 shows the normalised state multipoles derived from the Stokes
and asymmetry parameters compared with the results of the K-matrix

0 40 80 0 40 80 0 40 80

SCATTERING ANGLE (DEG)

0 40 80 120

Fig. 9.9. Spin up—down asymmetries A(u) y normalised to Pe = Py = 1 (from
Hanne, 1992).
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Fig. 9.10. Normalised state multipoles Tkq plotted against scattering angle for
electron-impact excitation of Hg*(63Pi) at 8 eV (from Sohn and Hanne, 1992).
Curve: relativistic ^-matrix calculation (Bartschat, 1991ft).
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/3\
Fig. 9.11. Normalised charge-cloud distribution of the excited Hg*(63Pi) state
after collision with 8 eV electrons scattered through 20°. For Pe = 0 and
PQ = Py = ±1 the view is perpendicular to the scattering plane (y direction), and
for Pe = Px = ±1 the view is in the scattering plane from the —x direction (fig.
9.7) (from Hanne, 1992).
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Fig. 9.12. Plot of the tilt angle e in the y - z plane vs scattering angle 0e
compared with the ^-matrix theory of Bartschat

calculation. Surprisingly the overall agreement between theory and exper-
iment is better for the multipoles that depend on the electron polarisation
than those for unpolarised electrons.

Sohn and Hanne (1992) also show some examples of the charge cloud
distribution of Hg*(63Pi) after excitation by unpolarised and polarised
electrons derived using equn. (9.48). As can be seen in fig. 9.11, the
relative size of the charge cloud distribution can be very different for
Py = +1 and Py = - 1 , illustrating a spin up-down asymmetry. The
alignment angle y and shape can also be very different. For unpolarised
electrons the shape is just the average of those with Py = +1 and Py = —  1.
The tilt of the charge cloud out of the scattering plane projected on the
z —  y plane, indicated by the alignment angle e in fig. 9.11, is also quite
large and is significantly different from 0° or 90° over the entire range of
scattering angles (fig. 9.12). Sohn and Hanne (1992) show that such a tilt
out of the scattering plane would not be allowed if the whole collision
system could be described in pure LS coupling.
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It can be seen that electron—photon coincidence experiments with po-
larised electrons permit the investigation of spin effects in electron impact
excitation of atoms at the most fundamental level. It can lead to direct
information on both exchange effects and spin—orbit effects in the exci-
tation mechanism. The information on the population of the magnetic
sublevels can be visualised by charge-cloud distributions. These can tilt
significantly out of the scattering plane for incident electrons transversely
polarised in the scattering plane.
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Ionisation

Electron—atom collisions that ionise the target provide a very interesting
diversity of phenomena. The reason for this is that a three-body final
state allows a wide range of kinematic regions to be investigated. Different
kinematic regions depend sensitively on different aspects of the description
of the collision.

Up to now there has been no calculation of differential cross sections by
a method that is generally valid. We use a formulation due to Konovalov
(1993). Understanding of ionisation has advanced by an iterative process
involving experiments and calculations that emphasise different aspects
of the reaction. Kinematic regions have been found that are completely
understood in the sense that absolute differential cross sections in detailed
agreement with experiment can be calculated. These form the basis of
a structure probe, electron momentum spectroscopy, that is extremely
sensitive to one-electron and electron-correlation properties of the target
ground state and observed states of the residual ion. It forms a test
of unprecedented scope and sensitivity for structure calculations that is
described in chapter 11.

Other kinematic regions require a complete description of the collision,
which may be facilitated by including the boundary condition for the
three charged particles in the final state. This is nontrivial because there
is no separation distance at which the Coulomb forces in the three-body
system are strictly negligible. The pioneering experiments of Ehrhardt et
al (1969) are of this type.

An accurate description of ionisation channels is essential in a theory
of scattering, even to low-lying discrete states at low incident energy.
The first test of such a description is provided by the total ionisation
cross section and asymmetry. Very convincing evidence that our present
understanding of collisions is on the right track is the complete agreement
of the convergent-close-coupling method with experimental measurements
of these quantities for hydrogen.

261
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In this chapter we treat ionisation as a three-body problem in which
one target electron is knocked out from a one-electron orbital and the
remainder of the target atom acts like an inert third body. In chapter 11
we will see that this approximation can be quite accurately realised in a
wide range of kinematic situations. Electron—hydrogen ionisation is of
course a true three-body problem.

In a kinematically-complete ionisation experiment for an incident beam
of momentum ko, the differential cross section is normally measured for
a range of a single variable determining the momenta k/ and ks of the
faster and slower final-state electrons. The kinematic variables are the
kinetic energies £/ , ES9 the polar angles Of, 0s, measured from ko, and the
relative azimuthal angle

0 = 0 / - < k + 7T. (10.1)

The measurement determines the separation energy ea from the kinetic
energies

ea = E0-Ef-Es. (10.2)

This is the negative of the energy eigenvalue of the state of the residual
ion. Its relationship to the orbital energy in the one-electron model of the
target will be left to chapter 11. Here we assume that ea is the negative of
the orbital energy eigenvalue. There is a discrete set of values of ea up to
the second-ionisation continuum and resonance structure for low energies
in the continuum. The differential cross section is recorded for each value
of ea or summed for ion states that cannot be resolved.

The differential cross section (6.60) is sometimes called the triple dif-
ferential cross section because it is differential in two solid angles and
one energy. In the absence of spin analysis it provides the most-detailed
information about the ionisation mechanism, but it is impracticable to
study it over the full kinematic range available to a three-body final state.
It is more informative to study it as a function of one variable in restricted
kinematic regions.

The double differential cross section involves integration over the solid
angle of either the slow or fast electron. These cases are sometimes called
primary and secondary respectively. It enables a wide kinematic region to
be investigated at the expense of losing information due to integration.
These considerations apply even more to the single differential cross
section in which the integration is over both solid angles.

The measurement of the total ionisation cross section as a function of
total energy gives an important overall check on theoretical methods for
describing a collision. Total ionisation cross section experiments have also
been performed with spin analysis, yielding the total ionisation asymmetry.
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Two types of kinematic range have been most-commonly observed in
kinematically-complete experiments. In coplanar asymmetric kinematics
(j) = 0, Ef »  ES9 9f is fixed at a value less than about 30° and 9S is varied.
An important subregion is known as the Bethe ridge. Here we are close
to the billiard-ball kinematics of a free two-electron collision, for which
the recoil momentum p of the ion, given by

p = ko-k/-ks, (10.3)

is zero. This region is defined by a condition that is common to the
billiard-ball collision

ks = \k0-kf\. (10.4)

Note that this is a conditon on ko and kf. It is not violated by varying 9S.
In noncoplanar-symmetric kinematics Ef = Es, Of = 8S = 45° and

0 is varied. For small values of (j) this is again close to billiard-ball
kinematics. Both noncoplanar-symmetric and coplanar-asymmetric ranges
fix the momentum transfer X, which is conventionally defined by

K = ko-k/. (10.5)

10.1 Formulation of the three-body ionisation problem

The differential cross section for ionisation is given by (6.60). To formulate
the T-matrix element we partition the total Hamiltonian H into a channel
Hamiltonian K and a short-range potential V and use the distorted-wave
representation (6.77). The three-body model is defined as follows.

H=Ki+K2 + vi+v2 + V3, (10.6)
K = (K1 + Ui) + (K2 + v2), (10.7)
V = vi+v3-Ui. (10.8)

The electron with coordinate—spin variables x,-(i  = 1,2) has kinetic energy
Ki and electron—ion potential  i;,-. The electron—electron potential is  v?>. The
electron—ion potential is given to  a good approximation by the frozen-core
Hartree—Fock potential, which  is nonlocal. The distorting potential U\
is uncharged and acts in the space xi. State vectors will not be explicitly
antisymmetrised in the electron coordinates for the formal discussion. The
coordinates xi and %2 are assigned to the fast or incident and slow or
bound electrons respectively. Exchange amplitudes are calculated from
direct amplitudes by reversing the roles of ky and ks.

The channel Hamiltonian K (10.7) is separable in the electron coordi-
nates. We define the following one-electron states.

( ) O , (10.9a)
0, (10.9b)
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[Es-K2-v2]\x{-)(ks))=0, (10.10)
[e*-K2-v2]\<*) =0. (10.11)

The distorted-wave integral equation for the full collision state, corre-
sponding to (6.81), is

= |aZ
(+)(ko)) + £ ( + )

1 _ g ^ l^ + ) (ko ) ) ? (10.12)

and the unsymmetrised T-matrix element is

(kfks\T\xk0) = (x{-\kf)x{-\ks)\V\^+\ko)). (10.13)
The T-matrix element obtained by time-reversing the arguments of

chapter 6 is

(kfks\T\ak0) = (V{-\kf,ks)\V\aX
{+\ko))- (10.14)

Here |*p(-)(k/,ks)) is the solution of the Schrodinger equation for the final
state. Its boundary condition describes three charged particles separated
by large distances. The Coulomb potentials acting between each pair of
particles can never be strictly neglected, so the boundary condition is not
simple. It was first given by Rosenberg (1973), based on unpublished work
by Redmond. It was first used explicitly in an ionisation calculation by
Brauner, Briggs and Klar (1989).

With the appropriate definition of the coordinate—spin variables x,-,
and using the spin wave functions (3.79), the asymptotic form of the
coordinate—spin representation of the collision state |*F (~)(k/,ks)) is

(x1x2|xP(-)(k/,ks)) -> (27i)-3A'ri^/2((7iyks'r2^2((r2ya>. (10.15)

The asymptotic phase O is given in terms of the relative momentum k*
and relative position r,- of each pair i by

<D = Z ^ , (10.16)

where
+ krYi). (10.17)

The pair Coulomb parameter r\\ is given by (4.61). The asymptotic form
of the Coulomb wave (4.84) with time-reversed boundary conditions for
a charged pair i (Schiff, 1955) is

xp(~\ku n) -* e ^ W t o + k r r ^ r. _»  oo. (10.18)

The asymptotic form of the three-body wave function for the final state
is therefore the product of the asymptotic pair wave functions, with
allowance for the fact that there are only two independent momenta
in the centre-of-mass system, which is the reference frame with the ion
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stationary in the approximation that the kinetic energy of the ion can be
neglected.

In the stationary-ion approximation the relative coordinate and mo-
mentum of each electron—ion pair  are r,- and k,- (i = 1,2). The relative
coordinate and momentum of the electron—electron pair  are, in atomic
units,

r = n - r2,
k = i (k ! -k 2 ) , (10.19)

and the coordinate and momentum of the electron—electron centre  of
mass are

K = ki+k 2 . (10.20)

The corresponding kinetic energy operators are related by

!(V? + V2) = i v ! + V2. (10.21)
The formulation of the ionisation problem proceeds by defining an

auxiliary Schrodinger equation for the final state.

[£(-) -K - U]\&-\kf,ks)) = 0. (10.22)

The auxiliary state |O(~)(k/,ks)} will be defined conveniently. The corre-
sponding potential U differs from V by a potential Uf.

U + Uf = V. (10.23)
The integral equation formally satisfied by (O^(k/,ks)| is

^ K . (10.24)

By substituting for the bra vector of (10.13) using (10.24) and by using
(10.12) and the definitions (10.6-10.8,10.22,10.23) we obtain the following
rearranged form for the unsymmetrised T-matrix element.

(kfks\T\ak0) = (<t>{-\kf,ks)\H - £|^+ )(k0) - az<+>(ko))
W). (10.25)

The Hamiltonian H operates on the bra vector of (10.25).
The first term of (10.25) may be considered as a correction to the

second term, which may be minimised by an optimum choice of either,
or preferably both, of two criteria. First we may choose U\ so that
|oy^+Hko)) is a good approximation to l^+^ko)}. Second we may choose
|O(~)(kf,ks)) to approximate l^^^k/,^)) closely. Note that the initial-
state boundary condition ensures the vanishing of the integrand of the
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correction term in the asymptotic region. It is therefore not necessary to
satisfy the final-state boundary condition.

