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Foreword

I am honored to write a brief foreword to this volume dedicated to the many logical
issues on which Martin has shed light during his illustrious career. I first met Martin
at the Cornell 1957 Summer Institute in Symbolic Logic. This meeting proved very
significant to the mathematical lives of many people who met there, including both
of us: for him, Hilary Putnam and for me, J. Barkley Rosser. This meeting pre-
cipitated the formation of an international research community in mathematical
logic whose influence on logic and computer science is strong even after sixty
years. What I learned then about Martin was the universality of his interests, his
utter concentration on fundamental problems, and his insatiable urge to learn new
things. These are the signal marks of his long career. Some years ago, a university
in a Western state with no history in any area he represents and, without warning,
offered him a prestigious post. He called me and asked why. I told him they wanted
an icon. He said he did not want to be an icon and promptly turned it down. But he
is an icon, whether he likes it or not!

Ithaca, New York Anil Nerode
April 2016
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Preface

It is reasonable to hope that the relationship between com-
putation and mathematical logic will be as fruitful in the next
century as that between analysis and physics in the last. The
development of this concern demands a concern for both
applications and mathematical elegance.

(John McCarthy 1963)

The dozen students or so gathered in the lovely Italian town of Perugia were
amazed when Martin David Davis first showed up, wearing heavy shoes and short
pants seemingly more apt for trekking than for teaching a graduate level course. His
accent from the Bronx, together with a little hole, may be produced by the ember of
a cigarette, over one shoulder of his red T-shirt, seized the attention of the class. His
hair à la Queen of Sheba further increased the mismatch between Martin as a
person and the stereotype unavoidably associated with his reputation as a distin-
guished scholar.

Admiration quickly prevailed over astonishment when Martin began his expo-
sition of computability. For the entire one-month duration of his course, concepts
remained clear and accessible. At times, when confronted with some odd question
coming from his audience, Martin turned his hands upward and disarmingly said
“I cannot understand”; far more often, he answered with extreme precision. He
indulged in vivid images, such as “brand-new variable” or “crystal-clear proof,” but
his repertoire of idiomatic expressions also included “gory detail,” when techni-
calities were inescapable.

Through mathematics, the class felt, Martin was also addressing issues of
philosophical relevance and depth. On one memorable occasion, the philosophical
side of his scientific inquiry showed through a lesson boldly offered in Italian. Forty
years have elapsed since, and alas, the tape recording of that lesson, dealing with
Turing machines and universality, has by now faded away.

Once Martin was invited to an assembly of all students participating in the
Perugia summer school. Unhesitatingly, he joined the crowd, coming hand in hand
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with his wife Virginia; he even took the floor at some point, rational and quiet, not
in the least dismayed by the excited, somehow “revolutionary,” atmosphere of the
event.

One of the editors of this volume dedicated to Martin was a student in his
computability course in Perugia, and this explains why such an anecdotal episode
has been recounted here. Many similar fascinating stories could certainly be
reported by many: Over the years, Martin lectured in several countries (to cite a
few: Japan, India, England, Russia, and Mexico—see Fig. 1), and they have—along

Fig. 1 Poster announcing Martin’s first lecture in Mexico
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with his publications—exerted a wide influence. This book will testify to this
influence by focusing on scientific achievements in which Martin was involved in
the first person and on further achievements, studies, and reflections in which work
and vision consonant with his have played a role. Our task has been to collect
testimonies of Martin’s contributions to computability, computational logic, and
mathematical foundations.

Three chapters are devoted to a problem that Martin said he found “irresistibly
seductive” when still an undergraduate (Fig. 2) and which progressively became his
“lifelong obsession”: Hilbert’s tenth problem—H10 for short. One of the three
contains a narrative essay by the Mexican mathematician Dr. Laura Elena Morales
Guerrero, telling us how a negative solution to H10 came to light through the joint
effort of four protagonists (one being Martin, of course). There are two epic events
in that story: One is when Julia Bowman Robinson eliminates “a serious blemish”
from a proof by Martin and Hilary Putnam by showing how to avoid a hypothesis
that was unproved at the time; the other is when, in 1970, notes of a talk given in
Novosibirsk reach Martin in New York. Laura Elena reports to the reader the key
equations in those notes based on Yuri Matiysevich’s decisive work, which Martin
echoed a few months later by his own use of these newly developed methods to
obtain an alternative system of equations leading to the same result. See Fig. 3.

Fig. 2 Are all recursively enumerable sets Diophantine? (From Martin’s Ph.D. thesis)
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Another chapter on H10 is by Yuri V. Matiyasevich himself, the “clever young
Russian” whose appearance Martin had predicted and who, by producing a
Diophantine predicate of exponential growth, first obtained that negative solution.
Yuri explains how Julia Robinson, Martin Davis, and Hilary Putnam had—through
extraordinary insights—paved the way for his decisive mathematical contribution.
Far from being exhausted, the field of research triggered by H10 abounds today
with unanswered questions, some fairly old (e.g., does the equation of the report
shown in Fig. 4 admit finitely many solutions?), other quite contemporary, and in
fact, Yuri’s article, after disclosing a formidable landscape of open issues in front of
us, terminates with a conjecture raised by Martin in 2010.

A third related contribution is by Prof. Alexandra Shlapentokh, who enriches the
landscape with extensions of H10 to recursive rings. When referring his Tenth
Problem to integers, in 1900, Hilbert may have thought that he was posing the most
difficult among variants of the same problem with respect to other rings. Nowadays,
we know that H10 as originally posed is unsolvable, but we are in the difficult
position of not being able to draw any conclusion about the analog of this problem
for, say, the ring Q of rational numbers.

Martin has been a trailblazer of the field today known as “automated reasoning.”
The summer of 1954 sees him at work on a JOHNNIAC machine, implementing a
logical decision procedure for integer arithmetic. In the late 1950s, a seminal report
on computational methods in the propositional calculus arises from his collabora-
tion with Hilary Putnam, the brilliant philosopher with whom Martin enjoyed

Fig. 3 In all of these equa-
tions, variables range over N.
Equations (I)–(X) with
parameters u; v; a have a
solution for a[ 1 if and only
if v ¼ yuðaÞ, where X ¼
xuðaÞ ; Y ¼ yuðaÞ is the
uþ 1st solution, over N, of
the Pell equation
X2 � ða2 � 1ÞY ¼ 1.
Equations (I)–(XV) with
parameters a, b, u have a
solution for b� 1 if and only
if a ¼ bu
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discussing “all day long about everything under the sun, including Hilbert’s tenth
problem.” The Davis–Putnam–Logemann–Loveland procedure, to date so basic in
the architecture of fast Boolean satisfiability solvers, was rooted in that study, and
Donald Loveland, who contributed to its pioneering implementation in the early
1960s, coauthors in this book, with Ashish Sabharwal and with Professor Bart
Selman, a paper reviewing historical developments and the state of the art of
propositional theorem provers.

It is slightly less known that in the early 1960s, the most-general unification
mechanism for first-order logic was available in the working implementation of
Martin’s linked conjunct proof procedure, a forerunner of decadelong efforts to
automatize reasoning in quantification theory. Unification has evolved, subse-
quently, into a well-established theory that proceeds hand in hand with the topic of
rewriting systems. This is why dedicating a paper on a new trend in this field to

Fig. 4 A report on an intriguing equation
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Martin seemed appropriate: Jörg Siekmann coauthors in this book, with Peter Szabó
and Michael Hoche, a survey on “essential unification.”

Udi Boker and Nachum Dershowitz, who dedicate an essay on “honest com-
putability” to Martin, contend that “a nefarious representation can turn . . . the
intractable into trivial,” whereas “demanding of an implementation that it also
generates its internal representations of the input from an abstract term description
of that input . . . obviates cheating on complexity problems by giving away the
answer in the representation.” This attitude is akin to considerations made in the
above-cited report by Davis and Putnam (1958) concerning propositional satisfia-
bility, e.g.: “Even if the system has hundreds or thousands of formulas, it can be put
into conjunctive normal form ‘piece by piece’, without any ‘multiplying out.’ This
is a feasible (if laborious) task even for hand computation � � �”

The centennial of Frege’s Begriffsschrift, Martin reports, “fundamentally chan-
ged the direction of my work”: Being invited to place some contemporary trends in
a proper historical context, he finds “trying to trace the path from ideas and con-
cepts developed by logicians � � � to their embodiment in software and hardware � � �
endlessly fascinating.”

Martin actually cultivated, since long, a keen interest in the history and phi-
losophy of computing: The first edition of The Undecidable, his anthology of basic
papers on unsolvable problems and computable functions, is dated 1965. One of
Martin’s heroes is Alan Mathison Turing; he also devoutly edited the collected
works of Emil Leon Post, who had supervised his beginnings in logic at City
College. In a recent paper, Martin and Wilfried Sieg have discussed a conceptual
confluence between Post and Turing in 1936; in this book, Sieg coauthors with
Máté Szabó and Dawn McLaughin, a paper addressing the question: Did Post have
Turing’s Thesis?

Yiannis N. Moschovakis unravels the history of another crucial confluence of
ideas. Stephen C. Kleene, Emil Leon Post, and Andrzej Mostowski had raised
questions which would influence profoundly the development of the theory of
unsolvability when Martin, in the central part of his Ph.D. thesis, moved “on into
the transfinite!”, thus playing a very important role in defining natural extensions
of the arithmetical hierarchy. The author skillfully alternates notes about the his-
torical development of the subject with some carefully chosen technical details.
This makes for a paper which is really a pleasure to read.

Martin once called “attention to the relevance for the foundational problems in
quantum theory of some recent mathematical discoveries” arisen from logic. One
of the diverse contributions dedicated to Martin, by Andreas Blass and Yuri
Gurevich, aims at explaining certain sorts of anyons, “rather mysterious physical
phenomena” which may provide a basis for quantum computing, by means of
category theory.

Don Perlis’s contribution speculates on the concept of infinity and distinguishes
several modes of use of infinities in physics. In particular, quantum mechanics, he
observes, provides intriguing examples on the subject. Nonstandard analysis—on
which Martin wrote a classic—appears to shed light on some such phenomena.
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“Banishing ultrafilters from our consciousness,” the title of the paper contributed
by Domenico Cantone with the editors of this book, echoes a comment by Martin in
his Applied Nonstandard Analysis (1977). Martin then pointed out that the intri-
cacies of the ultrapower construction of a nonstandard universe can be completely
forgotten in favor of a few principles relating standard/nonstandard,
internal/external objects. Bearing Martin’s motto in mind, this paper recounts, and
aided by a proof-checker embodying constructs for proof engineering, the authors
have undertaken a verification of key results of the nonstandard approach to
analysis.

The reader will also attend, inside this volume, Martin Davis and Hilary Putnam
resuming some threads of their juvenile philosophical discussion. Martin has
recently written about realism in mathematics (partly because Harvey Friedman had
judged him “an extreme Platonist”), and Hilary cannot resist to amicably respond to
his fascinating essay Pragmatic Platonism (also included in this book) and to
discuss the relation between Martin’s view and the views Hilary defends. In his
turn, Martin comments on Hilary’s remarks on his essay and takes the opportunity
to say a little more about his view about certain topics such as mathematics and
natural science, and new axioms for set theory.

The first chapter is an autobiographic essay by the eminent logician to whom the
entire book is devoted. An earlier version of this essay, published in 1999, was
titled “From Logic to Computer Science and Back.” Martin reports that his debut as
a computer programmer takes place in 1951, “without [him] realizing it,” while he
—a recent Ph.D. from Princeton, teaching recursive function theory at Champaign–
Urbana—is designing Turing machines; he then gets recruited for a project on an
automated system for navigating airplanes, with the task of writing code for an
ORDVAC machine. Short afterward, Martin conceives the idea of writing his first
book on computability; then, planning an extended visit to the Institute for
Advanced Study in Princeton, he proposes to work on connections between logic
and information theory. In the following decades, he frequently moves across the
USA, teaching in various academic institutions and working on computability, on
Hilbert’s tenth problem, on computational logic, etc.

Multifaceted life and publications, but a substantial unity: in the new title chosen
for his enriched autobiography, Martin regards himself simply as a logician.

Trieste and Udine Eugenio G. Omodeo
February 2016 Alberto Policriti

Preface xv



Acknowledgements

The editors gratefully acknowledge invaluable help from Martin Davis and Yuri
Matiyasevich for many aspects of the preparation of this book. Martin, in particular,
supplied old manuscripts (his Ph.D. thesis, the research reports jointly written with
Hilary Putnam which are included as appendices) and re-read certain parts of the
draft of this book. Yuri offered great support for the preparation of Martin Davis’s
bibliography (Chap. 16).

Dominique Pastre (emeritus professor of computer science at UFR de
mathématiques et informatique, Université Paris Descartes) kindly accepted to be
an “anonymity server” to referees of her choice.

The anonymous second readers for this volume include the following:

Samson Abramsky, Department of Computer Science University of Oxford;
Johan van Benthem, University of Amsterdam and Stanford University;
Alessandro Berarducci, Dipartimento di Matematica, Università di Pisa;
Maria Paola Bonacina, Dip. di Informatica, Università degli Studi di Verona;
Patrick Cégielski, Université Paris Est Créteil;
Pietro Corvaja, Dip. di Matematica e Informatica, Università di Udine;
Liesbeth De Mol, Université de Lille 3, Villeneuve d’Ascq Cedex;
Francesco M. Donini, Università della Tuscia, Viterbo;
David Finkelstein, School of Physics, Georgia Institute of Technology, Atlanta;
Andrea Formisano, Università di Perugia;
Miriam Franchella, Dipartimento di Filosofia, Università degli Studi di Milano;
Jean-Pierre Keller, Sarl Kepler, Paris;
Gabriele Lolli, Scuola Normale Superiore di Pisa;
Stefano Mancini, School of Science and Technology, University of Camerino;
Alberto Marcone, Dip. di Matematica e Informatica, Università di Udine;
Alberto Martelli, Dipartimento di Informatica, Università degli Studi di Torino;
Daniele Mundici, Dept. of Mathematics and Computer Science “Ulisse Dini,”
University of Florence;

xvii



Andrea Sorbi, Dip. di Ingegneria dell’Informazione e Scienze Matematiche,
Università degli Studi di Siena; and
Carlo Toffalori, Dip. Matematica e Fisica, Univ. of Camerino.

xviii Acknowledgements



Contents

1 My Life as a Logician . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Martin Davis

2 Martin Davis and Hilbert’s Tenth Problem. . . . . . . . . . . . . . . . . . . . 35
Yuri Matiyasevich

3 Extensions of Hilbert’s Tenth Problem: Definability and
Decidability in Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Alexandra Shlapentokh

4 A Story of Hilbert’s Tenth Problem. . . . . . . . . . . . . . . . . . . . . . . . . . 93
Laura Elena Morales Guerrero

5 Hyperarithmetical Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Yiannis N. Moschovakis

6 Honest Computability and Complexity . . . . . . . . . . . . . . . . . . . . . . . 151
Udi Boker and Nachum Dershowitz

7 Why Post Did [Not] Have Turing’s Thesis . . . . . . . . . . . . . . . . . . . . 175
Wilfried Sieg, Máté Szabó and Dawn McLaughlin

8 On Quantum Computation, Anyons, and Categories . . . . . . . . . . . . 209
Andreas Blass and Yuri Gurevich

9 Taking Physical Infinity Seriously . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Don Perlis

10 Banishing Ultrafilters from Our Consciousness. . . . . . . . . . . . . . . . . 255
Domenico Cantone, Eugenio G. Omodeo and Alberto Policriti

11 What Is Essential Unification? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Peter Szabo, Jörg Siekmann and Michael Hoche

xix



12 DPLL: The Core of Modern Satisfiability Solvers . . . . . . . . . . . . . . 315
Donald Loveland, Ashish Sabharwal and Bart Selman

13 On Davis’s “Pragmatic Platonism” . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Hilary Putnam

14 Pragmatic Platonism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Martin Davis

15 Concluding Comments by Martin . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Martin Davis

16 Martin Davis’s Bibliography 1950–2015 . . . . . . . . . . . . . . . . . . . . . . 363
Eugenio G. Omodeo

Appendix A: “Feasible Computational Methods in the Propositional
Calculus”, the Seminal Report by M. Davis and H. Putnam . . . . . . . . . . 371

Appendix B: “Research on Hilbert’s Tenth Problem”, the Original
Paper by M. Davis and H. Putnam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Subject Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

xx Contents



Contributors and Editors

Contributors

Andreas Blass is a professor of mathematics at the University of Michigan. He
received his Ph.D. degree from Harvard University in 1970 and has been at the
University of Michigan ever since except for brief leaves. He has also been a
visiting researcher at Microsoft Research during one of those leaves and during
each of the last 13 summers. His primary research area is set theory, but he has also
worked in other branches of logic, in theoretical computer science, and in finite
combinatorics. He is a fellow of the American Mathematical Society.

Udi Boker is a senior researcher in the Interdisciplinary Center (IDC), Herzliya,
working in the field of logic and verification. His main research areas concern the
foundations of computation, temporal logic, and automata.

Domenico Cantone is a professor of computer science since 1990. He is currently
at the University of Catania, Italy, where he moved from the University of
L’Aquila, Italy, in 1991. He received his Ph.D. degree from New York University
in 1987, under the supervision of Prof. Jacob T. Schwartz. Since 1995, he has been
a member of the Board of Directors of the journal “Le Matematiche.” His main
scientific interests include the following: computable set theory, automated
deduction in various mathematical theories, description logic, string matching and
algorithmic engineering, and, more recently, rational choice theory from a logical
point of view. In the field of computable set theory, he has coauthored three
monographs: Computable Set Theory (Clarendon Press, 1989), Set Theory for
Computing—From Decision Procedures to Declarative Programming with Sets
(Springer, 2001), and Computational Logic and Set Theory: Applying Formalized
Logic to Analysis, (Springer, 2011).

Nachum Dershowitz is professor of computational logic at Tel Aviv University,
where he has been since 1998. Prior to that, he was on the faculty of the University
of Illinois at Urbana–Champaign. He coauthored the book, Calendrical Calculations
(Cambridge University Press, 1997), with Edward Reingold, which won Choice’s

xxi



Outstanding Academic Title Award (2002) and is going into its fourth edition. He is
also the author of The Evolution of Programs (Birkhäuser, 1983), coauthor of
Calendrical Tabulations (Cambridge University Press, 2002), and editor of a dozen
other volumes. His research interests include foundations of computing, compu-
tational logic, computational humanities, and combinatorial enumeration. He has
received the Herbrand Award for Distinguished Contributions to Automated
Reasoning (2011), the Logic in Computer Science (LICS) Test-of-Time Award
(2006), the Rewriting Techniques and Applications (RTA) Test-of-Time Award
(2014), and the Conference on Automated Deduction (CADE) Skolem Award
(2015) and was elected to Academia Europaea in 2013.

Yuri Gurevich is a principal researcher at Microsoft Research in Redmond,
Washington, USA. He is also Professor Emeritus at the University of Michigan,
ACM Fellow, Guggenheim Fellow, EATCS Fellow, a foreign member of
Academia Europaea, and Dr. Honoris Causa of a Belgian and Russian universities.

Michael Hoche studied computer science at University of Stuttgart with visits at
József Attila University, Szeged, and University Pierre and Marie Curie, Paris. He
is currently working at Airbus Defense and Space, where he serves as analyst and
technologist in advanced computer science and its applications. He holds a Ph.D. in
computer science, which he obtained from University of Stuttgart. His current
interest comprises intelligent systems applications with a focus on data integration,
machine learning, and networks. Most recently, he contributes to the creation of the
research agenda of Airbus Defense and Space.

Donald Loveland attended Oberlin College, MIT, and New York University
(NYU) where he wrote his Ph.D. thesis under Martin Davis. He was on the faculties
of NYU (Bronx Campus) where Martin was briefly a colleague, CMU, and Duke
University where he was the first chairman of the Computer Science Department.
The author of Automated Theorem Proving: a Logical Basis (1978) is also one of
three authors of the undergraduate textbook Three Views of Logic (2014). He is
author or coauthor of papers in areas that include automated deduction (primary
area), complexity theory, testing procedures, logic programming, and expert sys-
tems; an ACM Fellow; and an AAAI Fellow, and he also received the Herbrand
Award (2001). He is now retired.

Yuri Matiyasevich has got (Russian analog of) Ph.D. from Leningrad (now St.
Petersburg) Division of Steklov Mathematical Institute in 1970 and ever since
works there, today as the Head of Laboratory of mathematical logic. He is mostly
known for his contribution to the (negative) solution of Hilbert’s tenth problem,
about which he wrote a book translated into English and French. He worked also in
theoretical computer science, graph theory, and number theory. He is full
member of Russian Academy of Sciences, corresponding member of Bavarian
Academy of Sciences, and member of Academia Europaea and Docteur Honoris
Causa de l’Université d’Auvergne et de Université Pierre et Marie Curie (Paris-6),
France.

xxii Contributors and Editors



Dawn McLaughlin is a Ph.D. candidate in the philosophy department at Carnegie
Mellon University and did early work on Emil Post; however, her academic focus is
now on logic education. She is a collaborator on Wilfried Sieg’s AProS project, in
particular regarding the online logic course Logic and Proofs; she is the lead
developer of the LogicLab. Her dissertation is exploring the history and practice of
technology supported learning of logic.

Laura Elena Morales Guerrero was the second in a Mexican family of seven
children living in Tampico, Mexico. After receiving her undergraduate degree at the
University of Wisconsin, she began graduate studies in physics and mathematics at
the Centro de Investigación y Estudios Avanzados (Cinvestav, IPN) in México
City. Her doctorate under Jerzy Plebański involved finding exact solutions of the
field equations of Einstein’s general relativity. She worked in the nuclear engi-
neering industry in Mexico and The Netherlands. While rearing her twin daughters,
she started a successful retail business in Mexico City. She remains an independent
researcher, and her most recent interests are in the history of mathematics, espe-
cially logic and number theory. She connected with Martin Davis through the email
list HM (History of Mathematics) and arranged for him to lecture at the Universidad
Nacional Autónoma de México (UNAM) where she was a researcher at the time.
His talk stimulated her interest in Hilbert’s tenth problem and led her to write the
essay on the subject in this book. In his preface to her still unpublished book on the
ancient problem of squaring the circle, he wrote, “In this charming book, Dra.
Morales has traced the history of this problem, pausing along the way to explore
many fascinating sidelights.”

Yiannis N. Moschovakis emigrated to the USA from Greece in 1956. After four
years at MIT, three years at the University of Wisconsin and one year at Harvard, he
moved to UCLA in 1964 and has been there ever since, with long, annual sojourns
to Greece including a halftime position at the University of Athens (UOA) from
1996 until 2005. He has written two monographs and a textbook and has supervised
or cosupervised the doctoral dissertations of 22 students from the mathematics and
computer science Departments of UCLA, UOA, and the Graduate Program for
logic, algorithms, and computation in Athens. He retired in 2010 but has continued
teaching part-time as a Distinguished Research Professor.

Moschovakis has worked in abstract and higher-type recursion; in classical and
effective descriptive set theory, including the consequences of determinacy
hypotheses; and in philosophical logic, especially the logic of meaning and the
foundations of the theory of algorithms.

Don Perlis is a professor of computer science at the University of Maryland,
College Park. He has Ph.D.s in mathematics (NYU, 1972) and computer science
(Rochester, 1981). While his interests span a wide variety of areas, he recently has
come to realize that most of his work relates to self-reference in one form or
another, whether in logic, artificial intelligence, cognitive science, or philosophy.

Contributors and Editors xxiii



Hilary Putnam is Cogan University Professor Emeritus at Harvard University. His
most recent publications include philosophy in an age of science (ed. by M. De
Caro and D. Macarthur, Harvard UP 2012) and naturalism, realism, and normativity
(ed. by M. De Caro, Harvard UP 2016). He is the subject of The Philosophy of
Hilary Putnam (ed. by R.E. Auxier, D.R. Anderson, and L.E. Hahn, Library of
Living Philosophers, Open Court 2015). He holds 12 honorary degrees and is a past
president of the American Philosophical Association, a fellow of the American
Academy of Arts and Sciences, and a corresponding fellow of the British Academy
and of the French Académie des Sciences Politiques et Morales. Recently, he has
been awarded the Prometheus Prize, the Rolf Schock Prize in logic and philosophy,
the Lauener Prize for analytical philosophy, and the Nicholas Rescher Prize for
systematic philosophy. His interests cover most philosophical areas.

Ashish Sabharwal investigates scalable and robust methods for probabilistic and
combinatorial inference, graphical models, and discrete optimization, as a research
scientist at the Allen Institute for AI (AI2), especially as they apply to assessing
machine intelligence through standardized examinations in science and math. Prior
to joining AI2, Ashish spent over three years at IBM Watson and five years at
Cornell University, after obtaining his Ph.D. from the University of Washington in
2005. Ashish has coauthored over 70 publications, been part of winning teams in
international SAT competitions, and received five best paper awards and runner-up
prizes at venues such as AAAI, IJCAI, and UAI.

Bart Selman is a professor of computer science at Cornell University. He was
previously at AT&T Bell Laboratories. He specializes in artificial intelligence, with
an emphasis on efficient reasoning procedures, planning, knowledge representation,
and connections between computer science and statistical physics. He has (co)
authored over 150 publications, including six best paper awards. His papers have
appeared in venues spanning Nature, Science, Proc. Natl. Acad. of Sci., and a
variety of conferences and journals in AI and computer science. He has received the
Cornell Stephen Miles Excellence in Teaching Award, the Cornell Outstanding
Educator Award, an NSF Career Award, and an Alfred P. Sloan Research
Fellowship. He is a fellow of the American Association for Artificial Intelligence
(AAAI) and a fellow of the American Association for the Advancement of Science
(AAAS). He received the inaugural IJCAI John McCarthy award in 2015.

Alexandra Shlapentokh is a professor of mathematics in East Carolina University
in Greenville, NC. She got her Ph.D. in mathematics in NYU in 1988 under
Professor Harold N. Shapiro. In graduate school, Alexandra Shlapentokh also had
the privilege of having Martin Davis as one of her professors. It is in his class that
she was introduced for the first time to Hilbert’s tenth problem which became one
of her lifelong interests, eventually encompassing many questions of definability
and computability in number theory. She described some of the developments in
this thriving field in her book: “Hilbert’s Tenth Problem: Diophantine Classes and
Other Extensions to Global Fields” (Cambridge University Press).

xxiv Contributors and Editors



Wilfried Sieg is a patrick suppes professor of Philosophy at Carnegie Mellon
University and a fellow of the American Academy of Arts and Sciences. He joined
Carnegie Mellon’s faculty in 1985 as a founding member of the University’s
Philosophy Department and served as its head from 1994 to 2005. He is interna-
tionally known for mathematical work in proof and computation theory, historical
work on modern logic and mathematics, and philosophical essays on the nature of
mathematics. A collection of essays joining the three aspects of his research was
published as Hilbert’s Programs and Beyond (Oxford University Press, 2013).

Jörg Siekmann studied mathematics at Göttingen University and computer sci-
ence at Essex University, England, where he received his Ph.D. in unification
theory in 1976. He was a scientific assistant at Karlsruhe University and became
professor for Artificial Intelligence at Kaiserslautern in 1983. In 1991, he was
appointed as a full professor for computer science and AI at Saarbrücken
University. He founded with friends the German Research Centre for Artificial
Intelligence (DFKI) and became one of its directors. He is now a senior professor at
the computer science department and DFKI in Saarbrücken.

Máté Szabó is a Ph.D. student in the philosophy department at Carnegie Mellon
University. His main interests concern the history and philosophy of computing, in
particular the interpretation of Gödel’s Incompleteness Theorems, Church’s and
Turing’s Undecidability Theorems, and of the Church-Turing Thesis. Related to
these issues, he has been exploring the life and work of Emil Post and László
Kalmár. He is writing his dissertation on human and machine computation with
Wilfried Sieg as his advisor.

Peter Szabó studied computer science at the University of Karlsruhe where he
received his diploma in 1975 and worked there afterward as a scientific assistant.
He received his Ph.D. in unification theory from Karlsruhe University in 1982.
From 1983 to 2011, he was a research engineer for software in the R&D department
of the German Telecommunication company SEL, which later became part of
Alcatel-Lucent. Since 2003, he is a voluntary member of our research team dealing
with unification theory.

Andreas Blass Mathematics Department, University of Michigan, Ann Arbor,
MI, USA

Udi Boker School of Computer Science, Interdisciplinary Center, Herzliya, Israel

Domenico Cantone DMI, Università di Catania, Catania, Italy

Martin Davis Department of Mathematics, University of California, Berkeley,
CA, USA; Courant Institute of Mathematical Sciences, New York University, New
York, NY, USA

Nachum Dershowitz School of Computer Science, Tel Aviv University, Ramat
Aviv, Israel

Yuri Gurevich Microsoft Research, Redmond, WA, USA

Contributors and Editors xxv



Michael Hoche Airbus Defense and Space, Immenstaad, Germany

Donald Loveland Duke University, Durham, USA

Yuri Matiyasevich Laboratory of Mathematical Logic, St. Petersburg Department
of V.A. Steklov Institute of Mathematics (POMI), Russian Academy of Sciences,
St. petersburg, Russia

Dawn McLaughlin Carnegie Mellon University, Pittsburgh, USA

Laura Elena Morales Guerrero Centro de Investigación y de Estudios
Avanzados del Instituto Politécnico Nacional in Zacatenco, Ciudad de México,
Mexico

Yiannis N. Moschovakis Department of Mathematics, University of California,
Los Angeles, USA

Eugenio G. Omodeo DMG/DMI, Università di Trieste, Trieste, Italy

Don Perlis University of Maryland, College Park, USA

Alberto Policriti DMIF, Università di Udine, Udine, Italy

Hilary Putnam University of Harvard, Cambridge, USA

Ashish Sabharwal Allen Institute for AI, Seattle, USA

Bart Selman Cornell University, Ithaca, USA

Alexandra Shlapentokh East Carolina University, Greenville, USA

Wilfried Sieg Carnegie Mellon University, Pittsburgh, USA

Jörg Siekmann Saarland University/DFKI, Saarbrücken, Germany

Peter Szabo Pforzheim, Germany

Máté Szabó Carnegie Mellon University, Pittsburgh, USA

About the Editors

Eugenio G. Omodeo studied mathematics at the University of Padua and then
computer science at the New York University, GSAS, where he earned Ph.D.
(1984) under the supervision of Martin Davis. From 1981 to 1989, he was
employed by companies belonging to ENI, the National Hydrocarbon Group of
Italy: There, after 1984, he coordinated R&D activities of Enidata in various pro-
jects funded by the European Commission (CEC), mainly focused on declarative
programming and on quick prototyping. From 1989 to present, he has been a
professor in various Italian universities (Udine, “La Sapienza” of Rome, Salerno,
L’Aquila, Trieste). He has contributed to computational logic with the discovery of
inference methods based on set theory, some of which have been implemented in a

xxvi Contributors and Editors



large-scale proof verifier developed with Jacob T. Schwartz (NYU). He coauthored
three scientific monographs on computable set theory.

Alberto Policriti received his degree in mathematics from the Universtiy of Turin
in 1984 and his Ph.D. in computer science under the supervision of M. Davis in
1990. From 1989, he is at the University of Udine, where he is currently professor
of computer science at the Department of Mathematics, Computer Science, and
Physics. His main research interests are related to computational logic and algo-
rithms: set-theoretic and combinatorial algorithms and problems, modal and tem-
poral logics, and algorithms and models for bioinformatics. He has coauthored two
monographs and has supervised or co-supervised 15 doctoral dissertations in Logic,
Algorithms, and Bioinformatics. He is one of the four founders of the “Istituto di
Genomica Applicata,” has been member of the scientific committee of
GNCS—“Istituto di Alta Matematica,” and he is currently member of the scientific
committee of the EATCS.

Contributors and Editors xxvii



Chapter 1
My Life as a Logician

Martin Davis

“My father and mother were honest, though poor –”
“Skip all that!” cried the Bellman in haste.
“If it once becomes dark, there’s no chance of a snark–
We have hardly a minute to waste!”

“I skip forty years,” said the Baker, in tears,
“And proceed without further remark …”

–Lewis Carroll’s “The Hunting of the Snark”

Abstract This brief autobiography highlights events that have had a significant
effect on my professional development.

I was just over a year old when the great stock market crash occurred. My parents,
Polish Jews, had immigrated to the United States after the First World War. My
father’s trade was machine embroidery of women’s apparel and bedspreads. During
the depression, embroidery was hardly in great demand, so we were dependent on
home relief—what today would be called “welfare”. Only with the upturn of the
economy coming with the outbreak of war in 1939, was my father able to find steady
work. In his spare time, he was a wonderful self-taught painter. (One of his paintings
is in the collection of the JewishMuseum inNewYork and two others are at the Judah
Magnus Museum in Berkeley.) My mother, eager to contribute to the family income,
taught herself the corsetiere’s craft. Until I left New York for graduate school, the
room where she conducted her business by day was my bedroom at night.

This is a revision and expansion to the present of an earlier autobiographical essay [22], much
of which is included verbatim. I am grateful to Springer Verlag for their permission.

M. Davis (B)
Department of Mathematics, University of California, Berkeley, CA, USA
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In the New York City public schools, I was an adequate, but not at all exceptional,
student. I’ve always enjoyed writing, but an interest in numbers came early as well. I
remember trying to find someone who could teach me long division before I encoun-
tered it in school. My parents, whose schooling was minimal, could not help. My
first “theorem” was the explanation of a card trick. I learned the trick from a friend
who had no idea why it worked; I was delighted to see that I could use the algebra I
was being taught in junior high school to explain it.

It was at the Bronx High School of Science that I first found myself with young
people who shared the interests I had been developing in mathematics and physics.
My burning ambition was to really understand Einstein’s theory of relativity. There
were a number of books available in the local public library as well in the school
library, but I couldn’t understand many of the equations. Somehow I got the idea that
it was calculus I needed to learn, so I got a textbook and taughtmyself.When I arrived
at City College as a freshman, I was able to begin with advanced calculus. During
those years, themathmajors at CityCollegewere an enthusiastic talented groupmany
of whom eventually became professional mathematicians. The faculty, on the other
hand, was badly overworked, and, with a few notable exceptions, had long since lost
their enthusiasm. Even by the standards of the time, teaching loads were excessive,
and none of the usual amenities of academic life (such as offices and secretarial help)
were available. Only very few of the most determined faculty members remained
active researchers. In addition to these obstacles, Emil Post struggled against physical
and psychological handicaps: his left arm had been amputated in childhood and he
suffered from periodically disabling manic-depressive disease. Nevertheless, Post
not only continued a program of important fundamental research, but also willingly
accepted students for special advanced studies on top of his regular teaching load (16
contact hours). I absorbed his belief in the overriding importance of the computability
concept and especially of Turing’s formulation.

At City College my academic performance was hardly outstanding. I allowed
myself the luxury of working hard only on what interested me. My A grades were
in mathematics, German, history, and philosophy. My worst class was a required
general biology course. I hated the amount of memorization of names of plant and
animal parts I had no desire to know, and found genuinely difficult the “practicums”,
in which we were asked to identify specimens we viewed under the microscope. I
actually failed the course, and even on the second try only managed a C.

During my Freshman and Sophomore years, my passionate interest was in the
foundations of real analysis. I learned various alternate approaches and proofs of the
main theorems. I spent weeks working out the convergence behavior of the sequence

s0 = 1; sn+1 = xsn

for x > 0. (It converges for (1/e)e < x < e1/e. The case 0 < x < 1 is tricky because,
although the even-numbered terms and the odd-numbered terms each converge, when
x < (1/e)e their limits are different.) I liked sequences and saw how to prove that
every sequence of real numbers has a monotone subsequence as a way of obtaining
the basic theorems. I even wrote quite a few chapters of a proposed textbook.
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My fellow student John Stachel and I began to be interested in logic, and at
his suggestion, we approached Post about a reading course in mathematical logic.
Thus, in my junior year, we began studying an early version of Alonzo Church’s
textbook under Post’s supervision. Unfortunately, it only lasted a few weeks: Post
hadmade his discovery of the existence of incomparable degrees of unsolvability, the
excitement precipitated a manic episode, and he was institutionalized. The following
year Post was back and we spent a great deal of time talking about logic. He gave
me a collection of his reprints and also referred me to Kleene’s paper [37]. This was
a paper Kleene had written in haste to get some results in publishable form before
he was requisitioned for war work. For me this was a boon because it was written
in a relatively informal style quite unlike Kleene’s usual more opaque exposition. I
spent a lot of time filling in the gaps, and in the process became enamored of the
Herbrand-Gödel-Kleene equation formalism. In considerable part, my dissertation
developed from that paper.

Kleene’s paper showed that the sets definable in the language of arithmetic1

formed a natural hierarchy in terms of alternating strings

∃∀∃ . . . or ∀∃∀ . . .

of quantifiers applied to a computable relation: each additional quantifier makes it
possible to define new sets. This result was applied to give short incisive proofs of
Gödel’s incompleteness theorem and the unsolvability results of Alonzo Church.

I would undoubtedly have remained at City College for my graduate studies to
work with Post if that option had been available. But City College was strictly an
undergraduate school, and I had to look elsewhere. I had offers of financial sup-
port from Princeton, where I could work with Church, and from the University of
Wisconsin, where Kleene would have been my mentor. Post advised me to go to
Princeton, and that is what I did. There was quite a culture clash between my New
York Jewish working-class background and the genteel Princeton atmosphere, and
at one point it seemed that my financial support would not be renewed for a second
year for reasons having nothing to do with my academic performance. Although
eventually I was given support for a second year, the unpleasantness made me eager
to leave. Fortunately, the requirements at Princeton were sufficiently flexible that it
was quite possible to obtain a Ph.D. in just 2years, and that is what I did.

The problem that I knewwould readily yield results was the extension of Kleene’s
arithmetic hierarchy into the constructive transfinite, what later became known as the
hyperarithmetic sets. Post had shown that the successive layers of Kleene’s hierarchy
could also be generated using the jump operator,2 and it was easy to see how to extend
this method into the transfinite. But the problem that I found irresistibly seductive

1That is, the language using the symbols ¬ ⊃ ∨ ∧ ∃ ∀ = of elementary logic together with the
symbols 0 1 + × of arithmetic.
2The jump of a set A of natural numbers may be understood as the set of (numerical codes of) those
Turing machines that will eventually halt when starting with a blank tape and able to obtain answers
to any question of the form “n ∈ A?”.
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was Hilbert’s tenth problem, the problem of the existence of integer solutions to
polynomial Diophantine equations. Post had declared that the problem “begs for
an unsolvability proof” and I longed to find one. Not being at all expert in number
theory, I thought that it was foolish to spendmy time on Diophantine equations when
I had a dissertation to write and a sure thing to work on. But I couldn’t keep away
from Hilbert’s tenth problem.

Diophantine problems often occur with parameters. In general one can consider
a polynomial equation

p(a1, . . . , am, x1, . . . , xn) = 0

where p is a polynomial with integer coefficients, a1, . . . , am are parameters whose
range is the natural numbers, and x1, . . . , xn are unknowns. I began to study Dio-
phantine sets, that is, sets that could be defined by such an equation as the set of
m-tuples of values of the parameters for which the corresponding equation has a
solution in natural numbers.3 Another way to say this is that Diophantine sets are
those definable by an expression of the form

(∃x1 . . . xn)[p(a1, . . . , am, x1, . . . , xn) = 0].

It was not hard to see that the class of Diophantine sets is not only a sub-class of the
class of recursively enumerable (r.e.) sets,4 but also shares a number of important
properties with that class. In particular, both classes are easily seen to be closed
under union and intersection, and under existential quantification of the defining
expressions. A crucial property of the class of r.e. sets, a property that leads to
unsolvability results, is that the class is not closed under taking complements. I was
quite excited when I realized that the class of Diophantine sets has the same property.
This was because if the Diophantine sets were closed under complementation, then
the de Morgan relation

∀ = ¬∃¬

would lead to the false conclusion that all of the sets in Kleene’s hierarchy, all
arithmetically definable sets, are Diophantine. (False because there are arithmetically
definable sets that are not r.e. and hence certainly not Diophantine.) Although this
proof is quite non-constructive,5 the result certainly suggested that the classes of
r.e. sets and of Diophantine sets might be one and the same. If every r.e. set were
indeed Diophantine, there would be a Diophantine set that is not computable which
would lead at once to the unsolvability of Hilbert’s tenth problem in a particularly
strong form. So, I began what turned into a 20year quest, the attempt to prove that

3For example, the “Pell” equation (x + 1)2 − d(y + 1)2 = 1 has natural number solutions in x, y
just in case d belongs to the set consisting of 0 and all positive integers that are not perfect squares;
hence that latter set is Diophantine.
4A set of natural numbers is r.e. if it is the set of inputs to some given Turing machine for which
that machine eventually halts.
5It furnishes no example of a Diophantine set whose complement is not Diophantine.
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every r.e. set is Diophantine, what Yuri Matiyasevich much later called my “daring
hypothesis”.

During the summer between my 2years at Princeton I was able to prove that every
r.e. set is definable by an expression of the form

(∃y)(∀k)≤y(∃x1 . . . xn)[p(k, y, a1, . . . , am, x1, . . . , xn) = 0]

where p is a polynomial with integer coefficients. From a purely formal point of view,
this result (later known as “Davis normal form”) seemed tantalizingly close to my
conjecture; the only difference was the presence of the bounded universal quantifier
(∀k)≤y . However, there was no method in sight for getting rid of this quantifier, and I
couldn’t help agreeing with Church’s assessment when he expressed disappointment
that the result was not stronger.

Meanwhile, I had a dissertation to write. I didn’t think at the time that my normal
form by itself would suffice, although in retrospect I think it likely would have been
accepted. In any case, I worked out an extension of Kleene’s hierarchy into the
constructive transfinite using Kleene’s system of notations for ordinals.6 Kleene had
defined a set O of natural numbers and a partial well-ordering <O on this set. Each
m ∈ O represented an ordinal |m|, and

m <O n ⇐⇒ |m| < |n|.

With each m ∈ O I associated a set Lm in such a way that m <O n implied that Lm

is computable relative to Ln as oracle, but not the other way around. Then to extend
Kleene’s hierarchy, it was only necessary to consider the sets many-one reducible
to the Lm . I studied their representation in terms of second order quantification and
obtained the ridiculously weak result that up to ω2 all of these sets were indeed
so representable.7 In addition I defined a constructive ordinal γ to be a uniqueness
ordinal if whenever |m| = |n| = γ the Turing degrees of Lm and Ln are the same. I
proved that every γ < ω2 is indeed a uniqueness ordinal.8

I presented the results from my dissertation in brief talks at two professional
meetings. The Diophantine result was given at a small meeting of the Association
for Symbolic Logic inWorcester,Massachusetts inDecember 1949, which I attended
withmy first wife a few days after ourmarriage. Eight months later I attended the first
post-war International Congress ofMathematicians at Harvard University, and spoke
about my results on hyperarithmetic sets. This time I was alone—our marriage had
proved short-lived; mywife had left me shortly before the Congress. At the Congress
I met the great logician Alfred Tarski who showed considerable interest in my work,
and, of particular significance, I also met Julia and Raphael Robinson. I had studied

6Actually, Kleene’s system S3.
7Actually without any bound on the ordinal all the sets in the hierarchy are representable with only
one second order function quantifer.
8Clifford Spector showed that the result remains true for all constructive ordinals in his dissertation,
written a few years later under Kleene’s supervision.
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some of their published work, and was very pleased to meet them. I was surprised to
find that Julia was presenting a short contributed paper on Diophantine sets. It turned
out that we had approached the subject from opposite directions. While I had been
trying to find a general representation for arbitrary r.e. sets, as close as possible to a
Diophantine definition, she had been seeking such definitions for various particular
sets. Her result that turned out to have the most important consequences was that
from the existence of a single Diophantine equation with two parameters, one of
which grows exponentially as a function of the other, she could obtain a Diophantine
definition of {〈a, b, c〉 | c = ab}.

I would like to say that I expressed my pleasure at finding another Hilbert’s
tenth problem enthusiast. However, in Julia’s sister Constance Reid’s memoir, The
Autobiography of Julia Robinson,9 based on conversations with Julia shortly before
her tragic death of leukemia, she quotes Julia as remembering me saying when we
met that I couldn’t see how her work “could help solve Hilbert’s problem, since
it was just a series of examples”. I do not want to believe that I said anything so
ungracious and so foolish. Julia is also quoted as remembering my “presenting a ten
minute paper” at that Congress on my Diophantine results, and as that was not the
case, I can comfort myself with the thought that her recollection of what I had said
may also have been mistaken.

A few days after the Congress, I was on a plane from New York to Chicago,
my first experience of air travel. After considerable difficulty in landing a job in a
tight market, with my specialization in logic a definite disadvantage, I had had a
stroke of luck. My former fellow student Richard Kadison having received a coveted
National Research Fellowship, turned down the offer from theUniversity of Illinois at
Champaign-Urbana to be “Research Instructor”. As their second choice, the position
was offered to me, and I was delighted to accept. Research Instructors were expected
to be recent Ph.D.’s and were required to teach only one course per semester at a time
when the regular faculty taught three. In addition, we were given the opportunity to
teach a second graduate course in our own specialty if we wished. I was very happy
to take advantage of this possibility: I taught mathematical logic in the fall and
recursive function theory in the spring. In this second course, I decided to begin
with Turing machines. Kleene had applied Gödel’s methods of arithmetic coding to
develop his results for the equation calculus. I saw that the same could be done for
Turing machines and that this had certain technical advantages. However, in order
to develop the necessary machinery, I had to design Turing machines to carry out
various specific operations; without realizing it, I was being a computer programmer!

EdwardMoore (later known for his basicworkon sequentialmachines), also a very
recent Ph.D. in mathematics, was an auditor in my course. He came up to the front
of the room after one of my classes and showed me how one of the Turing programs
I had written on the blackboard could be improved. Then he said something very
much like the following: “You should come across the street; we’ve got one of those
machines there.” In fact a superb engineering group were just finishing a computer
called ORDVAC of the “johnniac class” on the University campus. I had been paying

9In [40] p. 61.
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no attention to computers, and up to that moment had not considered that Turing’s
abstract machines might have some relation to real world computing machines. It
would make a better story if I said that the next day I took Ed up on his invitation.
But the truth is that it was the Korean War and the hot breath of the draft that led
me to take that walk “across the street” some weeks later. It was clear to me that
if I remained in my faculty position, I would be inducted into the army, and it was
equally clear to me that that was something I wanted to avoid.

A faculty group, led by the physicist Frederick Seitz, determined to contribute to
thewar effort and convinced of themilitary significance of automated systems, started
a project within the university called the Control Systems Laboratory (C.S.L.). I was
recruited for the project and,with the promise of a draft exemption, accepted.Myboss
was the mathematician Abe Taub, an expert in relativity theory and shock waves. It
was a heady time. Norbert Wiener’s Cybernetics heralding a new age of information
and control had appeared a few years earlier, von Neumann had developed the basic
computer architecture still used today and was investigating the use of redundancy to
obtain reliable results from unreliable components, and the transistor had just been
developed at Bell labs. There was much discussion of all this at the C.S.L., and after
some vacillation, a report from the battlefield on the need for better fighter plane
support for the front line troops decided the direction of the first major effort.

A working model was to be produced of an automated system for navigating
airplanes in real time. The “brain” of the system was to be the newly constructed
ORDVAC. And the job of writing the code fell to me. My instruction in the art of
computer programming was delivered by Taub in less than five minutes of “This
is how it is done”. I also had as textbook the basic reports by von Neumann and
Goldstine with many sample programs. Of course, the project was ludicrously over-
ambitious given the technology available in 1951. The ORDVAC had 5 kB of RAM;
memory access required 24 ms. Addition time was 44 ms, and multiplication time
a hefty millisecond. From a programmer’s point of view, interpreters, compilers, or
even assembly language were all non-existent. There were no index registers. Induc-
tive loops had to be coded by incrementing the address portion of the instructions
themselves. And of course all the code had to be written in absolute binary. The
RAM was implemented as static charge on the surface of cathode ray tubes, which
tended to decay rapidly, and was continuously being refreshed. This worked so long
as the programmer was careful not to write loops so tight that the same position on
the CRT’s was bombarded by electrons too rapidly for the refreshing cycle to prevent
spillover of charge to neighboring positions. To a contemporary programmer, these
conditions seem nightmarish, but in fact it was lots of fun (especially when I let
myself forget what it was all supposed to be for).

My experience as an ORDVAC programmer led me to rethink what I had been
doing with Turing machines in the course I had just finished teaching. I began to
see that Turing machines provided an abstract mathematical model of real-world
computers. (It wasn’t until many years later that I came to realize that Alan Turing
himself hadmade that connection long before I did.) I conceived the project ofwriting
a book that would develop recursive function theory (or as I preferred to think of it:
computability theory) in such away as to bring out this connection. I hardly imagined
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that 7years would go by before I held in my hand a printed copy of Computability &
Unsolvability. I enticed a group of my C.S.L. colleagues into providing an audience
for a series of lectures on computability; the notes I provided for the lectures were a
rough draft of the first part of the book.

Champaign-Urbana in the early 1950swas not an ideal locale for a young bachelor
looking for a social life. In the university community, youngmen outnumbered young
women by something like 10 to 1. (Even among undergraduates the ratio was 4 to
1.) But I was lucky enough to attract the interest of Virginia Palmer, a graduate
student. By the spring of my first year there, she had moved into my apartment,
an arrangement far more unusual in those days than it would be today. In fact, the
university administration took an active interest in students’ intimate lives. Female
graduate students (and only female students) were subject to expulsion if they were
found cohabiting with a male. So our menage was somewhat dangerous, especially
as Virginia’s parents didn’t find me a particularly desirable suitor. We planned to
marry on the earliest date after the legal formalities officially dissolving my first
marriage were complete. That date turned out to be the first day of autumn just about
a year after my arrival in Champaign-Urbana; weweremarried by the local Unitarian
minister in a simple ceremony with only three friends present. My second marriage
has proved somewhat more durable than the first; as I write this, we have recently
celebrated our 63rd anniversary.

Christmas week 1951 provided an occasion to drive East and introduce Virginia to
my New York friends. It also enabled me to attend a mathematical meeting in Provi-
dence where I heard Kurt Gödel deliver his astonishing lecture in which he proposed
that reflecting on his undecidability results would force one to adopt ontological
assumptions characteristic of idealistic philosophy. The lecture was published only
recently, after Gödel’s death, but the audacious ideas he propounded have remained
with me ever since I heard the lecture.

The spring of 1952 marked a major change for the ORDVAC. It had been built
under contract for Army Ordnance, and it was time for its delivery to their Proving
Grounds in Aberdeen, Maryland. The computer group had been busy working on a
twin (not quite identical) to the ORDVAC dubbed the ILLIAC (later ILLIAC I). But
here I was with my code and no computer to debug it on until the ILLIAC came on
line. So I was sent to Aberdeen. Virginia came with me and we stayed in a motel
in the nearby town, Havre de Grace. It was in that motel that we conceived our first
child.

The ORDVAC had been installed in the the building housing the Ballistics
Research Laboratory along with two older, indeed historic, computers: the EDVAC
and the ENIAC. The ENIAC consisted of racks of vacuum tube circuits and plug-
boards such as were used by telephone switchboards, filling the four walls of a large
room. The building was locked from the inside and one could only leave by first
going to the ENIAC room and asking one of the people there to unlock the door.
The ORDVAC was in use by Aberdeen people until 4 p.m., after which it was made
available to me. Instead of the watchful crew in Urbana used to babying their cre-
ation, the computer operator was a sergeant whose main qualification was that in
civilian life he had been an amateur radio operator. I was soon operating the machine
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myself, something I never would have been permitted to do in Urbana. One evening,
I noticed that the machine seemed to be making many errors. I also noticed that I
was getting very warm, but it didn’t occur to me to connect these facts. Finally, when
I saw a 0 change to 1 on a CRT at a time that the computer was not executing any
instructions, I gave up and left. The folks back in Urbana were furious with me.
The air conditioning had broken down, and there had been a very real danger that
the ORDVACS could have been destroyed by the heat. It should have been powered
down at once.

Back in Urbana, I found myself increasingly unhappy with what I was doing at
the C.S.L. The Office of Naval Research came to my rescue with a small grant that
enabled me to spend 2years as a visiting member at the Institute for Advanced Study
in Princeton. I thought that with that sponsorship, I would probably be safe from
the draft. My proposal was to work on connections between logic and information
theory. That was a really good idea: the great Russian mathematician Kolmogoroff
and Gregory Chaitin showed what could be done with it quite a few years later.
However, I found myself moving in other directions.

The Institute for Advanced Study in those years was directed by J. Robert Oppen-
heimer. On the faculty were Albert Einstein, Kurt Gödel, and John von Neumann.
Einstein and Gödel, good friends, were often seen walking to or from the Institute
buildings together. I well remember the first timewe encountered themwalking down
the middle of Olden Lane together: Einstein dressed like a tramp accompanied by
Gödel in a suit and tie carrying his briefcase. “Einstein and his lawyer” wasVirginia’s
vivid characterization.

I hadmet Norman Shapiro as an undergraduate in Urbana. He had come to Prince-
ton University as a graduate student and was writing a thesis on recursive functions.
He and I organized a logic seminar. Among the regular attendees were Henry Hiz,
John Shepherdson, and Hao Wang. Hilary Putnam, with whom I was later to do
some of my best work, gave a philosophical talk which Norman and I mercilessly
attacked. In my research, I was struck by the fact that the phenomenon of undecid-
ability in logic could be understood abstractly in terms of the way each particular
logical system provided a mapping from recursively enumerable sets10 to subsets of
their complements. I was particularly struck by the fact that Gödel’s famous result
about the unprovability of consistency could be expressed simply as the fact that the
iteration of this map always produces the empty set. Some years later I told one of
my first doctoral students, Robert Di Paola, about this, and he based his dissertation
on studying that mapping. Gödel himself was uninterested when I summoned the
courage to tell him about my ideas.

I occasionally thought about Hilbert’s tenth problem, and I worked on my book.
The chapter on applications of computability theory to logic gave me particular
trouble. The problem I faced was giving a coherent exposition without writing a
whole book on logic. I rewrote that chapter many times before I was satisfied. A
problem of another kind was the difficulty I had in getting the Institute typists to
produce a decent copy from my handwritten manuscripts. Our son was born in

10Actually, indices of r.e. sets.
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January 1953. After he was weaned, a year later, Virginia took a job at the Princeton
Public Library. I imagined I could take care of the baby and work on my book at the
same time. Of course this did not work out very well.

My arrangement with the Office of Naval Research left me free to seek employ-
ment during the summer months. We certainly needed the extra money. I was able
to spend the summer of 1953 working at Bell LabsBell Labs, a short commute from
Princeton. My boss was Shannon, the inventor of information theory, and I was able
to renew my acquaintance with Ed Moore. Shannon had recently constructed a uni-
versal Turing machine with only two states. He posed the question of giving a well
defined criterion for specifying when a Turing machine could be said to be universal.
I liked that question and wrote two short papers dealing with it.11 The intellectual
atmosphere at Bell Labs was stimulating and open to fundamental research. I could
well understand how a fundamental breakthrough like the transistor could develop
in such an environment. Shannon himself was treated like the star he was. He had
a small shop with two technicians available to build any of his whimsical gadgets.
His “mouse” that successfully solved mazes was already famous. Less well known
was his desk calculator “Throwback I” that accepted its input in the form of Roman
numerals. Shannon was also an expert unicycle rider. One day he brought his unicy-
cle to the labs and created mass disruption by riding it down the long corridors and
even into and out of elevators, bringing swarms of Bell LabsBell Labs employees
streaming out of their offices to watch. Another thing I remember about that summer
is the excitement of a real workers uprising in East Berlin against the Communist
regime.

For the summer of 1954 I thought about applying the programming skills I had
learned in Urbana to a logical decision procedure. My first choice was Tarski’s
quantifier elimination algorithm for the first order theory of real closed fields. But on
second thought I saw that this was going to be too difficult for a first try, and instead
I settled on Presburger’s procedure for integer arithmetic without multiplication,
since this was a much simpler quantifier elimination procedure. Had I known the
Fischer-Rabin super-exponential lower bound for Presburger arithmetic (proved 20
years later), I would presumably have hesitated. But I went blithely ahead with the
blessing of the Office of Ordnance Research of the U.S. Army which agreed to
support the effort. I was able to do the work without leaving Princeton, using the
original JOHNNIAC at the Institute for Advanced Study. To my dismay the code
used all of the 5 kB of RAM available and was only able to deal with the simplest
statements on the order of “The sum of two even numbers is even”. My report on
the program, duly delivered to the Army on its completion and included as well in
the Proceedings of an important Summer Institute of Logic at Cornell in 1957 (about
which, more later), ended with the understatement12:

The writer’s experience would indicate that with equipment presently available, it will prove
impracticable to code any decision procedures considerably more complicated than Pres-
burger’s. Tarski’s procedure for elementary algebra falls under this head.

11[1, 2].
12The report was reprinted in [43], pp. 41–48.
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An anthology [43] of “classical papers on computational logic 1957–1966” published
in 1983 begins its preface with the sentence:

In 1954 a computer program produced what appears to be the first computer generated
mathematical proof: Written by M. Davis at the Institute of Advanced Studies (sic), USA, it
proved a number theoretic theorem in Presburger Arithmetic.

In the spring of 1954 my 2years at the Institute were drawing to a close, and I
needed to find a job. Again the market was rather tight. We had a few possibilities,
but opted for the one that took us furthest west: an Assistant Professorship at the
University of California at Davis. For the first time we experienced what was to be
repeated over a dozen times in our lives: the trip by automobile across the United
States with a stopover in Kansas City to visit Virginia’s parents. As we approached
our new home, the road signs seemed to be directing us: “Davis use right lane”.

The liberal arts program was newly instituted at U.C. Davis which had been
originally devoted to agriculture. In 1954, the population of Davis was just about
5000 people. It was not a cultural center. Amusements were in such short supply that
we would drive to the local soft ice-cream drive-in just to watch the customers come
and go. It was not a year in which I accomplished much scientifically. The teaching
load was quite modest: just two courses per semester. When I taught calculus (to
students majoring in agricultural engineering), I had to speak in a loud voice to be
heard above the clatter of the turkeys in the building next door.

Virginia was pregnant again and we needed to find an obstetrician. There were
none inDavis itself, but therewas a hospital at the county seat,Woodland, a fewmiles
away. Virginia found the local obstetrician there quite unacceptable. Sacramento, the
state capital was perhaps 18miles away, but we had heard toomany obstetrical horror
stories coming from that quarter. So we headed for progressive Berkeley 80 miles
away, where Virginia found an excellent obstetrician. Today there is an excellent
superhighway connecting Davis with Berkeley, but in 1954 the drive took at least
2h. The highway ended in Richmond with the rest of the route being through city
streets. Virginia’s first labor had been swift and uneventful, so we knew that we had
to be prepared for the possibility of not making it to Berkeley in time. We obtained
a government pamphlet for farmers on delivering babies, and bought a second-hand
obstetrics textbook. We were in Berkeley a few days before our Nathan made his
appearance, and Virginia was assured that all was well. Back in Davis, we were
awakened at 2 a.m. by a flood of amniotic fluid drenching the sheets. By 4 a.m.
the crying baby had arrived. Virginia tells people that I “delivered” him, although
really I just watched. Except for one detail: Nathan was born with his umbilical cord
wrapped around his neck. Before I had time to think about it, I had lifted the loop
away.

People we hardly knew had strong opinions about what had happened. Those who
thought we had done something praiseworthy in defense of the natural seem to have
been outnumbered by those who thought we had behaved in an irresponsible manner.
There was even the suggestion that we should be imprisoned. We were convinced
that Davis was not for us, and were determined to leave. I found a position at Ohio
State University in Columbus and quickly accepted. For the summer, I got a job at the
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Moore School of Electrical Engineering in Philadelphia where the ENIAC and the
EDVAC had been built. So, we set out for Princeton in our 1951 Studebaker sedan
with Harold and Nathan in the rear. Our plan was to spend the summer there, an easy
commute to the Moore School.

The summer at the Moore School was a pretty complete disaster. They wanted
me to prove a particular kind of theorem about certain numerical methods for solv-
ing ordinary differential equations. I knew very little about such things, but I saw
no reason to believe that there was a theorem of the kind they wanted. I did not
accomplish much for them. The best part of the summer was getting to know Hilary
Putnam who was living in the same prefab housing complex for graduate student
and junior faculty families where we had subleased an apartment for the summer. To
my surprise, he was very interested in Hilbert’s tenth problem and proposed that we
collaborate. Nothing much came of this until a few years later.

Amajor plus ofmynewposition atOhioStateUniversitywas thatKleene’s student
Clifford Spector was on the faculty. His brother was a close friend of a good friend
of mine, and on his brother’s advice, he had written me some years earlier about his
interest in logic. Apparently, this interest had been actively discouraged at Columbia
University where he had been informed that there are no interesting problems in
logic. I had suggested a number of possibilities for graduate study in logic including
Madison, Wisconsin with Kleene. Somewhat to my surprise, I detected something
not entirely friendly in Clifford’s welcome. It was several months before he became
open. I learned that Kleene had been rather displeased with me. Kleene had gone to
considerable trouble to get a fancy fellowship for me at the University of Wisconsin,
and I had not only gone to Princeton instead, but had written a dissertation largely
in areas where Kleene himself had been working. Kleene had given Spector the
uniqueness ordinal problem left open in my thesis as an appropriate topic for his
dissertation. Clifford reported that Kleene had whipped him on with the warning
that “Davis is working on it” emphasizing the importance of reaching the goal first.
In fact, I hadn’t been thinking about uniqueness ordinals at all. In any case Spector
was a more powerful mathematician than I. In his excellent dissertation, he not
only proved that every constructive ordinal is a uniqueness ordinal (thus settling the
question raised in my dissertation), but also proved a deep result in the theory of
degrees of unsolvability.13

The 1year we spent in Columbus was not a happy one. Among other difficulties,
we were feeling financially pinched. I received my last paycheck from Davis at the
beginning of June and the first from Columbus only in November. The money from
the Moore School helped, but I had to return half of the money for moving expenses
I had received from Davis because I had left after only 1year, and Ohio State did
not cover moving expenses. And apparently impossible to please, Virginia and I just
didn’t like life in Columbus very much. To save money, we moved into an apartment
with just one bedroom that we gave to our two babies, while we slept on a convertible
couch in the living room. The Chair of the department helped by offering me the

13The existence of “minimal” degrees. Only 31years old, Clifford Spector died quite suddenly in
1961 of acute leukemia, a tragic loss.
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opportunity to teach an off-campus advanced calculus course to Air Force officers
at the nearby Wright-Patterson base in the summer. In the hot Ohio summer, I often
taught wearing short pants. I later found that a Colonel had complained about my
attire to the department Chair.

One morning that summer, at the breakfast table, Virginia pointed to an adver-
tisement in the New York Times. An anonymous “long established university in
the northeast of the United States” was seeking teachers of engineering subjects
including calculus and differential equations. Salaries, the ad said would be “com-
parable to industry”. I sent off a letter at once, and I was interviewed and hired.
My academic year salary increased from $5100 to $7900 and we felt rich. The “long
established university” turned out to be Rensselaer Polytechnic Institute (R.P.I.). The
position was not at the main campus in Troy, New York, but at the Hartford Grad-
uate Division in Eastern Connecticut. In 1956 the nation was experiencing an acute
shortage of engineers. In the Connecticut valley, the United Aircraft Company with
its Pratt-Whitney subsidiary (a major manufacturer of jet engines) had been finding
it extremely difficult to hire the engineers it needed. To help to solve this problem,
R.P.I. was asked to form the Hartford Graduate Division so United Aircraft engi-
neering employees could take courses leading to a master’s degree, with tuition to
be paid by the company. This had helped, but not enough. So, liberal arts graduates
who satisfied the minimum requirement of having completed a year of calculus and
a year of physics were hired by United Aircraft and sent to the Hartford Graduate
Division to study mechanical engineering. Those who completed the forty week pro-
gram received a certificate and were put to work. They were also eligible to apply to
R.P.I.’s master’s program.

Facultywas needed to teach in this new program, and that was the reason for the ad
I had answered. The Hartford Graduate Center was housed in a one-story, industrial-
style building with a huge parking lot on the main highway between Hartford and
Springfield, Massachusetts. Friends had predicted that moving to an environment
with no research aspirations, to do elementary teaching would be the end of my
research career. In fact it turned out to be an excellent move. From a personal point
of view, EasternConnecticutwas beautiful and an easy drive toNewYorkwhere there
were friends, the amazing resources of that city, and my mother’s apartment in the
Bronx where she would cheerfully serve as baby sitter, and where we could spend the
night. But it turned out verywell professionally also. The student bodywere relatively
mature interesting people of varied background who were fun to teach. And as the
fortyweek programwound down, Imoved into themaster’s level program, teaching a
variety of courses farmore interesting thanwhat would have been available to a lowly
assistant professor atOhio State. Student notes for a course in functional analysis later
became a short book.14 The clerical staff turned out to be cheerful and competent and
quite willing to turn my mangled and worked over manuscript for Computability &
Unsolvability into a typescript I could send to publishers. There were mixed reviews,
including one that derided the connection I was proposing with actual computers
and included an invidious comparison with Kleene’s recently published book (with

14[7].
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which, by theway, the overlapwas not extensive). It turned out thatMcGraw-Hill had
chosen Hartley Rogers as their reviewer, and he not only wrote the kind of laudatory
review that gladdens an author’s heart, but also produced an astonishingly detailed
helpful critique. The book was published in McGraw-Hill’s series on “Information
Processing and Computers” appearing in 1958. It was eventually translated into
Japanese and Italian,15 and, reprinted by Dover in 1982,16 it remains in print today
[3].

