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Reflection high-energy electron diffraction (RHEED) is the analytical tool of choice for
characterizing thin films during growth by molecular beam epitaxy, since it is very sensitive
to surface structure and morphology. However, there has been a need for a book which
explains how to analyze RHEED patterns.

This book serves as an introduction to RHEED for beginners and describes detailed ex-
perimental and theoretical treatments for experts. First the principles of electron diffraction
and many examples of the interpretation of RHEED patterns are described for beginners.
The second part contains detailed descriptions of RHEED theory. The third part applies
RHEED to the determination of surface structures, gives detailed descriptions of the ef-
fects of disorder and critically reviews the mechanisms contributing to RHEED intensity
oscillations.

This unified and coherent account will appeal to both graduate students and researchers
in the study of molecular beam epitaxial growth.
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Preface

Reflection high-energy electron diffraction (RHEED) is widely used for surface structural
analysis in monitoring epitaxial growth. The purposes of this book are to serve as an
introduction to RHEED for beginners and to describe detailed experimental and theoretical
treatments for experts. This book consists of three parts. From Chapter 1 to Chapter 8 the
principles of electron diffraction and many examples of RHEED patterns are described
for beginners. Chapters 9–14 and Chapter 16 give detailed descriptions of RHEED
theory. The third part consists of applications of RHEED. In Chapter 15, methods for the
determination of atomic structures of surfaces using RHEED are explained with some
examples. Chapters 17 and 18 give detailed descriptions of RHEED in the study of surface
disordering and epitaxial growth. In Chapter 19 we describe RHEED intensity oscillations
for various growth systems.

A. I. expresses many thanks to the late Professor R. Uyeda for his encouragement, to Drs
T. Emoto and H. Nakahara for assistance in drawing many figures and to Ms M. Miwa, Ms
Y. Mashita, Ms K. Hosono and Ms T. Arakawa for typing the text and checking references
and indexes. P. I. C. is grateful to Ms A. D. Cohen for assistance with the references and
especially to Drs J. M. Van Hove, C. S. Lent, P. R. Pukite and A. M. Dabiran for their help
in understanding diffraction.
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Introduction

Reflection high-energy electron diffraction (RHEED or R-HEED) is a technique for sur-
face structural analysis that is remarkably simple to implement, requiring at the minimum
only an electron gun, a phosphor screen, and a clean surface. Its interpretation, however,
is complicated by an unusually asymmetric scattering geometry and by the necessity of
accounting for multiple scattering processes. First performed by Nishikawa and Kikuchi
(1928a, b) at nearly the same time as the discovery of electron diffraction by Davison and
Germer (1927a, b), RHEED has assumed modern importance because of its compatibility
with the methods of vapor deposition used for the epitaxial growth of thin films. We take
RHEED to encompass the energy range from about 8 to 20 keV, though it can be employed
at electron energies as high as 50 to 100 keV.

Because of its small penetration depth, owing to the interaction between incident electrons
and atoms, RHEED is primarily sensitive to the atomic structure of the first few planes of
a crystal lattice. Diffraction from a structure periodic in only two dimensions therefore
underlies the observed pattern, and the positions of the elastically scattered beams can be
computed from single-scattering expressions. Nonetheless, because the elastic scattering
is comparable to the inelastic scattering, multiple scattering processes are also crucial,
and these must be included to obtain the correct intensity. The RHEED geometry – an
incident beam directed at a low angle to the surface – has a very strong effect on both the
diffraction and its interpretation. For example, atomic steps can produce large changes in
both the measured intensity and the shape of the diffracted beams when the important atomic
separations are parallel to the incident beam direction; in contrast, the role of atomic structure
in the diffracted intensity is primarily determined by the atomic separations perpendicular
to the beam direction. Both of these phenomena result from the low glancing angle of
incidence. The extent of these sensitivities, the importance of multiple scattering, the shape
of the diffraction pattern, and the salient features of calculation are all determined by the
combination of a small glancing incident angle and the conservation of parallel momentum.
This book is an exploration of the consequences of the combination of these two main
features in the presence of multiple scattering.

RHEED is very similar to its counterpart, low-energy electron diffraction (LEED), and
many of the same geometric constructions and analytical methods are used in its inter-
pretation. But there are important differences. We will see that because of the glancing
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2 Introduction

geometry of RHEED, particular advantage can be gained by selecting a sensitivity to par-
ticular atomic features. For example, at incident azimuths away from symmetry directions
the interplanar separations normal to the surface dominate the intensity and the diffrac-
tion is very kinematic-like. Or, by choosing the incident azimuth appropriately, particular
rows of scatterers can be made to dominate the diffracted intensity. In addition, RHEED
is particularly sensitive to disorder because of the low angle of incidence and because of
the easier electron optics at high energy, which allows highly collimated incident beams. In
short the interpretation can be simplified, single-scattering theory serving as a basis with
the important multiple scattering artfully included.

Our purpose in this book is to develop RHEED as a practical tool in surface structure
determination. Often RHEED is used just as a means to determine whether there is epitaxy
and whether the surface is rough or smooth. With somewhat more effort it is more powerful
than this, but one must consider the fundamental principles of the technique. In nearly every
aspect we will make connections between the dynamical or multiple-scattering treatment
and the simpler kinematic analysis. In our minds, the latter serves as a framework upon
which the results of dynamical calculation are based. We will look for ways to make the
kinematic results more useful. But fundamentally this process, involving strongly scattered
beams, is dynamical and dynamical methods must be the final arbiter.
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Historical survey

2.1 Early experiments

The first RHEED experiment was conducted by Nishikawa and Kikuchi in 1928. Their
interest at that time was whether the Kikuchi patterns that had been observed previously in
transmission electron diffraction (Kikuchi, 1928a, b) were also observed in reflection. Later
they were interested in effects due to the refraction of electrons by a mean inner potential
(Kikuchi and Nakagawa, 1934).

At the outset, efforts were made to understand the angles at which the diffracted beams
showed intensity maxima. For reflection diffraction, the angular positions of the diffrac-
tion maxima do not follow Bragg’s law. These shifts were explained to some extent by
considering the beam to be refracted by an inner potential (Thomson, 1928).

Owing to refraction, the lowest-order diffracted beams are totally internally reflected
and so are not observed. Using this effect, efforts were made to determine the mean inner
potentials, the values of which are related to paramagnetic susceptibilities (see Chapter 9).
In order to determine the mean inner potentials, the RHEED intensity was measured as
a function of incident angle, a measurement that has become known as a rocking curve.
From the systematic deviation of the positions of diffraction maxima from Bragg’s law, the
values of the inner potentials for several materials were determined for the first time by
Yamaguti (1930, 1931). The refraction effects of the inner potential are also observed in
RHEED patterns as parabolic Kikuchi lines and envelopes (Shinohara, 1935).

Kikuchi and Nakagawa (1933) found an intensity anomaly at certain diffraction condi-
tions. McRae and Jennings (1969) explained that the effect is the same as that found later in
low-energy electron diffraction (LEED) experiments and called a “surface wave resonance.”

Several RHEED experiments were carried out for polished metal surfaces and on thin
metallic films evaporated on metal substrates (Kirchner, 1932). In these experiments, many
kinds of RHEED patterns were observed. The origin of these patterns, especially the streaks
and transmission patterns, were explained in detail by using kinematic diffraction theory
(Kirchner and Raether, 1932; Raether, 1932). The patterns were explained in a very elegant
way, according to which RHEED streaks arise from small domains on the surface, as shown
in Fig. 2.1 (see the detailed explanations in Chapters 6 and 8).

3
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Figure 2.1 Explanation of the origin of RHEED streaks. (a) Arrangement of the two-dimensional
array of lattice points. The finite sizes, L1 and L2, of the lattice are perpendicular and parallel to the
incident direction, respectively. The incident direction is indicated by the arrow. (b) Reciprocal lattice
for the arrangement in (a). (c) RHEED construction for (b); the lengths of the streaks depend on the
glancing angle of incidence, ϑ .

From the late 1930s to early 1940s, many experiments relating to processes such as
surface oxidation and epitaxial growth were carried out with RHEED. Miyake (1938)
studied RHEED patterns from faceted islands formed by the oxidation of Sn surfaces. The
first in situ experiment on epitaxial growth was performed by Uyeda et al. (1941). By
analyzing RHEED patterns from epitaxial silver films on NaCl, ZnS and MoS2 surfaces
and measuring the total amount of silver deposited, Uyeda found that the silver films grew
with an island growth mode (Uyeda, 1942). This was the first observation of the island
growth mode in epitaxy.

2.2 Molecular beam epitaxy

Arthur and LePore (Arthur and LePore, 1969; Arthur, 1972) incorporated a RHEED mea-
surement into an apparatus developed by Arthur for the molecular beam epitaxial (MBE)
growth of GaAs. Arthur’s study of the reconstructions of GaAs(111)B showed the power
of the technique. This was reinforced by a single image that Cho (1970) published in a key
review paper on MBE. This image, shown on the left in Fig. 2.2c, influenced the design
of most commercial machines. RHEED was a particularly essential tool in the growth of
GaAs by MBE since the diffraction pattern told the grower first whether the the native GaAs
was desorbed, then whether the conditions were Ga rich or As rich, and finally whether



2.2 Molecular beam epitaxy 5

Figure 2.2 On the left, the RHEED pattern (40 keV, 〈01̄1〉 direction) for a particular surface and on
the right the corresponding photomicrograph (38 400×) of a Pt-C replica of the same surface, for the
following cases: (a) a Br2-methanol polish-etched (001) GaAs substrate heated in vacuum to 855 K
for 5 minutes; (b) a deposition of an average thickness of 150 Å of GaAs; (c) a deposition of 1 µm
of GaAs (Cho, 1971). The power of RHEED to distinguish qualitatively between rough and smooth
surfaces is evident.

two-dimensional growth was proceeding as planned. Later, when Harris et al. (1981), Wood
(1981), Neave et al. (1984), Van Hove et al. (1983b) and Sakamoto et al. (1986) saw intensity
oscillations, RHEED became essential for measuring growth rate.

At this time it was not well understood why the patterns were streaks (there could be
no mosaic on these surfaces) and there was confusion as to what the role of surface dis-
order was in the diffraction. Part of this confusion was perhaps due to the presence of
the patterns seen in Fig. 2.2. This led to work on whether the streaks could be due to
thermal diffuse diffraction (Holloway and Beeby, 1978). This spurred work to determine
the nature of the key surface disorder. Cohen’s group showed the importance of surface
steps for the diffraction, that they caused splitting and broadening depending upon their
distribution. They extended the work of Henzler (1977) and applied it to understand the
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shape of the diffraction and the RHEED intensity oscillations (Van Hove et al., 1983c).
Lent and Cohen (1984a, b) clarified the theory of the role of disorder and showed that
the shape of a RHEED streak could be decomposed into a central spike coming from the
long-range order and a broad part coming from steps. They developed a sensitive means
of measuring: surface misorientations (Pukite et al., 1984a, b); lattice parameter (Whaley
and Cohen, 1988, 1990a, b); the transition to Stranski–Krastanov growth and the forma-
tion of structures that later became used as quantum dots; sublimation (Van Hove and
Cohen, 1985; Van Hove et al., 1985a; Kojima et al., 1985). Furthermore, their work clari-
fied the detailed behavior of the RHEED intensity oscillations. Fuchs et al. (1985) showed
that the formation of single- and double-layer steps could be determined with RHEED in
the growth of Fe on Fe(100). Pukite et al. (1985) developed statistical methods for the
analysis of general surface-step distributions. Petrich et al. (1989) developed rate-equation
models that described the intensity oscillations on low-index and vicinal (layered) sur-
faces. On the latter, a steady state was reached in which the envelope was not a constant.
Rather, the maxima and minima forming the envelope decayed to a common intermediate
value.

Joyce’s groups at Phillips and at Imperial College pioneered developments in the use
of RHEED intensity oscillations. They have been a strong proponent of the role of step
density as the dominant mechanism for the intensity oscillations, using comparisons with
Vvedensky’s kinetic Monte Carlo calculation (Shitara et al., 1992b). Using such a compar-
ison for vicinal surfaces they measured the surface diffusion of Ga on GaAs(100) surfaces.
Early on they showed that the times after the initiation of growth at which the intensity
oscillations reached a maximum depended strongly on the scattering angle. This made it
difficult to associate the oscillation maxima with layer completions.

Orr (1993) and Stroscio et al. (1993) followed the path of Cho (1970) but using scanning
tunneling microscopy (STM) rather than SEM to compare the microscopic surface structure
with RHEED measurements. They showed the evolution of islands as measured by RHEED
and STM. In particular, Orr’s group (Sudijono et al., 1992) looked at quenched GaAs sur-
faces with STM at the beginning of growth and at long times, after the intensity oscillations
had decayed away. At the initial stages they were able to see the cyclic nature of the surface
morphology. Further, they showed that on GaAs relatively few layers comprised the growth
front even after many layers had been deposited. Most recently, quantitative measurements
by Bell et al. (2000) using STM on quenched surfaces showed that step densities and layer
coverages behaved similarly.

Braun and his coworkers have analyzed RHEED patterns and intensities during the
growth of compound semiconductors in detail (Braun, 1999). They revealed several types
of phase shifts of RHEED intensity oscillations and found reconstruction-induced phase-
shift phenomena in the growth of AlAs on GaAs (Braun et al., 1998a, b). Knowledge of
the effects of inelastically scattered electrons on the RHEED intensity oscillations is also
important in studying the growth processes using these oscillations. Braun et al. observed
energy-filtered RHEED oscillations for several energy losses and concluded that inelastic
scattering does not have a significant effect on the oscillations (Braun et al., 1998c).
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In the growth of less perfect materials, such as GaN, RHEED has been used to examine
the termination of the surface under various growth conditions. For example, by following
the decrease and recovery of the RHEED intensity during the addition of Ga to the surface,
Crawford et al. (1996) and Held et al. (1997) were able to monitor the deposition of extra
Ga layers on GaN(0001). Adelmann et al. (2002) were able to correlate the variation of
the RHEED intensity during vacuum desorption and the behavior of RHEED intensity
oscillations with different growth modes during the growth of GaN by plasma-assisted
MBE. Steinke and Cohen (2003) were able to observe the deposition of individual Ga layers
and related growth modes during the metalorganic MBE of GaN. Nonetheless, RHEED
rocking curves have not been measured for these surfaces and their atomic structures have
been determined by first-principle calculations and X-ray diffraction (Munkholm et al.,
1999).

2.3 Surface studies

The technology for the preparation of very clean surfaces was not available for the early
RHEED experiments – for example, Germer’s studies on galena were on surfaces cleaned
with a camel’s hair brush (Germer, 1936). More modern RHEED experiments became pos-
sible with the advent of the ultrahigh vacuum (Siegel and Menadue, 1967). Menadue (1972)
performed early quantitative measurements of RHEED intensities for the Si(111)7×7 sur-
face. Beautiful 7×7 patterns of RHEED were obtained in these experiments. An inten-
sity rocking curve at off-azimuthal angles (later called the one-beam condition) was also
measured as well as azimuthal plots, in which the specular intensity was measured as a
function of azimuth from a certain direction of incidence. Dynamical theories for interpre-
tation of the rocking curves and the azimuthal plots were developed by Collela (1972) and
Moon (1972). The Si(111)7×7 surface structure was, however, too complicated to be de-
termined from these data only. This structure has been solved by STM observation (Binnig
et al., 1983) and by the analysis of transmission electron diffraction data (Takayanagi
et al., 1985). Ino and his collaborators observed several surfaces with various adsorp-
tion species (Ino, 1977, 1980, 1987), exploiting RHEED as a powerful tool for surface
studies.

Reflection electron microscopy (REM) in UHV was developed by Honjo and Yagi’s
group in addition to their continued development of RHEED (for example Yagi et al.,
1982). They observed the phase transition from 7 × 7 to 1 × 1 on Si(111) surface at high
temperatures by REM (Osakabe et al., 1981) and found that the transition begins from
the upper edges of steps. Ichikawa and Hayakawa (1982) developed scanning micro-beam
RHEED (µ-RHEED) in UHV. REM and µ-RHEED are very powerful tools for in situ
observations of dynamic processes on surfaces, such as epitaxial growth, electromigration,
step bunching and so on. Yagi’s group and that of Aseev and Stenin used mainly REM
for investigations of surface-step dynamics (Kahata and Yagi, 1989a, b, c; Latyshev et al.,
1989). Using µ-RHEED, Ichikawa and Doi (1987) studied homoepitaxial growth processes
on Si(111) surfaces and found the existence of denuded zones at step edges. By this time,
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there were huge numbers of studies of crystal surfaces and epitaxy by RHEED and related
methods.

As described in the previous section, RHEED is good for monitoring epitaxial growth:
RHEED intensity oscillations give much information about this. Following the kinematic
diffraction analysis of the oscillations by Cohen et al. (1986a), efforts were made to un-
derstand the mechanisms of RHEED intensity oscillations during epitaxial growth using
dynamical RHEED calculations. Kawamura et al. (1984) first tried to explain the oscilla-
tions by dynamical calculations for a large-surface unit-cell model. In many observations of
RHEED intensity oscillations, phase shifts of RHEED oscillations occurred with a change
in incident angle, and double oscillation maxima, called oscillation doubling, were seen by
several groups (Van Hove and Cohen, 1982; Zhang et al. 1987). Mechanisms of the phase
shifts and oscillation doublings were explained by Peng and Whelan (1990) and Mitura
and his coworkers (Mitura and Daniluk, 1992; Mitura et al., 1992) as dynamical diffraction
effects. Later, these effects were understood as due to the interference of waves reflected
at the topmost growing surface and waves reflected in the growing layers, which acquire
phase shifts from the potential in these layers (Horio and Ichimiya, 1993).

Tompsett and Grigson (1965) began the work with energy-filtered RHEED, followed
by Dove et al., (1973) and Britze and Meyer-Ehmsen (1978). However, these Faraday
cup systems were difficult to use. More recently Horio and coworkers (Horio et al., 1995;
Horio, 1996; Horio et al., 1996; Horio et al., 1998) used a grid filter to examine the role
of inelastic scattering in the Kikuchi pattern. Braun et al. (1998d, 1999) also developed an
energy-filtered RHEED and observed RHEED intensity oscillations for the GaAs system.

For the purpose of surface-structure analysis, beam-rocking RHEED systems were devel-
oped by Meyer-Ehmsen’s group (Britze and Meyer-Ehmsen, 1978) and Ichimiya’s group
(Ichimiya and Takeuchi, 1983). The former group’s system was equipped with a beam-
rocking device using magnetic deflectors and an energy filter. The latter was equipped with
a precise mechanical beam-rocking device that permitted the simultaneous measurement
of Auger signals and RHEED intensities. Using this system, RHEED rocking curves and
rocking curves of Auger intensities from MgO(001) and Si(111) surfaces were observed
(Ichimiya and Takeuchi, 1983; Horio and Ichimiya, 1983a). Anomalous enhancements of
the Auger intensities at surface-wave resonance conditions were found for both surfaces
and were explained by a strong concentration of the electron wave field near the surface
(Ichimiya and Tamaoki, 1986). Marten and Meyer-Ehmsen (1985) studied resonance effects
in the RHEED patterns from Pt(111) surfaces in detail.

The first actual determination of a surface structure was carried out by Maksym (1985)
for a rocking curve from a cleaved MgO(001) surface measured by Ichimiya and Takeuchi
(1983). The MgO(001) surface has a simple 1×1 structure. Tests were made for two possible
structures using dynamical calculations. Figure 2.3 shows calculated and experimental
rocking curves for the specular beam intensity for MgO(001) surface with a 〈100〉 incidence.
In this diagram, the peak intensities and the peak positions indicated by the arrows may
be compared with the calculated ones. For the simple structure of the MgO(001) surface,
the peak intensity is very sensitive to even a 1% change in the topmost layer spacing. The
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Figure 2.3 Calculated and experimental rocking curves of the (00) reciprocal-lattice rod from
MgO(001) surface. The experimental peaks are indicated by the arrows (Maksym, 1985).

calculations for small expansions in the first surface layer correspond very well with the
experimental curves. From these (00) beam data one can then distinguish models in which
the normal displacements differ by as little as 0.1 Å.

Horio and Ichimiya (1983b) developed the one-beam rocking curve method and analyzed
a Si(111) (

√
3 × √

3)R30◦-Ag surface by kinematic diffraction theory. The surface normal
component of the atomic position of Ag was determined, and the result was in very good
agreement with X-ray results (Takahashi et al., 1988; Vlieg et al., 1989). Since Maksym’s
analysis, many articles on the structural analysis of crystal surfaces by RHEED have been
published.

A convergent-beam RHEED method (Smith, 1992; Smith et al., 1992; Lordi et al.,
1994; Zuo et al., 2000) involving a combination of rocking curves and azimuthal plots.
In this method, a cone-like electron beam is used. Although the azimuthal dependence of
rocking curves simultaneously (Ichimiya et al., 1980; Smith, 1992; Smith et al., 1992)
using convergent-beam RHEED patterns, a few such experiments have been carried out in
high-vacuum conditions (for example, Ichimiya et al., 1980; Smith et al., 1992).

One can analyze the intensity distributions of RHEED patterns by dynamical calculations.
This method has been successful in establishing the atomic structure of the GaAs(100)
2 × 4 surface, in combination with scanning tunneling microscopy (STM) (Hashizume
et al., 1994, 1995). For this surface, McCoy et al. (1998) also determined the structure by
dynamical calculations for experimental rocking curves obtained by Larsen et al. (1986),
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and the result was consistent with that above. Ohtake et al. (2002) measured rocking curves
from the GaAs(100)2 × 4 surface in detail and determined the atomic structures.

For surfaces that have undergone epitaxial growth, the atomic structure has been stud-
ied in order to understand the growth mechanisms. Yakovlev et al. (1995) studied fluoride
growth on Si(111) surfaces by obtaining RHEED rocking curves and analyzing them using
dynamical theory. Nakahara and Ichimiya (1991) measured RHEED rocking curves during
silicon growth on Si(111)7 × 7 with very slow deposition rates and revealed the mech-
anism of rearrangement of the atomic structure during the growth. Fukaya et al. (2000)
developed a high-speed-beam rocking method for RHEED and measured rocking curves
during homoepitaxial growth on Si(111).

Mitura and Maksym (1993) developed an analysis method of surface and thin film struc-
tures using the azimuthal dependence of the specular-beam intensity in RHEED. Mitura
et al. (1996) succeeded in determining the thin film structure during the growth of DySi2−x .

Hasegawa and Ino (1993) combined X-ray spectrometry and RHEED, and the system
is called RHEED-TRAXS (total-reflection-angle X-ray-spectroscopy). They measured the
surface conductivity of silicon surfaces as a function of metal coverage using surface-
structures monitoring by RHEED.

2.4 Theories of surface-structure determination

In the year following the first electron diffraction experiments (Davison and Germer,
1927a, b; Thomson, 1927a, b), a dynamical theory of electron diffraction was developed
by Bethe (1928) using a Bloch-wave scheme for crystals. Bethe’s theory is still used for
the interpretation of diffraction contrast in electron micrographs and, to some extent, for
RHEED dynamical theory. In regard to reflection diffraction, however, this theory is hard
to use for the structural analysis of reconstructed surfaces. Harding (1937) first developed a
RHEED dynamical theory for distorted surface layers, using Darwin’s X-ray dynamical the-
ory (Darwin, 1922) and Bethe’s theory with Hill’s determinant. After digital computers were
developed, many-beam dynamical calculations were used for the accurate determination
of crystal structure factors by electron diffraction (for example, Goodman and Lehmpfuhl,
1967). For dynamical calculations, analytical forms of the scattering factors were required.
Doyle and Turner (1968) developed such analytical forms using the Hartree–Fock approx-
imation.

Bethe’s theory is not efficient for a many-beam calculation for RHEED, because an
eigenvalue problem must be solved for a huge matrix, and many equivalent eigenvalues
in a Brillouin zone are obtained simultaneously. In order to avoid this inefficiency, Moon
(1972) adopted Hill’s determinant for RHEED dynamical calculations in the same way as
in Harding’s theory.

The modern dynamical RHEED theories were developed independently in the 1980s by
Maksym and Beeby (1981) and Ichimiya (1983) to overcome the difficulties of the lack of
the periodicity, using a two-dimensional Fourier expansion of the crystal potential parallel
to the surface (Kambe, 1964). Similar methods were reported by Zhao et al. (1988) using
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the embedded R-matrix method and by Meyer-Ehmsen (1989) using the WKB method.
Nagano (1990) proposed a similar method. However, Peng and Cowley (1986) applied a
multi-slice method for transmission electron diffraction (TED) that had been developed
originally by Cowley and Moodie (1947). This method is adequate for the interpretation
of reflection electron micrographs. Ma and Marks (1992) developed a similar theory from
TED dynamical calculations. Tong developed an R-matrix method (Zhao, Poon and Tong,
1988) to address convergence issues; this was applied to Ag and Pt (Zhao and Tong, 1988)
and to the GaAs(110) surface, in the latter publication, in which the RHEED measurement
and to previous LEED calculation were compared (Jamison et al., 1988). These theories
are applicable to perfect periodic surfaces.

For disordered surfaces, the above theories are used under some approximations, with a
perturbation approach or large unit cells (Kawamura et al., 1984; Ichimiya, 1988; Beeby,
1993; Korte and Meyer-Ehmsen, 1993; Korte et al., 1996). Recently Korte (1999), Maksym
(1999) and Mitura (1999) published reviews of RHEED theory for imperfect crystal surfaces
with applications to real crystal surfaces. Maksym (2001) developed an iteration method
for the calculation of RHEED intensities for large-unit-cell surfaces.

For RHEED dynamical calculations, a round robin comparison was performed in 1995.
The result was presented at the Winter Workshop on Electron Diffraction and Imaging
at Surfaces in 1996. The participants and their institutions at the time of the round robin
were S. L. Dudarev (University of Oxford), T. Hanada (University of Tokyo), A. Ichimiya
(Nagoya University), U. Korte (University of Osnabrück), S. Lordi (Northwestern Univer-
sity), P. Maksym (University of Leicester), Z. Mitura (University of Oxford), L. M. Peng
(Chinese Academy of Science) and A. E. Smith (Monash University). The calculations
were carried out for the bulk terminated surfaces Au(001), Au(111), Si(001) and Si(111).
The incident directions were [11̄0] for Au(001), Au(111), Si(001) and Si(111), [110] for
Si(001) and [112̄] for Au(111). The intensities were calculated for glancing angles of 0.1◦ to
6◦ with 0.1◦ divisions, and the electron beam energy was 15 keV. The result was compared
with Maksym’s results as the standard, using the following equation:

R =
∑

n |I (ϑn) − IMaksym(ϑn)|
∑

n IMaksym(ϑn)
× 100. (2.1)

The results of Dudarev, Korte and Peng were in very good agreement with Maksym’s results,
and the corresponding values of R were less than 1%. Other results showed mostly around
10% discrepancies, which also seems to show very good agreement with Maksym’s results.

All results of the calculations basically accord well with each other, but there are some
discrepancies. The main reasons for these are as follows. When the calculations were per-
formed with perturbation analysis for the absorption effect, the results showed a difference
of about 10% from those obtained by exact calculations. When the calculations did not
include the relativistic correction, the results also showed discrepancies of about 10% from
the exact results, owing to the peak shifts of the rocking curves.
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Instrumentation

3.1 Introduction

In RHEED, an electron beam, at an energy usually between 8 and 20 keV for epitax-
ial growth systems, is incident on a crystal surface at a grazing angle of a few degrees.
At the surface there is a scattering process in which there can be energy loss. Diffracted
beams leave the crystal, also near grazing incidence, and strike a detector. It is a very open
geometry, with the incident beam and detector as much as 20 cm from the sample. It is
exceedingly surface sensitive. As a result, RHEED is an ideal measurement to combine
with atom deposition, Auger electron spectroscopy, scanning tunneling microscopy, scan-
ning electron microscopy and other surface probes. The appropriate experimental methods
depend on the measurements desired and on the sample. In this chapter we describe several
designs.

The optimal energy for electron diffraction depends somewhat on the purpose of the
measurement. Electron optics become easier as the energy is increased but there does not
seem to be any overriding issue. For dynamical analysis, as will be seen later, a plane-
wave expansion is performed since at high energies the scattering is mainly in the forward
direction and this is efficient. A spherical-wave expansion could also be used, but this is
inefficient since at high energies many diffracted beams will be needed. So for dynamical
analysis, energies greater than about 10 keV are essential. However, at lower energies it is
possible to go to higher incident glancing angles and still maintain surface sensitivity. This
will make the step edges less important in the scattering, and multiple scattering between
terraces will also be less important. Thus, for the determination of surface morphologies
by measuring beam profiles there is probably an advantage in going to about 3–5 keV as
long as the properties of the electron gun are maintained at these energies. At these low
energies kinematic analyses are likely to work best. By going to higher energies the pattern
is compressed by a factor proportional to the square root of the energy, so that there is
some gain in the number of Laue zones that can be observed for a given angular range
subtended by the phosphor screen. This could make it somewhat easier to determine the
surface reconstruction, especially when only one incident azimuth is available. However,
compressing the pattern makes measurement of the angular profile of the diffracted beams
slightly more difficult. Yet higher-energy electrons are affected somewhat less by stray fields.

12
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The coherence length is reduced but this can be outweighed by improvements in electron
optics. Our conclusion is that operation in the range between 10 and 20 keV is optimal.

3.2 Design of apparatus

The key ingredient in any RHEED system is the electron gun. The main requirements
are small angular divergence at the sample and small spot size at the screen. One usually
focuses the beam at the screen, representing a good compromise between these two require-
ments. Commercially available guns can focus a beam onto a screen at a distance of about
40–70 cm. The angular divergence needs to be comparable to the sample flatness, or about
0.5–1.0 mrad for GaAs and perhaps a bit less for Si, with a spot size on the screen of
about 0.1 mm. If the beam is better collimated than this or more finely focused, the broaden-
ing due to sample disorder would obviate any advantage gained. In regard to the comparison
of experimental measurements of diffracted intensity vs scattering angle, differences could
in principle be observed with 0.1 mrad resolution. For measurements of surface disorder, a
beam angular divergence of 0.1 mrad would correspond to the observation of islands that
are smaller than about 1 µm. Since samples are seldom this flat and since one needs to do
a similarly careful measurement at the detector, a beam with 1 mrad divergence is quite
adequate for most purposes. For the determination of surface symmetry, a 1 mrad beam is
more than adequate.

RHEED is probably most often used as a monitor of epitaxial growth. In its simplest form
an electron gun, a sample holder and a screen are all that is required, and this system is often
used in epitaxial growth systems that are primarily designed for the growth of very high
quality thin films. The electron beam is bent by a magnetic or electrostatic deflector, and
then impinges on a crystal surface at a grazing incidence of between about 1◦ and 4◦. The
beams diffracted from the surface form a pattern on a fluorescent screen that consists of a
phosphor covered, indium–tin-oxide coated (to prevent charging) pyrex disk (Gomer, 1993).
In a minimal apparatus the azimuth at which the incident beam strikes the sample might be
fixed and the range of glancing angles thus limited. However, it is best if the azimuth can
be varied so that the full symmetry of the diffraction pattern can be determined. Similarly, a
larger range of incident glancing angles allows the opportunity to determine unambiguously
the nature of a reconstruction and to characterize surface morphologies more accurately.
With this apparatus one can identify aspects of reconstructions, measure limited intensity
oscillations and determine whether the growth mode is two- or three-dimensional.

A somewhat more sophisticated epitaxial system with RHEED is shown in Fig. 3.1. In
this apparatus more effort is given to the detector, so that one has the capability to measure
RHEED intensity oscillations, as described in Chapter 19, to measure the lattice parameter
as described in Section 6.3, and step distributions, as described in Section 17.4. The sample
can be rotated about the surface normal to change the incident electron azimuthal angle ϕ.
This allows the full symmetry of a reconstruction to be determined. To change the glancing
angle ϑi the sample is moved into or out of the chamber along the long axis defined by the
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Figure 3.1 Diffractometer combined with molecular beam epitaxial growth. E = 10 keV. The glanc-
ing angle of incidence ϑi is varied by a combination of electrostatic deflection and sample motion.
The diffracted beams are scanned across a phosphor screen by a small magnetic field. The diffracted
intensity is measured with a photomultiplier.

sample normal. After moving the sample, the electron beam must be deflected to hit the
sample again, changing its glancing angle. To measure the incident angle, part of the beam
can be adjusted to miss the sample, striking the phosphor screen. Then the incident angle
is determined from half the distance between this straight-through beam and the specular
beam on the phosphor screen. One can also measure the distance between the shadow edge
(due to low-energy secondary electrons that just emerge from the crystal) and the specular
beam. This experimental arrangement is usually sufficient for most requirements, apart from
measurements of surface atomic structure.

With the configuration of Fig. 3.1, the angles between different points in the diffraction
pattern can be measured either by mechanically moving the detector to different points or by
electromagnetically deflecting the diffracted electrons across a fixed detector. The detector,
in this case, is a side-view photomultiplier mounted on a stage that moves in two dimen-
sions with micrometer adjustment. An aperture imaged onto the phosphor defines the solid
angle detected. The advantage of deflecting the pattern across a fixed point is that precise
measurements can be made of the intensity vs diffracted angle without needing to correct
for inhomogeneities in the response of the phosphor. This is especially important in MBE,
where material is deposited on the phosphor, so that over time its response exhibits variation.
Depending on the measurement, the aperture can be a slit or a disk. For measurements of
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intensity oscillations one would use a disk aperture. For measurements of lattice parameter
one would use a slit aligned perpendicular to the surface. For measurements of a beam
profile one would use a slit aligned parallel to the surface. The latter arrangement integrates
over the momentum transfer in one direction and measures a one-dimensional correlation
function (Pukite et al., 1985).

The detector could also be a charge-coupled detector (CCD). These detectors offer the
advantage of convenience. For example, with a digitized image it is not difficult to convert
an asymmetric RHEED pattern into a more symmetric LEED-like pattern if one has access
to easy measurement of several distances on the screen. However, even with a 12-bit CCD
one does not have enough dynamic range and sensitivity to measure all the features in the
pattern that one can see visually with young dark-adapted eyes. One solution is to add
a variable-intensity filter between the screen and camera (Takahami, 2002). For RHEED
intensity oscillations and beam profiles, scanning a beam across a fixed photomultiplier
gives superior data. For measurements of lattice parameter and surface reconstruction, a
CCD is probably much more convenient.

For surface-structure analysis, in which one determines the atomic positions of surface
scatterers, the diffracted intensity must be measured vs the incident angle. One would like
a detector that integrates over the entire diffracted beam, though a sharp diffraction pattern
would be expected to fit the assumptions of dynamical theory better. The azimuthal angle
needs to be variable and one needs to be able to vary the glancing angle conveniently
and continuously between 0◦ and as much as 8◦. Both electromagnetic systems (Britze
and Meyer-Ehmsen, 1978) and mechanical systems (Ichimiya and Takeuchi, 1983) have
been used. Shigeta and Fukaya (2001) have reviewed the electromagnetic arrangement,
in which the beam is bent by two deflectors. The electron beam is bent through an angle
ϑ1 by the first bending coil with diameter D1. Then the beam is bent again to the sample
surface by the second bending coil, which is a rectangular coil of width D2. It should
be noted that the first bending coil has to be circular and the second bending coil has to
be rectangular in order to avoid aberrations due to the fringe fields of the coils. When the
glancing angle of the incident beam at the sample surface is ϑ2, L1ϑ1 ≈ L2ϑ2, where L1

and L2 are the distances between the first and the second coils and between the second coil
and the sample, respectively. The first bending angle is obtained as ϑ1 ≈ D1/R1, where R1

is the radius of the bending curvature at the first coil. The second bending angle is obtained
as ϑ1 + ϑ2 ≈ D2/R2, where R2 is the radius of the bending curvature at the second coil. The
radius of the bending curvature is inversely proportional to the magnetic field, B. Then we
obtain a simple relation between the magnetic fields B1 and B2 of the first and second coils:

B1

B2
= L2

L1 + L2

D2

D1
.

For L1 = 10 cm, L2 = 30 cm, D1 = 3 cm and D2 = 4 cm, B1 and B2 become equal. The
magnetic field B1 is estimated as

B1 = L2

L1

ϑ2

D1

√
2mEk

e
.
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For ϑ2 = 100 mrad and 10 keV electrons, we obtain B1 ≈ 3.4 × 10−3 T. Since the angles,
ϑ1 and ϑ2 are proportional to the magnetic fields B1 and B2, respectively, we are able to
change the angles linearly with the current of the deflector coils.

3.3 Electron gun design

An electron gun for RHEED experiments is suitable for laboratory construction. The only
parameters in the design of an electron gun are the aperture sizes of the anode, the Wehnelt
electrode and the electron lens, and the distances between them and the cathode filament. In
Fig. 3.2 a typical laboratory-made electron gun is illustrated together with its parameters.
For such a gun, the mechanical alignment between the cathode filament and the anode will
be poor. Therefore it is necessary to align the electron beam by a magnetic deflector, which
is set in a position between the anode and the Wehnelt electrode. An alignment procedure is
as follows. When one observes the direct beam from the electron gun without using a lens
and without the Wehnelt bias voltage, one can see a bright disk on the screen. After slowly
applying a Wehnelt bias voltage the bright disk moves away from the viewing area, and it is
necessary to use the magnetic deflector to bring the beam back to the initial position. When
the beam does not move but fades in intensity when the Wehnelt bias voltage is increased,
beam alignment is complete.

Alignment between the gun and lens is similarly achieved. First we observe the electron
beam without excitation of the lens. In this case we observe a disk at a certain position, the

Cathode
(W-hairpin-filament)

Wehnelt electrode

Anode

Magnetic deflector

Magnetic lens

1mm

10mm
15mm

15mm ϕ

Figure 3.2 A schematic illustration of a typical laboratory-constructed electron gun. The parameters
are shown in the figure. The apertures of the Wehnelt electrode and the anode are both 2 mm in
diameter. The magnetic gap and the aperture of the magnetic lens are both 15 mm. The magnetic
lens is placed outside the vacuum. The pipe through the magnetic lens is made of stainless steel with
thickness 0.2 mm.
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original position. When the magnetic lens is excited strongly, the beam moves away from
the initial position. Slowly moving the axis of the lens with a strong excitation, we bring
the beam near the original position. When the beam is not moved by lens excitation, after
such procedures, we have obtained the correct position of the beam.

3.4 Energy filtering

Energy filtering of the diffracted electrons has been used by several groups. In some of
the early work by Tompsett and his coworkers (Tompsett and Grigson, 1965; Tompsett
et al., 1969) and then by Britze and Meyer-Ehmsen (1978), Faraday cups were used for
measurement. However, these were cumbersome to use and reduced the measured intensity
significantly. More recently, energy filtering (at 5 keV) has been used by Müller and Henzler
(1995, 1997) and Horio et al., (1996). It is not possible to eliminate all the thermal diffuse
scattering; mainly one is filtering the plasmon losses. Horio’s system (Horio et al. 1996) is
particularly noteworthy; it is a retarding-grid system which allows one to view the entire
pattern while still filtering the inelastic scattering.

The advantages of an energy-filtered RHEED system are: (1) better comparison with dy-
namical calculations in which it is not possible to include the inelastic scattering; (2) higher
contrast for viewing weak reconstructions by eliminating some diffuse intensity; (3) bet-
ter comparison with kinematic calculations of disorder in beam-shape analysis (Müller and

Glancing angle (deg.)

Figure 3.3 Quasi-elastic intensity (solid circles) and total intensity (open circles) vs incident angle
for 10 keV electrons diffracted from a Si(111) surface. Especially at low angles, where the surface
plasmon losses are very severe (even prior to the beam striking the surface), there is a significant
difference in the relative intensities of the measurements. However, the peak positions, including
those of the small shoulders, are nearly the same (Horio, 1996).
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Henzler, 1997); and (4) the measurement of core losses for chemical identification (Atwater
et al., 1997).

Energy-filtered RHEED systems in which a band-pass analyzer is used suffer from having
the diffraction pattern blocked while the filter is in use. In Horio’s design, grids were used.
These are difficult to construct for energies above 10 keV. As the retarding grid approaches
the gun potential, the beam is defocused and the pattern is lost.

A plot of the diffracted intensity vs incident angle for quasi-elastic and total diffracted
intensities is shown in Fig. 3.3. In this measurement, grids were used as a high-pass filter
to measure the diffracted intensity. The resolution of these was about 4 eV, so that plasmon
losses could be separated but not the thermal diffuse scattering. This significant result shows
that though there are differences, the peak positions of the data are nearly the same in both the
quasi-elastic and unfiltered measurements. Thus we cannot expect the elastic calculations
discussed later to compare well with the relative intensities of the maxima in these rocking
curves. Similar issues are apparent in LEED comparisons with calculation. For RHEED,
these differences are most severe for momentum transfers below about 6.5 Å−1.

A similar question should be asked about the shape of the diffracted beam. Nakahara
et al. (2003) have also measured beam profiles for Si(111), and they found that the shapes
were unchanged, although the intensity of the quasi-elastic beam was reduced by an amount
that depended on incident angle.
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Wave properties of electrons

4.1 Introduction

Beams of electrons behave as particle waves having characteristic wavelengths and wave
vectors. They experience refraction, reflection, diffraction and absorption. In this chapter
the fundamental properties of electron waves are described. These properties are the same
as the properties of waves in general.

4.2 Wavelength and wave vector

The electron wavelength λ is given by the de Broglie relation as

λ = h

p
, (4.1)

where p is the electron momentum and h is Planck’s constant. In the case of electron
diffraction, it is convenient to express the wavelength using the electron kinetic energy.
From classical mechanics, using the relation between the electron momentum and kinetic
energy E we obtain

λ =
√

h2

2m E
. (4.2)

When λ is in Å and E in eV, the following expression is convenient for calculation of the
wavelength:

λ =
√

150.4

E(in eV)
(in Å). (4.3)

The wave number k is given as k = 2π/λ. Using eq. (4.1) and noting that momentum is a
vector, the electron wave vector is given as

�k = p, (4.4)

so that k = 0.512
√

E Å−1 if E is in eV and the momentum and wave vector are parallel to
each other.
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For fast electrons with energies greater than about 50 keV, relativistic effects become
significant and the wavelength and wave vector relations must be modified slightly. Using
Dirac’s equation, we obtain

(E + m0c2)2 = m2
0c4 + p2c2.

where m0 is the rest mass of the electron. Therefore the relativistic wavelength is

λ =
√

h2

2m0 E(1 + E/E0)
, (4.5)

where E0 = 2m0c2. Since E0 � 500 keV, relativistic effects can be neglected for
E < 50 keV.

4.3 Tangential continuity of the wave vector: refraction

An electron incident on the planar surface of a structureless material from a vacuum cannot
experience a force parallel to the surface as it crosses into the material. Hence, the parallel
component of momentum must be the same in the vacuum and in the material. The potential
that an electron would see in a real material is the superposition of the atomic potentials.
The mean potential is called the inner potential. Let this structureless material have an inner
potential that is attractive. Then the incident electron is accelerated and the angle that the
electron makes with respect to the surface normal is decreased.

In a wave picture, the electron is also refracted as it enters the material. This is illustrated
in Fig. 4.1, where a plane wave is incoming from medium I to medium II. The plane wave
is reflected (not shown for clarity) and refracted at the boundary separating the media. The
wave must be continuous at the boundary as shown by the matched wave fronts in the figure.
Requiring the separation between wave fronts at the interface to be the same in each region
yields

sin χ1

λ1
= sin χ2

λ2
, (4.6)

where λ1 and λ2 are the wavelengths in mediums I and II, respectively, and χ1 is the incident
angle and χ2 the refractive angle, as shown in the figure. Equation (4.6) can be rewritten as

Ι

ΙΙ l2

l1

c1

c2

surface

Figure 4.1 Wave continuity at the surface as the wave fronts are refracted.
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sin χ1/sin χ2 = λ1/λ2, which is Snell’s law. Using wave vectors k1 and k2 for the respective
mediums I and II, eq. (4.6) becomes

k1 sin χ1 = k2 sin χ2. (4.7)

The terms k1 sin χ1 and k2 sin χ2 are the surface parallel components of the wave vectors
k1 and k2. Equation (4.7) can be rewritten as

(k1)t = (k2)t = kt , (4.8)

where the subscripts t in eq. (4.8) means the tangential components, the components of the
wave vectors parallel to the surface. If the planes are not featureless, then more than one χ

is required and the argument does not apply directly.
In the reflection case we have, taking the reflected wave to have primed values,

(k′
1)t = (k1)t = kt . (4.9)

Since the magnitude k1 of the wave vector is unchanged, we must have that the angle of
incidence equals the angle of reflection.

When medium I is a vacuum and medium II is a crystal, the electrons are accelerated into
the crystal owing to its attractive potential. As mentioned above, this attractive potential
is the superposition of all the atomic potentials that are seen by the electron. Taking the
mean of this potential in the bulk to be the mean inner potential VI (volts), the energy of
an electron inside the crystal is E + eVI, where E is its energy in the vacuum above the
surface. Similarly, the electron wave vector in the crystal (nonrelativistic case) is given by

�2

2m
k2 = E + eVI. (4.10)

Writing this in terms of the wave vectors, we now have the two conditions:

Kt = kt ,

K 2 + 2me

�2
VI = k2,

(4.11)

where K is the wave vector of the electron in the vacuum and k is the wave vector in the
material. These are illustrated in Fig. 4.2. Here e is the absolute value of the charge on the
electron, and it will sometimes be convenient to write

U = 2me

�2
V = eVI(in eV)

3.81
(Å−2). (4.12)

Parallel-momentum conservation can be put into the form of Snell’s law in optics. Using
the angles defined in Fig. 4.1, eq. (4.7) becomes

√
E sin χ1 =

√
E + eVI sin χ2 (4.13)

so that n = √
E + eVI, with VI = 0 in the vacuum, plays the role of the index of refraction.

Similarly one can write down the refractivity:

n1,2 = sin χ1

sin χ2
=

√

1 + eVI

E
. (4.14)
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Je
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k

Figure 4.2 Conservation of kt and the change in glancing angle. In the vacuum K 2 = 2m E/�2 and
in the crystal k2 = 2m(E + eVI)/�2. The tangential component of the wave vector is the same in the
vacuum and in the crystal. The glancing angle is increased inside the crystal by the refraction effect.
For an electron striking the surface from the inside, it is possible to have total internal reflection.

At high energies this can be rewritten to give the relativistic refractivity,

n1,2 =
√

1 + U

K 2
,

in which there is a relativistic correction to K from eq. (4.5).
In terms of the somewhat more convenient external and internal glancing angles, ϑe and

ϑi, as illustrated in Fig. 4.2, eq. (4.13) can be manipulated, making use of small-angle
approximations, to give

ϑ2
e = ϑ2

i − eVI

E
, (4.15)

which is valid for most of the angles to be discussed in this book.
Refraction will be seen to have two striking effects. First, the angle of incidence of

the electron beam at which there is a peak in the reflectivity is modified dramatically.
Second, electrons from inside the crystal that strike the surface at a glancing angle of less
than

√
eVI/E , which is less than about 2◦ for 10 keV electrons, will be totally internally

reflected. In Section 7.2 we will see that this gives rise to surface-wave resonances and the
observed Kikuchi lines. Often this refractive effect will dominate the diffraction pattern.

Example 4.3.1 After striking a sample at an external (measured in vacuum) glancing angle
ϑe, an E = 10 keV electron beam is accelerated by an inner potential VI = 14 V. Find the
first five Bragg angles (for which 2d sin ϑ = nλ) with and without refraction if d = 2.82 Å,
as for GaAs(100).

Solution 4.3.1 The external and internal glancing angles are related by

ϑ2
e = ϑ2

i − eVI

E
(4.16)
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Table 4.1 External vs internal Bragg
angles (mrad)

n ϑi ϑe ϑe (relativistic)

1 22 — —
2 44 23.2 22.5
3 66 54.4 54.1
4 88 79.6 79.5
5 110 103 103

and the Bragg angles are ϑi = nπ/(kd) = nπ/(51.2 × 2.82) = 22n mrad. Thus the ex-
ternal angles for n = 1, 2, . . . , 5 are given in Table 4.1; the dash indicates total internal
reflection. It can be seen that the difference in angle determined by including the relativistic
correction is too small to matter for an instrument with a beam divergence of the order of
1 mrad.

4.4 Plane-wave boundary conditions

We consider a plane wave that crosses from a vacuum to a homogeneous medium, the two
regions being separated by an infinite flat surface. The wave vectors and position vectors
are divided into components parallel and normal to the surface, as shown in Fig. 4.3. The
vectors have components as follows:

r = (rt , z),

K = (Kt , −�) for the incident wave in the vacuum,

K′ = (Kt , �) for the reflected wave in the vacuum,

k = (Kt , −γ ) for the inward wave in the medium,

k′ = (Kt , γ ) for the outward wave in the medium.

z

Γ

γ

−Γ

−γ

KK'

kk'

K tK t
rtsurface

Figure 4.3 An illustration of components of position and wave vectors.
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With these definitions, the incident wave function is given as

�(r) = �0eiK·r, (4.17)

where �0 is the amplitude of the plane wave. There is also a reflected wave, and so the total
wave function is a superposition:

�(r) = �0eiK·r + ReiK′ ·r, (4.18)

where R is the amplitude of the reflected wave. There is only one reflected wave since for
this featureless surface there is no diffraction.

To develop the boundary conditions, separate the vector quantities into their components.
Note that the surface normal component of the position vector, z, is directed from the surface
into the vacuum as shown in Fig. 4.3, so that positive z is outward. The total wave function
in the vacuum, eq. (4.18), can be rewritten in terms of the components listed above as

�(r) = (�0e−i�z + Rei�z)eiKt ·rt . (4.19)

For a semi-infinite lower medium, there is no bottom surface to produce a reflected wave.
Therefore, the wave function in the medium is

ψ = ψ0e−iγ zeiKt ·rt . (4.20)

At the boundary between the vacuum and the medium the wave function and its first
derivative must be continuous. The matching conditions at z = z0 are thus given as

�(z0) = ψ(z0), (4.21)
∂�

∂z

∣
∣
∣
z=z0

= ∂ψ

∂z

∣
∣
∣
z=z0

. (4.22)

Applying these matching conditions determines the coefficients of the plane-wave solutions.
If one does this, we obtain the reflectivity | R/�0 |2 as

∣
∣
∣
∣

R

�0

∣
∣
∣
∣

2

= |� − γ |2
|� + γ |2 . (4.23)

The transmissivity |ψ0/�0|2 is also obtained:
∣
∣
∣
∣
ψ0

�0

∣
∣
∣
∣

2

= 4|�|2
|� + γ |2 . (4.24)

The relations (4.23) and (4.24) are called the Fresnel coefficients in optics.

Example 4.4.1 Calculate the Fresnel reflectivity for a 10 keV electron incident on a surface
with an inner potential of VI = 10 V from 0◦ to 8◦.

Solution 4.4.1 The wave vectors internal and external to the medium are related via

�2 + K2
t + 2me

�2
VI = γ 2 + k2

t
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Figure 4.4 Reflectivity vs external incident angle from the Fresnel equation.

where the parallel components of the wave vector must be equal by conservation of parallel
momentum. Using U = (2me/�2)VI one has that γ = √

�2 + U so that, from eq. (4.23),

reflectivity =
∣
∣
∣
∣
∣

� − √
�2 + U

� + √
�2 + U

∣
∣
∣
∣
∣

2

.

Then using � = k sin ϑi, k = 0.512
√

E and U = VI/3.81 with E = 10 keV and VI = 10 V,
one obtains the decreasing plot of Fig. 4.4. In a rocking curve calculation, this becomes
the background of the curve. At Bragg conditions, the reflective intensities are enhanced
extremely from the background intensity.

4.5 Absorption of the electron beam

Electrons that enter a crystal are scattered inelastically by both atoms and other electrons.
The inelastic scattering is treated as an exponential reduction in the intensity of the elastically
scattered electrons. Then the intensity variation in the incident electron beam is given as

d I

dz
= µI, (4.25)

where µ is the absorption coefficient. Taking the surface to be located at z = 0 and solving
eq. (4.25), we obtain the intensity I at depth z (z ≤ 0) as

I = I0eµz, (4.26)

where I0 is the intensity of the incident electrons and µ can depend on the incident angle.
Since the intensity I is the square of the amplitude of the electron wave, the wave function
in the medium with absorption included becomes

ψ = ψ0eik·reµz/2. (4.27)

This means that the wave vector in the medium is complex, while the wave vector in
the vacuum is real. Using the tangential continuity of wave vectors given by eq. (4.8), the
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surface parallel components of the wave vector must be real because the wave vector in the
vacuum is real. Therefore the surface normal component of the wave vector in the medium
becomes complex. Equation (4.27) can be rewritten as

ψ = ψ0 exp(iKt · rt ) exp
[
−i

(
γ + µ

2
i
)

z
]
. (4.28)

Since the wave vector and the mean inner potential of the medium VI are related by eq. (4.11),
and since K 2

t = k2
t , we have that

γ 2 = �2 + U. (4.29)

When absorption is included, γ in eq. (4.29) must be replaced by γR + i(µ/2), where γR is
the real part of γ . Since �2 is a vacuum property and real, the potential VI must be complex
and hence must be replaced by VI + i V ′ (Molière, 1939), where iV ′ is the mean imaginary
potential; the origin of this imaginary part is discussed further in Chapter 16. Equation
(4.29) can then be rewritten as

(
γR + i

µ

2

)2
= �2 + U + iU ′, (4.30)

whereU ′ = (2me/�2)V ′. Equating the imaginary parts of eq. (4.30) we obtain the absorption
coefficient as

µ = U ′

γR
, (4.31)

where γR is given by

γR =
{

1

2

[
(�2 + U ) +

√
(�2 + U )2 + U ′2

]}1/2

. (4.32)

This relationship connects kinematic theory, which employs an exponentially damped beam,
and dynamical theory, which uses a complex potential. It will also permit the use of a
perturbative method to treat the absorption in the dynamical theory. Once the complex
potential is determined, a better approximation, as discussed in Section 12.8, is obtained
using the absorption coefficient.

Equation 4.31 also allows the angular dependence of the absorption to be made explicit.
Since γR ≈ k sin ϑ is the perpendicular component of the momentum inside the crystal,
where ϑ is the glancing angle with respect to the surface, the attenuation of the intensity
can be written as

I = I0 exp(µz) = I0 exp[(U ′/k sin ϑ)z] = I0 exp[(U ′/k)(z/ sin ϑ)]; (4.33)

or, since 
 = −z/ sin ϑ is the path length that an electron travels to reach a depth z, define
µ0 by

U ′ = µ0k, (4.34)
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and then we have

I = I0 exp(−µ0
), (4.35)

so that µ0 is independent of angle and dependent only on the material. Since the mean free
path � is found from the total cross section of the inelastic scattering as � = 1/(Nσinel),
where N is the atomic density, and since the absorption coefficient is the inverse of the
mean free path, in terms of the scattering cross section we have

µ0 = Nσinel = σinel/
a (4.36)

where 
a is the atomic volume. The absorption coefficient µ0 is the same as the mean
absorption coefficient defined in eq. (9.109).



5

The diffraction conditions

When an electron beam is incident on a surface that is not the featureless medium considered
in Chapter 4, and in particular has a periodic structure, the scattering will produce a set of
diffracted beams. This scattering is determined by the conservation of parallel momentum
and the conservation of energy. These controlling factors are conveniently described by
the Ewald construction in the reciprocal space of a surface, which will be seen to be a
family of parallel rods. In the following discussion particular emphasis will be placed on
the glancing incidence geometry of RHEED, which emphasizes the zeroth Laue zone –
here the diffracted intensity is dominated by the separations between the rows of atoms.
This will ultimately mean that, in a structure analysis, careful choice of the incident beam
direction will pick out different projections of the atomic spacings.

5.1 Crystal lattices

A crystal lattice is an infinite periodic array of points in three dimensions. Those in which
every site is indistinguishable from any other are called Bravais lattices. Thus a Bravais
lattice is one that consists of all points described by the position vector R, given as

R = n1a1 + n2a2 + n3a3, (5.1)

where n1, n2 and n3 are integers and a1, a2 and a3 are linearly independent (non-coplanar)
vectors, called the primitive vectors of the lattice.

In the most general case there will be additional atoms surrounding each lattice point.
These are called basis atoms and are said to form a basis. They are described by a set of
vectors {ui }. With the Bravais lattice and the basis, any point can be described by a vector
of the form R + ui .

When describing lattices it is useful to break them into cells or distinct units that are
repeated. Two types are used. The first is called a primitive cell of a Bravais lattice and
is the locus of points described by the position vector R = x1a1 + x2a2 + x3a3, in which
x1, x2, x3 each range between 0 and 1. The volume of the unit cell is the scalar triple product
a1 · (a2 × a3). There are seven types of primitive cell that fill space. These are elaborated
in standard texts (Kittel, 1990). Unfortunately it is not so easily apparent just by looking
at these primitive cells what the symmetry operations of these lattices are. They are also

28
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(a) (b)

Figure 5.1 Conventional cells for (a) fcc and (b) hexagonal Bravais crystal lattices. The primitive
vectors for each are shown. In (b) additional basis vectors would be needed to describe all the dark
atoms of the hexagonal close-packed (hcp) structure as well as the gray atoms that form the wurtzite
structure. In (a) additional atoms could be added to form a second fcc sublattice to make a zincblende
structure. These would need to be described by basis vectors.

not particularly easy to sketch in two dimensions. So in common practice a second type
of cell is used – what have become known as conventional unit cells. Figure 5.1 illustrates
the conventional cells for face-centered cubic (fcc) and wurtzite lattices. Regarding cubic
lattices in general, we will be particularly interested in simple cubic (sc) because of its
simplicity in calculation. Body-centered cubic (bcc) is also common.

The Bravais lattices, i.e. the translational periodicities of the lattice, determine the sym-
metry of the diffraction pattern and the angles of the diffracted beams. The positions of the
basis atoms will modify the intensity of these beams. The cubic and fcc lattices are Bravais.
Both the diamond and zincblende lattices can be described as fcc plus a basis. Similarly, a
hexagonal lattice is Bravais. Both the hexagonal close-packed (hcp) lattice and the wurtzite
lattice are hexagonal plus a basis.

At the energies and incident beam angles considered in the following chapters, the probing
electrons will only scatter from the first few layers of a crystal. In this case we lose the
periodicity in the direction perpendicular to the surface and need only be concerned with two-
dimensional lattices and structures. In two dimensions there are only five Bravais lattices that
fill space. Both two-dimensional and three-dimensional lattices have additional periodicities
that are possible, called superlattices or surface reconstructions. The nomenclature of the
latter will be described later.

5.2 Key idea of the diffraction

It is simplest at the outset to consider a plane wave with wavelength λ incident on a one-
dimensional crystal, as shown in Fig. 5.2; the wave is scattered by a series of lattice points,
each separated by a distance a, that lie on a line in the direction â. The incident and final
wave vectors are taken to be in the plane of the atoms. Interference between the scattered
waves occurs owing to the path differences of the waves scattered by different atoms. Two
paths corresponding to scattering by adjacent atoms are shown in Fig. 5.2. The wave is
incident at a glancing angle ϑi and scattered at a glancing final angle ϑf. When the path
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a

ϑf ϑi

Figure 5.2 Illustration of the path difference due to scattering by two atoms in a one-dimensional
chain.

ki
kf,2 kf,1

ϑi ϑf,1

Figure 5.3 The cones show the allowed final wave vectors for diffraction by the line shown in Fig. 5.2.

difference between the waves is an integral number of wavelengths, i.e.

a cos ϑi − a cos ϑf = nλ, (5.2)

constructive interference takes place. Using 2π/λ = K and setting 2πn/a = Bn , we rewrite
eq. (5.2) as

k cos ϑi − k cos ϑf = Bn. (5.3)

This says that the parallel components of the incident and final wave vectors differ by 2π

times a multiple of the reciprocal of the lattice spacing. Then since energy conservation
requires that |k| be fixed, the allowed final wave vectors describe circles at the base of cones
of half angle ϑf, given by eq. (5.3), about the axis of the line. This is illustrated in Fig. 5.3.
For a surface there are also rows of atoms parallel to the line considered here, so that there
is also interference perpendicular to the line, giving rise to interference maxima at points
around the circles. These will turn out to be at the Ewald–Laue conditions, based only on
the conditions of path-length interference and energy conservation.

In more than one dimension, Fig. 5.4 illustrates the diffraction process for a lattice
of points at {ri }, an incident beam with k-vector ki, and a diffracted beam kf. The path
difference between a wave scattered from an atom at the origin and a wave scattered
from an atom at ri is kf · ri − ki · ri or S · ri , where S = kf − ki. Note that here we
use crystal quantities (lower-case k-vectors) to emphasize a result that obtains inside
an infinite crystal. Summing over all scatterers in the crystal, the diffracted amplitude
is

A(S) ∼
∑

i

eiS·ri , (5.4)
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Figure 5.4 The path difference between incident and outgoing waves that gives rise to the interference
conditions.

giving as the intensity

I = AA∗ ∼
∑

i, j

eiS·(r j −ri ) (5.5)

which is the interference function for a crystal. This will be seen in Chapter 10 to be the
central result of kinematical theory. At this point the sum in (5.5) is just over the vectors
of the Bravais lattice; later it will be modified by adding structure and scattering factors.
Equation 5.5 gives a nonzero diffracted intensity whenever the exponent is a multiple of
2π .

5.3 Miller indices and reciprocal lattices

The Miller indices permit a beautifully simple description of crystal planes, in terms of
their normals, their separations and their densities, that is valid for both cubic and non-
cubic lattices. Considering a lattice plane superposed on a coordinate system, as shown
in Fig. 5.5, one first determines the three intercepts x1, x2, x3. Letting the a j = |a j | be the
magnitudes of the three primitive vectors of the coordinate system chosen, the Miller indices
of the plane are defined as the set

(hkl) =
(

a1

x1

a2

x2

a3

x3

)

, (5.6)

when reduced to lowest integers. For example, in the case x1 = 2a1, x2 = a2/2 and x3 = ∞
the Miller indices are (140).

For a cubic lattice, one usually takes the orthonormal Cartesian vectors as the unit vectors
for describing a lattice. With these the (hkl) plane, as defined above using the Miller indices,
is normal to the vector hx̂ + kŷ + l ẑ. This is not usually the case for more general lattices.
To be able to refer to the normal vector that defines a plane, we need to introduce the
reciprocal lattice. The reciprocal lattice is a dual space of the direct or real-space lattice.
Given a real-space lattice defined by the three primitive vectors a j , where j = 1, 2, 3, the
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Figure 5.5 Construction for determining the Miller indices of the (hkl) plane.

reciprocal lattice is defined by the primitive vectors a∗
j ( j = 1, 2, 3) according to

a∗
j · ai = 2πδi j , (5.7)

where δi j is the Kronecker delta and is 1 or 0 when the indices are identical or different,
respectively. The explicit primitive vectors that satisfy eq. (5.7) are:

a∗
1 = 2π

(a2 × a3)

a1 · (a2 × a3)
, (5.8)

a∗
2 = 2π

(a3 × a1)

a2 · (a3 × a1)
, (5.9)

a∗
3 = 2π

(a1 × a2)

a3 · (a1 × a2)
. (5.10)

Alternatively, one can take the vectors ai as the rows of a matrix A and the reciprocal vectors
a∗

j as the columns of a matrix B. Then eq. (5.7) becomes

B · A = 2π1, (5.11)

where 1 is the identity matrix. Hence one can find the reciprocal lattice vectors by computing
2π times the inverse of the matrix of the real-lattice vectors.

With this definition, the (hkl) plane is perpendicular to the vector

d(hkl) = ha∗
1 + ka∗

2 + la∗
3, (5.12)

the spacing between the (hkl) planes is

2π

|d(hkl)| , (5.13)

and the number density of the Bravais (hkl) plane in which the Miller indices contain no
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common integer factors is given by:1

2π

|d(hkl)|a1 · (a2 × a3)
. (5.14)

The scalar triple product is the determinant of A. With this definition of the reciprocal
lattice, the interference function, eq. (5.5), will have maxima whenever

S = ha∗
1 + ka∗

2 + la∗
3, (5.15)

for a three-dimensional lattice.
Since the choice of primitive vectors is arbitrary, the notation we now introduce em-

phasizes this when applicable. If the (hkl) planes are symmetry equivalent then they are
designated {hkl}. Directions are referred to as [uvw] and if they are symmetry equivalent
then these directions are referred to as 〈uvw〉. If one of the Miller indices is negative then it
is written with an overhead bar – for example (1–20) is written (12̄0). As an example, in an
fcc lattice the (111) and (1̄1̄1̄) planes are symmetry equivalent and so can be expressed as
{111}. In a zincblende lattice, though, these two sets of planes are not symmetry equivalent.
For GaAs one conventionally takes [111] as the direction from a Ga to an As atom and then
(111) is written as (111)A and (1̄1̄1̄) as (111)B.

A vector parallel to two independent lattice planes is defined as a crystal zone axis and
is a vector along the line of intersection. For two planes with normals B1 and B2, the zone
axis is given by their cross product, B1 × B2. For example, a zone axis for the (111) and
(110) planes is 〈11̄0〉.

For hexagonal lattices it is often useful to use the Miller indices for a four-vector primitive
cell. In this case, the three vectors a1, a2, a3 from the center of a hexagon to alternate
vertices, as well as the normal vector c, are taken as the primitive lattice. Then the Miller
indices (hklm) are redundant, with l = −(h + k). This definition has the advantage that
symmetry-equivalent planes have similar indices. And the ha1 + ka2 + la3 + mc direction
is perpendicular to the (hklm) plane.

5.4 Surface lattices

Since only the top few layers of a crystal contribute to reflection electron diffraction, we
shall consider two-dimensional lattices described by vectors Rn:

Rn = n1a1 + n2a2, (5.16)

where n1 and n2 are integers and the unit mesh or surface primitive cell is described by
the vectors a1 and a2. These primitive vectors might not be the same ones used to describe
the full three-dimensional lattice, depending upon the plane used to form the surface. In
Fig. 5.6 we show various unit cells, with the coordinates of the lattice points and the lattice
parameters, for several low-index surfaces of the conventional bulk lattices. Equations (5.7)

1 In matrix form, with p = (hkl) one has that the density is 1/[det(A)
√

p(AAT)−1pT].
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bcc (110) hcp (0001) fcc (100)

[111] [1210] [011]

Figure 5.6 Unit cells of several low-index surfaces.
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Figure 5.7 Corresponding real and reciprocal lattice vectors in two dimensions.

and (5.11) still hold, and now the corresponding reciprocal lattice vectors bi are obtained
from eq. (5.10) by putting a3 = ẑ, or from the columns of 2π times the inverse of the 2 × 2
matrix A with a1 and a2 as its rows. Using the former,

a∗
1 = 2π

a2 × ẑ
a1 · (a2 × ẑ)

(5.17)
a∗

2 = 2π
a1 × ẑ

a2 · (a1 × ẑ)
,

where ẑ is the unit vector normal to the lattice plane. A reciprocal vector Bm is obtained as

Bm = m1a∗
1 + m2a∗

2. (5.18)

Figure. 5.7 shows the relation between the real-space and reciprocal-space lattice vectors.
From eq. (5.18) one finds the magnitudes of the reciprocal lattice vectors to be given as

|a∗
1| = 2π

a1 sin χ
, (5.19)

|a∗
2| = 2π

a2 sin χ
, (5.20)

where χ is the angle between a1 and a2. From the definition of the reciprocal-space vectors,
a∗

1 must be perpendicular to, for example, a2, as shown in the figure.
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Figure 5.8 An example of reconstructions of a Si(001) surface. (a) Side view of the (001) surface
just after the silicon crystal is cut. Dangling bonds are indicated by ellipsoids. (b) Side view of the
(001) surface after the reconstruction. (c) Plan view of the 2 × 1 reconstruction. (d) Plan view of the
c(2 × 2) or (

√
2 × √

2)R45◦ reconstruction.

The diffraction condition now requires that

S|| = Bm, (5.21)

since in eq. (5.5) only components parallel to the displacements in the plane of the surface
are retained.

Since the coordination of atoms at surfaces is different than that in the bulk crystal, the
surface atoms can move from the positions of the bulk, three-dimensional, lattice in order to
minimize the surface energy. The outer few planes can uniformly relax towards the bulk or
the surface structure can change. In the second case there can also be a symmetry change,
though the surface will always have lower symmetry than the bulk. A structural change,
even one in which there is a relaxation that does not change the symmetry, is termed a
surface reconstruction. In Fig. 5.8, examples of surface reconstructions of a Si(001) surface
are shown. In the case of the reconstruction of Fig. 5.8, the translational bulk periodicity
in the x direction is twice the bulk periodicity, while that in the y direction is the same as
the bulk periodicity. This surface has a longer periodicity than the bulk-terminated surface
and is called a superlattice. In Wood’s notation (Somorjai, 1994), the reconstruction of
Fig. 5.8(a) is labeled fcc (001)2 × 1 (sometimes described as (2 × 1) or primitive 2 × 1).
In the general case, superlattices of surface structures are given by the fundamental basis
vectors a1 and a2 as

b1 = n11a1 + n12a2, (5.22)

b2 = n21a1 + n22a2, (5.23)

where b1 and b2 are the basis vectors of the superlattice. In matrix form, eqs. (5.22), (5.23)
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are rewritten as follows:

B =
(

b1

b2

)

=
(

n11 n12

n21 n22

) (
a1

a2

)

. (5.24)

Using eq. (5.11), the reciprocal rod vectors for the reconstructed surface structure, b∗
1 and

b∗
2, are obtained as

(
b∗

1

b∗
2

)

= 1

n11n22 − n21n12

(
n22 −n21

−n12 n11

) (
a∗

1

a∗
2

)

. (5.25)

Wood’s notation is easily spoken and written, so that it is more commonly used than the
matrix method. The matrix notation has the advantage of being unambiguous (Somorjai,
1994).

Example 5.4.1 Find the reciprocal lattice of the surface of an fcc (100) crystal with a
c(2 × 8) surface reconstruction.

Solution 5.4.1 Choose a square mesh with side a to describe the unreconstructed surface.
Then the basis vectors of the surface reconstruction are

b1 = 2ax̂, (5.26)

b2 = ax̂ − 4aŷ, (5.27)

where x̂ and ŷ are the unit vectors in the x and y directions, respectively. In matrix form
this is

B =
(

2 0
1 −4

) (
a 0
0 a

)

, (5.28)

where the rows of the product matrix give the two vectors that specify the unit cell of the
reconstructed surface. Form the inverse to find the reciprocal lattice:

2π B−1 = 2π

a

(
1 0
0 1

) (
2 0
1 −4

)−1

, (5.29)

the columns of which are the reciprocal lattice vectors. This allows the reciprocal lattice of
the reconstruction to be expressed in terms of the reciprocal lattice of the surface, which is
not always square, i.e.

B∗ = ( a∗
1 a∗

2 )

(
1/2 0
1/8 −1/4

)

. (5.30)

Taking the transpose of both sides,

(B∗)T =
(

1/2 1/8
0 −1/4

) (
a∗

1

a∗
2

)

(5.31)

the reciprocal lattice vectors are now the rows of this matrix,

b∗
1 = (1/2) a∗

1 + (1/8) a∗
2, (5.32)

b∗
2 = (−1/4) a∗

2. (5.33)
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Example 5.4.2 For a simple cubic lattice, side a, the incident beam is directed along the
(01) direction. Calculate the reciprocal lattice vectors and show the direction of the incident
beam in reciprocal space.

Solution 5.4.2 Let the real-space unit vectors be a1 = ax̂ and a2 = aŷ; then the reciprocal
lattice vectors are

a∗
1 = (2π/a)x̂, (5.34)

a∗
2 = (2π/a)ŷ. (5.35)

This trivial result shows that if K = K x̂ in real space then K is along the a∗
1 direction in

reciprocal space, i.e. the direction of an electron beam is the same in reciprocal and real
space.

5.5 The Ewald construction

The Ewald construction combines energy and momentum conservation, in much the same
way as in Fig. 5.3, to describe the angular features of the diffraction. We use it throughout
this book. Energy and momentum conservation give the requirements

|kf| = |ki|, (5.36)

kf − ki = Gm, (5.37)

where ki and kf are the incident and final electron wave vectors, respectively, and Gm is
a vector of the reciprocal lattice; the subscript m refers to the mth diffracted beam. These
basic equations are illustrated in Fig. 5.9. In Fig. 5.9a, Energy conservation requires that
the magnitude of the final scattering vector, kf, is a constant equal to that of the incident
electron wave vector, ki. The locus of all final wave vectors is a sphere. In Fig. 5.9(b)
momentum conservation in a crystal means that the k-vectors differ by a vector of the

ki

kf

ki

(a) (b)

G

kf

Figure 5.9 (a) The Ewald sphere is determined by the conservation of energy. (b) Conservation of
momentum to within a reciprocal lattice vector.
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Bm

ki

kf

Figure 5.10 Example of a Ewald construction for a surface mesh. The reciprocal lattice for the surface
is a family of parallel rods. The separation vector of the rods is Bm . The intersection of the rods and the
Ewald sphere conserves both energy and parallel momentum. The intersection of the Ewald sphere
and the single plane of the rods, shown, is a circle.

three-dimensional reciprocal lattice, Gm . The intersection of the Ewald sphere and the
reciprocal lattice points determines which diffraction conditions are allowed.

The construction for a lattice that is periodic in only two dimensions is illustrated in
Fig. 5.10. Here the diffraction condition is that

S|| = kf,t − ki,t = Bm (5.38)

i.e. the difference in the parallel components of the wave vectors must equal a surface
reciprocal lattice vector, Bm , and energy must be conserved. Graphically, one constructs
a set of parallel rods which are normal to the surface and which intersect the surface at
coordinates that, with respect to an origin, correspond to the two-dimensional reciprocal-
lattice vectors Bm . (The three-dimensional reciprocal-lattice points would have been situated
along these rods but are only relevant in cases where there is some residual effect of the
layered nature of the material.) By this construction the Ewald sphere intersects these rods
at points which, when projected onto the surface, are separated by a vector Bm . Any such
intersection corresponds to an allowed diffraction condition. Note that the scale in Fig. 5.9
is not truly appropriate to the case of RHEED. In RHEED the magnitude of k is about
50 Å−1, the separation between reciprocal lattice points is about 3 Å−1 and glancing angles
are less than about 8◦. In Fig. 5.10 the incident wave vector, ki, extends from the center of
the Ewald sphere to an origin on the surface. The final wave vector, kf, extends from the
center of the sphere to any of the rods. For clarity, only a few rods are shown, those that
happen to be in the plane through the origin. There should also be rods in a plane behind
the one shown, corresponding to higher diffraction angles.

For a three-dimensional periodic lattice, the reciprocal lattice points will lie along the
two-dimensional reciprocal lattice rods. In the case of a specular reflection, the angle of
incidence equals the angle of reflection and Bm = 0, so that the reciprocal lattice vector lies
along the (h = 0, k = 0) or (00) rod. In this case the difference between the incident and final
wave vectors is normal to the surface, corresponding to the three-dimensional diffraction
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(a)

kf

k′f

ki

(b)

Figure 5.11 Ewald construction for a one-dimensional row of scatterers. (a) Perspective view of the
construction showing Laue zones. (b) Side view of the construction.

case of diffraction from parallel planes of the crystal. These conditions are called the Bragg
reflections or Bragg diffraction conditions. In Example 5.7.1 this is illustrated for an hcp
lattice.

The same construction can be used to treat diffraction from the line of atoms described
earlier, in Section 5.2; this is shown in Fig. 5.11. We draw a sphere with radius k for a given
incident direction and a family of parallel planes, separated by Bm . The intersections of the
sphere and planes are circles centered about the axis. From a side view, one sees the edges
of the planes through the Ewald sphere. An intersection determines the half angles of the
cones of allowed wave vectors.

Example 5.5.1 Draw the observed RHEED pattern for a c(4 × 4) surface reconstruction
on a (100) crystal surface. Let the beam be incident along the (10) direction. Indicate the
integer-order beams, the fractional-order beams, the specular beam and the shadow edge
in a side view and a front view of the Ewald construction.