The auxiliary state |<&(~)(k/,ks)) can be chosen so as to exhibit the final-
state correlation explicitly. Note that the choice U = v$ reduces (10.25) to
(10.14). A useful choice is

/ (ks)^-\kf - ks)>, (10.26)

where the final-state correlation function </>j~~)(k',r) is given by

^-)(k / , r) = tP;-Hk/
?r)^k'- r (10.27)

and 3̂ ~~Hk/-) is calculated in the charged potential v\. This choice satisfies
the boundary condition (10.15) for three charged bodies.

The approximations to be discussed all treat at least one two-body pair
interaction fully. Different kinematic regions depend differently on the
amount of detail necessary in the treatment of particular pair interactions.
Some success in isolated cases has been achieved by calculations based on
low-order terms of the Born series. They are not considered here.

10.1.1 Multichannel approximation

With the choice U\ = vu U = 0, (10.25) reduces to (10.13). Curran and
Walters (1987) and Curran, Whelan and Walters (1991) have approximated
|*?£*")(ko)) *n the c a s e °f hydrogen by the multichannel wave function
obtained from the pseudostate calculation of van Wyngaarden and Walters
(1986), which achieves very good results for scattering data as we have
seen in section 8.2.

10.1.2 The distorted-wave Born approximation

The weak-coupling approximation for the collision state in (10.13) involves
neglecting the possibility of exciting the target, except perhaps by including
excitations through an optical potential. The approximation is

| ¥«(k o)> = |a^+)(ko)), (10.28)

where |^+*(ko)) is a distorted wave calculated in the potential U\ of
(10.9a). A simple choice of U\ is justified in section 6.10.

C/i = (a|t;i+t>3|a>. (10.29)

The T-matrix element in the distorted-wave Born approximation is

(kfks\T\ak0) = Asi/^k^-Kks^loix^iko)). (10.30)

The potentials for the separable bra state may be chosen by the second
criterion for (10.25).
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This approximation sets the standard for ionisation calculations. In
many cases it gives at least a good semiquantitative description of cross
sections. An example is shown in fig. 10.1 for the 3p orbital of argon in
coplanar asymmetric kinematics, £o = 1000 eV, Es = 120 eV.

The wide applicability of (10.30) justifies showing its computational
form. Formally (10.30) is a potential matrix element (6.88) in the distorted-
wave representation for a three-body collision with the bound orbital |i)
replaced by the continuum orbital (distorted wave) l/'^ks)}. The direct
matrix element is written in a form analogous to (7.62) using the distorted-
wave form (4.58) of (7.45) for the continuum orbitals, (7.49) for the bound
orbital |a) and (7.60) for the electron-target potential. Note that the term
1/ro in (7.60) vanishes if we require \x{~\ks)) t 0 b e orthogonal to |a).
This requirement is implicit in (10.10,10.11) and is normally imposed in
implementing (10.30).

The algebra used in obtaining the direct potential matrix element (7.67)
gives the following LS-coupling expression

{kfks\T\ocko)

L'L"M"X
0 0 0

x
t X L"
m M"-m -M"

90 180 270
0s(deg)

90 180 270

Fig. 10.1. Coplanar-asymmetric ionisation from the 3p orbital of argon at Eo
= 1000 eV, Es = 120 eV (Avaldi et al.9 1989). The fast and slow electrons are
respectively indicated by the subscripts / and 5 on the diagram, (a) Of = 20° (Bethe
ridge), (b) 6f = 14°, (c) Of = 8°. Full curve, distorted-wave Born approximation.
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(V X L\( V X L
X^L\0 0 Oj\m-M" M"-m 0

+ exchange amplitude, (10.31)
where the orbital quantum numbers of the state |a) are f,m and

R{L'L"La(kf,ks,k0) = iL-L'-L"exp[i(oL>+<jL»)]L'U>?L 2

/ dn dr2uLikf,ri)uL{ko,ri)-^uL»(k s,r2)ux(r2). (10.32)X

10.1.3 The impulse approximation
The simplest way of including the full interaction of the two final-state
electrons is to use the impulse approximation. In its simplest plane-wave
form this approximation is obtained from (10.14) by neglecting v\ and V2 in
the definition of the collision state |^~^(k/,ks)). It retains the two-electron
function 0{~)(k',r). In the spirit of this approximation it replaces |^+)(ko))
with a plane wave. We expect the plane-wave impulse approximation to
describe kinematic regions where the two-electron collision dominates the
reaction mechanism such as the higher-energy billiard-ball range.

The T-matrix element in the plane-wave impulse approximation is
(kfks\T\ako)

= (2n)-9/2 J d3n J d3r2As

1 i k l (10.33)

We reduce this to an extremely simple and intuitively-appealing form by
introducing the momentum representation (/>a(q) of la) (3.29).

(kfks\T\ak0)

= (2TT)-6 I d3#a(q) J d3n J d3r2As ^ ^ e ~ i k ^ c j > ^ ( k \ r)

x

= As(k'\tv\k)(t>a(-V), (10.34)
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where p is the observed ion recoil momentum (10.3) and tn is the two-
electron T matrix.

In the derivation (10.34) we have used (10.27), the transformation
(10.19—10.21) from electron coordinates and momenta to relative and
centre-of-mass coordinates and momenta, the definition corresponding
to the time reversal of (4.112) for the half-on-shell T matrix, and the
representation reciprocal to (3.30) of d(K' —  K).

In this approximation the (e,2e) amplitude factorises into the anti-
symmetrised product of amplitudes for simultaneously finding the target
electron with momentum —p and knocking it out. The momenta k',k
and p are all directly observed in the experiment and r\ is the Coulomb
parameter of k'.

k = i(ko + p), k' = frkf-ks), rj = l/kf. (10.35)
The factorisation is characteristic also of the plane-wave Born approxi-
mation, which is (10.30) with distorted waves replaced by plane waves.
Here the two-electron T-matrix element is replaced by the two-electron
potential matrix element (3.41).

(k>3|k) = (27r2|k - k'l2)"1. (10.36)

Ford (1964) has obtained the half-on-shell Coulomb T-matrix element
as the limit of the T-matrix element for the screened potential e~Xr/r as
X - • 0. It is

= (ipl-\k')\v3\k)

= lim C(ij)[-^£^] V(27T2|k-k/|2r1, (10.37)

where

80 = do - r]ln(2kf/l\
GO = argF(l + ir\\
k ± k'. (10.38)

The divergent phase vanishes when the absolute square of (10.37) is
taken for the differential cross section (6.60), which has the form

do .^ ^/i/Cf/Cc _ 1

dQfdQsdEs
(10.39)

Here 70 is the total angular momentum of the ground state and m is
the magnetic quantum number of the orbital |a). The spin-averaged
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two-electron collision factor is

x cos Y\\n (10.40)

The plane-wave impulse approximation is very successful in high-energy
cases where the distortion of the incident and outgoing electron waves
can be neglected. There is an experimental test of the validity of this
condition. The expression (10.34) enables an apparent momentum-space
wave function (/>a(—p) to be extracted from an experiment. Distortion is
negligible if an experiment at higher energy gives the same apparent wave
function.

The approximation is the basis of the probe for the probability of finding
an electron of momentum p discussed in section 3.2. In noncoplanar-
symmetric and Bethe ridge kinematics fee is essentially constant for a
range of p up to several atomic units, so the approximation gives a direct
estimate of |0a(—p)| 2. Fig. 3.1 shows that for hydrogen this corresponds
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Fig. 10.2. Noncoplanar-symmetric ionisation of helium at the indicated total
energies E (McCarthy and Weigold, 1976). Curve, plane-wave impulse approxi-
mation.
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to the squared momentum-space wave function at several values of the
total energy

E = Ef + Es, (10.41)

at least within a normalisation factor which is not measured in the
experiment.

Fig. 10.2 shows that the plane-wave impulse approximation is as good
for relative helium differential cross sections at different energies as it is
for hydrogen. Here </>is(—p) is the Hartree—Fock orbital. For helium there
is an absolute experiment by van Wingerden et al. (1979) for </> = 0 in
symmetric kinematics at different total energies. Fig. 10.3 shows that the
plane-wave impulse approximation using the Ford T-matrix element is
consistent with the experiment.

There is another significance to this result. The Coulomb T matrix
is analytically very difficult (Chen and Chen, 1972). For example, it
is not uniformly convergent to the half shell as the half-shell value is
approached from above or below. The Ford version is the only one that
correctly describes the experiment (McCarthy and Roberts, 1987).

In many cases distortion of the continuum-electron wave functions is
significant. The (e,2e) T-matrix element in the distorted-wave impulse

10'3 -*
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u

10"

Q)

He

i

500 1000 1500
E(eV)

2000 2500 3000

Fig. 10.3. The differential cross section for electron—helium ionisation at  </> = 0 in
symmetric kinematics, plotted against total energy (van Wingerden et al, 1979).
Full curve, distorted-wave impulse approximation; broken curve, plane-wave
impulse approximation. From McCarthy and Weigold (1988).
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120 2iO
6S (degrees)

240 360

Fig. 10.4. Factorisation test of the distorted-wave Born approximation for copla-
nar asymmetric ionisation from the 2p orbital of neon at E = 400 eV, Es = 50
eV (Madison, McCarthy and Zhang, 1989). The fast and slow electrons are
respectively indicated by the subscripts / and s on the diagram. The Bethe ridge
condition is Of = 20°. Full curve, unfactorised; broken curve, factorised.

approximation is

). (10.42)

The factorisation characteristic of the impulse approximation is retained,
but the plane waves in (10.34) are replaced by distorted waves. The
approximation is calculated by substituting 5(r\ —  ri)lr\ in (10.32) for
the multipole of v$ (see equn. (3.102)). The resulting short-range one-
dimensional radial integrals are much simpler to compute than (10.32).

The validity of the impulse approximation can be tested by factorising
the distorted-wave Born approximation in the same way. The differen-
tial cross section in the factorised distorted-wave Born approximation,
obtained by replacing the two-electron T-matrix element in (10.42) by
the potential matrix element (10.36), is compared with that of the full
distorted-wave Born approximation in fig. 10.4 for the 2p orbital of neon
in coplanar-asymmetric kinematics for £=400 eV, £ s=50 eV. In this case
the Bethe-ridge condition is Of = 20°, and p is less than 2 a.u. for 0S
between 0° and 120° with this value of Of. The impulse approximation is
verified in Bethe-ridge kinematics for p less than 2 a.u.

Fig. 10.5 compares the plane- and distorted-wave impulse approxima-
tions for the 3p orbital of argon in noncoplanar-symmetric kinematics at
£=1500 eV. Here distortion makes a difference beyond p=1.5 a.u. The
experiment is described excellently (within an unmeasured normalisation)
by the distorted-wave impulse approximation. Figs. 10.3 and 10.5 support
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Fig. 10.5. Differential cross section for the 1500 eV noncoplanar-symmetric
ionisation from the 3p orbital of argon (McCarthy et al9 1989). Full curve,
distorted-wave impulse approximation x 0.95; broken curve, plane-wave impulse
approximation x 0.83.

the conclusion reached by experience with many different reactions that
the distorted-wave impulse approximation describes ionisation within ex-
perimental error in noncoplanar symmetric kinematics for E > 1000 eV
and p < 2.5 a.u. There is evidence that this is true also for Bethe-ridge
kinematics.