The summer of 1957 was an exciting time for American logicians. A special
“institute” on logic was held at Cornell University. For five weeks 85 logicians
participated: established old-timers, those in mid-career, fresh Ph.D.’s, and graduate
students. There was even Richard Friedberg, still an undergraduate, who had just
created a sensation by proving the existence of two r.e. sets neither of which is
computable relative to the other thus solving what had been called Post’s problem.
There were seminars all day. The gorges of Ithaca were beautiful, and swimming
under Buttermilk Falls was a summertime pleasure. Hilary Putnam and I seized
the opportunity to work together. Our two families shared a house with an unusual
distribution of the quarters: there were three small separate apartments; the adult
couples eachgot oneof them, and the thirdwent to the three children, our twoboys and
Hilary’s Erika whowas two days younger than our Nathan. Hilary and I talked all day
long about everything under the sun, includingHilbert’s tenth problem.Hilary tended
to generate ideas non-stop, and some of themwere very good. I tended to be cool and
critical and could be counted on to shoot down ideas that were pretty obviously bad.
Hilary’s idea that turned out to be very good indeed was to begin with the normal
form from my dissertation and to try to get rid of that bounded universal quantifier
that blocked the path to my “daring hypothesis” by using the Chinese Remainder
Theorem to code the finite sequences of integers that the quantifier generates.17

Using little more than the fact that congruences are preserved under addition and
multiplication, we obtained two relations with rather simple definitions about which
we were able to show that their being Diophantine would imply that every r.e. set is
likewise Diophantine.18

We resolved to seek other opportunities to work together. Hilary suggested we try
to get funding so we could spend summers together. He proposed investigations of
possible computer implementations of proof procedures for first order logic.19 I guess

15The translator for the Italian version called it a “libro classico”.
16A review of the Dover edition by David Harel referred to the book as one of the few “classics” in
computer science.
17(∀k)≤y(∃u) . . . is equivalent to saying that there exists a sequence u0, u1, . . . uy of numbers
satisfying . . . The use of the Chinese Remainder theorem to code finite sequences of integers had
been used by Gödel to show that any recursively defined relation could be defined in terms of
addition, multiplication and purely logical operations. I had used the same device in obtaining my
normal form.
18[27].
19AbrahamRobinson had proposed similar investigations in a talk at the Cornell Institute. I attended
that talk, but Hilary didn’t. Somehow, I didn’t connect the two ideas until years later when I noticed
Robinson’s paper in the proceedings of the Institute.
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we thought we’d have more luck being funded with that than with Hilbert’s tenth
problem.We agreed to work through R.P.I. By the time we got our proposal together,
it was too late to be funded for the summer of 1958 by any of the usual agencies.
Someone suggested that we try the National Security Agency (NSA). Although the
NSA is now notorious, I’d never heard of them. Nevertheless I sent the proposal to
them.

Our idea was to define a procedure that would generate a proof of a sentence by
seeking a counter-example to its negation in what later became known as its Her-
brand universeHerbrand!H. universe. This involved generating ever longer Herbrand
expansions, and testing periodically for a truth-functional inconsistency. When I was
called to NSA headquarters, it turned out that it was this test for truth-functional
inconsistency that interested them. They told me that this was a very hard problem,
and seemed dubious of our ability to make serious inroads in just one summer, but,
finally, they did agree to sponsor our work. We were to provide a report at the end
of the summer. However, unlike typical funding agencies, they specifically asked
that their support not be acknowledged in the report. Told that I’d never heard of the
NSA, the reply was that their “publicity department” was doing a good job.

I found a summer cottage on Lake Coventry for Hilary and his family. As I said
elsewhere about my summers with Hilary:

We had a wonderful time. We talked constantly about everything under the sun. Hilary
gave me a quick course in classical European philosophy, and I gave him one in functional
analysis. We talked about Freudian psychology, about the current political situation, about
the foundations of quantum mechanics, but mainly we talked mathematics.20

My first copy of Computability & Unsolvability, smelling of printer’s ink arrived that
summer. Elated, I showed it to Hilary. He smilingly offered to find a typographical
error on any page I’d select. Determined to show him, I turned to the reverse side of
the title page containing the copyright notice, only six lines. Giving the page a quick
glance, Hilary noted that the word “permission” was missing its first “i”.

Our report for the NSA, entitled Feasible Computational Methods in the Proposi-
tional Calculus is dated October 1958. It emphasizes the use of conjunctive normal
form for satisfiability testing21 (or, equivalently, the dual disjunctive normal form
for tautology testing). The specific reduction methods whose use together have been
linked to the names Davis-Putnam are all present in this report.22

20[40] p. 93.
21What has become known as the satisfiability problem.
22These are:

1. The one literal rule also known as the unit rule.
2. The affirmative-negative rule also known as the pure literal[3.] rule.
4. The rule for eliminating atomic formulas
5. The splitting rule, called in the report, the rule of case analysis

The procedure proposed in our later published paper used rules 1, 2, and 3. The computer program
written by Logemann and Loveland discussed below used 1, 2, and 4. The first of these is the
“Davis-Putnam procedure” which has been the subject of theoretical analysis, nowadays referred
to as DP. The second choice is the one generally implemented, is usually called DPLL to refer to
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After that first summer, our research was supported by the U.S. Airforce Office
of Scientific Research. It was in the summer of 1959 that Hilary and I really hit the
jackpot. We decided to see how far we could get with the approach we had used at
the Logic Institute in Ithaca, if, following Julia Robinson’s lead, we were willing to
permit variable exponents in our Diophantine equations. That is, we tried to show
that every r.e. set could be defined by such an exponential Diophantine equation.
After some very hard work, using Julia Robinson’s techniques as well as a good
deal of elementary analysis,23 we had our result, but, alas, only by assuming as
given, a fact about prime numbers that was certainly believed to be true, but which
wasn’t proved until many years later namely: there exist arbitrarily long arithmetic
progressions consisting entirely of prime numbers.24 As we wrote up our summer’s
work, we decided to include an account of a proof procedure for first order logic
based on our work on the propositional calculus from the previous summer. Our
report to the Air Force included the work on Hilbert’s tenth problem, the proof
procedure, and a separate paper on finite axiomatizability. Years later Julia Robinson
brought a copy of this report25 with her to Russia where the mathematicians to
whom she showed it were astonished to learn that this work was supported by the
U.S. Airforce. It was the proof procedure [28] that brought some notoriety to the
Davis-Putnam partnership. It proposed to deal with problems in first order logic
by beginning with a preprocessing step that became standard: The negation of the
proposition to be provedwas put into prenex normal form, followed bySkolemization
to eliminate existential quantifiers, and then put into conjunctive normal form. Our
crude algorithm generated a continuing Herbrand expansion periodically interrupted
by tests for satisfiability along the lines mentioned above.

We submitted our work on Hilbert’s tenth problem for publication and at the same
time sent a copy to Julia Robinson. Julia responded soon afterwards with an exciting
letter:

(Footnote 22 continued)
the four of us. It still seems to be useful. I might mention that I have received two awards based at
least partly on this work and that I feel strongly that Hilary, at least, should have shared them.
23Among other matters, we needed to find an exponential Diophantine definition for the relation:

p

q
=

n∑
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1

r + ks
.

We didn’t go about it in the easiest way. We used the fact that

n∑
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1

α + k
= Γ ′(α + n + 1)

Γ (α + n + 1)
− Γ ′(α + 1)

Γ (α + 1)
,

expanded Γ ′/Γ by Taylor’s theorem, and used an estimate for Γ ′′ to deal with the remainder.
24See [36].
25AFOSR TR59-124.
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I am very pleased, surprised, and impressed with your results on Hilbert’s tenth problem.
Quite frankly, I did not think your methods could be pushed further …

I believe I have succeeded in eliminating the need for [the assumption about primes in
arithmetic progression] by extending and modifying your proof.

She sent us her proof soon afterwards; it was a remarkable tour de force. She showed
how to get all the primes we needed by using, instead of a then unproved hypothesis
about primes in arithmetic progression, the prime number theorem for arithmetic
progressions which provided a measure of how frequently primes occurred “on aver-
age” in such progressions. We proposed that we withdraw our paper in favor of a
joint publication, and she graciously accepted. She undertook the task of writing up
the work, and (another surprise), she succeeded in drastically simplifying the proof
so only the simplest properties of prime numbers were used. Combined with Julia’s
earlier work, this new result showed that my “daring hypothesis” that all r.e. sets
are Diophantine was equivalent to the existence of a single Diophantine equation
whose solutions grow exponentially (in a suitable technical sense of the word).26

The hypothesis that such an equation exists had been raised by Julia in her earlier
work, and Hilary and I called it JR.

For years I thought ofmyself as an exile fromNewYork.Nowcame an opportunity
to move there. From the Institute of Mathematics (to be renamed a few years later
the Courant Institute of Mathematical Sciences) at New York University came an
invitation to visit for a year. Although this was just a visiting appointment, I was
confident that we would not be returning to Connecticut. Cutting our bridges behind
us, we sold the house we had bought just a year before. Virginia was as enthusiastic
as I about our new life.Wemoved into an apartment overlooking the Hudson River in
the Upper West Side of Manhattan. At NYU, I was asked to teach a graduate course
in mathematical logic which was a great pleasure. One of the students in that course,
Donald Loveland, later became one of my first doctoral students, and, still later, a
colleague. One result of my new situation was access to an IBM 704 computer. I
jumped at the chance to try out the proof procedure Hilary and I had proposed. Two
graduate students Loveland and his friend George Logemann were assigned to me
to do the programming. Donald was a particularly apt choice because he had been
involved at IBMwith Gelernter’s “geometry machine”, a program to prove theorems
in high school geometry. Their programming effort was successful, but when the
program was run it was found that the periodic tests for truth-functional consistency
were generating large numbers of ever longer formulas that rapidly filled the available
RAM. It was the rule for eliminating atomic formulas (later called ground resolution)
which replaced a formula

(p ∨ A) ∧ (¬p ∨ B) ∧ C

by
(A ∨ B) ∧ C

26Cf. [33].
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that was causing the problem. It was when the three of us met that we decided to try
to use instead the splitting rule27 which generates the pair of formulas

A ∧ C B ∧ C

The idea was that a stack for formulas to be tested could be kept in external storage
(in fact a tape drive) so that formulas in RAM never became too large.

Much tomy surprise this problemof testing for satisfiability aBoolean polynomial
presented in form of a list of disjunctive clauses which Hilary and I had introduced
as an adjunct to a theorem proving procedure for first order logic, has turned out to
be of fundamental importance. The problem has been given the name SAT and it has
been the subject of a huge literature both theoretical and pragmatic. The form of our
algorithm that uses the splitting rule, currently referred to as DPLL, has proved to be
very successful and has been incorporated in many implementations. In the case of
our work, it proved successful in testing formulas consisting of thousands of clauses.
Nevertheless the program was overwhelmed by the explosive nature of the Herbrand
expansion in all but the simplest examples.

As I had expected and hoped, I was offered a regular faculty appointment at
NYU. At that time, there were three more or less separate mathematics departments
at NYU: the graduate department, the undergraduate department at the main campus
in Greenwich Village, and another undergraduate department at the Bronx campus.
The appointment I was offered was in the undergraduate department at the main
campus. Although not what I had hoped for, I would certainly have accepted this
offer, had not the first Sputnik gone aloft a few years earlier. The Soviet launching
of a satellite in 1957 had provoked a furore in the United States. We were “falling
behind” in science and technology. All at once, science became a growth industry.
And that was why I received a very attractive offer from Yeshiva University.

Yeshiva College is housed in a building with a curiously Middle Eastern flavor in
the part of Manhattan known as Washington Heights (because Washington fought a
rear guard action against the British there as the revolutionary forces were retreating
from New York City). It takes its name from the traditional East European yeshivas,
institutions of advanced religious training based on the Talmud with instruction
mostly in Yiddish, training that could lead to rabbinical ordination. Yeshiva College
adjoined to this traditional curriculum, a liberal arts program in the American mode.
Various schools were added to the complex, most of them secular, leading to the
“university” designation in 1945. The Mathematics Department at Yeshiva College
was the home of the periodical Scripta Mathematica, specializing in mathematical
oddities and issued regularly beginning in 1932. Abe Gelbart was a mathematician at
Syracuse University who had become involved with the Scripta Mathematica effort.
He began to imagine the possibility of building a first-rate graduate program in
mathematics and physics in this milieu. He was able to convince the Yeshiva Univer-
sity administration that in the post-Sputnik atmosphere, external funding would be

27See footnote 22.
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readily available, and he received a go-ahead to found a new Graduate School of
Science (later the Belfer Graduate School of Science) with himself as dean.

My teaching load at Yeshiva was to be two graduate courses per semester with
every encouragement to develop a program in logic as opposed to the NYU offer
whichwould have required three undergraduate courses per semester with the option
to conduct a logic seminar on my own time. In addition the Yeshiva offer came with
a salary of $500 more than I would make at NYU. For various reasons I would have
preferred to remain at NYU, but they were unwilling to respond to the Yeshiva offer,
and so, I phoned Gelbart and accepted. Late that spring I was informed that the
NYU had reconsidered and was now willing to coming closer to the Yeshiva offer.
However, I felt that I had made a commitment to Yeshiva that it would have been
unethical to break. I was told to keep in touch and let them know if circumstances
changed. It was 5years before I took them up on that suggestion.

Gelbart found a home for the new school in a building not far from Yeshiva
College. When I was taken to see it, I was quite startled. The building had previously
been a catering palace, and I remembered it very well. It had been the scene of the
celebration of my ill-fated marriage to my first wife a decade earlier. Gelbart turned
out to be difficult and ill-tempered, but eager to please so long as his beneficence
was duly acknowledged. The faculty, mathematicians and physicists all together on
one floor, formed a very congenial group and a good deal of first-rate research was
accomplished. I worked to develop a logic program and was successful in having an
offer made to Raymond Smullyan which he accepted. Although Donald Loveland’s
degree was awarded by NYU, he was effectively part of our logic group at Yeshiva.
From the beginning Robert Di Paola was at Yeshiva in order to work with me. Both
Di Paola and Loveland received their doctorates in 1964.

I was able to publish several papers that were spin-offs of the work with Hilary
and Julia (one of them joint with Hilary).28 I also worked on proof procedures, a
field that was beginning to be called automatic theorem proving (ATP). In fact my
work with Logemann and Loveland was continuing after I had left NYU, with the
IBM 704 continuing to be available to us. It was after the program was running and
its weaknesses were apparent to us that an article arrived in the mail that had a major
influence on my thinking. It was a paper by Prawitz [39] in which he showed how the
kind of generation of spurious substitution instances that overwhelmed our procedure
could be avoided. However, the procedure he proposedwas subject to a combinatorial
explosion from another direction. I set as my goal finding a procedure that combined
the benefits of Prawitz’s ideas with those of our procedure. I believed that we were
on the right track in using as our basic data objects sets of disjunctive clauses (each
consisting of literals) containing variables for which substitution instances could
be sought. Prawitz had proposed to avoid spurious substitutions from the Herbrand
universe by forming systems of equations the satisfaction of which would give the
desired result. I came to realize that for problems expressed in our form, the required
equalities always were such as to render literals complementary. That is given a
pair of clauses one of which contains the literal R(u1, u2, . . . , un) while the other
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contains¬R(v1, v2, . . . , vn), what was needed was to find substitutions to satisfy the
system of equations

u1 = v1 u2 = v2 . . . un = vn.

I also saw that for any system of substitutions that was successful in producing an
inconsistent set of clauses, there necessarily had to be a subset of that set which was
linked in the following sense:

A set of clauses is linked if for each literal � in one of the clauses of the set, the complementary
literal ¬� occurs in one of the remaining clauses.29

I had the opportunity to explain these ideas and to place them in the context of
existing research at a symposium organized by the American Mathematical Society
on Experimental Arithmetic held in Chicago in April 1962 to which I was invited to
participate. The ideas developed in the paper that was published in the proceedings
of the conference [4] turned out to be very influential (although I believe that many
of those whose work was ultimately based on this paper were unaware of the fact).30

Around this time I had been invited to spend several hours weekly as a consultant
at Bell Labs in Murray Hill, New Jersey. I was delighted to have the opportunity to
see some of my ideas implemented. Doug McIlroy undertook to produce a working
program for Bell Labs’ IBM 7090, and did so in short order. The problem of finding
solutions to the systems of equations needed to establish “links” was dealt with in
McIlroy’s program by using what was later called unification.31 Peter Hinman joined
the effort as a summer Bell LabsBell Labs employee and found and corrected some
bugs in theMcIlroy program.Wewrote up our work and submitted it for publication.
It was accepted with some rather minor changes. These changes were not made, for
reasons now obscure and the paper never appeared.

In [4] I carelessly called the algorithmwhich Logemann and Loveland had imple-
mented, the Davis-Putnam procedure as one of a number of early theorem-proving
programs for first order logic. I saw the modification we had made to DP as a mere
ad hoc adjustment, and was very slow to realize that from a practical point of view it
was the DPLL algorithm for SAT that was the most important part of that effort and
that the application to first order logic was really just a footnote. (The interest of the
National Security Agency in just that part of the effort should have been a tipoff!)
All of this may have had the inadvertent effect of depriving Logemann and Loveland
of their proper share of the credit for developing it for many years.

29Here if � = ¬R(c1, c2, . . . , cn) then it is understood that by ¬�, the literal R(c1, c2, . . . , cn) is
meant.
30It was J.A. Robinson’s key insight that a theorem-proving procedure for first order logic could
be based on not merely finding complementary literals by unification, but also then eliminating
them—what he called “resolution”—that revolutionized the field [42]. Anyone interested in tracing
the history might notice that whereas Robinson’s [42] does not refer to my [4], his earlier [41] does
and in its content clearly shows its influence.
31The example worked out in [4] shows unification in action.



1 My Life as a Logician 21

The year 1963 brought great excitement to theworld of logic. Paul Cohen invented
a powerful new method he called forcing for constructing models of the axioms of
set theory, and he had used this method to show that Cantor’s continuum hypothesis
could not be proved from the standard axioms for set theory, the Zermelo-Fraenkel
axioms together with the axiom of choice. This settled a key question that had been
tacitly posed by Gödel when more than two decades previously, he had shown that
the continuum hypothesis couldn’t be disproved from those same axioms. I was
astonished to receive a letter from Paul Cohen dated November of that year reading
in part:

I really should thank you for the encouragement you gave me in Stockholm. You were
directly responsible for my looking once more at set theory. …Of course, the problem
I solved had little to do with my original intent. In retrospect, though, the basic ideas I
developed previously played a big role when I tried to think of throwing back a proof of the
Axiom of Choice, as I had previously thought about throwing back a proof of contradiction.

In the summer of 1962 I had attended the International Congress of Mathematicians
in Stockholm. These conferences are scheduled to occur every 4years, but this was
my first since the 1950 Congress at Harvard. At the Congress, I talked briefly with
Paul Cohen. I knew that although he was not primarily a logician, he was a very
powerful mathematician who had been attempting to find a consistency proof for
the axioms of set theory. He indicated that some logicians he had talked to had been
discouraging, and I urged him to pay no attention. That was really the total extent of
my “encouragement”. Of course, I was very pleased to receive the letter.

It was in 1963 thatwe realized thatwewere outgrowing our apartment overlooking
the river. Our two sons had been sharing a bedroom. Now aged eight and ten, they
had quite different temperaments. If we were to have any peace, they would have to
have separate rooms. At this point Virginia found a “brownstone” town house a mile
south of our apartment that we were able to buy. Although the price we paid was
ridiculously low by later standards, the house and its renovation put an enormous
strain on our budget. Of course, it turned out to be far and away the best investment
we ever made. We lived there for 33 years. In order to make ends meet, I found
myself becoming an electrician and a plumber. With the help of a friend (as much a
novice as I), I even installed a new furnace.

A project that was absorbing a good deal of time and energy at this time was
the preparation of my anthology of fundamental articles by Gödel, Church, Turing,
Post, Kleene, and Rosser.32 I wrote some of the commentaries for the book while
attending a conference in the delightful town of Ravello south of Naples.

Meanwhile my relationship with Abe Gelbart was becoming more and more
difficult. Things were brought to a head in the spring of 1965 when, interviewing a
prospective faculty member, someone I had very much hoped would be a colleague,
Gelbart behaved in an insultingmanner. I decided that I had no choice but to resignmy
position. I called a friend at the Courant Institute and reminded him of the suggestion
that I let them know if I were interested in a position at NYU. Soon enough an offer
arrived. It was not quite what I had expected: the position was half at the Bronx
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campus and only half at the Institute. However, I was urged to regard the relative
vacuum on the Bronx campus as an opportunity to develop a logic group there, and
I was assured that I would be treated as a regular member of the graduate faculty. I
accepted the position and remained with the Courant Institute until my retirement in
September 1996.

I took to the notion of developing a logic group at the Bronx campus with avidity.
My old friend and student Donald Loveland was already there, and he was soon
joined by the Yasuharas, Ann and Mitsuru. I was able to provide support in the
form of released time for research from teaching from my continued funding by
the Air Force. During these years Norman Shapiro, with whom I had organized
a logic seminar in Princeton many years earlier, and my former student Bob Di
Paola were both at the RAND Corporation. Norman arranged for me to be able to
spend summers at RAND. Our family found housing in the hills above Topanga
Canyon near the Malibu coast, and I enjoyed the daily drive along the beach to the
RAND facility in Santa Monica. I was required to obtain security clearance at the
“Top Secret” level, not because I did any secret work there, but because classified
documents in the building were not necessarily under lock and key. I was tempted
once to use my clearance. The Cultural Revolution was in full swing in China, and I
was thoroughly mystified by it. Di Paola urged me to seek enlightenment by looking
at the intelligence reports from the various agencies easily available to me. I did
so, feeling that I was losing my innocence, and was greatly disappointed. Not only
did these “secret” reports contain nothing that couldn’t be found in newspapers and
magazines, they turned out to be anything but unbiased, clearly reflecting the party
line of the agency from which they emanated.

What I did at RAND was work on Hilbert’s tenth problem, specifically I tried to
prove JR. I used the computing facility at RAND to print tables of Fibonacci numbers
and solutions of the Pell equation looking for patterns that would do the trick. I also
found one interesting equation:

9(x2 + 7y2)2 − 7(u2 + 7v2)2 = 2.

I proved that JR would follow if it were the case that this equation had only the
trivial solution x = u = 1; y = v = 0.33 In fact the equation turns out to have many
non-trivial solutions, but the reasoning actually shows that JR would follow if there
are only finitely many of them, and this question remains open.

In the academic year 1968–1969 I finally had a sabbatical leave. I would have
been due for one at Yeshiva, and as part of my negotiation with NYU, I secured
this leave. I spent the year in London loosely attached to Westfield College of the
University of London where I taught a “postgraduate” course on Hilbert’s tenth
problem. I continued efforts to prove JR (and thereby settle Hilbert’s tenth problem).
I found myself working on sums of squares in quadratic rings, but I didn’t make
much progress. Meanwhile “Swinging London” was in full bloom with the mood of
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the “sixties” very much in evidence. Although not quite swept away by the mood, I
did not entirely escape its influence.

While I was in London Jack Schwartz, a friend from my City College days and
a colleague at NYU, was working to found a computer science department in the
Courant Institute. I was pressed by the Courant Institute to become part of the new
department. I accepted but notwith alacrity.Among other issues, itmeant abandoning
my logic group in the Bronx. In fact, Fred Ficken, the amiable Chair at the Bronx
campus was about to retire and the applied mathematician Joe Keller had agreed to
take on this role with the intention of making the Bronx campus a bastion of applied
mathematics. Somy group didn’t have much future.What neither Joe nor I knewwas
that the entire Bronx campus would be shut down a few years later because NYU
found itself in a financial crunch.

I had been back in NewYork only a fewmonths when I received an exciting phone
call from Jack Schwartz. A young Russian had used the Fibonacci numbers to prove
JR! Hilbert’s tenth problem was finally settled! I had been half-jokingly predicting
that JR would be proved by a clever young Russian, and, lo and behold, he had
appeared. (I met the 22year old Yuri Matiyasevich in person that summer at the
International Congress in Nice.) After getting the news I quickly phoned Julia, and
about a week later, I received from her JohnMcCarthy’s notes on a lecture he had just
heard in Novosibirsk on the proof. It was great fun to work out the details of Yuri’s
lovely proof from the brief outline I had. I saw that the properties of the Fibonacci
numbers that Yuri had used in his proof had analogues for the Pell equation solutions
with which Julia had worked and I enjoyed recasting the proof in those terms. I
also wrote a short paper in which I derived some consequences of the new result in
connection with the number of solutions of a Diophantine equation.34

To make the proof of the unsolvability of Hilbert’s tenth problem widely accessi-
ble, I wrote a survey article for the American Mathematical Monthly which was later
reprinted as an appendix to the Dover edition of Computability & Unsolvability [11].
In addition, I collaborated with Reuben Hersh on a popular article on the subject
for the Scientific American [26]. Suddenly awards were showered on me. For the
Monthly article I received the Leroy P. Steele prize from the American Mathematical
Society and the Lester R. Ford prize from theMathematical Association of America,
and for the Scientific American article Reuben Hersh and I shared the Chauvenet
prize, also from the Mathematical Association of America. I was also invited by the
Association to give the Hedrick lectures for 1976.

InMay 1974, the Society sponsored a symposium onmathematical problems aris-
ing from the Hilbert problems, and of course, Yuri was invited to speak on the tenth.
But he was unable to get permission from the Soviet authorities to come. So, Julia
was invited instead, and she agreed on condition that I be invited as well to introduce
her. When it came to writing a paper for the proceedings of the symposium, we
agreed that it should be by the three of us. Yuri’s contribution faced the bureaucratic
obstacle that any of his draft documents had to be approved before being sent abroad.
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But there was no such problem with letters. So he would send letters to Julia on his
parts of the article generally beginning,

Dear Julia,
Today I would like to write about ….

One of his topicswas “Famous Problems”. The ideawas that the same techniques that
had been used to show that there is no algorithm for the tenth problem could also be
used to show that various well-known problems were equivalent to the non-existence
of solutions to certain Diophantine equations. One of Yuri’s letters did this for the
famous Riemann Hypothesis, an assertion about the complex zeros of the function
ζ(s) = ∑∞

n=1
1
ns which remains unproved although it has important implications for

the theory of prime numbers. The Hypothesis can be expressed in terms of the values
of certain contour integrals, and Yuri’s technique was to approximate these integrals
by sums in a straightforward way. It was done in a very workman-like way, but it
seemed very inelegant to me. I went to my colleague Harold Shapiro, an expert in
analytic number theory, and he told me what to do. Julia was so pleased by the result
that she sent me a note I kept on my bulletin board for years saying “I like your
reduction of RH immensely”.35

My joint appointment in mathematics and the new Computer Science Department
definedmy new situation at Courant when I returned fromLondon. I had been flirting
with computers and computer science for years. But now I had come out of the closet
and identified myself as a computer scientist. The new Computer Science Depart-
ment was developing its own culture and clashes with the mathematicians at Courant
were not infrequent. It didn’t help that among the mathematicians were some out-
standing scientists that thoroughly outclassed our young department. To begin with
our graduate students took the same exams as the mathematics students, and hiring
was done by the same committee that hired mathematicians. The evolution towards
autonomy was slow and painful. In the spring of 1973, two applied mathematicians
and I constituted a hiring committee for computer science. The mathematicians were
both heavily involvedwith scientific computing, but neither had any real appreciation
or understanding of computer science as an autonomous discipline. I remember all
too well a particular tense lunch meeting on a Friday in June of that year in which
possible appointments were discussed in an atmosphere I did not find friendly. When
I left the meeting I became aware of a sensation like a brick placed on my chest. I
continued to experience this disagreeable sensation through the weekend and finally
entered the hospital where a myocardial infarction was diagnosed. Although in ret-
rospect I had done plenty to bring this about by poor diet and lack of exercise, I have
always thought that that disagreeable meeting played a precipitating role. Before my
heart attack, I had been an enthusiastic New Yorker even when in exile; but now I
began to yearn to live someplace where I could have a rich professional life without
the tension that I found in everyday life in New York.
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Over the years I continued to have doctoral students from both the Mathematics
Department and the Computer Science Department. I certainly taught hard-core
computer science courses, beginning programming and data structures, and on the
graduate level, theory of computation, logic programming, and artificial intelligence.
In the early years I could also count on teaching mathematical logic, set theory, and
even nonstandard analysis. Unfortunately for me this flexibility gradually vanished,
a fact that contributed to my decison to retire from NYU in 1996. But this is getting
ahead of the story.

In the 1970s the Italian universities were still not offering Ph.D. programs. Hav-
ing received their bachelor degree, graduates were entitled to use the title “Dottore”.
The C.N.R., the agency of the Italian government involved with scientific research,
concerned to do something about the inadequate training young Italian mathemati-
cians received, set up summer programs inwhich theywere exposed to graduate level
courses. I was invited to give such a course on Computability in the lovely town of
Perugia during the summer of 1975. This was the beginning of a connection between
Italian computer science and the Courant Institute. A number of my students from
that course became graduate students at NYU. Two in particular, Alfredo Ferro and
Eugenio Omodeo, obtained Ph.D.’s in computer science fromNYU. Ferro went back
to his home town of Catania in Sicily where he started a computer science program
at the university there, and sent his own students back to NYU. The relationship
continues to be active.

As an undergraduate I had tried briefly to rehabilitate Leibniz’s use of infinitesimal
quantities as a foundation for calculus. It was easy enough to construct algebraic
structures containing the real numbers as well as infinitesimals; the problem that
baffled me was how to define the elementary functions such as sine and log on such
structures. It was therefore with great excitement and pleasure that I heard Abraham
Robinson’s address before the Association for Symbolic Logic towards the end of
1961 in which he provided an elegant solution to this problem using techniques that
he dubbed nonstandard analysis. Some years later together with Melvin Hausner,
my roommate at Princeton and now a colleague, I started an informal seminar on
the subject. We had available Robinson’s treatise and some rather elegant lecture
notes by Machover and Hirschfeld. Hausner was inspired to apply the technique to
prove the existence of Haar measure. Reuben Hersh and I wrote a popular article on
nonstandard analysis, also for the Scientific American.36 Nonstandard analysis really
tickled my fancy. As I wrote in the flush of enthusiasm:

It is a great historical irony that the verymethodsofmathematical logic that developed (at least
in part) out of the drive toward absolute rigor in analysis have provided what is necessary
to justify the once disreputable method of infinitesimals. Perhaps indeed, enthusiasm for
nonstandard methods is not unrelated to the well-known pleasures of the illicit. But far
more, this enthusiasm is the result of the mathematical simplicity, elegance, and beauty of
these methods and their far-reaching application.

36Actually, as I remember it, we worked on that article and the one on Hilbert’s tenth problem
for which we received the Chauvenet prize pretty much at the same time. The one on nonstandard
analysis appeared in 1972 [25], a year before the prize-winning article.
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I taught nonstandard analysis at Courant and benefited from class notes prepared by
my student Barry Jacobs. In the summer of 1971, I taught it again at the University of
British Columbia. Finally I wrote a book (the quotation above is from the preface).37

For the academic year 1976–77, I was able to go on sabbatical leave. I had spent
two summers in Berkeley and was eager to try a whole year. John McCarthy (who
had been a fellow student at Princeton) hired me to work for the month of July at his
Artificial Intelligence Laboratory at Stanford University. I loved the atmosphere of
play that John had fostered. The terminals that were everywhere proclaimed “Take
me, I’m yours”, when not in use. I was encouraged to work with the FOL proof
checker recently developed by Richard Weyhrauch. Using this system, I developed
a complete formal proof of the pigeon-hole principle from axioms for set theory. I
found it neat to be able to sit at a keyboard and actually develop a complete formal
proof, but I was irritated by the need to pass through many painstaking tiny steps
to justify inferences that were quite obvious. FOL formalized a “natural deduction”
version of FirstOrder Logic. The standard paradigm for carrying out inferences was
to strip quantifiers, apply propositional calculus, and replace quantifiers. I realized
that from the viewpoint of Herbrand proofs, each of these mini-deductions could be
carried out using nomore than one substitution instance of each clause. I decided that
this very possibility provided a reasonable characterization of what it means for an
inference to be obvious. Using the LISP source code for the linked-conjunct theorem
prover that had been developed at Bell LabsBell Labs, a Stanford undergraduate
successfully implemented an “obvious” facility as an add-on to FOL. I found that
having this facility available cut the length of my proof of the pigeon-hole principle
by a factor of 10. This workwas described at the Seventh Joint International Congress
on Artificial Intelligence held in Vancouver in 1981 and reported in the Proceedings
of that conference [15].

During the 1976–77 academic year, it was a great pleasure to be able to interact
with the Berkeley logic group and especially with Julia Robinson. We worked on the
analogue of Hilbert’s tenth problem for strings under concatenation, but didn’t make
much progress. It had at one time been thought that proving this problem unsolvable
would be the way to obtain the desired unsolvability result for the Diophantine prob-
lem. Julia guessed that the string problem was actually decidable, and she turned
out to be right as we learned when we got word of Makanin’s positive solution of
the problem. At Berkeley that year, I taught two trimester courses, an undergraduate
computability theory course for Computer Science and a graduate course in nonstan-
dard analysis for Mathematics. For the nonstandard analysis course, I was able to
use my newly published book as a text. It was a class of about thirty students, and
a little intimidating. It was clear to me that among these Berkeley educated students
were a number who were far better versed in model theory (the underlying basis for
nonstandard analysis) than I.

Ever since my days with Hilary Putnam, I have had a continuing interest in the
foundations of quantum mechanics. A preprint I received from the logician Gaisi
Takeuti caught my attention as having important ramifications for quantum theory.
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This paper explored Boolean-valued models of set theory using algebras of pro-
jections on a Hilbert space. Boolean-valued models (in which the “truth value” of
a sentence can be any element of a given complete Boolean algebra, rather than
being restricted to the usual two element algebra consisting of {true, false}),
had been studied as an alternative way to view Paul Cohen’s forcing technique for
obtaining independence results in set theory. What Takeuti found was that the real
numbers of his models were in effect just the self-adjoint operators on the underlying
Hilbert space. Since a key element in “quantizing” a classical theory is the repre-
sentation of “observables” by such operators, I felt that the connection was surely
no coincidence. I wrote a short paper about the application of Takeuti’s mathemat-
ics to quantum mechanics, and I was very pleased when it was published in the
International Journal of Theoretical Physics [13].

I worked at John McCarthy’s AI lab again, and this time John asked me to think
about some questions involving so-called non-monotonic reasoning. I wrote a pair
of short notes which John later arranged to be combined for publication in Artificial
Intelligence [14].

I spent the academic year 1978–79 as a Visiting Professor at the Santa Barbara
campus of the University of California. There was some mutual interest in a per-
manent appointment, but it all faded away as a consequence of wrangling over the
status of the campus’s two computer science programs: the one in the Mathematics
Department and the one in Electrical Engineering. On my return to New York, I met
a new faculty member Elaine Weyuker with whom I was to find a number of shared
interests. Although trained as a theoretical computer scientist, she had moved into
the turbulent field of software testing. Of course all software must be tested before it
is released. Often, in practice this testing phase is ended simply because some dead-
line is reached or because funding runs out. From an academic point of view, the
field invites attention to the problem of finding a more rational basis for the testing
process. Elaine and I wrote two papers attempting to provide an explication for the
notion of test data adequacy.38

I had been teaching theory of computation for many years, and had developed
lecture notes for some of the topics covered. For a long time I had wanted to produce
a book based on my course, but had never found the time or energy to complete the
task. Elaine came to the rescue adding the needed critical dose of energy. In addition,
she produced lots of exercises, and tested some of the material with undergraduates.
The book was published and was sufficiently successful that we were asked to update
the book for a second edition. Neither of us beingwilling to undertake this, we coaxed
Ron Sigal, who had written a doctoral dissertation under my supervision, to join the
team as a third author largely in charge of the revision [30].

TheCADE(ConferenceonAutomatedDeduction)meetingswere occurring annu-
ally devoted to theoretical and practical aspects of logical deduction by computer.
The organizers of the February 1979 CADE meeting in Austin, realizing that year
was the centennial of Frege’s Begriffsschrift in which the rules of quantificational
logic were first presented, thought that it would be appropriate to have a lecture that
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would place their field in a proper historical context. Their invitation to me to give
such a lecture fundamentally changed the direction of my work. I found that trying to
trace the path from ideas and concepts developed by logicians, sometimes centuries
ago, to their embodiment in software and hardware was endlessly fascinating. Since
then I have devoted a great deal of time and energy to these questions. I’ve published
a number of articles and a book and also given many lectures with a historical fla-
vor.39 For 1983–84, when I was again on sabbatical leave, I received support from
the Guggenheim Foundation for this work. One key figure whose ideas I tried to
promulgate was my old teacher Emil L. Post. I lectured on his work on a number of
occasions including one talk at Erlangen in Germany. It was very much a labor of
love to edit his collected works.40

For the two academic years 1988–90, I was Chair of the Computer Science
Department at NYU. I had always felt that I would not be happy in an administrative
position, and this experience did nothing to changemymind. Iwould have been hope-
lessly swamped without the help of the department’s capable and ultra-conscientious
adminstrative assistant Rosemary Amico. The NYU central administration had been
increasingly unhappy with the fact that the Courant Institute as a whole was running
an increasing deficit each year. At the same time, the CS department was encour-
aged to improve its national standing among research-oriented CS departments. The
administration was said to be surprised and pleased that our department was rated
among the top twenty in the nation, and we were urged to produce a plan show-
ing how we could move up to the top ten. Assuming that the central administration
understood that this would require their providing additional resources, the depart-
ment prepared an ambitious plan calling for expansion in a number of directions.
The central administration did not deign to reply.

After my term of office was over, it was time for another sabbatical leave. The fall
1990 semester was spent in Europe. Our first stop was Heidelberg where I lectured
at the local IBM facility and at a logic meeting at the university. Next, a series of
lectures on Hilbert’s tenth problem at a conference in Cortona in the north of Italy.
Then a month visiting Alfredo Ferro at the University of Catania in Sicily. The fall
semester was completed with a stay at the University of Patras in Greece sponsored
by Paul Spirakis, and we were home in time for Christmas. I had completed an
important article the day before our departure from Patras, had printed it, and left a
copy on a secretary’s desk with a note asking her to make copies. Our departure was
to be by car ferry to Italy scheduled for the following midnight. The next morning
I arrived on the campus to discover that students had occupied the building where
I’d been working, and were permitting no one to enter. This was dismaying. I had
no copy of my article; it was stored in a VAX that I couldn’t access, and the only
hard copy was on the secretary’s desk. At this point a faculty member, who had
become a friend, appeared and, ascertaining the problem, spoke briefly to one of
the students. Evidently a deal was struck. I got out my key to the massive doors
locking the computer science section, and the three of us entered. There was the hard
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copy of my article where I had left it and a copying machine, and I soon had several
copies one of which my friend kept to send to the editor in Germany. Meanwhile the
student helped himself to the copier to duplicate a handwritten document, doubtless
a manifesto. We left and I was permitted to lock up.

Virginia and I took our friend and his wife to dinner that evening. Finally I asked
him what he had said to the student that turned the trick. His reply was not at all
what I had expected. “I reminded him that he was applying to Courant, and told him
that you are the Chairman.” Our ship due to sail at midnight didn’t actually leave
before 3 a.m. It turned out that the stabilizers were not functioning, and the voyage
to Ancona took a day longer than scheduled with me being seasick most of the way.
We drove to Paris in time for our flight back to New York. But our stay in New York
was very short. Over the years Virginia had accompanied me on many trips. Now it
was my turn to accompany her. Virginia had become an artist with an international
reputation. She is particularly adept at researching and mastering traditional textile
techniques and using them to make works of art. For 1991 she had been awarded a
three month Indo-American Fellowship41 to study textiles in India. Of course I came
along.

Our scheduled departure date was January 15. That was also the date on which
President Bush’s ultimatum to Saddam Hussein demanding that his forces leave
Kuwaitwas expiring. Friends urgedus to abandonour travel plans at such anuncertain
time, but we decided to go ahead. After a delay caused by a bomb scare at Kennedy
airport, we arrived in New Delhi to learn that bombs were dropping on Baghdad.
Given the chaos just outside airports in India with throngs insistently offering their
services we were delighted to be met by representatives of the American Institute for
India Studies (AIIS) who took us to their guest house. The next morning we found
other American fellowship recipients in a state of panic. The U.S. State Department
had issued an advisory to the effect that non-essential American personnel leave
India at once. Most of the others agreed to postpone their fellowship periods and left.
We decided to remain. So we were in India for the entire duration of the Gulf War.
In an odd way, the situation was advantageous for us. The lack of tourists meant that
it was easy to get reservations and services, and the AIIS guest house was always
available. The U.S. embassy, which had been transformed into a virtual fortress, was
the target of virtually daily vituperative demonstrations by militant Muslim groups,
but we ourselves had no problems.

The textiles Virginia was most eager to study were in the state of Orissa, one of
the poorest states in India, just south of Calcutta, and we spent most of our time
there. I had a new job: I was Virginia’s camera man. My job was to use the video
camera to record textile processes; we accumulated 12h of raw footage. There was
a week-long tour of some of the the small villages of Orissa, where often, there were
no hotels even minimally acceptable by U.S. standards. In one village, we were put
up in the guest house of a cotton spinning factory.

In India the contrasts between the best and the worst is enormous. We saw people
lying on the sidewalks of Calcutta waiting to die, and we had lunch with a matriarch

41These fellowships are administered by the CIES, the same office that manages Fullbright awards.
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whose huge family estate is guarded by a private police force and whose foot was
kissed by her servants when she permitted them to take the lunch leftovers home to
their families. The best educational and scientific research institutions are first-rate
by any standard. On my previous sabbatical, I had spent a month as the guest of
the Tata Institute of Fundamental Research (TIFR) in Bombay, and I was able to
visit them again briefly this time. In addition I lectured at the Indian Institute of
Technology (IIT) in New Delhi, an outstanding school whose entrance examinations
in mathematics are quite formidable. (At IIT and TIFR I was able to collect my
email.) But I also lectured at colleges, allegedly institutions of higher learning, that
were sadly weak.

On our way back to New York from India, we stopped in Europe. I spent a week
at the University of Udine as the guest of Professor Franco Parlamento who had
been a student in my Computability course in Perugia two decades earlier. Then we
went to the wonderful mathematical research institute at Oberwolfach in Germany,
an institute that started its successful life as an effort by German mathematicians to
save their talented young people from becoming cannon fodder during the second
world war. There are week-long conferences through the year on a great variety
of mathematical subjects. On this occasion, it was on automatic theorem proving
organized by Woody Bledsoe and Michael Richter, and a follow-up to a similar
meeting 15years earlier.

Back in New York, and back to teaching, I was approaching that sixty-fourth
birthday the Beatles had sung about, and beginning to wonder how I wanted to
spend the rest of my life. The things that really interested me seem to be of less
and less importance to my colleagues. I had my very own course called Arithmetic
Undecidability; in a whirlwind semester I covered the elements of first order logic
through the Gödel completeness theorem, Hilbert’s tenth problem, and the essential
undecidability of Peano arithmetic. I taught it for the last time in the spring 1993
semester, and was rebuffed in my request to teach it again. I taught the introductory
programming course for computer sciencemajors, and indeed supervised the sections
taught by others, for three successive years. I love to program, and at first, I enjoyed
these courses. But after a while, I did ask myself: do I really want to be teaching
Pascal to classes of 60 students not all of whom are especially receptive, at this stage
of my life? A triple coronary bypass operation in January 1994 brought matters to
a head. The operation was very successful, but it certainly forced me to face my
mortality. In short I decided to investigate retirement possibilities. May 17, 1996
was “Martin Davis Day” at the Courant Institute. Organized by my old friends Jack
Schwartz and Ricky Pollack, there were eight speakers: two from Italy (my student
Eugenio Omodeo, a Perugia veteran, and Mimmo Cantone, one of Alfredo Ferro’s
protégés), my first two students Bob Di Paola and Don Loveland, Hilary Putnam,
Elaine Weyuker, Ron Sigal and my college chum John Stachel.

My study is in a house in the Berkeley hills, and I am enjoying the dazzling
reflection of the late afternoon sun in San Francisco Bay. My older son, his wife and
their four children are here in Berkeley. Virginia and I still go dancing on Tuesdays.
And as Virginia likes to say, retiring gave me time to work. I have been a “Visiting
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Scholar” at the university here where Alfred Tarski had developed aworld-class logic
group.

Although I had been involved with Turing’s abstract machines in my research and
teaching, and considered myself a computer scientist as well as a mathematician,
I was slow to appreciate Alan Turing’s pioneering role in both the theoretical and
practical side of computer science. As I came to understand that the circuits of a
computer “embody the distilled insights of a remarkable collection of logicians,
developed over centuries”, I became eager to bring that point of view to the attention
of the public. Publication of Turing’sAce report (inwhich he had presented the design
of a computer proposed to be built at the British National Physics Laboratory) and his
1947 address to the London Mathematical Society (in which he explicitly stressed
the connection of general purpose digital computers to his abstract machines) both
of which had languished in obscurity, made it possible to see Turing’s vision for
the farsighted anticipation that it was. My essay [19] was an attempt to explain the
importance of Turing’s role as a computer pioneer as well as the extent to which his
work leaned on the accomplishments of generations of logicians.Withmy retirement
I could devotemyself to the project of expanding this essay into a book for the general
educated public.My “Universal Computer” [23, 24]was published in 2000. In it Iwas
particularly eager to emphasize the importance of ideas being pursued for their own
sake without necessarily expecting the immediate practical payoff that nowadays is
generally sought.

In the early years of the new millennium, I found myself devoting considerable
effort to debunking foolish claims by scholars who surely should have known better.
With the energy and self-assurance that had been shown by designers of perpetual
motion machines, a computer scientist, a philosopher, and a physicist, each claimed
to have found a way to circumvent the limitations on what can be computed that
emerged from the work of Church, Kleene, Post, and Turing in the 1930s. This
took on the aspect of a movement called hypercomputation. I spoke at meetings and
wrote a number of articles. Here is my abstract for a talk I gave at a special session
on hypercomputation at a meeting of the American Mathematical Society in San
Francisco in 2003:

Hava Siegelmann claims that her neural nets go “beyond the Turing limit”. Jack Copeland
proposes to harness Turing’s notion of “oracle” for a similar purpose. Tien D. Kieu proposes
a quantum mechanical algorithm for Hilbert’s 10th problem, known to be unsolvable. It will
be shown that in each case the results depend on the presumed physical availability of infinite
precision real numbers. In the first two examples, uncomputable outputs are obtained only by
slipping uncomputable inputs into the formalisms. Kieu’s method depends on a physically
unrealizable form of adiabatic cooling.

2002 would have been Turing’s 90th birth year, and I spoke at a conference
in his honor in Lausanne. Jack Copeland (one of the three hypercomputationalists
just mentioned) and Andrew Hodges (Turing’s wonderful biographer) were also
speakers. I spoke before and Andrew after Jack Copeland. Copeland did not come
off unscathed.
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A decade later, Turing’s centenary, there were celebratory conferences devoted to
Turing all over the world. I spoke at a math meeting in San Francisco in a panel with
Andrew Hodges, and at meetings in Boston and Florida. In addition I spoke in Eng-
land, Italy, and Peru. I was at a banquet at King’s College, Cambridge where Turing’s
nephew spoke. I crossed the Atlantic six times, three going and three returning.

I have always thought ofmyself as rather lazy and very lucky. I’ve had awonderful
marriage—Virginia and I recently celebrated our 63rd anniversary, and we have six
grandchildren. Although I had a heart attack when I was only 45, I’m still alive at
86 and well enough that Virginia and I go dancing once a week. My conjecture that
anything computable has a Diophantine definition, strongly doubted bymost experts,
turned out to be correct. And amazingly, there is this book being edited by two of
my former students with contributions by a remarkable group of scholars [34].
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Chapter 2
Martin Davis and Hilbert’s Tenth Problem

Yuri Matiyasevich

Abstract The paper presents the history of the negative solution of Hilbert’s tenth
problem, the role played in it by Martin Davis, consequent modifications of the
original proof of DPRM-theorem, its improvements and applications, and a new
(2010) conjecture of Martin Davis.

Keywords Computability · Hilbert’s Tenth Problem · DPRM-theorem

2.1 The Problem

Martin Davis will stay forever in the history of mathematics and computer science
as a major contributor to the solution of Hilbert’s tenth problem.

This was one among 23 problems which David Hilbert stated in his famous paper
“Mathematical Problems” [18] delivered at the Second International Congress of
Mathematicians. This meeting took place in Paris in 1900, on the turn of the century.
These problems were, in Hilbert’s opinion, among the most important problems that
the passing nineteenth century was leaving open to the pending twentieth century.

The section of [18] devoted to the Tenth Problem is so short that it can be repro-
duced here in full:

10. DETERMINATION OF THE SOLVABILITY OF A DIOPHANTINE EQUATION

Given a Diophantine equation with any number of unknown quantities and with rational
integral numerical coefficients: To devise a process according to which it can be determined
by a finite number of operations whether the equation is solvable in rational integers.

Equations from the statement of the problem have the form

P(x1, x2, . . . , xn) = 0 (2.1)
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where P is a polynomial with integer coefficients. The equations are named after the
Greek mathematician Diophantus who lived, most likely, in the 3rd century A.D.

The Tenth problem is the only one of the 23 Hilbert’s problems that is (in today’s
terminology) a decision problem, i.e., a problem consisting of infinitely many indi-
vidual problems each of which requires a definite answer: YES or NO. The heart of a
decision problem is the requirement to find a single method that will give an answer
to any individual subproblem.

SinceDiophantus’s time, number-theorists have found solutions for a large amount
of Diophantine equations, and also they have established the unsolvability of a lot
of other equations. Unfortunately, for different classes of equations, and often even
for different individual equations, it was necessary to invent specific methods. In his
tenth problem, Hilbert asks for a universal method for deciding the solvability of all
Diophantine equations.

A decision problem can be solved in a positive or in a negative sense, that is,
either by discovering a required algorithm or by showing that none exists. Hilbert
foresaw the possibility of negative solutions to some mathematical problems, in [18]
he wrote:

Occasionally it happens that we seek the solution under insufficient hypotheses or in an
incorrect sense, and for this reason do not succeed. The problem then arises: to show the
impossibility of the solution under the given hypotheses, or in the sense contemplated. Such
proofs of impossibility were effected by the ancients, for instance when they showed that the
ratio of the hypotenuse to the side of an isosceles triangle is irrational. In later mathematics,
the question as to the impossibility of certain solutions plays a preëminent part, and we
perceive in this way that old and difficult problems, such as the proof of the axiom of
parallels, the squaring of circle, or the solution of equations of the fifth degree by radicals
have finally found fully satisfactory and rigorous solutions, although in another sense than
that originally intended. It is probably this important fact along with other philosophical
reasons that gives rise to conviction (which every mathematician shares, but which no one
has as yet supported by a proof) that every definite mathematical problem must necessary
be susceptible of an exact settlement, either in the form of an actual answer to the question
asked, or by the proof of the impossibility of its solution and therewith the necessary failure
of all attempts.

But in 1900 it was impossible even to state rigourously what would constitute
a negative solution of Hilbert’s tenth problem. The general mathematical notion of
algorithm was developed by Alonzo Church, Kurt Gödel, Alan Turing, Emil Post,
and other logicians only three decades after Hilbert’s lecture [18].

The appearance of the general notion of algorithms gave the possibility to estab-
lish non-existence of algorithms for particular decision problems, and soon such
undecidable problems were actually found. But these results didn’t much impress
“pure mathematicians” because the first discovered undecidable problems were from
the realm of mathematical logic and the just emerging computer science.

The situation changed in 1947 when two mathematician, Andrei Andreevich
Markov [28] in the USSR, and Emil Post [45] in the USA, independently proved
that there is no algorithm for so called Thue problem. This problem was posed by
Alex Thue [58] in 1914, much before the development of the general notion of an
algorithm. Thue asked for a method for deciding, given a finitely presented semi-
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group and two elements from it, whether the defining relations imply the equality
of these two elements or not. Thus Thue problem, known also as word problem for
semigroups, became the very first decision problem, born in mathematics proper and
proved to be undecidable.

After the success with Thue problem, researchers were inspired to establish the
undecidability of other long standing open mathematical problems. In particular,
both Markov and Post were interested in Hilbert’s tenth problem. Already in 1944
Post wrote in [44] that Hilbert’s tenth problem “begs for an unsolvability proof”.
Post had a student to whom this statement produced great impression and he decided
to tackle the problem.

The name of this student was Martin Davis.

2.2 Martin Davis Conjecture

2.2.1 Statement and Corollaries

Very soonMartinDavis came to a conjecture, first announced in [3], that would imply
the undecidability of Hilbert’s tenth problem. To be able to state this conjecture, we
need to introduce a bit more terminology.

Hilbert asked for solving Diophantine equations with numerical coefficients. One
can also consider equation with symbolic coefficient, that is, equations with parame-
ters. Such an equation has the form

P(a1, . . . , am, x1, x2, . . . , xn) = 0 (2.2)

similar to (2.1) but now the variables are split into twogroups: parameters a1, . . . , am ,
and unknowns x1, . . . , xn .

As another (minor technical) deviation from Hilbert’s statement of the problem,
we will assume that both the parameters and the unknowns range over the natural
numbers; following the tradition of mathematical logic, we will consider 0 as a
natural number.

For some choice of the values of the parameters the Eq. (2.2) may have a solution
in the unknowns, and for another choice may have no solution. We can consider the
set M of all m-tuples of the values of the parameters for which the Eq. (2.2) has a
solution in the unknowns:

〈a1, . . . , am〉 ∈ M ⇐⇒ ∃x1 . . . xn
[
P(a1, . . . , am, x1, x2, . . . , xn) = 0

]
. (2.3)

Sets having such a Diophantine representation are also named Diophantine.
Traditionally, in Number Theory an equation is the primary object, and one is

interested in a description of the set of the values of the parameters for which the
equation has a solution. Martin Davis, in a sense, reversed the order of things taking
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sets as primary objects—he decided to give a general characterization of the whole
class of all Diophantine sets.

He approached this problem from a computational point of view. All Diophan-
tine sets have one common property: they are listable, or, in another terminology,
effectively enumerable. This means the following. Given a parametric Diophantine
equation (2.2), we can start looking over, in some order, all possible (m + n)-tuples
〈a1, . . . , am, x1, . . . , xn〉, for each such a tuple check if the value of the polynomial P
is equal to zero, and if this happens to be the case, write down the tuple 〈a1, . . . , am〉
on some list. Sooner or later each tuple from the set (2.3) will appear on this list,
maybe many times, and all tuples from the list will belong to this set.

Described above was a rather specific way of listing elements of Diophantine
sets. For an arbitrary set to be listable no restriction is imposed on the method
for generating its elements, the only requirement is that this should be done by an
algorithm. For example, it is evident that the set of prime numbers is listable: it is
easy to write a program that would print 2, 3, 5, . . ..

Thus, computability theory imposed an obstacle for a set to be Diophantine: if a
set is not listable, it cannot be Diophantine. Martin Davis conjectured that this is the
only obstacle.

Martin Davis conjecture. Every listable set is Diophantine.

I find that this was a rather daring conjecture because it has many corollaries,
some of them quite striking.

For example, Martin Davis conjecture implied the existence of a one-parameter
Diophantine equation

P(a, x1, x2, . . . , xn) = 0 (2.4)

having a solution if and only if a is a prime number. Hilary Putnam noticed in [47]
that the same would be true for the equation

(x0 + 1)(1 − P2(x0, x1, x2, . . . , xn)) − 1 = a. (2.5)

In other words, the set of all prime numbers should be exactly the set of all non-
negative values of the polynomial from the left-hand side of (2.5) assumed for all
natural values of x0, . . . , xn . Number-theorists did not believe in such a possibility.

Some other consequences of Davis conjecture will be presented below. Of course,
the undecidability of Hilbert’s tenth problem is among of them. This is due to the
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classical fundamental result, the existence of listable sets of natural numbers for
which there is no algorithm for recognizing, given a natural number a, whether it
belongs to the set or not.

Davis conjecture is much stronger than what would be sufficient for proving
the undecidability of Hilbert’s tenth problem. Namely, it would suffice to find for
any particular undecidable setM some representation similar to (2.2) with P being
replaced by any functionwhich becomes a polynomial in x1, . . . , xn after substituting
numerical values for a1, . . . , am . For example, we could allow parameters to appear
in the exponents as it was done by Anatolyi Ivanovich Mal’tsev in [27].

2.2.2 The First Step to the Proof

Martin Davis had not much informal evidence in support of his conjecture. Slight
support came from the following result announced in [3] and proved in [4–6].

Theorem (Martin Davis). For every listable setM there exists a polynomial Q with
integer coefficients such that

〈a1, . . . , am〉 ∈ M ⇐⇒
∃z∀y≤z∃x1 . . . xn

[
Q(a1, . . . , am, x1, x2, . . . , xn, y, z) = 0

]
. (2.6)

Representation of type (2.6) became known as Davis normal form. They can be
considered as an improvement of Kurt Gödel’s technique [15] of arithmetization.
This technique allowed him to represent any listable set by an arithmetical formula
containing, possibly, many universal quantifiers. If all of them are bounded than
such an arithmetical formula defines a listable set, and this can be used as another
definition of them (this is the content of Theorem 2.7 fromMartin Davis dissertation
[4]).

2.2.3 A Milestone

In 1959MartinDavis andHilary Putnam [13]managed to eliminate the single univer-
sal quantifier fromDavis normal form but this was not yet a proof of Davis conjecture
for two reasons.

First, they were forced to consider a broader class of exponential Diophantine
equations. They are equations of the form

EL(a1, . . . , am, x1, . . . , xn) = ER(a1, . . . , am, x1, . . . , xn) (2.7)
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where EL and ER are exponential polynomials, that is expression constructed by
traditional rules from the variables and particular positive integers by addition, mul-
tiplication and exponentiation.

Second, the proof given byMartin Davis and Hilary Putnamwas conditional: they
assumed that for every k there exist an arithmetical progression of length k consisting
of different prime numbers. In 1959 this hypothesis was considered plausible but it
was proved by Ben Green and Terence Green only in 2004 [16]. Thus all what Davis
and Putnam needed was to wait for 45 years!

Luckily, they had not to wait for so long. Julia Robinson [49] was able to modify
the construction of Davis–Putnam and get an unconditional proof. In 1961 Martin
Davis, Hilary Putnam, and Julia Robinson published a joint paper [14] with the
following seminal result.

DPR-theorem. Every listable set M has an exponential Diophantine represen-
tation, i.e., a representation of the form

〈a1, . . . , am〉 ∈ M ⇐⇒
∃x1 . . . xn

[
EL(a1, . . . , am, x1, . . . , xn) = ER(a1, . . . , am, x1, . . . , xn)

]
(2.8)

where EL and ER are exponential polynomials.
The elimination of the universal quantifier from Davis normal form immediately

gave the undecidability of the counterpart of Hilbert’s tenth problem for the broader
class of exponential Diophantine equations.

2.2.4 The Last Step

The DPR-theorem was a milestone on the way to proving Davis conjecture. All
what remained to do was to prove a particular case of Davis conjecture, namely, to
show that exponentiation is Diophantine. Indeed, suppose that we found a particular
Diophantine equation

A(a, b, c, x1, . . . , xn) = 0 (2.9)

which for given values of the parameters a, b, and c has a solution in x1, …, xn if and
only if a = bc. Using several copies of such an equation, one can easily transform
an arbitrary exponential Diophantine equation into a genuine Diophantine equation
(with additional unknowns) such that either both equations have solutions or none
of them has.

In fact, Julia Robinson was tackling this problem from the beginning of the 1950s.
It is instructive to note that her interestwas originally stimulated byher teacher,Alfred
Tarski, who asked one to prove that the set of all powers of 2 is not Diophantine.
That is, the intuition of youngMartin Davis was opposite to the intuition of venerable
Alfred Tarski.
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Julia Robinson was not able to construct the required equation (2.9) but she found
[48, 50] a number of conditions sufficient for its existence. In particular she proved
that in order to construct such an A, it is sufficient to have an equation

B(a, b, x1, . . . , xm) = 0 (2.10)

which defines a relation J(a, b) with the following two properties:

• for any a and b, J(a, b) implies that a < bb;
• for any k, there exist a and b such that J(a, b) and a > bk .

Julia Robinson called a relation J with these two properties a relation of exponential
growth; Martin Davis named them Julia Robinson predicates.

In 1970 I [29] was able to construct the first example of a relation of exponential
growth, and it was the last link in the proof of Davis conjecture. Nowadays it is often
reffered to as

DPRM-theorem. Every listable set of m-tuples of natural numbers has a Dio-
phantine representation.

This theorem implies, in particular, the undecidability of Hilbert’s tenth problem:
There is no algorithm for deciding whether a given Diophantine equation has a
solution.

2.3 Further Modifications of Original Proofs

2.3.1 Pell Equation

My original construction of a Diophantine relation of exponential growth was based
on the study of Fibonacchi numbers defined by recurrent relations

ϕ0 = 0, ϕ1 = 1, ϕn+1 = ϕn + ϕn−1, (2.11)

while Julia Robinson worked with solutions of the following special kind of Pell
equation:

x2 − (a2 − 1)y2 = 1. (2.12)

Solutions of this equation 〈χ0, ψ0〉, 〈χ1, ψ1〉, …, 〈χn, ψn〉, … listed in the order of
growth, satisfy the recurrence relations

χ0 = 1, χ1 = a, χn+1 = 2aχn − χn−1, (2.13)

ψ0 = 0, ψ1 = 1, ψn+1 = 2aψn − ψn−1. (2.14)
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Sequences ϕ0, ϕ1, . . . and ψ0, ψ1, . . . have many similar properties, for exam-
ple, they grow up exponentially fast. Immediately after the acquaintance with my
construction for Fibonacci numbers, Martin Davis gave in [8] a Diophantine defini-
tion of the sequence of solutions of the Pell equation (2.12). The freedom in selection
of the value of the parameter a allowedMartin Davis to construct a Diophantine def-
inition (2.9) of the exponentiation directly, that is, without using the general method
proposed by Julia Robinson starting with an arbitrary Diophantine relation of expo-
nential growth. Today the use of the Pell equation for defining the exponentiation by
a Diophantine equation has become a standard.

2.3.2 Eliminating Bounded Universal Quantifier

In [13] the necessity to workwith long arithmetical progressions consisting of primes
only was due to the usage of a version of Gödel’s technique for coding arbitrary long
sequences of natural numbers via the Chinese Remainder Theorem. Julia Robinson
has managed to replace such progressions by arithmetical progressions composed of
pairwise relatively prime numbers having arbitrary large prime factors. Much later,
in 1972, using a multiplicative version of Dirichlet principle, I [30] made further
modification allowing one to work just with arithmetical progressions of arbitrary
big relatively prime numbers.

In [37, Sect. 6.3] I introduced a quite different technique for eliminating bounded
universal quantifier based on replacing ∀y≤z by

∑z
y=0 with a suitable summand

allowing one to find a closed form for the corresponding sum.

2.3.3 Existential Arithmetization

The method for constructing the Davis normal form (2.6) presented in [5] starts
with a representation of the set M by an arithmetical formula in prenex form with
any number of bounded universal quantifiers constructed, for example, by Gödel’s
technique. Two tools are repeatedly applied to such a formula, one tool allowing us to
glue two consecutive existential or universal quantifiers, and the other tool giving the
possibility to change the order of consecutive universal and existential quantifiers.
The footnote on page 36 in [5] tells us that the idea of this construction belongs to
an unknown referee of the paper.

Nevertheless, the main theorem from [5] does belong to Martin Davis, but his
original proof presented in [4] was quite different. Namely, for the initial represen-
tation of listable sets he used normal systems introduced by his teacher Post. Thanks
to the great simplicity of the normal systems Martin Davis was able to arithmetize
them in a very economical way using only one bounded universal quantifier.

While Martin Davis remarks in the same footnote that the proof presented in the
paper is shorter that his original proof, the latter was very appealing to me: now that
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we know that there is no need to use bounded universal quantifiers at all, could not we
perform completely existential arithmetizing, thus avoiding universal quantifiers?

Finally I was able to give such a quite different proof of the DPR-theorem based
on arithmetization of the work of Turing machines [33]. In [37] I presented another
way of simulating Turing machines by means of exponential Diophantine equations.
Peter van Emde Boas proposed in [59] yet another, rather different way of doing it.
However, James P. Jones and I found [22] that so called register machines are even
more suitable for existential arithmetization; several versions of such “visual proof”
are given in [23, 24, 35, 39].

The “advantage” of register machines over Turing machines for constructing Dio-
phantine representations is due to the fact that the former operate directly with inte-
gers. However, register machines are not such a “classical” tool as Turing machines
are. Esteemed partial recursive function have both properties: on the one hand they
are defined on natural numbers, on the other hand, they are quite “classical”. In [38]
I used exponential Diophantine equations for simulating partial recursive function
thus giving yet another proof of the DPR-theorem.

My paper [41] presents a unifying technique allowing one to eliminate bounded
universal quantifier and simulate by means of exponential Diophantine equations
Turingmachines, registermachines, and partial recursive functions in the same “alge-
braic” style.

