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Preface 

After building electron energy loss spectrometers for many years, we felt the need 
to develop a scientific basis for their construction. Progress in this direction was 
impeded by the fact that the apparently most successful designs involved cylin-
drical deflectors. Lens systems properly adapted to the one-dimensional focusing 
in cylindrical deflectors cannot possess rotational symmetry, so that standard pro-
grams could not be used. Hence we began our expedition into the well-established 
field of electron optics with the development of programs for lens systems that 
exhibit merely C2„ symmetry rather than rotational symmetry. The tremendous 
success of lenses calculated with such programs encouraged us to investigate 
also the other electron optical elements in a spectrometer more closely. While 
it has been recognized since the early work of Kuyatt and Simpson that the 
maximum monochromatic current that an electron optical device can produce is 
limited by space charge, that is, by the repulsive forces between the electrons, 
the details of the effect of the space charge on electrostatic deflectors were not 
understood. This volume is the first to describe relatively straightforward, an-
alytical, solvable models for the effect of the space charge on the fast-order 
focusing properties of cylindrical deflectors. The analytical considerations are 
then extended by numerical simulations of electrostatic deflectors under space 
charge conditions, and the design of the deflectors is optimised according to these 
considerations. Space-charge-saturated monochromators require feed beams with 
specified angular apertures. We have therefore devoted one chapter to the design 
of emission systems operating under space charge conditions at low energies. 

For each of the electron optical elements necessary in electron energy loss 
spectrometers, we describe several possible designs, including the specification 
of all relevant optical and mechanical parameters. All the elements described 
in the book are not only analysed numerically but have also been shown to 
work successfully in experiments. Readers who are interested in building electron 
spectrometers themselves may therefore use the designs described here directly 
without plunging into the complexifies of electron optics. 

This volume could not have been written without the committed and diligent 
work of two collaborators, D. Bruchmann and Dr. S. Lehwald. Mr. Bruchmann 
performed all the engineering on the many spectrometers and variations thereof 
that we built, including the design of an ingenious system of digitally controlled 
power supplies and the operating software. Dr. S. Lehwald was an indispensable 
partner in ordering our thoughts and in the identification of the most relevant 
optical parameters at each stage of development. He also carried the burden of 
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experimental tests on the electron optical designs, and only through the con-
tinuous interplay between experimental tests and numerical simulation was the 
eventual success achieved. His critical reading of the manuscript was also of 
tremendous help. 

Jiilich, July 1990 	 H. lbach 
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1. Introduction 

Electron energy loss spectroscopy is the name for an experimental technique 
in which electrons with a well-defined energy are scattered from a target and 
where the energy distribution, and frequently also the angular distribution, of the 
scattered electrons is measured. The generally used acronyms for the technique 
are HREELS (High Resolution Electron Energy Loss Spectroscopy) or EELS. 

The mean free path of 100 eV electrons in a solid is only about 1 nm and 
increases slowly with increasing energy. High energy electrons are therefore 
required to investigate bulk properties of matter in a transmission experiment. 
When electrons with an energy up to a few hundred eV are backscattered from a 
solid the electrons interact with only the outermost atomic layers of the material. 
It is this surface sensitivity which has spurred the interest in and development of 
EELS recently, as the technique offers the possibility of probing vibrational and 
electronic surface excitations of solids or adsorbed molecules on surfaces. The 
technique has had a large impact on the development of surface chemistry and 
the science of catalysis [1.11. Other recent applications include surface structure 
analysis [1.2] and the determination of the dispersion of surface phonons [1.3]. 
The physics of semiconductor surfaces [1.4] and of epitaxial growth [1.5] are 
further areas of recent activity. With spin polarized electron beams and spin 
analysis of scattered electrons even the magnetic excitation spectrum of a solid 
surface or of a thin film may be investigated [1.6]. In total, several hundred 
papers are published each year in which electron energy loss spectroscopy is 
used to probe vibrational or electronic properties of matter. The purpose of this 
volume is not to add to the various reviews in the field [1.7], but rather to focus 
on the instrumentation needed in EELS. 

A number of technical reports on electron energy loss spectrometers have 
appeared over the years [1.8-13], and several improvements, including multi-
channel detection [1.14] and parallel processing [1.15] have been suggested. 
Modern techniques of computer simulation have also been employed [1.16-18] 
in order to optimise one aspect or another of a spectrometer. A thorough treat-
ment of the electron optics of spectrometers that encompasses all essential design 
parameters and physical requirements from the emission system to the detector 
has been lacking until now. 

The level of presentation in this volume is such that no special knowledge of 
electron optics is required. The book concentrates on the electron optics specific 
to electron energy loss spectrometers. For a general treatise on electron optics the 
reader is referred in particular to the recent work of Hawkes and Kasper [1.19]. 



The problem of designing optimised electron energy loss spectrometers was 
complicated by the fact that it took many years to establish the physics of electron 
surface scattering so that the desired design parameters could be understood. 
Unlike light optics, in electron optics the space charge of the electron beam needs 
consideration. It has been known for some time now that the space charge in 
energy dispersive devices (the monochromator) is the limiting factor in producing 
a high monochromatic current at the sample and ultimately a high count rate in the 
detector [1.2, 6]. It is also experimentally established that cylindrical deflectors, 
used as monochromators, produce the highest monochromatic current, although 
the reason for this is not so obvious. The use of cylindrical deflectors raises the 
additional difficulty that these devices focus in only one dimension, the radial 
plane. It is clear that any optimised lens system for an electron spectrometer with 
cylindrical deflectors as the energy dispersive elements should not be rotationally 
symmetric around the optic axis. The calculation of the optical properties of 
such lenses requires trajectory calculations and an optimisation process in three 
dimensions, rather than in two dimensions as for rotationally symmetric lenses. 
In this volume we will show that such a three-dimensional optimisation, which 
also includes space charge, is indeed feasible without using excessively powerful 
computers. The final result of such optimisation will be a spectrometer design 
for which the count rate in inelastic scattering processes exceeds that of earlier 
instruments by several orders of magnitude and this will surely open the way to 
a new area of electron energy loss spectroscopy. 

The volume is organised as follows. We begin with a general consideration of 
the mathematics and algorithms pertinent to the computer simulation of electron 
trajectories in the energy dispersive elements and the lens systems in Chap. 2. 
We continue with a discussion of some basic properties of the ideal cylindrical 
field and cylindrical deflectors with equipotential entrance and exit apertures. 
The optimum aperture angles, the proper match to the lens systems between the 
monochromator and the analyser, and dispersion compensated spectrometers are 
considered here. In Chap. 4 we treat the mathematics of the ideal cylindrical field 
without and also with space charge and show that simple analytically solvable 
models exist for the trajectories in electron beams in the presence of their own 
space charge. On the basis of this two-dimensional analysis, the fundamental first-
order optical properties of the radial image in a cylindrical deflector are derived 
as a function of the feed current and other parameters characterising the feed 
beam and the geometry of the deflector. In parallel with the analytical treatment, 
we also present two-dimensional computer simulations of the trajectories in the 
presence of their own space charge. This analytical treatment provides us with an 
analytical expression for the monochromatic current achievable with a cylindrical 
deflector and, more importantly, likewise provides us with basic concepts for the 
design of a spectrometer that is optimised with respect to the space charge limi-
tations. Three-dimensional numerical simulations for realistic deflectors are then 
described in Chap. 5. These simulations include the "retarding" deflector, which 
is particularly useful for the first stage in a two-stage monochromator. Important 
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differences between the three-dimensional case and the two-dimensional model 
will be pointed out. 

Chapter 6 is then devoted to suitable emission systems. Having learned in 
the previous chapters what are the requirements on the dimensions and angular 
apertures of the feed beam of a monochromator, we are now in a position to 
specify a cathode emission system. Like the monochromator itself, the beam 
parameters of cathode emission systems are determined by the space charge. 
Our treatment of the emission system therefore includes a numerical analysis of 
trajectories in the presence of space charge. Essential features of the computer 
codes for the three-dimensional trajectory calculations are explained and the 
mechanical layout of the cathode emission system is described. 

The development of lens systems between the monochromator and the target 
and between the target and the analyser requires specification of the necessary 
range of impact energies at the sample and the momentum space, i.e. the ac-
ceptance angles there also. In Chap. 7 we therefore briefly consider the various 
possible applications of electron energy loss spectrometers and the specifications 
for the beam parameters at the target that arise in the various applications and 
because of the different scattering mechanisms in electron-surface scattering. A 
section on the systematics of lens aberrations of nonrotationally symmetric lenses 
follows. Three different lens systems of high performance are then described. The 
final chapter, 8, is devoted to a comparison of the theoretical results on space-
charge-limited currents in monochromators and the properties of lens systems 
to actual measurements performed on spectrometers, designed according to the 
principles and optimisation procedures suggested by the theoretical analysis and 
the computer simulations. 
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2. The Computational Procedures 

Electron optics involves analytical calculations as well as the numerical sim-
ulation of electron trajectories. With high performance computer work-stations 
readily available, analytical calculations, in particular the use of cumbersome 
perturbation theories, are being increasingly replaced by numerical studies. This 
chapter outlines the basic concepts and numerical methods employed in this 
volume. 

2.1 General Strategy 

The first approach to a complex electron optical system such as the electron 
energy loss spectrometer is to identify sections of the device that may be treated 
as separate objects with respect to the solution of the Laplace equation. To a 
good approximation, these computationally separate objects are those which are 
separated by a plate of constant potential, which intersects the beam vertically 
leaving only a small aperture for the beam. Penetration of the electric field from 
one space into the other may be neglected in such cases. A typical electron energy 
loss spectrometer is shown in Fig. 2.1. It consists of a cathode emission system, 
one (or more) energy dispersive elements for the "monochromator", a lens system 
between the monochromator and the sample, a second lens system between the 
sample and the analyser, a further energy dispersive element (the "analyser"), 
and finally the electron detector. Separate objects of an electron spectrometer are 
the electron emission system up to the entrance slit at the first monochromator 
and each of the energy dispersive cylindrical deflectors. We note that our design 
uses "real" slits for the energy dispersive elements, as opposed to "virtual" slits 
[2.1]. This is partly because of the computational simplification that follows 
from the use of real slits. A further advantage is that the resolution of the energy 
dispersive elements is independent of the potentials applied to the preceding or 
subsequent lens system and also, more importantly, independent of die image 
aberrations of the lens systems. On the other hand, real slits in monochromators 
are subjected to a large current load, which may cause charging of the slit plates. 
Whether this charging effect is detrimental to the goal of achieving the highest 
possible monochromatic current remains to be investigated. We will deal with 
this question in Chaps. 5 and 8. 

4 



2nd Analyser 
	

Sample 

1st Monochromator 	 Cathode 

Fig. 2.1. A typical electron spectrometer comprising a cathode emission system, a first energy disper-
sive system (the monochromator), two lens systems, a second energy dispersive system (the analyser), 
and an electron detector. Since the energy dispersive elements have small entrance and exit slits, 
field penetration may be neglected. The cathode system, the energy dispersive systems and the lens 
systems may then be treated as separate electron optical entities, though their optical properties have 
to be matched to each other for the optimum performance of the entire system 

In addition to the energy dispersive elements terminated by real slits, the 
lens system between the exit slit of the monochromator and the sample is an 
electron optical object which can be treated separately, although one has no 
slit near the sample. The region around the sample, however, is encapsulated 
within equipotential electrodes, in order to create a field-free region around the 
sample and ensure well-defined scattering parameters in the experiments. The 
lens system between sample and the entrance slit of the analyser is likewise 
a separate object. Frequently, the same type of energy dispersive elements are 
used for monochromator and analyser. Thus beam parameters as energy, shape 
and angular apertures are then also similar at the exit slit of the monochromator 
and at the entrance slit of the analyser. Since, furthermore, the energy loss of 
electrons scattered from the sample is typically a small fraction of the beam 
energy at the sample, the same lens system may be used between the sample 
and the analyser and between the monochromator and the sample. Time reversal 
invariance of the trajectories ensures that a beam emerging from the exit slit of 
the monochromator and forming an image of this exit slit at the sample projects 
an isomorphic image of the exit slit of the monochromator at the entrance slit 
of the analyser, provided that the lens system is symmetric around the sample in 
geometry and applied potentials. 

Our computational approach for calculating the electron optical properties in 
each of the separate objects is basically of the "brute force" type, namely, we 
solve the Laplace equation in two or three dimensions, calculate the trajectories 
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and determine the focal properties and image aberrations with no approximations 
other than that one has to work with finite elements. It is important, however, in 
this approach to develop a strategy on how to pursue the calculations and how to 
vary the parameters involved, since one easily goes astray in the hyperspace of 
parameters. This strategy involves the use of analytical solutions of a problem in 
particular limits, whenever such solutions are available. As the strategies depend 
on the nature of the electron optical objects, they will be discussed with those 
in the later chapters, In the following sections we discuss the general mechanics 
of the calculations which apply to all objects, while specific features of the 
calculation will be discussed in connection with the various objects. 

2.2 The Solution of the Laplace Equation 

Suppose an electron optical object consists of N electrodes with independently 
variable potentials eUi . For any particular geometry of the electrodes the Laplace 
equation must then be solved N times in order to construct the potential for an 
arbitrary combination of potentials eUi . This is achieved by solving the Laplace 
equation with the potential on all electrodes set equal to zero, save for one 
electrode i to which one unit of potential, 1 eV for example, is applied. If the 
particular solutions of the Laplace equation with these potentials are Vi(x, y, z), 
then the general solution for an arbitrary choice of all the U1 is 

V(x,y,z)= Eu,vi(s, y ,z) . 	 (2.1) 

The linearity of the Laplace equation then guarantees that one has indeed a so-
lution of the Laplace equation since the boundary conditions on the electrodes 
are correctly fulfilled with the procedure. Furthermore, the uniqueness theorem 
ensures that the solution is the correct and the only one. The numerical solution 
of the Laplace equation is performed using a simple algorithm, which is de-
rived from a Taylor expansion of the potential around a particular point in space 
(x,y,z): 

ay. 	1 a2v.  v(x+ Ax,y, z) = V (x, y, z)+ — As + – --(Ax) 2  ax 	2 ax2  
aV 	1 a2V 

AV (x – x, y,  z) = V(x,y, z) – 	As + 
2–ax2 

( x)2  , 
ax 

aV 
V(s, y + Ay, z) = V (x , y, z)+ —

0y 
Ay +

v 
(Ay)

2 
, 

2 ay2  

V(x , y – Ay, z) = V (x , y, z) – —
av 

Ay + –
1 
—a2v  ay 	2 ay2 

ay v(x, y , z Az) = V (x , y, z)+ — Az + –
1 
—52v (Az) 2  

Oz 	2 5z  
ava2v-  v(x, y ,z – Az) = V (x, y, z) – — Az + —(Az) 2  . 
aZ 	2 0z  

, (2.2) 
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Adding these equations and using the Laplace equation 

a2v  a2v a2v 
— —  =0 

ax2  0y2  8z2  

leads to 

(2.3) 

1 
V(x, y,z)= 	1  

1 1  

	

2 ( 	(Ax)2 + (Ay)2 + 	(202 
 ) 

(V(x +  Ax, y, z) + V(x  Ax,y, z)  
(Ax) 2  

V(x, y + lly, z) + V(x,  y — dy, z)  

(AY)2  

	

Az))(A z)2 	
(2.4) 

Repeated application of this equation to each point within a mesh, subject to the 
appropriate boundary conditions, eventually converges to the numerical solution 
of the Laplace equation. The final result of several iterations of the algorithm in 
(2.4) is then an array of numbers describing the potential at each point of the grid 
when a unit potential is applied to one particular electrode. The final potential 
grid for starting the trajectory calculation then follows from N such converged 
arrays using (2.1). 

The rapidity of the convergence of the procedure depends on the number of 
points in the grid and may be speeded up by performing the calculation on a 
successively finer mesh [2.2]. Whether or not the solution of the Laplace equation 
has converged sufficiently is best tested by looking at the calculated trajectories, 
since even for a fixed geometry the number of iterations needed for a sufficiently 
accurate result depends on the potentials and the nature of the image aberrations 
one is interested in. 

Convergence is also speeded up by using positive feedback [2.3]. Instead of 
replacing the potential at a given point of the grid by the right hand side of (2.4) 
one replaces the previous value of the potential Vcad(x,  y, z) by the new value 
V„,,,(x, y, z) according to 

Vnew(x, 1/, = Vold (X, y, z) + feedback x [V,,,ic (x, y, z) — Void (X, y, z)] . (2.5) 

A feedback value of 1 reproduces the standard method of calculation. Feedback 
values above 1 lead to faster convergence. The price to be paid is that the results 
start to oscillate around their converged values. The procedure becomes unstable 
when the feedback approaches the value 2. The optimum feedback value has to 
be established in a set of test runs. 

For the cylindrical condensers, the Laplace equation in cylindrical coordinates 
(r, 0, z) is more appropriate, 

92v  10V 10 2V 0 2v 

	

=0 	 (2.6) 
Dr2  r Or r2  502 5z 2 
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There the algorithm reads 

V (r, 0, z) = 
1 

{[V(r, 0 + AO, z) + V(r, 0 — AO, z)] 
2 
 (

1 +  ,(Ar)2  + (Ar)2  r-00)2 0,02 

(Ar)2  
r209)2 + V(r + Ar, 0, z) (1 + —

Ar
) 

+ V(r — Ar, , z) 
2r  

(1 	
+ [V(r, 0 , z + Az) + V (r, 0 , z Az)] 

002  
x 

(Az)2 
+ p(r, 0 z) 

or)z
. 	 (2.7) 

co 
Since we are interested in solving for the potential in the presence of space charge 
as well, we have added the space charge term e(r, O ,  z)(iiir)2  1E0, where ea is 
the vacuum  dielectric constant. We note, however, that the simple superposition 
principle (2.1) does not hold if e t O.  Also, the feedback is not to be applied to 
the term containing e . 

2.3 Electron Trajectories 

Once the Laplace equation has been solved for the unit potentials on each of the 
independent electrodes, one needs to calculate the trajectories as a function of the 
potentials on these electrodes. This is performed by a stepwise integration of the 
Lagrange equations in the appropriate coordinate system. In cartesian coordinates 
the resulting difference equations are particularly simple. Let x(t), y(t) and z(t) 
be the coordinates of the electron at the time t; then 

i(t + At) =  

x(t + At) = x(t) + (t)At + V x (x,y, z)At 2  
(2.8) 

for x(t), with corresponding equations for the y and z coordinates. 
Sz (x , y, z) denotes the electric field at the position  x, y, z of the electron and 

At is the time step used in the integration. Note that e/rn, the ratio of the electron 
charge to its mass, may be set equal to unity if one is interested in the shape of 
the electron trajectories and not in the actual time scale involved. 

Some consideration is needed on how to determine the local field at some 
arbitrary point (x, y, z) from the potential calculated on a grid. The simplest 
approach would be to take the field to be the difference between the potential on 
the two nearest grid points along the x-direction and to divide by the distance. 
This procedure, however, introduces artificial discontinuities in the field, which 
is not consistent with the fact that the solution of the Laplace equation is smooth 
up to the second derivative at any point inside the electrodes. The trajectories 
also become rather inaccurate, unless one uses a very fine grid where the linear 
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dimension of the mesh is small compared to the dimensions of the apertures 
of the electron optical elements, e.g. the slit-width of the monochromator and 
the size of its image at the sample. Working with such a small mesh is rather 
inconvenient, however. Firstly, the convergence of the algorithm used to solve the 
Laplace equation becomes rather slow. Secondly, one also exceeds memory space 
of small- and medium-sized computers when three-dimensional calculations are 
required. It is therefore preferable to use a comparatively coarse mesh with 
linear dimensions of the order of the typical size of the smallest aperture and 
calculate the field from the potential with a more elaborate procedure that avoides 
discontinuities and is still fast enough to permit the calculation of the field at each 
time interval At in a sufficiently short time period. We describe such a method, 
which we have found to produce fast and accurate results, in the following. 

We denote the coordinates of the instantaneous position of the electron where 
we wish to determine the field for the next step of the integration by (x, y, z). 

The points on the grid where the potential is known from the numerical solution 
of the Laplace equation are denoted by coordinates xi, yi, zk, where i, j, k are 
integers. Suppose that the position of the electron (x, y, z) is such that 

XI < X  < xi+1 	Yj  <y  < Yj4-1 	zk <Z  < 4+1 • 	 (2.9) 

For the next step of the numerical integration we need the components of the 
electric field vector in all three dimensions. We explain the procedure with the x-
component Ez (x, y, z) as an example. As a first step, we fit the potential along the 
edges of the bar surrounding the instantaneous position of the electron as depicted 
in Fig. 2.2. In a second step we calculate the electric field as a function of x on 
each of the edges of the bar namely £(x, yi, zk), Ex(x,Vi+1,zi,), ez(x, Yj, 
Ez (s, 	, z+1), as the derivative of the polynomial fit to the potential. The field 
at the actual point of interest (x, y, z) then follows from a linear interpolation. 

X 

Fig. 2.2. Illustration for the interpolation scheme used to calculate the x-component of the electric 
field at the instantaneous position r = (x, y, z) of an electron using the potential on 16 points of the 
grid on which the Laplace equation has been solved numerically 
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We now describe the mechanics of the procedure in greater detail and begin 
with the polynomial fit. The order of the polynomials is chosen such that a unique 
fit to four or six grid points is obtained. Here, we explain the procedure with a 
third-order polynomial fitted to the four grid points along the edges of the bar as 
depicted in Fig. 2.2. We use the third-order polynomial 

V(x, Y3, zk) = V(s) = ao + ai(x — xi-i) 
+ a2(x — xi-1)2  + a3(x — x,-1)3 . 	 (2.10) 

Sometimes fitting to a sixth-order polynomial with even exponents only is ap-
propriate, in situations where symmetry requires the coefficients of terms with 
odd exponents to vanish, as we shall see. 

With Ax = si4.1 —xi we have a set of equations that determine the coefficients 
ao —  03.  

V(xi_i) = 00  , 

V(xi) = ao + Ax + a2(Ax) 2  + a3(ZAx)3  
V(x 4 1) = ao + a422ix + a222(Ax)2  + a323 (A43  5 

V(X 2+2) = ao + ai3Ax + a23 2(ilx)2  + a333043  . 

These equations may be cast into matrix form: 

V(x) 
xi. ._i ) 	. 01°0 

11 12 13 
01  02  0\  

V(xi+1) 	
2 

2°  21  22 	
ai (ii,x) 1  

2 

( 

V(x 2) 	30  31  32  3V  \a3(Lx)3  

or in symbolic notation 

V = m. a , 	 (2.13) 

where V is a vector having the elements V(xi_i)... V(x i4.2), a is a vector with 
the elements ao(Ax)°  ... a3((Ax)3  and M is a matrix whose elements Mii have 
the form 

Mi; = (i) i 	 (2.14) 
- 

The inverse of this matrix depends only on the order of the polynomial, that is, 
on the number of points along the x-direction used to fit the polynomial. This 
number of course remains the saine throughout the calculation of a trajectory 
and the inverse of M therefore needs to be calculated only once. The fitting 
procedure is thus reduced to a simple matrix multiplication: 

= 	V . 	 (2.15) 

The field at x is then calculated from the coefficients of 

Ex  = ai 2a2(x — xi_i)+ 3a3(x — 	. 	 (2.16) 

(2.11) 

(2.12) 
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The same procedure is adopted for the three remaining edges of the x-bar. The 
field at the electron coordinates (x, y,  z) is then calculated using the linear inter-
polation 

Y  AyYj  ) (1 z 	 

+ Ex (x, Yj+1 zk) Y 	Yi 1 	z 	zk  Ay 	Az 

Y Yj z - zk  

Ay 	Az 
,y — yi z — zk 

+ Ex(s, 	, 4+1) 	 (2.17) 
Ay Az 

The y and z components of the electric field are calculated using the same 
procedure by fitting the potential along the y and z bars. The number of points 
and thus the order of the polynomials need not be the same in all three directions. 
When applied to the calculations of the trajectories in a lens system, one may 
make use of the fact that the electron trajectories are not too far off the optic 
axis and that the lens has C2v  symmetry, the optic axis being the twofold axis. 
It is then convenient to take the optical axis as one coordinate axis, typically the 
x-axis. Because of the C2v  symmetry involved, the potential is an even function 
of the cartesian coordinates y and z, when the y- and z-axes are oriented such 
that the xy-plane and xz-plane are the mirror planes of the lens sytem. We will 
come back to this issue and describe some further details of the calculations and 
appropriate measures to speed up the calculations in Chap. 6. 

The trajectory calculations in the cylindrical deflectors may be carried out by 
a similar procedure. In cylindrical coordinates, the Lagrangian reads 

L=—(r +r 0 +z)— eV(r, 0, z) 

	

272  -2 	2 '2 	. 2 

2 
	 (2.18) 

where r, 0, z are the radial, the angular, and the z-coordinate orthogonal to the 
deflection plane, respectively. The stepwise integration of the equations of motion 
follows the scheme 

j(t) = —2i.(t)0(t)/r(t)+ 4(0 , 

f(t) = r(t)02(0+ e,At)  , 

2(1) = E z (t) , 

f(t + At) = f(t) + f(t)At, 

	

r(t + At) = r(t)+ f(t)At + 
	

(2.19) 

	

+ At) = 	+ g(t)At , 

0(1 + At) = 0(1) + il(t)At +  

	

+ At) = 	+ i(t)AI , 
z(t + At) = z(t) + goAt + I2(t)Al 2  . 
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Here Er, E9, Ez  are the derivatives of the potential with respect to r, 0, and z, 
respetively. As in (2.8), we have set elm equal to 1. The last two equations 
of motion need to be integrated only when the dimensions of the deflector in 
the z-direction are comparable to the size of the gap between the inner and 
outer deflecting plate so that the terminating potentials at the top and bottom 
of the deflector become important. For a cylindrical deflector where the gap is 
small compared to the height, the  Es-component  of the field vanishes and the 
trajectories become straight lines with respect to z. As we shall see in the next 
chapters, the use of a vertical height of the deflector comparable to a gap size with 
an adjustable potential on the top and bottom cover plates offers the possibility 
of adjusting the first-order focus via this potential and also of balancing the 
divergence of the beam due to electron-electron repulsion. 

The interpolation of the field components Er, Ea, Ez  is performed as described 
above with a modification concerning Ez : fitting the potential around the centre 
plane of the deflector is performed with an even polynomial in the z-coordinate 
measured from the central radial plane. It is thus assumed that top and bottom 
plate have the same potential, which makes the deflector symmetric with respect 
to the central plane. 

Finally, it should be noted that the interpolation scheme for the field requires 
the potential to be defined one mesh unit before the starting point of the electron 
e.g. at the entrance slit of the deflector (2.10) and also one mesh unit beyond 
the target. In our calculations, which neglect field penetration through the slits, 
we take these potentials to be equal to the potentials at the starting and target 
position, respectively. 

2.4 Space Charge Limited Current 

Since the prime objective of this study was to improve the intensity of high 
resolution electron energy loss spectrometers, space charge will be an important 
consideration. While it is obvious that space charge places an upper limit on the 
current of a monochromatic beam, it is less obvious which of the electron optical 
elements involved in the production of the beam is the limiting factor. In this 
section we will give some qualitative consideration to this issue. - 

Electron trajectories in the presence of space charge and likewise the max-
imum current which may be injected into an aperture cannot be calculated in 
a closed form except for a few simple geometries. Since at this point we are 
mereley interested in the order of magnitude, it should suffice to 'estimate the 
current using one of the simple geometries for which the space charge problem 
can be solved analytically, and use this solution as a crude representation of the 
actual electron optical system. 

We begin the analysis with the estimate of the maximum current which can 
be fed into the entrance slit of the monochromator. For the space charge problem, 
we use the model of the space charge limited current flow between two parallel 
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plates [2.41. In an actual cathode emission system, the cathode has the form 
of a fine tip and furthermore there are focusing elements between the cathode 
and the entrance slit of the monochromator. Such a device allows the beam to 
diverge between the cathode and the entrace slit and the effect of the space 
charge in a real cathode emission system is therefore less than for the parallel 
plate arrangement. The maximum feed current calculated for the parallel plate 
system is therefore a lower bound for the current of a normal cathode emission 
system. For a parallel plate system the current that may pass through the entrance 
slit of the monochromator is 

4 	hs 

	

= 
9
–kE3/2 —

d2 	
(2.20) 

where h is the height of the entrance slit, s its width, dk  the distance of the 
emitting plate from the entrance aperture, and E the energy of the electrons 
at the entrance aperture of the monochromator. For reasons of simplicity it is 
assumed that the initial kinetic energy of the emitted electrons is zero. The space 
charge constant k is 

k =6.0\1-
2

2 = 5.25 x 10-6  A/eV3/2  . 	 (2.21) 
me 

As already mentioned, the value given by (2.20) is a lower bound to the max-
imum feed current. An alternative to the parallel plate model is to consider the 
broadening of a ribbon-shaped beam under the influence of its own space charge. 
This model has been discussed elsewhere [Ref. 25, p.361. It eventually leads to 
the same equation for the maximum feed current as (2.20), except that the numer-
ical factor is now two, rather than 4/9. It thus appears that (2.20) is a reasonable, 
model-independent, analytical description of the monochromatic current. 

Inspection of (2.20) tells us that the effect of space charge in the cathode 
system does not appear to impose any upper bound on the maximum feed, since 
with respect to the cathode emission system one is free to choose appropriate 
values for the parameters h,s,dk and E in (2.20). As, on the other hand, one 
finds experimentally that the current produced by a monochromator is indeed 
limited, the monochromator itself appears to be the current-limiting electron 
optical object. Technical improvements, which would permit the monochromator 
to handle more feed current, should therefore directly generate higher count rates 
in a spectrum. In order to achieve such an improvement a detailed numerical 
analysis of the optical properties of the cylindrical condenser in the presence of 
space charge was performed and will be presented in Chap. 5. In the end, the 
nature of the cathode emission system will also determine the performance of 
the  spectrometer, since the monochromator and transport lenses also require that 
the feed beam for the monochromator be well collimated. 

The significance of the space charge in the energy-dispersive parts of an elec-
tron spectrometer has been noted earlier [2.11, and an analytical expression for 
the monochromatic current of a cylindrical deflector was deduced from a simple 
model, which accounts for the effect of space charge on the electron trajecto- 
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ries inside the cylindrical deflector [Ref. 2.5, pp. 49ff.]. While this model was 
the first to predict monochromatic currents which were roughly consistent with 
experimental results, it failed to provide correct guidelines for the optimisation 
of cylindrical deflectors to operate under space charge conditions, as we shall 
see. 
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3. The Electron Optics of the Cylindrical Deflector 

The basic properties of the cylindrical deflector as an electron dispersive device 
are discussed in this chapter. It is shown that cylindrical deflectors terminated 
by equipotential plates have no disadvantages compared to an ideal field ter-
mination when the deflection angle is properly adjusted. Cylindrical deflectors 
can also be used as retarding devices, which allows a stepwise monochromati-
sation of a beam, without intermediate lenses for retardation. The transmission 
of electron dispersive systems is related to the angular aberration. The concept 
of "dispersion compensated" spectrometers and the reasons for their failure in 
practice are investigated. 

3.1 The Ideal Cylindrical Field 

In this section we summarise a few basic equations for the ideal cylindrical field 
and electron trajectories in that field. The equations permit the calculation of 
the electron optical properties and the energy resolution of devices with an ideal 
cylindrical field. In practical systems, the field is distorted due to the presence 
of entrance and exit apertures, which are usually equipotential surfaces. The 
fringe field of the cylindrical deflector is therefore quite different from the ideal 
cylindrical field. We will see in Sect. 3.2 that the influence of the fringe field on 
the electron optical properties is by no means a marginal one. The equations for 
the electron trajectories in the ideal field are therefore of limited practical use. 
They do serve, however, as a reference frame for the assessment of the electron 
optical properties of a real deflector. The presentation to follow also introduces 
basic parameters and their notation. 

The electric field between two metal cylinders of infinite length is given by 

AV 1 
Er = 1n(R2/Ri) r 

where Er  is the radial component of the electric field and AV the voltage differ-
ence between the cylinders. R2 and R1 are the inner radius of the outer cylinder 
and the outer radius of the inner cylinder, respectively; r is the radial coordinate. 

An electron with mass m and velocity y in the deflecting field Er  travels on 
a circle of radius r when 

mv2  2E0  = — CET  

(3.1) 

(3.2) 
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where Eo is the "pass energy" of the electron and e the elementary charge. The 
trajectories of electrons subjected to the field of an ideal cylindrical deflector 
may be calculated analytically PI] (see also Sect. 4.1). It is straightforward to 
show, e.g., that an electron optical device with the ideal cylindrical field has 
first-order focusing properties with respect to the entrance angle al, where al 
denotes the angle in the radial plane between the tangent to the circle of radius 
r and the actual electron trajectory. If 0 denotes the angular coordinate of an 
electron in the cylindrical field, first-order focusing is achieved after the electron 
has travelled a distance equivalent to the angular coordinate 

IT 
Of,ideal = 	Ps-% 127.28°.  (3.3) 

If electrons embark on trajectories at a particular angular coordinate 0 ---- 0 with 
an angle ai and with a small radial deviation  Yi  from a particular radius ro 
(typically the central path), then y2, the radial deviation at the first-order focus 
point at 9 = Of,ideal, will be given by 

Y2 = —yi + ro —
Eo 

— —
3 

roal 7 
SE) 4 2 

(3.4) ( 

where SE is the deviation of the electron energy from the pass energy E0  (3.2). 
Thus, the ideal cylindrical field shows an energy dispersion equivalent to the 
mean radius ro 

dy 
E°  crE = r°  • 

Equation (3.4) also tells us that the magnification of a cylindrical field optical 
device is —1, which means that when a slit is placed so as to limit the maximum 
value of yi, the image of this slit will be of the same width. The position of 
the image depends on the energy, which makes the device an energy selective 
one when equipped with an entrance and an exit slit. From (3.4) and (3.5) we 
may also calculate the energy resolution of the device. According to (3.4), the 
maximum positive energy deviation SE, from the pass energy E0 is permitted 
for an electron with ai = 0 which passes the entrance slit at yi = +s/2 and 
arrives at the exit slit with 112  =1-42, where s is the width of the entrance and _ 
exist slit, 

= — . 	 (3.6) 
E0 ro 

When the entrance slit is illuminated with a beam consisting of a bundle of 
electron trajectories with a distribution of angles ai up to a maximum angle ai m  
the device transmits electrons of nonzero ai at even higher (5E+ . The maximum 
positive energy deviation (5E+  is then 

(5E+ 	s 4 2 
(3.7) 

E0 ro 3 

(3.5) 
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The maximum negative energy deviation SE_ for a transmitted electron occurs 
when the electron passes the entrance slit with an angle ai = 0 at yi = —42 and 
arrives at the exit slit with y2 = —s/2. Inserting this condition into (3.4) yields 

(3.8) 

The base width of the transmitted electron beam is therefore 

AEB 2s 4 2  
(3.9) 

Eo 	ro 3 

This is the basic equation describing the energy resolution of an ideal cylindrical 
deflector. Similar equations hold for other deflecting energy dispersive devices 
[3.21. The effect of the second-order angular aberration term in (3.4) on the 
energy resolution is quite obvious. While the base width of the transmitted energy 
distribution is easily calculated, the full width at half maximum AE1 12  is usually 
the quantity which is quoted for an energy selective device. If ai m  is small, the 
transmitted energy distribution has a triangular shape with the full width at half 
maximum of 

Z1E112 = 1ZAEB . 	 (3.10) 

This result simply follows from the —1 magnification of the device which makes 
the transmission function a self-convolution of the rectangularly shaped transmis-
sion function of a slit aperture. For larger ai m , the transmitted energy distribution 
develops a round shape and also acquires a tail towards the high energy side. 
We shall deal with this issue in greater detail in Sect. 3.4. It is useful to define 
a measure of the angular spread of the injected beam in terms of the ratio slro . 
With the help of (3.4), one finds that the maximum entrance angle al for an 
electron having the nominal pass energy (SE =0) is 

3s  1/2 
aim = (-4ro 

) 	
(3.11) 

Electrons injected into a cylindrical deflector with a > aim  merely contribute 
to the (high-energy) tail of the transmitted energy distribution and thus have an 
adverse effect on the performance. 

In the derivation of (3.4), an analytical form for the electron trajectories in the 
ideal cylinder field was used in which radial deviations y from the mean radius 
ro and angular deviations ai up to second order were considered. An analytical 
calculation of high order terms, though feasible, is a major task, and numerical 
analysis of electron trajectories becomes advantageous. This is even more true 
when the field differs from the ideal cylindrical field, which is the typical practical 
situation. We have performed the numerical solution of the Laplace equation 
in two dimensions using the algorithm (2.7). Comparison with the analytical 
expression for the potential serves to test the program and the convergence of 
the result. The potential was calculated using a grid of 200 points along the 
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Fig. 3.1. (a) Electron trajectories with the initial conditions cri = —4.5°, —2.25°, 0, +2.25 0  and 
4.5° and r = ro = 35mm in the ideal cylindrical field. The dotted lines are the equipotential lines. 
The angular coordinate is displayed from 0 to 127.2°, the radial coordinate from R1 = 25mm to 
R2 = 45 nun. (b) The radial deviation y2 at the exit slit (0 = 127.2°) as a function of the entrance 
angle al. The parameter is the radial deviation at the entrance slit yi = —0.15, 0, +15  min.  The 
figure displays y2 between —1 and +1. The parallel lines indicate a reasonable size for the slits, 
namely s = 0.3mm. The curves for y2 are displaced parabolas indicating that no significant higher 
order corrections to (3.4) occur for the ideal cylindrical field 

angular coordinate 0 and 100 points on the radial coordinate r, with the radius 
of the inner and outer electrode Ri = 25 mm and R2  = 45 mm, respectively. The 
trajectories were calculated using 5000 integration steps. The trajectories — as 
calculated for the ideal cylinder field — are shown in Fig. 3.1a, where the radial 
coordinate r and the angular coordinate 0 are displayed as cartesian coordinates. 
The trajectories focus after a pass length corresponding to a deflection angle of 
Of = 127.28°. In Fig. 3.1b, the radial deviation y2 at 0 = 127.28° is plotted -as a 
function of the entrance angle ai. The radial deviations 1/2 appear to be parabolas 
displaced by yi just as described by (3.4). This is confirmed when a polynomial 
is fitted to the calculated values of  1/2(1/1  , 01). One may use a polynomial fit of 
the type 

y2(yi, ceI) C1,Y1 Cyyq+ Cyyyy?... +  Cacti  + CceotaT + Cceaaa? + 

+ Ccey  al + Cor yyoti 	Cctayabi • • • • 	 (3.12) 

For the range of interest here, Iyi I < 1 mm, lai I < 3°, we find that all coefficients 
but Cy  and C. are negligible (10-2  — 10-3  of the Cy , C.„ terms). For Cy  and 
Cc,,, we obtain 
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Cy  = —1.00 , 	 (3.13) 

= —46.66 mm Aro , 	 (3.14) 

as predicted by the analytical solution. The coefficient Cy y  and higher orders 
appear to vanish identically. 

It may be useful at this stage to compare the aberrations of the ideal cylin-
drical field with the aberrations of rotationally symmetric lenses and relate our 
terminology to that used there. Lens aberrations are classified according to the ex-
pansion (3.12). The term linear in a vanishes because the expansion is performed 
at the first-order focal point where the coefficient Cc, vanishes by definition. The 
coefficient Cy  is the magnification. It is straightforward to show that all the 
second-order expansion coefficients vanish also, if y denotes the deviation from 
the optic axis and if the lens has circular symmetry, or at least a mirror plane 
perpendicular to the direction y. The lowest aberration coefficients are of third 
order in ai and yi  . The effect of the four third-order aberration coefficients on 
the image is illustrated in Fig. 3.2a—cl. We begin with the third-order term in ai 
as shown in Fig. 3.2a. Beams with larger ai have a shorter focal length than 
beams with smaller ai. Because of the symmetry of the lens, this shortening 
effect must be even in a(— a2) which makes the lowest coefficient in z1y2 of 
third order in al (Fig. 3.2a). For electrostatic lenses, the third-order coefficient 
is always negative [3.31 For a rotationally symmetric lens, one therefore defines 
a spherical aberration by 

Ay2 =  —Ca l with C. >  0. 	 (3.15) 

The "coma" aberration is illustrated in Fig. 3.2b: beams of larger a emerging from 
points off the optical axis form a stigmatic image with a smaller magnification 
than beams with small a. 