10.1.4 Final-state interaction

The inclusion of the two-electron interaction <j)(-\k'9Y) in approximating
(10.25) is difficult in spherical polar coordinates because it is not centred
on the ion. This difficulty has been circumvented by Pan and Starace
(1991) and Jones, Madison and Srivastava (1992) within the computational
framework of the distorted-wave Born approximation. The potential v$
is accounted for as a screening potential in the calculation of the final-
state distorted waves in a way that depends on the final-state kinematic
variables. We do not describe the calculations, which differ from (10.30)
in details such as the inclusion of a term due to the nonorthogonality
of \Z~\ks)) and |a). The methods are applied to a kinematic region
where the final-state energy is only a few electron volts and the final-state
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Fig. 10.6. Relative differential cross section for the ionisation of helium (Pan and
Starace, 1991). Ef = Es = 2 eV, </> = 0, the polar angle is 9f = n + 0s. Open circles,
Schlemmer et al (1989); solid triangles, Selles, Huetz and Mazeau (1987); full
curve, distorted-wave calculation including the screening effect of the final-state
electron-electron interaction; broken curve, distorted-wave Born approximation.

electrons have time to influence each other. Fig. 10.6 describes the case of
helium where Ef = Es = 2 eV, k/ = —k s and Of is varied. Inclusion of v?>
in the calculation of the distorted waves takes the calculated cross section
in the direction of the experiment and illustrates the possible usefulness
of the final-state interaction in approximating (10.25).

Brauner, Briggs and Klar (1989) have performed the first calculation
of differential cross sections that uses an approximation in which the
boundary condition (10.15) is explicitly satisfied. The target was hydrogen.
Their calculation may be considered in terms of (10.25). The first term
is omitted. The second term is evaluated with the choice (10.26) for the
auxiliary state l O ^ k c k s ) ) and U\ = 0.

Fig. 10.7 compares the calculations of Brauner et al. with the distorted-
wave Born approximation and the approximation to (10.13) of Curran
and Walters (1987) for a coplanar-asymmetric experiment on hydrogen
at £o = 150 eV. No calculation yields fully-quantitative agreement with
experiment in the peak for small values of p, but all describe the relative
shape. The cross section that is observed at much larger p is not well
described by the distorted-wave Born approximation, but the other two
calculations predict the trends better.

10.2 Inner-shell ionisation

Most ionisation experiments have concentrated on the valence electrons
of the target. However, experiments and calculations for the Is shell
of neon and the n=l shells of argon have been reported by Zhang et
al (1992). Fig. 10.8 shows an example. Here the 2p orbital of argon
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Fig. 10.7. Coplanar-asymmetric ionisation of hydrogen at Eo = 150 eV, Es =
5 eV. The fast and slow electrons are respectively indicated by the subscripts
/ and 5 on the diagram. Experimental data, Klar et al (1987); full curve,
distorted-wave Born approximation (McCarthy and Zhang, 1990); long-dashed
curve, pseudostate approximation to (10.13) (Curran and Walters, 1987); short-
dashed curve, interacting final state (Brauner et a/., 1989). From McCarthy and
Zhang (1990).

is observed in coplanar-asymmetric kinematics (Bickert et al 1991) with
£0=2549 eV, £/=1500 eV, £s=800 eV, %=33.8°. The distorted-wave Born
approximation with the Hartree-Fock orbital achieves excellent shape
agreement with the relative differential cross section.

10.3 Ionisation near threshold

A kinematic region that is extremely difficult for quantum calculations
is just above the ionisation threshold. Near threshold the two slow
continuum electrons moving in the field of a positive ion are strongly
correlated and suitable approximations are difficult to evaluate. The main
features in the asymptotic region were first established theoretically by



276 10 Ionisation

1.6 i i

ARGON 2p

60 120 180 240 300 360

Fig. 10.8. Coplanar asymmetric ionisation from the 2p orbital of argon (Zhang
et aU 1992). Eo = 2549 eV, Ef = 1500 eV, Es = 800 eV, 6f = 33.8°. Experimental
data, Bickert et al. (1991); full curve, distorted-wave Born approximation.

Wannier (1953) who treated the problem classically. The Wannier theory
was confirmed by Peterkop (1971) and Rau (1971) using semiclassical
methods. This earlier work, as well as more recent work on near-threshold
ionisation, have all emphasised the role of radial and angular correlations
in the final two-electron state. In the Wannier theory, and its semiclassical
extensions, the details of the collision process and the structure of the
target play no role, since only the asymptotic region is considered.

Close to threshold the system must be viewed as consisting of a corre-
lated pair of electrons attached to the ion. It is convenient to introduce
the hyperspherical coordinates

0fs =COS~1(f/-fs)

and

a = tan lrs/rf,

(10.43a)

(10.43b)

(10.43c)

where 0/s, the angle between the radial directions of the two electrons,
describes their angular correlation and the angle a describes the radial
correlation of the two electrons. The Coulomb energy expressed in terms
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of these coordinates is

V =
R

where

-z
cosa sina (1 —  sin2acos0/;

(10.44a)

(10.44b)

The dependence of C on the two angles a and 6fs is shown in fig. 10.9.
C is symmetric about the point a = TC/4, 0fs = n (i.e. rf = -r s) , which is
often called the Wannier point.

The Wannier point is a saddle point with C (i.e. V) increasing in the 9fs
direction but decreasing in the a direction. The angle 9fs therefore tends to
converge to the value n (i.e. rf = -r s) as the system evolves, but the angle
a will tend to diverge from TT/4 (i.e. rf = rs). If this divergence is great
enough the system will fall into the valleys at a = 0 or TC/2 (i.e. rs = 0),
which will leave one electron bound to the ion while the other electron
goes free (i.e. excitation of the atom). Double escape (ionisation) can
only occur if the system stays close to the Wannier point as R increases
to the point at which the two electrons are essentially independent. This
boundary between the 'Coulomb' region, in which the coupling between
the potential and kinetic energies is decisive, and the asymptotic region,
where the kinetic energy dominates, is known as the 'Wannier radius', Rw.
It scales as E~l where E is the total energy of the two free electrons (Fano
and Rau, 1986). Therefore since it takes a long time for R to reach the

75° 60° 45° 30° 15° 0°

90° 75° 60° 45° 3D0 15° 0°

Fig. 10.9. The dependence of the potential function C (10.44) on a and 6fs (Fano
and Lin, 1975). C is symmetrical about the plane through 6fs = n.
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value Rw when E is small, the ionisation cross section is necessarily very
small when E is small.

The Hamiltonian has radial (KR) and angular (K^KQ) kinetic energy
operators in addition to the potential V (10.44). By treating these on par
with V(R, 0fS9 a) and by assuming an initial quasi-ergodic distribution in
phase space of the escape trajectories as they enter the Coulomb zone,
Wannier was able to show that at threshold (small E) the total ionisation
cross section was dominated by the instability in the escape trajectories
and was given by

(7/ oc E\ (10.45)

where

(10.46)

This is known as the Wannier threshold law and for Z = 1, 2, 3, n
has the values 1.127, 1.056, and 1.036 respectively. The deviation of n
from the expected value of unity arises from the instability in the escape
configuration discussed above.
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Fig. 10.10. The (e,2e) differential cross section for He and H for Ef = Es = 1 eV
and 0fs = n. From Rosel et al (1989).
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Total ionisation cross section measurements are in excellent agreement
with the Wannier threshold law (10.45) with n = 1.127 (e.g. Read, 1985).
Differential measurements are difficult close to threshold because of the
low energy of the emitted electrons and the high energy resolution required
in the incident beam. Cvejanovic and Read (1974), with a coincidence
time-of-flight technique, were nevertheless able to show for electron impact
ionisation of helium at E = 0.37 and 0.60 eV that the angular correlation
did indeed have a maximum at 9fs = n with a width A9fs ~ OoE1^4,
and that the energy-partitioning probability was indeed uniform to within
about 5%. These results are all in agreement with the extended Wannier
theory. The value of #o has recently been investigated by the Paris group
(e.g. Selles et a/., 1987) using coplanar geometry, and by the Manchester
group (Hawley-Jones et al, 1992) using the perpendicular-plane geometry
(Of = 9S = n) with Ef = Es = E/2. At E = 1 eV, Hawley-Jones et
al. found #o = 1.30 + 0.04, and an empirical energy dependence up to
E = 6 eV of A6fs — 70£ 016 where E is in electron volts and the angle
is in degrees. The deviation from the expected exponent of 1/4 is due
to d-wave components in the cross section in addition to the dominant
s-wave components (p-wave terms do not contribute to the perpendicular
plane differential cross section since 9f = 6S = n/2).

The Wannier model and its semiclassical extensions only treat the long-
range Coulomb forces, and they therefore cannot distinguish between
different systems with the same Coulomb asymptotic behaviour. Ionisation
from atomic hydrogen and helium are two such systems, the case of
helium differing from hydrogen only in the inner region due to the role
of polarisation forces and screening of the ion. In a very nice experiment
Rosel et al. (1989) measured the coplanar (e,2e) cross sections for atomic
hydrogen and helium a few electron volts above threshold with Ef =
Es = E/2 and 9fs fixed. Their results for Ef = Es — leV and 9f s = n
are shown in fig. 10.10 as a function of 9f. The pronounced maximum
at 9f = 90° in helium is missing in the hydrogen case. This difference,
which must be due to short range interactions, shows the limitations of
the Wannier-type theories. A full description of the cross section close to
threshold obviously requires a theory which takes into account the full
collision process (see fig. 10.6).

10.4 Excitation of autoionising resonances

The study of resonances in chapter 8 involved cross sections for elastic and
inelastic scattering that are affected by resonances in the electron—target
compound system. A new dimension in the study of resonances and the
ionisation mechanism is provided by kinematically-complete experiments
that can be considered as the excitation of autoionising resonances of the
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target system by collision with a fast electron. The scattering reaction that
observes the same resonances is electron scattering by the ion. The reaction
is an extremely-sensitive test of theoretical methods, since it depends
simultaneously on two types of amplitude, one for direct ionisation and
one for resonance scattering.

The experiment of Lower and Weigold (1990) on a helium target em-
ployed coplanar-asymmetric geometry with £o and Of fixed. The He +

ion was left in its ground state. The energy Es was varied through the
region 32—37 eV, which includes the lowest autoionising resonances of
helium in the manifolds 1S9

 lP, 3 P , lD. In the corresponding scattering
reaction they are resonances below the n=2 excitation threshold of the
He+ ion at 54.4 eV. The independent-particle interpretation of the analo-
gous resonances in electron scattering by the H atom is given in section
8.2.5.

The differential cross section for resonant ionisation has been calculated
by McCarthy and Shang (1993). The approximation treats the T-matrix
element as a coherent superposition of two amplitudes. One describes
direct ionisation and is analogous to the amplitudes of section 10.1. The
other contains the momentum ks in a resonant amplitude that has an
entirely different structure. One can find values of 0s for which the direct
amplitude is small (see fig. 10.1 for an analogous reaction). Here the
resonant amplitude dominates the T-matrix element. At angles 0s where
the direct amplitude is large, interference between the direct and resonant
amplitudes is observed.

Resonant amplitudes are calculated by scattering methods that are very
well understood (section 8.2.5). We can therefore consider the resonant
ionisation reaction as an extremely-sensitive test of the approximation
used for direct ionisation, since it depends on the magnitude and phase
of the direct amplitude.