Solution 5.5.1 Choose the unit vectors to be

a1 = 4ax̂, (5.39)

a2 = 2ax̂ − 2aŷ. (5.40)

Then the matrix with these as rows is

A = a

(
4 0
2 −2

)

. (5.41)

The reciprocal lattice matrix is

A∗ = 2πA−1 = 2π

a

(
1/4 0
1/4 1/2

)

, (5.42)
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Figure 5.12 Formation of the diffraction pattern from a c(4 × 4) reconstruction on a (100) lattice.
(a) Side view; (b) front view.

so that

b∗
1 = 2π

a
[(1/4)x̂ + (1/4)ŷ], (5.43)

b∗
2 = 2π

a
(1/2)ŷ. (5.44)

Figure 5.12 shows the front and side views of the Ewald construction.

5.6 The zeroth Laue zone: diffraction from rows

A key feature of RHEED is that at the low glancing angles of incidence used, diffraction
from rows of atoms can dominate the interpretation of the pattern. It is therefore important to
emphasize the ideal case of diffraction from a set of parallel lines in a plane. It is equivalent
to diffraction from the lines of a grating in classical optics.

Simply put, the electrons will scatter in a cone, radially outward from each line. As
discussed before, for the case of a single line with atoms, there would be several cones, as in
Fig. 5.3. Without discrete atoms along the lines, there is only one cone. Further, the only path
difference is perpendicular to the lines, the resulting interference producing a modulation of
the diffracted intensity around the cone. The corresponding diagram is shown in Fig. 5.10.

More precisely, the scatterers are defined by

g(r) = δ(z)
∑

n

δ(x − na), (5.45)
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where g(r) is nonzero only if there is a scatterer at r and so is corresponds to family of
lines parallel to the y axis. For such a continuous distribution we must change eq. (5.5) to
an integral, so that the diffracted amplitude is

A(S) ∼
∫

d3r g(r) exp(iS·r)

∼ δ(Sy)
∑

n

exp(i Sx na) .

This has maxima when Sx = m 2π/a, where m is an integer. These correspond to a family
of rods, each separated by 2π/a along the line Sy = 0. Along with energy conservation this
condition on Sx gives the Ewald construction for the formation of the first Laue zone, as
shown in Fig. 5.10. It is exactly the same as one of the circles of Fig. 5.3 for diffraction
from a line, but now taking into account the spacings in the perpendicular direction.

5.7 Lattice with a basis

The most general lattice is not Bravais and must be described by a Bravais lattice plus a set
of basis vectors, i.e. {Rn + um}. Then the diffracted amplitude is given by eq. (5.5) as

A(S) =
∑

m,n

fm exp[is·(Rn+um )] (5.46)

=
∑

m

fm exp(is·um )
∑

n

exp(is·Rn ), (5.47)

where fm is a scattering factor that represents the strength of the mth scatterer in the basis
set; these strengths might not all be identical. Since the second factor is only nonzero at a
reciprocal lattice vector G(hkl), the diffracted amplitude is given by the structure factor

F(s) =
∑

m

fm exp(iG·um ) . (5.48)

Example 5.7.1 Find the three-dimensional diffraction conditions for the specular beam in
an hcp lattice. These are the Bragg conditions which will be obtained in a transmission
pattern and which show some residual appearance in RHEED at certain incident angles.

Solution 5.7.1 The hexagonal close-packed lattice is not Bravais since not all atoms see
their neighbors in identical directions. Instead, it can be represented as an hexagonal lattice
with a basis. In Cartesian coordinates, the primitive vectors of the hexagonal lattice are the
rows of the matrix

A =



a/2 −√

3a/2 0
a/2

√
3a/2 0

0 0 c



 =



a1

a2

a3



 (5.49)
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2ϑi 2π/cki

kf

(0001)

Figure 5.13 Ewald construction for the specular beam of a hexagonal lattice. Note that s = kf − ki

is normal to the surface.

and the reciprocal lattice vectors are the columns of 2π times the inverse matrix

B = 2π




1/a 1/a 0

−√
3/(3a)

√
3/(3a) 0

0 0 1/c



 = (
a∗

1 a∗
2 a∗

3

)
. (5.50)

The Ewald construction along the specular beam is shown in Fig. 5.13. Here the condition
for Bragg diffraction is shown. The important point is that because of the basis, in an hcp
lattice some of these are structure-factor forbidden. For example, the basis of the hcp lattice
is u1 = (0, 0, 0) and u2 = (1/3, 2/3, 1/2). The structure factor is then 1 + exp(iG · u2),
where G = ha∗

1 + ka∗
2 + la∗

3, so that

F(hkl) = 1 + exp[i2π (h/3 + 2k/3 + �/2)], (5.51)

with the identical scattering factors taken as unity. Along the (00) rod (the specular beam),
h = k = 0 and so the structure factor is zero for odd �. Hence the intensity at every second
point in the bulk reciprocal lattice of Fig. 5.13 vanishes. The Bragg condition is then

2kϑi = 4πn/c, (5.52)

where n is an integer. This is equivalent to saying that the spacing between planes is c/2 –
i.e. for the (00) rod the momentum transfer is normal to the surface and the lateral structure
of the planes does not matter. Other beams can also be structure-factor forbidden, depending
on whether the beam is in the 〈11̄00〉 direction, where h = k, or in the 〈112̄0〉 direction,
where h = −k.
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Geometrical features of the pattern

The diffraction conditions found in Chapter 5 correspond to the angles at which waves
from different scatterers travel paths that differ by integer numbers of wavelengths. The
scattered electrons interfere constructively and form a pattern on the phosphor screen.
These geometrical or kinematic features of the pattern depend primarily on the positions
of the scatterers and not so much on the details of the crystalline potential. In this chapter
we will map out the detailed patterns from simple surfaces, showing how to characterize
them quantitatively. Most of these features can be obtained by geometrical construction in
addition to algebraic calculation.

6.1 Finite two-dimensional sheet: RHEED streaks

A two-dimensional sheet is a simple starting point from which to understand many of
the geometric features of scattering from a surface. Choose a square lattice in which the
scatterers are at ρ = nax̂ + naŷ with n = 0, 1, 2, . . . , N − 1 and m = 0, 1, 2, . . . , M − 1.
Then eq. (5.4) gives

A(S) =
N−1,M−1∑

n,m

exp (i Sx na + i Syma), (6.1)

where the momentum transfer in vacuum, indicated by upper-case S, is used since in this
section we will be interested only in the angular positions of the diffracted beams. Since
Kt = kt , these geometric features are unaffected by refraction. The finite geometric series
in (6.1) sums to give

A(S) = 1 − ei Sx Na

1 − ei Sx a

1 − ei Sy Ma

1 − ei Sya
, (6.2)

or, finding the intensity, i.e. the square modulus,

I (S) = sin2(N Sx a/2)

sin2(Sx a/2)

sin2(M Sya/2)

sin2(Sya/2)
(6.3)

which is known as the Laue function. In Fig. 6.1 the Laue function is plotted for N = 10.
The Laue function has maxima whenever (Sx , Sy) = (2πn/a, 2πm/a), i.e. S = Bm , where

43
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Figure 6.1 The Laue function for the case N = 10. The peaks are proportional to N 2 and the peak
widths are proportional to 1/N , keeping the integrated peak intensity constant. Note, however, that
there are many peaks since this kinematic approach does not conserve electrons.
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Sx

Figure 6.2 Ewald construction showing the formation of streaks in the diffraction from a finite
two-dimensional lattice.

Bm is a vector of the two-dimensional reciprocal lattice. The peak intensity is most easily
found at Sx = 0, where

I (Sx = 0) → N 2S2
x a2/4

S2
x a2/4

= N 2. (6.4)

Similarly, from the Laue function one can find the peak width to be �Sx ≈ 2π/(Na), or
2π divided by the length of the ordered region. This means that parallel momentum is
conserved up to this amount. More generally we will see that the peak width, �Sx , is of
order 2π divided by a correlation length.

For our two-dimensional case, the Ewald construction must now be modified, as shown
in Fig. 6.2. In the x direction the reciprocal lattice vectors are no longer sharp but have
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an uncertainty �Sx = 2π/L . The intersection with the Ewald sphere, especially at low
glancing angle, is elongated into a streak perpendicular to the surface with an angular width
δϑf = 2π/(K L sin ϑf). In this construction one can see that, although the reciprocal lattice
rods are broadened in both the x and y directions, the low glancing angle primarily impacts
the width of the diffracted beam normal to the sample surface. Measurement of this width,
i.e. the length of the RHEED streak, should provide information about the size of the region
of the surface over which there is coherent scattering. This information could depend on
the crystal azimuth, since anisotropic islands can give rise to reciprocal lattice rods with
dimensions that differ in the x and y directions (Pukite et al., 1988).

6.2 Incoherent scattering

The interference discussed in the previous section should be contrasted with the case of
incoherent scattering, for which the amplitude from the various scatterers differs by many
random phases. This would correspond to the case of scattering from atoms or domains
shifted by random amounts or to the case of diffraction from a disordered surface.

The simplest system to examine is a one-dimensional array of N scatterers in which the
position of each scatterer is random along the chain. Let the incident plane-wave amplitude
be A0 per scatterer. Using a scattering factor f (S), the scattered amplitude is

A(S) = A0 f (S)
∑

n

exp (i Sx xn) (6.5)

and the diffracted intensity is

I (S) = I0| f (S)|2
∑

m,n

exp [i Sx (xm − xn)]. (6.6)

In the case of scatterers disordered along x, this sum can be split into two terms, N terms
with m = n and N 2 − N terms with m �= n:

I (S) = I0| f (S)|2
{

∑

m=n

1 +
∑

m �=n

exp [i Sx (xm − xn)]

}

. (6.7)

This can be rewritten, noting that m and n are dummy indices, as

I (S) = I0| f (S)|2
{

N +
∑

m<n

exp [i Sx (xm − xn)] +
∑

n>m

exp [i Sx (xn − xm)]

}

,

that is,

I (S) = I0| f (S)|2
{

N + 2
∑

n>m

cos [Sx (xn − xm)]

}

. (6.8)

With enough scatterers the cosine will take on random values between ±1 and sum to zero
so that, for a randomly disordered one-dimensional chain,

I (S) = I0| f (S)|2 N . (6.9)
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Figure 6.3 Lattice parameter measurement.

This famous result, sometimes called the N -trumpet problem, shows that for diffraction
from random scatterers or random domains one adds the intensities and not, as in eq. (6.4),
the amplitudes.

6.3 Lattice parameter

A lattice parameter can be measured using RHEED if the camera length, the distance be-
tween the sample and the diffraction pattern, is known. The basic construction in reciprocal
space is shown in Fig. 6.3. This is a projection into the surface plane. For small angles the
radius of the Ewald sphere is K cos ϑi

∼= K and the separation between reciprocal lattice
rods is 2π/a, where a is the inter-row separation. The angle between the diffracted beams,
ϕ, is measured to be

ϕ = 2π

K a
, (6.10)

which is also tan−1 (d/L) where d is the physical separation between the beams on the
screen and L is the camera length.

In a measurement of the lattice parameter during growth, in for example heteroepitaxy,
one can assume a starting value of a. From eq. (6.10) one has that

δϕ

ϕ
= −δa

a
, (6.11)

so that a relative measurement can be made without independent knowledge of the camera
length. On the one hand, since the change in the beam position scales linearly with diffraction
order the best measurements of δϕ are made for higher diffraction orders. On the other hand,
higher-order beams tend to be weaker and so one needs to compromise and perhaps measure
the symmetric (01) or (02) beams.

To measure the variation of the lattice parameter during the growth of InGaAs on
GaAs(100), Whaley and Cohen (1990b) used two detectors to measure the change in
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Figure 6.4 The measurement of lattice parameter using two detectors. The diffracted beams were
scanned in the directions shown with a small magnetic field. The lens focused the aperture onto the
screen to define the measurement. Two photomultiplier tubes (PMTs) coupled with scanning allowed
high dynamic range and high resolution.

separation of the (01) and (01̄) beams. As shown in Fig. 6.4, the images of two diffracted
beams were scanned across two separate photomultiplier and lens assemblies. For each a
slit was imaged onto the phosphor screen to act as an aperture. The beams were conve-
niently scanned using a small magnetic field, and the intensity as a function of angle was
measured for each beam. The data were fitted to a polynomial and the peak positions vs
time determined. In this case the lattice constant could be measured to with in 0.003 Å. The
limitations of the method were mainly due to the mechanism of film growth. InGaAs grows
via the Stranski–Krastanov mechanism: there is lattice relaxation due to misfit dislocation
formation and three-dimensional islands form. For the measurement one needs to be away
from transmission features in the diffraction. The limit to the resolution comes from the
change in the diffracted-beam profile during growth, which causes an apparent change in
peak position.

The results of a lattice parameter measurement for InGaAs grown on GaAs (Whaley
and Cohen, 1988, 1990a) using this dual detector method are shown in Fig. 6.5 for several
substrate temperatures. The lattice parameter change corresponds to a large increase in the
dislocation density, which relaxes the film and is not necessarily a measure of the thickness
at which the first dislocation forms. For InGaAs with an In mole fraction of 0.33 this mea-
surement shows that the relaxation depends dramatically on substrate temperature; a recent
interpretation of these data has been given by Lynch et al.(2003). Similarly one can delay
the onset of cluster or quantum dot formation by suitable control of the growth temperature.

Example 6.3.1 Suppose that the incident beam has width w = 0.1 mm and the camera
length is 15 cm. At a glancing angle of incidence of 2◦, to what precision can the lattice
parameter be measured by using the separation of the (00) and (10) streaks?
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Figure 6.5 Measurement of the lattice parameter of InGaAs vs growth film thickness on GaAs(100)
for several different substrate temperatures at an In mole fraction x = 0.33 (Whaley and Cohen,
1988,1990a).
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Figure 6.6 A broad incident beam will produce a streak broadened by more than just the width of the
beam.

Solution 6.3.1 The geometry of diffraction from a broad incident beam is illustrated in
Fig. 6.6, where δL = w/ sin ϑi with ϑi the incident glancing angle. Here we just need
to consider the central ray in the electron beam. One can see from Fig. 6.6 that the long
projected length of the beam will produce a broadening δϕm on the phosphor screen parallel
to the surface and perpendicular to the incident beam. For the central ray, the diffraction
angle is 2π/(K a), where a is the inter-row separation, so that if the mean camera length,
i.e. the distance from the center of the sample to the screen, is L then

Lδϕm = (L + δL/2)ϕm − (L − δL/2), ϕm, (6.12)

so that

δL

L
= δϕm

ϕm
= δa

a
. (6.13)
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Or, using the projected length on the sample, the precision with which the lattice constant
can be measured is

δa

a
= w

L sin ϑi
. (6.14)

For the values given, δa/a is about 2%, which is not very good. An improvement can be
obtained by using a small sample, so that the sample and not the dimension of the beam
limits the uncertainty in camera length, or by using a lens to focus the parallel beam to the
detector or by using a longer camera length. The latter two methods are usually inconvenient
or require system modification. Using a 1 mm sample at 250 mm would correspond to a
0.4% measurement. One can do better than this by determining shifts in the entire beam
and not just measuring the peak positions. Whaley and Cohen (1990a) using a small sample
and comparing shifts in the entire beam were able to measure changes in the GaAs lattice
parameter to within 0.003 Å.

One might be able to achieve a better measurement by determining changes in angle
of the beams in the first or a higher Laue zone, perpendicular to the surface. However,
whether this is possible depends on the degree of disorder giving rise to streaks and on the
accessibility of the beams.

6.4 Vicinal surfaces

In the previous sections we have considered diffraction from a surface in which the two-
dimensional periodic array was parallel to the surface. This is an idealization which is
probably only approximated by cleaved surfaces, whiskers or some other surface in which
the natural crystal habit is obtained. These singular surfaces can give rise to very sharp
diffraction patterns. But what they show in terms of perfection, they lack in interest and
generality. Specifically, they lack the atomic steps often crucial to epitaxial growth or to
enhanced chemical reactivity.

A more interesting surface is a vicinal surface, one that has been cut and polished, for
which the macroscopic surface is formed by a series of low-index planes separated by
atomic or multi-atomic steps. These steps might all be in the same direction forming a
staircase or they might have a random up and down nature. They admit a number of new
types of defect – the steps could meander owing to random kinks, the terraces separating
the steps could have random terrace lengths or the step heights could vary. The steps are
often crucially important. For example, steps on a surface in epitaxy can enhance crystalline
perfection by providing a template for growth that minimizes stacking faults (Dabiran et al.,
1993), steps can provide a wall against which quantum wires are grown (Hu et al., 1995),
they can be used to control antiphase domain growth (Pukite and Cohen, 1987a), they can
relieve strain (Du and Flynn, 1991), they affect the diffusion barriers that lead to surface
roughening (Poelsema et al., 1991) and they can enhance dissociation (Ranke and Jacobi,
1977). In epitaxial growth experiments, the surfaces are seldom oriented to be more than
6◦ away from a low-index plane. This surface would then be made up of steps of one or



50 Geometrical features of the pattern

60 nm

Figure 6.7 Scanning tunneling microscope image of a vicinal Si(111) surface (Dabiran, 1998).

two atomic layer with the appropriate mean terrace length to correspond to the macroscopic
misorientation. At the other limit, the best one can usually do in the way of exact orientation
(sometimes referred to in the literature as “just” orientation) is slightly less than 1 mrad.
The method described here allows one to characterize these surfaces (Pukite et al., 1984b).

A region of this kind of surface might look like the scanning tunneling microscope image
of a Si(111) surface shown in Fig. 6.7. In this misoriented surface, the steps are not perfectly
straight and, depending upon the preparation procedure, can meander quite severely.

The angles of the diffracted beams for the vicinal surface will be determined by the mean
macroscopic misorientation, and the width of the diffracted beams by the finite size of the
terraces (this will be discussed in more detail in Chapter 17). The kinematic treatment,
nicely summarized by Henzler (1977), easily gives the angular position of the diffracted
beams. For the beam angular positions this is a simple calculation that is fundamentally a
restatement of the conservation of parallel momentum, so that it is true in both the kinematic
and dynamic theories. Of course, the intensities calculated in each will be different.

Following Henzler (1977) we define a regular vicinal surface as one in which all terraces
and steps are equal in length L and in height d. This is illustrated in the top part of Fig. 6.8.
Without loss of generality,1 we consider only the top layer of atoms, at r = (na + mL)x̂ −
md ẑ, where n = 0, 1, 2, . . . N − 1 labels the rows of atoms and m = 0, 1, 2 . . . M − 1 labels
the steps. The misorientation angle, ϑc, equals arctan (d/L). With this construction of a

1 RHEED does not only involve scattering from the top layer of atoms. For a discussion of the scattering from blocks of atoms
below the surface see Section 17.8. For a calculation of scattering angles, consideration of the top layer of atoms alone is
sufficient.
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Figure 6.8 The upper diagram shows a regular staircase of steps. The lower diagram shows the
reciprocal lattice for this vicinal surface expressed as a product of the reciprocal lattice for a terrace
(vertical lines enclosing rods of width 2π/L) and that for a grating of step edges (broken, tilted lines).
Superimposed on this are the out-of-phase and in-phase Ewald spheres (solid slanting lines) showing
the conditions for diffraction in which the incident beam is directed down the staircase. The dots
inside the rods are 3D Bragg points.

regular staircase of steps, the diffracted amplitude is, from eq. (5.47),

A(S) =
N−1,M−1∑

n,m

f (S) exp [(i Sx (na + mL)] exp(−i Szmd)

=
N−1∑

n=0

exp(i Sx na)
M−1∑

m=0

exp[i(Sx L − Szd)m]. (6.15)

Recognizing that this is a finite geometric series, assuming that all scatterers are identical
and taking the square modulus as before we obtain the diffracted intensity:

I (S) = | f (S)|2
∣
∣
∣
∣
sin (N Sx a/2)

sin (Sx a/2)

∣
∣
∣
∣

2 ∣
∣
∣
∣
sin [M(Sx L − Szd)/2]

sin [(Sx L − Szd)/2]

∣
∣
∣
∣

2

, (6.16)

which is the product of the diffraction from a terrace of N atoms and that from a staircase of
M steps. The first ratio is the Laue function for a grating of N scatterers, the diffraction rods
being separated by 2π/a and of width 2π/(Na). The second ratio corresponds to a family
of rods occurring when Sx L − Szd = 2mπ . Hence the intercepts at Sz = 0 are separated
by Sx = 2π/L . In the Sx Sz plane, these are rods with slope L/d; hence the rods are normal
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to the macroscopic, misoriented surface. The width of these rods parallel to the surface is
2π/(M

√
d2 + L2), i.e. 2π divided by the length of the staircase.

Example 6.4.1 Show that a regular staircase can be thought of as a convolution of two
lattices that is equivalent to a product of two reciprocal lattices.

Solution 6.4.1 We can express this convolution by defining the two surfaces, f1(r), the
lattice of one terrace, and f2(r), a grating of step edges, each to be a series of delta functions,
i.e.

f1 =
N−1∑

n=0

δ(r − nax̂), (6.17)

f2 =
M−1∑

m=0

δ(r − m(Nax̂ − d ẑ)), (6.18)

so that the total crystal surface is the convolution

f (r) = f1(r) ∗ f2(r) (6.19)

=
∫

du f1(u) f2(r − u) (6.20)

=
∫

du
N−1∑

n=0

δ(u − nax̂)
M−1∑

m=0

δ(r − u − m(Max̂ − dŷ)) (6.21)

=
M−1,N−1∑

m,n=0

δ(r − nax̂ − m(Max̂ − dŷ)). (6.22)

The diffracted amplitude is the Fourier transform of this convolution with L = Ma. Alter-
natively, since the Fourier transform of a convolution is the product of the separate Fourier
transforms, one can simply determine the diffracted amplitude of the terrace and then take
the product with the diffracted amplitude of the grating. This is analogous to calculating
the diffraction from a lattice with a basis. Hence

A(S) = A1(S)A2(S), (6.23)

where Ai (S) is the Fourier transform of fi (r). This agrees with the more direct calculation
above.

A graphical representation (not to scale) of the reciprocal-space picture of diffraction
from a vicinal surface along with a section of the Ewald sphere for the case in which the
electron beam is directed down the staircase is illustrated in the lower part of Fig. 6.8. By
construction, each of the tilted rods passes through what would be a three-dimensional Bragg
point if there were no refraction. For example, in the third factor in eq. (6.16), at Sx = 0 there
will be a maximum when Szd/2 is equal to integral multiples of π ; this is the unrefracted
Bragg condition for the separation between the planes. We term this condition the in-phase
condition since here, when the Ewald sphere passes through this point, waves scattered
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Figure 6.9 Diffraction pattern from a GaAs staircase of steps with the beam directed down the
staircase. In the figure the large spot is direct light from the electron gun filament. Two components
can be clearly seen on the specular (00) streak.

from different terraces interfere constructively. In addition a section of the Ewald sphere is
drawn for an out-of-phase condition – exactly at the position of the specular beam, there
should be complete cancellation. More precisely, when Sx = 0 and Szd = 2π (n + 1/2),
with n an integer, waves from different terraces differ in phase by half a wavelength and
one has to go away from the specular condition to find constructive interference. As shown,
two strong intersections (to which the beam arrows point) are obtained. Depending upon
the scattering strengths and disorder, it is possible to obtain more off-angle peaks.

It is important to recognize that refraction must not be neglected. An electron penetrat-
ing a terrace is refracted on the way in and on the way out. Each terrace has the same
effect, assuming that the terraces are sufficiently large that there are no dynamical effects
associated with terrace size. Consequently only the path differences in vacuum matter, and
so the positions of the in-phase conditions occur at unrefracted Bragg angles and those of
the out-of-phase conditions occur half-way between these. This is consistently observed
experimentally. In a profile of the intensity along the length of a streak one would observe
maxima at two points corresponding to the intersections of the out-of-phase Ewald sphere.
This is illustrated in Fig. 6.9 for vicinal GaAs(100). A measured profile from Ge grown on
GaAs is shown in Fig. 6.10. The misorientation can be quite small and still be observable
in RHEED. The limit is determined by the qualitative form of the distribution of terrace
lengths that make up the vicinal surface (cf. subsection 8.7.2 and section 17.6) and the angu-
lar divergence of the incident beam. The latter is typically quite good at RHEED energies,
so that misorientations of about 1 mrad are measurable. For the splitting to be observable
the distribution of terraces must have a minimum-size cutoff.
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Figure 6.10 Angular profile along the specular streak in which the incident beam is pointing down a
slight staircase on a Ge surface (grown on GaAs(100). This is close to the limit of resolution.

For the case in which there is disorder among the terrace lengths, the diffraction peaks are
broadened. In effect, the length of the staircase is reduced. Examples for staircases down
the 〈011〉 direction and the [011] direction are shown in Fig. 6.11. This is discussed further
below and in Chapter 17.

The angle between the two peaks is calculated by finding the simultaneous condition for
which the final diffraction wave vector lies both on a reciprocal lattice rod of the grating
and on the Ewald sphere. The grating condition is found by going back to the interference
function. We use the second factor in eq. (6.15), which is the Fourier transform of eq. (6.18),
to obtain the diffracted amplitude from the grating of step edges alone:

A2(S) =
N−1∑

n=0

exp[i(Sx L − Szd)n]. (6.24)

This gives the family of (broken) slanting lines in Fig. 6.8, along each of which momen-
tum in the periodic lattice formed by the grating of step edges is conserved. Constructive
interference occurs along the slanting lines, given by Sx L − Szd = an even multiple of π .
Suppose that the Ewald sphere intersects two adjacent lines, with final scattering angles
ϑf,1 and ϑf,2. For a given Ewald sphere, each of these final scattering angles has the same
incident K and same incident angle ϑi. With fixed incident Ki the Ewald sphere intersects
lines at S2 and S1 such that

�Sx L − �Szd = 2π, (6.25)

where �S = S2 − S1. For the specular beam

Sx = K cos ϑf − K cos ϑi, (6.26)

Sz = K (ϑf + ϑi), (6.27)



6.4 Vicinal surfaces 55

60 70 80 90

(a)

(b)In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

As
steps

Ga
steps

Jf (mrad)

Figure 6.11 Measurement of the angular separation of the components of a split diffraction peak
from a vicinal surface vs the glancing angle of incidence. This GaAs surface was misoriented by
about 5 mrad. The data were taken with the incident electron beam pointing down the staircase. The
surface was prepared by heating a GaAs(100) surface into the high-temperature 3 × 1 reconstruction
and then cooling to the c(2 × 4) reconstruction, in which the data were taken. The regularity of the
terrace lengths in the 〈011〉 direction is different from that in the [011] direction.

so that

�Sx = −K sin ϑ̄f�ϑf and �Sz = K�ϑf. (6.28)

Here ϑ̄f is the average final angle of the two components. Combining eqs. (6.25) and (6.28)
one has, for the beam pointing down the staircase formed by a surface misoriented by
ϑc = d/L ,

�ϑf = 2π

K d

ϑc

sin ϑ̄f + ϑc
. (6.29)

At an out-of-phase condition ϑ̄f = ϑi, therefore if the angle of incidence is known then one
can determine the local surface misorientation. Typically the electron beam diameter will
be about 0.1 mm so that at a 2◦ incident angle one is probing a stripe on the surface of size
0.1 mm × 3 cm.

As an example, Pukite et al. (1984b) measured the angular separation of the components
of a diffracted beam for a GaAs(100) surface. They measured this vs the glancing angle of
incidence and vs the azimuthal angle ϕi . In the case of the azimuthal angle, one needs to
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Figure 6.12 Measurement of the angular separation ϑf of the components of a split diffraction peak
from vicinal GaAs surfaces vs azimuthal angle of incidence ϕi for three samples. For these data,
misorientations of 3 (◦), 12 (
) and 20 mrad (�) were measured (Pukite et al., 1984b).

modify the formula given in eq. (6.29) and include only the projected mean terrace length.
Hence ϑc = d/L must be replaced by d/(L cos ϕi) = ϑi/ϕi; then the equation becomes

�ϑf = 2π

K d

ϑc cos ϕi

sin ϑ̄f + ϑc cos ϕi
(6.30)

and one plots the absolute value.
If the beam is directed parallel to the step edges then ϕi = π/2 and the two components

of the beam have the same ϑf. Measurements of Pukite et al.(1984b) that compare with
eqs. (6.29) and (6.30) are shown in Figs. 6.11 and 6.12. These data are from three different
GaAs samples, with miscuts of 3, 12 and 20 mrad. Note that this measurement is an average
over the sample of the projected length of the electron beam. It is more local than X-ray
methods and is in situ.

When the incident beam is directed parallel to the step edges (normal to the page in
Fig. 6.8) rather than down the staircase then the diffraction pattern has a somewhat different
character. If the width of the terraces is not too large (less than the coherence length to be
discussed in Section 8.7) then the Ewald sphere intersects the entire diagonal reciprocal
lattice lines of the step-edge grating (the broken lines shown in Fig. 6.8.). The diffraction
pattern is now a set of these parallel slashes inclined at the staircase misorientation angle.
(For low misorientations it is difficult to see the two components when looking parallel to the
step edges.) This qualitatively different diffraction pattern allows an important confirmation
of the interpretation of the splitting observed in Figs. 6.9 and 6.10. Images of this view of
the diffraction were given by Hottier et al. (1977) for GaAs(001).

One can use intensity measurements of split diffraction beams as seen in the last two
figures vs incident angle to construct a map of the diffraction pattern like that in Fig. 6.8.
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Figure 6.13 Intensity profiles showing the splitting along the length of the (00) RHEED streak from
GaAs(100). The incident beam points down a staircase formed by a 6.5 mrad misorientation. The
angle ϑm is determined from half the distance between the straight-through beam and the midpoint
of the diffracted beams. The abscissa is ϑm (Pukite et al., 1984).

Since dynamical effects depend strongly on azimuthal angle, this will show the applicability
of a simple kinematic interpretation. For example, for a GaAs(100) surface, Pukite et al.
(1984a) measured the intensity along the specular, (00), streak vs final diffraction angle ϑ at
different incident angles ϑm . The intensity is plotted vs ϑ − ϑm for these angles in Fig. 6.13.
The different components have different intensities that depend upon the cut made by the
Ewald sphere. The intensities are about equal at an out-of-phase condition. In Fig. 6.8, the
arcs would cross the reciprocal lattice at different places depending on the incident angle.

This is consistent with the broken-line pattern obtained with the beam parallel to the
step edges. To see this we measure the widths of the components and plot the angles of the
half maxima, after converting to Sx and Sz . This is seen in Fig. 6.14. For this data, each
measured angle in Fig. 6.13 is converted to Sx and Sz values. To make the comparison,
a point is plotted at each (Sx , Sz) that corresponds to the half maxima on either side of a
peak. Hence in Fig. 6.14 the regions between the data points have the highest diffracted
intensity. In some cases one peak was significantly larger than the other and the tail of
the larger had to be subtracted before a half width could be determined. In these cases the
uncertainty in half width was larger, and the error bars are indicated. The increase in the
width of the component peaks away from the in-phase conditions shows that there is some
disorder in the staircase miscut. In the simplest analysis, one can treat the peaks as due to
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Figure 6.14 Diffraction from a vicinal surface in reciprocal space. The angles of the half maxima
of the data presented in Fig. 6.13 are converted to Sx , Sz coordinates using eq. (6.25). The length of
the bars is the uncertainty, which is largest when the peaks are weak. This should be compared with
Fig. 6.8. In that figure the broken lines correspond to the (broadened) diagonal features plotted here.

a superposition of staircases with several miscut angles. Ignoring the disorder, however,
one can see that the surface morphology affects the diffraction pattern in a way that can
be determined largely independently of the dynamical effects related to azimuthal incident
angle. The most sensitive measure of this morphology is obtained with the incident beam
directed down the staircase of the misoriented surface.

6.5 Preferred island size

A submonolayer film often self-assembles into a two-dimensional array of randomly sized
and positioned islands. If the islands are limited to several atomic layers then in the case
of homoepitaxy a low-index surface will have a random arrangement of up and down
steps. Ordered islands have also been observed in homoepitaxy, as in the case of Fe on
Fe(100) (Arrott et al., 1989; Stroscio and Pierce, 1994). In Section 8.3 we will examine
the diffraction patterns from these. In Chapter 17 we will allow the arrays of steps to be
disordered.

The main features can be seen in one dimension. Figure 6.15a shows an ordered two-
layer step structure in which a one-dimensional regular array of steps on two levels forms a
surface. Here the scatterers are separated by a and the repeat distance is L = L1 + L2. To
calculate the kinematic diffraction we compute the Fourier transform of the structure. It can
be written as a product of a lattice and the convolution of a one-dimensional array and a repeat
step, as shown in Fig. 6.15b. The Fourier transform gives the kinematic diffraction. Using
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Figure 6.15 (a) A two-layer step structure. (b) Schematic diagram showing the convolution that makes
up the lattice in (a); the Fourier transform is the product of the repeat unit with a grating of spacing
L , all repeated at each reciprocal lattice point.

the convolution theorem, this transform will equal the convolution of the two-dimensional
reciprocal lattice points with the product of the reciprocal lattice of the single repeat structure
of the island and a grating of points separated by L , the latter being a reciprocal lattice of
rods of width 2π/(N L) and separated by 2π/L .

The Fourier transform of the single repeat is given by

A(Sx , Sz) =
∫

f (x, z) exp(i Sx x+i Sz z) dxdz. (6.31)

In this case f (x, y) is taken to be unity along the path indicated below, i.e.

f (x, y) = 1,






z = 0, −L/2 < x < −L1/2,

z = d, −L1/2 < x < L1/2,

z = 0, L1/2 < x < L/2
(6.32)

and zero otherwise. Hence

A(Sx , Sz) =
∫ −L1/2

−L/2
ei Sx x dx + ei Sz d

∫ L1/2

−L1/2
ei Sx x dx +

∫ L/2

L1/2
ei Sx x dx

=
(

2

Sx

) (

ei Sz d sin
Sx L1

2
+ sin

Sx L

2
− sin

Sx L1

2

)

. (6.33)

The square modulus of eq. (6.33), corresponding to the diffracted intensity, is shown in a
gray-scale representation in Fig. 6.16a. At an in-phase condition, where the path difference
of the waves scattered from the top and bottom of the step structure is an integral number
of wavelengths, Szd equals an even multiple of π . The diffraction is insensitive to the step,
and the width of the diffraction must be just 2π/L . Under this condition, in eq. (6.33)
only the middle term contributes to the result. Note, however, that the pattern shown in
Fig. 6.16a has still to be multiplied by the grating that repeats this single-step structure.
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Figure 6.16 (a) Gray-scale calculation of the structure factor due to a single repeat distance as a
function of Sx and Sz . In this case L1 = L2 and there is complete cancellation at the out-of-phase
conditions. (b) The structure factor in (a) multiplied by a grating function, sharpening the observed
features. In both figures the abscissa has been expanded by a factor 32. In (b) the contrast has been
enhanced slightly.

That grating is a series of rods of width 2π/(N L), where N L is the crystal length, each
separated by 2π/L . Hence the final width in Sx of all the features, as shown in Fig. 6.16b,
is 2π (N L). At an out-of-phase condition, where Szd equals an odd multiple of π and the
path difference between the waves scattered from the top and bottom of a step is a half
wavelength, the intensity is low at Sx = 0 (but not zero if L1 �= L2) and is seen to go
through its first maximum at approximately Sx L1 = π . When multiplied by the reciprocal
of the grating of repeats, its features sharpen. Also shown in Fig. 6.16b is a section of the
Ewald sphere for an incident angle of about 2◦ (at 10 keV). The diffraction pattern now
appears as a split beam, with peaks at the intersection of the Ewald sphere and the reciprocal
lattice. There is a central beam and two side lobes, the angular separation of the lobes being
4π/(K L sin ϑi).

If the island size is variable then the features described here are broadened. From the
separations of the split beams and the broadening one can determine the long-range cor-
relation over the surface and the distribution of island sizes. An ordered array of islands
gives a two-dimensional periodicity and hence, as shown, split beams or satellite features
that are separated in Sx by 2π/(L1 + L2), i.e. 2π divided by the sum of the mean island
and hole diameters. The width of the components will be 2π divided by a correlation length
that describes the disorder. If the disorder is severe then satellite features are not observed
and the main beams have a broadened component.

An important point here is the distinction between angles of incidence for which there
is constructive and destructive scattering from the top and bottom of the islands. As a
consequence, the simple description given in the previous paragraph must be modified when
the disorder is treated carefully, as in Chapter 17. For example, in Fig. 6.16b the Ewald
construction goes through an intensity maximum along the (00) rod. This corresponds to
an in-phase condition, where Sz = 2K sin ϑi = n2π/d or equivalently 2d sin ϑi = nλ. At
angles halfway between, the diffraction is out of phase and there is a destructive minimum
at the specular beam. One needs to look at angles slightly off-specular to obtain constructive
interference again. In the presence of disorder such that there is no peak in the island-size
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distribution away from zero, the split peaks are not seen; instead, there are wings related to
the distribution of islands. The distinction between the in-phase and out-of-phase conditions
is still maintained. The profile of a diffracted beam is a central spike due to the long-range
order and broad parts due to the disorder; the relative magnitudes will depend on Sz . In
Chapter 17, as in the discussion in this chapter, the kinematic limit will be used. However,
this result is a consequence of momentum conservation and so the basic features should
hold.



7

Kikuchi and resonance patterns

7.1 Kikuchi lines

Inelastically scattered electrons play an important role in the formation of the RHEED
pattern. The primary inelastic process is a scattering event involving phonons and plasmons
(Horio, 1996; Müller and Henzler, 1997). The intensity of these Kikuchi patterns depends
strongly on the surface morphology, since scattering from small terraces and steps broadens
them. Sharp Kikuchi lines are obtained from crystals with perfect surfaces and perfect bulk
lattices. They seem to be stronger for heavier materials; for example, Si and SiC show strong
Kikuchi patterns but GaAs, GaN and PbS show weaker patterns.

As will be discussed in Chapter 16, the inelastic scattering is peaked in the forward
direction in a diffuse cone of about 0.1◦ for single-plasmon scattering and of more than 10◦

when multiple thermal diffuse scattering is important (Ichimiya, 1972). The inelastically
scattered electrons in this diffuse cone can subsequently be diffracted by the crystal lattice
planes, depending on their angle. These two scattering processes combine to give rise
to the appearance of Kikuchi lines at specific exit angles. Figure 7.1 shows the energy
distribution of the electrons scattered into a Kikuchi line which crosses the specular beam
from Si(111) (Nakahara et al., 2003). The main contributions in the spectrum are surface and
bulk plasmons, because the energy-loss spectra from thermal diffuse scattering (or phonon
scattering) are not resolved owing to poor resolution of the spectrometer for RHEED. Since
only a few plasmon losses are observed, the Kikuchi lines cannot arise from electrons that
travel more than a few inelastic mean free paths. Since the outgoing electrons exit at a few
degrees to the surface, this means that at most about 10 layers contribute to the pattern. This
suggests that one might be able to use the intensity of the Kikuchi pattern to monitor the
quality of a thin film.

As can be seen from Fig. 7.1, several types of feature are observed, including bands,
sharp lines and arcs. An example of a Kikuchi pattern from SiC(0001) is shown in Fig. 7.2.
In the formation of this pattern a 10 keV beam is incident in the [123̄0] direction on a
SiC(0001) surface. The hallmark of these features is that they move with the crystal when
the crystal is rotated. For example, and from a very practical point of view, even changes in
angle much less than one degree will noticeably move the lines – this allows one to set the
crystal azimuth along a symmetry direction by adjusting for a symmetric Kikuchi pattern.

62
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Figure 7.1 Energy distribution of the electrons scattered at the position of a Kikuchi line, indicated
by the white circle in the RHEED pattern inserted. SP is the surface-plasmon peak and VP is the
bulk-plasmon peak. The contribution of the bulk plasmons is independent of incident angle. The
contribution of the surface plasmons is larger at low angles (Nakahara et al., 2003).

Figure 7.2 Diffraction pattern from 6H-SiC(0001) 3 × 3 at 10 keV for a beam in the [123̄0] direction.

Nonetheless, the most important aspect, in so far as the RHEED intensity is concerned,
is that at the intersections of the Kikuchi lines and the RHEED streaks there is often an
increase in diffracted intensity. The discussion that follows is separated into two parts,
covering treatments of Kikuchi-line formation and of surface-wave resonance.
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Figure 7.3 Schematic diagram showing the formation of Kikuchi lines.

The process of Kikuchi-line formation is most easily understood in the transmission
electron diffraction scheme. Figure 7.3 shows a schematic of the process. Electrons are
scattered inelastically in all directions, their intensity generally decreasing as the scattering
angle increases. In some direction, for example P1 at angle χ1, they will satisfy the Bragg
condition for a set of lattice planes (hkl), as shown in this figure. These inelastically scattered
electrons in the direction P1 will act as a pseudo-primary beam, which is then Bragg
diffracted into a beam D1 at an angle χ2 = χ1 + 2ϑ measured from the incident direction.
The intensity in the direction P1 is decreased by the diffraction, and the intensity in the
direction D1 is increased. The resulting intensity of the diffuse inelastic scattering as a
function of angle, as measured from the direction of the incident beam, is shown in Fig. 7.4.
Overall, the inelastic intensity decreases with increasing scattering angle. Bragg diffraction
removes intensity from the direction P1 and adds to the intensity at D1. Hence a dark line
would be observed at P1 and an enhancement, a bright line, at D1. Note that for each set
of planes there is a corresponding inelastic scattering direction, P2, which also satisfies
the Bragg condition for the set of planes (hkl) and which scatters intensity back into P1.
However, unless the incident beam is parallel to the planes (hkl), the process P2 is weaker
than P1 and so there is insufficient scattering to replace the lost intensity.

The case for which the incident beam is parallel to the (hkl) planes was treated by Kainuma
(1965) using dynamical theory. Even though the simple argument given here suggests that
the Kikuchi contrast should vanish, the dynamical theory indicates that there is a contrast;
the pattern is called a “Kikuchi band”. From Figs. 7.3 and 7.4, it can be seen that the
horizontal Kikuchi lines are always bright. Dark Kikuchi lines are observed in the oblique
and perpendicular cases.

As seen in Fig. 7.3, the positions of the Kikuchi lines are independent of the direction
of the incident beam and depend only upon the crystal orientation. For example, all the
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Figure 7.4 Intensity scheme of Kikuchi pattern formation.
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Figure 7.5 Ewald construction showing the scattered electrons picked out by the (hkl) planes. (a) All
the electrons that satisfy a Bragg condition for one set of planes. The broken lines show the components
that correspond to the line crossing the (00) rod. (b) The resulting unrefracted Kikuchi lines that could
contribute to the pattern. Of these, the lines that are enhanced by resonances are usually the strongest.

inelastic processes such as P1 will contribute to the Kikuchi line for the (hkl) planes. These
lines are then the locus of points that satisfy the condition kf − ki = G(hkl), as shown in
Fig. 7.5. On revolving P1 about G(hkl), all the possible D1 processes contribute. Therefore
we can show the Kikuchi lines in the reciprocal lattices by bisecting the vector from the
origin to each reciprocal lattice point. Each line in Fig. 7.5b, the unrefracted Kikuchi pattern,
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is the projection on the screen of the locus of possible D1 processes shown in Fig. 7.5a. At
low angles the beam is refracted.

Example 7.1.1 Calculate the Kikuchi pattern for a GaN(0001) surface in which a 10 keV
beam is incident, and the pattern is viewed, in the 〈112̄0〉 direction.

Solution 7.1.1 The Kikuchi line for the set of planes corresponding to the reciprocal lattice
vector G(hkl) is given by

k · G = |G|2
2

(7.1)

or

kt · Gt + k⊥G⊥ = |G|2
2

. (7.2)

Switching to vacuum quantities, this gives

Kt · Gt + (K 2
⊥ + U )1/2G⊥ = |G|2

2
, (7.3)

where the inner potential is V = �2U/(2me) and K 2 = K 2
⊥ + K 2

t . The Kikuchi lines at
the smallest angles correspond to G-vectors parallel to the plane of the screen. To examine
these, choose k = 0 so that Gt = hb1 and Kt is projected into the plane of G. Divide by K
to obtain approximate screen angles. Then

h|a∗
1|ϕ + l|a∗

3|
(

ϑ2 + eV

E

)1/2

= G2

2K
, (7.4)

where the reciprocal lattice vectors have magnitudes b1 = 4π/(a
√

3), b3 = 2π/c (for a
hexagonal lattice) and

|G|2 = 16π2h2

3a2
+ 2π2l2

c2
. (7.5)

The calculated result for GaN(0001) is given together with the measurement in Fig. 7.6,
for those lines for which 2ϑ < 8◦. One can see that many Kikuchi lines are predicted, and
even with this restriction on ϑ more lines are predicted than are observed; however, intensity
is lacking at some angles where it is, in fact, observed. A mechanism is needed to pick out
which lines are observed and which are not.

7.2 Surface-wave resonances (Kikuchi envelopes)

Kikuchi and Nakagawa (1933) observed intensity anomalies in the specular spot in RHEED
patterns when it crossed some Kikuchi lines. This effect became known later as surface-
wave resonance in low-energy electron diffraction (Miyake & Hayakawa, 1970; McRae
and Jennings, 1969; McRae, 1979). By the simple geometrical consideration of diffraction
conditions for surface layers, surface-wave resonance effects are expected to appear in the
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Figure 7.6 (a) Kikuchi lines calculated from eq. (7.4) using an inner potential of 14 eV; (b) a mea-
surement on GaN(0001) 2 × 2.
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Figure 7.7 An incident electron beam is both diffracted and refracted; then it propagates inside the
crystal. If the perpendicular component of the momentum is too low, the beam cannot overcome the
barrier of the inner potential and so it cannot leave the sample without further diffraction.

diffraction pattern when the specular reflection is near a condition for the emergence of a
non-specular beam (Kohra et al., 1962). We will determine the appropriate limits of this
condition and term it the surface resonance condition.

The key idea is that at certain angles of the incident beam the incident electrons can diffract
into a beam that is totally internally reflected; this beam cannot leave the crystal until it is
diffracted back into the specular beam. As shown in Fig. 7.7, when some parallel momentum
is added to the beam due to diffraction, the perpendicular component of momentum is no
longer sufficient to surmount the potential barrier at the surface. The beam must then suffer
total internal reflection. Further, if the beam is at a bulk band gap, it is prevented from
propagating into the crystal. The result is that there is an evanescent state confined to the
surface, which can be strongly excited. This state transfers energy to the diffracted beams,
enhancing the entire pattern.

When a Kikuchi line crosses the specular beam it will have components that satisfy this
same enhancement condition. As seen in Fig. 7.5a, the broken lines could correspond to the
case in which one leg of the Kikuchi pair is at the (00) rod and the other is totally internally
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reflected. When the component at the (00) rod is at the same angle as the specular beam,
then the specular beam could also couple to a resonance because it will satisfy the same
diffraction conditions. Thus to find a resonance condition, one looks for the crossing of an
(oblique) resonance-enhanced Kikuchi line with the specular beam.

The surface-wave resonance is expected to occur when the mth diffracted wave, km in
Figs. 7.5 or 7.7, is propagating inside the crystal but is evanescent in the vacuum (Miyake
and Hayakawa, 1970; MacRae, 1979). The limiting conditions are determined by examining
the change in perpendicular momentum as the electrons enter or leave the crystal. We can
examine K0, or equivalently Kf, letting the wave vector components be

K0 = K0t − �0n,

km = kmt + γmn,

Km = Kmt + �mn, (7.6)

where n is a unit vector perpendicular to the surface, so that they are separated into compo-
nents parallel and perpendicular to the crystal surface. The diffracted wave vector km is in
the crystal and Km is regarded as what would be its continuation in the vacuum if the elec-
trons with wave vector km could leave the crystal. The two-dimensional elastic diffraction
conditions are obviously

K 2
m = K 2

0 , (7.7)

where Km is |Km | and so on, and

Kmt = K0t + Bm, (7.8)

where Bm is the two-dimensional reciprocal lattice vector. Since the energy of the beam
inside the crystal is increased by the inner potential, V = -h2U/(2me), the magnitudes of
the electron wave vectors inside and outside the crystal are related by

k2
m = K 2

m + U. (7.9)

In addition, since the parallel component of the beam is conserved, kmt = Kmt so that, using
eq. (7.9), we obtain

γ 2
m = �2

m + U. (7.10)

These equations show the change in perpendicular momentum due to refraction.
We want the condition for the mth diffracted wave to propagate inside the crystal but

be evanescent outside. This will mean that γm is real but �m is imaginary. If �2
m = K 2

0 −
|K0t + Bm |2 < 0 and γ 2

m = K 2
0 − |K0t + Bm |2 + U > 0, we obtain

2K0t · Bm + B2
m > �2

0 > 2K0t · Bm + B2
m − U, (7.11)

using eqs. (7.6) and (7.8) and eliminating K 2
0t . Under this condition, km suffers total internal

reflection.
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Figure 7.8 Three views of a surface-wave resonance. The horizontal arrows below the circles give
the direction of Bm . Note that the scales are vastly different: the radius of the top view in (a) is |K |,
the radius of the end view in (b) is K⊥ = �0 and the radius of the end view in (c) is k⊥ = γ0. Both
(a) and (b) show unrefracted Ewald constructions where the diffracted beam is not allowed. In (c),
refraction allows a connection to surface-wave resonance.

The geometry of this relation is illustrated in Fig. 7.8 by top and end views of the Ewald
construction. In Fig. 7.8a, in vacuum, the diffracted beam Km does not quite reach the
reciprocal lattice rod at Bm . The diffracted beam is said to be below emergence and, in the
limit, Km is parallel to the surface; the radius of the Ewald sphere shown is K = |Km |.
This can also be seen in (b), which is an end view showing the slice of the Ewald sphere
in which a plane normal to the surface passes through Bm . From the figure one can see
that the limiting emergence condition is simply that the Ewald sphere does not reach the
corresponding reciprocal lattice rod, i.e.

K < |Kt + Bm |, (7.12)

which corresponds to the first limit in eq. (7.11). Similarly, Fig. 7.8c shows the condition
on the refracted wave vector. Here the wave vectors km correspond to diffracted beams
propagating nearly parallel to the surface, shown in Fig. 7.7. For these to propagate, inside
the crystal the Ewald sphere must reach at least to the rod at Bm . Noting that kt = Kt , the
condition for this is that

k > |Kt + Bm |, (7.13)

which corresponds to the second limit in eq. (7.11).
Thus the limiting conditions of eq. (7.11) define two parabolas,

�2
0 = 2K0t · Bm + B2

m − U,
(7.14)

�2
0 = 2K0t · Bm + B2

m,

which define an envelope containing the often brighter Kikuchi lines. These envelope curves
can be obtained in terms of screen coordinates by dividing both sides of eq. (7.11) by K 2.
For Bm in the plane parallel to the screen, the projection of Kt on Bm divided by K is
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−m m
0

Bm

ΓT0

K0t

K t

Figure 7.9 Intersection circles of the dispersion sphere with the reciprocal plane containing the rods
and projection of the centers of the dispersion spheres onto this plane, in illustration of the meaning
of eq. (7.16). This is the situation shown in Fig. 7.8b, for several values of �0.

the azimuthal scattering angle ϕ measured from the (00) rod. Also, U0/K 2 = V0/E and
�0/K = ϑ . Hence the envelope curves are given by

2ϕ

(
Bm

K

)

+
(

Bm

K

)2

= ϑ2 + V0

E
, (7.15)

2ϕ

(
Bm

K

)

+
(

Bm

K

)2

= ϑ2. (7.16)

Very many Kikuchi lines are possible; those restricted to lie between the envelope curves
often show up as nearly continuous bands, sometimes appearing as split lines.

These equations describing the envelopes of the Kikuchi lines are shown graphically
in Fig. 7.9, where three intersection circles of the dispersion spheres (1), (2) and (3) are
shown just touching a rod. Their centers, determined by eq. (7.16), lie on a parabola.
The corresponding directions of the specular beam satisfy the condition (7.16). Since the
wave vector of the specularly reflected beam is given by (K0t , −�0), we find at once that
these parabolas can be transferred directly to the diffraction pattern as limits of the surface-
wave resonance region for the specularly reflected spot. Equations (7.14) also give the
envelope of Kikuchi lines belonging the same zone axis. Figure 7.10 shows the reso-
nance regions for several reciprocal rods in the [1̄11] zone-axis pattern for a ZnS(110)
surface.
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Figure 7.10 Schematic diagram of the surface-wave resonance region in a RHEED Kikuchi pattern,
giving the reflection indices. The 2̄2̄0 line does not appear in the pattern because of the refraction
effect. The convergent-beam reflection disk is indicated by the circle.

Surface

Incident beamDiffracted beam

Figure 7.11 Schematic illustration of convergent-beam RHEED.

For the observation of surface-wave resonance effects in RHEED, a convergent-beam
RHEED method (Ichimiya et al., 1980; Smith, 1992; Smith et al., 1992; Lordi et al., 1994;
Zuo et al., 2000) is convenient. The convergent-beam RHEED method uses a combination
of rocking-curve and azimuthal plots. In this method, a cone-like electron beam is used,
as shown in Fig. 7.11. The electron beam is focused on the crystal surface with a cone
angle of a few degrees. A convergent-beam RHEED pattern consists of elongated discs
instead of spots, as observed in Fig. 7.12. The intensity distributions in the discs arise
from the RHEED intensities as a function of incident angle and azimuth. Therefore, using
convergent-beam RHEED patterns we are able to measure the azimuthal dependence of
rocking curves simultaneously (Ichimiya et al., 1980; Smith, 1992).

Figure 7.12 shows a convergent-beam RHEED pattern from a ZnS(110) surface taken
with 100 keV electrons (Ichimiya et al., 1980). The pattern inside the reflection cone (refer
to Fig. 7.10) shows the angular dependence of the intensity of the specular reflection. The
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Figure 7.12 Convergent-beam RHEED pattern from a ZnS(110) surface. The cone angle of the
convergent beam was 10−2 rad. The axis of the cone of the incident beam is approximately parallel
to the [1̄11] crystal zone axis (Ichimiya et al., 1980).

strong horizontal line is the 440 Bragg reflection line. The lines indicated by the arrows,
which appear at the positions of the 4̄2̄2̄ and 2̄4̄2 Kikuchi lines, are split into two or three.
They are not the usual Bragg reflections, because the Bragg conditions are not satisfied at
these directions (Kikuchi and Nakagawa, 1933, 1934). These anomalous intensities appear
to have been produced by surface-wave resonance: comparing Fig. 7.12 with Fig. 7.10 we
find that a strong contrast of intensities is observed in these regions. The convergent-beam
reflection disk is indicated in Fig. 7.10 by the circle.

7.2.1 Resonances off azimuth

As the sample is rotated about the normal, the intersection of the Ewald sphere moves
along the reciprocal lattice rods. At the same time the Kikuchi envelopes move across the
pattern. When the envelopes cross the Ewald-sphere intersection on the (00) or non-(00)
rods there is often an enhancement of the intensity. This is quite a striking effect and can
dominate the diffraction patterns that are observed. For the non-(00) rods it is possible for
this enhancement to be at a point at which there is either a Bragg maximum or a resonance
condition. For the (00) rods the condition for a crossing by an oblique envelope, one of
those (the Kikuchi envelopes) move as the azimuth is varied, is different from that of a
Bragg maximum so that an intensity increase is likely to be due to a resonance.

It is not yet known whether these conditions offer a stronger opportunity to measure
RHEED intensity oscillations than other scattering geometries. One would expect roughness
to destroy the surface-wave resonance (SWR) condition, allowing intensity to leak out from
the sides of steps. Hence there should be a strong change in intensity and strong oscillations.
(Experimentally a strong effect is not always observed; probably this depends upon the
quality of the starting surface.) Especially for fractional-order beams, which can also be
enhanced, one expects to find this enhancement of the intensity oscillations. This needs
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Figure 7.13 Diffraction pattern from GaN(0001) 2 × 2, taken several degrees away from the 〈112̄0〉
azimuth. It shows the intensity enhancement observed when a Kikuchi line crosses the integer-order
beams. The fractional-order beams are not enhanced here. In this case the effect of the enhancement
is stronger than that of the Ewald circle.

to be examined. In this section we calculate this resonant condition. Later we discuss the
so-called “one-beam” condition, in which the dynamical calculations show sensitivities
mainly to the interplanar separations. An example that is probably an enhancement of the
non-specular beams is shown in Fig. 7.13, where a diffraction pattern for GaN(0001) is
shown, 7◦ away from the 〈112̄0〉 axis. This angle was determined by fitting the off-axis
form of eq. (7.16),

2 sin (ϕ + α)(Bm/K ) + (Bm/K )2 = ϑ2, (7.17)

where α is the rotation angle. For small angles one sees that the Kikuchi pattern just shifts
by a constant amount. Every bright beam seen has a different Kikuchi envelope passing
through it and yet not all these appear to be at the calculated Bragg maxima, suggesting
that they are resonances.

Of more usual concern is the enhancement of the specular beam, and this will be of some
interest in the calculation of dynamical intensities and the establishment of one-beam condi-
tions. The condition for the enhancement of the specular intensity for a GaN(0001) surface
is illustrated in the Ewald construction of Fig. 7.14. In this figure a Kikuchi envelope crosses
the specular beam. The construction shows the top view of a Kikuchi envelope in which
one leg of the Kikuchi line just reaches a reciprocal lattice rod and the other emerges at the
position on the (00) rod. If the angle of incidence matches the emergence angle then the
specular beam and Kikuchi envelope will cross. If the crystal is rotated by α and the external
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Figure 7.14 Top view of an Ewald construction showing a Kikuchi envelope that crosses the specular
beam. Here the sample has been rotated by an angle α, allowing the sphere just to reach the first
reciprocal lattice rod. The exiting beam leaves the crystal at zero azimuth.
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Figure 7.15 (a) Calculation of the specular-beam angle that crosses the Kikuchi envelope when the
crystal is rotated by an azimuthal angle of α. (b) Measurement of the specular intensity vs azimuthal
angle for GaN(0001) at a glancing angle of about 4.2◦ (shown).

glancing angle is ϑ then the emergence condition is, from eq. (7.12) with Kt = (K cos ϑ, 0)
and B = (B sin α, B cos α),

sin α = sin2 ϑ − B2/K 2

(2B/K ) cos ϑ
. (7.18)

The same relation can be obtained from eq. (7.13). This relation in the refracted and unre-
fracted cases is plotted in Fig. 7.15a for GaN(0001). The measured enhancement is shown
in Fig. 7.15b, where the crystal was rotated by a small amount, maintaining the incident
beam at approximately 4.2◦. The actual value of the incident angle and the intensity are
both shown in the figure. The rotation that gives enhancement is about 2◦, close to that
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predicted by eq. (7.18). A dynamical calculation for this surface is discussed later in sub-
section. 13.8.6. An important point is that as the crystal is rotated away from symmetry,
both the crossings of the Kikuchi envelope and the specular beam move to higher diffraction
angles. We will use this result to find the “one-beam” conditions – the azimuthal angles
where dynamical effects involving diffraction via more than one channel are a minimum.

7.2.2 Enhancements versus step interference

Enhancements due to Kikuchi lines occur at positions that can be confused with the splitting
of the diffracted beams due to the effect of a vicinal surface. In the latter case the diffracted
beam is broadened into a streak owing to steps on the surface. If a profile is measured then
there will be peaks due to the vicinality, as described in Section 6.4. If a Kikuchi envelope
crosses a streak there can be an enhancement and so an additional peak that confuses the
measurement of the step misorientation. Such a peak can be distinguished either by its
angular dependence or because a Kikuchi line can be seen to be crossing the streak. For
example, Fig. 7.16 shows a measurement of the diffracted intensity along a specular streak
from a Si(100) surface that was misoriented by 2.5◦. The 10 keV electron beam was incident
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Figure 7.16 The diffracted intensity along a specular streak from a Si(100) surface misorientated by
2.5◦. The adsorption of As on the Si produces additional splitting in the diffraction. These extra lines
need to be separated from Kikuchi features. (a) the peaks labeled n = 2, 4 are due to diffraction from
monolayer steps on the surface; the peaks labeled n = 1, 3 are due to differences in the scattering
factor between two types of steps on this surface; the peaks labeled (400) and (800) are bulk Kikuchi
features. (b) the peaks labeled n = 5/2, 7/2 arise from a four-layer step periodicity when As is
adsorbed (Pukite and Cohen, 1987a).
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at 65 mrad from glancing and directed 20◦ from the 〈011〉 direction, which for this surface
was close to pointing down the staircase of steps that resulted from the miscut. This is close
to an out-of-phase condition, where electron scattering from different terraces should be
half a wavelength out of phase and so cancel. In Fig. 7.16(a), the diffracted intensity along
the specular streak is plotted vs the final glancing scattering angle. The intensity along the
streak is not uniform but shows several strong peaks; it is somewhat more complicated than
the patterns shown in Figs. 6.9 and 6.10. Part of the structure is due to the regularity of
the steps and part to Kikuchi features. Specifically, the peaks labeled (200) and (400) are
clearly distinguished as bulk-enhancement features by the Kikuchi lines that intersect the
(00) streak. In contrast, there are no Kikuchi lines that cross the remaining peaks, and so
one suspects that the latter are entirely step related, as described in Section 6.4.

From eq. (6.29), the splitting at 65 mrad should be 36.3 mrad for single-layer 1.36 Å
steps. And so one might expect component peaks at 83.2 and 46.9 mrad. But on Si(100) the
terraces are reconstructed, and they alternate between 1 × 2 and 2 × 1 structures because
there are two sublattices. As a consequence, the structure factor of each terrace alternates
between type A and type B terraces, giving rise to incomplete cancellation at the out-of-
phase condition, and so there is a peak at 65 mrad. Another-way of viewing the situation
is that the alternation between A and B sublattices acts like a double-layer periodicity. The
broken-line diagonal rods in Fig. 6.8 are separated by 2π/( 1

2 a sin ϑc) and their intersection
with the Ewald sphere results in the peaks in Fig. 7.16(a). Each diagonal rod intersects the
(00) rod at Sz = 2nπ/( 1

2 a).
Figure 7.16(b) shows the result of a measurement of the RHEED intensity along the (00)

streak after exposure of the surface to arsenic. There is now a four-layer periodicity, which
Pukite interpreted as a mass migration producing an array of three- and single-layer steps
(Pukite and Cohen, 1987b, c; Pukite et al., 1987c). Jeong and Williams (1999) subsequently
did a beautiful study of the thermodynamics of these processes.

Finally, the Kikuchi lines are expected to correspond to the bulk lattice but unlike the
interference between steps, which results from path differences in vacuum, the Kikuchi
features are expected to be significantly affected by refraction. The features labeled (200)
and (400) correspond to n = 2, 4 for eq. (7.1) with G = 4πn/a, using a bcc reciprocal
lattice, a = 5.43 Å and, at the (00) rod, kϑf,internal = G/2, i.e.

ϑf =
(

4π2

k2a2
n2 − VI

V

)1/2

,

where V is the accelerating potential of the electron beam. This gives calculated intersections
with the (00) rod at ϑf = 33 and 85 mrad, which is very close to what is measured, fitting
with an inner potential VI = 9.5 V. Without refraction, the internal angles would occur at
45.2 and 90.4 mrad. Experimentally, one also can see a Kikuchi line crossing the (00) rod
at these small peaks. Note that, for this (00) rod, these are horizontal Kikuchi lines and also
correspond to Bragg conditions. The enhancement, in this case, is thus a combination of
processes but, once again, the Kikuchi lines are a convenient marker.
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Real diffraction patterns

Measured diffraction patterns exhibit a range of features, depending upon the degree of sur-
face and subsurface perfection. Low-index Si surfaces and smooth GaAs surfaces prepared
by MBE can show near-ideal behavior, while epitaxial films of GaN can be weak and diffuse
or show features reminiscent of transmission electron diffraction. Even so, these patterns
are often interpretable without analysis of the diffracted intensities, just with consideration
of their geometrical aspects, as described in Chapter 6. One can not only determine the
symmetries of atomic arrangements but also characterize the presence of some types of
imperfections, the degree of surface roughness and the sizes of domains and terraces –
in short, crucial information for many types of surface study. In this chapter we develop
straightforward methods for analyzing patterns, giving a number of examples.

We will continue to use the Ewald construction described in Chapter 5, but now applied to
samples with a range of domain sizes and domain orientations. This becomes complicated
except for the simple case in which the incident beam is directed along a principal axis
of a perfect surface. At off-symmetry conditions or for defected surfaces the patterns are
often difficult to interpret. Off-symmetry incident azimuths are especially interesting, since
for these the analysis of the diffracted intensities proves simpler and often they are the
only azimuths available to a film grower. Misoriented surfaces, having been discussed in
Section 6.4, will not be considered here. Therefore in the following we will examine perfect
low-index surfaces, with consideration of on-axis and non-symmetric incident azimuths,
gradually increasing the level of complication. Then we will examine the modifications of
the diffraction pattern made by various classes of defects in the surface film.

8.1 Perfect low-index surfaces

Figure 8.1 shows a RHEED pattern from the Si(111)7 × 7 surface in which circular ar-
rangements of diffraction spots are clearly apparent. This is an example of the pattern from
a real surface that approaches the flat, infinite, two-dimensional ideal. For electron diffrac-
tion, a surface is regarded as flat when the terrace widths are larger than the width that the
instrument is capable of resolving (Section 8.7). Si(111) surfaces consist mostly of perfect
terraces that are typically larger than 300 nm and in some cases larger than 1 µm. For the
electron guns used in RHEED, the distance over which electrons interfere coherently is of
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Figure 8.1 A RHEED pattern from a Si(111)7 × 7 surface measured at a glancing angle of 2.7◦ using
20 keV electrons. The incident direction is 〈112̄〉 (Courtesy of H. Nakahara).

the order of 1000 nm in the beam direction, so that the pattern of Fig. 8.1, the Si(111)7 × 7
surface, is approximately ideal. As described in Chapter 5, the diffraction spots appear at the
Laue–Ewald conditions. The resulting pattern consists of concentric semicircles of spots,
which for this perfectly oriented low-index surface are centered at a point on the shadow
edge.

The RHEED pattern of Fig. 8.1, showing semicircles of diffraction spots each correspond-
ing to a different Laue zone, is for the simplest case, in which the incident beam is directed
along a principle azimuth of the surface. The zeroth Laue zone contains the specular beam
and so its radius must be L tan ϑi, where L is the distance from the sample to the phosphor
screen, the camera length, and ϑi is the glancing angle of incidence. This radius is indepen-
dent of the incident energy – the specular beam always satisfies the condition that the angle
of incidence equals the angle of reflection. If the camera length is known, and if the straight-
through beam is visible on the screen or if the position of the shadow edge can be accurately
determined, then this radius can be measured and the glancing incident angle ϑi determined.

The camera length can be determined from the azimuthal separation of two diffracted
beams. In this case the camera length is given as K aD1/(2π ), where D1 is the distance
on the screen between two beams parallel to the surface and a is the separation between
rows that are parallel to the incident beam. If the radius of the first Laue zone is D0 then
the incident angle is given by ϑi = 2π D0/(K aD1). Hence, simply by measuring the ratios
of distances on the screen the incident angle, and in fact most desired quantities, can be
determined.

Alternatively one can use the higher-order Laue zones to determine the incident angle.
This is especially important when the straight-through beam is not observed. The construc-
tion, also at a symmetry azimuth, was shown in, for example, Fig. 5.12. In this cross-sectional
view, parallel momentum is conserved when K cos ϑi = nB1 + K cos ϑf,n , where K is the
electron wave vector, B1 is the smallest separation between two reciprocal lattice rods in
the direction of the incident beam and ϑf,n is the final glancing scattering angle to the nth
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Figure 8.2 RHEED patterns from a Si(111)7×7 surface for various incident azimuthal angles.

Laue zone. For small angles, as is nearly always the case in RHEED,

ϑ2
f,n = ϑ2

i + 2nB1

K
. (8.1)

To obtain the incident angle without having to know the camera length, we set the measured
distance on the phosphor screen Dn = L tan ϑf,n ≈ Lϑf,n . Then for the nth Laue zone the
radius is approximately given as

Dn � D0

(

1 + 2nB1

Kϑ2
0

)

. (8.2)

From the slope of the plot of (Dn/D0)2 vs n, we can calculate the incident glancing
angle ϑ0.

At azimuthal angles away from a symmetry direction, the patterns appear more com-
plicated since the circle corresponding to the intersection of the Ewald sphere and the
reciprocal lattice is projected onto the phosphor screen. It is still approximately a circle
but with a center that is displaced from the origin. For an azimuthal angle ϕ0 away from a
certain zone axis, the radius of the nth Laue zone is given in reciprocal space as

Rn = [K 2(1 − cos2 ϕ0 cos2 ϑ0) + 2nB1 K cos ϑ0 cos ϕ0 − n2 B2
1 ]1/2, (8.3)

where Rn is measured between a point on the nth Laue zone and the point (Kϕ0, Kϑ0).
Again, the origin is taken as a point on the shadow edge, halfway between the straight-
through and specular beams.

To illustrate these asymmetric diffraction conditions, Fig. 8.2 shows RHEED patterns
taken at various azimuthal angles for a Si(111)7 × 7 surface. There is a dramatic change
in the pattern as the sample is rotated and, in fact, the full symmetries of the crystal are
usually not readily apparent if only one azimuth is available. If the sample can be rotated
about its normal, as here, then the specular beam would be seen to remained fixed and the
non-specular beams would be seen to move along the reciprocal lattice rods until, when
their angle with respect to the shadow edge is large, they reach the (00) rod. This structure
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shows many Laue zones because of the large unit cell. It is also a well-ordered surface and
the diffracted beams (streaks) are quite sharp (short). Patterns from other surfaces are not
often this beautiful.

On any of the Laue circles or zones shown in Fig. 8.2a, the reconstruction can be deter-
mined by counting beams or spots. In many instances, the strongest beams are integer-order
beams, i.e. those that correspond to the unreconstructed Si(111) surface. The fractional-
order beams of the 7 × 7 surface are the six weaker spots in between these integer-order
beams on each Laue circle. (To be certain that the assignment is correct, one should cal-
culate the lattice parameter from the angular separation of the integer-order beams.) The
reconstruction is found by mapping the position of the beams and then inverting the pattern
using an Ewald construction. If many zones are apparent on the screen, as in this case,
then the reconstruction can be determined from one pattern. If only the zeroth Laue zone
were vı́sible then the periodicity could be obtained only in the direction perpendicular to
the incident azimuth. For periodicities in other directions, the pattern from another azimuth
would have to be measured.

As the sample azimuth is varied, as in the panorama shown in Fig. 8.2, the diffraction
pattern changes dramatically, as mentioned above. Different beams become bright or weak
as the Laue–Ewald conditions and surface-wave resonance conditions change. The specular
beam remains fixed, usually bright, and the non-specular beams move up or down along the
reciprocal lattice rods. This last, striking, feature of the diffraction pattern is a result of the
condition on parallel momentum conservation. For example, for a rod in the first zone, take
an incident beam at an azimuth to a symmetry direction such as ϕ and diffracted glancing
and azimuthal angles ϑ f and ϕ f , respectively; then one has K cos ϑ f sin ϕ f = B1 cos ϕ, or

sin ϕ f = B1

K

cos ϕ

cos ϑ f
. (8.4)

For small ϕ and ϑ f , ϕ f will not change much with ϕ so that, as the sample azimuth is
increased, the beam will appear to rise along the reciprocal lattice rod, keeping ϕ f = B1/K .
When ϕ is large enough the beam will move toward the (00) rod until, at ϕ = 90◦, ϕ f will
equal zero.

Variation in the azimuthal angle can also produce a dramatic change in the intensity
of a beam and in the number of beams visible in the pattern. For measurements relying
on beam intensity this can often be used to advantage, since having fewer beams tends to
produce an increase in the signal of the remaining beams. Further, for the determination of
surface structure by the comparison of measurements of the beam intensity with dynamical
calculation, measurement at an off-symmetry azimuth greatly simplifies the calculation.
At off-symmetry azimuths where only a few beams are visible, the diffracted intensity vs
glancing angle, the rocking curve, is somewhat more kinematic and simpler to interpret. In
measurements of a rocking curve made to determine surface structure (cf. the discussion of
dynamical theories in Chapters 12–14 and also Chapter 15) one tries to calculate the peak
angular positions of the intensity. Near a symmetry condition, slight changes in azimuth will
produce a strong variation in the intensity – hence at these conditions it is crucial to maintain
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a fixed azimuth, by maintaining the symmetry of the diffraction pattern. At off-symmetry
azimuths, where it is more difficult to keep the azimuth constant as the glancing angle is
varied, it turns out that the rocking curve is not so sensitive to azimuth, so that one can still
make a good measurement.

8.1.1 Calculation of the spot pattern

Calculation of the expected spot pattern from a particular surface reconstruction involves
a straightforward application of the Ewald construction, as described in Chapter 6, since
this construction maps a given two-dimensional reciprocal lattice rod into a pair of angles
ϑ f , ϕ f . These two angles correspond to the vertical and horizontal axes on the phosphor
screen, which are perpendicular and parallel to the sample, respectively. The important point
to remember when examining a reciprocal-space map is that one is measuring scattering
angles.

As an example of the calculation of a spot pattern, choose a reference direction such
that ϕi = 0 is along a symmetry axis. Let the electron beam have a glancing incident
angle ϑi and an incident azimuth ϕi , so that the origin of the Ewald sphere is at the point
(−K cos ϑi cos ϕi , −K cos ϑi sin ϕi , K sin ϑi ). By this choice of origin, as shown in Fig. 8.3
we have rotated the Ewald sphere, leaving the sample and its associated reciprocal lattice
fixed, to give a positive incident azimuth ϕi . Alternatively, we could have fixed the Ewald
sphere to match most experiments; however, the first choice is a little simpler algebraically. If
the incident beam hits the origin of reciprocal space at (0, 0, 0) then the final diffracted beam
will end on the Ewald sphere at the point (Sx , Sy, Sz). Those beams that are allowed will
differ from the incident beam by a parallel momentum transfer (Sx , Sy) that is equal to one
of the reciprocal lattice vectors. For example, on the screen the specular beam corresponds
to (Sx = 0, Sy = 0, Sz = K sin ϑ f + K sin ϑi ) and the straight-through beam corresponds
to the origin of reciprocal space. More generally, if the sample is rotated by ϕi , as shown in
the figure, a reciprocal lattice vector at (Sx , Sy) maps into the point that satisfies

K 2 = (Sx + K cos ϑi cos ϕi )
2 + (Sy + K cos ϑi sin ϕi )

2 + (Sz − K sin ϑi )
2, (8.5)

+x

+y

+z

(Sx, Sy, Sz)

OJi

K

K

Figure 8.3 Illustration of the choice of origin for computation of the diffracted beams.
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or, more simply, Sz is given by the solution to the quadratic equation

0 = S2
z − 2K sin ϑi Sz + [

S2
x + S2

y + 2K cos ϑi (Sx cos ϕi + Sy sin ϕi )
]
. (8.6)

To obtain the final angles into which these reciprocal lattice vectors map, we use the relations

Sz = K (sin ϑ f + sin ϑi ), (8.7)

Sx = K cos ϑ f cos ϕ f − K cos ϑi cos ϕi , (8.8)

Sy = K cos ϑ f sin ϕ f − K cos ϑi sin ϕi . (8.9)

For small angles these correspond to

ϑ f = Sz/K − ϑi, (8.10)

tan ϕ f = Sy/K + sin ϕi

Sx/K + cos ϕi
, (8.11)

where care must be taken to determine the correct quadrant in taking the tangent. Finally,
we subtract ϕi from ϕ f to get the correct screen display.

Figure 8.4 shows a calculation of the diffraction pattern measured from a Si(111) 7 × 7
surface corresponding to that shown in Fig. 8.2. The reciprocal lattice vectors of the 7 × 7
structure were successively set equal to (Sx , Sy) and the corresponding (ϑ f , ϑi ) calculated
via eqs. (8.6), (8.11) and (8.11). The integer-order beams are indicated as the larger
circles and the beams due to the superstructure are indicated as dots. The circles of dots
corresponding to eq. (8.3) are readily apparent. The RHEED patterns shown here were
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Figure 8.4 Calculation of the Si(111)7 × 7 Ewald construction at 0◦, 10◦, 20◦and 30◦ azimuthal angles
of incidence. Since the reciprocal lattice rods are assumed to be lines, with no finite-size broadening,
the diffraction pattern is a set of dots and not streaks.
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calculated for an electron energy of 10 keV at an incident glancing angle of 3.8◦at four
different azimuths.