Off-axial points have their first-order image on a non-planar surface. Figure 
3.2b shows the image surface for rays within the "meridional" plane spanned by 
the optical axis and the y-direction. Rays 'within the "sagittal" plane perpendicular 
to the meridional plane may have their focus on a differently curved image 
surface. If the two image surfaces have a different curvature then a stigmatic 
focusing cannot be achieved. This lens aberration is therefore named astigmatism. 

Finally, one has the distortion as the last of the third-order aberrations 
(Fig. 3.2d). The effect of distortion is that the image of an object in the form of 
a square become distorted to a pin-cushion- or a barrel-shaped image, depend-
ing on the sign of the distortion coefficient. If we compare the classification of 
the image aberrations developed for circular lenses and in ordinary light optics 
with the aberrations that we have encountered in the optical properties of the 
ideal cylindrical field, we find that the image formation in the ideal cylindrical 
field is free of coma, astigmatism and distortion. It is also free of third-order 
angular aberration. This third-order aberration is, however, replaced by an angu-
lar aberration of second order in a, an aberration that vanishes identically for a 
rotationally symmetric lens. 
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Fig. 3.2a-d.  Illustration of the four different third-order aberrations in the image. Rays drawn as 
dashed lines are derived from the rays drawn as solid lines through a mirror operation. (a) Angu-
lar aberration, also known as "spherical" aberration for rotationally symmetric lenses. The mirror 
symmetry (or the rotational symmetry) requires that the lowest angular aberration coefficient is of 
third order in cri. (b) The coma aberration. The coma may be described as the dependence of the 
magnification on ai. (e) Astigmatism in the meridional plane. For off-axial points, the first-order 
image in the angle ai lies on a curve which is a circle in lowest order. Extended to three dimen-
sions the curve becomes a surface known as the meridional image surface. On a fiat image plane 
the al-image of an off-axial point becomes a line. The first-order focal point for rays inclined with 
respect to the meridional plane lies on a different image surface, the tangential image surface. In 
between the tangential and the meridional image surface, one may define a surface of least confusion 
for the image of an off-axial point object. (d) The distortion may be understood as the dependence 
of the magnification on the size of the object. The distorted image of a square is either pin-cushion 
or barrel shaped, depending on the sign of the distortion coefficient 
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We notice from this comparison of aberrations in the ideal cylindrical field 
and in lenses that the classification and terminology developed for lenses are 
not necessarily useful in the assessment of energy dispersive devices because of 
the different symmetry of the optical elements. There is a further deeper rooted 
difference. In light optics, a Taylor expansion of the image aberrations and a 
classification of aberrations according to this expansion serves a useful purpose 
as higher order expansion coefficients are small. In electron optics, especially in 
the electron optics of electrostatic elements, the higher order aberration coeffi-
cients are by no means small. It would therefore be pointless to try to optimise 
a cylindrical deflector by modifications that affected the second-order angular 
aberration without monitoring the higher order expansion coefficients. More ap-
propriate methods specific to the electron optical elements and objectives of their 
design will be discussed in the sections to follow. 

3.2 The Cylindrical Deflector 
Terminated with Equipotential Electrodes 

In order to use the cylindrical deflector as an energy selective device, entrance 
and exit apertures are required. When these apertures take the form of a metal 
plate with a slit, the potential inside the cylindrical deflector is substantially 
distorted near the entrance- and exit-plate. The distortions of the fringe fields 
may be minimised by replacing the solid metal plate by a series of small metal 
strips bearing each a potential chosen to match the logarithmic potential inside the 
deflector. Such a fringe field correction is typically applied in cylindrical mirror 
type analysers as used for Auger- and other electron spectroscopies. Because of 
the complications introduced by such field terminators it seems worthwhile to 
search for alternatives and also to investigate the electron optical properties of 
cylindrical deflectors with equipotential terminating apertures. 

A relatively simple correction to the fringe field is achieved by dividing 
the terminating electrode into three parts, with the potential of the central part 
matched to the central potential of the cylindrical deflector and those of the inner 
and outer electrodes to the potential of the inner and outer deflecting electrodes, 
respectively. Figures 3.3a and b show equipotential lines for a cylindrical deflec-
tor terminated by a single radial metal plate and by a divided plate as described 
above. One sees that for electrons near the central path, the field remains nearly 
the same as that of the ideal cylindrical field, save for a small fraction of the 
path length where the electron approaches the aperture closely. The technical 
realisation of a potential termination as in Fig. 3.3b is obviously rather simple as 
no additional potentials need to be applied. Nevertheless, we have decided not to 
use this type of potential termination because it involves large field gradients in 
the vicinity of the electron beam, which cause large deflections of trajectories of 
electrons having an energy different from the pass energy. In combination with 
surface charging of the electrodes caused by the electron beam, one may create 
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Fig. 3.3. (a) Equipotential lines for a cylindrical deflector terminated by a metal aperture. The potential 
of the aperture is the arithmetic average between the potential of the inner and outer deflecting plate. 
The figure refers to a ratio R2//i1 = 1.8. As with previous figures the radial and angular coordinates 
are displayed as Cartesian coordinates. (b) A simple fringe field correction is obtained when the 
aperture is divided and the potentials of the inner and outer deflecting electrodes are applied to the 
inner and outer parts of the aperture, respectively. The field penetrates less into the defléctor than in 
Fig. 3.3a 

a situation that may be difficult to control. In the following we will therefore in-
vestigate the optical properties of the cylindrical deflector with terminating metal 
plate electrodes. 

The Laplace equation was again solved according to the algorithm (2.7). 
An analytical expression for the potential in a cylindrical deflector terminated by 
equipotential plates [3.4] is known but this has the form of a Fourier-series, which 
converges very slowly. For the calculation of the trajectories, the derivatives of 
the potential with respect to the cylindrical coordinates are needed. There, the 
Fourier-series does not converge at all. This circumstance was overlooked in a 
previous treatment [3.5, 6] of the trajectories in a terminated deflector. 

The Laplace equation was solved on a 100 x 200 grid, where the numbers 
refer to the radial and angular coordinates, respectively. The convergence of the 
Laplace algorithm is slower than for the ideal cylindrical field. As before, we 
tested whether the result for the potential had converged sufficiently by calculat-
ing the trajectories. The results were found to be satisfactory after 2000 iterations 
of the Laplace algorithm over the entire field, when no feedback was used. In 
these calculations the potential on the terminating electrodes was equal to the 
average of the potential on the inner and outer deflecting plate. 

Figure 3.4 shows the trajectories for a cylindrical deflector with the inner and 
outer radius of  Rj = 25 mm and R2 = 45 mm, respectively. The radial coordinate 
at the entrance position was ro = 35 mm. A first-order focus is achieved but 
at a significantly smaller deflecting angle than with the ideal cylindrical field. 
Instead of Of = 127.3° we now obtain Of 106.8°. Figure 3.4b again shows the 
exit position y2 as a function of the entrance angle oei, with the starting position 
pi  =  —0.15,0,  +0.15 mm as a parameter. Comparison of Fig. 3.1b and 3.4b shows 
that the image aberrations for the terminated deflector are qualitatively similar to 
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Fig. 3.4. (a) Trajectories in a cylindrical deflector terminated by equipotential entrance and exit 
apertures. First-order focus is achieved at an angle Of = 106.8° when the radii of the inner and 
outer plates are R1 = 25 mm and R2 = 45mm, respectively. The initial radial coordinate ro for 
the trajectories is in the centre between the inner and outer deflection plates, ro = (112  + R1)/2. 
The potential on the apertures is the arithmetic mean between the potential of the inner and outer 
deflecting plate. Note that in the cylindrical field this mean potential is found at the radial coordinate 
Tm  = -V.R2R2, which is smaller than ro. The effect of the aperture potential and the initial radial 
coordinate on the first-order focal length is relatively minor, though not negligibly small. (b) Radial 
position y2 at the first-order focus as a function of the entrance angle al. The parameter is the initial 
radial position yi = —0,15, 0, 0.15 nun. The parallel lines indicate a slit of 0.3 mm. The y2-curves 
are parabolas displaced by 0.15 mm, indicating that the magnification is —1 and that the largest 
aberration tenn is the second-order angular aberration 

those of the ideal cylindrical field, the ai -term being again the main aberration. 
quantitative analysis of the aberration wilris shows that the oi-umln is about 

10% larger than for the ideal field. Specifically we find 

	

C., real = —1.48 ro = 1.11 Caa,ide,a1 • 	 (3.16) 

The quanfiafive analysis indicates also that the coefficients Cyy  , CI" and Cy  aa 
are nonzero. For  all practical purposes these aberrations are too small to have 
a significant effect on the transmission and the transmitted energy distribution. 
It is important to note that the magnification of the device remains —1 and that 
the exit angles ag2 centre around  zero when the entrance angles do. Finally, the 
energy dispersion is somewhat less than for the  ideal field. Here we find 

dE 
= 33

'
8 mm = 0.966 ro 

dy 	
(3.17) 
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Real condenser 

Fig. 3.5. Deflection angle subtended by the deflect-
ing plates where first-order focusing is obtained as 
a function of  112/RI, where R2 and R1  are the 
radius of the outer and inner deflecting plates, re-
spectively. The dashed line is the optimum deflec-
tion angle according to the Herzog correction 
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The slightly larger angular aberration and the smaller energy dispersion seem to 
indicate a deterioration of the electron optical properties of the cylindrical de-
flector when terminated by metal plate apertures. However, for a fair comparison 
one needs to consider also the smaller deflection angle, i.e. the reduced size of 
the device. If one normalises a deflector with the ideal cylindrical field and the 
real deflector as described above, so that they have the same angular aperture 
and the same path length, the resolution of the terminated deflector is actually 
slightly better than the ideal field deflector. Thus the rather convenient scheme 
of terminating the cylindrical deflector by metal entrance and exit apertures has 
no adverse effect on the electron optical properties. 

The reduction of the first-order focal length for the terminated cylindrical 
deflector depends on the size of the gap between the inner and outer deflecting 
plate, or more precisely on the ratio of the inner and outer radius. In Fig. 3.5, 
we plot the deflection angle for first-order focusing Of as a function of the ratio 
R2/Ri . The angle Of approaches 127.3° as  112/R1 approaches unity. The reason 
is that, as the gap between the inner and outer cylinder closes, the fringe field is 
more and more confined to the immediate vicinity of the aperture plate. Thus the 
fraction of the electron path length in which the fringe field affects the electrons 
becomes smaller. In calculating the trajectories for the terminated deflector, we 
have assumed that the aperture plate is oriented along the radial coordinate, and 
that the gap between the aperture plate and the inner and outer deflecting plate 
is equivalent to an angle of 127.3/200 degrees. Cylindrical deflectors may also 
be terminated by an aperture plate placed at some distance from the deflecting 
plates. The appropriate corrections to the deflecting angle were first calculated by 
Herzog [3.7] who used the fringe field solution for the parallel plate condenser 
to estimate the fringe field correction of the cylindrical deflector. More extensive 
analytical calculations have also been performed by Wollnik and Ewald [3.2], but 
there again only an approximate solution for the fringe field was used which, like 
the Herzog correction, is applicable only in the limit of small gaps between the 
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inner and outer deflecting plates. This is also demonstrated in Fig. 3.5, where the 
reduction of the deflection angle according to the Herzog correction is plotted as 
a dashed line. While the Herzog correction leads to a practically identical result 
for small gaps, i.e. when R2/R1 is nearly one, there is a significant discrepancy 
for larger gaps. 

For high resolution electron energy loss spectroscopy, one is interested in 
larger gaps for several reasons. Larger gaps require larger deflecting voltages to 
be applied to the deflecting plates. The optical properties of the deflector should 
therefore become less subject to spurious potentials caused by local variations 
of the work function. Secondly, a larger gap also avoids the problem of the 
reflection of electrons of false energy from the deflecting plates. Such electrons, 
by virtue of this deflection, may pass through the exit slit, despite having an 
energy quite different from the pass energy. This causes spurious loss- or gain-
peaks in the spectra, a feature which plagued earlier instruments [3.8]. For gap 
sizes corresponding to a ratio of  112/Iii = 1.8, as used here in our model deflector, 
the spectra are largely free of such spurious peaks. So far we have investigated 
the effect of a terminating plate, the potential of which is the arithmetic average 
of the potential of inner and Outer deflecting plates. The deflector, however, also 
works quite well with a different potential on the aperture plate. One merely has 
a moderate shift in the first-order focal length as a function of this potential. The 
focal length becomes larger when the potential on the aperture is varied more 
in the negative sense. This may be used for a fine tuning of the focal length 
in order to compensate for imperfections in the geometry or deviations caused 
by charging and spurious work function effects. More importantly, the deflector 
may also be used as an asymmetric, retarding device. An example is shown in 
Fig. 3.6a. The nominal pass energy of the device is 1 eV, and I eV is also the 
potential of the electrons at the entrance aperture. The exit aperture however 
is at 1/3 eV, which means that the electrons leave the device with the energy 
reduced by a factor of three. The first-order focus is now at Or — 111 0  when 
1?2/R1 = 1.8, as before (compare Fig. 3.4). The exit angle of the trajectories 
may again be centred around zero, if one allows for a slight offset in the radial 
position of the entrance and exit slits, roi and ro2, the entrance slit being shifted 
inwards (by 1.2 mm when ro = 35 mm) and the exit slit shifted outwards by the 
same amount. Unlike the symmetric deflector, the asymmetric deflector has a 
magnification different from one. Empirically we found the approximate relation 

cy 	 -F°.25 
	

(3.18) 

where F is the retardation factor (3 in the example shown here). In order to 
achieve optimum transmission, the width of the exit slit s2 should match the 
width of the image of the entrance slit, which is ICv  is . The angular aperture 
of the exit beam is also different from the aperture of the entrance beam. This 
is in fact required from the conservation of phase space. Applied to a bundle of 
trajectories which have an entrance aperture angle ai and an exit aperture angle 
az, the conservation of phase space in two dimensions requires 
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Fig. 3.6. (a) Trajectories in a retarding deflector. The entrance aperture is at the average potential 
as before (Fig.3.4), the potential on the exit aperture is reduced by a factor of three. A first-order 
focus is again achieved, now at Of = 111°. The radial coordinate at the entrance (r01) and the exit 
aperture (r02) are displaced from the centre by about roi - ro r- -1.2mm and rra  - ro =  1.2 mm,  
when ro = 35 mm. This is in order to achieve a mean exit  angle  a2 of about zero when the entrance 
angles al are also centred around zero. (b) The radial coordinate y2 = r - r02 at the exit slit as a 
function of the entrance angle al. Parameter yi as in  Fig. 3.4b.  The second-order angular aberration 
is larger than for the symmetric deflector, and so is the energy dispersion. The magnification is also 
larger than one 1.3) 

y1V-ET =  12 1121/E72 • 

With E2 = E1/3 and using (3.18), one obtains 
'4115 

a2 al r 

As seen from Fig. 3.6b, the retarding deflector again has a second-order angular 
aberration. For the model deflector shown here with F = 3 we obtained 

= 2.05 ro . (3.21) 

The angular aberration is larger than for the symmetric deflector (3.16). This 
larger aberration must be matched against the energy dispersion which is also 
larger. For the deflector with F = 3 we found 

dy 
cT,TE  = 48 mm 	= 1.37 ro . 	 (3.22) 

The ratio of the angular aberration to the energy dispersion is thus comparable 

(3.19) 

(3.20) 
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for the symmetric and the retarding deflector. As we shall see later, retarding 
deflectors are extremely useful devices for forming monochromatic beams of 
high intensity. The final monochromator is usually preceded by a deflector op-
erating at higher pass energy. It has been realised for some time that the use 
of such pre-monochromators leads to higher monochromatic currents [3.9, 101. 
However, previous designs such as that described in [3.10] use a relatively com-
plex retarding lens between the pre-monochromator and the monochromator. Our 
calculation indicates that such a lens is superfluous when pre-monochromator and 
monochromator are properly designed and matched to each other. This remark 
is also pertinent to monochromators in the presence of space charge, as we shall 
see. 

We conclude this section with an extension of the analysis into the third 
dimension, retaining however the assumption of a strictly 21) cylindrical field. 
It is not particularly difficult to obtain an essentially 213 potential in the centre 
of a cylindrical deflector. It is merely necessary to ensure that the deflecting 
plates and the aperture plates extend sufficiently far into the third dimension, 
along the z-axis. Typically a total height of the deflector of four times the size of 
the gap between the inner and outer deflecting plate is sufficient. Focusing then 
occurs only in the radial plane, while along the z-direction the trajectories are 
straight lines. This is true, provided that the heights of the entrance and exit slits 
are sufficiently small to keep all beams within the centre part of the cylindrical 
deflector, where the influence of the top and bottom fringe fields is negligible. 
An upper bound on the height of the slits is also advisable for another reason. 
Energy selection in the cylindrical field is governed by the radial components of 
the velocity. An electron traversing the cylindrical field on a trajectory inclined 
at an angle fi to the radial plane has an additional z-component of the velocity 

vz  = vo  tan , 	 (3.23) 

where vo is the velocity along the central path. 
The kinetic energy of this electron is hence 

E  rn (v2; v2
9/

) 	rn v2 (1  + /32) 7  
2 \ 	2 9  

which is larger than the pass energy E0 by an amount 

AE E013 2  . 

This term gives rise to additional broadening of the transmitted energy distribu-
tion. The use of a particular slit height limits the maximum value of # and thus 
the unwanted broadening of the energy distribution. 

(3.24) 

(3.25) 
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3.3 Transmission of the Cylindrical Deflector 

In the preceding sections we have seen that the image formation of the ideal 
cylindrical fi eld as well as the properties of the cylindrical deflector terminated 
by equipotential apertures may be described by 

bE 
Y2 = +CyY1 + 2D  (— — 

2 
+ Eo 

z2 = 	roeffli 	 (3.27) 

where D is the energy dispersion and zi and z2 are the vertical positions in the 
object and image plane, respectively. The remainder of the notation is as before. 
Using (3.26) and (3.17), one may calculate analytically the transmission function 
of the deflector as a function of the incident energy, the angular aperture of the 
feed beam al, A and the geometric parameters of the device such as the width 
and the height of the entrance and the exit aperture, denoted by  si,  s2, hi, h2, 
respectively. The calculation does however involve rather elaborate, though ele-
mentary, integrations [3.11) and the result does not readily furnish a simple recipe 
for constructing an optimised device. Numerical analysis is another possibility, 
and we will perform such an analysis in  the next  section. As numerical calcu-
lation of a transmission function involves the integration of several thousands 
of trajectories, a substantial computational effort would be required to lucidate 
the dependence of the transmission on the many parameters of the system. It is 
therefore useful to perform a simplified analysis of transmission including consid-
eration of the base width of the transmitted energy distribution and then discuss  
the various procedures that yield an optimum set of geometrical parameters for 
monochromator and analyser. 

We first consider the transmission at' the nominal pass energy where SE  =  O. 
Figure 3.7a illustrates the exit slit of the deflector together with the size and 
position of the image of the entrance slit. In Fig. 3.7a and in the following it is 
assumed that the width of the image of the entrance slit I Cy  I si  is smaller than 
or equal to the width of the exit slit 82. We allow the magnification 1Cy  to be 
different from unity, which covers the normal as well as the retarding deflector. 
Because of the second-order angular aberration term in (3.27), the image is shifted 
by C„aa?. As long as the entrance angle al is small enough for the image of 
the entrance slit to fit into the exit slit, the transmission is unity. For entrance 
angles larger than a critical angle 

(s2 rylsi) 112  

at i 	\ 21C,„,a,1 
(3.28) 

the transmission decreases according to the fraction of the image that fits into 
the exit slit. Thus for the transmission as a function of ai, we have 

(3.26) 
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a.) 

Fig. 3.7. (a) Illustration of the size and position 
of the (first-order) image of the entrance slit of 
a cylindrical deflector at the exit slit. The image 
is smaller than the entrance slit if ICy lsi < 82, 
which is the case shown here. The image is 
shifted by the amount C„al. (b) Transmis-
sion (i.e. the fraction of the electrons that pass 
through the exit slit) as a function of the en-
trance angle al. Electrons are assumed to have 
the nominal pass energy 

entrance angle a l  

{ 

1, 	 0 < al < at 1  7 

T(ai) = s2 + ICylsi — 21C1a1 
) at1 < al < at2 1 

21Cy Isi 

(3.29) 

where 

(32+ 
a12 	21C1 ) 

is the critical angle beyond which all electrons with the nominal pass energy 
are blocked by the exit aperture. The transmission function T(ai) is displayed 
in Fig. 3.7b when ry  < 1. As one is essentially interested in electrons with 
an energy near the pass energy, we see already that the angular aperture of 
the feed beam ai m  should not exceed a t2 . For the simple yet important case 
where ry  = 1 and si = 32, the total transmission T„, of a deflector, when fed 
with a beam having a homogeneous angular distribution between ±ai m , may be 
calculated easily. The result is 

1 — (1C,„1/3s)(4,„ , 	< 	, 
Tc, = 2  _.1  

N am, (s/IC„ ,( 01/2 	2  , 01 . > 3/1 . 

The base width of the transmitted energy distribution is also easily calculated 
using (3.26). Following the same procedure as in Sect. 3.1 one has 
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6E_ 	(52 + ICylst +2 1Caam)  

Eo 	 2D 	, 

45E, 	(s2+ ryiSi) 	2 = + 	 + Am Eo 	2D 

for the minimum and the maximum energy distribution, respectively. The total 
base width of the transmitted energy distribution is then 

AEB 52 + iCy lsi -FIC„,„laT 
 m  +gm. Eo 	 D 

With these equations one may establish a simple criterion for a cylindrical de-
flector, optimised with respect to the angular apertures aim and film. For sim-
plicity we now confine ourselves to a symmetric deflector for which 82 = 81 and 
Cy  = —1. As we shall see in the next chapter, the current at the detector of a 
spectrometer approximately scales according to 

 '' I2 tot 
	 (3.34) 

where ZAE112 to, is the FWHM of the energy distribution transmitted by the spec-
trometer (usually referred to as the "resolution"). The exponent n is a number 
of the order of 2-3. Since the total current that may be fed into a deflector is 
proportional to the entrance apertures aim, P1m, the quantity 

ZiEg 

may be adopted as a figure of merit for the performance of the deflector, In the 
performance factor we disregard the loss in transmission described by (3.30), 
since the resulting optimum angle is comparatively small. After inserting (3.33) 
for ,A.EB, it is easy to calculate the maximum value of the performance relative 
to ai„, and film ; the optimum angular apertures are found to be 

„,2 	_ 	 
rack  I n — 1 	 ( m opt 	 3.36) — 

3 	1. 
Am opt — 

D n — 1 	 (3.37) 

For the ideal cylindrical deflector these equations reduce to 

3s 	/2 , 
aim opt =

(47'002 — 1)) 	
(3.38) 

Plm opt = ro(n — 1) 
s 	)

1/2 

One may use these equations as a first guide for choosing the appropriate relations 

(3.31) 

(3.32) 

(3.33) 

P= 	 (3.35) 

(3.39) 

30 



between s, ro, ai n„ and A ni  and also the slit height. Modifications to these simple 
considerations will be brought about by the lens system and the space charge in 
the monochromator. These equations also show that the optimum angle ai m  is 
smaller than the greatest angle that would still allow electrons to be transmitted 
at the pass energy. 

In a spectrometer, the monochromator also has to match the lenses and the 
analyser. The monochromatic current is projected onto the sample via a lens 
system which images the exit slit of the monochromator onto the sample. As 
we have discussed before, conservation of phase space imposes certain relations 
between the energy, the angular aperture, and the size in the object and image 
plane. We assume that the xy- and the xz-planes are mirror planes of the lens 
system, the x-axis being the optic axis. Conservation of phase space may then 
be formulated separately in the two mirror planes 

a2m 32 VITO = aisSis 
	 (3.40) 

[32m h2 ArE; As his \FE:is . 	 (3.41) 

Here al. and ,82,,, are the maximum angles of the beam emerging from the 
monochromator in the xy-plane and xz-plane, respectively. They are equal to the 
maximum angles of the feed beam of the monochromator ai m  and Ai m , provided 
that the deflector has symmetric potentials on the entrance and exit apertures, 
where one has also Cy  = —1. The suffix "is" refers to the corresponding quantities 
of the incident beam on the sample. In deriving (3,40) and (3.41) it is also 
assumed that a and  j3 be small, so that sin a a. By virtue of the electron beam 
excitation, the sample emits electrons whose characteristic energy is typically 
near the impact energy. We assume these electrons to have an even distribution 
in momentum space. The current of these electrons is then proportional to 

= aCVes fees Ses h es 	Ses hes 	sis  his  , 
aaesPesim 	es hes  > sis hig  

(3.42) 

where the quantities with the suffix es now refer to the characteristic quantities 
of the trajectories emerging from the sample and a is the excitation probability 
pertinent to the type of excitation to be studied. /14 is the monochromatic current 
produced by the monochromator, which we will find to scale to the base width 
of the monochromator (Sect. 4.4) according to 

A Ei5a . 	 (3.43) 

It follows immediately from (3.42) that the area at the sample that is imaged into 
the entrance aperture of the analyser should match the dimensions of the illumi-
nated area on the sample. If we now apply the rules of phase space conservation 
to the process of image formation between sample and analyser, we find for the 
current I. 
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(3.44) 

where al mA ATM are the maximum angles of trajectories into the analyser in 
the xy- and xz-planes, respectively and My , M, are the linear magnifications 
of the lens system in the y and z directions, respectively, and E0A is the pass 
energy of the analyser. It is convenient to have an expression for the current at 
constant resolution, and we therefore replace E0A and ./A4 by (3.33) and (3.43) 
and obtain the following expression for the current in the electron detector after 
passing the analyser 

ID  = cTTMTLITL2TA  
almAArnA  

Ees  My  Mz 

1 
X 	 L1EBA LIEBS U 

(25A + laya  joiLA ) D + ,BL A  

Here AEBA and AEAIM are the base widths of the energy distribution of the anal-
yser and monochrornator, respectively. We have also added the product of the 
four transmission functions, which characterise the transmission of the monochro-
mator (TM), the first lens system between monochromator and the sample (T1.1), 
the second lens system between sample and analyser (T12), and the analyser (TA). 
Each of these transmission functions, to lowest order in the apertures angles a 
and fi,  has the form 

T 1 — t c,a2  — tof3 2 	 (3.46) 

with a priori unknown coefficients t a  and tp. It is thus obvious that (3.45) 
cannot be used to calculate the optimum parameters for the cylindrical deflector 
without knowing the properties of the lenses involved and nor can these lenses 
be optimised without reference to properties of monochromator and analyser. 
Equation (3.45) also tells us that one should try to keep the image small, i.e. 
use small values of the linear magnifications M y  and M„ in order to have 
a large acceptance angle. On the other hand we shall find later that the Lem 
aberrations increase, when the magnification is too small. We must recognise 
that the optimisation of an electron spectrometer involves an element of skill, 
despite the advance in computational techniques. It also involves an iterative 
process in the optimisation of the various elements. 

Nevertheless, (3.45) shows us how to match the resolution of the analyser 
to that of the monochromator. Omitting those factors from (3.45) that do not 
change to first order when the resolution of the analyser is changed, the current 
at the detector is proportional to 

AEA .AE?5,12TA 	 (3.47) 

The analyser transmission TA splits into two factors. One, the term depending on 
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the entrance aperture angle aim , has already been calculated (3.30). The second 
arises from the fact that the analyser weights the incoming energy distribution 
with its own transmission curve with respect to energy. Energy transmission 
curves are well approximated by gaussians. The transmission factor arising from 
energy may hence be described by 

TEA (27rAEA)112 (81n 2) 1 /4  f exp[-4E2CAE 2  + 	ln 21dE 

= 
 (

AEm 
1 + (- TE;))

2 —1/2 

 , (3.48) 

where AEm and AEA are the FWHM of the analyser and monochromator, 
respectively. Thus the variation of the current at the detector with the resolution 
of the analyser is 

Agk (Aa— AE2A)5/4  
ict cx • 	 (3.49) 

A&ot 

In deriving this result, we have used AE 1  Aga  + .A.E1, which follows from 
the width of the convolution of two gaussions with the FWHM of AEm and 
AEA, respectively. The optimum current is obtained when 

2 	2 
AEA = —

3AEtw
AEm 	 (3.50) 

and the current is then 

j  x  AE,71,2 	 (3.51) 

The power 7/2 instead of 5/2 for the monochromatic current arises from the 
reduction in the acceptance angle at the sample as ,AEA decreases. If one probes 
the monochromatic current produced by the monochromator with the analyser 
directly, in order to test the performance of the spectrometer (Chap. 8), then one 
power in AEA disappears from the expression for the monochromatic current of 
the detector and one has 

. AEA (AEL  — AED 5/4 	5/2 
/D 	 AEtot 	 (3.52) 

AEtot 

with the optimum match between analyser and monochromator at 

AEA  =-
7

AEt0t = 
	 (3.53) 

The current jp is plotted as a function of the ratio AEA /AEtot  in Fig. 3.8 for 
the two cases discussed above. 

How could a higher resolution in the analyser be achieved? Keeping in mind 
that the energy loss at the sample is small, so that it may be neglected to first 
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Fig. 3.8. This figure illustrates the current at the detector ./D of an electron spectrometer divided by 

AE5/2  and Aen respectively, as a function of the ratio of the resolution of the analyser to the 1/2 	1/2 ,   
combined resolution of monochromator  and  analyser Ev2i,,t . The exponent 5/2 corresponds to the 
case where the monochromatic current ig)measured directly. The exponent 7/2 refers to electrons 
emerging from a sample in a diffuse angular distribution. The detector current follows a different 
power law in the two cases since the acceptance angle at the sample is proportional to ,AE1/2 

order, the exit slit of the monochromator is imaged onto the entrance slit of the 
analyser and the angular and size parameters of monochromator and analyser are 
thus again connected via phase space conservation 

sMaMNFECTM-  sAaA 
	 (3.54) 

hmfim rE;:t = hA)(3A fE70A 
	

(3.55) 

where the indices M and A refer to monochromator and analyser, respectively. 
Let us suppose that monochromator and analyser operate at the same energy and 
have the same dimensions, angular apertures, and resolution, so that the projected 
image of the exit slit of the monochromator also matches the size and shape of 
the entrance slit of the analyser perfectly and the lens system would in  theory  
have a 100% transmission. If one now attempts to lower AEA of the analyser in 
order to comply with (3.49), the entrance angle crA or the  size  of the image sA 
or both increase so that the product is increased by a factor of (5/2) 1 /4 , which 
has an adverse effect on either the transmission or the resolution. A remedy is 
to use an analyser with a larger radius and also a larger slit height. 
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3.4 Numerical Simulation of the Transmission 

In performing the numerical analysis we let ourselves be guided by the consid-
erations that led to the equation for the optimum aperture angles alm  and III 

for the feed beam. The free parameters of the system are then the radius ro and 
the slit width s, or rather the ratio of the two. We have chosen  $ 0.3 mm and 
ro = 35 mm. 

In the interest of having smaller devices, it may be an advantage to reduce 
the total height of the deflectors and terminate the deflectors by a top and bottom 
plate and apply a potential to these plates equivalent to the arithmetic average 
of the potentials on the deflecting plates. Again, as with the entrance and exit 
aperture plates, one could correct for the fringe field by appropriate measures. It 
is however advisable to abstain from such measures as the potential on the top 
and bottom plate is a valuable adjustable parameter of the system, 

In order to simulate the effect of the top and bottom plates, we have performed 
3D-potential and trajectory calculations on a 50 x 100 x 30 grid. The numbers 
refer to the r-, 0- and z-coordinates, respectively. With regard to the z-coordinate 
one needs to calculate and have available only the upper (or the lower) half of 
the deflector when symmetric potentials are applied to the top and bottom plates. 
The interpolation scheme for the field was as described in Sect. 2.3. 

One effect of applying a potential to the top and bottom plates is to shift 
the first-order focus. An example is shown in Fig. 3.9 for a deflector where the 
total height is about 0.63 (R1 + R2). The angle of first-order focusing increases 
when a negative potential is applied. The shift of the focal length can become 
quite substantial when large potentials are applied to the top and bottom plates. 
The reason for this shift becomes apparent when one considers the shape of 

Fig. 3.9. Optimum deflection angle of the cylindri-
cal deflector as a function of the potential on the 
top and bottom shields Up. The zero of the poten-
tial coincides with the average of the potential on 
inner and outer deflecting plates. The data were 
calculated for R2/R1 = 1.8 and a total height of 
the device of H = 0.63(R2 + R1) 
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Fig. 310. (a) Equipotential contours in the zr-plane of a cylindrical deflector when top and bottom 
cover plates are at a potential equal to the average of the outer and inner deflection plate. (b) 
Equipotential contours when the potential of the top and bottom cover plates is equal to the potential 
on the outer deflection plate. The equipotential contours now resemble those of a spherical deflector 

the equipotential lines in the zr-plane for a negative bias on the deflecting plates 
(Fig. 3.10). The equipotential lines become more and more curved near the center 
of the deflector as the negative bias on the top and bottom plates is increased. The 
potential eventually becomes similar to the potential of a spherical deflector for 
which the deflection angle for first-order focusing is 180°. It is indeed possible to 
design a pseudo-spherical deflector [3.12] by placing top and bottom shields on 
a cylindrical analyser. The extra degrees of freedom one has with the potential, 
the height, and also the shape of the top and bottom shield may be used to 
optimise the system with respect to particular aberration coefficients. We found 
however that in general the gain from such an exercise was a relatively minor 
one. A negative bias potential on the top and bottom plates obviously also has 
an effect on the shape of the trajectories with respect to the z-coordinate. First-
order focusing with respect to the angle )6 may even occur when the bias is 
large enough. The pseudo-spherical deflector is indeed characterised by having 
the same first-order focal length with respect to both the angles a and )6, so 
that one has a stigmatic image of the entrance aperture at the first-order focus. 
The two-dimensional focusing of the spherical deflector and the pseudo-spherical 
deflector is usually considered as an advantange over the cylindrical deflector. 
The issue is however more complex than it may appear at first glance. A detailed 
assessment of the virtues and drawbacks of the various types of electrostatic 
analysers requires an understanding of the behaviour of these devices under 
space charge conditions as well as a knowledge of the fundamental properties 
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of the lens systems between the monochromator and sample and between the 
sample and the analyser. 

In order to illustrate how the divergence of the beam along the z-axis affects 
the transmission, we show the result of a simulation for a particular analyser. The 
dimensions of the analyser are as before. The pass energy Eo was assumed to 
be 0.5 eV. The analyser was also equipped with top and bottom shielding plates, 
each placed at a distance of 22 mm from the centre plane. The potential on the 
top and bottom plates was set to —0.3V relative to the average between the 
potential of the inner and outer deflection plate. The entrance slit, 0.3 x 6 mm in 
size, was fed by a beam with a homogeneous angular distribution between the 
limits a. = +3° and An  = +4° to satisfy (3.36) and (3.37) approximately. Figure 
3.11b displays the effect of the negative bias on the top and bottom plates on 
the trajectories. When exit and entrance slits are of the same height, the negative 
bias enhances the transmission of the device, though slightly, while the effect on 
the focal length and thus on the resolution is marginal for the quoted potential 
on the top and bottom shields (Fig. 3.11a, c). 
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20 48 	68 	011 100 Deflection angle=106.9' 
Angular position (deg/ Radius of outer plate-45  mm 

12 Radius of inner plate=25 mm 

o Radial pos. of s11ts=35 mm  • 35 mm 
Slit widths=.3 mm  • .3 mm 
Slit heights=6 mm 	mm ,12 

O  max. 	horizontal 	angle=3' 
max. vertical 	angle=4" 

-4 Pass energy=.5 eV 
-8 Retarding factor=1 

12 Energy width of feed heam=0 eV 
48 	68 	08 188 Compression voltage=-.3 V 

Angular position (deg) 
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Entrance angle (deg) 

Fig. 3.11a-c. Trajectories in a cylindrical deflector with equipotential plates as  entrance  and exit 
apertures and a negative bias of —0.3 V applied to a top and a bottom plates. (a) Trajectories in 
the radial plane. (b) Trajectories in the tangential plane. (e) Angular aberration with respect to the 
angle ai 
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Fig. 3.12. The transmitted energy distribution of the cylindrical deflector in  Fig. 3.11.  The height of 
the entrance slit is 6mm. The circles, squares and triangles refer to different heights of the exit slits 
of 12, 9 and 6rnm, respectively 

The main effect of the negative bias is to compress the beam in the vertical 
direction. Such a compression is particularly useful when a two-stage analyser is 
used. The compression voltage then may serve to focus the beam with respect to 
the angle )8 into the entrance aperture of a detector. For optimum transmission, 
the height of the exit slit of the first monochromator should be larger than the 
height of the entrance slit. Figure 3.12 shows the transmission of the single stage 
analyser when the height of the exit slit is 6, 9, and 12 mm, respectively. While 
the difference in resolution is small the transmission is improved with the larger 
exit slit. 

We finally discuss the properties of a double-stage analyser. It seems worth-
while to mention from the outset that it is important to have the two stages of a 
double-stage analyser arranged as in Fig. 2.1, such that the curvature is reversed. 
In the opposite case one would merely have an analyser with a total deflection 
angle of 2/r/1/2-  with an intermediate stop aperture at iriVf. The trajectory equa-
tion in a cylindrical field to be discussed in detail in Sect. 4.1 will show us that for 
a deflecting field of 2/r/V2-  the energy dispersion vanishes! Consequently, only 
the stop aperture at the deflection angle of /r/V-2-  would be effective and thus 
only the first analyser would provide energy selection in that case. In Fig. 3.13, 
the transmission of a single-stage and of a double-stage analyser are compared 
when the second stage is inverted. The angular apertures ai. and ,81,„ of the feed 
beam are both assumed to be zero. The transmission function is a triangle in both 
cases with the resolution doubled for the double-stage analyser. This result, while 
in accordance with the trajectory equations, is noteworthy insofar as one might 
have thought that for two sequentially arranged analysers the transmission would 
be the product of the transmission function of each analyser, as it is for two 
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Fig. 3.13. Comparison of the transmit-
ted energy distribution of a single-stage 
analyser (o) and a double-stage analyser 
(o) when the angular apertures of the 
feed beam ai m  and  /3i.  are both zero 

Fig. 3.14. Comparison of the transmit-
ted energy distribution for a single-stage 
analyser such as in Fig.3.11 (o) and a 
double-stage analyser of the same type 
(o). The angular apertures ai m  and pl  
are 3 0  and 4°, respectively 
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sequentially arranged optical filters. This is not the case! The reason is that the 
exit position and energy of the electron are related, so that at the entrance slit of 
the second analyser the energy distribution as a function of the radial position is 
not homogeneous as (assumed) for the first analyser. 

In the case where the angular apertures are finite (ai m  = 3° and A m  = 4°), 
the transmission function resembles a Gaussian in both cases considered above 
(Fig. 3.14). For the double-stage analyser the FWHM is reduced to 0.58 rather 
than to 0.5.  Regardless  of the size of aim  and A., a double-stage analyser has 
the same resolution as an analyser of twice the radius and the same slit width 
when the angular apertures of the feed beam remain the same. This is illustrated 
in Fig. 3.15, where a double-stage analyser with radii of 35 mm is compared with 

39 



Tr
an

s m
is

s
io

n  

Energy (meV) 

Fig. 3.15. Comparison of the transmitted energy distribution for a double-stage analyser as in Fig. 3.13 
(o) and a single-stage analyser of twice the radius (o). The angular apertures al m  and  flu  are 3 0  
and 40 , respectively, for both analyser systems. Although both systems are equal according to this 
calculation, the background intensity due to secondary electrons may be less for the double-stage 
system  
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Fig. 3.16. Numerical simulation of the energy distribution transmitted by a cylindrical deflector with 
equipotential apertures when the angular distributions of the feed beam are of a rectangular shape. 
The FWHM is plotted versus the aperture angles aim  and film 
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a single-stage analyser with ro = 70 mm; in both cases, the feed beam has an 
angular aperture ai m  = 3° and 01. = 4° as before. The only advantage of the 
double-stage analyser is therefore that the background intensity due to secondary 
electrons or electrons scattered from the deflection plates is less. The same effect 
is however achieved when a second aperture is placed after the exit in order to 
block electrons leaving the analyser at large angles a, which would be the case 
for electrons scattered from the deflection plates. 