10.4.1 Calculation of the amplitude

The amplitude for resonant ionisation is written in a distorted-wave for-
malism as

(k/MMTlOko) = ^ ( ^ ( k / ^ C k ^ l T l O ^ C k o ) ) , (10.47)

where the collision operator T is to be approximated. The operator A$>
antisymmetrises the amplitude in the coordinates of the two continuum
electrons in spin state Sf. The ground state of helium is |0). The incident
and fast electrons are represented by distorted waves (10.9), but the
resonant interaction of the slow electron with the He + ion must be treated
in more detail. The state |*FQ£ (ks)) of the resonant system describes an
electron of momentum ks leaving the ion in its ground state |0+). The
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electron—ion spin quantum number is S. The state is the time reversal
of the electron—ion collision state | ^ ^ ( k s ) ) , which satisfies the distorted-
wave Lippmann—Schwinger equation (6.81). In the notation of the present
chapter this is

(10.48)

The distorted wave |i/;^+^(ks)) is calculated in the Coulomb potential U of
the electron—ion system. The Schrodinger equation of the ion is

te-ff+)|i+>=0. (10.49)

The notation i+ includes the He + continuum.
We use the time reversal of (10.48) and introduce the unit operator in

electron—ion channel space, using a notation that implies the inclusion
of electron—ion bound states. The unsymmetrised reaction amplitude of
(10.47) becomes

x (X
{-\kf)xp^\k)i+\T\OX

{+)(ko)). (10.50)

Practical approximations for T are binary-encounter operators such as
t>3, which do not depend on the ion coordinates. The target and ion are
therefore represented by the overlap (i+|0)> which is shown by experiments
described in section 11.1.2 to be small unless |i+) is the ground state |0+).
These approximations were made by McCarthy and Shang (1993). They
represented the final-state interaction in the long-range on-shell direct
amplitude of (10.50) by the factor C(r\)eiGQ (10.38). This factor was omitted
from the resonant amplitude on the basis of the semiclassical picture of
the two electrons emerging at different times.

The first amplitude in the integrand of the second term of (10.50) is
a half-on-shell element of the time-reversed distorted-wave T matrix T\
for the electron—ion collision (6.87). The approximation calculated for
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resonant ionisation is

/

x (x{-\kf)^\k)O+\v3\Oxw(ko)). (10.51)

The direct amplitudes involving v$ are analogous to the distorted-wave
Born approximation and are calculated by (10.31). The T-matrix element
in the second amplitude of (10.51), which has the observed resonances,
is calculated by solving the problem of electron scattering on He+. The
solution consists of half-on-shell T-matrix elements at the quadrature
points for the scattering integral equations (6.87). The same points are
used for the k integration of (10.51).

10.4.2 Comparison of theory and experiment

The electron-ion T-matrix elements were calculated in the coupled-chan-
nels approximation (6.87) using the lowest six states of He+ (McCarthy
and Shang, 1993). The four lowest resonances are compared with exper-
iment in table 10.1. The calculation predicts the resonances very closely,
so that we may consider the reaction as a test of the amplitudes used
to describe direction ionisation. Fig. 10.11 shows the example £o=lOO
eV, 9f=13°. The direct-resonant interference is strong at 6S=42°, but the
influence of the direct amplitude is much reduced at 6S = 24°. Semiquan-

Table 10.1. Comparison of energies (eV) and widths (10 3eV) of experimental
and calculated resonances below the n=2 threshold in the compound system
of an electron and a He+ ion. EXP, van den Brink et al. (1989); CC, nine
coupled channels (McCarthy and Shang, 1993)

Symmetry

lS
3P
•D
!P

EXP

Es

33.24
33.72
35.32
35.555

r
138+15

8
72+18
38+2

CC

Es

33.28
33.72
35.40
35.57

r
128
8

72
35
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Fig. 10.11. Resonant ionisation of helium at Eo = 100 eV, Of = 13°. Experimental
data, Lower and Weigold (1990); full curve, calculation of (10.51) by McCarthy
and Shang (1993). From McCarthy and Shang (1993).

titative agreement between the calculation and the experiment is achieved
in both cases.

10.5 Integrated cross sections

Experiments that integrate over some of the kinematic variables of the
differential cross section observe a wide kinematic range at the expense of
losing information because of the integration.

10.5.1 Double differential cross section

The primary-electron double differential cross section is

(10.52)
dQfdEf

Here we have used a discrete notation i for the states of the residual ion,
which implicitly includes states above the second-ionisation threshold. The
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sum over ion states is essentially equivalent to a sum over electron orbitals
of the target. This is discussed in section 11.1.1.

The case of helium gives a good test of theoretical methods, since there is
only one target orbital in the Hartree—Fock approximation. Information
is not further lost by a sum over orbitals. There have been several
experiments on helium in different kinematic ranges. The distorted-wave
Born approximation (McCarthy and Zhang, 1989) gives a good account
of them.

Fig. 10.12 compares the distorted-wave Born approximation with the
experimental data of Miiller-Fiedler et al (1986) for £ 0 = 100 eV, 300
eV and 500 eV and different values of Ef. It is significant that a later
experiment by Avaldi et al (1987a), for one case, agrees much better with
the calculation.

The secondary-electron double-differential cross section

dQ,'•f:dQfdQsdEs
(10.53)

is illustrated for helium in fig. 10.13. At EQ = 100 eV, where the cross
section is large, the distorted-wave Born approximation is a considerable

20 30 0 10 20 0
Scattering angle (deg)

10 20 30

Fig. 10.12. Primary-electron double differential cross section for electron-helium
ionisation. Experimental data are due to Miiller-Fiedler et al (1986) (open
circles) and Avaldi et al (1987a) (full circles). Full curves, distorted-wave Born
approximation (McCarthy and Zhang, 1989). Cases illustrated are (a) £ 0 = 100
eV, Ef = 73 A eV(A), 71.4 eV(B), 55.4 eV(C); (b) Eo = 300 eV, Ef = 235.4 eV
(cross section multiplied by 100) (A), 271.4 eV(B); (c) Eo = 500 eV, Ef = 471A
eV(A), 435.4 eV(B). From McCarthy and Zhang (1989).
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Fig. 10.13. Secondary-electron double-differential cross section for electron-
helium ionisation. Experimental data and curves are as for fig. 10.12 with
Opal, Beaty and Peterson, (1972) (crosses). The value of Es for an experimental
point is indicated by a vertical line joining it to the corresponding curve. Cases
illustrated are (a) Eo = 100 eV, Es = 4 eV(A), 10 eV(B), 20 eV(C); (b) Eo = 300
eV, Es = 4 eV(A), 20 eV(B), 40 eV(C), 100 eV(D); (c) Eo = 500 eV, Es = 4 eV(A),
20 eV(B), 40 eV(C), 102 eV(D), 205 eV(E). From McCarthy and Zhang (1989).

over-estimate, suggesting that this kinematic region could be responsible
for an over-estimate of the total ionisation cross section. In higher-energy
cases, where experimental data have been obtained by more than one
group, the disagreement between the distorted-wave Born approximation
and any one experiment is less than the disagreement between experiments.

10.5.2 Total ionisation cross section

The total ionisation cross section is a very important quantity in the
study of electron—atom collisions. Not only does it give an overall test
of theoretical methods for ionisation, but it is an essential check on the
treatment of the complete set of target states in a calculation of scattering.

The convergent-close-coupling method (Bray and Stelbovics, 1993) is a
complete calculation of scattering to low-lying channels in the prototype
case of hydrogen. It represents the complete set of target states by
a Sturmian expansion (5.55) of dimension M and calculates T-matrix
elements by solving the coupled Lippmann—Schwinger equations (6.73).
The total ionisation cross section is

where ois is the total ionisation cross section for total electron spin S. In
each spin state the total ionisation cross section is calculated as follows.
The total cross section GTS is calculated by the optical theorem (6.47).
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The total cross section for exciting discrete target states is subtracted from
it. This is obtained by projecting the Sturmians \n) onto exact target
eigenstates \n).

*0 neD
(10.55)

neD

Here D denotes the subspace of negative-energy states in both \n) and \n)
spaces.

The total ionisation cross section for hydrogen has been measured by
Shah et al. (1987) in a crossed-beam experiment. Slow ions formed as
collision products in the interaction region were extracted by a steady
transverse electric field. H+ ions were distinguished by time of flight. Rel-
ative cross sections were normalised to previously-measured cross sections
for hydrogen ionisation by protons of the same velocity. The proton cross
sections were normalised to the Born approximation at 1500 keV.

Fig. 10.14 shows that the convergent-close-coupling method describes
the total ionisation cross section within experimental error for the whole
energy range above total energy E = 4 eV. Just above threshold it under-
estimates the cross section by up to 30%.

Other scattering calculations that account for the complete target space
can also be tested. The method (10.55) can be used for the pseudostate

—i  1 r~

/ *•

10 20 50 100 200 500
Projectile energy (eV)

Fig. 10.14. Total ionisation cross section for hydrogen. Experimental data, Shah
et al (1987); full curve, convergent close coupling (Bray and Stelbovics, 1992b);
plus signs, coupled channels optical (Bray et aU 1991c), crosses, pseudostate
method (Callaway and Oza, 1979); long-dashed curve, intermediate-energy R-
matrix (Scholz et al, 1990); short-dashed curve, distorted-wave Born approxima-
tion.
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calculation of Callaway and Oza (1979). The total ionisation cross section
for the coupled-channels-optical method is calculated by subtracting the
sum of integrated cross sections for the converged P space from the total
cross section calculated with a polarisation potential that describes the
ionisation space. The results of both these calculations are shown in fig.
10.14. The coupled-channels-optical method (Bray et al. 1991c) is quite
accurate for £o > 40 eV, but the results illustrated in chapters 8 and
9 show that discrepancies are insignificant over the whole energy range
from the point of view of scattering calculations. The intermediate-energy
R-matrix method in the implementation of Scholz, Walters and Burke
(1990) is less accurate.

The distorted-wave Born approximation for ionisation considerably
overestimates the total ionisation cross section for hydrogen below about
150 eV. This is a good indication of its lower limit of validity.

It is useful to test approximations for the total ionisation cross section
of helium, since it is a common target for the scattering and ionisation
reactions treated in chapters 8, 10 and 11. Fig. 10.15 compares the data
reported as the experimental average by de Heer and Jansen (1977) with
the distorted-wave Born approximation and the coupled-channels-optical
calculation using the equivalent-local polarisation potential. Cross sections

Fig. 10.15. Total ionisation cross section for helium. Experimental data, de Heer
and Jansen (1977); full curve, coupled channels optical (equivalent local) (Mc-
Carthy and Stelbovics, 1983a); broken curve, distorted-wave Born approximation.
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are overestimated by both approximations below 400 eV. The discrepancy
at lower energies for the coupled-channels-optical method is about 20%.

10.6 Total ionisation asymmetry

The total ionisation asymmetry is defined by

(10.56)

It has been measured for hydrogen (Fletcher et al, 1985; Crowe et
al, 1990) and for lithium, sodium and potassium (Baum et al, 1985) at
incident energies from threshold to several hundred electron volts. The
data were obtained by ionisation of polarised target atoms by polarised
electrons. The relative total ionisation cross sections for parallel and
antiparallel spins were determined by counting the ions, regardless of the
kinematics of the final-state electrons.

The experimental data for hydrogen are compared with calculations
in fig. 10.16. Both the convergent-close-coupling and coupled-channels-
optical methods come close to complete agreement with experiment. The
total ionisation cross section is a more severe test of theory, since it is
an absolute quantity, whereas the asymmetry is a ratio. However, the
correct prediction of the asymmetry reinforces the conclusion, reached by
comparison with all other available experimental observables, that these
methods are valid.

20 50 100 200
Projectile energy (eV)

Fig. 10.16. Total ionisation asymmetry for hydrogen. Open circles, Fletcher et al
(1985); squares, Crowe et al (1990); full curve, convergent close coupling (Bray
and Stelbovics, 1992fc); crosses, coupled channels optical (Bray et al, 1991c).
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Electron momentum spectroscopy

Some atomic bound states have simple structure in the sense that a
straightforward calculation obtains correct energy levels. In some cases
optical oscillator strengths probe further detail. Collision theory has
reached the stage where experimental observables for electron collisions
involving such states can be calculated within experimental error. Observ-
ables whose calculation is sensitive to structure details constitute a probe
for structure which verifies the details in more-difficult cases.