Thus today we have quite a few very different proofs of the celebrated DPR-
theorem. In contrast, it is a bit strange that no radically new techniques were found
for transforming exponential Diophantine equations into genuine Diophantine ones:
all known proofs in fact are minor variations of the construction presented by
Martin Davis in [8] (Maxim Vsemirnov [60] made a generalization from (2.11)
and (2.14) to some recurrent sequences of orders 3 and 4 but this gives no advantage
for constructing Diophantine representations).

2.4 Improvements

2.4.1 Single-Fold Representations

I [32] was also able to improve the DPR-theorem in another direction, namely, to
show the existence of a single-fold exponential Diophantine representation for every
listable set, that is, a representation of the form (2.8) inwhich the values of x1, . . . , xn ,
if they exist, are uniquely determined by the values of a1, . . . , am .

However, the two improvements to the DPR-theorem—to the DPRM-theorem
and to single-fold representations—have not been so far combined, that is, the ques-
tion about the existence of single-fold Diophantine representations for all listable
sets still remains open. This is so because all today known methods of constructing
Diophantine representation (2.9) are based on the study of behavior of sequences
like (2.11) and (2.14) taken some modulo; clearly, this behavior is periodic and
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as a consequence each known Diophantine representation of exponentiation is
infinite-fold—as soon as the corresponding equation (2.9) has a solution, it has
infinitely many of them.

Single-fold representations have important applications (one of them is given in
Sect. 2.6.2), and for this reason Martin Davis paper [7] titled “One equation to rule
them all” remains of interest. The equation from the title is

9(u2 + 7v2)2 − 7(r2 + 7s2)2 = 2, (2.15)

and it has a trivial solution u = r = 1, v = s = 0. Martin Davis proved that if this
is the only solution, then some Diophantine relation has exponential growth. His
expectations were broken by Oskar Herrman [17] who established the existence of
another solution. The equation attracted interest of other researches, Daniel Shanks
[53] was first in writing down two solutions explicitly and later he and Samuel S.
Wagstaff, Jr. [54] found 48 more solutions.

The discovery of non-trivial solutions did not spoil Martin Davis approach com-
pletely. It fact, it can be shown that if (2.15) has only finitely many solutions then
every listable set has a single-fold Diophantine representation.

2.4.2 Representations with a Small Number of Quantifiers

The existence of universal listable sets together with the DPRM-theorem implies
that we can bound the number of unknowns in a Diophantine representation (2.3)
of an arbitrary listable set M ; today’s record n = 9 was obtained by me [34] (a
detailed proof is presented in [19]). Accordingly, Hilbert’s tenth problem remains
undecidable even if we restrict ourselves to equations in 9 unknowns.

With present techniques, in order to get results for even smaller number of vari-
ables, one has to broaden the class of admissible formulas.

For example, for the DPR-theorem 3 unknowns are sufficient; originally this
was proved in [36], and even for single-fold representations. Later this result was
improved in [20, 21] to representations of the form

〈a1, . . . , am〉 ∈ M ⇐⇒
∃x1x2

[
EL(a1, . . . , am, x1, x2) ≤ ER(a1, . . . , am, x1, x2)

]
(2.16)

where exponential polynomials EL and ER are constructed by using unary expo-
nentiation 2c only (rather than general binary exponentiation bc). Harry R. Levitz
proved in [26] that this result cannot be further improved to single unknown.

Soon after Martin Davis introduction of the normal form (2.6), Raphael Robinson
[51] gave a rather different proof and showed that one can always take n = 4. In the
same paper he gave another representation with 6 quantified variables, namely,



2 Martin Davis and Hilbert’s Tenth Problem 45

〈a1, . . . , am〉 ∈ M ⇐⇒
∃z1z2∀y≤B(a1,...,am ,z1,z2)∃x1x2x3

[
Q(a1, . . . , am, x1, x2, x3, y, z1, z2) = 0

]
.

(2.17)

Much later, exploiting the power of the DPRM-theorem, he [52] improved the
bound for Davis normal form (2.6) to n = 3 and showed that x3 can be dropped from
(2.17). Both of these results were further improved: in [31] to n = 2, in (2.6) and in
[42] both x2 and x3 were dropped from (2.17).

More interesting is the possibility to replace the bounded universal quantifier in
(2.6) and (2.17) by finite conjunction. For example, it was shown in [31] that every
listable set has a representation of the form

〈a1, . . . , am〉 ∈ M

⇐⇒ ∃z1z2&l
y=1∃x1x2

[
Qy(a1, . . . , am, x1, x2, z1, z2) = 0

]
(2.18)

where l is a fixed number and Q1, . . . , Ql are polynomials with integer coefficients.
Clearly, the right-hand side of (2.18) can be rewritten as a system of Diophantine
equations in 2l + 2 unknowns. While this quantity is high, each single equation has
only 4 unknowns. This implies, for example, the following. Consider the class D2, 2

of Diophantine sets that can be defined by formulas of the form

〈x1, x2〉 ∈ M ⇐⇒ ∃z1z2
[
Q(x1, x2, z1, z2) = 0

]
. (2.19)

Clearly, we cannot decide whether a given intersection of finitely many sets from
classD2, 2 is empty or not. Informally, this means that among sets of pairs of natural
numbers defined by Diophantine equations with just 2 unknowns there are sets with
complicated structure having no “transparent” description.

In the above cited results the variables range over natural numbers; for the case of
integer-valued variables corresponding results are at present somewhat weaker (in
terms of the number of unknowns).

2.5 “Positive Aspects of a Negative Solution”

The title of this section reproduces part of the title of [12], the joint paper of Martin
Davis, Julia Robinson, and myself written for the Proceedings of Symposium on
Hilbert’s problems [2]. The undecidability of Hilbert’s tenth problem is just one of
the corollaries of the DPRM-theorem. Actually it can serve as bridge for transferring
ideas and results from Computability Theory to Number Theory; a few of such
applications are given below.
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2.5.1 Speeding Up Diophantine Equations

A simplest form of such transfer is as follows: take any theorem about listable sets
and replace them by Diophantine sets. For example, one can explicitly write down a
polynomial (2.5) with the set of its positive values being exactly the set of all prime
numbers; the supposed impossibility of such a definition of primes was considered
bymany number-theorists as an informal argument against Martin Davis Conjecture.

It is quite typical that the map “listable”→ “Diophantine” produces theorems not
conventional for Number Theory. For example, Martin Davis published in [10] the
following Diophantine counterpart of Manuel Blum’s [1] speed-up theorem.

Theorem For every general recursive function α(a,w) there are Diophantine equa-
tions

B(a, x1, . . . , xn) = 0, (2.20)

C(a, y1, . . . , ym) = 0 (2.21)

such that:

• for every value of a one and only one of these two equations has a solution;
• if equations

B ′(a, x ′
1, . . . , x

′
n′) = 0, (2.22)

C ′(a, y′
1, . . . , y

′
m ′) = 0 (2.23)

are solvable exactly for the same values of the parameter a as Eqs. (2.20) and
(2.21) respectively, then there is third pair of equations

B ′′(a, x ′′
1 , . . . , x

′′
n′′) = 0, (2.24)

C ′′(a, y′′
1 , . . . , y

′′
m ′′) = 0 (2.25)

such that:

– these equations are also solvable exactly for the same values of the parameter a
as Eqs. (2.20) and (2.21) respectively;

– for almost all a for every solution of equation (2.22) (Eq. (2.23)) there is solution
of equation (2.24) (respectively, Eq. (2.25)) such that

x ′
1 + · · · + x ′

m ′ > α(a, x ′′
1 + · · · + x ′′

m ′′) (2.26)

(or
y′
1 + · · · + y′

n′ > α(a, y′′
1 + · · · + y′′

n′′) (2.27)

respectively).
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This theorem in its full generality is about an arbitrary general recursive function;
replacing it by any particular (growing fast) function we obtain theorems which are
purely number-theoretical but quite non-standard for Number Theory.

2.5.2 Universal Equations

One of the fundamental notion in Computability Theory is that of universal Turing
machine or, equivalently, its counterpart universal listable set. Now the DPRM-
theorem brings the idea of such kind of universality into the realm of Diophantine
equations. Namely, for every fixed n, we can construct a particular Diophantine
equation

Un(k, a1, . . . , an, x1, x2, . . . , xm) = 0 (2.28)

which is universal in the following sense: solving an arbitrary Diophantine equation
with n parameters

D(a1, . . . , an, x1, x2, . . . ) = 0 (2.29)

is equivalent to solving the equation

Un(kD, a1, . . . , an, x1, x2, . . . , xm) = 0 (2.30)

resulting from the Eq. (2.28) by choosing a particular value kD for the first parameter,
that is, for this fixed value of k and for any choice of the values of the parameters
a1, . . . , am either both of the Eqs. (2.29) and (2.30) have a solution or neither of
them has any.

What is remarkable in this reduction of one equation to another is the following:
the degree and the number of unknowns of the Eq. (2.30) is fixed while the Eq. (2.29)
can have any number of unknowns and be of arbitrarily large degree. This implies
that hierarchies of Diophantine equations traditional for Number Theory (with 1, 2,
3, …unknowns; of degree 1, 2, 3,…) collapse at some level.

Not only number-theorists never anticipated universal Diophantine equations,
their possibility was incredible even for some logicians as it can be seen from the
review in Mathematical Reviews on the celebrated paper by Martin Davis, Hilary
Putnam, and Julia Robinson [14].

We can look at universal Diophantine equations as a purely number-theoretical
result inspired by Computability Theory. But do we really need the general notion
of listable sets for proving the existence of universal Diophantine equations or could
we construct such equations by purely number-theoretical tools? In my book [37] I
managed to prove the existence of universalDiophantine equations before proving the
DPRM-theorem; in [41] I introduced another purely number-theoretical construction
of universal Diophantine equations.
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2.5.3 Hilbert’s Eighth and Tenth Problems

The notion of listable set is very broad and can be found in a surprising variety of
contexts. Here is one such example.

Hilbert included into his 8th problem an outstanding conjecture, the famous Rie-
mann’s hypothesis. In its original formulation it is a statement about complex zeros
of Riemann’s zeta function which is the analytical continuation of the series

ζ(z) =
∞∑

n=1

1

nz
. (2.31)

Much as almost every great problem, Riemann’s hypothesis has many equivalent
restatements. Georg Kreisel [25] managed to reformulate it as an assertion about
the emptiness of a particular listable set (each element of this set would produce
a counterexample to the hypothesis). Respectively, we can construct a Diophantine
representation of this set and obtain a particular Diophantine equation

R(x0, . . . , xm) = 0 (2.32)

which has no solution if and only if the Riemann hypothesis is true.
It wasmy share towrite Sect. 2 of [12] devoted to reductions of Riemann’s hypoth-

esis and some other famous problems toDiophantine equations, but I failed to present
the equation whose unsolvability is equivalent to Riemann’s Hypothesis. Kreisel’s
main construction was very general, applicable to any analytical function, and some
details of how to transfer it to a Diophantine equation were cumbersome. Luckily,
HaroldN. Shapiro, a colleague ofMartinDavis, came to help and suggested a simpler
construction, specific to the zeta function, based on the relationship of Riemann’s
hypothesis and distribution of prime numbers, and the corresponding part of Sect. 2
from [12] was written by Martin Davis.

In [37] I present a reductions of Riemann’s hypothesis to Diophantine equations
that is a bit simpler that the construction in [12], the simplification was due to certain
new explicit constants related to distribution of primes that were obtained at that time
in Number Theory.

Thus, Riemann’s hypothesis can be viewed as a very particular case of Hilbert’s
tenth problem; such a relationship between it and Hilbert’s eighth problem was not
known before the DPRM-theorem was proved.

Hardly one can hope to prove or to disprove Riemann’s hypothesis by examining
a corresponding Diophantine equation. On the other hand, such a reduction gives
an informal “explanation” of why Hilbert’s tenth problem is undecidable: it would
be rather surprising if such a long-standing open problem could be solved by a
mechanical procedure required by Hilbert.
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2.6 Other Impossibilities

DPR-theorem and DPRM-theorem turned out to be very powerful tools for estab-
lishing that many other things cannot be done algorithmically. Only a few exam-
ples will be mentioned here, surveys of many others can be found, for example,
in [37, 40].

2.6.1 The Number of Solutions

In his tenth problem Hilbert demanded to find a method for deciding whether a given
Diophantine equation has a solution or not. But one can ask many other similar
questions, for example:

• is the number of solutions of a given Diophantine equation finite or infinite?
• is the number of solutions of a given Diophantine equation odd or even?
• is the number of solutions of a given Diophantine equation a prime number?

Martin Davis showed in [9] that Hilbert’s tenth problem can be reduced to the above
and analogous decision problems, and hence all of them are undecidable. Namely,
the following theorem holds.

Theorem (Martin Davis). LetN = {0, 1, 2, . . . ,∞} and letM be a proper subset
of N ; there is no algorithm for deciding, for given Diophantine equation, whether
the number of its solutions belongs to M or not.

Clearly, the case M = {0} is the original Hilbert’s tenth problem.

2.6.2 Non-effectivizable Estimates

Suppose that we have an equation

P(a, x1, . . . , xn) = 0, (2.33)

which for every value of the parameter a has at most finitely many solutions in
x1, . . . , xn . This fact can be expressed in two form:

• Equation (2.33) has at most ν(a) solutions;
• in every solution of (2.33) x1 < σ(a), …, xn < σ(a)

for suitable functions ν and σ .
From amathematical point of view these two statements are equivalent. However,

they are rather different computationally. Having σ(a) we can calculate ν(a) but not
vice versa. Number-theorists have foundmany classes of Diophantine equations with
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computable ν(a) for which they fail to compute σ(a). In such cases number-theorists
say that “the estimate of the size of solutions is non-effective”.

Now let us take someundecidable setM and construct an exponentialDiophantine
equation

EL(a, x1, x2, . . . , xn) = ER(a, x1, x2, . . . , xn) (2.34)

giving a single-fold representation forM . Clearly, Eq. (2.34) has the following two
properties:

• for every value of the parameter a, Eq. (2.34) has atmost one solution in x1, . . . , xn;
• for every effectively computable function σ there is a value of a for which the
Eq. (2.34) has a solution x1, . . . , xn such that max{x1, . . . , xn} > σ(a) (otherwise
we would be able to determine whether a belongs toM or not).

In other words, the boundedness of solutions of equation (2.34) cannot be
made effective in principle. This relationship between undecidability and non-
effectivizability is one of the main stimuli to improve the DPRM-theorem to single-
fold (or at least to finite-fold) representations and thus establish the existence of
non-effectivizable estimates for genuine Diophantine equations.

2.6.3 Solutions in Other Rings

Most likely, Hilbert expected a positive solution of his tenth problem. This would
allow us to recognize solvability of polynomial equations in many other rings, for
example, in the ring of algebraic integers from any finite extension of the field of
rational numbers, and in the ring of rational numbers. However, the obtained negative
solution of Hilbert’s tenth problem does not imply directly undecidability results
for other rings. Nevertheless, different researchers were able to reduce the Tenth
problem to solvability of equations in many classes of rings and thus establish the
undecidability of analogs of the Tenth problem for them (for survey see book [55]
or [56] in this volume).

Such reductions can be made by constructing a polynomial equation solvable in a
considered ring if and only if the parameter is a rational integer, or, more generally, by
constructing aDiophantine model of integers in that ring. Such an approach exploits
the mere undecidability of the original Hilbert’s tenth problem and does not require
any new ideas from Computability Theory. However, number-theorists foresee some
deep obstacles for the existence of such models for certain rings including, maybe
the most interesting, the ring Q of rational numbers.

Recently Martin Davis proposed in [11] a quite different approach based on the
existence of a special kind of undecidable sets constructed by Emil Post who named
them simple. A listable set S is called simple if its complement to the set N of all
natural numbers is infinite but contains no infinite listable set. In [43] Bjorn Poonen
proved the undecidability of a counterpart of Hilbert tenth problem for a ring U of
rational numbers denominators of which are allowed to contain “almost all” prime
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factors. His technique allows us to define a simple set S by a formula of the form

{a ∈ N | ∃x1 . . . xm
[
p(ya, x1, . . . , xm) = 0

]
(2.35)

where ya is a computable function of a, p is a polynomial, and x1, . . . , xm range
over ∼ U . When these variables are allowed to range over all rational numbers, the
same formula (2.35) defines some set Ŝp; clearly, S ⊆ Ŝp.

Martin Davis Conjecture [2010]. There is a Diophantine definition of a simple
set S for which N − Ŝp is infinite, so that Ŝp is undecidable.

Martin Davis wrote in [11]:

This conjecture implies the unsolvability of H10 [Hilbert’s tenth problem] over Q. The
conjecture seems plausible because although it is easy to construct simple sets, and there are
a number of ways to do so, and if the conjecture is false, then no matter how S is constructed,
and nomatter what Diophantine definition of S is provided, Ŝp differs fromN by only finitely
many elements. Because the additional primes permitted in denominators in the transition
from U to Q form a sparse set, this seems implausible.

Let us believe in the wisdom of the celebrated guru.
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Chapter 3
Extensions of Hilbert’s Tenth Problem:
Definability and Decidability in Number
Theory

Alexandra Shlapentokh

Abstract This chapter surveys some of the developments in the area ofMathematics
that grew out of the solution of Hilbert’s Tenth Problem by Martin Davis, Hilary
Putnam, Julia Robinson and Yuri Matiyasevich.

Keywords Hilbert’s tenth problem · Diophantine definability · Existential
definability · Recursively enumerable sets

3.1 The End of the Beginning

WhenYu.Matiyasevich completed the proof started byMartin Davis, Hilary Putnam
and Julia Robinson, showing that all recursively enumerable sets of integers are
Diophantine (see [4, 5, 22]), he added the last stone to the foundation of a new
field which evolved from the solution of Hilbert’s Tenth Problem. This new field
intersecting Recursion Theory, Model Theory, Number Theory, Algebraic Geometry
and lately parts of Analysis has sought to understand the expressive power of various
dialects of the language of rings in different settings and to determine when the
truth-values of sentences in these dialects can be decided algorithmically. Below we
survey some of the recent developments in this field over finite and infinite algebraic
extensions of Q.

The question posed by Hilbert about rational integers can of course be asked
about any recursive ring R (i.e. a ring where we know what the elements are and
how to perform algorithmically the ring operations): is there an algorithm, which if
given an arbitrary polynomial equation in several variables with coefficients in R, can
determine whether this equation has solutions in R? Arguably, the most prominent

The author has been partially supported by the NSF grant DMS-1161456.

A. Shlapentokh (B)
East Carolina University, Greenville, USA
e-mail: shlapentokha@ecu.edu
URL:http://www.myweb.ecu.edu/shlapentokha.com

© Springer International Publishing Switzerland 2016
E.G. Omodeo and A. Policriti (eds.), Martin Davis on Computability,
Computational Logic, and Mathematical Foundations,
Outstanding Contributions to Logic 10, DOI 10.1007/978-3-319-41842-1_3

55



56 A. Shlapentokh

open questions in the area are the questions of decidability of an analog of Hilbert’s
Tenth Problem for R = Q and R equal to the ring of integers of an arbitrary number
field. These questions proved to be quite hard and generated many other questions
and mathematical developments. Almost simultaneously, the subject expanded to
include infinite algebraic extensions ofQ, as well as function fields. In this paper we
describe some of the more recent developments in the area dealing with algebraic
extensions ofQ. We start our survey with a discussion of Hilbert’s Tenth Problem for
the field of rational numbers, but before we get there we need to consider a central
notion occurring again and again in the discussion below: the notion of a Diophantine
set.

3.1.1 Diophantine Subsets of a Ring

As mentioned above, a good place to start our survey is a definition of Diophantine
subsets of a ring. This definition is at the center of much of the work that followed
the solution of Hilbert’s Tenth Problem (“HTP” in the future) and by itself is a knot
of sorts holding together connections to several areas of Mathematics.

Definition 3.1 (Diophantine Sets: A Number-Theoretic Definition) Let R be a
commutative ringwith identity. (All the rings considered below satisfy these assump-
tions.) A subset A ⊂ Rm is called Diophantine over R if there exists a polyno-
mial p(T1, . . . Tm, X1, . . . , Xk) with coefficients in R such that for any element
(t1, . . . , tm) ∈ Rm we have that

∃x1, . . . , xk ∈ R : p(t1, . . . , tm, x1, . . . , xk) = 0

��

(t1, . . . , tm) ∈ A.

In this case we call p(T1, . . . , Tm, X1, . . . , Xk) a Diophantine definition of A over
R.

What was proved by Martin Davis, Hilary Putnam, Julia Robinson and Yuri
Matiyasevich (“DPRM” in the future) is that recursively enumerable subsets of inte-
gers (natural numbers) and Diophantine subsets of integers (natural numbers) were
the same. Now the connections to different areas ofMathematics emerge immediately
because Diophantine sets can also be described as the sets existentially definable in
R in the language of rings or as projections of algebraic sets. We define recursive
and recursively enumerable sets below.

Definition 3.2 (Recursive and Recursively Enumerable Subsets ofZ) A set A ⊆ Zm

is called recursive, computable or decidable if there is an algorithm (or a computer
program) to determine the membership in the set.
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A set A ⊆ Zm is called recursively or computably enumerable (r.e. and c.e.
respectively in the rest of the paper) if there is an algorithm (or a computer program)
to list the set.

The following theorem is a well-known result from Recursion Theory (see for
example [43, Sect. 1.9]).

Theorem 3.1 There exist recursively enumerable sets which are not recursive.

Given the DPRM result we immediately obtain the following important corollary.

Corollary 3.1 There are undecidable Diophantine subsets of Z.

It is easy to see that the existence of undecidable Diophantine sets implies that no
algorithm as requested by Hilbert exists. Indeed, suppose A ⊂ Z is an undecidable
Diophantine set with a Diophantine definition P(T, X1, . . . , Xk). Assume also that
we have an algorithm to determine the existence of integer solutions for polynomial
equations. Now, let a ∈ Z and observe that a ∈ A if and only if P(a, X1, . . . , XK ) =
0 has solutions in Zk . So if we can answer Hilbert’s question effectively, we can
determine the membership in A effectively.

It is also not hard to see that Diophantine sets are recursively enumerable. Given
a polynomial p(T, X̄) we can effectively list all t ∈ Z such that p(t, X̄) = 0 has a
solution x̄ ∈ Zk in the following fashion. Using a recursive listing of Zk+1, we can
plug each (k + 1)-tuple into p(T, X̄) to see if the value is 0. Each time we get a zero
we add the first element of the (k + 1)-tuple to the t-list. So the difficult part of the
DPRM proof was to show that every r.e. subset of Z is Diophantine.

3.1.1.1 Properties of Diophantine Sets

Over many rings Diophantine sets have several simple but useful properties. First
of all, over any domain a union of finitely many Diophantine sets is Diophantine.
(A product of finitely many Diophantine definitions is a Diophantine definition of
a union.) With a little bit of effort one can also show that as long as the fraction
field of the domain in question is not algebraically closed, an intersection of finitely
many Diophantine sets is Diophantine. Let h(T ) = a0 + a1T + · · · + anT n be a
polynomial without roots in the fraction field, and let f (t, x̄), g(t, x̄) be Diophan-
tine definitions of some subsets of the ring. In this case, it is not hard to see that
the polynomial

∑n
i=0 ai f

i gn−i has roots in the fraction field if and only if f (t, x̄)
and g(t, x̄) have common roots in the field. The intersection of Diophantine sets
being Diophantine is related to another important aspect of Diophantine equations
over domains with fraction fields not algebraically closed: a finite system of equa-
tions is always equivalent to a single equation in the sense that both the system and
the equation have the same solutions over the domain in question and in the sense
that given a finite system of equations, the equivalent equation can be constructed
effectively. We can use this property of finite systems to give more latitude to our
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Diophantine definitions, i.e. we can let the Diophantine definitions over rings whose
fraction fields are not algebraically closed consist of several polynomials without
changing the nature of the relation.

Over Z (and many other rings) we have additional methods for writing Diophan-
tine definitions. One surprisingly useful tool for writing Diophantine definitions has
to do with an elementary property of GCD’s (greatest common divisors).

Proposition 3.1 If a, b ∈ Z�=0 with (a, b) = 1 then there exist x, y ∈ Z such that
ax + by = 1.

The GCD’s can be used to show that the set of non-zero integers is Diophantine
and thus allow us to require that values of variables are not equal, as well as to
perform “division” as will be shown later. On a more theoretical level we can say
that the positive existential theory of Z is the same as the existential theory of Z.

Proposition 3.2 The set of non-zero integers has the following Diophantine defini-
tion over Z:

{t ∈ Z|∃x, u, v ∈ Z : (2u − 1)(3v − 1) = t x}

Proof If t = 0, then either 2u − 1 = 0 or 3v − 1 = 0 has a solution in Z, which is
impossible. Suppose now t �= 0. Write t = t2t3, where t2 is odd and t3 �≡ 0 mod 3.
Since (t2, 2) = 1 and (t3, 3) = 1, by a property of GCD there exist u, xu, v, xv ∈ Z

such that
2u + t2xu = 1

and
3v + t3xv = 1.

Thus (2u − 1)(3v − 1) = t2xut3xv = t (xuxv). �

Another important Diophantine definition allows us to convert inequalities into
equations.

Lemma 3.1 (Diophantine definition of the set of non-negative integers) From
Lagrange’s Theorem we get the following representation of non-negative integers:

{t ∈ Z|∃x1, x2, x3, x4 : t = x21 + x22 + x23 + x24 }

Before we proceed further with our discussion of HTP over Q we would like
to point out that it is not hard to see that decidability of HTP over Z would imply
decidability of HTP for Q. Indeed, suppose we knew how to determine whether
solutions exist over Z. If Q(x1, . . . , xk) is a polynomial with integer coefficients,
then

∃x1, . . . , xk ∈ Q : Q(x1, . . . , xk) = 0

��
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∃y1, . . . , yk, z1, . . . , zk ∈ Z : Q(
y1
z1

, . . . ,
yk
zk

) = 0 ∧ z1 . . . zk �= 0,

where we remind the reader we can rewrite z1 . . . zk �= 0 as a polynomial equation
and convert the resulting finite system of equations into a single one. So if we can
determine whether the resulting equation had solutions over Z, we can determine
whether the original equation had solutions over Q.

Unfortunately, the reverse implication does not work: we don’t know of any easy
way to derive the undecidability of HTP over Q from the analogous result over
integers.

The fact that we can rewrite equations over Q as equations over Z is a specific
instance of a more general phenomenon playing an important part in a discussion
below.

Proposition 3.3 If the set of non-zero elements of an integral domain R has a Dio-
phantine definition over R, A is a Diophantine subset of F, the fraction field of R,
and F is not algebraically closed, then A ∩ R has a Diophantine definition over R.

Proof We sketch the main idea of a proof. Rewrite the variables ranging over F as
ratios of variables ranging over R with a proviso that the denominator variables are
not 0. Then clear all the denominators. �

3.1.1.2 Using a Diophantine Definition of Z to Show Undecidability

One of the earliest methods suggested for showing that HTP was undecidable overQ
used Diophantine definitions. This idea can be summarized in the following lemma
where the setting is somewhat more general. First we formally define recursive rings.

Definition 3.3 Acountable ring is said to be recursive (or computable) if there exists
a bijection j : R −→ Z�0 such that the j-images of the graphs of R-addition and
R-multiplication are recursive subsets of Z3

�0.

Lemma 3.2 Let R be a recursive ring of characteristic 0 (or in other words, a ring
containing Z as a subring) with a fraction field not algebraically closed. If Z has a
Diophantine definition p(T, X̄) over R, then HTP is not decidable over R.

Proof Let h(T1, . . . , Tl) be a polynomial with rational integer coefficients and con-
sider the following system of equations.

⎧
⎪⎪⎨

⎪⎪⎩

h(T1, . . . , Tl) = 0
p(T1, X̄1) = 0

. . .

p(Tl, X̄l) = 0

(3.1)
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It is easy to see that h(T1, . . . , Tl) = 0 has solutions in Z if and only if system (3.1)
has solutions in R. Thus if HTP is decidable over R, it is decidable over Z. �

Unfortunately, the Diophantine definition plan for Q quickly ran into problems.

3.2 So What About Q?

3.2.1 Z Is Probably Not Existentially Definable over Q

In 1992 Barry Mazur formulated a series of conjectures which were to play an
important role in the development of the subject (see [23–25]). One of the conjectures
on the list was refuted in [1] but others are still open. Before we state two of the
conjectures on the list, we need a definition.

Definition 3.4 (Affine Algebraic Sets and Varieties.) If {p1(x1, . . . , xm), . . . ,

pk(x1, . . . , xm)} is a finite set of polynomial equations over some field K , then the
set of common zeros of these polynomials in K̃ m , where K̃ is an algebraically closed
field containing K , is called an algebraic set. An algebraic set which is irreducible,
i.e. is not a union of non-empty distinct algebraic sets, is called a variety. Given a
variety V defined over K and a subfield K0 of K̃ weoften consider V (K0) = V ∩ K0.

Mazur’s conjectures on the topology of rational points are stated below:

Conjecture 3.1 (Topology ofRational Points) Let V be any variety overQ. Then the
topological closure of V (Q) in V (R) possesses at most a finite number of connected
components.

This conjecture had an unpleasant consequence.

Conjecture 3.2 There is no Diophantine definition of Z over Q.

Mazur’s conjecture also refers to projective varieties, but it is the affine variety
case which has the most consequences for HTP overQ. We should also note that one
can replace “variety” by “algebraic set” without changing the scope of the conjecture.
(See Remark 11.1.2 of [56].) As a matter of fact, if Conjecture 3.1 is true, no infinite
and discrete (in the Archimedean topology) set has a Diophantine definition overQ.

Quite a few years later Königsmann [19] used different reasons to make a case
that there is probably no Diophantine definition of Z over Q.

Since the plan to construct aDiophantine definition ofZ overQ ran into substantial
difficulties, alternative ways were considered for showing that HTP had no solution
overQ. One of the alternative methods required construction of a Diophantine model
of Z.

Definition 3.5 (Diophantine Model of Z) Let R be a recursive ring whose fraction
field is not algebraically closed and letϕ : Z −→ Rk be a recursive injectionmapping
Diophantine sets ofZ toDiophantine sets of Rk . Thenϕ is called aDiophantinemodel
of Z over R.
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Remark 3.1 (An Alternative Terminology from Model Theory) Model theorist have
an alternative terminology for a map described above. They would translate the
statement that R has a Diophantine model of Z as Z being existentially definably
interpretable in R. (See Chap.1, Sect. 3 of [21].)

It is not hard to see that sending Diophantine sets to Diophantine sets makes the
map automatically recursive. The recursiveness of the map follows from the fact
that the ϕ-image of the graph of addition is Diophantine and therefore is recursively
enumerable (by the same argument as over Z). Thus, we have an effective listing of
the set

D+ = {(ϕ(m), ϕ(n), ϕ(m + n)),m, n ∈ Z}.

Assume we have computed ϕ(r − 1) for some positive integer r . Now start listing
D+ until we come across a triple whose first two entries are ϕ(r − 1) and ϕ(1). The
third element of the triple must be ϕ(r). We can simplify the requirements for the
map further.

Proposition 3.4 If R is a recursive ring and ϕ : Z −→ Rk is injective for some
k ∈ Z>0, then ϕ is a Diophantine model if and only if the images of the graphs of
Z-addition and Z-multiplication are Diophantine over R.

This proposition can be proved by a straightforward induction argument which
we do not reproduce here.

It quite easy to see that the following proposition holds.

Proposition 3.5 If R is a recursive ring with a Diophantine model of Z, then HTP
has no solution over R.

Proof If R has a Diophantine model of Z, then R has undecidable Diophantine sets,
and the existence of undecidable Diophantine sets over R leads us to the undecid-
ability of HTP over R in the same way as it happened over Z. To show that R has
undecidable Diophantine sets, let A ⊂ Z be an undecidable Diophantine set and
suppose we want to determine whether an integer n ∈ A. Instead of answering this
question directly we can ask whether ϕ(n) ∈ ϕ(A). By assumption ϕ(n) is algorith-
mically computable. So if ϕ(A) is a computable subset of R, we have a contradiction.

�

3.2.2 Elliptic Curves and Diophantine Models

An old plan for building a Diophantine model of Z over Q involved using elliptic
curves. Consider an equation of the form:

y2 = x3 + ax + b, (3.2)

where a, b ∈ Q and Δ = −16(4a3 + 27b2) �= 0. This equation defines an elliptic
curve (a non-singular plane curve of genus 1).
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All the points (x, y) ∈ Q2 satisfying (3.2) (if any) together with O—the “point
at infinity”—form an abelian group, i.e. there is a way to define addition on the
points of an elliptic curve with O serving as the identity. The group law on an
elliptic curve can be represented geometrically (see for example [61, Chap. III,
Sect. 3]). However, what is important to us is the algebraic representation of the
group law. Let P = (xP , yP), Q = (xQ, yQ), R = (xR, yR) be the points on an ellip-
tic curve E with rational coordinates. If P +E Q = R and P, Q, R �= O , then
xR = f (xP , yP , xQ, yQ), yR = g(xP , yP , xQ, yQ),where f (z1, z2, z3, z4), g(z1, z2,
z3, z4) are fixed (somewhat unpleasant looking) rational functions. Further,
−P = (xP ,−yP). Mordell-Weil Theorem (see [61, Chap. III]) tells us that the
abelian group formed by points of an elliptic curve over Q is finitely generated,
meaning it has a finite rank and a finite torsion subgroup. It is also not very difficult
to find elliptic curves whose rank is one. So let E be such an elliptic curve defined
over Q such that E(Q) ∼= Z as abelian groups. (In other words E(Q) has no torsion
points. In practice torsion points are not an impediment, but they do complicate the
discussion.) Let P be a generator and consider a map sending an integer n �= 0 to
[n]P = (xn, yn). (We should also take care of 0, but we will ignore this issue for
the moment.) The group law assures us that under this map the image of the graph
of addition is Diophantine. Unfortunately, it is not clear what happens to the image
of the graph of multiplication. Nevertheless one might think that we have a starting
point at least for our Diophantinemodel ofZ. Unfortunately, it turns out that situation
with Diophantine models is not any better than with Diophantine definitions. Further
a theorem of Cornelissen and Zahidi (see [3]) showed that multiplication of indices
of elliptic curve points is probably not existentially definable.

Theorem 3.2 If Mazur’s conjecture on topology of rational points holds, then there
is no Diophantine model of Z over Q.

This theorem left HTP over Q seemingly out of reach. It is often the case with
difficult Mathematical problems that the search for solutions gives rise to a lot of
new and interestingMathematics, sometimes directly related to the original problem,
sometimes only marginally so. People trying to resolve the Diophantine status of Z
also proceeded in several directions. The two directions generating the most activity
are the the big ring project and attempts to reduce the number of universal quantifiers
in first-order definitions of Z over Q. We review the big ring project first.

3.2.3 The Rings Between Z and Q

We start with a definition of the rings in question whose first appearance on the scene
in [49, 50] dates back to 1994.

Definition 3.6 (A Ring in between) Let S be a set of primes of Q. Let RS be the
following subring of Q.
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{m
n

: m, n ∈ Z, n �= 0, n is divisible by primes of S only
}

IfS = ∅, then RS = Z. IfS contains all the primes of Q, then RS = Q. IfS is
finite, we call the ring small. IfS is infinite, we call the ring big.

Some of these rings have other (canonical) names: the small rings are also called
rings of S -integers, and when S contains all but finitely many primes, the rings
are called semi-local subrings of Q. To measure the “size” of big rings we use the
natural density of prime sets defined below.

Definition 3.7 (Natural Density) IfA is a set of primes, then the natural density of
A is equal to the limit below (if it exists):

lim
X→∞

#{p ∈ A, p � X}
#{p � X}

The big and small rings are not hard to construct.

Example 3.1 (A Small Ring not Equal to Z)

{ m

3a5b
: m ∈ Z, a, b ∈ Z>0

}

Example 3.2 (A Big Ring not Equal to Q)

{
m∏
pnii

: pi ≡ 1 mod 4, ni ∈ Z>0

}

Given a big or a small ring R we can now ask the following questions which were
raised above with respect to Q:

• Is HTP solvable over R?
• Do integers have a Diophantine definition over R?
• Is there a Diophantine model of integers over R?

Here one could hope that understanding what happens to HTP over a big ring can
help to understand HTP over Q.

3.2.4 Diophantine Properties of Big and Small Rings

Before trying to answer the questions above, one should observe that the big and
small rings share many Diophantine properties with the integers:

Proposition 3.6 1. The set of non-zero elements of a big or a small ring is Dio-
phantine over the ring.
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2. A finite systemof polynomial equations over a big or a small ring can be rewritten
effectively as a single polynomial equation such that the solution set for the
system is the same as the solution set for the equation.

3. The set of non-negative elements of a big or a small ring R is Diophantine over
R: a small modification of the Lagrange argument is required to accommodate
possible denominators

{t ∈ R|∃x1, x2, x3, x4, x5 : x25 t = x21 + x22 + x23 + x24 ∧ x5 �= 0}

It turned out that we already knew everything we needed to know about small
rings from the work of J. Robinson (see [39]). In particular from her work on the
first-order definability of integers overQ one can deduce the following theorem and
corollaries.

Theorem 3.3 (J. Robinson) For every p, the ring Rp = {x ∈ Q|x = m
n ,m, n ∈

Z, n > 0, p � | n} has a Diophantine definition over Q.

This theorem of J. Robinson will play a role in many other results, as we will see
below. In particular, now using Proposition 3.3 and Parts 1 and 2 of Proposition 3.6
we get the following corollaries.

Corollary 3.2 Z has a Diophantine definition over any small subring of Q.

Proof To see that J. Robinson’s theorem implies this corollary, let R be any big or
small ring and observe that, sinceQ is not algebraically closed, Rp ∩ R is Diophan-
tine over R by Proposition 3.3 and Part 1 of Proposition 3.6. Let gR,p be the resulting
Diophantine definition.

Now let R be a small ring with p1, . . . , pr being all the primes allowed in the
denominators of its elements. Let gR(t, ū) = 0 be the polynomial equation equivalent
to the system ⎧

⎨

⎩

gR,p1(t, z̄1) = 0,
. . .

gR,pr (t, z̄r ) = 0,

and observe that gR(t, ū) is a Diophantine definition of R ∩ Rp1 ∩ · · · ∩ Rpr . (Exis-
tence of g(t, ū) is guaranteed by Part 2 of Proposition 3.6.) Suppose t is an element of
this intersection. Since t ∈ R, the only primes that can divide the (reduced) denom-
inator of t are p1, . . . , pr . However, being an element of Rpi , i = 1, . . . , r implies
that pi for all values of the index does not divide the denominator. Therefore, no
prime can divide the denominator of t , and hence t is an integer. At the same time,
trivially, Z ⊆ R ∩ Rp1 ∩ · · · ∩ Rpr . Thus, Z has a Diophantine definition over R. �

Given that Z has a Diophantine definition over R, we apply Lemma 3.2 to conclude
the following.

Corollary 3.3 HTP is unsolvable over all small subrings of Q.

Over big rings the questions turned out to be far more difficult.
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3.2.5 Existential Models of Z over Big Rings

In 2003 Poonen [32] proved the first result on Diophantine undecidability (unsolv-
ability of HTP) over a big subring of Q.

Theorem 3.4 There exist recursive sets of primesT1 andT2, both of natural density
zero and with an empty intersection, such that for any set S of primes containing
T1 and avoiding T2, the following hold:

• Z has a Diophantine model over OQ,S .
• Hilbert’s Tenth Problem is undecidable over OQ,S .

Poonen used elliptic curves to prove his result but the model he constructed was
very different from the one envisioned by the old elliptic curve plan we described
earlier. Poonen modeled integers by approximation. The construction of the model
does start with an elliptic curve of rank one

E : y2 = x3 + ax + b (3.3)

selected so that for a set of primes S , except possibly for finitely many points, the
only multiples of a generator P that have their affine coordinates in the ring RS are
in the sequence [±�i ]P = (x�i ,±y�i ) with |y� j − j | < 10− j . We remind the reader
that we know how to define positive numbers using a variation on Lagrange’s theme
(Proposition 3.6) and how to get rid of a finite set of undesirable values such as points
of finite order (just say “�=” as in Proposition 3.6 again). We claim that ϕ : j −→ y� j

is a Diophantine model of Z>0. In other words, setting D = j (Z), we claim that ϕ

is an injection, and D, as well as the following sets, is Diophantine over RS :

D+ = {(y�i , y� j , y�k ) ∈ D3 : k = i + j, k, i, j ∈ Z>0}

and
D2 = {(y�i , y�k ) ∈ D2 : k = i2, i ∈ Z>0}.

(Note that if D+ and D2 are Diophantine, then D× = {(y�i , y� j , y�k ) ∈ D3 : k =
i j, k, i, j ∈ Z>0} is also Diophantine since xy = 1

2 ((x + y)2 − x2 − y2).) It is easy
to show that

k = i + j ⇔ |y�i + y� j − y�k | < 1/3.

and with the help of Lagrange this makes D+ Diophantine. Similarly we have that

k = i2 ⇔ |y2�i − y�k | < 2/5,

implying that D2 is Diophantine.
To restrict the number of solutions to the elliptic curve equation, Poonen’s con-

struction relied to a large extent on the fact that the denominators of the coordinates
of points on an elliptic curve which are multiples of a single point form a divisibility
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sequence: an integer sequence {an} is called a divisibility sequence if n|m implies
an|am (see Chaps. 4 and 10 of [14] for a discussion of such sequences and see the dis-
cussion of the formal group of an elliptic curve in Chap.4 of [61] for an explanation
of why the denominators form a divisibility sequence).

Poonen’s method was further extended by Eisenträger and Everest [10], Perlega
[29] and finally by Eisenträger et al. [11]. The theorem proved in [11] provides a
“covering” of Q by big rings where HTP is undecidable.

Theorem 3.5 (Eisenträger, Everest, Shlapentokh) For any finite set of positive com-
putable real numbers (i.e. real numbers that are limits of computable sequences of
rational numbers) r1, . . . , rk such that r1 + · · · + rk = 1 we can partition the set of
all (rational) primes into setsP1, . . . ,Pk such that the natural density of eachPi

is ri , each ring RPi has a Diophantine model of Z and therefore HTP is undecidable
over each RPi .

The author also constructed a model of Z using Diophantine equivalence classes
(a class model ofZ) over a big ring using the old idea of trying tomakemultiplication
of indices Diophantine in [60].

Theorem 3.6 Let E be an elliptic curve defined and of rank one over Q. Let P be
a generator of E(Q) modulo the torsion subgroup, and fix an affine (Weierstrass)
equation for E of the form y2 = x3 + ax + b, with a, b ∈ Z. If (xn, yn) are the
coordinates of [n]P with n �= 0 derived from this (Weierstrass) equation, then there
exists a set of primes W of natural density one, and a positive integer m0 such that
the following set � ⊂ R12

W is Diophantine over RW .

(U1,U2,U3, X1, X2, X3, V1, V2, V3,Y1,Y2,Y3) ∈ � ⇔
∃ unique k1, k2, k3 ∈ Z�=0 such that(

Ui
Vi

, Xi
Yi

)
= (xm0ki , ym0ki ), for i = 1, 2, 3, and k3 = k1k2.

3.2.6 The Other End of the Spectrum

In this section we would like to describe some work (still in progress) which
approached HTP over big rings from the other end of the spectrum, i.e. from the
point of view of Q. Before we can discuss these very new ideas we need to make a
quick detour to review some basic notions of logic.

Definition 3.8 (Turing Reducibility) Let A ⊆ Zk, B ⊆ Zm for some positive inte-
gers k,m. Assume also that there is an effective procedure to determine membership
in A using an oracle for membership in B. In this case we say that A is Turing
reducible to B and write A �T B. If additionally we have B �T A, then we say
that B is Turing-equivalent to A. The equivalence classes of Turing equivalence are
called Turing degrees.

We now need to review a definition of a famous set.
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Definition 3.9 Let { fi } be an effective enumeration of all computable functions and
let

H = {(i, j) ∈ Z2
>0| fi (x j ) ↓}.

In this case we call H the Halting Set.

It is not hard to see that

(a) H is r.e.
and

(b) every r.e. set is Turing reducible to H (so in some sense H is the “hardest” r.e.
set),

Our next step is to convert the question of decidability of HTP of a recursive ring R
into a question of the Turing degree of a subset of Z>0. (Here we remind the reader
that by a recursive or computable ring we mean a ring which is recursive as a set
and with operations corresponding to total recursive functions. A ring isomorphic to
a recursive ring will be called computably presentable.) To that end let {pi (x̄)} be
an effective enumeration of all polynomials over R and let HTP(R) denote the set of
indices corresponding to polynomials having a root in R. Now given DPRM result
we have that HTP(Z) ≡T H . Further, any recursive or computably presentable ring
R with a Diophantine model of Z has HTP(R) ≡T H .

At the same time, by results of Friedberg [16] and Muchnik [27] we know that
there are Turing degrees containing undecidable r.e. sets not as hard as H , i.e. H is
not Turing equivalent to these sets. What if HTP(Q) is one of these sets? If this were
the case, there would be neither an algorithm to solve HTP overQ nor a Diophantine
model of Z over Q. So if HTP(Q) �≡T HTP(Z) it makes sense to see if there are big
subrings R of Q, “infinitely” far away from Q with HTP(R) ≡T HTP(Q).

In order to explain how we get “far away” from Q we need to discuss the notion
of being integral at a prime and reconsider results of J. Robinson we introduced

before with a new spin. If x ∈ Q, x �= 0, then we can write x = ± p
a1
1 ...pamm
q
b1
1 ...q

bk
k

, where

p1, . . . , pm, q1, . . . , qk are distinct prime numbers and a1, . . . , am, b1, . . . , bk are
positive integers. We define ordpi x = ai , ordq j x = −b j , and for a prime number

t /∈ {p1, . . . , pm, q1, . . . , qk}

we define ordt x = 0. If t is a prime and x is a rational number with ordt x � 0, we
say that x is integral at t .

Wenowgoback to a result of JuliaRobinsonweusedbefore: Theorem3.3, proving
that the set of all rational numbers integral at a given prime is Diophantine over Q,
and examine more closely what was involved in a construction of this Diophantine
definition. The construction of the definition is in fact uniform in p, i.e. given a p
there is an effective procedure taking p as its input and constructing the existential
definition of the valuation ring of p—the set of all rational numbers integral at p.
Since we can effectively combine a finite number of Diophantine definitions into
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one over any subring ofQ, we conclude that we have an algorithm for writing down
Diophantine definitions of rings of rational numbers without a fixed finite set of
primes dividing the denominators.

In the project still in progress (see [12]) K. Eisenträger, R. Miller, J. Park, and A.
Shlapentokh have constructed families of computably presentable subrings R of Q
with HTP(R) ≡T HTP(Q). The constructed rings consist of rational numbers where
an infinite set of primes is allowed to divide the denominator, but the complement
of this set of primes, that is the set of primes that are not allowed to divide the
denominator is also infinite. Priority method was used to make the set of inverted
primes c.e. (and thus the rings computably presentable). Further, the set of primes
which can occur as divisors of the denominators of elements in the ring can be
arranged to have the lower natural density equal to 0. So we are truly looking at
a ring “in the middle”, “infinitely far away” from both Z and Q. These rings also
have the property that the set of inverted primes, i.e. primes allowed to divide the
denominators is computable from HTP(Q). So if HTP(Q) is decidable, these prime
sets are also decidable and the rings in question are computable subrings of Q (not
just computably presentable).

The co-authors have also obtained an analog of Theorem 3.5, though a weaker
one. More specifically, for any positive integer k, one can partition the set of all
prime numbers into k sets S1, . . . ,SK , each of lower density 0, and construct
rings R1, . . . , Rk where the primes allowed to divide the denominators are precisely
S1, . . . ,SK respectively and such that HTP(Ri ) ≡T HTP(Q). Unfortunately, these
rings are not necessarily computably presentable and we can only say that each Si

is Turing reducible to HTP(Q), so that again if HTP(Q) is decidable, these prime
sets are also decidable and the rings in question are computable subrings of Q.

Now if we combine the results above with results constructing big rings with
HTP equivalent to the halting problem, then one can conclude that if HTP over Z
is different from HTP over Q, in particular if HTP(Q) is decidable, then we have
an extremely strange picture of tightly intermingled recursive rings inside Q with
different levels of difficulty for HTP. Such a picture seems unlikely, though of course
we cannot rule it out without a proof.

3.3 All Together Now (with Universal Quantifiers)

So far we have discussed the existential theory of Z, i.e. we made use of existential
quantifiers only in making various statements in the ring language, the language of
polynomial equations. It is natural to ask what happens if we also allow the use of
universal quantifiers. If we do allow the universal quantifiers, the situation changes
dramatically. As we have mentioned before, the result defining integers overQ using
the “full force” of the first-order language is pretty old and belongs to J. Robinson
(see [39]). Thus we have known for a while that the full first-order theory of rational
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numbers is undecidable. J. Robinson used quadratic forms and Hasse-Minkwoski
Theorem to prove her result.

In a 2007 paper G. Cornelissen and K. Zahidi analyzed J. Robinson’s formula
and showed that it can be converted to a formula of the form (∀∃∀∃)(F = 0) where
the ∀-quantifiers run over a total of 8 variables, and where F is a polynomial. In
2008 Poonen [35] produced an improvement of the first-order definition of integers
over Q. He showed that Z is definable over Q using just two universal quantifiers
in a ∀∃-formula. B. Poonen used quadratic forms, quaternions and the Hasse Norm
Principle. His definition of Z overQ is simple enough to be reproduced here: the set
Z equals the set of t ∈ Q for which the following formula is true over Q:

(∀a, b)(∃a1, a2, a3, a4, b1, b2, b3, b4, x1, x2, x3, x4, y1, y2, y3, y4, n)

(a + a21 + a22 + a23 + a24)(b + b21 + b22 + b23 + b24)·

[(x21 − ax22 − bx23 + abx24 − 1)2 + (y21 − ay22 − by23 + aby24 − 1)2+

+ n2 + (n − 1)2 . . . (n − 2309)2 + (2x1 + 2y1 + n − t)2] = 0

Starting with B. Poonen’s results, J. Koenigsmann further reduced the number of
quantifiers to one in [19]. As we pointed out above, this result could very well be
the optimal one, since Z probably does not have a purely existential definition over
Q. In the same paper, Koenigsmann showed that Z has a purely universal definition
over Q or alternatively, the set of non-integers has a Diophantine definition over Q.
We will return to the issue of definitions using all of the quantifiers in the sections
below concerning finite and infinite algebraic extensions.

3.4 Up and Away

In this section we survey developments over number fields inspired by the solution
of Hilbert’s Tenth Problem. We start with a review of some terms.

• A number field K is a finite extension of Q.
• We denote a fixed algebraic closure of Q, i.e. the field containing the roots of all
polynomials with coefficients in Z, by Q̃.

• A Galois closure of a number field K over Q is the smallest Galois number field
containing K inside Q̃.

• A totally real number field is a number field all of whose embeddings into its
algebraic closure are real.

• A ring of integers OK of a number field K is the set of all elements of the number
field satisfying monic irreducible polynomials over Z or alternatively the integral
closure of Z in the number field.
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• A prime of a number field K is a non-zero prime ideal of OK . If x �= 0 and
x ∈ OK , then for any prime p of K there exists a non-negative integer m such
that x ∈ pm but x /∈ pm+1. We call m the order of x at p and write m = ordpx . If
y ∈ K and y �= 0, we write y = x1

x2
, where x1, x2 ∈ OK with x1x2 �= 0, and define

ordpy = ordpx1 − ordpx2. This definition is not dependent on the choice of x1 and
x2 which are of course not unique. We define ordp0 = ∞ for any prime p of K .

• Given x ∈ K , x �= 0, for all but finitely many primes p of K we have ordpx = 0.
We define a formal (finite) product

n(x) =
∏

ordpx>0

pordpx

and

d(x) = n(
1

x
) =

∏

ordpx<0

p−ordpx .

If x ∈ OK , then d(x) = (1), the empty product. Of course the finite products of
prime ideals of OK also correspond to ideals of OK . Further, finite products of
prime ideals are called integral divisors and they form a semigroup under multi-
plication.

• Given an element x ∈ Q, x �= 0, we write x = m
n ,m, n ∈ Z, n > 0, (m, n) = 1

and define the height of x to be the max(|m|, |n|). Given z ∈ K , where K is a
number field, we consider the monic irreducible polynomial a0 + a1T + · · · +
an−1T n−1 + T n of z over Q and define the height of z, denoted by h(z), to be the
max(h(ai ), i = 0, . . . , n).

• If K is a numberfield of degreen overQ andσ1 = id, . . . , σn are all the embeddings
of K into a fixed algebraic closure of Q and x ∈ K , then NK/Q(x) = ∏n

i=1 σi (x).

3.4.1 HTP over the Rings of Integers of Number Fields

The state of knowledge concerning the rings of integers and HTP is summarized in
the theorem below.

Theorem 3.7 Z is Diophantine and HTP is unsolvable over the rings of integers of
the following fields:

• Extensions of degree 4 of Q (except for a totally complex extension without a
degree-two subfield), totally real number fields and their extensions of degree 2.
(See [6, 8].) Note that these fields include all abelian extensions.

• Number fields with exactly one pair of non-real embeddings (See [30, 48].)
• Any number field K such that there exists an elliptic curve E defined over Q with

E(Q) of positive rank with [E(K ) : E(Q)] < ∞. (See [31, 33, 58].)
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• Any number field K such that there exists an elliptic curve E defined over K with
E(K ) of rank 1, and an abelian variety V defined over Q such that V (Q) and
V (K ) have the same rank. (See [2].)

All the results above concerning rings of integers are derived by constructing a
Diophantine definition of Z over the rings in question and they all follow what we
have called elsewhere a “strong” or “weak vertical method”.

Both methods rely on congruences to “force” an element t from a ring R of
integers of a number field K to take values in Z. These congruences are of the form

t ≡ n mod w (3.4)

where n ∈ Z andw ∈ R and of bigger height relative to t . In the strong version of the
method the height of w is also large relative to n and this forces the equality t = n
to hold.

In the weak version of the method we don’t have a bound on n, but we know that
w ∈ Z. In this case, again assuming the height of w is sufficiently large relative to t ,
we conclude that t ∈ Q but not necessarily equal to n.

One typical way to produce a congruence (3.4) is to isolate powers of a single unit
ε in the ring of integers. (A unit is an invertible element of the ring.) If one succeeds
in doing this, the elementary algebra produces the first ingredient of the congruence.

εkn − 1

εk − 1
≡ n mod (εk − 1)

in the ring of integers of the number field, where k, n ∈ Z>0. In other words we have
a divisibility condition

(
εk − 1

) ∣∣∣∣

(
εkn − 1

εk − 1
− n

)

in R. Thus, if we write
εkn − 1

εk − 1
≡ t mod (εk − 1),

then we are in fact writing t ≡ n mod w, withw = εk − 1, and we are part of the way
there. Also, writing down equations affirming that the height of t is small relatively
to εk − 1 is not that complicated. It can be done through a requirement that some
polynomial in t divides εk − 1. It is not hard to show that given any algebraic integer
u, there exists k ∈ Z>0 such that u divides εk − 1 in the ring of integers.

Now, if we want to use the strong vertical method, we need to make n small
relative to the height of εk − 1. This, unfortunately, is rather hard and requires a
pretty intimate knowledge of the equations involved. At the same time, if we want to
use the weak vertical method, then we need a way to replace εk − 1 by some w ∈ Z

so that w divides εk − 1 and at the same time is still large relative to t .
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The weak vertical method can also be used to push t not necessarily all the way
down to Z but maybe to a subfield M of the given field K , so that over M a different
method, e.g. the strong one, can be used to complete the descent to Z. If we are using
the weak method just to get to a subfield M , we only need w to be in the ring of
integers of M . This is often a lot easier, than satisfying the requirement that w is in
Z.

The strong vertical method was used by J. Denef over totally real number fields
and by T. Pheidas and the author for the fields with one pair of non-real embeddings.
(At the time of these results, the method did not have a name.) The construction of
a Diophantine definition of Z over the ring of integers for all the other fields listed
above used a weak vertical method. The equations used in all constructions were
either norm or elliptic curve equations. The last result in Theorem 3.7 also used an
abelian variety satisfying a stable rank condition. This condition is discussed in more
detail in the next section. Here we would just like to explain briefly the use of norm
equations and their limitations with respect to both methods.

The use of norm equations for both vertical methods depends on the interaction
of ranks of unit groups in the rings of integers of number fields. First of all, the group
of units inside every number field is of finite rank and we have a formula to compute
the rank. If K is a number field of degree n over Q with r real embeddings and 2s
non-real embeddings into the chosen algebraic closure of Q, then the rank of the
unit group is r + s − 1. (Non-real embeddings always come in pairs due to complex
conjugation.)

Now if we have a totally real field K and its extension M of degree 2 such that it
has exactly two real embeddings, we conclude that the difference in ranks of their unit
groups is exactly one. Using the fact that the norm map NM/K : M → K maps units
to units and is a homomorphism of unit groups ofM and K , from the rank calculation
we conclude that the kernel of the map, i.e. the set of units whose norm is equal to 1 is
a subgroup of the unit group ofM of rank 1. (The rank of the kernel is the difference in
the M and K unit group ranks.) A finitely generated multiplicative group of rank one
is more or less a set of powers of a single element (possibly times elements of finite
order, in our case roots of unity.) Writing down a polynomial equation computing the
norm using the variables with values in K we can get a polynomial equation whose
solutions effectively describe powers of a unit. This equation is quite well known
under the name of Pell equation and has a number of convenient properties that we
can leverage to bound the heights as described above. Thus we can proceed with the
strong vertical method.

The first substantial applications of the weak vertical method (again long before
the author of this narrative gave it a name) was due to Denef and Lipshitz [8] and
it was also based on a calculation of the rank of unit groups comprised of solutions
to norm equations. We show how the weak vertical method was used in this paper
via the field diagram below where we assume that K is a totally real field of degree
n over Q, [M : K ] = 2, [F : K ] = 2, F ∩ M = K , and G is the compositum of M
and F (inside the chosen algebraic closure).
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M �� G

K

��

�� F

��

Using the formula for computing ranks of unit groups one can choose a field F so
that G has no real embeddings while the following equality holds:

rank ker NG/M = rank ker NF/K . (3.5)

Indeed, let rM be the number of real embeddings of M and 2sM the number of non-
real embeddings, so that rM

2 + sM = n. Let rF , sF be the corresponding numbers for
F with rF

2 + sF = n. Using these notation and our assumptions on G we see that the
left side of (3.5) is equal to 2n − rM − sM and the right side is equal to rF + sF − n.
Thus we need n − rM

2 = rF
2 or 2sM = rF . In other words every embedding of K

extended to a real embedding of M , should be extended to a non-real embedding of
F and vice versa. Note that this condition on embeddings will also guarantee that all
embeddings of G are non-real and M ∩ F = K .

The final piece needed to use the weak vertical method comes from the following
observation.Anyunit of F with its K -normequal to one is also a unit ofGwith theM-
norm equal to one. This follows from the fact that M ∩ F = K . Thus, ker NF/K ⊆
ker NG/M and ker NF/K is of finite index in ker NG/M since ker NG/M is finitely
generated.

Thus, if ε ∈ ker NG/M , then for some fixed positive integer n independent of ε, it
is the case that εn is actually an element of ker NF/K ⊂ F . Now let ε1, ε2 ∈ ker NG/M

and consider the equation
εr2 − 1

εr1 − 1
= w ∈ OG,

where r ∈ Z>0 and r ≡ 0 mod n. By the discussion abovewe can deduce thatw ∈ F .
So if we have a congruence

t ≡ w mod (εr1 − 1),

with the height of εr1 − 1 relatively large to t ∈ OM , then t ∈ OM ∩ F = OK . At the
same time, if ε2 = εm1 withm ∈ Z>0, and t = m, then the congruence will hold. Thus
we have a foundation for applying the weak vertical method in order to define OK

over OM . Once we defined OK , we can continue with the strong vertical method to
get all the way down to Z.

Even from this brief description of the way the norm equations are used in the
construction of an existential definition ofZ, it is clear that this particular use of norm
equations can work in special cases only, i.e. when the number fields are totally real
or are not “far” from being totally real. So a different foundation for the vertical
method is highly desirable. This new foundation is conjecturally provided by elliptic
curves.
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3.4.2 Positive Stable Rank Condition and Elliptic Curves

We now come back to the discussion of elliptic curves, curves defined by equation
y2 = x3 + ax + b, but now with a, b possibly being algebraic integers while Δ =
−16(4a3 + 27b2) is still not equal to 0. We will be looking for solutions to this
equation in a specific number field K and will use them in a very different fashion to
define integers compared to what we were doing over big rings to define a model of
Z. The idea to use elliptic curves with the weak vertical method, as the idea to use
an elliptic curve for a model of Z over big rings, belongs to B. Poonen (see [32]).

The use of the weak vertical method is based on the following properties of points
on elliptic curves. If we let P be a point of infinite order and let the affine coordinates
of [n]P corresponding to our equation be (xn, yn), then the following statements are
true over any number field K :

1. LetA be any integral divisor of K and letm be a positive integer. Then there exists

k ∈ Z>0 such that A
∣∣∣d(xkm), where d(xkm) is the denominator of the divisor of

xkm in the integral divisor semigroup of K .
2. There exists a positive integer m such that for any positive integers k, l,

d(xlm)

∣∣∣∣∣n
(
xlm
xklm

− k2
)2

(3.6)

in the integral divisor semigroup of K .

It is not hard to understand why the first assertion is true. The reasons are, in some
sense, the same as for the assertion that a number field unit ε raised to a sufficiently
high power is equivalent to 1 modulo any number field divisor. In both cases the
reason is the finiteness of residue fields of primes.

Let P be a point of infinite order such that a prime p of a number field K overwhich
the curve is defined, does not occur in the denominators of the affine coordinates of
P from some fixed Weierstrass equation of the elliptic curve. (We remind the reader
that we can assume this equation is of the form y2 = x3 + ax + b, where a, b are
integers of our number field. Thus, x and y have negative order at the same set of
primes.)

We now consider our Weierstrass equation over the residue field of p and for the
sake of simplicity we will also assume that p does not divide the discriminant of the
original equation so that modp we are still looking at an elliptic curve. Given our
assumption on the discriminant, P is mapped onto a non-zero element of the group
of elliptic curve points. Since the field is finite, the group of points is finite and thus
the image of P has a finite order r . Hence [r ]P is mapped to a point at infinity of the
elliptic curve mod p. Therefore, [r ]P must have coordinates with negative order at p.
Once pmakes it into the denominator, it will persist in all multiples of [r ]P . Further,
let p be the rational prime below p (or the rational prime p such that (p)OK ⊂ pOK )
and observe that properties of formal groups imply that [pr ]P will have a higher
power of p in the denominator of its coordinates. So any divisor of K will divide
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some multiple of P . This accounts for the first assertion above. The second assertion
is a bit harder and also follows from properties of formal groups. A formal proof of
both assertions can be found in [32].

Existence of a point of infinite order implies that the Mordell-Weil group, the
group of points on the elliptic curve in question, is of positive rank. We will always
have this assumption when discussing the use of elliptic curves for our definitional
purposes. Unfortunately the properties above by themselves are not enough to make
elliptic curves usable with the weak vertical method. We also need a stable rank
assumption. We want the rank of Mordell-Weil group unchanged whether we look
at points with coordinates in K or points with coordinates in some subfield L below.
If the rank is unchanged then a fixed integer multiple of any point on the curve has
its coordinates derived from our equation in L .

Assume for the purpose of simplification that every point on the curve has its
coordinates in the field below and that the class number of K is 1, or in other words
given an integral divisor A = p1 . . . pK we can find an integer x such that n(x) = A
and therefore we can write any y ∈ K as a ratio of two integers x1 and x2 with n(x1)
being relatively prime to n(x2). Then we can write the x-coordinate of every point
on the elliptic curve as a ratio of two algebraic integers which are relatively prime.

With these assumptions, we can now consider the following system of equations:

(
ui
vi

)2

= ai
bi

3 + a
ai
bi

+ b, i = 1, 2 (3.7)

(a3b2) − t2(b3a2) = b3a2b2u (3.8)

Ct2(t2 + 1) . . . (t2 + m)w = b2 (3.9)

Here ( aibi
, ui
vi

), i = 1, 2 in (3.7) represent two points on our elliptic curve with coordi-
nates written as ratios of integers. Equation (3.8) is the same as Eq. (3.6) but rewritten
in terms of our variables taking integer values only. Finally (3.9) is the height bound
equation, where m,C are positive integers depending on K only.

If for some element t ∈ OK we can find values for u1, v1, u2, v2, a1, b1, a2, b2,
u,w ∈ OK , then we can deduce from (3.7)–(3.9) that t2 − z ≡ 0 mod b2 in OK ,
where z ∈ OL and b2 is of much larger height than t . Thus, by the weak vertical
method we conclude that t ∈ L . Note that we cannot conclude that z ∈ Z. This
would only follow if we also knew that our elliptic curve had rank equal to one and
wewould need additional equations. However, we do know that if t is an integer, than
by arranging ( aibi

, ui
vi

) to be multiples of the same infinite order point, as described
above, we can find the values for other variables to satisfy the equations. Thus,
applying the weak vertical method, we end up defining a subset of OL containing Z.
This is actually enough to define OL , because we can continue to define via ratios a
subset of L containing Q and then using a basis of L over Q all elements of OL .

The discussion above leaves us with two questions: how to get down to Z and
when do we have a stable rank situation in the first place. We answer the second
question first via a Theorem proved by B. Mazur and K. Rubin (see [26]).
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Theorem 3.8 Suppose K/L is a cyclic extension of prime degree of number fields. If
the Shafarevich-Tate Conjecture is true for L, then there is an elliptic curve E over
L with rank(E(L)) = rank(E(K)) = 1.