While the base width of the energy distribution can be calculated directly from 
the dispersion and the angular aberration (3.33), the full width at half maximum 
(FWHM) can only be obtained from a numerical simulation. We have performed 
such a simulation assuming rectangular profiles of the angular distribution in the 
angles ai and /31. The results for the FWHM for 1 eV pass energy are shown in 
Fig. 3.16. The results are well described by the equation 

ZAE112 = Eo(s/D + 0.47aL, + 0.6/3L) , 	 (3.56) 

where D is the dispersion, which is 0.966 ro for the deflector with equipotential 
apertures (3.17). On comparing (3.56) and (3.33), one notices that the FWHM is 
not equal to half the base width. 

3.5 Dispersion Compensation Spectrometers 

Dispersion compensation spectrometers were first designed and built by Ke-
van and Dubois [3.131 Such spectrometers promise a large enhancement of the 
throughput by essentially parallel processing of the electrons of the entire en-
ergy distribution emitted from the cathode, whereas conventional spectrometers 
work with only a small fraction of those electrons. The essence of this beauti-
ful idea lies in the exploitation of the relation between energy and position at 
the exit of a monochromator described above. The relation must be maintained 
in feeding the analyser, and monochromator and analyser must have the same 
handedness of the curvature. The relation between energy and exit position y2 of 
the monochromator is provided by (3.4) 

AE 4 
Y 2 = —yi +roi-- — — rola 	 (3.57) Eo 	3 	. I 

where AE, the energy deviation from the pass energy Ni,  can assume any value 
permitted by the width of the energy distribution emitted by the cathode. The 
quantities yi , roi ,ai have their usual meaning. We assume for the moment that 
there is no lens system between monochromator and analyser, or that the lens 
system is perfect in the sense that each point y2 at the exit of the monochromator 
has an exact stigmatic image at the same radial position at the entrance of the 
analyser. The entrance angle a of the analyser is then also equal to the exit angle 
of the monochromator and thus equal to ai. The analyser transports the beam 
further according to 
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(LE +SE)  4 	2  
Y3 = Y2 r02 3 rO2ai • 	 (3.58) 

Eo 

In (3.58) we have allowed for the pass energy of the analyser to be different by 
a small amount SE. Combining (3.57) and (3.58) one finds for roi = ro2 = ro 

SE 
= yi + To 	. 	 (3.59) 

E0 

All electrons emitted from the cathode thus appear at the same exit position 
regardless of their initial energy and also independently of their angle al with 
respect to the central path. The maximum and minimum energy deviations SE 
for which electrons still pass through the exit slit of the analyser are 

SE+  si + 33 
	  and 	 (3.60) 

E0 	2r0 

6E_ si + s3 
(3.61) 

Eo 	2ro  

respectively, where .51 and  83 are the widths of the entrance slit of the monochro-
mator and the exit slit of the analyser. The base width of the transmitted energy 
distribution is therefore 

AEB 2s 
= — 

Eo 	ro 
(3.62) 

with .9 = si = s3, which is the same as for a single monochromator with no 
angular aberrations. The widths of the exit slit of the monochromator and the 
entrance slit of the analyser do not enter at all and can therefore be made broad 
enough to accommodate the entire energy spectrum of the cathode. 

In order to calculate the transmission function vs the energy shift SE, that is, 
the shape of a spectral line, we again resort to computer simulation. For simplic-
ity, we use equations (3.57) and (3.58), which correspond to the ideal cylindrical 
field. Fringe field corrections and the nonlinearity of the energy dispersion for 
larger deviations from the central pass energy are unimportant, though any distor-
tion of the image not compensated by the analyser directly affects the resolution. 
We shall return to this issue shortly. In Fig. 3.17 the transmission is shown as a 
function of SE, for various widths s2 of the exit (entrance) slits of the monochro-
mator (analyser). One sees that the shape of the transmission function remains 
triangular and independent of the size of the entrance slit s2. The current at the 
detector rises with the size of 82, as long as the monochromator is fed with an 
energy distribution broad enough to fill the exit slit of the monochromator. The 
ratio 82/81 is the gain factor in throughput compared to a conventional spectrom-
eter. The shape of the transmission function is also independent of ai. Unlike 
the transmission function of a single cylindrical deflector, the shape of a spectral 
line in a dispersion-compensated spectrometer and the overall resolution are not 
affected by the quadratic angular aberration term. 

42 



.5 
Ills'perslon compensated defl;ctors ' 

A,  
.2,, 1-18 

82/s 14 

a's 1 4 

Ws I .4 

Ws 1=2 

. 	 . 	 .. 	 p 	 . 

Fig. 3.17. Transmission vs difference in pass energy between monochromator and analyser for an ideal 
dispersion-compensated spectrometer. The parameter is the width s2  of the exit slit of the monochro-
mator, which is equal in size to the entrance slit of the analyser. The shape of the transmission curve 
is independent of .92 while the throughput increases linearly with 52 , when the monochromator is fed 
with a broad energy distribution. The width of the entrance slit of the monochromator si and the 
exit slit of the analyser 83 are taken to be 0.3 mm, the central radii ro as 35 mm. The shape of the 
transmission function is not affected by the a2-term 

These properties would make the dispersion-compensated spectrometer supe-
rior to any other design. A prerequisite for this type of spectrometer to be opera-
tional is however that the perfect correlation between energy and position in the 
exit of the monochromator is maintained in the entrance of the analyser. Normally 
a lens is required between monochromator and sample, and between sample and 
analyser in order to allow the impact energy on the sample to be varied. Any 
distortion of this image of the exit slit of the monochromator projected onto the 
analyser entrance degrades the resolution. The problem is obviously particularly 
severe when one attempts to use large gain factors and thus a distortion-free 
image of a large aperture is needed. The effect of image distortion is simulated 
in Fig. 3.18 by assuming that a point at the exit slit of the monochromator is 
spread over a disk at the entrance slit of the analyser. The size of the disk is 
assumed to be 5% and 10% of the width of the slit s2, respectively. The gain 
factor was taken as s2/si = 10. If si = 0.3 mm the size of the disk of confusion 
is thus 0.3 mm for a 10% image distortion. According to our experience with 
electrostatic lenses this is probably far on the low side, at least when a large 
acceleration between rnonochromator and sample and in turn a large retarda-
tion towards the analyser is required. Nevertheless, Fig. 3.18 makes it clear that 
the effect of the \quite moderate distortion on the resolution is severe. The base 
width of the spectral line is nearly doubled for 10% distortion. As the current of 
a spectrometer is proportional to the 3rd-4th power of the resolution (3.34), the 
gain factor of ten in the throughput is already lost with a 10% image distortion. 
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Fig. 3.18. Transmitted energy distribution of a dispersion-compensated spectrometer when the re-
quired perfect correlation between the position at the exit slit of the monochromator and the entrance 
slit of the analyser is distorted, e.g. by the lens system. if the image of a point at the exit of the 
monochromator is blurred to a disk of 10% of the width of the entrance slit of the analyser, the base 
width is approximately doubled when the gain factor 82/st is 10 

This is the reason why the disperson-compensation scheme has not lived up to 
its initial promise. Furthermore, it is easy to see that a dispersion-compensated 
spectrometer is bound to have a rather variable resolution since the quality of the 
image depends not only on the fundamental design parameters of the lenses but 
also on the homogeneity of the surface potentials of the lens elements. Charging 
and variable work functions of deposits on lens elements place that homogeneity 
beyond control. It is therefore advisable to adopt spectrometer designs for which 
the resolution to first order does not change with the inhomogeneity of surface 
potentials. Finally, no version of the principle of dispersion compensation in the 
presence of space charge, that is, for high currents, is known. 
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4. The Electron Optics 
of the Ideal Cylindrical Field with Space Charge 

The monochromatic current is limited by the increasing electron-electron repul-
sive forces in high density beams. A simple analytical model for the effect of 
the "space charge" on the electron optical properties of cylindrical deflectors is 
presented. First-order compensation of the space charge effect is obtained by 
enlarging the deflection angle and by applying an additional negative bias to the 
top and bottom shields terminating the cylindrical deflectors. In spherical deflec-
tors the azimuthal and radial foci are displaced from each other for high current 
loads. 

4.1 Solution of the Lagrange Equation 

As a first step towards the derivation of the electron optical properties of the 
cylindrical field in the presence of space charge, we solve the equation of motion 
without space charge. We shall thus recover the basic optical properties of the 
cylindrical field, as already discussed in Sect. 3.1. The solution for the trajectories 
without space charge will subsequently be used to calculate the space charge. 
The Lagrangian in cylinder coordinates reads 

M 2 2 ' L=-
2 	

+re2)+clnr, 	 (4.1) 

where r and 0 are the radial and angular coordinates, respectively, rn is the 
electron mass, and c is a constant, which will be expressed in terms of the pass 
energy shortly. The equation of motion for the angular coordinate 0 

d dL 

dt 00 ae 
tells us that 

d 	2 
-c-it mr 0= 0 	 (4.3) 

and r2 Ô is therefore a constant of motion. The radial equation reads 

d aL OL 
-di  Oi 	ar' 

(4.2) 

(4.4) 
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mF = mrP + —e  

For an electron travelling on a circle with radius r0 	--E• 0), we see that 

c= —mrW, =  —2E0.  

Inserting (4.6) in (4.5) yields the equation of motion 

A2 2E0 F – ru +— . 
TTLT 

Since we are interested in the  trajectories  in the form r(0) rather than as r(i), we 
eliminate the time from (4.7) with the aid of the identity 

rif + 	 (4.8) 

where 7. 1  denotes the derivative with respect to 6. From (4.3) one obtains 

+ r20 = 0 and therefore 	 (4.9) 

F  = r „ 192 	2r 12 192 	
(4.10) 

Inserting (4.10) into (4.7) yields the equation for the trajectories 

a 
r" – 2—

r 
– r + 	

2E0 
 m  =  0. 	 (4.11) 

MT Cr" 

The angular velocity in the equation may be replaced by the angular velocity at 
the entrance slit by recalling again (4.3): 

4 
02( 7,,  0= 74 e(ro,0) 

 r 

We allow for deviations AE from the nominal pass energy E0 and also for 
trajectories traversing the entrance slit with an angle al with respect to the 
tangent to the circle of radius ro. The energy at the entrance position is then 

rn •2 2 	 m 2 LIE + .E0 = —(r + rA2/ 
0 g 	u,P) = 	

A2 
fro, 0)0. + tan2 

 al • 2 	 2 
(4.13) 

The last term in (4.11) may therefore be replaced by 

2E0  r3 ( 	.6E , 
+ 

2 
— —) 

mr02 	 Eo 
-(4.14) 

when terms up to second order in al and first order in AE/E0 are retained. It 
is useful to introduce a reduced radial coordinate e  by 

r = ro(i + 0) . 	 (4.15) 

The final equation for the trajectories up to second order in al is then 

46 

(4.5) 

(4.6) 

(4.7) 

(4.12) 



AE 
p"  + 2e  — 	=20,2 _ 3e2 a? 

Eo 
(4.16) 

For a first-order solution we need to retain merely the terms on the left hand side 
of (4.16). Such a solution will clearly be of the form 

p = ai sin r.e0 + a2 cos ce8 + a3 	 (4.17) 

and with the initial condition 

p(0) =  pi , 	 (4.18) 

AO) = at 	 (4.19) 

we obtain 
11 AE e  = —ai sin V20 + el  COS Vi „ + - 	— cos 15. 0) 	 (4.20) 

2 Eo 

From (4.20) we recover condition (3.3) for the first-order focus, when dp/dati = 
0, which occurs when sin ,N,/i0f = 0. The focus is therefore at 

Of = • = 127.28°. 	 (4.21) 

The solution including second-order terms in ai is obtained when the first-order 
solution (4.20) is inserted into the right hand side of (4.16) and the differential 
equation (4.16) is then treated  as an inhomogeneous differential equation. After 
some algebra we find 

AE 7 2 e"  +2p  — 	cos 2Vi 0 — 	 (4.22) 
E 4 	 4 

for which a particular solution will have the form 

pp  = ai cos \h. 0 + a2 cos 2Vi + a3 . 	 (4.23) 

The final trajectory equation up to the second order in ai then reads 

e = \7• 0 + 	cos .■,5 — cos 2 N5, 0 — -g) 

+ (1 — cos Nfi 0) + cos 12-  9 . 	 (4.24) 
2E0 

At the first-order focal point Of = 7rA5 we find for the reduced radial coordinate 

AE 4 2 
02 7 —01 —

Eo 	
(4.25) 

which is (3.4) in the reduced units p. Up to this point our treatment of the 
problem has followed the established path [4.1]. Repeating the calculation here 
was necessary however for the next step, namely, calculation of the space charge 
and the elctric field caused by the space charge. 
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4.2 Analytical First-Order Solutions 
for the Space Charge Problem 

We assume that a beam of electrons is incident on a cylindrical deflector. The 
distribution of angles al, energies AB and entrance positions el  in the beam is 
assumed to be of the following form 

f(cki, AE, 	= fot(cti)fE(AE)f 000 with 	 (4.26) 

1 	la < 
fa(crl) = 	

i  I 	, 

 0  otherwise, 

f E(AE)  _ f 1, 	< AE;n12 , 
0 	otherwise, 

1 	el < .91/2r0 , 
f° (Pi) 	1x 0 ,  otherwise, 

where am  is the angular aperture of the input beam, A.Ein  is the total width of the 
energy distribution and .si is the width of the entrance slit. By virtue of the fact 
that the first-order solution for the trajectories (4.20) is a linear function of al, 
AE and pi , the space charge in a cylindrical deflector subject to these conditions 
for the entrance beam is symmetric around the central radius ro . As the beam 
enters the cylindrical deflector, the space charge spreads out as the bundle of 
trajectories broadens according to the distribution in ai, AE and pi . A simple 
analytical solution for the space charge is found in three limits 

AEin 	si I) (4.27) 
/2-  ---- 2E0 	2ro 

A.Em 	si 2) 	 (4.28) 
2E0 -0 '   

61 	AEi n 	am  
3) (42 9) 

2ro 	2E0 	• 
The bundle of trajectories which produce the space charge is then described to 
first order in ai by 

al 
sin \ 	, 	 (4.30) 

Pm  —
AE

(1 — cos N59) , = 	 and 
2E0  

(4.31) 

psc  = pi cos 	, 	 (4.32) 

respectively. Case 1 is of the highest practical importance and is therefore dis-
cussed first. Because of the linear spreading of the space charge in ai the space 
charge en(r, 0) at a particual angle 19 is 
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=  	 (4.33) 
r(0)0(r,  , 0)(am  I VI) sin Vi 	r (0)0(r , OMB) 

The tangential velocity r0 enters because the space charge is inversely propor-
tional to the velocity. The constant c is determined by the input current I. 

eh  fro(1 — e.(0) 
r (0)0(r , 0)n(r, 0)dr = 2hcr0 . 	 (4.34) 

Here again h is the height of the entrance slit, vo = r0 is the velocity of the 
electrons and er„(0) is the maximum value of the (reduced) radial coordinate as 
defined by (4.33). Integration of (4.34) yields the space charge, which, except 
for higher order terms, depends on 0 only, in our model: 

2v0hi cos a eni (o) • 

Here we have replaced vo by (ro/r)vo cos a using (4.12) and (4.13). The velocity 
vo is the velocity of electrons travelling along the central radius ro. The space 
charge gives rise to an electric field vector which has longitudinal and transverse 
(radial) components. The longitudinal component is small however and has a mi-
nory effect on the trajectories anyway. By neglecting the longitudinal component 
we have for the radial component of the electric field vector 

1 0  
Eo—

r 
—Or

r Er  = (4.36) 

_Tin 	1 	1 r°(14  e) 
r2  dr , r e r — n  2 „ 	 (4.37) 

LERro rtV0 cos a em(0) 2  .L-0(1— e) 

	

lin 	 e(e) 	  1 + 4 p2(0) 
Er  — 	 . 	 (4.38) 

2eovoh cos a 009) 1 + e(0) 

With this additional space charge field the differential equation for the trajectories 
(4.16) is replaced by 

n 	1 	p 
0Il + Le =CR 	 (1 + 03  (1 + —1  02) 

3 - cos3  a em  
LE 	 2 

e3  — 	
' 	

(4.39) 
E 

where we have introduced a space charge coefficient CR 

	

elinro 	/in ro 
CR = 

	

	 with 	 (4.40) 
2e0mvtlh 4hkE03  

k == 5.25 mA/eV3/2  , 	 (4.41) 
e m 
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the universal space charge constant as already introduced earlier. The differential 
equation (4.39) is correct up to all orders in al, save for the space charge term 
and up to first order in ,AE and ei . We have written the equation such that it 
has the same form also in the limits 2 and 3 (4.28,29). For the moment we are 
interested in the first-order effects of the space charge. We therefore disregard 
higher order terms in (4.39) in the following discussion and shall return to this 
issue later in connection with the numerical analysis. The simplified form of the 
trajectory equation then reads 

(4.42) en, 	E 

For case 1 the essential space charge term is explicitly written 

009) 	(al t4)  sin .40 + 1(AE/E0)(1  — cos .N/,0) + pi cos \/./9 
. (4.43) 

(a. tif,) sin -4 0 

The first part of the numerator gives rise to an increase a the focal length as 
we shall see shortly, the second produces a current-dependent energy dispersion, 
and the third a current-dependent magnification. An analytical solution for the 
latter two effects can be obtained only in the limiting cases 2 and 3 where the 
space charge is determined by the energy spread of the incoming beam and the 
slit width, respectively. Here we proceed further by assuming that the incoming 
beam has no energy spread at all and that the slit width is exactly zero. 

We then have for the space charge term the simple form CRai I an, and the 
solution for the trajectories is 

— sin 	+ —
2 

g —(1 – COS 172-  0) . al 	Vi 0 1  C al 	 (4.44) 

The first-order focus occurs where del dai is equal to zero. If we denote the 
increase of the focal length due to space charge by zA05. 

zAesc  of  — 

	 (4.45) 

we find 

CR  

arctan 	or 	 (4.46) 
\,/f, 

CR r 	ro 
.A0s. — iin 	3  ,2  am  . 	 (4.47) 

am 	4hkE0 1  

We see that an important consequence of the space charge is that the first-order 
focus is shifted to larger deflecting angles. In other words, if a deflecting angle 
of 127° is used, the electron optical properties of such a device would dete-
riorate as soon as the deflector is subject to a current load. This fundamental 
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first-order property, although briefly mentioned in [4.2] , has not yet been prop-
erly recognized. The obvious consequence for practical designs would be to 
have monochromators with enlarged deflecting angles. In previously published 
designs however, the deflecting angle of monochromators has apparently always 
been calculated for a cylindrical deflector without current load. This raises the 
interesting question of how earlier spectrometer designs actually worked at all, 
with a reasonable performance. The answer is that the current-dependent first-
order term in (4.44) can be balanced against the second-order terms when the 
distribution of angles of incidence is not centred around aio = 0, as was assumed 
so far, but around some finite current-dependent angle ai0(1.). Taking (4.44) at 
the focal angle Of = 1i- / and adding the second-order terms (without space 
charge) from (4.24) yields 

„ 	4 2  
e2 uR—

crin 
— t:k1 

which is a shifted parabola. First-order focusing is achieved when de/dal = 0, 
which occurs when the beam is centred around 

3 CR 
ato(Iin) = —8 —a. • 	 (4.49) 

As spectrometers are always tuned for optimum transmission and the lens sys-
tem has some degree of flexibility, which permits the monochromator to be fed 
with a nonzero mean entrance angle, finite currents can be passed through the 
monochromator without deterioration of the resolution. As a matter of fact, in 
our laboratory the lens systems of the cathode were always divided into two seg-
ments to allow the feed beam to be deflected. For older spectrometers without 
enlarged deflection angles in the monochromators, it was consistently noticed 
that the cathode lens system operated with quite appreciable sideways deflecting 
potentials on the lenses for optimum performance. Unfortunately we, and pre-
sumably other researchers, attributed this lens operation to some spurious effect 
rather going through the straightforward analysis presented above. This analysis 
tells us also that operating with deflected beams is by no means equivalent to 
enlarging the deflection angle  O. Equations (4.47) and (4.49) show that an exten-
sion of Of by 200  is equivalent to am= 7.5°. While the former is quite feasible, 
010 is limited to a few degrees by the angular aberrations of the lens system, 
which follows the monochromator. 

We now briefly discuss the second and the third limits, (4.28) and (4.29), 
where an analytical solution is available. If 

.4E. a. 
2E0 > Vf. 2ro 

the first-order equation for the trajectories is 

(i+CR 	) • Eo  

(4.48) 

(4.50) 

(4.51) 
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It follows immediately that the energy dispersion is 

dev..,  
— 1 + CR E0 	 linro 

dE 	-r-dn = 1  + 4hk 4112  

Thus the energy dispersion increases with the current, which means that monochro-
mators carrying space charge may actually have a higher resolution than normal 
analysers, when they are properly designed. Finally we have the equation for the 
limit of a large slit width, 

e" +2e = 2roCR .?±. 	 (4.53) 

from which the magnification is easily calculated to be 

 • 	 (4.54) 

This last result is however of little practical use since monochromators work 
best with small slit widths. For such systems, the modulus of the magnification 
increases nearly linearly with the current rather than becoming smaller as sug-
gested by (4.54). Furthermore, for monochromators with equipotential apertures 
at the entrance and exit positions, the magnification remains near C y  = —1 even 
at higher currents, unless retarding deflectors are used. 

This short and straightforward treatment of the space-charge-induced modi-
fications of the first-order imaging properties of a cylindrical deflector contains 
the nucleus of the design principles upon which optimised space-charge-limited 
monochromators should be based. Some additional information is needed for the 
extension of these considerations into the three-dimensional world, and further-
more, information is also needed on the effect of the space charge on the higher 
order angular aberration and on the effect of equipotential apertures. Before we 
move on to such matters we pause for a moment and consider the effect of 
space charge on another electrostatic deflector that has been used frequently, the 
spherical deflector. 

4.3 Space Charge in a Spherical Deflector 

We now begin with the Lagrangian for the ideal spherical field 

L = 	[r2  + r 2  02  + sin2 oko2)] + . 	 (4.55) 
2 

We are interested in solutions for which the electrons travel in the tangential 
plane along meridians of the sphere, i.e. when 0 = O. Proceeding as before, we 
arrive at the trajectory equation 

AE otr 	= 2ea e2 a2 
E0 

(4.52) 

(4.56) 
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where we have included terms up to second-order as in (4.16). Electrons travelling 
along meridians (with 0" 0) intersect in the two poles. This means that one 
has automatically a focusing property with respect to the azimuthal angle w. 
The trajectories in the radial plane up to second order are calculated from (4.56) 
following the procedure described in Sect. 4.1: 

- 

1 
= a sin 0 + cos 9+ 	(1 — cos 0) + a2  cos  & — —

1 
cos 20 — —

2
) . (4.57) 

2 

We note that the energy dispersion is twice as high as for the cylindrical deflector. 
The first-order focus in the radial plane is also at 1800 , which shows that the 
spherical deflector has stigmatic focusing. The angular aberration there is —2a2 , 
which is larger than for the cylindrical deflector. 

The angular aberration has an adverse effect on the resolution as it does for 
the cylindrical deflector, and for optimum performance the maximum angle an, 
should be limited to a few degrees. No such limitation is needed in the other 
direction, as all electrons travelling along a meridian are perfectly focused. There 
the limitation is usually due to the lens system either before or after the spherical 
deflector. The unusual focusing properties of the spherical deflector have been 
used to determine energy and emission angle of photoexcited electrons simulta-
neously 14.31. Here we concentrate on the properties of spherical deflectors when 
used as monochromators. Spherical deflectors may be used with circular aper-
tures but also with slit apertures, preferably in the form of slits shaped according 
to the mean radius ro. The optimum extension of the slit in the azimuthal plane is 
again subject to considerations similar to those for the cylindrical deflector. The 
width of the slits s is directly related to the base width of the energy distribution. 

	

AEB s 	2 	= - , a . 	 (4.58) 
Eo 	2ro 

In order to study the effect of space charge on the trajectories, we make the 
simplifying assumption that the space-charge-induced electric field has only a 
radial component and that the trajectories for the electrons are the first-order 
trajectories of (437). We discuss the situation where 

a » 	 
m 	E 	°I  • 

For the first-order trajectory equation, we then have 

+ = CR 'Tam 
ti 

where CR denotes the same space charge coefficient as before. The solution is 

= a sin + CR —a  (1 — cos 0) . 	 (4.61) 
am  

The current-dependent term linear in a requires an extension of the deflection 
angle in order to make the linear a-term vanish. The extension here is 

AEir, 
(4.59) 

(4.60) 
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2CR 
an, 

i.e. twice as high as for the cylindrical deflector. Since the first-order focus is 
already at 180°, the need for an extension of the deflection angle considerably 
beyond that would make a spherical monochromator adjusted for space charge 
somewhat inconvenient to use. More importantly, however, the spherical deflec-
tor extended beyond 180° would lose the property of stigmatic focusing since the 
meridional focus is not (or rather less) affected by space charge. So far, no spher-
ical analyser with an extended deflecting angle has been constructed. Spherical 
monochromators in existing designs presumably work with a nontangential feed 
beam. The angular aberration term with space charge at G  = ir is 

al 	2 
= 2CR — — 2«, , 

a. 

which provides for first-order focusing (del  /d«, 0) when the bundle of trajec-
tories feeding the monochromator is centred around 

1 CR 
a10 = -

2 
—
a 

• 	 (4.64) 
. 

 

This offset is higher than for the cylindrical deflector by a factor of 4/3 when 
referred to the same feed current, radius, slit height and energy. So far, no 
deliberate attempt has been reported to adjust the lens systems used to feed the 
monochromator or the transport lens to the sample in such a way as to match 
the angular offset required by the monochromator. If such lenses were used, one 
would generate probably about the same monochromatic currents with spherical 
deflectors as with cylindrical deflectors operating with an offset angle ajo when 
slits rather than round apertures are used. The stigmatic focusing properties of 
the spherical deflector do however, also require the transformation of a stigmatic 
image of the exit slit of the device on the sample and on the entrance slit of 
the analyser in order to achieve optimum transmission. Electrostatic lenses with 
their rather high aberration, especially when operated with large acceleration-
retardation factors, tend to form rather poor images of slits. The same problem 
does not arise with cylindrical deflectors as the lens system there is not required 
to form a stigmatic image of the exit slit. We shall discuss this matter at length 
later. Here we merely note that the combination of electron optical properties 
of monochromators and lenses gives the cylindrical deflector some advantages 
over the spherical deflector, which adds to the fact that cylindrical deflectors are 
easier to fabricate. We therefore concentrate on the cylindrical deflector. 

= (4.62) 

(4.63) 
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4.4 Numerical Calculation of Space Charge Effects 

We now turn to the numerical analysis of the cylindrical deflector with space 
charge. We begin with the ideal cylindrical field since there we have already 
derived analytical expressions for the focal length, the energy dispersion, and 
the magnification. Comparison of the numerical results with the analytical ex-
pressions is useful for testing the accuracy and convergence of the computer 
codes. One may also derive interpolation formulas to bridge the gap between 
the limits for which we have found analytical solutions. In particular, the energy 
dispersion in the limit a » AEi0/E0 and the optimum focal length in the limit 
AEin/E0 >. an, is of importance, as is the magnification. Finally, one needs in-
formation about the angular aberrations in the presence of space charge, as they 
ultimately determine the resolution of the monochromator. Before we present 
the results of the fully numerical analysis, we perform the direct numerical in-
tegration of the equation of motion (4.39) as a first step. The example of the 
trajectories and the radial positions at the deflection angle of 139.9° is shown in 
Fig. 4.1. The input energy distribution is assumed to be of zero width. The input 

Entrance angle (deg) 

Fig. 4.1. (a) Trajectories in the ideal cylindrical field in the presence of space charge calculated by 
direct numerical integration of (4.39). The energy width of the input beam is assumed to be zero. 
The first-order focus at 139.9° is obtained when the input current is 4.2 x 10-8 , when E0 = 1 eV, 
ro = 35 mm and a. = ±3°. (b) The radial exit position as a function of the input angle a is 
a parabola as for the ideal cylindrical field without space charge. Within the limits of error the 
coefficient COE, is the same as without space charge 
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Fig. 4.2. Comparison of the input current leading to a first-order focus as a function of the deflection 
angle according to the first-order analytical solution (4.46) and as obtained by numerical integration 
of (4.39) 

current for which the first-order focus occurs at Of = 139.9°, is 4.2 x 10 -8  A, 
when the energy E0 = 1 eV, the radius ro = 35 mm, and the angular aperture 
of the input beam an, = ±3°. For the purposes of integration of the differential 
equation (4.39), we have replaced the term p(0)/pai(0) by a/a„, in the spirit of 
the limit AEin  = 0,  i = 0 (4.43). Unlike the first-order analytical solution (4.44) 
where all higher order terms were neglected, we have performed the numerical 
integration of (4.39) with all higher order terms included. Figure 4.1b neverthe-
less shows that the angular aberration remains second order in al and the angular 
aberration coefficient G. is nearly the same as for the cylindrical field without 
space charge, namely 

	

—4r0 . 	 (4.65) 

This is a quite remarkable result. Furthermore the input current leads to a first-
order focus at a given deflection angle as a function of this deflecting angle 
comes out just as calculated in the first-order theory (Fig. 4.2). 

We now embark on the completely numerical calculations of the effect of 
space charge on the electron trajectories. We take the ideal cylindrical field as the 
basis. The procedure used to calculate the space charge potential, to be described 
in the following, is likewise applicable to deflectors with equipotential entrance 
and exit apertures. The basic integration mesh had the  same size as that used 
earlier, namely 100 x 200 in the radial and tangential directions, respectively. 
The 200 units in the tangential direction correspond to a deflection angle of 
0 = 7r/Vi, = 127.3°. The array was extended beyond 200 when larger deflecting 
angles were considered. The space charge was calculated by defining an integer 
array R(I,J) on the 100 x 200 mesh. After each step of the numerical integration 
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of a trajectory the integer array was raised by one unit for a particular / and 
J when the instantaneous position of the electron corresponded to the domain 
/ — 0.5,  J- 05;  / + 0.5, J — 0.5;  1-0.5,  J + 0.5; / + 0.5, J + 0.5. The 
space charge integer array was typically filled with 400-1000 trajectories with 
initial conditions randomly distributed over the slit width, the width of the energy 
distribution and the angular aperture. In order to avoid systematic fluctuations 
in the space charge array along the tangential coordinate we also randomised 
the integration time unit within a factor of two and the starting position with 
respect to the tangential mesh size. The residual noise in the space charge field 
was reduced by digital averaging over nearest neighbors in the integer array. We 
note that digital averaging along the radial coordinate essentially simulates space 
charge produced by a bundle of trajectories with a smooth distribution in angles 
rather than with a sharp cut off at the angle am . If we reconsider the derivation 
of the differential equation (4.39) and the solution of this equation to first order, 
it becomes evident that the higher order angular aberration terms induced by the 
space charge potential are influenced by the space charge distribution along the 
radial coordinate, and thus also by the shape of the angular distribution of the 
feed beam. Since the shape of the angular distribution in real systems is not well 
known and may also vary, the angular aberration terms which result from the 
numerical calculation have to be considered with some reservation, when space 
charge is involved. 

The integer field R representing the space charge is converted to a field which 
represents the space charge p by 

	

0(1- , 	R(I , .1) 1-input 

	

eo 	 R(I, J) 

where /input  is the input current, i30  is the average initial velocity, h the slit height, 
and ZIT' the length of the basic mesh along the radial coordinate. When the width 
of the energy distribution in the feed beam is not small compared with the pass 
energy, it is important to take 'Do as the mean velocity in the energy distribution 
and not as the velocity of the mean energy. With this space charge, the Poisson 
equation was solved as described in Sect. 3.2. The boundary conditions were such 
that the space charge induced potential is zero at the outer and inner deflection 
plates. For the terminated deflector, one has the additional boundary condition 
that the potential should likewise be zero at the entrance and exit apertures, while 
for the ideal cylindrical field one has periodic boundary conditions. As a result 
of these different boundary conditions, the equipotential contours of the space-
charge-induced potential have a quite different appearence, Fig. 4.1 For the ideal 
cylindrical field, the tangential electric field components are vanishingly small, 
while for the terminated deflector, appreciable space-charge-induced tangential 
field  components  are present near the entrance and exit apertures. 

The convergence of the Laplace algorithm is substantially speeded up when 
one sets out from a potential array close to the final converged result. A useful 
approach to this end is to use the potential of a space charge distribution in 
the form of a 8-function in the r direction situated on that particular radial 

(4.66) 
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a 

Fig. 4.3. Contours of a space charge potential (a) for the ideal cylindrical field and (b) for a cylindrica 
deflector terminated by equipotentiai plates. The energy width of the feed beam is 0.3 eV, the pass 
energy 1 eV and a. ±30.  The radii of the inner and outer deflection plates are 25 and 45 mm, 
respectively 

coordinate that represents the radial centre of the space charge array for each 
angular coordinate. After some algebra, this potential is found to be given by 

ln(R2/rse)  (2_1 , 	r VI (7', 9) Q(u)r" 	
In 

 ln(R2/Ri 	
<  < rsc 

ln(Rt irse) 	
(4.67) 

V2(r, 0) C)(0)rs, 
ln(R2/Ri ) 

ln 
11. 	

, r <r  < R2. 
2 

Here rse  denotes the radial position of the 6-function, R1 and R2 have the usual 
meaning of the radii of the inner and outer deflection plates, respectively, and 
Q' is the weight of the 6-function obtained by integration of the space charge 
density along the radial coordinate 

Cd(0) = 	en(r, 0)dr = 	en(J , 0),Ar .  . 	 (4.68) 

When (4.67) is used as the starting potential, the repeated application of the 
Laplace algorithm (2.6) merely reshapes the potential in the area where the 
space charge occurs. The discontinuity in the second derivative of the potential 
disappears and the potential becomes a smooth curve, which is approximately 
a parabola. Sufficient convergence is achieved with a few hundred iterations of 
the Laplace algorithm. The space charge and the converged field are illustrated 
in Fig. 4.4. 

Once the space charge potential has been calculated, the result is used to in-
tegrate the trajectories in the presence of space charge; the space charge potential 
is multiplied by a factor representing a particular input current A n  relative to the 
standard current h used for calculating the space charge potential (4.65). Subse-
quently, the space charge potential is added to the potential of the bare deflector, 
where we again make use of the superposition principle. For a particular choice 
of input current, one thus obtains a set of trajectories. A small subroutine then 
serves to find the input current that renders the first-order focus at the particu-
lar deflecting angle which one wishes to investigate. Rather than search for the 
current where the linear term in the expansion of the radial coordinate y2 as a 
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Fig. 4.4. Space charge and the space-charge-generated electric field in the centre of a cylindrical 
deflector. The space charge refers to an energy width of the feed beam of 0.3 eV, a pass energy of 
1 eV and am  = +3° 

function of al 

y2(a1 ) = Cc, + Coia  + 	ac,Ctj.  • 	 (4.69) 

vanishes, one may also seek the current that provides a minimum spread in y2 
in the a-regime of interest. The latter method yields more realistic results when 
the third—order coefficient C,„„„ contributes significantly. 

In the first-order analytical treatment as well as in the direct integration of 
the differential equation (4.39), it was assumed that the space charge distribution 
behaves as if there were no higher order angular aberrations in the trajectories 
representing the space charge. On the other hand, by making the substitution 

e(9) 	at (4.70) 
Am ( 9) am 

the increase in the focal length due to the space charge is approximately accounted 
for.-When the space charge is calculated numerically one uses as a first step the 
ideal cylindrical field to calculate the trajectories which have their focus at 127.3°. 
Subsequently the space charge and the space charge potential are determined. In 
a second iteration one again calculates the trajectories, optimises the current 
as described before and repeats the calculation of the space charge and space 
charge potential and so forth. Clearly the convergence of the procedure depends 
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Table 4.1. Effect of the space charge on the first-order properties of the ideal cylindrical field after 
the first, second, and third iterations 

tigs. 	 9.4 	12.6 	15.8 	19.0 

1 	2.73 	356 	4.17 	4.85 
[10-8  A] 	2 	3.38 	4.38 	5.48 	6.06 

3 	3.38 	4.30 	5.29 	6.51 

1 	1.28 	1.35 	1.46 	1.55 
E06&'/15E 	2 	1.23 	1,28 	1.36 	1.46 

3 	1.16 	1.27 	1.34 	1.43 

1 	1.45 	1.58 	1.74 	1.84 
-Cv 	2 	1.41 	1.53 	1.68 	1.85 

3 	1.42 	1.53 	1.67 	1.84 

on the increase of the focal length or the current for which one wishes to have 
the numerical result. For AO up to 200  we have found three iterations to be 
sufficient for converged results (Table 4.1). The convergence test, when carried 
to more iterations, also serves to estimate the noise in the results, which is a 
consequence of the finite number of iterations in the Laplace algorithm and of 
the finite number of trajectories used to calculate the space charge array. For 
the purpose of practical design the first iteration suffices, in particular when the 
calculation is performed with the 3D algorithm (Sect. 5.1). 

The results for the optimum input current, the dispersion, and the magni-
fication as a function of the extension of the deflection angle AO sc  after three 
iterations of the procedure described above are shown in Fig. 4.5. The input en-
ergy distribution is assumed to have zero width, which makes the calculated 
input current for a particular extension of the deflection angle a lower limit. The 
width of the angular distribution was assumed to be a n, = ±3 0  and the slit width 
s = 0.3 mm. The choice of a. is motivated by the considerations that led to 
(3.36). The radial position of the entrance and exit slits is ro = 35 mm. The radii 
of the deflecting plates are R1 = 25 mm and R2 = 45 mm. The particular choice 
of the radii of the deflecting plates is however irrelevant here, where we have 
assumed the basic field to be the ideal cylindrical field. In Fig. 4.5 we have also 
plotted the input current as calculated from the first-order space charge theory in 
the limit a. >>. AEi0/E0, s 1 ro using (4.47). The agreement between the model 
and the converged numerical result is surprisingly good. As we have remarked 
before, the good agreement is presumably due to the replacement of g(9)/ 
in (4.39) by a iam , which already takes the increase of the focal length introduced 
by the space charge into account. 