8.1.2 Transformation to a LEED pattern

Unless the pattern is simple, it is often difficult to determine the symmetry of the RHEED
pattern. It is sometimes useful to convert it to a LEED pattern. An elegant prescription for
this was demonstrated by Ino (1977) in which a spherical fluorescent screen was used to
transform the pattern. Here we demonstrate a simple method to extract the symmetry of the
reconstruction, even if in an off-symmetry direction.

For this example, a GaN(0001)2×2 surface structure was prepared on an MOCVD sub-
strate. Then the substrate was cooled to about 500 ◦C. The resulting patterns, shown in
Fig. 8.5, appeared to be from a 6× reconstruction with two missing beams in the zeroth
Laue zone.

To analyze the diffraction the ϑ and ϕ coordinates of each diffracted beam were de-
termined from the TIFF images. These two angles are shown on the measured diffraction
pattern. The coordinates of the origin (halfway between the (00) rod and the incident beam)
were measured in order to obtain the incident angle and the separation between the streaks
was also measured in order to obtain the distance from the sample to the screen. The
measured coordinates are shown (upside down) in Fig. 8.6a. Then, using the transformation

Sx = K cos ϑ − K cos ϑi ,

Sy = K sin ϕ cos ϑ,
(8.12)

the corresponding points of the two-dimensional reciprocal map were calculated. These
calculated coordinates were then plotted in Fig. 8.6b. Note that if the data were measured
away from a symmetry axis, the plot would just appear to be rotated about the origin. This
map shows that the surface structure is not a simple reconstruction but, rather, a mix of two
domains, one a 2 × 2 and the other a

√
3 × √

3R30◦. The reciprocal-space and real-space
lattices are shown in Figs. 8.6c and 8.6d, respectively.

θ

φ

Figure 8.5 Diffraction pattern of a GaN(0001) surface that has been cooled to about 500 ◦C. The
left-hand pattern was obtained with the beam in the 〈11̄00〉 direction.
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Figure 8.6 Extraction of the symmetry of the pattern in the 〈11̄00〉 direction. (a) Digitized version
(inverted) of Fig. 8.5a. (b) Diffraction pattern transformed using eq. (8.12). (c) Superposition of 2×2
and

√
3 × √

3R30◦ reconstructions in reciprocal space. (d) Superposition of the two structures in real
space.

With this transformation it is a simple matter to determine the symmetries of a one-domain
structure, even when the beam is off azimuth. Further, the azimuth can be determined from
the rotation of the transformed pattern.

It is also not very difficult to apply eq. (8.12) to map the entire RHEED pattern, pixel by
pixel, to give a gray-scale LEED-like pattern. However, the compression of the pattern in
the direction normal to the surface can make it difficult to see weak features, even if plotted
as a negative image. Hence the simpler plot of a few points, shown in Fig. 8.6, is probably
superior if the coordinates of the points are easily obtained.

Nonetheless, to determine the symmetry of complicated patterns there is no substitute
for observation of the diffraction pattern at several symmetry azimuths, using accurately
known incident angles, and clear identification of the integer-order beams. Then, depending
upon the intensity of the patterns and the number of beams visible, either a simulation of the
pattern in reciprocal space or transformation to a LEED-like view enables one to identify
the reconstruction.

8.2 Streak patterns

The streak patterns usually observed in RHEED result from diffraction from the top few lay-
ers of a material for which the long-range order parallel to the surface plane is limited. For ex-
ample, the case of a finite two-dimensional lattice was discussed in Section 6.1. If the length
of the lattice is L in one of the dimensions then the reciprocal lattice rod has width 2π/L and
the intersection of the Ewald sphere with the lattice produces a beam that is elongated into a
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00 1010 00 0101

Figure 8.7 (a) RHEED pattern from a GaAs(001)2 × 4 surface with the beam in the [110] direction.
The long streaks are due to antiphase disorder and double scattering. (b) The same surface but with
the beam in the [11̄0] direction. The streaks are due to random epitaxial islands on the surface. The
mean island diameter is perhaps 500 Å. The half-order Laue zone appears at too high an angle to be
seen in this pattern.

streak, perpendicular to the surface, with angular width δϑ = 2π/(K L sin ϑi ), where ϑi is
the glancing angle of incidence. Parallel to the surface the angular width of the beam is the
larger of 2π/(K L) or δϑi , where δϑi is the range of angles in the incident beam. Usually
L needs to be less than ≈ 200 Å to see broadening above δϑi and less than ≈ 1 µm to
begin to see elongation into a streak. This rough estimate is a measure of the breakdown of
momentum conservation parallel to the crystal surface and is known as finite-size disorder.

A real surface, of course, is usually much larger than the small crystals necessary to
see broadening in a RHEED pattern. Some defect must limit the long-range order and
consequently the surface distance over which coherent interference can be obtained. For
example, the diffraction from a random arrangement of small ordered domains would be
the sum of the diffracted intensities from each, taken separately, as discussed in Section 6.2.
The diameter of the reciprocal lattice rods would be approximately 2π divided by the mean
domain size. Several variations of finite-size disorder are often observed. These are the
focus of this section.

For the GaAs(100) surface, two main types of broadening mechanisms are observed.
For the streak pattern in Fig. 8.7b, and much more so in the bottom left of Fig. 2.2 or in
Fig. 17.1b, random atomic steps that develop during layer-by-layer growth broaden each
of the diffracted beams, lengthening the streaks in a direction perpendicular to the surface.
These randomly arranged steps or islands form a disordered version of the regular array of
steps described in Section 6.5. The steps can be due to islands on top of islands or even
to islands just on one layer with varying terrace lengths and island separations. The mean
island diameter plus separation, which is now the correlation length, will play the role of
an average domain size and broaden the reciprocal lattice rods. At the intersection with the
Ewald sphere, the beams will broaden into streaks. Step disorder is treated quantitatively in
Chapter 17, where the shape of the streaks is discussed. It is shown that, depending on the
coverage of the surface in the different layers and on the angle of incidence, the streak will
consist of a central spike and one or more broad parts. To first order, the width of the broad
part is 2π divided by the sum of the average island and hole diameters. This broad part is
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Figure 8.8 (a) A RHEED pattern from a Si(111)
√

3 × √
3-Au surface at room temperature with 1 ML

at a glancing angle of 2.8◦, [12̄1] incidence and E = 10 keV. (b) A 20 nm × 20 nm STM image of
the same surface as in (a) (Khramtsova et al., 1999).

dominating the pattern here. The second type of broadening observed on the GaAs(100)
surface is antiphase disorder. It is a one-dimensional disorder related to the separation of
reconstructed domains. In the two-fold, 〈011〉, direction of the GaAs(100)2 × 4 structure,
each row of the reconstruction can shift its origin by a lattice parameter. Every time this
happens it leads to a domain width in the [011] direction that varies. Disorder in the [011]
direction broadens the fractional-order two-fold reciprocal lattice rods and gives rise to the
half-order streaks in Fig. 8.7.1 Surprisingly, the integer-order streaks – the (10), (00) and
(1̄0) are shown in the figure – are also broadened in this pattern, which must be the result of
double scattering. This disorder, known as antiphase disorder, is discussed in more detail
in Sections 8.6 and 17.7.

Figure 8.8 shows a more complicated RHEED pattern, which is an example of streaks
due to finite-size domains. In this case, Au adsorbed on Si(111) in a

√
3 × √

3 structure
forms a snake-like structure with distances between ordered domains of about 50 Å. The
STM image in Fig. 8.8b shows the two domains – the dark regions are the ordered structure
and the lighter regions are disordered; these lighter regions consist of layers in which silicon
and gold atoms are mixed. The corresponding RHEED pattern, Fig. 8.8a, shows a series
of streaks arranged on the zeroth Laue circle. One can also see a number of Kikuchi lines
crossing the streaks, producing some structure at the intersections. The intensity profile along
the (1/3, 1̄/3) streak (indicated by the arrow) is plotted at the left of the figure and contains
the main features of this diffraction pattern. For these data the angular scale was constructed
from the known lattice parameter of Si and the separation of the (fractional-order) streaks,
4π

√
2/(3K a). The overall angular width of the streak is given by 2π/(K L y sin ϑ), which

in this case corresponds to about a domain size L y = 50 Å. The sharp peak or central spike,

1 cf. Fig. 17.18 for a view of the broadening from a different azimuth.
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(a)

(b)

Figure 8.9 (a) A RHEED pattern from Si(111)
√

3 × √
3-Au surface (1 ML) at 500 ◦C at a glancing

angle of 2.8◦ and [12̄1] incidence. (b) A 10.4 nm × 10.4 nm STM image of the same surface
(Khramtsova et al., 1999).

labelled (2), is due to the long-range order over the surface2 and results from correlations
between scatterers in different domains; these correlations arise because the domains are
ordered by the Si substrate surface. This is described in more detail in the discussion of
disorder in Chapter 17 and Section 8.6. Last, there are peaks such as (1) and other smaller
features that correspond to enhancements of the scattering due to surface-wave resonances.
These were described in Section 7.2. If the domain disorder did not broaden the beam
there would be no enhancement, since there would be no scattering at this value of parallel
momentum transfer.

In the direction perpendicular to the streaks (and parallel to the surface) the beam is only
slightly broadened, as shown in the scan underneath the pattern. In this case the full width at
half maximum (FWHM) of the streak is about 4 mrad, corresponding to 2π/(K L y), which
is about 30 Å. Since both peak (2) and this latter feature are about the same angular width,
this is likely to be near the limit of the instrument in this case, and so the scan along the
length of the streak is a better measurement of the domain size, assuming that there is no
anisotropy. The reciprocal lattice rod thus appears to be broadened roughly uniformly in
all directions, although, as usual, RHEED is more sensitive in the direction parallel to the
incident beam.

Figure 8.9 shows a RHEED pattern and an STM image from the same surface as in Fig. 8.8
but at a temperature of about 500 ◦C. At such a high temperature the domain boundaries
observed at room temperature vanish in the STM image, and at the same time the streaks
become spots arranged on the Laue zone circles. Though the Kikuchi lines are seen, there
are no surface-wave resonance enhancements apparent. The only beams that are not sharp
are the integer-order beams at low take-off angles; here the diffracted beams are a little
elongated and curved due to energy fluctuations, as described later in subsection 8.7.2.

This diffraction pattern from the low-temperature data of Fig. 8.8a corresponds to a
disordered version of the calculated diffraction from a regular array of one-dimensional
islands, as shown in Figs. 6.16 or 8.10. In the ordered case there are satellite features on
either side of the specular beam whose separation is 4π/L , where L is the sum of the island
diameter and island separation (i.e. the repeat distance). In this case there is a range of

2 The width is usually limited by the instrument.
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4p/L
4p/L

2p/d
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Figure 8.10 Diffraction pattern from Fe islands on Fe(100) whiskers for the beam in the [100] azimuth,
after Arrott et al. (1989). For this measurement nine layers of Fe were deposited. Here a is the lattice
parameter, d is the step height and L is the mean separation between island centers.

island sizes and the main beam is just broadened to a width of approximately 2π divided
by (L/2), where L/2 is the mean island size. To see well-defined satellite peaks, rather
than disordered broadening, one needs to require that there are few islands below some
minimum cutoff (Pukite et al., 1985). The ordered case is discussed in the next section.

8.3 Ordered islands

A surface with crystallographic islands that have a preferred separation will give rise to
diffraction patterns in which the streaks are split into two. An example is the case of Fe
on Fe(100), first reported by Arrott et al. (1989). The pattern, shown in Fig. 8.10, shows
what appears as sets of streak doublets. The interpretation follows that of Section 6.5.
Here, about nine layers of Fe were deposited onto an Fe(100) whisker surface at 20 ◦C
with a monolayer time of about 50 s. These whiskers, which look like blades of grass, are
extremely smooth and the film grows in an exceptional layer-by-layer fashion. We assume
that the last layer is only partially complete and that the observed diffraction pattern is
due to scattering from monolayer high islands and the supporting layer directly below.
Interference from the islands and supporting layer is either in phase or λ/2 out of phase,
resulting in the observed modulation along the rods in the z direction. Fe has a bcc lattice,
and so the condition for in-phase scattering will be roughly at the same values of Sz as those
for the three-dimensional points of the fcc reciprocal lattice – hence the non-(00) rod beams
are offset from the in-phase conditions on the (00) rod. Each beam consists of satellites like
those seen in Fig. 6.16b, though in this case modified for two dimensions. One finite island
and its surrounding terrace will produce a broadened rod with some modulation, like that in
Fig. 6.16a. If this island is repeated in a two-dimensional lattice then sharp rods will be picked
out, like those in Fig. 6.16b, separated by 2π/L where L is the distance between island
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Figure 8.11 Combined real-space and reciprocal-space measurements of iron deposited on iron
whiskers. Diffraction from islands is seen both in the patterns in the second column here and in
the pattern in Fig. 8.10. In the top STM image the field of view is 500 Å while in the middle and
bottom images it is 2000 Å.

centers. If there are domains of this two-dimensional array that are of different orientations
but still epitaxial then the cylinders shown in Fig. 8.10 will be obtained. The modulation
will be more or less complete, depending on how close the surface is to half coverage. Since
the beam at the center of the cylinders appears to be quite sharp, the long-range order must
be high. For these data it appears that the island–island separation L is about 16 lattice
parameters or about 45 Å. Similar RHEED and real-space STM observations were made on
these surfaces by Stroscio and Pierce (1994) and can be seen in Fig. 8.11. This figure shows
a measurement of the specular RHEED intensity vs time during Fe deposition (see also
Purcell et al., 1988). Layer-by-layer growth is evident (see Chapter 19). The diffraction
patterns and STM images were taken at the time indicated by the arrows. These Fe films,
corresponding to patterns like those of Fig. 8.10, show exceptionally well-ordered islands.

8.4 Transmission patterns

Since electron inelastic mean free paths at typical RHEED energies are about 20 nm,
transmission through features with very small lateral dimensions or through sharp edges
can contribute to the observed pattern in a way very different from the reflection patterns
described thus far. Examples are shown in Figs. 8.12–8.14. Here, the incident beam can
scatter from planes further into the crystal in the z direction than it could without energy
loss for a flat surface. Scattering from several planes will strongly modulate the intensity
along the reciprocal lattice rod. The main consequence is that the streaks observed from
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30 nm

z

Figure 8.12 Transmission through a nanometer-sized feature, several atomic layers high, that defines
a three-dimensional scattering region. This might be the top of some surface feature. For incident-
and exit-face angles greater than about 30◦, refraction can be neglected.
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Figure 8.13 Ewald construction for transmission through a small feature. Finite-size broadening
allows the Ewald sphere to intersect several reciprocal lattice points at the same time. The arrow gives
the beam direction.

a two-dimensional surface are not observed when transmission dominates. The coherently
scattered region in this case is limited by the feature size in the x and y directions as well
as, for the z direction, the shape of the small feature. Such three-dimensional features are
usually far apart and scatter incoherently. If the incident- and exit-face angles are greater than
about 30◦, refraction can be neglected and there is then no difference from the diffraction
from a bulk reciprocal lattice.

For the transmission case, the reciprocal lattice is an array of points each broadened owing
to the finite size of the scattering region. Since more than the top few planes contribute to
the diffraction, the intensity is very low in between the diffracted beams. Depending on how
many planes contribute, there might be only the remnant of a streak or perhaps none at all.
For example, a square feature of size L × L will give rise to reciprocal lattice spots with
dimensions 2π/L × 2π/L parallel to the surface and 2π/Lz normal to the surface, where
Lz is the thickness of the sample that is involved in the scattering process. As shown in
Fig. 8.12, this last factor depends on the shape of the particular feature. The resulting Ewald
construction is shown to scale in Fig. 8.13 for a 10 keV electron beam at an angle of incidence
of 1.5◦. Here a hexagonal lattice is chosen, with a = 3.18 Å and c = 5.1 Å. The observed
pattern depends somewhat on the range of angles available on the phosphor screen. At low
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final scattering angles, the Ewald sphere intersects a number of reciprocal lattice points that
are broadened by the finite-size effect. On the phosphor screen one would observe a pattern
that is an image of the bulk reciprocal lattice. At these low final scattering angles the Ewald
construction can be approximated by a plane slicing through a broadened three-dimensional
lattice, as illustrated in Fig. 8.13. Since the intersection with each reciprocal lattice point
occurs over a range of final Kf-vectors, the observed diffracted beams are quite broad.
Further, the pattern is nearly independent of the incident angle as long as the finite-size
broadening is sufficiently large. This means that there is neither a real specular beam nor
the usual striking changes in the pattern with small variations in the incident azimuth. At
very large scattering angles, as seen by extending the Ewald sphere in Fig. 8.13, in this
case about 12◦ from glancing, the Ewald sphere intersects the first Laue zone. This will
appear more like the two-dimensional case – the intersection of the Ewald sphere with the
first-zone rods will occur on a circle. However, the intensity is expected to be relatively
weak since the scattering angle is so large and the atomic scattering factor is small at large
angles.

Transmission diffraction patterns are often seen in the growth of GaN, especially during
the nucleation of the buffer, when growing takes place under excess nitrogen conditions,
or after sublimation. A relatively sharp pattern can be obtained by heating an MOCVD
film in vacuum. Since the hcp lattice is an hexagonal lattice with basis atoms at u = 0 and
a1/3 + 2a2/3, one expects the structure factor for G = hb1 + kb2 + lb3 to be

|F |2 = |1 + exp [i2π (h/3 + 2k/3 + l/2)]|2

The structure factor of wurtzite was not considered since the scattering factors of Ga and N
are quite different. For an hcp lattice with the electron beam incident in the 〈11̄00〉 direction,
so that h = −k,

|F |2 =






4, h = 0, l even,

3, h = 1, 2, l odd,

1, h = 1, 2, l even,

0, h = 0, l odd.

With the beam incident in the 〈12̄10〉 direction, h = k and

|F |2 =
{

4, l even,

0, l odd.

This says, for example, that for (hk) = (00) the beam at l = 1 (odd) should be structure-
factor forbidden, that is, normally to the surface the planes of atoms are separated by c/2
and so the beam should be at multiples of 4π/c.

However, as can be seen in Fig. 8.14b, in the 〈12̄10〉 direction (with closely spaced
streaks in the diffraction pattern) the action of the plane at c/2 does not cancel the diffracted
beam, i.e., the diffraction pattern looks like one from planes separated in the z direction by
c = 5.2 Å. This could be due to a double scattering effect. In the 〈11̄00〉 direction, where
the beam at (001) is very weak, there cannot be double scattering, however.
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(a) (b)

Figure 8.14 Transmission diffraction pattern from GaN(0001), (a) in the 〈11̄00〉 direction and (b) in
the 〈12̄10〉 direction. Along the (00) beam, the l = 1 beam is missing in (a) and relatively strong in
(b).
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Figure 8.15 On the right, a top view of the transmission diffraction pattern in reciprocal space. The
transmission pattern of Fig. 8.14a is mapped onto a LEED-like pattern using eq. (8.12). The diameter
of the symbols is artificial. In the left panel, the points are plotted vs pixel number.

Close inspection of Fig. 8.14a shows many weak beams, especially off to the side of the
pattern. Apart from the straight-through beam and a spurious spot due to the electron gun
filament (between the (00) and (10) rods) one can use the map of eqs. (8.12) to examine
these reflections. Even though they are transmission features, they occur at the Laue–Ewald
intersection with some portion of a broadened rod. Superposing the mapped transmission
pattern of Fig. 8.14a onto a calculated 1 × 1 reciprocal lattice of GaN, one obtains the pattern
shown in the right-hand panel of Fig. 8.15. After compression to a LEED-like pattern, one
can see that these bulk diffraction beams all lie on the reciprocal lattice rods. The five
beams at about Sx = 10 Å−1 are seen so closely spaced in the pattern because there is no
structure-factor cancellation along the (hk) = (32) beam. Note also the intersection of the
Ewald sphere, indicated by part of a 50 Å−1 circle drawn through the origin.

Three-dimensional diffraction patterns are not always easy to interpret. First, the
diffracted beam might be transmitted through a few surface features, and overemphasize
the nature of the entire surface roughness. Second, reflection diffraction patterns from dis-
ordered surfaces in which the correlation length is short can mimic a transmission pattern,
as will be described in subsection 8.5.2. The main difference for now is that the angular
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positions of the apparent transmission features will depend on the incident angle because,
in this reflection case, refraction is important.

8.4.1 Faceting

Each beam in the transmission pattern shown schematically in Fig. 8.13 can have a char-
acteristic shape if the feature producing the transmission pattern has boundaries that are
low-index planes, or facets. From the pattern one can determine the orientation of the facets
and the degree to which they are aligned. Faceted features form on a surface, for example
during the growth of InAs on GaAs(100), as small pyramidal huts and are markedly regular.
It is hoped that current studies of such self-assembly processes will give rise to quantum ar-
rays useful for optoelectronic devices. Figure 8.16 shows the characteristic RHEED pattern
of inverted vees or chevrons from Inx Ga1−x As features on GaAs(100) (Whaley and Cohen,
1990b). Using this RHEED pattern, the facet normals are determined from the vertex angle
of the chevrons.

Figure 8.17 shows schematic illustrations of a pyramid with the {311} facets of an fcc
crystal formed on a fcc(001) surface. Figure 8.18 gives examples of the corresponding
diffraction patterns. For [010] incidence with a low glancing angle, the electron beam sees
the projection of the pyramid in Fig. 8.17b. Electrons strike the pyramid and pass through
(113) and (1̄13) facets. These electrons are refracted, going into the pyramid, and then leave
the pyramid through the (11̄3) or the (1̄1̄3) facets. For a refraction process in which the
electron beam enters via the (113) facet and exits from the (11̄3) facet, the trajectory of
the electron beam is along the facets which include the vectors of the [113] and the [103]
directions. Similar processes take place for electrons which enter via the (1̄13) facet and
exit from the (1̄1̄3) facet.

Figure 8.16 RHEED pattern observed after the growth of several layers InxGa1−xAs on GaAs(100)
with x ≥ 0.2. The incident 10 keV beam is in the 〈011〉 direction. These chevrons correspond to
{113} or {114} facets.



94 Real diffraction patterns

[100]

[010]

(a)

(113)(113)

(113)(113)

(b)

[103] [103]

(c)

[113][113]

Figure 8.17 An example of a pyramid with {311} facets. (a) The plan view of the facets. (b) The side
view from the [010] direction. (c) The side view from the [1̄10] direction.
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Figure 8.18 Schematic diagram of diffraction patterns from the {311} pyramid: (a) [010] incidence;
(b) [1̄10] incidence. The number triples refer to the facets.

For a [1̄10] incident azimuth, the electron beam sees the pyramid as in Fig. 8.17c. In this
case, several trajectories are possible. An electron beam which enters via the (1̄13) facet
and exits from the (11̄3) facet is refracted into the [001̄] direction. This gives rise to streaks
perpendicular to the (001) surface. The beams parallel to both the (113) and (1̄1̄3) facets
are refracted into the pyramid and then exit from the (11̄3) facet. These beams are refracted
into the [1̄1̄3] and [113̄] directions. The diffraction pattern is as shown in Fig. 8.18b. This
pattern is very similar to the pattern from Inx Ga1−x on GaAs(001) seen in Fig. 8.16.

The formation of the chevrons relies on refraction and then transmission diffraction
through the faceted sides of three-dimensional features on the surface. The diagram in
Fig. 8.19 shows the situation for the {113} facet on a feature on a (100) surface. Only
electrons that strike near the end of the feature (the grey area on the facet side) penetrate
and then exit from the front face. Since only a finite region contributes to the diffraction,
the reciprocal lattice rod from the facet is broadened and a range of final diffraction angles
is allowed, forming a short streak normal to the facet. These beams then exit the front face.
Because of the resulting short path length, a number of planes contribute to the scattering,
giving rise to constructive interference at the bulk diffraction conditions, the streak being
reproduced at each one. Note that if the incident beam were merely parallel to the facet
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(113) facets

[001]

[011]

[011]

Figure 8.19 A beam that has a low angle of incidence on the side of a (113) or (114) facet is refracted
into the crystal; it exits through the front face at near normal. The grey area is the portion of the
facet that contributes to the diffraction. Since only a finite region of the facet contributes, the beam
is broadened into streaks normal to the facet. A number of lattice planes contribute to the scattering,
producing a modulation along the streak as in transmission diffraction.

[001]

[101]

[111]

180

Figure 8.20 A GaAs(100) surface with a small domain that is a rotation twin. The domain is rotated
180◦ about the [111] direction and does not make any Ga–Ga or As–As bonds on the (111) plane.
Three other {111} planes could have similar rotation twins, giving additional extra beams.

planes then the diffraction from the (113) and (113̄) planes would produce crosses in the
diffraction. However, the incident electron is refracted to a higher incident angle when
entering the facet planes; an Ewald construction shows that this causes the transmission
pattern, i.e. each diffracted beam, to be shifted to lower diffraction angles, producing the
characteristic chevron pattern seen in Figs. 8.18a, 8.16. In Fig. 8.16 a slight remnant of the
cross can be seen.

8.4.2 Twinning

Twins are common defects in thin film growth and can contribute extra spots in a diffraction
pattern. An example of such a defect in a zinc blende lattice is shown in Fig. 8.20, where a
GaAs(100) surface has a small domain that is rotated about the [111] direction. This small



96 Real diffraction patterns

Figure 8.21 Twin growth of SiC (Wang et al., 1999).

(a) (b)

Figure 8.22 (a) The bcc reciprocal lattice of an fcc crystal viewed from the [1̄10] direction. (b) The
lattice was reflected about the [111] direction and superimposed on itself. The result shows in gray
the resulting extra spots in the twin positions.

domain makes no “wrong” or like-atom bonds with the underlying (111) plane of atoms;
however, the stacking is incorrect. This zinc blende fault has ABCABCBACBA stacking
in the [111] direction and is clearly a twin about the middle C plane. It is equivalent (Hirth
and Loeth, 1982) to a rotation by 180◦of the planes above a given plane. There are several
equivalent planes on which twins could form. We assume here that the growth is in the [001]
direction, but that some instability in the growth causes a {111} facet to form, along with
twin formation. The diffraction from a carburized Si(100) surface is shown in Fig. 8.21,
where extra spots due to defects in the formation of SiC are observed. The diffraction from
these two domains will in principle have components due to the main crystal, to the twin
and to interference between them. However, since the diffraction from the twin is primarily
a transmission feature and the diffraction from the main crystal is in a reflection mode, often
the interference term is not observed. Further, only a few of the transmission features due to
the twin are observed. In Fig. 8.22 the transmission diffraction pattern from an fcc lattice,
viewed from the [1̄10] direction, is reflected about the [111] and then superimposed on
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itself. Extra spots, shown in gray, are observed. If other (111) faces are subject to twinning,
additional spots will be seen.

An analytic result can also be obtained. The transmission pattern will consist of all the
usual bulk points (hkl) which correspond to vectors in reciprocal space u = hb1 + kb2 +
lb3, where the bi are the reciprocal lattice vectors. For simplicity, choose a reciprocal lattice
of the primitive Bravais cell (which might not necessarily be a conventional cell). Let n
be a vector normal to the twin plane and assume that the electron beam is in a direction
d perpendicular to both the twin normal n and the sample normal. In this case the Ewald
sphere will intersect those reciprocal lattice points that satisfy the condition u · d = 0. This
corresponds to the approximation described in Section 8.4 in which a transmission pattern
is constructed by intersecting a plane with the bulk reciprocal lattice. From this bulk pattern
of the main crystal, we need to rotate about the twin normal to find the twin pattern. The
observed diffraction pattern will typically be the two-dimensional reflection pattern from
the main crystal plus the transmission pattern from the twin domain.

To find the twin transmission pattern, rotate u by 180◦ about n to obtain the twin diffraction
condition at v. To find the coordinates of v, note that

v = 2(u · n)n
n2

− u, (8.13)

where some simplification can be made by normalizing n. It is more convenient to put this
into matrix form. If B is the matrix having the primitive reciprocal lattice vectors bi as
columns, U and V are column vectors formed from the coordinates (hkl) and (uvw) of u
and v and N is a column vector of the coordinates of n, we have that

u = BU, (8.14)

n = BN, (8.15)

v = BV, (8.16)

so that

V = 2(UT BT BN)N
NT BT BN

− U, (8.17)

where BT is the transpose of the reciprocal lattice matrix. Recall that B = 2πA−1, where
A is the matrix whose rows are the primitive real-space lattice vectors ai . And if G ≡ AAT

is the metric matrix in direct space then BT B = (2π )2G−1.

8.5 Rotationally disordered surfaces

Thin films deposited onto substrates held at low temperatures often show a preferential
ordering in which one crystalline axis is to a large extent perpendicular to the surface, with
disorder mainly in the azimuthal orientation. A surface in which the domains are uniformly
distributed over all azimuthal angles about a fixed surface normal is called fiber-oriented.
One in which the range of azimuths is limited to a few degrees is called a mosaic. In either
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Figure 8.23 (a) Reciprocal cylinders for a two-dimensional polycrystal, showing the intersections
with the Ewald sphere. (b) The RHEED pattern from the two-dimensional polycrystal surface.

case the domains or grains could be planar or could have some thickness. Finally, surfaces
in which the domains are slightly rotated about a line in the plane of the macroscopic surface
are said to have (out-of-plain) texture. These are important patterns, which are perhaps more
common than perfect single crystals, especially in thin film processing.

8.5.1 Fiber-oriented crystals

First consider films comprising small crystals randomly rotated about their surface nor-
mal; these are two-dimensional fiber-oriented crystals. Since the phase shift between the
diffraction amplitudes scattered from each of the crystallites is random, the total diffracted
intensity is the incoherent sum of the intensity scattered from each even if the crystallites are
smaller than the instrument coherence (to be discussed in Section 8.7). In reciprocal space,
each rod is rotated about the origin to produce a family of coaxial concentric cylinders,
as shown in Fig. 8.23a. An RHEED pattern from such a two-dimensional polycrystal is
obtained from the intersections of the Ewald sphere and these cylinders, as shown schemat-
ically in Fig. 8.23b. In this figure the relevant portion of the Ewald sphere is approximated
as a plane cutting at an angle through the narrow concentric cylinders. The intersection with
each cylinder is an approximately ellipsoidal segment. At low takeoff angles the Ewald
sphere is nearly parallel to the cylinder axis, so that the intersections are vertical line seg-
ments. At a higher takeoff angle the intersection is more ellipsoidal. Equivalently one can
superimpose the patterns calculated at many azimuthal angles, using the method described
in subsection 8.1.1. Note that now, since all azimuthal angles contribute for a given incident
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(00) (10)(10) (11) (21)(11)(21)

Figure 8.24 RHEED pattern at a glancing angle of 3.9◦ from a monolayer of Ag deposited on a
Si(111)7 × 7 surface.

azimuth, the pattern does not change with rotation of the crystal about its normal. Figure 8.24
shows an example of the pattern from monolayer Ag film deposited on a Si(111)7 × 7 sur-
face at room temperature. In this figure the streaks are relatively sharp, indicating that
the domains are large. The (00) streak shows some modulation but, strictly speaking, for
fiber disorder it should be a sharp point. Evidently the different domains have different
heights, leading to some interference perpendicular to the surface. This interference results
in modulation along the (00) beam and can contribute to the modulation along the non-
(00) rods. The main indication that this is in fact a fiber disorder is the curved character
of the non-(00) streaks. This can be compared with the calculation shown in Fig. 8.25,
where we see individual patterns and their superposition over a wide range of azimuths. For
this calculation the domains were assumed to be large, with no finite-size broadening con-
tributing to the diffraction. To calculate the resultant pattern, the diffraction from individual
azimuths was summed. In this resultant pattern, large takeoff-angles are shown, so that
the ellipsoidal character of the pattern is evident. At low takeoff angles, the nearly vertical
line segments correspond to the nearly vertical motion of a Laue–Ewald condition as the
azimuth is varied. If takeoff angles of less than ±30◦ were used, the curves would not be
continuous.

The summary panel at the lower right of Fig. 8.25 is for a planar crystal and does not
include the intensity variation along the ellipses. In general a domain could have some
thickness, the beam will diffract from the top few planes and the diffracted intensity will
vary with scattering angle in the same way as for an infinite surface. Though it could be
quite complicated, as will be shown later in our discussion of the dynamical theory, the
angular dependence of the diffraction from the symmetry azimuths is nearly kinematical.
Hence in this case when we sum the intensities, each at a slightly different Sz , we will
map out, approximately, the kinematical intensity vs Sz along the ellipse. The resulting
pattern will then show an intensity variation along the ellipse that is roughly peaked at
the kinematical Bragg conditions. The width of these peaks normal to the surface will be
approximately 2π/L , where L is the smaller of the penetration depth and the thickness of
the domain. Hence there will be some three-dimensional character to the diffraction. The
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Figure 8.25 Calculation of the diffraction pattern from infinite two-dimensional (planar) domains
(larger than the instrument response length) that are rotated about the surface normal. The figure at
the lower right is a sum of the patterns at azimuthal angles calculated between ±30◦ at 1◦ increments
for a Ag(111) surface. The incident angle was taken to be 4◦.
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Figure 8.26 The bulk reciprocal lattice points of a fiber-oriented Ag(111) crystal. The solid and open
circles in the figure are in twin relationship.

specular beam, however, should remain sharp and the intensity of the non-specular beams
will not go to zero in between the maxima.

For an Ag(111) surface of a three-dimensional fiber-oriented crystal, the reciprocal cylin-
der is modulated by the bulk reciprocal lattice points, as shown in Fig. 8.26. When the Ewald
sphere crosses the modulation by the reciprocal lattice points, the streaks are divided into
short streaks, as shown in the RHEED pattern in Fig. 8.24; this pattern is very similar to a
transmission pattern.
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8.5.2 Mosaic islands

When domains of a two-dimensional crystal are twisted by small angles around the axis
perpendicular to the surface, the reciprocal rods are again distributed in coaxial cylinders,
though, in contrast with two-dimensional polycrystals, the cylinders are not complete. Now
only parts of the ellipse sections seen in Fig. 8.25 are observed. For the non-specular beams
there will be a variation in intensity, just as for fiber-oriented crystals, since the Ewald–Laue
condition for a non-specular beam mainly moves in Sz , with only a slight change in position
parallel to the surface.

If in addition the two-dimensional crystals in the mosaic are individually much smaller
than the coherence length of the instrument, the diffraction patterns can have a nearly three-
dimensional quality. In this case, because of the small rotations, we must add the intensities
of the diffraction from each domain. For a given domain, the width of the reciprocal lattice
rods will be large and, since the Ewald sphere is nearly tangent to the rods, each domain
will produce a long streak. There will be maxima along the streak because the diffracted
intensity depends on the scattering angle. Away from symmetry conditions this angular
intensity variation is roughly kinematic (see Chapters 12 and 13), so that the peaks are the
three-dimensional Bragg positions (refracted) and in reciprocal space their width in Sz is
about 2π/L , where L is the smaller and the thickness of the crystal and the penetration of
the electron beam. It thus has the appearance of a transmission pattern. Note that, unlike
the case of the fiber-oriented crystal, the specular beam will be broad and parallel to the
surface since the crystallites are assumed small. In a fiber-oriented crystal the specular
beam will be sharp. Note also that although the streaks will have some transmission-like
character, they will not go to zero in between the maxima. Figure 8.27 shows an STM
image and a RHEED pattern from a Ag(111) surface that has been prepared by growing
about four monolayers of Ag on the Si(111)

√
3 × √

3-Au surface at room temperature. The
RHEED pattern looks like transmission diffraction from silver islands. Figure 8.28a is an
STM image of the surface corresponding to the RHEED pattern. The STM image shows

(00)
(10)

(11)(11)
(10)

Figure 8.27 (a) A 70 nm × 70 nm STM image of Ag grown on a Si(111)
√

3 × √
3R30◦-Au surface.

(b) A RHEED pattern in the [112̄] azimuth of the same surface. The coverage in both is 4 ML. Two
sets of reciprocal lattice rods are observed – the (10) and (1̄0) family as well as the (11) and (1̄1̄), so
that the surface must consist of ±30◦ oriented islands.
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Figure 8.28 The formation of a diffraction pattern from a mosaic on Ag(111) with ±3◦ rotations for
an incident glancing angle of 2◦. The island sizes were taken as L ∼ 50 Å, as estimated from the STM
image in Fig. 8.27. The concentric circles are sections of the Ewald sphere. The widths of the rods
correspond to 2π divided by the island diameter. For simplicity, refraction is not included. The spots
due to bulk reciprocal lattice points, indicated by arrows, are strongly excited. This pattern could
mimic a transmission pattern.

that the roughness of the surface extends only about three monolayers and so the pattern is
a reflection one.3 A graphical explanation of the formation of the RHEED pattern from a
mosaic of small Ag(111) islands is shown in Fig. 8.28. At low takeoff angles, the diffracted
intensity is confined along the reciprocal lattice rods, as seen in the summary panel of
Fig. 8.25. Differently oriented grains will pick up the diffracted intensity at different points
along the rods. There will be an intensity variation along the streaks that reflects the strength
of the diffraction for each oriented grain. The pattern will look roughly like the kinematical
intensity and hence mimic a transmission diffraction pattern.

8.5.3 Texture

Out-of-plane texture tremendously complicates the diffraction patterns. If the grains are
small then their finite size will cause the intensity along the streak from a single grain to
be modulated as the Ewald sphere passes through a broadened, non-uniform, reciprocal
lattice rod. Alternatively, if the grains are large, so that the individual reciprocal lattice

3 If there are three different island heights, there could be interference that gives rise to the modulation. The angles of the maxima
would be at unrefracted Bragg angles since the path-length interference is external to the island surfaces. If the modulation were
due to the rocking curve then the positions of the maxima would be at refracted Bragg angles. Since the islands have little space
separating them, the refraction and transmission through the island sides followed by backscattering, which would also lead to
a modulation at the refracted angles, will not occur.
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rods are sharp, then the diffracted intensity can just be summed using an assumed grain
distribution. In both cases the sum is incoherent since the path-length phases between the
grains will be randomly distributed. Even in the latter case, though, this is a difficult problem
in geometry. Recent work has tried to model the measured diffraction patterns (Litvinov
et al., 1999; Brewer et al., 2001).

8.6 Pseudo-one-dimensional crystals

Several types of disordered arrangements of scatterers are possible that give the appearance
of a crystal that is narrow in one dimension. Consider a line of scatterers at positions ma x̂,
where m is an integer and a is the repeat distance. This line is regarded as a unit. Many
such lines could be distributed uniformly in the y direction, say at nb ŷ where n is an integer
and b is a repeat distance, but with random shifts in the x direction. Or they could all be
aligned in the x direction, with random positions in the y direction. Finally, there could
be a combination of both types of disordering. These three arrangements are illustrated in
Fig. 8.29. We will consider each case in turn and determine the reciprocal lattice and the
diffraction pattern.

For case (a), random x shifts of the line of scatterers, let the scatterers be at rm,n =
ma x̂ + nb ŷ + εn x̂, where εn is a random variable. Then the kinematic diffracted amplitude
is

A(S) =
∑

m

exp(i Sx ma)
∑

n

exp(i Synb) exp(i Sxεn). (8.18)

The sum over m is a series of delta functions, so that

A(Sx , Sy) =
∑

m

δ(Sx − 2πm/a)
∑

n

exp(i Synb) exp(i Sxεn). (8.19)

This says there can only be a diffracted amplitude along the planes normal to the x axis at
Sx = 2πm/a. The second sum in eq. (8.19) determines the distribution of intensity along
each plane. At Sx = 0, the random term vanishes and the sum is a series of delta functions:

A(Sx , Sy) =
∑

m

δ(Sx )
∑

n

δ(Sy − 2πn/b), (8.20)

b

a (a) (b) (c)

x

y

Figure 8.29 Three kinds of 1D array. (a) Random x shift of parallel 1D arrays ordered in the y
direction with spacing b. (b) Parallel 1D arrays with random arrangement perpendicular to the array
but with the origin of the arrays ordered parallel to the x direction. (c) Random arrangement in the x
and y directions of the same parallel 1D arrays.
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Figure 8.30 On the left, top view of the reciprocal lattice for the pseudo-one-dimensional array shown
in Fig. 8.29a. The corresponding RHEED patterns for the cases of x incidence and y incidence (middle
and right-hand diagrams).

which corresponds to a reciprocal lattice that is a series of rods separated by 2π/b along the
Sx = 0 axis. Along the other possible planes of intensity, i.e. Sx = 2πm/a with m 
= 0, and
if the displacements are totally random, then the second sum in eq. (8.19) equals

√
N , with

N the number of scatterers. If the scattering is correlated then the sum would be somewhat
peaked at integral multiples of Sy = 2π/b. (This is discussed more quantitatively for the
case of a superlattice in Section 17.7). The reciprocal lattice and diffraction patterns are
illustrated in Fig. 8.30. As can be seen, along the line at Sx = 0 the reciprocal lattice is
a set of rods. Away from Sx = 0 there are planes of intensity. The diffraction pattern is
obtained by forming the intersection of the Ewald sphere with the reciprocal lattice. As
seen in Fig. 8.30b, for a beam in the x direction there are sharp spots along the zeroth Laue
zone circle, because along this circle the diffraction is insensitive to the x displacements.
At the other Laue zones, there are nearly continuous circles of intensity. The pattern for a
beam in the y direction is shown in the right-hand diagram of Fig. 8.30, but this time the
intersections of the Ewald sphere with the planes of the reciprocal lattice correspond to
lines of intensity rather than circles.

For case(b), random positions of the line of scatterers in the y direction, the scatterers
are now at r = ma x̂ + yn ŷ, where yn is random, and the kinematic diffracted amplitude is

A(Sx , Sy) =
∑

m

δ(Sx − 2πm/a)
∑

n

exp(i Sy yn); (8.21)

thus we have for the intensity

I (Sx , Sy) =
∣
∣
∣
∣
∣

∑

m

δ(Sx − 2πm/a)

∣
∣
∣
∣
∣

2 (

N + 2
∑

n<n′
cos [Sy(yn − yn′ )]

)

, (8.22)

which gives the reciprocal lattice shown in the left-hand diagram of Fig. 8.31. In this case the
first summation is a series of planes normal to the line Sy = 0 at Sx = 2πm/a. The second
summation in the amplitude will be a delta function at Sy = 0 if the yn are totally random.
At nonzero Sy its value is

√
N . If the yn are not completely random then the intensity

will be peaked at Sy = 0 and decrease as Sy increases. The diffraction pattern formed
by intersecting the reciprocal lattice with the Ewald sphere is shown for two orthogonal
directions in Fig. 8.31. As can be seen, with the incident beam in the y direction the
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Figure 8.31 On the left, the reciprocal lattice for the array with random shifts in the y direction
shown in Fig. 8.29b. The corresponding RHEED patterns with the beam in the x direction and in the
y direction (middle and right-hand diagrams).

Figure 8.32 On the left, Top (LEED) view of the reciprocal lattice for case (c) of Fig. 8.29, in
which there is displacement disorder of a one-dimensional chain in both the x and y directions. The
diffraction patterns obtained with the beam incident in the x direction and in the y direction (middle
and right-hand diagrams).

diffraction is from periodic rows of scatterers so that the zeroth zone is intact. Because of
the disorder along the rows there is, in addition, diffuse intensity.

Finally, for case (c), when the two disorders are combined the lattice is described by the
vector r = ma x̂ + yn ŷ + εn x̂. Then the diffracted amplitude is

A(Sx , Sy) =
∑

m

δ(Sx − 2πm/a)
∑

n

exp (i Sy yn) exp (i Sxεn), (8.23)

where the second sum depends on the degree of correlation between the two directions. If
the degree of disorder is large then the second sum will have a nonzero value only at the
origin and the diffraction pattern will have only a specular beam. If the disorder is not strong
then the second sum will show a peak at the origin and decrease as Sx and Sy increase.
Multiplying the second sum by the intensity from the planes at Sx = 2πm/a will yield the
reciprocal lattice and diffraction pattern shown in Fig. 8.32.

An example of case (b) the second type of disorder, is shown in Fig. 8.33 where there are
three domains of one-dimensional disorder. This is a very complicated figure, which is a
combination of one-dimensional features and surface reconstructions. The lattice parameter
of Si is very close to 4/3, the lattice parameter of Ag, so that Ag forms a commensurate
epitaxial film. About 0.3 ML of Ag deposited onto Si(111) at 150 K forms a

√
3 × √

3R30◦

structure. The subsequent deposition of 10 ML of Ag yields the pattern shown in Fig. 8.33.
One can see the superposition of the

√
3 structure, with the Si lattice parameter, and a

disordered structure, with the Ag parameter. The disordered structure is illustrated in the
reciprocal-space diagram, where there are lines from the Ag spots corresponding to three
domains of one-dimensional Ag features. In the diffraction pattern these lines correspond
to the curved arcs formed by the intersection of the Ewald sphere with a sheet of diffuse
intensity.
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Figure 8.33 (a) A RHEED pattern from silver atoms deposited on a Si(111)
√

3 × √
3-Ag surface at

150 K. The reflection indices are for the Si(111) surface. (b) Top view of the reciprocal lattices for
the Si(111)

√
3 × √

3-Ag surface (solid circles) and the Ag (111) surface (open circles). The lines are
reciprocal lattice sheets formed by one-dimensional arrays of silver atoms along 〈110〉 (Lijadi et al.,
1996).

The interpretation of this pattern is not particularly simple. A similar pattern would be
observed from narrow, epitaxial wires that are sufficiently separated that the diffraction from
each wire could be considered separately. A beam striking such a wire in the narrow direction
would scatter into a sheet of intensity owing to finite-size effects although, depending on
the nature of the edge, there could be some three-dimensional interference and modulation
along the streak. In this case, the coverage of 10 ML and the low temperature used (and
hence low surface diffusion) would suggest that well-separated “wires” are unlikely but,
instead, one-dimensional islands, more closely spaced, and disordered as in Fig. 8.29b.
These Ag islands would be along 〈110〉 at the step edges. They would be required to be very
uniform in height since there is no transmission-like pattern along the (00) rod. In either
case, the

√
3 pattern would arise from regions in between the wires. Finally, there appear
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to be some features in the diffraction pattern that could be due to double scattering, i.e. a
multiple-scattering process involving both lattices independently.

8.7 The role of the instrument

Some of the power of RHEED is due to the favorable electron optics possible at high energy
and to the implications on the measurement capability of the instrument when operated at
low glancing angle. There is some debate in the literature over the fundamental reasons for
this, a debate about the relation between the coherence length of an electron and the transfer
width (a reciprocal-space quantity) of an instrument (Park et al., 1971; Comsa, 1979a,b; Lu
and Lagally, 1980; Frankl, 1979; Van Hove et al., 1983a). In this section we will associate
with the coherence length intrinsic features of the electron beam due to its energy resolution
and to the finite size of the source. All other limits due to the electron optical system will
be included as a transfer width. The results for all these are in fact very similar. Perhaps as
important is the way in which these limits are measured.

8.7.1 The coherence length

An electron beam without energy spread which is emitted from a point source can be focused
assuming perfect optics, into a perfectly parallel monochromatic beam approaching an ideal
plane wave. Real electron sources have finite sizes and energy spreads and require the use
of wave packets to represent the electrons. The energy spread �E gives the spread in the
wave number �k via

�k

k0
= �E

2E
, (8.24)

where k0 and E are the average wave number and the average kinetic energy of the electrons,
respectively. For plane waves exp(ikx), which are propagating in the x direction and are
distributed in energy with a spread �E , the wave function is expressed as

1

�k

∫ k0+(�k/2)

k0−(�k/2)
exp(ik0x) dx = 2 sin(�k x/2)

�k x
exp(ik0x) . (8.25)

For a monochromatic wave, since δk → 0 the right-hand side of eq. (8.25) becomes a
plane wave, and the length of the wave is infinite. For finite �k, the wave has an effective
length obtained from �k x1/2 = π/2 and �k x2/2 = −π/2. The effective length is given as
l‖ = x1 − x2 = 2π/�k = 24.5

√
E/�E (Å), using eq. (4.3). This effective length is called

the coherence length, because the wave packet is not scattered simultaneously by two points
separated by a distance larger than the effective length, and the waves scattered from these
two points are not coherence. For �E = 0.1 eV, which is the energy uncertainty due to
the thermal spread from a hot filament, and E = 10 keV the coherence length parallel to
the beam direction, l‖, is about 2.4 µm. In principle this can be increased by using a field
emission source.
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If the source has a finite size then the emitted electrons cannot be focused into a parallel
beam. Its angular spread, �ϑ , will affect the coherence in both the parallel and perpendicular
direction. Since the spread of wave vectors perpendicular to the beam direction is given by
�k⊥ = k�ϑ , the coherence length becomes roughly l⊥ = λ/�ϑ . For W-hairpin filaments,
we use a tungsten wire with diameter 0.1 mm. The distance between the filament and
electron lens is typically about 10 cm. This leads to a �ϑ that is of the order of 10−3 rad.
For 10 keV electrons, λ is nearly 0.1 Å and therefore l⊥ is of the order of 100 Å.

Parallel to the beam the component of k is kx = k cos ϑi, where ϑi is the glancing angle
of incidence, and the variation in kx forming the wave packet is �kx = k sin ϑi�ϑ . Then,
as before, the coherence length parallel to the beam is

l‖ = 2π

�k
= 2π

k sin ϑi�ϑ
. (8.26)

For �ϑ = 1 mrad, E = 10 keV and ϑi = 2◦one finds that l‖ is about 3500 Å and it is
somewhat larger at a lower glancing angle. This is usually the dominant factor determining
the surface distance over which coherent interference is possible.

8.7.2 Limits to measurements

In an earlier discussion of the response of a diffraction instrument (Park and Houston,
1971) it was pointed out that the measured intensity can be written as a convolution of the
instrument response function and the intensity from a perfect crystal:

Imeasured =
∫

d3S′ g(S − S′)I (S′), (8.27)

where g(S) is the response of the instrument. For example, a Gaussian response function
describing the finite source size might be something like

g(Sx ) = 1

σ
√

π
exp

(−S2
x

σ 2

)

, (8.28)

where 2σ would equal the broadening �Sx = �kx obtained previously due to the uncer-
tainty in angle. For the energy uncertainty, the finite-size effect discussed in Section 6.1
would similarly produce a broadening in Sx equal to the calculated �k. If there are sev-
eral factors that contribute to the response of the instrument then the response function
is the convolution of these various factors. In a convolution, the widths of Gaussians add
quadratically and those of Lorentzians add linearly, as shown in eq. (A.18). For the two
cases discussed, assuming Gaussian instrument functions the total width corresponds to a
coherence length l‖ given by

1

l2
‖

= 1

l2
1

+ 1

l2
2

, (8.29)

where l1 is due to the energy spread and l2 comes from the finite source size. Typically, the
latter dominates.
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Apart from the source terms, other electron-optical aspects of the diffractometer can lead
to a broadening of the response of the measurement. For example, there could be aberrations
that affect the focus, or the beam could have a finite parallel diameter. Each of these would
contribute a different instrument function and response length, and these would have to be
combined with the intrinsic coherence lengths as in eq. (8.29). The shape of the instrument
response function is most easily determined experimentally from the shape of the specular
beam diffracted from a well-oriented crystal at an in-phase condition, as described briefly
in Section 6.5 and in more detail in Section 17.3. Typically, a Gaussian function works best.
This shape is then used in subsequent convolutions to describe the measured data.

A key goal might be to measure the size of islands in epitaxial growth or the lengths of
terraces in a staircase on a vicinal surface or the correlation length in a disordered surface.
The instrumental considerations described thus far limit the region of the surface over
which coherent diffraction can be measured. Islands or terraces that have dimensions larger
than these limits cannot be distinguished from a perfect surface. Features smaller than the
response length will broaden the diffracted beam and this broadening can be measured.
The most important instrumental limit is the angular spread of the incident beam. Like the
discussion of the coherence length, the limits in directions perpendicular and parallel to the
beam are different and depend on the scattering angles.

A simple picture, illustrating the asymmetry and just reversing the previous argument,
is shown in Fig. 8.34. In (a), a side view of the Ewald construction shows that a perfectly
collimated incident beam will be broadened into a streak of angular extent δϑf if the effective
coherently scattering region on the surface is L ′. This needs to be distinguished from the
case of a perfect surface and imperfect instrument, where a beam with a range of incident
angles δϑi would reflect with an angular width δϑf = δϑi. For example, if the surface were
composed of randomly arranged finite domains of size L ′ in diameter then the reciprocal
lattice would be a rod of width 2π/L ′ and the momentum conservation condition would be

2p/L'

2p/L''

k

k

(a) (b)

dJf dJf

Figure 8.34 Instrument broadening of a diffracted beam. (a) Side view of an Ewald construction
showing broadening in the final polar diffraction angle. (b) Top view of an Ewald construction
showing broadening in the azimuthal angle.
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relaxed because of the reduction in translational periodicity as in eq. (8.26) to become

δSx = 2π

L ′ = kδϑf sin ϑf, (8.30)

which determines a range of final angles δϑf. Disorder on the surface, with a correlation
length L ′, would be indistinguishable from a broadened beam if the two angular widths
were equal. Setting the angular spread in the incident beam, δϑi, equal to the angular spread
determined by eq. (8.30) indicates that the effect of disorder on the surface could not be
seen if the correlation length were greater than

L ′ >
2π

kδϑi sin ϑf
. (8.31)

If the correlation length became less than this then the diffracted beams would begin to be
broadened by an amount greater than δϑi, which could be measured. For example, if the
angular width of the incident beam were 1 mrad and the incident angle were 2◦ then the
broadening could be detected if domains on the surface were less than 3500 Å in diameter.

Similarly, the Ewald construction in Fig. 8.34b shows that for the width perpendicu-
lar to the beam direction, broadening above that in the incident beam can be measured
only if

L ′′ <
2π

kδϑi
, (8.32)

i.e. broadening can only be observed if domain sizes are less than about 100 Å. The result
is that for most measurements characterizing surface microstructure, it would be better to
measure broadening in the long direction of the streaks.

If the beam has a parallel diameter, then even though well collimated, the diffractometer
appears to have a range of angles. Let s be the diameter of such a beam. It would be
indistinguishable from a beam having an angular range of s/Lc, where Lc is the camera
length, the distance from the sample to the screen. To some extent, the broadening introduced
by the parallel beam diameter can be avoided if the image is not formed on a phosphor screen,
but instead the beam is focused by an electron lens (Park et al., 1971). However, this is
seldom done; in practice one normally focuses the beam onto the phosphor screen. Then
the broadening due to the parallel diameter is comparable with the angular divergence in
the beam, which is about as well as one can do.

To distinguish among the various broadening mechanisms one needs to measure the
FWHM of a beam vs the incident glancing angle. Finite-size broadening will give rise to
the angular dependence given in eq. (8.30). If there are steps on the surface which are
randomly up and down, peak shapes like those in Fig. 17.10 and the accompanying angular
dependence will be observed. If there is a range of lattice parameters (say, due to strain), then
the reciprocal lattice rods will appear broader as the order number is increased, resulting in
an increased parallel width of a diffracted beam for a given order number.

The energy spread of the beam due to the various energy-loss processes impacts the
broadening of the diffracted beams in two main ways. For the specular beam, one normally



8.7 The role of the instrument 111

sin Ji
dϕ

2p/ka

2p/k ′a

inelastic
broadening

Figure 8.35 Inelastic scattering causes the diffracted beam to broaden along the Ewald circle.

expects a variation in energy to have no effect on the width of the diffracted beam since
the angle of incidence should equal the angle of diffraction. This needs to be modified
slightly owing to the finite coherence length resulting from the energy spread of the source
discussed in the previous subsection. This coherence length represents a finite distance
on the surface that will scatter coherently. Hence there will be finite-size broadening, as
discussed in Section 6.1, that slightly increases the width of even the specular beam. A
more significant change occurs for the non-specular beams owing to energy variation in
the beam from, for example, plasmon losses. One treats the problem as if there were two
incident beams, one with energy E0, the zero-loss beam, and one with energy E0 − EL,
the loss beam. Each is coherent with itself. The energy loss has no effect on the specular
beam since there the angle of incidence is always equal to the angle of reflection. For the
non-specular beams there will be a measurable effect. Since the radius of the zeroth Laue
circle must, like the position of the specular beam, be constant, the effect is that the loss
beam will move on the Laue circle. In the Ewald construction shown in Fig. 8.35 the radius
of the Laue circle is sin ϑ , where ϑ is the incident angle. Here, as for a phosphor screen,
only angles are plotted so that the observed radius does not change with incident energy.
The intersections of the zero-loss and the loss beams are shown; note that, since angles are
plotted, the position of the rods changes when the energy changes. The intersection point
on the Laue circle broadens along the arc defined by δϕ.

The angle ϕ measured from the ordinate is given by

sin ϕ = 2π/a

k sin ϑ
, (8.33)
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Figure 8.36 The split diffraction beam from a vicinal Ge(100) surface corresponding to a misorien-
tation of 0.7 mrad (0.04◦). For the 0.5 mrad GaAs(100) surface, the misorientation can just barely be
resolved – corresponding to the existence of order over 800 nm (Cohen et al., 1990).

so that

δϕ = 1

2 cos ϕ

δE

E
. (8.34)

Assume that an angle of 1 mrad on the screen can be resolved. At ϕ = 45◦, this means
that 20 V will cause measurable broadening (an arc). Near emergence, where ϕ → π/2,
the effect is much larger and gives rise to what should be a very sensitive way to examine
losses. These arcs, due to an energy loss or any small fluctuation in the energy, are often
seen at low diffracted angles.

One way to measure the response of the instrument is to determine the smallest resolvable
surface misorientation. For example, the discussion in Section 6.4 shows that a staircase
of steps will give rise to split diffraction beams. From eq. (6.29) the separation of the split
beams along with the incident angle tells the miscut of the surface.

Figure 8.36a shows a measurement (Cohen and Pukite, 1988) from a vicinal GaAs(100)
surface on which Ge was grown. For this electron gun the 10 keV beam was focused to
a spot on the screen about 0.1 mm in diameter. The data were taken close to the first
out-of-phase condition. The splitting corresponds to a misorientation of 0.7 mrad, which,
using the bulk step height of Ge of 5.65/4 Å corresponds to a mean terrace length of about
2100 Å. Since two or three terraces must be present to give rise to the very clearly observed
interference, the coherence distance in the direction parallel to the incident beam must be
at least about 4000 Å. In Fig. 8.36b the staircase on the GaAs(100) surface is just barely
resolved. Using a same method, with data taken at the second out-of-phase condition, the
surface misorientation is measured to be about 0.5 mrad. Using a bulk step height of d/4
for an As-terminated GaAs surface, and once again requiring two terraces to contribute to
the interference, one obtains a coherently scattering region of at least 1 µm.
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Electron scattering by atoms

9.1 Introduction

Electrons entering a crystal undergo elastic and inelastic scattering. The main elastic process
is Bragg scattering by the atoms. The inelastic scattering processes include plasmon excita-
tions, thermal diffuse scattering and single-electron excitations. As a first step, we describe
scattering by a single atom. In this case the inelastic processes are much simpler, being due
only to excitations of atomic states. Plasmon scattering and thermal diffuse scattering are
described in Chapter 16. In this chapter we describe elastic and inelastic scattering processes
for atoms in the Born approximation and calculate differential and total cross sections for
special cases.

The main results of this chapter will be expressions for the strength of the scattering
and its angular dependence as well as an estimate of the relative elastic and inelastic mean
free paths of electrons traveling in a crystal. From the point of view of the subsequent
development, though, this chapter need only be examined briefly. Specific references will
be made when required.

As described in later chapters, the angular dependences of elastic scattering amplitudes
i.e. the electron scattering factors, are used to obtain crystal potentials for the dynamical
theory of electron diffraction. The angular dependences of the inelastic scattering intensities
contribute to the imaginary potentials in crystals used is the dynamical theory.

9.2 Elastic scattering: adiabatic approximation

When we assume that atomic states are not disturbed by the scattering of electrons and that
the atoms are fixed in space, the Schrödinger equation is given approximately by

− �2

2m
∇2φ − eV a(r)φ = Eφ, (9.1)

where V a(r) is the atomic potential for electrons and φ is the wave function of a free
electron. This wave function is given by a superposition of the wave functions φ0 of the
incident electron and � of the scattered electron:

φ = φ0 + �. (9.2)

113
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The wave function φ0 is defined at positions far from the atomic position, where the effect
of the atom is negligible. Then φ0 satisfies

− �2

2m
∇2φ0 = Eφ0. (9.3)

A wave function given as

φ0 = exp(iK0 · r) (9.4)

is a solution of eq. (9.3), where K0 is the wave vector of the incident electron with a value
given by the kinetic energy E of the free electron as

K 2
0 = 2m E

�2
. (9.5)

Substituting eq. (9.2) into eq. (9.1) and using eq. (9.5), we obtain

(∇2 + K 2
0 )�(r) = −U a(r)φ(r), (9.6)

where

U a(r) = 2me

�2
V a(r) (9.7)

= V a(r)

3.814
(Å

−2
). (9.8)

Using the Green’s function for free particles (see Appendix B),

G(r, r′) = − 1

4π |r − r′| exp(i K0|r − r′|), (9.9)

the wave function �(r) of eq. (9.6) is

�(r) =
∫

1

4π |r − r′| exp(i K0|r − r′|)U a(r′)φ(r′)dτ ′. (9.10)

Therefore the wave function φ of eq. (9.2) is given as

φ = φ0 + 1

4π

∫
exp(i K0|r − r′|)

|r − r′| U a(r′)φ(r′)dτ ′. (9.11)

Equation (9.11) expresses Huyghens’ principle, in that the wave function of the scattered
electron is given by a superposition of spherical waves originating at the infinitesimal
volume dτ ′, as shown in Fig. 9.1.

9.3 Elastic scattering: Born approximation

9.3.1 Atomic scattering factor

When φ0 � �, the wave function φ in the integral of eq. (9.11) can be taken approximately
as φ0. Then we set

φ = φ0 + 1

4π

∫
exp(i K0|r − r′|)

|r − r′| U a(r′)φ0(r′)dτ ′. (9.12)
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ψ0

Figure 9.1 Schematic diagram relating to eq. (9.11).

This approximation is effective for weak scatterers. When |r − r′| is large enough compared
with the atomic size and U a(r) = 0 for large |r − r′|, the asymptotic form of the wave
function is expressed as

φ ∼ φ0 + exp (i K0r )

r
f (S), (9.13)

where f (S) is the atomic scattering factor for scattering vector S. We take the φ0 of eq. (9.4),

φ0(r′) = exp(iK0 · r′),

|r − r′| ∼ r − r ′ cos ϑ

and

K0|r − r′| ∼ K0r − K0r ′ cos ϑ = K · (r − r′) for r → ∞. (9.14)

Therefore, eq. (9.12) becomes

φ = φ0 + 1

4πr
exp (iK · r)

∫

U a(r′) exp [−i(K − K0) · r′] dτ ′. (9.15)

Comparing eq. (9.15) with eq. (9.13), we give the atomic scattering factor f (S) as

f (S) = 1

4π

∫

U a(r) exp (−iS · r) dτ, (9.16)

and the scattering vector S is given as

S = K − K0. (9.17)

Here we take dτ in eq. (9.16) and S as

dτ = r2 sin χdχdϕdr (9.18)
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K
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S c

Figure 9.2 Incident and scattered wave vectors K0 and K and the scattering vector S.

and

S = 2K0 sin
χ

2
, (9.19)

as shown in Fig. 9.2. For a spherical symmetric potential U a(r) = U a(r ), using the relation,
S · r′ = Sr ′ cos χ ′ we obtain

∫

U a(r) exp (−i Sr cos χ )r2 sin χdχdϕdr = 4π

∫
sin(Sr )

Sr
U a(r )r2dr. (9.20)

Therefore f (S) in eq. (9.13) is given as

f (S) = 2me

�2

∫
sin(Sr )

Sr
V a(r )r2dr, (9.21)

because U a(r ) = (2me/�2)V a(r ). The atomic potential −V a(r ) is given by

V a(r ) = Ze

r
− e

∫
ρ(r′)

|r − r′|dτ ′, (9.22)

where Z is the atomic number and ρ(r) is the electrons density. The first term of eq. (9.22)
is the Coulomb potential of the atomic nucleus and the second term is the potential of the
surrounding electrons. Substituting the first term, Ze/r , of eq. (9.22) into eq. (9.21), we
obtain

2me2

�2

∫
Z

S
sin(Sr ) dr = 2

aH

Z

S2
, (9.23)

where aH is the first Bohr radius:

aH = �2

me2
. (9.24)

This leads to the expression for Rutherford scattering. The second term of eq. (9.22) is
expressed as

− 2

aH

f X(S)

S2
. (9.25)
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The function f X(S), the atomic form factor, is obtained as follows. Using eq. (9.16), the
scattering factor due to the electron density term in eq. (9.22) is given as

− 1

2πaH

∫∫
ρ(r′)

|r − r′| e−iS·r dτdτ ′ = − 1

2πaH

∫

dτ ′ρ(r′) e−iS·r′
∫

eiS·(r′−r)

|r′ − r| dτ. (9.26)

Since
∫

eiS·r

r
dτ = 4π

S2
, (9.27)

the above equation becomes that

2

aH

∫
ρ(r′) e−iS·r′

S2
dτ ′. (9.28)

Putting

S · r′ = Sr ′ cos χ ′

dτ ′ = r ′2dr ′ sin χ ′dχ ′dϕ′,

we obtain an expression for the contribution to the scattering factor of the electron distri-
bution

2

aH

f X(S)

S2
= 2

aH

1

S2

∫
sin(Sr )

Sr
ρ(r )r2dr. (9.29)

Therefore

f X(S) =
∫

sin(Sr )

Sr
ρ(r )r2dr. (9.30)

This is the same as the atomic form factor measured by X-ray diffraction. The atomic
scattering factor f (S) is obtained as

f (S) = 2

aH

Z − f X(S)

S2
. (9.31)

This is called Mott’s formula. Commonly we use sin ϑ/λ = s/(4π ) = K/(2π ) sin (χ/2) in
diffraction experiments, and

f (S) = 0.023934
Z − f X(S)

(sin ϑ/λ)2
(Å). (9.32)

Doyle and Turner (1968) calculated the atomic scattering factors for several elements,
using the Hartree–Fock approximation, and expanded f (S) into a Gaussian series:

f (S) =
4∑

j=1

a j exp

[

−b j

(
S

4π

)2
]

. (9.33)

The Doyle–Turner coefficients a j and b j are listed in a table in Appendix G. This
parametrization is used in determining the crystal potential in the dynamical theory of
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Figure 9.3 Doyle–Turner scattering factor f (S) for Si, Ga, As and N. An unreconstructed GaAs
crystal should look like Si.

RHEED. Examples of f (S) calculated from the table of Doyle–Turner coefficients are
shown in Fig. 9.3. Note that the scattering factors for As and Ga are very close, so that
if the surface were unreconstructed, one could expect some beams to be structure factor
forbidden owing to the diamond-like structure. We will look for this in the dynamical result.
The only energy dependence comes into the relation between S and angle; hence this is a
remarkably simple form.

The atomic form factor f X(S) becomes equal to the number of electrons for S = 0. For
neutral atoms

f X(0) = Z , (9.34)

and for ions in a charge state q,

f X(0) = Z + q. (9.35)

For S ∼ 0, f (S) is obtained from

f X(S) ∼ f X(0) + d

d S
f X(S) S + 1

2

d2

d S2
f X(0) S2. (9.36)

Then,

lim
S→0

f (S) = 2

aH
(2π )2

∫

r2ρ(r )4πr2dr, (9.37)

for neutral atoms. The integral is proportional to the mean square radius 〈r2〉:

lim
S→0

f (S) = 2〈r 2〉Z

aH
. (9.38)
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Therefore f (0) is related to the paramagnetic susceptibility χ by

χ = −µ0 N Ze2

6m
〈r2〉, (9.39)

where N is the number of atoms per unit volume and µ0 is the magnetic permeability in
vacuum.

9.3.2 Cross sections for elastic scattering

The differential cross section for electron scattering is given by

dσ

d�
= | f (S)|2, (9.40)

where

d� = sin χdχdϕ = 1

2K 2
Sd Sdϕ. (9.41)

The total cross section σ is given by

σ = 2π

∫

| f (S)|2 sin χdχ. (9.42)

The total cross section is related to the mean free path of the electrons, l, in a medium
with atomic density N as l = 1/(σ N ). In the following sections, we will calculate atomic
scattering factors and mean free paths for simple cases.

9.3.3 Electron scattering by a hydrogen atom

The electron wave function of hydrogen in the ground state is given by

b0(r ) = (πa3
H)−1/2 exp

(
− r

aH

)
, (9.43)

where aH is the first Bohr radius. The electron density ρ(r ) is expressed as

ρ(r ) = b∗
0(r )b0(r ) = 1

πa3
H

exp

(

− 2r

aH

)

. (9.44)

Substituting eq. (9.44) into eq. (9.30), we obtain

f X(S) = S4
0

(S2 + S2
0)2

, (9.45)

where S0 = 2/aH. Therefore

f (S) = S0(S2 + 2S2
0 )

(S2 + S2
0 )2

. (9.46)

In Fig. 9.4 we show the S-dependence of f (S) for a hydrogen atom. The total cross section
is calculated from eq. (9.46) easily, and the value is 7π/(3K 2) ∼ 0.19λ2. In hydrogen gas
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Figure 9.4 Curves of f (S) vs S. Curve (a) is for hydrogen and curve (b) is for a screened potential
with Z = 1.

at 1 atmosphere, the mean free path of 10 keV electrons with a wavelength of 0.1 Å is about
0.2 cm, because N ∼ 3 × 1019/cm3. For 100 keV electrons, the mean free path becomes
about 2 cm.

9.3.4 Electron scattering by a screened potential

It is useful to estimate total cross sections for both elastic and inelastic scattering in an-
alytical ways. A screened-potential model gives a good approximation for the total cross
sections for elastic scattering and, especially, for those of inelastic scattering, by the use
of core electron excitations (see subsection 9.4.4). For a screened potential with screening
radius a,

V a(r ) = Ze

r
exp

(
− r

a

)
, (9.47)

the scattering factor f (S) is obtained as

f (S) = Z S0

S2 + S2
a

, (9.48)

where Sa = 1/a. In Fig. 9.4 the f (S) curve for a screened potential is shown with that for
hydrogen. According to eq. (9.42), the total cross section is given by

σ = 2π

∫ π

0

Z 2S2
0

(S2 + S2
a )2

sin χdχ. (9.49)
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Figure 9.5 Scattering factors calculated from the screened Coulomb potential of eq. (9.48) and from
the Doyle–Turner parametrization given by eq. (9.33), both for parameters appropriate to Co and Si.
At larger scattering angles the agreement is excellent; at smaller angles, the Doyle–Turner fit gives a
considerably larger value.

Using eq. (9.41),

σ = Z2

2πa2
H

∫ 4π/λ

0

λ2Sd S

(S2 + S2
a )2


 λ2 Z2a2

2πa2
H

.

for fast electrons. We adopt a value for the screening radius that is roughly the radius
obtained by the Thomas–Fermi approximation as

a = 0.885aH Z−1/3 ; (9.50)

we then obtain

σ = 0.12λ2 Z 4/3. (9.51)

For hydrogen, σ is 0.12λ2. This is quite close to the exact value, 0.19λ2. For Co, with λ =
0.1 Å and Z = 27, the total cross section is σ ∼ 0.1 Å−3. Therefore the total cross sections
for fast electrons are small enough to be calculated with the Born approximation. Since
the atomic density of Co crystal is about 9 × 10−2 Å−3, the mean free path of elastically
scattered electrons is about 100 Å.

Figure 9.5 shows scattering factors calculated from the screened Coulomb potential given
by eq. (9.48) and by the Doyle–Turner parametrization, eq. (9.33). For large momentum
transfers the two are in excellent agreement. For small values of momentum transfer, how-
ever, they are very different. However, the shapes are not too mismatched.
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9.4 Inelastic scattering by atoms

9.4.1 Fundamental equation

In the case of the inelastic scattering of electrons, the energy states of atoms are changed
by the scattering. We adopt the Schrödinger equation for the whole electron system, which
is given by

(

− �2

2m
∇2 + Ha + H ′

)

� = E�, (9.52)

where Ha and H ′ are the Hamiltonians of the atom and of the interaction between the atom
and an incident electron, respectively, and � is the wave function of the whole system. The
interaction Hamiltonian H ′ is expressed as

H ′ =
∑

j

e2

|r − r j | − Ze2

|r − R| , (9.53)

where r, r j and R are the position vectors of the incident electron, the j th electron of the atom
and the atomic nucleus, respectively. At present we ignore the exchange effects between
the incident electron and the atomic electrons, for simplicity. Following Yoshioka (1957)
the wave function � is expanded as follows:

�(r; r1, . . . , rZ ) =
∑

n

φn(r)an(r1, . . . , rZ ), (9.54)

where φn and an are the wave functions of the fast electron and of an atomic electron in
the nth excited state. The energy of the atom in the nth excited state, En , is found from the
atomic Hamiltonian and the atomic wave function:

Haan = Enan. (9.55)

The wave functions φn and an are each taken as belonging to orthonormal sets, so that
∫

φ∗
n (r)φm(r)dτ = δnm (9.56)

and
∫

· · ·
∫

a∗
n (r1, . . . , rZ )am(r1, . . . , rZ )dτ1 · · · dτZ = δnm . (9.57)

In order to obtain the one-electron Schrödinger equation for the nth excited state φn , we
calculate the matrix element

∫ · · · ∫ a∗
n H�dτ1 · · · dτZ , using eq. (9.52). Here the Hamilto-

nian H is given by Ha + H ′. We then obtain the required Schrödinger equation for the fast
electron. Calculating the expression

∫ · · · ∫ a∗
n H�dτ1 · · · dτZ , we obtain the one-electron

Schrödinger equation for the fast electron:

− �2

2m
∇2φn(r) + Enφn(r) +

∑

m

H ′
nm(r)φm(r) = Eφn(r), (9.58)
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where

H ′
nm(r) =

∫

· · ·
∫

a∗
n H ′amdτ1 · · · dτZ . (9.59)

Equation (9.58) is rewritten as

− �2

2m
∇2φn(r) + (En − E)φn(r) + H ′

nn(r)φm(r) =
∑

m �=n

H ′
nm(r)φm(r). (9.60)

In eq. (9.60), H ′
nn is the potential energy of the atom in the nth excited state.