Scattering experiments are usually not very sensitive to structure. On
the other hand the differential cross section for ionisation in a kinematic
region where the plane-wave impulse approximation is valid gives a direct
representation (10.31) of the structure of simple targets in the form of the
momentum-space orbital of a target electron.

Electron momentum spectroscopy (McCarthy and Weigold, 1991) is
based on ionisation experiments at incident energies of the order of
1000 eV, where the plane-wave impulse approximation is roughly valid.
The differential cross section is measured for each ion state over a range of
ion recoil momentum p from about 0 to 2.5 a.u. Noncoplanar-symmetric
kinematics is the usual mode. In such experiments the distorted-wave
impulse approximation turns out to be a sufficiently-refined theory. Checks
of this based on a generally-valid sum rule will be described.

The reaction depends as much on the observed state |/) of the residual
ion as on the ground state |0) of the target. Not only the single-particle
structure but electron correlations in each state are sensitively probed in
different circumstances.

11.1 Basic theory

The T-matrix element for ionisation of an atom from the ground state |0)
to an ion state |/) is understood by successively-more-detailed approxima-
tions that are capable of direct experimental verification. The first is the

289
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binary-encounter approximation, which assumes that the collision opera-
tor T does not depend explicitly on the coordinates of the electrons in the
ion so that it commutes with the ion state. Introducing a complete set of
plane-wave states |q) for the knocked-out electron the binary-encounter
approximation is written as

(kfksf\T\0k0) = ^^(k/k.lTlqkoXq/IO). (11.1)

The kinematic variables are defined in chapter 10.
The approximation involves neglecting exchange terms for electrons of

the ion in orbitals \/i). These terms have factors such as (k|//), where k is
the momentum of one of the external electrons. Such terms are essentially
zero for k > 4 a.u. in the case of valence electrons. This gives 400 eV as the
minimum total energy for symmetric ionisation. Correspondingly-higher
energies are needed to probe inner-shell structure.

The amplitude (k/ks|T|qko) may be considered as a probe amplitude
for the momentum-space structure amplitude (q/|0). It is the structure
amplitude that is essentially probed by the reaction. Increasingly-refined
forms may be used for the probe amplitude. The plane-wave impulse
approximation is

(k/ks|T|qko> = As(kf\trj\k)d(q - k, - ks + k0), (11.2)

where the kinematic variables are defined by (10.35). The distorted-wave
impulse approximation is

(k/k,|T|qko> = ^ ( ^ ^ ^ ^ ( ^ ( ^ ^ ( k ^ l q ^ ^ k o ) ) . (11.3)
Further refinements would be given by comparing (11.1) with (10.13) or
(10.25), but (11.3) is all that is necessary in the selected kinematic region.

Electron momentum spectroscopy can therefore be considered in terms
of (q/|0). For the one-electron model of the target

<q/|0> = 0a(q) (11.4)
and the reaction is a direct probe of the momentum-space orbital.

In most experiments the target is not oriented. The differential cross
section is averaged over the solid angle p. In the distorted-wave impulse
approximation it is

dQ,fdQsdEs ko 4n

(11.5)

where the symmetry of the ion state |/) is described by the quantum
numbers /,y,m. In the plane-wave impulse approximation for the one-
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electron model, where

(Ha) = Mp)<-p*K./m>, (H.6)
this reduces to

allfaLlsahs /co 4TT

Target—ion structure is usually observed  as a function of the separation
energy e, which is varied over a range relevant to the shells to be studied
by changing £o> keeping the total energy E constant.

E0 = E + e. (11.8)

For valence structure this range is up to about 50 eV. The momentum
distribution is observed for each resolved cross-section peak corresponding
to an ion eigenvalue —e/.  In order to characterise the observation of the
target—ion structure  we choose a quantity that is as independent as
possible of the probe characteristics such as total energy. In conditions
where the plane-wave impulse approximation is valid we consider the
reaction as a perfect probe for the energy—momentum spectral function

S(e,q) = Jdq\(f\a(q)\0)\2d(e-ef). (11.9)

From now on we write the structure amplitude more explicitly in second-
quantised notation.

= (f\a(q)\0). (11.10)

The operator a(q) annihilates an electron of momentum q in the target
ground state.

In practice transfer of momentum to the ion by the mechanism described
by distortion renders the probe imperfect. Experience has shown that the
distorted-wave impulse approximation is sufficient to describe the distorted
spectral function

SD(e,q9E) = j ^ Z m y ^ K z ^ k , ^
(11.11)

To a very good approximation So is independent of £o in noncoplanar-
symmetric kinematics over the range of ey relevant to valence electrons,
but it does change somewhat for large changes of E. We write the
distorted-wave differential cross section as

±lp,E). (11.12)
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11.1.1 The weak-coupling approximation

To understand the structure amplitude (11.10) we first consider the con-
figuration-interaction expansion (section 5.6) of the target and ion states.
For algebraic simplicity we choose the same orbital basis set |a) for both
states. By analogy with the hydrogen atom this must be a set of target
orbitals, generated as described in chapter 5 by procedures to which we
give the generic name Hartree—Fock.

In general the observed ion states can be grouped into symmetry man-
ifolds, characterised by the quantum numbers /J. We consider each
symmetry manifold separately. The configuration-interaction basis for the
target consists of symmetry configurations \r), which are linear combina-
tions, with symmetry /, j , of determinants formed from the set of orbitals
la).

The representation that we choose for expanding the ion states |/) is not
the configuration-interaction representation but the weak-coupling repre-
sentation. Here the orthonormal basis states \j) are linear combinations
of configurations formed by annihilating an electron in a target eigenstate.
The weak-coupling states are identical to the symmetry configurations if
the target Hartree—Fock configuration is the only one contributing  signif-
icantly to the target ground state. The approximation made by ignoring
other contributions (target correlations) is the target Hartree—Fock ap-
proximation. The weak-coupling representation of the structure amplitude
is

</|fl(q)|0>=^</l7>0lfl(q)|0>. (11.13)

We now introduce the very important concept of a one-hole state. Th**?
is a state |i) of the weak-coupling basis \j) that is formed by annihilatin
an electron in the target ground state |0). Clearly {j\a(q)\0) in (11.13) is
zero if \j) is not a one-hole state. A one-hole state |a) is denoted by the
orbital of the annihilated electron. In the context of the many-electron
ion space this notation cannot be confused with that of the orbital.

The weak-coupling approximation is made by taking only the leading
term |a) of the expansion (11.13) in one-hole states. Its validity can be
experimentally verified. In the overwhelming majority of cases it turns out
to be valid. In this approximation

(/|a(q)|0) = (/|a)(a|a(q)|0). (11.14)

The approximation generalises the target Hartree—Fock approximation
to cases where target correlations are not negligible.

The spectral function (11.9) in the weak-coupling approximation is
proportional to the square of the one-hole structure amplitude (a|a(q)|0),
averaged over the angles of q. This amplitude is the momentum-space
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orbital </>a(q) for an uncorrelated ground state, and very close to it for
weak coupling. The experiment determines an experimental orbital tpa(q),
defined by

(11.15)

If the experiment requires the distorted-wave formulation (11.11), the
observed momentum profile is distorted. It is still possible to extract v>a(q)
by a statistical fitting procedure.

It is clear from (11.1,11.10,11.14) that the differential cross section in
the weak-coupling binary-encounter approximation is proportional to the
spectroscopic factor S/(a), defined by

S/(a) = |(/ |a)|2. (11.16)

We are now in a position to consider the consequences of the approxi-
mations that can be experimentally verified.

The manifold momentum profile
For a given total energy E we can identify a manifold of ion states
|/) that all have a momentum profile of the same shape, given by
(11.11,11.12,11.14). The shape is characteristic of an orbital |a) of the
target. The manifold is characterised not only by the symmetry, but
by the set of quantum numbers a that includes a principal quantum
number. We call it the orbital manifold a.

The spectroscopic sum rule
The sum of spectroscopic factors for the whole manifold a is

The experimental orbital
The experiment observes a distorted spectral function (11.11) charac-
terised by the experimental orbital tpa(q) (11.15). The summed cross
sections for the a manifold are characterised by the normalised orbital
V>a(q)> i n y i e w of (11.17). We say that the orbital is split among the
states | /) of the manifold by the ion correlations. The weight of each
state in the manifold sum is S/(a). The differential cross sections for the
states of the manifold are in the ratios of these weights.

The experimental orbital energy
The orbital energy is the expectation value for the one-hole state |a) of
the ion Hamiltonian Hj.

ea = (a|H/|a) = Xf(a\f)ef(f\a) = I,fSf(*)ef. (11.18)

It is the centroid of the energies of the states |/) of the manifold a,
where the weights are the spectroscopic factors.
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The existence of a common momentum profile for the manifold a con-
firms the weak-coupling binary-encounter approximation. Within these
approximations we must make further approximations to calculate differ-
ential cross sections. For the probe amplitude of (11.1) we may make, for
example, the distorted-wave impulse approximation (11.3). This enables
us to identify a normalised experimental orbital for the manifold. If nor-
malised experimental orbitals are used to calculate the differential cross
sections for two different manifolds within experimental error this con-
firms the whole approximation to this stage. An orbital approximation for
the target structure (such as Hartree—Fock  or Dirac—Fock)  is confirmed
if the experimental orbital energy agrees with the calculated orbital energy
and if it correctly predicts differential cross sections.

The spectroscopic factors are critical quantities in determining the ac-
curacy of a configuration-interaction calculation of the structure of the
ion. The ion state \f) is written in the weak-coupling representation as

\f)=2j\J)U\f)' (H-19)
The spectroscopic factor (11.16) is the absolute square of the coefficient
of the one-hole state |a) in this expansion. Determination of one co-
efficient in each of several eigenstates of Hj in the representation is a
strong constraint on the calculation. Furthermore the determination of
spectroscopic factors depends only on the validity of the weak-coupling

-<; (eV)

-15.76

-34.76

3p

3s

-249 2p

Fig. 11.1. Orbital energy levels of argon.
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binary-encounter approximation and the identification of enough states of
the one-hole manifold essentially to exhaust the sum rule (11.17). It does
not depend on the validity of a model for the probe amplitude. The ratios
of the spectroscopic factors are the ratios of the corresponding differential
cross sections and they are normalised by the sum rule.

The valence structure of argon provides a complete illustration of the
application of electron momentum spectroscopy to correlations in the ion.
The Hartree—Fock single-electron level diagram of fig. 11.1 illustrates the
values of the separation energy e to be expected on the basis of the
independent-electron model. The experimental situation is illustrated in
fig. 11.2 by the first experiment in the field (Weigold, Hood and Teubner,
1973). The noncoplanar-symmetric differential cross section at 10° is
plotted against £o for £=400 eV. There is an ion state at 15.76 eV, as
predicted by Hartree—Fock, but there are at least two further states rather
than the predicted one.

Fig. 11.3 illustrates the relative momentum profile of the 15.76 eV state
in a later experiment at £=1200 eV, compared with the plane-wave impulse
approximation with orbitals calculated by three different methods. The
sensitivity of the reaction to the structure calculations is graphically illus-
trated. A single Slater-type orbital (4.38) with a variationally-determined
exponent provides the worst agreement with experiment. The Hartree-
Fock—Slater approximation (Herman and Skillman, 1963), in which ex-
change is represented by an equivalent-local potential, also disagrees. The
Hartree—Fock orbital agrees within experimental error.

* 4101 420 » 430 *440

INCIDENT ENERGY ( eV)

Fig. 11.2. Relative differential cross section at 4> = 10° for the 400 eV noncopla-
nar-symmetric ionisation of argon (Weigold et a/., 1973). The arrows indicate
known energy levels of Ar+.
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p(a.u.)