Combining this theorem with the weak vertical method, we get an immediate
corollary.

Corollary 3.4 Suppose K/L is a cyclic extension of prime degree of number fields
and the Shafarevich-Tate Conjecture is true for L. In this case OL has a Diophantine
definition over OK .

Returning to the first question we asked above about getting down to Z, we are
now in position to note that conditional on Shafarevich-Tate conjecture holding for
all number fields, Corollary 3.4 implies that Z is existentially definable over OL for
all number fields L . Connecting the cyclic cases to an arbitrary extension L of Q
takes several steps:

1. Let M be the Galois closure of L over Q. In this case if Z has a Diophantine
definition over OM , then Z has a Diophantine definition over OL . Thus without
loss of generality, we can assume that L is Galois over Q. The fact that we can
always replace a given field by its finite extension, follows from the fact that any
polynomial equation with variables ranging in a finite extension can be rewritten
as an equivalent polynomial equation with variables ranging in a given field.

2. Let L/Q be a Galois extension of number fields. Let K1, . . . , Kn be all the cyclic
subextensions of L , i.e. all the subfields Ki of L such that L/Ki is cyclic. Observe
that there are only finitely many such subextensions,

n⋂

i=1

Ki = Q,

n⋂

i=1

OKi = Z,

and therefore if each OKi has a Diophantine definition over OL , then Z has a
Diophantine definition over OL . (Thus, it is enough to show that in every cyclic
extension the ring of integers below has a Diophantine definition over the ring of
integers above.)

3. If L ⊆ H ⊆ M is a finite extension of number fields, OH has a Diophantine
definition over OM , and OL has a Diophantine definition over OH , then OL has a
Diophantine definition over OM . Thus, it is enough to consider cyclic extensions
of prime degree only. The reason why this reduction works are pretty transparent.
For example suppose PH (t, x̄) with x̄ = (x1, . . . , xr ) is a Diophantine definition
of OL over OH and let PM(t, ȳ) be a Diophantine definition of OH over OM .
Now consider the system
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

PH (t, x̄) = 0
PM(t, ȳr ) = 0
PM(x1, ȳ1) = 0

. . .

PM(xr , ȳr ) = 0

Now it is not hard to see that this system has solutions over OM if and only if
x1, . . . , xr ∈ OH and t ∈ OL . For a general discussion of reductions of this sort
see [54] and Chap.2 of [56].

The results above represent the state of our knowledge concerning the status of HTP
over the rings of integers of number fields.We also know quite a few things about big
subrings of number fields. One could say that the big ring problem is simultaneously
easier and harder when considered over extensions. In the next section we start with
the easier part.

3.4.3 Big Rings Inside Number Fields

The discussion of big rings requires a review of a few more definitions. As above K
is a number field.

• Any prime ideal p of OK is maximal and the residue classes of OK modulo p form
a field. This field is always finite and its size (a power of a rational prime number)
is called the norm of p denoted by Np.

• IfW is a set of primes of K , its natural density is defined to be the following limit
if it exists:

lim
X→∞

#{p ∈ W , Np � X}
#{Np � X}

• Let K be a number field and let W be a set of primes of K . Let OK ,W be the
following subring of K .

{x ∈ K : ordpx � 0 ∀p /∈ W }

If W = ∅, then OK ,W = OK—the ring of integers of K . If W contains all the
primes of K , then OK ,W = K . IfW is finite, we call the ring small (or the ring of
W -integers). IfW is infinite, we call the ring big. These rings are the counterparts
of the “in between” subrings of Q.

• Given a field extension M/K and a prime ideal pK of K , we can talk about
factorization of pK in M . In other words when we look at the ideal pK OM of
OM , it might not be prime any more but a product of prime ideals of OM . So, in
general, in OM we have pK = ∏k

i=1 p
ei
M,i , where pM,1, . . . , pM,k are distinct prime

ideals. We will call ideals of OM occurring in the factorization of a prime ideal of



78 A. Shlapentokh

OK conjugate over K and note the following property of the conjugate ideals. If
x ∈ OK ⊂ OM and ordpM,i x < 0 for some i , then ordpM, j x < 0 for all j .

Before discussing HTP and definitions of Z over big subrings of number fields, we
should note that small subrings of number fields are also covered by the results of J.
Robinson. To be more precise we have the following proposition (see [40]).

Proposition 3.7 Let K be a number field and let pK be a prime of K . In this case
the set {x ∈ K |ordpK x � 0} has a Diophantine definition over K

Now taking into account the fact that the set of non-zero elements has an existential
definition over all small and big rings of any number field, we have the following
corollary.

Corollary 3.5 Let K be a number field and letSK be a finite set of primes of K . In
this case, OK has a Diophantine definition over OK ,SK .

Thus in all cases where we know HTP to be undecidable over the ring of integers
of a number field, we also have that HTP is undecidable over any small subring of
the field.

We now move on to big subrings. The main difference between the big subring
situationoverQ andover numberfields is thatwewere able to construct aDiophantine
definition of Z over some big subrings of non-trivial extensions of Q. We describe
these rings below.

Theorem 3.9 Let K be a number field satisfying one of the following conditions:

• K is a totally real field.
• K is an extension of degree 2 of a totally real field.
• There exists an elliptic curve E defined over Q such that [E(K ) : E(Q)] < ∞.

Let ε > 0 be given. Then there exists a setS of non-archimedean primes of K such
that

• The natural density of S is greater 1 − 1

[K : Q] − ε.

• Z is Diophantine over OK ,S .
• HTP is unsolvable over OK ,S .

(See [52, 53, 55, 58, 59].)

One immediately notices that all the fields to which our theorem applies are the
fields wherewe have definitions ofZ over the rings of integers. This is not an accident
of course. Given a number field extension M/K and an integrally closed subring R
of M , call the problem of defining R ∩ K over R a “vertical” problem and call
the problem of defining R over M a “horizontal” problem. (So a vertical problem
involves an algebraic extension and a horizontal problem does not involve algebraic
extensions, i.e. everything takes place inside the same field.) Using these terms, one
could say that we learned how to solve a vertical problem over the fields mentioned
in Theorem 3.9 and, using an observation concerning conjugate prime ideals, one
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can adapt these vertical solutions for horizontal purposes. In other words, let K be
a number field and let WK be a collection of prime ideals of K with the following
property: all but finitely many ideals in WK have a distinct conjugate over K such
that this conjugate is not in WK . In this case OK ,WK ∩ Q = OQ,SK , where SK is
either finite or empty and thus either OQ,SK = Z or Z has a Diophantine definition
of OQ,SK . So to define Z over OK ,WK with this type of WK it is enough to define
OK ,WK ∩ Q, that is to solve a vertical problem.

Relative to solving the corresponding vertical problem over the ring of integers,
over OK ,WK there are some additional difficulties related to bounding of heights, but
the overall design of the weak vertical method is unchanged. One should note that
by construction the density of the set of the inverted primes can never be one. To
get results concerning big rings where the density of inverted primes is one we need
Poonen’s method and an elliptic curve of rank one.

There are various generalizations of Poonen’s theorem to number fields. However
the situation is more complicated over a number field and instead of constructing a
model ofZ by “approximation”, what is constructed there is amodel of a subset of the
rational integers over which one can construct a model of Z. In short, one constructs
a “model of a model” (see [36].) There are also analogs of Theorems 3.5 and 3.6
(see [11, 60]). As in the case of the rings of integers, these big ring results extend to
all number fields but only conjecturally depending as they are on Shafarevich-Tate
conjecture. The situation is different, however, with the “other end of the spectrum”
results. As we will see below, they extend seamlessly to all number fields. Before
we get to those results, we need to say a few words about presentations of number
fields, their primes and their big subrings.

So far most of the results we have discussed above concerning number fields are
definitional in nature and do not require a discussion of the presentation of the object
involved, just the language in which the definitions are made. The language of course
is the language of rings, possibly with finitely many additional constants. However,
whenwe start talking about undecidabilitywe do need toworry about how the objects
are presented. Of course number fields and rings of integers have very easy, naturally
computable presentations in terms of an integral basis over Q. (If we choose an
integral basis, then the ring of integers can be generated as a Z-module from the
basis.) The situation becomes more complicated when we discuss big subrings (or
even small subrings). Big subrings ofQ are computable inside a standard presentation
of Q precisely when the set of primes allowed in the denominator is computable.
If the set is c.e. but not computable, then as we pointed out above, the ring has a
computable presentation, just not as a part of the computable presentation of Q.

The situation in the big subrings of number fields is similar since we have a
computable way to describe the primes of a number field. If a number field K is
given by the minimal polynomial of its generator (inside a computable presentation
of Q̃, this generator can be given explicitly), and we choose a rational prime p, then
within the standard computable presentation of K , using the power basis of the field
generator, we can algorithmically determine the number of distinct factors p has in
K . Further for each factor we can effectively find an algebraic integer such that this
integer has order one at this factor but not at any other factors of p. For a factor p
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of p let a(p) be this algebraic integer. Now we can represent the prime p by the pair
(p, a(p)), where a(p) is given by its coordinates with respect to the fixed basis of K
overQ. Further, given an element x of K , we can effectively compute n(x) and d(x)
in terms of our presentation of primes and assuming that WK is a computable set of
primes, we can determine whether x ∈ OK ,WK .

We can re-use the identification ofHTPof a particular ringwith a subset of positive
integers containing the indices of all polynomials with coefficients in the ring having
a root in the ring. Our next observation is that HTP(K ) �T HTP(Q) since we can
rewrite any polynomial equation over K with variables ranging over K as a system
of polynomial equations over Q with variables ranging over Q. Further, as over Q,
we also have for any WK that HTP(OK ,WK ) �T HTP(K ). Finally, we also have the
following results from [12].

Theorem 3.10 For any number field K there exist a c.e. set WK of primes of K of
lower density equal to zero such that HTP(OK ,WK ) ≡T HTP(K ) �T HTP(Q) and
WK �THTP(K ).

Theorem 3.11 For any number field K and any positive integer m there exist sets
W1, . . . ,Wm of primes of K such that Wi �THTP(K ), each Wi has a lower density
zero and W1 ∪ · · · ∪ Wm is a partition of all primes of K .

As over Q we can also also ask what do we know about definability and decid-
ability using the full first-order theory.

3.4.4 Universal and Existential Together in Extensions

One could argue that J. Robinson solved most of the natural first-order definability
and decidability questions over number fields. Before describing this aspect of her
results, we should note that in addition to the old questions of decidability and
definability of Z and the rings of integers, we also have a question of uniformity of
definitions across all number fields. The question of uniformity is a new question
in our discussion. It naturally does not arise when we discuss Q only, and as far as
existential definitions over number fields are concerned, we are very far away from
being able to address such questions. However, as we will see below, the situation is
different when we use the full first-order language.

In [40], J. Robinson constructed a first-order definition of Z over the ring of
integers for every number field. Amazingly she used only one universal quantifier to
do it. These definitions were not, however, uniform across number fields. Later on
in [41], J. Robinson constructed a definition which was uniform across all number
fields but was using more universal quantifiers. Rumely [45] constructed a version of
these definitions uniform across global fields (number fields and function fields over
a finite set of constants). Finally, In the same paper where B. Poonen constructed
a two-universal-quantifier definition of Z over Q, he constructed a uniform two-
universal-quantifier definition of the ring of integers across all number fields.
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So far J. Koenigsmann’s one-universal-quantifier result has not been extended to
any number fields, but J. Park constructed a purely universal definition of the rings
of integers over all number fields in [28].

3.4.5 Open Questions over Number Fields

We hope that from our narrative it is clear that there is no shortage of open problems.
In fact one could get an impression that for every question answered at least two open
ones appear. There are many ways to organize these questions. We choose to divide
them into two main collections: questions of definability and questions of Turing
reducibility, including questions of decidability. Now the questions of definability
can also be divided into many other categories. Given two rings R1 and R2 with
fraction fields K1 and K2 being number fields, one can pose a number of definability
problems.

1. If R1 ⊂ R2 we can ask whether R1 has a Diophantine definition over R2. If
R1 �⊂ R2 then one can ask whether R1 �Dioph R2 or whether R1 is Dioph-
generated over R2. Diophantine generation is defined as follows. Let K be a num-
ber field containing both K1 and K2 and letω1, . . . , ωn be any basis of K over K2.
Now consider the question of existence of a Diophantine subset A ⊂ Rn+1

2 such
that (a1, . . . , an, b) ∈ A ⇒ b �= 0 and R1 = {∑n

i=1
ai
b ωi |(a1, . . . , an, b) ∈ A}.

(For more details on Diophantine generation see [56].)
2. More generally, we can ask whether R2 has a Diophantine model of R1 or a

class Diophantine model of R1. A class Diophantine model corresponds to what
model theorists call a Diophantine interpretation and is a map which establishes
a correspondence between R1 and equivalence classes of elements of R2 under a
Diophantine equivalence relation. Further, there should be a Diophantine descrip-
tion of the class of the products and sums. (For an example of a class Diophantine
model see [60].)

Under any of these definability relations between R1 and R2 we can conclude that

HTP(R1) �T HTP(R2).

Of course we can ask the weaker question of Turing reducibility directly about R1

and R2. Further, it would be interesting to see an example where we have Turing
reducibility but no definability. As discussed above, we suspect that something like
this may be true with respect to Q and Z but no version of the assertion claiming
Turing reducibility without definability has been proved so far. One simple example
which illustrates the difficulty of these questions is described below.

Question 3.1 Let R ⊂ Q be a big ring. Let p be a rational prime number not
inverted in R, and let R̂ = R[ 1p ]. In this case is R̂ definable in any way over
R (via Dioph-generation, Diophantine model, or Diophantine interpretation)? Is
HTP(R̂) �T HTP(R)?
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Note that if Z is Diophantine over R, than all of these questions can easily be
answered in the affirmative. If we can define Z, then we can define powers of p and
thus R̂. In some rings we can generate powers of some primes without defining Z

but the general case remains quite vexing.

3.5 Infinite Extensions

In this section wewant to discuss some of the things we know about infinite algebraic
extensions ofQ and point out the differences and similarities with the finite extension
case.We start with a description of the global picture to the best of our understanding.

Let Q̃ be a fixed algebraic closure of Q and consider a journey from Q to its
algebraic closure, passing through the finite extensions of Q first, then through its
infinite extensions fairly “far” from the algebraic closure, and finally through the
infinite extensions of Q fairly “close” to Q̃.

Aswe get closer to Q̃, the language of rings loosesmore andmore of its expressive
power, i.e. sets which were definable before (in either full first-order language or
existentially) would become undefinable and simultaneously some problems which
were undecidable before would become decidable. For the author the ultimate goal
of the infinite extension investigation in this setting is to describe this transition. Of
course, the completion of this project is probably far away. The boundary (in terms
of extensions ofQ) where previously undecidable things become decidable (e.g. the
first-order theory of fields) and previously definable things become undefinable (e.g.
rings of integers over their fields of fractions using the full first-order language) is
likely to have a very complex description.

Further, the decidability issue is muddled by the following aspect of the problem
which does notmanifest itself over finite extensions. It can be shown that an algebraic
extension of Q with a decidable existential theory (a fortiori a decidable first-order
theory) must have an isomorphic computable copy inside a given algebraic closure of
Q. (See [18].) Thus, a field can have an undecidable theory (existential or elementary)
simply because it has no decidable conjugate (under the action of the absolute Galois
group) and not because of, should we say, “arithmetic” reasons. We are tempted to
call such fields as having a “trivially” undecidable theory.

A simple example of a field with a trivially undecidable theory can be described
as follows. Consider a computable sequence of prime numbers {pi } and choose an
undecidable subset A of Z>0. Now let K be an algebraic extension of Q formed by
adding a square root of every pi such that i ∈ A. It is not hard to see that this field
is not computable as a subfield of Q̃, but if A is c.e. it is computably presentable. It
is Galois and has no other conjugates besides itself. So by the argument above the
existential theory of this field (in the language of rings) is undecidable, but surely this
is not a very interesting case. A related point which should be made here is that if we
consider uncountably many isomorphism classes of fields, then “most” of them will
have undecidable theories simply because we have only countably many decidable
theories in the language of rings.
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Having moved the trivial considerations aside and concentrating on computable
fields, we discover a relatively patchy state of knowledge concerning definability
and decidability. If we look at the fields “close” to the algebraic closure, we see a
number of decidability results. Here, of course, the problem concerning the full first-
order theory is the more difficult one as compared to the problem of the existential
theory. One of the more influential decidability results is due to Rumely [46], where
he showed that Hilbert’s Tenth Problem is decidable over the ring of all algebraic
integers. This result was strengthened by L. van den Dries proving in [63] that the
first-order theory of this ring was decidable. Another remarkable result is due to
Fried et al. [15], where it is shown that the first-order theory of the field of all
totally real algebraic numbers is decidable. This field quite possibly is a part of
the decidability/undecidabilty boundary we talked about above, since J. Robinson
showed in [41] that the first-order theory of the ring of all totally real integers is
undecidable. Together these two results imply that the ring of integers of this field is
not first-order definable (in any way) over the field.

Among other famous decidability results is the result due to A. Prestel who build-
ing on a result of A. Tarski showed that the elementary theory of the field of all real
algebraic numbers is decidable (see [38, 62]). Further, due to Yu. Ershov, we know
that the field of allS -adic algebraic numbers is decidable providedS is a finite set
of rational primes. (The field of all S -adic algebraic numbers is the intersection of
all Q̃ ∩ Qp, p ∈ S with Q̃ being some fixed algebraic closure of Q. See [13].) The
rings of integers of the fields of real and p-adic algebraic numbers are decidable too.
(See [37].)

We now turn our attention to definability and undecidability results. We have
alreadymentioned awell-known result of J. Robinson proving that the ring of integers
of the field of all totally real integers is undecidable. In the same paper, J. Robinson
also outlined a plan for showing undecidability of families of rings of integers. Using
some of these ideas, their further elaboration by C.W. Henson (see [63, p. 199]), and
R. Rumely’s method for defining integrality at a prime, C. Videla produced the
first-order undecidability results for a family of infinite algebraic extensions of Q
in [64–66]. More specifically, C. Videla showed that the first-order theory of some
totally real infinite quadratic extensions, any infinite cyclotomic extension with a
single ramified prime, and some infinite cyclotomic extensions with finitely many
ramified primes is undecidable. C. Videla also produced the first result concerning
definability of the ring of integers over an infinite algebraic extension ofQ: he showed
that if all finite subextensions are of degree equal to a product of powers of a fixed
(for the field) finite set of primes, then the ring of integers is first-order definable
over the field.

In a recent paper [17], K. Fukuzaki, also using R. Rumely’s method, proved that
a ring of integers is definable over an infinite Galois extension of the rationals such
that every finite subextension has odd degree over the rationals and its prime ideals
dividing 2 are unramified. He then used one of the results of J. Robinson to show that
a large family of totally real fields contained in cyclotomics (with infinitely many
ramified primes) has an undecidable first-order theory.
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In another recent paper (see [47]), the author attempted to determine some general
structural conditions allowing for a first-order definition of the ring of integers over
its fraction field over infinite algebraic extensions of Q. As we speculated above,
a definitive description of such conditions is probably far away, but one candidate
is the presence or the absence of what we called “q-boundedness” for all rational
primes q. We offer an informal description of this condition below.

Given an infinite algebraic extension Kinf of Q we consider what happens to the
local degrees of primes over Q as we move through the factor tree within Kinf. A
rational prime p is called q-bounded if it lies on a path through the factor tree in
Kinf where the local degrees of its factors overQ are not divisible by arbitrarily high
powers of q. If every descendant of p in every number field contained in Kinf has the
same property, then we say that p is hereditarily q-bounded.

For q itself we require a stronger condition: the local degrees along all the paths of
the factor tree should have uniformly bounded order at q. If this condition is satisfied,
we say that q (or some other prime in question) is completely q-bounded. If all the
primes p �= q are hereditarily q-bounded and q is completely q-bounded, we say that
the field Kinf itself is q-bounded, and we show that the ring of integers is definable
in such a field. Rings of integers are also definable under some modifications of
the q-boundedness assumptions, such as an assumption that all primes p �= q are
hereditarily q-bounded and q is completely t-bounded for some prime t �= q, etc.

It is not hard to see that the fields considered by C. Videla and K. Fukuzaki are in
fact q-bounded. As mentioned above, C. Videla’s results concerned infinite Galois
extensions of number fields, where all the finite subextensions are of degree divisible
only by primes belonging to a fixed finite set of primes A. Consequently, in the fields
considered by C. Videla all the primes are completely q-bounded for any q /∈ A, and
thus all these fields are certainly q-bounded. K. Fukuzaki’s fields are 2-bounded.
However, the examples constructed by C. Videla and K. Fukuzaki do not exhaust all
the q-bounded fields. One example not covered by these authors is any field where
for some fixed rational prime q and some fixedm ∈ Z>0 we can adjoin toQ all �n-th
roots of unity for any positive integer n and for any rational prime � such that qm

does not divide � − 1.
We suspect that q-boundedness or a similar condition is necessary for definability

of the ring of integers. While non-definability examples are scarce over infinite
extensions, we offer the following ones: the field of all totally real numbers is not
q-bounded and as we mentioned above has the ring of integers not definable over the
field. Further, the field of real algebraic numbers is also not q-bounded and its ring
of integers is not definable over the field by a result of Tarski [62].

3.5.1 Defining Integers Via Norm Equations

In this section we explain some ideas behind our definitions of integers in [47]. The
central part of our construction is a norm equation which has no solutions if a field
element in question has “forbidden” poles. (In an effort to simplify terminology we
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transferred some function field terms to this number field setting.) The first practi-
tioners of this method were J. Robinson using quadratic forms and R. Rumely using
more general norm equations. The author of this paper has generally employed a
distinct variation of the norm method. More specifically, as explained below, the
bottom field in the norm equation is not fixed, but is allowed to vary depending on
the elements involved. As long as the degree of all extensions involved is bounded,
such a “floating” norm equation is still (effectively) translatable into a system of
polynomial equations over the given field. To set up the norm equation, let

• q be a rational prime number,
• K be a number field containing a primitive q-th root of unity,
• pK be a prime of K not dividing q,
• b ∈ K be such that ordpK b = −1,
• c ∈ K be such that c is integral at pK and is not a q-th power in the residue field
of pK ,

and consider bxq + bq . Note that ordpK (bxq + bq) is divisible by q if and only if
ordpK x � 0. Further, if x is an integer, all the poles of bxq + bq must be poles of b
and are divisible by q. Assume also that all zeros of bxq + bq and all zeros and poles
of c are of orders divisible by q and c ≡ 1 mod q3. Finally, to simplify the situation
further, assume that either K has no real embeddings or q > 2. Now consider the
norm equation

NK ( q√c)/K (y) = bxq + bq . (3.10)

Since pK does not split in this extension, if x has a pole at pK , then ordpK bx
q + bq �≡

0 mod q, and the norm equation has no solution y in K ( q
√
c). Further, if x is an

integer, given our assumptions, using the Hasse Norm Principle we can show that
this norm equation does have a solution. Our conditions on c insure that the extension
is unramified, and our conditions on bxq + bq in the case x is an integer make sure
that locally at every prime not splitting in the extension the element bxq + bq is equal
to a q-th power of some element of the local field times a unit. By the Local Class
Field Theory, this makes bxq + bq a norm locally at every prime.

For an arbitrary b and c ≡ 1 mod q3 in K , we will not necessarily have all zeros
of bxq + bq and all zeros and poles of c of orders divisible by q. For this reason,
given x, b, c ∈ K we consider our norm equation in a finite extension L of K and
this extension L depends on x, b, c and q. We choose L so that all primes occurring
as zeros of bxq + bq or as zeros or poles of c are ramified with ramification degree
divisible by q. We also take care to split pK completely in L , so that in L we still
have that c is not a q-th power modulo any factor of pL . This way, as we run through
all b, c ∈ K with c − 1 ≡ 0 mod q3, we “catch” all the primes that do not divide q
and occur as poles of x .

Unfortunately,wewill not catch factors ofq thatmayoccur as poles in thismanner,
because our assumption on c forces all the factors of q to split into distinct factors in
the extension. Splitting factors of q into distinct factors protects us from a situation
where such primes may ramify and cause the norm equation not to have solutions
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even when x is an integer. Elimination of factors of q from the denominators of the
divisors of the elements of the rings we define is done separately.

The end result of this construction is essentially a uniform definition of the form
∀∀∃ . . . ∃ of the ring ofQ- integers, withQ containing factors of q, across all number
fields containing the q-th primitive roots of unity.

Putting aside for the moment the issue of defining the set of all elements c integral
at q and equivalent to 1 mod q3, and the related issue of defining integrality at factors
of q in general, we now make the transition to an infinite q-bounded extension
Kinf by noting the following. Let K ⊂ Kinf, let pK be a prime of K such that pK
does not divide q, let x ∈ K and let ordpK x < 0. Since by assumption pK is q-
bounded, it lies along a path in its factor tree within Kinf, where the order at q
of local degrees eventually stabilizes. To simplify the situation once again, we can
assume that it stabilizes immediately past K . So let N be another number field
with K ⊂ N ⊂ Kinf. In this case for some prime pN above pK in N , we have that
ordqe(pN/pK ) = ordq f (pN/pK ) = 0. (Here e(pN/pK ) is the ramification degree and
f (pN/pK ) is the relative degree.) Now, let b, c ∈ K be as above and observe that c is
not a q-th power in the residue field of pN while ordpN (bxq + bq) �≡ 0 mod q. Thus
the corresponding norm equation with K replaced by N and eventually by Kinf in
(3.10) has no solution. Of course when x is an integer and we have a solution to our
norm equation in K , we also have a solution in Kinf.

Note that for each prime pK of K , at every higher level of the tree we need just one
factor with the local degree not divisible by q to make the norm equation unsolvable
when pK appears in the denominator of the divisor of x . Hence having one q-bounded
path per every prime of K is enough to make sure that no prime of K not dividing q
occurs as a pole of any element of K in our set.

Unfortunately, if we go to an extension of K inside Kinf, some primes of K will
split into distinct factors and can occur independently in the denominators of the
divisors of elements of extensions of K . Thus, in the extensions of K inside Kinf we
have to block each factor separately. This is where the “hereditary” part comes in.
We need to require the same condition of q-boundedness for every descendant in the
factor tree of every prime of K not dividing q, insuring integrality at all factors of
all K -primes not dividing q.

The main reason that only one q-bounded path per prime not dividing q is enough
to construct a definition of integers, is that the failure of the norm equation to have
a solution locally at any one prime is enough for the equation not to have solutions
globally. Conversely, in order to have solutions globally, we need to be able to solve
the norm equations locally at all primes. As already mentioned above, the reason we
require c to be integral at q and equivalent to 1 mod q3 is to make sure that factors of
q do not ramify when we take the q-th root of c. Just making c have order divisible
by q at all primes does not in general guarantee that factors of q do not ramify in such
an extension. If any factor of q does ramify, then not all local units at this factor are
norms in the extension, and making sure that the right side of the norm equation has
order divisible by q at all primes might not be enough to guarantee a global solution.
Hence we need to control the order of c − 1 at all factors of q at every level of the
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factor tree simultaneously, necessitating a stronger assumption on q, than on other
primes.

Depending on the field we might have a couple of options as far as integrality
at q goes. If q happens to be completely p-bounded in our infinite extension for
some p �= q, then we can pretty much use the same method as above with p-th root
replacing the q-th root. The only difference is that, assuming we have the primitive
p-th root of unity in the field, by definition of a complete p-boundedness, we can fix
an element c of the field such that c is not a p-th power modulo any factor of q in
any finite subextension of Kinf containing some fixed number field. We can also fix
an element b of the field such that the order of b at any factor of q is not divisible
by p in any finite subextension of Kinf containing the same fixed number field as
above. Using such elements c and b we can get an existential definition of a subset
of the field containing all elements with the order at any factor of q bounded from
below by a bound depending on b and p. If ramification degrees of factors of q are
altogether bounded, then we can arrange for this set to be the set of all field elements
integral at factors of q, but in a general case the bound from below will be negative.
In this case to obtain the definition of integrality we will need one more step.

Before going back to infinite extensions, we would like to make a brief remark
about the sets definable by our methods over number fields. First of all, over any
number field all primes are completely p-bounded for every p, and the ramification
degree of factors of q is altogether bounded. So we can produce an existential and
uniform (with parameters) definition of integrality at all factors of q. Note also that
the complement of such a set is also uniformly existentially definablewith parameters
using the same method. So, in summary, we now obtain a uniform definition of the
form ∀∀∃ . . . ∃ of the ring of integers of any number field with a q-th primitive
root of unity. This result is along the lines of B. Poonen’s result in [35], though
his method is slightly different from ours since it uses ramified primes rather than
non-splitting primes to obtain integrality formulas and restricts the discussion to
q = 2 and quadratic forms. As B. Poonen, we can also use q = 2 and thus have a
two-universal quantifier formula uniformly covering all number fields, but in this
case if K has real embeddings, we need to make sure that c satisfies some additional
conditions in order for the norm equations to have solutions.

Returning now to the case of infinite extensions, we note that, assuming q is p-
bounded we now have a uniform first-order definition with parameters of algebraic
integers across all q-bounded algebraic extensions of Q where q is completely p-
bounded. However, for the infinite case we may require more universal quantifiers.
The number of these universal quantifiers will depend on thewhether the ramification
degree of factors of q is bounded and on whether q has a finite number of factors.

The only case left to consider now is the case where q is not completely p-
bounded for any p �= q but is completely q-bounded. This case requires a somewhat
more technically complicated definition than the case where we had a requisite p.
In particular, we still need a cyclic extension (once again of degree q), where all the
factors of q will not split. Such an extension does exist, but we might have to extend
our field to be in a position to take advantage of it.
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3.5.2 Defining Z Using Elliptic Curves with Finitely
Generated Groups over the Given Field and One
Completely q-Bounded Prime

We now return to some ideas we used over number fields: using elliptic curves and
the weak vertical method. Below we give an informal description of a construction
of a definition of a number field K over an infinite algebraic extension Kinf of Q
using an elliptic curve with a Mordell-Weil group generated by points defined over
K . This construction also requires one completely q-bounded prime p (which may
equal to q). Observe that once we have a definition of K , a (first-order) definition of
Z follows from a result of J. Robinson.

The use of elliptic curves in the context of definability over infinite extensions
also has a long history, as long as the one for norm equations and quadratic forms.
Perhaps the first mention of elliptic curves in the context of the first-order definability
belongs to Robinson [42] and in the context of existential definability to Denef [7].
Following Denef [8], as has been mentioned above, the author also considered the
situations where elliptic curves had finite rank in infinite extensions and showed that
when this happens in a totally real field one can existentially define Z over the ring
of integers of this field and the ring of integers of any extension of degree 2 of such
a field (see [59]). C. Videla also used finitely generated elliptic curves to produce
undecidability results. His approach, as discussed above, was based on an elaboration
by C.W. Henson of a proposition of J. Robinson and results of D. Rohrlich (see [44])
concerning finitely generated elliptic curves in infinite algebraic extensions.

The main idea behind our construction can be described as follows. Given an
element x ∈ Kinf, we write down a statement saying that x is integral at p and for
every n ∈ Z>0 we have that x equivalent to some element of K mod pn . By the weak
vertical method, this is enough to “push” x into K . Our elliptic curve as above is
the source of elements of K . Any solution to an affine equation y2 = x3 + ax + b
of our elliptic curve must by assumption be in K . Further if we let P be a point of
infinite order and let the affine coordinates of [n]P corresponding to our equation be
(xn, yn), then we remind the reader that the following statements are true:

1. LetA be any integral divisor of K and letm be a positive integer. Then there exists

k ∈ Z>0 such that A
∣∣∣d(xkm), where d(xkm) is the denominator of the divisor of

xkm in the integral divisor semigroup of K .
2. There exists a positive integer m such that for any positive integers k, l,

d(xlm)

∣∣∣n
(
xlm
xklm

− k2
)2

in the integral divisor semigroup of K . Here d(xlm) as above refers to the denomi-

nator of the divisor of xlm and n
(

xlm
xklm

− k2
)
refers to the numerator of the divisor

of xlm
xklm

− k2.
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Given u ∈ Kinf integral at some fixed K -prime pK , we now consider a statement
of the following sort: ∀z ∈ Kinf there exists x, y, x̂, ŷ ∈ Kinf such that (x, y), (x̂, ŷ)

satisfy the chosen elliptic curve equation and both
1

zx
and x(u2 − x

x̂
)2 are integral

at pK implying that
(u2− x

x̂ )2

z is integral at pK .
If u satisfies this formula, then since x

x̂ ∈ K , by the weak vertical method we
have that u ∈ K . Further, if u is a square of an integer, this formula can be satisfied.
Thus we can proceed to make sure our definition includes all integers, followed by
a definition including all rational numbers as ratios of integers, and eventually all of
K through a basis of K overQ. Consequently, at the end of this process we obtain a
first-order definition of K over Kinf and thus obtain a first-order definition of Z over
Kinf. Finally, being able to define Z implies undecidability of the first-order theory
of the field.

3.5.3 Converting Definability to Undecidability over infinite
extensions

For certain totally real fields one can easily convert definability results into unde-
cidability results. A result of J. Robinson implies that if a ring of integers has a
certain invariant which C. Videla called a “Julia Robinson number”, one can define
a first-order model of Z over the ring. The Julia Robinson number s of a ring R of
totally real integers is a real number s or ∞, such that (0, s) is the smallest interval
containing infinitely many sets of conjugates of numbers of R, i.e., infinitely many
x ∈ R with all the conjugates (over Q) in (0, s). A result of Kronecker implies that
s � 4 (see [20]), and therefore if a totally real ring of integers in question contains
the real parts of infinitely many distinct roots of unity, the Julia Robinson number for
the ring is indeed 4, and we have the desired undecidability result. Thus using our
definability results we can conclude that for any fixed rational prime q and positive
integer m the elementary theory of the largest totally real subfield of the cyclotomic
field Q(ξ�n , n ∈ Z>0, � − 1 �≡ mod qm) is undecidable.

One can also obtain undecidability results for elementary theory of fieldswherewe
know the integral closure of some rings ofS -integers to be existentially undecidable.
(See [51, 57]). With the help of these old existential undecidability result we obtain
the following theorem.

Theorem 3.12 Rational numbers are first-order definable in any abelian extension
of Q with finitely many ramified primes, and therefore the first-order theory of such
a field is undecidable.
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3.6 Final Remarks

This article did not discuss a great deal of progress on the analogs of HTP over
different kinds of functions fields. We refer the interested reader to the following
surveys and collections for more information: [9, 34, 56].
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Chapter 4
A Story of Hilbert’s Tenth Problem

Laura Elena Morales Guerrero

Abstract I tell a story about Martin Davis’s involvement with Hilbert’s tenth prob-
lem, including his attitude, motivations, and what were his main contributions. With
respect to Yuri Matiyasevich, I emphasize the fundamental aspects of his work in
number theory that produced the needed proof. In addition I provide a glimpse of
the social, educational, and cultural environment that created the quality of person
and mathematician he is.

Keywords Hilbert’s tenth problem · DPRM-theorem

4.1 Introduction

Hilbert’s tenth problem, one of 23 presented by him in the year 1900, concerns a
fundamental question, namely, whether there is an algorithmic method for determin-
ing if a given Diophantine equation has a solution. This problem was finally solved
in 1970 by Yuri Matiyasevich. His solution was, however, negative: there is no such
algorithm. In fact he provided the crucial missing step in the proof of a conjecture
that Martin Davis had made twenty years earlier from which the non existence of an
algorithm for Hilbert’s problem followed at once.

Davis’s conjecture involved the notion of Diophantine set of natural numbers
defined as follows:

A set S of natural numbers is called Diophantine if there is a polynomial P(x, y1, . . . , ym)

with integer coefficients such that a given natural number x belongs to S if and only if there
exist natural numbers y1, . . . , ym for which P(x, y1, . . . , ym) = 0. If the variables in P are
permitted to also occur in its exponents, the set S is called exponential Diophantine.

The conjecture was that every set of natural numbers that can be listed by an algo-
rithm (such sets are called recursively enumerable, abbreviated r.e.) is Diophantine.
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After Matiyasevich’s result, the conjecture became a theorem variously known as
Matiyasevich’s Theorem, the MRDP theorem, or the DPRM theorem.1 By now there
are a number of proofs available of this theorem. However all of these proofs consist
of two separate and independent parts. One part is the proof that the exponential
function is Diophantine, the other, that every r.e. set is exponential Diophantine. The
first part has been called a “gem of number theory”, which indeed it is, and Yuri
Matiyasevich’s contribution was precisely proving this part. He also found a proof
(in collaboration with James Jones), using register machines, in a new and simple
way, of the other part, namely, the equivalence between the exponential Diophantine
and r.e. sets.

A proof that every r.e. set is exponential Diophantine first appeared in a paper [1]
by Martin Davis, Hilary Putnam and Julia Robinson. This result is called the Davis-
Putnam-Robinson theorem in the paper by James Jones and Yuri Matiyasevich [2] in
which the register machines proof is presented. Another version of it can be found in
[3]. By the way, in this book there is a curious footnote that says that Hilary Putnam
and Martin Davis first produced a proof of the Davis-Putnam-Robinson theorem
with a serious blemish: they had to assume that there are arbitrarily long sequences of
primes such that the difference between consecutive terms of the sequence is constant,
that is, in arithmetic progression. I would like to point out the following with respect
to that footnote: In 1959 when Davis and Putnam did that, their assumption about
primes was believed to be true but seemed far beyond what number theorists could
prove. They sent their work to Julia Robinson who quickly showed how to avoid
their assumption. It was a real “tour de force”. She used the prime number theorem
for arithmetic progressions to get enough primes to push the proof through. Later
(before they published) shemanaged to simplify the proof greatly, essentially putting
it in the form presented in [4]. We will speak in more detail about this later. Why
am I calling attention to this now? Because just a decade ago (April 2004, cf. [5])
two young mathematicians proved that there are indeed arbitrarily long arithmetic
progressions consisting entirely of prime numbers. So the proof with a blemish that
Putnam and Davis produced so many years ago turns out, in retrospect, to have been
a genuine proof after all!

Davis introduced the termDiophantine set and beganworking on themat about the
same time that Julia Robinson did as well. (She called them existentially definable.)
The proof of theDavis-Putnam-Robinson theoremmade use of techniques and results
that had been developed by each of them.

4.2 The Beginning

It was in his 1950 doctoral dissertation that Davis stated his conjecture, published
in his 1953 paper [6], which Yuri Matiyasevich called Davis’s “daring hypothesis”:
the Diophantine sets are precisely the recursively enumerable sets, the sets that can

1The letters RDP (DPR) stand for Julia Robinson, Martin Davis, and Hilary Putnam.
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be generated by recursive functions or, equivalently, by a Turing machine. Since by
then mathematicians already knew there is an r.e. that is not decidable, if Davis’s
conjecture was true they would know that there is a Diophantine set that is undecid-
able. Specifically, there could be no algorithm to decide whether a given member of
the parametric family of equations that generates this undecidable set is solvable in
natural numbers—much less for the more general question covering all Diophantine
equations. What Hilbert had asked for in his tenth problem would be impossible
to do. Davis’s idea that the Diophantine equations could define all the recursively
enumerable sets, his “daring hypothesis”, was generally regarded as implausible.

The first contribution to this work was by Gödel in his celebrated 1931 paper [7].
Themain point of Gödel’s investigations was the existence of undecidable statements
in formal systems. The undecidable statements Gödel obtained involved recursive
functions and in order to exhibit the simple number theoretic character of those state-
ments, Gödel used the Chinese Remainder Theorem to reduce them to “arithmetic”
form. However, without techniques for dealing with bounded universal quantifiers
(developedmuch later in [1]), the best result yielded byGödel’s methods is that every
recursive function (and indeed every r.e. set) can be defined by a Diophantine equa-
tion preceded by a finite number of existential and bounded universal quantifiers.
In Davis’s doctoral dissertation [6, 8], he showed that all but one of the bounded
universal quantifiers could be eliminated, so that every r.e. set could be defined in
the form

S = {x | (∃y)(∀k)≤y(∃y1, . . . , ym)[P(k, x, y, y1, . . . , ym) = 0]}

where P is a polynomial with integer coefficients.
This representation became known as the Davis normal form. Matiyasevich has

shown that we can take m = 2. Whether one can always get m = 1, is open. One
cannot always have m = 0.

The fact that Davis had already gotten rid of all universal quantifiers necessary
to define recursive functions except for one—and it was bounded—and the fact that
each class had certain common features—as sets they were both closed under “and”,
“or”, and existential quantification and neither was closed under negation—, might
have led him to pose his conjecture.

In Davis’s dissertation he conjectured that two fundamental concepts arising in
different areas of mathematics are equivalent. Namely, that the notion of recursive
enumerable or semidecidable set of natural numbers from computability theory is
equivalent to the purely number theoretic notion of Diophantine sets (his “daring
hypothesis”).He sawhow to improveGödel’s use of theChineseRemainderTheorem
as a coding device so as to obtain a representation for recursively enumerable sets that
formally speaking seemed close to the desired result. The obstacle that remained in
the so-called Davis normal form was a single bounded universal quantifier, as shown
above.
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Independent of his work and about the same time, Julia Robinson was also
studying Davis’s Diophantine sets which she called existentially definable. She was
attempting to see what kinds of sets of whole numbers she could define using Dio-
phantine equations and existential quantifiers. Her investigations centered about the
question: Is the exponential function Diophantine? In “Existential Definability in
Arithmetic” [9], Robinson investigated a variety of functions that, like the powers of
two, grow rapidly. She discovered that if she could define exponentiation, specifically
the relation x = yz , then she could also define a number of other functions includ-
ing the factorial function and binomial coefficients. More surprisingly, she found
she would be able to define the statement “p is a prime” in terms of a Diophantine
equation. A truism of number theory had been that there was no formula for the
prime numbers. Her Diophantine equation could be regarded as such a formula. She
worked hard on exponentiation. Her major result was that if one could define any
function that grew sufficiently rapidly, but not too rapidly, one could use this function
to define exponentiation itself. She conjectured that finding such a function was pos-
sible. This would then show that exponentiation was Diophantine. This hypothesis
became known as the Julia Robinson (JR) hypothesis. This was the main result of
her work. Her hypothesis has played a key role in work on Hilbert’s tenth problem.

JR statement is simply:
There exists a Diophantine set D of pairs of natural numbers such that

1. 〈u, v〉 ∈ D implies v ≤ uu .
2. For each k, there is 〈u, v〉 ∈ D such that v > uk .

Her hypothesis remained an open question for about two decades. Once the Davis-
Putnam-Robinson theorem was proved, attention was focused on the JR hypothesis
since it was plain that it would imply that Hilbert’s tenth problem was unsolvable.
However, it seemed extraordinarily difficult to produce such an equation.

Davis met Julia Robinson at the 1950 International Congress of Mathematicians
in Cambridge, Massachusetts, immediately after completing his doctorate. She had
approached Hilbert’s tenth from a direction opposite to that of Davis. Where he had
tried to simplify the arithmetic representation of arbitrary recursively enumerable
sets, she had been trying to produce Diophantine definitions for various specific sets
and specially for the exponential function. She had introduced then what was to
become her famous “hypothesis” and shown that under that assumption the expo-
nential function is in fact Diophantine.

The luck of Julia’s mathematical journey was holding when Alfred Tarski arrived
in California in 1947 and she became a graduate student working under him. Julia,
as well as many others ranked Tarski with Gödel as a great logician.

She had worked hard and successfully simplifying the definitions for general
recursive functions during 1946–47 while in Princeton with her husband Raphael
Robinson. Tarski had proposed to Julia a problem that did not interest her and she
made little progress. However, one day at lunch with Raphael Robinson, Tarski
talked about whether the whole numbers were definable in a formal system for the
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rational numbers. When Raphael came home he mentioned it to Julia. This problem
she found interesting. She did not tell Tarski she would work on it but she did and
she solved it. It is typical of her best work. She works with formal systems but
introduces a clever idea from number theory, in this case, using the Hasse principle
from algebraic number theory in connection with a particular quadratic equation she
introduced. Davis described this as “an absolutely brilliant piece ofwork”. This result
was accepted by Tarski as her dissertation and she obtained her PhD in 1948. In the
same year Tarski mentioned another problem to Raphael who brought it home. The
problem was to show that one could not define the powers of 2

2, 4, 8, 16, 32, . . .

using only existential quantifiers and a Diophantine equation. If this could be accom-
plished it would have a bearing on Hilbert’s tenth problem; in fact, the eventual
negative solution turned out to depend on showing the opposite.

Julia Robinson became entranced with the problem, but not from the direction
Tarski had in mind. At first she did not know she was working on Hilbert’s problem.
She quickly decided that she did not see how to prove that the powers of two could
not be defined in this way. Instead, she decided to see if she could define the powers of
two. This expanded to work on defining other sets of whole numbers. She made rapid
progress and on September 4, 1950, delivered a ten-minute paper at the International
Congress of Mathematics at Cambridge, Massachusetts. At the same conference
Davis gave a ten-minute talk on his results on the hyperarithmetic hierarchy, his
dissertation work. However, he had spoken on his results on the tenth problem the
previous winter at a meeting of the Association of Symbolic Logic.

Although Hilary Putnam’s career had been in philosophy, he became fascinated
by the tenth problem. During the summer of 1957, there was an intensive five week
“Institute for Logic” at Cornell University. The families of the logicians attended
as well and Putnam and his family shared a house with Davis and his family. And
so they began to talk about Hilbert’s tenth problem. Putnam suggested they try to
use Gödel’s coding to make that one little bounded universal quantifier in the Davis
normal form go away. Davis was skeptical but they worked on the problem and made
some progress which resulted in a joint paper, Reductions of Hilbert’s Tenth Problem
[10]. They decided to try to get funding to enable them towork together the following
summer. They worked together during the summers of 1958, 1959 and 1960. It was
during the summer of 1959 that they did their main work together on Hilbert’s tenth
problem.

In 1959 Davis and Putnam were again trying to apply Gödel coding to deal with
the bounded universal quantifier in Davis normal form as they had in their work in
1957. Gödel coding uses the Chinese Remainder Theorem which in effect means
working with arithmetic congruences. One writes x ≡ y mod m to mean that m is a
divisor of x − y. Since congruences are preserved under addition and multiplication,
and polynomials are built out of a sequence of additions and multiplications, if P is
a polynomial with integer coefficients, then we can conclude that
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x1 ≡ y1 mod m, x2 ≡ y2 mod m, . . . , xn ≡ yn mod m

implies

P(x1, x2, . . . , xn) ≡ P(y1, y2, . . . , yn) mod m

To use the Chinese Remainder Theorem to get rid of the universal quantifier (∀k)≤y,
one needs a sequence of moduli mk with k = 0, 1, . . . , y each pair of which are
relatively prime. Moreover to keep the polynomial form, the function mk should
be expressible by a polynomial in k. They also needed to be able to assert that if
one of their moduli was a divisor of a product that it had to necessarily divide one
of the factors. And this seemed to require that the moduli be not only relatively
prime in pairs, but actual prime numbers. These needs could be readily supplied
if one could set mk = a + bk where each mk is prime. Thus, in the end they were
forced to assume the hypothesis (nowadays proved) that there are arbitrarily long
arithmetic progressions of prime numbers. Finally in order to complete their proof
that every recursively enumerable set has an exponential Diophantine definition,
they found themselves with the need to find exponential Diophantine definitions
for the product of the terms of a finite arithmetic progression To deal with this
problem they used binomial coefficients with rational numerators, for which they
could find exponential Diophantine definitions extending Julia Robinson’s methods,
but requiring the binomial theorem with rational exponents, an infinite power series
expansion. Theywrote up their work in a report to their funding agency [11], and sent
a copy to Julia Robinson. She responded saying: “I am very pleased, surprised and
impressed with your results on Hilbert’s tenth problem. Quite frankly, I did not think
your methods could be pushed further …I believe I have succeeded in eliminating
the need for (the assumption about primes in arithmetic progression) by extending
and modifying your proof. I have this written out for my own satisfaction but it is
not yet in shape for any one else.”

That was the “tour de force” mentioned above. She avoided the hypothesis about
primes in arithmetic progression in an elaborate and very clear argument by making
use of the prime number theorem for arithmetic progressions to obtain enough primes
to permit the proof to go through. She acceptedDavis andPutnam’s proposal that their
work (which had already been submitted for publication) be withdrawn in favor of
a joint publication by the three of them. Soon afterwards she succeeded in a drastic
simplification of the proof: where Putnam and Davis were trying to use Gödel’s
coding to obtain a logical equivalence, her elegant argument made use of the fact
that the primes were only needed for the implication in one direction, and that in that
direction one could make do with a prime divisor of each modulus. The joint paper
appeared in 1961 [1]. This paper is very efficient, eleven pages long, and the main
result—that all recursive sets are exponential Diophantine—is proved in only four
pages! The only thing now necessary for a solution of the tenth problemwas to prove
JR (not at all an easy matter) which would imply that exponentiation is Diophantine.
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With the result that every recursively enumerable set has an exponential Diophan-
tine definition combined with Robinson’s earlier work on Diophantine definitions
of the exponential function, it was now clear that Davis’s “daring hypothesis” of
the equivalence of the two notions, recursively enumerable set and Diophantine set,
was now entirely equivalent to the much weaker JR hypothesis that Julia Robinson
had proposed ten years earlier. What was needed was a single Diophantine equation
whose solutions satisfied a simple condition.

In the summer of 1960 Putnam and Davis tried to find a third degree equation
to satisfy JR. It turned out once again that they needed information the number
theorists were unable to provide, this time about the units in pure cubic extensions
of the rational numbers. Although Putnam continued to do important technical work
in mathematical logic, he no longer worked on number theory.

During the following years Davis continued trying to prove JR. At that time
Julia had became rather pessimistic about her hypothesis, and for a brief period,
she actually worked towards a positive solution of Hilbert’s tenth problem. A letter
from her dated April 1968, responding to Davis’s report on a certain equation he had
found, said: “I have enjoyed studying it, but my faith in JR has not been restored.
However, for the first time, I can see how it might be proved. Indeed, maybe your
equation works, but it seems to need an infinite amount of good luck!”

However, in 1969, she published a paper [12] that made some progress. In those
days, when Davis was asked for his opinion, he would reply in a semi-jocular vein:
“I think JR is true and it will be proved by a clever young Russian.” However, the
hypothesis seemed implausible to many, especially because it was realized that an
immediate and surprising consequence would be the existence of an absolute upper
bound for the dimensions of Diophantine sets. Thus Kreisel [13] in his review of the
Davis-Putnam-Robinson paper asserted:

It is likely the present result is not closely connected with Hilbert’s tenth problem. Also it
is not altogether plausible that all (ordinary) Diophantine problems are uniformly reducible
to those in a fixed number of variables of fixed degree.

Early in 1970 a telephone call from his friend and colleague Jack Schwartz
informed Davis that the “clever young Russian” he had predicted had actually
appeared. Julia Robinson sent Davis a copy of John McCarthy’s notes on a talk
that Grigori Tseitin had given in Novosibirsk on the proof of the Julia Robinson
hypothesis by the twenty-two-year-old Yuri Matiyasevich. Although the notes were
brief, everything important was there enabling Davis and Robinson to each fill in the
details and convince themselves that it was correct. Later they were able to use his
methods to produce their own variants of Matiyasevich’s proof.

4.3 Yuri Matiyasevich

YuriMatiyasevich started school in 1954 at the age of seven and schoolwas important
to him from the beginning. He also found it easy, except for music. During his early
years in school he had to go to the hospital twice for surgery. He had learned to add
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large numbers and in the hospital, he was taught how to subtract large numbers. In
the fifth year, mathematics was taught by a special mathematics teacher, and soon
Yuri Matiyasevich was excused from normal mathematics class work as long as he
did the homework and passed the tests. He read books on radio for amateurs and
was perplexed about how a heterodyne receiver worked, spending hours drawing
graphs of sine waves with different frequencies and then adding them to make a third
graph [14].

In January 1959 one of Yuri’s friends received a kit to build a superheterodyne
radio receiver2 with four vacuum tubes. They spent hours carefully assembling the
kit but it never worked. Yuri received a second kit for his birthday in March and
this time, a week after his birthday, he was listening to the radio. He says that this
made his father very happy because his father, a construction engineer who designed
railroad bridges, was purely a theoretician, and had no talent for doing anything with
his hands. But this happiness did not last. A few days after listening to the radio,
Yuri’s father died suddenly.

Yuri’s mother served during the Second World War as a typist in the army but
afterwards haddedicatedher life to raisingYuri and sohadno jobwhenhis father died.
However, the next year in school marked the beginning of mathematics competitions
and Yuri’s success in these became a focus for him and a ticket to new opportunities.
He did very well in mathematical Olympiads. The seventh year brought the kruzhoks
or extra evening classes and he was invited to join. That was not only work but also
social events.

The mathematical Olympiads were dedicated to discover which young comrades
were the most gifted in mathematics, and special schools were formed often at the
instigation of prominent mathematicians. Yuri attended one of those elite schools in
Leningrad which officially existed to provide “worker professionals” and suppos-
edly trained operators of mainframe computers. These special schools were called
internats. An extra year of school for everyone before work at university was added,
and experienced mathematicians invested their time teaching gifted young people
two days a week.

In 1962 a summer boarding school outside Moscow was organized by A.N. Kol-
mogorov. Also teaching were P.S. Aleksandrov and V.I. Arnold, among others.
Matiyasevich attended. In keeping with these professors’ love not only of mathe-
matics but also of vigorous physical culture, the students were encouraged to swim
a wide river and to hike in the woods.

In fall of 1963 a new school was opening inMoscow for able students from outside
Moscow as the result of efforts by Kolmorogov and others. An uncle ofMatiyasevich
who lived inMoscow offered to pay for the extra costs and soYuri moved toMoscow.
Although it was not easy for him to leave Leningrad and his mother behind, he felt
that he had to do it. In the summer he had a good class with Arnold, but a geometry

2That is, the broadcast frequency is first converted to an intermediate frequency before being ampli-
fied and detected.
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course that Kolmogorov taught based on spatial movements rather than lines and
points was too abstract for him at age sixteen. Matiyasevich was also, by this time,
on something of an Olympiad treadmill. In his own words:

In the spring of 1964 I was rather tired, participating every Sunday in some competition. One
of them was the selection of the internat team for the all-union Olympiad. I easily passed
the selection. During the Olympiad itself I used half of the given time and left, being sure
that again I had solved all the problems. I remember that I decided, having saved time at the
Olympiad, to walk from the building of the university where the competition took place to
the internat situated in the suburbs of Moscow, about two hours walk. I felt that I needed to
give myself a bit of rest. I was later disappointed to discover a mistake in a solution to one
of the problems.

The same year the International Olympiad was held inMoscow, andMatiyasevich
was chosen for the Soviet team, despite the fact that he was only a tenth-year-student.
He was not happy about his performance, but still won a diploma of the first degree.
Members of the team were granted admission to the university of their choice. Yuri
tried to get permission to enroll at Moscow State University, the most prestigious
university, but could not make his way through bureaucratic resistance. He still had
to get his attestat degree from school. Fed up, he boarded a train for Leningrad. There
it was worked out he would take the exams for the attestat in his first school while
studying at the university. During this first year, 1964–1965, he was busy with exams
and, though he attended a few seminars on logic, he and other first-year-students
were forbidden to study logic.

He stayed at Leningrad and, at the beginning of his second year, the fall of 1965,
Matiyasevich was introduced to Post’s canonical system and his career as a mathe-
matician began. He immediately achieved an elegant result on a difficult problem the
professor proposed. This led him to meet Maslov, the local expert on Post canonical
systems. The logical community in the Soviet Union had developed along different
paths than in the west. The heavily philosophical tradition of Frege, Carnap, Russell,
Whitehead, Gödel, and Tarski was at odds with Communist Party doctrine. They had
their own logic and it was not symbolic. Therefore, after Kolmogorov’s early bold
work, Russian mathematicians had not been quick to pick up and pursue the work
in logic of the 1930s. Sometimes mathematical terms were changed. For example,
eventually the Russians had their own version of recursive functions and effective
computability, which they called the theory of algorithms. In the United States and
England the emergence of electronic computers interactedwith symbolic logic, while
in the Soviet Union this field lagged. Post’s resolutely unphilosophical versions of
symbolic logic (it is about rules for generating strings of symbols) was mathematical
in its perspective and therefore unsubversive. Thus there were Soviet mathematicians
at work in this field.

Maslov made a number of suggestions for research that Matiyasevich quickly
resolved. In late 1965 Maslov suggested a more difficult question about details of
the unsolvability for Thue systems. Matiyasevich solved this problem and the oppor-
tunity to publish the result was offered, but it had to be written up in an entirely
rigorous manner in the style of Markov and Post. Matiyasevich was given an Under-
wood typewriter of manufacture predating the Revolution (by the second wife of his
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grandfather). He could hardly have been able to buy one of his own. He spent a con-
siderable part of the next year typing. Only five corrections per page were allowed
and the paper was 100 pages long. Hemissed lectures in school, particularly, he says,
in complex analysis. He was invited to give a talk at the 1966 International Congress
of Mathematicians in Moscow, a major honor, and was particularly impressed to
meet Kleene. Toward the end of 1965, Maslov also suggested Hilbert’s tenth prob-
lem. He said that “some Americans” had done some work on this problem but that
their approach was probably wrong. Matiyasevich did not read their work but, like
Davis and Robinson, he was enchanted by the problem and was drawn to it again
and again. Once as an undergraduate he thought he had solved it and even began a
seminar presenting his solution. He soon discovered his error but became known as
the undergraduate who worked on Hilbert’s tenth problem, with an edge of humor.
As the years of his undergraduate education passed, like Davis, he too began to think
he needed to discipline himself away from this trap of a problem. He did read the
work of the Americans and recognized its possible importance. If he could find a
Diophantine equation whose solutions grew appropriately, exponentiation would be
proved to be Diophantine, and therefore by the Davis-Putnam-Robinson theorem, all
recursively enumerable sets would be shown to be Diophantine, and therefore there
would exist a Diophantine set that was not decidable. Hilbert’s problem would be
solved.

His undergraduate years were ending. He had not done anything better than the
early work he had delivered at the International Congress. In his own words:

I was spending almost all my free time trying to find a Diophantine relation of exponential
growth. There was nothing wrong when a sophomore tried to tackle a famous problem but
it looked ridiculous when I continued my attempts for years in vain. One professor began to
laugh at me. Each timewemet he would ask: “Have you proved the unsolvability of Hilbert’s
tenth problem? Not yet? But then you will not be able to graduate from the university!

In the fall of 1969 when a colleague told him to rush to the library to read a new
paper by Robinson, a survey on what had been achieved so far in connection with
Hilbert’s tenth problem [12], he stayed away. However, because he was considered
an expert, he was sent the paper to review and so was forced to read it. He delivered
a seminar on it on December 11, 1969. Robinson’s paper had a fresh flavor and a
new result, namely that if any infinite set of prime numbers is Diophantine, then
the exponential function is Diophantine. Matiyasevich was caught again. He spent
December 1969 obsessing over the problem. On the morning of January 3, 1970, he
thought he had found a solution but with an error that he was able to fix the next
morning. He was now in possession of a solution in the negative of Hilbert’s tenth
problem. However, he was afraid there was still an error. After all, he had once gone
so far as to start giving a seminar on a solution. He wrote out a full proof and asked
both Maslov and Vladimir Lifschits to check it but say nothing until they talked to
him again.Matiyasevich then left for a couple of weeks with his soon-to-be wife for a
ski camp. There he worked also in refining his paper. He returned to Leningrad to find
that the verdict was that he had solved Hilbert’s tenth problem and it was no longer
a secret. Both D.K. Faddeev and Markov, famous for finding mistakes, had also
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checked the proof and passed it. Matiyasevich gave his first public talk on the result
on January 29, 1970. News of the result moved around the country. Grigori Tseitin
took a copy of the manuscript and, with Matiyasevich’s permission, presented it at a
conference in Novosibirisk. An American mathematician John McCarthy attended
this talk and it was through him that information about the result made its way to
Davis and Robinson.

Whereas Robinson had worked with the sequence of solutions of so-called Pell
equations of the special form x2 − (a2 − 1)y2 = 1, Matiyasevich preferred to use
the famous Fibonacci numbers which have rather similar properties. The Fibonacci
numbers are defined by the recurrence F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn . What
Yuri had proved was the set of pairs 〈u, v〉 such that v is the 2u-th Fibonacci number
is Diophantine. Because of the exponential growth of the Fibonacci numbers, it is
rather obvious that this set does satisfy the conditions of JR, and for this same reason
it was natural to use them in a proof of JR. What had been missing was some kind
of Diophantine relation between the number Fn and the subscript n. Some time
previously, Yuri had proved the following important fact:

If F2
n | Fm then Fn | m.

This finallywas indeed a relation between the Fibonacci numbers and their respective
subscripts, and it was apparently something that the Americans working on the
problemdidn’t know, but it requiredmuchmore than this to obtainYuri’sDiophantine
definition.His proof is awonderful tapestry, delicate and beautiful. Although it would
be difficult to find a clear technical connection between Julia’s paper and Yuri’s
breakthrough, Yuri was eager to indicate at least a psychological connection. In this
connection he used a Russian word whose literal translation is “wafted”, as though
the influence of her paper on his accomplishment was as subtle as that of the scent of
a flower.3 Wemust point out that at this time, it had still been far from obvious that the
tenth problemwas near solution or that the solution lay in the direction of Robinson’s
hypothesis. Matiyasevich’s adviser had told him to ignore the Americans’ work. In
this period even Robinson had at one point despaired of proving her hypothesis. It
was necessary for Yuri to recognize that it could be made to work despite all of that.

Matiyasevich had received his kandidat degree, equivalent to a PhD, in 1970 for
his early work on Post’s systems. He received his doctoral degree for his work on
Hilbert’s tenth.

The key direct result obtained in terms of which a solution of Hilbert’s tenth
problemwas obtained is that any set that a computer can be programmed to generate,
can be generated by a specific Diophantine equation. Many of the major questions in
Mathematics, including Fermat’s last theorem, and the four-color map problem, only
settled late in the twentieth century, and Goldbach’s conjecture, and the Riemann
Hypothesis, both still undecided, can each be seen to be equivalent to a specific

3Some of this information comes from [15].
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Diophantine equation having no solution [16]. This is simply astounding. In the
end, the unsolvability of Hilbert’s tenth problem is richer for mathematicians than a
decision process for which Hilbert asked would have been.

4.4 Matiyasevich’s Solution

What Yuri Matiyasevich did in 1970 in order to prove “Davis’s daring hypothesis”,
namely, every r.e. set is Diophantine, was to use the Fibonacci numbers to construct
a Diophantine equation which constituted a Diophantine definition of the set of pairs
〈u, v〉 for which v is the 2u-th Fibonacci number. His equation is obtained by sum-
ming the squares of the left sides of the following system of equations and setting
the result equal to zero.

u + w − v − 2 = 0

� − 2v − 2a − 1 = 0

�2 − �z − z2 − 1 = 0

g − b�2 = 0

g2 − gh − h2 − 1 = 0

m − c(2h + g) − 3 = 0

m − f � − 2 = 0

x2 − mxy + y2 − 1 = 0

(d − 1)� + u − x − 1 = 0

x − v − (2h + g)(e − 1) = 0

Julia Robinson’s early work had shown that JR implies that the exponential func-
tion is Diophantine. Thus, Matiyasevich’s proof of JR could be applied to the Davis-
Putnam-Robinson theorem to conclude that every listable set, i.e., every r.e. set, is
Diophantine. In particular there is a Diophantine definition of a listable set which is
not computable. And so ends the story of Hilbert’s tenth problem.

Later, in 1976, Yuri presented a new proof [17] of the Davis-Putnam-Robinson
theorem. And in 1984, Jones and Matiyasevich proved it once again using register
machines [2]. Readers may also find interesting the brief expository article [18].
Finally, Matiyasevich has written a most complete and enjoyable book on Hilbert’s
tenth problem and its history [19].
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Chapter 5
Hyperarithmetical Sets

Yiannis N. Moschovakis

Abstract The hyperarithmetical sets of natural numbers were introduced (indepen-
dently) in the early 1950s by Martin Davis, Andrej Mostowski and Stephen Cole
Kleene and their study is surely one of the most significant developments in the the-
ory of computability: they have a rich and interesting structure and they have found
applications to many areas of mathematics, including inductive definability, higher-
type recursion, descriptive set theory and even classical analysis. This article surveys
the development of the subject in its formative period from 1950 to 1960, starting
with a discussion of its origins and with some brief pointers to later developments.
There are few proofs, chosen partly because of the importance of the results but
mostly because they illustrate simple, classical methods specific to this area which
are not easy to find in the literature, especially in the treatment of uniformity; and
these are given in the spirit (if not the letter) of the methods which were available at
the time. This is an elementary, expository article and includes an Appendix which
summarizes the few basic facts about computability theory that it assumes.

Keyword Hyperarithmetical sets

By the early 1940s, ten years after Gödel’s monumental [11], the foundations of a
mathematical theory of computability had been well established, primarily by the
work ofAlonzoChurch,AlanTuring, Emil Post andStephenKleene.Most significant
was the formulation of theChurch-Turing Thesis, which identifies the intuitive notion
of computable function (on the natural numbers) with the precisely defined concept
of (general) recursive function; this was well understood and accepted (as a law in
Emil Post’s view) by all the researchers in the area, even if not yet by all logicians.1

The Church-Turing Thesis makes it possible to give rigorous proofs of (absolute)
unsolvability of mathematical problems whose solution asks for an “algorithm” or
a “decision procedure”. Several fundamental metamathematical relations had been

1cf. Moschovakis [32].
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shown to be undecidable, chief among them the relation of first-order provability
(Hilbert’s Entscheidungsproblem, Church [3] and Turing [53]). Moreover, a general
theory of computability had also started to develop, especially with Kleene [13].