The good agreement between computer simulation and the equation for the 
input current that leads to a first-order focus makes equation (4.47) a good start-
ing point for calculating the monochromatic current produced by a cylindrical 
deflector. In Fig. 4.5 the other two first-order effects of the space charge, namely, 
the energy dispersion and the magnification, are also shown as a function of the 
extension of the deflection angle. We remember that these two quantities could 
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Fig. 4.5a,b. Numerical results concerning the first-order properties of an ideal cylindrical field with 
a self-consistent space charge field. (a) Input current for first-order focus in ce  at the deflecting angle 
Of = 71- /V1+ AN. as a function of dOsc . The full line is calculated from the analytical theory using 
(4.47). (b) Magnification and energy dispersion as a function of LiOse  

not be calculated analytically in the limit of large cr,n  although (4.43) made it 
apparent that the space charge must affect the energy dispersion and the magni-
fication. The increasesd energy dispersion for cylindrical deflectors, when they 
are properly adjusted to the space charge, is rather welcome as it offers the op-
portunity for improved resolution. We have also made an attempt to estimate at 
least the higher order aberration coefficients with space charge. For this purpose 
we extended the mesh to 200 x 200 and reduced the gap between the inner 
and outer deflection plate to 8mm so that the size of the elementary mesh was 
0.04mm x 0.389 mm in the radial and tangential directions respectively. The 
result is shown in Table 4.2. Save for some noise, the second-order aberration 
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Table4.2. Approximate angular aberration coefficients for an ideal cylindrical field with space charge. 
The current load is adjusted to make the first-order coefficient Ca  vanish 

dOs. 0 3.1 6.2 9.4 12.6 15.8 

C,,«/To —1.33 —1.41 —1.51 —1.41 —1.33 —1.35 
Cacv /ro  0 —2.9 —3.2 —6.9 —10.1 —12.4 

Corcrora rs,  0 23 56 44 8.5 40.9 

coefficient remains the same as for the ideal cylindrical field without space charge 
effects. We thus recover the result already obtained by numerical integration of 
the differential equation (4.39). On the other hand, the third-order coefficient 
rises approximately linearly with the input current and zlOsc . This latter effect 
did not emerge from the numerical integration of (4.39), presumably since (4.39) 
does not take into account the effect of the second-order aberration coefficient 
on the space charge term appropriately. Finally it appears from Table 4.2 that 
a fourth-order coefficient is also appreciable. The data there are rather noisy, 
however. Nevertheless they clearly prove that 

< Caa,,cs < Caacein2  . 	 (4.71) 

The fourth-order aberration therefore has no effect on the resolution. Even the 
third-order term has only a minor effect on the resolution, unless LIO„ is much 
larger. In the next section we shall find that there is a limit to the possibility 
of enlarging the deflection angle of a deflector. The influence of the third-order 
coefficient on the resolution therefore remains small. The effect on the resolution 
may be minimised by adjusting the input current in such a way that the difference 
between the maximum and the minimum value of the radial position at the exit 
slit is as small as possible rather than adjusting the current so as to make the 
linear term vanish. A minimum of the total angular aberration is approximately 
achieved when the linear term produced by the space charge balances the third-
order term at ai m . The remaining total angular aberration is then nearly the same 
as for the ideal cylindrical field without space charge. Since the input current 
according to (4.47) is proportional to a., the considerations which led us to 
establish an optimum value for the angular width of the input beam (3.38) as 
presented in Sect. 3.3 are valid here also. 

In the analytical and numerical calculation, we have so far made the unreal-
istic assumption that the feed beam has zero energy width. We now remove this 
constraint and calculate the optimum input current as a function of the energy 
width .6E, of the feed beam for a particular deflection angle. A typical result is 
shown in Fig. 4.6. For small AE,,, the current is nearly constant. As the energy 
width approaches the boundary of the condition (4.27) 

= V5a.E0 	 (4.72) 

the optimum input current begins to rise as the beam spreads over a larger area 
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Fig. 4.6. Optimum input current for an ideal cylindrical field with z9 1  12.6° as a function of the 
energy width of the feed beam. The solid line is a fit with (4.74) 

in  the monochromator. According to the fundamental trajectory equations (4.20), 
the spreading should be roughly linear in am  and AEi n . For small A.Eim, we had 
found the analytical expression (4.47) 

/in  = 4hkE03/2arn  A8sc  . 	 (4.73) 
ro  

For larger .6Ein  we therefore try replacing the term am  in the input current by 
ctm + const x ,6Ei0 /E0, where the constant is chosen to match the result of the 
computer simulation. This is justified since the dependence of the input current 
on  AO,  ro, and h is of a fundamental nature and does not change. The solid 
line in Fig. 4.6 represents the fit with the constant equal to 0.0525. The equation 
for the optimum input current is hence 

4hkE3/2 .60sc (crm  + 0.0525.6E111/Ea) 
= 	° 	 (4.74) 

TO 

As a final step towards the ultimate goal of this exercise, which is to calculate the 
monochromatic current produced by the cylindrical deflector, we need to have 
a quantitative expression for the energy dispersion. This is available in the limit 
of large AEin  from (4.52). With (4.74) one has 

de 	 Eo  
En—E-  =1+0'175 V

AEin  2d9sc 	AiEin > V-2-,Ce rn E0 . 

In the other limit of small 6Ein , we take from Fig. 4.5 

dp 
Eoo1+l.3AO 5 , AEin < ViamEo 

(4.75) 

(4.76) 
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In the next chapter we shall see that the extension of the deflection angle is 
limited to a few degrees. In an analytical expression for the monochromatic 
current as a function of the energy width of the output current, the enhanced 
dispersion may therefore be neglected to first order. We may also neglect the 
enhanced current-dependent magnification C 5  as shown in Fig. 4.5. We shall 
later see that this enhanced magnification is a property of the ideal cylindrical 
field. For cylindrical deflectors with equipotential apertures to be studied in the 
next section, Cy  stays near —1, irrespective of the input current and ,A0so . 

When we assume that the energy distribution of the feed beam and the energy 
distribution of the monochromatic current ./out  have the same (e.g. Gaussian) 
shape, we have 

21E1/2  1 rim 
/out 	

Ain 	o 	
T(at)dat 

,E  

5/2 where T(ai) is the transmission (3.29). Since the current is 	/.1E 	take 
from (3.36) am opt = 	/2r0. The integral over the transmission function is then 
7/9. For small enough am , the monochromatic current is 

/out = 	
3 21,E5/2  h 1/2 — 

6 2 
iikEin 

s 
k z1,03, . 	 (4.78) 

In (4.78) we have used the simplified relation for the FWHM of the transmitted 
beam: 

.A.E-1 /2 	s + 2 2 

Eo — ro 3 am 

We shall see in the next chapter that the presence of the ratio of the slit height 
over slit width in (4.78) results from the two-dimensionality of the treatment. In 
three-dimensional calculations, the monochromatic current becomes essentially 
independent of the slit height. Furthermore the equations for the monochromatic 
current have to be interpreted with the caveat that .AOsc  is subject to constraints 
arising from the divergence of the beam in the z-direction and other considera-
tions to be discussed in the next chapter. A quantitative evaluation of the effect 
of vertical beam divergence on the base width and the transmission requires an 
extension of the numerical calculations into the third dimension. This extension 
will be performed with the cylindrical deflector terminated by metal apertures 
as entrance and exit slits and also equipped with top and bottom shields. Here 
we merely note that the most effective way of achieving the highest possible 
monochromatic current is to reduce the energy width of the feed beam by feed-
ing a second monochromator from a pre-monochromator, which is in turn fed by 
the thermal energy distribution of the cathode. Such two-step monochromatisa-
don is accomplished elegantly with the help of a retarding pre-monochromator, 
which again operates with equipotential apertures at the entrance and exit slit 
positions. 

(4.77) 

(4.79) 
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5. Electron Optics of Real Cylindrical Deflectors 
Loaded with High Current 

In this chapter monochromators are studied and optimised with the help of nu-
merical simulations of trajectories in the presence of space charge. The advan-
tage of monochromatisation in two (or more) steps is demonstrated. Since it is 
an advantage to produce a monochromatic beam via a stepwise monochroma-
tisation, we present a numerical analysis of two types of monochromators in 
the following. In Sect. 5.1 we first discuss the result of computer simulations 
for the second stage of a two-step monochromator, which operates with the en-
trance and exit apertures at a potential equal to the average of the potentials of 
the inner and outer deflection plates. In Sect. 5.2 we present results relevant to 
pre-rnonochromators, where either a higher potential is applied to the entrance 
aperture, or a lower potential to the exit aperture. We have already encountered 
such retarding monochromators in Sect. 3.2, where the limiting case of a small 
current load was considered. 

5.1 Monochromators 

Despite the apparent simplicity of the cylindrical deflector, the number of dimen-
sional parameters and different potentials is quite large. Exploring the full effect 
of all conceivable design parameters in three-dimensional simulations represents 
a formidable, if not hopeless, task. The analytical and numerical treatment in 
Chaps. 5.3 and 4 helps to identify the key parameters, which need further ex-
ploration with three-dimensional calculations. In our investigation of the effect 
of various parameters, we start from a particular reference frame of parameters, 
which is listed in Table 5.1. We have chosen a pass energy of 0.3 eV to provide 
a realistic and useful resolution. The choice of the deflection angle was made 
after many exploratory studies of which the salient results Will be discussed in 
the course of this section. The entrance and exit apertures were assumed to be 
situated at a distance to the deflecting plates equivalent to a deflection angle of 
2.5°, and the gaps between the top and bottom cover plates and the deflection 
plates were 2mm. The size of the gaps as well as the precise orientation of 
the apertures are not critical. The choice of the energy width of the feed beam 
follows from the following preliminary optimisation. 

We have found (4.73) that in the limit of a small energy width of the feed 
beam, A.Eir, < 's,ozin Eo, the maximum input current of a monochromator is 
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Table 5.1. List of design parameters for a reference monochromator 

 Deflection angle 	 Os. 	114° 
Radius of outer deflection plate 	112 	45 mm 
Radius of inner deflection plate 	R1 	25 mm 
Radius of central path 	 ro 	35 nun 
Total height 	 II 	mm 
Slit width 	 s 	0.3 mm 
Slit height 	 h 	6 turn 
Maximum aperture angle 	aim 	3° 
Maximum aperture angle 	Pi. 	0° 
Energy width of feed beam 	'AA, 	0.02 eV 
Pass energy 	 Eo 	0.3 eV 

  

/in 2 = Cp2 E; /2  

 

(5.1) 

where the index 2 refers to the second monochromator and c.p2 characterises the 
design parameters and performance. The same equation, though with a different 
constant cpi, holds for the first monochromator: 

= epi ziEr 
	

(5.2) 

Disregarding transmission losses, the output current of the first monochromator 
is also 

IOIll I A T' 	An 
	 (5.3) 

Litricath 

where .A.E1,4th refers to the width of the energy distribution provided by the 
cathode emission system. Since the output current of the first monochromator 
km  should match the maximum input current of the second monochromator 
(5.1), we have 

3 AEI  
c.2i p2.E

/  
2'

2 	

A 	
cpi LA.E

3/2
1  . 	 (5.4)

Lath 

One may further assume that the constant cpi characterising the retarding 
monochromator and the constant cp2 are about equal. One then finds for the 
optimum choice of the energy width of the first monochromator 

= (ZiEihca.84 /2)215 	 (5.5) 

Table 5.2 provides a few numbers for .6E1 and A.F.,2 when a typical width of 
the thermal energy distribution of the cathode of 300 meV is assumed. Thus 
a choice of 20 meV for the feed beam in the parameter set (Table 5.1) is in 
line with these considerations. Experimentally, one finds that the monochromatic 
current is a rather smooth function of the pass energy (i.e. resolution) of the pre-
monochromator. The precise value of the pass energy is therefore not critical and 
typically lies between 3 and 10 times the pass energy of the second monochro- 
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Table 5.2.  Optimum choice for the energy width of a pre-monochromator AEI as a function of the 
energy width of the second monochromator AE2 when the energy width of electrons emitted from 
the cathode is 300 rneV 

4E2  [men 1 2 3 4 5 
4E1 [mein 9.8 14.8 18.9 22.5 25.7 

mator. Details are specific to the individual design and will be discussed at length 
in connection with a particular design in Chap. 8. 

One final comment on the set of parameters in Table 5.1 concerns the angular 
aperture #1,„. We have chosen 01. = 0 because test runs with /31. = 0, 2, 4° 
revealed that although the monochromatic current produced by the deflector not 
unexpectedly decreases with A., the effect is small 20%) for the quoted 
values of th m  and a further study of the pi m-dependence would merely lead 
to the trivial result that one should attempt to keep the angular aperture /31. 
small. Realistic values of A. obtainable with cathode emission systems will be 
discussed in Sect. 6.2. 

We have performed the calculation of the potential distribution on a grid of 
50 x 100 x 24 units, as we did for the 3D analyser, where the numbers refer 
to the number of intervals along the r, 0 and z coordinates, respectively. Where 
possible we have compared the results of the trajectory calculations performed on 
this grid with the two-dimensional calculations on a fine 100 x 200 grid, where 
we also used a larger number of integration steps. The main effect of the less 
accurate calculation is to shift the focus at Of = 106.8° by about 1.9° to a shorter 
deflection angle. The deflection angles quoted in the following are corrected for 
this shift of 1.9°. The space charge was calculated with the trajectories of 500 
electrons with initial conditions randomly distributed between the boundaries 
provided by the size of the entrance slit, the energy width of the feed beam, and 
its angular divergence. An integer field representing the local space charge was 
created as described in  Sect. 4.5, except that now the field is a three-dimensional 
field R(I , J, K). The normalisation to a space charge field  (I,  J, K) is then 

e (1-, J, K) 	R(I , J, K)Iinput  
(5 .6) 

co 	LAr j , K R(I , J, K) • 

The index I counts along the 0-coordinate and Az, Ar are the dimensions of 
the grid along the z and r coordinates, respectively. Here again /in put is the input 
current and 'Do the average velocity in the feed beam. The space charge potential 
was then calculated by solving the Poisson equation. 

As in the 2D calculation, one may use the trajectories calculated with the 
particular current load that leads to a focus at the extended deflection angle and 
proceed to calculate the space charge in a second iteration, and so forth. Table 
5.3 shows the results for the first-order properties of the cylindrical deflector. 
One finds that the first iteration is already sufficiently well-converged. We have 
therefore used only one iteration in the following simulations. We notice also 
from Table 5.3 that the magnification remains approximately C y  = —1, the same 
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Table 5.3. Effect of the space charge on the first-order properties of a 3D-cylindrical deflector with 
extension of the focal length of 70  (Eo = 0.3 eV, ro = 35mm, s = 0.3 mm, hi = 2mm, h2 = 6 mm). 
The variation with the number of interactions is within the noise of calculation 

Property 
	

Number of iterations 	Value 

1 	 3.66nA 
Optimum input current 	2 	 3.84 nA 

3 	 3.75 nA 

1 	 1.09 
2 	 1,09 

3 	 1.09 

1 	 1.03 
Magnification IC.  I 	2 	 1,05 

3 	 1,02 

Energy dispersion 
Eobe/bE 

Table 5.4. Noise test on the essential data of a monochromator as defined in Table 5,3, when the data 
arc calculated repeatedly. The space charge potential is calculated with 500 trajectories randomly 
distributed in the realm of the parameters specifying the initial conditions. The transmitted energy 
distribution is calculated with 400 (random) trajectories at each incident energy, in energy intervals 
of 0.5 meV. Numbers in the last two rows give the mean and the standard deviation 

/input in/MI Ioutput ['IA] .6EFwirm lineV) ICy  I Eo6e/5E 

3.65 0.455 2.87 1.02 1.10 
3.75 0.451 2.70 1.00 1.14 
3.75 0.466 2.75 1.04 1.09 
3.83 0.464 2.80 1.00 1.09 
3.63 0,444 2.66 1.05 1.08 
3.89 0.472 2.69 1.00 1.09 

3.75 0.459 2.74 1.02 1.10 
±0.10 ±0.10 ±0.08 ±0.02 ±0.02 

as for the deflector without a current load. This is already an important differ-
ence from the ideal 2D-cylindrical field. It is also useful to have information 
about the noise in the data due to the finite number of trajectories and the finite 
number of steps in their integration. Table 5.4 shows the esiential results when 
the calculation is repeated. 

We now present the results of the numerical analysis in more detail and 
begin with the trajectories in the limit of zero input current. The trajectories in 
the radial and vertical plane are displayed in Fig. 5.1a, b. The radial position of 
the electrons at the exit slit as a function of al is shown in 5.1c for the three 
initial radial positions r = ro -  si  /2,  r = ro, and r = ro +.si /2. The magnification 
1Cy  I 1 is clearly evident, as well as the typical quadratical dependence of y2 
on al. Because of the increased deflection angle, the focus is not at the exit slit 
(Fig. 5.1a). One therefore also has a linear term in y2(ai). In the vertical plane, 
electrons with pi  = o display a small divergence although the potential on the 
top and bottom plates is nominally "zero", that is equal to the average of the 
potential of the inner and outer deflection plate, as are those of the entrance and 
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Fig. 5.1. (a) Trajectories in the radial plane of a cylindrical deflector, the deflection angle of which is 
extended by 7° (Or r-L- 114°) beyond the deflection angle leading to a first-order focus at the exit slit 
in the limit of zero current (Of 107°). Parameters of the deflector as in Table 5.1 (b) Trajectories 
in the vertical plane along the path of an electron entering the deflector with the pass energy at the 
radial coordinate ro and with entrance angles a = 0,  3  = 0. The small divergence is caused by the 
fringe field of the upper and lower cover plates to which the average potential between inner and 
outer deflecting plate is applied. (e) Exit position of the electron as a function of the entrance angle 
for electrons entering the deflector at r = ro + .91/2, r = ro, and r ro — si /2 

exit slits. We note however from Fig. 5.1a that the electrons are incident at a 
potential that is negative with respect to the average potential. They therefore 
experience the potential of the bottom and top plates as a positive one and the 
small divergence of the beam shown in Fig. 5.1b results from this. 

Figure 5.2 shows the trajectories of the electrons when the current load is 
such that the focus has shifted to the position of the exit, which is the case when 
the input current is 5.3 nA. The angular aberrations (Fig. 5.2c) now clearly have 
a third-order contribution. The angular aberration terms appear to have roughly 
the same values as those calculated for the 2D deflector (Table 4.2). The density 
of the potential grid in the 3D calculation is however not fine enough to permit 
a detailed analysis here. It is also evident from Fig. 5.2c that we have adjusted 
the input current in such a way that the difference between the exit positions 
of electrons with entrance angles of —a). and +al m  is as small as possible, 
rather than adjusting the current so that the linear term in y2(a1) vanishes. As 
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Fig. 5.2. The same as  Fig. 5.1, except that the current load now leads to a first-order focus at a 
deflection angle of Of 114° (a). As a result of the space charge, the beam diverges along the 
z-direction (b). The exit position of the electron as a function of the entrance angle (c) displays 
a considerable third-order aberration although the total amount of the angular aberration is rather 
moderate and actually smaller than without space charge. The magnification remains Cy —1, 
unlike the case of the ideal cylindrical field 

discussed in Sect. 4.4, this procedure leads to a better resolution and transmission, 
at a somewhat higher input current also. As seen from Fig. 5.2b, the divergence 
of the beam in the Oz-plane is now larger than in 5.1b, because of the repulsion 
by the space charge. When the exit and entrance slit are of the same height, 
this divergence results in a reduced transmission. The effect will become larger 
as the input current becomes larger, which will be the case for larger deflection 
angles. This is illustrated in Fig. 5.3 for extensions of the deflection angles up 
to A0 00  = 200 . While the input current rises linearly as predicted by (4.73), the 
output current levels off and eventually saturates near 0.6 nA. It is also interesting 
to compare the numerical value for the input current with the theory. Using (4.73) 
and the parameters in Table 5.1, we find a value of 6.5 nA at AO. = 100 . The 
current in Fig. 5.3 is higher. The reason for this small difference will be discussed 
later. 

The divergence of the beam in the Oz-plane and its adverse effect on the 
resolution may be compensated by compressing the beam with a small negative 
bias on the top and bottom plate. Figure 5.4 displays the trajectories in the 
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Fig. 5.3.  Input and output current of a monochromator vs the extension of the deflection angle A 8.. 
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Fig. 5.4a-c. The same as  Fig. 5.2 except that a negative bias of —0.12 V is now applied to the top 
and bottom cover plates. The divergence of the beam in the az-plane due to the repulsive forces of 
the space charge is avoided 
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Fig. 5.5. Transmitted energy distribution of the 
monocluomator (Table 5.1) for zero and —0.1 V 
compression bias 

case when the compression voltage is —0.12 V. The trajectories in the Oz-plane 
are now nearly straight lines. The optimum input current is reduced to 3.1 nA. 
This comes about because a compression voltage on the top and bottom plates 
shifts the focal angle 6 to a larger value (Fig. 3.9). Thus less input current is 
needed to produce the radial focus at the exit slit. The compression obviously 
improves the transmission of the deflector. The latter is illustrated in Fig. 5.5 
where the transmission is shown as a function of the energy of the electrons 
for compression voltages of zero and —0.1 V. The gain in transmission is about 
40% and compensates the reduction of the input current. Since the resolution 
does not change with the compression (within the error margin) the effect of the 
compression voltage is mainly, (i) a shaping of the beam in the vertical plane, 
so that for example a better overall transmission in the spectrometer may be 
achieved, and (ii) an adjustment of the monochromator to the feed beam current 
provided at the entrance slit by a pre-monochromator. 

Our results have so far been in line with the 2D model, which also predicts 
that the input and output currents scale with the slit height. Partly motivated by a 
consistent failure to find much effect of the slit height in experimental tests, we 
also investigated the effect of the slit height in the 3D simulation. To our surprise, 
we found that the diminution of the optimum input current is not proportional 
to the reduction of the height of the illuminated part of the entrance slit h1 at 
all. Rather, the current levels off to a nearly constant value for h1 smaller than 
3 mm (Fig. 5.6). The output current has a shallow maximum for small h1, while 
the resolution remains nearly constant as a function of Ill. 

Since the simulation was performed with zero compression voltage, the trans-
mission decreases when the illuminated height of the entrance slit h1 is enlarged 
and the height of the exit slit h2 remains at 6 mm. This explains the reduction 
of the output current beyond h1 > 3mm, despite the enlarged input current. 
The reduction of the output current can hardly be avoided by again applying a 
compression voltage as in Figs. 5.4 and 5.5 because the optimum input current 
then becomes smaller. 
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Fig. 5.6. Input current, output cur-
rent, and resolution (FW1.114) for the 
monochrornator as a function of the 
illuminated height of the enmance 
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In interpreting the results displayed in Fig. 5.6, we are left with the question: 
why is the optimum input current not proportional to hi, as predicted by the 2D 
model? The basic assumption of the 2D model is that the height of the beam 
along the z-axis is large compared with its extension in the radial plane. This is 
obviously true in the vicinity of the entrance slit. Within the deflector, however, 
two-dimensionality also requires that (4.20) 

ZA.E. 
h1 	r°121m  sin A/6 1 + r0 	In 2E0 (1 cos ViO) . 	 (5.7) 

Taking the maximum values of each term for the parameters listed in Table 5.1 
it would be required that 

>> 1.29 mm + 2.33 mm . 	 (5.8) 

Clearly this condition is not fulfilled with hi < 6 mm. In fact, a levelling off 
of the input current to a constant value for hi smaller than 3 mm is not so 
surprising when one considers (5.8). For small hi, one eventually approaches 
the limit where the space charge is confined to a sheet and the repulsive forces 
on electrons travelling on boundary trajectories in such a sheet are independent 
of the height of the sheet. Figure 5.6 also shows us that "two-dimensional" 
behaviour cannot be achieved in realistic designs. Apart from manufacturing 
problems with higher aspect ratios, one would also need to have a lens system 
between the monochromator and the analyser capable of forming a good image of 
an extended slit. Such lenses are however not available, with electrostatic lenses 
at least. Since the value of hi at which the current becomes nearly independent of 
hi depends on ai. and .A.Ein  and since these parameters are also fixed by other 
considerations, it follows that the illuminated slit height hi should be about 2 mm 
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Fig. 5.7.  Optimum input current vs the 
aperture angle of the feed beam for the 
cylindrical deflector defined in Table 5.1. 
The linear relation is in accordance with 
(4.73) derived for a two-dimensional model 
of the space charge 
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within our chosen reference frame of parameters. The precise value is of course 
not very critical. Smaller values of hi are also possible, when the monochromator 
alone is considered. We shall come back to this issue in the context of electron 
emission systems. 

The considerable departure of the three-dimensional deflector from the two-
dimensional model makes it necessary to explore the dependence of its properties 
on the other parameters as well. A comparison of the equation for the optimum 
input current in the two-dimensional case (4.73) and the analytical condition 
for the slit height h (5.7) required to make (4.73) applicable seems to suggest 
that the dependence of the input current on the radius ro  in (4.73) also vanishes 
when the current becomes independent of the slit height h. In fact, the general 
scaling of space-charge-saturated currents requires that the total current should 
not depend on the absolute size of the device, (2.20). The remaining parameters 
one needs to study are hence the aperture angle ai m  and the energy width ZlEm 
of the feed beam. Figure 5.7 shows the dependence of the optimum input current 
on the aperture angle aim . Except for very small ai„„ the input current displays 
the linear behaviour as predicted by the two-dimensional model and (4.73). The 
deviation at small ai m  obviously comes about because one leaves the realm of 
a-values in which the condition > AF,i,a2E0 holds. 

The output current is shown as a function of the aperture angle au, in Fig. 5.8. 
The output current deviates from the linear relation because of the decreasing 
transmission for large aim  (compare Sect. 3.3). Simultaneously, the width of the 
energy distribution of the transmitted electrons increases. Since the output current 
generally scales with the transmitted energy width as /1E15/i 22, one may define a 
performance factor 

lout  
epo.c = 5 ,2  • 

AE ' 112 

This performance factor is also plotted in Fig. 5.8. In order to reduce the noise 

(5.9) 
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Fig. 5.8. Output current and perfor-
mance factor ioul/ZIEi  vs the an-
gular aperture aim  of the feed beam 
for the cylindrical deflector defined 
in Table 5.1. The maximum of the 
performance factor occurs near 3.5 0 , 
approximately where predicted for 
the ideal cylindrical field without 
space charge. The dotted line in-
dicates the calculated performance 
factor (in arbitrary units) for the 
ideal cylindrical field 

Fig. 5.9. Optimum input and output 
current vs the energy width of 
the feed beam for the cylindrical 
deflector defmed in Table 5.1. 
The base width of the transmitted 
energy distribution remains about 
constant. The solid line for the input 
current corresponds to a fit with 

limpet = 0.6 k E03/2 Z18..(aim  + cee) 

where a. = 0.16 .AEi„ /ED. The 
solid line for the output current 
represents the equation lout = 0.42 
/input EB out/. Eli, 

in the data points, we have taken 4E112 to be half the base width  4EB. The 
latter quantity is more easily calculated with high precision. The performance 
factor has a relatively sharp maximum near alm « 3 •5 0 , which is consistent with 
(3.38) derived for the cylindrical deflector without space charge. The shape of 
the curve of the performance factor is also quite similar to the curve calculated 
for the cylindrical deflector without space charge following (3.33) and (3.35) 
(dotted line in Fig. 5.8). 

For a full exploration of the relevant parameters of a space-charge-optimised 
deflector, we need to establish the dependence of the performance on the energy 
width of the feed beam. We have again calculated the results for our standard 
deflector specified in Table 5.1 and the results are displayed in Fig. 5.9. The rise 
of the optimum input current with the width of the energy distribution in the 
feeding current is according to expectation. The input current may be described 
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by the equation 

/input  = 0.6 k 4 12 	+ œc) 	 (5.10) 

with the critical angle 

otc  =0.16 	 (5.11) 
Eo 

The solid line in Fig. 5.9 represents (5.10) with (5.11). The two equations also fit 
the dependence on aim  as displayed in Fig. 5.7. Comparison with (4.74) shows 
that when the space charge is confined to a sheet of small height as studied 
here, the factor 4h/ro appearing in the two-dimensional model (4.74) is now 
replaced by the prefactor 0.6 in (5.10). We again recover the result that the 
transition to the region in which the behaviour is that predicted by the two-
dimensional model lies above h i  5. Figure 5.9 also shows the output current vs 
ziEiti . The prefactor drops further to 0.35 when a  compression voltage is applied, 
such that the trajectories remain parallel in the vertical plane under space charge 
conditions. The required compression potential is about 0.5 Et) for the layout 
of the monochromators used here. This compression potential causes the parallel 
beam at the entrance slit to form a focus close to the exit slit when the current 
is zero. Provided that the extension of the pass length 40 is not too large, one 
may describe the output current by 

'out  = TaTE-Tinput 
	 (5.12) 

where Ta  and TE are the transmission factors as defined in (3.30) and (3.48). 
In Ta  one may insert the aperture angle where one has the maximum per-

formance (Fig. 5.8). We have seen that the ai m opt  is approximately as calculated 
for the ideal field without space charge (3.39), namely 

aim opt 	
2ro • 
	 (5.13) 

Taking this together with the approximate equation for, the FWHM of the trans-
mitted energy distribution (3.56), 

4E12  S 
(5.14) 

.E0 	ro 

we finally obtain an expression for the monochromatic current as a function of 
the resolution 

n 	 22  
/out  'A.-10.14k 

44; 
r- 	 (1 +0.28 
s 	se  

s A.Ei a  

ro 4E112) 
(5.15) 

The desired high monochromatic current obviously calls for a large ratio  rois 
The finite space in vacuum chambers places an upper limit on the radius ro. In 
making the slit width smaller one eventually encounters the limit that the cathode 
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cannot provide the amount of input current into the entrance slit that could be 
handled by the monochromator. The remaining tunable design parameter is the 
extension of the deflection angle AO.. 

A prudent choice of the extension of the deflection angle is of eminent im-
portance for the performance. In the course of our numerical exploration of many 
different spectrometers, we have enquired whether the calculations suggest a def-
inite optimum value of AO.. Such an optimum would, for example, exist very 
clearly if the energy resolution became poorer at higher deflection angles. It ap-
pears however, that the increased energy dispersion with larger deflection angles 
balances the higher aberrations (Table 4.2), which are also associated with larger 
deflection angles. Thus no natural limit for the extension of the deflection angle 
arises from these calculations alone. Some guidance for the choice is provided 
by Fig. 5.10 where we have plotted the FWHM of the transmitted energy distri-
bution vs the input current for two different deflection angles, 114° and 122°. 
Both curves display a relatively shallow minimum in the FWHM, with the 122° 
deflector providing the higher current. The deflection angle of 122° is superior, 
however, only if one has an input current available of about 8 nA (at 20 meV 
energy width). As we shall see in the next section, this current approaches the 
theoretical limit for the output current of a pre-monochromator. Because of the 
power law of the current at the detector, resolution is also precious. One should 
therefore choose a deflection angle for a monochromator for which the loss in 
resolution for smaller feed currents remains reasonable. With this in mind, a 
deflecting angle of about 115° for the second monochromator is proposed as a 
good choice when the ratio of the radii of the outer and inner deflecting plate 
R2/R1 is 1.8 as assumed here. 
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5.2 Retarding Monochromators 

In this section we present results of the numerical simulation of monochromators 
with space charge when either the exit aperture is at a reduced potential or 
the entrance slit at a higher potential. As in the previous section, we first list 
the design parameters (Table 5.5). The deflection angle is extended by a larger 
amount now, since for a pre-monochromator a possible loss in resolution due 
to an imperfect match of the input current does not affect the resolution of the 
second monochromator. A variable resolution is therefore tolerable. The mean 
radius r0 is reduced to the smaller value of 25 mm, mainly in the interest of a 
compact design (see however also Chap. 8). The radial position of the exit slit is 
slightly shifted outwards in order to keep the angles a2 of the exiting electrons 
centred around cs = 0 (Sect. 3.2). The width of the entrance slit is reduced 
to match the larger magnification. The aperture angle ai m  is also reduced by 
the same factor (Sects. 3.18 and 3.20). For retarding deflectors we define the 
retardation factor as 

E0 
Fvdt 	 

eUexit  
(5.16) 

with eUexit  the potential energy of the electrons at the exit slit and E0 the nominal 
pass energy. We have chosen the retardation factor to be 5 in keeping with the 
optimisation of the match of the resolution of the pre-monochromator to that of 
the second monocluDmator (Table 5.2). With a nominal pass energy of 1.5 eV, 
the potential energy at the exit aperture is therefore 0.3 eV. The nominal pass 
energy E0 is now defined by the difference in the potentials of inner and outer 
deflection plates according to 

eU(R2) eU(Rt) = 2E0 ln(R2/Ri) . 	 (5.17) 

Table 5.5. List of design parameters for a reference, decelerating monochromator 

Deflection angle 	 Oge 	127° 
Radius of outer deflection plate 	R2 	31.7 nun 
Radius of inner deflection plate 	R1 	17.6 mm 
Total height 	 H 	44 mm 
Radial position of entrance slit 	roi 	25 mm 
Radial position of exit slit 	 r02 	25.5 mm 
Width of entrance slit 	 sr 	0.15 mm 
Width of exit slit 	 52 	0.3 mm 
Height of entrance slit 	 ht 	1-6 mm 
Height of exit slit 	 h2 	6nun 
Maximum aperture angle a 	crtm 	1.5° 
Maximum aperture angle p 	film 	0°  
Energy width of feed beam 	AEI. 	0.2 eV 
Pass energy 	 Eta 	1.5 eV 
Retardation factor 	 F 	5 
Potential on top and bottom plates 	VO 	0.3V  
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Fig. 5.11a-c. Trajectories in a 127.3° retarding monochromator in the limit of zero input current. 
The retardation factor is Fexit  = 5, see equipotential lines dotted in (a). The focus in the radial plane 
is near 111.5°. The trajectories in the Oz-plane (b) are convergent because the potential of the top 
and bottom plates is equal to the potential of the exit slit and thus negative with respect to the pass 
energy. (e) The exit position y2 as a function of ai.  Evidently the linear term in  1(2  (a1) does not 
vanish 

E0 would be the real pass energy if  the 'field were that of the ideal cylindrical 
field (3.1). For the monochromator with a retardation factor of F = 5 and the 
exit slit moved outwards, as described above, we find the pass energy to be 
higher than E0 by a factor of — 1.12. For a nonretarding monochromator with 
entrance and exit slits of the same radius, the difference between the nominal 
pass energy as defined by (5.17) and the actual pass energy is merely about 1%. 
That difference was therefore disregarded in the previous considerations. In the 
retarding monochromator to be discussed here we have set the potential on the 
top and bottom plates equal to that of the exit aperture, which means that they 
are negatively biased with respect to the potential in the centre of the device. 

As with the nonretarding monochromator, we first show the trajectories in 
the limit of zero input current (Fig. 5.11). The radial focus is near 111.5 0  in that 
case so that the actual extension of the deflection angle is — 16°. In the Oz-plane 
the beam is compressed (Fig. 5.11b) because of the potential on the top and 
bottom plates. When the deflector is fed with a current chosen to shift the radial 
focus into the exit slit (Fig. 5.12a), the beam is less compressed in the Oz-plane 
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Fig. 5.12. The same retarding monochromator as in Fig. 5.8, but now the input current shifts the 
radial focus into the exit slit (a). The trajectories in the Oz-plane are less convergent here (b) because 
of the repulsive potential caused by the space charge. The exit position of the electrons as a function 
of ai (c) shows a remarkably low angular aberration. The three curves in (c) correspond to initial 
radial positions of r =  ro — si /2, r = ro and r = ro si /2. Note however that si is 0.15 nun while 
s2 is 0.3 mm. The magnification is Cy  = —1,75 

(Fig. 5.12b). The optimum potential on the top and bottom plates, where the 
trajectories become nearly straight lines in the Oz-plane, is somewhere between 
the potential of the exit aperture and the potential corresponding to the nominal 
pass energy. The angular aberrations of the retarding monochromator subject to 
space charge are quite small (Fig. 5.12c). The magnification Cy  is —1.75, while 
it would be about —1.5, if the deflector were not extended (3.18). We have again 
investigated input current, output current and resolution as a function of the 
illuminated height of the entrance slit h1 (Fig. 5.13) and find a similar result to 
that for the nonretarding monochromator. The output current changes relatively 
little with h1. Once again, therefore, it seems preferable to use a slit height of 
about 2mm. For a slit height of h1 = 2mm, Fig. 5.14 displays the trajectories. 
They are practically straight lines in the Oz-plane when the top and bottom plates 
are held at the potential of the exit slit. 

Hitherto we have investigated retarding monochromators with the exit slit at 
a lower potential than that corresponding to the nominal pass energy Eo, while 
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Fig. 5.14a—c. Trajectories in a retarding rnonochromator when the entrance slit is 2  mon high. The 
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Fig. 5.15a—c. Trajectories in a cylindrical deflector loaded with space charge when the entrance 
aperture is at five times the pass energy. Since the retardation occurs shortly after the entrance 
aperture the beam diverges extensively in the Oz-plane (b) 

the potential of the entrance slit remained at .E0. For the first monochromator 
after the cathode emission system, it may be advantageous to raise the potential 
of the entrance slit further in order to allow for a large enough input current 
to feed the monochromator. It is therefore useful to study a pre-monochromator 
with the entrance slit at a higher potential. Here we choose the pass energy 
to be 0.3 eV, as for the main monochromator (Table '5.1) and the potential of 
the exit slit is again the average between the potential of the inner and outer 
deflection plate. The potential at the entrance slit was raised by a factor of 5. 
The rest of the parameters were as for the conventional retarding monochromator 
(Table 5.4). A characteristic result for the trajectories is shown in Fig. 5.15. The 
equipotential lines in Fig. 5.15a show that the retardation now occurs shortly 
after the entrance slit, as expected. The space charge causes an initially small 
divergence of the beam along the z-direction in the range of high potential 
right after the entrance slit. Owing to the retardation however, this divergence 
is greatly enhanced (Fig. 5.15b) so that the beam leaves the monochromator 
with angles 0 as large as ±5 0 . We have already seen that such beams cannot 
be effectively processed further in a second monochromator or a lens system. 
Monochromators with higher potentials at the entrance slit therefore require a 
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Fig. 5.16a—c. Trajectories in the same deflector as in Fig. 5.15 but with a negative bias applied to top 
and bottom cover plates. The optimum input current is reduced to — 30 nA 

relatively large negative bias on the top and bottom cover plates in order to keep 
the beam from diverging along the z-axis. Figure 5.16 shows the trajectories 
in the same deflector as in Fig. 5.15 but with a compression voltage of —1.5 V 
applied to top and bottom cover plates. The transmission is now high again, 
angular aberrations appear to be low, and the trajectories leave the deflector at 
positions and angles suitable for further processing. Compared with the analyser 
with zero compression voltage (Fig. 5.15), the optimum input current is reduced 
to 31 nA instead of 49 nA. The output current is however about the same, thanks 
to the higher transmission. The transmitted energy distribution is well shaped 
(Fig. 5.17) and provides for a respectable 3.1 meV resolution at a current of 
— 0.4 nA. We therefore realise that retarding monochromators can be used in 
both ways, either with the entrance aperture at a higher or the exit aperture at 
a lower potential. When intended as pre-monochromators, one should allow the 
deflector to be operated in either way, which requires no extra lead into the 
vacuum system, but merely one extra adjustable potential. 

Pre-monochromators in our instruments typically supplied higher currents 
when the potential at the entrance aperture was raised to about double the pass 
energy of the device. Presumably the main effect of the higher potential at the 
entrance slit is to provide higher target potential for the cathode emission system 
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Fig. 5.17. Transmitted energy distribution of the 
cylindrical deflector specified in  Fig. 5.16.  The 
output current is 0.4 nA 

and thereby reduce the space charge in the cathode emission system. Returning 
to (1.19), we may estimate that passing currents above 10 nA into a slit of 
0.15 x 2 mm at an energy of 1.5 eV takes us well into the range of space-charge-
limited feed currents. 

The numerical results for the current and resolution are in keeping with (5.15) 
when the width of the entrance slit is substituted for s in (5.15). Note that the 
entrance slit is reduced in size in order to match the magnification. We like-
wise find the current of the retarding deflector with exit slit retardation to be 
well described by (5.15). The set of equations (5.10-15) may therefore be used 
for an optimum match of the pre-monochromator to the second monochroma-
tor. Depending on the slit widths, the radii, and the extension of the deflection 
angle the result differs slightly from the result obtained with the simplified pro-
cedure following (5.5) and Table 5.2. The difference is however of no practical 
consequence because of the considerable degree of flexibility one builds into a 
spectrometer by making enough potentials tunable. 