Fig. 11.3. The 1200 eV noncoplanar-symmetric momentum profile for the
15.76 eV state of Ar+ (McCarthy and Weigold, 1988). Plane-wave impulse
approximation curves are calculated with 3p orbitals. Full curve, Hartree—Fock
(Clementi and Roetti, 1984); long-dashed curve, Hartree--Fock-Slater (Herman
and Skillman, 1963); short-dashed curve, minimal variational basis.

Fig. 11.4 illustrates the momentum profiles of the other ion states
observed in a later experiment with better energy resolution than that
of fig. 11.2. All these states have momentum profiles of essentially the
same shape. They are thus identified as states of the same orbital man-
ifold, for which the experiment obeys the criterion for the validity of
the weak-coupling binary-encounter approximation. Details of electron
momentum spectroscopy depend on the approximation adopted for the
probe amplitude of (11.1). The 3s Hartree—Fock momentum profiles in
the plane-wave impulse approximation identify the 3s manifold. However,
the approximation underestimates the high-momentum profile.

The distorted-wave impulse approximation using Hartree—Fock orbitals
is confirmed in every detail by fig. 11.5, which shows momentum profiles
for argon at £=1500 eV. The whole experiment is normalised to the
distorted-wave impulse approximation at the 3p peak. It represents the re-
mainder of the confirmation in this case of the whole procedure of electron
momentum spectroscopy. The Hartree—Fock orbitals give complete agree-
ment with experiment for two manifolds, 3p and 3s. The spectroscopic
factor Si5.76(3p) is measured as 1, since no further states of the 3p manifold
are identified. Later experiments give 0.95 and this is the value used for
normalisation. The approximation describes the momentum-profile shape
for the first member of the 3s manifold at 29.3 eV within experimental
error. The shape for the manifold sum of cross sections agrees and its
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Fig. 11.4. Noncoplanar-symmetric momentum profiles at the indicated energies
for the ionisation of argon to some more-strongly excited ion states above the
ion ground state (Weigold and McCarthy, 1978). Full curve, plane-wave impulse
approximation for the Hartree—Fock 3s orbital.

magnitude exactly exhausts the spectroscopic sum rule for 3s in compari-
son with 3p. The plane-wave impulse approximation is distinctly less valid.
Its profile shape agrees with experiment up to about 1 a.u., but HfSf(3s)
falls short at 0.76. The plane-wave impulse approximation must be mul-
tiplied by 0.83 to agree with the distorted-wave approximation at the 3p
peak. This is because it neglects refraction in the continuum-electron wave
functions. The present experimental spectroscopic factors are shown in
table 11.1. The 3s orbital energy is <r3s = 35.2 + 0.2 eV, which is close to
the Hartree—Fock value 34.76.

The spectroscopic information obtained for argon is firstly about or-
bitals. The concept of the experimental orbital is verified. Its shape and
its energy agree closely with the Hartree-Fock calculations in both the 3p
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Momentum (o,u.)
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Fig. 11.5. The 1500 eV noncoplanar-symmetric momentum profiles for the argon
ground-state transition (15.76 eV), first excited state (29.3 eV) and the total 3s
manifold (McCarthy et al, 1989). Hartree-Fock curves are indicated: DWIA,
distorted-wave impulse approximation; PWIA, plane-wave impulse approxima-
tion. Experimental data are normalised to the 3p distorted-wave curve with a
spectroscopic factor S\5je(3p) = 0.95. The experimental angular resolution has
been folded into the calculations.

and 3s cases. Next the 3s spectroscopic factors of table 11.1 test structure
calculations with correlated electrons. Configuration-interaction calcula-
tions of the target-ion overlap (11.10) by Mitroy, Amos and Morrison
(1984) and Hibbert and Hanson (1987) show semiquantitative agreement
with experiment. Amusia and Kheifets (1985, 1990) obtained much closer
agreement using the perturbation theory of section 5.7.

Perturbation theory considers the residual electron—electron interaction
as a perturbation on the independent-particle model for the ion, which
splits the one-hole configuration among eigenstates of the one-hole man-
ifold. A measure of the strength of the perturbation is the ratio of the
standard deviation of the distribution of eigenstates, weighted by the spec-
troscopic factors, to the orbital energy. For the 3p and 3s manifolds of
argon the ratios are 0 and 0.18 respectively. For this reason we consider
the perturbation to be weak.
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Table 11.1. Spectroscopic factors for the 3s manifold of argon. EXP, McCarthy
et al. (1989). The error in the last figure is given in parentheses. Target—ion,
configuration interaction in the target and ion. Ion, configuration interaction in the
ion only. Pert, perturbation theory

Dominant
ion state
configuration

3s3p6

3p44s
3p43d
3p44d
3p45d

3p46d
Ar++ + e

e(eV)

29.24
36.50
38.58
41.21
42.65

43.40

EXP

0.55(1)
0.02(1)
0.16(1)
0.08(1)

• 0.08(1)

0.12(1)

Mitroy et
(1984)

Target—ion

0.649
0.013
0.161
0.083

0.081

0.013

al.

Ion

0.600
0.006
0.142
0.075

0.095

0.08

Hibbert and
Hansen
(1987)

Ion

0.618
0.006
0.112
0.057
0.021

0.009
0.18

Amusia and
Kheifets
(1985)
Pert

0.553
-

0.199
0.107
0.042

0.021
0.076

11.1.2 Ground-state correlations

Ion states that do not obey the weak-coupling approximation give in-
formation about electron correlations in the target ground state. The
weak-coupling representation (11.13) of such states |/) has significant
contributions only from basis states \j) for which the hole j is in an
excited target configuration but not in the Hartree—Fock configuration.
The structure amplitude is very sensitive to the coefficients (f\j) of excited
configurations, i.e. to correlations.

A simple example is the 2s state of the helium ion. It has a small overlap
with the Is Hartree—Fock orbital of helium, since the Hartree—Fock
potential of helium is not the same as the Coulomb potential of the
helium ion. However, it has a large overlap with helium configurations that
contain a 2s orbital. The 2s orbital is not occupied in the Hartree—Fock
configuration.

Fig. 11.6 shows the noncoplanar-symmetric differential cross sections
at 1200 eV for the Is state and the unresolved n=2 states, normalised
to theory for the low-momentum Is points. Here the structure amplitude
is calculated from the overlap of a converged configuration-interaction
representation of helium (McCarthy and Mitroy, 1986) with the observed
helium ion state. The distorted-wave impulse approximation describes
the Is momentum profile accurately. The summed n=2 profile does not
have the shape expected on the basis of the weak-coupling approximation
(long-dashed curve). Its shape and magnitude are given quite well by
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Fig. 11.6. The 1200 eV noncoplanar-symmetric momentum profiles for the
ground-state (n = 1) and summed n = 2 transitions in helium (Cook et a/.,
1984). Curves indicated: DWIA, distorted-wave impulse approximation; PWIA,
plane-wave impulse approximation. The curves are calculated using a converged
configuration-interaction expansion (McCarthy and Mitroy, 1986) for the helium
ground state. The long-dashed curve is the distorted-wave impulse approximation
for the Hartree—Fock ground state. Experimental data  are normalised to the Is
curve at low momentum. From McCarthy and Weigold (1991).

the calculation. The plane-wave impulse approximation again underesti-
mates the high-momentum profile and is not quite accurate for relative
magnitudes.

11.2 Examples of structure information

The principles derived and illustrated in section 11.1 show that electron
momentum spectroscopy gives information about orbitals, about orbital
manifolds that are split by electron correlations in the ion, and about
correlations in the target ground state. We give examples of the kind of
information that is obtained.

11.2.1 Argon

The dominant features of the argon ion spectrum observed in an ionisation
reaction have illustrated the electron momentum spectroscopy of the 3p
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and 3s manifolds. However, argon is also an example of the detail that
can be achieved by observing ion states with very small cross sections.
Above the lowest energy 29.3 eV of the 3s manifold, ion states have been
observed whose symmetry is known from photon spectroscopy to be 2De

and 2P°. We adopt the convention of characterising a state by its leading
configuration.

The 2De states can only be observed if the argon ground state has excited
configurations with an occupied d orbital. These states do not obey the
weak-coupling approximation. The most prominent 2De transition is to
the 3s23p4(t>)4s 2De state at 34.20 eV. It is shown in fig. 11.7(a). The
narrow peak at about p=0.25 a.u. is best described by the Hartree—Fock
Ad orbital, which is diffuse in coordinate space. This peak could be

O 8 -

1 1 ' 1

-

-

c)<?= 37 .15 eV
3s23p4(1D)4p2po "

I r-l03p(P) | 2 > < 0-0 3

T,

i

/

\

f-l'

(b) e= 35.63 eV
- 3s23p4(3P)4s2F°

1500 eV
1000eV
500eV

l03p(p)|2xO.O1

CI (/= 1)

(6)e= 39.57 eV
3 s 2 3 p 4 ( 1 S ) 4 p 2 p o

I04d(p)|2x 0.002
I04p(p)|2x 0.002

2 0
Momentum (a u.)

Fig. 11.7. Noncoplanar-symmetric momentum profiles at the indicated energies
for the indicated transitions in argon, compared with calculated profiles (Mc-
Carthy et al., 1989). Experimental data are normalised to the distorted-wave
impulse approximation for the summed 3s manifold. Calculations are indicated
by the square of a Hartree—Fock orbital multiplied  by a spectroscopic factor.
Configuration-interaction curves (CI) are described in the text.
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accounted for by a 0.4% admixture of the configuration 3s23p4(1D)4s4d {S
in the ground state.

Mitroy et al (1984) carried out an extensive configuration-interaction
calculation of the structure amplitude (q/|0) for correlated target and
ion states. The long-dashed curve in fig. 11.7(a) shows their momentum
distribution multiplied by 2. They found that the dominant contribution
came from the pseudo-orbital 3d, calculated by the natural-orbital trans-
formation. Pseudo-orbitals are localised to the same part of space as the
occupied 3s and 3p Hartree—Fock orbitals and therefore contribute to
the cross section at much higher momenta than the diffuse Hartree—Fock
3d and 4d orbitals. The measurements show that the 4d orbital has a
larger weight than is calculated by Mitroy et al.9 who overestimate the 3d
component.

The contribution to the cross section at 39.5 eV (fig. 11.7(d)) has a
similar momentum distribution to the 34.20 eV state. There are possi-
ble contributions from the 3s23p4(3P)4d ty state at 39.64 eV and the
3s23p4(1S)4p 2P° state at 39.57 eV. The low-momentum region cannot be
explained by a 3p ionisation process but there could be a 4p contribution
from the 3s23p4(1S)4p2 lS component of the ground state.

There are states at 35.63 eV and 37.15 eV that have the 3p momentum
distribution (fig. 11.7(b) and (c)). Fig. 11.7(b) includes both the 3p mo-
mentum distribution with S35.63(3p) = 0.01 and 0.67 of the cross section
calculated with full correlation by Mitroy et al. (1984), marked CI(/ = 1).
The ground-state correlations cause a small difference in shape. The re-
spective observed spectroscopic factors 0.01 and 0.03 for the two states
agree with a number of many-body calculations of the 3p manifold.

11.2.2 Xenon

The valence structure of xenon is similar to that of argon in that the
valence p manifolds each have one state with a spectroscopic factor near
unity and the inner-valence s manifold is severely split. The additional
feature of xenon is the possibility of testing relativistic calculations of the
orbitals. The spin—orbit splitting of the Sp^/2 and 5p\/2 manifolds can be
experimentally resolved.