When we take n = 0, φ0(r) is the wave function for elastically scattered electrons, E0 is
the ground-state energy of the atom and H ′

00 is the adiabatic potential energy:

H ′
00(r) = −eV a(r). (9.61)

Since E is the energy of the whole system, E − E0 is the kinetic energy of the incident
electron. Writing K0 for the wave number of the incident electron, we obtain

K 2
0 = 2m

�2
(E − E0). (9.62)

For the wave number Kn for inelastically scattered electrons, we have

K 2
n = 2m

�2
(E − En). (9.63)

Then eq. (9.60) gives

(∇2 + K 2
0 )φ0 + U a(r)φ0 =

∑

m �=0

u0m(r)φm (9.64)

and

(∇2 + K 2
n )φn =

∑

m �=n

unm(r)φm, (9.65)

where

unm(r) = 2m

�2
H ′

nm(r). (9.66)

Assuming that |un0φ0| � |unmφm | for n ≥ 1 and m ≥ 1, eq. (9.65) is approximately given
as

(∇2 + K 2
n )φn = un0(r)φm . (9.67)

Using the Green’s function, in eq. (9.9), we can solve eq. (9.67) as

φn(r) = − 1

4π

∫
exp(i Kn|r − r′|)

|r − r′| un0(r′)φ0(r′)dτ ′. (9.68)

This is the wave function of an inelastically scattered electron in the nth state. Since φ(r)
is the wave function for an inelastically scattered electron, an asymptotic formula for φ(r)
gives the distribution of the scattering and the inelastic scattering factor for the nth-state
excitation.
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9.4.2 Asymptotic formula for φn(r)

If we measure the intensity of inelastically scattered electrons far enough from the target
atom. We can then take the asymptotic form of φn , i.e. the form as r → ∞,

φn ∼ 1

r
f e
n0(S) ei Knr . (9.69)

According to the Born approximation, φ0(r) in eq. (9.68) is given approximately by a plane
wave:

φ0(r) ∼ eiK0·r′
, (9.70)

where again K0 is the wave vector of the incident electron. Substituting eq. (9.70) into
eq. (9.68), we obtain the asymptotic formula as

φ0(r) ∼ − 1

4πr
ei Knr

∫

un0(r′) ei(K0−Kn )·r′
dτ ′, (9.71)

where Kn is the wave vector of an inelastically scattered electron. Comparing with eqs. (9.71)
and (9.69), we obtain the scattering factor for inelastic scattering to the nth state:

f e
n0(S) = − 1

4π

∫

un0(r) e−iS·rdτ, (9.72)

where S = Kn − K0. When un0(r) is spherically symmetric, f e
n0(r) is rewritten as

f e
n0(S) = − 1

4π

∫
sin(Sr )

Sr
un0(r )r2dr. (9.73)

Using eqs. (9.53), (9.59), (9.66) and (9.57), the term un0 for n �= 0 is written as

un0(r) = −2me2

�2

∑

j

∫

· · ·
∫

a∗
n (r1, . . . , rZ )a0(r1, . . . , rZ )

|r − r j | dτ1 . . . dτZ . (9.74)

Substituting eq. (9.74) into eq. (9.72), we obtain the scattering factor for inelastic scattering
as

f e
n0(S) = 1

2πaH

∑

j

∫

dτ
e−iS·(r−r j )

|r − r j |

×
∫

· · ·
∫

dτ1 · · · dτZ a∗
n (r1, . . . , rZ ) e−S·r j a∗

0 (r1, . . . , rZ ). (9.75)

Here we put the first Bohr radius aH instead of �2/(me2). Since
∫

e−iS·(r−r j )

|r − r j | dτ = 4π

S2
, (9.76)

eq. (9.75) is rewritten as

f e
n0(S) = 2

aH

f X
n0(S)

S2
, (9.77)
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where f X
n0(S) is the Compton scattering amplitude which is given by

f X
n0(S) =

Z∑

j=1

∫

· · ·
∫

a∗
n (r1, · · · , rZ ) e−S·r j a0(r1, · · · , rZ )dτ1 · · · dτZ . (9.78)

When we tentatively ignore the exchange term of the atomic wave function, for simplicity,
a0 and an are given by products of one-electron wave functions such as b j (r j ) (for the j th
electron of the atom):

a0(r1, . . . , rZ ) = b1(r1) · · · bZ (rZ ),

an(r1, . . . , rZ ) = b1(r1) · · · b j−1(r j−1)bn(r j ) · · · bZ (rZ ), (9.79)

because
∫ |bk(rk)|2dτk = 1. Then

∫

· · ·
∫

a∗
n (r1, . . . , rZ ) e−s·r j a0(r1, . . . , rZ ) dτ1 · · · dτZ

=
∫

b∗
n(r j ) e−is·r j b j (r j ) dτ j . (9.80)

Since bn(r j ) = b j (r j ) for the ground state, n = 0, we obtain f X
00(S) as

f X
00(S) =

Z∑

j=1

∫

|b j (r j )|2 e−S·r j dτ j . (9.81)

We put

|b j (r j )|2 = ρ j (r j ) (9.82)

and

f j j (S) =
∫

ρ j (r) e−S·rdτ, (9.83)

where ρ j (r) is the density distribution of the j th electron. Since
∑

j ρ j (r) = ρ(r), we obtain
the atomic form factor as

f X(S) = f X
00(S) =

Z∑

j=1

f j j (S). (9.84)

For excited states, n �= 0, f X
n0 is given as

f X
n0(S) =

Z∑

j=1

∫

b∗
n(r) e−S·rb0(r) dτ =

Z∑

j=1

fn j (S). (9.85)

9.4.3 Cross section for inelastic scattering

We will calculate inelastic scattering cross sections using Compton scattering intensities,
which are given by the ground-state wave functions of the electrons. The differential cross
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section for inelastic scattering is given by

dσinel

d�
=

∑

n �=0

| f e
n0|2. (9.86)

Using eq. (9.77), we obtain

dσinel

d�
=

(
2

aH

)2
∑

n �=0 | f X
n0|2

S4
. (9.87)

The numerator of the second term of eq. (9.87) is the incoherent Compton scattering inten-
sity. According to Waller and Hartree (1929), the intensity is given by (see Appendix E)

∑

j �=0

| f X
n0|2 = Z −

∑

j

| f j j |2 −
∑

j �=k

∑

k �= j

| f jk |2 (9.88)

with the exchange relation

f jk =
∫

b∗
j (r) e−iS·rbk(r) dτ. (9.89)

Then

dσinel

d�
=

(
2

aH

)2 Z − ∑
j | f j j |2 − ∑

j �=k

∑
k �= j | f jk |2

S4
. (9.90)

The values of | f jk | were calculated for several atoms and ions by Freeman (1959, 1960a,
1960b, 1962).

Assuming | f j j | � | f jk |, we obtain an approximate formula,

dσinel

d�
∼

(
2

aH

)2 Z − ∑
j | f j j |2

S4
. (9.91)

For elastic scattering, the differential cross section is given from eq. (9.31) as

dσel

d�
=

(
2

aH

)2 (Z − f X)2

S4
. (9.92)

Therefore the differential cross section for elastic scattering is about Z times larger than
that for inelastic scattering, at large scattering angles.

9.4.4 Cross section for screened potential

According to Lenz (1954) it is very helpful to use the screened-potential model described
in subsection 9.3.4 in order to estimate approximate values of cross sections and mean free
paths for inelastic scattering. In this subsection we will use this screened potential to obtain
one term of the imaginary part of the potential used for the dynamical calculation of RHEED
intensities. First we will find the cross section for the screened potential. From the cross
section we will find the absorption coefficient and then the component of the imaginary part
of the potential due to single-electron excitation (see Chapter 16). For the calculation of the
incoherent Compton intensity, we have to obtain the atomic form factor for the screened
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Kn

K′n
S

Figure 9.6 The inelastic scattering vector S. The solid curve is the equi-energy curve for the incident
electrons, and the broken curve is that for the inelastically scattered electrons. Even when the scattering
angle becomes zero, the scattering vector remains non-zero.

potential. From eq. (9.31), the atomic form factor f X(S) can be expressed as

f X(S) = Z − aH

2
S2 f (S). (9.93)

From eq. (9.48),

f (S) = 2Z

aH(S2 + S2
a )

(9.94)

for the screened potential where Sa is the reciprocal of the screening radius a given in
eq. (9.50). Substituting eq. (9.94) into eq. (9.93), we obtain

f X(S) = Z S2
a

S2 + S2
a

. (9.95)

From eq. (9.84), we assume that

f j j (S) ∼ 1

Z
f X(S) = S2

a

S2 + S2
a

. (9.96)

Using eq. (9.91), the differential cross section for inelastic scattering is given as

dσinel

d�
∼

(
2

aH

)2 Z
(
S2 + 2S2

a

)

S2
(
S2 + S2

a

)2 . (9.97)

This equation diverges at S = 0. For inelastic scattering, however, S �= 0, because S =
Kn − K0 and Kn < K0, as shown in Fig. 9.6. This means that there is a minimum value
of S for inelastic scattering. This value Smin, is estimated as follows. The kinetic energy
difference, �E , between the incident and scattered electrons is given by

�E = �2

2m
(K 2

0 − K 2
n ) = �2

2m
�K 2, (9.98)
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and

�K 2 = −(Kn − K0) · (Kn + K0) = −S · (Kn − K0). (9.99)

Therefore the minimum value of the magnitude of the scattering vector, Smin, is obtained
from eq. (9.99) as

Smin = �K 2

Kn + K0

 �K 2

2K0
= K0

2

�E

E
. (9.100)

The total cross section for inelastic scattering is given by

σinel = 2π

∫

sin χdχ
dσinel

d�
. (9.101)

Since S2 = K 2
0 − K 2

n − 2K0 Kn cos χ , K0 
 Kn and 2Sd S = 2K0 Kn sin χdχ 
 2K 2
0 sin

χdχ . Therefore eq. (9.101) is rewritten as

σinel = 2π

K 2
0

∫ K0+Kn

Smin

dσinel

d�
Sd S (9.102)


 4π Z

K 2
0 a2

H

[
1

S2
a

ln

(
S2

min + S2
a

S2
min

)

− 1

2(S2
min + S2

a )

]

. (9.103)

For the screening radius a we use eq. (9.50) and, when Sa � Smin, the total cross section
becomes

σinel 
 2Zλ2a2

πa2
H

(

ln
Sa

Smin
− 1

4

)

(9.104)


 0.5Z 1/3λ2 ln
Sa

Smin
. (9.105)

Since λ ∝ 1/
√

E , the total cross section is inversely proportional to the kinetic energy of
the incident electron.

The total cross section for elastic scattering by the screened potential is given by

σ = λ2 Z 2a2

2πa2
H

, (9.106)

therefore the ratio of the total cross sections for inelastic and elastic scattering is simply
obtained:

σinel

σ
∼ 4

Z
ln

Sa

Smin
. (9.107)

The ratio is inversely proportional to atomic number. Equations (9.103) to (9.105) were first
given by Lenz (1954). The mean free path �inel for inelastic scattering in a crystal is given
by

�inel = 1

σinel N
, (9.108)

where N is the atomic density of the crystal. The mean absorption coefficient µ0, which
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appeared in eq. (4.36), is given by

µ0 = 1

�inel
= σinel N . (9.109)

Example 9.4.1 Find the mean absorption coefficient for a Co crystal for E = 15 keV.

Solution 9.4.1 For Co, the atomic density is about 9 × 10−2 Å−3, Z = 27, and we take
�E = 15 eV. Then the Thomas–Fermi screening length, a, from eq. (9.50) is 0.15 Å,
Sa = 1/a, Smin = K0�E/(2E), K0 = 0.512

√
E and λ = 2π/K0. With these values, using

eq. (9.107), we obtain σinel = 0.8 Å2. Finally, from eq. (9.109), µ0 = 0.007 Å−1. The
inelastic mean free path is the reciprocal of this and is about 140 Å. The value obtained
for the mean absorption coefficient µ0 will be used later in the calculation of the kinematic
crystal truncation rod for a Co crystal.

This example shows that the inelastic mean free path for 15 keV electrons is comparable
which the elastic mean free path, as estimated after eq. (9.51). As a consequence, both elastic
and inelastically scattered electrons must contribute to the RHEED intensity. Further, several
elastic scatterings are possible before an inelastic scattering, so that even if the diffracted
intensity were energy filtered, multiple scattering processes would need to be considered.

The angular distribution of the inelastic scattering is obtained as eq. (9.97). In this equa-
tion, the value of S is given approximately by the inelastic scattering angle, χ :

S2 ∼ S2
min + K 2χ2. (9.110)

Then eq. (9.97) can be rewritten as

dσinel

d�
∼

(
2

aH

)2 Z (K 2χ2 + S2
min + 2S2

a )

(K 2χ2 + S2
min)(K 2χ2 + S2

min + S2
a )2

. (9.111)

Since the screening radius is of order 1Å, the value of Sa is of order 1Å−1. Smin is of
order 10−2 Å−1 for 10 keV electrons with an energy loss of order 10 eV. Then Smin � Sa .
Therefore the angular width of the inelastic scattering for one electron excitation is of order
�E/E , (i.e.,) 10−3 rad. This is a very small angle compared with the angular width of the
elastic scattering, which is of order λ/a, i.e. 10−1 rad.

Using the screening potential, we are able to estimate the angular distribution and the
cross section for inelastic scattering involving one-electron excitations. For large-Z atoms,
the contribution of the inelastic cross section becomes small in comparison with that of the
elastic scattering. As mentioned above, the cross section of electrons for elastic and inelastic
scattering is of the same order for a Co atom, for which Z = 27. For larger values of Z ,
the inelastic cross sections become smaller than those for elastic scattering. The angular
distribution of the inelastic scattering is very sharp. The width is about 1/100 of the width
of the elastic scattering. Therefore inelastically scattered electrons are distributed around
and close to diffraction spots.
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Kinematic electron diffraction

10.1 Introduction

Kinematic theories describe the motion of physical processes without consideration of the
forces involved. In electron diffraction the kinematic approach has come to mean single-
scattering analysis since in this view symmetry and energy conservation, and not the details
of the potential, largely determine the diffraction pattern (see Chapter 6). But in fact single-
scattering analysis is more than this. The strength of the interaction is included by means
of a scattering factor, the mean potential is included by the refraction of the incident angle
when a beam enters the crystal and some multiple-scattering processes are included in
the diffraction of disordered systems by considering diffraction from blocks of atoms. In
addition inelastic processes, related to the imaginary part of the potential, are included by
a factor that describes absorption. As a result kinematic theory is an exceedingly useful
approximate analysis that serves as a starting point for much of the dynamical theory.
In contrast, the exact dynamical theory, which will be described in Chapters 12–14, is
an analysis in which the potential is included from the beginning and in which multiple
scatterings are the main diffraction process. But the results and trends of dynamical theory
are difficult to visualize in simple ways. In this chapter we present the basic kinematic
theory for electron diffraction from surfaces.

Nonetheless, because interactions between fast electrons and crystal atoms are very strong
and because the elastic mean free path is comparable with the inelastic mean free path, as
seen in Chapter 9, strong multiple scattering does occur. Without care, then, the kinematic
approach is not suitable for a quantitative analysis of diffraction intensities. Only for weak
scatterers located on a surface, such as steps or adatoms, can we obtain useful information
on the structure, as shown in Chapters 5, 6 and 8. More importantly, if one can choose the
diffraction condition so that only one diffracted beam dominates, kinematic theory is a good
approximation.

This chapter gives the basis of the mathematical treatment of the geometrical picture.
First we introduce the Born approximation in the case of electron scattering by a crystal,
for calculation of the kinematic diffraction intensities. A careful statement of the main
kinematic result – a sum of terms of the form f (s) exp(is · r) – is obtained from the simple
consideration of interference based on path-length differences given in Section 5.2. We

130
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will show how to map out the reciprocal space for diffraction from a surface and how
to determine the Ewald condition. The main effort will then be to show how to calculate
the kinematic diffraction from a two-dimensional layer – one formed implicitly, such as
an adsorbate layer or the topmost portion of a crystal as determined by such absorption.
The combination of this surface diffraction with that of a known bulk will be described. In
addition, we include the effect of temperature.

10.2 Born approximation

10.2.1 The main result

For electron scattering by a crystal potential V (r), the Schrödinger equation is

− �2

2m
∇2ψ − eV (r)ψ = Eψ. (10.1)

When the crystal potential is weak for electron scattering, we can solve eq. (10.1) by the
Born approximation, using eq. (9.15), as

ψ = ψ0 + 1

4πr
eikr

∫

U (r′)e−is·r′
dτ ′, (10.2)

where s is the scattering vector defined as s = k − k0. The wave vectors k and k0 correspond
to the scattered and incident electrons, respectively. Here U (r) is the reduced potential
(2me/�2)V (r). The interpretation of this wave function ψ is that the first term, ψ0, is the
incident wave and the second term is an outgoing spherical wave, with an amplitude given
by the Fourier transform of the potential. Defining the scattering amplitude A(s) as the
coefficient of the spherical wave, eq. (10.2) becomes

ψ = ψ0 + A(s)
eikr

r
, (10.3)

where the scattering amplitude is

A(s) = 1

4π

∫

U (r′)e−is·r′
dτ ′. (10.4)

For a crystal, this amplitude is nonzero only for certain values of s, because of the interference
between waves scattered from different atoms. The main job of the kinematic theory is to
calculate this interference.

To calculate A(s), substitute for the reduced crystal potential U (r) a sum of atomic
potentials U a

j (r − ri ), where j corresponds to the j th atom:

U (r) =
∑

j

U a
j (r − r j ), (10.5)

so that the scattering amplitude A(s) is

A(s) = 1

4π

∫

U (r)e−is·rdτ = 1

4π

∑

j

e−is·r j

∫

U a
j (r)e−is·rdτ. (10.6)
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Assuming that U a
j (r) in a crystal is approximately the same as that for an isolated atom, i.e.

that valence electrons affect the scattering only very slightly, we adopt the atomic scattering
factor of eq. (9.16) for the integral in eq. (10.6):

f j (s) = 1

4π

∫

U a
j (r)e−is·rdτ. (10.7)

We use this plane-wave Born approximation in RHEED since the scattering is strongly
peaked in the forward direction. By contrast, in LEED, for the same momentum transfers
much larger scattering angles are involved and a spherical wave is required. With this
assumption the diffracted amplitude becomes

A(s) =
∑

j

f j (s) exp(−is · r j ). (10.8)

Far from the scatterer, where r � λ, the spherical wave looks like a plane wave and so this
is just the amplitude of a diffracted plane wave. Keeping the assumption that the amplitude
of the incident wave is unity, as in eq. (9.16), the relative diffracted intensity is

I (s) = |A(s)|2. (10.9)

If all the scatterers are identical, then

I (s) = | f (s)|2
∑

i, j

exp [is · (ri − r j )]. (10.10)

The summation factor is called the interference function (Webb and Lagally, 1973) or,
when explicitly performed for a finite crystal, the Laue function. This equation should be
compared with eq. (5.5).

Note that in eqs. (10.8)–(10.10), the scattering vector or change in momentum, s, is written
lower case to indicate that the beam inside the crystal, the refracted beam, determines the
scattering process. However, it is often the case that the phase shift due to refraction cancels
between identical units and the vacuum scattering vector – the unrefracted scattering vector –
becomes important. As a consequence, at appropriate places in the text we will use an upper
case S.

Equation (10.10) points to the major difficulties in the kinematic theory when applied
to reflection electron diffraction. For example, as illustrated in Fig. 5.13, for a specular
reflection, in which the incident and diffracted angles are equal, s is normal to the surface
and so only components of spacings normal to the surface enter. This means that there should
be no azimuthal dependence of the diffracted intensity. Unfortunately, as will be seen later,
this is simply not the case – there are strong azimuthal dependences. Nonetheless, with care
this main result allows the interpretation of many important geometric results and serves as
a basis to understand the dynamical theory.
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Figure 10.1 Comparison of the atomic scattering factor calculated at s = 0, using the Doyle–Turner
series, eq. (9.33), and the screened Coulomb potential eq. (9.47). On multiplication by a factor related
to the atomic density, this will be seen to be the mean inner potential, eq. (11.9).

A major advantage of RHEED is that a simple form is available for the scattering factor,
f (s), if we can assume that the neutral-atom scattering factor can be used for an atom in
a crystal lattice. For ionic crystals this might not be possible (Yakovlev et al., 2003). As
discussed in Chapter 9, we can use the scattering factors calculated by Doyle and Turner,
as given in Appendix G, or more recently by Dudarev (Dudarev et al., 1995). There is also
an approximate but analytic form, which is obtained from the screened Coulomb potential
of eq. (9.47) and which can be used to estimate the dependence on atomic number.

It is useful to examine here some trends of the Doyle–Turner series and briefly to review
the discussion in Chapter 9. The scattering factor, basically, describes the strength of the
scattering process for atoms as a function of angle. A few examples were shown in Figs. 9.3
and 9.5. The analytical result provides some intuition for an otherwise numerical solution.
Figure 10.1 shows examples of the relative scattering strength of different atoms – here
we plot the value of the scattering factor calculated at s = 0, for both the Doyle–Turner
series and for the screened Coulomb results, vs atomic number. This will be useful later
in determining the mean inner potential vs Z (cf. eq. 11.9). As can be seen, the scattering
factor is roughly approximated by the analytical result at the peak, with a simple dependence
on atomic number. Further, and of major importance, the scattering factor is peaked in
the forward direction, as shown by Fig. 9.3, though the Doyle–Turner series is less well
approximated in this regard by the analytic result. Note that the differential cross section,
which determines the angular distribution of the diffracted intensity, is even more sharply
peaked in the forward direction: Fig. 10.2 shows a plot of the angle at which dσ/d� =
| f (s)|2 is reduced to half its peak value, for an electron energy of 10 keV. Over most of the
range of Z , the scattering falls off quite quickly past about a couple of degrees.
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Figure 10.2 The angular width of the differential cross section vs atomic number for the Doyle–Turner
series and the screened Coulomb potential, for E = 10 keV. The angle, in the geometry shown, for
which | f (s)|2 falls to half its s = 0 value is plotted vs Z , showing how strongly peaked forward
scattering is at RHEED energies.

The strong peak in the forward scattering direction has an important consequence. It
means that, in the diffraction pattern, little information will be obtained for scattering angles
larger than about 8◦. It also means that it will be possible to choose off-symmetry diffraction
conditions where only a few beams contribute strongly to the pattern. Finally, it means that
the zeroth Laue zone will dominate. A key feature that should be noted at this point is that the
rapid decrease in scattering factor with increasing s or scattering angle, along with a similar
dependence from the Debye–Waller factor, to be discussed in Section 10.3, means that in
dynamical theory the beams in the zeroth Laue zone will dominate the intensity. Because
of the glancing incidence geometry of RHEED the beams in the higher Laue zones will
be at larger scattering angles and will be excited only weakly. The important consequence
is that from eq. (10.8), this means that only spacings perpendicular to the incident beam
direction will contribute to the diffracted intensity.1 In contrast, it will turn out that the
spacings parallel to the beam direction affect the shape of the beam most dramatically.

10.2.2 Reflection from a periodic sheet

For reflection electron diffraction, only a few layers of a crystal contribute to the diffracted
intensity. Since there is periodicity only parallel to the surface, momentum is conserved
up to a vector of the two-dimensional reciprocal lattice. The reciprocal space is now better

1 There is another cancellation in dynamical theory. Owing to symmetry considerations, the higher Laue zones and evanescent
beams cancel, further increasing the importance of the zeroth Laue zone.



10.2 Born approximation 135

described by a family of rods at the two-dimensional reciprocal lattice sites. There will be
intensity along the rods and when multilayers contribute there will be interference, giving
maxima along the rods. In this section we calculate the diffracted intensity for the case
in which only a very thin sheet contributes to the diffraction. The consideration of thicker
layers, where one has to include adsorption, is deferred until the next section. As such,
the calculation examined here would be appropriate, for example, for a fractional-order
beam due to a surface reconstruction or adsorbate where in kinematical theory there is no
contribution from the bulk.

Paralleling the later derivation of eq. (10.57), we describe the surface as a two-dimensional
Bravais mesh with a basis and separate the scattering vectors into perpendicular and parallel
components. Thus, for a surface lattice vector r, we have

r = Rn + ρ j + z j ẑ, (10.11)

where ẑ is the surface normal unit vector directed out of the crystal and ρ j is the parallel
component of the basis vector. Each mesh point {Rn} has associated with it basis atoms
at positions ρ j + z j ẑ. In this description, there could be in principle many atoms in the
basis but, since we are not including absorption yet, we will assume that z j remains small.
Similarly, the scattering vector is separated into perpendicular and parallel components,
s = st + sz ẑ, and the diffracted amplitude from eq. (10.8) becomes

A(s) = F(s)
∑

n

exp (st · Rn), (10.12)

where F(s), called the crystal structure factor, is given as

F(s) =
∑

j∈mesh

f j (s) exp (−iszz j ) exp (−ist · ρ j ). (10.13)

For infinite two-dimensional lattices, the summation in eq. (10.12) is only nonzero at a
vector of the two-dimensional reciprocal lattice, Bm . Using eq. (A.3),

A(s) = Nmeshδst ,Bm

∑

j∈mesh

f j (Bm, sz) exp (−iszz j ) exp (−iBm · ρ j ) (10.14)

so that

A(s) = Nmeshδst ,Bm Fm(s), (10.15)

where the crystal structure factor Fm is given as

Fm(s) =
∑

j∈mesh

f j (Bm, s) exp[−iszz j ] exp(−iBm · ρ j ). (10.16)

Equation (10.15) gives the diffracted amplitude at a diffraction condition along a re-
ciprocal lattice rod specified by Bm . In other words, for a glancing angle of incidence ϑi ,
Equation (10.15) gives the kinematic diffracted amplitude of the RHEED beams or spots
allowed by energy and momentum conservation. Choosing a particular spot is equivalent
to specifying Bm . This diffraction geometry is illustrated in Fig. 10.3a, for a specular beam
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Figure 10.3 For a given angle of incidence ϑi and reciprocal lattice rod Bm , eq. (10.15) gives the
kinematic diffracted amplitude of the specified RHEED “spot.” Here, (a) shows the geometry for
the specular beam, i.e. Bm = 0, and (b) shows the diffraction condition for a non-specular beam.
Refraction is not yet considered.

and in Fig. 10.3b, for a non-specular condition. Experimentally, one varies ϑi and wants
to know the diffracted amplitude. Here, for simplicity, are just consider the internal or un-
refracted angles. Computation of the scattering amplitude from eq. (10.15) requires s for
the scattering factor and sz for the exponential. For the specular beam, s = sz = 2k sin ϑi ,
which is straightforward given ϑi . For a non-specular beam, choose ẑ to be the outward nor-
mal of the surface and define k0 = K0t − γ0ẑ and kf = K0t + Bm + γm ẑ. Then by energy
conservation

K 2
0t + γ 2

0 = (K0t + Bm)2 + γ 2
m,

γ 2
m = γ 2

0 − 2BmK0t − B2
m . (10.17)

Since ϑi is given, one can find γ0 = k sin ϑi and, by eq. (10.17), γm . Then all that is needed
is

sz = γ0 + γm

and

s2 = B2
m + (γ0 + γm)2.

10.2.3 Reflection from a surface

Electrons that penetrate a surface scatter from the top few layers before inelastic processes
remove most of the coherently scattered electrons. As a consequence there will be maxima
near the Bragg conditions because of interference between the planes. But since there is
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Figure 10.4 Intuitive plots of the intensity along the reciprocal lattice rods that is to be calculated.
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Figure 10.5 One-beam calculation for Ag(100).

not full three-dimensional periodicity, there will be some intensity all along the reciprocal
lattice rods. These are known as crystal truncation rods. Intuitively one expects the diffracted
intensity vs perpendicular momentum transfer along the reciprocal lattice rods to look
something like the plots shown in Fig. 10.4. Here, without considering the decrease due to
scattering factors and temperature, we have shown where the residual maxima would be for
an fcc surface. In the following sections we will look at this in the full kinematic theory and
later compare the results with a dynamical calculation. We shall find that the main features
are still present, especially at high diffraction angles. The interesting question will be how far
one can go with this approximation, since it is so much simpler than the full dynamical theory.
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Monatomic simple cubic

For simplicity, consider a (001)1×1 unreconstructed simple cubic crystal. For this simple
case ρ j = 0 in eq. (10.16), so that the diffracted amplitude A(s) becomes

A(s) = Nmesh Fm(sz) = Nmesh f (Bm, sz)
∑

j∈mesh

exp(−isz z j ), (10.18)

where s2 = B2
m + s2

z . Assuming no surface relaxation, we put

z j = − jd ( j = 0, 1, 2, · · ·), (10.19)

where d is the interplanar distance. Equation (10.18) is just a sum of the diffracted amplitudes
scattered from each layer but with a phase factor corresponding to each layer. Depending
on the number of layers included in the sum, there will be constructive interference when
the scattering is in phase. In the case of an abrupt truncation of the bulk lattice involving no
relaxation, one therefore expects diffraction maxima at the position of the bulk reciprocal
lattice points. Had the unit mesh contained more than one atom per cell, these being at
different layers, the layer interference would be shifted along the reciprocal lattice rods. For
example for an fcc reciprocal lattice the bcc diffraction maxima would be maintained. In
eq. (10.18) this would have been seen had the {ρ j } not been set equal to zero. The intensity
profile along each rod would have been shifted, depending upon the two-dimensional
reciprocal lattice vector.

The number of layers, N , that contribute to the sum in eq. (10.18) is limited by the
penetration of the electron beam into the crystal. As seen in eq. (4.28), one can introduce
an effective absorption coefficient that exponentially dampens the electron intensity with
depth. In the simplest picture, the electron intensity is reduced by a factor exp (−µ0
) over a
path length 
. We examine the specular beam at a glancing angle ϑ (an internal angle), so that

 = nd/ sin ϑ is the path length to a layer nd below the surface. The specular beam ampli-
tude, being the square root of the intensity, is reduced by a factor exp[(−µ0nd/(2 sin ϑ)]
both upon entering and upon exiting the crystal when scattering from this layer. Following
eq. (4.31), define µ = µ0/ sin ϑ . Therefore the summation factor of eq. (10.18), which
includes the phase on traveling a path length 2
, becomes

I (sz) =
∣
∣
∣
∣
∣

f (sz)
∞∑

n=0

eisz nde−µnd

∣
∣
∣
∣
∣

2

, (10.20)

where we have put Nmesh = 1 for simplicity. Only the top few surface layers now contribute
to the diffraction. Performing the sum of the infinite geometric series and rearranging, we
obtain

I = | f (sz)|2
∣
∣
∣
∣

1

1 − eisz de−µd

∣
∣
∣
∣

2

= | f (sz)|2 1

(1 − e−µd)2 + 4e−µd sin2(szd/2)
. (10.21)
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Figure 10.6 Plot of the interference function, the second factor in eq. (10.21), for two values of µ,
assumed to be constant: large peaks, µ = 1/d; small peaks, µ = 2/d. As µ is increased, the effective
thickness of the surface region is reduced and the intensity around the Bragg peaks is broadened. This
calculation is for the specular beam. Note that the perpendicular momentum transfer corresponds to
internal, refracted, angles i.e. szd = 2kϑi . The internal angle ϑi is given by eq. (4.16).

In X-ray diffraction experiments, this gives an intensity vs perpendicular momentum transfer
that is commonly called the crystal truncation rod (Robinson, 1986).

The second factor in eq. (10.21) is plotted for µ = 1/d and µ = 2/d in Fig. 10.6 to
isolate the effects of absorption on the intensity and on the width of the peaks in a rocking
curve. One can see that increasing µ reduces the number of layers that contribute to the
diffraction and broadens the Bragg peaks. In Fig. 10.6, the reduction in intensity that can
be seen as µ is increased or the number of layers is reduced is just a consequence of there
being fewer scatterers in this kinematic theory. The intensities of the peaks along the (00)
rod are also seen to be constant – this is a consequence of the assumed angle independence
of µ for this particular figure. This illustrates that most features of the interference function
of the kinematic diffraction are repeated in reciprocal space.

To obtain the intensity along the crystal truncation rod, eq. (10.21), the angular depen-
dence of both the absorption and the scattering factor must, of course, be included. Choosing
the case of simple cubic Co(100), for which the lattice parameter d = 2 Å, and assuming
15 keV electrons we can find the scattering factor from eq. (9.33) using the Doyle–Turner
parameters for Co. Similarly, we use µ0 = 0.007 Å−1 for Co as calculated in the solution
to example 9.4.1. Then the interference function, scattering factor and specular intensity
are calculated, as shown in Fig. 10.7 for Ag. We will see in Chapters 12 and 13 that the
dynamical rocking curves, especially in the one-beam limit or for measurements at high
incident angle, have the same general appearance. Finally, to show the role of refraction,
in Fig. 10.7c the beam is refracted, the external angle being related to the internal angle

according to ϑext =
√

ϑ2
in − 12/15 000.
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Figure 10.7 Kinematical intensity rocking curves from eq. (10.21) with parameters appropriate to the
(00) beam of Ag(100). In (a) the scattering factor and the second factor of eq. (10.21) are plotted, µ

being dependent on angle in the latter, using µ0 = 8.5 × 10−3 Å−1 and d = 2.05 Å. In (b) the product
of the two factors, the crystal truncation rod intensity for Ag, is plotted. In (c) the diffracted intensity
times the sine of the glancing angle is plotted vs external scattering angle, assuming VI = 22 V. The
first peak is no longer seen because of refraction. The dots correspond to a one-beam dynamical
calculation for bulk-terminated Ag(100).

Lattice with a basis

For the more general case in which the lattice has a basis, the same type of result is obtained:
the truncation rod form repeats along each reciprocal lattice rod, as shown in Fig. 10.4. To
calculate this explicitly let each scatterer be at a point r, where

r = Ri − 
c0ẑ + ρk + zk ẑ, (10.22)

i extends over all integers, 
 = 0, 1, 2, . . ., and k labels each scatterer of the unit cell. This is
illustrated in Fig. 10.8. This coordinate system is chosen to make use of eq. (10.23), in which
we will define an effective absorption in terms of the perpendicular depth. By choosing the
two-dimensional mesh {Ri }, the diffraction will consist of rods perpendicular to the surface.
We want to calculate the intensity vs sz along these rods. Once again, we expect that the
result will be lines perpendicular to the surface, drawn through the bulk reciprocal points,
with maxima at those points. The method here is to choose a lattice with a unit cell larger
than might be necessary and for which the z-axis is normal to the surface mesh. We will
then find that some of the resulting modulation in the z direction will be structure factor
forbidden. Hence it will be possible for the maxima along different rods to be displaced in sz .

First, we need to modify the treatment of absorption to allow for non-specular beams. We
need to consider the effect on different beams, since in the kinematic theory the incident
and diffracted plane waves travel different distances through the crystal and one therefore
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Figure 10.8 The coordinates used to calculate the crystal truncation rods of a lattice with a basis.
Here ẑ is the outward normal to the surface. The vectors Ri are parallel to the surface and define
the two-dimensional periodicity. The basis vectors ρk − zk ẑ, with ρk parallel to the surface, and the
vectors 
c0ẑ describe the remaining scatterers.

expects their absorption to be different. For diffraction from a layer d below the surface, the
incident beam has traveled d/ sin ϑi and the mth diffracted beam a path length d/ sin ϑm ,
where internal (refracted) angles must be used. In terms of momentum components, since
the perpendicular component of the wave vector is γm = k0 sin ϑm the absorption amplitude
can be written as

exp (−µd) = exp

[ −µ0d

2 sin ϑ0
− µ0d

2 sin ϑm

]

= exp

[−µ0k0d

2γ0
− µ0k0d

2γm

]

, (10.23)

where on the right-hand side we include a factor one half in the exponent; this becomes
unity upon squaring to obtain the intensity. Using the effective absorption coefficients µ′

0

and µ′
m defined as functions of γ as in eq. (4.31), we obtain

µ′
m = µ0k0

γm
. (10.24)

We take µ0 to be the mean absorption coefficient, defined in Chapter 9; ϑ ′
m is the external

takeoff angle of the mth diffraction beam. With these definitions, the effective absorption
coefficient is µ = (µ′

0 + µ′
m)/2. This is the kinematical treatment of absorption, which

corresponds to a dynamical treatment in which absorption is included as an imaginary part
of the potential.

From eq. (10.8) and with these coordinates for r we have

A(s) =
∑

i

eist ·Ri FTR F0, (10.25)

where

FTR =
∞∑


=0

e−isz
c0 e−µ
c0
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and

F0 =
∑

k ∈ cell

fk(s)eist ·ρk e−isz zk e−µzk .

Thus

A(s) = Nmeshδst ,Bm FTR(sz)
∑

k ∈ cell

fkei(Bm ·ρk−sz zk ), (10.26)

where z0 = 0 and where the last factor, exp (−µzk ), will have a small effect within the unit
cell and so has been neglected. Note that there is assumed to be no surface reconstruction
in this bulk truncation. From the above we obtain

FTR(sz) =
∑




e−isz
c0e−µ
c0

= 1

1 − e−µc0e−iszc0
, (10.27)

so that FTR only depends on the magnitude of the absorption and the layer separation. The
intensity |FTR|2 has the same functional form as eq. (10.21) and by construction is the same
for each reciprocal lattice rod. F0, the last factor in eq. (10.26), contains the information on
the stacking.

Example 10.2.1 Find Fm(γm) for an fcc (001)(1 × 1) unrelaxed surface. Determine the
diffracted intensity along different reciprocal lattice rods.

Solution 10.2.1 For fcc(001), choose as the vectors to describe the repeated cell the
orthogonal vectors a1 and a2, each with magnitude a/

√
2, where a is the lattice parameter.

The basis vectors in the unit cell are defined by

r1t = 0, z1 = 0,

r2t = 1
2 a1 + 1

2 a2, z2 = 1
2 c0.

Since a reciprocal rod vector Bhk is given as

Bhk = hb1 + kb2, (10.28)

the structure factor becomes

Fhk(γhk) = FTR(γhk) f (s){1 + exp [−i(h + k)π ] exp [−i(γhk + γ0)c0/2)]}. (10.29)

For h + k even,

Fhk(γhk) = FTR(γhk) f (s){1 + exp[−i(γhk + γ0)c0/2]} (10.30)

and for h + k odd,

Fhk(γhk) = FTR(γhk) f (s){1 − exp[−i(γhk + γ0)c0/2]}. (10.31)

Therefore the set (γhk + γ0)c0 = π times an even number and h + k = odd number and the
set (γhk + γ0)c0 = π times an odd number and h + k = even number give large values of
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Figure 10.9 Kinematical intensity rocking curves from an fcc surface as a function of (γhk + γ0)c0 =
szc0 for the (00), (10) and (20) rods. The positions of the reciprocal points of the bulk crystal are at
the peak positions of the curves. The reflection indices shown are for the Bragg reflections from the
bulk.

Fhk . Figure 10.9 shows the rocking curves calculated from eqs. (10.30) and (10.31) as a
function of (γhk + γ0)c0 and the positions of the reciprocal lattice points of the bulk crystal.
The calculation is carried out for parameter values c0 = 4 Å, µ = 0.01 Å−1 and wavelenghth
λ = 0.1 Å.

Surface reconstructions

The character of the surface layer sometimes allows a convenient distinction between the
truncated bulk crystal and the surface. For example, if the surface reconstruction is largely
confined to the first layer it is useful to separate the problem into diffraction from the
unreconstructed truncated bulk and from the simple surface region. This is also useful if
there is adsorption that does not modify a truncated bulk crystal or if one wants to calculate
the full dynamic bulk and then quickly explore the effect of a variety of reconstructed
surfaces.

To effect this separation, one need only ensure that the kinematical calculation is per-
formed with respect to a single origin, so that the extra phase associated with the additional
path length between scattering from the surface and the bulk is properly included. Let the
surface lattice be described by {rs, j } and the bulk lattice by {r0 + rb,i }, where i and j range
over all the bulk and surface scatterers, respectively. This separation, in which the diffrac-
tion from the surface and that from the bulk are referenced to the same origin is illustrated
in Fig. 10.10. The kinematic diffraction is

A(s) =
∑

j

f j exp (is · rs, j ) +
∑

i

fi exp [is · (r0 + rb,i )]

= AS(s) + exp (is · r0)AB(s) (10.32)



144 Kinematic electron diffraction

AS(s)

AB(s)

ro

Figure 10.10 If the unreconstructed diffraction, AB(s) is known or assumed, it can be added to
the diffraction from just the surface layer, AS(s). The origins of the two lattices are separated by
r0 = z0ẑ + ρ0.

where AB(s) is the diffracted amplitude from the bulk lattice alone. Taking the square
modulus, we find the diffracted intensity,

I (s) = IS(s) + IB(s) + 2R[2AB A∗
S exp (is · r0)], (10.33)

where there is now a cross term due to the interference between the scattering from the two
regions.

This single-scattering limit has several important consequences. First, the surface can
contribute new fractional-order beams if its periodicity is different from that of the bulk –
I (s) will only have a nonzero value when st is equal to a surface reciprocal lattice vector.
Second, since AB(s) is only nonzero along the bulk reciprocal lattice rods, effects from
the bulk cannot be seen at the positions of the fractional-order beams. Third, to obtain a
modulation of intensity along the fractional-order rods as a function of sz , the scatterers in
the surface layer must be distributed in z. Last, the separation r0 cannot be determined at
the fractional-order beams since the cross term in eq. (10.33) involves AB(s), which has no
intensity there. To find information relating the surface and bulk effects, one must examine
the rocking curves for integer-order reflections.

Example 10.2.2 Calculate the fractional-order diffraction intensities from a 2 × 1 recon-
structed surface of the (100) plane of a simple cubic crystal. The coordinates of atomic
positions are taken as x1 = �a, x2 = a − �a, y1 = y2 and z1 = z2 = 0, corresponding to
dimer arrangements. The bulk crystal is z0 below the surface.

Solution 10.2.2 We only need to consider the x direction. The lattice coordinates of the
surface layer are r = 2anx̂ + ρ j with ρ j = �ax̂ or (a − �a)x̂, as shown in Fig. 10.11.
Then the diffracted amplitude from the surface layer alone is

AS(s) =
∑

r

f exp (is · r)

=
∑

n, j

exp (isx 2an) exp (isxρ j ).
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Figure 10.11 Atomic positions in the two-fold direction of a 2 × 1 reconstruction.

(a) (b)

(c) (d)

Figure 10.12 Four models of the GaAs(001)2×4 structure. (a)–(d) are referred to as α, β, γ and β2,
respectively.

Taking out the sum over two-fold lattice sites and performing the sum over j :

A(s) = Nδsx ,Bm (exp (isx�a) + exp [isx (a − �a)]). (10.34)

The total diffracted amplitude is from eq. (10.32)

AS(sx ) + exp (−isz z0)AB, (10.35)

where AS has a nonzero value for the overlayer beams at sx = 2πn/(2a) = (n/2)(2π/a) and
for the bulk at sx = 2πn/a. The additional overlayer beams are seen to be fractional-order
beams in terms of the bulk reciprocal lattice when n is an odd integer. At the fractional-order
beams there is no bulk diffracted amplitude, and so the diffracted intensity is

I (sx ) = N 2| f |2 |exp (iπ�a/a) − exp (−iπ�a/a)|2
= 4N 2| f |2(sin π�a/a)2.

Example 10.2.3 Calculate the intensities of the fractional-order diffraction spots in the
zeroth Laue zone for [11̄0] incidence, for the four models of a GaAs(001)2 × 4 surface
shown in Fig. 10.12. Assume that the As atoms in layer 0 and the Ga atoms in layer 1 are
at the bulk positions. Assume that the atomic scattering factors of As and Ga are the same
and that fAs = fGa = f .

Solution 10.2.3 Factoring out the surface structure factor FS(s) and the bulk structure
factor FB(s) from eq. (10.32), the diffraction amplitude is, as in eq. (10.13),

A(s) = [
Fs(s) + FB(s) exp (−iszz0)

] ∑




exp (−ist · R
t ) (10.36)



146 Kinematic electron diffraction

for r0 = −z0 ẑ. For the surface layer, we put

FS(s) =
∑

j

f j (s) exp [−i(γ + γ0)z j ] exp (−ist · r j t ), (10.37)

where the summation is carried out in the unit mesh of the surface layer. When a surface
reconstruction takes place the basis vectors for the superlattice are expressed from by
eq. (5.24) in Chapter 5 as

(
b1

b2

)

=
(

2 0
0 4

) (
a1

a2

)

. (10.38)

Therefore R
t in eq. (10.36) is given by

R
t = 
1b1 + 
2b2 = 2
1a1 + 4
2a2. (10.39)

The reciprocal vectors b∗
1 and b∗

2 for the reconstructed surface are found from eq. (5.25) as
(

b∗
1

b∗
2

)

=
(

1/2 0
0 1/4

) (
a∗

1

a∗
2

)

(10.40)

and st is given as

st = m1b∗
1 + m2b∗

2 = (m1/2)a∗
1 + (m2/4)a∗

2. (10.41)

For an infinite surface, we put

st R
t = 2π × integer. (10.42)

Using rod indices h, k for truncated bulk surfaces, st is expressed as

st = ha∗
1 + ka∗

2. (10.43)

Comparing eqs. (10.41) and (10.43), the rod indices are expressed as

(hk) = (m1/2 m2/4). (10.44)

When h and k are fractional numbers, FB(s) becomes 0. Therefore the intensities for
fractional-order diffraction include only the surface layer term, Fs(s).

Model A, the 2-dimer-2-missing-dimer model Since the atoms in layer 0 are at the
bulk positions, layer 0 does not contribute to the fractional-order diffraction. So we need
to take the atomic positions in layers 1 and 2 into account. The atomic positions (x, y, z)
are: (a/2, −a, 0), (a/2, 0, 0), (a/2, a, 0), (−a/2, −a, 0), (−a/2, 0, 0), (−a/2, a, 0)
in layer 1, the Ga layer; (a/2 − �a, −a/2, c/4 − �c), (a/2 − �a, a/2, c/4 − �c),
(−a/2 + �a, −a/2, c/4 − �c), (−a/2 + �a, a/2, c/4 − �c) in layer 2, the As layer.

The structure factor for the model A is obtained as

FS(s) = 2 f {cos(sx a/2)[1 + 2 cos(sya)] + 2 cos[sx (a − 2�a)/2] cos(sya/2) exp(−iszd)}.
(10.45)

For the zeroth Laue zone of [11̄0] incidence, sx = 0. The fractional-order intensities of
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Table 10.1 Fractional-order intensities
from GaAs(001)2 × 4

Rod indices 0 1
4 0 2

4 0 3
4

Model A 1.0 0.15 0.70
Model B 1.0 0.0 0.78
Model C 1.0 0.93 0.78

(0 1/4), (0 2/4) and (0 3/4) are 4 f 2[5 + 2.83 cos(szd)], 4 f 2, 4 f 2[5 − 2.83 cos(szd)], re-
spectively.

Model B, the 2-dimer model, and model C, the 3-dimer model There are no vacancies
in layer 1 and the atoms are at the bulk positions. Therefore layer 1, like layer 0, does not
contribute to the fractional-order diffraction. So we need to take the atomic positions in
layer 2 into account for models B and C. For these models, we can take z = 0.

The Atomic positions are for model B: (a/2 − �a, −a/2, 0), (a/2 − �a, a/2, 0),
(−a/2 + �a, −a/2, 0), (−a/2 + �a, a/2, 0) and for model C (a/2 − �a, −a, 0),
(a/2 − �a, 0, 0), (a/2 − �a, a, 0) (−a/2 + �a, −a, 0), (−a/2 + �a, 0, 0), (−a/2 +
�a, a, 0).

For model B, the structure factor is

FS(s) = 4 f cos[sx (a/2 − �a)] cos(sya/2).

The fractional-order intensities of (0 1/4), (0 1/2) and (0 3/4) are 16 f 2, 0 and 16 f 2, respec-
tively, and for model C, the structure factor is

FS(s) = 2 f cos[sx (a/2 − �a)] [1 + 2 cos(sya)].

Therefore the fractional-order intensities are all the same, 4 f 2.

For these three models, the intensity distributions of the diffraction spots are different.
Since the surface layer has a finite thickness for model A, the fractional-order intensities
are modulated along the rods. At an incident glancing angle of 2◦, the relative intensities
of the fractional-order intensities are shown in Table 10.1. The diffraction intensities are
multiplied by the takeoff angles. The observed intensities from the GaAs(001)2 × 4 surface
are consistent with either model A or model B. In fact the measured half-order intensity is
just a little larger than that of model A, giving model A some preference. This kinematic
calculation is inconsistent with the three-dimer model C. Dynamical calculations also prefer
model A in a detailed comparison of the measured and calculated rocking curves. Finally,
a comparison of the mean rocking curve intensities with the kinematic calculation given in
Table 10.1 shows excellent agreement.

This missing half-order beam and its relation to missing dimer structures has been studied
by a number of groups, using this comparison technique of Ichimiya (Van Hove and Cohen
1982; Farrell and Palmstrøm, 1990; Hashizume et al., 1994, 1995; Ichimiya et al., 2001).
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Figure 10.13 Example of a diffraction pattern showing the weaker, half-order, beam in the fourfold
pattern.

The diffraction pattern from a GaAs(100) surface at a glancing angle of 2◦ is shown in
Fig. 10.13.

Example 10.2.4 Calculate the diffraction intensities for surface normal relaxation.

Solution 10.2.4 We consider the surface normal relaxation of a monoatomic simple
cubic(001)1 × 1 surface. When the surface layer expands by �c and z0 = −c0 in eq. (10.37)
we have

FS(s) = f (s) exp (−isz�c). (10.46)

Therefore, from eq. (10.36), the reflection intensity is obtained as

|F(s)|2 = | f (s)|2 + |FB(s)|2
+ f (s)FB(s) exp [isz(c0 + �c)] + f (s)F∗

B(s) exp [−isz(c0 + �c)].

The first term in this equation gives no structure in a rocking curve. The second term
gives the Bragg peaks from bulk periodicity. The third and fourth terms give extra peaks
in the rocking curve. When the surface layer is expanded, the extra peaks appear at lower
angles than the Bragg peaks and, for contraction, the extra peaks are at higher angles than
the Bragg peaks. Therefore, by measuring the position of the extra peaks, we are able to
determine the surface normal position of the surface layer, using the one-beam diffraction
condition.

10.3 The effect of temperature

In a crystal lattice the atoms are, at any instant of time, away from their equilibrium positions.
Since in an atomic vibration time, about 1 × 10−13 s, a 10 keV electron will travel about
6 µm, the diffraction pattern is an average of snapshots of many small regions taken at this
instant. To find the effect of these vibrations it is easiest to do a time average. Suppose that
in a capital lattice the vibrations produce changing lattice coordinates r j (t) = r j + u j (t).
Here the u j are the deviations from the mean equilibrium lattice positions. For simplicity
we assume that all the scatterers are identical. Then the time-averaged diffracted intensity
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is, from eq. (10.10),

〈I (s)〉 = | f (s)|2
∑

i, j

exp [is · (ri − r j )]〈exp [is · (ui − u j )]〉. (10.47)

Separating into i = j and i �= j terms in the summation, this becomes

〈I (s)〉 = N | f (s)|2 + | f (s)|2
∑

i �= j

exp [is · (ri − r j )]〈exp [is · (ui − u j )]〉. (10.48)

We can evaluate the time average for small deviations by expanding the exponential to give
approximately

〈exp [is · (ui − u j )]〉 = 1 − 1
2 〈[s · (ui − u j )]

2〉, (10.49)

since the linear term has zero mean. The right-hand side can be expanded further to give

1 − 1
2 [〈(s · ui )

2〉 + 〈(s · u j )
2〉 − 2〈(s · ui )(s · u j )〉], (10.50)

where, in a model of independent oscillators, the first two terms are identical and the last
term, since i �= j , is zero. Dropping the now unnecessary subscript and approximating the
result as an exponential, eq. (10.48) becomes

〈I (s)〉 = N | f (s)|2 + | f (s)|2
∑

i �= j

exp [is · (ri − r j )] exp [−〈(s · u)2〉]. (10.51)

This approximate treatment of the time average turns out, in fact, to be exact (Landau and
Lifshitz, 1978).

Finally, add and subtract the i = j term, N | f (s)|2 exp [−〈(s · u)2〉]. Equation (10.51)
then becomes

〈I (s)〉 = exp [−〈(s · u)2〉]| f (s)|2
∑

i, j

exp [is · (ri − r j )] + N | f (s)|2{1 − exp [−〈(s · u)2〉]}
(10.52)

where the first term is the usual Bragg diffraction but reduced by the factor exp [−〈(s · u)2〉],
which is the square of the Debye–Waller factor, exp [−Bs2/(16π2)]. Assuming isotropic
displacements u and using the Einstein model, this factor can be related to the Debye
temperature (Ziman, 1972). It causes the RHEED beams to decrease relatively rapidly
with temperature. Since the presence of multiple scatterings, each with different values
of momentum transfer, will affect the Debye–Waller factor in RHEED, typically it is not
useful as a technique to measure the surface rms lattice displacements. It does serve as the
basis for a method of including temperature in the dynamical calculation. The second term
in eq. (10.52) corresponds to one-phonon diffuse scattering. It goes to zero near s = 0 since
there cannot be long-range correlations in this model of independent oscillators. It is spread
out over the Brillouin zone and is typically weak. In Section 16.5 it will be integrated to
determine the cross section for thermal diffuse scattering.
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Figure 10.14 Calculated Debye–Waller factor for the (00) beam from GaAs(100), for an assumed
value of u2

z . Taking into account with the scattering factor, it is difficult to measure intensity past about
the fifth order.

Example 10.3.1 Calculate the magnitude of the Debye–Waller effect, assuming that
u2 = 0.02 Å2, for the specular beam from GaAs. To what order can the diffraction be
easily measured?

Solution 10.3.1 Note that for GaAs the (00)-beam Bragg conditions are located at sz =
n(4π/a) = n(2π/d), where d = a/2 is the interlayer distance perpendicular to the (100)
planes and n is an integer. The resulting Debye–Waller factor is shown in Fig. 10.14. As can
be seen, after about the fourth order the reduction in diffracted intensity due to temperature
is large. When this is combined with the reduction with increased scattering angle due to
the scattering factor, the diffracted intensity becomes weak and difficult to measure past
about 8◦(10 keV).

10.4 Kinematic predictions

In the kinematic or single-scattering theory a number of simple results are obtained, which
it is useful to point out, since in some cases one hopes to make use of modified versions
that are appropriate to the real situation.

The first result is that the integral of the interference function over all s is approximately
constant. The interference function is the following sum over atomic positions {ri }:

I(s) =
∑

i

eis·ri
∑

j

eis·r j

=
∫

d3r
∑

i

δ(r − ri )e
is·r

∫

d3r′ ∑

j

δ(r′ − r j )e
−is·r′

= N
∫

d3u C(u)eis·u,
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where C(u) describes the correlation (see the equation after (17.5)) between the scatterers
at r and r + u, according to

C(u) = 1

N

∫

d3r
∑

i

δ(r − ri )
∑

j

δ(r − r j ). (10.53)

Then the integral of the interference function is
∫

d3s I(s) = N
∫

d3u C(u)
∫

d3s eis·u

= N
∫

d3u C(u)δ(u)

= NC(0),

which equals N since, by construction, the correlation of a lattice with itself is unity. This
was seen in the Laue function, eq. (6.3), for which the peak has height N 2 and width 1/N .
One might expect that during epitaxial growth the width of a peak would become broader
as the correlation length became shorter, but that the integral of the peak would remain
approximately constant. Experimentally this is not found to be true if the correlation length
is too small. These correlation functions will be examined in more detail later.

10.5 Crystal structure factor of a three-dimensional periodic lattice

When we are considering the scattering from a crystal that is an infinite periodic lattice of
identical unit cells, the amplitude A(s) can be simplified by factoring out the contribution
from a unit cell. This factorization is an important theme.

To separate the amplitude, label the origin of the 
th unit cell as the position vector R
, so
that a scatterer is at R
 + u j , where u j is a basis vector that describes the relative positions
of scatterers in the unit cell. With this coordinate system,

A(s) = F(s)
∑




exp(−is · R
), (10.54)

where F(s) is called the structure factor and is given as

F(s) =
∑

j∈unitcell

f j (s) exp(−is · u j ). (10.55)

For infinite three dimensional crystals , the second factor in eq. (10.54) is nonzero only
when s is a vector of the three-dimensional reciprocal lattice, Bm , as shown in eq. (A.3), i.e.

∑




exp (is · R
) = Ncellδs,Bm ,

so that

A(s) = Ncell F(s)δs,Bm = Ncell Fmδs,Bm , (10.56)
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where Ncell is the number of unit cells in the crystal and

Fm =
∑

j∈unitcell

f j (Bm) exp(−iBm · u j ). (10.57)

Thus the first factor in eq. (10.54) is the structure factor Fm of the basis or unit cell, which
is repeated at each Bravais lattice point. The second factor only has a nonzero value at
a diffracted beam that has a momentum transfer equal to a reciprocal lattice vector. If
in addition the first factor is zero then that diffracted beam is termed “structure factor
forbidden.”

Factoring out the structure factor of a cell that is repeated at each of the lattice points will
allow us to treat vicinal surfaces later. In this view, the lattice is considered as a convolution
of the basis cell with the Bravais lattice points. Then the Fourier transform of the convolution
is the product of the Fourier transform of the Bravais lattice and that of the basis cell, i.e. the
structure factor – as seen in eq. (10.54). It is a bit simpler if the scatterers are all identical.
Then the crystal consists of an atom repeated at each basis point and the basis cell repeated
at each lattice point – a convolution of the lattice with a basis and an atomic potential:

U (r) =
∑




δ(r − R
) ∗
∑

j∈cell

U a
j (r)δ(r − u j ). (10.58)

The diffracted amplitude, the Fourier transform, is the product of the Fourier transform of
the lattice and the Fourier transform of the basis with scattering factors, i.e. the product of
the Fourier transform of the lattice and the crystal structure factor.

Example 10.5.1 Find the structure factor for an hcp lattice in terms of an hexagonal lattice.

Solution 10.5.1 The hcp lattice is not Bravais and so must be expressed in terms of one
that is Bravais, for example an hexagonal lattice. Using the usual primitive vectors a1, a2

and a3, the basis vectors are:

u1 = 0,

u2 = a1/3 + 2a2/3 + a3/2.

The structure factor is then

F(hkl) = 1 + exp [i2π (h + 2k)/3 + ilπ ].

Hence terms like (001), (111) and (221), or in Miller–Bravais notation the (0001), (112̄1)
and (224̄1) planes are structure factor forbidden. This means that the first allowed bulk
diffraction beam on the (00) rod, the first in-phase condition, shown in Fig. 6.8, corresponds
to a reciprocal atomic step height equal to 2π divided by (c/2).

The crystal structure factor evaluated at the points of the reciprocal lattice corresponds
to the Fourier coefficients of the crystal potential. To see this, expand the reduced crystal
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potential U (r) as follows:

U (r) =
∑

m∈ crystal

Um exp(iBm · r). (10.59)

The Fourier coefficient Um is then given as

Um = 1

�

∫

crystal
U (r) exp(−iBm · r)dτ, (10.60)

where � is the crystal volume. Comparing eq. (10.60) with eq. (10.6) and using eqs. (10.56)
and (10.7), we find the relation between the Fourier coefficient of the reduced crystal
potential, Um , and the crystal structure factor Fm as

Um = 4π

�0
Fm, (10.61)

where �0 is the unit-cell volume for the crystal. This means that the set of kinematic
diffraction amplitudes of electrons is obtained from the Fourier expansion of the crystalline
potential.
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Fourier components of the crystal potential

11.1 Introduction

In the dynamical theory of electron diffraction we intend to make use of the translational
periodicity of a surface to write the scattered electron wave function as a sum of beams
or Fourier components. The scattering properties of these beams will depend in turn upon
the Fourier components of the crystalline potential. Because of the nature of the interaction
between high-energy electrons and the crystal, this potential can be parametrized in a
particularly simple and useful form. As a comparison, for LEED calculations this Fourier
expansion method could be used in principle, but in that case one would need a large number
of Fourier components for the calculation to converge (Pendry, 1974). For LEED, one also
needs to include exchange scattering in the calculation, complicating the potential. For
RHEED calculations, the cross section for exchange is negligibly small because of the large
difference in energy between the atomic electrons and the incident and diffracted electrons.

The main goal of this chapter will be to determine an expression for the Fourier com-
ponents of the crystalline potential that will be suitable for use in a dynamical calculation
of surface structure. The only approximation that we will make will be to assume that the
distribution of electrons around the atoms in a crystal is spherically symmetric. This means
we are assuming that scattering from the atom cores dominates. We will then be able to write
the Fourier transform of the crystalline potential as a sum of terms that are Fourier trans-
forms of the atomic potentials. It is important to note that though these terms are formally
identical to the atomic scattering factors developed in Chapter 9, the Born approximation
is not being used here. First, we will use the Doyle–Turner parametrization of the atomic
scattering factor from subsection 9.3.1 to obtain a simple, useful form for the potential.
Second, we will examine approximations that allow us to include the role of temperature.
Taken together we will have developed the potential necessary for dynamical calculations.

11.2 Doyle–Turner parametrization

To find a two-dimensional Fourier series for the potential of a periodic two-dimensional
slab, we choose the coordinates shown in Fig. 11.1. Here the slab is divided into a mesh,
each unit of which is repeated by the translation vectors of the j th unit mesh, R j , of the

154
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Figure 11.1 Coordinates for labeling the atoms.

two-dimensional Bravais lattice. Each unit mesh defines a unit cell that extends from the
surface of the slab to the bottom and contains s = 1, 2, . . . , L atoms. Choosing one of these
L atoms as an origin, the remaining atoms in the unit cell are at coordinates rs = (ρs, zs).
Any of these L atoms can be translated into the other unit cells by addition of a translation
vector R j . The potential at a position r = (ρ, z) is then

U (r) = 2me

�2
V (r) =

∑

j,s

U a
s (ρ − ρs − R j , z − zs), (11.1)

where U a
s is the atomic potential of the sth atom in a unit cell; the atomic potentials do not

need to be identical.
The Fourier coefficients of the potential are

Um(z) = 1

A

∫

A
d2ρ

∑

j,s

U a
s (ρ − ρs − R j , z − zs) exp (−iBm · ρ) (11.2)

where A is the area of the slab. To put these into a form suitable for parametrization, set

ρ′ = ρ − ρs − R j (11.3)

so that, after noting that Bm · R j = 2π × integer,

Um(z) = 1

A0

∑

s

exp (−iBm · ρs)
∫

unit mesh
d2ρU a

s (ρ, z − zs) exp (−iBm · ρ) (11.4)

where A0 is the area of a unit cell. Using eq. (9.16) we substitute the scattering factor and
integrate over ρ to obtain

Um(z) = 2

A0

∑

s

exp (−iBm · ρs)
∫ ∞

−∞
dqz

∫

d2q||δ(q|| − Bm) fs(qz, q||) exp [iqz(z − zs)].

(11.5)
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We then use the Doyle–Turner parametrization, eq. ( 9.33):

fs(q) =
4∑

k=1

ak,s exp

(−bk,sq2

16π2

)

. (11.6)

where the ak,s are in Å and the bk,s are in Å2. The parameters {ak} and {bk} are tabulated in
Appendix G. After integrating over q||, the mth component of the potential then becomes

Um(z) = 2

A0

∑

s,k

ak,s exp (−iBm · ρs)

×
∫ ∞

−∞
dqz exp

(−bk,s B2
m

16π 2

)
exp

(−bk,sq2
z

16π 2

)
exp [iqz(z − zs)] (11.7)

Integrating the Gaussian, one obtains

Um(z)= 8π

A0

4∑

k=1

L∑

s=1

ak,s

(
π

bk,s

)1/2

exp
(−bk,s B2

m

16π2

)
exp (−iBm · ρs) exp

[−4π2(z − zs)2

bk,s

]

(11.8)

as the Doyle–Turner potential. For the multi-slice calculations described in Chapters 12 and
13, we can use eq. (11.8) to obtain the slice potential at z. Note that the components are
of decreasing importance as the magnitude of the reciprocal lattice vector, Bm , increases –
this will limit how many beams must be considered in the calculation. Equation (11.8) is
the major result of the present chapter.

It is also sometimes useful to obtain the mean potential for a slab for m = 0. This is the
mean inner potential VI and can be approximated by integrating eq. (11.8) for an infinitely
thick slab:

VI = 1

Nc

∫ ∞

−∞

�2

2me
U0(z)dz = h2

2πm A0c

∑

k,s

ak,s, (11.9)

where c is the unit-cell thickness in Å and the sum is over the atoms contained in this unit
cell of volume A0c. This is shown for some common elements in Fig. 11.2. Note however,
that the diffraction is very sensitive to the mean inner potential and so one usually relies on
experiment for this value.

11.3 Effect of thermal vibrations

Because of thermal vibrations, the atoms of a crystal are displaced by an amount �r(t)
from their equilibrium positions, where t is the time. In the kinematic treatment this was
included by doing a suitable thermal average of the interference function

〈I (s)〉 =
〈
∑

i, j

exp {is·[r j (t) − ri (t)]}
〉

(11.10)

=
∑

i, j

exp [is·(r j − ri )] exp (−s2〈u2〉/2), (11.11)
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Figure 11.2 Inner potentials calculated from the Doyle–Turner parameters for some common ele-
ments. Note, however, that since the diffraction is so sensitive to this parameter, the inner potential is
usually obtained as a fit to the measured rocking curves.

as described in Section 10.3. The last factor is the Debye–Waller factor. In kinematic
theory there just is one momentum transfer; however, in the dynamical theory there are
scatterings between many beams, each with a different momentum transfer and each with
a different Debye–Waller factor. Two ways to include this factor have been proposed: Hall
and Hirsch (1965) argued that the Debye–Waller factor should be multiplied by f (s), the
atomic scattering factor, while Zhao et al. (1988) suggested that the Fourier component
of the potential itself should be multiplied by this temperature factor. These are similar,
though in the latter case large-angle scatterings must be explicitly neglected. Both have a
similar effect on the calculations. No new peaks are introduced. The main effect is that the
relative intensities of the peaks are changed – in kinematic theory the peaks of, say, the
specular-beam rocking curve would have a Debye–Waller factor proportional to angle at a
fixed temperature. In dynamical theory this is not the case.

Including temperature effects in the potential is mainly important when one is interested
in making RHEED measurements as a function of temperature or calculating a rocking
curve at relatively high temperatures. For a structural analysis at room temperature it is
perhaps not so important, since other uncertainties also influence the relative intensity of
the diffracted peaks in a given beam and one is mainly interested in the positions of the
peaks.

To modify the potential to account for temperature, we follow the approach of Hall and
Hirsch and take the thermal average of the crystalline potential U (r). To avoid confusion
with the potential, take the displacement of the scatterers from their mean positions to be
�r j . Including the motion of the atoms, the average potential becomes

〈U (r)〉 =
〈
∑

j

u j (r − r j − �r j (t))

〉

. (11.12)
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A RHEED electron is moving quite quickly. For example, a 10 keV electron travels
1 Å in about 0.001 fs, which is smaller than the vibrational periods. This means that the
electron will see a potential due to atoms which, in an Einstein model, are frozen at random
deviations about their equilibrium positions. The averaged potential in eq. (11.12) is thus
a spatial average over these random positions. The scattering due to different electrons is
added incoherently.

To obtain a closed-form result we take, as an approximation, the three-dimensional Fourier
transform of this potential,

Ug = 1

�

∑

j

exp[−ig · (r j + �r j )]
∫

u j (r j ) exp(−ig · r j ) d3r j , (11.13)

where � is the volume of the slab. Note that this is not a strictly periodic function and so
this type of transform is an approximation. Since

∫

u j (r) exp(−ig · r) d3r = 4π f j (g), (11.14)

from eq. (10.7), eq. (11.13) becomes

Ug = 4π

�

∑

j

f j (g) exp[−ig · (r j + �r j )]. (11.15)

In eq. (11.15) there will be a small number of different factors of the type exp(ig · r j ).
Taking the time average, the resulting summation becomes

〈Ug〉 = 4π

�

∑

j

f j (g) exp(−ig · r j )

×〈exp(−ig · �r)〉, (11.16)

where the average is over all lattice sites. Assuming an Einstein model of the vibration
and a small vibration amplitude, and following the argument of Section 10.3, we obtain
approximately

〈exp(−ig · �r)〉 ∼ 1 − g2〈�r 2〉/2

∼ exp[−B(g/4π )2], (11.17)

where B = 8π2〈�r2〉. The expression exp[−B(g/4π )2] is the Debye–Waller factor and B
is called the Debye parameter. We define 〈 f j (g)〉 as follows:

〈 f j (g)〉 = f j (g) exp[−Bg2/(16π2)]. (11.18)

For the two-dimensional Fourier coefficient Um(z), using (11.18) we can write eq. (11.6)
as

〈 f (s)〉 =
∑

k

ak exp[−(bk + B)s2/(16π2)]. (11.19)
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Therefore eq. (11.8) is rewritten as

〈Um(z)〉 = 8π

A0

∑

j,unit mesh

{
∑

k

ak

√
π

bk + B

× exp

[

− (bk + B)B2
m

16π2

]

exp

[

−4π 2(z − z j )2

bk + B

]}

× exp(−iBm · r j t ). (11.20)

Equation (11.20) will be used for the matrix elements of A or A′ for a slice at depth z in the
dynamical theory described in Chapters 12 and 13 (see eq. (12.6)).

11.4 Scattering factors for ionic materials

For materials such as GaN or MgO one expects that the potential one needs to use will be
different from that for a less ionically bound crystal lattice. Doyle and Turner calculated
scattering factors for only a few ions and so, to avoid calculating the potentials in other
cases from first principles, we need to resort to approximate methods.

The scattering factor can be written using Mott’s formula, eq. (9.31), as

f (s) = 2

aH

Z − f X(s)

s2
(11.21)

so that for a positive ion, Z+,

fZ+ (s) = 2

aH

Z − f X
Z−1(s)

s2
, (11.22)

i.e. we obtain the scattering factor for an atom with one fewer electron. Since from Mott’s
formula the X-ray scattering factor can be written

f X(s) = Z − s2 aH

2
f (s), (11.23)

we can use

f X
Z−1(s) = (Z − 1) − s2 aH

2
fZ−1(s) (11.24)

so that, from eq. (11.22), for a positive ion

fZ+ (s) = 1

s2
+ fZ−1(s)

and similarly for a negative ion

fZ− (s) = −1

s2
+ fZ+1(s).

Thus the scattering factor of, for example, a positive ion looks like that for a neutral atom
that has one electron fewer plus a positive increment to obtain the correct number of protons.
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Figure 11.3 The second and the bottom curve show the calculated Doyle–Turner phase shifts for
ionized Cl and K; these may be compared with the approximate curves. The �Z/s2 term has been
removed from the latter. At higher values of s the scattering factors are nearly identical since f (s) →
4Z/s2 from eq. (9.48). This figure may be compared with Fig. 9.3, where the atoms are not so close
in Z .

Doyle and Turner calculated the remaining part of the scattering factor for a few ions.
Their calculations for K+ and Cl− are plotted in Fig. 11.3 and may be compared with the
above approximation. The approximate f ’s are seen in this figure to be rather different from
the calculated scattering factors at low momentum transfers and so this simple approxima-
tion does not then work well. However, at the momentum transfers that are important for
scattering from lattice spacings, i.e. those greater than about 5 Å−1, the scattering factors
are nearly identical and so even this simple approximation is unnecessary.

The conclusion is that at values of Bm where the terms 1/s2 cancel, the neutral-atom
scattering factors are sufficient since the low s-values only change the mean inner potential.
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Dynamical theory – transfer matrix method

12.1 Plan of Chapters 12–14

There are now a number of different dynamical calculations of the intensity of high-energy
electrons reflected from surfaces. They face similar difficulties and give results of similar
accuracy, but there is no obviously best method. In Chapters 12–14 we present methods due
to Ichimiya (1983, 1985), Zhao et al. (1988) and Maksym and Beeby (1981) in sufficient
detail that the reader should be able to perform these calculations for real surfaces. The
discussions of each are nearly self-contained and simple examples are provided to illustrate
the methods. Our intent is to present these dynamical theories so that their important con-
tributions to RHEED can be seen, as well as to allow surface structures to be determined.
These are simple theories with some complicated algebra. We will try to present the work
in such a way as to convey the overall method first, leaving detailed computations to later
subsections. In order to calculate RHEED intensities, optimization is needed. The details
of the optimization are described in Appendix F.

12.2 Introduction

The dynamical theory is based on a Bloch-wave solution of the Schrödinger equation for a
system with a fast electron and a crystal potential that is periodic in two dimensions. Only
elastic scattering is considered, with the electron momentum conserved up to a reciprocal
lattice vector of the two-dimiensional crystal. Further, when absorption effects are not
included the total electron-beam current density is also conserved. Since the mean free
path of elastically scattered electrons in a crystal is of order 100 Å, shorter than the mean
free path for inelastic scattering, as described in Chapters 4 and 9, multiple scattering of
electrons takes place. The kinematical theory is not suitable for the quantitative analysis
of electron diffraction intensities because the total beam intensity changes, largely as a
result of the strong interaction between a crystal and fast electrons. In order to treat multiple
scattering, several approaches for a dynamical theory have been proposed (e.g. Bethe, 1928;
Cowley and Moodie, 1947). Bethe’s dynamical theory is particularly useful in clarifying
the physical nature of dynamic diffraction effects.

161
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These dynamical theories take many diffraction beams into account. The theories, in-
cluding Bethe’s theory for high-energy electrons, have been applied for transmission elec-
tron diffraction and microscopy (Howie and Whelan, 1961; Cowley and Moodie, 1947;
Goodman and Lehmpfuhl, 1967). In RHEED intensity calculations, however, computation
with Bethe’s theory is not efficient, because many eigenvalues of the matrix for the many-
beam diffraction problem are made physically equivalent to each other by the boundary
condition (Collela, 1972), as pointed out by Moon (1972). In a crystal, the Bloch waves
relating to N reciprocal lattices on a rod perpendicular to the surface have N eigenstates.
These eigenstates are distributed in extended Brilloun zones, and they are equivalent states
which must be reduced to the first Brilloun zone. If we take a number of reciprocal lat-
tice arrays normal to the surface that is insufficient to give a reduced Brilloun zone, the
dynamical calculation will be inaccurate; for an accurate calculation we have to take a
huge number of beams normal to the surface into account. With limited computation time
and memory, it is inefficient to calculate a huge matrix in order to obtain many equivalent
eigenstates. In order to avoid this inefficiency, Hill’s determinant approach was developed
by Moon (1972). Since Moon’s method uses the three-dimensional Fourier coefficients of
the crystal potential in the calculation, a large number of Fourier coefficients in the direction
normal to the surface should be taken into account in RHEED calculations.

Since real crystal surfaces include surface relaxation and reconstruction, the atomic ar-
rangement perpendicular to the surface is not periodic while the atomic arrangement parallel
to the surface is periodic. Therefore the three-dimensional Fourier expansion near crystal
surfaces is not adequate for RHEED calculations. In order to overcome the difficulties of
the three-dimensional Fourier series for reconstructed surfaces, Maksym and Beeby (1981)
and Ichimiya (1983) proposed calculational methods with potentials which are expanded
into a two-dimensional Fourier series parallel to the surface (Kambe, 1964), as described
in Chapter 11.

In this chapter our calculation methods use an expansion of the potential in such a two-
dimensional Fourier series. First, we treat the case of a single crystal slab for which the
potential is periodic parallel to the surface and constant in the direction of the surface
normal, the so-called one-slice case based on Ichimiya’s method (Ichimiya, 1983). On the
basis of the results of the one-slice case, we present a calculation using a multi-slice method.
For this method a crystal is sliced into thin slabs parallel to the surface. In each slab, the
potential is constant normal to the surface, as in the one-slice case.

12.3 General theory

For a fast electron in a crystal potential field, the Schrödinger equation is given by eq. (10.1).
We rewrite the equation as

(∇2 + K 2)ψ(r) + U (r)ψ(r) = 0, (12.1)

where ψ(r) is a one-electron wave function and K is the wave number for electrons incident
in vacuum and is given by the energy of the incident electron, E , as K = (2m/�2)E . The
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z

rt

Figure 12.1 A schematic diagram showing the coordinate rt and the direction of z.

reduced crystal potential, U (r) = (2me/�2)V (r), is expanded in a Fourier series in the
direction rt parallel to the surface as

U (r) =
∑

m

Um(z) exp(iBm · rt ), (12.2)

where the subscript m relates to the mth diffracted beam; the wave function ψ(r) is then
formed as

ψ(r) =
∑

m

cm(z) exp[i(Kα + Bm) · rt ], (12.3)

where Bm is the reciprocal rod vector and K0t is the component of the incident wave
vector parallel to the surface. Equation (12.3) is obtained by the Bloch-wave construction.
The direction of z is normal to the surface and positive outwards, as shown in Fig. 12.1.
Substituting eqs. (12.2) and (12.3) into eq. (12.1), we obtain the homogeneous equations

d2

dz2
cm(z) + �2

mcm(z) +
∑

n

Um−n(z)cn(z) = 0, (12.4)

where

�2
m = K 2 − (K0t + Bm)2. (12.5)

12.4 The transfer matrix

The transfer matrix method (Ichimiya, 1983) converts the Schrödinger differential equation
to a matrix equation. This matrix equation is then solved in a slice of the crystal in which
the potential is taken to be a constant, in a way to be described in Section 12.6. Then the
matrix solutions for each slice are combined.