Such a fine tuning could, for example, be applied to the second monochro-
mator specified in Table 5.1. One may again have the potential at the exit or the 
entrance slit variable. When the potential of the exit slit is lowered the optimum 
input current is reduced (Fig. 5.18). At the same time the width of the transmitted 
energy distribution also shrinks. The performance factor as defined by (5.1) re-
mains constant however. A different result is obtained when the potential of the 
entrance slit is raised (Fig. 5.19) with respect to the pass energy. The optimum 
input current then increases and the width of the transmitted energy distribution 
also becomes slightly larger. Nevertheless the performance factor with respect to 
the entrance current rises with higher potentials at the entrance slit. When only a 
single monochromator is used in a spectrometer it may therefore be adv antageous 
to have the entrance slit at a higher potential. The price to be paid is that the 
beam diverges more in the Oz-plane. When a negative bias to the cover plates 
is applied simultaneously in order to keep the beam confined in the Oz-plane, 
the performance becomes independent of the retardation factor. When used as a 
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Fig. 5.18. Optimum current and performance of a retarding deflector as specified in Table 5.1 as a 
function of the retardation factor  F.  The lower the potential at the exit aperture (et/exit  = Eo/Fea) the 
lower the optimum input current. The resolution however increases also. The performance constant 
cp = /i 1p8t/4E3/2  thus remains constant 

Fig. 5.19. Optimum input current and performance of a retarding deflector when the entrance aperture 
is at higher or lower potential. The input current rises with the potential at the entrance aperture 
eUentr= EnFentr, the resolution becomes a little lower. The performance constant Cp increases 
however with Fenu. 

second monochromator, adjustment of the potential at the entrance aperture of 
the second monochromator (which is also the exit aperture of the first) serves to 
provide an optimum match between the output current of the first monochroma-
tor and the most favourable input of the second. We remember that this match 
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can also be achieved by adjusting the ratio of the pass energies of the first and 
second monochromator. It is therefore not really necessary to have the aperture 
of the second monochromator at a variable potential. 

We conclude this section with a plot of the magnification Cy  as a function of 
the retardation factor when the monochromator is loaded with the optimum input 
current. When designing a spectrometer, with or without pre-monochromator, the 
layout should roughly fix the retardation factors in the pre-monochromator or — 
if one settles for a single stage monochromator - in the main monochromator. 
Since the retardation factors also affect the magnification, the ratio of the width 
of the entrance and exit slits should be matched appropriately. In Fig. 5.20 the 
modulus of the magnification is plotted vs the retardation factor. The result is 
within the numerical error the same fQr deflectors with entrance or exit slit 
retardation, and also for the different deflection angles considered. Figure 5.20 
shows that the magnification for the deflectors loaded with space charge roughly 
scales according to 

I Cy  I = F°." , 	 (5.18) 

a result which is close to the one obtained earlier for deflectors without space 
charge (3.18). We have already mentioned in Sect. 3.2 the fact that, with the 
magnification, the angular aperture also changes (3.19) by an amount that can be 
calculated by applying the rule of phase space conservation in two dimensions. 
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6. Electron Emission Systems 

Monochromators require feed beams with defined aperture angles and a low 
energy spread. After presenting some basic concepts of thermionic emission we 
describe the technical aspects of trajectory calculations in the presence of space 
charge. Emission systems with differently shaped lenses are studied and their 
performances are compared. 

6.1 Basic Concepts 

In the preceding chapter we have investigated the maximum monochromatic cur-
rent provided by cylindrical deflectors. The result of these considerations could 
be expressed by (5.15), describing the monochromatic current of both nonretard-
ing and retarding monochromators. The geometric parameters of the deflector 
that appear there are the extension of the deflection angle and the ratio of the 
centre radius and the slit width. In order to produce the monochromatic currents 
predicted by (5.15) and the associated numerical analysis, the monochromator 
needs to be fed with a beam of electrons produced by an emission system whose 
beam parameters must meet the specifications required by the monochromator. 
We state these specifications here more explicitly by combining (5.12) and (5.15), 
whereupon we obtain an expression for the input current of an monochromator: 

/input  0.18 krils 	2i0 sc  (1 + 0.28 \Fs AEin 1/2  

ro  ZAE112 

This expression tells us that a monochromator can accept a higher feed current 
and thus provide higher monochromatic currents the larger the ratio rois is. For 
a given overall size of the device, the monochromatic current could be improved 
by reducing the slit width, which would in turn require a higher current density 
of the feed beam. As a subsidiary condition to (6.1), we have shown in Sect. 5.1 
that the angular aperture ai m  should be close to or smaller than 

0 1 m  = 	- 2r0 
(6.2) 

A similar subsidiary condition governs the angular aperture /31., which we take 
from (3.39) with n 5/2 

(6.1) 
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</-• (6.3) 23 

While this condition arose from the optimisation of the transmission with respect 
to resolution, a small angular divergence is also important with regard to the 
space charge because a small A. allows us to compensate the space charge 
spreading by applying a negative bias to the bottom and top deflecting plates. A 
small angle 131,n  is also important for the lens system beyond the monochromator, 

more important than a small divergence in a as we shall see later. Finally the 
illuminated slit height is subject to a further constraint when the quantities ro, 

aim , and .A.Ein  are the scaling parameters (Sect. 5.7). Because of these side 
conditions, scaling up to the ratio rais  in order to achieve higher monochromatic 
currents entails focusing the feed beam into a smaller area and into a smaller 
angular aperture. Furthermore, it is obvious that the feed beam should have as 
narrow an energy distribution as possible. With these considerations, we have 
therefore established the current per unit area, solid angle, and energy window 
at the entrance slit as an important quantity for the evaluation of an electron 
emission system. The quantity is usually referred to as the "brightness". We 
define the brightness B here as 

d 2  
B=  	 (6.4) 

df2 dE 

where j denotes the current density. In the older literature (see e.g. [6.11), the 
term brightness is used for the current per solid angle and area. The definition of 
brightness adopted here, which also includes the energy spread, is in line with 
modern optical practice, when the properties of a synchrotron light source are 
described for example [6.2]. To give an example, the brightness needed to feed 
the pre-monochromator specified in Table 5.5 is of the order of 1 A/(eV cm2  rad) 
if we assume to be 1 0 . In order to relate this quantity to the established prop-
erties of electron sources, we need to consider some basic concepts of electron 
emission. We restrict ourselves to therrnionic emission. Field emission sources, 
while providing a higher brightness, have not been tamed to feed high resolution 
monochromators so far. The following material is to be found in the standard 
books on electron optics [6.1, 3] and is repeated here in our notation for easier 
reference. 

Firstly, we are interested in the energy distribution of emitted electrons, which 
is the Maxweilian flux distribution. The differential current density into a velocity 
window dv and into the solid angle dS2 = sin 19 di9 (199 is 

m 	 mv2 egp 
d 2j = 2e (

) 
—
h 

v3  exp 	
2kBT 
	) cos t9 dS2 dv , 

3  
(6.5) 

r 
where e denotes the work function of the emitter and kB the Boltzmann con-
stant. The prefactor disregards reflection of the electrons from the surface barrier 
and therefore represents an upper limit. After converting this into an energy 
distribution, one obtains for the brightness 
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d 2j 772 3 	E +  
dd12  dE 
	= 4 	

kBT 
e ( 

h
) E exp 	cos19 . 	 (6.6) 

We note that this is the energy distribution of the flux, not the energy distribution 
of the density, which would be proportional to fk-  exp(—E/kBT). The relevant 
energy dependence of the brightness E exp(—E/kB T) has its maximum at 

ER, = kBT T 	
11600K 

eV 	
(6.7) 

The highest brightness of a beam in an aperture is obviously obtained when the 
lenses focus electrons at the maximum of the energy distribution. The fraction of 
the current falling into a narrow energy window dE relative to the total current 
emitted into the same solid angle is also of interest 

di _  Em  exp (—Em /kBT) 	
(6.8) 

dE 	E exp (—E I kEtT) dE 

di 	e-1 	
(e = 2.718) . 	 (6.9) 

dE = kBT 

This equation allows us to calculate the current in a small energy window of a 
few meV when a monochromator is fed with a particular current load stemming 
from thermionic emission. The current per energy interval falling into the an-
gular apertures accepted by a monochromator imposes an upper bound on the 
monochromatic current that a monochromator can deliver. Taking our standard 
monocluomators as examples, currents per energy interval of 0.2-0.4 nA/rneV 
are needed (Figs. 5.6,13). We finally recall that the full width at half maximum 
of the Maxwellian flux distribution is given by 

eV 
dEpwlim 2.45k8T = T

4740K 	
(6.10) 

The brightness of an electron source and the brightness at any aperture further 
along the electron optical system are related because of phase space conservation. 
For beams with small angular apertures phase space conservation means that the 
product of energy, solid angle, and cross-section of the beam remains constant. 
Applying this principle to electron emission from the cathode and the image of 
the cathode surface area we obtain 

Fcathocie df2cathode Ecathode = Fimage dflimage Eimage • 
	 (6.11) 

The energy at the cathode may be replaced by the energy where the Maxwellian 
distribution has its maximum i.e., where the source has the highest brightness. 
We then obtain 

Fcathode (Mealhode kBT = Fimage  df2image(eVac + kBT) , 
	 (6.12) 

where Vac  is the acceleration voltage. In addition to volume in phase space, 
current and energy are also conserved. The width of the energy distribution in 
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the beam therefore remains the same. (We disregard the Boersch effect, which 
is important for large acceleration voltages and beams of high current density 
[6.4]). Because of the conservation of current and the conservation of the energy 
distribution, one has conservation for the product of the brightness B, area and 
the solid angle 

Bcathode Fcathode dOcathode = Bimage Fimage dr2image 
	 (6.13) 

and therefore 

(eVac  kBT) 
Bimage = Bcathode 	

k 	
(6.14) 

BT 

This conservation law for the brightness is familiar from normal light optics. 
There, the ratio of the energies is replaced by the ratio of the refractive indices 
of the media in which the light travels at the source and image position. In order to 
compare the brightness of a typical tungsten emitter with the brightness of about 
1 A/eV cm 2  rad required to feed a monochromator we list the brightness of such 
an emitter in Table 6.1 for various cathode temperatures. Since the brightness in 
the entrance slit of the monochromator is enhanced by the factor (eVac+kBT)I kBT 
relative to the brightness of the cathode, it seems that a tungsten cathode could 
be operated at temperatures below 2400 K. It also appears that moving to sources 
of higher brightness would not have any advantage. In these considerations we 
have however disregarded the properties of the lens system and space charge 
effects. We shall therefore need to revisit the issue of source brightness after 
discussing some concrete emission systems. 

Table 6.1. Brightness of a tungsten emitter (After [6.31) 

T[K]  B [A/eV cm2  rad]  

2000 2.1 x 10-3  
2200 7.0 x 10 -2  
2400 0.56 
2600 3.2 
2800 14.6 

6.2 Technical Aspects of the Calculations 

In this section we present a few technical aspects of the calculations of lens 
systems, including the modification of the trajectories by the space charge and 
the chromatic error. The details may be particularly useful for readers who intend 
to perform similar calculations for themselves. 

The numerical calculations are deli with in two separate programs. The first 
defines the lens elements and solves the Laplace equation for arbitrary potentials 
on the lens elements, using the superposition principle as described in Sect. 2.2. 
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The second program calculates the trajectories, the space charge potential, and 
all the other electron optical properties of interest. 

The solution of the Laplace equation was performed with a mesh size of 
0.5 x 0.5 x 0.5 mm3  in cartesian coordinates. Because of the symmetry of the 
element, only one quadrant need be calculated. The typical size of the array was 
then 30 x 40 x 40. We have also experimented with a finer mesh of 0.25 x 
0.25 x 0.25 mm3 . The differences in the resulting trajectories were so small that 
we reverted to the larger mesh size for all but a few trial calculations in the 
interest of shorter computing times. When the Laplace algorithm is applied to 
one quadrant of the lens, the procedure must be modified along the dividing 
planes between two quadrants and also along the optic axis common to all four 
quadrants. We illustrate the procedure with the yz-plane when z is the optic 
axis. We assume that the basic mesh is cubic so that the Laplace algorithm (2.4) 
becomes simply 

V(s, y, z) 	(V(x + Ax, y, z)+ V(x — Ax,y, z)+ V(x,y + Ay, z) 

+V(x , y — 2ty, z)+ V(x, y, z + Az) + V(x , y, z — Az)) (6.15) 

or written for the array V(I, J, K) 

V(I, J,K) = (V(I +1, J,K)+V(I — 1, J,K)+ V(I, J +1,K) 

+V(I, J — 1, K) + V(I, J,K + 1) + V(I, J,K — 1)) . 	(6.16) 

In the yz-plane where I. 0 one uses the fact that V(—x, y, z) H V(x, y, z) and 
the algorithm 

V(0, J, K) =1(2V(1, J,K)+ V(0, J + 1, K) + V(0, J 1, K) 

+V(0, J, K + 1) + V(0, J, K 1)) 	 (6.17) 

is obtained. The extensions to the xz-plane and the optic axis are obvious. 
Unlike the case of cylindrical deflectors, we now want to define lenses with 

arbitrary shape; it is convenient to introduce an array separate from the potential 
array for this purpose. The non-zero elements of this new array V1(1, J, K) are 
either a very small potential of say 10-8 V or the unit potential of 1 V (Sect. 2.1), 
while V1(I,  J, K)  0 for all points in space not covered by metal electrodes. 
A simple reading code can then be used to make plots of the lens elements in 
arbitrary cross-sections. Such plots are very useful, almost essential indeed, to 
make sure that one has indeed defined the lenses exactly as they were meant 
to be. The Laplace algorithm is then designed to jump to the next I, J,K unit 
when one hits a lens element, i.e. when VI(I, J, K)# 0. The potential at that 
particular position V (I , J, K) is set equal to V1(I, J, K). The outer boundary of 
the array must be excluded from the algorithm. There the potential V(*) is set 
equal to la(*). The Laplace equation must be solved as many times as there are 
independently variable potentials on lens elements; the unit potential of 1 V is 
applied to each element in turn, while the other elements of the lens are held 
at the negligible small potential of 10-8  V. Since the lens elements occupy a 
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Fig. 6.1. Relative variation in the transverse electric field vs the number of iterations. The data refer 
to a cathode emission system with oval lenses. The parameter is the feedback-factor as  defined  
in (2.4). For a feedback-factor of 1 (i.e. no feedback) the convergence is rather slow. For larger 
feedback-factors, the convergence becomes more and more rapid until the results start to oscillate. 
The optimum feedback-factor is between 1.6 and 1.8 for the lens system here 

much larger volume than the space in which the potential is actually needed to 
run the trajectories, only the centre part of the converged potential need to be 
stored. It is advisable also to store all key parameters such as array dimensions, 
the key dimensions of lens elements, and the cathode and target positions and 
let the trajectory program later read and adjust itself to these parameters. If a 
calculation of the space charge potential is attempted, one must also store the 
array V/(*) defining the lenses in order to let the algorithm solving the Poisson 
equation take the metallic electrodes into account properly. 

The convergence of the Laplace algorithm is speeded up substantially by 
positive feedback (2.5). The optimum choice for the feedback parameter was 
found experimentally by testing the convergence in the field as a function of the 
feedback parameter. In Fig. 6.1 the relative variation of the transverse electric 
field at a particular point on the optic axis is plotted as a function of the number 
of times the Laplace algorithm has run over the entire array. One sees that after 
a starting-up period, the field converges exponentially with the number of cycles, 
yet with a rather slow decay rate for a feedback-factor of one [which means no 
positive feedback (2.5)]. For higher feedback factors the convergence becomes 
faster and faster until the field begins to oscillate with the number of iterations. 



Eventually the oscillations become too large and the procedure is unstable. For 
the lens elements in the emission system, a feedback of 1.6 was used, which made 
the convergence rather rapid. By exploiting the fact that the deviation in the field 
starts to oscillate when the feedback becomes too high, it is straightforward to 
let the feedback automatically adjust to an optimum value. The iterations were 
stopped when the relative variation in the field after each iteration was below 
10 -6 . For the emission system with five independently variable potentials, an 
entire lens system could be calculated in about 1 h on the 320 series Hewlett-
Packard with an Infotek Basic 5.1 compiler. 

We now describe a few key features of the trajectory program where this 
differs from the one used for cylindrical deflectors. Here, electron trajectories 
need to be calculated only near the optic axis. This can be exploited to speed 
up the calculation of the electric field at each instantaneous electron position 
by performing a major fraction of this calculation before the integration of the 
trajectories. For example, one may determine the transverse electric field for 
all values of the index K counting along the optic axis, which is referred to 
as the z-axis in this and the next chapter, dealing with lens systems. We take 
the transverse x-component of the field as an example and expand the potential 
around the optic axis as in (2.10) 

V (I , J, K) = ao(J, K) + (J, K)(Ax)2  I2  + az (J, K)(Z1x) 4 	. 	(6.18) 

Because of the mirror symmetry, with the yz-plane as a mirror plane, only the 
even terms in the expansion survive. After defining a matrix à with elements ai 

Ft, (J, K) = ai(J, K)(4x)2I 	 (6.19) 

one obtains Et by the operation 

K) = NI -1  • V (J, K) 	 (6.20) 

for each pair (J, K), provided M has the elements 

Mt; = ()2i 	 (6.21) 

The quantity 00  is set equal to unity. In some languages, the operation 00  results 
in an error message, which must then be taken into account when the matrix Mii 
is defined. The x-component of the field is then obtained as 

x (J, K) = 2a1 (J, K)s + 4a2(J, K)x 3  . 	 (6.22) 

The matrix a(J, K) and a similarly obtained matrix b(I, K) representing the y-
component of the field depend on the applied potentials, not on the instantaneous 
position of the electron. The matrices can therefore be calculated once the applied 
potentials have been defined. The only equation that needs to be solved for the 
each position of the electron is (6.22). For positions of the electron between the 
grid points (J, K); (J + K); (J, K + 1); (J +  1,K + 1) one may use a linear 
interpolation. For the lens system we have studied it was sufficient to take (6.22) 
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up to the third order. A fifth order expansion was actually used in the program to 
be on the safe side. We note that with Eq. (6.22) one is no longer confined to the 
positive quadrant. The equation applies also to the negative values of x, despite 
the fact that the potential array is only defined in the first positive quadrant. Thus 
the program automatically integrates trajectories in the entire lens with no further 
precautions. 

For the z-component of the electric field we used the second-order expansion 

V(I J, z) = c,o(I, J) + ci(I , J)(z —  z1)  + c2(I, J)(z z K) 2  , 	(6.23) 

where zK is the instantaneous z-position of the electron at the last integer point 
K defined by 

K = INT (z/Z1z) , zK = AzK 	 (6.24) 

The field is then calculated again by the matrix inversion method described 
above, for each integration step in the trajectory calculation. The z-component 
of the electric field varies in second order with the deviation from the optic 
axis. For positions z, y off the optic axis, one may interpolate between the grid 
points I, J using a proper expansion of the coefficients ci(i, J) as even powers 
of I, J. For the rays near the axis as used here, we found however the results of 
such a more elaborate integration procedure to be practically identical with the 
results obtained with V(I, J, z) a--  V(0,0, z) in (6.23). The z-component of the 
electric field can therefore safely be calculated from the potential on the optic 
axis. This is not surprising. We recall that in the gaussian optics of paraxial rays 
for cylindrical lenses all the imaging properties are determined by the potential 
on the axis [6.5, 6] . 

The trajectories were calculated using the scheme 
ce(t + 	= i(t) + E,(x, y, z)At , 

x(t + At) = x(t) + i(t)At + ei (x , y,  z)At 2  , 	 (6.25) 

as described earlier with the corresponding equations for the y- and z-components. 
Changing to a more elaborate integration scheme such as the Runge-Kutta pro-
cedure [6.7] did not reduce the computing time,  presumably because in our case 
the field between the grid points is not known exactly and is calculated by inter-
polation. 

The convergence of the integration was tested as a function of the time 
steps .41. As a measure of At we use the dimensionless quantity Az/vgitAt, 
where vslit  is the velocity at the target. In Fig. 6.2 the angular aberration for a 
particular emission lens system and the error in the kinetic energy of the electrons 
at the target are plotted as a function of 4z/vit At. The angular aberration is 
here defined as the difference between the foci for electrons  /emerging from the 
cathode tip with angles of 5° and 40°, respectively. This quantity converges to 
a finite value. One sees that the results are sufficiently converged for values of 
Az/vslitAt of about 20. The remaining error in the focal length corresponds to 
a very small deviation in the lateral z position of about 0.01 mm because of 
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Fig. 6.2. Angular aberration and error in the kinetic energy at the target as a function of the inverse 
time step in the trajectory integration. The converged result for the geometrical parameters of the 
trajectories is reached when tla/liutAt is above 20 with a potential of 14llt. = 10 eV at the target. 
This corresponds to about 150 integration steps for each trajectory. The error in the kinetic energy 
of the beam at the target falls rather slowly with the number of integration steps. The kinetic energy 
can however be calculated directly from the initial energy and energy conservation 

the small angular divergence of the beam at the target. Similarly all other beam 
parameters related to the geometry of the trajectories converge rapidly. The error 
in the kinetic energy at the target disappears only as ,At. When the kinetic energy 
is of interest, one should make use of energy conservation directly rather than 
calculating the energy from the integration. 

The integration of one trajectory with an arbitrary emission angle at the 
cathode takes about 1 s. In the determination of the foci in the two symmetry 
planes of the lenses one may use simplified trajectory subroutines and consider 
the  x, z,  or y, z components of the electric field only, which leads to a further gain 
in speed. Once a set of potentials has been determined leading to an approximate 
focus near the target a search code is useful, which keeps changing one key 
potential in a systematic manner, until the focus coincides with the target with 
a predetermined precision. In order to determine the essential beam parameters 
such as the input current into the monochromator and the brightness at the input 
slit, the Maxwellian energy distribution of the electrons emitted from the cathode 
has to be taken into account. A Maxwellian distribution E exp(—ElkBT) of the 
energies E is generated by first selecting a random value of E0 between zero and a 
maximum value of about ten times the particular energy where E exp(—ElkBT) 
has its maximum. One then generates a second random number between zero and 
the maximum value of the function E exp(—ElkBT). If this number is larger 
than E0 exp(—Eol kRT) a next trial value of E0 is selected, otherwise E0 is used 
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to start a trajectory. While this code is not the most efficient one, it is fast enough 
not to be a time-limiting factor in the integration of a bundle of trajectories. 

The space charge and the space charge potential were calculated as described 
earlier in Sect. 5.1. As we shall see later with specific examples, a sufficient 
brightness at the entrance slit of the monochromator and a sufficient total current 
are attained with cathode emission currents corresponding to comparatively low 
space charge densities. This allows us to investigate the effect of space charge on 
the trajectories and the relevant beam parameters in a first order approximation, 
in which the space charge is obtained from a bundle of trajectories traversing 
the system without the presence of space charge. In other words, one is still 
far from the conditions in which a virtual cathode is formed near the cathode 
tip and the total current becomes space charge saturated. That this is indeed so 
for a particular emission system may be tested in two ways. Firstly, one may 
rise the space charge potential calculated to first order by multiplication with 
a higher current until trajectories emitted from the cathode are repelled from 
the space charge barrier formed near the cathode. This current should be much 
larger than the current for which the first order space charge potential is used. 
Secondly, one may iterate the space charge calculation for a particular current 
of interest by calculating the space charge and space charge potential with a 
bundle of trajectories in the presence of the first-order space charge potential, 
and so forth. Just as for the cylindrical deflector, we found that the first-order 
space charge potential was sufficiently well converged for the emission currents 
of interest here. It should be however mentioned that while the calculated first-
order properties of emission systems — the angular apertures and the achievable 
brightness — agreed with experimental measurements, the energy distribution of 
the electrons entering the monochromator was narrower than calculated. This 
may be related to the fact that the shape of the cathode tip cannot be modelled 
satisfactorily with the relatively coarse mesh. 

6.3 Three Different Emission Systems 

In electron energy loss spectroscopy, repeller-type cathode emission systems 
have enjoyed rather widespread use, while on the other hand guns with Wehnelt 
cylinders are typically employed in applications where a beam of small angular 
divergence and diameter at high electron energy is needed. So far as we know 
the use of repeller cathodes was introduced by Ehrhardt and collaborators [6.8] 
in the 1960s. It was not stated whether the choice was made empirically or on 
theoretical grounds. We have tested two different small Wehnelt-type cathodes 
and found their properties to be far inferior to repeller cathodes for the application 
here. We assume that this result comes about because of the negative potential 
applied to the Wehnelt cylinder. This negative potential is necessary in order to 
obtain a focus. As a consequence, electrons near the cathode travel in a region of 
smaller potential. This is clearly visible in a plot of the space charge density vs 
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Fig. 6.3. Distribution of the space charge density along the optic axis for a Wehnelt emission system 
and a repeller emission system plotted as dashed and full lines, respectively. The data refer to the 
same target potential but are normalised to the maximum space charge density at the cathode for each 
system. The space charge density of the Wehnelt emission system is more localised in the vicinity 
of the cathode and is actually also much higher there for comparable dimensions. Consequently the 
Wehnelt cathode saturates at lower emission currents 

the distance from the cathode. For the Wehnelt-type emission system the space 
charge density (dashed line in Fig. 6.3) is more concentrated in the region near 
the cathode while, for the circular repeller system to be discussed later in more 
detail, the space charge is more evenly distributed, and consequently the space 
charge density is lower on the whole for the repeller emission system. Further 
investigation therefore focuses on the optimisation of repeller cathodes. Guided 
by the slit geometry of cylindrical deflectors used in this laboratory, a repeller-
type emission system with lens elements having slit-shaped cross sections is 
investigated. Obviously such an emission system can be constructed so that one 
forms a horizontal image at the entrance slit, while one may have a nearly parallel 
beam in the vertical plane. A slit of narrow width and large height can hence be 
more or less illuminated. It was widely believed for years that filling the entrance 
slit in this manner is the only effective way of operating a monochromator. We 
have already seen, in the investigation of space charge effects in the cylindrical 
deflector, that the height up to which a slit of 0.15-0.3 mm width should be 
filled should be limited to about 1-2 mm. It was one of our major surprises in 
this study that, at least for an ideal point source cathode, an emission system that 
has circular symmetry around the optic axis provides rather good results as well. 

We have studied the optical properties of three classes of repeller emission 
systems in greater detail, one with slot lenses, one with oval lenses, and one 
with circular lenses. In each of these classes we have varied many of the param-
eters characterising the dimensions of the lens elements and the distances. The 
specific system discussed below represent a relative optimum with regard to the 
beam parameters demanded by a pre-monochromator operating with pass ener-
gies larger than — 1.5 eV. For very low pass energies the detailed investigation of 
experimentally realized spectrometers suggested that emission systems providing 
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Top View 	Side View 	Fig. 6.4. Emission system with slot lenses 

IF n  
Il 	i 

a beam of a smaller angular aperture at the entrance slit of the monochromator 
would be advantageous when resolutions below 2 meV are attempted (Chap. 8). 

We now describe the geometry of different lenses in detail with the help 
of computer-generated drawings of the cross-sections. The cross-sectional views 
are generated by drawing a filled square around each point were a nonzero value 
of the lens array V/(*) has been declared. Thus the drawings are accurate to 
0.25 mm. As we have mentioned above, differences in dimensions of this order 
are not important anyway. We first comment on the slot lens system depicted in 
Fig. 6.4. The system consists of a repeller, three slot apertures plus a horizontal 
bar (see side view) and the entrance slit of the monochrornator, which is the 
target for the beam emerging from the cathode. The cathode is drawn as a little 
tip in the left center of the top view and the side view. The repeller potential 
also surrounds the entire system. Because of the negative potential applied to the 
repeller, the electrons are kept within the emission system and no stray electrons 
can reach the electron detector at the end of the spectrometer. This is of some 
importance since one produces about 1013  electrons/s, whereas the dark count 
rate of the detector is less than 1 Hz. The repeller has a different curvature in the 
two cross sections. These curved shapes are obtained by using a milling wheel of 
50mm diameter. Five independently variable potentials can be applied to the lens 
system, one to the repeller, one to each aperture, and one to the target aperture. 
The latter determines the input energy for the monochromator. In Sect. 5.2 we 
have calculated the example of a pre-monochromator for a kinetic energy at the 
entrance aperture of 1.5 eV. In keeping with this example we calculate the cathode 
systems with 1.5V again applied to the entrance slit of the monochromator. The 
extra bar shown in the side view of Fig. 6.4 is electrically connected to the last 
lens aperture. Held at a negative potential, the bar provides for an independently 
adjustable vertical focus, as we shall see. 
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Cross-sections of the second class of cathode systems are shown in Fig. 6.5. 
The slot apertures are replaced by apertures with oval openings having a height-
to-width ratio of 2. The extra correcting bar of the first lens is removed because 
it was assumed that sufficient focusing in the vertical plane (plane of the side 
view) would be obtained by closing the slots to ovals. The repeller remained the 
same as for the slot aperture system. 

Top View 

IT 
Side View 

Owl 

	Side 

Fig. 6.5. Emission system with oval lenses 	Fig. 6.6. Emission system with circular lenses 

The third system (Fig. 6.6) is the simplest of all, containing only rotationally 
symmetric elements, apart for the entrance slit, which could of course be replaced 
also by a round aperture. We recall however that the slit width determines the 
resolution of the monochromator and must be matched to the design of the 
monochromators and analysers, while the height of the slit can be varied over a 
large range without affecting the resolution. When the disk of confusion formed 
by the trajectories of electrons having the monochromator pass energy is larger 
than the slit width, then a slit height larger than the width provides more useful 
feed current into the monochromator. Interestingly, the slit form of the target 
aperture, the only non-circular aperture in the emission system, has a small but 
noticeable asymmetry effect on the trajectories. Like the apertures, the repeller is 
now also circularly symmetric. The shape of the repeller is obtained by grinding 
a hemisphere of radius 4mm into the repeller plate. (The shaping of the elements 
in the computer code actually mimics the action of a milling cutter.) The centre 
of the sphere is situated at a point 1 mm to the right of the inner plane of the 
repeller (Fig. 6.6). The cathode tip is placed 2.5 mm to the left of the centre of 
the sphere. The emission system with circular lenses also includes two screening 
electrodes, connected to the repeller and the third aperture. The purpose of these 
electrodes is to hide the ceramic insulators needed to stack the lens elements and 
fix their position. Electrons on the trajectories "see" the crearnic beads though a 
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Table 6.2. Essential design parameters of three emission systems. The symbols zi, hi and Iv; denote 
the positions on the  optic  axis, the height, and the width of the ith aperture, respectively, in mm. 
Each system was actually tested in a spectrometer 

Type of emission system Slot Oval Circular 

Cathode z-position 1.5 1.5 1.5 
Cathode surface area 
z-position of inner 
boundary of repeller 

0.01 x 

3.0 

0.01 0.01 x 

3.0 

0.01 0.01 x 

3.0 

0.01 

Z1 6.5 6.5 6.0 
36.0 6.0 8.0 

lDj  5.0 3.0 8.0 

Z2 75 75 8.0 
h2, 36.0 8.0 8.0 
W2 6.0 4.0 8.0 
Z3 8.5 8.5 10.0 
h3 28.0 10.0 8.0 
W3 7.0 5.0 8.0 
zdit 15.0 12.5 14.0 

Height of correction bar 20.0 
Diameter of screening electrode  18.0 

narrow gap between metallic electrodes, which screens the possibly high potential 
of charged insulating surfaces. The key parameters of all three emission systems 
are summarised in Table 6.2. 

Once the emission systems have been defined and the Laplace equation has 
been solved, one may begin to explore feasable conditions for obtaining a hor-
izontal focus at the entrance slit. We also remember that a small angular diver-
gence of the beam with respect to both the horizontal plane and the vertical plane 
is desirable. In keeping with the definitions in the cylindrical deflector, we use 
a for the angle with the optic axis in the horizontal plane and # in the vertical 
plane. Once the target potential has been fixed, one still has four independently 
variable potentials. Some guidance to suitable subspaces of the four-dimensional 
parameter space is provided by the following description of the main effects of 
the individual potentials. We take the slot lens as an example, since there the 
elements have the most clearly distinguishable function. 

The lens operates as an accelerating-retarding lens. A comparatively high 
potential is applied to the centre aperture to accelerate the electrons rapidly 
as they leave the cathode and to remove them from the critical region where 
a space charge cloud and a virtual cathode may be formed. The magnitude 
of this potential is rather arbitrary, the upper limit basically being a matter of 
convenience. The gain in performance becomes rather sluggish at high voltages. 
When the potential of the centre aperture is varied, one needs to scale the other 
potentials too, of course. The repeller is always kept at a negative bias with 
respect to the cathode in order to "repel" the electrons. The bias determines 
rather critically the horizontal focus of the beam. Some focusing in the vertical 
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plane is also achieved by the repeller but much less than in the horizontal plane, 
because of the smaller curvature of the repeller in the vertical plane. The first 
aperture has a potential typically between those of the repeller and the second 
aperture, providing some Wehnelt-type focusing action. The third aperture is at 
a negative potential. The main effect of this potential is to shape the beam in the 
vertical plane into a converging beam and to provide a vertical focus between 
about three times the slit distance and infinity. Needles to say, all potentials 
are interdependent. If one changes the potential on aperture 3, say, not only 
does the vertical focus change but also the horizontal. The last adjustment is 
always performed with the repeller, which critically determines the horizontal 
focus, while the remaining parameters of the beam remain unchanged, to first 
order. For the repeller potential, one can therefore easily write a subroutine for 
an automatic search for the focus. 

6.4 Electron Optical Properties 
of the Three Different Emission Systems 

We begin the discussion of the electron optical properties with the presentation of 
a set of trajectories in the vertical and horizontal planes, the potential distribution 
along the optic axis, and the image of the cathode at the target. We show these 
results for zero emission current and for an emission current of 1 iitt (Figs. 
6.7-13) in order to elucidate the effect of space charge on the trajectories and 
the potential. The cathode is assumed to be an ideal point source for the moment. 
The potentials on the lens elements are adjusted to have a focus at the target in 
the horizontal plane for a pair of beams leaving the cathode at an emission angle 
a = +20 0 , whereas for the vertical plane we attempted to have a nearly parallel 
beam in the emission systems with slot and oval lenses. There is obviously some 
arbitrariness involved here, and it is useful to study the emission systems with 
different focusing in order to build up experience about their performance under 
different conditions. The final choice of the potentials was made in keeping 
with the set of optimised potentials obtained in experimental tests of the cathode 
systems. In the calculation we kept the potentials at the same value for high and 
low emission currents, although readjustment of the potentials slightly improves 
the currents and brightness achievable. We have not readjusted the potentials since 
this would have been rather difficult to perform in an unambiguous manner. 

The results for the slot lens emission systems are shown in Fig. 6.7. Relatively 
large angular aberrations are seen in the horizontal plane and also in the vertical 
plane. In the vertical plane the absence of angular aberrations would result in a 
parallel beam for all emission angles fi since the rays are emitted from an ideal 
point source. The potential along the axis (Fig. 6.7e) has a minimum near the 
target because of the negative potential V3 = —13 V applied to the third aperture 
and the bar, which is needed to shape the beam in the vertical plane. It is obvious 
that this minimum can have unpleasant effects on the beam parameters when it 
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a. Vertical plane 

ci  
. Horizontal plane 

c. Potential 

Vr=-.605 V 

VI. 2 V 

V2= 60 V 

V3=-I3 V 

V slit= 1.5V  

slit width= .15 mm 

slit height= 2 mm 

emission current= 1.E-12 R 

Fig. 6.7. Trajec ones  of electrons (a) in the vertical plane and (b) in the horizontal plane for the 
emission system with slot lenses. (c) The potential along the axis. (d) The positions of the electrons at 
the target slit, the dimensions of which are 0.15mm  x2 mm. The trajectories refer to electrons emitted 
from a point cathode at an energy equivalent to the maximum of a Maxwellian flux distribution with 
a temperature T = 2000K 

is further deepened by the space charge. The arrival points of 200 electrons at 
the target with initial emission angles randomly distributed between a = ±40°, 
fl = ±40° are shown in Fig. 6.7d. The initial energy of the electrons was held 
at the maximum of the Maxwellian flux distribution. One sees that the slit is 
nicely filled in both width and height. Thus a transmission of nearly 100% is 
achieved for electrons having this energy when emerging from a point source. The 
latter caveat is essential, because the three lens systems have a relatively large 
magnification (4.5 and 7.5, respectively). Figure 6.8 displays the same results, but 
now for an emission current of 1 ktA. The effect on the trajectories, in particular 
near the cathode,  is clearly visible. Raising the current further soon results in 
the build up of a virtual cathode near the emission tip, a regime of emission 
currents where our approch to the space charge problem no longer applies. The 
spreading of the beam at the target due to the space charge is obvious when 
one compares Fig. 6.7d and 6.8d. We recall that this spreading is largely due to 
increased angular aberrations and can therefore not be reduced substantially by 
applying slightly modified potentials. 

The results for the oval lenses are depicted in Figs. 6.9 and 6.10. Again the 
slit is nicely filled for electrons with an emission energy at the maximum of the 

102 



. 	Vertical plane 

b. 	Herizental plane 

MON,-  

Vr=-.61115 V 

Vt= 2 V 

V2= GO V 

V3=-13 V 

V slit= 1.5V 

slit width= .15 mm 

slit height= 2 mm 

emission current= 1.E-6 R 

Fig. 6.8a-d.  The same as  Fig. 67  for an emission current of 1 FA 

Maxwellian. In contrast to the slot system, electrons diverge in the vertical plane 
(Fig. 6.9a) even in the limit of zero emission current and diverge even more 
fir larger currents (Fig. 6.10a). This is due to the absence of the extra bar in 
the emission system, which was used to shape the beam in the slot lens system 
(compare Figs. 6.4 and 6.5). Thus with the oval lens system studied here, the 
beam shaping in the vertical direction remains unsatisfactory. We assume that by 
modifying the dimensions of the lens elements one could eventually obtain an 
emission system employing ovally shaped lenses only and still achieve the better 
beam shaping of the slot lens system equipped with the horizontal electrode 
bar. We did not explore this possibility in greater detail since we expected to 
arrive eventually at a system which, though easier to manufacture, would provide 
electron optical properties rather similar to those of the slot system. 

The final system considered here is the emission system with circular lenses 
(Figs. 6.11 and 6.12). In contrast to the two former ones, this system can be 
operated with a rather large field near the cathode, which is apparent from the 
steep increase of the potential near the cathode. This is a natural feature of 
the circular system, where no attempt is made to focus the beam in one plane 
and spread it in the other in order to fill a slit. In fact, a proper focus could 
be obtained with even higher potentials on the repeller and first lens elements. 
Generally speaking, the system is rather good natured because it tolerates quite 
different potentials and still provides for a good focus at the target. This is a 
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a. Vertical plane 

b. Horizontal plane 

	41— 

Vr=-I.15 V 

VI= 15 V 

V2= 58 V 

V3=-5 V 

V_slit= 1.5 V 

slit width= .15 mm 

slit height= 2 mm 

emission current= I.E-12 R 

Fig. 6.9. Trajectories of electrons (a) in the vertical plane and (b) in the horizontal plane for the 
emission system with oval lenses. (c) The potential along the axis. (d) The positions of the electrons at 
the target slit, the dimensions of which are 0.15=11x 2mm. The trajectories refer to electrons emitted 
from a point cathode at an energy equivalent to the maximum of a Maxwellian flux distribution with 
a temperature T =  2000K 

consequence of the fact that the system is now redundant in the number of 
apertures involved. We have retained this redundance since two of the apertures 
are split along the vertical plane and one along the horizontal plane. This allows 
the beam to be directed into the entrance slit even in the presence of asymmetries 
in the field, which may arise from inhomogeneous charging or residual magnetic 
fields due to the current-bearing leads to the cathode. As a consequence of the 
higher electric fields near the cathode tip, the effect of increasing the current 
has much less effect on the shape of the beam. The extra broadening seen in 
Fig. 6.12d compared to 6.11d can be reduced further by applying a somewhat 
different potential as the disk of least confusion does not fall at the target for 
1 ,uA emission current (Fig.  6. 12a, b). With the set of potentials used in Figs. 6.11 
and 6.12, the system performs best when the cathode is -nearly a point source. 

Fig. 6.11. Trajectories of electrons (a) in the vertical plane and (b) in the horizontal plane for the 
emission system with circular lenses. (c) The potential along the axis. (d) The positions of the 
electrons at the target slit, the dimensions of which are 0.15 mrn x 2 mm. The trajectories refer to 
electrons emitted from a point cathode equivalent to the IllaXi11111111 of a MaxWellian flux distribution 
with a temperature of T = 2000K 



. 	 Vertical plane 

b. 	Horizontal plane 
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b. 	Horizontal plane 

—4 	 

d. 