The 1200 eV experiment of Cook et al (1984) showed that the 5p3/2
and 5/?i/2 momentum profiles differed significantly. They are not con-
sistent with nonrelativistic Hartree—Fock orbitals but can be described
within experimental error by the distorted-wave impulse approximation
using Dirac—Fock orbitals. The  5/?3/2 : 5pi/2 branching ratio is shown in
fig. 11.8, where it is compared with the distorted-wave impulse approx-
imation using relativistic and nonrelativistic orbitals. The 5p^/2 orbital
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Fig. 11.8. The ratio of 5p^/2 to 5pi/2 noncoplanar-symmetric differential cross
sections for xenon at 1000 eV (Cook et al, 1986). Full curve, distorted-wave
impulse approximation with Dirac—Fock orbitals; broken line, nonrelativistic
branching ratio. From McCarthy and Weigold (1988).

has significantly more low-momentum components than the 5pi/2 orbital.
The approximation is accurate over the observed momentum range, 0.1 to
2.2 a.u.

The spectroscopy of the 5p and 5s manifolds has been observed in
great detail. Fig. 11.9 shows the separation energy spectra for £=500 eV
at cj) = 0° (p = 0.16) and 10° (p = 0.6). The 5s transitions are much
stronger at low momentum than higher momentum and the 5p transitions
are the opposite. The 5p3/2 and 5p1/2 manifolds are dominated by single
transitions. Cook et al (1986) obtained a spectroscopic factor 0.98 for the
ground-state transition. A large-basis configuration-interaction calculation
reported by these authors gave spectroscopic factors 0.980 and 0.983 at
p=0.5 a.u. for the lowest 5p3/2 and 5pi/2 states respectively.

The 5s manifold shows great complexity. For the lowest state S23.4(5s)
= 0.37. This value is considerably lower than many structure calculations
predict, but the perturbation calculation of Kheifets and Amusia (1992)
obtains 0.384. The orbital energy e5s (11.18) is 27.6+0.3eV, which is to be
compared to the Dirac-Fock value 27.49 eV. The Hartree-Fock value
is 25.70 eV. The criterion for the strength of the perturbation, given by
the ratio of the standard deviation to the mean of the 5s manifold is
0.18. The ratios S29.i(5s) : S23.4(5s) and S23.4(5s) : Z/S/(5s) are compared
at different momenta in fig. 11.10. The condition for the validity of
the weak-coupling binary-encounter approximation is completely satisfied
within experimental error.

The complete understanding of the reaction is summarised by fig. 11.11,
in which the 1000 eV 5p and 5s manifold sums (normalised at the 5p peak)
are compared with the distorted- and plane-wave impulse approximations
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Fig. 11.9. The 500 eV noncoplanar-symmetric valence energy spectra for xenon
at (/> = 0° and 10° (Cook et al, 1986). The full curve is obtained by fitting peaks
(broken curves) of the known experimental resolution function at known energy
levels of Xe+. From McCarthy and Weigold (1991).

for different momenta. It is necessary to use distorted waves to obtain
profile shapes and relative magnitudes within experimental error, but
plane waves predict the profile shape below p=\ a.u.

11.23 Lead

Lead illustrates relativistic orbitals and correlations in both target and
ion states. The Dirac—Fock configuration has two electrons in each of
the 6pi/2 and 6s1/2 orbitals. Frost, Mitroy and Weigold (1986) found that
the strong transition to the 6p manifold has two components, described
as 6/?3/2 and 6p\/2 by a two-configuration calculation for the ground state,
6^3/2 and 6p\ ,2. Since the splitting is due to ground-state correlations
the weak-coupling approximation is not obeyed and the branching ratio
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Fig. 11.10. Spectroscopic factors for the noncoplanar-symmetric ionisation of
xenon to the 5s5p6 2S (e=23.4 eV) ion state (lower) and the ratio of spectroscopic
factors for the 5s25p45d 2S (6=29.1 eV) and 23.4 eV states (upper), plotted
against recoil momentum p. Full circles, 500 eV; open triangles, 1000 eV; open
circles, 1200 eV; crosses, 2000 eV. From McCarthy and Weigold (1991).
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Fig. 11.11. The 1000 eV noncoplanar-symmetric momentum profiles for the
summed (a) 5p and (b) 5s manifolds of xenon (McCarthy and Weigold, 1991).
Distorted- and plane-wave impulse approximations are indicated respectively by
DW and PW. Dirac-Fock and Hartree-Fock orbitals are indicated respectively
by DF and HE The experimental angular resolution has been folded into the
calculation. The experimental data are normalised at the peak of the 5p profile.

R(q) is momentum-dependent. Both the extended-average-level and the
optimal-level multiconfiguration Dirac—Fock methods were tried.  The
results are illustrated in fig. 11.12. The sensitivity of electron momentum
spectroscopy is shown by the fact that the former calculation is completely
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Fig. 11.12. The experimental and theoretical branching ratios for the 1000 eV
ionisation of lead to the 6p3/2 and 6pi/2 states of Pb+, plotted against recoil
momentum p (Frost et a/., 1986). The calculations with target-state correlations
in the plane wave impulse approximation are indicated by: MCDF, multiconfigu-
ration Dirac—Fock; EAL, extended average level; OL, optimal level. CI indicates
ion-state configuration interaction.
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Fig. 11.13. The 1000 eV noncoplanar-symmetric momentum profiles for lead
(Frost et al, 1986). Curves show the plane-wave impulse approximation. The
experiment is normalised at the peak of the 6p-manifold profile (a). The 14.6 eV
and 18.4 eV states of the 6s manifold are indicated by (b) and (c). Spectroscopic
factors are given in table 11.2. For (a), (b) and (c) respectively the Hartree-Fock
calculation (broken curve) is normalised to multiconfiguration Dirac—Fock (solid
curve) by factors 0.82, 0.70 and 0.64.
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ruled out by the experiment. Agreement requires the optimal-level method,
with ion correlations included in the structure amplitude (q/|0).

Fig. 11.13(a) shows the summed momentum profiles for the states of
the 6p manifold at 7.4 eV and 9.2 eV. Figs. 11.13(b) and (c) describe
states that are identified by the plane-wave impulse approximation with
the Dirac—Fock orbital as belonging to the 6s manifold. Since the valence
states of lead are diffuse in coordinate space most of the momentum profile
is within the 1 a.u. limit of validity of the plane-wave impulse approxi-
mation for the profile shape. The experiment agrees with the Dirac—Fock
profile but rules out the nonrelativistic Hartree—Fock method.

The spectroscopic factors for the 6p and 6s manifolds are compared in
table 11.2 with the relativistic calculations of Frost et al. (1986) that include
target and ion correlations. Fig. 11.12 shows that states of the 65 manifold
obey the weak-coupling approximation, so that their spectroscopic factors
are momentum-independent.

11.3 Excited and oriented target states

Excited target atoms can be prepared in well-defined states by optical
pumping with a tunable laser. Specific magnetic substates are excited by
polarised light. Momentum distributions are observed for these states by
electron momentum spectroscopy.

We consider sodium atoms pumped by a+ circularly-polarised laser light
tuned to the 32S1/2(F = 2) <—>  32P3 / 2(F = 3) transition. The quantum

Table 11.2. Eigenvalues and spectroscopic factors for observed states of Pb+

(Frost et ah, 1986). The spectroscopic factors for the 6p manifold are evaluated
at p=0.35 a.u. (upper) and p=0.55 a.u. (lower)

6p manifold

6s manifold

Experiment

ef (eV)

7.42

9.16

14.59
18.35
20.34

0.944+0.01
0.933+0.01
0.056+0.006
0.067+0.007

0.762+0.008
0.227+0.005
0.011+0.003

ef (eV)

7.10

8.76

13.79
18.34
19.97

Theory

Sf

0.907
0.901
0.062
0.065

0.729
0.214
0.036
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Fig. 11.14. Schematic diagram of the laser-excited noncoplanar-symmetric ion-
isation of sodium (Zheng et al, 1990). The 3px and 3py charge clouds are
indicated. Final-state polar angles are 6 A and 6B- From McCarthy and Weigold
(1991).

numbers F and Ff refer to the hyperfine transition structure due to the
nuclear magnetic moment. Because of the high resolution of the laser it
is important to select a particular hyperfine transition. For the purpose
of LS -coupling atomic structure we consider only the orbital quantum
numbers nj and m of the valence electron. The magnetic substate is 3p\.

The geometry of the experiment is shown in fig. 11.14. The axis of
quantisation z is the direction of the light beam. The atomic sodium beam
is incident in the x direction and the electron beam in the y direction. The
schematic diagram also shows the 3px and 3py lobes of the target charge
cloud for the 3p\ substate. The scattering plane is the zy plane so that
the component px of the recoil momentum p is observed in noncoplanar-
symmetric kinematics. Because of the finite angular resolution of the
spectrometer the components py and pz are of the order of 0.06 a.u. rather
than zero.

The momentum distributions for the 3s ground state and the 3p\ state
are shown in fig. 11.15. They are compared with the momentum distri-
butions calculated using Hartree—Fock orbitals and folding in the exper-
imental momentum resolution function. Because the 3s and 3p orbitals
are very diffuse in coordinate space the momentum profile is well within
the p=\ limit of validity of the plane-wave impulse approximation.

The 3s momentum distribution confirms the validity of the approxi-
mations. The experiment confirms the 3p\ Hartree—Fock momentum
distribution and eliminates the distribution for the sum over magnetic sub-
states that would apply to target atoms that are not oriented. With perfect
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Fig. 11.15. The 800 eV noncoplanar-symmetric momentum profiles for the laser-
assisted ionisation of sodium (Zheng et al, 1990). Hartree—Fock curves for the
indicated states are calculated in the plane-wave impulse approximation. From
McCarthy and Weigold (1991).

angular resolution the 3po component would be entirely in the z direction
and therefore would not be observed in the experiment. However in the
present experiment it would increase the p=0 momentum components
beyond the limits of statistical errors.
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momentum space 59
transition 59

analysers electron energy 15
analysing power 237
analytic orbitals 85, 87, 123, 129
angular correlation, electron-photon

measurements 211
parameters 206, 208, 210

angular momentum
coefficients 65-7
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vector addition 64

antisymmetrization 72, 157, 263
argon
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fine-structure 240, 251
function in scattering 243-6, 251
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asymmetry parameter 237, 243, 246,
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asymptotic scattering region 93
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sources 39
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autoionising resonances 279-83
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Slater-type orbitals 87, 195
weak coupling 292

binary-encounter approximation 290,
294

Born approximation 12, 20, 101, 103,
152

boundary condition
two-body 89, 91, 100
three-body 264, 266

box
normalisation of collision states

142-50
wave functions 82

Breit-Rabi hyperfine energy level
diagram 41

Breit-Wigner resonance formula 106

cascades 11, 229, 233
central potentials 56, 62, 82, 87
channel

continuum 140-1
discrete 140-1
Hamiltonian 140, 263
state 140, 164, 263

charge-cloud distribution 200, 203,
254, 256, 259

charged target 96, 152
Clebsch-Gordan coefficients 65
closure approximation 193
closure theorem 52
coherence 201-2, 207
coincidence measurements

electron-electron 22-31
electron-photon 45

collision
box normalisation 144, 146
Hamiltonian 140, 263
state 141, 264
T-matrix element 145, 151, 264
wave packet 143

collisional
alignment 200
orientation 200, 203, 239, 249

collision system (frame) 203, 241
commutation rules

angular momentum operators 62, 63
canonically-conjugate observables

51
creation and annihilation operators

75, 118, 160, 175-7
commuting observables 51
configuration interaction 128-33, 196

argon ion 299
basis for collision theory 178
basis for helium 231
basis for ionisation 292
basis for magnesium 136, 232
ionisation 292
m-scheme 133
practical calculations 130
symmetry basis 132
xenon ion 303

configurations independent particle
72-3, 116, 292

convergent close coupling 178-9, 214,
285, 288

coordinate representation 55-6, 98,
195

correlations of bound electrons 292-4,
299, 303, 304

Coulomb
functions 92
multipole expansion 69, 170
phase shift 93, 97
potential 56
scattering amplitude 96, 153
T-matrix element 269-71
wave 95-6, 104

coupled-channels method 178, 195,
197, 212, 215, 227

coupled-channels-optical method 182,
212-34, 247-50

equivalent local 194, 230-4
total ionisation asymmetry 288
total ionisation cross section 286
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creation and annihilation operators
73-5, 169

crossed beam technique 9, 17-20
cross section

absolute determination 19, 30
definition of 5, 8
differential 14, 25, 148, 149
double differential 22
integral 6, 8, 11
ionisation 24-32
momentum transfer 6, 12
normalization procedures 20, 31
phase shift analysis of 20
total 7, 8
total ionisation 24
triple differential 25

delta function 53, 56
density matrix

magnetic substates spin-dependent
241

magnetic substates spin-independent
202, 205

m-scheme 161, 169, 171, 173, 174-7
orbital space 131
reduced 170, 171-3
relating orbitals to channels 161,