The particular matrix form of eq. (12.4) to be used is

d2

dz2
Ψ(z) + A(z)Ψ(z) = 0. (12.6)
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The elements of the transfer matrix A(z) and of the column vector Ψ(z) are

(A(z))mn = �2
mδmn + Um−n(z) (12.7)

and

(Ψ(z))m = cm(z). (12.8)

The matrix A(z) is an N × N matrix for the N -beam case. Equation (12.6) is a second-order
homogeneous differential equation. Since a first-order differential equation is solved more
easily than a second-order one, we will try to reduce eq. (12.6) to a first-order homogeneous
differential equation. In order to obtain simple forms of the boundary conditions at the
entrance surface and at the bottom (an exit) surface, we write the cm(z) terms in eq. (12.4)
as

( d

dz
− i�m

)
cm(z) = −iτm(z),

( d

dz
+ i�m

)
cm(z) = iρm(z).

(12.9)

Then the set of second-order differential equations corresponding to eq. (12.4) becomes a
set of first-order differential equations:

d

dz
τm(z) + i�mτm(z) + i

∑

n

Um−n(z)

2�m
[τm(z) + ρm(z)] = 0,

d

dz
ρm(z) − i�mρm(z) − i

∑

n

Um−n(z)

2�m
[τm(z) + ρm(z)] = 0.

(12.10)

Equation (12.10) is expressed in matrix form as

d

dz
Φ(z) = −iA′(z)Φ(z), (12.11)

where A′(z) is a 2N × 2N matrix for the N -beam case and Φ(z) is a column vector whose
elements are given by

(Φ(z))m = τm(z),

(Φ(z))m+N = ρm(z)





m ≤ N . (12.12)

The matrix elements of A′(z) are

(A′(z))mn = −(A′(z))m+N ,n+N = �mδmn + Um−n(z)

2�n

(A′(z))m+N ,n = −(A′(z))m,n+N = −Um−n(z)

2�n






m, n ≤ N .

(12.13)
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Solving eq. (12.4) with asymptotic boundary conditions at z = ±∞ results in

cm(z) ∼
{

δ0m exp(−�0z) + Rm exp(i�m z) for z → ∞,

Tm exp(−�m z) for z → −∞,
(12.14)

from which we can obtain the RHEED intensities |Rm |2.
In actual cases the boundary conditions are taken, in an approximate way, near the

entrance and the exit surfaces, where U (r) becomes zero. Using eqs. (12.9) and (12.14), the
boundary conditions given by eqs. (4.21) and (4.22) become

τm(z0) = 2�0δ0m exp(−i�0z0),

ρm(z0) = 2�m Rm exp(i�m z0)
(12.15)

for the entrance surface and

τm(ze) = 2�m Tm exp(−i�m ze),

ρm(ze) = 0
(12.16)

for the exit surface. The RHEED intensities |Rm |2 are calculated from the solutions of
eq. (12.6) or eq. (12.11) with the boundary conditions of eqs. (12.15) and (12.16), cor-
responding to an infinite system, with infinite surface and beam size. In real systems, the
surface area and beam size are finite. According to Kirchhoff’s diffraction theory (Appendix
C), the RHEED intensity Im is given as

Im = �m

K
σ |Rm |2 = σ |Rm |2 sin χm (12.17)

for a finite surface with area σ , and

Im = �m

�0
|Rm |2 = |Rm |2 sin χm

sin χ0
(12.18)

for a finite incident beam which covers part of the surface area. Here χ0 and χm are the
glancing angle of the incident beam and the takeoff angle of the mth diffraction beam,
respectively. The situations corresponding to eqs. (12.17) and (12.18) are illustrated in
Figs. 12.2a, b. Equation (12.18) is obtained if we put σ = 1/ sin χ0 in eq. (12.17).
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Figure 12.2 (a) An electron beam irradiates a finite surface area σ . (b) An electron beam irradiates
an “infinite” surface area.
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Before we calculate the intensity for a general case, we will describe the simple case
of one slice in order to obtain a form for the transfer matrix of a slice in the following
sections.

12.5 The transfer matrix for a single slice

In this section we deal with a dynamical calculation for the simple case in which a crystal
potential is periodic in directions parallel to the surface and constant in the direction normal
to the surface. Assuming that the crystal potential is cut off abruptly at the entrance and exit
surfaces, as shown in Fig. 12.3, we put the Fourier coefficients Um(z) equal to zero in the
vacuum and equal to a constant Um in the slice:

U (r) = 0, z > 0 and z < −	z,

U (r) =
∑

m

Um exp(iBm · rt ), −	z ≤ z ≤ 0. (12.19)

Then the matrix A′ of eq. (12.11) does not depend upon the coordinate z. Therefore
eq. (12.11) is solved as follows. The matrix A′ is diagonalized by the matrix Q whose
columns are the eigenvectors of the matrix A′, so that

A′ = QΛQ−1, (12.20)

where Λ is a diagonal matrix with the eigenvalues of A′ as its diagonal elements:

(Λ)mn = γmδmn . (12.21)

Equation (12.11) is rewritten as

d

dz
Φ(z) = −iQΛQ−1Φ(z) (12.22)

z = ze
z = z0

rt

z

exit surface
entrance surface

Figure 12.3 Schematic illustration of the potential for the one-slice case.
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and further as

d

dz
[Q−1Φ(z)] = −iΛ[Q−1Φ(z)]. (12.23)

Since Λ is a diagonal matrix and Q−1Φ(z) is a column vector, eq. (12.23) is easily solved
with the boundary conditions z = z0 at the entrance surface and z = ze the exit surface:

Q−1Φ(ze) = e(	z)−1Q−1Φ(z0), (12.24)

where e(	z) is a diagonal matrix with elements

(e(	z))mn = δmn exp(iγm	z). (12.25)

Here 	z = z0 − ze. This corresponds to a Bloch wave shifted in phase between the entrance
and the exit surface. Adopting the boundary conditions (12.15) and (12.16) for the entrance
surface z0 = 0 and the exit surface ze = −	z, respectively, we obtain Φ(z0) and Φ(ze) as

(Φ(z0))m ≡ (Φ0)m = 2�0δ0m,

(Φ(z0))m+N ≡ (R)m = 2�m Rm

}

m ≤ N (12.26)

and

(Φ(ze))m ≡ (T)m = 2�m exp(i�m	z),

(Φ(ze))m+N ≡ (O)m = 0

}

m ≤ N . (12.27)

Now putting

Qe(	z)Q−1 =
(

q11 q12

q21 q22

)

(12.28)

and using eqs. (12.26) and (12.27), we set
(

Φ0

R

)

=
(

q11 q12

q21 q22

) (
T
O

)

. (12.29)

From eq. (12.29), we obtain

Φ0 = q11T,

R = q21T

}

. (12.30)

Then we obtain the value of R as

R = q21q−1
11 Φ0. (12.31)

The intensity |Rm |2 from the one-slice surface is obtained as

|Rm |2 =
∣
∣
∣
∣
�0

�m
(R)m

∣
∣
∣
∣

2

. (12.32)

Thus, using first-order homogeneous differential equations, we give the transfer matrix
Qe(	z)Q−1 for the slice, which is a 2N × 2N matrix. The RHEED intensities are cal-
culated from the partial matrices q11 and q21 of the transfer matrix. Using the matrix A′
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for calculation of the RHEED intensities, we have to make computations for a 2N × 2N
non-Hermitian matrix. The eigenvalues and eigenvectors of A′ can basically be obtained
from a N × N Hermitian matrix when absorption effects are neglected for simplicity. Later
we take the absorption effects into account. In Appendix D we show how to solve eq. (12.6)
and obtain explicit forms of the matrix elements of Q and Q−1. The RHEED intensities Im

are obtained using eq. (12.17) or eq. (12.18).

12.6 Multi-slice method

For a real crystal, the matrices depend upon the coordinate z as described in Section 12.3. In
the present section we will solve eqs. (12.6) or (12.11) by the multi-slice method using the
results for the one-slice case obtained in the previous sections. Now we cut the crystal into
thin slices with thickness 	z j for the j th slice. For simplicity, we can take the same thickness
for each slice, so that 	z j = 	z. In each slice the potential is constant in the z direction.
When the slice thickness is small enough, we obtain the result to a good approximation.
Within the j th slice the potential is averaged in the z direction:

U j (rt ) = 1

	z

∫ z j−1

z j

U (r)dz, (12.33)

where 	z = z j−1 − z j because z j < z j−1. The two-dimensional potential U j (rt ) is ex-
panded in a Fourier series as

U j (rt ) =
∑

m

U ( j)
m exp(iBm · rt ), (12.34)

and U ( j)
m is obtained as

U ( j)
m = 1

	z

∫ z j−1

z j

Um(z) dz. (12.35)

This means that the matrix for the j th slice, A j , is also independent of z. The matrix elements
of A j are

(A j )mn = �mδmn + U ( j)
m−n, (12.36)

and those of A′
j are

(A′
j )mn = −(A′

j )m+N ,n+N = �mδmn + U ( j)
m−n(z)

2�n

(A′
j )m+N ,n = −(A′

j )m,n+N = −U ( j)
m−n(z)

2�n





m, n ≤ N . (12.37)

From the analogy of the one-slice case, we rewrite eq. (12.22) for the j th slice as

d

dz
Φ(z) = −iQ jΛ j Q

−1
j Φ(z), (12.38)
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where Λ j is a diagonal matrix with the eigenvalues γ
j
m of A′

j as its diagonal elements:

(Λ j )mn = γ ( j)
m δmn. (12.39)

Solving eq. (12.38) at the entrance surface, we obtain the following relation, using
eq. (12.24):

Φ(z0) = Q1e1(	z)Q−1
1 Φ(z1). (12.40)

For the j th slice, we obtain similarly

Φ(z j−1) = Q j e j (	z)Q−1
j Φ(z j ), (12.41)

where e j (	z) is a diagonal matrix with elements

(e j (	z))mn = δmn exp(iγ ( j)
m 	z). (12.42)

For the bottom surface, we obtain

ΦL−1 = QLeL (	z)Q−1
L Φ(ze), (12.43)

where the Lth slice is the bottom one. Writing the transfer matrix as

M j = Q j e j (	z)Q−1
j , (12.44)

we obtain the solution of eq. (12.6) with the boundary conditions as

(
Φ0

R

)

=
L∏

j=1

M j

(
T
O

)

. (12.45)

Then the RHEED intensities are found to be the same as in the one-slice case, eqs. (12.31)
and (12.32), using eq. (12.17) or eq. (12.18).

12.7 The recursion

When the transfer matrix M j of eq. (12.45) includes terms for evanescent waves, the products
of the M j diverge quickly. To avoid this divergence, the intensities are computed by the
following method. We put M j into partial matrices:

M j =
(

q11(z j ) q12(z j )
q21(z j ) q22(z j )

)

. (12.46)

At the exit surfaces, we take
(

αL−1

βL−1

)

=
(

q11(zL ) q12(zL )
q21(zL ) q22(zL )

) (
T
O

)

. (12.47)

Then we obtain the relation between the vectors αL−1 and βL−1 as

βL−1 = q12(zL )q−1
11 (zL )αL−1 ≡ PL−1αL−1. (12.48)
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For the (L − 1)th slice,
(

αL−2

βL−2

)

=
(

q11(zL−1) q12(zL−1)
q21(zL−1) q22(zL−1)

) (
αL−1

βL−1

)

. (12.49)

By using eqs. (12.48), eq. (12.49) become

αL−2 = [q11(zL−1) + q12(zL−1)PL−1]αL−1, (12.50)

βL−2 = [q21(zL−1) + q22(zL−1)PL−1]αL−1, (12.51)

and βL−2 is expressed as

βL−2 = PL−2αL−2, (12.52)

where PL−1 is found from

PL−2 = [q11(zL−1) + q12(zL−1)PL−1][q21(zL−1) + q22(zL−1)PL−1]−1. (12.53)

For the j th slice, we obtain successively

β j−1 = P j−1α j−1 (12.54)

and

P j−1 = [q11(z j ) + q12(z j )P j ][q21(z j ) + q22(z j )P j ]
−1. (12.55)

At the first slice R is now obtained as

R = P0Φ0, (12.56)

because R = β0 and Φ0 = α0. P0 is given as

P0 = [q11(z1) + q12(z1)P1][q21(z1) + q22(z1)P1]−1. (12.57)

In this recursion method, the matrix P j is held at a finite value for every slice. Therefore
the amplitudes Rm are obtained from the first column of the matrix P0, because the column
vector elements (Φ0)m equal δ0m .

12.8 Effect of absorption

The absorption of electrons in a crystal can be described by an imaginary potential iV ′(r)
(Molière, 1939; Yoshioka, 1957). Inelastic scattering of electrons by core-electron excita-
tions and phonon excitations occurs at atomic sites in a crystal. Therefore the imaginary
potential changes periodically in the crystal. For simplicity, we treat the effect of absorption
for the one-slice model. The periodic imaginary potential is expanded in a Fourier series in
a direction parallel to the crystal surface as

U ′(r) =
∑

m

U ′
m exp(iBm · rt ), (12.58)
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where U ′(r) = (2me/�2)V ′(r). The matrix elements of A as given in (12.36) change to
become

(A)mn = �mδmn + Um−n + iU ′
m−n . (12.59)

Therefore the matrix A becomes non-Hermitian. The eigenvalues of the matrix A include
an imaginary part i(γ I)2, where γ I is a complex wave vector which has a component only
in the z direction because of tangential continuity at the surface, as described in Section 4.5.
In this case (C−1)mn �= C∗

mn . The matrix elements of τ , ρ, τ ′, ρ′ of eqs. (D.32), (D.33),
(D.37) and (D.38) in Appendix D are rewritten using new eigenvectors C and C−1 and new
eigenvalues γ .

When the absolute value of V ′(r) is very small compared with that of the real potential,
i.e. V ′(r) 
 V (r), (γ I)2 can be obtained by a perturbation method (Howie, 1966; Ichimiya,
1969) as

(γ I
n)2 =

∑

l

∑

m

c∗
lnU ′

l−mcmn . (12.60)

The eigenvalues become

γn = γ R
n + i(γ I

n)2

2γ R
n

, (12.61)

where γn is the nth eigenvalue and where

γ R
n =





√
(γ (0)

n )4 + (γ I
n )4 + γ (0)2

n

2





1/2

; (12.62)

γ (0)
n is the nth unperturbed eigenvalue. Using the form of the complex eigenvalue in

eq. (12.61), we can obtain the transfer matrices with absorption effects by rewriting the
matrix elements of τ , ρ, τ ′ and ρ ′ given in eqs. (D.32), (D.33), (D.37) and (D.38) of
Appendix D. In this case we can calculate the eigenvalues and vectors from the Hermitian
matrix.

We define an absorption coefficient µm via µmk0 = U ′
m similar to that used in eq. (4.35).

This gives a relation between the Fourier coefficient of the imaginary potential U ′
m and

the absorption coefficient µm . Using the absorption coefficient, we obtain (γ I
n)2/k0 =

∑
l

∑
m c∗

lnµl−mcmn .
In many dynamical calculations of RHEED intensities, it is easiest to take V ′(r) =

0.1V (r). As discussed in Chapter 16, however, a realistic imaginary potential is sharper
than the real potential near atomic nuclei. A more realistic potential is given by eq. (16.115)
in Chapter 16 in an analytical form. Dudarev et al. (1995) gave a table of coeffi-
cients for a Gaussian expansion of the potential comparable to the table of Doyle and
Turner.
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12.9 Relativistic correction

For fast electrons, the relativistic effect becomes significant, as described in Section 4.3. A
dynamical theory for relativistic electrons was first proposed by Fujiwara (1962). His result
is very simple: we are able to treat the relativistic dynamical theory by using the unrelativistic
Schrödinger equation with the relativistic electron mass. Using a simple approximation we
will obtain the same result, as follows. According to the Dirac equation, the total energy of
an electron, E0, is given as

E2
0 = m2

0c4 + p2
0c2, (12.63)

where p0 is the electron momentum in vacuum. In a crystal, we set

[E0 + eV (r)]2 = m2
0c4 + p2c2, (12.64)

where p is the electron momentum in the crystal. Then we obtain

p2 − [E0 + eV (r)]2 − m2
0c4

c2
= 0. (12.65)

Since the crystal potential energy, eV (r), is small enough in comparison with the total
energy, eq. (12.65) is given approximately as

p2 − 2meV (r) − (m2 − m2
0)c2 = 0, (12.66)

where we put E0 = mc2. Since m2 − m2
0 = m2(v/c)2, eq. (12.66) becomes

(p2 − p2
0) − 2meV (r) = 0. (12.67)

Putting p = i�∇ and p0 = �K , we obtain a Schrödinger equation that includes the rela-
tivistic correction:

(∇2 + K 2)ψ(r) − 2me

�2
V (r)ψ(r) = 0, (12.68)

where m is the relativistic electron mass. Equation (12.68) is the same as eq. (12.1) but
with the relativistic value of U (r). Therefore we can calculate RHEED intensities using
U (r) = (2me/�2)V (r) with the relativistic mass correction.



13

Dynamical theory – embedded R-matrix method

13.1 Introduction

The embedded R-matrix method formulated by Tong’s group (Tong et al., 1988a, b; Zhao
et al., 1988), like Ichimiya’s matrix method, seeks to manipulate the differential form of the
Schrödinger equation. It is also a multi-slice method, in which the crystal is modelled as
a slab divided into many thin slices parallel to the surface. The wave inside the crystalline
slice is decomposed into a set of beams by making use of the perfect translational symmetry
parallel to the surface, and the Schrödinger equation is then solved. To determine the RHEED
intensity, the wave transmitted out of the bottom of the slab is sequentially matched to the
wave functions found for each slice until it can be matched to the incident and reflected
components of the wave at the surface, allowing the reflection coefficient to be calculated.
The key feature of the method is in the procedure for connecting the ratio of the wave
function and its first derivative at the interface between each slice. The method relies
on the computation of this ratio using a simple recursion that only manipulates N × N
matrices. Tong and coworkers argued that this ratio, a generalized logarithmic derivative,
is fundamentally well behaved, lessening the numerical convergence problems associated
with all these computational schemes.

Like the other methods that make use of the translational symmetry parallel to the surface,
this method decomposes the wave function and the crystal potential into their Fourier
components or “beams.” If a particular beam corresponds to a very large angle of scattering
then it can be neglected, since the atomic scattering factor is weak at large angles. So a key
issue is what number of beams must be included in order that the results of the calculation
would not change significantly if further beams were included. A surprising result is that
for proper convergence we must include the cases where the perpendicular component of
the momentum is pure imaginary, corresponding to evanescent waves.

A related point is that RHEED, at high energy and low incident angle, can efficiently use
a plane-wave expansion since relatively few beams will satisfy the Ewald–Laue condition
given small scattering angles. A LEED-like expansion, using a spherical wave, would
unnecessarily complicate the calculation. Below perhaps 5 keV, it is likely that a plane-
wave expansion will not work well since more beams will need to be included.

173
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Figure 13.1 Parallel momentum conservation illustrates the notation describing the diffraction
process.

13.2 Fourier expansion

Because of the assumed periodicity of the surface and crystal, the incident wave ψi =
φ0 exp (iK · r) can connect only to scattered waves with wave vectors that differ by at most
a (parallel) reciprocal lattice vector, Bm , of the two-dimensional periodic mesh. So, as in
eq. (12.3), the wave function for this surface-scattering problem is given by

ψ(r) =
∑

m

cm(z) exp [i(K0t + Bm) · ρ], (13.1)

where ρ is the coordinate vector in the plane of the surface and z is perpendicular to the
surface, ẑ being an outward normal. As before, in eq. (11.4), the potential is expanded
as

U (r) = 2me

�2
V (r) =

∑

m

Um(z) exp (iBm · ρ) (13.2)

so that the Schrödinger equation becomes, as in Section 12.3,

d2cm(z)

dz2
+ �2

m cm +
∑

m ′
Um−m′ cm ′ = 0, (13.3)

where �2
m = K 2 − (K0t + Bm)2. Once again, K0t and K are vacuum quantities, with K0t

unchanged in the crystal.1 �m is the perpendicular component of the mth diffracted beam
in the vacuum, as shown in Fig. 13.1.

13.3 The wave functions

We take the outward normal to be +ẑ and the slab to be located at z < b. In the vacuum
above the surface of the slab there is an incident wave ψi and a reflected wave ψr. With this

1 Refraction of the electron beams will be seen to occur naturally in dynamic theory, without the ad hoc addition of an inner
potential.
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assumed z direction, the wave functions are given respectively as

ψi(r) = φ0 exp (−i�0z) exp (iK0t · ρ), (13.4)

ψr(r) =
∑

m

Mm,0φ0 exp (i�m z) exp [i(K0t + Bm) · ρ], (13.5)

where φ0 is the incident beam amplitude and Mm,0 is the amplitude of the mth reflected
beam. Similarly, below the bottom of the slab there is a transmitted wave

ψt(r) =
∑

m

Nm,0φ0 exp (−i�m z) exp [i(K0t + Bm) · ρ], (13.6)

where Nm,0 is the amplitude of the mth transmitted beam. It will prove convenient to put
these in terms of the matrix c. Using the definition of cm(z) from eq. (12.3), we have for the
wave above the surface

cm,vac(z) = φ0δm0 exp (−i�0z) + Mm0φ0 exp (i�m z). (13.7)

This can be written in matrix language if we define

φm = φ0δm0, (13.8)

Imn = exp (−i�m z) δmn, (13.9)

so that

c = Iφ + I∗Mφ. (13.10)

This solution must be evaluated just above the slab and then matched to the wave function
just inside the slab surface.

13.4 Multi-slice method

As in the method of Section 12.6, the crystal slab is divided into a series of slices parallel to
the surface; this is shown in Fig. 13.2. In each slice the potential is taken to be independent
of z. The coordinate system here is chosen so that ẑ is the outward normal to the surface

z = h

 z = 0

z

j = 0

ρρ

Figure 13.2 Coordinates of the multi-slice division.
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and ρ is in the surface plane. One individual slice is shown with bottom and top inter-
faces at z = 0 and z = h, respectively. The slices are numbered, starting with the bottom
(exit) slice as zero; the incident wave enters at the uppermost slice. The top surface is at
z = b.

As before, the potential Um−m′ is taken to be constant in each slice. Then, in the j th slice,
eq. (13.3) can be written in matrix form by defining Amn = �2

mδmn + Um−n(z j ). With this
definition, eq. (13.3) becomes

d2c(z)

dz2
= −A(z j )c(z). (13.11)

Here c is a column vector whose mth element is cm . How large this vector is depends on the
number of reciprocal lattice vectors, or beams, to be included in the calculation. We note
that this is different by a negative sign from the equivalent matrix W described by Zhao
et al. (1988). The task now is to find the column vector c for each slice and above and below
the slab. The solutions and their first derivatives must be continuous at each interface. The
embedded R-matrix method is a scheme for applying this sequential continuity condition
in a convenient way that avoids divergences.

If N reciprocal lattice vectors are included then the N differential equations given by
eq. (13.11) can be uncoupled by diagonalizing A in each slice. Since A is Hermitian for
real potentials U (r) it can be diagonalized by a unitary matrix, Q, whose columns are the
eigenvectors2 of A, i.e.

Q†AQ = Λ, (13.12)

where Λ is the diagonal matrix �mn = γ 2
mδmn with elements γ 2

m corresponding to the eigen-
values of A. Then the matrix form of the Schrödinger equation becomes

d2

dz2

(
Q†c

) = −Λ
(
Q†c

)
. (13.13)

Defining for the j th slice x = Q†c, the uncoupled equations are now

d2xm

dz2
= −γ 2

m xm, (13.14)

where m runs over the N included reciprocal lattice vectors. The solution to this is

xm(z) = Am cos (γm z) + Bm sin (γm z); (13.15)

the coefficients must be determined from the matching conditions. Suppressing the subscript
m, define xL = x(0) and xU = x(h), where z = 0 and z = h correspond to the lower and
upper surfaces of the j th slice, respectively. After some algebra one can relate x(z) and its

2 When inelastic damping is considered, U (r) is no longer real. It can then become necessary to assume that the inverse of Q, the
matrix of eigenvectors, exists and to replace Q† by Q−1.
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first derivative by



x ′

L

x ′
U



 =



−γ cot (γ h) γ csc (γ h)

−γ csc (γ h) γ cot (γ h)








xL

xU



 (13.16)

or, recognizing that this is true for each of the N beams in the j th slice, we can write

x′
L = R1xL + R2xU, (13.17)

x′
U = R3xL + R4xU. (13.18)

These last two sets of equations relate the wave functions to their first derivatives via
the set of diagonal matrices R j , j = 1, 2, 3, 4. The elements of R1, for example, are
(R1)mn = −γm cot (γmh)δmn .

In addition, the unitary transformation used to decouple the matrix form of the
Schrödinger equation can be used to connect the x’s for different slices. For the j th slice,
setting cL, j = cU, j−1 one obtains

xL, j = T j, j−1xU, j−1, (13.19)

x′
L, j = T j, j−1x′

U, j−1, (13.20)

where T j, j−1 = Q†
j Q j−1. Note that T is unitary because Q is unitary and that T†

j, j−1 ≡
T∗

j−1, j .

13.5 The recursion

We need to match the wave function and its derivative at the top and bottom of each slice.
To do this we define the generalized logarithmic derivative for the j th slice via the R-matrix
R j :

x′
U, j = R j xU, j , (13.21)

which applies to the upper edge of slice j . Once the thickness of the slab is above some
minimum value, the diffracted intensity cannot depend on the thickness. Hence, below the
slab it is easy to find this matrix relating the wave function and its derivative. A recursion
can then be established for successive slices from the bottom to the top surface. Finally, by
connecting the top-slice wave function to the incident wave using the matching conditions,
the reflectivity of the slab can be determined.

The recursion begins with the transmitted wave at the bottom of the slab. From the
transmitted wave given by eq. (13.6) the corresponding vector solution for the mth beam is

(ct)m = Nm0 exp (−i�m z)φ0. (13.22)

Hence (ct)′m = −i�m(ct)m or, using �mn = �mδmn ,

ct
′ = −iΓct. (13.23)
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Changing to the uncoupled representation in which R is defined we have that

xt
′ = −iQ†ΓQxt. (13.24)

Thus the R-matrix needed for the initiation of the recursion is

R0 = −iQ†ΓQ, (13.25)

which has components −i�mδmn, since Q = 1 in vacuum. To use this initial R-matrix, one
needs a recursion formula to determine the R-matrix at successive slices above.

To obtain a recursion for R j we need to write x′
U, j in terms of the j th-layer quantities

as well as R j−1, i.e. we need to write

x′
U, j = R j xU, j (13.26)

in terms of R j−1. To do this we write
(

T j, j−1x′
U, j−1

x′
U, j

)

=
(

R1 R2

R3 R4

) (
T j, j−1xU, j−1

xU, j

)

. (13.27)

Substituting the definition of R this becomes
(

T j, j−1R j−1xU, j−1

R j xU, j

)

=
(

R1 R2

R3 R4

) (
T j, j−1xU, j−1

xU, j

)

. (13.28)

Multiplying through and solving for the components of the left-hand side we first obtain

xU, j−1 = (T j, j−1R j−1 − R1T j, j−1)−1R2xU, j (13.29)

which can then be replaced in eq. (13.28) to find the second component. After some algebra
one obtains

R j = R4 + R3(T j, j−1R j−1T†
j, j−1 − R1)−1R2. (13.30)

Note that this, the inverse of Tong’s definition, is taken to avoid infinities at the initiation
of the recursion, though this should not matter when a complex potential is used to take
absorption into account. It can be seen that if R j−1 can be found for the j th slice then one
can continue for successive slices until the top surface is reached.

13.6 The RHEED intensity

To match the internal wave function with the wave function and its derivative just outside
the slab surface, we go back to the coupled-vector form of the solution. Since x = Q†c, we
set

c′
b(b−) = Rfcb(b−), (13.31)

where

Rf = QnRn(Qn)† (13.32)
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and Rn and cb are evaluated in the top (nth) slice, which is an infinitesimal distance below
the slab surface, at z = b−. As a result Rf, which relates the c’s rather than the x’s, is also
evaluated in the top slice at z = b−.

To connect the wave function below the slab surface to the incident and reflected wave
functions and derivatives just outside the surface, we set eq. (13.10) equal to cb:

I(b+)φ + I∗(b+)Mφ = cb(b−), (13.33)

I(b+)′φ + I∗(b+)′Mφ = c′
b(b−). (13.34)

Then, using eq. (13.31),

RfI(b+)φ + RfI∗(b+)Mφ = I(b+)′φ + I∗(b+)′Mφ. (13.35)

We want the reflectivity matrix M and we solve for it noting that φ is arbitrary:

M = [RfI∗(b+) − I∗(b+)′
]−1 [

I′(b+) − RfI(b+)
]

(13.36)

or

M = I(b+)
[
iΓ(b+) − Rf

]−1 [
iΓ(b+) + Rf

]
I(b+), (13.37)

where Rf is evaluated in the slice at z = b−.
Finally, the ratio of the fluxes for the RHEED reflectivity of the mth beam is:

reflectivitym = �m

�0
|Mm0|2 . (13.38)

13.7 Inelastic damping

Inelastic effects limit the penetration of the electrons and are an essential part of the calcu-
lation. However, these are difficult to treat exactly. For example, plasmons are created even
before the electron beam strikes the crystal but, following the discussions in Section 4.5 and
those to be met later in Chapter 16, we deal with inelastic effects simply by modifying the
potential seen by an electron within the crystal. As mentioned earlier, we do this by adding
an imaginary component to A.

The simplest method is to add an imaginary term to the potential that just depends on
depth, i.e. an imaginary term equal to iεVi(z) where ε is some positive constant fraction3

and Vi is a two-dimensional average, the zeroth Fourier component in eq. (13.2). Then

U ′
m−n(z) = Um−n(z) + iεU0δmn, (13.39)

so that

A′
mn = Amn + iεU0δmn . (13.40)

3 The sign of ε is chosen to ensure that the ingoing wave function decreases as z becomes more negative.
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For this simple modification, if a matrix Q diagonalizes A with eigenvalue γ 2 then it will
also diagonalize A′, with eigenvalue

(γ ′)2 = γ 2 + iεU0. (13.41)

This means that a unitary transformation exists for the case of damping that just depends on
depth. For the more general situation, an inelastic term is added to the off-diagonal elements
of A. In the case in which a surface has two-fold symmetry, Zhao et al. (1988) showed that in
the R-matrix formulation the diagonalizing matrices Q† need only be replaced by Q−1. For
cases in which there is no such symmetry, one assumes that this inverse exists for physical
problems. As a result, one can use a potential that has an imaginary part that is a constant, say
0.1, times the real potential, both for the diagonal and off-diagonal components of A. This
potential is not quite sharp enough at the cores, and in Chapter 16 a different formulation
is used. Alternatively one can use the potential developed as eq. (16.119).

13.8 Examples

13.8.1 A single well

As an example that can be solved exactly, consider the case of a single potential well, shown
in Fig. 13.3, for which 2m/�2 times the potential energy is given by

−U (z) =
{

0 for − a − b ≤ z ≤ −a,

−U0 for − a ≤ z ≤ 0,

and assume that U0 is positive and real. The electron beam is incident from positive z and
exits at z = −a − b. We will determine the conditions for which the reflectivity is unity or
zero.

For this determination, note that although there is a region of zero potential of width b
it is no different from the region below the slab, and we will check to make sure that this

Uo

b

a

 j = 2 j = 1 j = 0

Ki

Kf

Figure 13.3 Example of a dynamical calculation for one layer that is divided into two slices, each of
constant potential. Note that the regions labeled j = 1 and j = 0 are not different – this is demonstrated
explicitly by applying the recursion. Here the surface is the broken line towards the left of the figure.



13.8 Examples 181

comes out of the solution. This is particularly simple since in all three regions, j = 0, 1, 2,
eq. (13.11) is already uncoupled. For this simple case one can choose the regions j = 1, 2
to comprise entire slices. Then eq. (13.11) in each region is as follows:

for j = 2,
d2c

dz2
= −(�2

0 + U0)c ≡ −�2
1c;

for j = 1,
d2c

dz2
= −�2

0c.

(13.42)

In each region Q = 1 (the identity matrix).
To start the recursion, use R0 = −i�0. Then, since the R-matrix in the j = 1 layer is

(
R1 R2

R3 R4

)

=
(−�0 cot (�0b) �0 csc (�0b)

−�0 csc (�0b) �0 cot (�0b)

)

, (13.43)

using eq. (13.30) we have

R1 = R4 + R3 R2

−i�0 − R1
= −i�0 (13.44)

as required, since there is no potential change between the bottom of the slab and the j = 1
slice.

For the j = 2 slice, the R-matrix is changed from eq. (13.43) only by a subscript change
from 0 to 1. Applying eq. (13.30) one obtains

R2 = −i�1[i�1 sin(�1a) + �0 cos(�1a)]

i�0 sin(�1a) + �1 cos(�1a)
, (13.45)

which is −i�0 when �1a is an even multiple of π/2 and −i�2
1/�0 when �1a is an odd

multiple of π/2. In the former case Rf = i�0 and, from eq. (13.37), M = 0, i.e. there is
perfect transmission. In the latter case,

M = e−i2�0b �2
0 − �2

1

�2
0 + �2

1

, (13.46)

so that there is a Ramsauer–Townsend effect. The phase, having to do only with the coor-
dinates chosen, does not affect the reflectivity.

13.8.2 Kronig–Penney model

Using the R-matrix method we will calculate the diffracted intensity from 10 double layers
of a material in which the potential for one double layer is (in volts)

V (z) =
{

20 + 1i for b + a > z ≥ b,

1i for b > z ≥ 0,
(13.47)

where a = 0.5 Å and b = 3.5 Å. We will use E = 10 keV and plot the intensity vs incident
angle. We can then compare with the case in which there is no absorption.
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To do this we use the same labelling of the first three regions as in the single-layer
case. By including an imaginary part in region 1, UI, we ensure that the wave is attenuated
as it propagates into the crystal. In regions 1 and 2, the Schrödinger equation is already
uncoupled, i.e.

for j = 1,
d2c

dz2
= −(�2

0 + iUI)c = −γ 2
0 c, (13.48)

for j = 2,
d2c

dz2
= −(�2

0 + U0 + iUI)c = −γ 2
1 c, (13.49)

so that Q and hence T = 1 for each interface.
We start the recursion by taking R0 = −i�0. Then, using eq. (13.30),

R j = R j−1γ j cos (γ j h j ) − γ 2
j sin (γ j h j )

R j−1 sin (γ j h j ) + γ j cos (γ j h j )
,

where h j is the width of the j th region. The recursion is repeated N times, alternating
between regions like those labeled by j = 1 and 2.

The RHEED intensity is found from the last value of R. Using eq. (13.37) we find that
the reflectivity is:

|M |2 =
∣
∣
∣
∣
iγ0 −R
iγ0 +R

∣
∣
∣
∣

2

.

The result for specified values are shown in Fig. 13.4. The peaks are shifted from the exact
Bragg conditions. Without absorption, the peaks tend to be flat-topped (Darwin behavior);
with absorption, the peaks are attenuated more quickly and lose their flat-topped appearance.
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Figure 13.4 Comparison of diffraction from a one-dimensional stack with absorption (darker curve)
and without absorption (lighter curve).
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c = 0.5185 nm

[0001]

Ga

N

Figure 13.5 Projection of a GaN crystal lattice. For a one-beam calculation, there are just uniform
planes with no lateral structure.

In this example, the absorption in the wider regions in which there is no real potential has
more of an effect than that in the narrower regions in which a real potential is assumed.

13.8.3 One-beam approximate calculation for GaN

In a one-beam calculation only the specular intensity is calculated. In this case Bm = 0 and
the momentum transfer is entirely perpendicular to the surface. For each slice, the potential,
expanded as a Fourier series, will only have one term – its average value over a unit cell.
The consequence is that all the lateral structure of the crystal is neglected: the diffraction is
not sensitive to any lateral variation in atomic structure. Since the scattering in this case is
equivalent to diffraction from a family of uniform planes, there is no azimuthal dependence
to the diffraction. It is particularly easy to calculate and makes an appropriate comparison
for certain special azimuthal angles of incidence, as will be discussed in Section 15.2 and
is illustrated in Fig. 15.1.

Figure 13.5 shows as an example the lattice for GaN, with the surface normal in the
[0001̄] direction. For this structure, in a hexagonal basis, the N atoms are at (0, 0, 0) and
(1/3, 2/3, 1/2) while the Ga atoms are at approximately (0, 0, 3/8) and (1/3, 2/3, 7/8),
with a = 3.19 and c = 5.19 Å. There are two polarities of this wurtzite structure. Films
grown by metal-organic vapor deposition on sapphire tend to have the Ga polarity. For the
GaN(0001̄) or N polarity shown in the figure, the surface can have a steady-state coverage
of Ga (Crawford et al., 1996; Smith et al., 1997). The main point here, though, is that there
are alternating planes of Ga and N atoms. Choosing the top surface to be z = 0, the N atoms
are located at z = nd, where d = 5.19/2 Å and n is an integer. Similarly, the Ga atoms are
at z = nd − u, where u = 3c/8.

The potential in each slice is obtained from eq. (11.8) with Bm = 0, as

Um(z) = 8π

A0

∑

j=1,2

∑

k

√
π

bk
ak exp

[
4π2(z − z j )2

bk

]

. (13.50)
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Figure 13.6 One-beam calculation of intensity (top panel) and potential (bottom panel) for GaN for an
incident electron energy of 10 keV. Attenuation is included by an imaginary potential that is 0.2V (z).
The triangles in the top panel indicate the position of the refracted Bragg angles found by using the
mean potential of 18 V.

The bottom panel of Fig. 13.6 shows the potential V (z) calculated from this, with V (z) =
2mU (z)/�2.

Shown in the top panel of Fig. 13.6 are the positions of the refracted Bragg peaks. As
shown in Example 5.7.1, the Bragg peaks for the specular beam occur at the glancing
internal angles given by 2kϑi = 4nπ/c, where n is an integer. For a mean potential VI, the
external angles shown in the figure are given by

ϑ2
f = ϑ2

i − VI/V . (13.51)

13.8.4 GaN – zeroth Laue zone calculation

As discussed in subsection F.2.2, it is a very good approximation to calculate the diffracted
intensity for just the beams in the zeroth Laue zone rather than for a full set of diffracted
beams. This works best on a symmetry azimuth, but it is not so bad off azimuth, where
the calculation is more kinematic. In order to make a comparison with measurement for an
off-azimuth specular beam, Fig. 13.9, we examine a calculation of the diffracted intensity,
following the flow chart of Fig. 13.7. The main difference from the calculation of the one-
beam example in subsection 13.8.3 is that since more than one beam is included the matrix
diagonalization must be performed in each slice.
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Choose incident angles;
determine diffracted beams

Calculate Γm,Ro below slab

Determine A, T, Q, Ri
in the next slice

Apply recursion

Match boundary conditions in 
the plane above the slab

Calculate the diffracted
intensity at all Ji for all beams

Divide slab into slices

Figure 13.7 Dynamical calculation using the R-matrix method. To calculate A the potential must be
known along with the assumed positions of the atoms. In this potential, one includes the effect of
temperature (the Debye–Waller factor) and absorption.

To begin with we need to identify the diffracted beams to be included in the calculation,
i.e. which reciprocal lattice vectors {Bm}, and hence the number of Fourier components of
the potential. The diffracted intensity is then calculated for a model of the surface atomic
structure and the result is compared with measurement. To reduce the computation time we
want to minimize the number of beams used in the calculation so that the parameters of
the model structures can be quickly varied, thus rapidly determining approximate values.
Once a reasonable model is determined, this zeroth zone calculation should be replaced by
a many beam calculation – hopefully at this point only a few parameters will need to be
varied to obtain agreement with measurement. How well this works will depend on how
many beams are needed for the calculation to converge and on the accuracy of the potential.

The data in Fig. 13.9 for GaN(0001), measured by Steinke and Cohen (2003), do not
extend past about 6◦. We should at least include the beams that are above emergence.
The condition for emergence is illustrated in Fig. 13.8. In the figure, a side view and
an end view of the Ewald construction are shown. At emergence, the Ewald circle just
touches the reciprocal lattice rod of the emerging beam, in this case the (02) beam. For the
〈2̄110〉 azimuth the separation between rows is

√
3a/2, so that the emergence condition on

symmetry is

m
4π

a
√

3
= k sin ϑf, (13.52)
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k sin Jf

Figure 13.8 Reciprocal-space diagram of the emergence condition for a beam in the 〈2̄110〉 direction.
The (20) beam is just at emergence (with the incident beam along a symmetry axis). The circle is the
intersection of the Ewald sphere with a plane through the origin. The k-vector shown is a projection
of the final kf viewed with the origin of the incident k in the page, along a line from the center of the
circle.
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Figure 13.9 Comparison of two calculated GaN rocking curves (the dotted and broken curves) with
a preliminary measurement (solid curve). The calculation and data were measured at 8.5◦ from the
〈2̄110〉 azimuth. For the calculation, nine beams and Dudarev’s inelastic potential were used. Only
slight differences are seen when 25 beams or a simpler potential are used. The most important variable
is the Ga coverage and Ga spacings (Steinke and Cohen, 2003).
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Figure 13.10 On the left, the coordinates used in the calculation and, on the right, the reciprocal space
dual.

where m is the beam order required. For a = 3.18 Å and ϑf = 6◦, m = 2.3 and so we
estimate that we must use at least the m = 0, 1 and 2 beams. In fact, beams that are below
emergence are also important, so that this is likely to be still too few beams. The Laue zone
that is used is shown in Fig. 13.10, where the beams Bm = mb2 will be included in the
calculation for the 〈2̄110〉 incident direction. For the calculation here we include the beams
with m = −4, . . . , 4.

From the Doyle and Turner parametrization and using eq. (11.8) we obtain the Fourier
components of the potential. For 10 keV electrons and m ≥ 2 these become quite small.
Note that with this truncated set of diffracted beams, eq. (13.3) only makes sense if m − m ′

is required to be in the set of beams −N , . . . , N . Then, for this case where N = 2, the
matrix A is given by

A =










�2
−2 0

�2
−1

�2
0

�2
1

0 �2
2










+










U0 U−1 U−2 0 0
U1 U0 U−1 U−2 0
U2 U1 U0 U−1 U−2

0 U2 U1 U0 U−1

0 0 U2 U1 U0










. (13.53)

The coefficients of the potential are evaluated at Bm = mb2 using eq. (11.8) and

�2
m = K 2 sin2 ϑi − 2Kt · Bm − m2b2

2

= K 2 sin2 ϑi − 2K mb2 cos ϑi sin ϕ − 16π 2m2

3a2
(13.54)
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with ϑi the glancing angle of incidence and ϕ the azimuthal angle. In addition, to handle
the absorption each Fourier component is augmented by either a complex part that is 0.1 of
the real part or (preferably) the component given by eq. (16.119).

Two cases were considered, based on calculated structures. For excess N conditions, the
potential used was that of an unreconstructed GaN(0001) slab (Rapcewicz et al., 1997) in
which the top surface was truncated above a Ga plane, as seen at the bottom of Fig. 13.5. If
the slab is thick enough then the position of the bottom-surface truncation does not matter.
The potential used was the superposition potentials for a slab of eight planes of Ga–N
bilayers (the thickness of one bilayer is defined as c/2) using eq. (11.8). For example, the
Ga atoms were chosen to be located at (ρs, zs) = (1/3, 2/3, 0), (0, 0, −c/2), . . . and the N
atoms at (ρs, zs) = (0, 0, −c/8), (1/3, 2/3, −5c/8), . . . , where the lateral coordinates are
given as fractions of the two-dimensional unit cell translation vectors a1, a2. For the case
of excess Ga conditions, two additional layers of Ga were assumed. The first Ga layer was
assumed to be above the last bulk Ga layer by 2.54 Å, with a disordered layer at 2.2 Å (as
against the predicted value of 2.37 Å) above that (Northrup et al., 2000). The second (top)
Ga layer was assumed to be disordered at the 700 ◦C measurement temperature and so only
its zeroth Fourier component was included in the calculation. However, the contribution to
the potential of the top layer was increased by 4/3 to account for the maximum coverage
that is expected to be found in this layer.

The incident azimuth and the glancing polar angle determine Γm . For the calculation
here, the Fourier components were in the zeroth Laue zone shown in the reciprocal space
diagram in Fig. 13.10. Even with modern computers or real-time analysis, time matters
when searching among structures. Note that as the reciprocal lattice vector increases in
magnitude, the contribution of the corresponding component of the potential decreases
because of the term exp(−bk,s B2

m) in eq. (11.8). Also, one needs to include components
of the potential even if Γm is complex, i.e. the beam is evanescent. This last point is very
surprising because, from a kinematical point of view, beams that are evanescent correspond
to reciprocal lattice rods that lie outside the Ewald sphere. The most one might expect
in a kinematic theory is that some beams are refracted and accelerated due to an ad hoc
inner potential. For these beams, inside the crystal, the Ewald sphere does reach otherwise
forbidden reciprocal lattice rods and, inside the crystal, diffraction will occur. These beams,
however, are totally internally reflected and so cannot leave the crystal. They can only
diffract back to a specular beam in a second scattering and in that way affect the total
diffracted intensity. In the dynamical theory, however, the mean inner potential does not
enter explicitly; the evanescent beams are simply expected to matter more as the imaginary
part of Γm decreases.

To begin the calculation, one starts below the slab at a point where the potential is near
zero. For a given incident angle ϑi, R = i�mδmn . As shown explicitly in the example in
subsection 13.8.1, the exact starting slice does not matter since there is only a phase factor
change in R with position. The matrix A is then constructed at the next slice, diagonalized
and the R-matrices constructed. Then the recursion is carried out, and the newR determined.
In the next slice the matrix A is again constructed and the process repeated. All the beams
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associated with each incident angle are calculated at once. Finally, the matching condition is
applied at a point above the slab where the potential is again zero. The diffracted intensities
are then calculated from eq. (13.38).

The results for the specular beam in this nine-beam calculation for two GaN(0001)
structures are shown in Fig. 13.9. There were no adjustable parameters in the calculation
other than the number of beams included. The Debye–Waller factor affects only the overall
envelope of the calculated peaks, mainly reducing their intensity at higher angles. With
better data one would expect to be able to determine the Ga coverage during growth.
These measurements were normalized; generally the excess Ga calculation was a factor
2 less than the bulk termination calculation. Also shown in Fig. 13.9 are the emergence
conditions, where �m = 0 in eq. (13.54), as well as the refracted Bragg angles. With the
m 
= 0 beams included there is now a strong azimuthal dependence to the scattering. The
Bragg angles no longer play a unique role in determining the position of the peaks (note that
for these off-symmetry data the agreement is fairly good). Similarly, any obvious role of the
emergence conditions in determining the peak positions is unclear. Most of the deviation
from Bragg is due to the first two Ga layers of the crystal and the positions of the Ga layers.
The detailed form of the complex part of the potential is not so important at this level of
comparison. Because of the sensitivity to Ga coverage, these data should allow precise
calibration of excess Ga growth conditions.

13.8.5 Ag(100): zeroth Laue zone

We can compare the zeroth Laue zone calculation to the many-beam calculation of Zhao
and Tong, (1988) for an incident energy of 20 keV. In this case we choose the real and
reciprocal lattice vectors as follows:

R1 = (a/2)x̂ + (a/2)ŷ,

R2 = (a/2)x̂ − (a/2)ŷ, (13.55)

B1 = (2π/a)x̂ + (2π/a)ŷ,

B2 = (2π/a)x̂ − (2π/a)ŷ.

With these primitive vectors, the unit cell atoms are at rs (0, 0, 0), ((R1 + R2)/2, −ẑa/2).
These are illustrated in Fig. 13.11. The potential Vm(z) for beams perpendicular to [110] is

a

x

R1

R2

r2

z

Figure 13.11 Primitive basis vectors for the Ag fcc lattice.
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Figure 13.12 Solid curve: the many-beam calculation of Zhao and Tong (1988); the broken curves:
the results of an 11-beam R-matrix calculation with VI = 22 eV and an imaginary potential equal to
0.1 times the real potential.
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Figure 13.13 Five-beam calculation of the bulk-terminated Ag(100) surface at several different
azimuths; VI = 22 eV and the imaginary potential is equal to 0.1 times the real potential. As can
be seen, it is not clear which curve corresponds to the one-beam condition.

then, from eq. (11.8),

Vm(z) = 8π�2

ma2

∑

k,s

ak

(
π

bk

)1/2

exp (−bkm2 B2
1 ) exp (imB1 · ρ̄s) exp

[−4π (z − zs)2

bk

]

,

(13.56)
where Bm · ρ̄s = 0 or mπ and m2B2

1 = 8π2m2/a2. This gives a potential matrix similar to
that in eq. (13.53) but, to account for attenuation, the diagonal elements of the potential
are replaced by U0 + 0.1iU0. Ichimiya and coworkers (1993b) did a calculation that was
similar but showed more completely the role of the beam-set chosen for the calculation.
The Zhao and Tong calculation and an 11-beam zeroth Laue zone calculation are shown in
the upper panel of Fig. 13.12 for comparison. In the calculation by Zhao and Tong (solid
curve), a total of 61 beams was used for an incident beam energy of 20 keV. The potential
was determined by the Doyle–Turner parametrization. The inelastic part was given by an
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imaginary potential of 0.1 times the real potential, as discussed above. The same R-matrix
method and parameters were used for the 11-beam calculation shown as the broken curve. A
similar result is given by Ichimiya (1990b), though below about 1◦ the intensity falls to zero
more quickly. Finally, note that the Bragg angles, when a more than one-beam calculation
is performed, even after taking into account refraction due to the mean inner potential, no
longer reliably correspond to the peak positions.

13.8.6 Off-symmetry calculations

To examine the diffracted intensity vs azimuth, and in particular the surface-wave reso-
nance/Kikuchi line crossing as discussed in subsection 7.2.1, we calculated the diffracted
intensity from Ag(100) off symmetry. Figure 13.13 shows the result of a five-beam calcu-
lation, with the beams just in the zeroth Laue zone. Increasing the number of beams gives
similar results. The plot shows a few azimuths that would be near the resonance condition.
Only at the highest angle does the resonance condition have an effect. In appendix subsec-
tion F.2.2 the sensitivity of the dynamical intensity vs angle is discussed using the transfer
matrix method.
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Dynamical theory – integral method

Maksym and Beeby (1981) first proposed a RHEED theory for the calculation of the diffrac-
tive intensities of fast electrons from real surfaces with relaxations and reconstructions. Now
we derive the equations of Maksym and Beeby from eq. (19.20). We write τm(z) and ρm(z)
from eq. (12.10) as

τm(z) = τ ′
m(z) exp(−i�m z) (14.1)

and

ρm(z) = ρ ′
m(z) exp(i�m z). (14.2)

Upon substituting eqs. (14.1) and (14.2) into eq. (12.10), we obtain equations for τ ′
m(z) and

ρ ′
m(z):

d

dz
τ ′

m(z) = − 1

2i�m
exp(i�m z)

×
∑

n

Um−n(z)[τ ′
n(z) exp(−i�nz) + ρ ′

n(z) exp(i�nz)],

(14.3)

and

d

dz
ρ ′

m(z) = − 1

2i�m
exp(−i�m z)

×
∑

n

Um−n(z)[τ ′
n(z) exp(−i�nz) + ρ ′

n(z) exp(i�nz)].

(14.4)

From eqs. (14.3) and (14.4), we can derive the equation

d

dz
τ ′

m(z) = − exp(2i�m z)
d

dz
ρ ′

m(z). (14.5)

Integrating eq. (14.5) over (−∞, z) and using eq. (12.16) we obtain,

τ ′
m(z) = τ ′

m(−∞) − ρm(z) exp(2i�m z) +
∫ z

−∞
ρ ′

m(z′) exp(2i�m z′) dz′; (14.6)

192
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from eq. (12.16) and eq. (14.1) we obtain τ ′
m(−∞) ≡ τ ′

m(ze) = 2�m Tm . A solution for ρ′
m(z)

follows from eq. (14.4):

ρ ′
m(z) = 1

2i�m

∑

n

∫ z

−∞
Um−n(z′) dz′

×{τ ′
n(z′) exp[−i(�m + �n)z′] + ρ ′

n(z′) exp[−i(�m − �n)z′]}.
(14.7)

Substituting eq. (14.6) into eq. (14.7), we obtain

ρ′
m(z) =

∑

n

∫ z

−∞

τ ′
m(−∞)

2i�m
Um−n(z′) exp[−i(�m + �n)z′] dz′

+
∑

n

∫ z

−∞

�n

�m
Um−n(z′′) exp[−i(�m + �n)z′′] dz′′

×
∫ z′′

−∞
ρ ′

n(z′) exp(2i�m z′) dz′.

This solution can be put into a more convenient form by reversing the order of integration
in the double integral. Then we have the solution given by Maksym and Beeby as

ρ′
m(z) =

∑

n

∫ z

−∞

�n

�m
ρ ′

n(z′′) exp(2i�nz′′) dz′′
∫ z

z′′
Um−n(z′) exp[−i(�m + �n)z′] dz′

+
∑

n

τ ′
m(−∞)

2i�m

∫ z

−∞
Um−n(z′) exp[−i(�m + �n)z′] dz′. (14.8)

Indentifying a transfer matrix similar to that in eq. (12.29) we dotain
(

�′
0

R′

)

=
(

q′
11 q′

12

q′
21 q′

22

) (
T′

O

)

, (14.9)

where the elements of the column vectors �′
0, R′ and T′ are given by

(�′
0)m = τ ′

m(∞) = 2�0δ0m,

(R′)m = ρ ′
m(∞) = 2�m Rm,

(T′)m = τ ′
m(−∞) = 2�m Tm .

(14.10)

Since

�′
0 = q′

11T′,

R′ = q′
21T′,

(14.11)

from eqs. (D.29) and (14.10), we obtain

R′ = q21q′−1
11 �′

0. (14.12)

and the RHEED intensities are given as

|Rm |2 = |(�0/�m)(R′)m |2. (14.13)
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From eqs. (14.10), and (14.11),

(Φ′
0)m = ∑

n(q′
11)mnτ

′
n(−∞),

(R′)m = ∑
n(q′

21)mnτ
′
n(−∞).

(14.14)

Comparing eq. (14.14) with eqs. (14.8) and (14.6), the mth column of q11 is calculated by
using eq. (14.8) and setting τ ′

n(−∞) = δmn .
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Structural analysis of crystal surfaces

15.1 Introduction

In order to determine the atomic positions of atoms in the first few surface layers, the
RHEED intensity must be measured as a function of the scattering angles and then com-
pared with dynamical calculations. There are two methods, which are the intensity rocking
curve method (Maksym, 1985; Ichimiya et al., 1993b for example) and the azimuthal plot
method (Mitura and Maksym, 1993). In the rocking curve method, diffraction intensities
along several reciprocal rods are measured as functions of the incident angle of the electron
beam. For azimuthal plots, one measures the specular intensity as a function of azimuth
from a given direction of the incident and beam and at a given incident angle. For both
methods, integrated intensities are measured in order to reduce the morphological effects
of the surfaces (Ichimiya, 1987a; Appendix C). These two methods are equivalent and just
involve different methods of collecting the data. In either case a model of the surface struc-
ture must be assumed for comparison with the measurement. Convergent-beam RHEED
uses a combination of both methods (Ichimiya et al., 1980; Smith, 1992; Smith et al.,
1992). In this case the incident beam is not parallel but cone-like, as shown in Fig. 7.11.
Dynamical analyses of the relative intensities of different RHEED spots also give knowl-
edge of surface structures (Hashizume et al., 1994). In this chapter we will examine a
particularly useful method of comparing dynamical calculations with measured rocking
curves.

The full many-beam calculation outlined in Chapters 12 to 14 is time consuming, and
comparison with a model generally requires the determination of many atomic positions.
The method proposed here offers a considerable simplification by taking advantage of the
azimuthal sensitivity of RHEED intensities in both experiment and theory. The main points
are as follows.

1. When an incident azimuth is chosen in such a way that only the specular beam is strongly excited,
then the measured rocking curve approximately satisfies the one-beam condition.

2. A one-beam calculation uses an average potential which depends only on the surface normal
component z and so involves only layer separations and mean layer compositions.

3. In the case of symmetric incidence for Laue zones, a calculation that includes only beams in the
zeroth Laue zone is a good approximation to the full many-beam calculation (see Appendix F).
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4. A calculation that includes only beams in the zeroth Laue zone involves only separations of atomic
rows that are perpendicular to the direction of the incident beam.

These four points enable one to pick a data set that is sensitive to a particular atomic sepa-
ration, simplifying the construction and comparison with the atomic model. The resulting
procedure for a full structure determination is demonstrated in this chapter.

In this chapter, we illustrate structural analysis by RHEED through several examples.
We will demonstrate that rocking curves at the one-beam condition are sensitive primarily
to the surface normal components of atomic positions and to layer densities (Ichimiya,
1990a). Then an example of the structural determination of the Si(111)1 × 1 surface at high
temperatures is described (Kohmoto and Ichimiya, 1989).

The development of approximate and rapid dynamical calculations is necessary because
of the complexities of surface structures when a crystal surface consists of many small
domains, each several hundreds of Å in width, since multiple scattering through several do-
mains can take place. In such a case it is important that multiple scattering between domains
is taken into account in the RHEED dynamical calculation. In this chapter, this effect of
small domains is examined in the Si(111)

√
3 × √

3-Ag case, which includes three small
antiphase domains (Ichimiya et al., 1997). We will show the need for the simplifying an-
alytical method offered by judicial use of the azimuthal sensitivity of RHEED to different
projections of the atomic structure.

In the case of the GaAs(001)2×4 surface, the intensity rocking curves calculated
for two different models (McCoy et al., 1993, 1998) are in very good agreements
with the experimental result of Larsen et al. (1986). Unfortunately the data of Larsen
et al. include no information about the relative intensities from different reciprocal rods.
In order to distinguish the two models by the rocking curve analysis, however, we
need information about the relative intensities. This example is also described in this
chapter.

For structural analyses of surfaces, the method of azimuthal plots is also useful. Mitura
and Maksym (1993) developed this method and it was applied to the structural analysis of
thin film growth (Mitura, et al., 1996). Examples are described in this chapter.

15.2 One-beam condition

As a crystal is rotated around the surface normal axis, the incident electrons see each atomic
layer as an approximately homogeneous continuum, see Fig. 15.1. At this condition, called
the one-beam condition, the main diffraction beam is simply the specular one, as show in
the RHEED pattern in Fig. 15.2 for Si(111), as an example.

A rocking curve of specular intensity at the one-beam condition is a function of the
surface normal components of the atomic positions, but it scarcely depends on their lateral
components because the lateral arrangements of atoms are reduced into continuum layers.
For this approximation, the one-beam approximation, the crystal potential for dynamical
calculations becomes a function only of z, which is the surface normal component of the
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Figure 15.1 Projection of a crystal lattice onto the incident direction at the one-beam condition.

Figure 15.2 A RHEED pattern at the one-beam condition for the Si(111)7 × 7 surface. The incident
direction of the electron beam is about 7.5◦ away from the [112̄] direction.

coordinates. The potential is averaged in the lateral directions x, y, as

V0(z) = 1

A

∫ ∞

−∞

∫ ∞

−∞
V (x, y, z) dxdy, (15.1)

where A is the area of the surface. In eq. (15.1) the potential V0(z) is a function of the surface
normal components of atomic positions because the potential V (x, y, z) is a function of
atomic positions. Referring to eqs. (11.1) and (11.2), we find that V0(z) is the zeroth-order
Fourier coefficient of the potential in eq. (11.2). The surface normal components of the
atomic positions of the surface layers can be determined by a dynamical analysis of a
one-beam rocking curve, with short computation times.

For the one-beam approximation, the number of beams N is unity. Using the result of
appendix D, we obtain the transfer matrix of eq. (12.44) for the j th slice as

M j =
(

τ j ρ j

ρ j τ j

) (
exp(−iγ j�z) 0

0 exp(iγ j�z)

) (
τ j ρ j

ρ j τ j

)−1

= 1

4�0γ j

(
τ j ρ j

ρ j τ j

) (
exp (−iγ j�z) 0

0 exp (iγ�z)

) (
τ j −ρ j

−ρ j τ j

)

(15.2)
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Figure 15.3 Top right, the set of reciprocal rods for a Si(111) surface chosen for dynamical calculations
of the rocking curves. Also shown are rocking curves from Si(111)7 × 7 surface at the one-beam
condition. (a) One-beam rocking curve; (b) 37-beam rocking curve at 7.2◦ off [112̄]; (c) 37-beam
rocking curve at 7.5◦ off [112̄]; (d) experimental rocking curve at 7.5◦ off [112̄] (Ichimiya, 1990a).

where

τ j = �0 + γ j , (15.3)

ρ j = �0 − γ j , (15.4)

and

γ j =
√

�2
0 + U ( j)

0 . (15.5)

When absorption takes place, U ( j)
0 becomes complex with imaginary potential U ′( j)

0 :

U ( j)
0 = U ( j)

00 + iU ′( j)
0 , (15.6)

where U ( j)
00 is the real part of U ( j)

0 . Calculating the products in the transfer matrix, eq. (15.2),
we obtain the RHEED intensity for the one-beam condition.

For the Si(111) surface the incident beam direction at the one-beam condition for 10 keV
electrons was experimentally set at about 7.5◦ off the [112̄] direction (Ichimiya, 1987b), as
in Fig. 15.2. The azimuth is determined by the positions of the specular spot and the oblique
Kikuchi lines, because the crossing point of two Kikuchi lines is determined geometrically.

In order to examine the effects of simultaneous reflections on the one-beam rocking
curves, 37-beam calculations for the beam-set shown in Fig. 15.3 were carried out at the
one-beam conditions for the Si(111) surface (Ichimiya, 1990a). Here we neglect dynamical
effects between fractional-order beams and integer-order beams on the dynamical cal-
culations of the specular intensity for the 7 × 7 surface. Figure 15.3 shows the rocking
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Figure 15.4 Rocking curves from the Si(111) surface during silicon deposition at room temperature
for various values of the deposition coverage, θ . (a) Experimental curves; (b) calculated curves. The
parameters used in the calculations are shown in Table 15.1 and Fig. 15.5 (Nakahara and Ichimiya,
1991).

curves obtained by one-beam and 37-beam calculations at the one-beam condition from
Si(111)7×7 surfaces with the dimer-adatom-stacking fault (DAS) structure (Takayanagi et
al., 1985). In the calculation the surface normal components of atomic positions used were
those obtained by a one-beam analysis for the Si(111)7 × 7 surface (Ichimiya, 1987b), and
the lateral components were those obtained by Tong et al. (1988b). The curves calculated
with 37 beams (the 37-beam rocking curves) are very similar to the one-beam curve: the
peak and shoulder positions of the 37-beam curves are the same as those of the one-beam
curve, and no extra peaks appear in the curves of Figs. 15.3b, c. Further, the peak and shoul-
der heights of the 37-beam curves are not significantly different from those of the one-beam
curve. The curves at 7.5◦ off [112̄] are in very good agreement with an experimental curve,
shown in Fig. 15.3d, obtained at the same azimuth.

An example of a structural analysis using the one-beam condition for an evolution of
atomic structures during homoepitaxial growth on Si(111) is described below. Figure 15.4
shows one-beam rocking curves during silicon deposition on the Si(111)7 × 7 surface at
room temperature (Nakahara and Ichimiya, 1991). Calculated rocking curves are also shown
in the figure. The peak indicated by an arrow at the curve for the coverage θ = 0, before
the deposition, is the 222, which is a forbidden diffraction peak for the diamond structure.
This peak position depends upon the surface normal components of the positions of the
adatoms. At a coverage of 0.04 bilayers (BL, 1 BL = 1.6 ×1015 cm−2), the 222 peak shifts
toward lower glancing angles. This means that a smaller Bragg angle results, owing to the
appearance of interlayer distances larger than those of the adatoms. The rocking curves were
analyzed by a one-beam RHEED calculation with the parameters shown in Fig. 15.5. For
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Table 15.1 Parameters for the rocking curves with the best fit, shown
in Fig. 15.4b. (Nakahara and Ichimiya, 1991)

Coverages (BL) Positions (Å)

Total Adatom Layer 2 Layer 3 Layer 2 Layer 3
θ θa θ2 θ3 d2 d3

0.00 0.12 0.00 0.00
0.04 0.10 0.06 0.00 3.1
0.12 0.06 0.18 0.00 3.1
0.25 0.03 0.28 0.06 3.1 4.0
0.45 0.00 0.43 0.14 3.3 3.7
0.55 0.00 0.43 0.24 3.3 3.7
0.65 0.00 0.43 0.34 3.3 3.7

qa

q2
q3

δ (7 x 7)

d2
d3

Layer 0
Layer 1

Layer 2
Layer 3

Figure 15.5 An [001̄] side view of the geometry for the 7 × 7 DAS calculations in Fig. 15.4b. d and
θ are the parameters for layer position and coverage respectively. The parameters d2, d3, θa, θ2 and
θ3 correspond to those in Table 15.1. Layers 0 and 1 are fixed at the bulk position. The positions
of dimers, adatoms and atoms of the DAS structure regions are taken from the clean 7 × 7 DAS
structure (Nakahara and Ichimiya, 1991).

the calculations we assumed that the fraction of the region occupied by the DAS structure
region was proportional to the coverage, θa, of the adatoms. The surface normal components
of the atomic positions of the DAS structure region were taken to be the same as the values
obtained for a clean surface. For the δ(7 × 7) region shown in Fig. 15.5, it was assumed
that layers 0 and 1 include dimers and vacancies. The dimer positions were taken to be the
same as the positions of the DAS structure. The positions of the layers 0 and 1 were taken
at the bulk values referred to the δ(7 × 7) structure of the hydrogen-adsorbed Si(111)7 × 7
(Ichimiya and Mizuno, 1987). For the calculations the parameters, θa, θ2, θ3, d2 and d3,
were varied widely. The calculated rocking curves with the best fit, shown in Fig. 15.4b,
were obtained for the values of given in Table 15.1. These calculated curves are in very
good agreement with the experimental ones shown in Fig. 15.4a. From the results of the
rocking curve analysis shown in Table 15.1, about half of the adatom bonds were broken
by 0.12 BL deposition. It is concluded that two adsorbed atoms break two bonds of the
adatoms for this amount of growth.

As mentioned above, the one-beam rocking curve depends sensitively upon the surface
normal components of atomic positions and layer densities. Using this feature, it is possible
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to analyze surface structures during growth, reaction and etching processes. A one-beam
analysis of the Si(111) surface during homoepitaxial growth has been carried out in detail
by Shigeta and Fukaya (2001) using a high-speed beam rocking method.

15.3 Examples of structural analysis

15.3.1 Introduction

In this section we describe examples of structural analysis using many-beam conditions for
several different types of surface. The first example is the case where the terrace is wider than
the coherence length of the incident electron beam, as for a Si(111)1×1 surface. The second
example is the case where a surface is divided into many small antiphase domains, as for the
Si(111)

√
3 × √

3R30◦-Ag surface. At the many-beam conditions, the RHEED intensities
are significantly influenced by the existence of small antiphase domains. In this section we
describe such effects, which have been tested for the Si(111)

√
3 × √

3R30◦-Ag surface.
The third example is the GaAs(100)2 × 4 case, in which the relative intensities of different
diffraction beams must be compared with those obtained by dynamical calculations.

15.3.2 Si(111)1 × 1 surface at high temperatures

In a RHEED pattern from the Si(111)1 × 1 surface, diffuse
√

3 × √
3 and 2×1 streaks are

observed (Kohmoto and Ichimiya, 1989). Therefore it is considered that this surface includes
disordered structures such as a randomly relaxed bulk-like structure (the bulk-like model), a
relaxed bulk-like structure with random vacancies (the vacancy model), a relaxed bulk-like
structure with random adatoms (the adatom model) or a random dimer-adatom-stacking-
fault structure (the random DAS model). Figure 15.6a shows a measured rocking curve for
the RHEED intensity under the one-beam condition for this 1 × 1 surface at 900 ◦C. The
best-fit curves obtained by RHEED dynamical calculations for the above four models are
shown in Fig. 15.6 together with the experimental curve. In the figure, it can be seen that
the curves for the adatom model and the random DAS model are in very good agreement
with each other and with the experimental curve. For the vacancy model, the peak position
at the 222 reflection of the curve shifts about 0.2◦ to a lower angle compared with the peak
of the experimental one indicated by the arrow in the figure. Therefore, of the candidate
structure models, only two models remain in consideration after a one-beam analysis.

Under the one-beam condition, we cannot choose between the adatom model and the
random DAS model. In order to distinguish between these two models, a (00)-rod rocking
curve at [011̄] incidence was analyzed by a seven-beam dynamical calculation in the zeroth
Laue zone. Comparing the experimental curve and calculated curves shown in Fig. 15.7,
it may be concluded that the curve for the adatom model is in good agreement with the
experimental curve.

In the adatom model, it is believed that the adatoms are distributed randomly at T4 and
H3 sites. Calculations for several mixing ratios of H3 and T4 sites indicate that the rocking
curve for a mixing ratio H3/T4 equal to 1/4 is in best agreement with the experimental
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Figure 15.6 Experimental and calculated rocking curves at the one-beam condition from the Si(111)
surface at 900 ◦C. (a) Experimental curve; (b) the calculated curve for the bulk-like model; (c) that
for the vacancy model; (d) that for the adatom model; (e) that for the random DAS model. The arrows
indicate the peak position of the [222] reflection in the experimental curve (a) (Kohmoto and Ichimiya,
1989).

curve (Kohmoto and Ichimiya, 1989). In this calculated structure the adatom coverage is
0.25 monolayers (ML), a value which is nearly equal to the adatom coverage of the DAS
structure. This value is also in very good agreement with the results of reflection electron
microscopy at the phase transition from 7 × 7 to 1 × 1 at high temperature obtained by
Latyshev et al. (1991). The atoms just below the adatoms are pushed down, and the remaining
atoms not bonding with the adatoms are pushed up from the bulk position. These features
are very similar to those of the DAS structure described in the previous section. From the
mixing ratio H3/T4, it may be deduced that the energy of the T4 site is about 0.2 eV lower
than that of the H3 site.

In both one-beam and many-beam calculations for such disordered systems, the potentials
of atoms distributed randomly are weighted by the probability of site occupation. Using
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Figure 15.7 Experimental and calculated rocking curves from the Si(111) surface at 900 ◦C. The
direction of the incident beam is [011̄]. The calculated curves were obtained for the adatom model
and the random DAS model with seven-beam dynamical calculations. (a) Experimental curve; (b)
calculated curve for the vacancy model; (c) that for the random DAS model; (d) that for the adatom
model at the H3 sites; (e) that for the adatom model at the T4 sites (Kohmoto and Ichimiya, 1989).

a combination of one-beam analysis and many-beam analysis, we are able to analyze the
atomic structures of disordered surfaces as well as ordered surfaces.

15.3.3 Domain effects

Real surfaces with reconstructions can have antiphase domains, as described in Chapter 17.
For RHEED experiments, the incident electron beam comes to a surface at small grazing
angles, so that the multiple scattering of electrons can take place between domains when the
domains are small enough to be within the coherence length of the incident electron beam.
At the one-beam condition described in Section 15.2, RHEED intensities depend scarcely
at all upon domain size, because the intensities are insensitive to lateral displacements of
the surface atoms. Therefore rocking curves at the one-beam condition are easily analyzed
without domain effects. For the many-beam case when which the incident direction is along
a low-index zone axis, however, the rocking curves are strongly influenced by the small
domains. For many-beam calculations, the surface structures must be periodic. Therefore
we take a periodic approximation to the arrangement of domains, with a huge unit cell along
the incident beam direction. An example is shown in Fig. 15.8a for a 2 × 1 structure with
a domain size of 10 unit cells. The unit cell for the antiphase domain structure is 20 times
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Figure 15.8 A periodic arrangement of antiphase domains of 2 × 1 structure with 10 unit cells and
the reciprocal rods arrangement. (a) The arrangement in real space. The shaded region is the 2 × 1
unit cell. The broken line is the antiphase boundary. (b) The reciprocal rods for (a). It may be noted
that the (1/2, 0) and (1/2, 1) rods have vanished.

larger than the 2 × 1 unit cell along the y direction. The arrangement of the reciprocal rods
from the periodic antiphase domain surface is shown in Fig. 15.8b. Satellite rods of the
fractional-order rods appear along the y direction. For the real surface, since the domain
sizes are deviated spatially, the reciprocal rods have widths of the order of the average
domain size. This rod arrangement results in long streaks in the RHEED pattern. It is
emphasized that the fractional-order rods, the (1/2 0) and (1/2 1) rods, have vanished, as
shown in Fig. 15.8b.

The antiphase domains of the Si(111)
√

3 × √
3-Ag surface have small sizes, of order a

few 100 Å in diameter. Therefore the rocking curves for 〈112〉 incident directions are strongly
influenced by the domains. We describe the domain effect for the Si(111)

√
3 × √

3-Ag
surface as an example. In the calculations we adopt the honeycomb chained-trimer (HCT)
model determined by X-ray diffraction analysis (Takahashi and Nakatani, 1993) which has
been widely accepted in several experimental and theoretical studies (Vlieg et al., 1989,
1991; Katayama et al., 1991; Watanabe et al., 1991, Ding et al., 1991; Ichimiya et al.,
1993b). In the case of the RHEED experiments, the calculated rocking curves for the
fractional-order rods (1/3 1/3) and (2/3 2/3) were in good agreement with the experimental
ones, but it was very hard to fit the calculated curves for the integer-order rods (00) and
(11) (Ichimiya et al., 1993b). It is believed that this was due to multiple scattering through
several small domains, because the Si(111)

√
3 × √

3-Ag surface consists of small domains.
When such small domains are distributed randomly on the surface, the projected potential
due to superposition of the potentials from each domain has the bulk periodicity. This means
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Figure 15.9 (a) Schematic arrangement of the 90 ×3 unit cell for the antiphase domains of
Si(111)

√
3 × √

3-Ag surface. (b) Schematic arrangement of the reciprocal rods for the 90 × 3
surface.

simply that fractional-order reflections vanish on the zeroth Laue zone. In fact, however,
fractional-order reflections are usually observed in RHEED patterns.

In order to examine the effect of multiple diffraction by small domains, we calculated
rocking curves from the Si(111)

√
3 × √

3-Ag surface with a large unit cell for the domain
structure, 90 × 3, as shown in Fig. 15.9a (Ichimiya and Ohno, 1997). The reciprocal rods
are shown schematically in Fig. 15.9b. On the zeroth Laue zone there are no fractional rods,
but the rods due to multiple diffraction appear near the zeroth Laue zone, in positions such
as (29/90 31/90) instead of (1/3 1/3). It is possible to make two independent 90 × 3 unit
cells. The reciprocal rods, indicated by the solid and open triangles in Fig. 15.9b, are for the
two unit cells. Since the two unit cells are mirror symmetric with each other, we calculated
RHEED intensities for the structure of one side only. The intensities of the fractional-order
spots were obtained as

I

(
1

3

1

3

)

= I

(
29

90

31

90

)

+ I

(
31

90

29

90

)

for instance, where I (hk) is the intensity of the (hk) spots.
Figure 15.10 shows experimental and calculated curves for the integer-order rods for the

projected potential model, the ideal-surface model (single domain) and the model having a
90 × 3 unit cell with antiphase domains. The calculations were carried out with 13 beams
near the zeroth Laue zone. For atomic positions of the Si(111)

√
3 × √

3-Ag structure, the
values determined by Ichimiya et al. (1993b) were used. For the integer-order reflections,
the rocking curves calculated using antiphase domains were in very good agreement with the
experimental ones. The curves calculated for the ideal surface were very different from the
experimental curves and from the curves for the model with antiphase domains. The curves
calculated with the projected potential are also in good agreement with the experimental
ones. Therefore it is believed that the projected-potential model is also a good approximation
for imperfect crystal surfaces.
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Figure 15.10 Experimental and calculated rocking curves for a Si(111)
√

3 × √
3-Ag surface at

10 keV. On the left, rocking curves for the (00) rod. On the right, rocking curves for the (11) rod. The
bottom curves are the experimental curves. On each side, curves (a), (b) and (c) are calculated curves
for the projected-potential model, the ideal-surface model and the model with antiphase domains,
respectively (Ichimiya et al., 1997).

From these results, it is concluded that multiple diffraction through small domains sig-
nificantly affects RHEED intensities and that the effects of multiple diffraction by small
domains must therefore be taken into account in RHEED dynamical calculations.