Vr=-1.19 V 

V1= 15 V 

V2= 68 V 

V3=-5 V 

V slit= 1.5 V 

slit width= .15 mm 

slit height= 2 mm 

emission current= 1.E-6 A 

Fig. 6.10a-d. The same as Fig. 6.9 for an emission current of 1 /AA 

Vr--7.7 V 

V1= 40 V 

V2= 68 V 

V3= 5 V 

V slit- 1.5 V 

slit width= .15 mm 

slit height= 2 mm 

emission current= I.E-12 R 

Fig. 6.11. Caption see opposite page 
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A. 	Vertical plane 
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b. 	Horizontal plane 
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Vr=-7.7 V 

V1= 40 V 

V2= G8 V 

V3= 5 Y 

V slit= 1.5 V 

slit width= .15 mm 

slit height= 2 mm 

emission current= 1.E-G R 

Fig. 6.12a—cl. The saine as  Fig. 6.11 for an emission current of 1 jiA  

For larger cathode areas, a set of potentials with a negative bias on the last lens 
aperture as used for the slot lens and the oval lens provides better results, We 
shall come back to this issue at the end of this chapter. 

The trajectories and pictures of the focus in the Figs. 6.7-12 correspond to 
electrons emerging from the cathode  with  an energy at the maximum of the 
Maxwellian flux distribution, as mentioned. Electrons with a different initial en-
ergy have different trajectories and will therefore pass the entrance slit of the 
monochromator only when they have small emission angles. The net result is 
that, because of this "chromatic" aberration of the lenses, the energy distribution 
of the beam entering the monochromator is much narrower than the Maxwellian 
distribution. This is illustrated in Fig. 6.13 for the three emission systems. The 
broad curve in each case represents the Maxwellian flux distribution generated 
with 20 000 beams using the algorithm as described before. The cathode tem-
perature was assumed to be 2000K. The resulting FWHM of the distribution 
is in keeping with (6.10). The energy distribution passing the entrance slit is 
indeed narrower, with the slot system providing the narrowest distribution of all 
the emission systems. This is largely a consequence of the negative bias on the 
last lens element. The circular system, having the broadest energy distribution, 
also provides a narrower distribution when operated with a negative potential on 
the last lens element. The increased monochromaticity of the feed beam of the 
monochromator was already taken into account in the parameter listing specify- 
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Fig. 6.13. The Maxwellian flux distribution as a function of energy (o) is compared to the energy 
distribution of electrons actually passing the slit for the three different emission systems 
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ing the pre-monochromator (Table 5.1). This may serve as one more example 
that, in the overall optimisation of spectrometers, one needs a priori knowledge 
of the basic properties of each component. Needless to say, the width of the 
transmitted energy distribution depends on the dimension of the entrance slit of 
the monochromator and the potential on the slit. 

The differences between the three lenses are much larger for the other beam 
parameters of interest. One of these beam parameters is clearly the input current, 
that is, the fraction of the emission current that can pass through the slit. The 
investigation of a pre-monochromator in 5.2 told us that the entrance current 
should be 50 nA for 1.5 eV pass energy. This value, which refers to a beam 
having no divergence with respect to the angle fl and a divergence in a by 
±1.5 0 , may be considered as a lower bound. A considerable fraction of the beam 
actually produced by the cathode emission system has larger angles a and also 
the divergence in /3 can be as high as 5° for the oval lenses. We can thus assume 
that, with a feed beam of this type, the monochromator will tolerate higher input 
currents of several hundred nA at 1.5 eV. We have also learned however that the 
monochromator will not transmit electrons unless their aperture angles are small 
enough, typically lal nd < 1.5° and 01.1 less than about 1°. Furthermore, the 
energy of the electrons should fall within the interval of transmitted electrons. A 
useful quantity is therefore the current per energy interval (taken at the maximum 
brightness of the cathode) that falls within a small range of entrance angles, which 
we take to be lai n, I < 1.5°, Ifli n, I < 1 0 . We refer to this current as the "radiance". 
The radiance is not a universibly definable quantity as the brightness is, but 
serves a useful purpose here in the comparison of different emission systems. 
In Fig. 6.14 the input current and the radiance as defined above are plotted as 
a function of the cathode emission current. Each point is calculated with 1000 
trajectories. For the slot lens, the input current levels off and the radiance passes 
through a maximum. This is a consequence of the fact that the cathode operates 
close to the point where a virtual cathode is formed. 

The emission system with oval lenses yields a rather poor radiance. In 
fact the radiance is not high enough to feed the system of pre-monochromator 
and monochromator discussed in Sects. 5.1 and 5.2. We can see this by con-
sidering the following example. Let us suppose that we can feed the pre-
monochromator with a maximum current of 100 nA which is already twice the 
value suggested in Fig. 5.13. Then the radiance is — 0.06 nA/meV. According 
to Fig. 5.13 the resolution of the pre-monochromator is about 9 meV. With a 
radiance of — 0.06 nA/meV, we calculate a maximum output current of the 
pre-monochromator of 0.5 nA, a result which assumes that there are no trans-
mission losses. The actual output current that the pre-monochromator can supply 
is 2 nA (Fig. 5.13), provided the monochromator is fed with a beam of sufficient 
radiance. This example demonstrates the usefulness of the/quantity radiance. For 

Fig. 6.14. Input current per unit energy in a small angle lai n,' < 1.5°, I/31„, I < 1 0 ("radiance") and 
the total input current vs the emission current for the three emission systems when the latter are 
equipped with a point cathode. The data points are calculated with 1000  trajectories each 
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15 Fig. 6.14. Caption see opposite 
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a given spectrometer design, the radiance produced by the cathode must exceed 
the radiance at any point further downstream by precisely the product of all trans-
mission losses up to that particular point. The oval cathode does not satisfy to 
this requirement. The simplest of all three emission systems, the circular system, 
however does satisfy it (Fig. 6.14). The same is true of the slot cathode. The 
radiances for the three emission systems for an input current of 100 nA are com-
pared in Table 6.3. It is already clear that, if we take the radiance at a given input 
current as a measure of the performance, the circular emission system wins, if 
one has a point source cathode. The slit geometry of the image of the cathode for 
both the slot and the oval systems requires that a slit must eventually be imaged 
by the lens system following the monochromator and the image of that slit must 
fall within the entrance slit of the analyser for perfect transmission by the lens 
system. Even without further detailed consideration of the properties of the lens 
systems, we appreciate that it should be much easier to obtain a proper image 
at the entrance slit of the analyser when the lens system is required to image 
a small square object. A measure of the quality of an emission system, which 
emphasizes this aspect, is the brightness introduced in Sect. 6.1. We therefore 
compare the three emission systems also with regard to their brightness and the 
ratio of the brightness to input current. 

Table 6.3. Performance of the three emission system 

Lens type  I,  [nA] Radiance [nA/meV] Brightness [A/eV cm2  rad] 

Slot 100 0.28 0.3 
Oval 100 0.06 0.09 
Circular 100 0.38 3 

In order to calculate the brightness we have to establish an appropriate mea-
sure of the size of the beam at the entrance slit of the monochromator. In Fig. 6.15 
we compare the distribution of the electron positions at the slit with a Gaussian. 
The resemblance to a Gaussian though not perfect is sufficiently close that we 
can use the known properties of Gaussian distributions ta calculate the effective 
width of the beam. With ro 

_x2/20.2)  exp ( 	= crii" and 	 (6.26) 

2 	 
Cr — 	 E n — 1. 

1:=1 

the effective width of the beam Weff x  is given by 

n  we2
ff n — 1 

E 4 , 

where n is the number of trajectories and x i  are the  z positions of the beam at 

(6.27) 

(6.28) 
--- 1 
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Fig. 6.15. Number of electrons as a function of the x-position at the entrance aperture compared with 

a gaussian calculated with (6.26-28) 

the target measured from the optic axis. The same equation is used for the width 
in the y-direction and the width of the angular distributions in a and p. 

By using Weff and the corresponding quantities Wm-f v , Weir,  Weff fl for y, 

a, and # respectively we calculated the brightness with the help of (6.9): 

/emission T(Em)  (6.29) 
ekBTWeff x Weff y Weir of Weff J3 

Here /emission  is the total emission current and T(Em) is the fraction of the elec-
trons with an energy at the maximum of the Maxwellian distribution that can 
pass through the entrance slit of the monochromator. 

The resulting values for the brightness as a function of the emission current 
are shown in Fig. 6.16. The best emission system is obviously the one which pro-
vides the highest brightness for the lowest input current. The ratio of brightness 
to input current is therefore also plotted  in Fig. 6.16. The highest value of this 
ratio is obtained with the circular emission system. The circular emission system 
is also the only one for which the brightness comes near to the maximum bright-
ness of a tungsten emitter (Table 6.1). We note further that on general grounds 
the maximum brightness/input current is expected for small emission currents. 
The presence of the maximum for the slot lens near 1  A  emision current indi-
cates that we do not have the optimum focusing conditions for small emission 
currents. This is in fact visible in Figs. 6.7 and 6.8. For zero emission current we 
have a slightly converging beam in the vertical plane (Fig. 6.7a) while the beam 
becomes more parallel with higher currents (Fig. 6.8a), which results in a higher 
brightness/input current for the higher emission current. By reducing the nega-
tive bias on the bar electrode one may shift the maximum in the brightness/input 
current in Fig. 6.16 (top) to smaller emission currents, 

In conclusion, it appears that the circular emission system performs best 
and is also easiest to construct and to operate. Alas, this is true only when the 
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three emission systems as a function of 
the length of the squared area of the 
cathode. The second data set for the cir-
cular cathode system refers to poten-
tials —3.4, 7.5, 6.0 and —8 on the re-
peter and the three lenses, respectively. 
The emission current is assumed to be 
500nA 

50 

emitting area of the cathode tip is as small as defined in Table 6.2. Such small 
tips may be difficult to realize and furthermore may not have sufficient long-term 
stability. When the emitting area is enlarged, the three emission systems react 
very differently. In Figs. 6.17 and 6.18 we have plotted the ratio of the radiance 
and brightness to the input current as a function of the cathode area (assumed to 
be a square) for an emission current of 500 nA. Obviously the circular emission 
system deteriorates rapidly with the cathode size, while the other two systems 
are rather robust. As a consequence, the slot system becomes the best when 
the linear dimension of the cathode area exceeds 0.03 mm. The circular system 
performs better for larger cathode areas when a negative potential is applied to 
the last lens aperture. The data denoted as "circular 2" in Figs. 6.17 and 6.18 are 
obtained with —3.4, 7.5, 6.0,  —8V on the repeller and the three lens apertures, 
respectively. 
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In view of its insensitivity to the size of the cathode, the slot lens emission 
system with its independent focusing in the two planes appears to be the system 
of choice for highest performance. The differences between the three systems 
in practical tests were however not so large as the calculation predicted. This is 
partly because a higher brightness to input current ratio can be achieved with the 
entrance  aperture of the pre-monochromator raised to higher potentials (Sect. 5.2). 
With this flexibility built in, acceptable results were achieved with all three types 
of emission systems. 

/ 
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7. Lens Systems 

This chapter outlines the basic concepts of the  theory of electron-surface scatter-
ing insofar as they are relevant to lens design. Cylindrical deflectors focus only in 
the radial plane. Nonrotational symmetric lenses compensate this disadvantage. 
Three different lens systems are studied and their design is described in detail. 

7.1 Concepts in Inelastic Electron Scattering 

This chapter describes computational techniques for nonrotationally symmetric 
electrostatic lenses and provides a few examples of lenses which were found 
suitable in conjunction with the cylindrical deflectors and emission systems. We 
have argued earlier that such nonrotationally symmetric lenses are indispensable 
for attaining the optimum performance of a spectrometer incorporating energy 
analysers with different focusing properties in two planes. Nonrotational sym-
metry can be achieved in two ways. Firstly, one may use quadrupolar (or in 
general multipolar) lens elements, the lens segments being sections of rotation-
ally symmetric apertures or tube elements. Different focusing in two planes is 
then achieved by applying different potentials to pairs of segments. Secondly, 
one may retain the unipotential lens elements but shape the cross-section of these 
in such a way that the desired focusing ,is achieved. The obvious advantage of 
the latter method is that a smaller number of independently adjustable potentials 
is needed. Lenses with nonrotationally symmetric apertures (such as already de-
scribed for emission systems) have found little attention in the literature. The 
reason is presumably that, apart from the need for a three-dimensional computer 
simulation, they offer less flexibility with regard to the ratio of the focal length 
in the two planes. A specific design is therefore needed for each particular appli-
cation. In the previous sections, we have studied monochromators and emission 
systems and have established suitable geometric parameters for these systems; 
we have also examined the lateral and horizontal extension of the monochromatic 
beam and the aperture angles of that beam when it leaves the monochrornator. 
Thus the initial conditions for the bundle of trajectories entering the lens system 
are established. Furthermore we have argued in Sect. 3.3 that for the typical ap-
plications in electron energy loss spectroscopy, where the loss energy is a small 
fraction of the impact energy at the sample, the lens systems between the sample 
and the analyser and between the monochromator and the sample should consist 
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of the same optical elements symmetrically arranged around the sample position. 
We now need to specify the beam parameters when it strikes the sample. The 
beam parameters are the impact energy, the angular apertures in the two focal 
planes and the lateral and vertical extension of the spot on the sample illuminated 
by the beam. 13y virtue of the symmetry of the lens system, the angular apertures 
of the beam impinging on the target are equal to the acceptance angles of the 
lens and the analysers to follow, and the spot viewed by the analyser has the 
same area and shape as the illuminated spot. The desired beam parameters at 
the sample depend in general on the nature of the scientific property which is 
to be investigated, and, in particular, on the physics of the inelastic scattering 
processes in which electrons engage at surfaces. We therefore summarise some 
basic concepts of inelastic scattering. 

We begin with the kinematics of the scattering process. In scattering from a 
surface that exhibits translational symmetry along the surface plane, the parallel 
component of the wave vector of the electron is conserved in addition to the 
energy: 

=  E1  + hw,  , 	 (7.1) 

k8 11 =  k11  +  Q 11  +  G11. 	 (7.2) 

Here the suffixes s and i refer to scattered and incident beams, respectively, Q11 
is the wave vector of the elementary excitation and  ht e its energy. Gil is a vector 
of the surface reciprocal lattice. A positive value of hr.) corresponds to a process 
in which the electron gains energy from the surface. It is important to note that 
the sign of Q 11  in (7.2) is not arbitrary. The scattering kinematics is illustrated 
in Fig. 7.1. The wave vector ki  of the  incident electron and the surface normal 

Fig. 7.1. Illustration of the scattering kinematics and the transformation of the in-plane angle a and 
the out-of-plane angle p into the meridional and sagittal components Q and Qii, of the surface 
wave vector Q 11  
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define the scattering plane. The wave vector ks  of the scattered electron has a 
component perpendicular to the scattering plane, which is equivalent to the out-
of-plane component of Q 11  (Fig. 7.1). With the help of the scattering angles, (7.1) 
and (7.2) may be written as 

1 	 
Q I 	2mEi [\/1 — 279Et sin(0;  + a) — sin Oi] 	 (7.3) 

1 / 	  
= V2rnEi( 1  — 219E) sin 	 (7.4) 

where 19E is defined by 

.19E = h4.42.Ei 	 (7.5) 

The angle a is the difference between Os  and Oi, where Os  is defined to be 
the angle between the projection of k onto the scattering plane and the surface 
normal. The angle # is the angle between 14 and its projection onto the scattering 
plane. In electron energy loss spectroscopy, the energy hce is typically small 
compared with the energy of the beam E1 (i.e. VE < 1). The wave vector of the 
surface excitation then depends to first order only on the scattering angles and 
the beam energy, not on the magnitude of the energy transfer hw. A spectrum 
taken with fixed impact energy and angles  O, a, 0 is therefore a spectrum at a 
nearly constant value of Q 11 . The property of electron scattering facilitates the 
assignment of features in a spectrum to a specific point in the two-dimensional 
Brillouin-zone of the surface. 

The theory of electron-solid interaction has been worked out in detail for 
the two most important contributions to the inelastic scattering. One contribution 
comes from the interaction of the electron with the potential arising from charge 
density fluctuations near the surface. In the following we give the scattering 
cross-section for this process, assuming that the displacement vector D is a 
linear function of the electric field E and that the dielectric response is a local 
one. In the (Q11  w)-Fourier space, linearity and locality means that one can define 
a dielectric tensor (Q1  ,  w , z) in terms of the Fourier components of D and E, 

D(Q117 z 	= e(Q117 z w)e(C 1117 z 7w) 7 	 (7.6) 

where z denotes the surface normal. An expression for the inelastic cross-section 
in a closed form was derived for the reflection of electrons from a uniform and 
scalar dielectric halfspace [7.1], from a halfspace with a uniaxial anisotropie 
dielectric function [7.2], for the transmission through a slab [7.3], and for the 
reflection from an isotropic dielectric halfspace covered with a uniform layer 
of another material [7.4; Ref. 7.5, pp. 73, 342]. The latter case is of particular 
interest here, as it includes the application of electron energy loss spectroscopy 
to inelastic scattering from adsorbed species or the surface atoms themselves. As 
we shall see shortly, the inelastic scattering is sharply peaked around the specular 
direction when hce <  E. In this limit the ratio of ,  the inelastic intensity in the 
energy range between hw and kw + cltuv and the wave vector range between Qg 
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and Q11 +  dQ 11 to the specularly reflected elastic intensity lei is 

4e2 	Qii  

1r22 [V1 (41 + (4)  - V 11 Q11 )2]  

-1  
X [1 + ?IPA IM

(Q11) 1 
dhw dQ . 	 (7.7) 

e ,+   

Here vi and ,v11 denote the perpendicular and parallel components of the electron 
velocity and fi(w) the Bose-factor. The generalized dielectric function é(Qii, co) 
is defined by 

I + .6(w) exp(-2Q0) 
j(Qii , w) = es(w) 1 ,A(w) exp(-2Q11d) 

with 	 (7.8) 

= eb(w) — es(w) 	 (7.9) 
Eb(w) + es(w) 

where eb(w) and ea(w) are the dielectric functions for the bulk material and 
for a surface layer of thickness d, respectively. In the derivation of (7.7) it 
is assumed that the amplitude and phase of the reflected wave at the energy 
Ei — tut) is (nearly) the same as at Ei, which again implies that hr.,/ is small. The 
appropriate corrections for larger tw., are given in [7.4; Ref. 7.5, pp. 73, 342]. It is 
obvious from the structure of (7.7) that it is applicable to all types of elementary 
excitations and also to arbitrary thicknesses of the surface layer. A case of special 
importance is that of a thin layer. A layer can be regarded as thin when 

Q II „,d <  1,  (7.10) 

where Qii,„ is the value at the maximum of the Q1 1 -dependent term in (7.7). This 
maximum occurs when 

(7.11) 

This latter condition is the so-called surfing condition, Which in other words 
means the electron has the maximum interaction with partial waves of a phase 
velocity v11/Qii equal to the parallel component of the electron velocity. In the 
limit Qiiin d < 1 the last term in (7.7) becomes 

Im 
E(Q HT ) 	+ 1} 

1 
Q =- 	{ 	—1 	61(w)   

es(w) (Eb(ce) + 1)2 + 
es(w)

(eb(co) + 1)2 1 
(7.12) 

The first term corresponds to the excitation of dipole oscillators polarized per- 
pendicularly to the surface, the second to dipole oscillators parallel to the surface. 
The second term vanishes for a metal substrate where Eb(w) is rather large. For 
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the typical application of electron energy loss spectroscopy, namely, to probe 
vibrations of adsorbed molecules on a metal substrate or substrates with a higher 
dielectric constant, only the first term survives or at least, it dominates. If one 
disregards depolarisation effects, which play a minor role except in dense layers 
of dipole active molecules, one may cast the remaining term into the form 

{

—1 
T) } 47rChn s  Im {a±(0) , 

where ns  is the surface concentration of the species and ai(ce) the polarizability 
perpendicular to the surface. 

In practical spectroscopy one is interested in how much intensity falls into the 
angular aperture of a particular spectrometer. The integral over  Qu  is therefore 
to be replaced by an integral over the angles a, p. We first transform the element 
dQ ii  into an element of solid angle da d13 by means of 

=  k cos 9, doe cl# . 	 (7.14) 

Inserting the equations for the scattering kinematics (7,3), (7.4) into (7.7), we 
obtain the following expression for the intensity scattered into a finite angular 
aperture 

	

1 diind 	8(1 +  
Im{ ai(u.))} 

	

dhu, 	iraoEi cos Oi 

x f da di 	
c. 	os + DE sin 602  + fl2  

3 (  
(a2  + 02  +191)2  

(7.15) 

in the limit DE < 1, where ao is the Bohr radius. 
High scattering cross sections are obtained near grazing incidence. The extent 

of the angular distribution then becomes unequal along a and 0, with the an-
gular spread being broader in We also note that the maximum of the angular 
distribution is near the specular direction (a = 0) but slightly shifted towards 
smaller angles (a < 0). The form of the integral in (7.15) with the rectangular-
shaped angular space is particular suitable for the rectangular-shaped aperture 
in spectrometers featuring cylindrical deflectors. Typical values of the integral 
when the integration is performed in symmetric intervals —ac <  a  < ac  and 

< < 0c  around the specularly reflected beam are tabulated in Table 7.1. 
The integral can be expressed in closed form for a circular angular aperture 
centred around the specular beam. After introducing the polar angle D and the 
azimuthal angle <pc by the transformation 

a = D  cosy, 	=19 sin cp , 	 (7.16) 

and integrating over the azimuthal angle cp and the polar angle D up to a maximum 
angle Dc , one obtains, for the inelastic intensity 

(7.13) 
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Table 7,1. The integral in (7.15) 

ac 	 + 	2  31  

I 
d& f d Cm e in 80+ /  

i  
7r 	

e, 	-Pc 	(1+ 612  +2)2 

for a set of characteristic parameters &c , 	and 0i. The reduced units (1, /3 are defined as 
& = 6119E, 13' = / t9E with 19E = hu,■/2.E; 

`cic 

6 =50° 
Pc 	Integral eic  

9_600 
Integral Ce't 

6=700  
//c 	Integral 

Q  
0.2 0.2 0.5797 0.2 0.2 0.-'734 0.2 0.2 0.08598 
0.2 0.4 0.1145 0.2 0.4 0.1432 0.2 0.4 0.1667 
0.2 0.6 0.1677 0.2 0.6 0.2067 0.2 0.6 0.2385 
0.2 0.8 0.2161 0.2 0.8 0.2623 0.2 0.8 0.3 
0.2 1 0.2587 0.2 1 0.3099 0.2 1 0.3517 

0.4 0.2 0.1107 0.4 0.2 0.1384 0.4 0.2 0.161 
0.4 0.4 0.2188 0.4 0.4 0.2705 0.4 0.4 0.3127 
0.4 0,6 0.321 0.4 0.6 0.3914 0.4 0.6 0.4487 
0.4 0.8 0.4144 0.4 0.8 0.498 0.4 0.3 0.5662 
0.4 1 0.4972 0.4 1 0.59 0.4 1 0.6657 

0,6 0.2 0.1553 0.6 0.2 0.1908 0.6 0.2 0.2198 
0.6 0.4 0.3072 0.6 0.4 0.3737 0.6 0.4 0.4279 
0.6 0.6 0.4516 0.6 0.6 0.5423 0.6 0.6 0.6162 
0.6 0.8 0,5844 0.6 0.8 0.6925 0.6 0.8 0.7806 
0.6 1 0.7029 0.6 1 0.8231 0.6 1 0.9211 

0.8 0.2 0.1913 0.8 0.2 0.2306 0.8 0.2 0.2627 
0.8 0.4 0.3789 0.8 0.4 0.4527 0.8 0.4 0.5128 
0.8 0.6 0.5581 0.8 0.6 0.6589 0.8 0.6 0.741 
0.8 0.8 0.7239 0.8 0.8 0.8443 0.8 0.8 0.9425 
0.8 1 0.8731 0.8 1 1.007 0.8 1 1.117 

1 0.2 0.2198 1 0.2 0.2602 1 0.2 0,2932 
1 0.4 0.4359 1 0.4 0.5117 1 0.4 0.5735 
1 0.6 0.6431 1 0.6 0.7467 1 0.6 0.8311 
1 0.8 0.836 1 0,8 0.9599 1 0.8 1.061 
I 1 1.011 1 1 1.149 1 1 1.261 

2 2 2.322 2 2 2,438 2 2 2,531 
2 4 3.188 2 4 3.303 2 4 3.396 
2 6 3.558 2 6 3.672 2 6 3.765 
2 8 3.756 2 8 3.87 2 8 3.963 
2 10 3.88 2 10 3.993 2 10 4.086 

4 2 2.808 4 2 2.816 4 2 2.823 
4 4 4.061 4 4 4.033 4 4 4.009 
4 6 4.68 4 6 4.64 4 6 4.607 
4 8 5.038 4 8 4.994 4 8 4.957 
4 10 5.269 4 10 5.223 4 10 5.184 

f 
6 2 2.983 6 2 2.935 6 2 2.897 
6 4 4.405 6 4 4.29 6 4 4.195 
6 6 5.169 6 6 5.027 6 6 4.909 
6 8 5.638 6 8 5.485 6 8 5.357 
6 10 5.953 6 10 5.794 6 10 5.663 
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Table U. (cont.) 

6 =50° 
fic 	Integral 

9=600 
A 	Integral  &  

9=700  
flc 	Integral 

8 2 3.072 8 2 2.992 8 2 2.929 
8 4 4.583 8 4 4.415 8 4 4.276 
8 6 5.432 8 6 5.223 8 6 5.049 
8 8 5.976 8 8 5.748 8 8 5.559 
8 10 6.354 8 10 6,117 8 10 5.919 

10 2 3.126 10 2 3.026 10 2 2.948 
10 4 4.69 10 4 4.488 10 4 4.32 
10 6 5.594 10 6 5.34 10 6 5.127 
10 8 6.19 10 8 5.909 10 8 5.674 
10 10 6.615 10 10 6.319 10 10 6.072 

1 d/inei 4(1 + 7-2(0) 
 n.lm{c i(w)} 

dhw an Ei cos A 

x [(sin2  — 2 cos2  A)  191 	+ (1 + cos2  A) In (1 + jt9  
t9 	 192 

For well-designed lens systems and typical energy losses, t9c  can be greater 
than t9E, where the 19 c -dependent term on the right-hand side of (7.17) is nearly 
saturated, save for the logarithmic term. For some commercially available spec-
trometers, with a rather large scattering chamber and consequently a smaller 19c, 
the limit t9, <19E is of interest. The integral in (7.15) then becomes proportional 
to 19! and the inelastic intensity in the low temperature limit (71(w) = 0) is given 
by 

1 drind 	32Ei sin2  0; 192ns im  { a j (,t,)} 	19c  < OE • dhw ao(&)) 2  cos Oi 

It is interesting to compare this result with infrared reflection absorption  spec-
troscopy  on a perfect metal surface. There the change in the reflectivity for 
p-polarized light ARp  on a perfect metal surface [eb (co) = —ool is given by 

8c..) sin2 A 
AR — 	 P 	 ns lm{a 1.(w)} 

C  COS tri 
(7.19) 

The different scaling of the prefactors in AR p  and iinei results in a substantially 
different sensitivity between infrared reflection-absorption spectroscopy and elec-
tron energy loss spectroscopy along the frequency scale. While the optical detec-
tion of vibrational surface modes in the far-infrared is nearly impossible, these 
modes become intense features in an energy loss spectrum. With this remark we 
conclude our discussion of some basic features of dipole scattering and turn to 
the second important contribution to the inelastic intensity for which the term 
impact scattering has become common. 

(7.17) 

(7.18) 
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Inelastic impact scattering is a direct consequence of the atomic nature of 
matter and the fact that the atoms move about their equilibrium position by 
virtue of their thermal energy. As the motion of the atoms is slow compared 
to the transient time of an electron on each atom, the electron is diffracted 
from the ensemble of atoms at their instantaneous positions 11(0. When these 
positions are expanded into phonon creation and annihilation operators, the cross-
section for phonon creation and annihilation for a primitive lattice in the Born 
approximation [7.6] may be written 

(ny 

	

au," dfl 	i)  If 
fi 	L.\

ki)  12  2M rue 

x I E (k g  — ki) • es(Qii, zi)exP[izi(ksz + ki.)]1 2  

x [(ñ(O + 1 )8(hkos(Q11) 4045k.11 kill +Q11 ,G 11 

0-1-08(hw s ( Q11 )  + 40641 — kill — oil I ' 	 (7.20) 

	

Here f (k g  — 	is the elastic scattering amplitude and es (Q ii  , zi) is the phonon 
eigenvector of the phonon branch s in the layer I where zi denotes the position of 
that layer with respect to the surface. Ns  is the number of surface unit cells and 
M the mass of the atoms. The last terms in (7.20) ensure momentum conservation 
in energy loss and gain processes, respectively. Because of the strong multiple 
scattering processes, the simple expression (7.20) for the phonon cross-section is 
of no quantitative value. Several properties of (7.20) are however pertinent to a 
fully dynamical treatment of the scattering process [7.7]. In particular, phonons 
can contribute only when their amplitude has a component within the  scattering  
plane spanned by k g  and ki. If this scattering plane is aligned with a mirror plane 
of the crystal, phonon modes that are odd with respect to that mirror plane do not 
contribute to the cross-section.The same is true of course for localised vibrational 
modes. This selection rule is independent of the Born approximation made in 
(7.20) and can be deduced quite generally from the time inversion symmetry of 
the problem [Ref. 7.5, pp. 117 ff.]. Equation (7.20) also shows that the relative 
intensity of one-phonon processes compared to the elastic scattering increases 
as k2 , i.e., proportional to the impact energy. High cross-sections for phonon 
scattering are therefore frequently found at higher impact energies, unlike dipole 
losses, the intensity of which is inversely proportional to the impact energy. When 
the energy becomes too large, however, multiple phonon events scaling as En  
with n. > 2 contribute a larger background to the spectrum. The useful regime 
of impact energies for phonon spectroscopy has therefore an upper boundary at 
about 200 eV. 

A final consequence of (7.20) is that, because the exchange of perpendicular 
momentum with the surface is greater than that of ther parallel component of the 
momentum, vertically polarized modes have a larger cross-section than parallel 
modes. This statement does however, need further qualification. In reality, the 
Born approximation gives an inadequate account of the scattering process. Strong, 
primarily intralayer, multiple scattering makes the  cross-section  for a particular 
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Fig. 7.2. Dependence of the cross-section for inelastic (impact) scattering from two different phonon 
modes. The inserts show the polarisation of the modes in the first atom layer. The Born approximation 
(dashed lines) predicts a higher cross-section for the vertically polarised mode through the entire 
energy range. In reality, multiple scattering events cause the cross-section to oscillate around the 
value calculated in the Born approximation [7.10] 

mode oscillate rather sharply as a function of the impact energy (Fig. 7.2). These 
oscillations are the typical consequence of multiple interference processes. While 
the Born approximation is a reasonable description of the average dependence 
of the cross-section on the energy and polarization of the mode, the details are 
more complex. In particular, one may encounter situations where the intensity 
of a parallel mode exceeds that of a perpendicular mode. Such situations are 
in fact in practice even more frequent than in the particular example shown in 
Fig. 7.2. From this, we conclude that the sharp oscillations in the cross-sections 
for a particular phonon mode require a spectrometer in which the impact energy 
can easily be varied over a wide energy range. 

7.2 Image Formation and Momentum Resolution 

In the previous section we have considered scattering processes on well-ordered 
surfaces. In such cases, one typically probes the elementary excitations as a 
function of their momentum parallel to the surface and one desires a momen-
tum resolution of a few percent of the surface Brillouin-zone. Quite frequently 
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— in fact in many practical applications — the surfaces are disordered. As a con-
sequence, Q11 is no longer a good quantum number. Sharp spectral features of 
considerable dispersion on the ordered surface become broad bands when the 
surface is disordered. The widths of the bands represent the amount of disper-
sion in the ordered case. On the other hand, dispersionless excitations, which 
are dispersionless because they are localised in space, remain narrow lines in the 
spectra  of the disordered surfaces. In both cases the same spectrum is observed at 
different scattering angles and the intensity of the inelastic signal is proportional 
to the solid angle accepted by the analyser. We shall see later that even when 
ordered surfaces are probed, the desire for sufficient momentum resolution is 
rarely a point of serious concern in lens design. In other words, most lenses will 
provide acceptance angles that are smaller rather than larger than the maximum 
solid angle derived from consideration of reasonable momentum resolution. For 
most applications, therfore, we attempt to maximise the acceptance angle at the 
target. We recall that, for the majority of applications, the lenses between the 
monochromator and sample and between the sample and the analyser should 
be built symmetrically around the sample (Sect. 3.3). The convergence angles a 
and 0 of the beam impinging on the sample are hence equal to those angles 
of the subsequent lens system and analyser within which scattered electrons are 
accepted to eventually pass through the exit slit of the analyser and enter the 
detector. In the following dicscussion, therefore, we need discuss only one lens 
system, rather than two, and we identify the convergence angles cri and 0; of the 
incoming beam at the sample with the acceptance angles as  and fis  of the lens 
system that collects the scattered electrons. As one wants to maximise the accep-
tance angles and thus the angles of the incoming beam, one needs to process the 
beam in such a way that the lateral extension of the beam at the sample is small. 
This simply follows from phase space conservation (3.20). The smallest cross-
section of the beam at the sample is achieved when the trajectories are such that 
an image of a real aperture is formed at the sample. Remembering that cylindrical 
deflectors form an image of the entrance slit at the exit slit position only in the 
radial ("horizontal") plane, the maximum acceptance angle is achieved by form-
ing an image of the exit slit of the monochromator in the horizontal plane and 
simultaneously an image of the entrance slit of the monochromator in the vertical 
plane, so that one has a sharp image of the entrance slit at the sample (Fig. 7.3) 
[7.8]. Obviously this task cannot be performed by lenses circularly symmetric 
around the optic axis. The design of such lenses therefore cannot build upon the 
established experience in the optics of circularly symmetric lenses. Instead, we 
need fully three-dimensional computer simulations and efficient codes for that 
purpose [7.9].  

It should be mentioned that maximisation of the acceptance angle, and thus 
the need for a sharp intermediate image at the sample, is not identical with max-
imisation of the total monochromatic current at the detector, when the analyser 
is viewing the primary beam directly. In this latter case, the lens systems can be 
operated in such a way as to have their foci at infinity, so that a parallel beam 
is formed at the sample. A high monochromatic current at the detector and a 
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Fig. 7.3. Schematic illustration of the beam guidance in an electron energy loss spectrometer em-
ploying cylindrical deflectors as energy dispersive elements [7.8 ] . In reality the trajectories are not 
straight lines in the lens and sample area because of the continuously varying potential. Focusing 
as shown here provides for the maximum acceptance angle at the sample while maintaining high 
transmission 

small loss of current between the sample and the detector position characterises 
the quality of a lens system, though insufficiently, since it is the product of the 
acceptance angle with the detector current which is the significant figure of merit. 

Having argued in favour of a large acceptance angle, we must now specify 
more explicitly how large an acceptance angle can be tolerated, or how large a 
Q 11 -space should be sampled in order to have both a high signal and small errors 
in the values of the characteristic energy losses. Obviously the error will be large 
where the dispersion of a characteristic loss is large. A particularly large error 
of this type arises when the dispersion of an acoustic surface phonon is probed. 
There, the frequency depends qualitatively on Qii as 

w(QII) = sin(QII) • 
	 (7.21) 

For simplicity we have assumed that the dispersion is isotropic. The wave vector 
Qii and the frequency are in reduced units so that the zone boundary is at Qii = 1 
and the frequency there is w = sin(7r/2) = 1. Suppose one is now sampling a 
finite space in the  Q 1 -plane, which is rectangular in shape with sides AQp 
and /Wil y . Such a rectangularly shaped Q 11 -space is actually probed by the 
spectrometer since the kinematics of the scattering (7.3) and (7.4) transform the 
acceptance ai and into a rectangular Q 11  -space via 

1 	  
AQI1 x  = —4  -12mE0(1 — 219E) cos(9i)ai (ai < 1) , 	 (7.22) 

1 	  

	

= V2mEo(1 — 219E) 	(f3j  «1), 	 (7.23) 
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Fig. 7.4. This figure illustrates the frequency error introduced 
by measuring the dispersion of a characteristic loss where the 
frequency depends on the modulus of Q11, due to the sam-
pling of a finite Q ll -area spanned by the rectangle AQ 
and An optimum Q11 -area is obtained with 1 Q11.5  > 

with DE defined as before. For excitation of a mode with a dispersion as in (7.21), 
the spectrometer measures an average frequency of 

A

d

Q

Q 1

2
2 

dCiiiy 	Q11 )i3  ' (.4Q11) = /WW2 dqllx 	 (7.24) 

It is clear from Fig. 7.4 that one can tolerate much larger ZAQII y than zAQ z  . This 
is in accord with the optical properties of spectrometers with cylindrical deflectors 
and the focusing discussed earlier. Table 7.2 shows a set of values for the integral 
(7.24) for .AQu z  = 0.005; 0.01; 0.015 and AQ11 3, = 0.05; 0.1; 0.15 and the error 
compared to the true value of the frequency. Obviously the error is largest for 
small Qu. In typical applications, one begins to resolve phonon features in a 
spectrum for Qu > 0.2. Even then the error is smaller than 10% when AQu y 

 is 0.15, for which one samples as much as 15% of the Brillouin zone in the 
y-direction, and AQu y  = 0.1 causes only 4% error at the most. In the x-direction 
too, AQu x  can be made quite large without introducing excessive errors. We 
have restricted Table 7.2 to iiiQu x  < 0.015 because it is difficult to achieve large 
enough acceptance angles oti, while on the other hand the acceptance angle 
can be much larger. This simply follows from the fact that the ratio of distance 
of the object to the cardinal plane to the distance of the image to the cardinal 
plane is much larger in the vertical plane than in the horizontal (Fig. 7.13). 

When the lenses form images as shown in Fig. 7.3, the monochromator and 
the analyser are symmetrically built, and space charge distortions are disregarded, 
then the current at the detector can be almost as high as the current at the 
sample position when the sample is removed and the analyser views directly 
the monochromatic beam ("direct beam position"). If the analyser is adjusted to 
have the same energy resolution (see also Sect. 3.2) as the monochromator and 
the transmitted energy distribution resembles a gaussian, one may estimate the 
ratio of the current at the detector ID to the current at the sample position Is  to 
be 

ID 	1 	f1 1 (1 — a2)2da 
—  s27%. 