The most obvious next steps were to

• look for unsolvability results in “ordinary mathematics”, and
• study (in general) the unsolvable.

The first of these was (apparently) first emphasized by Post, who said in his Post [42]
that “(Hilbert’s 10th Problem) begs for an unsolvability proof”. Post [43] andMarkov
[29] proved (independently) the unsolvability of the word problem for (finitely gener-
ated and presented) semigroups, the first substantial result of this type. Martin Davis’
work is an important part of this line of research which is covered extensively in other
parts of this volume.

My topic is the theory of hyperarithmetical sets, one of the most significant
developments to come out of the general theory of unsolvability in which Davis also
played a very important role. I will give a survey of the development of the subject
in its formative period from 1950 to 1960, starting with a discussion of its origins
and with a couple of brief pointers to later developments at the end. There are few
proofs, chosen partly because of the importance of the results but mostly because
they illustrate simple, classical methods specific to this area which are not easy to
find in the literature, especially in the treatment of uniformity; and I have tried to
give these proofs in the spirit (if not the letter) of the methods which were available
at the time—with just one, notable exception, cf. Remark 5.3.1.

The Appendix collects the few basic facts from recursion and set theory that we
need and fixes notation. We refer to them by App 1, App 2, etc.

5.1 Preamble: Kleene [15], Post [42] and Mostowski [38]

The two seminal articles of Kleene and Post were published within a year of each
other2 and have had a deciding influence on the development of the theory of unsolv-
ability up until today. Mostowski wrote his [38] in ignorance of Kleene [15], he
discovered independently many of Kleene’s results and he asked some questions
which influenced profoundly the development of the subject. We will discuss it in
Sect. 5.1.4.

Kleene and Post approached “the undecidable” in markedly different ways: they
chose different ways to measure the complexity of undecidable sets, they introduced
different methods of proof and they employed distinct “styles of exposition”. The
results in them and in the research they inspired are closely related, of course, as
they are ultimately about the same objects—the undecidable relations on the natural
numbers; but there is no doubting the fact that they led to two different traditions in the

2Kleene had presented much of his [15] in a meeting of the American Mathematical Society in
September 1940. I do not know when Post obtained the results in his [42].
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theory of unsolvability with many of the best researchers in one of them (sometimes)
knowing very little of what has happened in the other.

The first, key question was how to measure the unsolvability of a set of natural
numbers.

5.1.1 Post’s Degrees of Unsolvability

Post [42] does it by comparing the complexity of two sets A, B ⊆ N using several
methods of reducing effectively the relation ofmembership in A to that ofmembership
in B. The strongest of these is one-one reducibility,

A �1
e B ⇐⇒ ϕe : N � N is a total injection and [x ∈ A ⇐⇒ ϕe(x) ∈ B],

A �1 B ⇐⇒ (∃e)[A �1
e B],

close to the mildly weaker many-one reducibility A �m B where it is not required
that ϕe be an injection. The weakest and most important is Turing reducibility,

A �T
e B ⇐⇒ χA = {e}B, A �T B ⇐⇒ (∃e)[A �T

e B].

We will also use the strict and symmetric versions of these reducibilities,

A <1 B ⇐⇒ A �1 B & B �1 A, A ≡1 B ⇐⇒ A �1 B & B �1 A,

and similarly for <m,≡m,<T ,≡T .

The symmetric relations induce natural notions of degrees, e.g.,

the 1−1 degree of A = d1(A) = {B : B ≡1 A},
the Turing degree of A = d(A) = {B : B ≡T A};

and the central objects of study are these sets of degrees with their natural partial
orders, most significantly the poset of Turing degrees (D,�T ) where

a �T b ⇐⇒ (∃A, B ⊆ N)[a = d(A) & b = d(B) & A �T B].

Post focusses on the study of the degrees of recursively enumerable sets (App 7).
He introduces the “self-referential” version of Turing’s Halting Problem

K = {e : {e}(e)↓} = {e : (∃t)T1(e, e, t)} (5.1)

and proves that it is r.e. complete, i.e., it is r.e. and every r.e. set is 1-1 reducible to it.
In particular K is not recursive, and then the natural question is whether there are r.e.
sets intermediate in complexity between the recursive sets and K . Post proves this for
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all of his reducibilities except for Turing’s and asks what became known as Post’s
Problem: is there an r.e. set A such that ∅ <T A <T K ? Friedberg and Muchnik
proved that there is, some ten years later, and this initiated a research program in the
theory of degrees and r.e. degrees which is still vibrant today.

5.1.2 Kleene’s Arithmetical Hierarchy

Kleene [15] focusses on the arithmetical sets, those which are first-order definable
in the standard model of arithmetic

N = (N, 0, 1,+, ·) (5.2)

and measures the complexity of a set by its simplest definition in N. His crucial
contribution is the choice of a useful measure of complexity of first-order definitions
in N: a relation P ⊆ N

n is �0
k (or in �0

k ) if it satisfies an equivalence of the form

P(x) ⇐⇒ (∃t1)(∀t2)(∃t3) · · · (Qk tk)R(x, t1, . . . , tk) (k � 1) (5.3)

where R(x, t) is recursive andQk is ∃ or ∀ accordingly as k is odd or even. A relation
P(x) is in Π0

k = ¬�0
k if its negation is in �0

k , so that

P(x) ⇐⇒ (∀t1)(∃t2)(∀t3) · · · (Qk tk)R(x, t1, . . . , tk) (k � 1) (5.4)

with a recursive R(x, t), and Δ0
k = �0

k ∩ Π0
k . The relations which belong to one of

these classes are exactly the arithmetical ones, and that was well known after Kleene
[13]. The novelty here is that by allowing a recursive matrix in (5.3) and (5.4) rather
than, say, a quantifier free one, Kleene can prove robust closure properties and to
construct N-parametrizations for these classes of relations:

Lemma 5.1.1 (1) Closure properties: �0
k and Π0

k are closed under recursive sub-
stitutions, &, ∨ and bounded number quantification of both kinds; �0

k is also closed
under number quantification ∃s; Π0

k is closed under ∀s; and Δ0
k is closed under

negation.

(2) The N-Parametrization Property: there are relations Gn
k ⊆ N

1+n in �0
k and

recursive injections Sln : N
1+l → N such that for every n-ary P(x) in �0

k ,

P(x) ⇐⇒ Gn
k (e, x) for some e ∈ N, (5.5)

and for all y = (y1, . . . , yl)

Gl+n
k (e, y, x) ⇐⇒ Gn

k (S
l
n(e, y), x). (5.6)

These facts are very easy by induction, starting with k = 1 where they are imme-
diate by the Normal Form and Enumeration Theorem for recursive partial functions
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Fig. 5.1 The arithmetical (i = 0) and analytical (i = 1) hierarchies

App5. They imply theHierarchyTheorem for the arithmetical sets pictured in Fig. 5.1
(with i = 0), and they can be used very effectively to measure the complexity of a
set by placing it in the arithmetical hierarchy, sometimes exactly. Such were, in fact,
their first applications.3 Its main significance, however, was that it set the stage for
its non-trivial extensions into the analytical hierarchy, also pictured in Fig. 5.1 with
i = 1, as well as the hyperarithmetical hierarchywhich lies between them and is our
main concern.

The closure of the arithmetical classes under recursive substitutions imply that
for every n-ary relation P(x),

P ∈ �0
k ⇐⇒ {〈x〉 : P(x)} ∈ �0

k ,

i.e., these classes are determined by the sets in them; so we will sometimes abuse
notation and use �0

k to denote the class of �0
k sets—and similarly for Π0

k ,Δ
0
k .

5.1.3 Kleene [15] Versus Post [42]

There is little overlap between these two papers, except that they both characterize
the recursive sets as exactly those which are r.e. and have r.e. complements (Post’s
Theorem). Beyond that, Post limits himself to the complexity structure of r.e. sets
which comprise precisely Kleene’s �0

1—about which Kleene says nothing non-
trivial.

Both papers are brilliant examples of concept formation, the identification of
fundamental notions which is characteristic of some of the best work in logic. Post
also proves several non-trivial technical results, some by very clever constructions;
there is little of this in the Kleene paper, whose technical results are proved mostly
by seemingly routine computations.

Then there is the style of exposition: Post is eloquent, even colorful. He intro-
duces suggestive, descriptive terms (complete, creative, simple) which give life to

3For example, Davis [4] proves that the set {e : (∀x)[{e}(x)↓]} of codes of total recursive functions
is in Π0

2 \ �0
2 . The Hierarchy Theorem also yields a trivial proof of Tarski’s Theorem for N, that

arithmetical truth is not arithmetical.
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the formulation of his results and right in his first paragraph, he declares that his
purpose is

to demonstrate by example that this concept [of recursive function] admits …of an intuitive
development which can be followed, if not indeed pursued, by a mathematician, layman
though he be in this formal field.4

His exhortation to explain rather than detail proofs resonated strongly in the work of
those who followed him, sometimes with beautiful results, e.g., in the classic Rogers
[45]. At the other end, Kleene is dry, formal, and more worried about whether he has
a constructive (intuitionistic) proof than if his proof is easily comprehensible—and
to some extent, these traits persisted in the writings of those who followed him.

5.1.4 Mostowski [38] and the Analogies

Mostowski’s starts with the classical notions of Descriptive Set Theory. Briefly, in
modern notation and (for simplicity) only for N :

(1) A σ -algebra is any collectionF ⊆ P(N ) which is closed under complements
and countable unions;

(2) the class B of Borel sets is the smallest σ -algebra which contains all the open
sets;

(3) a relation P ⊆ N m is �
˜

1
1 if P = {α : (∃β)F(α, β)} with F closed;

(4) P is �
˜

1
k+1 if P = {α : (∃β)¬Q(α, β)} with Q in �

˜
1
k;

(5) Π
˜

1
k = {N m \ P : P ∈ �

˜
1
k} and Δ

˜
1
k = �

˜
1
k ∩ Π

˜
1
k .

The projective classes �
˜

1
k, Π

˜
1
k, Δ

˜
1
k were introduced by Luzin and Sierpinski in

1925 and they fall into a hierarchy that looks exactly like the arithmetical hierarchy
in Fig. 5.1 with boldface letters and superscript 1. But the most fundamental result
about them is older and concerns only the first level of this hierarchy:

Theorem 5.1.1 (Suslin [52]) A set A ⊆ N is Δ
˜

1
1 if and only if it is Borel.

This was rightfully viewed as a “construction principle” which reduces a comple-
mentary pair of quantifications over the complex set N to a countable iteration of
taking countable unions and complements, startingwith the simple neighborhoods of
N . Mostowski had not read Kleene [15] but he knew Post [42] and saw a similarity
between Suslin’s Theorem and Post’s in the form

Δ0
1 = recursive,

4He also said that “…with a few exceptions explicitly so noted, we have obtained formal proofs
of all the consequently mathematical theorems here developed informally”, and it is clear that the
purely intuitive approach can only go so far: we cannot hope to prove that (say) the word problem
for semigroups is unsolvable on the basis of our intuitions about computability, without a rigorous
definition of recursive functions and an appeal to the Church-Turing Thesis.



5 Hyperarithmetical Sets 113

which similarly reduces Δ0
1 definitions to “computations”. He postulated the natural

“analogies”

recursive function on N ∼ continuous function onN ,

recursive subsets of N ∼ B,

�0
1 subsets of N ∼ �

˜
1
1 subsets of N ,

(5.7)

and using these as motivation he defined the arithmetical hierarchy and established
for it basically all the results in Kleene [15], so that the analogies extend to all the
levels of the two hierarchies. He knew that these are not perfect: not every injective,
recursive image of N is recursive, while by a basic, classical result, every injective,
continuous image of N is Borel. This, however, might be just a technical wrinkle,
as every increasing, recursive image of N is recursive. Later, after writing this paper,
he thought of another fundamental property of �

˜
1
1 sets which could test the analogy,

the following generalization of Suslin’s Theorem due to Lusin:

Theorem 5.1.2 (�
˜

1
1 Separation) For any two disjoint �

˜
1
1 sets A, B ⊆ N , there is

a Borel set C which separates them, i.e.,

A ⊆ C, C ∩ B = ∅. (5.8)

So is it true that any two disjoint r.e. sets can be separated by a recursive set?
At some time between 1947 and 1950 he mentioned the problem to Kleene who (it
turned out) had already answered it but not published his result:

Theorem 5.1.3 (Kleene [16]) There exist two disjoint, r.e. sets A, B ⊆ N such that
no recursive set C satisfies (5.8).

So the simpleminded analogies (5.7) fail, but they did not go away: theymotivated
a great deal of research in the twenty years that followed and ultimately, as we will
see, a corrected version of them turned out to be an important part of the story of
HYP.

5.2 On into the Transfinite!5

For any A ⊆ N, let5

A′ = {e : {e}A(e)↓} = the jump of A. (5.9)

It follows that for every B,

B is r.e. in A ⇐⇒ B �1 A′, (5.10)

5For completeness, we will repeat in this section some parts of §7–§9 of Moschovakis [37], which
goes over some of the same ground in more detail and includes several proofs.



114 Y.N. Moschovakis

so that in particular A <T A′, and we can get a sequence of sets of increasing Turing
complexity by setting recursively

K0 = ∅, K1 = K ′
0, K2 = K ′

1, . . . . (5.11)

Now K1 is (recursively isomorphic with) Post’s complete r.e. set K and for every
k � 1, easily, Kk is �0

k -complete, i.e., a set is �0
k exactly when it is 1-1 reducible to

Kk . It is also easy to check that the diagonal set

Kω = {〈m, n〉 : m ∈ Kn} (5.12)

is recursively isomorphic with the truth set for arithmetic

Truth = {�θ� : N |= θ},

where �θ� is the Gödel number of the sentence θ in the language of arithmetic,
relative to some standard coding. This is not arithmetical; and then one can continue
and define ever more complex non-arithmetical sets,

Kω+1 = K ′
ω, Kω+2 = K ′

ω+1, . . . , Kω·2 = {〈m, n〉 : m ∈ Kω+n} . . . (5.13)

indexed by the ordinals ξ < ω2. The sequence {Kξ : ξ < ω2} was defined by Davis
[4] who also showed that

η � ξ < ω2 =⇒ Kη �m Kξ and ξ < η =⇒ Kξ <T Kη. (5.14)

These facts are all fairly simple to verify today. They were not so easy6 before
1955, when the theory of relative recursion had not been worked out in detail: Kleene
[15, 18, 19], Davis [4, 5] and Mostowski [38, 39] all prove various versions of
them, not always the cleanest or strongest, sometimes awkwardly and (in the case of
Davis and Mostowski) mostly without knowing all of each other’s or Kleene’s work.
Nevertheless, the later papers Davis [4], Mostowski [39] and Kleene [19] all take the
crucial step of defining natural extensions of the arithmetical hierarchy beyond its
first ω classes �0

1 , �
0
2 , . . ., “on into the transfinite” in Davis’ exhortation with which

we headed this section.

6For example, to prove that Kk is �0
k -complete, you need the first of the following strengthenings

of (5.10): there are recursive injections u(e, t), v(e) such that for all A, B and all e, t ,

(1) {e}A(t)↓ ⇐⇒ u(e, t) ∈ A′ and (2) A �T
e B =⇒ A′ �1

v(e) B ′. (5.15)

Proof: For (1), choosem so that for any A, {m}A(e, t, y) = {e}A(t) and set u(e, t) = S21 (m, e, t). For
(2) you start with a recursive v1(e) such that A �T

e B =⇒ {e}A(t) = {v1(e)}B(t) and do a similar
construction. That u(e, t) and v(e) are (absolutely) recursive injections—which has applications—
depends on the fact that the functions Sl,mn in App 5 are independent of any function parameters
and injective, which I cannot find in any of the early texts (including Kleene [17]) even for m = 0.
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The definitions (5.11)–(5.13) of {Kξ : ξ < ω2} depend on choosing for each limit
ordinal ξ = ω · s < ω2 the specific, increasing sequence n �→ ω · (s −· 1) + n con-
verging to ξ . This is natural enough, but not the only choice, and it is not obvious
how to make a “natural” or “best” choice7 for ordinals above ω2. This leads us to the
next, crucial bit:

5.2.1 Notations for Ordinals, S1 and O

Following Kleene [14], let first

0O = 1, (t + 1)O = 2tO , et = {e}(tO),

and (by App 10), let | | : N ⇀ Ordinals be the least partial function onN to ordinals
which satisfies the following8:

(1) |1| = 0.
(2) For every t , |2t | = |t | + 1.
(3) For every e, if for every t , |et |↓ and |et | < |et+1|, then |3 · 5e| = limt→∞ |et |.

With S1 = {z : |z|↓}, the pair S1 = (S1, | |) is the first Church-Kleene notation
system for ordinals and the only one we will use. Kleene [14] also introduced a
smaller notation system S3 = (O, | |3) and a partial ordering �O of O such that

O � S1, a ∈ O =⇒ |a|3 = |a|, and so a <O b =⇒ |a| < |b|, (5.16)

and then used that in all his work on the topic—as did Spector and most researchers
in the field. We will occasionally refer to O and �O when we want to quote early
results exactly as they were stated, but we will not use them in any essential way and
so we skip their precise definition.9

A countable ordinal ξ is constructive if ξ = |z| for some z ∈ S1. Note that directly
from the definition, the constructive ordinals form an initial segment of the set of

7Spector [48] eliminates dramatically the most obvious approach at limit ordinals: No increasing
sequence d0 < d1 < · · · of Turing degrees has a least upper bound.Of course, thiswas not known
to Davis, Kleene and Mostowski when they wrote these early papers.
8Kleene’s obtuse coding (the 3 and 5 in the definition) is motivated by the plans he and Church
had to develop a general “constructive theory of ordinals” beyond Cantor’s first and second number
classes. They never got into this, but some (non-trivial and highly technical) results were proved
by others, cf. Kreider and Rogers [25], Putnam [44], Enderton-Putnam [7]. We will not cover this
topic here.
9O and �O are defined by a (simultaneous) inductive definition as in App 10 which (in Kleene’s
words) “is regarded from the finitary point of view as a correction, in that it eliminates the presuppo-
sition of the classical (non-constructive) second number class”. There are problems with this view,
partly because many results about constructive ordinals cannot be proved (or even stated) without
referring to ordinals. In any case, we will use S1 here.
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countable ordinals. Their supremum

ω1 = sup{|a| : a ∈ S1} (the Church-Kleene omega-1) (5.17)

is a “constructive analog” of the first uncountable ordinal Ω1; it is a fundamental
constant of definability theory and it can be characterized in many natural ways,
including the following early result:

Theorem 5.2.1 (Markwald [30], Spector [47]) An ordinal ξ is constructive if and
only if it is finite or the order type of a recursive wellordering of N.10

5.2.2 The Ha-sets

By recursion on the ordinal |a|, we associate with each a ∈ S1 a set Ha ⊆ N so that:

(H1) H1 = N,
(H2) H2b = H ′

b, and
(H3) if a = 3 · 5e, then x ∈ Ha ⇐⇒ (x)0 ∈ He(x)1

.

This is exactly the definition in Kleene [19], except that he gave it for a ∈ O � S1.
The earlier Davis [4] gave an almost identical definition (for a ∈ S1) which differs
only in the details of the coding, and Mostowski [39] gave a somewhat different and
abbreviated version which seems to avoid ordinal codes, cf. Sect. 5.3.3.

Davis [4] proves that for a, b ∈ S1, |a|, |b| < ω2,

|a| � |b| =⇒ Ha �m Hb and |b| < |a| =⇒ Hb <T Ha, (5.18)

so that, in particular,

|a| = |b| < ω2 =⇒ Ha ≡T Hb (a, b ∈ S1)

and asks if every constructive ordinal has this uniqueness property. This turned out
to be a difficult problem and led some five years later to one of the first spectacular
results in the area11:

Theorem 5.2.2 (Spector [47]) For all a, b ∈ S1,

|a| � |b| =⇒ Ha �T Hb and |b| < |a| =⇒ Hb <T Ha .

In particular, |a| = |b| =⇒ d(Ha) = d(Hb) and if we set d|a| = d(Ha), then
{dξ : ξ < ω1} is an increasing sequence of Turing degrees of length ω1.

10A proof of this basic fact is included in §8 of Moschovakis [37].
11For a discussion of the Spector Uniqueness Theorem and an outline of its proof for S1 see §9
of Moschovakis [37].
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Much more was done with constructive ordinals and the Ha-sets in the fifties
and sixties, especially by Kleene who used them as his main tool for studying the
hyperarithmetical sets. We will not go much into this here, for good reasons that we
will explain in due course; but before we dig into our main topic, we need to discuss
briefly some important, early work that we will not cover in detail.

5.2.3 Myhill [40]

Two sets A, B are recursively isomorphic if one is carried onto the other by a recursive
permutation of N,

A ≡ B ⇐⇒ A �e B where ϕe : N �→ N is a bijection.

Myhill [40] introduces this notion and shows (among other things) that

for all A, B ⊆ N, if A ≡1 B, then A ≡ B, (5.19)

and so any two r.e. complete sets are recursively isomorphic. His methods also
combine easily and to significant advantage with some of the results above: for
example, Davis’ proof of (5.18) naturally gives the much neater12

|a| = |b| < ω2 =⇒ Ha ≡ Hb. (5.20)

However, none of Davis, Kleene or Mostowski knew of this article of Myhill when
they wrote the papers we have been discussing.

5.2.4 Effective Grounded Recursion

More significantly, neither Davis nor Mostowski refer or appeal explicitly to the
following basic fact:

Theorem 5.2.3 (Kleene’s 2nd Recursion Theorem) For every recursive partial
function f (e, x1, . . . , xn, α1, . . . , αm), there is a number e such that

{e}(x1, . . . , xn, α1, . . . , αm) = f (e, x1, . . . , xn, α1, . . . , αm).

For recursion on N, this was stated unbilled and proved13 in the last two lines of
§2 of Kleene [14] and it is the main technical tool that Kleene used for all his work

12This strong uniqueness property cannot be extended to ω2, cf. Moschovakis [31], Nelson [41].
13Choose k such that {k}(t, x,α) = f (S1,mn (t, t), x,α) and take e = S1,mn (k, k).
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on constructive ordinals, hyperarithmetical sets—and much more. Myhill [40] also
used it, crucially, as did Spector [47] in his proof of the Uniqueness Theorem 5.2.2.
Kleene and Spector use the 2nd Recursion Theorem to justify effective grounded
recursion, which we can illustrate here with a relevant example.

Consider Davis’ definition of the sets {La : a ∈ S1} which are his versions of the
Ha-sets:

(L1) L1 = ∅,
(L2) L2b = L ′

b, and
(L3) if a = 3 · 5e, then x ∈ La ⇐⇒ (x)1 ∈ He(x)2

.

Well, L1 is the complement of H1 and in the limit case Davis uses (x)1 and
(x)2 rather than Kleene’s (x)0 and (x)1 which, together, don’t amount to much of a
difference. The two definitions should be equivalent up to Turing equivalence, and
they are14:

Lemma 5.2.1 For every a ∈ S1, Ha ≡T La. In fact, there are recursive partial func-
tions u(a), v(a) which converge on S1 and satisfy

Ha �T
u(a) La, La �T

v(a) Ha (a ∈ S1). (∗)

The partial functions u(a), v(a) are uniformities which witness respectively the
reducibilities Ha �T La, La �T Ha .

Proof The Turing equivalence Ha ≡T La should bemore-or-less trivial by induction
on the ordinal |a| and it is, when |a| is 0 or a successor ordinal (granting it for
its predecessor). At a limit stage a = 3 · 5e, however, there is no obvious way to
put together the equivalences Het ≡T Let supplied by the induction hypothesis to
prove that Ha ≡T La , and it is clear that we need to formulate a stronger, “uniform”
proposition which will supply a usable induction hypothesis at limit stages. For the
first reducibility in (∗), one “recursion loading device” that works is the following:

Sublemma. There is a recursive partial function f (i, a, x) which converges for
all i, x when i � 1 and a ∈ S1 and satisfies the following:

x ∈ Ha ⇐⇒ f (0, a, x) = 0 ∨ [ f (0, a, x) �= 0 & f (1, a, x) ∈ La]. (∗∗)

Proof of the Sublemma. We set f (0, 1, x) = 0 and f (1, 1, x) = 1. If a = 2b for
some b, then f (0, a, x) = 1 and it is not hard to define f (1, a, x) from f (i, b, x) so
that (∗∗) holds using (5.15) in Footnote 6. Suppose now a = 3 · 5e and (∗∗) holds
for all ordinals less than |a|. We compute the conditions that f (i, a, x) must satisfy
by examining the equivalences which hold if it does:

14In the terminology of Post [42], the proof shows that Ha and La are equivalent by bounded
truth tables. Had Davis chosen to set L1 = N at the basis, then these modified Las are recursively
isomorphic with Kleene’s Ha sets, and by a simpler argument than the proof of this Lemma.
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x ∈ Ha ⇐⇒ (x)0 ∈ He(x)1

⇔ f (0, e(x)1 , (x)0) = 0 ∨ [ f (0, e(x)1 , (x)0) �= 0 & f (1, e(x)1 , (x)0) ∈ Le(x)1 ]
⇔ f (0, e(x)1 , (x)0) = 0 ∨ [ f (0, e(x)1 , (x)0) �= 0 & 〈0, f (1, e(x)1 , (x)0), (x)1〉 ∈ La]

⇐⇒ f (0, a, x) = 0 ∨ [ f (0, a, x) �= 0 & f (1, a, x) ∈ La]

where we have used the induction hypothesis in the second line and the definition of
La in the third (with an irrelevant 0 put into the first position so that f (1, a, b) codes
a triple). So when a = 3 · 5e we need to have

f (0, a, x) = f (0, e(x)1 , (x)0), f (1, a, x) = 〈0, f (1, e(x)1 , (x)0), (x)1〉. (∗ ∗ ∗)

Now, the 2nd Recursion Theorem easily supplies us with a recursive partial function
f (i, a, x) which satisfies the relevant conditions for a = 1, a = 2b and (∗ ∗ ∗), and
then the proof is completed by a routine transfinite induction on |a|. � (Proof of the
Sublemma)

The corresponding Sublemma for the second reducibility in (∗) is proved by a
similar construction, and then the two Sublemmas together imply (∗). �

Briefly (and vaguely), to “compute” a function f : D → N which is defined on
D ⊆ N

n by the recursion

f (x) = G( f � {x′ : x′ ≺ x}, x) (x ∈ D) (5.21)

along some wellfounded relation ≺ ⊂ (Nn × N
n), we use the 2nd Recursion Theo-

rem to find a recursive partial f which converges on D and satisfies (5.21) on the
assumption that one such f exists; and then we prove by induction along ≺ that f
indeed satisfies (5.21). It is very important for the applications that no definability
assumptions are needed for D or ≺, except as they might be used to define f ; for
the proof of Lemma 5.2.1, for example,

D = {(i, a, x) : a ∈ S1}, (i, a, x) ≺ ( j, b, y) ⇐⇒ |a| < |b|,

and we have no estimate of the complexity of this D and this ≺, certainly not now.
The method is very general and we cannot do it justice here, but it has played a

very important role in the study of hyperarithmetical sets and so I thought it important
to give in full at least one proof which uses it. Another, similar but more difficult
example is the uniform version of Spector’s Uniqueness Theorem 5.2.2:

|a| � |b| =⇒ Ha �T Hb uniformly for all a, b ∈ S1.

Its precise meaning is that there is a recursive partial function u(a, b), a uniformity,
such that

a, b ∈ S1 & |a| � |b| =⇒ [u(a, b)↓ & Ha �T
u(a,b) Hb]. (5.22)
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This formulation not only gives useful, additional information, but is necessary for
the proof of the Uniqueness Theorem (by effective grounded recursion).

In the sequel I will often refer to effective grounded recursion and uniformity, but
with little detail and less explanation.15

5.3 The Basic Facts About HYP (1950–1960)

A set A ⊆ N, relation R ⊆ N
n or (total) function f : N

n → N is hyperarithmetical
if it is recursive in some Ha ; HYP is the set of all hyperarithmetical sets, and

if A �T
e Ha, then 〈a, e〉 is a HYP − code of A. (5.23)

To express succinctly (and prove) the basic properties of HYP-sets, it is useful to
think of them as “bundled” with their codes by the following general notion:

5.3.1 Codings and Uniformities

A (surjective) coding of a set X is a pair (C, π), where π : C →→ X is a surjection of
the codeset C onto X , andwe call any c ∈ C a code (or name) of the objectπ(c) ∈ X .
If C ⊆ N, we say that the coding is in N. These are the only codings we will need
for a while.

So (S1, | |) is a coding of the constructive ordinals; (S1, a �→ Ha) is a coding of
the Ha-sets; (S1, a �→ La) is a coding of Davis’ La-sets; and for a very elementary
example, (N, e �→ ϕe) is a coding of the set of unary recursive partial functions. The
coding of HYP we introduced by (5.23) is formally the pair

C = {〈a, e〉 : a ∈ S1 & {e}Ha is total},
π(〈a, e〉) = {x ∈ N : {e}Ha (x) = 1}. (5.24)

In practice we will never be so formal, in fact we will sometimes use codings which
are “specified by the context” without a formal definition of C and π .

Codings are useful for expressing succinctly uniform properties of coded sets.
Their general theory is technically messy, not very interesting mathematically and
certainly not worth putting here.16 We will confine ourselves to these remarks and
“detail” sufficiently many claims to make the ideas clear. For example:

15Cf.Moschovakis [36, 37] for a discussion (and many examples), and 7A.4 of Moschovakis [35]
for a specific result which codifies many of the applications of effective grounded recursion in
Descriptive Set Theory.
16The interested reader may want to look at Moschovakis [36] where it was necessary to develop
this generalized abstract nonsense in some detail.
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Lemma 5.3.1 HYP is uniformly closed under complements and relative recursion.
In detail, there are recursive partial functions u(c) and v(c, e) such that:

(1) If A is HYP with code c, then u(c)↓ and is a HYP-code of (N \ A).
(2) If c is a HYP-code of a set B and A �T

e B, then v(c, e)↓ and is a HYP-code of
A.

This is a simple lemma, as are the similar claims of uniform closure of the hyper-
arithmetical relations (with their natural coding) under all first-order operations on
N. There is no use of effective effective grounded recursion in these proofs, we only
need appeal to uniform properties of the jump operation like (5.15). The next result is
also quite easy, but its proof requires effective grounded recursion and some auxiliary
definitions on the constructive ordinals:

Lemma 5.3.2 HYP is uniformly closed under recursive unions.
In detail, there is a recursive partial function u(e) such that if ϕe is total and for

each t, ϕe(t) is a HYP-code of a set At ⊆ N, then u(e)↓ and is a HYP-code of⋃
t At .

Coding invariance
Two codings (C1, π1), (C2, π2) in N of the same set X = π1[C1] = π2[C2] are
equivalent if there are recursive partial functions u1(a), u2(b) such that

a ∈ C1 =⇒ [u1(a)↓ & u1(a) ∈ C2 & π2(u1(a)) = π1(a)]

and similarlywith 1 and2 interchanged. It is clear that propositions likeLemmas5.3.1
and 5.3.2 which hold uniformly for a certain coding also hold uniformly for every
equivalent coding—and for some of them the proof might be easier.17 We exploit this
idea by establishing an elegant characterization of HYP which produces a coding
for it equivalent to the classical one in (5.23) but much simpler.

5.3.2 HYP as Effective Borel

An effective σ -algebra on N is any collection X ⊂ P(N) of sets of natural numbers
which admits a coding (C, π) in N so that the following hold:

(1) Every singleton {{t}} belongs to X uniformly, i.e., for some total, recursive u1(t)
and every t , u1(t) is a code of {{t}} in X .

17For a classical example, consider the coding of recursive partial functions specified by the Normal
Form Theorem in App 5. Its precise definition depends on the choice of computation model that
we use, Turing machines, systems of recursive equations or whatever, but all these codings are
equivalent and so uniform propositions about them are coding invariant. §4.3–§4.5 of Rogers [45]
considers this situation in some detail and formulates stronger notions of equivalence than the one
we use.
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(2) X is uniformly closed under complements, i.e., there is a recursive partial func-
tion u2(c) such that

c ∈ C =⇒ [u2(c)↓ & π(u2(c)) = N \ π(c)].

(3) X is uniformly closed under recursive unions, i.e., for some recursive partial
function u3(e),

(∀t)[ϕe(t)↓ & ϕe(t) ∈ C]
=⇒ [u3(e)↓ & u3(e) ∈ C & π(u3(e)) = ⋃

t π(Φe(t))].

As in the definition of (S1, | |), let b : N ⇀ P(N) be the least partial function on
N toP(N), such that

(1) b(〈1, t〉) = {{t}},
(2) b(〈2, y〉) = N \ b(y), and
(3) if ϕe is total and for every i , b(ϕe(i))↓ , then b(〈3, e〉) = ⋃

i b(ϕe(i))

and set

B = {i : b(i)↓}, Bi = b(i) (if i ∈ B), B = {Bi : i ∈ B}, (5.25)

the collection of effective Borel subsets of N.

Lemma 5.3.3 B is the least effective σ -algebra on N, uniformly.

Proof The coding (B, i �→ Bi ) witnesses that B is an effective σ -algebra on N. To
see that it is uniformly the least one, suppose (C, π) is a coding witnessing that some
X is an effective σ -algebra onN and define by a natural effective grounded recursion
a recursive partial function u such that

i ∈ B =⇒ [u(i)↓ & u(i) ∈ C & Bi = π(u(i))].

�

Theorem 5.3.1 HYP = B uniformly, i.e., (C, π) in (5.24) and (B, i �→ Bi ) in (5.25)
are equivalent codings of HYP.

Proof HYP is an effective σ -algebra on N by Lemmas 5.3.1 and 5.3.2 and a simple
construction which puts into it every singleton, uniformly. By Lemma 5.3.3 then,
B ⊆ HYP, uniformly. To prove HYP ⊆ B, we need to verify that every effective σ -
algebra on N is uniformly closed under the jump operation, relative recursion and
diagonalization,which is not difficult as these operations canbe effectively reduced to
complementation and the taking of recursive unions; we then use effective grounded
recursion to define a uniform embedding of HYP into B. �
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Remark 5.3.1 The theorem gives us a different view of hyperarithmetical sets and a
simpler way to prove important properties of them which do not explicitly refer to
the Ha-sets, and these include most of the important properties of HYP. I am not
certain who should be credited for it: it was “in the air” in the mid-sixties and I think
that it was probably first formulated by Shoenfield, but I cannot find now a specific
citation. In any case, it was certainly not known in the 50s, and our use of it here is
the most substantial anachronism in this exposition of what was proved then.

5.3.3 Lebesgue [28] and Mostowski [39]

The situation is actually quite similar to one that came up in classical analysis at the
turn of the last century.Recall the definitionofBorel subsets ofN in (2) of Sect. 5.1.4.
In modern notation, theBorel hierarchy { �

˜
0
ξ : ξ < Ω1} (onN ) is defined by setting

�
˜

0
1 = the collection of all open subsets ofN (5.26)

and then by recursion on the countable ordinals,

A ∈ �
˜

0
ξ ⇐⇒ A = ⋃

i (N \ Ai ) with each Ai ∈ ⋃
η<ξ �

˜
0
η (ξ > 1). (5.27)

These definitionswere first given (for the reals) byLebesgue [28]who proved (among
many other fascinating and much deeper things) that

B = ⋃
ξ<Ω1

�
˜

0
ξ . (5.28)

As it happens, most of the important applications of the Borel sets to analysis
(including measure theory and integration) use only the definitions and (5.28), which
is easy and handy for proving properties of Borel sets by ordinal induction. The fine
structure of the Borel hierarchy is a very interesting and much-studied topic but not
as fundamental as B.

The definition of hyperarithmetical sets in Mostowski [39] is inspired by the
classical theory of Borel sets, although he does not cite Lebesgue [28] or any other
“classical” work. It is a difficult paper to read, basically an outline: he appears to
define his hierarchy directly on ordinals rather than notations (which is not possible
with the tools he uses) and he refers cryptically to (what must be) effective grounded
recursion as “a rather developed techniquewhichwe do not wish to presuppose here”.
Section9 of Kleene [19] supplies the details which are needed to make Mostowski’s
construction rigorous and comes up with a precise characterization of the intended
hierarchy: in modern notation

�a = {A ⊆ N : A is r.e. in Ha} = {A ⊆ N : A �1 H2a } (a ∈ S1). (5.29)
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It is immediate from the definition that

if 1 � |a| = k < ω, then �a = �0
k .

Moreover, �a depends only on the ordinal |a| by the Spector Uniqueness Theo-
rem 5.2.2 and

HYP = ⋃
a∈S1 �a . (5.30)

The hierarchy {�a : a ∈ S1} has been studied even less that the Borel hierarchy
{ �

˜
ξ : ξ < Ω1}, partly because the topic is not easy. It is obvious that it is a hierarchy,

since every �a has a complete set (H2a ); but to prove (for example) that every �a is
closed under conjunction you must use effective grounded recursion, and for more
difficult questions these proofs become very complex. In any case, we will not work
with it here: for what we will do, the identification HYP = B suffices and yields
simpler proofs.

5.3.4 The Analytical Hierarchy; HYP ⊆ Δ1
1

Useful and natural as the characterization HYP = B may be, it does not provide
explicit definitions for the hyperarithmetical sets and relations. These require quan-
tification over sets of natural numbers or, equivalently, the Baire space N = N

N.
A relation P(x,β) with arguments in N and (possibly) N is analytical if it is

first-order definable in the two-sorted structure of analysis

N2 = (N,N , 0, 1,+, ·, ap) (5.31)

where ap (α, t) = α(t) is the application operation. Kleene [19] classifies the arith-
metical and analytical relations with arguments in N and N in hierarchies which
look so much like the arithmetical hierarchy overN that we pictured them together in
Fig. 5.1. We are mostly interested here in the “first level” of the analytical hierarchy,
the pointclasses18 Π1

1 , �
1
1 ,Δ

1
1, but it is almost as easy to define them all. Briefly, and

using the notions and notation in the Appendix:

(1) P(x,β) with x = (x1, . . . , xn) ∈ N
n and β = (β1, . . . , βm) ∈ N m is �0

1 if it
is the domain of convergence of a recursive partial function,

P(x,β) ⇐⇒ f (x,β)↓;

P is Π0
k if it is the negation of a �0

k relation; P is �0
k+1 if

18A pointclass in this paper is any collection � of relations P(x,α) with arguments in N and N .
It is an awkward term but useful, and is has been well established since the 70s for collections of
relations in various spaces typically specified by the context.
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P(x,β) ⇐⇒ (∃t)Q(x, t,β) with Q in Π0
k ;

and Δ0
k = �0

k ∩ Π0
k .

These are the arithmetical relations with arguments in N andN , those which can
be defined in N2 without using quantification over N .

(2) P(x,β) is Π1
1 if

P(x,β) ⇐⇒ (∀α)Q(x,β, α), (5.32)

with arithmetical Q(x,β, α); it is Π1
k if it is the negation of a �1

k relation; and it is
�1

k+1 if
P(x,β) ⇐⇒ (∃α)Q(x,β, α) with Q in Π1

k ;

and Δ1
k = �1

k ∩ Π1
k .

The analytical pointclasses Π1
k , �

1
k ,Δ

1
k have all the closure properties of their

analogs Π0
k , �

0
k ,Δ

0
k in the arithmetical hierarchy over N, and they are also closed

under number quantification of both kinds and under substitution of total recursive
functions into N or N , App 8. In addition, Π1

k is closed under ∀α and �1
k is closed

under ∃α. These closure properties are very easy to prove, but not without conse-
quence19:

Lemma 5.3.4 The codeset B of B = HYP defined in (5.25) is Π1
1 .

Proof By its definition, B is the least fixed point Φ of the monotone operator Φ :
P(N) → P(N) defined by

x ∈ Φ(A) ⇐⇒ (∃t)[x = 〈1, t〉] ∨ (∃y)[x = 〈2, y〉 & y ∈ A]
∨ (∃e)[x = 〈3, e〉 & (∀i)(∃w)[ϕe(i) = w & w ∈ A]]

(5.33)

so that by (5.59),

i ∈ B ⇐⇒ (∀A)[[(∀x)[x ∈ Φ(A) =⇒ x ∈ A]] =⇒ i ∈ A].

If we code each set A by the 0-set Zα = {x : α(x) = 0} of some α ∈ N and set

Φ(x, α) ⇐⇒ x ∈ Φ(Zα), (5.34)

then Φ(x, α) is arithmetical (just replace u ∈ A by α(u) = 0 in (5.33)); and

i ∈ B ⇐⇒ (∀α)[[(∀x)[Φ(x, α) =⇒ α(x) = 0]] =⇒ α(i) = 0],

so that B is Π1
1 . �

19They also suffice to prove that the notation system S1 isΠ1
1 , cf. Lemma 1 in the proof of Theorem

9.2 in Moschovakis [37].
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This is a very general method of proof: it can be used to show that if Φ is
monotone on P(N) and the relation Φ(x, α) associated with Φ by (5.34) is Π1

1 ,
then Φ is Π1

1 and, of course, it can be generalized in many ways.

Much of the theory of Π1
1 depends on the following refinement of its defini-

tion (5.32):

Theorem 5.3.2 (Normal Form for Π1
1 ) Every Π1

1 relation P(x,β) satisfies an
equivalence

P(x,β) ⇐⇒ (∀α)(∃t)R(x,β, α(t)) (5.35)

where R(x,β, u) is recursive and monotone upward on its last (sequence code)
argument, i.e.,

[R(x,β, u) & u � v] =⇒ R(x,β, v). (5.36)

It is easy to prove, using the closure properties of Π1
1 , the somewhat unusual “dual”

of the Axiom of Choice, that for every relation R(t, s),

(∃t)(∀s)R(t, s) ⇐⇒ (∀α)(∃t)R(t, α(t))

and the Normal Form Theorem for recursive partial functions, App 5. By App 5
again, it implies the analog of (2) in Lemma 5.1.1:

Lemma 5.3.5 (N-Parametrization for Π1
1 ) For all n,m � 0, there is a Π1

1 relation

G(e, x,β) ⇐⇒ Gn,m(e, x1, . . . , xn, β1, . . . , βm)

such that for every Π1
1 relation P(x,β),

P(x,β) ⇐⇒ G(e, x,β) for some e ∈ N; (5.37)

moreover, there are recursive injections Sln : N
1+l → N such that for all tuples y =

y1, . . . , yl ∈ N,

Gl+n,m(e, y, x,β) ⇐⇒ Gn,m(Sln(e, y), x,β). (5.38)

When (5.37) holds, we call e a Π1
1 -code of P(x,β) and a �1

1-code of its negation¬P(x,β); and if e is a Π1
1 -code and m a �1

1-code of P(x,β), then 〈e,m〉 is a
Δ1

1-code of it.

To see how the Parametrization Property is used, suppose R(x, t) is aΠ1
1 relation

on N (for simplicity) with code e and

P(x) ⇐⇒ (∃t)R(x, t).

Let Q(m, x) ⇐⇒ (∃t)G(m, x, t) (with the appropriate superscripts) and let s be a
Π1

1 -code of Q; then
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P(x) ⇐⇒ (∃t)R(x, t) ⇐⇒ (∃t)G(e, x, t)

⇐⇒ Q(e, x) ⇐⇒ G(s, e, x) ⇐⇒ G(S11 (s, e), x),

so S11(s, e) is a code of P(x). The upshot is that Π1
1 is uniformly closed under ∃s,

and by similar, trivial computations, Π1
1 , �

1
1 and Δ1

1 are uniformly closed under all
(reasonable) operations under which they are closed, including those listed above.
This implies that the collection of Δ1

1 subsets of N is an effective σ -algebra on N,
which with Lemma 5.3.3 then yields

Theorem 5.3.3 (Kleene [19]) HYP ⊆ Δ1
1, uniformly. In detail, there are relations

H�(i, x) and HΠ(i, x) in �1
1 and Π1

1 respectively, such that

i ∈ B =⇒
(
x ∈ Bi ⇐⇒ H�(i, x) ⇐⇒ HΠ(i, x)

)
.

Davis [4] and Mostowski [39] had already shown that every HYP-relation is ana-
lytical, but Kleene’s result is a considerable improvement and begs for the converse.

5.3.5 Kleene’s Theorem, HYP = Δ1
1

This was the most important, early result about HYP and it is still the most funda-
mental.

Theorem 5.3.4 (Kleene [21]) Δ1
1 ⊆ HYP, uniformly, so HYP = Δ1

1.

The foundational import of Kleene’s Theorem is that it reduces existential quan-
tification (∃α) over the continuumN to regimented iteration of first-order quantifi-
cation over N—in the very special circumstances where a set A and its complement
can both be defined by just one such quantification on arithmetical relations.

There are many proofs of Kleene’s Theorem, all of them ultimately based on the
Normal Form Theorem 5.3.2 for Π1

1 and using effective grounded recursion. The
proof in Kleene [21] is quite complex and depends on several technical results about
constructive ordinals and the Ha-sets. To outline briefly the much simpler argument
in Spector [47] , put first

x � f y ⇐⇒ ϕ f (x, y) = 0, L = { f : ϕ f is total and � f is a linear order},
W = { f ∈ L : � f is a wellordering},

|| f || = the order type of � f ( f ∈ W ).

By Markwald’s Theorem 5.2.1, {|| f || : f ∈ W } is exactly the set constructive ordi-
nals, and we set

Wξ = { f ∈ W : || f || � ξ} (ξ < ω1).
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The first move is to check that the initial segments { f : || f || � ||s||} of W are
uniformly Δ1

1 for s ∈ W :

Lemma 5.3.6 There are binary relations �� and �Π in �1
1 and Π1

1 respectively,
such that

s ∈ W =⇒
(
[ f ∈ W & || f || � ||s||] ⇐⇒ f �� s ⇐⇒ f �Π s

))
.

Proof Set

f �� s ⇐⇒ f, s ∈ L & there is an order-preserving embedding of � f into �s ,

f �Π s ⇐⇒ f, s ∈ L & there is no order preserving embedding of �s

into a proper initial segment of � f .

To verify that these relations do it, we code embeddings using elements of Baire
space and use the closure properties of �1

1 and Π1
1 . �

The second move introduces what is now called the Kleene-Brouwer or Luzin-
Sierpinski ordering on finite sequences. It is used in Kleene [21] and in many proofs
of Kleene’s Theorem:

Lemma 5.3.7 (Spector [47]) W is Π1
1 -complete, uniformly.

In detail: W is Π1
1 and there is a recursive function u1(a) such that if a is a

Π1
1 -code of a set A ⊆ N, then ϕu1(a) is injective and

x ∈ A ⇐⇒ {u1(a)}(x) ∈ W.

Proof W is Π1
1 directly from its definition. To show that it is Π1

1 -complete, suppose
that A is Π1

1 with code a, so that by Theorem 5.3.2 and Lemma 5.3.5,

x ∈ A ⇐⇒ G(a, x) ⇐⇒ (∀α)(∃t)R(a, x, α(t))

with a fixed recursive R(a, x, v) (not depending on A) which is monotone upward
in its last argument. Define the transitive relation

u �a,x v ⇐⇒ v � u & ¬R(a, x, u)

and prove that

x ∈ A ⇐⇒ (∀α)(∃t)R(a, x, α(t)) ⇐⇒ �a,x is wellfounded, (5.39)

most easily by checking its contrapositive

x /∈ A ⇐⇒ (∃α)(∀t)¬R(a, x, α(t)) ⇐⇒ �a,x is not wellfounded.
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We then linearize �a,x by setting

u �a,x v ⇐⇒ ¬R(a, x, u) & ¬R(a, x, v)

&
(
v � u ∨ [u | v & min{(u)i : i < lh(u)} < min{(v)i : i < lh(v)}]

)
;

verify that this is a linear ordering such that

x ∈ A ⇐⇒ �a,x is a wellordering,

in fact �a,x=�g(a,x) with a recursive g such that for any a, x , g(a, x) ∈ L; and infer
that

x ∈ A ⇐⇒ �a,x is a wellordering ⇐⇒ g(a, x) ∈ W. (5.40)

To finish the proof we need to define a recursive u1(a) such that {g(a, x)}(s) =
{{u1(a)}(x)}(s) and {u1(a)} is injective for every a, and this is done by manipulating
the Sln- functions as usual. �

The third move is Spector’s. It is what makes his proof simpler than Kleene’s who
worked with O rather than W .

Lemma 5.3.8 (Boundedness, Spector [47]) Every �1
1 subset of W is a subset of

Wξ for some ξ < ω1, uniformly.

In detail: there is a recursive partial function u2(b) such that if b is a �1
1-code

of a set A ⊆ N, then

A ⊆ W =⇒ [u2(b)↓, u2(b) ∈ W, and A ⊆ W||u2(b)||].

Proof Let G(b, x) be a parametrization of the unary Π1
1 relations by Lemma 5.3.5,

so that a set A ⊆ N is �1
1 with code b if

A = Gc
b = {s : ¬G(b, s)}.

Fix also by the Π1
1 -completeness of W a recursive injection g : N → N such that

G(x, x) ⇐⇒ g(x) ∈ W. (∗)

The relation

P(b, f ) ⇐⇒ (∃s)[¬G(b, s) & g( f ) �� s]

is �1
1 , and so by Lemma 5.3.5 again, there is a recursive injection v(b) = S21 (k, b)

(with some k) such that

(∃s)[¬G(b, s) & g( f ) �� s] ⇐⇒ ¬G(v(b), f ). (∗∗)
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The key observation is that

if A = Gc
b ⊆ W, then G(v(b), v(b)) :

because if A ⊆ W and ¬G(v(b), v(b)), then there is some s ∈ W such that g(v(b))
�� s; which gives g(v(b)) ∈ W by Lemma 5.3.6; which in turn gives G(v(b), v(b))
by (∗), contradicting the hypothesis. FromG(v(b), v(b))we get g(v(b)) ∈ W , by (∗)
again, and so by taking negations in (∗∗),

A = Gc
b ⊆ W =⇒ (∀s)[s ∈ A =⇒ ||s|| < ||g(v(b))||],

which is what we needed to show with u2(b) = g(v(b.b)). �

Outline of proof of Theorem 5.3.4. By the two lemmas, if A is Δ1
1 with code 〈a, b〉,

then
x ∈ A ⇐⇒ {u1(a)}(x) ∈ Wξ with ξ = ||u2(b)||. (5.41)

To complete the proof we need to show that W|| f || is in B uniformly for f ∈ W , and
this is done by a fairly straightforward effective grounded recursion along {( f, g) :
f, g ∈ W & || f || � ||g||}. �
Spector’s write-up of his proof is not quite this simple because he works with

the Ha-codes rather than the B-codes of HYP and (in effect) proves the uniform
inclusion B ⊆ HYP on the fly.

Moreover, neither Kleene nor Spector claimed explicitly the full, uniform version
of Kleene’s Theorem 5.3.4, although all the “mathematical facts” needed for it are
in their papers.20 Most likely they did not even think of it: in the spirit of the time, a
result was formulated uniformly only when this was necessary, typically in order to
prove it by effective grounded recursion. Uniform claims did not become important
in themselves until the 70s, when the applications of these ideas to Descriptive Set
Theory made them necessary. We will discuss this briefly in Sect. 5.4.2.

Spector’s Lemmas 5.3.6–5.3.8 are important results with many applications
besides their use in proving Kleene’s Theorem. We state one of them here and then
one more, not quite so simple in the next section.21

Theorem 5.3.5 (Spector [47]) If � is a Δ1
1 wellordering with field F ⊆ N, then

rank (�) < ω1, uniformly.

This is usually abbreviated by the equation

δ11 = ω1,

20What’s missing in their papers is the second part in the proof of the Boundedness Lemma 5.3.8
which looks tricky at first sight but is a standard, elementary tool in this area. It computes “witnesses
to counterexamples” using diagonalization in very general circumstances, and we have already used
it to establish the uniform properties of the jump in Footnote 6.
21Cf. App 9 for the notation we use about wellorderings and ranks.
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δ11 being the least ordinal which is not the order type of a HYP wellordering.

Proof Suppose, towards a contradiction that � is a Δ1
1 wellordering with rank

(�) � ω1 and set

f ∈ A ⇐⇒ f ∈ L & there is an order preserving map of � f into � .

This is a �1
1 set and the hypotheses imply that A = W , which contradicts

Lemma 5.3.8. The uniform version is proved similarly, using the uniform version of
the same Lemma. �

5.3.6 Addison [1] and the Revised Analogies

Kleene’s Theorem 5.3.4 is an immediate consequence of the following more general

Theorem 5.3.6 (Strong Separation for �1
1 , Addison [1]) For any two disjoint, �1

1
subsets of N, there is a HYP set C which separates them, i.e.,

A ⊆ C, C ∩ B = ∅.

In fact, Addison [1] claims more and less than this result: he states it for subsets
A, B of any product space N

n × N m rather than just N and his (abbreviated) proof
is formulated quite abstractly and also gives the classical Separation Theorem 5.1.2
for �

˜
1
1; but he does not note that the result holds uniformly (in given �1

1-codes of
A and B), which it does, and he only says of the separating set C that “it is Δ1

1”
skipping the punchline “and hence HYP” which he certainly knows for subsets of
N. This may be partly because there was no generally accepted definition of HYP
subset of N

n × N m at the time, or because Addison’s paper is about separation
and not construction principles. He also does not discuss the obvious revision of the
analogies (5.7)

recursive function on N ∼ continuous function onN ,

HYP ∼ B,

Π1
1 sets of integers ∼ Π

˜
1
1 subsets of N ,

(5.42)

which are the working hypotheses of Mostowski [39]. They are bolstered by the
following result which is not hard to prove using Spector-type ordinal assignments
and the method of proof of Kleene’s Theorem 5.1.3:

Theorem 5.3.7 There exists disjoint Π1
1 -sets A, B which are not HYP-separable,

i.e., no HYP set C satisfies
A ⊆ C, C ∩ B = ∅.

On the other hand, to my knowledge, Addison [1] was first to refer to Effective
Descriptive Set Theory, which suggests that more than “analogies” are in play; and
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he introduced the modern lightface �1
k , . . . and boldface �

˜
1
k . . . notation which has

been universally accepted.

5.3.7 Relativization and the Kreisel Uniformization Theorem

We mention in App 6 the method of proof by relativization, which works because
(roughly) recursion in some fixed parameters β has all the properties of “absolute”
recursion. It is not simple to formulate a general metatheorem which captures
all its applications—especially when uniformities are involved which should be
“absolutely” recursive. It is, however, a very powerful method, heavily used by the
early researchers in hyp theory, especially Kleene and Spector. We illustrate it here
by proving two important and useful results.

The relative forms�
i,β
k ,Π

i,β
k , �

i,β
k ,Δ

i,β
k of the arithmetical and analytical hierar-

chies are defined simply by replacing “recursive” by “recursive in β” in their defini-
tions, and they have all the properties of their absolute forms, including Lemma 5.1.1
(with absolutely recursive Sl,mn functions).

The same is true for the relativized system Sβ
1 of ordinal notations: we simply

replace et in Sect. 5.2.1 by eβ
t = {e}β(tO) and write |a|β for the ordinal with code

a ∈ Sβ
1 . Markwald’s Theorem 5.2.1 remains true: an ordinal ξ is less than

ω
β
1 = sup{|a|β : a ∈ Sβ

1 }

exactly when it is the order type of a wellordering (of part of N) which is recursive
in β. We use these ordinals to define the relativized Hβ

a sets by replacing (H2) in
Sect. 5.2.2 by

(H2β) Hβ

2b = jump (Hβ
b ;β) = {e : {e}(e, Hβ

b ,β)↓}
and we set

A ∈ HYPβ ⇐⇒ (∃a ∈ Sβ
1 )[A �T Hβ

a ].

With these definitions, all the basic facts about HYP relativize, including Spector’s
Uniqueness Theorem 5.2.2, the characterization of HYPβ as the least σ -algebra on
N which is effective in β, Theorem 5.3.1 and the uniform inclusion HYPβ ⊆ Δ

1,β
1 ,

Theorem 5.3.3. For the converse inclusion (Kleene’s Theorem), we need to relativize
the basic notions of Spector [47] : we set

x �β
f y ⇐⇒ ϕ f (x, y,β) = 0,

Lβ = { f : (∀x, y)[ϕ f (x, y,β)↓] and �β
f is a linear order},

W β = { f ∈ Lβ : �β
f is a wellordering},

|| f ||β = the order type of �β
f ( f ∈ W β).
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Using these we get immediately the relativized versions of Lemma 5.3.6 and (what
we need of) the relativized version of Lemma 5.3.7, basically (5.40):

(1) There are relations �β
� and �β

Π in �1
1 and Π1

1 respectively, such that for
all β,

s ∈ W β =⇒
(
[ f ∈ W β & || f ||β � ||s||β] ⇐⇒ f �β

� s ⇐⇒ f �β
Π s

))
.

(2) If P(x,β) is Π1
1 , then there is a total recursive function f (x) such that

P(x,β) ⇐⇒ f (x) ∈ W β .

These suffice to relativize Spector’s proof of the non-uniform version of Kleene’s
Theorem 5.3.4

for every β, HYPβ = Δ
1,β
1 ,

and a little more detailed version of (2) gives also the uniform version.

With single sets rather than tuples of functions β, for simplicity, we set

A �h B ⇐⇒ A ∈ HYPB ⇐⇒ A is hyperarithmetical in B.

The hyperdegrees that are induced by this reducibility have been studied extensively,
cf. Sacks [46]. We will not go into this topic here, except for the following, early and
important result. To appreciate what it says, notice that because W is Π1

1 -complete,

W �h A ⇐⇒ every Π1
1 set is hyperarithmetical in A.

Theorem 5.3.8 (Spector [47]) For every set A ⊆ N,

W �h A ⇐⇒ ω1 < ωA
1 ,

and in relativized form, for all A, B ⊆ N,

W A �h B ⇐⇒ ωA
1 < ωB

1 .

Proof Suppose first that W �h A and set

x ∈ D ⇐⇒
(
x ∈ W & (∀y)[(y ∈ W & ||y|| = ||x ||) =⇒ x � y

)
,

x � y ⇐⇒ x, y ∈ D & ||x || � ||y||;

now � is a wellordering of rank ω1 and it is Δ
1,A
1 , so its rank is below δ

1,A
1 = ωA

1 by
the relativized version of Spector’s Theorem 5.3.5.

The converse is a bit easier. �
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Our second example illustrates a somewhat more subtle application of the rela-
tivization technique: roughly, it proves a universal property (∀β)Q(β) by treating
an arbitrary tuple β as a parameter, relativizing to it the proof of a simple (absolute)
proposition, and then exploiting the uniform nature of the proof to infer Q(β) with
variable β.

Theorem 5.3.9 (Π1
1 -Uniformization on N, Kreisel [27]) For every Π1

1 relation
P(x, y,β), there is a Π1

1 relation P∗(x, y,β) such that

P∗(x, y,β) =⇒ P(x, y,β) and (∃y)P(x, y,β) =⇒ (∃ !y)P∗(x, y,β).

(5.43)
It follows that if P(x, y) is Π1

1 , then

(∀x)(∃y)P(x, y) =⇒ (∃ f : N
n → N)[ f is HYP & (∀x)P(x, f (x))].

Proof In the simple case where the list β of variables over N is empty, we choose
a recursive g : N

n → N such that P(x, y) ⇐⇒ g(x, y) ∈ W and set

P∗(x, y) ⇐⇒ P(x, y) & (∀u)[g(x, y) �Π g(x, u)]
& (∀u)[g(x, u) �� g(x, y) =⇒ y � u].

This also gives the second claim: check that if (∀x)(∃y)P(x, y), then P∗(x, y) is
the graph of a function f and it is Δ1

1, since

¬P∗(x, y) ⇐⇒ (∃z)[P∗(x, z) & z �= y)].

To get the more useful claim with parameters, we relativize this argument using
(1) and (2) above. Given a Π1

1 relation P(x, y,β), choose a recursive g(x, y) such
that

P(x, y,β) ⇐⇒ g(x, y) ∈ W β

and set

P∗(x, y,β) ⇐⇒ P(x, y,β) & (∀u)[g(x, y) �β
Π g(x, u)]

& (∀u)[g(x, u) �β
� g(x, y) =⇒ y � u].

The check that this works is exactly as before. �

TheKondo-AddisonUniformization Theorem forΠ1
1 relations P(x, α,β) (Kondo

[24], Addison) is much deeper, but this simple result is also interesting and very
useful.
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5.3.8 HYP-Quantification and the Spector-Gandy Theorem

The (coded) graph of a function α : N → N is the set

Graph (α) = {〈s, t〉 : α(s) = t} ⊂ N,

and we often write “α ∈ HYP” when we really mean “Graph(α) ∈ HYP”, i.e., that
α is hyperarithmetical. We collect here some interesting, easy (now) facts about the
quantifier (∃α ∈ HYP) and we also formulate the basic Spector-Gandy Theorem
about it—which has never been easy.

It is natural to code the HYP-functions using a subset of the coding of HYP-sets
as effectively Borel in (5.25):

B1 ={i ∈ B : Bi = Graph (α) for some α},
and if i ∈ B1, then βi (s) = t ⇐⇒ 〈s, t〉 ∈ Bi .

(5.44)

The key (easy) facts about this coding is that B1 is Π1
1 by Lemma 5.3.4 and Theo-

rem 5.3.3, and that for each i ∈ B1, the relation

α = βi ⇐⇒ (∀s, t)[α(s) = t ⇐⇒ 〈s, t〉 ∈ Bi ] (5.45)

is Δ1
1 uniformly, by Theorem 5.3.3 again.

Theorem 5.3.10 (1) HYP-Quantification Theorem, Kleene ([21], [22]). If

P(x) ⇐⇒ (∃α ∈ HYP)Q(x, α) (5.46)

and Q(x, α) is Π1
1 , then P(x) is also Π1

1 .

(2)HYP is not a basis forΠ0
1 , Kleene [21]. There is a non-empty,Π

0
1 set A ⊆ N

which has no HYP members.

(3) Upper classification of HYP. As a subset of N , HYP is Π1
1 .

(4) Lower classification of HYP. As a subset of N , HYP is not �1
1 .

Proof (1) Compute:

(∃α ∈ HYP)Q(x, α) ⇐⇒ (∃i)[i ∈ B1 & (∀α)[α = βi =⇒ Q(x, α)]].

(2) Towards a contradiction, assume that every non-empty, Π0
1 set A ⊆ N has

a HYP member and let P ⊆ N be an arbitrary �1
1 set. By the Normal Form for Π1

1
Theorem 5.3.2 (applied to ¬P),

P(x) ⇐⇒ (∃α)(∀t)R(x, t, α) ⇐⇒ Ax = {α : (∀t)R(x, t, α)} �= ∅
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with a recursive R. Since every Ax is Π0
1 , our assumption implies that

P(x) ⇐⇒ (∃α ∈ HYP)(∀t)R(x, t, α);

which by (1) means that every �1
1 subset of N is Π1

1 , which it is not.

(3) α ∈ HYP ⇐⇒ (∃i)[i ∈ B1 & α = βi ].
(4) The relation P(i, α) ⇐⇒ i ∈ B1 & α = βi is Π1

1 , so by the Kreisel Uni-
formization Theorem 5.3.9, there is a Π1

1 relation P∗(i, α) such that

P∗(i, α) =⇒ i ∈ B1 & α = βi , α ∈ HYP =⇒ (∃!i)P∗(i, α).

Let D(i) ⇐⇒ (∃α ∈ HYP)P∗(i, α). This is Π1
1 by (1), but if HYP is �1

1 , then it
is also �1

1 , since

D(i) ⇐⇒ (∃α)[α ∈ HYP & (∀ j)[P∗( j, α) =⇒ i = j]].

It follows that the function

β(i) =
{
1−· βi (i) if D(i),

0 otherwise

is Δ1
1 and has no code in B1, which is absurd. �

Kleene [23] proved Part (1) of this theorem with a Π0
1 relation Q(x, α) and asked

whether this version of (5.46) gives a normal form for Π1
1 . Spector [49] proved that

it does, and gandy [10] gave an independent proof of this basic fact after hearing of
Spector’s result.

Theorem 5.3.11 (Spector [49], Gandy [10]) Every Π1
1 relation P on N satisfies an

equivalence
P(x) ⇐⇒ (∃α ∈ HYP)(∀t)R(x, α(t)) (5.47)

with a recursive R(x, u). In fact, R(x, u) can be chosen so that

P(x) ⇐⇒ (∃α ∈ HYP)(∀t)R(x, α(t)) ⇐⇒ (∃!α ∈ HYP)(∀t)R(x, α(t)).

Spector’s proof is difficult, as is Gandy’s, both of them depending on a detailed,
combinatorial analysis of Π1

1 definitions and properties of the constructive ordi-
nals coded by O . Easier proofs and generalizations of the first claim (without the
uniqueness) were found later, cf. Moschovakis [33–35].

Taken together, Kleene’s HYP-Quantification and the Spector-Gandy Theorem
have important foundational import, perhaps best expressed by the following
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Corollary 5.3.1 (Kleene, Spector) A relation P(x) on N satisfies

P(x) ⇐⇒ (∀α)Q1(x, α)

with an arithmetical Q1(x, α) if and only if it satisfies

P(x) ⇐⇒ (∃α ∈ HYP)Q2(x, α)

with an arithmetical Q2(x, α).