15.3.4 GaAs(001) 2 × 4

The GaAs(001) 2 × 4 structure has been studied intensively in several experimental and the-
oretical works. Farrell and Palmstrøm (1990) first proposed surface structures for the three
phases, called α, β and γ ; these are the three models shown in Figs. 15.11a, b and c, deduced
from kinematical analysis of RHEED patterns during growth. McCoy et al. (1993) tried
to analyze the β-phase surface with the three-arsenic-dimer model β(2 × 4) model of Fig.
15.11b, using the results of RHEED rocking curves taken by Larsen et al. (1986). The rock-
ing curves calculated for the model were in very good agreement with the experimental ones.

Figure 15.12 shows the RHEED patterns from the three phases. The RHEED patterns
for the α and γ phases are streaky because the surface structures consist of many small
antiphase domains. For the β phase, the RHEED pattern is quite sharp and the intensities of
the half-order spots are not so weak compared with the other spots. This means that the sizes
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Figure 15.11 Structure models for GaAs(001)2 × 4: (a) α(2 × 4) model; (b) β(2 × 4) model; (c)
γ (2 × 4) model; (d) β2(2 × 4) model.

of the antiphase domains are large along the incident-beam direction. The relative intensities
of the RHEED spots calculated by the kinematical theory are in very good agreement with
the relative intensities of the β phase of Fig. 15.12b.

Hashizume et al. (1994, 1995) studied the structures by a combination of analyses of STM
images and RHEED patterns. Analyzing carefully STM images of the GaAs(001)2 × 4
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Figure 15.12 RHEED patterns from (a) α, (b) β, (c) γ phases. The incident direction is [11̄0] and the
glancing angle of incidence is 2◦ for 10 keV electrons.
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Figure 15.13 Experimental rocking curves for [11̄0] incidence on the GaAs(001)2 × 4 surface. The
electron energy was 10 keV. (a) (00) rod; (b) (0 1/4) rod; (c) (0 2/4) rod; (d) (0 3/4) rod; (e) (01) rod.
Curves (1) is for the α phase, curve (2) for the β phase and curve (3) for the γ phase.

surface for the three phases, they concluded that the surface structure does not consist of
three arsenic dimers in the unit cell but instead consists of two arsenic dimers and two missing
dimers, as shown in Fig. 15.11d, in all the three phases. From dynamical calculations of
the spot intensities of RHEED they also concluded that the model with two dimers and two
missing dimers is best. This structure is called β2. The differences in these phases are due
to the ordering of the dimers. For the β phase, rows of the two dimers are well ordered while
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Figure 15.14 Azimuthal plots. (a) Experimental data for 40 keV electrons from the Si(111)7 × 7
surface from Menadue (1972). (b) The calculated azimuthal plot, corresponding to the data shown
in (a), by Mitura and Maksym (1993). Values of the azimuthal angle 
 were 0 and 30 degrees,
corresponding to the azimuths 〈101̄〉 and 〈112̄〉, respectively (Mitura and Maksym, 1993).

for the α phase they are disordered. For the γ phase, the c(4×4) structure of the arsenic
atoms is partially included within small domains of the β2 structure.

McCoy et al. (1998) have tried again to analyze the structure of the β-phase using the β2
model. Their result for the rocking curves is in very good agreement with the experimental
result of Larsen et al. (1986). Ichimiya et al. (2001) have measured rocking curves for the
three phases and concluded that the rocking curves are very similar to each other, as shown
in Fig. 15.13. The half-order spot intensities are very weak at the γ and α phases, which is
due to the disordering of dimer rows. The rocking curves for the β phase are in very good
agreement with the curves of Larsen et al. The same results for GaAs(001)2 × 4 surface
structures were obtained by Ohtake et al. (2002), who determined the structures of the
surfaces with careful experimental procedures and detailed analysis of the RHEED rocking
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curves. The results from the RHEED rocking curve analysis are also consistent with the
results from analyses of both RHEED patterns and STM images (Hashizume et al., 1995).

15.3.5 Azimuthal plot

Structural analyses of crystal surfaces can be done by using the azimuthal dependence of
RHEED intensities, the so-called azimuthal plot (Mitura and Maksym, 1993). An azimuthal
plot in which the specular intensity was measured by rotating the sample around the surface
normal axis was obtained by Menadue (1972) for the Si(111)7 × 7 surface. The data
was first analyzed by Mitura and Maksym (1993). Figure 15.14 shows the experimental
and calculated azimuthal plots. The calculated curve is in very good agreement with the
experimental one. Although in this calculation the surface reconstruction is not taken into
account, it is expected that this method will be useful in analyzing surface and thin film
structures.

Using this method, Mitura et al. (1996) carried out the structural analysis of ultrathin
films of dysprosium silicide (DySi2−x ) grown on a Si(111)7 × 7 surface at a substrate
temperature of 870 K. By analysis of the azimuthal plot from the DySi2−x layers, they
determined the structure model proposed by Baptist et al. (1990) for YSi2−x and also the
silicon sublattice displacement, 0.5 Å.
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Inelastic scattering in a crystal

16.1 Introduction

In the dynamical diffraction theory, absorption effects are given phenomenologically by
an imaginary potential. Yoshioka (1957) first revealed that the imaginary potential could
be found from the total cross section for Bloch waves and then Howie (1963) and Whelan
(1965) developed the theory of inelastic scattering in crystals. In this chapter we show
that the relation between the Fourier coefficients of the imaginary potential and the total
cross sections for the one-electron-excitation case is similar to the real-potential case (see
Chapter 11). Then we show the differential cross sections for plasmon excitation and thermal
diffuse scattering.

16.2 One-electron excitation: Yoshioka’s theory

16.2.1 Fundamental equation

In order to treat the inelastic scattering of electrons in a crystal, we extend the theory for
atoms described in sec. 9.4. The Schrödinger equation for the whole electron system is
given by

H� =
(

− �2

2m
∇2 + Hc + H′

)

� = E�, (16.1)

where Hc and H′ are Hamiltonians for the crystal and for the interaction between the fast
electrons and the crystal, and � is the wave function of the whole system. The interaction
Hamiltonian H′ is expressed as

H′ =
∑

j

e2

|r − r j | −
∑

k

Zke2

|r − Rk | , (16.2)

where r, r j and the Rk are the position vectors of the fast electron, the j th electron of the
crystal and the nucleus of the kth atom, respectively, and Zk is the atomic number of the kth
atom. When we ignore the thermal vibrations of the atoms and exchange effects between

211
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the fast electrons and the crystal electrons, the wave function � is given as

�(r; r1, . . . , rN ) =
∑

n

φn(r)an(r1, . . . , rN ), (16.3)

where φn and an are the wave functions of the fast electron and the crystal electrons in the
nth excited state. In a way very similar to that described in Section 9.4, we obtain

(∇2 + k2
0)φ0 + U (r)φ0 =

∑

m �=0

u0m(r)φm, (16.4)

and

(∇2 + k2
n)φn + U (n)(r)φn =

∑

m �=n

unm(r)φm, (16.5)

where

unm(r) = 2m

�2
H ′

nm(r), (16.6)

U (n)(r) = unn(r). (16.7)

Assuming |un0φ0| � |unm(r)φ| and U (n)(r) ∼ U0 for n ≥ 1 and m ≥ 1, eq. (16.5) is
approximately given as

(∇2 + k2
n)φn = un0(r)φ0. (16.8)

Using the Green’s function G(r, r′), we obtain

φn =
∫

G(r, r′)un0(r′)φ0(r′) dτ ′. (16.9)

Upon substituting eq. (16.9) into eq. (16.5), we obtain

(∇2 + k2
0)φ0 + U (r)φ0 +

∑

n

∫

u0n(r)G(r, r′)un0(r′)φ0(r′) dτ ′ = 0. (16.10)

We set

ζ (r, r′) = G(r, r′)
∑

n �=0

u0n(r)un0(r′). (16.11)

When we neglect the collective motion of the electrons in the crystal, the function ζ (r, r′) is
periodic with the crystal periodicity: ζ (r, r′) = ζ (r + a, r′ + a′), where a is a lattice vector.
Therefore the Fourier coefficient of ζ (r, r′) is given by

Mgh = 1

�

∫ ∫

ζ (r, r′) exp[−i(kg · r − kh · r′)]dτdτ ′, (16.12)

where � is the crystal volume and kg is given by the incident wave vector k0 and reciprocal
lattice vector g as

kg = k0 + g. (16.13)
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The wave function φ0 and potential U (r) are also expanded in the Fourier series:

φ0 =
∑

g

Cg exp(ikg · r) (16.14)

and

U (r) =
∑

g

Ug exp(ig · r). (16.15)

Upon substituting eqs. (16.12), (16.14) and (16.15) into eq. (16.10), we obtain homogeneous
equations:

(k2
g − k2

0)Cg −
∑

h

Ug−hCh −
∑

h

MghCh = 0. (16.16)

This reduces to the fundamental equation of Bethe’s dynamical theory when the term
Ug−h + Mgh is replaced by Ug−h.

16.2.2 Imaginary potential

Since Mgh is derived from the inelastic scattering part of eqs. (16.4) and (16.5), the terms in
Mgh correspond to the potential due to inelastic scattering. From eqs. (16.11) and (16.12),
Mgh is expressed as

Mgh = 1

�

∫ ∫

G(r, r′)
∑

n �=0

u0n(r)un0(r′) exp (−ikg · r) exp (ikh · r′) dτdτ ′. (16.17)

We take the Green’s function as

G(r, r′) = − 1

(2π )3

∫
exp [ik · (r − r′)]

k2 − k2
n

dτk (16.18)

(see Appendix B). Substituting eq. (16.18) into eq. (16.17), we obtain

Mgh = 1

(2π )3�

∑

n �=0

∫

k

dτk

k2 − k2
n

∫

u0n(r) exp [i(k − kg) · r] dτk

×
∫

un0(r′) exp [i(k − kh) · r′] dτ ′. (16.19)

From eq. (9.75), we can take the inelastic scattering factor as

f e
n0(sg) =

∫

un0 exp (−isg · r) dτ, (16.20)

where sg = k − kg. Since u0n(r) = un0∗(r),

Mgh = 1

(2π )3�

∑

n �=0

∫
f e∗
n0 (sg) f e

n0(sh)

k2 − k2
n

dτk . (16.21)

The volume element dτk in k-space is dτk = k2dkd�, where d� is an infinitesimal solid
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Imaginary axis

Real axis
k

k = k n

Figure 16.1 Contour for the integration of eq. (16.21).

angle. Equation (16.21) has a singularity at k = kn . So in that locality we put k as

k = kn + εeiϑ (16.22)

and then let ε → 0, where ϑ is a variable. We carry out the integration for k along the
contour shown in Fig. 16.1a. Now we can divide the integral into two parts, one along the
real-axis and the other the semicircle around k = kn . The integration over the real-axis part
results in a volume integral over the whole k-space except for the small semicircles. In the
limit ε → 0, the integral becomes

wgh = 2

π�

∑

n �=0

∫

k �=kn

f e∗
n0 (sg) f e∗

n0 (sh)

k2 − k2
n

dτk . (16.23)

For the integration along the large semicircle, we put dk = iεeiϑdϑ . Then

iugh = 2

π�

∑

n �=0

∫

d�

∫ 0

−π

f e∗
n0 (sg) f e

n0(sh)

2knεeiϑ
k2

nεeiϑdϑ

= ikn

�

∑

n �=0

∫

f e∗(sg) f e(sh) d�. (16.24)

Therefore Mgh is given by

Mgh = wgh + iugh. (16.25)

The first term on the right-hand side of eq. (16.25) is a real potential due to the disturbed
field caused by the inelastic scattering. Since this term is small in comparison with the
adiabatic crystal potential (Yoshioka, 1957), we can neglect the effect for the dynamical
calculations.

Taking g = h = 0 in eq. (16.24), we have

u00 = kn

�

∫ ∑

n �=0

| f e
n0(s0)|2 d�. (16.26)
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The integral factor in eq. (16.26) is the total cross section for inelastic scattering by the
crystal, which is similar to eq. (9.40) for inelastic scattering by an atom, since σ00 =
(�/kn)u00. We define the component of the total cross section for inelastic scattering of
Bloch waves by a crystal as

σgh = �

kn
ugh. (16.27)

Therefore the imaginary potential is related to the total cross section for the inelastic scat-
tering of fast electrons by Bloch states. The absorption coefficient is defined as

µgh = σgh

�
. (16.28)

For fast electrons we can take kn ∼ k0.

16.3 Evaluation of the imaginary potential

Using eq. (9.77), we rewrite f e
n0(sg) as

f e
n0(sg) = 2

aH

f X′
n0 (sg)

s2
g

, (16.29)

where f X′
n0 (s) is the Compton scattering amplitude for the crystal electrons. Then we obtain

ugh = 1

�

∑

n �=0

4

kna2
H

∫
f X′∗
n0 (sg) f X′

n0 (sh)

s2
gs2

h

k2
nd�. (16.30)

When we write the inelastic scattering vector qn as

qn = kn − k0, (16.31)

eq. (16.30) becomes

ugh = 4

�a2
H

∑

n �=0

1

kn

∫
f X′∗
n0 (qn − g) f X′

n0 (qn − h)

(qn − g)2(qn − h)2
k2

nd�, (16.32)

using

sg = qn − g. (16.33)

The integration of eq. (16.32) is carried out over the whole solid angle. Therefore ugh can
be reduced to u(g−h)0 (Whelan, 1965), and qn is replaced by q. Assuming that kn � qn for
fast electrons and taking kn∼k0, we have

ug0
∼= 4

k0�a2
H

∑

n �=0

∫
f X′∗
n0 (q − g) f X′

n0 (q)

(q − g)2q2
k2

0d�. (16.34)

In order to calculate the numerator in eq. (16.34), we use the Waller and Hartree equation
(see Appendix E) as described in Chapter 9. Using the wave function of the crystal electrons
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for the nth excited state, an(r1, . . . , rN ), and that for the ground state, a0(r1, . . . , rN ), we
obtain the same equation as eq. (9.78),

f X′
n0 =

N∑

j=1

∫

a∗
n (r1, . . . , rN )e−is·r j a0(r1, . . . , rN ) dτ1, . . . , dτN . (16.35)

When we tentatively ignore the exchange term of the crystal wave function, a0 and aN are
given by products of Bloch functions c j (r j ):

an(r1, . . . , rN ) = c1(r1) . . . cn(r j ) . . . cN (rN ),

a0(r1, . . . , rN ) = c1(r1) . . . c j (r j ) . . . cN (rN ).
(16.36)

Upon substituting eq. (16.36) into eq. (16.35), we obtain

f X′
n0 (q − g) =

N∑

j=1

∫

c∗
n(r) exp[−i(q − g) · r]c j (r) dτ, (16.37)

which is similar to eq. (9.85). In the tight-binding approximation the Bloch functions are
written as

cn(r) = 1√
N ′

∑

α

exp(ik(n) · Rα)bn(r − Rα),

c j (r) = 1√
N ′

∑

α

exp(ik(0) · Rα)b j (r − Rα),
(16.38)

where N ′ is the number of lattice sites, Rα is the position vector of the αth site, b j is the
wave function for the j th electron in an atom and k(n) and k(0) are the wave vectors for
the atomic electrons at the nth excited state and the ground state (Humphreys and Whelan,
1969). Substituting eq. (16.38) into eq. (16.37), we have:

f X′
n0 (q − g) =

∑

j,in atom

∑

α

∑

β

∫

b∗
n(r − Rα) exp[−i(q − g) · r]b j (r − Rβ)

× exp[−i(k(n) · Rα − k(0) · Rβ)] dτ. (16.39)

Assuming no overlap of atomic wave functions on different lattice sites, we can neglect the
terms for which α �= β of eq. (16.39) and obtain

f X′
n0 (q − g) =

∑

α

exp(iq · Rα)

×
∑

j,in atom

∫

b∗
n(r − Rα) exp[−i(q − g) · r]b j (r − Rα) dτ

=
∑

α

exp(iq · Rα)
∑

j,in atom

∫

b∗
n(r) exp[−i(q − g) · r]b j (r) dτ, (16.40)
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where, q = k(0) − k(n). Since bn(r) and b j (r) are the same as the bn(r) and b j (r) in sec-
tion 9.4, eq. (16.40) can be written as

f X′
n0 (q − g) =

∑

α

exp(iq · Rα) f X
n0(q − g), (16.41)

where f X
n0(s) is the Compton scattering amplitude. Since the crystal is periodic, the sum-

mation of α is reduced to summation over the unit cell, and eq. (16.41) becomes

f X′
n0 (q − g) = N0 f X

n0(q − g)
∑

α,unitcell

exp(iqRα) (16.42)

where N0 is the number of unit cells. Then the summation over n is applied for
f X′
n0

∗
(q − g) f X′

n0 (q) of eq. (16.34):
∑

n �=0

f X′∗
n0 (q − g) f X′

n0 (q) = N0

∑

α

exp(−iq · Rα)
∑

n �=0

f X∗
n0 (q − g) f X

n0(q). (16.43)

According to Appendix E, we have:

a0

∑

j

exp[i(q − g) · r j ] =
∑

n

f X∗
n0 (q − g)an,

a∗
0

∑

j

exp(−iq · r j ) =
∑

n

f X
n0(q) · a∗

n .
(16.44)

Taking products of both sides of eq. (16.44), we obtain:

∑

n

f X∗
n0 (q − g) f X

n0(q) =
∫ ∫

|a0|2
∑

j

∑

k

exp[i(q − g) · r j ] exp(−iq · rk ) dτ j dτk .

(16.45)
Using the exchange relation for the wave function a0, we have

∑

n

f X∗
n0 (q − g) f X

n0(q) = Z +
∑

j �=k

∑

k �= j

f ∗
j j (q − g) fkk(q)

−
∑

j �=k

∑

k �= j

f ∗
jk(q − g) f jk(q), (16.46)

where the f jk(q) are given as

f jk(q) =
∫

b∗
j (r) exp (−iq · r)bk(r) dτ. (16.47)

We can put
∑

n �=0

f X∗
n0 (q − g) f X

n0(q) =
∑

n

f X∗
n0 (q − g) f X

n0(q) − f X∗
00 (q − g) f X

00(q) (16.48)

and

f X∗
00 (q − g) f X

00(q) =
∑

j

f ∗
j j (q − g) f j j (q) +

∑

j �=k

f ∗
j j (q − g) fkk(q). (16.49)
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Using eqs. (16.46), (16.48) and (16.49), we obtain:
∑

n �=0

f X∗
n0 (q − g) f X

n0(q) = Z −
∑

j

f ∗
j j (q − g) f j j (q) −

∑

j �=k

∑

k �= j

f ∗
jk(q − g) f jk(q). (16.50)

Now we replace ug0 as by uel
g for single-electron excitations, and the imaginary potential

for the excitations is expanded in a Fourier series as

uel(r) =
∑

g

uel
g exp(ig · r). (16.51)

Using eqs. (16.34), (16.43) and (16.48), the Fourier coefficient ug is given as

uel
g = k0

�0

∫ Z − ∑
j f ∗

j j (q − g) f j j (q) − ∑′
j

∑′
k f ∗

jk(q − g) f jk(q)

(q − g)2q2
d�

×
∑

α,unitcell

exp(ig · Rα), (16.52)

where
∑′

j means summation without j = k, and �0 is the unit cell volume. Now we
redefine the component of the total cross section defined in eq. (16.27) as

σg = �0

k0
ug. (16.53)

For g = 0, σ0 is the average of the total cross section which related to the mean absorption
coefficient as µ0 = σ0/�0 defined in chapter 9. The total cross section σ0 is given by σinel

of eq. (9.109) as σ0 = Ncellσinel, where Ncell is the number of atoms in the unit cell.
Within the integral of eq. (16.52) is a differential cross section. Using the screened-

potential-model approximation described in subsection 9.4.4 for eq. (16.90) with g = 0 and
using eq. (9.97), we find that the half width of the scattering angle χ for single-electron
excitation is given as

χ ∼ �E√
2E

(16.54)

and that

q2 ∼ k2
0

2

(�E

E

)2
(16.55)

for fast electrons. As described in Section 9.4, the minimum energy loss by single-electron
excitation is assumed to be �Emin ∼ 10 eV. Therefore χ ∼ 10−3 rad for 10 keV electrons,
and q2 ∼ 10−4 rad at the half width. Since g2 is normally larger than unity, ug is small
enough in comparison with u0 to be approximately proportional to 1/g2. (Humphreys and
Whelan, 1969).

16.4 Plasmon scattering

In this section, we describe electron scattering by plasmon excitation in a crystal (Ferrel,
1956, 1957). As described in the previous sections, the cross section for inelastic scattering
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is obtained using interaction Hamiltonians. Since plasmon scattering is mainly due to in-
teractions between the incident electrons and the free electrons in a crystal, the interaction
Hamiltonian is expressed as

H ′ =
∫

e2ρ(r)

| r − r′ | dτ ′, (16.56)

where r and r′ are the position vectors of the incident electron and a free electron and ρ(r′)
is the density of free electrons. By Fourier expansion of the integrand of eq. (16.56), we
obtain the interaction Hamiltonian as

H ′ =
∫ ∑

k

∑

k ′

4πe2

k2
ρk ′ e−ik′ · r′eik · (r − r′) dτ ′ =

∑

k

4πe2

k2
ρk eik · r, (16.57)

where ρk is the Fourier coefficient of ρ(r). From this equation we separate the interaction
Hamiltonian into a long-range part,

H ′
L = 4πe2

∑

k<kc

ρk

k2
e−ik · r, (16.58)

and a short-range part,

H ′
S = 4πe2

∑

k>kc

ρk

k2
e−ik · r, (16.59)

where �kc is the Bohm–Pines cut off momentum. For plasmon excitation we consider the
long-range interaction. For k < kc, the Fourier coefficients of the electron density ρk are
given as

ρk = �−1
q

∑

j

eik · r j = ρ
(1)
k + iρ(2)

k , (16.60)

where r j is the coordinate of an electron participating in the plasma oscillations, �q is the
volume of quantization and

ρ
(1)
k = �−1

q

∑

j

cos (k · r j ), (16.61)

ρ
(2)
k = �−1

q

∑

j

sin (k · r j ). (16.62)

We assume that the contributions to ρk from the lattice vibrations can be neglected and
that the ρk oscillate harmonically for small k. For a harmonic oscillator, the matrix element
linking the ground state and first excited state equals

√
�E/(2K ), where �E is the energy of

excitation and K is the spring constant of the oscillator. The spring constant is determined
from the total electrostatic potential energy in the crystal. This is due to a self-energy
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term

1

2

∫
e2ρ(r)ρ(r′)

|r − r′| dτdτ ′ = 1

2
4πe2

∑

k

|ρk|2
k2

∫

dτ

= 1

2
4πe2�q

∑

k

|ρk|2
k2

= 1

2
8πe2�q

∑

k>0

1

k2

[(
ρ

(1)
k

)2 + (
ρ

(2)
k

)2]

Therefore the spring constant for the oscillators corresponding to ρ
(1)
k and ρ

(2)
k is K =

8πe2�q/k2. The matrix element for the excitation is given as

k

√
�E

16πe2�q
. (16.63)

The scattering probability for excitation of plasmons with momentum �k is given by

|H ′
k|2 = 16π2e2 |ρk|2

k4
. (16.64)

Since

|ρk|2=
(
ρ

(1)2

k

)
+

(
ρ

(2)2

k

)
= 2k2�E

16πe2�q ,
(16.65)

we obtain

|H ′
k|2 = 2πe2�E

�qk2
. (16.66)

From first-order perturbation theory, the rate of inelastic scattering is

dν = 2π

�
�(E) |H ′

k|2, (16.67)

where �(E) is the density of states, given as

�(E) = �q
mpd�

�2
. (16.68)

Here p is the momentum of the incident electron and d� is the differential solid angle into
which electrons are scattered inelastically.

The scattering rate dν is the probability of scattering into dν per unit time. When the
incident electron is passing through a foil with thickness l in transit time t , the scattering
probability during passage through the foil is tdν = ld(1/�), where d(1/�) is the differ-
ential of the inverse mean free path. Since l/t is the velocity p/m of the incident electron,
the differential inverse mean free path is given from eqs. (16.66), (16.67) and (16.68) as

d(1/�) = d�

2πaH

m�E

(�k)2
. (16.69)
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From energy and momentum conservation for small-angle scattering, we obtain

k2 = (�k)2 + k2ϑ2 = k2(ϑ2
E + ϑ2), (16.70)

where ϑ is the angle of scattering and ϑE = �k/k = �E/(2E). Thus we obtain

d(1/�) = d�

2πaH

ϑE

ϑ2
E + ϑ2

. (16.71)

The long-range scattering vanishes for k > kc, or ϑ > kc/k = ϑc
E � ϑE . Therefore the

total inverse mean free path is obtained as

1/� = ϑE

aH
ln

(
ϑc

E

ϑE

)

, (16.72)

and the mean free path is

� = aH

ϑE ln(ϑC E/ϑE )
= 2aH E

�E

{

ln

[
�kc

�E

(
2E

m

)1/2
]}−1

. (16.73)

From eq. (4.34), the imaginary potential v
pl
0 for plasmon scattering is given by

v
pl
0 = �2k

2me�
. (16.74)

Using upl
0 = (2me/�2)vpl

0 , we obtain simply

upl
0 = k

�
. (16.75)

Plasmon scattering is due to long-range interactions such as the Coulomb interaction. There-
fore only the mean imaginary potential term contributes.

16.5 Thermal diffuse scattering

In this section we describe electron scattering by vibrating atoms in a crystal. According to
Hall and Hirsch (1965), the electron intensities after thermal diffuse scattering are approx-
imately evaluated by the Einstein model of thermal vibration. Here we consider the single-
scattering intensities of a Bloch wave in the crystal (Yoshioka and Kainuma, 1962). The wave
function φ(r) in the crystal is expanded in a Fourier series in the same way as eq. (16.14):

φ(r) =
∑

g

Cg exp(ikg · r). (16.76)

Using the Born approximation, the scattered amplitude for thermal scattering, φt(r), is
expressed as

φt(r) = 1

4π

∫

U (r′) eik·(r−r′)φ(r′) dτ ′

= 1

4π
eik · r

∑

g

Cg

∫

U (r′)e−isg·r′
dτ ′, (16.77)
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where sg = k − kg and U (r) is the reduced crystal potential. The reduced crystal potential
is found from the atomic potentials

U (r) =
∑

j

U a
j (r − r j ). (16.78)

Therefore
∫

U (r) exp (isg · r) dτ =
∑

j

exp(−isg · r j )
∫

U a
j (r) exp (−isg · r) dτ

= 4π
∑

j

f j (sg) exp(−isg · r j )

Then we obtain

φt(r) = eik·r ∑

g

Cg

∑

j

f j (sg)e−isg · r j . (16.79)

For simplicity, we consider a monoatomic crystal and calculate the scattered intensity,
It = |φt|2:

It =
∣
∣
∣
∣
∣

∑

g

Cg f (sg)
∑

g

eisg·r j

∣
∣
∣
∣
∣

2

=
∑

g

∑

n

CgC∗
h f (sg) f ∗(sh)

∑

j

∑

k

exp [−i(sg · r j − sh · rk )]. (16.80)

Now we replace r j as r j + �r j (t), where r j is an equilibrium atomic position and �r j (t)
an atomic displacement at time t . Then we obtain a time average:
〈 ∑

j

∑

k

exp {i[sg · r j − sh · rk)]} exp {i[sg · �r j (t) − sh · �rk(t)]}
〉

=
∑

j

exp [−i(g − h) · r j ]
〈

exp [−i(g − h) · �r j (t)]
〉
· · ·

+
∑

j �=k

∑

k �= j

exp [−i(sg · r j ) − sh · rk]
〈
exp {−i(sg) · �r j (t) − sh · �rk(t)}

〉
. (16.81)

The time-averaged terms of eq. (16.81) become, for the Einstein model,
〈

exp [−i(g − h) · �r j (t)]
〉
∼ exp[− 1

2 (g − h)2 · �r2] (16.82)

and
〈

exp [−i(sg · �r j − sh · �rk)]
〉
∼ exp[− 1

2 (s2
g + s2

h) · �r2], (16.83)

where �r2 is given by 〈�r2
j 〉. The time average of the intensity It is:

〈It〉 =
∑

g

∑

h

CgC∗
h f (sg) f ∗(sh)

{ ∑

j

exp [−i(g − h) · r j ] exp [− 1
2 (g − h)2�r2]

+
∑

j �=k

∑

k �= j

exp[−i(sg · r j − sh · rk)] exp [− 1
2 (s2

g + s2
h)�r2]

}

. (16.84)
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In 〈It〉 the Bragg reflection intensity IB is included; it is given as

IB =
∑

g

∑

h

CgC∗
h f (sg) f ∗(sh) exp

[− 1
2 (s2

g + s2
h)�r2

]

×
∑

j

exp [−i(g − h) · r j ] +
∑

j �=k

∑

k �= j

exp [−i(sg · r j − sh · rk)], (16.85)

because the diffraction amplitudes are proportional to f (sg) exp(−s2
g�r2/2) for thermal

vibrations as described in Section 10.3. Then the differential cross section for diffuse
scattering is

dσt

d�
= 〈It〉 − IB

=
∑

g

∑

h

CgC∗
h f (sg) f ∗(sh)

∑

j

exp [−i(g − h) · r j ]

×
{

exp [− 1
2 (g − h)2�r2] − exp [− 1

2 (s2
g + s2

h)�r2]
}
. (16.86)

In order to obtain a convenient form of the total cross section, we make the
approximation

∫

f (sg) f ∗(sh) exp [− 1
2 (s2

g + s2
h)�r2] d�

�
∫

f (sg−h) f ∗(s0) exp [− 1
2 (s2

g−h + s2
0)�r2] d�. (16.87)

Now we set

σg =
∑

j,unitcell

exp [−ig · r j ]
∫

f (sg) f ∗(s0)
{
exp (− 1

2 g2�r2) − exp [− 1
2 (s2

g + s2
0)�r2]

}
d�.

(16.88)
Using eq. (16.88), we obtain the total cross section σt:

σt = N0

∑

g

∑

h

Cgσg−hC∗
h, (16.89)

where N0 is the number of unit cells in a crystal. The absorption coefficient for thermal
scattering is µt = σt/�. Comparing eq. (16.89) with eq. (12.60) in Section 12.8, we can
find the Fourier coefficient of the imaginary potential, the ug = k0µg. Therefore we, can
give the relation between the Fourier coefficient and the total cross section as

ug = k0σg

�0
, (16.90)

where �0 is the unit cell volume.

16.6 Absorption coefficients

Experimental values of the imaginary potential are calculated from absorption coefficients
measured by transmission diffraction experiments. The absorption coefficient is defined as
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the total cross section for inelastic scattering:

µ = (σinel + σpl + σt)/�, (16.91)

where σinel, σpl and σt are the total cross sections for single-electron excitation, plasmon
excitation and thermal diffuse scattering, respectively. In a crystal, many Bloch states are
excited, and Bloch waves belong to each Bloch state. Therefore the absorption coefficient,
which corresponds to the imaginary eigenvalue, i(γ ′

n)2, defined in Section 12.8, is approx-
imately given for the nth Bloch state as

µn = µ0 +
∑

g�=h

∑

h�=g

Cn
g µg−hCn

h , (16.92)

where µg is given as

µg = ug/k0 = σg/�0. (16.93)

For g = 0, the coefficient µ0 is called the mean absorption coefficient, and µg for g �= 0 is
called the anomalous absorption coefficient.

Experimental values of absorption coefficients have been measured by several methods
(Lehmpfuhl and Molière, 1962; Goodman and Lehmpfuhl, 1967; Ichimiya, 1969 and 1972;
Meyer-Ehmsen, 1969). Since the total cross section for inelastic scattering is approximately
inversely proportional to the kinetic energy of the electrons, the absorption coefficients are
also inversely the proportional to the kinetic energy:

µg ∝ 1/E, (16.94)

and the imaginary potential is therefore by inversely proportional to the electron velocity
since

vg ∝ 1/
√

E . (16.95)

Therefore the imaginary potential increases with decreasing incident electron energy.
The dependences of µg upon the reciprocal vectors g were measured by convergent-beam

electron diffraction experiments for several materials and given as µg ∝ exp(−αg2), where
α is a constant determined by the experiment (Ichimiya and Lehmpfuhl, 1978, 1988). In the
next section, we show that α is approximately 2B, where B is the Debye parameter. The-
oretical values of absorption coefficients have been reported by several authors (Yoshioka,
1957; Yoshioka and Kainuma, 1962; Hall and Hirsch, 1965; Radi, 1970). A useful table of
imaginary potentials for several materials is found in Radi (1970).

16.7 Analytical form of the imaginary potential

For computation regarding image contrasts of an electron microscope and diffraction inten-
sities, it is necessary to take into account the imaginary potential caused by inelastic scat-
tering. It is also very convenient to use an analytical formula involving the g-dependence
of the Fourier coefficient vg of the imaginary potential. Humphreys and Hirsch (1968) first
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proposed the analytical form vg ∝ gVg, where Vg is the corresponding Fourier coefficient
of the real potential. A Gaussian-type formula, exp(−αg2), was also proposed by Ichimiya
and Lehmpfuhl (1978) from an analysis of the electron channeling pattern in convergent
beam diffraction from niobium and silicon crystals. For thermal diffuse scattering, Bird and
King (1990) proposed a calculation method for the Fourier coefficients of the imaginary
potential using a the Doyle–Turner formula in combination with the atomic scattering factor
for the screening potential. Dudarev et al. (1995) proposed a Gaussian-type formula for the
Fourier coefficients of the imaginary potential for thermal diffuse scattering and calculated
these coefficients for many elements. In this section, we show the analytical g-dependence
of vg for thermal diffuse scattering and single-electron excitations (Ichimiya, 1985).

According to Humphreys and Whelan (1969), the Fourier coefficient of the imaginary
potential for single-electron excitations, uel

g , is approximately proportional to 1/g2. Using
eq. (9.104), we give an approximate form for the Fourier coefficient for single electron
excitations:

uel
g � Gg

�0

4Zλa2

a2
H

(
ln

sa

smin
− 1

4

) s2
A

s2
A + g2

, (16.96)

where Gg is given as

Gg =
∑

j,unitcell

exp(−ig · r j ). (16.97)

and sA is the magnitude of the first reciprocal lattice vector. For cubic lattices, sA = 2π/a0,
where a0 is a lattice constant.

A formula for uTDS
g , the Fourier coefficient for thermal diffuse scattering, is found for

eqs. (16.88) and (16.90):

uTDS
g = 1

k�0
Gg

∫

dφ

∫

f (s) f (s − g){ exp(−Mg) − exp[−(Ms + Ms−g)} sds, (16.98)

where we put

d� = (1/k2)sdsdφ, (16.99)

and

Ms = (1/2)s2�r2. (16.100)

The absolute value of s is given by in terms of the scattering angle χ as

s = 2k sin(χ/2). (16.101)

Since the large-angle scattering term is important in the integral in eq. (16.98), we make
the approximation

f (s) �
{

κ/s2 for s ≥ s0,

κ/(s2 + s2
a ) for s < s0,

(16.102)
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Figure 16.2 The width of thermal diffuse scattering.

where s0 is the effective scattering width of the thermal diffuse scattering, illustrated in
Fig. 16.2, and is given by

s2
0�r2 = 1. (16.103)

In eq. (16.102),

κ = 2Z/aH . (16.104)

For s < s0, the atomic scattering factor eq. (9.48), is used for the screening potential.
Figure 16.2 shows the differential cross section dσ0/d�, which is given by

dσ0

d�
= Ncell| f (s)|2[1 − exp(−s2�r2)]. (16.105)

The effective scattering width s0 is given as

s0 = 1/�r. (16.106)

The exponential terms in eq. (16.98) can be written approximately as follows:

exp(−Mg) − exp[−(Ms + Ms−g)] � exp(−Mg) for s ≥ s0 (16.107)

and

exp(−Mg) − exp[−(Ms + Ms−g)] � s2

s2
0

exp(−Mg) for s < s0. (16.108)

Now substituting eqs. (16.102), (16.107) and (16.108) into eq. (16.98), we obtain

uTDS
g = 1

k�0
Gg

∫ π

−π

dφ
{∫ 2k

s0

κ2

s2(s − g)2
sds

+
∫ s0

0

κ2s2

s2
0 (s2 + s2

a )
[
(s − g)2 + s2

a

] sds
}

exp(−Mg). (16.109)
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The integration of the first term of eq. (16.109) can be carried out approximately using

∫ π

−π

dφ

∫ 2k

s0

κ2

s2(s − g)2
sds � −πκ2

g2
ln

(
1 − g2

s2
0

)

� πκ2

s2
0

exp

(

− g2

2s2
0

)

= πκ2

s2
0

exp(−Mg). (16.110)

For the second term, we integrate approximately as follows:

∫ π

−π

dφ

∫ s0

0

κ2s2

s2
0 (s2 + s2

a )
[
(s − g)2 + s2

a

] sds

� 2πκ2

s2
0

exp(−Mg)
∫ s0

0

s2

(s2 + s2
a )2

sds

= πκ2

s2
0

{
ln

[
1 +

( s2
0

s2
a

)]
− 1

}
exp(−Mg). (16.111)

Then the Fourier coefficient is

uTDS
g = πκ2

ks2
0�0

Gg ln
(

1 + s2
0

s2
a

)
exp(−2Mg). (16.112)

Using the Debye parameter B we write 1/s2
0 = �r 2 = B/(8π2). The Debye–Waller factor

is given as exp(−Mg) = exp(−g2�r2/2) = exp[−Bg2/(16π2)]. The values of B or �r2

have been determined by X-ray and neutron diffraction measurements and are tabulated
in International Tables for X-ray Crystallography (International Union of Crystallography,
1962), and also in the tables by Radi (1970) and Dudarev et al. (1995).

For monoatomic cubic crystals, the theoretical values of B are estimated from the Debye
temperature �D as

B = 6h2

MakB�D

(φ(x)

x
+ 1

4

)
, (16.113)

where Ma is the mass of an atom, kB is the Boltzmann constant, x is the ratio of �D and the
absolute temperature and φ(x) is given as

φ(x) = 1

x

∫ x

0

ξ

eξ − 1
dξ. (16.114)

Therefore the values of B are approximately proportional to absolute temperature.
For comparison, the values calculated from eq. (16.112) together with the theoretical

data (Radi, 1970), regarding the g-dependence of vTDS
g , where vTDS

g = [�2/(2me)]uTDS
g , are

shown in Fig. 16.3. The values were calculated for some cubic crystals. It can be seen that
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Figure 16.3 Semi logarithmic plots showing the g-dependence of the Fourier coefficients of the
imaginary potential for the thermal diffuse scattering. The energy of the electrons is 100 keV. The
solid circles represent values from Radi’s data (Radi, 1970) at room temperature (Ichimiya, 1985).

eq. (16.112) is in good agreement with Radi’s data. Therefore the Fourier coetficient vTDS
g

is shown to be proportional to the square of the Debye–Waller factor.
The total Fourier coefficient of the imaginary potential, vg, is given as

vg =
[ vel

0 s2
A

s2
A + g2

+ v
pl
0 δ0g + vTDS

0 exp(−g2�r2)
] Gg

Ncell
, (16.115)

where again the superscripts el, pl, and TDS indicate single-electron excitation, plasmon
excitation and thermal diffuse scattering, respectively. The values of vel

0 and vTDS
0 (in V) are

estimated from the following expressions:

vel
0 = 147Z1/3

�0

√
E

[

ln

(
8.82

√
E Z1/3

�Eel

)

− 1

4

]

, (16.116)

where E is the incident electron energy in eV, �Eel is the energy lost by the incident loss
electrons to core-electron excitation and

vTDS
0 = 4, 74B Z 2

�0

√
E

ln

(
15.4

B Z2/3
+ 1

)

. (16.117)

Here �0 is the unit-cell volume in Å3. For plasmon scattering, v
pl
0 is given by Radi (1970)

as

v
pl
0 = 1.96�Epl

√
E

ln

(
λF

√
E

12.24

)

, (16.118)

where λF is the wavelength (in Å) of electrons at the Fermi surface, and �Epl is the plasmon
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Table 16.1 The Fourier coefficients of the imaginary potential for 15 keV electrons. The
actual experimental values have been converted to values for 15 keV electrons. The

experimental values are for MgO (Ichimiya, 1969), Si and Ge (Meyer-Ehmsen, 1969), Al
(Takagi and Ishida, 1970) and Ag (Ichimiya, 1972). Exp(1), filtered values; Exp(2),

non-filtered values; Exp, experimental value of ϑg. The value for Si is at 500 K. The unit of
the imaginary potential is volts

Crystal v0 Exp(1) v0 − v
pl
0 Exp(2) vg Exp g

MgO 2.0 2.0 1.3 1.6 0.38 0.34 200
Si 1.6 1.7 0.9 — 0.36 0.35 220
Ge 2.9 3.0 2.2 — 1.3 1.3 220
Al 1.8 2.0 1.1 1.1 0.55 0.37 111
Ag 5.1 — 4.4 4.6 2.8 2.4 220

energy loss. Taking λF as 10 Å, �Epl as 10 eV and E as 15 keV, we obtain the value of v
pl
0

as 0.73 V.
Table 16.1 shows the values calculated from eq. (16.115) and experimental values, mea-

sured with and without energy filtering, for several crystals. The calculations are for 15 keV
electrons and �Eel is taken as 70 eV. The imaginary potential for plasmon scattering is
taken as 0.73 V. The experimental values were converted to 15 keV values from the original
data.

The calculated values are in very good agreement with the experimental results with
and without energy filtering. For the non-filtered results, the experimental values are com-
pared with the imaginary potential values without the plasmon term. For the non-filtering
electron intensities, the contribution of plasmon scattering is not included in the imaginary
coefficients because most electrons scattered by the plasmon excitations come into a detec-
tor, owing to the small angular distribution near diffraction spots, as described in the next
section.

In Table 16.2, values calculated from Eqs. (16.116) and (16.117) are shown together with
the theoretical values of Radi (1970) and Dudarev et al. (1995). The values are calculated
for 15 keV electrons and �Eel is taken as 70 eV. The results calculated using the simple
formula of Eqs. (16.115), (16.116) and (16.117) are in very good agreement with Radi’s
and Dudarev’s values and also with the experimental results. Radi’s values for electron
excitations in the table are those left after the plasmon contribution has been subtracted
from Radi’s original data. Radi’s values for single-electron excitations are too large for MgO
and Ag, while our values are in good agreement with the experimental values. Therefore
the formulas of Eqs. (16.116) and (16.117) appear to give reliable values of the imaginary
potentials.

These results can be combined, for RHEED intensity analyses, in an expression for
the two-dimensional Fourier coefficients. From eq. (16.115), we obtain a formula for the
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Table 16.2 The theoretical values of mean imaginary potentials for 15 keV electrons at
293K. The unit is volts

TDS Electronic Total

Crystal B(Å2) vTDS
0 Dudarev Radi vel

0 Radi vTDS
0 + vel

0

Ca 0.1579 0.13 0.12 0.12 1.19 0.12 1.32
MgO 0.3 0.32 — 0.27 0.89 4.96 1.31
Si 0.3553 0.28 0.25 0.25 0.52 0.49 0.80
Ag 0.6632 3.42 3.41 3.47 0.96 8.01 4.38
Au 0.5843 7.40 7.47 7.86 1.19 11.11 8.59

aThe figures relate to diamond.

two-dimiensional Fourier coefficients of the imaginary potential:

vm(z) = 2

A0 Ncell

∑

j,unitcell

exp(−Bmrt j )

×
{ πvel

0 s2
A

s2
A + B2

m

exp[−(s2
A + B2

m)|z − z j |] + v
pl
0 δ0m

+ vTDS
0

√
πs2

0 exp
(
− B2

m

s2
0

− s2
0 (z − z j )2

4

)}
. (16.119)

In this equation, the contribution from plasmon excitation should be neglected for analyses
of intensity data without energy filtering, because the plasmon-loss electrons are included
in diffraction spots, owing to the small angular distribution of the plasmon-loss electrons,
as described in the next section (see Fig. 16.5).

16.8 Summary

The relations between the Fourier components of the imaginary potentials and the inelastic
scattering cross sections for core-electron excitation, plasmon excitation and thermal diffuse
scattering have been described above. The Fourier coefficients of the imaginary potentials
depend upon the reciprocal lattice vectors. For electron excitations, including plasmon
excitation, the angular distribution of the scattering is confined to a small angular region
as compared with elastic scattering. Therefore the Fourier components of the imaginary
potential, vel

g , for g �= 0, are small in comparison with the mean imaginary potential, vel
0 +

v
pl
0 ; in there are no Fourier components of the imaginary potential due to plasmon scattering

for g �= 0. Thermal diffuse scattering occurs over a large angular range, however. This
causes the Fourier components of the imaginary potential for thermal scattering to decrease
slowly with increasing g. The Fourier components of the imaginary potential, vm(z), are the
sum of these three inelastic scattering processes.
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Therefore the Fourier components of the imaginary potential are not in fact proportional to
those of the real potential, as shown in Section. 16.7, although in some structural analyses of
surfaces, the imaginary potential has been taken to be proportional to the real potential. Such
an approximation is clearly not good enough for exact analysis. In the present stage of surface
structural analyses, however, there are still some uncertain factors in the experimental
curves. Since we measure RHEED intensities without energy filtering, the measured rocking
curves for structure analyses include the effects of inelastically scattered electrons. Although
energy-filtered rocking curves are not very different from unfiltered ones, there are some
ambiguities in comparing the measured rocking curves with the calculated curves. It seems
that in the structural analysis of surfaces the effects of taking the imaginary potential as being
proportional to the real potential are not very significant effects. A proportional imaginary
potential, however, has no physical background.

It is necessary, though, to know the inelastic scattering processes and the effects of the
imaginary potential on RHEED intensities in order to understand the intensity distributions
in RHEED patterns and to analyze rocking curves.

Recently, energy-filtered rocking curves have been measured by Horio and coworkers
(Horio, 1996, 1997; Horio et al., 1995, 1996, 1998) (see Fig. 3.3). These curves must be
analyzed using surface atomic structures with correct imaginary potentials. In this case,
however, Horio and his coworkers found that surface plasmon scattering has a significant
effect on the rocking curves and the RHEED patterns. Most inelastic scattering is due to
surface plasmon excitations in the forward direction of the scattering and to thermal diffuse
scattering in a wide-range angular distribution, as shown in Fig. 16.4. The contribution of
the surface plasmons at lower glancing angles is larger than that at higher angles.

The plasmon-scattered electrons are concentrated into the very small angle of the forward
scattering region. Therefore most electrons scattered by plasmon excitations contribute to
the RHEED diffraction spots. Nakahara (2003) has recorded filtered RHEED patterns from
a Si(111)7 × 7 surface (Fig. 16.5). The energy width for these patterns is 2 eV. Diffraction
spots in the 7 × 7 pattern are seen clearly and sharply for plasmon-scattered electrons
as well as for elastic electrons. Kikuchi lines are scarcely observed in the elastic and
surface-plasmon patterns, while Kikuchi lines near the specular spot are observed in the
bulk-plasmon pattern. The intensity distributions of these plasmon-loss patterns are very
similar to the elastic pattern.

Rocking curves for unfiltered electrons include the contribution of the plasmon-scattered
electrons. Since the RHEED patterns from plasmon-scattered electrons are very similar to
the patterns from elastic electrons, as shown in Fig. 16.5, the effects of plasmon scattering
are not taken into acount for the unfiltered rocking curves. Therefore, using imaginary
potentials for one-electron excitation and thermal diffuse scattering, we are able to analyze
the unfiltered rocking curves for surface atomic structure determination. When fast electrons
come to a crystal surface, the electrons are scattered by surface-plasmon excitations outside
the crystal. At the present stage, the role of surface-plasmon scattering in the rocking curve
profiles is not clear. Surface-plasmon effects on rocking curve analyses will be clarified by
detailed analyses of filtered rocking curves for a surfaces with a known atomic structure
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Figure 16.4 Energy-loss spectra of the specular beam from Si(111) at several values of the glancing
angle ϑ . The electron energy was 15 keV. SP, SP2, SP3 are the main, secondary and tertiary surface
plasmon peaks (Nakahara, 2003).

(a) (b) (c)

Figure 16.5 Energy-filtered RHEED patterns from the Si(111) 7 × 7 surface. (a) The pattern from
no-loss (elastic) electrons. (b) The pattern from the surface plasmon-loss (11.3 eV) electrons. (c)
The pattern from the bulk-plasmon-loss (16.6 eV) electrons. The energy of the incident electrons is
15 eV. The glancing angle of the incident beam is 3.2◦ and the incident azimuth is the [112̄] direction
(Nakahara, 2003).
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and exact imaginary potentials for bulk-plasmon excitations, one electron excitations and
thermal diffuse scattering.

Although the inelastic scattering processes of electrons might not be very important for
analyses of rocking curves and RHEED patterns at the present stage of RHEED studies,
inelastic scattering processes need to be understood for the further progress of RHEED
investigations.
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Weakly disordered surfaces

17.1 Introduction

The goal of this chapter is to develop both a quantitative and qualitative understanding of the
diffraction from disordered systems as measured by actual instruments. We start by exam-
ining the diffraction from well-ordered GaAs and determine the changes produced by small
amounts of disorder. To some extent this has also been how our historical understanding has
progressed, beginning with well-ordered molecular beam epitaxy (MBE) surfaces of GaAs
and Si. At the start of efforts to use MBE for the growth of high-quality films, the cause of
the diffraction streaks was not completely clear. It was known that the films were of very
high quality, from their electrical properties and X-ray diffraction spectra; hence the idea of
finite crystallite size as discussed by Raether (1932) was not felt to apply. Some discussions
examined the role of thermal diffuse scattering, and this can certainly be important. But
for systems of interest in MBE, for example GaAs(100), it quickly became apparent that
steps on the surface, and in some cases anti-phase disorder, produced the streaks that were
typically observed.

One of the clearest examples of the role of steps is the change in the diffraction pattern one
observes when growth is initiated on GaAs(100). This is a surface that is easy to prepare,
using current technologies, without significant extended defects. Figure 17.1 shows an
example of the diffraction patterns before and after growth has begun. In the left-hand
panel of the figure, the surface has been annealed in an As4 flux for some minutes, giving
a sharp circle of diffracted beams. This is the fourfold pattern of GaAs obtained with the
electron beam directed along the 〈011〉 direction. In this direction the diffracted beams are
of nearly equal intensity. If the surface is cooled to room temperature, the pattern is still
brighter and the Kikuchi lines become more apparent. Then, when growth has begun, the
pattern seen in the right-hand panel is obtained. Depending upon the detailed conditions,
the half-order beams can be weak, as discussed in Example 10.2.3. The point is that the
only change in the surface that can give rise to the change in the diffraction pattern is the
deposition of a few monolayers of GaAs. The change happens immediately, so that only
a fraction of a layer of adatoms will produce the disorder necessary to account for the
streaks. There are no grain boundaries or dislocations, only islands and islands on top of
islands.

234
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shadow edge

straight-through
(b)(a)

Figure 17.1 RHEED patterns from GaAs(100) (a) for a surface annealed in As4 and (b) for a surface
during growth. When growth is initiated, steps form and the streak pattern is observed.

In high-quality epitaxy, each adatom is always on average at a lattice site. The question
then is how the long-range order is related to the streaks. Point defects, such as a random
arrangement of adatoms or vacancies, would not affect the long-range order, which deter-
mines the width of the diffracted beam; mainly they would just increase the diffuse scattering
and reduce the diffracted intensity. To obtain streaks one needs a relaxation of momentum
conservation parallel to the surface. A random array of islands, as shown by Henzler in
LEED, could do this but then the dimensions of the streaks would have a particular angular
dependence, since, depending on the glancing angle of incidence, the path length between
scattered electrons can be different by an amount of the order of an electron wavelength,
thus admitting the possibility of interference.

A striking case showing the angular dependences was seen in the growth of GaAs on
GaAs(110). Profiles of the specular beam are shown in Fig. 17.2 after the deposition of
a small amount of GaAs followed by annealing. A GaAs(110) surface was prepared at
relatively low temperatures by deposition from Ga and As effusion cells. Profiles of the
specular beam were measured at various angles of incidence, and the results indicated a
relatively smooth surface but with atomic steps that were a single layer in height. The
experimental observation was that the beams were sharp at the in-phase conditions but
broader at the out-of-phase conditions. Further, when the surface was annealed the out-
of-phase profile vs time was seen to evolve as in Fig. 17.3: the beam becomes sharper,
suggesting that the surface is becoming smoother owing to the annealing process.

However, this is not exactly the case. In fact, by examining the profiles vs angle again, one
sees that though the single-layer out-of-phase profile sharpens on annealing, the double-layer
out-of-phase profile is still broad. Figure 17.4 shows the measured values; the asymmetries
are due to the cut in reciprocal space across the rods. This is a striking effect; it shows
that disorder on the surface broadens the beams and that particular bulk effects such as
Kikuchi lines, which should be unaffected by the surface-morphology change induced by
growth and annealing, cannot play a significant role. This single- to-double-layer transition
was confirmed by Joyce’s group using ultrahigh vacuum STM (Bell et al., 2000). These
types of profile change should be present in any growth in which step disorder is present.
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Figure 17.2 Profiles of the specular RHEED beam from GaAs(110) (Fuchs et al., 1985; Pukite
et al., 1989). The temperature was 420 ◦C. Wide profiles correspond to long streaks; the profiles
are wide at angles where steps separated by a single atomic layer scatter with a path difference
of λ/2.

The main question is to determine the role of disorder in the profiles and in the overall
intensity.

An important difficulty in all this is that RHEED is fundamentally a dynamical process.
The intensity calculated in Chapters 12 and 13 is only valid for a perfect surface, one with
no mistakes in its translational periodicity. This is seldom a surface that can be realized in
practice and, in fact, represents a surface in which little if anything is occurring. Since our
goal is to study the role of surfaces undergoing a variety of physical processes, we must
be able to treat surfaces with defects. A variety of types of defect need to be considered.
For example, during epitaxial growth islands nucleate on a surface and then grow and
coalesce in time. At the same time, smaller islands nucleate and grow on larger ones. This
is no longer a perfectly periodic surface – the amplitude scattered from atoms at different
surface heights will be at different phases because of the different path lengths traversed. In
addition, it may be that step edges scatter differently from the atoms forming the major part
of the islands. Lattice vibrations also cause a deviation in perfect periodicity. This scattering
is temperature dependent and should be understood if one is to follow phase transitions.
Surface reconstructions are not always uniform over the surface – domains can exist that
interfere with the antiphase boundaries separating them. Point scatterers, say randomly
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Figure 17.3 Specular beam profiles of a GaAs(110) surface prior to deposition. The incident angle
θi was 46 mrad.

adsorbed adatoms, can be especially important during epitaxy at high temperatures. These
all need to be addressed.

The difficulty is that the formalism of dynamical theory usually starts with some kind of
Bloch-wave decomposition of the Schrödinger equation, and so the presence of disorder is
immediately precluded except in an average way (Horio and Ichimiya, 1993). Pertubation
attempts have begun (Beeby, 1993; Korte and Meyer-Ehmsen, 1993; Maksym et al., 1998;
Peng et al., 1996) but these are still at an early state. The crucial nature of this question
cannot be overstated since defects are the fundamental cause of streaks in the diffraction
pattern. In fact, to use these calculations in a structure determination when there is some
disorder, one would need to integrate over all the scattering angles in a RHEED streak.
The best that one can do is to try to take advantage of RHEED’s very asymmetric angle
dependences to find experimental conditions where the kinematic theory is approximately
valid.

In the following discussion there are several main points that should be kept in mind.
First, though the formalism appears to include only kinematic scattering and only that
from top-layer atoms, in fact multiple scattering within blocks of scatterers below the
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Figure 17.4 A GaAs(110) surface annealed to 520 ◦C shows double-layer steps (Fuchs et al., 1985;
Pukite et al., 1989).

surface is included. Multiple scattering between blocks of scatterers is neglected, and so
the approximations are not expected to work well in regions of very high step density (see
Section 17.8). Second, as discussed in subsection 13.8.6 and Section 15.2, measurements
and calculations for rocking curves show that the diffraction is nearly kinematic away from
symmetry azimuths, owing to the glancing geometry of RHEED, where only one diffracted
beam is strong. We will make use of this and compare the kinematic calculations with
measurement at these one-beam conditions. We will make measurements as a function of
scattering angle, similar to those seen in Figs. 17.2 and 17.4. With these in mind we will
discuss the role of disorder in determining the shape, and in some cases the intensity, of
the diffracted beams. In all cases, the results can be tested by making measurements at a
variety of scattering angles. If there is an angular dependence different from that predicted
by the following calculations then one must suspect that dynamical effects play a role.

17.2 The main result

Our aim here is to calculate the profile of a diffracted beam. The result is illustrated in
Fig. 17.5. This is an Ewald construction showing a measurement of the profile of a specular
beam along the long direction of a streak. It is drawn at a scale that looks more like a
LEED picture (it describes that case as well), since it is difficult to show a circular locus of
diffracted beams as well as give the correct scale for the incident beam and reciprocal lattice.
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2p/L sin θi
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S1

S2

I

Sx
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Figure 17.5 Ewald construction illustrating the basic question addressed in this chapter. This drawing
is not to scale because of the difficulty of showing both the length of the incident K vectors and also
the large domains. On the left, the current I is measured for electrons diffracted with different final
k-vectors. If the current is plotted as a function of final diffracted angle we obtain something like the
curve shown on the right. There also the beam intensity is plotted vs momentum transfer in the x and
z directions (parallel and perpendicular to the surface, respectively).

On the left, disorder causes the (00) reciprocal lattice rod to be broadened to a diameter
2π/L . The rod would otherwise be infinitely thin. The Ewald sphere intersects the rod at
the final Kf-vectors, giving the strongest intensity between Kf,1 and Kf,2, which result in
what appears as a streak on the phosphor screen.

To measure the shape of these beams one could move a detector along the long direction
of the streak, perpendicular to the surface. In Fig. 17.5 this corresponds to measuring the
diffracted intensity between Kf,1 and Kf,2 or the intensity vs the glancing final diffraction
angle ϑf. Since the incident Ki is fixed, this is equivalent to measuring the intensity in
the region between S1 and S2. An example profile is shown on the right for the case in
which the disorder is due to random atomic steps on the surface. In this case the measured
intensity is plotted vs final scattering angle ϑf. Here Sx = K cos ϑf − K cos ϑi while Sz =
K sin ϑf + K sin ϑi, so that Sz varies linearly with the deviation of ϑf from specular and
Sx varies quadratically. If the angles are small then plotting the intensity vs ϑf at various
ϑi is roughly the same as plotting the intensity vs Sx at various Sz . As suggested by the
profile shown in Fig. 17.5, the intensity along a streak will be seen to consist of two main
components – a sharp central spike and a broad part. The central spike is due to the long-
range order and the broad diffuse profile to the disorder.

In this chapter, vacuum rather than crystal diffraction vectors are usually the relevant
quantities since we will be concerned primarily with path differences between blocks of
scatterers. For example, in Fig. 17.6 a beam incident on the terrace of a step is refracted
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∆

Figure 17.6 Diffraction from atoms in different terraces only involves the path length outside the
crystal. The extra phase acquired on the leaving the crystal, �, is shown. The phase acquired in the
scattering process inside the crystal is the same for each process and so these contributions cancel.

q
1− q

xn

d

Figure 17.7 Schematic of a surface in one dimension. The scatterers are separated by a, the vertical
step height between blocks is d and the mean terrace length is L̄ . Though formally only the top layer
of scatterers is included, the scatterers in the blocks below enter into the diffraction dynamically, via
the column approximation described in Section 17.8. The layer coverages of the top and bottom layers
are θ and 1 − θ , respectively. If there is an atom at site n then g(rn) = 1 and g(rn) = 0 otherwise.

into the crystal, then diffracted by the crystalline potential and then refracted on its way out
of the crystal. A diffracted beam from an otherwise identical step, but at a different height,
would suffer similar scattering processes. When they interfere, the only phase change would
be due to the path difference in vacuum. In other words, since the potential does not matter,
refraction cannot be important and only vacuum quantities are relevant. For this reason
most of the equations to be presented will be in terms of S, Sx , and Sz where x and y are
directions parallel and perpendicular to a low-index plane of a crystal. This is discussed
further in Appendix C, in the approximate treatment of scattering from a finite region.

17.3 A surface with only two layers

A simple model system that could describe the first stages of epitaxial growth is a flat
surface with monolayer islands on top. We treat the problem in 1 + 1 dimensions, i.e. one
dimension parallel to the surface and the normal direction, perpendicular to the surface. All
atoms in the islands are assumed to be at lattice sites, but the diameters of the islands and
their separations are disordered. An example of how this would represent the top levels of a
surface is shown in Fig. 17.7. In this model, there are no vacancies or overhangs. For every
column we consider the diffraction from an atom at either the upper or lower level. We
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include only the topmost atoms, not because we want to take into account attenuation but,
as discussed in Section 17.8, because this is all that one needs to account for the important
shape effects when the mean terrace sizes are large. As shown in the dynamical theory and
as discussed later in Section 17.8, several layers contribute to the diffraction.

Define a function g(r) to represent whether there is a scatterer at a lattice site of the
two-layer surface. Then g(rn) is unity if there is a scatterer at the site rn and zero otherwise.
We write the diffracted amplitude over all sites (and suppressing any multiple scattering
factors) as

A(S) =
∑

n

g(rn) exp (iS · rn), (17.1)

where, in 1+1 dimensions, rn = xn x̂ + zn ẑ and S = Sx x̂ + Sz ẑ. Then the diffracted intensity
is

I (S) = |A(S)|2 =
∑

n

∑

m

g(rn)g(rm) exp [iS · (rm − rn)]. (17.2)

Assuming a large lattice and choosing u j = rm − rn , this becomes

I (S) =
∑

n

∑

j

g(rn)g(rn + u j ) exp (iS · u j ), (17.3)

which is the Fourier transform of the pair correlation function

I (S) = N
∑

j

[
1

N

∑

n

g(rn)g(rn + u j )

]

exp (iS · u j ), (17.4)

which can be written as

I (S) = N
∑

j

C(u j ) exp (iS · u j ), (17.5)

where

C(u j ) = 1

N

∑

m

g(rn)g(rn + u j ).

This correlation function is useful for examining surfaces which are not very rough. The
sum of eq. (17.1) can also be manipulated into correlation functions more appropriate for
very rough surfaces, and this will be discussed in Chapter 18.

Putting the pair correlation function into a quasi-continuous form, replace u j by x j x̂ +
ld ẑ. In this, rather than j extending over sites at both levels, it now goes over sites only at
one level; l is either 0 or 1. Then

I (S) = N
∑

l, j

C(x j , l) exp (i Sx x j + i Szld)

= N
∑

l

exp (i Szld)
∑

j

C(x j , l) exp (i Sx x j ).
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To allow us to use continuous correlation functions, we change to an integral, using a series
of delta functions to pick out the lattice sites:

I (S) = N
∑

l

exp (i Szld)
∫

dx
∑

j

δ(x − x j )C(x, l) exp (i Sx x). (17.6)

Note that the integral can extend over all x since the correlation function is independent of
lattice size and only assumes a lattice large enough for good statistics. We can then make
use of the sum given in eq. (A.6) to obtain

I (S) = N

a

∑

l

exp (i Szld)
∫ ∞

−∞
dx

∑

G

exp (iGx) C(x, l) exp (i Sx x)

or, using the δ-function representation of eq. (A.2) as well as the convolution theorem,
eq. (A.14),

I (S) =
[

2π N

a

∑

G

δ(Sx − G)

]

∗
[
∑

l

exp (i Szld)
1

2π

∫ ∞

−∞
dx C(x, l) exp (i Sx x)

]

or

I (S) =
[

2π N

a

∑

G

δ(Sx − G)

]

∗
[
∑

l

exp (i Szld) C(Sx , l)

]

, (17.7)

where

C(Sx , l) = 1

2π

∫ ∞

−∞
dx C(x, l) exp (i Sx x). (17.8)

This says that at each reciprocal lattice point, i.e. each diffracted beam, the diffracted
intensity is given by a sum of transformed correlation functions. The task now is (i) to
calculate the correlation functions for simple cases and (ii) to show that in very general
situations this has simple characteristic forms.

Using the quasi-continuous sums, we can now determine the diffraction from a two-
level system, where the scatterers that need to be considered are in either of two layers,
as in Fig. 17.7. The coverage of the first layer is θ and of the second layer is 1 − θ . From
eq. (17.7), we will show that the shape of a diffracted beam is a central spike due to the
long-range order over the surface plus a broad part that depends on the surface step density.
The interplay of these two components produces RHEED and LEED intensity oscillations.
The shape and width of the broad part is characteristic of the distribution of islands on the
surface. These are the main results of the chapter.

We focus attention on the second part of the convolution in eq. (17.7). This can be
expanded out as follows:

I1(S) =
∑

l

exp (i Szld) C(Sx , l)

= exp (i Szd)C(Sx , 1) + C(Sx , 0) + C(Sx , −1) exp (−i Szd), (17.9)
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which can be further simplified since the correlation functions and their Fourier trans-
forms are related. In this regard there are two important symmetry requirements. First,
C(u) = C(−u) by definition of the correlation function – the correlation function is just
the probability that there are two scatterers separated by u, and the viewpoint does not
matter. Second, a two-level surface can have no preference over left or right directions,
so that C(x, 1) = C(−x, 1).1 For example, a staircase in one direction will make left and
right distinct (Lent and Cohen, 1984a). Together, these symmetry relationships mean that
C(x, 1) = C(x, −1). Last, by construction, there are always two scatterers separated by x ,
if all levels are considered. This means that

C(x, 0) + C(x, 1) + C(x, −1) = 1.

Putting all these together, taking their Fourier transform and combining with eq. (17.9) one
obtains

I1 = δ(Sx ) cos(Szd) + C(Sx , 0)[1 − cos(Szd)]. (17.10)

This last expression, however, does not display the basic form of the diffraction because
C(Sx , 0) also contains a δ-function. To see this, note that C(x, 0), the probability that
there are two scatterers separated by x on either the first level or the second level starts
at unity and then extends to some nonzero value at infinity. It is perhaps easier to use the
previous symmetry relations and write C(x, 0) = 1 − 2C(x, 1). It is obvious that C(∞, 1) =
θ (1 − θ ) since when far apart the scatterers are uncorrelated and the probability of there
being scatterers is just the layer coverage. Hence, C(∞, 0) = θ2 + (1 − θ )2. Using this
result on the limit of C(x, 0) we write

C(x, 0) = θ 2 + (1 − θ )2 + �C(x, 0)

and its Fourier transform

C(Sx , 0) = [θ2 + (1 − θ )2]δ(Sx ) + �C(Sx , 0). (17.11)

Putting eq. (17.11) into eq. (17.10) one obtains

I1 = [θ2 + (1 − θ )2 + 2θ (1 − θ ) cos(Szd)]δ(Sx ) + �C(Sx , 0)[1 − cos (Szd)]. (17.12)

Finally, putting this into the convolution with the other reciprocal lattice vectors, one has
that the diffracted intensity from eq. (17.7) is

I (S) =
[

2π N

a

∑

G

δ(Sx − G)

]

∗ {
[θ 2 + (1 − θ )2 + 2θ (1 − θ ) cos (Szd)]δ(Sx ) (17.13)

+�C(Sx , 0)(1 − cos (Szd)]}
where the θ terms are arranged to display the symmetry at about half coverage. This im-
portant result shows that the diffracted intensity at each reciprocal lattice rod contains two
terms – a delta function and a broad part. This is illustrated in Fig. 17.8, where the left-hand

1 This is not necessarily true for a three-or-more-level surface.
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Figure 17.8 Sketch of the correlation function and its transform for a two-level system.

panel shows the correlation function and the right-hand panel its Fourier transform. Note
that the instrument response broadens the delta function so that what is seen is a central
spike and a broad part.

In the case of RHEED, the broad part can give rise to the observed streaks on other-
wise single-domain flat surfaces. The central spike contributes a bright region of varying
magnitude, depending upon the layer coverages and the angle of incidence. For example,
for the specular beam, where Sz = 2k sin ϑi with ϑi the glancing incident angle, there are
two main sets of angle of interest. At angles where Szd = 2πn with n an integer, only
the δ-function (or central spike with the instrument included) contributes. In this case, the
in-phase conditions, the electrons scattered from either level are a full wavelength apart in
phase and so insensitive to the presence of steps. There is no θ dependence to the central
spike and the prefactor of the broad part is zero. In contrast, at a incident angle where
Szd = 2π (n + 1/2), the magnitude of the first term is sensitive to the presence of steps,
vanishing at layer coverage θ = 1/2, and the broad part, the second term, dominates the
streak. In this case there is a half wavelength phase difference between electrons scattered
from the islands (second level) and from the terrace (first level) so that the diffraction is
maximally sensitive to steps.

17.4 Markovian distribution of steps

As another example consider the Markovian distribution described in Fig. 17.9, where pu

is the probability per unit length of making a step up from the bottom level to the top level
while going a distance a (the site separation along a level) and pd is the probability per unit
length of making a step down from the top level to the bottom level while going a distance
a. With this definition, the mean island size on the upper level is 1/pd and the mean hole
size on the lower level is 1/pu. Let f (x) be the probability that given an atom on the top
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q

1 − q

Figure 17.9 A Markov distribution of atoms on terraces. The coverage is θ on the top level and 1 − θ

on the bottom level. Given an atom on the top level, pd is the probability that there will be an atom on
the bottom level at the next site to its right. Given an atom on the bottom level, pu is the probability
that there is an atom on the top level to its right.

level at the origin, at x = 0, there is also one on the top level at a distance x = Na. By
construction, f (0) = 1 and f (∞) = θ , where θ is the coverage of the top level. We have
as the difference equation for f

f (x + a) = prob. of an atom at x × prob. of no step down

+ prob. of no atom at x × prob. of step up

or

f (x + a) = f (x)(1 − pda) + [1 − f (x)]pua. (17.14)

Starting from x = 0, one can write f (x) at x = 0, a, 2a, . . .. Defining λ = pu + pd it is
easy to see that

f (Na) = pu

pu + pd
+ pd

pu + pd
(1 − λa)N .

But we know that, at large x , f (∞) = θ so that θ = pu/λ. The quantity λ will turn out
to be the reciprocal correlation length and so we require that λa � 1. Further, since the
probability that there is an atom at the origin on the top level is θ , we must have that the
correlation function between atoms on the top level is Ctop(x, 0) = θ f (x), i.e.

Ctop(x, 0) = θ (1 − θ ) exp (−λ|x |) + θ2.

A similar relation holds for two atoms on the bottom level; hence, adding them gives

C(x, 0) = 2θ (1 − θ ) exp (−λ|x |) + θ2 + (1 − θ )2.

Note that this goes to θ 2 + (1 − θ )2 at large separations, as expected.
To use eq. (17.13) we need the transform of C(x, 0) − C(∞, 0) = �C(x, 0). We have

�C(Sx , 0) = θ (1 − θ )

π

2λ

λ2 + S2
x

,

which is a Lorentzian. From eq. (17.13), the intensity function that must be convoluted with
the instrument function and repeated at each reciprocal lattice point is

I (S) = 2π N

a

{
[θ2 + (1 − θ )2 + 2θ (1 − θ ) cos (Szd)] δ(Sx )

+θ (1 − θ )

π

2λ

λ2 + S2
x

[1 − cos (Szd)]
}
, (17.15)
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Figure 17.10 Calculation for a two-level Markov system at different incident angles. θ = 0.3 and
λ = 0.002. A Gaussian with width of about 1 mrad was used instead of a δ-function. The intensity is
calculated vs the angle measured from the specular beam.

which, as before, says that the profile will consist of a central spike (after convolution with
the instrument) and a broad part, which in this case is a Lorentzian. The relative contributions
of the two terms will depend on the angle via Sz = 2Kϑi (e.g. for the specular beam) and
the coverage, θ . The full width at half maximum of the Lorentzian is 2λ = 2(pu + pd).
This last equation has all the features one expects. At angles where waves scattered from
different levels are a wavelength apart or in phase, Szd = 2π times an integer, and the broad
part vanishes. At these angles the diffraction is insensitive to steps. At angles where the
waves from different levels are half a wavelength out of phase, the diffraction is maximally
sensitive to steps. At these angles and, in particular, at half coverage, there is no central
spike. Note that the width of the broad part is 2 divided by the sum of the reciprocal mean
terrace and hole lengths. These results were derived by Lent and Cohen using a more general
matrix method (Lent and Cohen, 1984a).

Figure 17.10 shows a calculation of the intensity for a two-level system at θ = 0.3 and for
λ = 0.002. Rather than a δ-function, a Gaussian with a width of about 1 mrad was used to
simulate the convolution of eq. (17.15) with a finite instrument response function. The con-
volution with the broad part has relatively little effect on the width. For this Lorentzian line
shape the separation between the central spike and the broad disorder part is not so apparent
in the total. The values of Szd used for the incident angle, from Sz = 2kϑi, are given. This
should be compared to the measurements and calculations shown in Figs. 17.11 and 17.12, of
specular-beam profiles from a submonolayer of Ge deposited on Ge(111). When the central
spike and broad part are both Lorentzians, a clear separation between the two components
requires a detailed fit. A more obvious separation was seen by Lent and Cohen (1984a).
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Figure 17.11 Measurement of specular-beam profiles from a Ge(111) surface with a fraction of a
layer of Ge, for various incident angles ϑi in mrad (from Cohen, 1988). θi is given in mrad.
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Figure 17.12 Calculation of specular-beam profiles from a Ge(111) surface with a fraction of a layer
of Ge, for the incident angles, in mrad, in Fig. 17.11.
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17.5 General Markov results

One can generalize these results to more complicated terrace-length distributions, though
still making the Markov assumption that the terraces lengths are uncorrelated. We assume
only that the probability of a terrace of length L on the top level is P1(L) and on the second
level is P2(L). Then the intensity is given by

I (S) = [θ2 + (1 − θ )2 + 2θ (1 − θ ) cos (Szd)] 2πδ(Sx )

+ (1 − δSx ,0)
4θ

S2
x 〈L〉1

[1 − cos (Szd)] Re

{
[1 − P1(Sx )][1 − P2(Sx )]

1 − P1(Sx )P2(Sx )

}

,

where 〈L〉1 is the mean terrace length on the first level. As before, P(Sx ) is a Fourier
transform. The details are given in Pukite et al. (1985). The important point is that this
equation is based on the same principle as the Markov analysis but allows one to calculate
the beam shape given just the statistics of the terrace-length distribution.

17.6 Vicinal surfaces

Apart from cleaved surfaces or surfaces prepared by a process that gives the natural growth
habit, a typical crystal surface is either unintentionally or on purpose a low-index plane.
After chemical and mechanical polishing, heating in vacuum and subsequent growth the
resulting surface comprises a staircase of steps. Depending on the material, the steps could
have straight or meandering edges. The risers could be predominantly one atomic layer or
a mix of several step heights. The terrace lengths could be randomly distributed or exhibit
bunching. These vicinal surfaces, for example the one shown in Fig. 6.7, give a characteristic
diffraction pattern as described in Section 6.4 and shown in Fig. 6.9. Typically the diffracted
beams are split at an out-of-phase condition. The amount of splitting depends on the mean
terrace length and the width of the split components depends on the disorder. Whether
the splitting can be observed depends on the instrument response and the form of the
disorder.

Diffraction from a regular staircase has been described by Pukite et al. (1985). The
simplest case they treated was an infinite staircase of monatomic steps of height d. Following
the column approximation, to be discussed in Section 17.8, only the top-layer scatterer was
treated explicitly. For two scatterers separated by (x, �d), the terrace lengths were assumed
to be statistically independent, with a distribution probability P(L i) – here the length of one
terrace was assumed not to determine the length of subsequent terraces. Then the probability
of a sequence of steps with terraces (L1, L2, L3, . . . , Ln−1) and in which the first scatterer
is L0 away from the first step and the last scatterer at (x, �d) is Ln away from the last step
is

P0(L0)P1(L1) · · · Pn−1(Ln−1)Pf(Ln), (17.16)

where the Pi (Li ), i = 1, 2, . . . , n − 1, are the probabilities per unit length that a terrace of
length Li occurs on the i th level. The function P0(L0) is the probability per unit length that
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there is a scatterer at the origin before the first step. The function Pf(Ln) is the probability
that there is a scatterer Ln away from the last step. The middle n − 1 probabilities Pi (Li )
are identical. Equation 17.16 implicitly assumes that the terrace lengths are statistically
independent from one another: the length of one does not determine the length of subsequent
terraces except in so far as the sum of the L i equals the total x coordinate and the number
of steps is �, which is equal to n for a strictly descending staircase.