7/7 	.V1 + (A.Em/,AEA) 2  f1 1 (1 — cr2)da 
(7.25) 
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Table 7.2. Mean measured frequency and the derivation from the true value of the frequency when 
the frequency is measured with a spectrometer sampling a finite, rectangularly shaped area in Q 11  of 
dimensions AQ11.., AQ I  when the frequency has a dispersion w(Q 11 ) = sin(Q1r/2). Frequency 
and wave vector are in reduced units 

AQ1k= 0.005, AQH, = 0.05 AQ1 1 0.005, dQll y  = 0.1 
	

AQ1k=0.005,AQh=0.15 

Q Frequency Error 	Q Frequency Error 
	

Q Frequency Error 

0 0.0401 0.0401 0 0.0795 0.0795 0 0.119 0.119 
0.1 0.164 0.00716 0.1 0.18 0.024 0.1 0.204 0.0476 
0.2 0.314 0.00469 0.2 0.323 0.0137 0.2 0.337 0.0277 
0.3 0.458 0.00423 0,3 0.464 0.1 0.3 0.473 0.0193 
0.4 0.592 0.00426 0.4 0.596 0.00822 0.4 0.602 0.0147 
0.5 0.712 0.0445 0.5 0.714 0.00723 0.5 0.719 0.0118 
0.6 0.814 0.00466 0.6 0.816 0.00659 0.6 0.819 0.00974 
0.7 0.896 0.00484 0.7 0.897 0.00612 0.7 0.899 0.00821 
0.8 0.956 0.00497 0.8 0.957 0.00572 0.8 0.958 0.00696 
0.9 0.993 0.00501 0.9 0.993 0.00534 0.9 0.994 0.00589 
1 1 0.00495 1 1 0.00494 1 1 0,00492 

AQik. = 0.01, dQ 1 1 y  =0.05 	dQH, = 0.01, AQH,  =0.1 	AQ 1 1  = 0.01, AQ I N =0.15  

Q Frequency Error Q Frequency Error Q Frequency Error 

0 0.0413 0.0413 0 0.0802 0.0802 0 0.119 0.119 
0.1 0.164 0.00735 0.1 0.181 0.0242 0.1 0.0204 0.0477 
0.2 0.314 0.00478 0.2 0.323 0.0138 0.2 0.337 0.0278 
0.3 0.458 0.00429 0.3 0.0464 0.0101 0.3 0.473 0.0193 
0.4 0.592 0.0043 0.4 0.596 0.00826 0.4 0.602 0.147 
0.5 0.712 0.00447 0.5 0.714 0.00725 0.5 0.719 0.0118 
0.6 0.814 0.00468 0.6 0.816 0.00661 0.6 0.819 0.00976 
0.7 0.896 0.00486 0.7 0.897 0.00613 0.7 0.899 0.00822 
0.8 0.956 0.00497 0.8 0.957 0.00573 0.8 0.958 0.00697 
0.9 0.993 0.00501 0.9 0.993 0.00535 0.9 0.994 0.00589 
1 1 0.00495 1 1 0.00494 1 1 0.00492 

AQ = 0.015, AQIFy  = 0.05Z1QIIx = 0.015, AQIt y  = 0.1 	AQH „ = 0.015, dQ = 0.15 

Q Frequency Error Q Frequency Error Q Frequency Error 

0 0.0429 0.0429 0 0.0812 0.0812 0 0.12 0.12 
0.1 0.164 0.00766 0.1 0.181 0.0245 0.1 0.204 0.048 
0.2 0.314 0.00493 0.2 0.323 0.0139 0.2 0.337 0.028 
0,3 0.458 0.00438 0.3 0.464 0.0102 0.3 0.473 0.0194 
0.4 0.592 0.00437 0.4 0.596 0.00833 0.4 0.603 0.148  
0.5 0.712 0.00452 0.5 0.714 0.0073 0.5 0,719 0.0118 
0.6 0.814 0.00471 0.6 0.816 0.00664 0.6 0,819 0.00979 
0.7 0.896 0.00488 0.7 0.897 0.00616 0.7 0.899 0.00824 
0,8 0.956 0.00499 0.8 0.957 0.00575 0.8 0.958 0.00698  
0.9 0.993 0.00501 0.9 0.993 0.00535 0.9 0.994 0.0059 
1 1 0.00495 1 1 0.00494 1 1 0.00492 
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The first term is the contribution from the energy transmission function (3.48) 
subject to the condition (3.53) for an optimum match of monochromator and 
analyser. The second  term  arises from the transmission function as a function of 
the angle a' = / 0/4ro for an ideal cylindrical deflector (3.29) and for a pair 
of two sequentially arranged deflectors. In writing (7.25) we have assumed that 
the transmission function with respect to a of two sequential deflectors is the 
square of the transmission function of one, which is the case when the angle vs 
position correlation is lost between the deflectors (Sects. 3.4 and 3,5). The ratio 
of 27% is an upper limit which requires a perfect match between the image of 
the monochromator exit slit and the analyser entrance slit. The best experimental 
values of /o/f, are about 30%, in agreement with the estimate. A reduction 
of the performance of the system occurs if the cross-section of the bundle of 
trajectories arriving at the entrance slit of the analyser exceeds the size of the 
slit, even when the first-order image of the exit slit of the monochromator fits 
the entrance slit. Furthermore the angular distribution of the electrons entering 
the analyser may extend to angles that are not transmitted by the analyser. An 
assessment of the quality of a lens system must therefore take into account the 
higher-order aberration terms in the image formation, in addition to the first-order 
properties. In the following we therefore study the nature of the aberration terms 
of nonspherically symmetric lenses. 

In the mathematical description of the process of image formation one typi-
cally relates the cartesian coordiantes  x',  y' of a trajectory in the first-order image 
plane perpendicular to the optic z-axis to the cartesian coordinates x, y of the 
object and the coordinates in the pupil. Since no well-defined pupil exists in 
electron spectrometers (Sect. 7.4), the coordinates in the pupil are replaced by 
the previously defined angles a and ,O, which are the angles of the trajectories 
in the object plane projected into the xy- and yz-plane, respectively. The image 
plane is defined as the plane where the first-order terms of a and vanish in an 
expansion of the image-object function as a polynomial 

x' = fx (x, y, a, 0) = o(x, y, a, [3) + (92(s, y, a, M... , 	 (7.26) 

yt  = fy(x)Y, P) = 0(s, Y, /3) + 02(s) Y, )3) 	 (7.27) 

In writing out the most general form of the expansion one has 9 second-order 
and 20 third-order terms for each of the two equations. For a lens system with 
C2v  symmetry with both the xz- and the yz-planes being mirror planes, all 9 
second-order terms and 12 of the third-order terms vanish. The remaining terms 
of the image equations are, up to third order: 

X i 	 C arm Ct3  C ciaza2  X + Caxxctx 2  +CxxxX 3  

+ Ceep,ga,82  + C'gfi r fi2x + Canay2  + Cryy xy2] , 	 (7.28) 

y' = — [My y + Cosfifi 3 -}- Cppy 02y + Cpyy )(3y 2  + Cyn y3 

+ 	P'a2  + Ca. y a2Y C#xxfiX 2 

 

+ Cy ,r yx2] . 	 (7.29) 

The sign of the coefficients are chosen so that the key parameters and the magni- 
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fication are positive quantities.For a circularly symmetric lens the corresponding 
third-order terms in (7.28) and (7.29) become equal, the terms Cxyy, Cyxx and 
Cop vanish, and the coma terms Caax, Cpg. are related so that one has five 
independent third-order aberrations. These are the spherical aberrations (here 

Cm9), the coma (here Co,„, z , Cppy ), the tangential or meridional astig-
matism (here Corrx, Cpyy ), the sagittal astigmatism or sagittal field curvature 
(here Capv, C/3E.), and the distortion (here Cs..x , Cyyy ) [7.11]. The geometrical 
meaning of these third-order aberrations have been illustrated earlier in Fig. 3.2 
except for the sagittal astigmatism. 

As long as one is not interested in spatial resolution, the distortions of the 
image at the sample are not very important. The question of prime interest here 
is how the third-order aberrations affect the transmission of the spectrometer. We 
discuss this issue with the help of Fig. 7.5. There, the object plane, the plane of 
the intermediate image at the sample and the image plane are drawn. The image 
plane could for example be the exit slit of the analyser, when the plane of the 
drawing is the vertical plane of the spectrometer. The object plane is then in the 
entrance slit of the monochromator. The effect of third-order aberrations on the 
transmission is illustrated by considering the angular aberration term —c s ,33 (with 
Cs  = Cppfl ). The lenses are here assumed to be thin with no loss of generality in 
the considerations that follow. The beam emerging from the object point on the 
optic axis at an angle /3 with the optic axis (drawn as a full line) arrives in the 
intermediate image plane at a position y' —c5 03 . Because of the time reversal 
symmetry, an electron could also emerge from the intermediate image plane and 
travel backwards along the same path in the reverse direction. We now assume 
that the second lens on the right hand side of Fig. 7.5 is symmetric relative to 
the sample so that the sample plane is a mirror plane (ap). The plane orthogonal 
to the plane of the drawing along the optic axis is likewise a mirror plane (ay ). 
By applying time inversion, the ap -operation, and the ay-operation we generate 
the trajectory shown as the dash-dotted line in Fig. 7.5 as a possible correct 
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Fig. 7.5. Propagation of third-order image aberrations in a double lens system which is symmetric 
around the intermediate image plane ("sample plane") 
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trajectory. The trajectory begins in the intermediate image plane at y = CO3  
and ends in the second image plane on the optic axis. This latter trajectory starts 
at a point displaced by the distance 2CO3  from the position where the original 
trajectory meets the intermediate image. Consequently the first order image of 
the original trajectory in the second image plane is displaced from the optic axis 
by the amount 2CO3 /My , when My  is the linear magnification of the first lens 
and thus M-1  the magnification of the second. We see from these considerations 
that the third-order aberrations in the first imaging process lead to aberrations 
in the second image, which are twice as large even when the second introduces 
no further aberration. It is also clear from Fig. 7.5 that, because of the shift 
involved in the generation of the dotted line as the continuing trajectory of the 
original trajectory (full line) from the correct time inversed and uy , an-generated 
trajectory we should also take coma, astigmatism and distortion errors of the 
second lens system into account. Since these terms include the y-coordinate at 
the intermediate image, these contributions would be of higher order though and 
are disregarded here. To lowest order in the aberrations the y"-position in the 
image plane is 

y" = 2CO3 /M1, . 	 (7.30) 

In order to relate this aberration at the second image to the transmission, the 
ratio of y" to the size of the first-order image 

y" 	2C,(93  1 
s's — h/2 = My  h/2 

is a useful quantity. One may also define the corresponding ratio for the inter-
mediate image, which is 

Ç,  QS  
s  My  h/2 

since My  h/2 is the size of the first-order image at the intermediate image plane. 
We thus see that third-order aberrations have a  detrimental effect on the trans-
mission, and that the relative fraction of trajectories outside the first-order image 
is approximately doubled in the second image. As long as the quantity C: and 
the corresponding quantities for the other image aberrations are small compared 
with unity, the overall transmission is high. In principle it is possible to calculate 
the loss in transmission caused by third-order aberrations along the same lines as 
for the cylindrical deflector. Because of the many third-order aberration terms, 
the integration limits cannot be expressed in a closed form. Furthermore, higher-
order aberrations are not always small. A numerical analysis of the transmission 
is therefore indicated. 

(7.31) 

(7.32) 
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7.3 Examples of Lens Systems 

In this section we present results for three different lens systems which were 
selected from a larger series of about 100 different lens systems because their 
properties were found to be particularly suitable for use in connection with elec-
tron spectrometers. The technical part of the computer simulation has already 
been described for the cathode systems (6.2). An additional point of concern here 
is the appropriate choice of the size of the mesh. A sensitive test is to compare 
the potentials that create the image at the desired image position, the first-order 
properties, and the principal aberration terms for two different mesh sizes. The 
standard mesh size for the lens simulation was Ax = Ay = Az = 1 mm. In 
Table 7.3 the key parameters are compared with those given by a second cal-
culation of the same lens with a mesh size of Ax = Ay = Az = 0.5 mm. In 
both calculations the same number of integration steps was used in the trajectory 
calculations (— 2000). We see that the results are nearly identical. Since the 
calculations with the smaller mesh occupied 8 times as much memory space for 
the program solving the Laplace equation, and also required at least an order 
of magnitude more computing time, all subsequent calculations were performed 
with the 1 mm mesh. 

Table7.3. Comparison of results for a lens system for two different mesh sizes, Ax = zly = Az = 
1 mrn and Ax = Ay = Az = 0.5mm. The results refer to lens 1 (Fig. 7.6) 

Lix [mmj 	V] [eV] 	V2 [eV] 	V3 [eV] 	M, 	My  

1 	 +0.19 	1,56 	5.3 	—0.528 	—0.108 
0.5 	+0.195 	1.53 	5.3 	—0.519 	—0.107 

Liz [mm] 	C 	 y  cy 	Gay  
Iturn/rad3 ] 	[mm/rad3 1 	[rad -2 ] 	frnm rad I  I 

1 	 98.4 	12100 	223 	1.33 
0,5 	82.2 	11500 	218 	1.17 

All the lens systems to be discussed in the following are three-element lenses 
with the last lens element at the same potential as the target. The potential of the 
last element must be equal to that of the target in order to have a field-free region 
around the sample, so that one has well-defined scattering kinematics. For the 
same reason, the last lens is always thick so that there is no field penetration from 
the other lens elements (Fig. 7.6); any such penetration would lead to bending of 
the trajectories near the sample and thus again to ill-defined scattering kinematics. 
In the simulation the target is completely enclosed by a target chamber held at 
the target potential. The potentials of the two additional lens elements labelled 
1 and 2 in Fig. 7.6 can be chosen independently. This allows us to adjust the 
foci in the horizontal and vertical planes independently. The range in which the 
ratio of the focal lengths in the vertical and the horizontal plane can be varied 
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Tap View  

I cm 

Fig. 7.6. Cross-section of lens I as used in this computer simulation. Only the inner profiles of the 
lens and the frame simulate the real lens system correctly. In reality the target chamber has a different 
shape which should have no effect on the trajectories since the target chamber is a space enclosed 
by metal plates of the same potential. The frames between lens element I and the exit slit of the 
monochromator on one side and element 2 on the other are electrically connected to element 1 and 
serve in practice to screen the insulators needed for mounting the lens 

depends on the shape of the profiles of lens elements 1-3. We have argued 
earlier that one wishes to create an image of the exit slit of the monochromator 
at the target in the horizontal plane, and an image of the entrance slit of the (first) 
monochromator in the vertical. If this was exactly true, one would need not much 
flexibility in the variability of the ratio of the focal lengths of the lens in the two 
planes. We recall, however, that the particular focusing described above would 
be appropriate only in the absence of space charge. We have seen in Sect. 5.1 
that the space charge spreads the beam in the vertical plane and thus may be 
partly compensated by applying correction potentials to the cover plates. In order 
to retain the possibility of adjusting the focal length of the lens system so that 
a space charge optimised beam emerges from the monochromator, flexibility in 
the vertical focal length is needed. The different profiles of lens element 1 on 
the one hand and of the elements 2 and 3 on the other secure this flexibility. If 
for example the potential on element 1 is adjusted so that it is approximately at 
the potential of the space occupied by element 1 in the absence of that element, 
then only the combination of lenses 2 and 3 serves few focusing. The large aspect 
ratio of height to width of the latter two elements then gives a lens system with 
very little vertical focusing. On the other hand, when lens element 2 is held at 
the potential of the corresponding space in the absence of that element, one has 
strong vertical focusing because of the circularly shaped lens element 1. Thus 
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Table 7.4. Summary of characteristic geometric parameters of lens system I. The symbol L denotes 
the distance of the centre of the lens element from the exit slit of the monochromator, B and H 
are the opening of the lens apertures in the horizontal and vertical plane, respectively, and D is the 
thickness of the lens element. Dimensions are in mm. The distance between the exit slit and the 
target (Fig.7.6) is 60mm 

Element 1 Element 2 Element 3 

L1 BI H1 DI L2 B2 H2 D2 L3 B3 ' 113 D3 

16 160 160 4 34 8 24 4 43 8 20 8 

the lens system shown in Fig. 7.6 can be expected to have a large degree of 
flexibility in the vertical focusing. A summary of the geometric lens parameters 
is given in Table 7.4. 

The more detailed results refer to the following arrangement: the distance 
of the object in the vertical plane from the exit slit of the monochromator is 
Lm  = 150mm and the distance of the target from the exit slit is 60mm. As 
an illustration of the focusing we show in the vertical plane (Fig. 7.7a) a set of 
trajectories emerging with different angles 0 from the centre of the entrance slit 
of the (first) monochromator, which is displaced from the left hand boundary of 
the figure by Lm  = 150 mm. In the horizontal plane Fig. 7.7b displays a bundle 
of trajectories emerging with different angles a from the centre of the exit slit. 
In both planes, a first-order image is achieved at the sample. The bottom part of 
Fig. 7.7 shows the shape of this image. The image is generated by plotting the 
points where the trajectories impinge on the sample. We have assumed slits of 
total height h = 4mm, of total width s = 0.3 mm and an angular spread in a of 

— ae  < < a, with 
ac  

ae = f 7Iaem(a) da , 	 (7.33) 

where Tided(a) is the transmission of the ideal cylindrical deflector as a function 
of the angle a with respect to the centre path at the entrance slit. For this 
transmission function we have found (3.29) 

4 ro 2 
Tideda) = 1  — 	 (7.34) 

with the centre radius ro taken as 35 mm. Then ae  is 

2 3s 
oc  = — 

3  y  4ro  
(7.35) 

which is 2/3 of the transmitted angle a. We note that the aperture ae  at the 
entrance slit of the deflector is equal to the aperture angle of the bundle leaving 
the deflector and entering the lens system. The aperture angle ,O, is determined by 
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a.Vertical plane 

b.Horizontal plane 

V1=-.136 

V2=.946 

V3=1 

Fig. 7.7a,b. Trajectories in lens I when the energy at the target is 4.3 eV and the energy at the exit 
slit of the monochromator is 0.3 eV. The voltages VI, V2, V3 refer to the potential at the exit slit 
and denote the voltage on elements I, 2, and 3, respectively. The bottom part shows the image of 
the slit generated by 500 trajectories. The shape of the first-order image is also shown. One sees 
that part of the trajectories impinge on the sample outside the area of the first order image due to 
aberrations 

the slit height, because the exit slit of the monochromator (or the last exit slit of 
a set of monochromators) act as a pupil in the vertical plane so that ?3c  

In addition to the positions of the electrons impinging on the sample, the 
area of the first-order image is shown as a rectangle (thick line in the bottom of 
Fig. 7.7). By comparing the shape of the rectangle with the dimensions of the 
slit (h = 4mm, s = 0.3 mm), we realize that the aspect ratio has changed, which 
means that the magnification is substantially smaller in the vertical plane than 
in the horizontal plane. This is basically a consequence of the larger object-lens 
distance in the vertical plane (see also Fig. 7.3),  as we have remarked earlier. An 
appreciable part of the trajectories fall outside the area of the first order image 
because of the third-order aberrations. The effect of aberrations is noticeable in 
particular in the vertical direction. 

Focusing in the vertical and horizontal plane as 'schematically shown in 
Fig. 7.3 can be achieved over a wide range of impact energies at the target. 
In Fig. 7.8, the potential energies at the lens elements 1 and 2 necessary to ob-
tain a focus at the target are plotted versus the energy at the target. We have 
plotted the potential energies rather than the potential applied in the simulation 
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Fig. 7.8. Potential energy at the lens element 1 and 2 vs the target energy. When these potentials are 
applied, an image of the exit slit of the monochromator and the entrance slit of the first monochromator 
at Lm  = —150 mm is formed in the horizontal and vertical planes, respectively 

in order to avoid negative numbers in the plot. The initial kinetic energy was 
0.3 eV in keeping with the monochromator layout (Sect. 5.1). The linear mag-
nifications in the horizontal and vertical plane (Mx  and Mr  respectively) are 
shown in Fig. 7.9. The magnification in the horizontal plane changes very little 
as a function of the impact energy, while the magnification in the vertical plane 
does. Instead of the magnifications one may also consider the acceptance angles 
at the sample in the two planes. In the horizontal plane the acceptance angle 
decreases from 1.54° to 0.421 0  when the impact energy is raised from 4 eV to 
100 eV, while in the vertical plane the acceptance angle stays constant at 1.7°. 
These latter values refer to a monochrothatorianalyser slit height of 4 mm and 
the angle ac  defined above. The numbers are therefore not genuine properties 
of the lens. Nevertheless, for the purposes of illustration it may be useful to 
plot the Qu-resolution which follows from these acceptance angles. The result 
is shown in Fig. 7.10. Comparison with Table 7.2 shows that the errors in the 
determination of a frequency of an energy loss having a large dispersion are still 
acceptably small. We finally plot the significant third-order aberration terms in 
Figs. 7.11 and 7.12. These terms are the angular aberration and coma in the hor-
izontal plane and angular aberration, coma and astigmatism in the vertical. Their 
calculation follows from the definitions of the quantities in (7.28) and (7.29) 
by choosing appropriate rays or combinations of rays and calculating the image 
positions. In that procedure, one assumes higher-order aberration to be small. 
The assumption may be checked by calculating the aberration terms for different 
ce, s, and y, respectively and comparing the results. If higher-order aberrations 
are negligible the result should be constant. In practice, one finds that they are 
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Fig. 7.9.  Magnifications in the horizontal plane (M.) and in the vertical plane (My ) vs energy at the 
target for lens I 

Fig. 7.10. Qii-resolution in the horizontal and vertical planes for lens system I. The Q11-resolution 
in the horizontal plane depends on the angle of incidence (7.3) (here  & . 70 0 ) 
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Table7.5. Third-order aberration terms in relation to the first-order image size as defined in (732). 
The quantities 6", 6cx, 0ax, Odw and 0,y. Ocys 6a0l dly are the reduced meridional aberrations 
with respect to the angle term, coma, the astigmatism, and distortion in the horizontal (xz) and vertical 
(yz) planes, respectively. The energy at the exit slit of the monochromator is 0.3 eV. The quantities 
refer to the maximum angle /3m  defined by the pupil size of 4 mm (slit height) and a distance of the 

object from the exit slit of 150 mm. The maximum angle cr,,, is taken as am  Os/4ro = 4.59°. The 
quantities given in this table are subject to several uncertainties and should therefore be considered 
as estimates only 

Energy at target 6sx  Ûc0  êax Odx Osai  6'est 6"as, 6.orly 

4 eV as% 8% i% 11 0/0  1304 34% 31% 8 0/  
looev  5°/a  3% 1% 2% 27% 78% 81 0/0  24% 

not. One example may serve as an illustration: If for example, one calculates 
the coma error for .E; = 100 eV in the vertical plane for a set of rays starting at 
y = 2 mm at angles # = 0.25°, 0.5°, and 0.75° one obtains for CCy = 70, 100, 
and 145 rad -2 , respectively. This indicates that higher-order aberrations are not 
small. In  Fig. 7,12 we have plotted the values obtained for the smallest angle, 
i.e. 70 rad-2. It is obvious that the numbers generated in this manner are to be 
taken with a grain of salt. They are useful for the comparison of different lens 
systems, however. It is also illuminating to compare the various aberration terms 
in relation to the image size (7.31). In Table 7.5 the result is shown for two im-
pact energies. The numbers are the average "third-order" aberrations calculated 
for s, y, a and p respectively. In keeping with the example, we therefore define 

1 	 '32  
= —

3
(70 + 110 + 145)  ram  =  79%, 	 (7.36) 

My Yin 

where pm  denotes the maximum angle # determined by the maximum value 
of y(= yin  = h/2) and the object distance. The other quantities are defined 
accordingly. Despite the fact that the precise values of these reduced distortions 
are affected by the way in which the calculation is performed, the comparison 
in Table 7.5 shows quite nicely which aberrations are important and which are 
not. The result changes with the impact energy. For a high impact energy, the 
aberrations in the vertical plane prevail, in particular coma and astigmatism, 
while for low impact energies the angular aberration in the horizontal plane 
becomes the largest aberration. Nevertheless, the transmission losses are due 
more to vertical aberrations than to horizontal (Fig. 7.7), presumably because 
of the sagittal aberrations. The sagittal aberrations are not evaluated here, since 
their calculation involves trajectories off the two symmetry planes. We expect 
the accuracy of the interpolation scheme and thus the accuracy of the trajectories 
to be worse there and quantitative numbers for the sagittal aberrations may thus 
be less meaningful. 

A quantitative measure of the cumulative effect of all lens aberrations per-
tinent to the specific application we have in mind here is the fraction of the 
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trajectories that arrive within the boundaries of the first order image. We call this 
fraction the "transmission" of a lens in the following. Like the reduced aberration 
coefficients discussed above, the transmission depends on the dimensions of the 
object (the slit) and the aperture angles of the beam. A qualitative comparison 
with an experimentally determined transmission is meaningful when a reasonable 
choice of the angular apertures is made. The quantitative numerical result does 
however depend rather critically on the shape of the angular distribution of the 
trajectories leaving the monochromator and also the distribution across the slit 
aperture. If the transmissions for two angular distributions of the same area but 
with different shapes (e.g. a rectangular distribution and a gaussian) are com-
pared, the transmission of the broader distribution is lower since the part of the 
angular distribution in the wings of the distribution contributes with a smaller 
weight, if at all, to the transmission. Despite this drawback, the transmission as 
defined above is useful for the comparison of different lenses, when a suitable 
choice of the angular apertures and the slit dimensions is made. In the follow-
ing, we assume the dimensions of the slit to be imaged to be s = 0.3 mm and 
h = 4mm and the angular distributions to be rectangular  in shape with cut-off 
angles pc = h1(2L.); L.= 150mm and ac  = 2/3/3s/4r0 with ro  = 35 mm 
as defined by (7.34). These values are the same as those for plotting the lower 
section of Fig. 7.7. Thus the transmission of lens I is the fraction of dots inside 
the boundary of the first order image drawn there. The value of the transmission 
for lens I at 4 eV is about 80%. This rather high transmission characterises a 
good lens. The transmission is also nearly constant for a wide range of impact 
energies so that one still has about 80% transmission at 100 eV target energy. 

The transmission is also a useful quantity for an estimate of the chromatic 
error. This chromatic error is important when the analyser is used with an array 
of detectors rather than with an exit slit and a single detector. In that case, a 
multiplex gain is achieved only if the lens has a sufficiently small chromatic 
error: a wide energy distribution then enters the analyser and is spread along the 
array of detectors by virtue of the energy dispersion of the analyser. In Fig. 7.13 
the transmission is plotted for lens I for two impact energies, 4 eV and 100 eV. 
The first order focus was adjusted to be at the sample position when the kinetic 
energy of electrons leaving the exit slit of the monochromator was 0.3 eV. One 
sees that a high transmission extends across a wide range of kinetic energies 
for 100 eV target energy. The transmission is a narrower function of the kinetic 
energy for a 4 eV target energy. The width is still large compared with the energy 
resolution of the analyser, so that parallel detection is feasible. 

Because of the slow variation of the transmission with the kinetic energy, 
energy losses could be explored over a certain energy range even without re-
adjusting the lens potentials, when one has a parallel detector at the end. For a 
single detector the energy loss range is scanned by raising the potential of the 
entire analyser to the value that corresponds to the energy lost in the scattering 
process from the sample. The resolution of the spectrometer is thereby kept con-
stant. For optimum performance, the potentials applied to the two lens elements 
of the lens system between the sample and the analyser have to be varied also, in 
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Fig. 7.13. Transmission of lens I vs the kinetic energy at the exit slit of the monochromator for impact 
energies of 4 eV and 100 eV at the target. The first order focus was adjusted to beat the target for a 
pass energy of the monochromator of 0.3 eV 

order to keep the image of the electrons at the analyser entrance slit. The amount 
%WI by which the potential 171 of element 1 of the lens is to be varied is a linear 
function of the amount by which the potential of the analyser is varied, which is 
equivalent to the energy loss AEloss: 

= Mf L%EI oGs . 

In German the proportionality constant is known as Mitlaufverhaltnis. This term 
has been adopted by several laboratories in the shortened form as Mitlauf For 
lens I discussed here, as for most other lenses, a Mitlauf of one is the best value 
for both lens elements as long as LiEloss is small compared with the energy at 
the sample. 

We now discuss more briefly two further lens systems. The first employs a 
lens in which the beam can have a double focus in the horizontal plane and a 
single in the vertical. According to the calculations, this lens is inferior to the 
one described previously in nearly every way. The reason for mentioning this 
lens is that it was the first lens designed according to the focusing principles 
described at the beginning of this section (Fig. 7.3 and [7.81) and has been in 
practical operation in this laboratory for several years. Despite being inferior in 
its electron optical properties, the lens has proven to perform quite acceptably in 
practice. Figure 7.14 shows the cross-section of this lens, referred to as lens II 
in the following. 

The main difference between lenses I and II is that, instead of a round aperture 
for lens element 1, lens II exhibits a large extension of the aperture in the vertical 

140 



Top View 

Fig. 7.14. Cross-sections of lens 11. See caption to Fig. 7.6 for further explanation 

direction (see also Table 7.6). Consequently, one has weaker focusing in the 
vertical direction than with lens I for comparable potentials. Stronger focusing is 
achieved when the ratio of the potentials on element 2 and 1 is raised. In Fig. 7.15, 
the trajectories in the vertical and horizontal planes and the image points at the 
target are shown for 4.3 eV target energy. The figure should be compared with 
Fig. 7.7, which represents the trajectories with the same initial conditions and 
target energy for lens I. The potential on element 2 must now be made much 
larger for lens II: In fact it exceeds the target energy. In the vertical plane the 
trajectories arrive at the target with a larger angle for lens II, corresponding to a 
smaller magnification in the vertical plane (My = 0.055 instead of My  = 0.12). 
In the horizontal plane the reverse is true and the magnifications in the horizontal 
plane are Mr  = 1.2 and 0.53 for lenses II and I, respectively. As a consequence 
of these opposite variations in the magnifications, the shape of the first order 

Table 7.6. Geometric parameters of lens system II. The symbol L denotes the distance of the centre 
of the lens element from the exit slit of the monochromator, B and H are the opening of the lens 
apertures in the horizontal and vertical plane, respectively, and D is the thickness of the lens element. 
Dimensions are in mm. The distance between the exit slit and the target (Fig. 7.6) is 60mm 

Element 1 Element 2 Element 3 

L i BI  HI Dl L2 B2 H2 D2 L3 B3 113 D3 

16 16 34 4 34 8 24 4 43 8 20 8 
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a. Vertical plane 

b. Horizontal plane 

I 	I t q 	-..' 	'. *I I 

• 

• 

. 

V1--.277 

V2=4.3 

V3=4 

Fig.7.1.5a,b. Trajectories for lens 11 in the single focus mode for a target energy of 4.3 eV. See 
caption to Fig. 7.6  for further explanation 

image is quite different for lenses I and II. Because of the small magnification in 
the vertical plane for lens II, the image of the slit has a reversed aspect ratio with 
the height smaller than the width. Mostly as a consequence of the very small 
magnification in the vertical plane, the transmission of lens II is smaller (— 40%). 
For high impact energies, lens II would need inconveniently high potentials 
on element 2. The double focus mode of operation shown in Fig. 7.16 is then 
preferable. In this mode both the lateral and the vertical magnifications of lens II 
become comparable with those of lens L (The first order images in Figs. 7.6, 15, 
and 16 are not drawn in the same absolute scale). The transmission drops further 
to about 35%. In the double focus mode, lens 11 can be used for rather high impact 
energies, the potentials on element 2 remaining conveniently small: for a target 
energy of 500 eV only about 30 eV are necessary. The disadvantage is the lower 
transmission. Lens II was also found to be more sensitive to spurious potentials 
on the electrodes making up the lens element 1 and the frames connected to lens 
element 1. This is because the kinetic energy of the electrons in this lens element 
becomes rather small in the double focus mode. For the same reason, lens II has 
a large chromatic error and performs in fact as a band-pass filter in the double 
focus mode. 

The last lens to be discussed in this section has, except for slightly different 
shielding frames and dimensions of the apertures (Table 7.7), the same lens 
components as lens I. In contrast to lens I, the entire package of lenses can be 
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Fig. 7.16a,b. Trajectories for lens II in the double focus mode in which the lens can operate with a 
moderately low potential on element 2 even at high target energies 

moved to a position close to the target, which is now placed at a distance of 
105 mm from the exit slit instead of 60 mm. The lens is shown in Figs. 7.17 
and 7.18 for the two extreme positions. The corresponding trajectories again for 
4.3 eV target energy and 0.3 eV initial energy are displayed in Figs. 7.19 and 7.20 
respectively. In both cases the transmission is reasonably high 80% and 
70%, respectively). The difference between the two positions of the lens package 
is of course the different magnification (Figs. 7.21 and 7.22) and consequently 
the different aperture angles at the target. Depending on the impact energy, 
the magnification, and hence the aperture angles, can be varied by an order 
of magnitude. In the high angular resolution mode with the lens package as 
far from the target as possible, the angular resolutions become such that angle 
resolved studies of dipole losses should become feasible. 

Table 7.7. Geometric parameters of lens system III. The lens package is movable by the amount 
0 <  L 2, < 58mm. Definition of the symbols as in Table 7.4 

Element 1 Element 2 Element 3 

Li B1 H1 D1 L2 B2 H2 D2 L3 B3 H3 D3 

4 + L r  160 160 4  22+ L  10 24 2 32+1, 10 24 8 
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Fig. 7.17. Cross-sections of lens HI, when the package of lens elements is close to the exit slit of the 
monochromator and the distance to the sample on the right-hand side of this figure is largest 

Fig. 7.18. Cross-sections of lens HI, when the package of lens elements is moved close to the target. 
In practice, the shortening of the target chamber is achieved by folding pieces of sheet metal around 
two movable and one fixed pivot. The different shape of the target chamber in that case is of no 
concern because the target chamber is a field-free space 

144 



V1=-.024 

V2=2.11 

V3=4 

1 	a. Vertical plane 

b, Horizontal plane 

1 	1.. 
, 

: 

I 	1 

V1=-.009 

V2=.692 

V3=4 

Fig. 7.19a,b. Trajectories in lens  ifi  when the lens package is near the monochromator. The trajectories 
arrive at the target with a small angular aperture (high angular resolution mode). The potential on 
frame 1, which shields the area between the monochromator and the lens elements 1, is kept at the 
mean of the potential of the exit slit and that of element 1 

Fig.7.20a,b. Trajectories in lens III 
in the close-up position yielding the 
highest intensity at the expense of 
low resolution in angle and Q11-space 
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Fig. 7.21. Horizontal and vertical magnification of lens III in the high angular resolution mode 
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Fig. 7.22. Horizontal and vertical magnification of lens III in the low angular restitution mode 

146 



7.4 The Pupils of the Spectrometer 

We have now considered all the electron optical elements of an electron spec-
trometer save one, the element that acts as a pupil in the horizontal plane. In the 
vertical plane, we have already seen that with the focusing shown in Fig. 7.3 the 
exit/entrance slit of the monochromator/analyser serves as the pupil that limits the 
maximum angle # in the vertical plane. In the horizontal plane, the only physical 
defined aperture that could eventually limit the maximum angle a would be the 
deflecting plates of the monochromator and analyser. If, however, these deflecting 
plates were indeed the effective pupil, angles am  as large as 200-300  would be 
permitted in the deflectors. Due to the second order aberration term (3.4, 4.16), 
energies quite distant from the nominal pass energy would still be transmitted by 
the deflectors; in other words the spectrometer would have a uselessly low reso-
lution if there were no pupil restricting the angle a to a much smaller value. We 
have already discussed this matter in detail in Sect. 3.3. For the monochromator, 
a properly designed cathode emission system as described in Chap. 6 can provide 
a feed beam to the monochromator with a sufficiently small aperture angle a.. 
Since small aperture angles am  lead to a high transmission of the monochroma-
tor and consequently to a high monochromatic current, tuning up a spectrometer 
to provide high currents means (among other things) that one is also tuning the 
emission system to provide a feed beam with a small aperture angle. This is in 
particular true when the performance of the spectrometer is observed with the 
current at the detector. This ensures that one is tuning the monochromator and the 
cathode so that they produce the highest possible monochromatic current, not just 
some current with unspecified monochromaticity. In practical experiments, we 
found that tuning as described above was always sufficient to give a resolution 
of the monochromator close to the theoretical value. 

When the monochromatic current is directly observed with analyser and de-
tector with no scattering from a sample, the aperture angle of the current at the 
target as defined by the emission system also defines the aperture angle for the 
analyser system and a high resolution of the entire system can be achieved even 
with no explicit pupil in the analyser section. This is no longer true when elec-
trons scattered from a sample are analysed. In general, the losses have a wider 
angular distribution and a beam of a wide angular distribution would hence enter 
the analyser. This is the explanation for a very typical observation, namely the 
resolution observed in the energy losses and with elastically diffuse scattered 
electrons is lower than with the direct beam. The degrading of the resolution 
is however rarely disastrous, typically 10%-20%, which is much less than one 
might expect considering the spread of angles a the analyser could let pass be-
tween the inner and outer deflection plate. The reason for this rather fortunate 
result can be understood by considering the aberration terms containing the angle 
a of the lens between the sample and the analyser. As a consequence of these 
aberration terms (angular aberration, coma and astigmatism, but mostly the angu-
lar aberration), electrons leaving the sample with larger angles a from the centre 
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Horizontal plane 

of the sample area illuminated by the primary beam cannot enter the entrance slit 
of the analyser. By the same token, electrons that leave the sample at the same 
large angle a but from a different point could pass through the slit. That part 
of the sample area is however not illuminated, and hence no scattered electrons 
emerge from there. Thus we see that angular aberrations sometimes offer certain 
advantage. On the other hand, it is dangerous to rely on such ill-deffined effects 
when resolution is concerned. We recall that losing a factor of two in the resolu-
tion is equivalent to an order of magnification drop in the signal at the detector. 
It is therefore advisable to have a well-defined pupil and restrict the maximum 
angle of the analyser. This is more important the better the lenses are! If one has 
a single detector, a continuous dynode multiplier for example, one may place 
a second slit after the exit slit of the analyser to restrict the maximum angle. 
An additional benefit is that electrons scattered from the deflecting plates are 
prevented from entering the detector. Such electrons can appear as ghost peaks 
in the spectrum [7.121. A specific example of such a slit which also serves as a 
lens to focus the electrons into the multiplier is shown in Fig. 7.23, together with 
electron trajectories emerging from the center of the exit slit in the horizontal 
plane and from a point placed  150 mm to the left in the vertical plane. The width 
of the slit lens was chosen to be 2 mm at a distance of 4mm from the exit slit, 
blocking geometrically angles larger than 14°. With the applied negative bias on 
the slit a focus is obtained in the horizontal plane at the opening of the multiplier. 
Due to this bias the cutoff angle a is reduced to about 100 . By lowering the po-
tential on the slit further, the cutoff angle can be continuously reduced to zero, 
while the beam in the horizontal plane remains confined to a small area in the 

Channeltron Lens  

Fig. 7.23. Lens aperture between the exit slit of the 
analyser and the funnel of a continuous dynode 
multiplier placed behind a circular hole in a second 
plate. The potential on this plate and the funnel is 
1.3 eV, the energy of the electrons at the exit slit is 
0.3 eV. 1/1 and V2 denote the potential differences 
between the exit slit and the slit lens and the mul-
tiplier, respectively. By adjusting the voltage VI 
at the slit lens, the maximum angle am  transmitted 
in the horizontal plane can be varied continuously 
down to zero 
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center of the multiplier. The focus shifts towards the slit, however. In the vertical 
plane, a pair of guiding plates as shown in Fig. 7.23, which extend across the 
entire slit plate, provide some focusing so that all electrons emerging from a slit 
of 12 mm height can be guided into the active area of the multiplier funnel. With 
such a slit lens, the analyser is equipped with a defined, adjustable pupil which 
adds the final touch to the performance of the  spectrometer, because it secures 
the resolution independently of the status of lenses, the scattering processes at 
the sample and the nature of the sample surface. 
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8. Comparison of Experiment and Simulation 

This chapter provides further details of a particular spectrometer design. Exper-
imentally determined parameters such as current, resolution, transmission and 
acceptance angles at the target are compared to results from numerical simula-
tions, and nearly perfect agreement is found. The performance of the spectrometer 
is demonstrated with the vibration spectrum of a monolayer of CO featuring a 
resolution of better than 1 meV. 

8.1 Layout of the Spectrometer 

In the course of the development of the computer codes for the various elec-
tron optical elements, as described in the previous chapters, the comparison with 
experimental results was rather crucial. While the accuracy and convergence of 
the results of the simulation can be checked by computational methods alone, 
the specification of the parameters for the beam entering each optical element 
does in general require comparison with experiment. Some of these parameters, 
such as the energy spread, can be determined directly in an electron spectrom-
eter. Other parameters, however, such as the angular spread of the beam when 
it enters the first monochromator, are not amenable to experimental determina-
tion with a reasonable effort. Only through a detailed comparison of theoretical 
and experimental results can one obtain a feeling for the magnitude of those 
parameters and build up experience. This experience has of course influenced 
the specifications of the optical elements described in the previous chapters. Fur-
thermore experimental tests are indispensable for the purpose of optimising a 
multi-parameter system in which the number of design parameters and voltages 
is of the order of a hundred, since the full exploration of the parameter space 
would be beyond the capacity of even large computers. Rather than describing 
the comparison of experimental and theoretical results of each electron optical 
element independently as in the earlier chapters, we devote this last chapter to 
the comparison of theory and experiment for all parts of a spectrometer. We are 
thus in a position to describe the layout and performance of a rather advanced 
electron energy loss spectrometer, which was designed with the experience and 
insight supplied by the computer simulation. The design of this spectrometer is 
described in the following. 
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For the electron emission system, we have selected the slot lens system 
(Fig. 6.4). The choice was based on the fact that the radiance of the slot lens 
system is reasonably independent of the size of the cathode tip (Fig. 6.17) and that 
the slot lens system provides an independent control of vertical and horizontal 
focusing. The slot lens emission system requires a more accurate adjustment 
of the potentials than the circular lens system. Quite acceptable spectrometer 
performance was likewise obtained with the circular lens system, which is less 
critical in the potentials. The circular lens system is particularly recommended 
when digitally controlled, independent power supplies are either not available or 
planned. 