Moreover, the equivalence holds uniformly, i.e., Q2 can be constructed from Q1

and vice versa.

The Corollary reduces one quantification over the continuum N on arithmeti-
cal relations to one quantification (of the opposite kind) over the countable set
HYP � N whosemembers are constructed by regimented iteration of quantification
over N.

5.3.9 The Kleene [22] HYP hierarchy

This is perhaps the deepest and certainly the most difficult technical work of Kleene
on hyperarithmetical sets.22

Theorem 5.3.12 (Kleene [22]) If the monotone operator Δ on P(N ) is defined
by (5.52) below, then

η < ξ < ω1 =⇒ Δ
η

� Δ
ξ
and HYP = ⋃

ξ<ω1
Δ

ξ
. (5.48)

Even without the definition of Δ, a hierarchy of the form {Δξ : ξ < ω1} on HYP
is more satisfactory than hierarchies like (5.29), because it is constructed without
reference to any codings: there is no need for results like Spector’s Uniqueness
Theorem to establish coding invariance. The specific operator Δ that we define next
also gives a novel understanding of HYP and yields many interesting applications.

Definitions with Range and Basis F

A relation P(x) is �1
1 with range F ⊆ P(N ) if

P(x) ⇐⇒ (∃α ∈ F )Q(x,β, α) (5.49)

with β = β1, . . . , βm ∈ F and an arithmetical Q; it is �1
1 with basis F if

22It is also his last paper on the subject.
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P(x) ⇐⇒ (∃α)Q(x,β, α) ⇐⇒ (∃α ∈ F )Q(x,β, α) (5.50)

with β ∈ F and an arithmetical Q; and it is Δ1
1 with range or basisF if both P and

its negation ¬P are �1
1 with range or basisF respectively.

If P(x) is�1
1 with basisF , then it is also�1

1 with rangeF , clearly. The converse
is not true: because every Π1

1 relation is �1
1 with range HYP by the Spector-Gandy

Theorem 5.3.11, while

i f P(x) is �1
1 wi th basis HYP, then P(x) is HYP (5.51)

byKleene’sHYP-QuantificationTheorem5.3.10 (1)—andTheorem5.3.4, of course,
the inclusion Δ1

1 ⊆ HYP being basic to all this work. We let23

Δ(F ) = {A ⊆ N : A is arithmetical or Δ1
1 with basisF }. (5.52)

It is clear from (5.51) that Δ(HYP) = HYP, and so the least fixed point Δ of Δ

is included in HYP. For the rest of (5.48), Kleene needs to show that

(1) HYP ⊆ Δ, and
(2) if η < ξ < ω1, then Δ

η
� Δ

ξ
.

For (1), he proves (in effect) that

a ∈ O =⇒ Ha is Δ1
1 with basis

⋃
|b|<|a| �b

with �a defined in (5.29). The key idea for (2) is to use the ramified analytical
hierarchy comprising the iterates of the monotone operator

An (F ) = {A ⊆ N : for some n, A is �1
n with range F }

on P(N ). Kleene shows that if ξ < ω1, then An
ξ ⊆ HYP; and so if κ(Δ) < ω1,

then HYP = Δ would be a fixed point of An which contradicts the Spector-Gandy
Theorem. Both proofs are by effective grounded recursion and require more detailed,
delicate formulations of (1) and (2) to go through.

To formulate one of the simplest and most elegant characterizations of HYP
that comes out of Theorem 5.3.12, recall the two-sorted structure of analysis N2 =
(N,N , 0, 1,+, ·, ap) we used in Sect. 5.3.4. Its formal language A2 has variables
x, y, . . . , s, t, . . . overN andα, β, . . . overN and symbols 0, 1,+, ·, ap. Its standard
interpretation is N2. We are interested in general, ω-models of A2-theories in which
the number variables range over N and the function variables over some F ⊆ N ,
and for any formula ϕ we will write

F |= ϕ ⇐⇒ (N,F , 0, 1,+, ·, ap) |= ∀∀ϕ

23We need to include all arithmetical sets in Δ(F ), ow. Δ(∅) = ∅ and Δ would close at 0 and build
up the empty set.
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where ∀∀ϕ is the universal closure of ϕ. As usual, we identify sets with their repre-
senting functions in such models,

A ∈ F ⇐⇒ χA ∈ F (A ⊆ N).

An A2-formula ϕ is arithmetical if no function quantifiers occur in it. As usual,
by ϕ(x, y, β, γ ) we will denote any formula in which the variables x, y, β, γ may
occur free but do not necessarily include all the variables which occur free in ϕ.

We consider three axiom schemes in A2:

Arithmetical comprehension. With arithmetical ϕ(s) (in which α does not occur
free),

(∃α)(∀s)[α(s) = 1 ⇐⇒ ϕ(s)]. (Δ0∞ − Comp)

Δ1
1-comprehension.With arithmetical ϕ(s, γ ),ψ(s, γ ) (inwhichα does not occur

free),

(∀s)[(∃γ )ϕ(s, γ ) ⇐⇒ (∀γ )ψ(s, γ )]
=⇒ (∃α)(∀s)[α(s) = 1 ⇐⇒ (∃γ )ϕ(s, γ )]. (Δ1

1 − Comp)

�1
1-Choice. With arithmetical ϕ(s, α, γ ),24

(∀s)(∃α)(∃γ )ϕ(s, α, γ ) =⇒ (∃α)(∀s)(∃γ )ϕ(s, (α)s, γ ). (�1
1 − Choice)

Clearly, (Δ1
1-Comp) =⇒ (Δ0∞-Comp), and Kreisel [26] verified that25

(Δ0
∞-Comp) + (�1

1-Choice) =⇒ (Δ1
1-Comp). (5.53)

Theorem 5.3.13 (1) (Kleene [22], Kreisel [26]) HYP is the least model of (Δ1
1-

Comp).

(2) (Kreisel [26]) HYP satisfies (�1
1-Choice).

Proof (1) If A is �1
1 with range HYP, then it is Π1

1 by the HYP-Quantification
Theorem 5.3.10 (1); and if A is also Π1

1 with range HYP, then it is Δ1
1 and hence

HYP. This proves that HYP satisfies (Δ1
1-Comp), if we apply it to the set A = {s :

(∃γ )ϕ(s, γ )} and then take α = χA. To see that it is the least model of (Δ1
1-Comp),

assume thatF satisfies (Δ1
1-Comp) and prove by induction on ξ that Δ

ξ ⊆ F using
Theorem 5.3.12.

24We assume some formal treatment of recursive substitutions into A2 formulas. In this case, the
relevant recursive function is (α, s) �→ (α)s , and we use the equivalences

ϕ(s, (α)s , γ ) ⇐⇒ (∃δ)[δ = (α)s & ϕ(s, δ, γ )] ⇐⇒ (∀δ)[δ = (α)s → ϕ(s, δ, γ )].
These are satisfied by every model F of (Δ0∞-Comp).
25The converse fails, cf. Steel [51].
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(2) Suppose that (∀s)(∃α ∈ HYP)(∃γ ∈ HYP)ϕ(s, γ, α) with an arithmetical ϕ

and set

P(s, i) ⇐⇒ i ∈ B1 & (∀α)[α = βi =⇒ (∃γ ∈ HYP)ϕ(s, γ, α)].

This is in Π1
1 , so by the Kreisel Uniformization Theorem 5.3.9, it is uniformized by

a Π1
1 relation P∗(s, i); we check easily that some α ∈ HYP satisfies

(α)s = βi for the unique i which satisfies P∗(s, i),

and then this α also satisfies the right-hand-side of (�1
1 − Choice). �

Another relevant and important result that we will not discuss here in detail is the
following:

Theorem 5.3.14 (Gandy et al. [9]) A set A ⊆ N is HYP if and only if its character-
istic function χA belongs to everyF ⊆ P(N ) which satisfies the axiom scheme of
full comprehension, i.e., for every formula ϕ(s) in which α does not occur free,

(∃α)(∀s)[α(s) = 1 ⇐⇒ ϕ(s)]. (Δ1∞ − Comp)

Beyond these (and many other) applications, however, the importance of Theo-
rem 5.3.12 is primarily foundational. To quote Kleene [22],

the definition [with basisF ] means the same to persons with various universes of functions,
so long as each person’s universe includes at least F (of which he may have no exact
conception).

One can argue that it presentsHYP as a potential totalitywhich can be comprehended
by mathematicians with varying views of “the continuum”, much like N can be
understood as xza potential totality within classical and constructive mathematics
alike.

5.3.10 Inductive Definability on N

It should be clear by now that inductive definitions permeate our subject, but is
was not until Spector [50] that a neat, precise result was formulated expressing the
connection.
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Suppose Φ : P(Nl) → P(Nl) is a monotone operator as in App 10 and (gener-
alizing mildly (5.34)), define the representing relation of Φ by

Φ( y, α) ⇐⇒ y ∈ Φ(Zα) where Zα = { y′ : α(〈 y′〉) = 0}. (5.54)

The operator Φ is in a pointclass � (such as Π0
1 or Π1

1 ) if Φ(x, α) is in �; and a
relation P(x) is �-inductive on N if it is many-one reducible to the least fixed point
Φ of a monotone operator in �.

Lemma 5.3.9 (Spector [47]) 26 If Φ(A) is a monotone, Π1
1 operator onP(N) and

P ⊆ N is Π1
1 , then

x ∈ Φ(P) =⇒ (∃H ⊆ P)[H ∈ HYP & x ∈ Φ(H)].

This is not really difficult, but its simplest proof requires identifying themonotone
Π1

1 operators with those which are Π1
1 -positive, suitably defined, and it is a bit too

lengthy to include here.

Theorem 5.3.15 (1) (Kleene [20]).27 Every Π1
1 relation P(x) is Π0

1 -inductive on
N, in fact there is a Π0

1 monotone operator Φ on N
1+n such that28

P(x) ⇐⇒ (1, x) ∈ Φ. (5.55)

(2) (Spector [50]) If Φ : P(Nl) → P(Nl) is Π1
1 , then its least fixed point Φ is

Π1
1 and its closure ordinal κ(Φ) � ω1.

Proof (1) is basically immediate from (5.39), which expresses Kleene’s key under-
standing of Π1

1 definitions: for a given P(x) in Π1
1 (and adjusting the notation

in (5.39)), we set

(u, x) ∈ Φ(A) ⇐⇒ Seq(u) &
(
R(x, u) ∨ (∀s)(u ∗ 〈s〉, x) ∈ A

)
, (5.56)

prove first by induction on ξ that

(u, x) ∈ Φ
ξ =⇒ Seq(u) & (∀α � u)(∃t)R(x, α(t))

26This is not quite explicit in Spector [47], but Sacks [46] (8.5) credits it to Spector and I think this
is right.
27This is seriously implicit in §24 of Kleene [20], but the idea of the proof is there and Spector
correctly credits Kleene for it.
28The “1” is necessary here, in fact it is not the case that every Π1

1 set is the least fixed point Φ of
an arithmetical monotone operator Φ on N, cf. Feferman [8] and Moschovakis [34] (8.13, falsely
claimed in the 1974 edition for all “countable acceptable structures”). Feferman’s result was the
first applications of Cohen’s forcing to arithmetic.
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and then check easily that (with 1 = 〈 〉, the code of the empty sequence),

(1, x) /∈ Φ =⇒ (∃α)(∀t)¬R(x, α(t)) =⇒ ¬P(x).

This gives (5.55).

(2) That Φ is Π1
1 if Φ is Π1

1 , we have already proved in Lemma 5.3.4. For the

more difficult bound on the closure ordinal, we first check that P = ⋃
ξ<ω1

Φ
ξ
isΠ1

1
by effective grounded recursion and then apply the Lemma. �

LikeKreisel [26], Spector [50] was presented at the famed Symposium on Founda-
tions of Mathematics held in Warsaw in 1959. It has many more (and more difficult)
results, but its main significance lies in this simple characterization ofΠ1

1 (and hence
HYP) in terms of inductive definability.

5.3.11 HYP as Recursive in 2E

Starting with his [23], Kleene developed a theory of absolute and relative recursion
for functions with arguments in the objects of finite type over N, i.e., members of the
sets Ti where

T0 = N, Ti+1 = (Ti → N) = the set of functions on Ti to N.

This is a technically difficult but fascinating topic, with some important applications
to Descriptive Set Theory but especially to the foundations of the theory of recursion:
it was the first example where there is no natural notion of machine computable
function that can be defined independently of “recursiveness”, and so it forces an
examination of the meaning of recursive definitions in and of themselves. We cannot
go into it here, but it is worth stating one of Kleene’s basic results which relate it to
HYP29:

In Kleene’s words, the following type-2 object “embodies” the operation of quan-
tification over N:

2E(α) =
{
0, if (∃t)[α(t) = 0],
1, otherwise

(α ∈ N ).

Theorem 5.3.16 (Kleene [23]) A set A ⊆ N is hyperarithmetical if and only if it is
recursive in 2E.

29Cf. Kechris andMoschovakis [12] for a relatively simple introduction to recursion in higher types
and Sacks [46] for a full development.
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In fact, for A ⊆ N,

A ∈ Π1
1 ⇐⇒ A is recursively enumerable in 2E

⇐⇒ A = {x : f (x)↓} for some f : N ⇀ N recursive in 2E,

which bolsters the understanding of Π1
1 as an analog of �0

1 in recursion in
2E.30

5.4 Concluding Remarks

The main results from the period 1950–1960 that we have surveyed established
HYP as a robust class of sets, those subsets of N which can be defined (and can
be guaranteed to exist) if we accept the structure N of arithmetic, quantification
over N and recursion. The main new method introduced in this work is undoubtedly
effective grounded recursion, but there are also many interesting tricks, especially in
computing “witnesses to counterexamples” as in the proof of Lemma 5.3.8.

There were primarily three developments which followed this work and are still
extensively pursued today: recursion in higher typeswhichwehave already discussed
and the following two.

5.4.1 IND and HYP on Abstract Structures

Of the many characterizations of HYP, the easiest to formulate for an arbitrary
structure A = (A, R1, . . . , Rk) is Spector’s inductive definability in Sect. 5.3.10,
cf. Moschovakis [34]. Briefly, a relation P ⊆ An is inductive in A if it is one of
the mutual least fixed points of a finite system of positive, elementary (first-order)
relations with arguments in A, and it is hyperelementary in A if both P and its
negation An\P are inductive.

Part of the theory of HYP and Π1
1 can be developed for HYP(A) and IND(A) for

arbitrary A; some of the results require an assumption that A is (almost) acceptable,
roughly meaning that A admits a hyperelementary coding scheme for tuples; and
suitable formulations of virtually all the results in the body of this paper can be
established for all countable, acceptable structures, including Kleene’s centerpiece
that IND(A) = Π1

1 (A) and so HYP(A) = Δ1
1(A).

Kleene’s Theorem 5.3.12 holds for all acceptable structures almost exactly in the
form that it is stated in Sect. 5.3.9, with ω1 replaced by the closure ordinal κ(A) of
A, an important invariant. It is proved, however, by an entirely different argument

30Kleene [23] does not mention this and I recall him saying (much later) that he was not certain that
the notion of a recursive partial function in higher type recursion was natural, but I cannot point to
a reference for this.
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which is different from (and perhaps simpler) than Kleene’s even for the classical
structure N of arithmetic.

The proofs, in fact, are the most interesting aspect of this generalization of HYP
theory: there is little coding and no use of effective grounded recursion. These are
replaced by constructs which were first used in higher type recursion (Stage Com-
parison Theorems) and ideas from the theory of infinite open games.

The most interesting application of inductive definability is to the structure N2 of
analysis in (5.31) which is intimately related to our last topic.

5.4.2 Effective Descriptive Set Theory

The term was coined by Addison [1] who formulated his results about the spaces
N

n × N m and might have still be thinking of “analogies” between the classical and
the effective results; but in the 50+ years since then, effective descriptive set theory
has evolved into a unified study of definability on recursive Polish spaces which
include N, N and the real numbers and has deep applications to parts of topology
and analysis in addition to classical descriptive set theory and logic. A good part of
it is covered in Moschovakis [35], which, however, is concerned with many other
things and is not sufficiently comprehensive on this topic.

5.5 Appendix: Some Basic Facts and Notation

We list here some elementary definitions and results, primarily to establish notation.

App 1 N = {0, 1, . . .} is the set of natural numbers andN = N
N is the Baire space

of all unary functions onN. This carries the natural product topology withN discrete,
generated by the basic neighborhoods

Nk0,...,kt = {α ∈ N : α(0) = k0, . . . , α(t) = kt }

and the product spaces N
n × N m carry the corresponding product topologies.

In general, lower case Latin letters vary over N and Greek letters α, β, . . . vary
over N .

App 2 A partial function f : X ⇀ Y is a function f : D f → Y , where D f ⊆ X is
the domain of convergence of f . We write

f (x)↓ ⇐⇒ x ∈ D f , f (x) ↑ ⇐⇒ x /∈ D f (x ∈ X),

f (x) = g(x) ⇐⇒ [ f (x) ↑ & g(x) ↑] ∨ [ f (x)↓ & g(x)↓ & f (x) = g(x)].
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Partial functions compose strictly, e.g.,

f (g(x), h(x)) = w ⇐⇒ (∃u, v)[g(x) = u & h(x) = v & f (u, v) = w].

It is sometimes convenient to identify f : X ⇀ Y with its graph

Graph ( f ) = {(x, y) ∈ X × Y : f (x) = y}.

App 3 χA : X → N is the characteristic function of A ⊆ X (= 1 on A and 0 on
Ac = X \ A).

App 4 Sequence coding in N. The following functions and relations are recursive,
with pi the (i + 1)’th prime number:

〈u0, . . . , un−1〉 = pu0+1
0 · · · pun−1+1

n−1 = the code of (u0, . . . , un −· 1);
Seq(u) ⇔ u is the code of some sequence, and if it is, then lh(u) is its length and

for i < lh(u), (u)i = ui ;
u � v ⇔ u codes an initial segment of the sequence coded by v;
u �/ v ⇔ u � v & u �= v;
u | v ⇔ u and v are codes of incompatible sequences ⇔ ¬(u � v ∨ v � u);
u ∗ v = the code of the concatenation of the sequences coded by u and v;
α(t) = 〈α(0), . . . , α(t −· 1)〉 (= 1 if t = 0).

App 5 Kleene’s Normal Form and Enumeration Theorem: Every recursive partial
function(al) f : N

n × N m ⇀ N is ϕn,m
e for some e, where

ϕn,m
e (x1, . . . , xn, α1, . . . , αm) = {e}n,m(x1, . . . , xn, α1, . . . , αm)

= U (μtT m
n (e, x1, . . . , xn, t, α1(t), . . . , αm(t)))

(5.57)

with (primitive) recursive Tm
n andU , and we will skip some or all of the superscripts

n,mwhen they are clear from the context or irrelevant.Moreover, there are (primitive)
recursive injections Sl,mn (e, y1, . . . , yl) such that

{e}(y1, . . . , yl , x1, . . . , xn,α) = {Sl,mn (e, y1, . . . , yl)}(x1, . . . , xn,α). (5.58)

We call e a code of ϕn,m
e and we use both ϕe and {e} interchangeably, as the desire

for neat typography dictates.
To avoid (implausible) confusion, we use {{t}} for the singleton set whose only

member is e.

App 6 Relativization. It is sometimes useful to fix some of the function arguments
in the Normal Form Theorem and treat them as parameters. We write

{e}β(x,α) = {e}(x,β,α)
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and we say that the partial function (x,α) �→ {e}β(x,α) is recursive in β or relative
to β. For recursion relative to a set B, we write

{e}B(x) = {e}(x, χB ) (B ⊆ N).

It is often—almost always—the case that a result about (absolutely) recursive
partial functions can be easily seen to be true about partial functions recursive in
some β, by relativization, i.e., basically adding the superscript β to all functions in
the proof; it is a simple but very useful method of proof.

App 7 Recursively enumerable sets. A set A ⊆ N is r.e. in B ⊆ N if

x ∈ A ⇐⇒ {e}B(x)↓ for some e,

and (absolutely) r.e. if it is r.e. in the empty set.

App 8 Total recursive functions intoN . A (total) function f : N
n × N m → N is

recursive if
f (x,α) = λt f∗(t, x,α)

for some recursive partial f∗ : N
1+n × N m ⇀ N. Useful examples include the

tupling and projection functions:

〈α0, . . . , αk−1〉 = λt

{
αi (s), if t = 〈i, s〉 for some i < k and some s,

0, otherwise,

(β)i = λtβ(〈i, t〉),

so that for i < k, (〈α0, . . . , αk−1〉)i = αi .
The class of total recursive functions into N orN is closed under composition—

which is not true for recursive partial functions with values inN .

App 9 The rank of a strict, well founded relation. A binary relation ≺ on a set F is
well founded if there is no infinite descending chain x0 � x1 � · · · or, equivalently,
if there is a function ρ : X → Ordinals such that

x ≺ y =⇒ ρ(x) < ρ(y) (x, y ∈ F);

the (pointwise) least such function ρ≺ is the rank function of ≺ and

rank (≺) = sup{ρ≺(x) + 1 : x ∈ F}.

When we apply this to the strict part ≺ of a wellordering �, we get a (unique)
similarity

ρ� : {x : x � x} = F �→ rank (�)

of � with an ordinal.
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App 10 Monotone inductive definitions. An operator Φ : P(X) → P(X) on the
subsets of a space X is monotone if

A ⊆ B =⇒ Φ(A) ⊆ Φ(B) (A, B ⊆ X).

The set
Φ = ⋂{A : Φ(A) ⊆ A} (5.59)

defined inductively (or built up) by Φ is the least fixed point of Φ, and

Φ = ⋃
Φ

ξ
, where for each ordinal ξ,Φ

ξ = Φ(
⋃

η<ξ Φ
η
) (5.60)

(with the usual convention that
⋃ ∅ = ∅). Moreover,

η < ξ =⇒ Φ
η ⊆ Φ

ξ ⊆ X,

and since these iterates cannot increase forever, there is a least ordinal κ = κ(Φ),
the closure ordinal of Φ such that

η < ξ < κ(Φ) =⇒ Φ
η

� Φ
ξ
and Φ = ⋃

ξ<κ(Φ) Φ
ξ
. (5.61)

An operator Φ is operative on X to W if its domain isP(X × W ) and

f : X ⇀ W =⇒ Φ( Graph ( f )) = Graph (g) for some g : X ⇀ W.

When this holds, thenΦ : X ⇀ W is (the graph of) the least partial function fixed by
the operator Φ.

References

1. Addison, J.W. (1959). Separation principles in the hierarchies of classical and effective descrip-
tive set theory. Fundamenta Methematicae, 46:123–135.

2. Church, A. (1935). An unsolvable problem in elementary number theory. Bulletin of the Amer-
ican Mathematical Society, 41:332–333. This is an abstract of [3].

3. Church, A. (1936). An unsolvable problem in elementary number theory. American Journal of
Mathematics, pages 345–363. An abstract of this paper was published in [52].

4. Davis, M. (1950a). On the theory of recursive unsolvability. PhD thesis, Princeton University.
5. Davis, M. (1950b). Relatively recursive functions and the extended Kleene hierarchy. page

723. Proceedings of the International Congress of Mathematicians, Cambridge, Mass, 1950.
6. Davis, M. (1965). The undecidable. Raven Press.
7. Enderton, H. B., and Putnam,H. (1970). A note on the hyperarithmetical hierarchy. The Journal

of Symbolic Logic, 35:429–430.
8. Feferman, S. (1965). Someapplications of forcing andgeneric sets.FundamentaMethematicae,

56:325–345.



148 Y.N. Moschovakis

9. Gandy, R., Kreisel, G., and Tait, W. (1960). Set existence. Bulletin of the Polish Academy of
Sciences, Series in Science, Mathematics and Astronomy, 8:577–582.

10. Gandy, R. O. (1960). Proof of Mostowski’s conjecture. Bulletin de l’Academie Polonaise des
Sciences, Série des sciences mathématiques, astronomiques et physiques, 8:571–575.

11. Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica and ver-
wandter Systeme, I.Monatshefte für Mathematik und Physik, pages 173–198. English transla-
tions in [53] and [54].

12. Kechris, A. S. andMoschovakis, Y. N. (1977). Recursion in higher types. In Barwise, J., editor,
Handbook of Mathematical Logic, Studies in Logic, No. 90, pages 681–737. North Holland,
Amsterdam.

13. Kleene, S. C. (1936). General recursive functions of natural numbers.Mathematische Annalen,
112:727–742.

14. Kleene, S. C. (1938). On notation for ordinal numbers. Journal of Symbolic Logic, 3:150–155.
15. Kleene, S. C. (1943). Recursive predicates and quantifiers. Transactions of the AmericanMath-

ematical Society, 53:41–73.
16. Kleene, S. C. (1950). A symmetric form of Gödel’s theorem. Konin. Neder. Akad. van Weten.

te Amst. Proc. of the Section of Sciences, 53:800–802.
17. Kleene, S. C. (1952). Introduction to metamathematics. North Holland Co: D. Van Nostrand

Co.
18. Kleene, S. C. (1953). Arithmetical predicates and function quantifiers. Journal of Symbolic

Logic, 18:190. abstract of a talk presented at a meeting of the Association for Symbolic Logic
on December 29, 1952.

19. Kleene, S. C. (1955a). åArithmetical predicates and function quantifiers. Transactions of the
American Mathematical Society, 79:312–340.

20. Kleene, S. C. (1955b). On the form of predicates in the theory of constructive ordinals (second
paper). American Journal of Mathematics, 77:405–428.

21. Kleene, S. C. (1955c). Hierarchies of number theoretic predicates. Bulletin of the American
Mathematical Society, 61:193–213.

22. Kleene, S. C. (1959a). Quantification of number-theoretic functions.CompositioMathematica,
14:23–40.

23. Kleene, S. C. (1959b). Recursive functionals and quantifiers of finite types I. Transactions of
the American Mathematical Society, 91:1–52.

24. Kondo, M. (1938). Sur l’uniformization des complementaires analytiques et les ensembles
projectifs de la second classe. Japanese Journal of Mathematics, 15:197–230.

25. Kreider, D. L., and Rogers, H, Jr. (1961). Constructive versions of ordinal number classes.
Transactions of the American Mathematical Society, 100:325–369.

26. Kreisel, G. (1961). Set theoretic problems suggested by the notion of potential totality. Infini-
tistic methods (pp. 103–140). Pergamon, New York.

27. Kreisel,G. (1962). The axiomof choice and the class of hyperarithmetic functions. Indagationes
Mathematicae, 24:307–319.

28. Lebesgue, H. (1905). Sur les fonctions represéntables analytiquement. Journal de Mathéma-
tiques 6e serie, 1:139–216.

29. Markov, A. A. (1947). On the impossibility of certain algorithms in the theory of associative
systems. Coptes rendus (Doklady) de l’Academie des Sciences de USSR, 55:583–586.

30. Markwald, W. (1954). Zur Theorie der konstruktiven Wohlordnungen. Mathematischen
Annalen, 127:135–149.

31. Moschovakis, Y. N. (1966). Many-one degrees of the predicates Ha(x). Pacific Journal of
Mathematics, 18:329–342.

32. Moschovakis, Y. N. (1968). Review of four papers on Church’s Thesis. The Journal of Symbolic
Logic, 33:471–472.

33. Moschovakis, Y. N. (1969). Abstract first order computability II. Transactions of the American
Mathematical Society, 138:465–504.

34. Moschovakis, Y. N. (1974). Elementary Induction on Abstract Structures. North Holland,
Amsterdam. Studies in Logic, No. 77. Republished by Dover Publications, Mineola, NY, 2008,
with a correction to 8.3.



5 Hyperarithmetical Sets 149

35. Moschovakis,Y.N. (2009).Descriptive set theory, Second edition, volume155ofMathematical
Surveys and Monographs. American Mathematical Society.

36. Moschovakis,Y.N. (2010a). Classical descriptive set theory as a refinement of effective descrip-
tive set theory. Annals of Pure and Applied Logic, 162:243–255.

37. Moschovakis, Y. N. (2010b). Kleene’s amazing second recursion theorem. The Bulletin of
Symbolic Logic, 16:189–239.

38. Mostowski, A. (1947). On definable sets of positive integers. Fundamenta Methematicae,
34:81–112.

39. Mostowski, A. (1951). A classification of logical systems. Studia Philosophica, 4:237–274.
40. Myhill, J. (1955). Creative sets. Zeitschrifft für Mathematische Logik und Grundlagen der

Mathematik, 1:97–108.
41. Nelson, G. C. (1974). Many-one reducibility within the Turing degrees of the hyperarithmetic

sets Ha(x). Transactions of the American Mathematical Society, 191:1–44.
42. Post, E. L. (1944). Recursively enumerable sets of positive integers and their decision problems.

Bulletin of the American Mathematical Society, 50:284–316.
43. Post, E. L. (1947). Recursive unsolvability of a problem of Thue. The Journal of Symbolic

Logic, 12:1–11.
44. Putnam, H. (1961). Uniqueness ordinals in higher constructive number classes. Essays on the

foundations of mathematics, pages 190–206. Magnes Press, Hebrew University, Jerusalem.
45. Rogers, Jr., H. (1967). Theory of recursive functions and effective computability. McGraw-Hill.
46. Sacks, G. E. (1990). Higher Recursion Theory. Perspectives in Mathematical Logic: Springer.
47. Spector, C. (1955). Recursive wellorderings. Journal of Symbolic Logic, 20:151–163.
48. Spector, C. (1956). On degress of recursive unsolvability. Annals of Mathematics, 64:581–582.
49. Spector, C. (1960). Hyperarithmetical quantifiers. Fundamenta Methematicae, 48:313–320.
50. Spector, C. (1961). Inductively defined sets of natural numbers. Infinitistic methods, pages

97–102. Pergamon, New York.
51. Steel, J. R. (1978). Forcing with tagged trees. Annals of Mathematical Logic, 15:55–74.
52. Suslin, M. (1917). Sur une definition des ensembles measurables B sans nombres transfinis.

Comptes Rendus Acad. Sci. Paris, 164:88–91.
53. Turing, A. M. (1936). On computable numbers with an application to the Entscheidungsprob-

lem. Proceedings of the LondonMathematical Society, 42:230–265. A correction, ibid. volume
43 (1937), pp. 544–546.

54. Van Heijenoort, J., editor (1967). From Frege to Gödel, a source book in mathematical logic,
1879–1931. Harvard University Press, Cambridge, Massachusetts, London, England.



Chapter 6
Honest Computability and Complexity

Udi Boker and Nachum Dershowitz

Goldstein: And what causes you to say that?
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6.1 Honesty Is Needed

Computations have no choice but to manipulate representations of objects rather
than the objects themselves. Most often, strings of symbols taken from some finite
alphabet are used for the purpose. Numbers, for example, are usually denoted by
sequences of decimal symbols, or binary bits, or unary strokes (like the tally numbers
of paleolithic times). In logic, one therefore distinguishes between numbers n, which
reside in an ideal Platonic world, and numerals n, their symbolic representation as
(first-order) terms. Similarly, graphs, which are set-theoretic objects, are typically
either represented as lists of edges (pairs of nodes) or as binary adjacency matrices.

Given that representation is an inescapable necessity, some natural questions arise
immediately:

• How much of a difference can the choice of representation make to computability
or complexity measurements?

Answer: It can make all the difference between computable and incom-
putable, or between tractable and intractable.

• Who gets to choose the representation: Abe who formulates the queries, or Cay
who designs the program to answer them?

Our answer: Cay may reinterpret Abe’s formulation any way she sees fit,
but the reinterpretation is part and parcel of the process of answering.

• What is wrong with a representation of graphs that lists nodes in the order of
a Hamiltonian path, if there is such—in which case deciding the question takes
linear time?

Answer: Cay will only be able to quickly answer the specific question
whether there is a Hamiltonian path, whereas she would have a much harder
time performing basic graph operations, such as adding an edge.

• Is it legitimate to say that the parity of an integer (that is, whether it is even or odd)
can be determined in constant time, when that is the case only for very specific
representations of numbers (namely, least-significant-first binary, as opposed to
ternary, say)?

Short answer: No.

Garey and Johnson [15, pp. 9–10] address the questions of representation and
computational models as they impact themeasurement of computational complexity.
They assert upfront that it matters little, as long as one sticks to what is considered
“reasonable”:

The intractability of a problem turns out to be essentially independent of the
particular encoding scheme and computer model used for determining time
complexity.
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They go on to explain why at length:

Let us first consider encoding schemes. Suppose for example that we are deal-
ing with a problem in which each instance is a graph…. Such an instancemight
be described by simply listing all the vertices and edges, or by listing the rows
of the adjacency matrix for the graph, or by listing for each vertex all the
other vertices sharing a common edge with it (a “neighbor” list). Each of these
encodings can give a different input length for the same graph. However, it is
easy to verify that the input lengths they determine differ at most polynomially
from one another, so that any algorithm having polynomial time complexity
under one of these encoding schemes also will have polynomial time complex-
ity under all the others. In fact, the standard encoding schemes used in practice
for any particular problem always seem to differ at most polynomially from
one another. It would be difficult to imagine a “reasonable” encoding scheme
for a problem that differs more than polynomially from the standard ones.

This discussion is followed by a caveat:

Although what we mean here by “reasonable” cannot be formalized, the fol-
lowing two conditions capture much of the notion:

(1) the encoding of an instance I should be concise and not “padded” with
unnecessary information or symbols, and

(2) numbers occurring in I should be represented in binary (or decimal, or
octal, or in any fixed base other than 1).

If we restrict ourselves to encoding schemes satisfying these conditions, then
the particular encoding scheme used should not affect the determination of
whether a given problem is intractable.

The main concern expressed in the above is that the input size should faithfully
reflect the complexity of the input object. The choice of size canmake a big difference,
of course [6]:

The computational complexity of a problem should not be obscured by a par-
ticular representation scheme…. Many problems are “fast” under the unary
representation, as many computationally (probably) intractable problems in
number theory are also “fast” under unary representation, such as factoring,
discrete logarithm. But that is not honest complexity theory. The time is really
exponential, compared to a more “reasonable” representation scheme of the
information, such as in binary. [Italics ours.]

There are other ways in which a choice of representation may be unreasonable,
besides being unnecessarily large. It could give away the answer—even if the sizes
differ only polynomially, or it may harbor hints that make the task easier than it really
is. That is the problem with a representation of graphs that lists nodes in Hamil-
tonian order, for example; it puts the solution—when there is one—right in front of
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one’s nose. Our proposal for measuring complexity honestly will solve this problem
by taking into consideration both the cost of computing a given function as well as
the cost of generating the function’s inputs (the nodes and edges of a graph in the
Hamiltonian case).

This chapter looks at questions of “honesty” of representation in various contexts.
We begin with what we feel is the underlying problem posed by representations,
namely, the camouflaging of extra information (Sect. 6.2). After proposing a solution
(Sects. 6.3 and 6.4), we consider how it resolves the problem of honest computability
(Sects. 6.5 and 6.6) and relate honesty to Martin Davis’s definition of universality
(Sect. 6.7). Then we turn to see how this proposal also solves the problem of honest
complexity (Sect. 6.8). With a solution in place, we analyze why considering formal
languages, rather than functions, does not work (Sect. 6.9).

6.2 Dishonest Representations

The complexity attributed to the computation of a function f over some abstract
domain A, say graphs, is normally measured in terms of resources required by its
best implementation on some particular model of computation, most commonly the
random access machine (RAM). This implementation, however, computes a function
f̂ over some concrete domain C , say binary strings, rather than A. So, prior to
considering the cost of running f̂ , one should first establish that f̂ does actually
implement f .

However, there is little meaning to a claim that a single function f̂ over some
domainC implements the intended function f over domain Awithout also specifying
how the two domains are related. The following definition is common.1

Definition 6.1 (Simulation [single-valued representation]) A concrete (partial)
function f̂ : C → C simulates an abstract (partial) function f : A → A with respect
to a particular injective representation ρ : A 1-1−→ C if ρ( f (x)) = f̂ (ρ(x)) for all
x ∈ A. [In the case of partial functions, we also demand that f̂ (ρ(x)) be undefined
whenever f (x) is.]

One clearly needs to require, as we have, that a representation be injective. Other-
wise, any and all functions could be simulated by the identity function with respect
to a representation that maps the whole abstract domain to a single constant.

The above definition will be extended to functions with arity wider than 1 and
multivalued representations in Definitions 6.2 and 6.4 below. Figure6.1 depicts the
multivalued case.

1Allowing different representations for input and output, as in “Amore general notion of simulation
is obtained if we let drop the requirement thatR(1) andR(2) have the same input and output sets….
R(1) can be weakly simulated on R(2) if there exist such E and D with the property that for each
program π1 for R(1) there exists a program π2 on R(2) such that DR(2)

π2
E = R(1)

π1
” [14, p. 21], can

lead—if one is not careful—to the same kinds of problems we will encounter in Sect. 6.9.
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Fig. 6.1 The function f̂
simulates the function f via
a representation ρ between
their domains

The choice of representation can make all the difference in the world. If one is
not honest, then a computable function can end up implementing an incomputable
one by getting the representation itself to do the bulk of the work.

Example 6.1 Consider any standard enumeration TMm , m = 0, 1, . . . , of Turing
machines, and define the following incomputable functions over the natural numbers
N:

• h : N → N enumerates (the numerical “codes” of) those machines that halt on the
empty tape;

• h̄ : N → N enumerates those that do not.

So h(N) � h̄(N) = N, where h(N) is the image {h(n) | n ∈ N} of h and h̄(N) is the
image of h̄. Then the incomputable function

H(m) :=
{
min h(N) if TMm halts

min h̄(N) if TMm does not

is implemented by the computable parity function (n mod 2) under the following
bijective representation:

ρ(m) :=
{
2h−1(m) + 1 if TMm halts

2h̄−1(m) if TMm does not .

We have

ρ(m) mod 2 = ρ(H(m)) =
{
1 if TMm halts

0 if TMm does not ,

as required. �

The problem with the above “implementation” of the halting function obviously
lies in the representation, which clearly gives the impression of itself doing the
(computationally) impossible.
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6.3 Honest Representations

The cause of the problem we just saw with the “dishonest” representation is not the
(mathematically well-defined) mapping itself but rather the lack of suitable context
for it. In particular, the integer successor function, for instance, cannot be imple-
mented by any computable function under the nefarious representation ρ of the
previous section, though it is part and parcel of our normal view of the naturals.
As we will see, we can allow an honest representation to be any arbitrary injective
(multivalued) function as long as we also pay attention to the internal structure of
the abstract domain.

Imagine that Abe, the person posing instances of a problem, thinks in terms of an
abstract domain A, such as integers, graphs, or pictures. Abe must have some means
of describing for himself each of the elements of A, most commonly by means of a
finite setG of “generators” of A (cf. [4, 9, 22, 23]). These generators give structure to
A andmeaning to its elements as described by ground termsH overG. For generators
to do their job, every element of A must be equal to the value of at least one term in
H; so at least one generator must be a scalar constant (of arity 0).2

Examples of generators for the natural numbers include:

0 (nullary zero)

� ′ (postfix successor λn. n + 1),

(in unary “caveperson” style), as well as

0 (nullary zero, λ.0, usually suppressed)

�0 (postfix doubling, λn. 2n)

�1 (postfix doubling plus one, λn. 2n + 1)

for the commonplace binary representation, and

0 (nullary zero, λ.0, usually suppressed)

�0 (postfix tripling, λn. 3n)

�1 (postfix tripling plus one, λn. 3n + 1)

�2 (postfix tripling plus two, λn. 3n + 2)

for ternary.With the latter two, there are infinitelymany representations of the number
zero.

2Unlike the development in [4], where effectiveness of an algorithm was at issue, here we are not
insisting that the generators form a free term algebra (a Herbrand universe): more than one term
may designate the same abstract element.
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Fig. 6.2 An abstract
undirected, unlabeled graph

For undirected, unlabeled graphs, G, with vertices V (G denotes the set of graphs
whose vertices are taken from the set V of vertices), an example of a set of generators
is

� : V (nullary first-vertex)

� ′ : V → V (postfix next-vertex)

∅ : G (nullary empty-graph)

• ;� : G × V → G (binary add-vertex to graph)

(•) + � � � : G × V × V → G (ternary add-edge to graph) .

Over these generators, the graph depicted in Fig. 6.2 is the value of the ground term

(∅ ;� ;�′ ;�′′) + � � �′ ,

wherein there is an edge between the “first” and “second” vertices. It is also the value
of the term

(∅ ;�′′ ;�′ ;�) + �′′ � �′ ,

wherein there is an edge between the “third” and “second” vertices. [In general,
generators can be partial.]

Accordingly, we formalize the notion of (honest) representation as any injective
multivalued function from an abstract domain that is structured by generators. Recall
that a multivalued function ρ : A ⇒ C (or set-valued function ρ : A → P(C)) is
injective if ρ(x) ∩ ρ(y) = ∅ for all distinct x, y ∈ A.

Definition 6.2 (Representation)

• An abstract domain is a set A of elements, including (always) Boolean values
true and false, equipped with a finite setG of generators for the whole domain,
which also includes the binary equality relation =. Every element of A must be
equal to at least one ground term over G.

• A representation of A in a “concrete” domainC is an injectivemultivalued function
ρ : A

1-1

⇒ C . We will insist that ρ(true) is finite.
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• The representation ρ(〈a1, . . . , an〉) of a tuple of abstract elements ai is the
set ρ(a1) × ρ(a2) × . . . × ρ(an), the set of all tuples 〈c1, . . . , cn〉, such that
ci ∈ ρ(ai ).

The equality relation and Boolean constants are required for interpreting the output,
as we will see. Having only finitely many representations of true will allow Abe to
understand and compare results of Cay’s computations.

Having representations as multi-valued, rather than single-valued, functions gives
the freedom to have many representations for the same abstract element, as is very
commonly done in practice. For example, one may represent the rational num-
ber one-half by 1/2 , 7/14 , etc., and the unordered set {7, 2, 3} by the sequences
〈2, 3, 7〉, 〈7, 3, 2〉, etc.

The choice of what is “abstract” and what is “concrete” is in “the eyes of the
beholder”; it is in the final analysis an arbitrary formal choice. One may view a
number as an abstract entity, represented by a concrete string over the symbols 0 and
1, while another views the symbol 1 as an abstract entity represented by some ink
dots or electric pulse, etc. Likewise, the equality relation = depends on the choice
of what an abstract entity is. For example, if the abstract domain is graphs, then the
graph of Fig. 6.2 is a single entity and all of its different generating terms yield equal
entities, while in the case that the abstract domain consists of graphs with numbered
vertices, the different generating terms yield isomorphic, but unequal, entities.

An alternative to the proposed generator-based approach for describing abstract
elements would be to define them by means of a set of relations. For graphs, this
might be the relation telling whether an edge is present between two given vertices.
It is well known that using such relations, rather than generating functions, increases
the complexity of many procedures. (For example, exhaustively checking all vertex
combinations for getting an adjacent vertex.) Furthermore, we argue in Sect. 6.9 that
this alternative does not at all fit the bill. Intuitively, a set of functions allows one to
also generate the representations, while a set of relations does not.

6.4 Honest Implementation

A function f̂ over some concrete domain C honestly implements a function f over
an abstract domain A if it preserves the functionality of f under the representation,
while also preserving the meaning of the domain elements as given by the domain
generators.

We formally consider a (computational) family F over a domain A to be an algebra
(in the universal-algebra sense), consisting of the domain (universe) A and operations
F over A (of any arity), along with a matching vocabulary. Our definition of honest
implementation will require the simulation of the desired function together with a set
of generators. The implementation notion is then really about an algebra as a whole.

When we have cause to care about the intensionality (internal workings) of a
computational mechanism, we will talk about a (computational) model comprising a
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set of algorithms, each of which involves a set of states, a subset of which are initial
states, and a (partial and/or multivalued) transition function over states [18].

Definition 6.3 (Simulation [multivalued representation])

• A function f̂ over a domain C simulates a function f of arity � over a domain A
via representation ρ : A

1-1

⇒ C if, for every x̄ ∈ A�, we have f̂ (ρ(x̄)) ⊆ ρ( f (x̄)).
• Likewise, a family of functions F̂ over C simulates a family F over A (via repre-
sentation ρ) if each f ∈ F is simulated via the same ρ by some f̂ ∈ F̂ .

As usual, functions are extended to operate over sets by letting f (S) := { f (x̄) | x̄ ∈
S}.
Definition 6.4 (Honest Implementation) Consider an abstract domain A with gen-
erators G.

• A family of functions F̂ over C provides an implementation of a family F over A
if F is simulated by F̂ .

• We will refer to the implementation as close if the simulation is via a bijection.
• An implementation F̂ over C is honest as long as F includes the generators G as
well as equality.

• We will say that a function f̂ over C honestly implements a single function f
over A if the implementation also supplies simulations ĝ of each generator g ∈ G
including equality over A. In other words, we require that { f̂ } ∪ Ĝ implement
{ f } ∪ G, for some set Ĝ of concrete generators and implementation =̂ of abstract
equality.

See the illustration in Fig. 6.1.
The point is that f̂ implements a function f with respect to a specific set of

generators. If Abe considers an abstract domain with generators that are natural,
computable, and trackable for him, but completely useless for his sister, Sal, then f̂
is an honest implementation of f for Abe but not for Sal.

We give next an example of an honest implementation of an abstract function over
the rationals Q by means of a concrete function over strings.

Example 6.2 The task is to implement rational multiplication,m : Q × Q → Q, by
means of a string-based model of computation.

• The abstract domain (A in the definition) is the set of rational numbers Q (with the
subset of integers Z and its subsets the positive integers Z

+ and negative integers
Z

−, plus the truth values), along with the following generators:

o : Z (nullary zero)

ı : Z
+ (nullary one)

s : Z
+ → Z

+ (unary successor)

n : Z
+ → Z

− (unary negation)

q : Z × Z
+ → Q (quotient of an integer by a positive integer)
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Fig. 6.3 Representing
abstract rational numbers by
concrete strings, and
implementing the
multiplication function

• The concrete domain (C) is the set�∗ of finite strings over the symbols {0, 1, 2, 3,
4, 5, 6, 7, 8, 9,−, #}, plus true and false.

• Let x ∈ �∗ denote the number x ∈ Z in decimal notation.
• The representation ρ : Q

1-1

⇒ �∗ is defined by ρ(r) := {x # y | r = x/y, x ∈
Z, y ∈ Z

+}.
• The implementations of the generators and equality are as follows:

ô returns the string 0

ı̂ returns the string 1

ŝ(w) : If w is the decimal representation x of x ∈ Z
+, then ŝ(w) returns

the decimal representation x + 1 of x + 1. Otherwise it is undefined.

n̂(w) returns the string -w

q̂(u, v) returns the string u # v

=̂(u, v) returns true iff u = x1 # x2, v = y
1
# y

2
, and x1/x2 = y1/y2, for

some x1, y1 ∈ Z and x2, y2 ∈ Z
+.

• The implementation m̂(u, v) of multiplication is the following: If u = x1 # x2 and
v = y

1
# y

2
, where x1, y1 ∈ Z and x2, y2 ∈ Z

+, then the implementation returns
the string x1 · y

1
# x2 · y

2
. Otherwise, multiplication is not defined.

See Fig. 6.3.
An implementation ofmultiplication that reduces the resulting fraction is as honest

an implementation as the above one. �
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6.5 Honest Computability

We first demonstrate the reasonableness of our demands on implementations by
taking a careful look at honest “effective” computations.

Since we believe the Church-Turing Thesis in light of the arguments and proofs
in [4, 12], we shall use the term effective computation to stand for the functionality
of a Turing machine over strings or of a recursive function over the natural numbers.
Let TM denote the family of Turing-machine computable string functions and REC,
the family of recursive numerical functions.

Armed with our definition of honest implementation, we are prompted to define
honest computability over arbitrary abstract domains as follows:

Definition 6.5 (Honest Computability) A function over an abstract domain is hon-
estly computable if it, and generators of its domain, can be honestly implemented by
the recursive functionsREC over the natural numbers (or by the Turing-computable
functions TM over strings).

This definition guarantees that concrete representations for all the elements of
the abstract domain can also be effectively generated.3 It follows that, if the Turing
familyTM implements a family consisting of an arbitrary function f over a domain A
and a finite set of generators for A, then f is—by definition—honestly computable.

Lemma 6.1 If the recursive functions simulate a set of generators via some repre-
sentation, then that representation—restricted to be univalued—can be effectively
defined by structural induction.

For example, consider these generators G for the naturals N: zero, o, and suc-
cessor, s. Suppose they are mapped to the constant ô and the recursive function ŝ,
respectively, under a (multivalued) representation η : N ⇒ N. Define ρ, a single-
valued restriction of η, by (structural) induction (over H, the ground terms of G) as
follows:

ρ(o) := ô

ρ(s(n)) := ŝ(ρ(n)) .

We have by induction that ρ(n) ∈ η(n) for all n.
We get also that every function f : N → N that is implemented by a recursive

f̂ : N → N under η must also be recursive, since

f (n) = ρ−1( f̂ (ρ(n))) = η−1( f̂ (η(n)))

is the composition of computable functions. (The inverse ρ−1 of a single-valued
computable representation is computable by search.)

A similar argument applies to other sets of generators for other abstract domains.

3The developments in [4, 5, 12] do not directly address the issue of honesty.
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Specifically, under the above (lax) assumptions, if a concrete function f̂ is com-
putable, then the implemented function f can in fact be programmed effectively as
an abstract state machine (ASM) [8, 16]. ASMs are a framework providing a most
general programming paradigm in which one can precisely express (ineffective as
well as effective) algorithms over arbitrary domains. In our case, f may be effectively
computed over the combined domain A � N by programming:

f (g(x1, . . . , x�)) := ρ−1( f̂ ( ĝ(ρ(x1), . . . , ρ(x�))))

for each g ∈ G. For this to work, we presume the availability of an effective equality
test for A.

To summarize the development so far, we would say that a function f over Abe’s
abstract domain A is honestly computedbyCay’s implementation iffCay can evaluate
terms of the form f (t1, . . . , t�)—or more generally terms over f and generators
G of A—where the ti ∈ H are terms over G, and Abe, the querier, can check the
results (using the equality predicate). Furthermore, f is deemed effective if Cay’s
implementation uses effective means (such as those provided by a Turing machine).

6.6 Honest Comparisons

The fact that honest implementations effectively generate representations for all
abstract domain elements guarantees the “completeness” of the recursive functions
and of Turing machines in the sense that no representation can enlarge its computa-
tional power.

Definition 6.6 (Completeness [3]) A family F is complete if it cannot simulate any
strict superset of itself.

Theorem 6.1 Consider a computational family F over the natural numbers N, and
suppose that the recursive functions REC simulate F and, furthermore, that REC ⊆
F. Then F = REC.

Proof We show that every function h ∈ F is also inREC. SinceREC ⊆ F , we know
the successor function s over N in also in F . Because REC implements F , there
must be functions ĥ, ŝ ∈ REC, such that for every n̄ ∈ N

∗, ĥ(ρ(n̄)) ⊆ ρ(h(n̄)), and
for every n ∈ N, ŝ(ρ(n)) ⊆ ρ(s(n)). (The notation S∗ is used here and later for all
finite tuples of elements of S.)

Given a vector n̄ := 〈n1, . . . , n�〉 ∈ N
∗, we can compute h(n̄) by the following

recursive procedure:

• Construct the vector

n̂ = 〈̂n1, . . . , n̂�〉 = 〈 ŝ n1(x0), . . . , ŝ n� (x0)〉 ,
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which represents n̄, by choosing any x0 ∈ ρ(0) and applying ŝ to that value n j

times for the j th component.
• Compute

k̂ := ĥ( n̂) .

[If h is partial and diverges on n̄, then the simulating function ĥ will likewise
diverge on n̂.]

• Search for the number k that is represented by k̂, by computing

min
i∈N

[ ŝ i (x0) =̂ k̂].

This search is guaranteed to terminate after an iteration k, such that k̂ ∈ ρ(k), since

there is a fixed finite set of truth values t̂rue to test for.
• At this moment, k̂ represents k = h(n̄).

�

It follows that the recursive functions REC are complete in the defined sense.
By the same token, Turing machines are complete (see [3]), whereas two-counter
machines and the lambda calculus are not. Two-counter machines can neither square
nor exponentiate [21], but famously implement all recursive functions via the (expan-
sive) representation ρ : n �→ 2n (as shown by the late Marvin Minsky [19]).

We now know what it means for families to have the same computational power:

Definition 6.7 (Equipotence) Families F̂ and F are equipotent if they simulate each
other.

The representations by means of which F̂ implements F and vice-versa need not be
the same, even if they both operate over the same domain.

For example,REC and TM are equipotent via representations like Gödel numbers
and tally numbers.

By this definition, 2-counter machines are equipotent with 3-counter machines
(though the former model includes strictly fewer functions), but not with 1-counter
ones.4

If follows that the honest (and self-consistent) way to compare computational
power (when representations are allowed), is to say that a family F ′ is strictly more
powerful than another family F if F ′ simulates F but not vice-versa. This is in
fact true for F ′, the recursive functions and F , the primitive recursive ones, but this
popular claim requires showing that there is no (injective) representation whatsoever
viawhich the primitive recursive functions can simulate all the recursive ones. See [3].

If an abstract function is computable whenever it has an honest recursive imple-
mentation, how can one show that an abstract function h is incomputable, short of

4“Combining these simulations, we see that two-counter machines are as powerful as arbitrary
Turing machines (one-counter machines are strictly less powerful)” [17, p. 33]. But who says that
one-counter machines cannot also simulate more than they can compute? They cannot [2, Thm. 40].
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trying all possible representations? The answer is that h is incomputable whenever
there is at least one bijective representation that provides recursive implementations
of the generators but a non-recursive implementation of h.

Theorem 6.2 Every function h over an abstract domain with generators G that
is honestly computable is also recursively implemented by each and every close
numerical implementation of h (that is, an implementation in N via a bijective rep-
resentation) that implements the operations in G by means of recursive functions.

The reasonwe need a bijective counterexample to establish incomputability is that
one can always have the part of the implementation that works with numbers outside
the image ρ(A) of a non-surjective representation ρ (like ρ(n) = 2n) do something
outlandish (to odd numbers).

Proof Let π : A ↔ N be a bijection from the abstract domain A of h, and let h̃ :
N → N implement h under π . If ĥ, the function that simulates h under some ρ, is
recursive, then h̃ must also be recursive. This is because

h̃(n) = π(h(π−1(n))) = π(ρ−1( ĥ(ρ(π−1(n)))))

and, by Lemma 6.1, both ρ and π are computable from any standard numerical
encoding of generator terms H over G. Hence, h̃(n) is recursive. �

6.7 Honest Universality

A (partial) function ω is said to be “universal” for a whole family F of (partial)
functions (such as all the recursive functions, for instance) if it computes the whole
family by being suppliedwith the code �f � of the desired f ∈ F as an extra argument.
If ω works with a concrete domain C , whereas the functions in F operate on an
abstract domain A, then representations ρ : A → C are in order once again. Then
wewould say that varyadicω is universal for F (with respect to encoding �·� : F → C
and representation ρ : A

1-1

⇒ C) if

ω(�f �, ρ(x̄)) ⊆ ρ( f (x̄))

for all f ∈ F and x̄ ∈ A∗ of the right length for the arity of f .
Another potential problem with the notion of universal function is that some

models of computation—like Turing machines—do not take their inputs separately,
but, rather, all functions are unary (string-to-string for Turing machines). In such
cases, one needs to be able to represent pairs (and tuples) as single elements. One
standard pairing function for the naturals is the injection 〈i, j〉 := 2i3 j . For strings,
one usually uses an injection like 〈u, w〉 := u ; w, where “;” is some symbol not in
the original string alphabet.
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There are several ways to go. The pairing function could reside in the abstract
domain A, or in the concrete domainC , or in the representation of A asC . Regardless,
this need raises a critical issue. Unless we demand that pairing be effective, there
could be an implementation of the universal function that does too much, computing
even non-effective functions. For example, a naïve definition might simply ask that
pairing be injective and say that ω is universal for some set F of functions if f (x) =
ω(〈�f �, x〉) for all f ∈ F and x ∈ C , for some arbitrary encoding �·� : F → C of
functions. The problem is that an injective pairing could cheat and include the answer
in the “pair”. For Turing machines, say, the pair 〈u, w〉 might be represented as u ; w
when machine u halts on input w and as u : w when it doesn’t. Better yet, one
could map 〈�f �, y〉 �→ [ f (y), �f �, y], where the square brackets are some ordinary
tupling function for the domain. Then a putative universal machine could effortlessly
“compute” virtually anything, computable or otherwise, just by reading the encoded
input pair.

Davis [7] and, later, Rogers [20] proposed general definitions of universality
for Turing machines and for partial-recursive functions, respectively. Both insist
that pairing be effectively computable. But we are talking about models in which
no function takes two arguments, so we might not have an appropriate notion of
computable binary function at our disposal. To capture effectiveness of pairing in such
circumstances, we demand the existence of component-wise successor functions.
Given a “successor” function s for domainC (that is,C = {sn(x0)} for some x0 ∈ C)
and a pairing function 〈·, ·〉 : C × C 1-1−→ C , the component-wise successor functions
operate as follows: s1 : 〈a, b〉 �→ 〈s(a), b〉 and s2 : 〈a, b〉 �→ 〈a, s(b)〉. If s, s1, and s2
are all computable, then we will say that pairing is effective. This is because one can
program pairing so that 〈z, y〉 := si

1(s
j
2 〈x0, x0〉), where z = si (x0) and y = s j (x0).

And if pairing is effective, then its two projections (inverses), 1st : 〈a, b〉 �→ a and
2nd : 〈a, b〉 �→ b, are likewise effective. (Generate all representations of pairs in a
dovetailed, zig-zag fashion, until the desired one is located. What the projections do
with non-pairs is left up in the air.)

Another concern is that requiring that pairing be computable is too liberal for the
purpose. One does not really want the pairing function to do all the hard real work
itself. For example, the mapping could include f (x) in the pair, even if it only can
do that for f that are known to be total (like, for the primitive recursive functions,
of which there are infinitely many), or all functions that halt within some recursive
bound. That would make it a trivial matter to be universal for those functions—just
transcribe the answer from the input.

Definition 6.8 (Honest Pairing) A pairing function is honest if it is effective and
bijective.

This way, there is no room for hiding information.
For bijective pairing with computable projections, there is an effective means of

forming a pair 〈a, b〉 by enumerating all of C until the two projections give a and
b, respectively. With bijectivity alone, sans computability, one could still hide a fair
amount of incomputable information in a bijective mapping. For instance, imagine
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that 0 is the code of the totality predicate and that the rest of the naturals code the
partial-recursive functions in a standard order. Map pairs (i + 1, z) to 3〈i, z〉, where
〈·, ·〉 is a standard pairing; map (0, z) to 3 j + 1 when z is the (code of the) j th total
(recursive) function; and map (0, z) to 3k + 2 when z is the kth non-total (partial
recursive) function. Now, let U be some standard computable universal function.
Then, for y divisible by 3, ω(y) := U (y/3) would compute all the partial-recursive
functions, whereas ω(y) := y ≡ 1 (mod 3) would compute the incomputable total-
ity predicate when y = (0, z) is not divisible by 3.

Definition 6.9 (Honest Universality) Let F be some family of unary functions over
an abstract domain A. Unary function ω over concrete domain C is universal for
F , via pairing function 〈·, ·〉 over C , if {λy. ω〈a, y〉 | a ∈ C} implements F . If, in
addition, pairing is bijective, then we call the universal function honest.

That is, ω is universal if, for fixed representation ρ : A → C and encoding �·� :
F → C , we have ω〈�f �, ρ(x)〉 = ρ( f (x)), for f ∈ F and x ∈ A. Of course, we are
interested in the case where both pairing and the universal function are effectively
computable.

Theorem 6.3 ([10]) Let F be some family of unary functions over a domain A,
including generators and equality. Then, if there is a computable unary universal
function (over any domain C) for F, via an effective pairing, then all the implemented
functions in F are also computable.

Suppose F = { fz}z is some standard enumeration of (the definitions of) the
partial-recursive functions. Based on Davis’s (second) definition of a universal Tur-
ing machine, which relies on a notion of effective mappings between strings and
numbers, namely, recursive in Gödel numberings, Rogers defines (in his third defin-
ition) what we may refer to as the universal property of a unary numerical function
ω, namely, that fz(x) = π(ω〈z, x〉) for some recursive bijection π and effective (but
perhaps dishonest) pairing 〈·, ·〉.

The following follows from the definitions:

Theorem 6.4 ([10]) If a function has the universal property, then it is honestly
universal. Furthermore, there must exist an honest computable universal function.

6.8 Honest Complexity

We turn now to the question of complexity of problems over abstract domains. But
before one can measure complexity, one needs a measure of input size and a measure
of the cost of a computation as a function of that size.

A size measure is associated with each (ground) term over the generators. This
provides the flexibility of considering each of the various views of the same abstract
element differently. Since problems often involvemore than one input value, we need
to measure the size of tuples of terms.
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Definition 6.10 (Size) A size measure for an abstract domain is a function | · | :
H∗ → N, where H∗ is the set of tuples of (ground) terms over the generators of the
domain.

Complexity is measured with respect to this size, whatever it may be.
Examples of size measures for terms denoting graphs are tree height of the term,

as well as the number of vertices or number of edges in a graph. Note that the two
latter measures assign the same size to all terms of the same graph. Usually the size
of a tuple is the sum of the sizes of its individual components.

Onemight argue that a sizemeasure should not be this arbitrary, but should enforce
a compact representation of the abstract elements, as Garey and Johnson demanded
of the representation of numbers in the paragraphs quoted at the outset, namely,
that the size of a natural number n should be order log n. In many cases, however,
this is too demanding. For instance, a set of n elements taken from some unordered
set may have n! reasonable representations. Checking equality between two such
representations, in order to choose a single canonical representation for each set,
might require a quadratic number of element comparisons. Even more involved is
the case of graphs. If we are asked to decide the existence of a Hamiltonian path in an
unlabeled graph, we should not demand that there be a unique or almost-unique way
of constructing each graph, considering that graph isomorphism is a difficult problem.
But there are exponentially many isomorphic graphs, so the standard representations
of graphs are as wasteful as is the unary encoding of numbers. It is also standard
practice to store data in compressed form, and it can easily take exponential time and
space to reconstruct before manipulating.

The cost assigned to a computation over the concrete domain C depends on the
relevant aspects of the computational model in question. For example, the cost can
be the number of steps of a RAMmodel or the number of tape cells used by a Turing
machine. (RAMs are in fact nearly optimal for time and space [11].) As with the
size measure, cost is also in “the eyes of the beholder”. Given a cost measure for
computation in the model, we define the cost of terms, as follows:

Definition 6.11 (Cost) The cost κ( ĥ(t1, . . . , t�)) of a concrete term ĥ(t1, . . . , t�) is
the cost of a computation that constructs the concrete values ci ∈ C arguments ti and
then computes ĥ(c1, . . . , c�), the value of ĥ for the concrete values thus obtained.

In some cases the cost of a computation might be the sum of the costs of its steps,
as is natural for time complexity, while in other cases a different aggregation, such as
maximum, is appropriate, as is done for space complexity. Often, the declared size
of the input is approximately the cost of constructing it, so the impact on complexity
of including the cost of construction is negligible.

Equipped with size and cost measures, we are ready to formalize our intuition of
when a complexity measure is honest. The complexity of an implementation must
take the specific means of representation into account. We have demanded that an
honest implementation of an abstract function also provide implementations of the
abstract domain’s equality and generators (Definition 6.4). We may assume that
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every generator has a unique implementation. (Different implementations should
have different names, thus refer to different, but possibly equivalent, generators.)

Our definition of the complexity of a function resembles the standard one; it is just
that our notion of the cost of computing a function includes the cost of generating
the representation of the input.

Definition 6.12 (Honest Complexity) Consider an abstract domain A with ground
generator terms H and an honest implementation ĥ : C� → C over concrete domain
C , implementing a function h : A� → A over A. Let m : N → N be a complexity
measure. Then we say that ĥ has honest (worst-case) complexity of at most m if
κ( ĥ(t̄)) � m(|t̄ |), for all tuples t̄ ∈ H� of terms.

Average and probabilistic complexities can be defined analogously.
While the complexity of implementing generators influences the complexity of

implementing f , the complexity of implementing the equality relation need not affect
it. For example with abstract graphs, equality checks are very involved, yet many
graph operations need not check for graph equality (isomorphism). We do insist,
however, that every implementation also implements the equality check in order to
enforce a correct interpretation of the abstract domain—having the ability to use the
equality implementation, Abe, the person posing instances of the function f , can
verify whether the result of f ’s implementation is indeed proper. (Cf. Sect. 6.5 and
the proof of Theorem 6.1.)

To sum up, to preclude dishonest measures of complexity, we require that the
implementor Cay charge not only for calculating the answer to Abe’s query, but also
for building its native representation of the query fromAbe’s language of generators.
That way, any new information hidden in the representation is put there by Cay and
the costs incurred are charged for.

6.9 Dishonest Decisions

It is standard to classify the difficulty of a problemaccording to itsmembership in a set
of functions or relations, for example,whether it is Turing-computable, in polynomial
time, or in polynomial space. Computational models, such as Turing machines with
arbitrary outputs, compute sets of (partial) functions, whereas decision models, such
as finite automata or Turing machines with only “yes” or “no” outputs, compute sets
of relations.