To find the pair correlation function, we integrate over all possible configurations of steps.
For the simple case of monatomic step heights, the correlation function is

C+(x, nd) = P0,f(x)δn,0

+
∫

L i=0
· · ·

∫ ∞
P0(L0)P1(L1) · · · Pn−1(Ln−1)

× Pf(Ln)

[

δ

(

x −
n∑

i=0

L i

)]

d L0d L1 · · · d Ln, (17.17)

where x ≥ 0. For x < 0, use C−(x, z) = C+(−x, −z). The first term corresponds to the
case of no change of level, for which a special probability, P0,f(x), must be used. To go
further one substitutes

δ

(

x −
n∑

i=0

L i

)

= 1

2π

∫ ∞

−∞
d Sx exp

[
i Sx (x −

∑
L i)

]
(17.18)

into C+(x, nd) and quickly obtains

C+(x, nd) = P0,f(x)δn,0 + 1

2π

∫

d Sx ei Sx x P0(Sx )P1(Sx ) · · · Pf(Sx ), (17.19)

where

P(Sx ) =
∫ ∞

0
d L P(L)e−i Sx L . (17.20)

To calculate the continuum part of the diffracted intensity, as in eq. (17.7), we need to
recognize that for a monatomic decreasing staircase one has that x and n are either both
positive or negative or, if n = 0, that x can be either positive or negative. Then the continuum
part of the diffracted intensity is seen to be

I (Sx , Sz) = 2 Re
∞∑

n=0

e−i Sz ndC+(Sx , nd) (17.21)

where Re signifies the real part. Taking the Fourier transform of eq. (17.19), this becomes

I (Sx , Sz) = 2�
[

P0,f(Sx ) + P0(Sx )Pf(Sx )
∞∑

n=1

Pn−1(Sx )ei Sx nd

]

. (17.22)
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Alternatively

I (Sx , Sz) = 2�
[

P0,f(Sx ) + P0(Sx )Pf(Sx )ei Sx d

1 − P(Sx )ei Sx d

]

, (17.23)

so that to determine the diffracted intensity we merely need to evaluate the various distribu-
tion transforms. This is not difficult and was examined by Pukite et al. (1985). The results
are

P0(Sx ) = 1

〈L〉 Pf(Sx ) = 1

i Sx 〈L〉 [1 − P(Sx )],

P0,f(Sx ) = 1

S2
x 〈L〉 [1 − P(Sx )] + 1

i Sx
,

so that the continuum part of the diffracted intensity is

I (Sx , Sz) = 2

S2
x 〈L〉

[1 − |P(Sx )|2][1 − cos(Szd)]

|1 − P(Sx ) exp (−i Sx d)|2 (17.24)

and one need now only calculate the Fourier transform of the terrace-length distribution.
This continuum part is repeated at every reciprocal lattice vector by the convolution in
eq. (17.7). Before, one knew only that if there were a regular staircase of steps then at
the out-of-phase conditions, i.e. where Szd is a half integer multiple of 2π , the diffracted
beams would be split. This last result allows one to determine the role of disorder in the step
distribution. We show below that splitting is only observed for specific types of disorder.
More general step-height distributions were included in the calculation by Pukite et al.
(1985).

To examine the role of disorder conveniently, consider the class of gamma distributions,

P(L) = αM

	(M)
L M−1e−αL , (17.25)

where 〈L〉 = M/α. This is illustrated for the cases M = 1, 2, 8 in Fig. 17.13. This distribu-
tion has the advantage that by changing one parameter one can vary the distribution from an
exponentially decreasing or geometric distribution to one in which the probability function
is sharply peaked.

The results for several gamma distributions of terrace lengths on strictly descending
steps are shown in Fig. 17.14. Here the same distributions as illustrated in Fig. 17.13 are
used for the calculation of eq. (17.24). This is a plot at an out-of-phase condition of the
diffracted intensity vs Sz . It corresponds roughly to the intensity along a streak, though
for such a case one should account for changes in Sz . Several important points should be
emphasized. First, it should be clear that without some other information about the nature
of the step distribution, measurements of the diffracted-beam splitting are insufficient to
characterize a staircase; the measurement by itself is not unique. Second, for some terrace-
length distributions quite large amounts of disorder will still give split diffracted beams.
For example, in Fig. 17.14 in the case M = 2 there is a significant amount of disorder from
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Figure 17.13 The probability density function of terrace lengths given by the gamma distribution.
As M becomes large, 〈L〉 remaining constant, the function is sharply peaked at 〈L〉. For M = 1, the
distribution is an exponential or geometric distribution of terrace lengths.
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Figure 17.14 The diffracted intensity at an out-of-phase condition for a strictly descending staircase
specified by a gamma distribution of terrace lengths. For large M the split beams of a nearly reg-
ular staircase are apparent. For M = 1, with a Lorentzian distribution split peaks are not observed.
This shows that to observe splitting from a staircase the disorder must be such that there is a relatively
sharply defined distribution of terrace lengths.

the mean. Finally, reiterating a main point, distributions that peak away from zero terrace
lengths give qualitatively more pronounced splitting that those that peak near the origin.

Figure 17.15 shows the results of measurements from a GaAs surface misoriented from the
(001) plane by 5 mrad. For this surface a GaAs film was first grown, so that an As-stabilized
2×4 reconstruction was observed. An important step was to heat the surface to about 940 K
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Figure 17.15 The measurements of Pukite et al. The data in (a) were taken in the 1×1 reconstruction
of GaAs(100) those shown in (b) were measured for the 2×4 reconstruction. The open circles give the
results of a calculation in which a delayed exponential was used to fit the data according to eq. (17.24).
The incident angle is 32.1 mrad at 10 keV (Pukite et al., 1985).

into a 1×1, then to cool back down to the 2×4, which would sharpen the distribution of
terraces. The diffracted intensity was then measured along the specular streak in the 1×1 and
2×4 regions. The curves (with noise) are the measured profiles. The appreciable diffracted
intensity in between the two components shows that there is considerable disorder, as does
the width of the components; the curve (a) exhibits more disorder than curve (b). The open
circles give the results of a calculation for which a distribution P(L) = α exp[−α(L − Ld)]
with L > Ld, where Ld is the threshold, was used. For this simple, cutoff exponential
distribution, the mean terrace length is 〈L〉 = Ld + 1/α and the rms deviation from the
mean is 1/α. Better agreement with the data was obtained with this distribution than with
the gamma distribution. For the calculation, one measures the diffracted intensity at a final
angle θf. From this one can calculate Sx and Sz using

Sz = k sin θ f + k sin θi ,

±Sx = k cos θ f − k cos θi ,

where the sign for Sx is negative when the electron beam points down the staircase (by
construction of the correlation functions). The transform of this distribution is

P(Sx ) = αe−i Sx Ld

i Sx + α
, (17.26)

which is inserted into eq. (17.24). For the fit, the magnitude of the calculated values was
adjusted to match the data. The angle of incidence determines the relative magnitudes of the
split components. The data were shifted by about 1 mrad, which is within the uncertainties
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associated with energy and angle. The distribution determines the peak widths and the
magnitude of the midpoint. As can be seen, the mean terrace length is approximately
constant (this is determined by the miscut, which cannot change on heating). The upper
curve is measurably more disordered.

These data were not convoluted with an instrument response function since the width of
the diffracted beam was found to be 0.35 mrad, which was much less than the widths of the
individual components. However, in measuring the data a slit detector was used, in which
the slit was parallel to the surface. Then the measured data correspond to the integral over
Sy. Making use of eq. (A.2), one has

I (Sx ) ∼
∫

I (Sx , Sy)d Sy ∼
∫

C(x, 0)e−i Sx x d Sx , (17.27)

so that the measured intensity results from the correlations between scatterers separated
along a level by x but with zero separation in the y direction. If the steps are jagged in the
2×4 reconstruction but straight in the 1×1, the correlation length would remain the same
but the spread would decrease. In this case, the rms deviation is 1/α. If the jaggedness is
split between two edges, the data says that the deviation of one edge changes from 20 nm to
15 nm. This is excellent sensitivity but it is not clear whether a more complicated distribution
function would change the result. In addition, for the assumed terrace-length distribution
the decrease in rms deviation forces an increase in the minimum terrace length. Hence from
this data it is difficult to separate a step–step repulsion from the lack of straightness of
the edges. It might be possible to separate the two by analyzing the profiles measured for
incident electrons in orthogonal directions (Wendelken et al., 1985).

17.7 Antiphase disorder

Reconstructed surfaces can have domains that nucleate at points on the surface which are
out of phase. This is illustrated in Fig. 17.16, in which two 2×4 domains look similar to a
c(2×8) domain (Van Hove et al., 1983c). This is similar to the situation on a GaAs(100)
surface prepared by molecular beam epitaxy, in that the periodicities are the same. Several
domains are drawn. Domains A and B are shifted by d = 4ax̂ − aŷ, A and C are shifted
by d = ax̂ − 2aŷ and domain D looks like a combination of domains A and B in which
alternate rows are shifted by aŷ.

There are three sets of reciprocal lattice vectors that could be used to describe this surface:
{G0}, for the unreconstructed (100) surface, {G1}, for the 2×4 reconstruction and {G2} for
the c(2×8) reconstruction. Consider two A domains separated by a displacement d. The
diffracted amplitude is given by

A(S) = A1 + eiS·d A2, (17.28)

where the Ai are the amplitudes scattered from the respective domains and d = m1ax̂ +
m2aŷ, where m1 and m2 are integers. At an integer-order beam, corresponding to the re-
ciprocal lattice vectors {G0}, G · d = 2πn where n is an integer for all d. Hence antiphase
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Figure 17.16 Antiphase domains on a GaAs(100) surface.
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Figure 17.17 Antiphase-disordered c(2×8) reconstruction. A disordered beam has a line drawn
through it, indicating a plane of diffuse intensity.

disorder leaves the integer-order beams unaffected if there is only single scattering. In con-
trast, consider a superlattice reflection. Depending upon d and G, there can be broadening;
this is the signature of antiphase disorder. There is no in-phase or out-of-phase condition
as there is for the case of stepped surfaces, since the domains can all be in the same plane
and the only phase difference is due to an in-plane displacement vector.

A top view of the resulting reciprocal lattice is shown in Fig. 17.17, where the effect
of antiphase disorder is seen in some of the fractional-order beams. On this surface there
is a dimerization of arsenic atoms, which gives rise to the twofold periodicity. Depending
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Figure 17.18 The measured RHEED pattern from an antiphase-disordered c(2×8) GaAs(100) surface.
The incident beam is chosen to be off a symmetry azimuth, the better to show the continuous arc. The
modulation along the arc is due to enhancement by surface-wave resonances.

on the position of the dimer, this twofold dimerization can be shifted by one row. There
is no disorder in the fourfold period. If a 2×4 region shifts by one row then the c(2×8)
is formed. An easy way to see the result is to consider a superposition of the diffraction
pattern of both of these. This is the direction that the disorder will take. The result is the
pattern of Fig. 17.17, where only one set of rods is broadened, as indicated by the lines.
In this case not every fractional-order beam is broadened, for example the quarter-order
beams in the zeroth Laue zone are not, since this particular disorder does not affect the
fourfold period. The resulting diffraction pattern shows this plane of diffuse intensity quite
strikingly. For an incident beam in the 〈011〉 direction, the zeroth Laue zone shows a fourfold
circle of diffracted beams. The next zone up, at slightly higher angles, is an circular arc
corresponding to the intersection of the Ewald sphere and a plane of diffuse intensity. This
is shown in Fig. 17.18, where the arc in the quarter Laue zone is observed. For a beam
in the 〈010〉 direction the sphere intersects the planes of diffuse intensity in the opposite
direction, giving rise to long streaks in the diffraction. For GaAs(100) prepared by MBE,
the surface is quite smooth. After annealing in an As4 flux, a grown surface is devoid
of atomic steps, and the beams are quite sharp. However, in this azimuth, the integer-
order beams (which cannot be antiphase-disordered) are as long as the fractional order
beams. The explanation must be that there is double scattering (Pukite, 1986). First, there
is diffraction into an antiphase-disordered beam and then diffraction into an integer-order
beam. These long streaks are shown in Fig. 17.18b. Even upon annealing, this disorder is not
removed.

It is perhaps surprising that a displacement in the y direction produces broadening in
reciprocal space in the x direction.2 The reason is that the disorder is in the x direction. To

2 See the discussion in Section 8.6 for a similar analysis.
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see this simply, treat the GaAs(100) lattice, taking a superlattice of vectors as a rectangular
array {Rn,m} = (Xn, Ym) = (n4a, m2a), for the perfect 2×4 reconstruction. Here (n, m) are
any integers and a is the (100) lattice parameter. Assume first that the lattice on a given
column of atoms in the y direction is perfect but that there are mistakes in the x direction.
These mistakes could be a shift by d = aŷ or the two-fold structure could be missing
completely. Then the diffracted amplitude will be

A(S) =
∑

n,m

g(Xn) exp (i Sx Xn + i SyYm), (17.29)

where, depending on whether there is a shift in the column or whether the reconstruction is
missing for a particular column,

g(Xn) =





1 if d = 0,

exp (i Sya) if d = aŷ,

0 if reconstruction missing.

(17.30)

Separating out the infinite sum over m, this becomes

A(S) =
∑

m

exp (i SyYm)
∑

n

g(Xn) exp (i Sx Xn). (17.31)

Then taking the square modulus, following the discussion of Section 17.3, we obtain for
the kinematic intensity

I (S) = N
∑

m

δ(Sy − m By)
∑

n

exp (SxUn)C(Un), (17.32)

where Bm = mπ/a is a reciprocal lattice distance in the y direction and where we define a
generalized correlation function that describes the disorder in the x direction,

C(Un) = 1

Nc

∑

m

g(Un + Xm)g(Xm) (17.33)

with Nr and Nc as the total numbers of rows and columns and N = Nr Nc.
One can see that if there are only shifts of an entire perfect column in the y direction

as one traverses the x direction, then there is the possibility of broadening only in the x
direction. To obtain broadening in the y direction one would need mistakes in the y direction
along a given column, with some associated correlation length. This is not observed in the
diffraction from GaAs(100).

Contained in eq. (17.33) is the beam dependence. If there are neither shifts nor missing
rows then g(Xm) is always unity and the correlation function is a constant, independent
of displacement. If, however, there are shifts then this will modify g(Xm), but only at a
half-order beam, where Sya = π . One could go further with eq. (17.33), probably most
easily using the matrix method due to Lent (Lent and Cohen, 1984a) and expanding as
a sum of partial correlation functions. Whether kinematic analysis is valid will depend
on the size of the domains. In summary, the displacement d determines which beams are
broadened. The correlation length in a particular direction determines the direction and
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amount of the broadening. On GaAs(100) no broadening, and hence no disorder, for the
beam in the twofold direction is observed (the fourfold pattern is sharp) – the antiphase
domain boundaries must lie along lines in the 〈011〉 direction.

An interesting question is whether reconstructions on different terraces can be antiphase
disordered. Experimentally one does not always observe that the reconstructed beam exhibits
intensity oscillations on vicinal surfaces, even if the integer order beams do show them.
There is now the possibility that domains will initiate on steps at different origins. In addition
to the step–step displacement there can be a lateral displacement. During growth, islands
on each step will contribute to RHEED intensity oscillations. If there is antiphase disorder
then the amplitudes of the fractional-order beams will have random phase factors and their
intensities will add. If there is no antiphase disorder then the amplitudes will add. For
island growth in which there is antiphase disorder, the intensity from different steps will
not interfere; the intensities add and there will not be oscillations of the fractional-order
beams. If there is no antiphase disorder then the usual interference effects will be observed
and oscillations in the diffracted intensity will be observed.

17.8 Column approximation

We now consider surfaces where more than two layers are important. To make the problem
tractable we divide the surface into block or columns of atoms. Let the fully dynamical
diffracted amplitude from a block of the lattice be An(S). In this separation, each block is
assumed to be perfect apart from its finite extent. There are no atomic steps on a block;
instead, all surface steps are included by appropriately defining and arranging the blocks.
Let the origin of the nth block be at r = Rn , so that the total diffracted amplitude is

A(S) =
∑

n

An(S) exp (iS · Rn).

The arrangement of blocks is shown in Fig. 17.19. Since the individual An are assumed to
be determined for isolated blocks, far from each other, the sum necessarily neglects multiple

A1 A2 A3

Figure 17.19 The column approximation: scattering from different blocks of atoms, where the
diffracted amplitude is determined by shape effects.
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scattering between the blocks. Only multiple scattering within a block is included. We write
the diffracted amplitude from one block as

An(S) = 
mult
n (ϑ, E) Akin

n (S),

where Akin
n (S) is the kinematic diffracted amplitude of the topmost scatterers of the block

and 
mult
n represents the modification due to multiple scattering within the block. The

angular dependence of the multiple scattering could be quite complicated, depending on
all the polar and azimuthal angles, which we will abbreviate by just ϑ . It is different from
the angular dependence of the kinematic scattering, which depends only on S. For different
scattering angles ϑ , one can have the same S but different multiple scattering. For example,
the specular beam has a momentum transfer which is perpendicular to the surface. Though
S does not change if the incident and final azimuthal angles (φi, φf) are varied, the multiple-
scattering amplitude can change dramatically. The kinematic part contains the lateral extent
of the block and the main angular dependence. Its variation with St is just the kinematically
calculated shape function of eq. (6.3). This function also contains the variation in strength
of the scattering due to the number of scatterers in a block. We make two assumptions:
(i) 
mult is independent of the size of the block and (ii) it varies only slowly with angle.
The first assumption allows us to factor the multiple scattering out of the sum; the second
allows us to compare with calculated beam profiles. Factoring the multiple scattering out
of the summation gives

A(S) = 
mult(ϑ, E)
∑

n

Akin
n (S) exp (iS · Rn),

where ϑ and E are the scattering angles and electron energy, respectively. If the mean
terrace size on a surface is large we can expect this approximation to be valid, in which case
there should be little multiple scattering between blocks and the diffracted beams should
be relatively sharp, subtending a small angular range.

With these approximations, and since 
mult contains the atoms below the surface, the
sum is just the kinematic diffracted intensity, restricted to the top layer of atoms on each
terrace. This is sufficient to account for the lateral extent of the blocks, hence

A(S) = 
mult(ϑ, E)
∑

n

{ ∑

m

exp [iS · (rm,n − Rn)]
}

exp (iS · Rn),

where rm,n is the vector from the origin to the mth scatterer in the nth block, or

A(S) = 
mult(ϑ, E)
∑

n

exp (iS · rn), (17.34)

where the rn are just all the top-layer scatterers. We assume that for sufficiently large blocks
the diffracted beams are relatively sharp, so that over a given beam 
 does not change
(Horn and Henzler, 1987). Taking 
 equal to unity gives the usual kinematic result.

From a dynamical point of view one could calculate the diffraction from a block of
scatterers by considering the supercell shown in Fig. 17.20, where a block of atoms of
length L1 is repeated at distances L2. If the blocks are far enough apart then there will be
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Figure 17.20 Dynamical calculation for a periodic array of domains.

little multiple scattering between them- and the resulting dynamical diffraction will just
be that due to a single block of atoms. Since there is now an artificial repeat distance of
the supercell, there should be reciprocal lattice rods at Bm = 2πm/L2. These would be
very close together, much closer than the normal 2π/a. We expect that if the dynamical
calculation were performed, which must be done numerically, the close amplitudes of the
closely spaced beams would be described by the kinematic shape function, as depicted in
Fig. 17.20.
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Strongly disordered surfaces

18.1 Introduction

When more than two levels on a low-index surface are involved in the diffraction, the
methods of Chapter 17 are cumbersome. The main separation of the correlation function
is essentially unchanged, and general results are possible, but it is not so easy to obtain in
experiments the separations seen in the calculation. For example, in a three-level system
there is a central spike as before but now two broad parts, all with slightly different Sz

dependences. This approach is described in Lent and Cohen (1984a) and Pukite et al.
(1985) for the case of reversible surfaces, i.e. surfaces in which the correlations between
the scatterers on different levels are symmetric in ±z (Lent and Cohen, 1984a,b). A more
useful approach when dealing with multilevel surfaces was developed by Yang et al. (1993)
and is the basis of this chapter. We use this approach to develop a kinematic understanding
of the role of disorder and layer coverages in the decay of RHEED intensity oscillations.

18.2 Height–difference correlation function

The square modulus, A∗ A, of the diffracted amplitude of eq. (10.8) is the diffracted inten-
sity. If the momentum transfer is separated into normal and parallel components then this
intensity can be written as

I (S) =
∑

i, j

exp [i Sz(zi − z j )] exp [iSt (xi − x j )], (18.1)

where rn = xn x̂ + zn ẑ. We put this into a form involving the so-called height–difference
correlation function for a discrete lattice of scatterers. To do this note that zi = z(xi ). Then
let xk = xi − x j and

I (S) =
∑

k, j

exp {i Sz[z(xk + x j ) − z(x j )]} exp (iSt · xk). (18.2)

The sum over j can be done first, and we define the height–difference correlation function
for a discrete lattice, C(Sz, xk), via

C(Sz, xk) = 1

N

∑

j

exp {i Sz[z(xk + x j ) − z(x j )]}, (18.3)

260
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which represents the average of the exponential of height differences over the surface. This
is different from the pair correlation function C(u). The surface is assumed to be large
enough that end effects do not affect this average. The resulting diffracted intensity is then
the Fourier transform of this correlation function, i.e.

I (S) = N
∑

k

C(Sz, xk) exp (iSt · xk). (18.4)

By using a delta function to pick out the lattice sites, this can be placed into a quasi-
continuous form,

I (S) = N
∫

d2x
∑

k

δ(x − xk)C(Sz, x) exp (iSt · x). (18.5)

Note that although x is a continuous variable here, the variable z is still discrete and is some
integer number of step heights. Making use of eq. (A.6) and eq. (A.2), one obtains

I (S) = N

�0

∫

d2x

(
∑

G

eiG·x
)

C(Sz, x) exp (iSt · x), (18.6)

which is the Fourier transform of the product of two functions of x. Again using eq. (A.2),
this becomes the convolution of a lattice of delta functions with the Fourier transform of
the discrete height–difference correlation function:

I (S) = (2π )2 N

�0

∑

G

δ(St − G) ∗
∫

d2x C(Sz, x) exp (iSt · x). (18.7)

This result can be seen to be identical to eq. (17.7) by rewriting the correlation functions,
explicitly making note of the x and z dependences of the pair correlation function C(u), as
in Section 17.3. The functions is now termed either a partial correlation function C(x, l)
(Lent and Cohen, 1984a) or a statistical function g(�z, x) (Yang et al., 1993). This partial
correlation function is defined as the probability that two scatterers separated by x are located
on two levels separated by a height difference �z = ld. One can also define a specific layer
correlation function C p,q (x), which is the probability that there are scatterers on levels p
and q and separated by x. These functions satisfy the normalization relations

∑

q

C p,q(x) = θp (18.8)

and
∑

p,q

Cp,q (x) =
∑

l

C(x, l) =
∑

�z

g(�z, x) = 1, (18.9)

where θp is the coverage, i.e., the density of uncovered scatterers in the pth layer. This was
mentioned previously in Section 17.3.
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Then the height–difference correlation function of eq. (18.3) is

C(Sz, x) = C1,2(x)ei Szd + [C1,1(x) + C2,2(x)] + C2,1 exp (−i Szd), (18.10)

which, because C1,2(x) = C1,2(−x) for a reversible surface (Lent and Cohen, 1984a,b) and
since C1,2(−x) = C2,1(x) by symmetry, becomes

C(Sz, x) = C(x, 0) + 2C12(x) cos(Szd), (18.11)

as in eq. (17.10).

18.3 The diffraction profile

A measurement of the diffracted intensity across along a RHEED streak yields a profile
that characterizes the surface disorder. The goal now is to examine how the disorder, here
characterized by the height–difference and height–height correlation functions, yields two
components in the diffracted beam.

Near an in-phase condition, Sz = 2nπ/d + δSz , where n is an integer. Close to this
condition δSz is small, and the height–difference correlation function can be written

C(Sz, x) = 〈exp {i(2nπ/d + δSz)[h(x) − h(0)]d}〉 , (18.12)

where �z(x) = h(x)d. To evaluate this, note that the differences h(x) − h(0) are integers,
so that we can make use of exp(i2nπ ) = 1. Then, for small values of δSz and small interface
widths, we can expand the exponential in a series:

C(Sz, x) = 〈
1 + δSz[z(x) − z(0)] − 1

2 (δSz)
2[z(x) − z(0)]2

〉
. (18.13)

Taking the average term by term, the second term vanishes since both z terms are averaged
over the surface and are identical. The last term is defined as

H (x) = 1

N

∑

k

[z(x + xk) − z(xk)]2, (18.14)

where the average is written explicitly, so that near an in-phase condition

C(Sz, x) = exp [− 1
2 (δSz)

2 H (x)], (18.15)

where δSz is the difference in Sz from 2nπ/d.
The height–height correlation function H (x) thus assumes a central role in the measure-

ment of the diffraction. Its value depends on the detailed nature of the surface roughness.
For example, if the surface contains many two-dimensional flat islands then nearby values
of z will be the same, and on average the difference between two values of z separated by
x will be small. The height–height correlation function will then be small and the height–
difference correlation function will tend to unity. In contrast, if the surface is rough then H (x)
will contain differences between unequal z’s, giving rise to a height–difference correlation
function that is reduced.
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Figure 18.1 A generic correlation function near an in-phase condition, which starts at unity and tends
to an asymptotic value.

Near an in-phase condition and for small values of roughness, a qualitative picture of the
diffraction can be obtained. As shown in eq. (18.7), the Fourier transform of the height–
difference correlation function gives the shape of the diffracted beams. In this case the
correlation function has a quite simple interpretation, as does its transform. At x = 0,
H (x = 0) and the correlation function are unity. At large x, the different values of z are
uncorrelated and the sum can be simplified. Making use of the definition of H (x), we can
expand the sum to obtain

H (x) =
∑

k

{
[z(x + xk)]2 + [z(xk)]2 − 2z(x + xk)z(xk)

}
. (18.16)

The first two terms on the right are each sums over all lattice sites and so are identically
equal to the mean square value z̄2. The third term contains the correlations. However, for
large enough x, z(x + xk) and z(xk) are uncorrelated, so that

H (x) → 2(〈z2〉 − 〈z〉2)2w2, (18.17)

where w is the rms interface width.
Thus the diffracted intensity near an in-phase condition and where the rms roughness is

not too large can be written as the Fourier transform of a function that starts at unity and
decreases to an asymptotic value exp(−S2

z w
2). This is shown schematically in Fig. 18.1.

This correlation function can be written as a sum of two terms:

C(Sz, x) = exp
(− S2

z w
2
) + [

C(Sz, x) − exp
(− S2

z w
2
)]

(18.18)

or

C(Sz, x) = exp (−S2
z w

2) + �C(Sz, x). (18.19)
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Figure 18.2 Schematic of triple convolution, showing the array of reciprocal lattice rods, the instru-
ment function, the sharp delta function of the long-range order and the resulting function, broadened
by the disorder.

The first term on the right is a constant, independent of x; the second term is a function
that decreases to zero after several correlation lengths. The diffracted intensity, i.e. the
Fourier transform of this sum, thus also comprises two terms: a delta function plus a broad
part whose width is roughly 2π divided by the correlation length. Explicitly, the diffracted
intensity is the convolution of an instrument function with a series of delta functions at the
reciprocal lattice vectors and with the Fourier transform of this correlation function:

I (S) = T (St ) ∗ (2π )2 N

�0

∑

G

δ(St − G) ∗
∫

d2x C(Sz, x) exp (−iSt · x) (18.20)

= (2π )2 N

�0

∑

G

δ(St − G) ∗ T (St ) (18.21)

×
[

(2π )2 exp
(− S2

z w
2
)
δ(St ) +

∫

d2x �C(Sz, x) exp (−iSt · x)

]

.

After convolution with the instrument response, one sees that at every reciprocal lattice
vector there will be a broad part with width roughly 2π divided by the correlation length
and a sharp spike with width 2π divided by the transfer width. This form of the diffracted
intensity also holds away from this in-phase condition, as is seen in the next sections.
Exactly at the in-phase condition the diffraction is insensitive to step disorder; the width
of the beam depends on whether the instrument response picks up the intensity scattered
at momentum transfers away from Sz = 2nπ/d. This triple convolution of eq. (18.21) is
illustrated schematically in Fig. 18.2.

Away from the in-phase condition the diffraction profile has a similar appearance but the
two components are not quite as simply interpreted. More generally, the height–difference
correlation function can still be written as a sum of two terms:

C(Sz, x) = C(Sz, ∞) + �C(Sz, x), (18.22)
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where �C(Sz, x) = C(Sz, x) − C(Sz, ∞). The correlation function at infinite distances is
determined just by the layer coverages, since when far apart two scatterers are uncorrelated,
i.e.

C(Sz, ∞) =
∑

�z

exp (i Sz�z)g(�z, ∞) (18.23)

=
∞∑

m=−∞
exp (i Szmd)

∑

j≥0

Pj Pj+m, (18.24)

where Pj = θ j − θ j+1 is the portion of the j th layer that does not have scatterers in the
( j + 1)th layer on top. This can be compared with the sum

∣
∣
∣
∣
∣

∞∑

m=0

Pm exp (i Szmd)

∣
∣
∣
∣
∣

2

(18.25)

or
∞∑

m=0

Pm exp (i Szmd)
∞∑

n=0

Pn exp (−i Sznd). (18.26)

Setting u = m − n, this becomes

∞∑

n=0

∞∑

u=−∞
Pu+n Pn exp (i Szud), (18.27)

which upon changing the names of the dummy indices, is identical to eq. (18.24). Hence,
we have that the correlation function can be written as

C(Sz, ∞) =
∣
∣
∣
∣
∣

∞∑

n=0

(θn − θn+1) exp (i Sznd)

∣
∣
∣
∣
∣

2

, (18.28)

so that the diffracted intensity can be given as two terms which are repeated at each reciprocal
lattice point:

I (S) =
∣
∣
∣
∣
∣

∞∑

n=0

(θn − θn+1) exp (i Sznd)

∣
∣
∣
∣
∣

2

δ(St − G)

+
∫

d2x �C(Sz, x) exp (−iSt · x). (18.29)

Once again the first term is seen to be determined by the layer coverages, which are related
to interface width. The second term is due to the disorder and related to the step density.
After convolution, the first term will have a width in reciprocal space determined by the
instrument response. The second term’s width will be something like 2π divided by a
correlation length.

Equation (18.29) is exact, within the kinematic approximation. It is equivalent to
eq. (18.21) near an in-phase condition, after convolution with an instrument and lattice
function. Near an out-of-phase condition, eq. (18.29) can be simplified; the first term
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becomes just

∞∑

n=0

(θn − θn+1)(−1)n, (18.30)

which is the kinematic interference function, eq. (5.5), evaluated exactly at St = 0. The
crucial point is that if there is disorder and a real instrument response then there is also a
disorder component. If the first term of eq. (18.29) is small – for example for a two-level
system at half coverage it is zero – then the disorder term dominates the diffracted intensity.
Because of this, in a measurement of RHEED intensity oscillations the peaks are determined
by the interface width and the minima by the step density.

18.4 Gaussian disorder

Analytical forms of the height–difference correlation function can be determined for special
distributions of steps, so that one can obtain a sense of which physical parameters determine
the central spike and which determine the magnitude and width of the broad portions of
the diffraction profile. Other distributions, for example Gaussians, are of course possible
(Bartelt and Evans, 1995). For Gaussian disorder, following Yang and Lu, the height–
difference correlation function is then, similarly to the discussion in Section 18.2 where a
partial pair correlation function was used,

C(Sz, x) =
∑

k

exp {i Sz[z(x + xk) − z(xk)]} (18.31)

or

C(Sz, x) =
∑

�z

g(�z, x) exp (i Sz�z). (18.32)

This can be written as a convolution using the usual methods, repeated here. First it is
transformed to an integral:

C(Sz, x) =
∫

dz
∑

m

δ(z − md) g(z, x) exp (i Sz�z), (18.33)

where we recognize that �z is restricted to integral multiples of the step height and use z
as a dummy variable. Writing this as a convolution of two Fourier transforms we obtain

C(Sz, x) =
∑

m

exp (i Szmd) ∗
∫

dz g(z, x) exp (i Sz�z). (18.34)

Then, from Appendix A, this can be written as a Fourier transform reproduced at integral
values of 2π/d , i.e.

C(Sz, x) = 1

d

∞∑

m=−∞
δ

(

Sz − 2πm

d

)

∗
∫

dz g(z, x) exp (i Szz), (18.35)

where g(z, x) must be determined. Its moments are usually the results desired.
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Previously, in eq. (18.15), we showed that if the exponential term is expanded for small
values of δSz away from an in-phase condition and small z then the correlation function
falls off as exp[−δS2

z H (x)2/2]. The limits of this approximation can be seen more generally
by (i) expanding the distribution function for small values of roughness and (ii) examining
eq. (18.35) near an in-phase condition, where the integrals do not overlap. To do this, expand
the statistical function for small z:

g(z, x) = g(0, x) − 1
2 |g′′(0, x)|z2 + · · · (18.36)

where the first-derivative term is taken to be zero for distributions that are symmetric about
up and down steps and the sign of the second derivative is shown explicitly. Keeping only
the first two terms, g(0, x) can be factored and for small z the expression converted to an
exponential, so that the distribution can be written

g(z, x) = g(0, x) exp

(−z2

2σ 2

)

= 1

σ
√

2π
exp

(−z2

2σ 2

)

, (18.37)

where σ = σ (x). Hence, and this is a key point, relatively general results like eq. (18.15) can
be obtained for all distributions since their limit at small interface width is this Gaussian.
The results are valid for larger interface widths if the distribution is close to a Gaussian.
And the requirement that Sz is near an in-phase condition results, since at such an angle
the sum of terms in the convolution overlaps the least. To the extent that the terms do not
overlap, the same form will follow at arbitrary Sz .

With this distribution of steps, the height–difference correlation function is then the
convolution

C(Sz, x) =
(

1

d

∞∑

m=−∞
δ

(

Sz − 2πm

d

) )

∗ exp

(

− S2
z σ

2

2

)

, (18.38)

where σ (x) describes the width of the interface as a function of separation. This width
can be put in terms of the height–height correlation function, though one needs to be a bit
careful about the effect of the discreteness of the layers, which is to some extent hidden in
this approach. The difficulty is that the probability function g(z, x) is somewhat different
in the discrete case. For example, if we take z = md, where m is integral, the distribution
function does not have a norm equal to unity and a variance equal to σ 2 for all values of σ .
However, if one numerically evaluates

d

σ
√

2π

∞∑

m=−∞
exp

(

−m2d2

2σ 2

)

(18.39)

and

d

σ
√

2π

∞∑

m=−∞
m2d2 exp

(

−m2d2

2σ 2

)

(18.40)

vs σ then one sees, as in Fig. 18.3, that for σ greater than about 0.6 the norm is to a
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Figure 18.3 Numerical calculation of eq. (18.39) and eq. (18.40) to show that above σ of about 0.6,
the norm is about unity and the variance is about σ 2.

good approximation unity and the variance is σ 2. Hence the height–height correlation
function is

H (x) =
∑

m

g(z, x)(z − z̄)2 ≈ σ 2, (18.41)

and the height–difference correlation can be written to a good approximation,

C(Sz, x) =
(

1

d

∞∑

m=−∞
δ

(

Sz − 2πm

d

))

∗ exp

(

− S2
z H (x)

2

)

. (18.42)

Thus, near in-phase conditions on Sz the diffracted intensity decreases according to a Gaus-
sian. This would not be expected to hold near an out-of-phase condition since the sums of
the tails in the convolution would contribute and the use of one term alone in the resulting
sum would be insufficient. As the height–height correlation increases, it holds closer to the
out-of-phase values since the tails in the sum overlap less. This is an important result since
it will determine the decrease of the kinematic prediction of RHEED intensity oscillations.

Using eq. (18.42) one can evaluate C(Sz, ∞) in eq. (18.22) so that it is not too close to
an out-of-phase condition, so that only one of the terms in eq. (18.42) matters, and using
the asymptotic value of H (∞) = 2w2, eq. (18.29) becomes

I (s) = exp
(− S2

z w
2
)
δ(St − G) +

∫

d2x �C(Sz, x) exp (−iSt · x), (18.43)

where Sz 
= (2π/d)(n + 1/2). This formula has key implications for the interpretation of
RHEED intensity oscillations. In this kinematic analysis, these oscillations should not be
observed at an in-phase condition and should increase in intensity toward an out-of-phase
condition. The result (18.43) says that at such a condition the central spike decreases
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with the interface roughness. At about half coverage, the second term will become more
significant. This term is related to the correlations and hence to the terrace distribution or
the step density. Thus near the maxima of the intensity oscillations the interface width will
dominate; near the minima, the step density. The former depends only on layer coverages
and not step edges. Our result could be compared with work by Kawamura et al. (1984),
who showed the importance of layer coverages in dynamical theory as opposed to that
of the step density. Nonetheless, these kinematic results can only be expected to be valid
under limited conditions for electron diffraction and can only guide our interpretation of the
data.
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RHEED intensity oscillations

RHEED intensity oscillations are now routinely used for measuring growth rates during
molecular beam epitaxy. They are used to determine whether the growth mode is via island
nucleation or step flow, whether growth occurs in layer or bilayer growth modes and to obtain
estimates of surface diffusion. But little use has been made of quantitative measurements of
the damping or of the strong angular dependence. RHEED oscillations are widely believed
to be related to step density and to have strong path-length interference components. The
main difficulty in separating these two mechanisms is that dynamical calculation from a
disordered surface, with distributions of islands and adatoms randomly arranged at surface
lattice sites, is exceedingly difficult. Our assessment and the topic for discussion in this
chapter is that, depending upon the predominant island sizes, different mechanisms can
dominate. We argue that step density, kinematic calculations and shadowing arguments
are each inadequate to explain all the measured angular dependences and wave forms.
The intensity oscillations measured with RHEED are fundamentally a dynamical effect,
and each of the mechanisms contributes various aspects. Nonetheless, it appears that the
coverages of the layers that comprise the growth front are the major factor producing the
intensity oscillations. From a practical point of view, these measurements are at least as
important as symmetry and structural determinations. In this chapter we examine their
diverse characteristics from the various points of view in a variety of systems.

19.1 Experimental observations

19.1.1 General features

Dobson, Harris, Joyce and Wood (Harris et al., 1981) first observed and reported RHEED
intensity oscillations in the early 1980s. They measured the peak of the specular diffracted
beam as a function of the time elapsed after growth was initiated on a smooth GaAs surface.
Strong oscillations with a period equal to the time for deposition of a monolayer were
observed. These intensity oscillations are strong enough that under some conditions one
can observe them visually on a phosphor screen. An example from the 2 × 4 surface of
GaAs(100) is shown in Fig. 19.1. In this example, a GaAs surface was annealed in an As4

flux for about 15 minutes; then the Ga source shutter was opened to initiate growth. The

270
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Figure 19.1 Specular intensity oscillations from the 2 × 4 reconstruction of GaAs(100). The surface
was annealed to 600 ◦C.

measured RHEED intensity either increases or decreases depending on the scattering angle
and then oscillates with a period corresponding to the growth rate – in this case the growth
rate is limited by the Ga flux. Associated with the intensity variations are cyclical changes in
the shape of the diffracted beams, the streaks becoming longer as soon as growth is initiated.
The envelope of the intensity maxima decreases roughly exponentially and, depending on
the surface and conditions, can extend for many layers. By contrast, for the example in
Fig. 19.1 the envelope of the intensity minima, after a slight initial increase, is relatively
constant. When growth is interrupted, the intensity can recover to its initial value, in some
cases with a time dependence described by a sum of two exponentials (Yoshinaga et al.,
1992). For Si(100), the intensity oscillations drop in a similar fashion at first and have been
observed to oscillate nearly indefinitely (Sakamoto et al., 1986).

The interpretation of these measurements is that islands form and coalesce during layer-
by-layer growth, scattering varying amounts of intensity out of the diffracted beams and
into the diffuse wings. In addition, changes in the surface structure will modify the total
diffracted intensity of each beam as well as the distribution of intensity among the beams.
The result is the observed cyclical variation in intensity of the diffracted beams, whose
period corresponds to the time required to deposit a layer of material. An alternative layer-
growth mode such as step flow would not produce this cyclical intensity variation, since
there would not be any average change in the surface morphology. The formation of is-
lands is also inferred from the broadening of the diffracted beams that is seen as soon
as growth is initiated. In the simplest picture, the initial intensity decreases when growth
roughens the surface. Then as the islands coalesce and the layer is completed the inten-
sity increases again until a monolayer is formed. Subsequent intensity maxima correspond
to the times at which successive layers are completed and the layer is smoothest. If dur-
ing the growth process a new layer starts before the previous layer completion is finished
then the interface roughness will gradually increase, producing a decay in the oscillation
envelope.



272 RHEED intensity oscillations

Figure 19.2 Sequence of intensity oscillations measured from GaAs(001). The initial surface is shown
at the top left. The sequence proceeds down the first column and then down the second. These specular
beam measurements were taken from a CCD image of the phosphor screen.

From a kinematic point of view, the oscillations damp out from the starting smooth-
surface value after the interface width increases and until the step density has reached a
steady state. Equivalently, the intensity will not vary if new islands are created as fast as old
ones merge together, so that there is no longer a average periodic variation in the surface
morphology. This has been seen in STM observations of quenched surfaces (Orme and
Orr, 1997). Both kinematic and dynamical effects will change the measured intensity as a
function of scattering angle. Changes in surface structure and dynamical effects will modify
the shape of the waveform and the positions of the maxima.

A sequence of profiles of the specular beam from GaAs is shown in Fig. 19.2, where
line profiles from a CCD image of a phosphor screen are displayed in a three-dimensional
fashion. For this sequence of images the growth rate is about 1 ML s−1, each image being
acquired in 0.03 s. The sample temperature was 600 ◦C and the growth was conducted under
conditions of excess As4. Visually striking, easily measured – these intensity oscillations
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Figure 19.3 Intensity oscillations during the growth of an AlAs/GaAs/GaAs(100) superlattice. T =
600 ◦C; the As4 pressure was 2 × 10−6 torr. Some key features to note: the GaAs oscillations recover
much more than the AlAs oscillations, the recovery depending upon where growth was interrupted,
and there are several seconds between the different layers. No detailed models have been compared
with these data.

allow one to monitor the growth of an epitaxial film as each atomic layer is deposited. The
largest change is observed in the intensity of the peak. The wings of the profile increase, so
that depending on where one measures the intensity a different phase is observed.

19.1.2 Growth issues

A key application of these intensity oscillations is the control of superlattice growth. An
example is the growth of a GaAs/AlAs structure, shown in Fig. 19.3. Here, starting with an
annealed GaAs surface, an AlAs layer is grown by opening an Al shutter in the presence of
an As4 over-pressure. There is a sharp initial drop, which can be due to a change in surface
roughness as well to as a change in surface chemical composition and structure. Similar
large decreases in the initial intensity are usually observed in the homoepitaxy of GaAs
on annealed GaAs – the first change from a smooth to a rough surface is larger than what
might be expected based on the changes after subsequent layer completions. In this figure,
for example, the initial diffracted intensity is not obtained again until growth is stopped
after a GaAs layer and the surface is annealed. This could be in part due to the difficulty in
obtaining a particular surface structure during growth or because isolated atoms or clusters
scatter more than larger islands. A complete interpretation of these intensity oscillations
is not simple. For this example an explanation must include Ga segregation on the surface
during the growth of AlAs on GaAs, the observation that GaAs tends to smoothen an AlAs
layer, and the fact that changes in surface reconstruction can take place. For these data the
period of the AlAs layer is longer than that of the GaAs oscillations because the Al flux
is lower than that of Ga. The overall decrease in intensity is due to an increase in surface
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Figure 19.4 RHEED oscillations on GaAs(100) and on GaAs(110) surfaces.

roughness. However, the increase when changing layers does not indicate a reduction in
roughness but rather an interplay of the other factors discussed. The recovery in intensity
is stronger for GaAs than for AlAs, probably owing to the difference in mobility. Finally,
when the last GaAs layer is finished and the Ga flux is interrupted, the intensity is seen to
begin a recovery that ultimately will bring the diffracted intensity to a point determined by
the surface structure and morphology of the final GaAs surface.

The strong dependence on growth kinetics is easily seen by comparing GaAs growth
on GaAs(110) and on GaAs(100). On the former, two-dimensional-island, layer-by-layer
growth is easily obtained. In contrast, on the (110) surface the adatoms appear to be more
mobile. The RHEED intensity oscillation data are very different. In Fig. 19.4 the (100) data
are typical over a wide variety of conditions while the (110) data are among the strongest
observable, lower temperatures having been used in order to enhance island formation at the
expense of step-flow growth. Also, the data for the (110) surface have maxima and minima
that tend to an intermediate steady state while the (100) data have maxima that appear to
decrease to a relatively constant baseline.

These intensity oscillations depend strongly on the growth parameters and the growth
kinetics, which can change dramatically from surface to surface even on the same material.
For example, as a function of growth parameters the growth of GaAs exhibits the changes
shown in Fig. 19.5, where (a) through (d) correspond to a range of growth conditions and
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Figure 19.5 GaAs RHEED oscillations on GaAs(100) vs various experimental parameters. (a) The
diffracted intensity from a small sample with the beam in the 〈01̄1〉 direction; (b), (c), 7◦ from
the 〈01̄1〉 direction with an As4/Ga flux ratio of about 10 and substrate temperature of (b) 580 ◦C,
(c) 550 ◦ C; (d) 7 ◦ from the 〈01̄1〉 direction with a As4/Ga flux ratio equal to 80 (Van Hove et al.,
1985b).

substrate. For these data, the substrates were annealed for about 6 minutes in an As4 flux and
then grown at a relatively slow rate, of 16 s ML−1. Each curve was taken at an out-of-phase
condition, where the intensity oscillations were qualitatively strongest.

Figure 19.5a shows the effect of a spatial variation in the flux. This plays an important part
in any interpretation of the envelope of the intensity oscillations. For this apparatus there
was a 3% flux inhomogeneity over the sample, which was 4 mm square. Beats are apparent
after about 35 periods of growth. These beats are seen because this small sample is smaller
than the projected length of the electron beam on the sample so that a range of frequencies
(growth rates) contribute to the oscillations with roughly equal amplitudes, defined by a
window function with a sharp cutoff (the size of the small sample). For larger wafers, though
the envelope is still affected, the beats are not so readily apparent since the Gaussian beam
shape weights the different growth frequencies smoothly with no abrupt cutoff. This result
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is particularly striking for a small rectangular sample, where the beat frequency is different
in two orthogonal directions. The effect of spatial variation can be nearly eliminated by
going to very small samples, when careful measurements of the envelope of the intensity
oscillations are required, though diffracted intensity is lost as a result.

A second difference between the Fig. 19.5a and the other curves in the figure is the
azimuthal angle with which the incident electron beam strikes the sample. The curve in
Fig. 19.5a was measured with the beam in the 〈011〉, dimer direction of the 2 × 4 surface
reconstruction, while the other curves of this figure were measured with the beam 7◦ away
from the 〈011〉 direction. At this azimuthal angle the other integer-order and fractional-order
beams are few in number and weak in intensity, in contrast with the symmetry condition,
where the beams are of nearly equal intensity. Since only one beam is strongly excited,
we expect the dynamical effects of trading intensity between the specular and non-specular
beams to be less important than the effects on symmetry, as shown in our discussion of the
dynamical theory. In Fig. 19.5a, which is the symmetry condition, the intensity increases
shortly after growth to above the value for the annealed surface. If there is no structural
change then the intensity must be pulled in from the non-specular beams. By contrast, away
from symmetry this is less important and the intensity usually decreases.

In Figs. 19.5b–d, the intensity oscillations were measured at an azimuthal angle of 7◦

from the 〈011〉 direction, for a glancing angle of 32.9 mrad and with three different growth
conditions. Note that the intensity always decreases as the surface becomes rougher and that
it does not return to its initial value unless growth is stopped. The curve in Fig. 19.5b was
measured at a substrate temperature of 580 ◦C and an As4 that was about 10 times the Ga
flux. In Fig. 19.5c the As4 to Ga ratio is the same, but the substrate temperature was reduced
to 550 ◦C. Figure 19.5d shows a measurement with a substrate temperature at 580 ◦C but a
much larger arsenic flux.

One can interpret these data sets, to obtain some qualitative information about the growth
of GaAs on GaAs(100). From the dependence on growth parameters such as in Fig. 19.5c
and d, where there is a rapid increase in the decay rate of the oscillation envelope at high As4

fluxes, the data suggest that there is enhanced nucleation by a reduction in surface diffusion
length. The strong decrease in diffracted intensity suggest a reduction in surface diffusion
and an increase in roughness to include more layers. In contrast, Fig. 19.5b shows data
that suggest more perfect two-layer layer growth, in which as one layer completes another
begins to form, continuing for a very long time. Ultimately, there are more layers involved
and sufficient roughness to achieve a steady state in the growth competition between island
nucleation and surface smoothening. These trends are proven by examination of the peak
widths at the minima of the intensity oscillations. Here the diffracted beams show sharper
profiles at higher substrate temperatures, and hence larger island sizes, also indicating an
increase in surface diffusion with temperature.

Nonetheless, the intensity oscillations are not always so simple. For example, for the
growth of Fex Al1−x the intensity oscillations vs iron mole fraction are shown in Fig. 19.6
(Ishaug et al., 1997). FeAl has a CsCl structure while Fe3Al has a BiF3 structure. They
are very similar in that there is a continuous change from one to the other. FeAl is a bcc



19.1 Experimental observations 277

0 50 100 150 200
Time (s)

R
H

E
E

D
  I

nt
en

si
ty

 (
ar

b.
 u

ni
ts

)

x =0.75

x =0.65

x =0.59

x =0.56

x =0.51

Figure 19.6 Intensity oscillations from the MBE growth of FeAl on FeAl vs iron mole fraction.

structure with alternating planes of Fe and Al. Increasing amounts of Fe atoms replace
atoms in the Al layer randomly until at x = 0.75 an ordered superlattice exists in which
every second atom in the Al layer is Fe. In Fig. 19.6, FeAl was grown on an annealed FeAl
surface that exhibited a 5 × 5 reconstruction. For lower Fe mole fractions, the growth shows
a bilayer period; between 0.7 and 0.8 the period corresponded to a monolayer growth mode.
The intermediate mole fractions could also show a combined monolayer–bilayer mode,
depending on the initial Fe coverage. Finally, note that part of the envelope, especially
where the magnitude increases, as can be seen in the figure, is an artifact of the wandering
of the beam into the fixed detector as the magnetic properties of the film change during
growth.

Even more complicated intensity oscillations are seen during the growth of GaAs(100)
when submonolayer amounts of Sn are present on the surface. Sn segregates to the surface
during the growth of GaAs and modifies the surface structure and the growth kinetics. It is
also of historical interest, since Sn was present on some of the surfaces used by Joyce’s group
in their initial observations. Figure 19.7 shows measured RHEED intensity oscillations from
GaAs(100) at various Sn coverages. These oscillations are not well understood (Dabiran
et al., 1999).

A second case in which intensity oscillations have a period that does not correspond to
the actual growth rate is seen in the growth of GaN on sapphire. In this case, in which
there are typically many defects, intensity oscillations are observed in growth under excess
nitrogen conditions. These have been seen using both ammonia and plasma sources for
the nitrogen. Figure 19.8 shows measurements of the oscillation frequency vs Ga flux that
does not extrapolate to zero at zero flux. During the growth of GaN under the conditions
for observing these intensity oscillations, the surface develops three-dimensional features.
The measured oscillations have a frequency that is lower than expected for zero offset;
this is at odds with what might be expected if less than the entire surface were available
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Figure 19.7 RHEED intensity oscillations showing beats. Isub = 600 ◦C. The power spectra of the
data were taken after the rapid initial decay, at a time indicated by the arrow.
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of GaAs by MBE. The data were measured at three substrate temperatures. Note that at zero Ga flux,
the frequency is not zero. By contrast, on bulk GaN the plot extrapolates to the origin (Johnston,
1977).
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for growth. It is as if a portion of the incident flux is not participating in the layer-growth
process but is involved in defect formation (Dabiran et al., 1993). Similar data was taken
for the homoepitaxy of GaN on bulk GaN samples, where the offset was zero as expected
(Johnston, 1977).

19.1.3 Vicinal surfaces

Growth on a vicinal surface can combine growth by step flow and by island nucleation,
with a mix determined by the substrate temperature and growth rate. As a consequence,
the envelope of the intensity oscillations measured from vicinal and singular surfaces can
have distinctly different characters. For a singular surface the intensity of the maxima
decreases, the minima remaining roughly constant. For a vicinal surface, as the intensity
maxima decrease the minima increase. This is illustrated in Fig. 19.9 for two sets of data
measured from GaAs(100) surfaces. For these data, the GaAs(100) surface took the form
of a staircase separated by monatomic steps (Pukite et al., 1984b), the 1 mrad surface being
nearly singular. It had terraces with an average length of 2800 Å; the vicinal surface was
miscut by 7 mrad. For the measurements, the electron beam was directed parallel to the
step edges (since in the other direction the beam splitting would be resolved), which for the
1 mrad surface was in the 〈011〉 direction and for the 7 mrad surface in the 〈001〉 direction.
The angle of incidence was 28 mrad. A slit detector was used so that the measurement was
sensitive only to correlations parallel to the step edges (Pukite et al., 1985). The growth
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Figure 19.9 Comparison of the change in the envelope of intensity oscillations on vicinal (7 mrad)
and near-singular (1 mrad) surfaces (Van Hove and Cohen, 1987).
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procedure and measurement parameters were otherwise identical. These data were also
measured at different Ga fluxes; with qualitatively similar behavior of the envelopes of the
data was found.

On a vicinal surface, step flow will compete with island nucleation, causing a reduction
in the magnitude of the intensity oscillations. The oscillation period, however, does not
change. To see this, let the adatom diffusion be sufficiently high that part of the incident
flux goes to the step edges and part goes to islands nucleated in the middle of terraces.
The former does not change the surface roughness since all the steps just move across the
surface; the latter alone contributes to the measured RHEED intensity oscillations. Hence
the magnitude is reduced. There is no change in the period since the same time is required
for monolayer completion, which now is partly island coalescence and partly step flow.
Decreasing the substrate temperature should increase nucleation, since fewer adatoms can
participate in the step flow. Decorating the step edges with adatoms that block incorporation
could have the same effect, as long as the nucleating islands are not similarly affected by the
impurities. Thus one expects magnitude changes by external control but, apart from direct
changes in growth rate, no period changes.

Depending on the step-attachment probabilities and/or anisotropic surface diffusion, dif-
ferent envelopes and strengths of intensity oscillations will be observed even for steps on
the steps on the same surface. Figure 19.10 shows that intensity oscillations measured from
a GaAs(100) surface misoriented toward the [110] and 〈011〉 directions. There are two
striking features: (i) the intensity oscillations decay more rapidly as the substrate temper-

575°C

600°C

610°C

540°C

550°C

560°C

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

(a) (b)

Time Time

Figure 19.10 Intensity oscillations on a GaAs(100) surface misoriented by 2◦ (a) toward the [110]
direction and (b) toward the 〈011〉 direction.
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Figure 19.11 STM images of various quenched GaAs surfaces after growth by MBE. The field
of view is about 2000 × 2000 Å. The RHEED patterns showed 2 × 4 reconstructions with sharp
two-dimensional diffraction spots. (a) The starting surface, showing a region with a staircase; (b) after
1/4 ML of growth, showing islands elongated in the 〈011〉 direction; (c) after 3.5 ML; (d) after 4 ML;
(e) after 60 ML (Orme and Orr, 1997).

ature increases and that the oscillations are much weaker when the miscut is in the 〈011〉
direction. The temperature dependence shows the transition to step flow that is attained
when the adatoms can diffuse longer distances on a surface. The misorientation depen-
dence shows that either adatom motion in the 〈011〉 direction is easier than in the 〈110〉
direction or that attachment at the steps in the 〈011〉 direction is more likely. In either case the
probability of island nucleation on a terrace is reduced and intensity oscillations should be
weak.

Figure 19.11 shows an STM view of the intensity oscillations obtained by Orr’s group
(Orme and Orr, 1997), including surfaces corresponding to both cyclic and steady-state
morphologies on a crystal miscut by 0.15◦ (as measured by STM). The growth was at 555 ◦C
and under heavily As-rich conditions, so that this surface was borderline between vicinal
and low-index. For the measurements, the intensity oscillations were used to determine the
growth rate and then films were quenched at the various coverages indicated in the caption.
The formation of islands, their elongated nature on this surface and the coalescence of the
islands is visible. For these data the intensity oscillations decay to about 5% of their initial



282 RHEED intensity oscillations

Figure 19.12 Intensity oscillations in the specular beam measured during the sublimation of
GaAs(100). The vertical axis of the inset is the pressure in torr of the As4 flux and the horizon-
tal axis is in units of 103 × T −1, where T is the substrate temperature.

value after about 60 ML; the corresponding surface is shown in Fig. 19.11e. This last surface,
surprisingly, still only involves diffraction from a few layers. Further, the surface is very
similar to that seen after deposition of nearly 1 µm. These results (Sudijono et al., 1992)
indicate that, for this GaAs surface, the final diffracted intensity corresponds to a dynamic
state in which new islands are formed at the same rate at which older islands merge with
each other and with the built-in steps of the surface.

19.1.4 Sublimation

Any process in which the surface morphology changes in a layer-by-layer mode can give rise
to intensity oscillations. Van Hove and coworkers (Van Hove and Cohen, 1985; Van Hove
et al., 1985a) and Kojima et al. (1985), for example, observed the sublimation of GaAs.
Starting from a very smooth GaAs(100) surface, the substrate temperature was raised and
the specular intensity measured. Some results are shown in Fig. 19.12 for the intensity
oscillations observed during growth and after growth was stopped. The interpretation is
that sublimation begins in the middle of a terrace, generating a small, two-dimensional
hole. Sublimation then proceeds at the step edge thus generated, enlarging the hole until it
reaches a step on the surface.

Note that the rate of these oscillations depends on the arsenic flux. As shown by Hecking-
bottom et al. (1983) and Koukitu and Seki (1997) a quasi-equilibrium takes place between
growth and sublimation via

GaAs � Ga + 1
2 As2, (19.1)

so that in equilibrium

PGa,0 P1/2
As2,0

= Kp (19.2)

where Kp is the mass action equilibrium constant.
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Figure 19.13 Measured growth rates, normalized to the low-temperature growth rate, for GaAs and
AlGaAs (Van Hove et al., 1985a).

Heckingbottom has argued that, even in the absence of equilibrium, by detailed bal-
ance the sublimation rates should remain valid. Under equilibrium conditions, Ga and
As will leave the surface to balance the incoming rates. For the case of sublimation at
different As fluxes, Van Hove measured the period of the intensity oscillations given in
Fig. 19.12. The period vs substrate temperature was compared with a calculation based on the
Heckingbottom–Seki method. To within the uncertainties in temperature and flux the magni-
tude was in good agreement. Note that sublimation at step edges will cause only the intensity
of the oscillations to decrease; the period will still reflect the fundamental layer-by-layer
time.

For the III-V semiconductors the sublimation is more easily observed in just the measured
rate of the intensity oscillations during growth. As the substrate temperature is increased
the sublimation rate will increase, causing the growth rate to decrease. The extent of the
sublimation will depend on both the incident Ga and As2 fluxes. Figure 19.13 shows the
measured growth rate, from RHEED intensity oscillations, for both GaAs and AlGaAs. In
this figure the ratio of the growth rate measured at a substrate temperature T divided by the
low-temperature growth rate is plotted vs T .

19.1.5 Group-V-limited growth

In the previous discussion of GaAs growth the period of the intensity oscillations was
determined by the Ga flux, except in the case where Ga sublimation was affected by the As
flux. It is also possible to find conditions where the rate limit is due to the As flux; this serves
as a means to calibrate the As source and provides an insight into the growth mechanisms
of these materials.

The method (Neave et al., 1984) is to deposit an excess amount of Ga onto a GaAs(100)
surface, more than can be used immediately by the available supply of As. Presumably
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Figure 19.14 Intensity oscillations measured (Dabiran, 1998) during gas-source MBE in which the
As2 flux was rate limiting. Isub = 580 ◦C; the As H3 flow was 4.5%. First, excess Ga was added to the
surface. Then the Ga source was shuttered and the As-induced intensity oscillations were measured.
Presumably the As diffuses through the liquid Ga and there is layer-by-layer growth (Neave et al.,
1984).

this creates droplets of Ga on the surface. The Ga source is then shuttered, allowing the
surface to grow by reaction of the Ga from the droplets with the As from the incident
flux. Remarkably, the surface continues to grow in a layer-by-layer fashion, as seen in
measurements by Dabiran (1998) shown in Fig. 19.14 for the gas-source MBE growth of
GaAs. The exact details are not known since it is difficult to measure the Ga distribution
on the surface. Neave et al. (1984) suggested that the growth occurs at the periphery of the
Ga droplets. A similar situation obtains in the growth of GaN on GaN(0001) obtains and
GaN(0001̄) by plasma-assisted MBE. In this case, it is believed that during growth under
excess Ga conditions, nitrogen dissolves into the Ga layer and GaN forms at the growth
front. After dissolution, the N can diffuse rapidly through the liquid-like layer, promoting
step-flow growth and smooth surfaces.

19.2 Kinematic theory

In Chapter 17, as illustrated in particular in Fig. 17.1 through 17.4, one sees that steps
or islands on a surface will cause the diffracted beams to broaden into streaks and that
the amount of broadening will depend on the glancing angle of incidence. Kinematic
theory examines how this broadening develops during epitaxial growth to give rise to
intensity oscillations. The theory is expected to work best when the islands are large,
so that the step edges contribute proportionately less to the diffracted intensity, and
when multiple scattering between different islands is less important. (Cohen and Dabiran,
1995)
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More specifically, the kinematic theory says that the diffracted intensity of a beam is given
by the sum of two main terms: the diffraction from the central spike due to the long-range
order and a broad part due to the disorder. During growth, islands will form on the surface.
If the islands are not too large then the central spike will become smaller and the diffuse
intensity will become larger. Some of the features predicted by this calculation are observed,
but certainly not all. The theory has been applied to GaAs (Lent and Cohen, 1984a) and Ge
in RHEED (Pukite et al., 1987a) and to Si in LEED (Horn and Henzler, 1987).

19.2.1 Analytic results

The main kinematic analyses stem from the fundamental result for a two-level system, in
which the diffracted intensity of a beam is given by eq. (17.15) as:

I (S) = N
{

[θ2 + (1 − θ )2 + 2θ (1 − θ ) cos(Szd)] δ(Sx )

+ 2θ (1 − θ )
λ/π

λ2 + S2
x

[1 − cos(Szd)]
}

(19.3)

∗ instrument function, (19.4)

where 1/λ is the sum of the mean island and hole size, i.e. λ is the step density. This
shows the main angle and time dependences. For example, at an in-phase condition, where
Szd = nπ , the intensity does not oscillate. In contrast, at an out-of-phase condition the
oscillation amplitude is maximal. Integrating over Sx , one sees that the integrated intensity
across a profile at a given Sz is a constant proportional to N , independent of coverage. At
half coverage the central spike is zero and the broad part at Sx = 0 approaches 1/λ, i.e. the
step density. At an out-of-phase condition, but closer to layer completion, the intensity is
approximately (1 − 2θ )2, which is a maximum when θ is either 1 or 0.

The Lent form, eq. (17.15), at the out-of-phase condition reduces to

I ∝ (1 − 2θ )2 + 4θ (1 − θ )
λI

λ + λI
(19.5)

after convolution with a Lorentzian instrument response function with FWHM 2λI. For
large step density, λ � λI and the second term will be small, though it still dominates at
θ = 1/2. For a very small step density, i.e. large islands, the measurement will integrate
over the entire beam and there is little variation in the intensity, as seen when λ � λI. This
is the main result.

More generally, not too close to an out-of-phase condition, with a maximum in the
intensity oscillations, the coefficient of the δ-function term from eq. (18.21) shows that

I ∼ {
(2π )2 exp

(−S2
z w

2
)
δ(Sx ) + constant × 1/step density

} ∗ response function
(19.6)

where w is the rms interface width. Exactly at the out-of-phase condition the approximations
used in eq. (18.21) fail and the first term must be obtained directly, though the result, as
will be shown below, is not too much different.
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To examine the exact out-of-phase condition, we use the main kinematic form, eq. (10.8),
evaluated at Sx = 0 and assuming identical scatterers, to obtain

A(Sz) =
∑

i

exp(i Szzi). (19.7)

Then, as before, we make the column approximation to add up the amplitude diffracted
from blocks of scatterers. Multiple scattering and absorption within a block are included
but inter-block scattering is neglected. The strength of the scattering from one block which
has no atoms above it in the layer at n + 1 is θn − θn+1. The path length is determined by
the origin of the block in the nth layer, but in this case only distances in the z direction
matter. Hence the diffracted amplitude corresponding to the first term in eq. (19.6) is

A(Sz) =
∑

n

(θn − θn+1) exp (i Sznd), (19.8)

where d is the interlayer spacing in the z direction, normal to the surface. Evaluating
this amplitude at Sx = 0, but without yet performing the convolution with an instrument
response function, means that the result is only true for a perfect detector. At the out-of-phase
condition, Szd is equal to a half-integer multiple of π , so that

I =
∣
∣
∣
∑

n

(θn − θn+1)(−1)n
∣
∣
∣
2
, (19.9)

which only depends on layer coverages. It does not depend on the island sizes, since, given
a perfect detector, making a measurement at Sx = 0 corresponds to infinite correlation
lengths. In fact for an infinite system there would be a sharp dip in the disorder (i.e. step-
density) term in eq. (19.6). But since neither is the system infinite nor is there a perfect
instrument response, this minimum is not seen and the total intensity at Sx = 0 is the result
in eq. (19.9) plus a term proportional to the step density. For a mean field model, in which
there is no island structure, eq. (19.9) by itself is sufficient. However, one must convolve
this result with an instrument response and broad part in all other cases, as indicated in
eqs. (19.4) and (19.6).

The result eq. (19.9) is still related to the interface width, but it depends on the particular
distribution. For a Gaussian distribution in which

θn = exp [−n2/(2σ 2)]

2σ
√

2π
(19.10)

and n = 0, 1, 2, . . . , one can evaluate eq. (19.9) numerically. Plotting the log of the intensity
vs the interface width σ , one obtains the result shown in Fig. 19.15, where it will be seen
that the expected form of eq. (19.6) holds when Sz is at an out-of-phase condition.

19.2.2 Experimental comparisons

To compare the kinematic results to measurement, Van Hove et al. (1983b) measured the
diffracted intensity from GaAs during growth at several angles and temperatures. The results



19.2 Kinematic theory 287

0 1 2 3 4
−1

0

1

2

3

4

5

s2
−l

n(
in

te
ns

ity
)/

p2

Figure 19.15 Numerical evaluation of eq. (19.9) to show its relation to interface width in the case of
a Gaussian distribution of layer coverages.
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Figure 19.16 Intensity oscillations measured at two different angles and temperatures. In the top panel
in-phase and out-of-phase intensity oscillations are shown. In the bottom panel higher-temperature,
more nearly two-layer, growth is shown by the cusp-like shape of the oscillations. Note the initial
increase for the bottom-panel data, suggesting a structural change at this higher temperature.

are given in Fig. 19.16, where the top panel show for comparison the in-phase and out-of-
phase measurements. The data were taken for growth on a near-singular GaAs(100) surface
at an azimuth of 7◦ from the 〈011〉 direction. Also shown for comparison, in the lower
panel, are the intensity oscillations at a higher temperature. Of note here is the cusp-like
nature at this higher-temperature, where one expects more perfect layer completion since
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Figure 19.17 Intensity oscillations vs angle of incidence for the growth of GaAs on GaAs(100). The
glancing angle of incidence on the ordinate corresponds to the starting value of each curve. The short
horizontal line segments are the zeros for the data sets.

the diffusion is higher. The kinematic theory predicts a similar, repeated (1 − 2θ )2 behavior
(as opposed to a sinusoidal one). Finally, note that the higher-temperature data show an
initial increase in intensity, perhaps due to a change in reconstruction upon the initiation of
growth.

A more extensive measurement by Pukite et al. (1987b) examined diffraction from GaAs
and from Ge vs angle shown in Fig. 19.17; this data may be compared with the two-level
result shown in Fig. 19.18. These data of Pukite et al. were measured during the growth of
GaAs on GaAs(100) with the electron beam directed along an azimuth that was 7◦ from the
〈010〉 direction. At this azimuth, a minimal number of diffracted beams are strongly excited,
and the diffracted specular beam is strong, so that multiple scattering should be reduced.
The oscillations are weak at 43, 66 and 83 mrad, which are near in-phase conditions, and
they are strong at angles corresponding to out-of-phase conditions. In the figure, the starting
point of each set of oscillations corresponds to the glancing angle, given on the ordinate;
the short horizontal line lying below the end of a set of oscillations is the zero for that
data set.

A more quantitative view is given in Fig. 19.18, where the ratios of the first intensity
minimum and the second maximum of the data of Fig. 19.17 are plotted as triangles vs ϑi.
This definition of the ratio removes the importance of the initial transient, which might be
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Figure 19.18 The measured ratio of the first intensity minimum to the first maximum for the data
of Fig. 19.17 (triangles) and a calculation for a two-level system using kinematic theory (solid line)
(Pukite et al., 1987b).

partly due to a structure change, and allows direct comparison with calculation. When the
ratio is near unity the oscillations are weak, and when the ratio is small the oscillations are
strong. Figure 19.18 shows that the qualitative explanation in terms of in-phase vs out-of-
phase conditions works well. Further, if we assume that in this initial growth regime only
two layers are involved in the diffraction (near-perfect layer growth) then, from eqs. (19.4)
and (19.5), the ratio of the first intensity minimum (at half coverage or θ = 1/2) and the
next maximum (full coverage or θ = 1), including the angle dependences, is

1

2
[1 + cos(2kdθi)] + 1

2
[1 − cos(2kdθi)]

λI

λ + λI
, (19.11)

where λI/(λ + λI) = 0.2 is used to fit the data. Expression (19.11) is plotted as the solid
curve in Fig. 19.18. The value 0.2 for the fitting parameter would imply that the width of
the disorder component of the beam is about four times that of the instrument, assuming
Lorentzian peak shapes. Apart from this one, reasonable, fitting parameter there is no other
adjustment to the data. The main dependences of the data are reproduced, although there
is a measurable shift at low glancing angle and the magnitude of the first maxima is lower
than calculated. A similar comparison was made for the growth of Ge on Ge(100). In this
case the comparability is even better, no shift of the minimum being apparent (Pukite et al.,
1987b).

These data show that kinematic theory can explain some features of the measured data.
These include the shape when the intensity oscillations exhibit layer completion and the
glancing-angle dependence. Also kinematic theory can account for some changes in profile
during growth. However, it cannot account for the appearance of intensity oscillations at
in-phase conditions, the azimuthal or glancing-angle dependence of the phase, the initial
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increase in the intensity oscillations apart from a structure change and the fact that the
profile is not constant during growth.

There are two ways in which the intensity oscillations can reach a steady state. The first
way occurs if the central spike decays to a small value when the interface width is large.
Then the second term in eq. (19.6), the step-density broad function, dominates and gives
the diffracted intensity. This would correspond to a decay in the intensity oscillations to a
flat baseline. The second way of reaching a steady state is when new islands appear at a
rate that balances the loss (coarsening) of old islands. In this case the steady-state diffracted
intensity will be greater than the disorder component alone. The intensity oscillations will
have a peak envelope and a baseline that decay and rise, respectively, to some intermediate
value. These different types of envelope are seen in Fig. 19.9 and also in Fig. 19.4, where in
the latter case the higher diffusivity on the (110) surface increases the competition between
nucleation and step flow.

19.3 Phenomenological step-density models

If the step at the edge of a two-dimensional island scatters intensity out of the diffracted
beam then one would expect the diffracted amplitude to decrease according to the perimeter
of any islands (and subsequent holes) that appear during layer-by-layer growth.

A treatment might start by assigning different cross sections to a very small cluster and
to the edge of an island. Then during growth one would need to determine the distribution
of small clusters and island edges. This would need to be modified when the layer became
nearly full, so that now a small hole looks perhaps like a small cluster. In a treatment that
complemented their kinetic Monte Carlo calculation simulating GaAs growth, Shitara
et al., 1992a modeled the growth of GaAs using a function that treated the scattering as
dependent of the number of nearest neighbors. For the step density they used (Shitara et al.,
1992a)

S(t) = 1

L

∑

i, j

[
2 − δ(hi, j , hi+1, j ) + δ(hi, j , hi, j+1)

]
, (19.12)

where L is the number of sites, δ(hi, j , hi ′, j ′ ) is the Kronecker delta function, (i, j) are the
coordinates of a surface atom and h(i, j) is the height of an atom at (i, j). They compared
1 − S, calculated by a kinetic Monte Carlo method, with the measured RHEED intensity
oscillations, as shown in Fig. 19.19. They chose to do the comparison at an in-phase angle in
order to minimize kinematic interference and used their kinetic Monte Carlo method to cal-
culate the RHEED intensity at a number of different substrate temperatures. They compared
the calculation using eq. (19.12) with the measurements. Comparison of the measurements
and this phenomenological model enabled them to draw compelling conclusions.

The step-density calculation is expected to be a more reasonable approach than any
kinematic model when the islands are small, since then those multiple scattering effects
neglected in the kinematic model are probably overwhelming. As the islands become larger,
and the step edges are a proportionately smaller fraction of the islands, the step density
will matter less. Further, kinematic comparison cannot be even attempted at the in-phase
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Figure 19.19 On the left, measured RHEED intensity oscillations from GaAs(100); on the right, a
step-density calculation in a kinetic Monte Carlo method. The experimental deposition rate of Ga was
0.75 ML s−1; the As/Ga ratio was 2.3. In the simulation, ES = 1.58 eV and EN/ES = 0.15 (Shitara
et al., 1992b).

condition chosen here, since the only kinematic contribution would be via multiple scattering
from other beams where the diffraction condition is not in-phase.

One difficulty with models that treat only morphological variations, as opposed to changes
in interference, is the neglect of strong diffraction variations. As an example, Fig. 19.20
shows measurements for a GaN(0001̄) surface in which the azimuth was changed by a few
degrees from a symmetry direction. Just a few degrees’ difference change whether the initial
intensity increases or decreases, to such an extent that a minimum in the intensity for one
curve is nearly a maximum in the intensity for another. Neither a step-density model nor a
kinematic model would predict such a variation. There could be some azimuthal dependence
to the step-edge scattering cross sections, but increases in the diffracted intensity are difficult
to account for without invoking a structure change or multiple scattering effects. Similary,
a variation in the glancing angle can cause a shift in the times at which peaks in the
intensity oscillation occur, as shown in Fig.19.21. In this case, on changing the glancing
angle from 17 to 28 mrad the change in the diffracted intensity upon the initiation of growth
goes from a decrease to an increase. The latter, of course, cannot be explained simply
by a kinematic theory but would require a dynamical effect. Finally, the magnitude of the
intensity oscillations is very different for different diffracted beams. For example Fig. 19.22
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Figure 19.20 Measured intensity oscillations on a GaN(0001̄) surface at three different azimuths for
the (00) beam; Tsub = 600 ◦C, FGa = 4 ML s−1, PNH3 = 1 × 10−5 torr. The phase can change though
the main envelope in this case is relatively unchanged (Benjaminsson et al., 2004).
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Figure 19.21 Intensity oscillations from GaAs(100) at two different glancing angles. T = 580 ◦C;
PAs4 = 2 × 10−6 torr. For the 17 mrad data, the intensity increases upon growth initiation. The maxima
do not occur at the same growth times.

shows the measured intensity oscillations from GaAs under the same growth conditions and
incident angle but for a (00) beam and a quarter-order fractional beam. One can see that
even though the morphology variation is the same, the change in diffraction conditions
produces a large change in oscillation amplitude. This is particularly interesting since one
expects the fractional beams to be very surface sensitive; it might be that random phase shifts
between the starting points of the reconstruction on different terraces causes the intensity
from the different terraces to add incoherently. In short, if in fitting step-density variations
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Figure 19.22 Comparison of intensity oscillations for GaAs(100) measured at the same incident angle
for the specular beam (upper curve) and the (01/4) beam (lower curve; the intensity has been scaled
up by a factor 10). It can be seen that the oscillation amplitudes are very different. ϑi = 28 mrad;
PAs4 = 2 × 10−6 torr.

to experiment one changes a parameter then one needs to be careful that all that is left is
morphological variation.