The first monochromator of the spectrometer operates as a retarding monochro-
mator with a projected retardation ratio of about  1:  5. The retardation is intended 
to be "exit aperture retardation", that is, it takes place near the exit aperture of the 
pre-monochromator. This exit aperture is also the entrance aperture of the second 
monochromator. The potential of the entrance aperture of the pre-monochromator 
is independently controlled, so that retardation right after the entrance aperture 
can be employed, when desirable (Sect. 5.2). The radii of the inner deflection 
plate, of the centre path, and of the outer deflection plate were chosen to be 
25 mm, 35 mm and 45 mm, respectively. The total height of the deflector is 
44 mm with a 2 mm gap between the deflection plates and the top and bottom 
cover plates. Such a deflector has, in the absence of space charge, a first-order 
focus at a deflection angle of approximately 109° when the potential applied 
to the top and bottom cover plates CUD is such that the trajectories are straight 
lines in the vertical plane, which is the case when CUD 0.22 Eo, E0 being 
the nominal pass energy defined by (3.1) and (3.2). The value is dependent on 
the retardation ratio but is practically independent of the actual deflection angle, 
extended or not. As a consequence of space charge, the beam tends to spread in 
the vertical plane. This spreading should be compensated by applying a negative 
bias to the top and bottom cover plates. As shown in Fig. 3.9 such a negative bias 
increases the deflection angle, leaving less room for further extension of the first 
order focus due to space charge. In the course of our simulation we found that 
the pre-monochrornator studied in Sect. 5.2 with a total deflection angle of 127° 
failed to provide enough current to feed a second nonretarding monochromator, 
when the latter was built with a deflection angle of 114°, as studied in Sect. 5.1. 
For our new design we have therefore extended the total deflection angle of the 
pre-monochromator to 140°. With this deflector the trajectories in the vertical 
plane remained straight lines when the input current was adjusted to have the 
first order focus at 140° and when the cover plates were negatively biased to 

—0.55 Eo . Here Et) is again the nominal pass energy calculated from (3.1) and 
(3.2). In the absence of space charge, this particular bias would focus a beam 
of parallel trajectories in the vertical plane approximately at the exit slit. The 
focusing angle in the horizontal plane in the absence of space charge is about 
119°, i.e. 8° larger than without the negative bias. 

The magnification of this deflector under space charge conditions was found 
to be Cy  = —1.6, approximately in accordance with (3.18). Despite this magnifi- 
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cation we have abstained from reducing the entrance slit with respect to the exit 
slit. The reason is that the performance of the second monochromator is only 
weakly dependent on the resolution of the first monochromator. On the other 
hand the entrance slit is loaded with a large flux of electrons and negative charg-
ing of the aperture plate near the slit can probably not be avoided. This negative 
charging reduces the effective width of the slit and could also hinder the forma-
tion of a well defined entrance beam. In the numerical simulation, we found the 
half-width of the output beam to increase by 25% when the width of entrance 
slit (0.3 mm) and exit slit were made equal compared with a pre-monochromator 
where the entrance slit was reduced according to the magnification. The simula-
tion did not of course include charging effects on the slit. In accordance with the 
expected shape of the feed beam (Figs. 6.7, 8), we have made the entrance slit 
3mm high, while the exit slit allowed for 6 mm height of the emerging beam. A 
final comment with regard to the first monochromator layout is the offset of the 
radial position of the exit slit with respect to the entrance slit of about 1.5 mm, 
which ensures that the bundle of emerging trajectories is centred around a2 = 0 
when the entering trajectories are also centred around al = 0 (see Sect. 3.2). 

The second monochromator had the same dimensions as the first, apart from 
a reduction in the deflection angle to 114° in accordance with the considera-
tions in Sect. 5.1. Since the second monochromator is supposed to operate as a 
nonretaxding deflector, there is no radial offset of the exit slit. Both monoclu-o-
mators and the analyser have a saw-tooth profile milled into the inner and outer 
deflecting plates, so that electrons striking the surface near grazing incidence are 
scattered backwards rather than being reflected in the forward direction. This 
rather effectively reduces the background of electrons appearing in a spectrum 
at unexpected energies. 

As the lens system between the monochromator and sample and between the 
sample and analyser, we use the rather flexible lens depicted in Figs. 7.17 and 
18. The stack of lens elements 1-3 was mounted on a linear ball-race. The linear 
motion was controlled by a system of rope and pulleys, such that the distances 
between the sample and the two lenses were always kept equal. Thus the basic 
symmetry of the lenses as discussed in Sect. 3.3 was ensured. The entire package 
comprising the emission system, the two monochromators, and the lens guiding 
the beam to the sample is mounted on a rotatable table with the pivot on the 
optic axis at the sample position. 

A short note on material selection and on some details of the manufacturing 
process may be helpful. Lens elements were made from OHFC copper and coated 
with a suspension of collodial graphite in isopropanol (Dag 154, Acheson). Cop-
per is preferred over aluminium or molybdenum because its oxide is conductive, 
not insulating, unlike the others. We experienced that a monochromator made 
from molybdenum failed to operate after several years of service because of 
oxidation and the resulting surface charging effects. The cylindrical deflectors 
have tungsten wire heaters for a separate bakeout, typically performed after the 
bakeout of the main vacuum chamber, while still at elevated temperature. 
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Mechanical parts other than the lens elements were made from truly an-
timagnetic stainless steel (DIN 1.3952). Screws and ball bearings from merely 
nominally antimagnetic steel proved to be inadequate in their magnetic properties 
and were replaced by copper-beryllium screws and sapphire balls, respectively. 
Commercially available manipulators sometimes require the replacement of mag-
netic parts. It should be considered that the highly inhomogeneous magnetic field 
stemming from small parts within the system is much more devastating to the 
performance of the spectrometer than a possible residual homogeneous field. The 
same is true for ac fields. In order to reduce all components of the magnetic field, 
including the inhomogeneous and ac parts, the entire chamber is shielded magnet-
ically by a cylinder of high permeability material ("conetic"). The wall thickness 
should be about 5 x 10 -3  of the diameter of the cylinder, so that the residual 
magnetic field is below 10 mG and the inhomogeneity smaller than 1 mG/cm. 
If the spectrometer is placed inside the cylinder such that the distance from the 
opening at one end is larger than the diameter of the cylindrical shield, then the 
end of the cylinder can remain open, which is in the interest of a large pump-
ing speed. We finally remark that the electrons must not "see" any insulating 
material. Where this cannot be avoided the insulating material must be placed 
inside a cavity of conducting material that is electrically connected to appropriate 
potentials. 

In previous designs we have frequently used an analyser consisting of two 
deflectors of 35 mm radius. The purpose of the second stage was to reduce the 
background of electrons scattered from the deflection plates. In particular, when 
one probes an energy loss range for which the beam of elastically scattered 
electrons strikes the outer deflection plate, a considerable fraction of the electrons 
is reflected from the plate and can pass through the exit slit, despite their "wrong" 
energy. These "ghost peaks" can be suppressed very effectively by using a two-
stage analyser. In addition to having the wrong energy, scattered electrons also 
leave the exit slit at a large angle. This is particularly true when the gap between 
the inner and outer deflection plate is large. An aperture placed behind the exit 
slit can therefore also prevent scattered electrons from entering the detector. 
A combination of "saw-tooth" profiling of the deflection plates, a wide gap 
between the deflection plates, and an exit aperture lens (Fig. 7.23) is therefore 
efficient enough to reduce the background electron level to an unmeasurably low 
value, below the dark count rate of the channel electron multiplier (< 1 s -1 ). In 
Sect. 3.3 we have shown that the analyser should have a better resolution than the 
monochromator, and we have estimated that an optimum match between analyser 
and monochromator is achieved when AE I /2A  — V2/5L1.E1 om  (3.53), where 
AEI PA and AEI pm are the full width at half maximum for the analyser and 
monochromator, respectively. Since the monochromator has a relative resolution 
of AEI/2/E° — 9.7 x 10 -3  (Fig. 5.5), a relative resolution of ZIEtiz/Eo 
6.1 x 10-3  would be indicated for the analyser. We recall too that the exit slit 
of the monochromator and its first-order image at the entrance aperture of the 
analyser are of the same size when the pass energies of monochromator and 
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analyser are the same. The required larger resolution of the analyser therefore 
calls for a larger centre radius. Since aberrations may enlarge the image of the 
exit slit of the monochromator at the analyser entrance, an enlargement of the 
entrance (and exit) slit of the analyser seems advisable. We have therefore made 
the entrance and exit slits of the analyser of 0.4 mm width and 10 mm height 
and the centre radius ro = 70 mm, the latter in keeping with the required relative 
resolution. All the other dimensions of the analyser are also scaled up by a factor 
of two compared to our reference deflector with 35 mm radius. The optimum, 
zero-current deflection angle is thus again 107°. 

The potentials applied to the spectrometer are provided by digitally controlled, 
independent power-supplies. Each power-supply consists of a 16-bit digital-to-
analog converter (DAC), which in turn drives a low-noise, low-drift and low-
offset operational amplifier (OP). Since many potentials are required in pairs, a 
DAC typically drives two OPs at a time. The temperature drift of the potentials 
is about 30 pV/°C and the peak-to-peak noise level is below 200 /N. This low 
noise level is ensured by wide-band AC-filters on each power supply feeding 
the DAC-OP combinations and additional HF-filters in the exit line of each 
potential. The operational amplifiers also feature a second analog input, which is 
used to build up a master-slave circuitry. In the scan mode of the spectrometer, 
where many potentials need to be changed simultaneously, only one potential is 
digitally ramped by the computer, while the others follow in the analog slave 
mode. A dedicated keyboard serves to address each individual potential by a push 
button and a set of three digital ramps with different speeds is used to adjust 
the individual potentials in the procedure of optimising the intensity. The current 
can be measured at all apertures of the two monochromators and at the entrance 
aperture of the analyser. This allows sequential optimisation of all parts. It should 
be mentioned, however, that the only relevant final test is the measurement of 
the current and the resolution at the detector, since only when optimising the 
current in a narrow energy window does one optimise the transmission of the 
monochromator and lens system. Such an optimisation also automatically takes 
care of the optimum choice of angular aperture of the beams feeding the first 
and second monochromator and the right choice of current level for each of 
the space charge compensated monochromators. The greatest advantage of the 
computer-controlled power supply of the spectrometer is that after each recorded 
spectrum the entire set of potentials can be stored automatically together with 
the data, so that the potential setting can be recalled at any later time. Even after 
intermediate balceout of the vacuum chamber, we found that calling-in previous 
potential sets led to a reasonable beam intensity at the electron detector with only 
minor further adjustments needed for optimisation. 
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8.2 The Analyser 

We now turn to the experimental analysis of the electron optical elements of 
the spectrometer described above and begin our examination with the analyser. 
The spectrometer potentials are initially set so as to optimise the monochromatic 
current at the electron multiplier (used as a Faraday cup), with a pass energy of 
0.3 eV in the monochromator and 1.8 eV in the pre-monochromator. The energy at 
the target position was set to 4 eV and the lens packages were moved to positions 
close to analyser and monochromator (compare Fig. 7.17). The monochromatic 
current at the detector was found to be about 0.1 nA at 4 meV resolution (FWHM) 
of the spectrometer. 

The first test on the analyser involves the determination of resolution as 
a function of the nominal pass energy, or more conveniently, of the potential 
difference AUA between the deflection plates. According to the numerical calcu-
lation of the dispersion (3.17) and the full width at half maximum of the energy 
distribution zlEi /2A, one should have (3.56) 

AUA  
.4E1/2A = 	+ 0.47 al. + 0.6 of.) . 	 (8.1) 

21n(R2/Ri) (0.966 ro 

Assuming gaussian profiles for the transmitted energy distribution, which is a 
good approximation, the FWHM of the entire spectrometer AE1/2t0L should be 

AE2  =AE2  + AE2  Iptot 	I/2M 	I/2A • 

Plotting Ag 12 101  vs  AU should then give a straight line 2 

Ago tot = AE /2M  + const  X  AU2  A • 

This is indeed the case, as shown in Fig. 8.1. The result confirms the assumption 
of gaussian profiles and the consequent geometric additivity of the full width 
at half maximum of the convolution of analyser and monochromator transmis-
sion curves, which is the transmitted energy spectrum of the spectrometer. From 
Fig. 8.1 we take AE1 /2m  — 3.2 meV as the resolution of the monochromator. 
This figure compares well with the results of the numerical simulation of the 
space charge compensated deflector in Chap. 5 (Figs. 5.5, 6,10). The details of 
the monochromator performance are discussed in the next section. 

The constant slope of the line in Fig. 8.1 could be calculated from (8.1) if 
the maximum input angles aim  and fi'im were known. Since the monochromator 
was adjusted to optimum current in a small energy window (as provided by 
the analyser), we can expect the angular aperture of the beam emitted from the 
monochromator to be about 3 0  (Fig. 5.8). By virtue of the reciprocity of the lens 
system, one expects the angular aperture of the beam entering the analyser to be 
about the same. The maximum angle #1„, can be estimated from the maximum 
deviation in /3 from the centre path allowed by the slit height of 10 mm which 

(8.2) 

(8.3) 
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Fig. 8.1. Square of the total energy resolution (FWHM) vs the square of the potential differ- 
ence between the deflection plates of the analyser. The data follow the straight line ,Agotot  = 

(3.2meV)2  +4.08 x l0 5 V 2LlU  in accordance with (8.1-3) 

[ 1  + (A-Eipm/AE1/2A)1 1/2  

In Fig. 8.2 the experimental results are compared with this theoretical expression 
when calm  = 2.3° (the value obtained from matching the resolution). The angular 
aberration Cac, is taken as —1.48 ro (3.16), ro and ,s are 70 mm and 0.4 mm. The 
agreement between the theoretical transmission and the experimental data (full 
line in Fig. 8.2) is quite close. We can therefore conclude that the resolution and 
transmission of the analyser are according to expectation. It is useful to determine 
the optimum setting of the analyser resolution relative to the monochromator 
resolution. In Sect. 3.3 we have already addressed this issue theoretically and 
derived an expression for the monochromatic current at the detector as a function 
of the ratio x = AE1/2 A /Z1E1 /2 tot for two cases: where the monochromatic beam 
is measured directly or where one samples electrons emerging from a target with 
a diffuse angular distribution. We found 

results in #1. 	2.2°. Figure 8.1 shows a fit to the data assuming M in  = 2.2° 
and alin  = 2.3°. 

The transmission of the analyser is defined as the fraction of the current 
leaving the analyser relative to the current entering the analyser. The theoretical 
transmission has been calculated in Sect. 3.3. The expression contains two factors, 
one depending on the angular aperture of the feed beam (3.30) while the other 
takes the energy window into account (3.48). The total transmission is therefore 

[1 — (1C„„1/3s)04,n 1 
T (aim, AEi RA, Z1 E1 pm) = (8.4) 
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Fig. 8.2. Transmission of the analyser versus .61E/i2m/4E1 /2 A compared with the theoretical trans-
mission with al., = 2.3° and pl.. 2.2° 

Fig. 8.3. Performance factor /D/ZiE 5J2  of the spectrometer as a function of the ratio x 

21 E1 /2 A /ZA El /2 tot together with the theoretical curve 	x(1 — x2)5/4 , which is discussed in the 
text (8.5) 

jD  

5/2 	
x(1 — x2)5 /4  , 	direct beam , 	 (8.5) 

AE 1/2 tot 

iD 	
x2(1 — x2)5/4 	diffuse scatterer . 	 (8.6) 

E1  tot 

The theoretical curve corresponds to the data as obtained for the direct beam 
quite closely (Fig. 8.3) with a soft optimum at 
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AE1/2A = 7— A-Elptot = 12---5 ziE1/zm • 	 (8.7) 

Taking the resolution of the analyser and the monochromator into account, our 
particular spectrometer performs best when 

AUA 0.9 AtUm 	 (8.8) 

In summary we find that the analyser does perform according to the theoretical 
analysis. Although the data in Fig. 8.3 agree well with (8.5), we must not forget 
that the monochromatic current should be proportional to AE15/122 . While we shall 
find this to be approximately the case for an energy width of the monochromatic 
beam around 3-5 meV, we shall see shortly that the  LIE  is not a 
universal one. 

8.3 Emission System and Pre-monochromator 

The properties of the emission system and the monochromators are tested with a 
spectrometer adjusted to produce an optimum current at the detector for a fixed 
resolution on the one hand, and with potentials on the emission system and pre-
monocluomator chosen as predicted by the numerical simulation, on the other 
hand. In Chap. 6 the slot lens emission system was operated with a relatively 
small field near the cathode. In Fig. 6.8 for example, the voltage on the first 
lens element and repeller were 2V  and —0.605 V, respectively. Optimisation of 
the monochromatic current at the detector leads to substantially higher voltages 
on these two elements (,  40V, —2.6 V). The need for a higher field near the 
cathode stems from the fact that the optimisation of the monochromatic current 
also called for a higher emission current (6-8 AA) than projected in Sect. 6.4. 
The increase in the monochromatic current at the detector with the total emission 
current is however rather weak, in accordance with the calculated brightness as 
a function of the emission current (Fig. 6.16). In Fig. 6.16a, the brightness (of 
the beam entering the monochromator) was seen to pass through a maximum 
in the case of the slot lens system, when the lenses are operated in the realm 
of low voltages at the first lens element and repeller. Our experimental results 
suggest that the maximum can be shifted to higher emission currents and to 
higher brightness levels, when the voltages are readjusted to produce a higher 
field near the cathode tip. Since the result appears to be reasonable, we did not 
reinvestigate the issue theoretically, in particular since our calculations of the 
trajectories converge rapidly only for moderate space charge. 

A fundamental property of the emission system is the energy distribution of 
electrons injected into the entrance slit of the pre-monochromator. As shown the-
oretically, this energy distribution is considerably smaller than the Maxwellian 
distribution emitted from the cathode due to the chromatic error of the cath-
ode lens system. The calculated energy distributions in Fig. 6.13 referred to a 
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Fig. 8.4. Output current of the pre-monochromator vs the pass energy, measured as the current falling 
onto the exit aperture of the second monochromator. The dip in the centre of the curve occurs when 
the pass energy of pre-monochromator and second monochromator match and a fraction of the beam 
leaves the second monochromator through the exit slit. Apart from the dip, the curve represents the 
energy distribution of electrons entering the pre-monochromator 

potential of 1.5 eV at the entrance slit and a slit width of 0.15 mm. We now 
compare this theoretical result (which included the effect of space charge) to an 
experimental measurement. For this purpose, we recorded the current falling onto 
the exit aperture of the monochromator as a function of the pass energy of the 
pre-monochromator, defined by the potential difference applied to the deflection 
plates of the pre-monochromator. The result is shown in Fig. 8.4. The current 
measured at the exit slit of the second monochromator is equal to the current 
into that monochromator, except when the energy of the electrons matches the 
pass energy of the second monochromator, in which case the electrons leave the 
second monochromator through the exit slit. This causes the dip in the energy 
distribution in Fig. 8.4. The depth of the dip is equal to the monochromatic cur-
rent leaving the second monochromator, which is about 0.2 nA. The ratio of the 
areas under the dip and under the entire curve is a measure of the transmis-
sion of the monochromator to which we shall return in Sect. 8.4. Here we note 
that the width of the energy distribution in Fig. 8.4 is ,-- 92.5 meV. The energy 
distribution represents the convolution of the energy distribution entering the pre-
monochromator with the energy transmission function of the pre-monochromator. 
The latter being rather small (as will be discussed shortly), the full width at half 
maximum of the distribution in Fig. 8.4 represents the width of the distribution 
of the beam entering the pre-monochromator to a very good approximation. Thus 
the value of ZAE,,,vm= 92.5 meV is to be compared directly with the theoretical 
value of 120 meV in Fig. 6.13. Given the approximation in the calculation 
of the lens properties, the match between experimental and theoretical result is 
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rather pleasing. Because the numerical simulation is rather time consuming, we 
did not investigate all the properties of the emission system as a function of 
the applied potentials. In particular, we did not study in detail the width of the 
energy distribution as a function of the slit potential under space charge condi-
tions. There is, however, some evidence that the small energy width of the beam 
entering the pre-monochromator at low pass energies stems to a good part from 
the effect of space charge in the realm of deep space charge conditions. Our 
experimental investigation showed the width AEii, vm to be nearly proportional 
to the slit potential in the range of interest here (Fig. 8.5). 

The dependence of the width of the energy distribution of the feed beam of 
the pre-monochromator on the pass energy is of fundamental importance for the 
monochromatic current produced by the pre-monochromator. From (5.15) we can 
now expect the monochromatic current to be proportional to AE31  // rather than to 

LA.E5 /2  where AEI /2 is the FWHM of the beam leaving the pre-monochromator. i/z 
Experimentally, the width of the energy distribution of electrons leaving the 
pre-monochromator was determined by observing the current emerging from the 
second monochromator (at the entrance aperture of the analyser, beam defocused) 
as a function of the difference between the pass energies of monochromator and 
pre-monochromator. The resulting energy distribution is again the convolution 
of the energy transmission curves of pre-monochr-omator and monochromator. 
The energy width of the beam emerging from the pre-monochromator is then 
calculated assuming gaussian transmission functions for both monocluomators. 
The result is plotted in Fig. 8.6. In order to obtain the data in Fig. 8.6, the pass 
energies of both rnonochromators were varied proportionally, so that the ratio 
of the resolutions of the dispersing elements remained approximately constant. 
Figure 8.6 shows that the resolution of the pre-monochromator AE112 vm is not 
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Fig. 8.6. Energy resolution (FWIIM) d Et /2 out VM 
of the pre-monochromator vs the pass energy 
Ea vm for a constant exit aperture retardation 
factor of 5. The dashed line represents the ex-
pected proportionality of AEI /2 out VM and En vm 
as obtained from the numerical simulation. The 
higher resolution at lower pass energies is at-
tributed to charging of the slits, which could nar-
row their effective width. Note that .AE/E0 < 
Biro due to the enhanced dispersion caused by 
the space charge 

exactly proportional to the pass energy Eovm . A possible cause for this effect 
will be discussed shortly. In all cases the energy dispersion Eo vm/21E1/2vm is 
significantly enlarged by the effect of the space charge (cf. (4,52) for example). 

The key result to be presented here with respect to the pre-monochromator is 
the monochromatic current produced by the device as a function of the resolution 
(Fig. 8.7). The output current is proportional to .AE45,4 , a consequence of the fact 
that the energy width of the feed beam is proportional to the pass energy Eo. In 
Fig. 8.7 we also show the calculated dependence of the monochromatic current 
on the energy resolution using the numerical simulation programs discussed in 
Chap. 5. The potentials on the top and bottom cover plates are adjusted so as to 
produce a nearly parallel beam in the vertical plane when the monochromator 
is fed with such a parallel beam, as shown for example in Fig. 5.4. This was 
achieved by setting the voltage at the top and bottom plate to eUD = —0.55 Eo. 
This setting is consistent with the values for CUD found experimentally to work 
best. In the simulation, we have also set the width of the energy distribution of 
the feed beam equal to the experimentally observed one. The maximum aperture 
angle ai m  was set to 1.5° and /31„, = 2°. The results of the simulation are shown 
in Figs. 8.6 and 8.7 as a dashed and dotted line, respectively. In both cases 
the agreement between experimental data and the theoretical simulation is quite 
close. We must keep in mind that there is no adjustable parameter in the theory. 
The result does not depend critically on the choice of pim  as long as the latter 
remains small. 

The remaining difference between the results of the simulation and the exper-
iment is essentially due to the fact that the angle ai ni  does not remain as small 
as 1.5° at low pass energies. In order to have an estimate of the input angles 
provided by the emission system we have calculated the angular distribution and 
in particular the cutoff angle ai m  for the slot lens cathode as a function of the 
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Fig. 8.7. Monochromatic current produced by the pre-monochromator vs the resolution. The dotted 
line is the result of the numerical simulation as described in Chap. 5. The potentials in the simulation 
are chosen to match the experimental data. The same holds for the energy width of the feed beam. 
The angular apertures aim  and plm  of the feed beam are not amenable to a direct experimental 
investigation, though they can be estimated from the simulation of the emission system. Data and 
theory refer to an exit aperture retardation factor of 5 

potential on the entrance aperture of the pre-monochromator. In this calculation 
we have used the potentials actually applied to the lenses in the experiment. We 
have disregarded the space charge though, because our simulation of the space 
charge is not appropriate for the deep space charge regime in which the emis-
sion system operates. The result of the simulation is shown in Fig. 8.8. One sees 
clearly that the angular aperture exceeds the optimum value of 1.5 0  when the 
potential on the entrance slit drops below about 5 eV. The enlargement of al m 

 has a significant effect on the resolution for lower pass energies and accounts at 
least qualitatively for the fact that the resolution levels off to a constant value at 
low pass energies. 

We did not attempt to simulate the pre-monochromator with the angular 
apertures al m  taken from the simulation of the emission system because thc 
effect of enlarged angular apertures at low pass energies is intertwined with 
another effect which escapes the possibilities of numerical simulation. In Fig. 8.6 
we notice that the experimentally obtained resolution is actually better than the 
theoretical resolution! The most likely reason is that the entrance and/or exit 
slit of the pre-monochromator are charged by the heavy current load impinging 
on the apertures. Negative charge on the apertures effectively narrows the slits, 
which results in higher resolution. The effect of charging is experimentally quite 
noticeable when the cathode is switched off for a while and turned on again: the 
monochromatic beam takes a considerable time to come back but comes back 
immediately if the pre-monochromator and emission system are readjusted. 
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Fig. 8.8. Aperture angle ai m  of electrons entering the pre-rnonochromator with an energy equivalent 
to the maximum of the MaxweIlian energy distribution at 2000K. The values of aim  are obtained 
from a numerical simulation of the slot lens emission system (Fig. 6.4) with a cathode tip size of 

0.05mm, Lens voltages are taken from experiment, apart from the repeller, which is adjusted to 
create a focus at the entrance aperture of the pre-monochromator. The repeller potential deviates from 
experiment because (i) the exact position of the cathode tip is not known in reality and (ii) because 
of charging. We have also determined the complete angular distribution and find the distribution to 
be closer to a triangular than a rectangular one. We do not know, however, how representative this 
result (obtained for small currents) is for the real system, which operates under heavy space charge 
conditions 

8.4 The Second Monochromator and the Lens System 

In Fig. 8.7 we have seen that a monochromator resolution of about 5 meV cor-
responding to about 7 meV for the entire spectrometer can be achieved with a 
high monochromatic current of almost 1 nA at the sample, provided that the 
monochromator has the extended path length. Earlier single path instruments 
[8.1 ] produced much lower monochromatic currents since the effects of space 
charge on the first-order focus were not properly taken into account. At the cur-
rent status of electron energy loss spectroscopy, overall resolutions of 7 meV 
are rarely acceptable in most applications. The use of a second monochroma-
tor therefore becomes indispensable. One of the issues arising with double-stage 
monochromatisation is the matching of the resolution of the two monochroma-
tors. We addressed the issue earlier in Chap. 5 but there we assumed that the 
energy distribution of the feed beam delivered by the emission system remained 
constant with the pass energy of the pre-monochromators (which may be the case 
for some other designs). With the energy distribution of the feed beam narrowing 
roughly proportional to the pass energy, the output current jout  takes the form 
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jout 	AOseLliE122  , 	 (8.9) 

where AOsc  is the extension of the deflection angle introduced in Chap. 4. The 
output current of the pre-monochromator must match the optimum input current 
of the second monochromator, which also scales as the extension of the deflection 

3/2 angle A9s, and as  AE. Hence, an optimum match of rnonochromator and pre-
monochromator is achieved when 

( Aesoim  )2/3  AEHM ZIEVM A 	 (8.10) 
z-luscvm 

with VM and HM referring to the first and second monochromator, respectively. 
For our specific design (AO sciim = 70 ; 2AOscVm = 29° , At9sc values in the absence 
of negative bias) one should therefore have 

LVElim 0.38 AEvm • 	 (8.11) 

The practical use of this equation is somewhat limited by the fact that the reso-
lution of the pre-monochromator is not a very well-defined function of the pass 
energy (Fig. 8.6) and the retardation factor. For the purpose of finding the opti-
mum pass energy of the pre-monochromator in relation to the pass energy of the 
second monochromator, and hence the optimum retardation factor F, one deter-
mines experimentally the current at the detector and the total energy width of the 
spectrometer versus the retardation factor. As the retardation factor is increased, 
the current rises but so does the energy width AEI / 2 tot  (Fig. 8.9). An optimum is 
approximately given by the maximum in the performance, defined as /D/ZiEt3„, 
where ID denotes the detector current. Figure 8.9 shows that this optimum retar-
dation factor occurs at about F = 8. The resolution of the monochromator and 
pre-monochromator were then 2.9 and 8.1 meV, respectively, in good agreement 
with (8.10, 11). To achieve the best possible resolution of the spectrometer, it 
may be preferable to back off from the optimum retardation factor. 

Let us pause for a moment and consider the result presented in Fig. 8.9 
concerning the resolution in greater detail. According to the theory of space 
charge flow in monochromators, and specifically from Fig. 5.10, one would expect 
the energy width AE to pass through a minimum when the output current of the 
pre-monochromator matched the particular input current of the monochromator 
for which the first order focus occurred at the exit aperture. Experimentally the 
minimum is not observed when the input current is varied by means of a variation 
of the retardation factor. At the same time, the ,monochromator resolution does 
not agree with that calculated theoretically with the optimum entrance aperture 
angle ai m . The reason is that the actual entrance aperture angle aim  is larger 
than the optimum aperture angle of — 3.5° (Fig. 5.8). From the general electron 
optical properties of retarding monochromators (Sect. 3.2), we know that the 
exit aperture angle a2„, and the entrance apertures angle ai. of the retarding 
pre-monochromator are then related by (3.20), 
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a pass energy of 0.214 eV of the monochromator 

a2m  = alm4L-,0 25 
	

(8,12) 

where F is the retardation factor. Taking the data in Fig. 8.8 and F = 8 the 
aperture angle of the second monochromator exceeds the optimum value of 3.5 
when the pass energy of the monochromator drops below about 0.45 eV. The 
effect of an enlarged aperture angle ai m  on the monochromator resolution is that 
with lower path energy the energy width Z1E 1 12  is no longer proportional to the 
pass energy. This is clearly seen in the data displayed in Fig. 8.10. By using the 
aperture angles obtained for the beam produced by the emission system (Fig. 8.8) 
and transforming them into input aperture angles of the monochromator with 
(8.12), the energy width AE 1 /2  of the beam leaving the monochromator may 
be estimated from (8.1). The full fine in Fig. 8.10 is the result for A m  = 0 (i.e. 
small fl). The agreement between the data and the model is quite reasonable. 
We take the agreement as evidence that the angular aperture calculated for the 
emission system is not unreasonable. Further evidence for this is obtained from 
the transmission of the monochromator. As remarked earlier, the transmission 
consists of two parts, one (TE) arising from the fact that the monochromator 
selects an energy band from the beam feeding the monochromator (3.48) and a 
second (Ta), arising from the aperture angle ai m  (3.30). The total transmission is 
the product of Ta  and TE, to a good approximation. Since we are not interested 
in the obvious factor TB we have plotted 

Iout  \ I 1 + (AEm/AEoui)2 //m 	 (8.13) 

in Fig. 8.11. The data refer to a retardation factor of F = 8. The figure shows two 
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sets of data, one obtained after an additional bakeout of the spectrometer in order 
to reduce the effect of spurious surface potentials. Clearly the second bakeout 
increased the performance of the spectrometer considerably at low pass energies. 
Nevertheless the general trend of the data to fall to zero transmission as the pass 
energy approaches zero is not affected. Once again, we try the hypothesis of 
ascribing the reduction in the transmission to the enlarged angular aperture of 
the feed beam. By taking the calculated aperture angles from Fig. 8.8 and by 
using (3.30), the transmission Ta  is calculated and the result is the dotted line in 
Fig. 8.11. The match to the data is quite close. In particular, the drop towards zero 
at low pass energies is well reproduced. The discrepancy at higher pass energies 
may be caused either by an additional effect of the /31.-aperture angle or, more 
likely, by larger aperture angles alm  than those obtained from the simulation of 
the emission system. 

The most relevant property of the spectrometer for practical application is 
the monochromatic current at the sample versus the resolution of the monochro-
mator. The two sets of data before and after a second bakeout are shown in 
Fig. 8.12. The data were obtained with a retardation factor of F = 8. We have 
not found any indication of an extra broadening of the energy distribution due 
to the electron—electron scattering in dense beams known as the Boersch effect 
[8.2]. The monochromatic current delivered by the pre-monochromator is also 
shown in Fig. 8.12 as a dashed line. For low resolution, the current produced by 
the two-stage monochromatisation is higher than for a single-stage monochro- 

Fig. 8.12. Monochromatic current vs the width of the energy distribution (FWHM) of the electron 
beam leaving the monochromator. The data points are obtained in two series of measurements with a 
constant retarding factor of 8. The squares are data taken after a second bakeout of the spectrometer. 
The dashed line is the monochromatic current provided by the pre-monochromator according to the 
experimental data in Fig. 8.7. The dotted line is the theoretical calculation described in the text 
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mator, though not significantly. The second stage does permit a higher resolution 
to be achieved, however. If the aperture angles did not increase with lower pass 
energies the slope of the current versus resolution should follow the dashed line, 
down to the 1-2 meV range, providing an order of magnitude higher currents 
there. Again we compare the data in Fig. 8.12 with the theoretical results using 
the aperture angles of the emission system. According to (5.10) the optimum 
input current of the monochromator is 

/in  = 0.35 k EP 12  Mgc (aim+ LIEin ) 	 (8.14) 
E0 

The prefactor 0.35 corresponds to the case in which the compression voltage 
is adjusted to keep the beam parallel in the vertical plane under space charge 
conditions, namely, eUp = 0.55 Eo. This potential was applied in the experiment 
because it led, as expected, to the highest current at the detector. For the energy 
part of the transmission TE we have (3.48) 

21  -1/2 

TE= [1 + 	wEin ) 

The angular part is (3.30) 

1 ---(1C,„1/3s)ceL ,  T 	, 
Ta=  2 1 

3alm(sii6omi)1/2 	< 

For the full width at half maximum we take (3.56) 

.AE1 12  = E0(s/D + 0.47 04m ) 

and the dispersion D is, according to (3.17) and (4.76), 

D = 0.966 ro(1 + 1.3 .Aesc) • 

By writing further AEi n  = 2,E0u1/0.38 from (8.12), we are now in a position 
to calculate the expected monochromatic current, entirely without any adjustable 
parameter. Hence, this is the key test for all the theoretical investigations de-
scribed in Chaps. 4 and 5. The result is shown as a dotted line in Fig. 8.12. The 
line clearly follows the general trend of the data and is off merely by a small 
margin. We conclude therefore that the theory of space charge limited currents 
in monochromators is not only mathematically correct but has also, a matter 
of equal importance, considered the appropriate experimental parameters in the 
numerical analysis. A second conclusion is that higher currents with a low en-
ergy width in the range of 1-2 meV could be achieved, if emission systems that 
provided the same current and energy width but a smaller aperture angle ai m  of 
the beam could be constructed. The point is illustrated in Fig. 8.13. We assume 
here that the aperture angle ai,n  scales according to 

a 
aim 7-- 

 v 
	 (8.19) 

(8.15) 

(8.16) 

(8.17) 

(8.18) 
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Resolution AE 	(meV) 
Fig. 8.13. Calculated monochromatic current when the angular aperture is crim  = a/VEO with 
a = 1°-6°. The experimental results obtained so far are also shown for comparison 

which is, very crudely, the behaviour of the data in Fig. 8.8. The resulting currents 
are plotted in Fig. 8.13 for a = 1°-6°. 

High resolution spectrometers with usable current levels at 1 meV resolution 
could thus be constructed if appropriate emission systems could be found, capable 
of bringing a current of about 50 nA with an energy width of about 60 rneV into a 
slit of 0.3mm x 2mm with an angular aperture of 2°. Whether or not this can be 
achieved remains to be seen, but there is certainly room for further development 
[8.3]. 

Our final comment is on the lens system. With the particular spectrometer 
tested and described here we have used the movable lens with which the ac-
ceptance angle at the sample can be changed. The other lens systems described 
in Chap. 7 have also been tested and used in several spectrometers. They have 
performed according to expection. The high transmission that can be achieved 
with properly calculated lens systems is illustrated in Fig. 8.14. There, the current 
falling onto the entrance aperture of the analyser and the current at the detector 
are plotted versus the scattering angle. The latter is varied by moving the entire 
package of monochromators and one lens system around a pivot at the sample 
position in the scattering chamber. The current on the entrance aperture drops 
as the image of the exit slit of the monochromator falls into the entrance slit 
of the analyser. The current does not drop completely to zero because the spot 
is enlarged by image aberrations. The ratio of the current drop of 0.257 nA to 
the maximum current of 0.32 nA is the transmission of the lens, here 80%. The 
data refer to pass energies of 0.3 and 0.255 in monochrornator and analyser, 
respectively, and to an impact energy of 4 eV at the sample position. The spec-
trometer resolution was 4.3 meV (FWHM). Together with the reduction of the 
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Fig. 8.14. The current falling onto the entrance aperture of the analyser and the current at the detector 
placed after the exit slit of the analyser vs the scattering angle at the sample position. The transmission 
of the lens system, the transmission of the analyser, and the angular resolution of the spectrometer 
may be determined from the plot 

current on the entrance aperture, the current at the detector rises to a maximum 
value of 0.125 nA. The ratio of the current at the detector to the current entering 
the analyser is 0.49. This value is the transmission of the analyser including the 
energy resolution factor, which is about TE  = 0.44, so that Ta  0.90. The full 
width at half maximum indicated in Fig. 8.14 marks the angular resolution of the 
spectrometer at the target, at  0.26°. This value refers to the situation in which 
the lenses are close to monochromator and analyser as in Fig. 7.17. The value of 
at  = 0.26° corresponds to a wave vector transfer k1 of 4.8 x 10 -3  A-1  or to a 
transfer width of 208 A. 

High transmission of the lens can be achieved down to rather high resolu-
tion. In Fig. 8.15 we display the monochromatic current at the detector versus the 
resolution of the spectrometer, together with the monochromatic current emerg-
ing from the monochromator versus the monochromator resolution. The curves 
essentially differ by a constant factor, which is due to the product of analyser 
transmission and lens transmission and to the larger energy width of the entire 
spectrometer, arising from the convolution of the analyser and monocluomator 
resolution functions. Since detector currents of 0.1-1 pA (in the direct beam) are 
sufficient for most applications in electron energy loss spectroscopy, the spec-
trometer can provide a resolution below 2 meV. Very recently we replaced the 
LaB6 cathode used earlier by a tungsten cathode with an extra sharp needle tip 
welded onto the hairpin-shaped heating wire. This was in the hope of achieving 
a smaller aperture angle of the feed beam of the first monochromator and hence 
of improving the ultimate resolution according to Fig. 8.13. With this modifica- 
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tion a resolution of AE < 1 meV was obtained. We note, however, that it is 
quite difficult with this particular cathode to find the optimum set of potentials 
in the emission system so that only electrons emerging from the fine tip enter 
the first monochromator. An example is shown in Fig. 8.16. The spectrum refers 
to a saturated monolayer of CO on an  unreconstructed Ir(100) surface at room 
temperature. The resolution measured as the full width at half maximum of the 
elastic beam is 0.98 meV. The actual spectrometer resolution may be even better 
since losses due to electron-hole-pair creation tend to broaden the "elastic" sig-
nal by a few tenths of a meV. One also notices the additional broadening in the 
vibration losses, which is a genuine physical effect caused by dephasing and life-
time broadening. This demonstrates that the resolution of electron spectrometers 
is close to the physically meaningful limit. 
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