We argue that computational families, which implement functions, capture the
essence of computational power more accurately than do decision families, which
implement relations. For that reason, we based the notion of honest implementation
and complexity, even for decision problems, on functions rather than on decision
procedures. The underlying reason for the better adequacy of functions than relations
is that the former can also comprise the means to generate the representations of
objects.
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Asdefined inSect. 6.5, a computational family over a domain A is a set of functions
F ⊆ { f : A∗ → A}; likewise a decision family over A is a set of relations R ⊆
{r ⊆ An | n ∈ N}. Specific computational or decision families are defined via some
internal mechanism, a model of computation, a point that will play a rôle in our
arguments later.

Decision families are inherently incomplete, in that one can readily “increase”
their power via a representation that adds some information on top of the represented
element [3]. For example, let h be an incomputable decision problem over �∗, and
consider the representation ρ : �∗ → �∗, where ρ(w) = h(w)w. (The representa-
tion just adds the incomputable bit h(w) before the word w.) Then, Turing machines
can “decide”, via the representationρ, both h and all of the ordinary Turing-decidable
problems.

Surprisingly, the weak computational model of finite automata (FSAs) is already
powerful enough to decide, via a suitable representation, any countable set of (decid-
able or undecidable) relations [13]. The representation hides with each domain ele-
ment a finite amount of data of relevance to finitely-many relations, such that each
decision procedure gets all the data it needs from the represented inputs.

Let � be the binary alphabet {0, 1} throughout the remainder of this section.

Lemma 6.2 ([13]) For every countable set R of relations over the natural numbers
N, there is an injection ρ : N → �∗, such that the set FSA of finite automata
simulates R via ρ, viewing a relation r ⊆ N as a Boolean function r : N → �.

Accordingly, a FSA a computes the function a : �∗ → {ρ(0), ρ(1)}, returning ρ(0)
when the input word is rejected and ρ(1) when accepted.

Proof Let r1, r2, . . . be any enumeration of the relations in R. Define the representa-
tion ρ : n �→ r1(n) r2(n) · · · rn(n). For every n, the length of ρ(n) is n, and it gives
explicit answers to the first n relational questions ri . Now, for every relation ri ∈ R,
consider the FSA ai depicted in Fig. 6.4. One can easily verify that for each m ∈ N,
the automaton ai accepts ρ(m) iff m ∈ ri . For an input word w of length m � i , ai

finds the answer whether m ∈ ri at the i th digit of w. For the finitely-many inputs of

Fig. 6.4 The finite automaton ai , which implements an arbitrary relation ri via the representation
ρ of the proof of Lemma 6.2
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length m < i , representing numbers up to (but not including) i , the first i states of
ai are fixed to accept (and “return” ρ(1)) or reject (returning ρ(0)) the input word
ρ(m) according as to whether m ∈ ri . �

Onemight have presumed that this disturbing sensitivity to representations would
be resolved by limiting representations to bijections, but this is unfortunately not the
case, as shown in [13].

Theorem 6.5 ([13])For every countable set R of relations over N there is a bijection
π : N ↔ �∗, such that the set FSA of finite automata closely implements R via π .

The above-described inherent incompleteness of decision families, that they can
easily be enlarged by representing input differently, stems from their inability to gen-
erate the representation of the input. On the other hand, as shown in Theorem 6.1, the
set of recursive functions is complete, in the sense that it cannot honestly implement
an incomputable function, regardless of the choice of representation.

A question naturally arises considering the completeness of recursive functions
(Theorem 6.1) and the inherent incompleteness of decision families (Lemma 6.2
and Theorem 6.5): Where does the proof of Lemma 6.2 break down if we try to
modify it to demonstrate that every set of functions can be computed, via a suitable
representation, by finite-state transducers (input-output automata)?

The answer is that, with the aim of computing a countable set of functions
{ f1, f2, . . .}, the representation that is used in the proof of Lemma 6.2 may be gener-
alized to something likeρ(n) = f1(n) $ f2(n) $ · · · $ fn(n). Then, for every function
fi , there is indeed a transducer ai , such that, for every n, we have ai (ρ(n)) = fi (n).
This, however, doesn’t fit the bill. To properly represent fi , we need for ai to return
ρ( fi (n)), not fi (n). One might be tempted to suggest instead a representation η that
already provides the represented values, as in η(n) = η( f1(n)) $ η( f2(n)) $ · · · $
η( fn(n)). This is, however, a circular definition: Let f1 be the successor function s.
Representing 1, we have η(1) = η(s(1)) = η(2) = η(s(1)) $ η(s(2)) = · · · .

Finally, it may be worthwhile noting that Turing’s halting problem is immune to
the particular representation of programs [1], as are similar problems, though—as
we have seen—decision procedures are quite sensitive to the representation of input
data. Here the problem is to decide whether machine TMm halts on input string w.
Problem instances are pairs 〈�m�, w〉 consisting of an encoding �m� of the machine
along with the input w or an encoding �w� thereof. However, the pairing function
itself must be honest, as explained in Sect. 6.7. In that situation, the encoding of any
given machine (or computer program) can only hide a finite amount of information,
not enough to answer the halting problem for all inputs to the machine, though the
representation of those inputs themselves could hide the answers.

6.10 Discussion

We have proposed to regard an abstract function as honestly and effectively imple-
mented if it can be effectively computed given its arguments as constructor terms.
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Analogously, we suggest that the cost of generating concrete representations of
queries be included in the honestly considered cost of deciding problems regard-
ing abstract objects.

Demanding of an implementation that it also generate its internal representations
of the input from an abstract term description of that input precludes the hiding of
incomputability in the representation used for concrete implementations and, like-
wise, obviates cheating on complexity problems by giving away the answer in the
representation. It also means that checking parity of a binary string should be con-
sidered linear-time (in input length), not constant-time. Put another way, presenting
a number with least-significant digit first is just as dishonest as ordering the nodes of
a graph by its Hamiltonian path. (In general, the sublinearity of various deterministic
algorithms, ignoring the cost of constructing the input, strongly depends on how the
input is presented.)

Often, one analyzes alternative representations with respect to the complexity of
a set of basic functions. Considering graphs, for example, it is common to compare
the adjacency-list representation with adjacencymatrices.While the former provides
greater efficiency for adding a vertex, it has a steeper edge removal cost. In these
cases, the complexity of generating the input representation might be considered
another aspect of the complexity tradeoffs.

Many persons who are not conversant with mathematical studies, imagine that because the
business of the [Analytical] engine is to give its results in numerical notation, the nature of
its processes must consequently be arithmetical and numerical, rather than algebraical and
analytical. This is an error. The engine can arrange and combine its numerical quantities
exactly as if they were letters or any other general symbols; and in fact it might bring out its
results in algebraical notation, were provisions made accordingly. It might develope three
sets of results simultaneously, viz. symbolic results; numerical results (its chief and primary
object); and algebraical results in literal notation. This latter however has not been deemed
a necessary or desirable addition to its powers, partly because the necessary arrangements
for effecting it would increase the complexity and extent of the mechanism to a degree that
would not be commensurate with the advantages, where the main object of the invention is
to translate into numerical language general formulae of analysis already known to us, or
whose laws of formation are known to us. But it would be a mistake to suppose that because
its results are given in the notation of a more restricted science, its processes are therefore
restricted to those of that science. The object of the engine is in fact to give the utmost
practical efficiency to the resources of numerical interpretations of the higher science of
analysis, while it uses the processes and combinations of this latter.

—Augusta Ada Lovelace, Notes to “On Babbage’s Analytical Engine” (1843)

[emphasis in the original]
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Chapter 7
Why Post Did [Not] Have Turing’s Thesis

Wilfried Sieg, Máté Szabó and Dawn McLaughlin

…I study Mathematics as a product of the human mind and not
as absolute…

(Post in Anticipation, i.e., (Post [47], p.64)).

Abstract The conceptual confluence of Post’s and Turing’s analysis of combinatory
processes, respectively of mechanical procedures, is the central topic in Davis and
Sieg’s [14]. Where Turing argued convincingly for the adequacy of his notion of
machine computation in 1936, Post viewed his identical notion in the same year as
being tied to aworking hypothesis in need of “continual verification”. Post gave novel
and informative arguments for his thesis or, as he put it, generalization. He insisted,
however, that ultimately a psychological analysis “of mental processes involved
in combinatory mathematical processes” has to be given. In this way, he hoped
to obtain a natural law and thus the basis for the claim that the undecidability and
incompleteness theorems constitute “a fundamental discovery in the limitations of the
mathematizing power of Homo Sapiens”. Our detailed analysis of (the background
for) his work on the issues leads to an unambiguous answer to the question Did Post
have Turing’s Thesis?: He did [not].
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Keyword Turing’s thesis

7.1 Introduction

In 1936, Post and Turing presented two models of computation that were essen-
tially identical. Turing, in his long paper, argued for the adequacy of his model and
proved that the Entscheidungsproblem for predicate logic is unsolvable by proce-
dures that can be carried out by his machines; Post, in his very short paper, described
his model and only conjectured that it is equivalent to Gödel’s (general) recursive
functions.1 The Entscheidungsproblem for subsystems of Principia Mathematica,
including one corresponding to predicate logic, had motivated Post’s work already
in the early 1920s. Post’s and Turing’s focus on this particular finiteness problem
concerning syntactic configurations was perhaps the reason for developing a com-
mon perspective. Undoubtedly, theirs is a uniquely direct approach to combinatory
procedures and stands in stark contrast to Gödel’s indirect way via (effectively) cal-
culable number theoretic functions. The latter way was, however, straightforwardly
and strongly rooted in mathematical practice.

Indeed, the experience with number theoretic calculation procedures had crystal-
lized, in the late 19th and early 20th century, into the concept of primitive recursive
functions. That concept is found in Dedekind’s [15]. Skolem as well as Hilbert and
Bernays used it extensively throughout the 1920s. Gödel [22] in 1931 put this class
of functions to work for the arithmetization of syntax in his proof of the incomplete-
ness theorems. In the 1934 Princeton lectures, he defined the larger class of (general)
recursive functions. The precise mathematical notions introduced by Gödel, Church,
and Turing were eventually shown to be equivalent. However, Church had already
in late 1935 suggested identifying the informal concept of calculable functions with
that of recursive functions. The history of and the arguments surrounding Church’s
Thesis will not be reviewed here; there are, after all, comprehensive accounts in the
literature, e.g., (Kleene [32], Sects. 62 and 70), (Gandy [21]), (Sieg [48, 51]).

Turing’s model of machine computation has been recognized as special, in part
because it vividly captures the “mechanical” aspect of algorithmic procedures. More
important is Turing’s argument from 1936, given in Sect. 9 of his [56], that any
mechanical procedure carried out by a human computer can be executed by one of
his machines, a claim now labeled Turing’s Thesis. His analysis has great intuitive
appeal and articulates restrictive boundedness and locality conditions, but it does
not constitute a proof of the general claim. Turing’s argument does prove a suitably
restricted claim, if one focuses attention on finite strings of letters from a finite
alphabet and accepts the above conditions for strings and operations on them. We
will come back to this argument later on, as it is precisely here that Turing’s and
Post’s approaches diverge.

1Church [2] had obtained, also in 1936, the same unsolvability result as Turing. He used Gödel’s
recursive functions, which he knew to be equivalent to the λ-definable ones, as the precise notion
of computability.
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Post does not argue in his 1936 paper that the worker in his model, when operat-
ing in the given symbol space, can carry out all combinatory processes, but suggests
contemplating “wider and wider formulations” and reducing them to his so-called
formulation 1. Nevertheless, he makes the enigmatic claim that the incompleteness
and undecidability results brought to light “that a fundamental discovery in the lim-
itations of the mathematizing power of Homo Sapiens has been made”. (Post [41],
p. 105) That claim has been frequently contrasted with, if not opposed to Gödel’s
view that these results do not imply “any bounds for the powers of human reason, but
rather for the potentialities of pure formalism in mathematics”. (Gödel [26], p. 370)
The dramatic fashion in which Post presents his claim almost begs for such an inter-
pretation; it suggests, furthermore, he would have agreed with Church and Kleene
judging Gödel’s search for “humanly effective but non-mechanical procedures” as a
fruitless pursuit.

If the “limitations” position were the only one Post had on the matter, then the
above interpretation would stand without question. However, Post’s position is more
complex and evolving in his work. In the first part of this paper we describe Post’s
1921 solution of the finiteness problem for the sentential logical part of Principia
Mathematica. That was presented in (Post [38]) indicating also a generalization of
the project with the explicit goal of obtaining a decision procedure for all ofPrincipia
Mathematica. In the second part, we use Post’s Anticipation paper [47] to follow
his work in the early 1920s in pursuit of this goal: different canonical systems are
formulated and shown to be equivalent to normal ones. The results of this work and
his experience with the tag problem led Post to a complete reversal of his project.
However, that required accepting what Davis called, Post’s Thesis; the path to that
thesis is described in the third part. The fourth part gives an account of Post’s
anticipation of the undecidability and incompleteness results due to Church, Turing,
and Gödel. Post concludes from his version of the incompleteness theorem that
mathematical thinking is, and must be, creative; we explore here how Post’s notion
can be understood. Finally, Post’s sustained reflections on inescapable limitations of
mathematical thinking and natural laws, as well as on symbolic logics and finitary
constraints allow us to find convincing reasonswhy he did [not] have Turing’s Thesis.
That is the topic of the final three parts.

7.2 The Finiteness Problem for Principia Mathematica

Emil Post was a graduate student at Columbia University from 1917 to 1920 and
attended during those years a seminar by his advisor Cassius Keyser on Whitehead
and Russell’s [61] Principia Mathematica.2 Nevertheless, the main influence on his
programmatic approach to Principia Mathematica and symbolic logic more gener-

2The source of all biographical data concerning Post is Martin Davis [11].—Keyser wrote a review
of the first two volumes of Principia Mathematica, see (Keyser [29]). In Sect. 7.8 we will discuss
some of his views that seem to have influenced Post.
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ally seems to have been C. I. Lewis.3 Lewis’s Survey of Symbolic Logic from 1918
[34] distinguishes, in Chapter 6, Sects. 2 and 3, between the heterodox and orthodox
views of “the nature of mathematics and of logistic”. On the orthodox view Lewis
writes:

“Logistic” may be taken to denote any development of scientific matter, which is expressed
exclusively in ideographic language and uses predominantly the operations of symbolic
logic. (Lewis [34], p. 340)

From that viewpoint mathematical systems are “nothing more nor less than … com-
plex logical structure[s]”. Their subject matter is “freed from … appeal to intuition
or perception”; after all, in proofs that proceed in accord with logical principles,
“nothing depends upon the fact that the terms denote certain … entities”. (Lewis
[34], pp. 340–341).

Lewis views the treatment of Principia Mathematica as orthodox and remarks on
its logistic:

One might characterize the logistic of Principia Mathematica roughly by saying that the
order of logistic is assumed, and the order of the other branches then follows from the
meaning of their terms. (Lewis [34], p. 354)

From the heterodox view the individual steps in proofs are not logical operations, but
“fundamentally arbitrary” and definitely pre-logical, since “they underlie the proofs
of logic as well as of other branches”. Lewis explains, “The assumption of these
operations—substitution, etc.—is the most fundamental of all the assumptions of
logistic.” Thus, a quite different view of the subject emerges:

It is possible to view the subject in a way, which makes such pre-logical principles the
fundamentally important thing, and does not regard as essential the use of symbolic logic as
foundation. (Lewis [34], p. 355)

As a consequence of the non-foundational view of logic, a mathematical system
“is any set of strings of recognizable marks in which some of the strings are taken
initially and the remainder derived from these by operations performed according
to rules which are independent of any meaning assigned to the marks.” (Lewis [34],
p. 355).

Post takes up Lewis’s heterodox view and, in his Columbia dissertation, investi-
gates the sentential subsystem of Principia Mathematica from a strictly metamathe-
matical perspective. The thesis is identical with the article Introduction to a General
Theory of Elementary Propositions that was published in 1921 as [38]. The work
aimed for the “highest generality” that, according to Post, had not been reached by
Whitehead and Russell:

…owing to the particular purpose the authors [Whitehead and Russell] had in view they
decided not to burden theirworkwithmore thanwas absolutely necessary for its achievement,
and so gave up the generality of outlook which characterized symbolic logic.

(Post [38], p. 163)

3C. I. Lewis’s influence on Post is discussed also in (Urquhart [60], pp. 619–620).
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In the first part of the paper, Post attempts to recover this generality of outlook.
The resulting developments are viewed, in accord with the heterodox perspective, as
purely formal ones; thus, any useful “instruments of logic or mathematics” will be
employed for their study. In the Introduction, Post emphasizes the central point that
the theorems of the first part of his paper are about the system of sentential logic;
they are not included in it.

To underline the significance of this central point, Post states that his “most impor-
tant theorem” gives a “uniform method for testing the truth [i.e., provability] of any
proposition of the system” and allows establishing relations between propositions.
Such relations show definitely “that the postulates of ‘Principia’ are capable of devel-
oping the complete system of the logic of propositions without ever introducing
results extraneous to that system—a conclusion that could hardly been arrived at by
the particular processes used in that work.” (Post [38], p. 164) This remark appeals
to the completeness theorem for the calculus that can be extracted from the corol-
lary Post formulated on page 171: The set of true formulae [i.e., provable ones] is
identical with the set of positive ones [i.e., tautologies].4

How is the heterodox view of the system realized? Through, what is for us today,
a standard presentation of the syntax of a logical system. The well-formed formulae
(enunciations) are inductively defined from variables p, p1, p2, . . . , q, q1, q2, . . . , r ,
r1, r2, . . . using only the connectives (primitive functions) ∼ and ∨; the definition is
labeled by I. Then the rule of substitution is stated and labeled by II: “The assertion
of a function involving a variable p produces the assertion of any function found
from the given one by substituting for p any other variable q, or ∼ q, or (q ∨ r).”
The only inference (production) rule for deducing theorems (assertions) is modus
ponens. It takes the form III:

“� P” and “�:∼ P. ∨ .Q” produce “� Q.”,

where P and Q are meta-variables. Finally, the axioms (primitive assertions) are
taken from Principia Mathematica and presented under IV:

�:∼ (p ∨ p). ∨ .p,
�:∼ q. ∨ .p ∨ q,
�:∼ (p ∨ q). ∨ .q ∨ p.
�:∼ [p ∨ (q ∨ r)]. ∨ .q ∨ (p ∨ r),
�: . ∼ (∼ q ∨ r).∨ :∼ (p ∨ q). ∨ .p ∨ r ,

Truth-values and tables are then introduced. The truth-value of a proposition is
denoted by +, if it is true, and by −, if it is false. Post emphasizes that “this meaning
of + and − is convenient to bear in mind as a guide to thought, but in the actual

4The completeness theorem for sentential logic had been established in its modern formulation in
Bernays’s [2] Habilitationsschrift of 1918, for the same calculus of Principia Mathematica. The
independence investigations that are also contained in that work were published in (Bernays [3]).—
Post’s [43] book on Iterative Systems originated as a “companion piece” to his dissertation. There
he determined “all the non-equivalent sub-languages of the language of the complete two-valued
propositional calculus”. (Post [43], p. 3) For a contemporary view of this highly interesting work,
see (Urquhart [60], Sect. 5).
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development that follows they are to be considered merely as symbols which we
manipulate in a certain way”. (Post [38], p. 166) Thus, even truth-values and tables
are treated as syntactic objects that can be manipulated on the basis of rules. The
“most important theorem”, called by Post Fundamental Theorem, is formulated as
follows:

Theorem. A necessary and sufficient condition that a function [formula] of F be asserted
[proved] as a result of the postulates II, III, IV is that all its truth-values be +.

(Post [38], p. 169)

Post states, the (proof of the) Fundamental Theorem solves the finiteness problem
of the sentential subsystem of Principia Mathematica as it obviously “gives a direct
method for testing whether that function can or cannot be asserted”; moreover, he
claims:

…if the test shows that the function can be asserted the above proof [of the Fundamental
Theorem] will give us an actual method for immediately writing down a formal derivation
of its assertion by means of the postulates of Principia. (Post [38], p. 171)

There are many further informative observations, theorems, and corollaries; for
example, on page 172, the “Post completeness” of the calculus is formulated as a
theorem in this way:

Theorem. Every function of the system can either be asserted by means of the postulates or
else is inconsistent with them.

However, here we are interested in the generalizations of the heterodox outlook
on systems Post suggests developing. According to Post, two directions of further
development can be pursued. Thefirst direction concerns the extension of the decision
procedure for sentential logic to other parts of Principia Mathematica. In [39], an
abstract from 1921 entitled On a Simple Class of Deductive Systems, Post reports to
have solved the decision problem for what we now call monadic predicate logic; the
full paper was never published. More ambitious, but as we will see closely related,
is the second direction:

…we might take cognizance of the fact that the system of “Principia” is but one particular
development of the theory—particular in the primitive functions it employs and in the pos-
tulates it imposes on those functions—and so [we] might construct a general theory of such
developments. (Post [38], p. 164)

The “syntactic” and “semantic” parts of the theory concerning sentential logic are
both generalized. As to the latter and the truth-tables involved, Post considers func-
tionswithm truth-values,wherem is greater than 2.His pioneeringwork onm-valued
Truth-Systems proved to be influential; together with Łukasiewicz, Post is consid-
ered as one of the founders of many-valued logic.5 As to the former and the method

5There is an interesting difference between their motivations. Łukasiewicz mentions in
his [35, 36] from 1918 and 1920, respectively, that he was led to the idea of a third
truth-value while working on antinomies and “the principle of contradiction in Aristo-
tle’s work” (Łukasiewicz [35], p. 86). In order to avoid antinomies, the “third logical
value may be interpreted as possibility” (Łukasiewicz [35], p. 87). Post, in contrast, does
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of postulation, Post considers a more general syntax of the subsystem he investi-
gated. Instead of assuming only ∼ and ∨ as primitive functions, he introduces μ

functions f1(p1, p2, . . . pm1), f2(p1, p2, . . . pm2), . . . , fμ(p1, p2, . . . pmμ
) with

arbitrary numbers of arguments in order to obtain “complete generality”. The rules
for constructing formulae under I are standard, and substitution II is modified from
the earlier discussion to suit the wider syntactic context. Finally, modus ponens is
replaced in III by production rules of a much more general form, and so are the
axioms in IV. The resulting system is later considered to be in canonical form A,
and the details are discussed at the beginning of Sect. 7.3 below.

The remainder of this section of Post’s paper, entitled Generalization by Postula-
tion, is viewed as “merely an introduction to the general theory”. (Post [38], p. 177)
Post defines (in)consistency of a system in a new way, as one cannot make use of the
function ∼, which might not be among the primitive ones:

Definition. A systemwill be said to be inconsistent if it yields the assertion of the unmodified
variable p. [Thus, the system asserts every formula.] (Post [38], p. 177)

Post’s further definitions and considerations reveal his expectations at this time. For
a consistent system, a true formula is defined to be one “that can be asserted as a
result of the postulates”; i.e., all the theorems of such a system are true by definition.
If adding a formula to the postulates of the system makes the system inconsistent,
then that formula is defined to be false.

Without any further explanation, Post asserts after the definition of false, “We can
then state that in the system ‘Principia’ every function is true or false.” That suggests
to him a further definition for an arbitrary consistent system; namely, such a system
is called closed if every function is either true or false. In a footnote, he remarks that
he would have called such a system categorical, if that name had not been used “in
a different connection”.6 Justifying his terminology Post writes:

…the postulates of such a [closed] system automatically exclude the possibility of any added
assertion—a state of affairs we believe to be highly desirable in the final form of a logical
theory. (Post [38], p. 177)

Post clearly expected Principia Mathematica to be closed or syntactically complete,
in the modern sense of this notion. Furthermore, Post emphasized already in the
introduction the virtue of such a broadened outlook, namely, that it will “serve to
prepare us for a similar analysis of that complete system [i.e., of Principia], and so
ultimately of mathematics”. (Post [38], p. 164) It is against the background of these
expectations that Post’s work in the early 1920s should be seen.

(Footnote 5 continued)
not give any interpretation of the multiple truth-values except for the purely mathematical one; he
treats the corresponding truth tables as syntactic objects similar to their treatment in the two-valued
case.
6The emergence of categoricity and completeness is described in (Awodey and Reck [1]).
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7.3 Canonical Systems and Their Reductions

Post indeed attempted “a similar analysis” of Principia Mathematica while he held
a Procter fellowship at Princeton in 1920–21. This work together with additional
work from the first half of the 1920s is reported in Absolutely unsolvable problems
and relatively undecidable propositions—account of an anticipation.7 That paper,
briefly referred to as Anticipation, was published posthumously in Davis’s 1965
[12]. In §2 of Anticipation Post went beyond the purely sentential logic of Principia
Mathematica and analyzed parts *10 and *11. That turns out to be a presentation of
predicate logic, as the variables are taken to have a “common range”, i.e., they are
not restricted to types. Post describes this logical system as a system in canonical
form B.8

The work in Anticipation establishes the equivalence of canonical systems of
forms A, B, and C with systems in normal form.9 The canonical form A in Anticipa-
tion is given in exactly the form it was given in (Post [38]): I is formulated as above,
the substitution rule II and the production rules III are presented in appropriately
more general forms. We quote Post’s formulation:

II. The assertion of a function involving a variable p produces the assertion of any
function found from the given one by substituting for p any other variable q, or
f1(q1, . . . , qm1 ),…, or fμ(q1, . . . , qmμ ).

III. “� g11(P1, P2, . . . , Pk1 )” … “� gκ1(P1, P2, . . . , Pkκ )”
. . . . . . . . . . . . . . . … .. . . . . . . . . . . . . .

“� g1κ1 (P1, P2, . . . , Pk1 )” … “� gκκκ (P1, P2, . . . , Pkκ )”

produce produce

“� g1(P1, P2, . . . , Pk1 )” … “� gκ (P1, P2, . . . , Pkκ )”,

where the P’s are any combination of the f ’s including the special case of the unmodi-
fied variable, while the g’s are particular combinations of this kind which need not have
all the indicated arguments.

IV. � h1(p1, p2, . . . , pl1 ),

� h2(p1, p2, . . . , pl2 ),

…

� hλ(p1, p2, . . . , plλ ),

7The purely mathematical part reducing a combinatorial system (in form C) to a normal one had
already been published in 1943 under the title Formal reductions of the general combinatorial
decision problem. The long final note of this paper gives a “brief résumé” of the larger developments
of which this mathematical investigation was a part and which are fully described in (Post [47]).
8The motivation for canonical form B, but also the familiar concepts of reduction and equivalence
are discussed in detail on pages 7–8 of Anticipation and, similarly, in (Post [45], p. 289).
9Indeed, full equivalence of *10 and systems in canonical form seems to have been a goal; see
footnotes 26, 79, and 90 of Anticipation. Thus, the solvability of the finiteness problem of any of
the systems would imply solvability for all the others, in particular for predicate logic.—Footnote
79 indicates that the reduction of systems in normal form to those of form A, the so-called closing
of the circle, was not done in 1920–21, but only later.
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where the h’s are particular combinations of the f ’s.

(Anticipation, p. 5)

Canonical form B shares I and IV with A, but II and III are modified as follows:

II0: II restricted to the replacing of a variable by any other variable, and that not present
in the given assertion.

III0: III with the added restriction that each capital P of a conclusion is present in at least
one premise of the corresponding production.

(Anticipation, pp. 7–8)

The reduction of canonical form A to B is relatively straightforward. The basic idea
is to add a new primitive propositional function e to the system in form B to those
available in the A system, such that e(P) is an assertion of the B system, just in case
P is an enunciation of the A system, including variables. That is achieved by taking
“� e(p)” as the IV of the B system and by adding a set of production rules to III0 that
mimics the syntax of the A system. More productions are then added to duplicate the
effect of IV of the A system, ensuring that the primitive assertions of the A system
are assertions of the B system as well. The final step is to reproduce the production
rules of the A system in III0. The system thus obtained is in canonical form B and
has all the assertions of the system in form A plus the assertions concerning the
enunciations of the A system.

The systems in canonical formC radicallymove away from the quasi-logical form
of the A and B systems; they have as their basis nothing more than a finite number
of distinct symbols a1, a2, . . . , aμ. The formulae of such a system are all the finite
sequences of these symbols, repetitions of the same symbol are allowed. That is, an
arbitrary enunciation of the system is a sequence ai1 , ai2 , . . . , ain of symbols from
the basis. A finite set of such enunciations constitutes the primitive assertions of the
system, i.e., its axioms. Finally, a finite set of productions allows the generation of
new assertions from old ones; they are of this general form:

g11 Pi ′
1

g12 Pi ′
2
. . . g1m1 Pi ′

m1
g1(m1+1)

g21 Pi ′′
1

g22 Pi ′′
2
. . . g2m2 Pi ′′

m2
g2(m2+1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gk1 Pi (k)
1

gk2 Pi (k)
2

. . . gkmk Pi (k)
mk

gk(mk+1)

produce
g1 Pi1 g2 Pi2 . . . gm Pim gm+1

The rules and their use are described by Post as follows:

…the g’s are specified sequences of the primitive a’s, including the null sequence, and each
P of the conclusion is present in at least one premise. In the application of these productions
the P’s may be identified with arbitrary sequences of the above type, it being understood
however, that the conclusion may not be null. (Anticipation, p. 25)
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The systems of canonical form C are today better known as Post production systems.
The reduction from canonical form B to C is more complicated than that from

A to B, but the basic methodology is similar. Two additional goals have to be met:
the elimination of the use of the parenthesis notation employed in form B and the
restriction of the alphabet to a finite one, in contrast with the infinite number of
variables allowed in B. The latter goal is accomplished bymeans of a single primitive
assertion α0a0, where α0 can be interpreted as asserting that the following string of
a0’s represents a variable of the B system; the rule “α0P producesα0a0P” guarantees
that infinitely many variables are recognized. (Anticipation, p. 26) The former goal
is accomplished via a translation of the parenthesis notation into a dot notation, and
a representation of that notation in the C system. Once the variables of the B system
are suitably represented by α0a0 . . . a0 the full reduction of a system in form B to one
in form C consists in mimicking the syntax of the B system, as well as reproducing
the axioms and production rules. So we end up with all the assertions of the B system
being assertions of the C system, plus a set of assertions of the C system concerning
the enunciations and variables of the B system. In contrast to the previous reduction
where the system in form B had but a single primitive assertion, we end up with
more primitive assertions than those of the reduced system.

Finally, these combinatorial C systems are reduced to systems in normal form.
The latter systems have a single primitive assertion. Their production rules have just
one premise, each involving a single variable; they are of a remarkably simple form:

g P produces Pg′

The transition frommany primitive assertions to one is effected by taking the logical
product of the primitive assertions of the C system as the primitive assertion of
the normal system. This is accomplished using two new letters in the alphabet of
the normal system; see (Anticipation, p. 31). The production rules of the C system
are similarly translated into rules taking the logical product of the premises of the
original rule as the single premise of the normal rule. Additional rules allow the
manipulation of such products; these modified production rules are then recast in
normal form by introducing (finitely many) additional letters and (finitely many)
new “helper” productions.10

10A version of this reduction, much easier to understand than Post’s, is given in (Minsky [37]) and
was further refined in (Szabó [55]).—For Post, as pointed out in (De Mol [18], p. 53), this result
supported his conjecture that all of Principia Mathematica could be reduced to a normal system;
he wrote in (Anticipation, p. 45): “…for if the meager formal apparatus of our final normal systems
can wipe out all the additional greater complexities of canonical form B, the more complicated
machinery of the latter should clearly be able to handle formulations correspondingly more compli-
cated than itself.”—To emphasize the significance of this result we quote a pregnant remark from
Minsky ([37], p. 240): “We have long felt that this result is one of the most beautiful theorems in
mathematics. The fact that any formal system can be reduced to Post canonical systems with a
single axiom and productions of the restricted [normal] form is in itself a remarkable discovery,
and even more so when we learn that this was found in 1921, long before the formalization of
metamathematics became so popular.”.
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Let us briefly note that many of the informal observations Turing uses to restrict
calculations of a human computer to computations of his machines are reflected
in Post’s reductions. Turing shifts, in Sect. 9 of his [56], calculations from two-
dimensional paper to a linear tape divided into squares; that is justifiedby the assertion
that the two-dimensional character of the paper is “no essential of computation”
(p. 135). The production rules of forms A, B, and C are two-dimensional, as each
of them takes multiple premises to a single conclusion. In the final normal form,
however, all productions take only a single premise, and these rules are written on a
single line. Perhaps the two-dimensional character of the original production rules is
an artifact of the presentation, but evenwere it not, the reduction to normal formwould
be proof that the two-dimensional character was indeed not essential. Turing required
the operations of a human computer to be analyzed into such simple ones that, in his
own terminology, it is difficult to imagine them further divided; this requirement is
certainly satisfied by the normal production rules. In any case, the (computation) steps
in both Turing’s and Post’s case are carried out on strings, one-dimensionally. That
is an expression of the conceptual confluence in Post’s and Turing’s work diagnosed
by (Davis and Sieg [14]). Given this confluence it is perhaps not surprising that Post
eventually arrived at the same conclusion as Turing—against his deeply held initial
expectations. We see part of the circuitous route to this conclusion in the next part.

7.4 Reasons for a Thesis

In §§7–10 of Anticipation, Post asserts and sketches proofs of results he had obtained
in the early 1920s. These results are analogues of the undecidability and incomplete-
ness theorems Turing and Gödel presented in their papers of 1936 [56] and 1931
[22], respectively. For the undecidability of predicate logic in particular, an ade-
quate concept of computability or mechanical procedure is needed relative to which
unsolvability is shown. The adequacy of such a concept is usually expressed as a
Thesis, most often as Turing’s Thesis, Church’s Thesis, or the Church-Turing Thesis.
Post formulated an assertion that is equivalent to those theses; he called it simply
generalization, but it was dubbed Post’s Thesis by Davis in his [10]. We describe
now the considerations that led up to it and made it ultimately plausible to Post. Let
us start out by quoting Post’s own formulation at the end of §7 of Anticipation:

Every generated set of sequences on a given set of letters a1, a2, . . . , aμ is a subset of the
set of assertions of a system in normal form with primitive letters a1, a2, . . . , aμ, a′

1, a′
2,

. . . , a′
μ, i.e., the subset consisting of those assertions of the normal system involving only

the letters a1, a2, . . . , aμ. (Anticipation, p. 46)

Post had shown in §2 of Anticipation, as we discussed earlier, that parts *10 and
*11 of Principia Mathematica are reducible to a single system in canonical form B.
He made an even stronger claim now:
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From this experience, and the knowledge of the kind of forms and kind of operations appear-
ing in the whole Principia Mathematica […] it becomes reasonably certain that all of Prin-
cipia Mathematica can in similar fashion be reduced to a system in canonical form B.

(Anticipation, p. 44)

As canonical form B is reducible to canonical formC and the latter to normal form, it
is reasonable to believe that the whole system of Principia Mathematica is reducible
to normal form.

If then we think of canonical form C as a method of generating a set of (finite) sequences
[…], we see that the generated sets of sequences yielded by all systems in canonical form C
are the same as those yielded by the formally simpler normal systems.

(Anticipation, p. 45, our emphasis)

However, to make the Thesis plausible, one has to argue that normal systems indeed
yield all generated sets of sequences (over a finite alphabet). Post advances two
arguments for this claim: the first establishes the reducibility of very general kinds
of wider formulations to normal systems; the second shows that the familiar method
of diagonalization does not lead out of the sets generated by normal systems.

The first argument starts out, in the last paragraph on page 45 of Anticipation,
with the observation that the premises and conclusion of any production rule of a
system in canonical form C can “completely be described in logical terms and the
primitive relation of precedence in a sequence”. Themeaning of “logical terms” is not
specified, but the later part of §7 provides the basis for a suitable interpretation: the
properties of production rules of systems in canonical formC and their operations can
be expressed in the language ofPrincipia Mathematica. That is, one can express that a
given string is obtainable fromagiven premise by substituting certain primitive letters
into the operational variables, that a sequence of strings contains instances of all the
premises of a given production rule and that its consequence can be produced; thus,
the generation of sequences can be represented in Principia Mathematica together
with some postulates for sequences.

Such an embedding of systems in canonical form C in an expanded system of
Principia Mathematica “suggests the possibility of describing more complicated
operations for the purpose of generating sets of sequences.” (Anticipation, p. 45)
For it might be that the whole apparatus of Principia Mathematica is capable of
expressing more complex operations than those that can be given by production
rules of canonical form C . Thus, these possibly more complex operations have to
be accounted for by arguing that the sets of sequences generated by them can be
generated by systems in form C and, in turn, by normal systems. Post asks us to
suppose that each operation is of the form, “a certain number of premises, described
in logical terms, gives rise to a certain conclusion, likewise described”. (Anticipation,
p. 45) They may consequently be written in the form: P1, P2, . . . , Pk produces
P , where P1, P2, . . . , Pk , P have certain properties f1(P1), f2(P2), . . . , fk(Pk),
f (P). In addition, suppose that a set of postulates on the letters a1, a2, . . . , aμ is
fixed and “Principia Mathematica is used as the logic of the resulting mathematical
system”, which Post calls sequence-Principia Mathematica system. (Anticipation,
p. 46) Granting the generality of Principia Mathematica, sequences P1, P2, . . . ,
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Pk , P will have the properties f1(P1), f2(P2), . . . , fk(Pk), f (P) if the latter are
assertions in the sequence-Principia Mathematica system. (Anticipation, p. 46) Then,
the operations can be written in the form: f1(P1), f2(P2), . . . , fk(Pk), f (P), P1, P2,
. . . , Pk produce P . As a result, the system for generating sequences on a1, a2, . . . ,
aμ is the system of Principia Mathematica supplemented “by certain postulates and
operations of the same general type”. (Anticipation, p. 46) Notice the condition that
postulates and operations are to be of the same general type as those of Principia
Mathematica. This is essential in the following argument.

Principia Mathematica can be reduced to a system in normal form and, with
the supposition emphasized in the previous paragraph, reducibility can be expected
of the expanded system as well. (Anticipation, p. 46) That is, even after Principia
Mathematica has been expanded to a system for generating sets of sequences using
complex operations, it is plausible that a system in normal form can be set up,
such that the set of its assertions involving only the letters a1, a2, . . . , aμ is the
same as the set of sequences generated by the expanded Principia Mathematica
system. This conclusion led Post to the generalization we quoted earlier and called,
following Davis, Post’s Thesis. The reasons are for Post “the generality of the system
of Principia Mathematica, and its seeming inability to lead to any other generated
sets of sequences on a given set of letters than those given by our normal systems”.
(Anticipation, p. 46) The recognition of the significance of this web of reductions
led, as Post put it at the end of §6, “to a reversal of our entire program” (Anticipation,
p. 44) that had been aiming for a positive solution of the general finiteness problem.

Let us come, finally, to the second argument wementioned at the beginning of this
part. Using a diagonal argument an apparent counterexample to Post’s Thesis can be
constructed from specially generated sets of sequences. According to the Thesis, the
generated sets of sequences that involve only the letter a are subsets of assertions
of normal systems with letters a, a1, a2, . . . , aμ, where μ = 0, 1, 2, . . . Given the
definition of normal systems, it is clear that there are only enumerably many of them.
For a fixed enumeration, we can define a set Da of a-sequences: Da contains the
sequence am of m a’s if and only if am is not an assertion of the m-th normal system.
Da differs from the set of assertions of each normal system, as it disagrees with the
m-th such system on am . Post remarks that this set is not a counterexample to the
thesis; after all:

[We] have merely defined a set of a-sequences, whereas to yield a true counter-example we
must show how to generate that set, i.e., set up a system of “combinatory iteration” whose
operations would at some time yield each and every a-sequence in that set, but would never
yield an a-sequence not in the set. (Anticipation, p. 47)

However, were the finiteness problem solvable for normal systems, the above set
could be generated, as any solution would decide, in particular, whether or not the
a-sequence of length m is an assertion of the m-th normal system.

That is, a solution of the finiteness problem for all normal systems would yield a counter-
example disproving the correctness of our proposed generalization. (Anticipation, p. 47)
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Thus, we are led to the following biconditional: Post’s Thesis holds if and only if the
finiteness problem for normal systems is unsolvable.

Post points out, “nothing in the above argument weakens the reasoning that led us
to our generalization”. (Anticipation, p. 47)11 It should be remarked that Post’s unsuc-
cessful attempts to solve thefiniteness problem for tag systemsmade the unsolvability
of normal systems plausible to him and committed him to his generalization even
more strongly12:

We therefore hold on to that generalization and conclude that the finiteness problem for the
class of all normal systems is unsolvable, that is, that there is no finite method which would
uniformly enable us to tell of an arbitrary normal system and arbitrary sequence on the
letters thereof whether that sequence is or is not generated by the operations of the system
from the primitive sequence of the system. (Anticipation, pp. 47–8)

Thus, we have an informal sketch of an argument for the undecidability of the
sequence-Principia Mathematica system, on account of the unsolvability of the
finiteness problem for normal systems and their connection to sequence-Principia
Mathematica via canonical systems of form B and C . The unsolvability of the finite-
ness problem rests on the argument leading to the generalization (i.e., Post’s Thesis),
which in turn depends crucially on the supposition that the operations and postulates
of the full sequence-Principia Mathematica system are all of the same general type.
Thus, the methodological issue revolves around the question of why only extensions
of this restricted form should be admitted.13 In the next part we take the Thesis for
granted and, with it in the background, look at the proof sketches Post provides
for his analogues of Turing’s undecidability result and Gödel’s first incompleteness
theorem. In Sect. 7.6 we will come back to the “central methodological issue”.

11Kleene was convinced by the same argument; see (Kleene [33], p. 59). In (Post [45], p. 285)
“overwhelming evidence” is adduced for Church’s Thesis by reference to footnote 2 in (Kleene
[31]). There one finds a concise and masterful summary of the evidence, as Kleene saw it, for the
“identification” of effective calculability and recursiveness; Kleene’s remarks are quoted in footnote
34, below.
12The tag systems are special normal systems: the g’s are all of the same length; each g′ depends
only on the first letter of its corresponding g.—The important role of the problem of “tags” was
emphasized in §3 of Anticipation; see also the very careful analysis in (De Mol’s [16, 17]). Indeed,
De Mol argues that the tag systems were crucial for Post for two main reasons: (1) they prompted
his belief that there might be absolutely unsolvable problems, and (2) they inspired the formulation
of normal systems.
13The character of this argument and its similarity to “absoluteness” considerations of Gödel,
Church, Hilbert & Bernays, and Turing will be discussed briefly in footnote 29 of Sect. 7.7 below.—
Martin Davis pointed out that the above considerations of course do not establish the undecidability
of predicate logic. Post is very cautious on what he claims to have established with respect to that
problem; see footnotes 79 and 90 of Anticipation and also footnote 10 above.
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7.5 Anticipating Turing’s and Gödel’s Results

Post’s considerations that are presented in this part take his Thesis for granted. It is
perfectly clear to Post that the significance of his results depends on it. For example,
Post writes, referring to the unsolvability of the finiteness problem for the class of
all normal systems:

The correctness of this result is clearly entirely dependent on the trustworthiness of the
analysis leading to the above generalization. (Anticipation, p. 48)

In order to obtain this very result, he outlines in §9 ofAnticipation “aminimummath-
ematical development”. He sharpens the informal proof he sketched in §8, beginning
with the definition of a particular ordering of all the bases of normal systems, called
the σ -ordering. The diagonal set Da relative to this ordering is called the N-set. The
definition is followed by the “almost trivial theorem” that no normal system has the
N -set as the set of assertions involving only the letter a. Post asserts that this theorem
provides the “mathematical basis for the no finite method theorem” and emphasizes
that it would be trivial, “were it not for the all embraciveness of normal systems”
(Anticipation, p. 50), i.e., the correctness of his Thesis.

In the remainder of §9 proofs of statements are only sketched, although “a com-
plete mathematical proof thereof clearly can be given”. (Anticipation, p. 50)14 Post
labels the statements cautiously as (Theorem)-s. Among them is the formulation of
an “important intermediate” assertion.

(Theorem). There exists a normal system K and a correspondence C such that for each
normal system and enunciation thereof there is one and only one enunciation in K by
correspondence C , and such that such an enunciation in K is asserted when and only
when the corresponding normal system versus enunciation is such that the enunciation is an
assertion in that normal system. (Anticipation, p. 51)

Post refers to the normal system K as “the complete normal system because, in a
way, it contains all normal systems”. A footnote attached to this remark states, “the
‘complete normal system’ would thus correspond to Turing’s ‘universal computing
machine’”.15 (Anticipation, fn. 95)

The normal system M has a finite-normal-test if there exists a normal system
M ′ on the primitive letters of M supplemented by at least the letter b and such that
the following correspondence between their enunciations holds: P is an assertion
in M ′ when and only when it is an assertion in M ; bP is an assertion in M ′ when
and only when P is not an assertion in M .16 Thus, for each enunciation P of M
exactly one of the two sequences P or bP is an assertion of M ′, and which is the
assertion depends entirely on whether P is or is not an assertion of M . We have

14The full sentence is this: “Our remaining ‘theorems’ deserve that name only in the sense that a
complete mathematical proof thereof clearly can be given—as contrasted with our generalization
of §7”.
15The footnotes were added by Post at the time of writing the Anticipation paper in the late 1930s
and early 1940s. They were not part of his original notes from the 1920s.
16That is, Post remarks in note 96, b serves as a negation symbol.
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consequently a (Theorem) that can be proved by a reductio ad absurdum argument:
if there were such a system constituting a finite-normal-test for K , then a system
could be constructed that would generate exactly the N -set; but that is impossible.

(Theorem). There exists no finite-normal-test for the complete normal system K .
(Anticipation, p. 52)

Following the argument for this (Theorem), Post describes “the positive content” of
its proof. In conjunction with the previous (Theorem) it allows us to construct from a
finite-normal-test L for K a normal system L ′ such that L will give a wrong answer
to the question, whether the a-sequence of length m ′ is an assertion of L ′, which is
the m ′-th normal system.

The above requirements on a finite-normal-test for K are weakened in §10 or
rather, as Post puts it in his letter to Gödel of 30 October 1938, his examination of
the “source of the contradiction” in the above argument led to a particular statement
in the extending logic “such that neither it nor its negative was asserted” in that logic.
(Gödel [28], p. 170) So let K be again the complete normal system and assume that
L is a normal system whose alphabet includes that of K . Now L is not always to
give an answer to the question, whether or not an enunciation of K is an assertion of
K ; rather, when L gives an answer, it has to be correct. More precisely, let L have at
least the primitive letter b in addition to the primitive letters of K . If S is a normal
system and P one of its enunciations, we require (S, P) to be an assertion of L if
and only if P is an assertion of S; whereas, if b(S, P) is an assertion of L , then P
must not be an assertion of S. In terms of the complete system K this is equivalent
to the following: (S, P) is an assertion of L if and only if it is an assertion of K , and
if b(S, P) is an assertion of L , then (S, P) is not an assertion of K . Post calls such
an L a normal-deductive-system adjoined to K and remarks, if b is added to K , the
resulting system is normal-deductive.17

Observe an important property of any normal-deductive-system L: such a system
cannot prove both (S, P) and b(S, P). This property is similar toGödel’s consistency
requirement, at least with respect to the set of enunciations of the form (S, P) and
b(S, P). Via a diagonal argument an analogue of Gödel’s First Theorem18 can be
obtained, showing that a particular enunciation is undecidable:

(Theorem). No normal-deductive-system [L] is complete, there always existing a normal
system S and enunciation P thereof such that P is not in S [thus, (S, P) is not in L], while
b(S, P) is not in the normal-deductive-system [L]. (Anticipation, p. 54)

17This explains why the requirement on L was not weakened in case (S, P) is an assertion of L:
“There is no reason for doing so since by suitably adjoining K to such a weak L the stronger L
would result.” (Anticipation, p. 53).
18Gödel formulated the first incompleteness theorem in its full generality as pertaining to all consis-
tent formal systems containing some elementary number theory most strikingly in 1964 in his [26],
the Postscriptum to his Princeton Lecture Notes. For the “precise and unquestionably adequate”
characterization of formal systems he appealed to Turing’s and Post’s work. He wrote there: “A
formal system can simply be defined by any mechanical procedure for producing formulas, called
provable formulas.”.
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Thus every normal-deductive system L is incomplete at least with respect to the set
of enunciations of the form (S, P). The restriction to such enunciations does not
diminish the significance of the result; after all, Gödel’s Theorem similarly states
“the incompleteness of any symbolic logic with respect to the class of arithmetical
propositions”. (Anticipation, fn. 101)

After the above incompleteness (Theorem) has been asserted, Post adds a “still
more important” one, stating that normal-deductive systems can always be extended.
According to him, the following statement “rules out the possibility of a completed
symbolic logic. That is, any symbolic logic can be made more complete.” (Antici-
pation, fn. 101) In the letter to Gödel, mentioned above, he makes the reason for this
extendibility clearer; L does not decide the enunciation (S, P), but the proof of the
above (Theorem) and an appeal to the meaning of (S, P), “S asserts P”, do decide
it. The statement is formulated in the following way:

(Theorem). No normal-deductive-system is equivalent to the complete logical system (if
such there be); better, given any normal-deductive-system there exists another which second
proves more theorems (to put it roughly) than the first. (Anticipation, p. 54)

These results taken together with those of §9 of Anticipation lead Post to the conclu-
sion, “A complete logic is impossible.” This is for Post “an iconoclastic result from
a logician’s point of view”, as it means “logic must be informal not only in some
parts of its description, but also in its very operation”. (Anticipation, pp. 54–5)

“Better still”, Post writes, “The Logical Process is Essentially Creative.” This
creative aspect of the logical process is the crucial conclusion for Post.19 In the very
introduction to Anticipation he had emphasized already:

[P]erhaps the greatest service the present account could render would stem from its stressing
of its final conclusion that mathematical thinking is, and must be, essentially creative.

(Anticipation, p. 4)

He immediately adds in a footnote a deeply puzzling remark that seems to provide
a reason for the creativeness of mathematical thinking:

Yet, as this account emphasizes, the creativeness of human mathematics has a counterpart
inescapable limitation thereof—witness the absolutely unsolvable (combinatory) problems.

(Anticipation, fn. 12)

A similar remark is found in his [45] after Post establishes what he called there
Gödel’s theorem in miniature:

The conclusion is unescapable [sic] that even for such a fixed, well defined body of math-
ematical propositions, mathematical thinking is, and must remain, essentially creative. To
the writer’s mind, this conclusion must inevitably result in at least a partial reversal of the
entire axiomatic trend of the late nineteenth and early twentieth centuries, with a return to
meaning and truth as being of the essence in mathematics. (Post [45], p. 295)

19At this very spot Post remarks (Anticipation, p. 55) that his conclusion goes contrary to the
viewpoint of C. I. Lewis as it was reported above in Sect. 7.2. Furthermore, he mentions that it is
“not so much contrary to Russell’s viewpoint (since he does not fully express himself)” and that
it is “in line with Bergson’s Creative Evolution”. Post is not correct with his remark on Lewis,
as the latter had a more sophisticated understanding of mathematics than expressed through the
programmatic heterodox view; see (Lewis [34], pp. 359–361).
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To understand the first claim, we not only have to clarify the ordinary meaning of
counterpart, we also have to gain a deeper insight into the meaning Post associates
with creativeness.

Here is, first of all, an attempt to rephrase Post’s claim, guided by the Oxford
English Dictionary as to the meaning of counterpart20: the creativeness of human
mathematics is a natural complement to its inescapable limitation. Indeed, in the
twice-mentioned letter to Gödel, Post characterizes his incompleteness theorem “as
a corollary of the existence of absolutely unsolvable problems”. (Gödel [28], p. 170)
He describes then also how the detailed analysis of his proof of the unsolvability result
as sketched above, once the consistency of the logic and the meaning of the relevant
Entscheidungsproblem have been granted, leads “to a definite yes or no answer to
the enunciation that the assumed logic failed to decide”. He therefore concluded:

that mathematical proof was essentially creative in that once having set up a formal system
relative to say the above Entscheidungsproblemwe could then always transcend that system,
i.e. add to the set of assertions relative to the same body of enunciations—a conclusion I
believe also reached in your work. (Gödel [28], pp. 170–71, our emphasis)

The enunciation to be added can actually be effectively constructed, given the appro-
priate technical set up.21 Amathematical and restrictive understandingof creativeness
is clear, but let us also point out that our parallel reading of the informal concept
is supported in Anticipation: footnote 7 consists of just the following sequence of
words: “Produced, created—in practice, written down”; it is attached to the word
“generated” (according to rules) and is to make that word’s meaning clear. In sum,
we have reached a restrictive understanding of creativeness and how it can be viewed
as a natural complement to the limitation of mathematical thinking.

Before discussing this issue further, we may ask, why generated sets should play
such a central and exclusive role as instruments for solving combinatory problems.
In Anticipation, pages 2–3, the issue is described in its proper conceptual context,
and this context gives also a first hint as to the restrictive character of the gener-
ative process.22 According to Post, recursiveness, λ-definability and even Turing-
computability were introduced, to capture effective calculability. His own work, in
contrast, attempts to capture the informal notion of generated sets for the following
reason:

20One particularly fittingmeaning for counterpart is articulated as follows: “One of two parts which
fit and complete each other; a person or a thing forming a natural complement to another.”.
21The various features mentioned in the informal discussion found their way into the definition of a
“creative set” of natural numbers in (Post [45], p. 295). Post envisions on page 296 not only a finite,
but indeed transfinite iteration of this extending process. The iteration along Kleene’s constructive
ordinals is actually carried out in (Davis [9], p. 190) continuing work in (Davis [8]). The statement
added to a particular system S is the Gödel sentence G for S. Assuming that S satisfies the standard
representability and derivability conditions, G is equivalent to the consistency statement for S. The
results, for this type of extension, from Feferman’s [20] progressions of theories (and Turing’s [57]
ordinal logics) can be directly transferred to the Post-Davis construction.
22Clearly, Post’s discussion excludes sets definable by generalized inductive definitions, like
Kleene’s O , as generated sets, as they require a “rule” with infinitely many premises.
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This [notion of generated sets] derives from the idea of a symbolic logic rather than that of
an algorithm, and may be described by saying that each member of the set is at some time
generated by the continued application of a given method, while that method will at no time
yield an individual … not in the set. (Anticipation, p. 3, our emphasis)

We saw in Sect. 7.3, how canonical systems of forms A and B were used to give
precise, rule-based descriptions of significant fragments of Principia Mathematica,
namely, sentential and predicate logic. Post assumed that the full system of Principia
Mathematica could be described in a similar way and, furthermore, that it would be
syntactically complete. Thus, the finiteness problem would be solved, as in the case
of sentential logic, if an obviously decidable criterion for provability could be found.
This line of thought made it strategically appropriate to focus on generating theorems
and to work on simplifying the production rules. In this way, Post was led first to
normal systems and then to the reversal of his whole program, having discovered
the unsolvability of the decision problem for all normal systems. For the sake of its
broader significance, the reversal required the generalization for generated sets.

The inescapable limitation of human mathematics is exemplified, aswe saw, by the
absolute unsolvability of a particular combinatorial problem. That is the rock bottom
of Post’s analysis of the incompleteness phenomenon and the ultimate grounding
for his appeal to return to meaning and truth, as well as to use an open concept of
proof. These three notions, freed from a reliance on formal procedures, are involved
in the argument for the creativeness of human mathematics, and Post believes that
these developments will effect “a reversal of the entire axiomatic trend of the late
19th and early 20th centuries”. So it is crucial to grasp Post’s reasons for viewing the
combinatorial problem as absolutely unsolvable—for Homo Sapiens Mathematicus.
In Sect. 7.6 we explore Post’s way of securing a natural law and thus the basis for
the claim of absolute unsolvability; it was expressed by Post repeatedly, but most
directly in his letter to Gödel: “… the absolute unsolvability of that problem [the
above combinatorial problem] has but a basis in the nature of physical induction
at least in my work and I still think in any work.” (Gödel [28], p. 171) We assume
that the adjective “physical” is simply meant to contrast this form of (“ordinary”
scientific) induction from mathematical induction; it is the physical induction that is
used to support a natural law.

Note to the reader. The next two parts take on the difficult and genuinely challenging
task to disentangle two strands in Post’s thinking about the central methodological
issue. There is, on the one hand, the investigation of symbol complexes and mechan-
ical operations on them; this seems to be motivated by the finitary character of
symbolic logics. There is, on the other hand, the ambition to ground the finiteness
and discreteness assumptions concerning such logics in structural features of the
human mind or, rather, self-consciousness. The task is made even more difficult by
the fact that the considerations concerning the ambitious grounding are presented
through the fragmentary excerpts in the Appendix to Anticipation; see footnote 26
below. Our analysis is just a beginning.
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7.6 A Natural Law: Inescapable Limitations

In the introductory remarks to the Appendix of Anticipation, Post reemphasizes that
the undecidability and incompleteness results are “evidences of limitations in man’s
mathematical powers”. (Anticipation, p. 56) In a similar vein Post had noted in ([41],
p. 105, fn. 8), as a consequence of these results, “that a fundamental discovery in
the limitations of the mathematizing power of Homo Sapiens has been made”. The
limitations are explained more comprehensively in the first footnote of Anticipation:

[…] The writer cannot overemphasize the fundamental importance to mathematics of the
existence of absolutely unsolvable combinatory problems. True, with a specific criterion of
solvability under consideration, say recursiveness, the unsolvability in question, as in the
case of the famous problems of antiquity, becomes merely unsolvability by a given set of
instruments. And, indeed, the corresponding proofs for combinatory problems are almost
trivial in comparison with the classic unsolvability proofs. The fundamental new thing is
that for the combinatory problems the given set of instruments is in effect the only humanly
possible set. (Anticipation, p. 1, fn. 1)

The last sentence, with its claim that “the given set of instruments is in effect the only
humanly possible set” for solving combinatory problems, receives more concrete
content in a footnote that points to the central methodological problem that has to be
resolved in order to justify the claim:

Since the earlier formal work made it seem obvious that the actual details of the outline
[for the proofs of the above results] could be supplied, the further efforts of the writer were
directed towards establishing the universal validity of the basic identification of generated
set with normal set. (Post [44], p. 215, fn. 18, our emphasis)

Post clearly does not see this identification as a definition; after all, he intends to
establish its universal validity.

One direction of the identification, i.e., normal sets are generated ones, is taken
to be correct; thus, the inclusion of generated sets among the normal ones is at
issue and is seen by Post as a “partially verified conclusion”. (Anticipation, p. 3)
This was articulated also in his [41] from 1936, where Post conjectured that wider
and wider formulations (of generating systems) would all be logically reducible
to his “formulation 1”. He considered this conjecture as a “working hypothesis”
which would be changed by the successful pursuit of the reductive program “not so
much to a definition or axiom but to a natural law”. (Anticipation, p. 105)23 Indeed,
Post observed, “the work done by Church and others [establishing equivalences of

23Turing, in his illuminating and informal paper from 1954, entitled Solvable and unsolvable prob-
lems, formulates the thesis not for mechanical procedures or generated sets, but rather for puzzles
as follows: “The normal form for puzzles is the substitution type of puzzle [i.e., a particular kind
of Post canonical system].” He remarks then, “The statement is moreover one which one does not
attempt to prove. … for its status is something between a theorem and a definition. In so far as
we know a priori what is a puzzle and what is not, the statement is a theorem. In so far as we do
not know what puzzles are, the statement is a definition which tells us something about what they
are.” (Turing [59], p. 15) As puzzles can be given “finite coordinates”, they are more general syn-
tactic configurations. It should be mentioned that Post also considered broader classes of syntactic
configurations; see (Urquhart [60], p. 643).
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various formulations] carries this identification considerably beyond the working
hypothesis stage”. The natural-law-perspective is expressed again in a footnote to
his ([45], p. 286). Post mentions there that Kleene had used “Thesis” as a label for
the identification. However, in contrast to Kleene, Post feels “that, ultimately, ‘Law’
will best describe the situation” and points out, via his [41] paper, that this law is in
need of “continual verification”. ([41], p. 105, fn. 8)

How can such a natural law be verified, continually? The short answer to the ques-
tion is, by the kind of “physical induction” Post appealed to in his letter to Gödel,
written on 30October 1938.We quoted from that letter at the end of Sect. 7.5, namely,
that the absolute unsolvability of the decision problem for all normal systems “has
but a basis in the nature of physical induction…”. Post then claims with respect to
Gödel’s own logical system, a version of Principia Mathematica, “that [physical]
induction could have gone far enough to include your particular system theoremat-
ically”. (Gödel [28], p. 171) That means he could have proved, as he had done for
(subsystems of) Principia Mathematica, that Gödel’s system is also reducible to a
normal system. So it seems that the reduction of particular systems, or of wider for-
mulations, to one of his canonical systems has the point of inductively strengthening
the evidence for the problematic half of the identification.

Post asserted forcefully in 1936 that the identification should not be masked under
a definition; this is directed against Church who had proposed in his [4] to defin-
itionally identify effective calculability with recursiveness. Church challenged this
assertion in his review [6] of (Post [41]) by saying, “effectiveness in the ordinary sense
has not been given an exact definition, and hence the working hypothesis in question
has not an exact meaning”. Church’s remark is correct, but does not undermine Post’s
program of inductively strengthening the connection between the informal concept
of generated sets and the mathematically defined normal ones. Whatever is done in
support of Post’s reductive program is useful, and indeed necessary, to justify the use
of “effectively calculable” in Church’s definition.24 We seem to be at a standstill of
an almost purely terminological kind.

At this point a substantive question should be raised. Assume that the general-
ization has indeed been confirmed as a natural law; does it support Post’s claim
concerning the limitation of human mathematical powers? An attempt to answer this
question reveals that much more than a terminological choice is at stake. Indeed, a
crucial turn in argumentation is required that brings in not only the human mind and
its way of understandingmathematics, but also themediating role of symbolic logics.
For syntactically complete theories the connection between (informal) mathematics
and its representation in symbolic logics is unproblematic and direct. That was taken

24Kleene, straddling Post’s and Church’s positions, wisely remarked in his [32], the classical Intro-
duction to metamathematics, “While we cannot prove Church’s thesis, since its role is to delimit
precisely an hitherto vaguely conceived totality, we require evidence that it cannot conflict with
the intuitive notion which it is supposed to complete; i.e. we require evidence that every particular
function which our intuitive notion would authenticate as effectively calculable is general recursive.
The thesis may be considered a hypothesis about the intuitive notion of effective calculability, or a
mathematical definition of effective calculability; in the latter case, the evidence is required to give
the theory based on the definition its intended significance.” (Kleene [32], pp. 318–9).
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for granted by Post in his [38] and was discussed in Part 1.25 If all symbolic logics
are incomplete, then the connection has to be anchored in some other way.

Having restated that the development in §§9–10 of Anticipation concerning unde-
cidability and incompleteness “owes its significance entirely to the universal charac-
ter of our characterization of an arbitrary generated set of sequences as given in §7”,
Post points to this new direction at the beginning of the Appendix to Anticipation.
He disowns the idea that the considerations of §7, as described in Sect. 7.4, were
intended as a proof-like argument. Instead, he claims famously:

Establishing this universality is not a matter of mathematical proof, but of psychological
analysis of the mental processes involved in combinatory mathematical processes.

(Anticipation, p. 55)

What role such a psychological analysismight play is further clarified by a distinction
Post makes in footnote 6 of Anticipation. There he separates “a formulation which
includes an equivalent for every possible ‘finite process’ ”, from “a description which
will cover every possible method for setting up finite processes”.26

The psychological analysis aims for a suitable description covering “every pos-
sible method for setting up finite processes”; that theme had already been alluded to
at the end of §8:

But for full generality a complete analysis would have to be made of all the possible ways in
which the humanmind could set up finite processes for generating sequences. The beginning
of such an attempt will be found in the Appendix. (Anticipation, p. 48)

We will now point to the crucial stages of Post’s attempt to arrive at full generality.
The beginning of the needed complete analysis is described as follows:

We begin here a derivation of the logic of finite operations and ultimately of all of the logic
of mathematics from first principles. These principles are supposed to be a digest27 of our
experience of the logico-mathematical activity… (Anticipation, p. 56)

25In footnote 12 of Anticipation, Post asserts that “the bubble of symbolic logic as universal logical
machine finally [has] burst” on account of the undecidability and incompleteness results; he adds,
“Actually, the old dream of symbolic logic is finding partial realization in Tarski’s recent work on
decision problems.”
26In the very footnote in which Post articulates this difference, he also asserts that the first goal has
been achieved by the work in §7. The contributions to the proposed complete analysis, needed to
achieve the second goal, are fragmentary. They are sometimes quite obscure and difficult to grasp, in
particular, those related to the “analysis of proof” with the goal of finding an absolutely undecidable
proposition. See Anticipation footnotes 4 and 6 as well as the remarks on the “process of proof”
starting on page 59. Post writes, the limitations in man’s mathematical powers “suggest that in the
realms of proof… a problemmay be posedwhose difficulties we can never overcome; that is that we
may be able to find a definite proposition which can never be proved or disproved.” (Anticipation,
p. 56) Then he refers back to footnote 1 in which he describes, more expansively, a “fundamental
problem”, namely, the question of “the existence of absolutely undecidable propositions which in
some a-priori fashion can be said to have a determined truth-value, and yet cannot be proved or
disproved by any valid logic.” (Anticipation, p. 1) That is, of course, in striking opposition to the
rationalist optimism of Hilbert and Gödel that is beautifully expressed in (Gödel [25], p. 164).
27From Latin ‘digesta’ (n., pl.) meaning ‘Matters methodically arranged’.
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The logico-mathematical activity is, of course, an activity of the human mind “as
situated in the universe”, and its objects “may be anything in the universe”. Itsmethod
“seems to be essentially that of symbolization”. The use of language is for Post a
central symbolizing activity:

It may be noted that language, the essential means of human communication is just symbol-
ization. (Anticipation, p. 57)

Leaving aside a detailed discussion of one feature of this activity Post considers as
important (and we don’t fully understand), namely, its self-consciousness, we point
to one central effect through this fundamental remark of Post’s:

…we shall here not consider the original objectswhich are symbolized, but only the relations
and operations upon these resulting symbols… (Anticipation, p. 57)

It is essential “that these symbols enter into certain spatial relations”. The “result
of logical thought” is conceived of as a “spatial configuration of symbols”. For the
study at hand, “We are to regard our symbols as without properties except that of
permanence, distinguishability and that of being part of certain symbol-complexes.”
(Anticipation, p. 57) Consequently, the core of the project is now “an analysis of
these spatial relations…”

After a long and complex discussion of “the creative germ of the thinking process”
and the nature of proof, Post returns on page 62 of Anticipation to the analysis
of symbolisms in connection with finite processes. He presents a summary of the
“method” for obtaining a description and indicates which of its elements, in addition
to mere symbols, constitute the sought-after description:

We return here to a more complete discussion and analysis of the very first part of the
present research i.e., in connection with finite methods. We shall here generalize to finite
methods for obtaining any results not just test for truth and falsity…28

We shall here first give what is at least a first approximation to a definitive solution of
finding a natural normal form for symbolic representation.