Orr (1993) and Stroscio et al. (1993) attempted to compare the minima of RHEED in-
tensity oscillations with scanning-probe-microscope images of the surface. It is not entirely
clear how to interpret these measurements since the positions of the minima depend upon
the scattering geometry; however, they did show an indication of the role of the step density.
However, it is difficult to base a particular model of the diffraction on these snapshots, par-
ticularly since both the step-edge scattering models and the kinematic models involve the
step density at the diffraction minima. But in the main one expects the half-coverage con-
ditions to be those of maximum roughness. Comparisons of the intensity maxima with the
step-density and layer-coverage models by Stroscio et al. were inconclusive. An important
result of Orr’s was that after a long time the oscillations die out because the step density
has reached a steady state. It is not clear whether using the intensity oscillations to measure
the growth rate precisely, then quenching at a minimum and choosing an angle that gives a
phase zero is more than just going to where one expects the step density to be highest, at
half-layer deposition.

19.4 Step density with shadowing

One can extend the phenomenological analysis of eq. (19.12) to include the step-edge
scattering in a more rigorous diffraction framework. The basic method is to reduce the
specular-beam amplitude that strikes the remainder of the crystal by an amount that depends
on the step density. Korte and Maksym (1997) calculated the effects of step densities on
RHEED intensities with the dynamical theory. They used a one-dimensional periodic terrace
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array with constant overlayer coverage. Their results showed that the intensity increases
initially on increasing the step density. It is not expected from the phenomenological step-
density model that the intensity decreases on increasing the step density, but this is expected
from the dynamical diffraction effects of electron scattering on the surface, as will be
described in Section 19.6.

In this section we take the shadowing effects of the electron beam by the step edges into
account (Lehmpfuhl et al., 1991). For simplicity, one-dimensional regular arrays of steps
are considered. Figure 19.23 illustrates this shadowing effect: electrons passing through
step edges are scattered into different directions, out of the specular reflection. Therefore
the step edges reduce the amplitude and intensity of the specular beam. In the figure, L is
the period of the step array, l is the length of the upper terrace in the period, l0 is the length
of the lower terrace, where l0 = L − l, and lstep is the region of the electron beam shadowed
by the step. Actually the value of L can be taken as the mean distance between terraces.
The step density nstep is simply given as nstep = 1/L . For low nucleation densities the value
of L becomes large, and for high nucleation densities L becomes small.

Discussing the shadowing effect by steps, we divide the case into two categories: in
the first, L is larger than three times the shadow region, L > 3lstep and in the second,
L < 3lstep. The first and second categories are shown in schematically in Figs. 19.23 and
19.24, respectively.

For the first category, L > 3lstep, corresponding to lower nucleation densities, the upper
terraces are larger than the shadow region, l > lstep, and the lower terraces are larger than
twice the shadow region. l0 > 2lstep, In this case, the incident and reflected electron beams
are simply shadowed by the steps. In this case the peak intensity of the specular beam, I , is
given as

I ∝ |l + (L − l − 2lstep) exp(2i�d)|2. (19.13)

where � is shown in Fig. 4.3 and d is the step height.

l l

L

step
l0

Figure 19.23 Schematic illustration of shadowing.

l
L

lstep

Figure 19.24 Schematic drawing of shadowing for l < lstep and lstep < L − l < 2lstep. The broken
arrow is a reflected beam which is negligibly weak.
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The first term inside the verticals is the amplitude of reflection of electrons by the upper
terraces and the second term is the amplitude with the phase shift by the path length from the
lower terraces. Here we assume that electrons in the shadowing regions do not contribute
to the reflected intensity.

Now we define the coverage, θ , of the upper layer as θ = l/L and that of the shadowing
region as θstep = lstep/L . Then we obtain the intensity eq. (19.13) as

I = |θ + (1 − θ − 2θstep) exp(2i�d)|2, (19.14)

for θ > θstep and θstep < 1/3. At the Bragg condition 2�d = 2π , eq. (19.14) becomes

I = (1 − 2θstep)2. (19.15)

Since θstep = lstep/L and 1/L is the step density, as 1/L = nstep, θstep = nsteplstep. Therefore
the intensity decreases with increasing step density nstep. At the off-Bragg condition, 2�d =
π , the intensity becomes

I = [1 − 2(θ + θstep)]2. (19.16)

When the step density is very low, θstep � 1, eq. (19.14) gives the same formula as the
kinematical approach.

For l > lstep and l0 < 2lstep, the electron beam does not enter the lower terraces, which
are blocked by steps. Therefore the incident beam is reflected only by the upper layers, and
the intensity is given as

I = |θ |2. (19.17)

When the sizes of the upper terraces are smaller than the shadowing region, l < lstep, part
of the electron beam passes through the islands. Taking the transparency of the electron
beam for an island as T (θ ), we obtain the intensity as

I = |θ + (1 − θ − 2θstep) exp(2i�d) + 2T (θ ) (θstep − θ ) exp(2i�d)|2, (19.18)

for l0 > 2lstep. The transparency T (θ ) is approximately given as

T (θ ) = exp(−µθ L) exp(2π iλU0θ L/2),

where µ, λ and U0 are the absorption coefficient, the electron wavelength and the reduced
mean inner potential, respectively. In T (θ ), there is a factor corresponding to the phase shift
of the electron wave.

For the second category, the higher-step-density case, when l < lstep and lstep < l0 <

2lstep, shown in Fig. 19.24, the intensity becomes:

I = |θ + 2T (θ )(θstep − θ ) exp(2i�d)|2. (19.19)

Since the transparency T (θ ) includes a factor involving the phase shift of the electrons,
it results in dynamical diffraction effects such as the phase shift and oscillation doubling
of the RHEED oscillations, as described in Section 19.6. These dynamical effects are the
same as the effects discussed by Korte and Maksym (1997).
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Figure 19.25 Oscillation curves for constant L and θstep = 0.2. (a) Off-Bragg case; (b) on-Bragg case.
The arrows indicate the coverage θ = 1 − θstep.

In order to examine only the shadowing effects, we simply take T (θ ) = 0 for finite l in
eqs. (19.18) and (19.19). This means that the dynamical diffraction effects are neglected, and
in this case we are able to use eqs. (19.14) and (19.17). First, we consider the case of constant
step density. When L is constant, the step density is constant. For the off-Bragg case, the
curve becomes as shown in Fig. 19.25a. For higher coverages, at which the coverage of
the lower terraces, 1 − θ , becomes less than θstep, the intensity is given from eq. (19.17)
as I = θ2. The coverage θ = 1 − θstep is indicated by the arrows in Fig. 19.25. For lower
coverages the curve is given by eq. (19.14). At zero coverage, zero, T (θ ) is unity. When
the shadowing regions are small in comparison with the terrace regions, i.e. θstep � 1, the
curve is nearly the same as that obtained by the kinematical approach.

For the on-Bragg condition, the curve is shown in Fig. 19.25b. At the lower coverages, the
intensity decreases quickly at the initial stage and then becomes constant at 1 − 2θstep. For
coverages higher than that indicated by the arrow, the intensity is proportional to the square
of the coverage given by eq. (19.17). For the large step-density case, RHEED intensity
oscillations are observed at any diffraction conditions including both off-Bragg and on-
Bragg ones.

Next we consider how the step density changes during growth. When l is constant, the step
density increases with increasing coverage. In this case, the intensity is also proportional
to θ2 for coverages higher than θ = l/(l + 2lstep); this coverage is indicated by the arrows
in Fig. 19.26. For the lower coverages, the coverage and the area of the shadow region are
both proportional to the step density. Then θstep = (lstep/ l)θ . Since T (θ ) = 0, we can use
eq. (19.14) for coverages less than l/(l + 2lstep).

For the off-Bragg condition, I = 1 − 2(1 + (lstep/ l)θ 2. The curve is shown in Fig.19.26a
for lstep = l.

For the on-Bragg case, I = [1 − 2(lstep/ l)θ ]2, and this equation applies only for coverages
lower than l/[2(l + lstep)], indicated by the arrow in Fig. 19.26b. For example, when lstep = l
this equation is used for coverages Lower than 1/3. When the shadow regions are small
enough that lstep � l, the curve becomes the same as that of the kinematical approach.

Thus in this case, when the shadowing effect is negligibly small, lstep � L or θstep � 1,
the RHEED oscillations are evaluated by the kinematical approach. If, however, the islands
are not transparent for electrons, the RHEED intensity oscillation is obtained by kinematical
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Figure 19.26 Oscillation curves for constant l = lstep. The coverage is proportional to the step den-
sity nstep, since θ = nstepl. (a) Off-Bragg case; (b) on-Bragg case. The arrows indicate the coverage
θ = l/(l + 2lstep).

treatment with the inclusion of shadowing effects. When the step densities are high and the
islands are transparent, the role of T (θ ) become significant and the phase shift of the electron
waves should be taken into account. In this case RHEED intensity oscillations are analyzed
by the dynamical approach. This effect will be described in Section 19.6.

19.5 Rate-equation models of epitaxy

To obtain a simple comparison of features of the intensity oscillations we will develop
rate-equation models of growth that can be used for either singular or vicinal surfaces. We
will obtain kinematic results in this section; in the next we show how dynamical effects
can explain the observed phase shift and frequency doubling. The model is exceedingly
simple; nearly any reasonable assumptions that allow islands to nucleate and coalesce will
produce RHEED intensity oscillations. The model shows that the key features are in how
the layers are completed.

Near-singular surface

Let θn be the coverage of atoms on the nth layer of a crystal surface. We will require there
to be no overhangs (solid on solid), so that the fraction of uncovered area on layer n is

cn = θn − θn+1, (19.20)

such that θ0(t) = 1, θn(t) = 0 for n > 0 and θ∞(t) = 0. The time required to deposit a
monolayer of atoms is τ . The rate at which atoms directly impinge on the nth layer is
cn−1/τ and, in addition, atoms diffuse from one layer to another. For further simplicity we
assume that the atoms in the sample temperature is low enough that there is no desorption.
We assume also that the atoms in the uncovered fraction, cn , have the possibility of being
mobile and that some diffuse to the layer below and some to the layer above. Then the rate
change of the coverage of the nth layer is

dθn

dt
= θn−1 − θn

τ
+ αn

τ
(θn − θn+1) − αn−1

τ
(θn−1 − θn), (19.21)

where αn describes the way in which atoms from one layer can move to another. This is a
mean field model. A simple description of transport between the layers was given by Arrott
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dn+1

dn

Figure 19.27 Once an atom is mobile, it will be free to choose whether to incorporate into the (n + 1)th
layer again or to diffuse and incorporate into the nth layer.

(Cohen et al., 1989). Let dn(θn) be the perimeter of the islands and holes in the nth layer.
Then one might expect that

αn = A
dn(θn)

dn(θn) + dn+1(θn+1)
, (19.22)

so that a highly mobile adatom, which incorporates at step sites, chooses in which layer to
incorporate according to the ratio of the free perimeters. This is illustrated in Fig. 19.27.
For example, an adatom on the nth terrace would more likely to hop down a level and
incorporate into the nth level if the free perimeter in the nth level were larger than that in
the (n + 1)th level. With definition (19.22), if A = 0 there would be no hopping between
layers and if A = 1 then one layer would not start until the previous layer was finished.

Assuming that for a less than half filled surface there is a fixed number of clusters, each
with the same perimeter, and that for a more than half filled surface there is a fixed number
of holes, each with the same perimeter, we could choose

dn(θn) =
{

θ
1/2
n for θn < 0.5,

(1 − θn)1/2 for θn > 0.5,
(19.23)

or, as a generalization of this,

dn(θn) =
{

θ
p1

n for θn < θc,

(1 − θn)p2 for θn > θc,
(19.24)

with θ
p1

c = (1 − θc)p2 ; θc is a parameter that can be varied.
These simple rate equations forming the Arrott model are highly non-linear but are easy

to integrate numerically. The resulting θn(t) are shown in the top panel of Fig. 19.28 for the
case A = 0.98, p1 = 0.75, p2 = 0.5 and θc = 0.57. In the figure, one can see that the first
curve increases with a slope equal to 1/τ and does not deviate from this until the second
layer begins to form. Near layer completions there is minimum roughness on the surface
and in between there is clearly maximum roughness. The kinematic diffracted intensity
is shown as the solid curve in the bottom panel. It damps slightly but is otherwise nearly
sinusoidal, the maxima being near layer completions. For comparison, using the Arrott
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Figure 19.28 The top panel shows the layer coverages calculated using the Arrott model. In the lower
panel, both the out-of-phase kinematic intensity and the approximate result exp (−π2σ 2/2) are shown.
In this case, where there is a relatively smooth surface, the peaks and the envelope accurately follow
the interface width. The baseline goes to zero where the disorder is far from Gaussian. If this were not
mean field, and there were a step density, then additional terms should be considered, with a baseline
that reffects that step density.

model we can calculate the layer coverage and then the interface roughness from

σ 2 =
∞∑

n=0

(n − t/τ )2(θn − θn+1), (19.25)

to obtain the results shown in Fig. 19.28, where the broken curve, following eq. (18.42), is
given by

I = exp(−π2σ 2/2). (19.26)

One can see that the peaks of the intensity oscillations, where the surface is relatively
smooth, are accurately described by the expected dependence of the kinematic intensity on
interface width.

Vicinal surface

On a vicinal surface oscillations are observed if adatoms can nucleate on a terrace, changing
the surface morphology. If there is pure step flow, with no terrace nucleation, there would
be no change in surface roughness and no change in the diffracted intensity. In the former
case the decay is expected to tend toward a steady-state value in which islands are nucleated
at the same rate at which they are lost by the coarsening process. The result is that the
intensity oscillations will have a different form – not only will the maxima decrease but
also the baseline of the intensity oscillations will rise, since the roughness will now be less
because some of the islands will be part of the staircase on the surface.



300 RHEED intensity oscillations

The basic form can be seen by solving the time-dependent Burton–Cabrera–Frank (BCF)
equations in a moving frame of reference (Ghez and Iyer, 1988). The results show that the
steps do not move at a steady velocity but, rather, very slowly at first; then, as a layer is
completed, they move rapidly across the surface. The model also confirms that the period
of the intensity oscillations is unaffected by the steps; only the amplitude is affected.

In a moving frame of reference, going at the same velocity as a step, one can solve the
BCF equation (Ghez and Iyer, 1988; Voigtländer et al., 1986)

∂n(x, t)

∂t
= D

∂2n(x, t)

∂x2
+ v(t)

∂n(x, t)

∂x
+ 1

ατ
, (19.27)

where D is the diffusion parameter, n(x, t) is the density of adatoms per unit length in the
moving reference frame, a is the separation between sites and τ is the monolayer formation
time. This can be solved numerically (Petrich et al., 1989, 1991) using

v(t) = aD

(
∂n(0, t)

∂x
− ∂n(L , t)

∂x

)

. (19.28)

The solution is a distribution of mobile adatoms that is skewed by the moving step. At t = 0
the distribution n(x, t) starts from zero and then increases slowly but symmetrically across
the step. Since n(x, t) is fixed at zero at x = 0 and x = L , there is a gradient that feeds the
steps, causing them to move. As steps move there is a pile-up of mobile adatoms near x = 0
and only a few adatoms at x = L , where a new surface is being created. This continues until
a steady-state is reached. For moderate diffusion the steady-state distribution approaches
1/a near x = 0 and falls linearly to zero at x = L . At this point, convective motion of the
steps is balanced by surface diffusion of the mobile adatoms. The Fourier transform of this
adatom distribution n(x, ∞) at the appropriate diffraction geometry gives the steady-state
intensity. To arrive at this value, the distribution n(x, t) undergoes a transient behavior that
gives intensity oscillations.

A calculation of this Fourier transform is shown in Fig. 19.29 using the parameters given.
The main point is that the shape of the intensity oscillations is distinctly different from that
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Figure 19.29 The solution to Eqs. (19.27) and (19.28) using D = 125a2, L = 75a and τ = 1 corre-
sponding to intensity oscillations from a vicinal surface. Clustering is not included.
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expected for a singular surface. In the present case both the maxima and minima decay
to a steady-state value. In the steady state, the newly deposited adatoms match the step
flow.

19.6 Phase shift and frequency doubling

As described in previous sections, the kinematical and shadowing approaches predict that the
RHEED oscillations are always at the in-phase condition and so the phases of the oscillations
are not changed by the diffraction conditions. There is however, some experimental evidence
for phase shifts of oscillations that do depend upon the diffraction conditions. The results
of Van Hove and Cohen (1982) showed intensity oscillations that initially increased or
decreased, depending on the glancing angle of incidence. Zhang et al. (1987) were the
first to make systematic measurements of the phase shift of the oscillations as a function
of angle. Mitura et al. (1992) reported that extra maxima in RHEED intensity oscillations
are observed during the growth of the alloy Pb-35% In(111) on the same substrate, as
shown in Fig. 19.30. These phenomena cannot be explained by the kinematic diffraction
approach described in the previous sections. Peng and Whelan (1990) explained the phase
shift by dynamical calculations at the one-beam condition. Mitura and coworkers (Mitura
and Daniluk, 1992; Mitura et al., 1992) explained the effect of the extra maxima in the
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Figure 19.30 RHEED intensity oscillations during the growth of Pb-35%In on the same substrate.
Extra maxima are observed in the oscillations. The incident beam direction is 〈110〉. (a), (c) Calculated
curves at glancing angles 0.30◦ and 0.45◦. (b) An experimental curve at a glancing angle 0.35◦ for
20 keV electrons (Mitura et al., 1992).
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Figure 19.31 Fast electrons pass through many islands at a low glancing angle of the incident beam.

γk1
d

Substrate

1st 
growing layer

K

Figure 19.32 Interference between electron beams reflected from the top and bottom faces of the first
growing layer. The broken lines indicate the two paths of the electron beams between which there is
a phase difference.

RHEED intensity oscillations, called frequency doubling, by dynamical calculations taking
for the grown layers the proportional-potential model θV (r ), where θ is the coverage and
V (r ) the potential. Using the phase shifts of the electron waves in a simple average potential
for each uncompleted growing layer, Horio and Ichimiya (1993) explained these phenomena
qualitatively. Braun (1999) investigated in detail the phase shifts and the oscillation doubling
for AlAs(001) and GaAs(001) surfaces.

In this section, first we explain the phase shift and frequency doubling using the simple
potential model. Then we show that the results of the simple potential model are very similar
to those of the proportional-potential model. Braun (1999) also calculated the RHEED
intensity oscillations from GaAs(001) surfaces and found very good agreements between
calculations and his experimental results.

Now we consider a very simple potential model for a growing layer. We assume complete
layer-by-layer growth. For MBE growth with a high nucleation density, fast electrons pass
through many islands on the surface at the RHEED conditions with low glancing angles,
as shown in Fig. 19.31. Assuming the one-beam condition, we can treat the potential of
the growing layer using an average potential proportional to the coverage θ . The average
potential is therefore given as θV0, where V0 is the mean inner potential of the grown layer.
Figure 19.32 shows schematically the electron reflection at the top and bottom faces of the
first growing layer.

We write the surface normal component of the incident wave vector in the growing
layer as

γ =
√

�2 + θU0, (19.29)
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Figure 19.33 Dependence of the phase difference �φ on the coverage of the growing layer for
Si(111) at several glancing angles for 10 keV electrons: (a) ϑi = 0.5◦; (b) ϑi = 1.0◦; (c) ϑi = 1.5◦;
(d) ϑi = 2.0◦; (e) ϑi = 2.5◦; (f) ϑi = 3.0◦.

where � is the surface normal component of the incident wave vector in the vacuum, so
that � = K sin ϑi, where ϑi is the glancing angle of the incident electrons, and U0 is given
as U0 = (2me/�2)V0. The phase difference �φ between the wave reflected at the top face
and that at the bottom face is given by

�φ = 2γ d, (19.30)

where d is the thickness of the layer. When �φ = 2nπ , where n is an integer, the reflected
waves from the top and the bottom faces are in phase, and they are out of phase for �φ =
(2n + 1)π . Using eq. (19.29), the relation between �φ and the coverage θ is given by

�φ2 = 4(�2
0 + θU0)d2. (19.31)

Therefore �φ2 changes linearly with the coverage. Figure 19.33 shows the dependence of
the phase difference �φ on the coverage θ of the growing layer at several glancing angles as
for the Si(111) case, for the 10 keV electrons. The phase difference increases with increasing
layer coverage from 0 to 1, while the phase difference in the kinematical approach does
not depend upon the layer coverage. In the case of the kinematical treatment, the intensity
oscillations arise from the difference in the reflection intensities of the upper and lower
terraces. In that case the minimum intensity is always expected at half coverage. For the
case of the dynamical treatment, the phase difference �φ and the reflectivity at the upper
and lower terraces depend on the coverage. Therefore the situation is very complicated.

Figures 19.34a, b show RHEED intensity oscillation curves at the one-beam condition for
the simple-potential model and the proportional-potential model, respectively for the Si(111)
without surface reconstruction. The in-phase and out-of-phase conditions are indicated
by the makers above and below the curves, respectively. The phase shift of the intensity
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Figure 19.34 RHEED oscillation curves for complete layer-by-layer growth, for 10 keV electrons.
Results calculated (a) by the simple-potential model, (b) by the proportional-potential model, for
Si(111). The markers above and below the curves indicate the in-phase and out-of-phase conditions,
respectively.

oscillations corresponds to the shift of the in-phase and out-of-phase conditions for various
glancing angles. At low glancing angles, such as ϑi = 0.5◦, the out-of-phase conditions
appear twice before layer completion, as shown in Fig. 19.33. This creates the frequency
doubling obtained in the curve at 0.5◦, shown in Fig. 19.34.

Comparing the oscillation curves for the simple-potential model (Fig. 19.34a) with the
curves for the proportional-potential model (Fig. 19.34b), we find that the former curves
are very similar to the latter ones. The maximum and minimum positions of the oscillations
are displaced a little from the in-phase and the out-of-phase conditions for both potential
models, owing to the boundary conditions at the top and the bottom faces. The characteristic
behaviors of phase shift and frequency doubling are, however, explained qualitatively by
the simple-potential model.

As an example one can apply this model to the data of Zhang et al. (1987). They measured
the time to the second minimum for intensity oscillations measured during the growth of
GaAs(100). The results of their measurement are replotted in Fig. 19.35. The thicker solid
curves show the coverage vs. angle of incidence, calculated from eq. (19.31) at the out-of-
phase condition �φ = (2n + 1)π between coverages 0 and 1. Since the measured coverage
is between 1 and 2 at the second minimum of the intensity oscillations, the calculated
curves are shifted to those for maximum coverage 1. The result calculated using the simple-
potential model is in quite good agreement with the experimental one at less than about 1.6◦

for [010] incidence. At glancing angles from about 1.5◦ to about 2.2◦ and from about 2.7◦

to about 3.6◦, the shaded regions in the figure, the out-of-phase conditions are not allowed.
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s

.

Figure 19.35 The time to the second minimum divided by the steady-state period, which gives the
coverage, was measured vs. incident angle for E = 12.5 keV. Triangles on the thinner solid curve,
[010]; crosses on the dotted curve, [1̄10]. These results may be compared with the calculation from
eq. (19.31) (thick solid curves) using �φ = 3π and 2mU0/�2 = 10 eV. Note that there can be an
uncertainty in whether the second or third minimum is being measured and so the data is plotted close
to θ = 1.5. The calculation is very sensitive to the inner potential used and shows only that the order
of magnitude of the measured phase shift can be accounted for (after Zhang et al., 1987). The shaded
regions are not allowed in the solution of eq. (19.31).

In these regions, indeed, oscillation minima are observed and plotted as the coverage at the
second minimum, but this simple assumption is not available in these regions. For [1̄10]
incidence, the calculation does not fit the experimental data. The phase shift increases with
increasing angle of incidence, while the calculated shift decreases with this angle.

In this incident direction, many fractional-order spots are observed. The interaction with
these diffracted beams shifts the phase of the intensity oscillations on the specular beam.
Therefore the disagreement between the calculated curves and the experimental results for
this direction is due to the many-beam diffraction effect. For a condition with fewer many-
beam effects, such as the one-beam condition, Braun et al. (1998b) measured the phase
shift for the [2̄10] incidence of GaAs(001) 2 × 4 and AlAs(001) c (4 × 4) surfaces. For the
GaAs surface, the result is shown in Fig. 19.36. In the figure, the thicker curves are the same
as those shown in Fig. 19.35. The coverage at the out-of-phase condition is nearly fitted on
the experimental plots. The broken curve is obtained from the coverage at the calculated
oscillation minimum using the simple-potential model. Although this calculated result is
in very good agreement with the experimental one, the results obtained at the out-of-phase
conditions also give a good interpretation of the phase-shift behavior.

19.7 Sinusoidal oscillations

The frequency doubling described in the previous section does not appear often, while phase
shifts of RHEED intensity oscillations are quite commonly observed in experiments. In most
cases, the RHEED intensity oscillations are nearly sinusoidal. This situation – sinusoidal
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ϑi  (deg)

Figure 19.36 The circles indicate the phase shifts measured for [2̄10] incidence on a GaAs(001) 2 × 4
surface (after Braun et al. (1998)). The thick solid curves were calculated using eq. (19.31) for 20 keV
electrons with a mean inner potential of 10.5 V. In the shaded region the equation has no solution.
The broken curve is that calculated by Braun et al. for the one-beam case.
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Figure 19.37 Surface growth modes using the birth–death model. The solid and broken lines indicate
the growing-layer coverage and roughness, respectively. (a) Nearly perfect layer-by-layer growth
mode, D = 3500. (b), (c) Multilayer growth mode: (b) D = 100; (c) D = 10.

oscillations without frequency doubling – can be explained by multilayer growth, using
the rate-equation model of epitaxial growth described in Section 19.5. (Weeks et al., 1976;
Cohen et al., 1989) Using this growth model, we can obtain the layer coverage for an
average thickness of grown layers. For D = 3500, where D is the diffusion parameter, eq.
(19.27), the growth mode is nearly perfect layer-by-layer growth, as shown in Fig. 19.37a.
In this case frequency doubling occurs, as seen in Fig. 19.34. For low D values, D = 100
and D = 10, upper-layer growth starts before the completion of the lower layer, as shown in
Figs. 19.37b,c; thus we have multilayer growth. Figure 19.38 shows calculated oscillation
curves for the proportional-potential model with diffusion parameter values D = 100 and
D = 10 from the rate-equation model. Although the growth mode for D = 100 shows only
a very small deviation from the perfect layer-by-layer mode, as seen in Fig. 19.37b, the
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(a) (b)

Figure 19.38 RHEED oscillation curves for multilayer growth calculated by the realistic potential
model for the Si(111) surface; (a) D = 100; (b) D = 10. The arrows below and above the curves
indicate the in-phase and the out-of-phase conditions, respectively.
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Figure 19.39 RHEED oscillation curves of intensity is thickness in BL, for multilayer growth calcu-
lated by the kinematic diffraction theory: (a) D = 3500; (b) D = 100; (c) D = 10. The value of the
glancing angle θ in curves (A) to (E) is 0.5◦, 1.0◦, 1.5◦, 2.0◦, 2.5◦, 3.0◦, respectively.

frequency doubling disappears in the oscillation curves shown in Fig. 19.38a. The small
deviation from perfect layer-by-layer growth leads to this disappearance of the frequency
doubling effect.

For the multilayer growth mode with D = 10 shown in Fig. 19.37c the frequency dou-
bling effect again does not appear. In the case of multilayer growth, the phase difference
of electrons scattered from each layer becomes nearly random. Various phase shifts at
each layer reduce the frequency doubling and lead to sinusoidal oscillations. For the kine-
matic diffraction case, multilayer growth also produces sinusoidal oscillations, as shown in
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Fig. 19.39. Therefore sinusoidal oscillations occur in most cases for deviation from perfect
layer-by-layer growth. When frequency doubling is observed in the oscillations, however,
the growth mode is nearly perfect layer-by-layer.

19.8 Comparisons with scanning probe measurements

Several groups have compared measurements of RHEED intensity oscillations with scan-
ning probe measurements. The diffracted intensity was measured during growth and then,
at various points in time, the sample was quenched to a temperature at which the island
distributions were frozen. Scanning tunneling microscopy (Orr, 1993, Fig. 19.11; Stroscio
et al., 1993) Fig. 8.11; (Bell et al., 2000) and atomic force microscopy (Orme and Orr, 1997)
were then used to determine the real-space structure of the surfaces. The advantage of this
approach to studying the time evolution of surface structure during film growth, of course,
is that interpretation of the real-space measurement does not require any assumptions on
periodicity and is not complicated by multiple scattering. However, each data point corre-
sponded to a measurement on a different sample and, although the samples were prepared
as identically as possible, only changes in the diffracted intensity from the different starting
surfaces could be compared. A main goal of these experiments was to compare the role of
step density and layer coverage in the measured diffracted intensity.

Orr (1993) examined homoepitaxy on GaAs(100). His STM measurements showed a
strong correlation between step density and the measured variation in RHEED intensity.
Stroscio et al. (1993) found for the growth of Fe on near-singular (100) Fe whiskers that
both the step density and the layer coverage correlated well with the RHEED intensity and
their contributions could not be separated out. Bell et al. (2000) examined the growth of
GaAs(100), (111) and (110) singular and vicinal surfaces. Quantitative comparison with the
RHEED intensity was difficult, but Bell et al. found that for singular surfaces both the step
density and the layer coverages showed similar oscillatory behavior. They pointed that for
vicinal surfaces, however, and for singular surfaces in which more than about three layers
were involved in the growth front, it was difficult to measure layer coverages since the base
layer was hard to identify.

From experiment we know (Neave et al., 1984) that the phase of the measured inten-
sity oscillations depends on scattering angle – both on the glancing polar angle and the
azimuthal angle of incidence. One advantage of the scanning probe measurements is that
this scattering-angle dependence does not complicate the interpretation. At the same time,
though, it might be unrealistic to expect either step-density or layer-coverage measure-
ments in real space to compare well with the measured RHEED oscillations. Given that
the intensity maxima are not at a layer completion, then some coupling of step density or
layer coverages with dynamical scattering must be expected. Further, a direct comparison
is difficult. These scanning probe measurements compared step density and layer coverages
separately and did not attempt to include the distinction, made in Chapter 18, that the kine-
matic intensity maxima depend on the the layer coverages or interface width and that the
minima depend on the step density. A better comparison would require determination of the



19.9 Complex oxides 309

relevant quantities over deposition of more than just a couple of layers but, as found by Bell
et al. (2000), this is difficult. A simple one-to-one correspondence of either step density or
layer coverages with the RHEED measurements in order to distinguish their separate roles
is therefore likely to be difficult to obtain.

Two important results of the scanning probe measurements affect the interpretation of
the RHEED measurements. First, Orme and Orr (1997) found that after some period of time
the surface step density in their measurements reached a steady state. This could happen
on regions of the surface that were either singular or vicinal. This meant that the decay in
the intensity oscillations could be the result of a transition in a pseudo-step-flow regime.
At some point in the growth, islands would form at the same rate as coalescence caused
separate islands to be lost. Since the surface morphology was on average not changing, there
would be no change in the diffracted intensity. The envelope of the RHEED decay on a
singular surface would mirror the transition to this pseudo-step-flow regime. In the RHEED
measurements it might be seen by reaching a steady-state intensity that was higher than
the first few minima of the intensity oscillations, giving an envelope in which the baseline
tends to rise rather than remaining constant.

Second, Orme and Orr (1997) found that, during growth, mounds developed that were
ascribed to the presence of a Schwoebel–Ehrlich barrier. When growth was interrupted these
mounds would disappear, and a smooth surface would be obtained. It could be that the two-
exponential recovery of the RHEED intensity observed by Yoshinaga et al. (1992) could
involve first a long-range smoothing to remove mounds and then a short-range smoothing
to minimize the remaining step and island disorder.

19.9 Complex oxides

RHEED intensity oscillations have been used with great success to control the growth of
complex oxides, for example, dielectric and ferroelectric oxides (Haeni et al., 2000, 2001),
high-temperature superconductors (Rijnders et al., 1997; Chandrasekhar et al., 1993) and
colossal magnetoresistive materials (O’Donnell et al., 2000). The overall intensity follows
the evolution of the morphology of a layer. For high-Tc materials an important success has
been their use at relatively high pressures in pulsed laser deposition experiments (Rijnders
et al., 1997). In these experiments, material is deposited during a laser pulse and then
annealed for a short time. There is a recovery process in which the adatoms react and
molecular units can diffuse (Achutharaman et al., 1994). The intensity during individual
pulses follows the annealing process. These MBE and pulsed-laser-deposition results show
much of the same behaviors seen in III-V semiconductors, even though these materials are
to some extent deposited in molecular units (Haeni et al., 2000; Chandrasekhar et al., 1993).
Once again the diffraction is difficult to interpret. As for the III-V results, there have been
reports of qualitative agreement with kinetic Monte Carlo calculations (Achutharaman
et al., 1994) of step density variations. There has not been extensive work but, again as
for the III-V semi conduction, there can be a strong scattering-angle dependence of the
intensities and positions of the maxima (Haeni et al., 2000) in at least some of these oxide
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Figure 19.40 Intensity oscillations for two samples during the growth of La1−x Srx MnO3 before and
after a thin insulating barrier was deposited on the samples. In sample 1518 there is more disorder
than in sample 1520, as seen by the more strongly damped oscillations. This disorder affects the
temperature and voltage dependence of the tunneling shown in the panel of four graphs on the right:
in the left-hand column, dV/dl in M� is plotted against temperature in K for each sample; in the
right-hand column, conductance G in �−1 × 108 is plotted against voltage in mV for each sample
(O’Donnell et al., 2000).

systems, illustrating that calculations based on dynamic diffraction theory are likely to be
essential.

The importance of careful control of the surface morphology during the growth of oxide
materials is illustrated by the properties of tunnel junctions formed by colossal magnetore-
sistive materials (O’Donnell et al., 2000). For example, as indicated by the strength of the
RHEED intensity oscillations in Fig. 19.40, more ordered films of magnetoresistive mate-
rial could be grown on a CaTiO3 barrier than on SrTiO3. The low-temperature variation in
resistance was very different, as seen in the right-hand panel where one can also see a cusp in
the more disordered film’s zero-bias conductance at 4.2 K. The disorder appears to quench
the magnetoresistance; O’Donnell et al. suggested that this is due to spin-depolarization by
barrier defect states.

More direct control of the stoichiometric growth of the Ruddlesden–Popper homologous
series SrTiO3 (Haeni et al., 2001) has been demonstrated. For the growth of these materials
by reactive MBE a fixed ozone flux is provided, along with sequential fluxes of Sr and Ti. The
cation fluxes are controlled and calibrated with a combination of RHEED, atomic absorption
spectroscopy (AA) and a quartz crystal microbalance. The main difficulty appears to be
that the AA signal for Ti, in this case, is weak so that control of better than 5%–10% is
not possible with conventional hollow cathode AA sources. Schlom’s group (Haeni et al.,
2000) developed a RHEED method similar to that used by Horikoshi et al., 1987. In the
case of STO, SrO and TiO3 were grown alternately and the RHEED intensity was measured
as shown in Fig. 19.41. The result differs from typical GaAs intensity oscillations since in
this case both the surface termination and the surface morphology can be changing. In fact,
on a vicinal surface in which there is step flow and no change in step density, an alternating
termination with different diffracted intensities could by itself produce intensity oscillations.
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Figure 19.41 Intensity of the central portion of the (00) streak during the growth of SrTiO3 by MBE.
While the ozone flux is held fixed, strontium and titanium monolayers are deposited sequentially. If
the titanium flux is increased then the peaks are seen to decay in time. If the titanium flux is decreased
then the intensity maxima increase with time and can show a slight double peak (Haeni et al.,
2000).

What was observed (Haeni et al., 2000) was that the envelope of the intensity oscillations
as well as the time for deposition of a monolayer of SrO could be used to determine the
conditions for stoichiometric growth.

As shown in Fig. 19.41, when the Sr shutter is opened and a layer of SrO is grown, there is
an increase in the diffracted intensity. After the Ti shutter is opened, the diffracted intensity
decreases dramatically. It was found that if the Ti flux were increased or decreased by as
little as 1% of a ML, the envelope of these intensity oscillations would decrease or increase
by a measurable amount. In addition, away from stoichiometry small additional peaks could
sometimes be observed, at the minima or in the form of double-peaked maxima, depending
on the scattering angle and perhaps on the sample miscut.

This technique was also be used to control the doping level of La or Ba in SrTiO3 (Haeni
et al., 2000). First the Ti dose was determined; then the Sr shutter time was reduced and
both the Sr and dopant shutters were opened simultaneously. By monitoring whether the
envelope of the diffracted intensity changed or remained constant, Haeni et al. were able to
determine whether sufficient dopant and Sr fluxes were being provided.

Finally, if the Sr : Ti flux was correct, but if less than or more than an exact ML was pro-
vided on each cycle, beats in the intensity oscillations were observed, as seen in Fig. 19.42.
Here, stoichiometric SrTiO3 was deposited but with each shutter cycle set at 0.9 ML. Similar
beating was observed with shutter cycles set to deposit a little more than 1 ML. The beats
were seen in both (00) and (01) streaks; the central spike, the diffuse wings and the integrated
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Figure 19.42 Integrated intensity of the (10) streak during the sequential growth of SrTiO3, 0.90 ML
of each cation being supplied during each shutter cycle. The beats are not observed when exactly
1 ML is supplied in each cycle (Haeni et al., 2000).

intensities exhibited similar features. Shown in Fig. 19.42 is the integrated intensity from
the (10) streak (Haeni et al., 2000).

19.10 Conclusion

Since RHEED intensity oscillations were first reported in 1981 they have been used for
growth-rate measurements and to determine the conditions at which there are transitions
between step-flow and island-growth modes. No use has yet been made of their envelope
to develop a quantitative measurement of the evolution of layer morphologies. Comparison
with experiment indicates that the layer-coverage values dominate many of the measured
features, suggesting that kinematical treatments, when using off-symmetry azimuths and
glancing angles away from resonances, might be appropriate if the island sizes are relatively
large, but this is unlikely for most materials. Empirical comparisons of measured intensity
oscillations with kinetic Monte Carlo calculations seem to work well but real-space measure-
ments of layer coverages and step densities yield similar results. Thus, though some features
can be explained by kinematic analysis, and impressive agreement with phenomenological
step-density models has been obtained, we believe that a complete understanding requires
the dynamical treatment of disorder – there is simply no reason why either step-density
variations or kinematical analyses should be able to explain the phase shifts or extra features
that are usually observed as a function of scattering angle. Dynamical calculations indicate
that layer coverages should dominate, but a complete treatment has not been possible except
for mean field models. As a consequence, the amplitude of the intensity oscillations cannot
be confidently interpreted.
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During epitaxial growth, these measurements are nevertheless quite useful. One can
accurately measure the growth rate if the film is not too defected. However, the position of
the intensity maxima typically does not correspond to the times at which layer completions
occur. Though the diffracted beams are narrowest at layer completions, this is more a
difficult measurement for accurate control of superlattice growth. The transition from island
nucleation in layer-by-layer growth to step-flow growth can be determined by examining the
decay of RHEED intensity oscillations and one can determine the directions of fast and slow
diffusion (or step-edge attachment). On flat surfaces it is possible to measure sublimation
rates and changes in growth rate due to sublimation. The result is a very sensitive growth-rate
monitor, since the net deposition is determined.

Incredibly powerful, simply measured, the time evolution of the diffraction when inter-
preted with great care provides great insight into the growth process. The main caution is
that any interpretation in terms of growth kinetics or surface processes must hold indepen-
dently of the scattering angle. Without an examination of this angular dependence, most
diffraction measurements are suspect.



Appendix A: Fourier representations

Result A.1 (Fourier integral) A wide range of functions (Latta, 1983) can be
represented as:

f (r) =
∫ ∞

−∞
dk f̂ (k)eik·r,

where the Fourier coefficients are given as

f̂ (k) = 1

(2π )3

∫ ∞

−∞
dr f (r)e−ik·r. (A.1)

Result A.2 (Delta functions) The Dirac delta function has the following representation:

(2π )3δ(k − k0) =
∫ ∞

−∞
dr e(k−k0)·r, (A.2)

and the Kronecker delta has the representation

δri ,r j = 1

N

∑

k

eik·(ri −r j ),

where the sum over k has a finite range.

Proof of A.1 To prove the continuous result one adds a convergence factor to the integral,
exp(−|ε||x |), and takes the limit ε → 0. The resulting one-dimensional integral has the
value 2π .

In the discrete case, we take periodic boundary conditions for each crystal side, of
length Ni , and examine the sum over k-vectors in the first Brillouin zone. Then
kx = 2πnx/Nx , where nx = 0, 1, 2, . . . , Nx − 1 and ky and kz are given similarly, so that,
if N = Nx Ny Nz ,

∑

k

eik·(ri −r j ) = Nδri ,r j ,

where the sum is over a finite number of k-vectors and N is the number of terms in the
sum.

314
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Proof of A.2 Since the exponentials separate, we can examine the one-dimensional case.
The sum in the x direction becomes

nx =Nx −1∑

nx =0

exp [i2πnx (x j − xi )/Nx a] =
nx=Nx−1∑

nx=0

{
exp [i2π ( j − i)/Nx ]

}nx
.

We note that j − i must be an integer; call it s. Then the sum is a finite geometric series
with sum given by

1 − ei2πs

1 − ei2πs/Nx
.

Since s is an integer, the numerator is zero and the ratio is zero unless s = 0. In the latter
case, as s → 0 the ratio goes to Nx , giving the above result.

Result A.3 Let {ri } be the set of N vectors of an nearly infinite periodic lattice. Then

1

N

∑

i

eiS·ri =
∑

G

δS,G (A.3)

where G is a reciprocal lattice vector.

Proof of A.3 As before, with r = n1a1 + n2a2 + n3a3 and N = N1 N2 N3 the sum
separates and we consider just one dimension. Then

n=N1−1∑

n=0

einS·a1 = 1 − ei N1S·a1

1 − eiS·a1
.

Let S = G + εa1 and Let ε approach zero. The sum is then equal to

1 − exp (i N1εa2
1)

1 − exp (iεa2
1)

→ N1.

For S �= G and N1 large, the numerator and denominator are of order unity, much smaller
than N1, and the ratio is effectively zero. This holds for any G.

Result A.4 (Finite Fourier series) Let the function f (x) be defined at a series of points
xn = na, where n = 0, 1, 2, . . . , N − 1. Then we can write f as a finite Fourier series:

f (xn) =
∑

k

fkeikxn ,

where the sum is over the N k-numbers 2πn/(Na) and the inverse is

fk = 1

N

∑

xn

f (xn)e−ikxn .

Proof of A.4 Consider
∑

xn

e−ik′xn f (xn) =
∑

k,xn

fkei(k−k ′)xn (A.4)

= N
∑

k

fkδk,k′ (A.5)

= N fk ′ . (A.6)
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Result A.5 (Fourier series of a one-dimensional periodic function) Let
f (x + a) = f (x) be infinitely periodic. Then the function can be expanded as a Fourier
series with Fourier coefficients aG, where G is a one-dimensional reciprocal lattice vector
and

aG = 1

a

∫ a/2

−a/2
f (x)e−iGx dx . (A.7)

Proof of A.5 We write f as a sum of functions that are periodic in the lattice, i.e.

f (x) =
∑

G

aGeiGx .

Then, to find the coefficients, multiply f by exp (−iG ′x) and integrate over x . Hence,

1

a

∫ a/2

−a/2
f (x)e−iG ′x dx = 1

a

∑

G

aG

∫ a/2

−a/2
ei(G−G ′x)dx (A.8)

=
∑

G

aG
sin[(G − G ′)]a/2]

G − G ′a/2
(A.9)

=
∑

G

aGδG,G ′ (A.10)

= a′
G . (A.11)

Note that one could multiply the number of unit cells, so that the inversion formula could
be written in three dimensions as

∫

�

ei(G−G′) · xd3x = �δG,G′

where � is the volume of the crystal or of the unit cell. This of course would scale the
coefficients aG’s appropriately.

Result A.6 (Reciprocal-space sum) A very useful result in the treatment of disorder is
∑

rn

δ(r − rn) = 1

�0

∑

G

eiG·r,

where �0 is the volume of a unit cell in real space.

Proof of A.6 Once again, examine this result in one dimension and argue by extension to
three dimensions because of the separability of the exponentials. Choose a periodic
function

f (x) =
∑

j

δ(x − x j ),

where the x j are separated by a, the lattice parameter. Then the Fourier coefficients are

aG = 1

a

∫ a/2

−a/2

∑

j

δ(x − x j )e
−iGx dx (A.12)

= 1

a
e−iGx j = 1

a
(A.13)
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since there is only one x j in this interval. Hence
∑

j

δ(x − x j ) = 1

a

∑

G

eiGx .

Result A.7 (Convolution theorem) The Fourier transform of the product of two
functions is the convolution of their individual Fourier transforms, i.e.

̂f (x)g(x) = f̂ (k) ∗ ĝ(k). (A.14)

Proof of A.7 The transform of the product is

̂f (x)g(x) = 1

2π

∫

dx e−ikx
∫

dk1 f̂ (k1)eik1x
∫

dk2 ĝ(k2)eik2x

or, changing the order of integration and making use of the delta function result,

̂f (x)g(x) =
∫ ∫

dk1dk2 f̂ (k1)ĝ(k2)δ(k1 + k2 − k)

=
∫

dk1 f̂ (k1)ĝ(k − k1).

Similarly, the Fourier transform of the convolution of two functions is the product of their
Fourier transform, i.e.

1

2π

∫

dx e−ikx
∫

du f (u)g(x − u) = 1

2π

∫

dx e−ikx
∫

du
∫

dk1 f̂ (k1)eik1u

×
∫

dk2 ĝ(k2)eik2(x−u).

Result A.8 (Lorentzians) The Fourier transform of the function exp(−α|x |), with α > 0,
is a Lorentzian of FWHM 2α and given by

F{e−α|x |} = 2α

S 2
x + α2

= Lα(Sx ) (A.15)

and the convolution of two Lorentzians is a Lorentzian with FWHM equal to the sum of
the widths.

Proof of A.8 The Fourier transform is found by splitting the integral into two ranges:
∫ ∞

−∞
dx e−i Sx x e−α|x | =

∫ 0

−∞
dx e−i Sx x eαx +

∫ ∞

0
dx e−i Sx x e−αx . (A.16)

To perform the convolution of two Lorentzians, use the convolution theorem to take the
Fourier transform. Then

F{Lα1 (Sx ) ∗ Lα1 (Sx )} = e−α1|x |e−α2|x |, (A.17)

or, taking the inverse transform,

Lα1 (Sx ) ∗ Lα1 (Sx ) = Lα1+α2 (Sx ), (A.18)

which has a FWHM of 2α1 + 2α2, the sum of the FWHM of the individual Lorentzians.



Appendix B: Green’s functions

In order to solve the differential equation

(∇2 + k2
0)�(r) = F(r), (B.1)

we define the function G(r, r′) which satisfies the equation

(∇2 + k2
0)G(r, r′) = δ(r − r′), (B.2)

where δ(r) is Dirac’s delta function. Using G(r, r′), we obtain

�(r) =
∫

F(r′)G(r, r′) dτ ′. (B.3)

Substituting eq. (B.3) into eq. (B.1), we find that eq. (B.3) is a solution of eq. (B.1). The
function G(r, r′) is known as a Green’s function; it is obtained as a solution of eq. (B.2).

In order to solve eq. (B.2), the function G(r, r′) is expanded in a Fourier series:

G(r, r′) =
∫

A(k)eik·(r−r′)dτk . (B.4)

However, the δ-function becomes

δ(r − r′) = 1

(2π )3

∫

eik·(r−r′)dτk . (B.5)

Substituting above equations into eq. (B.2) we obtain
∫ [

A(k)(k2
0 − k2) − 1

8π3

]

e2π ik·(r−r′)dτk = 0. (B.6)

Since this equation is satisfied for any time, A(k) is given as

A(k) = 1

8π3(k2
0 − k2)

. (B.7)

Therefore the Green’s function is

G(r, r′) = − 1

8π3

∫
eik·(r−r′)

k2 − k2
0

dτk . (B.8)
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We take

dτk = k2dk sin ϑ dϑ dψ (B.9)

and

k · (r − r′) = k |r − r′ | cos ϑ = kρ cos ϑ. (B.10)

Then

G(r, r′) = − 1

4π2

∫ π

0
sin ϑ dϑ

∫ ∞

0

eikρ cos ϑ

k2 − k2
0

k2dk

= − 1

8π2iρ

∫ +∞

−∞

(
eikρ

k + k0
+ eikρ

k − k0

)

dk.

Therefore according to the Cauchy–Riemann theorem, we obtain

G(r, r′) = − 1

4π |r − r′|
(
eik0|r−r′ | + e−ik0|r−r′ |). (B.11)

Since the asymptotic solution is an outward directed wave from the scattering point, we
take the function G(r, r′) as

G(r, r′) = − 1

4π|r − r′| exp(ik0|r − r′|). (B.12)



Appendix C: Kirchhoff’s diffraction theory

According to Kirchhoff’s diffraction theory (Born and Wolf, 1975), the wave function ψp
observed at the point p surrounded by a closed surface a in a vacuum, as shown in
Fig. C.1, is given by in terms of the wave function ψ(r) on the surface a as

ψp = 1

4π

∫ ∫

a

[

ψ
∂

∂n

exp(i Krp)

rp
− exp(i Krp)

rp

∂ψ

∂n

]

da, (C.1)

where r p is the distance between the point p and a point on the surface a, and n is the
coordinate normal to the surface. In order for eq. (C.1) to hold, the wave function ψ(r) of
an electron must satisfy the equation

(∇2 + K 2)ψ(r) = 0, (C.2)

where K is the wave number of the electron in a vacuum where the potential V (r) = 0. At
the surface, which is a few ångströms apart from the surface atomic plane σ , the potential
is approximately zero. For electron diffraction from the surface, the wave function ψ on
the surface σ is given as

ψ(r) =
∑

m

cm(z) exp(iKmt · rt ), (C.3)

where Kmt is the surface parallel component of the mth diffracted wave vector. The term
cm(z) is given by

cm(z) = δ0m exp(−i�0z) + Rm exp[i�m(z − z0)], (C.4)

where δ0m is the Kronecker delta for the incident electron amplitude, Rm is the amplitude
of the mth diffracted wave from the crystal surface σ , �m is the z component of the mth
diffracted wave vector in vacuum, z0 is the z component of the position of the surface σ
and the z direction is taken as the outward normal to the crystal surface. On the curved
surface a, the integral (C.1) is zero, because the integral over a at rp → ∞ is zero. Since
the wave function outside the crystal surface σ ′ in Fig. C.1 has the form
ψ(r) = exp(iK · r), it is easy to see that the integral over σ ′ is zero. Therefore the integral
(C.1) is nonzero only at the surface σ . Here we take the crystal surface to be flat for
simplicity. Assuming that the effect of the crystal edges can be neglected, because the
crystal surface is of large enough area and because rp is also large compared with the
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σ
σ'

r  ∼ p 

pr

p

a

Incident beam

Crystal surface

σ'

ψ = 0

8

Figure C.1 The closed surface a and the crystal surface are shown schematically. At rp = ∞, ψ = 0.
For the notation in the figure, see the main text.

crystal surface size, we can write eq. (C.1) as

ψp(r) = 1

4πr p

∫ ∫

σ

exp(−iKt · rt )

[

ψ
∂

∂z
exp(−�z) − exp(−�z)

∂ψ

∂z

]

dσ, (C.5)

where � and Kt are the z component and the surface parallel component of the wave
vector K, respectively. Using eqs. (C.3) and (C.4), we obtain eq. (C.5) as

ψp = −exp(i Kr p)

4π irp

∑

m

(�m + �)cm(z0) exp(−�z0) S(smt ), (C.6)

where smt = Kmt − Kt . S(smt ) is the shape function for the crystal surface area and is
given by

S(smt ) =
∫ ∫

σ

exp(ismt · rt ) dσ. (C.7)

Thus the intensity Im(smt ) of the mth diffracted wave becomes

Im(smt ) = |Rm |2
16π2r2

p

(�m + �)2|S(smt )|2. (C.8)

The function Im(smt ) gives the intensity distribution of the diffracted beam around the mth
reciprocal rod. The integrated intensity Im is obtained from

Im =
∫ ∫

Im(smt ) sin χ dχd�, (C.9)



322 Appendix C

where χ and � are the polar and azimuthal angles of the surface, respectively. Since

sin χ dχd� = dsmt

K�
, (C.10)

we have

Im =
∫ ∫

1

K�
Im(smt ) dsmt . (C.11)

When the crystal surface area is large, that the integration can be carried out near smt = 0.
Therefore eq. (C.11) becomes

Im = 1

K�

∫ ∫

Im(smt ) dsmt . (C.12)

In terms of S(smt ) the integral becomes
∫ ∫

|S(smt )|2dsmt = 4π2σ. (C.13)

Thus the integrated intensity is obtained as

Im = �m

Kσ
|Rm |2; (C.14)

it does not depend upon the shape of the surface area but is proportional to the size of the
surface area. This means that the integrated intensity from rough surfaces consisting of
large terraces is the sum of the intensities from each terrace.



Appendix D: A simple eigenvalue problem

The eigenvalues and eigenvectors of A′, Chapter 12, can be obtained basically from a
N × N Hermitian matrix when absorption effects are neglected for simplicity. In this
appendix we solve eq. (12.6) directly for the one-slice case. The matrix A is diagonalized
as

A = CΛ2C−1. (D.1)

The columns of the matrix C are the eigenvectors of A with eigenvalues γ 2. The matrix
Λ2 is a diagonal matrix with elements

(�2)mn = γ 2
n δmn, (D.2)

where γ 2
n is the nth eigenvalue. The matrix element (C)mn is the mth component of the

eigenvector for γ 2
n . We write for convenience

(C)mn = cmn . (D.3)

Since Um = U ∗
−m in the matrix A, eq. (12.7), A is Hermitian; the asterisk means the

conjugate complex. Therefore the eigenvectors form an orthonormal set since
∑

n

c∗
mnclm = δml,

∑

m

c∗
mncml = δnl ,

(D.4)

or

(C−1)mn = C∗
nm . (D.5)

Using eq. (D.1), we change eq. (12.6) to give

d2

dz2
C−1Ψ = −�2C−1Ψ. (D.6)

Solving eq. (D.6), we obtain

(C−1Ψ)m = am exp (−iγm z) + bm exp (iγm z) (D.7)

323



324 Appendix D

for the mth eigenvalue of A. In matrix form, eq. (D.7) is expressed as

C−1Ψ = e−1(z)a + e(z)b, (D.8)

where a and b are column vectors determined by the boundary condition, and e(z) is a
diagonal matrix with elements given by

(e(z))mn = exp(iγnz) δmn. (D.9)

Equation (D.8) is rewritten as

Ψ = Ce−1(z)a + Ce(z)b. (D.10)

The vectors a and b are given by the boundary conditions at the entrance and the exit
surfaces. In the first vacuum the wave function is given by eq. (12.14) as

Ψ0(z) = E−1(z)Φ′
0 + E(z)R′, (D.11)

where Φ′
0, R′ and T′ are vectors with elements given as

(Φ′
0)m = (Φ0)m/(2�m), (D.12)

(R′)m = (R)m/(2�m) (D.13)

and

(T′)m = (T)m/(2�m), (D.14)

and where E(z) is a diagonal matrix with elements

(E(z))mn = exp(i�nz) δmn. (D.15)

In the second vacuum the wave function is again given by eq. (12.14):

Ψe(z) = E−1(z)T′. (D.16)

From the boundary conditions given by Eqs. (4.21) and (4.22), which are the amplitude
and derivative continuities of the wave functions at z = z0 and z = ze, we obtain

E−1(z0)Φ′
0 + E(z0)R′ = Ce−1(z0)a + Ce(z0)b, (D.17)

−ΓE−1(z0)Φ′
0 + �E(z0)R′ = −CΛe−1(z0)a + CΛe(z0)b (D.18)

and

E−1(z)T′ = Ce−1(ze)a + Ce(ze)b, (D.19)

−ΓE−1(z)T′ = −CΛe−1(ze)a + CΛe(ze)b, (D.20)

where Γ is a diagonal matrix with elements (Γ)mn = �nδmn . From eqs. (D.17) and (D.18)
we obtain

2ΓE−1(z0)Φ′
0 = τ(z0)e−1(z0)a + ρ(z0)e(z0)b, (D.21)

2ΓE(z0)R′ = ρ(z0)e−1(z0) + τ(z0)e(z0)b, (D.22)

where

τ = ΓC + CΛ, (D.23)

ρ = ΓC − CΛ. (D.24)



A simple eigenvalue problem 325

From eqs. (D.19) and (D.20),

2ΓE−1(z)T′ = τe−1(ze)a + ρe(ze)b, (D.25)

0 = ρe−1(ze)a + τe(ze)b. (D.26)

Equations (D.21), (D.22), (D.25) and (D.26) can be expressed in matrix form:
(Φ0

R

)
=

(
τ ρ
ρ τ

) ( e−1(ze) 0
0 e(ze)

) ( a
b

)
, (D.27)

( T
O

)
=

(
τ ρ
ρ τ

) ( e−1(z0) 0
0 e(z0)

) ( a
b

)
. (D.28)

Therefore
(Φ0

R

)
=

(
τ ρ
ρ τ

) ( e+1(�z) 0
0 e−1(�z)

) (
τ ρ
ρ τ

)−1 ( T
O

)
. (D.29)

Then the RHEED amplitudes and intensities are obtained by using eqs. (12.31) and
(12.32). Equation (D.29) is essentially the same as eq. (12.29). Comparing eq. (D.29) with
eqs. (12.28) and (12.29), the matrices Q and e of eq. (12.28) are obtained as

Q =
(

τ ρ
ρ τ

)
(D.30)

and

e =
( e(�z) 0

0 e−1(�z)

)
. (D.31)

Using eqs. (D.3), (D.23) and (D.24), we obtain the matrix elements of τ and ρ:

(τ)mn = (�m + γn)Cmn, (D.32)

(ρ)mn = (�m − γn)Cmn. (D.33)

The elements of the inverse matrix, Q−1, are calculated by using eqs. (D.23) and (D.24):
(

τ ρ
ρ τ

)−1
≡

(
τ′ ρ′
ρ′ τ′

)

= 1

4

( C−1Γ−1 + Λ−1C−1 C−1Γ−1 − Λ−1C−1

C−1Γ−1 − Λ−1C−1 C−1Γ−1 + Λ−1C−1

)
. (D.34)

Therefore the matrix elements of τ′ and ρ′ are

(τ′)mn = 1

4

[
1

�n
(C−1)mn − 1

γm
(C−1)mn

]

= �n + γm

4�nγm
(C−1)mn (D.35)

and

(ρ′)mn = 1

4

[
1

�n
(C−1)mn − 1

γm
(C−1)mn

]

= −�n − γm

4�nγm
(C−1)mn. (D.36)

When the matrix A is Hermitian, (C−1)mn is obtained from eq. (D.5), and eqs. (D.35) and
(D.36) become

(τ′)mn = �n + γm

4�nγm
c∗

nm, (D.37)

(ρ′)mn = −�n − γm

4�nγm
c∗

nm . (D.38)



Appendix E: Waller and Hartree equation

The Waller and Hartree equation is related to an incoherent Compton scattering intensity.
The incoherent Compton scattering intensity IIC is given by

IIC =
∑

n �=0

| f X
n0(s)|2, (E.1)

where f X
n0(s) is the Compton scattering amplitude of scattering vector s (see section 6.5).

According to Waller and Hartree (1929), the right-hand side of eq. (E.1) is given by
∑

n �=0

| f X
n0(s)|2= Z −

∑

j

| f j j (s)|2 −
∑

j �=k

∑

k �= j

| f jk(s)|2, (E.2)

where f jk(s) is given by

f jk(s) =
∫

b∗
j (r) exp(is · r) bk(r) dτ ; (E.3)

here b j (r) is the wave function of the j th electron in the atom. Equation (E.2) is called the
Waller and Hartree equation. It is obtained as follows. The Compton scattering amplitude
is given from the atomic wave function an(r1, . . . , rZ ) for the nth state:

f X
n0(s) =

∫

a∗
n (r1, . . . , rZ )a0(r1, . . . , rZ )

∑

j

exp(is · r j ) dτ1 . . . dτZ . (E.4)

The orthonormality of the an gives us

f X
n0(s) =

∑

m

f X
m0(s)

∫

a∗
m(r1, . . . , rZ )an(r1, . . . , rZ ) dτ1 . . . dτZ . (E.5)

Comparing eqs. (E.4) and (E.5), and exchanging n and m, we have

a0

∑

j

exp (−is · r j ) =
∑

n

f X
n0an. (E.6)

Taking the square of both sides of eq. (E.6) and integrating, we obtain
∑

n

| f X
n0|2=

∫

|a0|2
∑

j

∑

k

exp [−is · (r j − rk)] dτ1 . . . dτZ . (E.7)
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We put
∑

j

∑

k

exp [−is · (r j − rk)] = Z +
∑

j �=k

∑

k �= j

exp [−is · (r j − rk )]. (E.8)

Using the exchange relation (the Slater determinant) for the wave function a0 and
eq. (E.8), we obtain the following relation:

∑

n

| f X
n0|2 = Z +

∑

j �=k

∑

k �= j

∫

b∗
j (r j )b

∗
k (rk) exp [−is · (r j − rk)]b j (r j )bk(rk ) dτ j dτk

−
∑

j �=k

∑

k �= j

∫

b∗
j (rk )b∗

k (r j ) exp [−is · (r j − rk)]b j (rk)bk(r j ) dτ j dτk

= Z +
∑

j �=k

∑

k �= j

f j j fkk −
∑

j �=k

∑

k �= j

| f jk|2 . (E.9)

The second term in the last line of eq. (E.9) is rewritten as follows:
∑

j �=k

∑

k �= j

f j j fkk =
∣
∣
∣
∑

j

f j j

∣
∣
∣
2
−

∑

j

| f j j|2 = | f X
00|2 −

∑

j

| f j j|2 . (E.10)

Substituting eq. (E.10) into (E.9) and excluding the term n = 0 in eq. (E.9), we obtain the
Waller and Hartree equation, eq. (E.2).



Appendix F: Optimization of dynamical calculation

In order to make efficient dynamical calculations of RHEED, it is necessary to find the
optimal conditions for the number of layers, thickness of slices and number of beams.
Here we give optimal conditions for the dynamical calculations (Ichimiya, 1990b).

F.1 Number of layers

The criterion for the optimal number of layers in the calculation is given by the crystal
thickness for which the effect of electron reflection of at the bottom surface of the crystal
can be neglected. Therefore this thickness corresponds to the damping thickness of
electrons, given as sin ϑ/µ0, where µ0 is the absorption coefficient and ϑ is the glancing
angle of the incident electrons. If we assume that the maximum glancing angle for the
calculation is 8◦ and µ0 is 0.01 Å−1, the thickness becomes 14 Å. This thickness
corresponds to 10 atomic layers for fcc metal surfaces. The criterion for the optimal
number of layers NL for RHEED calculations is therefore given as

NL = sin ϑ

µ0d
, (F.1)

where d is the atomic layer spacing.

F.2 Convergence of the multi-slice method

F.2.1 Thickness of slice

For efficient calculation of RHEED intensities by the multi-slice method, it is also
necessary to know the optimal thickness of a slice. In the multi-slice calculation we use
step-wise potentials as an approximation to the actual potential. Each of the
two-dimensional Fourier components of the step-wise potential will look like

V p
m(z) =

∑

j

Vmj [θ (z − z j ) − θ (z − z j−1)], (F.2)

where θ (z) is the unit step function, so that θ (z) = 0 for z < 0 and θ (z) = 1 for z ≥ 1, and
Vmj is the value of the mth Fourier component in the j th slice. The Fourier transform of
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this one-dimensional potential, V p
m(ζ ), is given as

V p
m(ζ ) =

∞∑

j=−∞

∫ z j

z j −�z
Vmj exp(−2π iζ z) dz, (F.3)

where z j − �z = z j−1. The constant potential in each slice is given by

Vmj = 1

�z

∫ z j

z j −�z
V 0

m(z) dz, (F.4)

where V 0
m(z) is the mth two-dimensional Fourier coefficient of the actual potential. If we

substitute a Fourier transform of V 0
m(z), given as

V 0
m(z) =

∫ ∞

−∞
V 0

m(ζ ) exp(2π iζ z) dζ, (F.5)

into eqs. (F.3) and (F.4), then we obtain

Vm(ζ ) =
∫ +∞

−∞

V o
m(ζ ′)

4π2ζ ζ ′�z
[1 − exp(−2π iζ ′�z)][1 − exp(2π iζ�z)]

×
+∞∑

j=−∞
exp{2π i(ζ ′ − ζ )z j } dζ ′. (F.6)

The last factor can be changed into a sum of delta functions by using (A.2) from
Appendix A. To see this choose the origin so that zn = n�z, where n is an integer. Then
the last factor can be written as a sum of delta functions via
∑

n

exp[2π i(ζ ′ − ζ )n�z)] =
∑

n

exp

[

i
2π

1/�z
n(ζ ′ − ζ )

]

= 1

�z

∑

n

δ
(
ζ ′ − ζ − n

�z

)
.

(F.7)
Integrating over ζ ′, eq. (F.6) becomes

Vm(ζ ) = sin2(πζ�z)

(πζ�z)2

+∞∑

n=−∞

ζ

ζ + n/�z
V 0

m(ζ + n/�z). (F.8)

The Fourier transform Vm(ζ ) is a periodic function with period proportional to the inverse
of the interlayer spacing and hence remains finite as �z is reduced. However, the factor
ζ + n/�z becomes very large. Hence we keep only the n = 0 term, and then

Vm(ζ ) ∼= V 0
m(s)

sin2(πζ�z)

(πζ�z)2

≈ V 0
m(ζ ) exp

[

− (πζ�z)2

3

]

. (F.9)

Comparing the exponential factor in the last line of the above equation with the
Debye–Waller factor exp(−Bζ 2/4), which is included in V 0

m(ζ ), it is required that the
exponent (πζ�z)2/3 is small enough, e.g. less than one-tenth of Bζ 2/4, in order that the
effect of division into slices is negligible. We set the criterion of the thickness of the slices,
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�z, as

�z �
√

0.3B

2π
.

This relation is very similar to the form of the thermal vibration amplitude,
u = √

0.5B/2π . Since crystal potentials are spread in range by thermal vibrations, it is
reasonable that the slice thickness is chosen as �z ≈ u, the thermal vibration amplitude.
Even in the region near the ion cores, where the potential is changing rapidly, this is the
minimum slice thickness that is required. It also sets a limit to the accuracy to be expected
in a structure determination.

F.2.2 Number of beams

Zhao et al. (1988) pointed out that the role of evanescent waves is very significant for
many-beam dynamical calculations. In order to test the effect of evanescent waves,
calculations of RHEED intensity rocking curves were carried out for an Ag(001) surface
for several sets of beams (Ichimiya, 1990b). The sets, of beams used in the dynamical
calculations are indicated by the sets of corresponding reciprocal rods shown by the
enclosing lines A–E in Fig. F.1. The numbers of beams are 61 for A and 11 for D. The
beam–set of E is taken by including only the positive Laue zone for propagating waves.
Figure F.2 shows rocking curves for the (00) and (01) rods of the beam-sets A, D and E in
Fig. F.1. The rocking curves for set D shown in Figs. F.2b, e, which are calculated with the
beams in only the zeroth Laue zone, are in very good agreement with those for set A

Figure F.1 A top view of the sets of reciprocal rods of Ag(001) for the dynamical calculations. The
arrow indicates the incident beam direction. The solid and open circles are reciprocal rods in the
positive and negative Laue zones, respectively. Set A, 61 beams; set B, 43 beams; set C, 29 beams;
set E, 36 beams.
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Figure F.2 (00)-rod and (01)-rod rocking curves for beam sets A, D and E in Fig. F.1. (00)-rod curves
for (a) 61-beam (set A), (b) 11-beam (set D) and (c) 36-beam (set E) calculations; (01)-rod curves
for (d) 61-beam, (e) 11-beam and (f) 36-beam calculations. Curves (g) and (h) were obtained for a
seven-beam calculation of the zeroth Laue zone for the (00) and (01) rods, respectively.

shown in Figs. F.2a, d, while the curves for set E shown in Figs. F.2c, f, a set of 36 beams
in the positive Laue zones, are very different from the curves for set A. This can be
explained by Bethe’s dynamical theory (Bethe, 1928) as pointed by Meyer-Ehmsen
(1989). According to Bethe’s correction methods for RHEED (Ichimiya, 1988), the
corrected potential for the zeroth Laue zone becomes

U Corr
n−m(z) = Un−m(z) −

∑

l

Un−lUl−m

2K0t · Bl + B2
l

, (F.10)

where l in the suffix is taken for the reciprocal rod indices in the higher-order Laue zones.
Since the terms in the summation take opposite signs for positive and negative Laue
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zones, the second term of eq. (F.10) becomes negligibly small compared with the first
term. This means that the effects due to the positive and negative Laue zones are canceled
out by each other for the zeroth a Laue zone. However, it is clear that RHEED dynamical
calculations with only propagating beams give inaccurate results for surface-structure
analysis. From the above results, in most cases we are able to take just the beams in the
zeroth Laue zone into account for the calculations.



Appendix G: Scattering factor

Doyle and Turner (1968)1 parametrized the scattering factor as follows:

f (q) =
4∑

k=1

ak exp

[−bkq2

16π2

]

. (G.1)

The values of the parameters appearing in (G.1) are tabulated in Table (G.1).

Table G.1

Z a1 b1 a2 b2 a3 b3 a4 b4

2 0.0906 18.1834 0.1814 6.2109 0.1096 1.8026 0.0362 0.2844
3 1.6108 107.6384 1.2460 30.4795 0.3257 4.5331 0.0986 0.4951
4 1.2498 60.8042 1.3335 18.5914 0.3603 3.6534 0.1055 0.4157
5 0.9446 46.4438 1.3120 14.1778 0.4188 3.2228 0.1159 0.3767
6 0.7307 36.9951 1.1951 11.2966 0.4563 2.8139 0.1247 0.3456
7 0.5717 28.8465 1.0425 9.0542 0.4647 2.4213 0.1311 0.3167
8 0.4548 23.7803 0.9173 7.6220 0.4719 2.1440 0.1384 0.2959
9 0.3686 20.2390 0.8109 6.6093 0.4751 1.9310 0.1439 0.2793

10 0.3025 17.6396 0.7202 5.8604 0.4751 1.7623 0.1534 0.2656
11 2.2406 108.0039 1.3326 24.5047 0.9070 3.3914 0.2863 0.4346
12 2.2682 73.6704 1.8025 20.1749 0.8394 3.0191 0.2892 0.4046
13 2.2756 72.3220 2.4280 19.7729 0.8578 3.0799 0.3166 0.4076
14 2.1293 57.7748 2.5333 16.4756 0.8349 2.8796 0.3216 0.3860
15 1.8882 44.8756 2.4685 13.5383 0.8046 2.6424 0.3204 0.3608
16 1.6591 36.6500 2.3863 11.4881 0.7899 2.4686 0.3208 0.3403
17 1.4524 30.9352 2.2926 9.9798 0.7874 2.3336 0.3217 0.3228
18 1.2736 26.6823 2.1894 8.8130 0.7927 2.2186 0.3225 0.3071
19 3.9507 137.0748 2.5452 22.4017 1.9795 4.5319 0.4817 0.4340
20 4.4696 99.5228 2.9708 22.6958 1.9696 4.1954 0.4818 0.4165
21 3.9659 88.9597 2.9169 20.6061 1.9254 3.8557 0.4802 0.3988

(continued)
1 Note that Doyle and Turner defined q = 1/λ; here their series has been modified to be consistent with the definition q = 2π/λ.
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Table G.1 (continued)

Z a1 b1 a2 b2 a3 b3 a4 b4

22 3.5653 81.9821 2.8181 19.0486 1.8930 3.5904 0.4825 0.3855
23 3.2449 76.3789 2.6978 17.7262 1.8597 3.3632 0.4864 0.3743
24 2.3066 78.4051 2.3339 15.7851 1.8226 3.1566 0.4901 0.3636
25 2.7467 67.7862 2.4556 15.6743 1.7923 2.9998 0.4984 0.3569
26 2.5440 64.4244 2.3434 14.8806 1.7588 2.8539 0.5062 0.3502
27 2.3668 61.4306 2.2361 14.1798 1.7243 2.7247 0.5148 0.3442
28 2.2104 58.7267 2.1342 13.5530 1.6891 2.6094 0.5238 0.3388
29 1.5792 62.9403 1.8197 12.4527 1.6576 2.5042 0.5323 0.3331
30 1.9418 54.1621 1.9501 12.5177 1.6192 2.4164 0.5434 0.3295
31 2.3205 65.6019 2.4855 15.4577 1.6879 2.5806 0.5992 0.3510
32 2.4467 55.8930 2.7015 14.3930 1.6157 2.4461 0.6009 0.3415
33 2.3989 45.7179 2.7898 12.8166 1.5288 2.2799 0.5936 0.3277
34 2.2980 38.8296 2.8541 11.5359 1.4555 2.1463 0.5895 0.3163
35 2.1659 33.8987 2.9037 10.4996 1.3951 2.0413 0.5886 0.3070
36 2.0338 29.9992 2.9271 9.5977 1.3425 1.9520 0.5888 0.2986
37 4.7760 140.7821 3.8588 18.9910 2.2339 3.7010 0.8683 0.4194
38 5.8478 104.9721 4.0026 19.3666 2.3420 3.7368 0.8795 0.4142
42 3.1199 72.4642 3.9061 14.6424 2.3615 2.2370 0.8504 0.3662
47 2.0355 61.4970 3.2716 11.8237 2.5105 2.8456 0.8372 0.3271
48 2.5737 55.6752 3.2586 11.8376 2.5468 2.7842 0.8379 0.3217
49 3.1528 66.6492 3.5565 14.4494 2.8180 2.9758 0.8842 0.3345
50 3.4495 59.1042 3.7349 14.1787 2.7779 2.8548 0.8786 0.3270
51 3.5644 50.4869 3.8437 13.3156 2.6866 2.6909 0.8638 0.3161
53 3.4728 39.4411 4.0602 11.8161 2.5215 2.4148 0.8398 0.2976
54 3.3656 35.5094 4.1468 11.1170 2.4430 2.2940 0.8293 0.2892
55 6.0620 155.8336 5.9861 19.6951 3.3033 3.3354 1.0958 0.3793
56 7.8212 117.6575 6.0040 18.7782 3.2803 3.2634 1.1030 0.3760
63 6.2667 100.2983 4.8440 16.0662 3.2023 2.9803 1.2009 0.3674
79 2.3880 42.8656 4.2259 9.7430 2.6886 2.2641 1.2551 0.3067
80 2.6817 42.8217 4.2414 9.8557 2.7549 2.2951 1.2708 0.3067
82 3.5099 52.9141 4.5523 11.8840 3.1539 2.5713 1.3591 0.3205
83 3.8412 50.2608 4.6794 11.9988 3.1924 2.5598 1.3625 0.3177
86 4.0779 28.4058 4.9778 11.0204 3.0955 2.3549 1.3259 0.2991
92 6.7668 85.9510 6.7287 15.6415 4.0135 2.9364 1.5607 0.3348
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