169, 174-7
special cases 174-7
spin 242

density of final states 146, 147, 149
differential cross section 5, 14, 23-5

absolute (e, 2e) 30
double 22, 283
helium 230
hydrogen 212
ionisation 25, 30, 149, 263, 269, 291
magnesium 231
polarised electrons 242
potential scattering 88-90
scattering 148, 205
single 23
sodium 225

spin-dependent scattering 238
time-dependent scattering 111
triple 25, 30
unpolarised electrons 242

diffusion coefficients 12
Dirac equation

central potential 78
free electron 77

Dirac-Fock
energy for xenon ion 303
multiconfiguration 127, 305
orbitals in ionisation 294, 302, 306
problem 122, 125

Dirac matrices 78
direct product space 51, 65
distorted wave 89, 97, 114

Born approximation 154, 191-3,
231, 266, 275, 276, 286

impulse approximation 272, 290,
296, 299, 305

representation 152-5, 174, 263
second Born 192, 196, 249
transformation 152
unitarised DW Born approximation

191
distorting potential 152, 154, 263
double-differential cross section 284

eigenvectors 51
electron

coincidence spectrometer 26
detectors 15, 27
optics 15, 26
photon correlations 45-9
polarisation 32-9
sources 15
spectrometers 16, 25
swarm technique 12

electron impact coherence parameters
212, 231

electron-photon correlations 45-9
with polarised electrons 253

energy-loss spectra 17
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energy of electron beam
resolution 16
selection 15

equivalent local potential 194
exchange

amplitudes 159, 238, 246, 263, 290
asymmetry 239
polarisation mechanism 238
potential 159, 161-3, 172
scattering from spin 1/2 targets 246

Feshbach projection operators 180
final-state interaction 273-4
fine-structure effect 239, 251
first-order many-body theory 231
Fourier transformation 56
frame of reference

atomic collision natural 203
relativistic electron 78

frozen-core Hartree-Fock 125, 136,
225, 247

function theorem 54, 98

Gallium arsenide
photo-electron source 33

geometry effects scattering 17
golden rule (Fermi) 146
Green's function 98, 150, 181, 184,

185, 192
ground-state correlations 299, 301,

304

Hartree-Fock
basis 129, 130, 292
configurations for argon 296
configurations for magnesium 232
energy for argon ion 297
energy for xenon ion 303
equation 119-21
frozen core 125, 136, 225, 247
multiconfiguration 126
nonrelativistic 121
orbitals for argon 296, 301
orbitals for lead 307

orbitals for sodium 308
orbitals for xenon 302
potential 119, 160
problem 116-20
relativistic 122 see also Dirac-Fock
unperturbed states 133

Hartree-Fock-Slater 296
Heisenberg equation of motion 79
helium

autoionisation 280-3
configuration interaction 231, 299
double-differential cross section 284
ground-state correlations 299
target for ionisation 231, 280-3,

271, 274, 284, 299
target for scattering 230-1
total ionisation cross section 287

hydrogen
Laguerre represention 129
observation of Is orbital 59
orbitals 55, 85, 87, 129
target for ionisation 59, 274, 286,

288
target for scattering 212-24
total ionisation asymmetry 288
total ionisation cross section 286

Hyperfine interactions 40

Impulse approximation 268-72, 290,
291, 297

see also distorted wave
integral equations

box-normalised collision 144
charged target 103, 153-4
collision 144, 264
coordinate space 99
momentum space 100, 151
numerical solution 102
potential scattering 98, 101
P -projected 182
reduced 102, 165, 167
relativistic 114

integrated channel cross sections
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hydrogen 215-18
magnesium 232
sodium 228-9

jj coupling 66, 67, 127, 164

kinetic energy 56, 77
K -matrix element 94

Laguerre
basis 129, 179
polynomials 85

laser radiation state selection 42
lead 304
Legendre polynomials 63
limits in scattering theory 142-3,

149-51
Lippmann-Schwinger equation 100,

151, 154, 165, 167, 264
lithium 247
LS coupling 67, 127, 166, 172, 173

magnesium
spectroscopy 136, 231
target for scattering 231-4

magnetic fields
inhomogeneous for states selection

40
shielding 14, 25

magnetic substate scattering
parameters 205, 206, 207, 209-12

helium 230
hydrogen 218-20

magnetic substates in ionisation 307
magnets

dipole 40
hexapole 40

mercury 254
metastable states selection 44
momentum

amplitude 59
probability distribution 59
representation 55, 56, 59
transfer 57, 263

momentum profile 294, 296-8, 305,
306, 309

momentum representation 3, 55, 56,
59

bound states 290
potential scattering 100

monochromators 15
Mott scattering 33

Mott analyser 34-9
multichannel calculation of ionisation

266
multichannel expansion 151, 157, 161
multiconfiguration Dirac-Fock 127,

305
multiconfiguration Hartree-Fock 126,

232
multipole parameters 207

natural orbitals 130, 133, 232
nonlocal potential 56, 125, 159, 180
normalisation 58

collision states 142, 145
continuum states 89
cross section measurements 20
scattering cross sections 216, 226,

234
spectroscopic factors 293

observable 51, 52
occupation number representation 73,

117
off-shell amplitudes 101
one-hole manifold 293
one-hole state 292
operators 51

time development 58, 79, 142
optical excitation functions 11
optical potential

equivalent-local 194
formal 180-2
pseudostates 196
weak-coupling 183-6

optical pumping 42-5, 201



326 Index

optical theorem 97, 146, 215
orbital energy 262, 293, 297, 303
orbital manifold 293, 297
orbitals 72, 116

analytic 87, 123, 128
experimental 293
Hartree-Fock 120, 123, 292, 307
hydrogenic 85
Laguerre 129, 179
natural 130, 133, 232
numerical 120
relativistic 120, 122, 302, 307
Slater-type 87, 179, 195
Sturmians 129, 179, 195

orientation 200, 203, 206, 211, 248
oscillator strength 115, 138, 229, 232

parity 63, 112, 116, 128, 164, 166, 202
partial-wave expansion

Coulomb wave 96, 104
integral equation 102, 165, 167
plane wave 91
potential scattering function 91
relativistic scattering function 114
scattering amplitude 20, 96
T-matrix element 102, 165, 167
F-matrix element 102, 165, 167

Pauli exclusion principle 71
Pauli matrices 64, 79
perturbation theory for bound states

133, 298, 303
perturbation theory (time-dependent)

146
phase of a scattering function 95
phase shift 20, 94, 97, 100, 105
photon helicities 254
photon spectroscopy 115, 137
polarisation potential

bound state core 136, 225, 250
channel excitation 180, 252
long-range dipole 186, 189
reduced matrix elements 184-6
T-matrix element 189

polarisation (spin)
atoms 39-45
combined mechanisms 241
correlation measurements 211
electrons 32, 35, 38, 140, 148, 236-40
exchange 238
fine-structure effect 239
function 237, 243
photons 45, 200, 210
spin-orbit mechanism 236
5, T, U parameters 38, 245-6, 252

Polarised atoms
analysis 43
sources 39

polarised electrons
analysis 34
sources 32
5, T, U parameters 38, 245-6, 252

position sensitive detectors 27
potential matrix element

evaluation 170, 172
jj coupling 164, 170, 173
LS coupling 166, 172, 173
partial-wave expansion 101, 164,

166
reduced 101, 164, 166
special cases 175-77
spin-orbit 177

potential scattering 20, 87, 98-104,
113, 139, 141

probability 58, 142
probability amplitude 58, 142
probe amplitude 290
pseudoresonances 179, 197
pseudoscalar 112
pseudostate method 195, 214, 218-20,

222-4, 286
pseudostates 180, 195

quantum beats 47, 111

Ramsauer 4
Ramsauer-Kollath 14
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Ramsauer-Townsend effect 4
recoil technique 9
reduced matrix elements 69

collision potentials 164, 166
polarisation potential 187
potential scattering 101

relative flow technique 21
relativistic

distorted wave 113
orbitals 120, 302, 306
see also Dirac-Fock
potential 80
potential scattering 113, 252

representation 52
coordinate 55, 56, 195
distorted wave 152
momentum 3, 55, 56, 290
occupation number 73
spin 64
theorem 52
weak coupling 292

representation theorem 52, 65
resolvent 98, 150, 153
resonance 21, 104, 220-4, 279
Ricatti-Bessel functions 83
^-matrix method 196-8, 212, 222-4,

251, 257
intermediate-energy 197, 214, 216,

287

scattering amplitude 20, 90, 96, 97,
100, 106, 202, 204

scattering matrix 202
scattering state

antisymmetric 157
many-body 141, 149, 157
one-body 91

Schrodinger equation 54
collision 141, 152, 157
Coulomb potential 85
cubic box 81
local central potential 82, 91
matrix solution 86

potential scattering 98
radial 91
short-range potential 84
spherical box 83

Schrodinger equation of motion 57,
140, 141

screening 121
second Born approximation 191
second quantisation 73, 117
separation energy 262, 291, 293, 295
Sherman function 237, 243, 245
Slater-type orbitals 87, 124, 195
S-matrix element 94, 96, 100, 191
sodium

spectroscopy 136
target for ionisation 307
target for scattering 225-9, 248-51

spectral function 291, 293
spectroscopic factor 293, 298-9, 301,

303, 307
spectroscopic sum rule 293, 296
spherical Bessel functions 83
spherical harmonics 63

renormalised 63
spherical tensor 68, 169, 207
spin of an electron 64, 79
spin-orbit potential 35, 80, 120, 177,

236
spinors 64, 79, 113
S-polarisation parameter 38, 245, 252
state of a system 50
state multipoles 48, 207, 219, 255, 257

normalised 255, 257
state parameters 204
stationary state 58, 141
statistical uncertainties 29
Stern-Gerlach magnets 40, 41
Stokes parameters 209-12, 255, 257
structure amplitude 290, 299, 304
STU parameters polarised electrons

38, 245-6, 252
Sturmians 129, 179, 195
sum rule spectroscopic 293, 296
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superelastic scattering 48, 248
swarms, electron 12
symmetry configurations 128, 130,

132, 292
symmetry manifold 116, 128, 292

Temkin-Poet problem 179
tensor operators 68, 169, 207
three-body model of ionisation

262-74
threshold ionisation 275
time-dependent scattering 107, 140
time-development operator 58, 79, 142
time evolution of excited states 47
time-of-flight technique 10
time reversal 70, 103, 143, 150, 155
T -matrix element

charged target 103, 152
collision 145, 151
ionisation 149, 264-9
partial-wave expansion 101, 165,

167
polarisation 187-90
potential scattering 100
reduced 101, 165, 167
relativistic 114
resonance 105
scattering 100, 148

total cross section
helium 231
hydrogen 217
potential scattering 90, 97
sodium 229

total elastic cross section 96
total ionisation asymmetry 288
total ionisation cross section
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