There are three stages in the analysis we give. In the first stage we have the things
symbolized. …

……

This then gives us our second stage in our analysis, namely a system of symbolizations
for corresponding mathematical states. (Anticipation, p. 62)

The subsequent reflections are concerned with the symbolizations that are now
assumed to be finite and discrete (and we will come back to them in the next Part.) As
to the correspondence between symbolizations andmathematical states, Post asserts:

Now the system of symbolizations in question is essentially to be a human product and each
symbolization [is to be] a human way of describing the original mathematical state.

(Anticipation, p. 63)

A discussion of the “third and last stage in this analysis” follows. The symbolizations
“represent the originalmathematical states” and, given the finiteness and discreteness

28Recall from Sect. 7.2 the non-semantic understanding of truth and falsity.
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assumptions, they can be “completely described”. Post finally concludes, “Hence
these descriptions can be considered to represent or symbolize those mathematical
states.” (Anticipation, p. 63)

The above remarks are all taken from the main text of the Appendix, i.e., from
Post’s notes and diary from the 1920s. In footnote 120, the very last of the footnotes
that comment on the early work and were written 15 to 20years later, Post quotes a
remark from the 1920s that makes explicit, how he thought of his work at that time:
“The main outline of the work is completed and we really have a case of Filling In.”
Post then continues the footnote with this devastating judgment:

Actually, but the surface of the problem was thus, perhaps, barely scratched, the problem,
that is, of describing “all the finite processes of the human mind,” at least in so far as they
might concern the generalization of §7. (Anticipation, p. 67)

So it seems that the hoped-for description, “which will cover every possible method
for setting up finite processes”, had not been achieved in Post’s own judgment.
However, given the basic assumptions, he may very well be seen as having arrived
at a formulation “which includes an equivalent for every possible ‘finite process”’;
that is indeed Post’s considered judgment. (See footnote 26 above.) We will examine
this issue in Sect. 7.7.

7.7 Symbolic Logics: Finitary Constraints

What Post did not argue for explicitly at all, except “dogmatically”, is the correspon-
dence between mathematical states and finite and discrete symbol complexes, with
the latter in some sense representing the former. The nature of that representation
is crucial for the claim that the undecidability and incompleteness results constitute
a discovery of limitations of the mathematizing power of Homo Sapiens. After all,
those results concern straightforwardly only symbolic logics in which mathematics
can be developed. Post writes in footnote 12 of Anticipation, “Symbolic Logic may
be said to be Mathematics become self-conscious.” And the former is according to
Post by necessity finitary.

The finitary feature of symbolic logics is crucial not only for Post but also for
Church and logicians in general,when they insist on an effective concept of deduction.
In Anticipation Post asserts:

Where we say “symbolic logic” the tendency now is to say “finitary symbolic logic”. How-
ever, it seems to the writer that logic should be considered essentially a human enterprise,
and that when this is departed from, it is then incumbent on such a writer to add a qualifying
“non-finitary”. (Anticipation, fn. 10)

In his ([45], p. 288) Post leaves out the qualifying “finitary” when writing, “The
assertions [theorems] of an arbitrary symbolic logic constitute a generated set A of
what may be called symbol-complexes or formulas.” He justifies the omission in a
footnote referring to (Church [7]), where Church defends an effectiveness criterion



7 Why Post Did [Not] Have Turing’s Thesis 199

that “necessarily applies” to inference steps or rules of procedure of any “formal
system of logic”:

There is some current tendency to apply the name “logic” to schemes which are similar to
accepted systems of logic, but involve one or more rules of procedure which lack this char-
acteristic of effectiveness. Such schemes may perhaps be of interest as abstract definitions
of classes of formulas, but they cannot in my opinion be called “logics” except by a drastic
(and possibly misleading) change of the usual meaning of that word. For they do not provide
an applicable criterion as to what constitutes a valid proof. (Anticipation, p. 225)

This remark not only reflects the normative requirement that logics should have an
applicable, i.e., decidable proof predicate, but also Church’s considerations in his
classical 1936 paper [5]. There Church argued that all functions “computable in a
logic” are recursive by his well known step-by-step argument; see (Gandy [21]) or
(Sieg [49]). For Post this would be of interest, but certainly not conclusive, as the
identification of decidable and recursive is taken for granted.

When discussing §7 of Anticipation in Sect. 7.4 above, we saw an attempt to
give a convincing argument for a reducibility claim that is analogous to Church’s:
given any expansion of Principia Mathematica by “postulates and operations of the
same general type” one can set up an equivalent normal system.29 In his [44], Post
formulates a broader claim. He writes that the methods developed for the reduction
of systems of form C to normal systems led him to conclude,

that not only Principia Mathematica, but any symbolic logic whose operations could effec-
tively be reproduced in Principia Mathematica, and hence probably any (finitary) symbolic
logic could be reduced to a system in canonical form, and consequently to a system in normal
form. (Post [44], p. 215, fn. 18)

In his letter toGödelwequoted earlier, Post states straightforwardly thatany symbolic
logic is reducible to normal form. How this can be achieved and given a philosoph-
ical grounding was indicated already in Part 5, when we examined his analysis of
symbolizations. We quoted there an extended passage from Anticipation that ended
with the sentence “This gives us our second stage in our analysis, namely a system of
symbolizations for corresponding mathematical states.” As we saw, symbolizations
are taken to be spatial configurations and are assumed to be finite and discrete. They
are constituted from parts that are unanalyzable in a given discussion, but have cer-
tain properties and stand in particular relations. They are, as we discussed, a “human

29Post’s argument for this assertion resembles Gödel’s for the absoluteness of the notion of com-
putable functions in his [24, 26]. A similar argument for identifying the notion of calculable func-
tions with recursiveness is found in Church’s letter to Pepis from June 8, 1937, which is reprinted
in the Appendix of (Sieg [49]). Each argument shows that, as long as broad informal conditions are
satisfied, the extensions of particular kinds don’t allow for more computations than the restricted
frameworks. Considerations of the same kind are found in Supplement II of Hilbert & Bernays’s
Grundlagen der Mathematik II as well as in (Turing [56], Sect. 9, II).—This notion of “absolute-
ness”, obviously quite different from Post’s, is discussed in (Sieg [51], 572–7). We should point
out that Post’s argument suffers from the same kind of subtle circularity as Gödel’s and Church’s,
because it is required that the extensions have to have postulates and rules of the same general form
as those of Principia Mathematica.
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product” and a “human way of describing the original mathematical state[s]”. Thus,
Post asserts, the need for the following assumption is readily seen, namely,

that the number of these elementary properties and relations used is finite and that there is a
certain specific finite number of elements in each relation. (Anticipation, p. 63)

This is the basis for the third and last stage of Post’s analysis, namely, the complete
“finite and normal” description of the symbol complexes.

Corresponding to the three stages in the analysis of symbolizations, Post considers
three stages in the analysis of methods. The first and rather inchoate stage consists
of “any and all methods” [emphasis in the text]. “To allow for the most wonderful
creations”, Post elaborates, “my image of suchmethods involved dark clouds pierced
by flashes of lightning accompanied by rolling thunder.” Some of these methods are
symbolized at the second stage, and their application results in a finite sequence of
symbol-complexes “due to discreteness and finiteness”. The third stage then con-
sists in “reducing the method of passing from symbol complex” to an operation of
“normal type”. Such normal operations apply to the complete description of sym-
bol complexes obtained at the third stage of the analysis of symbolizations. The
underlying process is iteration and is viewed as mechanical, “merely machine like”
(cf. also footnote 87).

The philosophical grounding of these third stages of Post’s analyses is in both
cases given through only vaguely conceived conscious experience of mathematical
states, respectively in similarly unstructured methods; it is obviously problematic
and, in the end, quite dogmatic. The dogmatic aspect relates in particular to con-
sciousness, concerning which Post simply remarks in (Anticipation, p. 65): “…what
we are conscious of is notmathematics, but a symbolization of it…” [emphasis in the
text]. Recall that symbolizations are assumed to be finite and discrete—on account of
the fact that their system is essentially a “human product” and “each symbolization
a human way of describing the original mathematical state”. Is it in this sense that
Post made the remark we chose as the motto for our paper “…I studyMathematics as
a product of the human mind and not as absolute…”?—In any event, the presumed
grounding of finiteness and discreteness assumptions in features of the human mind
or consciousness is rather ineffectual. And yet, only such a grounding, together with
connections to mathematical states, would give support for the sweeping claims of
absolute unsolvability and, as a consequence, of the inescapable limitation of human
mathematical thinking.

Let us try now to turn Post’s analysis on its head to see the similarity and radical
difference to Turing’s argument for his thesis.When reflecting on the reduction of the
logic of finite operations to finite and discrete symbol complexes and operations of a
normal type, Post articulatesmost clearly, that “only elementary recognition seems to
be needed for the logical aspect of the operational description of mathematics”. The
nature of such elementary recognition is indicated, for example, by Post’s remarks
concerning judgments about symbol complexes: “a single undivided act of judgment”
is required for recognizing the crucial properties of and relationships between parts
of a symbol complex (Anticipation, p. 63). So, if we disregard the connection to
mathematical states and focus purely on symbolizations (without meaning), then
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the requirement to appeal only to elementary recognition would seem to justify the
finiteness and discreteness assumptions for symbol complexes—quite in Turing’s
way; the restricted mechanical, machine-like character of operations is taken for
granted anyway. In this way Post’s analysis is cut off not only from stage one (as
Post himself does), but also from stage two. When Post’s views are articulated in this
way, his reversed argument that starts with (the demand for) elementary recognition
and ends with finiteness conditions is strikingly similar to that Turing gives in 1936
in his [56] for the claim that the mechanical operations of a human computer can be
carried out by one of his machines.30

Relating Turing’s analytic work to his own, Post notes the parallelism, but retains
the connection of the last two stages and remarks:

Fundamental is the distinction between the static outer symbol-spacewith its assumed capac-
ity of unbounded complexity, and the dynamic mental world with, however, its obvious
limitations. This has been fully captured by Turing in his finite number of mental states
hypothesis. (Anticipation, fn. 118)

States of mind of human computers do play a critical role for Turing’s analysis in
Part I of Sect. 9 of his paper. In analogy to the finiteness constraint on immediately
recognizable sequences, Turing asserts also that human computers have only a finite
number of states of mind. However, Turing replaces states of mind by “a more
physical and definite counterpart” (in Part III of the very same section):

It is always possible for the computer to break off from his work, to go away and forget
all about it, and later come back and go on with it. If he does this he must leave a note of
instructions (written in some standard form) explaining how the work is to be continued.
This note is the counterpart to “state of mind”. (Turing [56], p. 253)

Thus, it is not clear in what sense Turing’s final analysis uses a “finite number of
mental states hypothesis”; it is also not clear at all in what sense it would capture
fully “the dynamicmental world…with its obvious limitations”.31 Turing, as is clear
from the last quote, describes mechanical procedures that are completely external to
the computing agent; these externalized computations are the objects of his analysis,
not mental states or the human mind. Some cognitive capacities are of course taken
for granted, but for his restrictive analysis Turing appeals to only one obviously
psychological fact, namely, the limitation of the human sensory apparatus; it and
only it provides the basis for the fundamental finiteness and locality conditions.

30Turing’s argument was analyzed in (Sieg [48]); it is put into a broader systematic framework in
(Sieg [51]).
31Turing is discussed in notes 6, 9, 112, 118, and 120 ofAnticipation. Post most strongly emphasizes
the role of the “finite number of mental states hypothesis”. However, why would its correctness
make Post’s position (as he remarks in note 9) “largely academic”? And, why would it make (as
he says in note 6) “the detailed development envisioned in the Appendix unnecessary”? - Post is
grappling with a different problem; in addition, it is not just the number of mental states that is
important for Post’s considerations, but also their internal elementary, discrete structure. (Wider
formulations, as stressed in [41], are to achieve greater psychological fidelity.).
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These considerations are directly and beautifully mirrored in Post’s description of
Turing machines and their computations in his [46] from 1947.32 His mathematically
precise description via a form of canonical system is used to prove the undecidability
of the word problem for semi-groups by reducing it to the halting problem for Turing
machines. Turing was impressed by the result and the method of proof; in his [58]
he extended the undecidability result to semi-groups with cancelation. The discus-
sion of the methodological and mathematical issues surrounding computability in
his [59] does not mention machines; the issues are rather articulated exclusively in
terms of puzzles and substitution puzzles, i.e., particular canonical systems.33 That
naturally underlines the conceptual confluence in their work: it is also, it seems to
us, an expression of deep appreciation. The latter is, of course, also expressed in
the abstract of (Turing [58]), when he describes the word problem as being reduced
to an unsolvable problem that is “connected with the logical computing machines
introduced by Post and the author”, referring to (Post [41]) from 1936 and his own
classical paper from the same year.

7.8 Yes, No, and Broader Contexts

Post’s generalization asserts: sequences generated (by a finite and mechanical
process) can be generated by a normal system. In Sect. 7.4 we discussed some of
Post’s reasons for accepting this assertion. They include an absoluteness argument
that is similar to Gödel’s; see footnotes 13 and 29. In his 1936 paper, Post empha-
sized the significance of proofs of the equivalence between different concepts. He
claimed in (Post [45], p. 285) that there is an “overwhelming evidence” for the coex-
tensiveness of the concept of recursive function “with the intuitive concept effectively
calculable function”. As to the substance of the overwhelming evidence, Post referred
to footnote 2 of (Kleene [31]) where Kleene summarized the considerations in favor
of coextensiveness.34 All of this fits perfectly well into the intellectual patterns of

32Note in particular that the internal configurations of machines or m-configurations, which cor-
respond to the states of mind of the human computer, are directly incorporated into the symbolic
configurations on which the (Post) production rules operate.
33See (Sieg [52]) for the discussion of this variant of Turing’s Thesis introducing a normal forms
for puzzles; see also footnote 23.
34For the reader’s convenience, we quote the essential points of Kleene’s footnote, which is attached
to the statement, “A function of natural numbers, with natural numbers as values, is taken to be
effective if it is Herbrand-Gödel recursive.” Here is the (partial) quote: “…This notion of effective-
ness appears, on the following evidence, to be general. A variety of particular effective functions
and classes of effective functions (selected with the intention of exhausting known types) have
been found to be recursive. Two other notions, with the same heuristic property, have been proved
to be equivalent to the present one, viz., Church-Kleene λ-definability and Turing computability.
Turing’s formulation comprises the functions computable by machines. … Functions determined
by algorithms and by the derivation in symbolic logics of equations giving their values (provided the
individual steps have an effectiveness property which may be expressed in terms of recursiveness)
are recursive.”.
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the early developments of computability theory and receives further strong support
from the conceptual confluence of Post’s own work with Turing’s. In this sense then,
Post did have Turing’s Thesis and accepted the standard arguments for it.35

However, in these considerations it is taken for granted that a notion of mechan-
ical, algorithmic procedure is being analyzed. Gödel emphasized in his [26] that
finite procedure—in the context of undecidability and incompleteness results—must
be understood as mechanical procedure. “This meaning, however,” he asserted, “is
required by the concept of formal system, whose essence it is that reasoning is com-
pletely replaced by mechanical operations on formulas.” He added parenthetically:

Note that the question ofwhether there exist finite non-mechanical procedures, not equivalent
with any algorithm, has nothing whatsoever to do with the adequacy of the definition of
“formal system” and of “mechanical procedure”. (Gödel [26], p. 72)

Post’s project had greater ambitions, arguing for the absolute unsolvability of com-
binatorial problems and concluding that the mathematical powers of Homo Sapiens
are inescapably limited.

For Post to reach his ambitious goal, he needed a prima facie stronger generaliza-
tion: sequences generated (by a finite process of the human mind) can be generated
by a normal system. In addition, in order to obtain the connection to mathematics, the
representation of mathematical states by symbol systems is required, as we discussed
extensively in Sect. 7.6. That Gordian Knot is tied in a single step by appealing to a
feature of the humanmind that is epitomized by the remark “…whatwe are conscious
of is not mathematics, but a formalization of it…” When drawing the conclusions
concerning the limitations of the human mind, Post refers to “mental processes
involved in combinatory mathematical processes”. (Anticipation, p. 55) On account
of the structure of our mind, then, the combinatory mathematical processes involve
for humans only finite mental processes that ultimately are captured by mechanical
ones. Thus, a thesis or rather a sequence of theses has been formulated that is of a
dramatically different character from Turing’s. And in that sense, Post did not have
Turing’s Thesis, but rather a stronger “mental Thesis”. It supports, in particular, the
claim made in Anticipation, “The fundamental new thing is that for the combinatory
problems the given set of instruments is in effect the only humanly possible one.”
This “mental Thesis” is subject to precisely the criticism that was incorrectly raised
against Turing, when Gödel in his [27] tried to pinpoint a “philosophical error in
Turing’s work”; see (Sieg [53]).

Why did Post focus attention on finite processes of the human mind and insist
on their psychological analysis? We saw in Sect. 7.7 that finite processes have to be
considered because of the finitary character of symbolic logics; and that is necessi-
tated in turn by the fact that they are a human product. The psychological analysis is
to anchor the human way of doing logic and mathematics in features of the mind.36

35We contended in Sect. 7.7, turning “Post’s analysis on its head”, that one can extract from his
analysis, when stripped of philosophical preconceptions and reversed, an argument that is strikingly
similar to Turing’s.
36This has, however, significant repercussions on the very mathematical powers: they are limited,
but also creative (in the restrictive sense we pointed out at the end of Sect. 7.5). That was made clear
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A related explanation could point to the influence of Post’s advisor Keyser. In his
book Mathematical Philosophy, Keyser has a chapter devoted to the psychology of
mathematics.37 Mathematics is not only viewed as “an enterprise of the mind”, but
it is also claimed, “mathematical phenomena represent mental phenomena” (Keyser
[30], p. 412; emphasis in the text). If we take, as Post certainly does, the structure
and development of symbolic logics as mathematical phenomena, then the latter can
be taken, following Keyser, as representing mental phenomena.

There might be a second point of influence, as Keyser ascribes great importance
to the phenomenon of generalization, i.e., “the process by which the human mind
from time to time enlarges the empire of its rational activity”. (Keyser [30], p. 413)
It is, after all, distinctive that Post calls his version of the identification claim gener-
alization. Keyser discusses the generalization of the number concept as a significant
example; indeed, he considers it to be one of “the probably best [specimens of
generalization] to be found in the history of thought”. Through a succession of gen-
eralizations the domain of the number concept was extended from at first containing
just the integers to “embracing”, as he puts it, “positives and negatives, rationals and
irrationals, reals and imaginaries, cardinals and ordinals, including the transfinite
numbers of Georg Cantor”. (Keyser [30], p. 413) Not to allow suitable generaliza-
tions, according to Keyser, hampers progress in mathematics; he attributes the delay,
by two thousand years, of “the advent of the concept of hyperspace and n-dimensional
geometry” to a backward psychology of mathematics. (Keyser [30], p. 407) Relating
these observations back to Post, it was “the m-dimensional space analogy” that led
him to introduce in Sect. 12 of his [38] a generalization of the classification of func-
tions; generalization is also the broad theme of two of Post’s mathematical papers,
his [40, 42].

Generalization and the attendant conceptual innovation were important to Post
also in his [45], where he starts out with the observation, “Recent developments of
symbolic logic have considerable importance for mathematics both with respect to
its philosophy and practice.” The undecidability and incompleteness results support
claims in the philosophy of mathematics, as they lead “to far-reaching conclusions
on the nature of logical activity, and hence of mathematics”. (Anticipation, p. 48)
The concept of recursive function or its proved equivalents is viewed as significant
also for the practice of mathematics: Post wants to demonstrate “that this concept
[of recursive function] admits development into a mathematical theory much as the
group concept has been developed into a theory of groups”. He remarks, however,

(Footnote 36 continued)
by Post, when asserting, “mathematicians are better than machines”, as they can prove theorems
machines cannot. Such a proof requires not only an argument outside the system, but for the
creative extension of the system it also requires, that the extending statement be recognized as true.
See Anticipation, footnotes 12 and 100.
37Post finished his graduate education in 1920; Keyser’s book was published only in 1922. Yet
it is most likely that Post was familiar with Keyser’s views expressed in the book. In the Preface
(page vii) Keyser mentions that the book is the result of more than forty years of reflection on the
nature of mathematics.
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that only “a very limited portion of a sub-theory of the hoped-for general theory” is
being developed in his own paper.

We can of course ask, what such a general theory in analogy to group theorymight
be. The development in Post’s [45] cannot be viewed as being analogous to group
theory, as there is no abstract concept of computability underwhich particular notions
of effectiveness fall: many different notions can be shown to be equivalent, but they
don’t share the defining characteristics of such a general concept. What one might
be looking for is perhaps best exemplified by the unifying, axiomatic treatment of
different conceptions of “real numbers” that had been introduced in the second half
of the 19th century, e.g., Dedekind cuts, Cauchy sequences, or Cantor fundamental
sequences. In this case the relevant abstract concept is that of a complete ordered
field; all the mentioned examples fall under it. In addition, if we take Dedekind cuts
as our canonical reals, then every other complete ordered field is isomorphic to the
system of cuts. (Thus, they are all isomorphic.)38

If onewere to pursue a structural-axiomatic approach for computability, onewould
try to find an abstract concept under which the various models of computation fall.
In analogy to proving that all complete ordered fields are isomorphic to the system
of Dedekind cuts, one would try to prove in the computability case a representation
theorem stating, the models falling under the abstract concept are all reducible to
Turing machines. That approach has actually been pursued, see (Sieg [50, 51]); the
abstract concept is that of a computable (discrete) dynamical system. The approach
is thoroughly motivated by the confluent work of Post and Turing and their attempts
to consider “wider formulations”, i.e., configurations and local operations on them
that are more general than those permitted in canonical systems or substitution puz-
zles. Their mathematical work and their methodological reflections have inspired the
definition of a computable dynamical system and the proof that this abstract concept
is equivalent to that of a Turing machine.

The general point is then this: the characteristic conditions of computable dynam-
ical systems articulate minimal abstract conditions that a combination of finite con-
figurations and mechanical operations have to satisfy to still count as a “wider
formulation” or as a “puzzle”. Thus, we don’t have to face a mysterious thesis for the
concept of computability; we rather have to face the ordinary and very hard issues for
judging the adequacy of a mathematical concept to capture aspects of our intellectual
or physical experience.

Acknowledgements We thank Martin Davis, Liesbeth De Mol, and Ulrik Buchholtz for encour-
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38The underlying distinction between structural and formal axiomatics is discussed in Sieg [54].
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Chapter 8
On Quantum Computation, Anyons,
and Categories

Andreas Blass and Yuri Gurevich

Abstract Weexplain the use of category theory in describing certain sorts of anyons.
Yoneda’s lemma leads to a simplification of that description. For the particular case
of Fibonacci anyons, we also exhibit some calculations that seem to be known to the
experts but not explicit in the literature.

Keywords Anyon model · Fibonacci anyons · Quantum computing · Categories ·
Yoneda Lemma · Mathematical foundations

8.1 Introduction

This paper attempts to explain the use of category theory in describing certain sorts
of anyons. These are rather mysterious physical phenomena which, one hopes, will
provide a basis for quantum computing needing far less error correction than other
approaches.

The first author of this paper has long been a fan of category theory; even as
a graduate student, he was described by one of his professors as “functorized”.
The second author has been far more skeptical about the value of category theory
in computer science, because of its distance from applications and because of the
peril of potential (and in some cases actual) over-abstraction. In 2012, both authors
began working with the Quantum Architectures and Computing (QuArC) Group
at Microsoft Research and found anyons to be near the top of the group’s agenda.
Seeing calculations and applications that use unitary matrices to represent braiding
of anyons, we naturally wondered what Hilbert space these matrices are intended to
operate on. We made rather a nuisance of ourselves by asking different people, on
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different occasions, what anyons actually are, from amathematical point of view. Are
they Hilbert spaces? Are they vectors in a Hilbert space? Are they something else?
It turned out that the only mathematically sound answer in the literature involved a
special sort of categories, modular tensor categories.1 So the second author agreed
that categories can be quite relevant to important applications in computer science.

Our purpose in this paper is to describe some of the ideas surrounding categories
and anyons in general and the special case of Fibonacci anyons and their category
description. We hope that our presentation will be accessible and useful for math-
ematicians and computer scientists who have some acquaintance with the basics of
category theory. Where we need to go beyond the basics, we explain, albeit briefly,
the concepts from category theory that we use. We have also included a section
describing the physical background that this mathematics is intended to formalize.

To describe more of our motivation for studying anyons, we need to presuppose
some general information that will be explained in later sections of this paper. In
particular, we shall refer to the fusion rule τ ⊗ τ = τ ⊕ 1 for Fibonacci anyons τ

(and the vacuum 1). We hope that the following paragraphs will give the reader a
rough idea of what we are looking at, and that re-reading them after the rest of the
paper will provide a less rough idea.

In contrast to what occurs elsewhere in quantum theory, the states (represented,
as usual, by vectors in Hilbert spaces, up to scalar multiples) in the modular tensor
category picture are ways inwhich one configuration can fuse to form another config-
uration.2 They are not the configurations themselves. For example, in the Fibonacci
case, there is a 2-dimensional Hilbert space of ways for three anyons to be regarded
as (or to fuse into) one anyon; this is the Hilbert space Hom(τ ⊗ τ ⊗ τ, τ ).

When we first heard about Fibonacci anyons, we thought that the fusion rule
τ ⊗ τ = τ ⊕ 1 meant that, if we put two τ anyons together, then the result might
look like one τ anyon or like the vacuum (this much is true in the modular tensor
category model) and that the general result would be a superposition of these two
alternatives. But the model doesn’t allow such superpositions. Nor does the model
say anything about the probabilities of the two possible outcomes.

Instead, we get superpositions of the following sort. Start with three τ ’s. Fuse
the first two to get one τ or vacuum. If you got vacuum, then the overall result is
one τ , namely the third of the original ones, which you haven’t yet fused. If, on
the other hand, fusing the first two τ ’s gives a τ , then fusing that with the third τ

might produce a τ . (It might also produce vacuum, but that’s irrelevant for the present
discussion.) So we have two ways to end up with one τ , according to whether the
first two τ ’s fused to vacuum or to τ . And it is these two ways that the model allows
superpositions of. Another possibility for getting twoways here is to fuse the last two
τ ’s first and then fuse the result with the first τ . These two form another basis of the
same 2-dimensional Hilbert space of “ways”. The relation between the two bases is

1Other answers explained the physics, in terms of excitations, but thesematters are not the subject of
this paper, which is specifically about mathematics except for the introductory material summarized
in Sect. 8.2.
2For more on the notion of fusion, see Remark 1 at the end of this introduction.
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(part of) the associativity isomorphism of the modular tensor category. Yet another
possibility would begin by fusing the first and third τ ’s. The modular tensor category
representation of this possibility would use a braiding isomorphism to move the first
anyon to be adjacent to the third (or vice versa), and it would depend on the path
along which that anyon is moved around the second one.

In Sect. 8.2, we give a general introduction to anyons from the point of view
of physics and quantum computation. That section is intended to give the reader a
rough idea of what anyons are and why researchers in quantum computation would
be interested in them. The treatment here is quite superficial, and we give references
for more detailed treatments.

In Sect. 8.3,wegradually introducemodular tensor categories, andwe explain how
they are intended to be used to describe anyons. This section borrows heavily from
the axiomatization given in [9], but with some modifications and rearrangements.

Section8.4 is devoted to an application of one of the central theorems of category
theory, known as Yoneda’s Lemma, to producing a simplified view of modular tensor
categories.

Finally, in Sect. 8.5, we consider the special case of Fibonacci anyons. This special
case is unusually simple in some respects. Nevertheless (or perhaps therefore) it
occupies a prominent place in quantum computing research. Section8.5 begins with
a general description of Fibonacci anyons and then exhibits some calculations, whose
results seem to be well known to some in the quantum computing community but
which we have not been able to find written down in the literature.

More detailed treatments of modular tensor categories are available in the papers
[9] of Panangaden and Paquette and [11] of Wang. Much of our exposition is based
on the former. For other aspects of anyons and topological quantum computation,
see, for example, [5] and the references there.

Remark 1 We encountered numerous explanations of the notion of fusion of anyons,
and they seemed to contradict each other. At one extreme was the picture of fusion as
a physical process in which anyons are brought into spatial proximity with each other
and energy is released as they form a new anyon (or perhaps annihilate each other). A
minormodification of this picture is that energy need not be released; itmight actually
be consumed in the process.Another picture, however, did not insist that the anyons be
brought together. They could remain far apart, and a suitable global measurement of
the system’s quantum numbers could reveal how they “fused”. A path to reconciling
these apparently contradictory pictures is suggested by a comment at the end of
Sect. II.A of [8]; the idea is as follows. Consider several anyons, which we intend to
fuse. As long as they are far apart, the various possible results of their fusion have
energies that are very close together. (In technical terms, the ground state of the system
is very nearly degenerate.) So the different fusion results can be distinguished in
principle but not practically.When the anyons are brought closer together, though, the
energy differences between the fusion possibilities become larger, and so it becomes
practical to distinguish these possibilities. Thus, the discrepancy between various
views of fusion seems to be largely a discrepancy between what can be observed in
principle (or what is “really” happening) and what can be detected in practice.
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8.2 Quantum Theory and Anyons

This section is a superficial summary of a small part of quantum theory and some
basic information about anyons. The physics described here is intended merely to
provide an orientation for understanding the mathematics in the rest of the paper.

8.2.1 Quantum Mechanics

In quantum theory, the state of a physical system is typically represented by a non-
zero vector in a complex Hilbert space H , but all non-zero scalar multiples of
a vector represent the same state. Thus, the states constitute the projective space
associated toH . Because of the freedom to adjust scalar factors, one often imposes
the normalization that the vectors representing a state should have norm 1; there still
remains a freedom to adjust the phase, i.e., a scalar factor of absolute value 1.

If a system has an observable property with infinitely many possible values, for
example position or momentum, then the Hilbert space of its states must be infinite-
dimensional. In quantum computing, however, one usually ignores many such prop-
erties and concentrates on only a small number (often only one) of properties with
only finitely many possible values. As a result, one deals with finite-dimensional
Hilbert spaces. (This simplification is analogous to modeling a classical computer
by a configuration of bits, not taking account of its other physical properties, like
position or momentum or temperature, unless these threaten to interfere with the bits
of interest.)

The automorphisms of a Hilbert space H are the unitary transformations, i.e.,
the linear bijections that preserve the inner product structure. These play several
important roles, both in physics and in quantum computation. First, they provide the
dynamics of isolated quantum systems. That is, the state of an isolated system will
evolve in time by the action of a one-parameter group (the parameter being time) of
unitary operators.3 Second, if a system has symmetries, i.e., if it is invariant under
some transformations, then these transformations are usually modeled by unitary
operators.4 Finally, the design of quantum algorithms is based on unitary operators.
We want the system to evolve from a state that we know how to produce to another
state fromwhichwe can extract useful information by ameasurement. That evolution
is described by a unitary operator. So an algorithm designer wants to find unitary
operators that represent a useful evolution of a state. In addition to finding such
operators, we want to represent them as compositions of simpler ones, called gates,
that we know how to implement.

3Here we use the so-called Schrödinger picture of quantum mechanics. A physically equivalent
alternative view, the Heisenberg picture, has the states remaining constant in time, while the oper-
ators modeling properties of the state evolve by conjugation with a one-parameter group of unitary
operators.
4A few discrete symmetries can be modeled by anti-unitary transformations.



8 On Quantum Computation, Anyons, and Categories 213

Where classical computation uses bits, whose possible values are denoted by 0 and
1, quantumcomputation uses qubits. Ameasurement of a qubit produces two possible
values; the qubit itself is represented by a 2-dimensional Hilbert space, in which a
certain orthonormal basis, usually written {|0〉, |1〉}, corresponds to the two values.
In contrast to the classical case, though, the Hilbert space structure provides many
other states in addition to these two basic ones. Any non-zero linear combination of
|0〉 and |1〉 represents a possible state of the system. If the state is represented by the
unit vector x |0〉 + y|1〉, then measuring the qubit in the {|0〉, |1〉} basis will produce
the outcome 0 with probability |x |2 and the outcome 1 with probability |y|2. Such
a state is a superposition of the two basic states. More precisely, this state vector is
the superposition, with coefficients x and y, of the vectors |0〉 and |1〉, respectively.

It is more accurate to speak of superposition of vectors than of superposition of
states. The reason is that, although phase factors don’t affect the state represented
by a vector, relative phases do affect superpositions. Thus, for example, although |1〉
and −|1〉 represent the same state of a qubit, the superpositions (|0〉 + |1〉)/√2 and
(|0〉 − |1〉)/√2 represent quite different states.

It is almost true in general that, for any two states of any quantum system, any
superposition of the associated vectors also represents a possible state of that system.
The word “almost” in the preceding sentence refers to the possibility of superselec-
tion rules. These rules specify that, for certain quantities, like electric charge, it is
impossible to superpose two states with different values of those quantities. Thus,
when discussing a system for which several values of the electric charge can occur,
we are, in effect, dealing with several separate Hilbert spaces, called superselection
sectors, one for each value of the charge. One can, and sometimes one does, form
the direct sum of these Hilbert spaces to obtain a Hilbert space containing all the
possible states of that system, but most of the vectors in that direct sum, involving
superpositions with different charges, do not represent physically possible states. We
prefer, in this paper, to deal with superselection sectors as separate Hilbert spaces
and forgo their direct sum. For more information about superselection rules, see [4].

In reality, there are very few superselection rules—arising from certain conserved
quantities like electric charge, baryon number, and parity—but in the study and
application of anyons one often artificially adds superselection rules, and we shall
encounter such rules in the category-theoretic treatment below. This amounts to
deciding not to consider superpositions of vectors from certain Hilbert spaces, i.e.,
to consider those superselection sectors separately rather than considering their direct
sum.

In the presence of superselection rules, the operators that one considers are oper-
ators acting on each of the superselection sectors separately. In the case of true
superselection rules, the dynamics of the system and any gates that one could con-
struct are given by unitary operators acting on each sector separately. In the case of
artificial superselection rules, nature may not cooperate with our artificial rules, and
states in one sector may evolve out of that sector. Such evolution interferes with our
understanding and intentions; it is often called “leakage” and one strives to avoid it.
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In addition to the unitary operators mentioned above, Hermitian (or self-adjoint)
operators on the Hilbert space of states also play an important role in quantum
mechanics, because they model observable properties of a system. The connection
between Hermitian operators and (real-valued) observables is easy to describe in the
case of finite-dimensional Hilbert spaces H .5 Let the Hermitian operator A have
(distinct) eigenvalues a1, . . . , ak , with associated eigenspaces S1, . . . , Sk . (Some of
these eigenvalues may have multiplicity greater than 1, but they are to be listed only
once among the ai ’s. The associated Si will then have dimension greater than 1.)
These eigenspaces are orthogonal to each other, and their sum is all ofH . Any unit
vector |ψ〉 ∈ H can be expressed as the sum of its projections |φi 〉 to the subspaces
Si . Measuring A on a system in state |ψ〉 produces one of the eigenvalues ai ; the
probability of getting the result ai is the squared norm of the projection, ‖|φi 〉‖2. Note
that the dimension of H is an upper bound for the number of distinct eigenvalues
ai of any Hermitian operator onH . In particular, any measurement performed on a
qubit will have at most two possible outcomes. It is in this sense that a qubit is the
quantum analog of a classical bit.

8.2.2 Anyons

To understand anyons, it is useful to recall first that ordinary particles are of two sorts,
bosons and fermions. These differ in several respects, beginning with the action of
spatial rotations on the corresponding Hilbert spaces. For particles in ordinary 3-
dimensional space, the group SO(3) of Euclidean rotations of that space acts on the
states of the particle. (More precisely, the group of all Euclidean motions acts, but we
abstract from the particle’s position and consider only its orientation in space; thus
we ignore translations and consider only the group of rotations.) Because the vector
representing a state is defined only up to a phase factor, the action of the rotation
group is not a representation in the usual sense but a projective representation. This
means that each rotation g of physical 3-dimensional space is represented by a unitary
operator ρ(g) on the Hilbert space, but this ρ(g) is unique only up to a phase factor.
It is customary to make some arbitrary choice of these phase factors, so that we can
speak unambiguously of ρ(g). The arbitrariness of the choice is, however, reflected
in the fact that ρ(gh) and ρ(g)ρ(h) need not be equal but can differ by a phase
factor. Furthermore, ρ and ρ ′ are considered equivalent representations if they differ
only by these arbitrary phase factors. It is reasonable to ask, in this connection, why
the operators ρ(g) need to be unitary or even linear, rather than only linear up to
phase factors. The reason is that, unlike absolute phases, relative phases are relevant
in superpositions, so physical symmetries must preserve them.

It turns out that any projective representation ρ of SO(3) is given by a genuine
unitary representation ρ̃ of the universal covering group of SO(3), namely SU (2)

5In the infinite-dimensional case, the description is similar but one must take into account the
possibility of a continuous spectrum of the operator, in addition to or instead of discrete eigenvalues.
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(see for example [1] and [10]). That is, if p : SU (2) → SO(3) denotes the 2-to-
1 projection map, we have ρ ◦ p equivalent to ρ̃. More concretely, it means that
there are two sorts of projective representations of SO(3), up to equivalence. One
sort is the ordinary unitary representations of SO(3); the other is given by unitary
representations of SU (2) that send the non-trivial element−I of the kernel of p to the
operator−I . (Throughout this paper, we use I , sometimes with subscripts, to denote
identity transformations, functions, morphisms, etc.) The first sort of representation
corresponds to bosons, whose state vectors (not merely their states) are unchanged
when rotated gradually through a full revolution. The second sort corresponds to
fermions, where a rotation through 2π changes the state vector by a sign.

A second distinction between bosons and fermions, even more important for
our purposes, is the behavior of systems of several identical particles. Because the
particles are identical, any permutation of the particles leaves the state unchanged
and therefore changes the state vector by at most a phase factor. As a result, we have a
one-dimensional projective representation of the symmetric group.Again, it turns out
that there are just two possibilities (both of which are actual unitary representations
of the symmetric group). Either all permutations leave the state vectors unchanged, or
the even permutations leave the state vectors unchanged while the odd permutations
reverse the vectors’ signs.

A deep theorem of relativistic quantum field theory, the spin-statistics theorem,
says that these two behaviors of multi-particle states under permutations exactly
match the two behaviors of single-particle states under rotations. Interchanging two
identical bosons leaves the state vector of the pair unchanged; interchanging two
identical fermions reverses the sign of the state vector.

The preceding discussion of bosons and fermions depends crucially on the fact
that the particles are in ordinary 3-dimensional space. If particles were confined to a
2-dimensional space, more possibilities would arise.

Specifically, the rotation group in two dimensions, SO(2), has more sorts of
projective representations than SO(3) does; the reason is ultimately that the universal
covering group of the circle group SO(2) is the additive group of real numbers, and
the covering projection is not 2-to-1 but ∞-to-1. The result is that a gradual rotation
of a particle through 2π can multiply its state vector by an arbitrary phase factor, not
just ±1. The possibility of getting any phase here led to the name anyon.

Reducing the dimensionality of space from 3 to 2 also affects the possibilities for
permuting identical particles. For simplicity, consider the case where there are just
two particles, and we interchange them. We can perform the interchange gradually,
in the plane, by rotating the 2-particle system counterclockwise by π around the
midpoint between the particles. Alternatively, we can achieve the same interchange
by a clockwise rotation. In 3-dimensional space, these two options are equivalent
in the sense that they can be gradually deformed into each other, by rotating the
plane of the particles’ motion about the line through the particles’ initial positions.
In 2-dimensional space, there is no such deformation without making the particles
collide. Winding one particle around the other any number of times, we get infinitely
many ways to achieve one and the same permutation. With more than two particles,
there are more complicated ways to achieve the same permutation by moving the
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particles around in the plane. As a result, in place of (projective) representations of
symmetric groups, we have representations of braid groups. For example, in the case
of two particles, in place of the group of two possible permutations of the particles,
we have the group of all integers, with integer n representing a counterclockwise
rotation by nπ (and negative n representing clockwise rotations).

The preceding discussion was oversimplified in that (among other things) when
moving particles around each other, we ignored any rotation that the individual
particles might have undergone during the motion. A more accurate presentation
would need to suitably combine the braid and rotation groups.

8.2.3 Anyons in Reality

As explained above, anyons do not occur in 3-dimensional space; it is necessary
to reduce the number of spatial dimensions to 2. Since we live in a 3-dimensional
space, will we ever find anyons? It turns out that anyon-like behavior occurs for
certain excitations in materials that are so thin as to be effectively two-dimensional.
A detailed discussion of this would take us too far from the purpose of this paper, so
we refer the reader to Sect. 1.1 of [9].

We emphasize, however, that the anyons are not what one would ordinarily think
of as “particles” but rather excitations in some medium, which exhibit particle-like
behavior. It should be noted in this connection that it is not unusual, in other contexts,
for excitations to behave like particles and thus to be analyzed mathematically as if
they were particles. For example, vibrational excitations in crystal lattices are treated
as particles called phonons. Similarly, photons are excitations of the electromagnetic
field. In quantum field theory, all particles are excitations of the corresponding fields.

8.2.4 Anyons in Quantum Computation

Quantum computation is unpleasantly susceptible to environmental disturbances. Its
advantages over classical computation depend onmaintaining superpositions of state
vectors, with high precision in the coefficients of those vectors. Small disturbances
can easily modify those coefficients or, indeed, destroy superpositions altogether.
Significant effort must therefore be devoted to error correction, and this makes algo-
rithms slower and harder to design.

It has been suggested [6] that qubits could be more robust, i.e., less susceptible to
disturbances, if they were implemented using certain sorts of anyons. For example, if
qubitswere encoded in theway twoanyonswind around eachother, then thiswinding,
being a topological property of the system, would be robust. A small disturbance in
the actual motion of the anyons would leave the winding number intact. This hope
of reducing the error correction needs of quantum computing has motivated much
of the current interest in anyons.
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In this approach to quantum computation, braiding of anyons serves not only to
store information but also to process it. In general, as mentioned above, quantum
computation proceeds by initializing a quantum state, then applying a unitary trans-
formation to it, and finally measuring some observable in the resulting transformed
state. The unitary transformation used here must be designed so that a feasible mea-
surement produces a useful result. In addition, there must be a way to implement
the unitary transformation as the composition of a sequence of simpler unitary trans-
formations, usually called gates in this context. In the anyon approach to quantum
computation, the most basic unitary gates arise from the braiding of anyons around
each other, and a crucial question is whether these gates are universal in the sense
that arbitrary gates can be approximated by composing the basic ones.

It is worth noting explicitly that, in this picture, a qubit is not encoded in the state
of a single anyon but rather in a whole system of several anyons. This feature will
be quite prominent in the category picture described in the rest of this paper.

8.3 Modular Tensor Categories

In this section we describe the category-theoretic structure that has been developed
to support a mathematical theory of anyons. Much of what we describe here is in
[9], though we have modified some aspects and rearranged others.

Throughout this section,we letA be a category, intended to describe the quantum-
mechanical behavior of a system of anyons. A will carry several sorts of additional
structure, roughly classified as “additive” and “multiplicative” structure, all subject to
various axioms.We describe the structures and the axioms a little at a time.We begin
with the additive structure, because this is where Hilbert spaces enter the picture, so
it is the basis for the connection with the usual formalism of quantum theory.

The vectors in our Hilbert spaces will be the morphisms of A . Specifically, for
each pair of objects X,Y of A , the set Hom(X,Y ) of morphisms from X to Y will
have the structure of a Hilbert space. So we have many Hilbert spaces, one for each
pair X,Y of objects. Some of these Hilbert spaces will be mere combinations of
others, but there will still be several different “basic” Hilbert spaces. This means
physically that we regard the system as being subject to superselection rules, which
keep these Hilbert spaces separate.

We assume familiarity with some basic notions of category theory, specifically,
the notions of product (including terminal object, which is the product of the empty
family), coproduct (including initial object), equalizer, coequalizer, monomorphism,
epimorphism, isomorphism, functor, and natural transformation. Definitions and
examples can be found in [7] or [3, Chap. 1].
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8.3.1 Additive Structure

We begin by requiring A to be an abelian category. This requirement, formulated
in detail below, provides a well-behaved addition operation on each of the sets
Hom(X,Y ), although the requirement is formulated in purely category-theoretic
terms and does not explicitly mention this addition operation.

Axiom 1 (Abelian) A is an abelian category. That is

1. There is an object 0 that is both initial and terminal. A morphism that factors
through this zero object will be called a zero morphism and denoted by 0. Note
that each Hom(X,Y ) contains a unique zero morphism.

2. Every two objects have a product and a coproduct.
3. For everymorphism α : X → Y , the pair α, 0 has an equalizer and a coequalizer.

These are called the kernel and cokernel of α.
4. Every monomorphism is the kernel of some morphism, and every epimorphism

is the cokernel of some morphism.

This axiom has a surprisingly rich collection of consequences, developed in detail
in Chap.2 of [3]. We list here only some of the highlights, which will be important
for this paper, and we refer the reader to [3] for the proofs and additional information.

Proposition 1 ([3], Theorem 2.12) Any morphism that is both monic and epic is an
isomorphism.

(More generally, as one can easily check, in any category, any equalizer that is an
epimorphism is an isomorphism.)

Proposition 2 ([3], Theorem 2.35) The product and coproduct of any two objects
coincide.

That is, given two objects X and Y , there is an object X ⊕ Y that serves
simultaneously as the product of X and Y , with projections pX : X ⊕ Y → X and
pY : X ⊕ Y → Y , and as the coproduct of X andY , with injectionsuX : X → X ⊕ Y
and uY : Y → X ⊕ Y . (If X = Y , then our notations for the projections and injec-
tions become ambiguous, and we use p1, p2, u1, u2 instead.) For brevity, we often
refer to X ⊕ Y as the sum of X and Y , rather than as the product or coproduct.

As a product, X ⊕ X admits a diagonal morphismΔX : X → X ⊕ X , namely the
unique morphismwhose composites with both projections are the identity morphism
IX of X . Dually, as a coproduct, it admits the folding morphism ∇X : X ⊕ X → X ,
whose composites with both of the injections are IX . Using the diagonal and folding
morphisms, we can define a binary operation, called addition, on Hom(X,Y ) for any
objects X andY . Given f, g : X → Y , we define f + g : X → Y to be the composite

X
ΔX−→ X ⊕ X

f ⊕g−→ Y ⊕ Y
∇Y−→ Y,

where f ⊕ g is obtained from the functoriality of products (or of coproducts—they
yield the same result).
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Proposition 3 ([3], Theorems 2.37 and 2.39) This addition operation makes each
Hom(X,Y ) an abelian group, with the zero morphism serving as the identity of the
group. Composition of morphisms is additive with respect to both factors; that is,
when either factor is fixed, the composite f ◦ g is an additive function of the other
factor.

Axiom 2 (Vectors) Each of these abelian groups Hom(X,Y ) carries an operation of
multiplication by complex numbers, making Hom(X,Y ) a vector space over C, and
making composition of morphisms bilinear over C.

The complex vector spaces Hom(X,Y )will play the role of quantum-mechanical
state spaces. For this purpose, they should also be equipped with inner products,
making them Hilbert spaces, but, following [9], we refrain from assuming an inner
product structure at this stage of the development.6 It turns out that much of what
we shall do later does not depend on the availability of inner products in the vector
spaces Hom(X,Y ).

An object S in the abelian category A is called simple if S � 0 and every
monomorphism into S is either a zero morphism or an isomorphism. In other words,
S is a non-zero object with no non-trivial subobjects. Because of the abelian structure
of A , this definition can be shown (using [3, Theorem 2.11]) to be equivalent to its
dual: A non-zero object is simple if and only if it has no non-trivial quotients, i.e.,
every epimorphism out of S is either a zero morphism or an isomorphism.

Axiom 3 (Semisimple) Every object in A is a finite sum of simple objects.

This axiom considerably simplifies the structure of the vector spaces Hom(X,Y ).
In the first place, as shown in [3, Sect. 2.3], morphisms from a sum

⊕
j S j to another

sum
⊕

k S
′
k are given bymatrices of morphisms between the summands. Specifically,

the matrix associated to f : ⊕
j S j → ⊕

k S
′
k has as its a, b entry the composite

Sb
ub−→

⊕

j

S j
f−→

⊕

k

S′
k

p′
a−→ S′

a .

Composition of morphisms inA corresponds to the usual multiplication of matrices.
Furthermore, when the summands are simple, we have the following additional

information about the matrix entries, a generalization of Schur’s Lemma in group
representation theory.

Proposition 4 If f : S → S′ is a morphism between two simple objects, then f is
either the zero morphism or an isomorphism.

Proof The kernel of f is a monomorphism into S, and if it is an isomorphism then
f is zero. So, by simplicity of S, we may assume that the kernel of f is zero and
therefore (by [3, Theorem 2.17*]) f is a monomorphism. Similarly, by considering

6In fact, inner products are never explicitly assumed in [9]. They are, however, implicit in the
statement, in Sect. 5.1 of [9], that certain bases “are – of course – related by a unitary transformation”.
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the cokernel of f and invoking the simplicity of S′, we may assume that f is an
epimorphism. But then, by Proposition 1, f is an isomorphism. �

The last axiom in this subsection combines two finiteness assumptions.

Axiom 4 (Finiteness)

1. There are only finitely many non-isomorphic simple objects.
2. Each of the vector spaces Hom(X,Y ) is finite-dimensional over C.

The first of these two finiteness requirements is merely a technical convenience.
The second, however, gives the following important information about the endomor-
phisms of simple objects.

Proposition 5 If S is a simple object, then Hom(S, S) ∼= C.

Proof The operation of composition of morphisms is a multiplication operation
that makes the vector space Hom(S, S) into an algebra over C. Since S is simple,
Proposition 4 says that every non-zero element of this algebra is invertible. That is,
Hom(S, S) is a division algebra over C. But C is algebraically closed, so the only
finite-dimensional division algebra over it is C itself. �

Note that the isomorphism Hom(S, S) ∼= C in this proposition can be taken, as
the proof shows, to be an isomorphism of algebras, not just of vector spaces. In
particular, the identity morphism of S corresponds to the number 1.

Combining this proposition with our earlier observations about matrices, we find
that any morphism f : ⊕

j S j → ⊕
k S

′
k between any two objects in A is given by

a matrix whose entries are complex numbers. Moreover, the a, b entry is 0 unless
Sb ∼= S′

a . From this observation, it easily follows that, when an object X of A is
expressed as a sum

⊕
j S j of simple objects, the isomorphism types of the summands

Sj and theirmultiplicities are completely determined by X . That is, the representation
of X as a sum of simple objects is essentially unique.

8.3.2 Multiplicative Structure

In this subsection, we introduce the multiplicative structure that makesA a braided
monoidal category. The central idea is that, if objects X and Y represent certain
anyons, then X ⊗ Y should represent a system consisting of both of these anyons.
We must, however, remember that the Hilbert spaces that occur in this context are
not the objects of A but the vector spaces of morphisms between the objects.

A system consisting of two anyons of types X and Y would, if measured as a
whole, appear as another anyon, whose type might not be entirely determined by the
types X and Y . Formally, this means that X ⊗ Y is a sum of several simple objects.
Furthermore, there might be several “ways” for a composite system to appear as
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having a particular type Z , modeled as several morphisms from X ⊗ Y to Z , and our
Hilbert spaces will also contain superpositions of these.

The multiplicative structure will also include a unit object 1; its intended inter-
pretation is the vacuum. Thus, 1 ⊗ X and X ⊗ 1 amount to just X because a system
consisting of X and nothing is the same as X .

The first aspect of multiplicative structure can be stated rather briefly as the fol-
lowing axiom, but we expand it afterward because we shall need the details later.

Axiom 5 (Multiplication) A is a monoidal category.

This means that it is equipped with a “multiplication” functor ⊗ : A × A → A
and a “unit object” 1 that satisfy the usual associative and unit laws up to coherent
isomorphism. Let us first explain “satisfying the laws up to isomorphism” and then
discuss “coherent”.

Associativity would mean that A ⊗ (B ⊗ C) is the same as (A ⊗ B) ⊗ C for any
objects A, B,C (and similarly for morphisms). Associativity up to isomorphism
means that these objects need not be equal but they are isomorphic, and we are given
specific isomorphisms

αA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C)

for all A, B,C , and furthermore these isomorphisms constitute a natural transfor-
mation between functors A × A × A → A .

Similarly, the requirement that the object 1 be a unit up to isomorphism means
that we are given natural isomorphisms

λA : 1 ⊗ A → A and ρA : A ⊗ 1 → A.

As is well-known from classical algebra, the associative law implies associative
identities for more than three factors at a time; for example, if ∗ is an associative
operation, then all five of the possible parenthesizations of a ∗ b ∗ c ∗ d give the
same result. The analogous result for categories is that any natural isomorphism
α as above produces natural isomorphisms between any two parenthesizations of
A ⊗ B ⊗ C ⊗ D. There is, however, an embarrassment of riches, as we can build,
from α (and its inverse), several isomorphisms between such parenthesizations of
four factors. Specifically, the “extreme left” and “extreme right” parenthesizations
are connected by a product of three α’s:

((A ⊗ B) ⊗ C) ⊗ D
αA,B,C⊗ID−→ (A ⊗ (B ⊗ C)) ⊗ D

αA,B⊗C,D−→
A ⊗ ((B ⊗ C) ⊗ D)

IA⊗αB,C,D−→ A ⊗ (B ⊗ (C ⊗ D)).

The same two parenthesizations are connected by a product of two other α’s:

((A ⊗ B) ⊗ C) ⊗ D
αA⊗B,C,D−→ (A ⊗ B) ⊗ (C ⊗ D)

αA,B,C⊗D−→ A ⊗ (B ⊗ (C ⊗ D)).
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Fig. 8.1 The pentagon condition

One aspect of “coherence” is that these two transformations must agree, so that there
is a single, well-defined way of shifting the parentheses from the left to the right. This
requirement is often called the pentagon condition, because the diagram exhibiting
these two transformations together has the shape of a pentagon. In this connection,
the first composition, involving three morphisms, is sometimes called the “long side”
of the pentagon, and the second composition is the “short side”. In Fig. 8.1, the short
side is the top of the pentagon while the long side contains the vertical sides and the
bottom.

Another aspect of coherence is that two ways of simplifying (A ⊗ 1) ⊗ B should
agree, namely ρA ⊗ IB and

(A ⊗ 1) ⊗ B
αA,1,B−→ A ⊗ (1 ⊗ B)

IA⊗λB−→ A ⊗ B.

It is easy to think of other compositions of α’s, λ’s, and ρ’s that should agree, for
example the many ways of connecting different parenthesizations of five or more
factors. Fortunately, all of these requirements can be deduced from the two that we
have exhibited here. This isMacLane’s coherence theorem, andwe refer to Chap.VII
of [7] for its precise statement, its proof, and additional information about monoidal
categories.

The pentagon condition will play a major role in the rest of this paper, because
the associativity isomorphism α is often nontrivial and of considerable interest. The
unit isomorphisms λ and ρ, on the other hand, will play essentially no role, because
one can safely identify 1 ⊗ X and X ⊗ 1 with X and take λX = ρX = IX for all X .
From now on, we will make these simplifying identifications.

The idea that⊗ represents combining two anyons (or two systems of anyons) into
a single system suggests that this operation should be commutative, i.e., that X ⊗ Y
should be naturally isomorphic to Y ⊗ X . The next axiom postulates the existence
of such an isomorphism, with good behavior in connection with the associativity
isomorphism α.
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Axiom 6 (Braiding) The monoidal structure onA is equipped with a braiding, i.e.,
a natural isomorphism σX,Y : X ⊗ Y → Y ⊗ X subject to two requirements, first
that the following two composite isomorphisms be equal:

(A ⊗ B) ⊗ C
αA,B,C−→ A ⊗ (B ⊗ C)

σA,B⊗C−→ (B ⊗ C) ⊗ A
αB,C,A−→ B ⊗ (C ⊗ A)

and

(A ⊗ B) ⊗ C
σA,B⊗IC−→ (B ⊗ A) ⊗ C

αB,A,C−→ B ⊗ (A ⊗ C)
IB⊗σA,C−→ B ⊗ (C ⊗ A),

and, second, the analogous equality with each σX,Y replaced with σY,X
−1.

Recall, from Sect. 8.2.2, that anyons inhabit two-dimensional space and therefore,
when two of them are interchanged, it is necessary to keep track of how they move
around each other. A clockwise rotation by π around the midpoint between them is
not the same as, nor even deformable to, a counterclockwise rotation. So we should
describe σX,Y notmerely as switching X with Y but as doing so in a counterclockwise
direction. The choice of direction here is a matter of convention; σY,X

−1 is then the
clockwise rotation achieving the same interchange. Thus, we expect that, in general,
σX,Y �= σY,X

−1. (If these two were always equal, then we would have a symmetric
monoidal category rather than a braided one.)

A useful picture, often used in connection with braiding, is to imagine the factors
in a ⊗-product as being lined up from left to right. Then the counterclockwise inter-
change σX,Y amounts to moving X from the left of Y to the right of Y by passing X
in front of Y . σY,X

−1 also moves X from the left to the right of Y , but it does so by
passing X behind Y .

The equality of the two compositemorphisms in the definition of braiding is called
the hexagon condition (Fig. 8.2). In terms of moving anyons around each other, it
expresses the fact that moving A past B ⊗ C by passing A in front of B ⊗ C is
equivalent to first passing A in front of B and then passing A in front of C . The
hexagon condition for σY,X

−1 has a similar pictorial description with “in front of”
replaced with “behind”.

Fig. 8.2 The hexagon condition
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The last axiom in this subsection relates the multiplicative structure discussed
here with the additive structure from the preceding subsection.

Axiom 7 (Additive-Multiplicative)

1. The monoidal unit 1 is simple.
2. The product operation ⊗ is bilinear on morphisms.

In more detail, item (2) here means that the function

Hom(A, B) × Hom(C, D) → Hom(A ⊗ C, B ⊗ D)

given by the functoriality of⊗ is bilinear with respect to theC-vector space structures
of the Hom-sets. It follows from this, via results in [3, Sect. 2.4], that ⊗ distributes
over ⊕ on objects, i.e., that X ⊗ (Y ⊕ Z) is canonically isomorphic to (X ⊗ Y ) ⊕
(X ⊗ Z).

8.3.3 Duals, Twists, and Modularity

In this subsection, we collect some additional axioms to complete the definition of
modular tensor categories. These axioms will not play a role in the computations
we do later. We list them for the sake of completeness, but we make only a few
comments about them and refer the reader to [9, Sects. 4.3, 4.5, and 4.7] for more
thorough explanations.

Axiom 8 (Antiparticles) For each object X of A , there is a dual object X∗, and
there are two morphisms iX : 1 → X ⊗ X∗ and eX : X∗ ⊗ X → 1, such that the
compositions

X∗ IX∗⊗iX−→ X∗ ⊗ X ⊗ X∗ eX⊗IX∗−→ X∗

and
X

iX⊗IX−→ X ⊗ X∗ ⊗ X
IX⊗eX−→ X

are equal to the identitymorphisms IX∗ and IX , respectively. Furthermore, dualization
commutes with ⊗ and ⊕ and preserves 1 and 0.

For the sake of readability, we have exhibited the compositions in this axiom
without the parentheses and associativity isomorphisms that technically should be
there. We follow the same convention for iterated ⊗ below.

The intention behind this axiom is that, if X represents some particle, then X∗ rep-
resents its antiparticle. The morphism iX represents creation of a particle-antiparticle
pair from the vacuum, and eX represents annihilation of such a pair.

The operation of dualization becomes a contravariant functor from A to itself if
one defines the dual f ∗ of a morphism f : X → Y to be the composite
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Y ∗ IY∗ ⊗iX−→ Y ∗ ⊗ X ⊗ X∗ IY∗ ⊗ f ⊗IX∗−→ Y ∗ ⊗ Y ⊗ X∗ eY⊗IX∗−→ X∗.

Axiom 9 (Rotations) There is a natural isomorphism δ with components δX : X →
X∗∗ respecting the monoidal structure and duality in the sense that

δ1 = I1, δX⊗Y = δX ⊗ δY , and δX∗ = (δX
∗)−1.

By combining these δ isomorphisms with the morphisms i and e from duality,
one can obtain isomorphisms X → X that represent twisting an anyon by 2π ; see
[9, Sect. 4.5] for details.

Monoidal categories satisfying the “Antiparticles” axiom are called rigid, and
those that also satisfy the “Rotations” axiom are called ribbon categories.

Axiom 10 (Modularity) For any two simple objects X and Y , let sX,Y : 1 → 1 be
the morphism

1 = 1 ⊗ 1
iX⊗iY−→ X ⊗ X∗ ⊗ Y ⊗ Y ∗ IX⊗σX∗,Y⊗IY−→ X ⊗ Y ⊗ X∗ ⊗ Y ∗

IX⊗σY,X∗⊗IY−→ X ⊗ X∗ ⊗ Y ⊗ Y ∗ δX⊗IX∗⊗δY⊗IY∗−→ X∗∗ ⊗ X∗ ⊗ Y ∗∗ ⊗ Y ∗
eX∗⊗eY∗−→ 1 ⊗ 1 = 1.

SinceHom(1, 1) = C, thesemorphisms sX,Y constitute amatrix of complexnumbers,
with rows and columns indexed by the isomorphism classes of simple objects. This
matrix is required to be invertible.

Notice that, if A were not merely braided but symmetric, then the σ ’s and the
σ−1’s in this composite would cancel out, and we would have sX,Y = tX tY where tX
is the composite

1
iX−→ X ⊗ X∗ δX⊗IX∗−→ X∗∗ ⊗ X∗ eX∗−→ 1,

and similarly for tY . Thus, the matrix s described in the modularity axiom would be
the product of a column vector by a row vector (in this order). Such a matrix has
rank at most 1. By requiring this matrix to be invertible, the axiom says that, as far
as the rank of this matrix is concerned, the braiding is as far as possible from being
symmetric.

8.4 Yoneda Simplification

In this section, we point out a simplification of the additive structure ofA , based on
Yoneda’s Lemma. That lemma (see [7, Sect. 3.2]) says roughly that an object in any
category is determined, up to isomorphism, by the morphisms into it. More precisely,
any category C is equivalent to a full subcategory of the category Ĉ of contravariant
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functors from C to the category of sets.7 Under this equivalence, any object X of
C corresponds to the functor Hom(−, X), i.e., the functor sending each object U of
C to the set of morphisms U → X and sending each morphism f : U → V to the
operation Hom(V, X) → Hom(U, X) of composition with f .

In the case of our categoryA , we can greatly simplify ˆA while still maintaining
the Yoneda equivalence. In the first place, since every objectU ofA is a finite sum,
and thus in particular a coproduct, of simple objects, U = ⊕

j∈F S j , morphisms
U → X amount to F-indexed families of morphisms Sj → X . More precisely, any
f : U → X is determined by the composite morphisms f ◦ u j : Sj → X , and, con-
versely, any family of morphisms g j : Sj → X arises in this way from a unique
morphism U → X . Thus, A is equivalent to a full subcategory of the category Ŝ
of set-valued functors on the category S of simple objects in A .

Up to equivalence, we need not use all the simple objects; it suffices to have at
least one representative from each isomorphism class of simple objects. So we can
replace theS of the preceding paragraph by a skeleton of it, i.e., a full subcategory
S0 consisting of just one representative per isomorphism class.

The structure of this new, skeletal S0 admits, thanks to the finiteness axiom
and Proposition 4 the following description. There are finitely many objects. The
morphisms from any object to itself form a copy of C. If U and V are distinct
objects, then the only morphism from U to V is zero.

As a result, the Yoneda embedding, simplified as above, sends each object X of
A to a finite family of vector spaces, indexed by the simple objectsU inS0, namely
the vector spaces Hom(U, X). Furthermore, the morphisms X → Y inA are given
by arbitrary families of linear maps gU : Hom(U, X) → Hom(U,Y ) between cor-
responding vector spaces. The reason for “arbitrary” is that, because of the paucity
of morphisms in S0, all such families automatically satisfy the commutativity con-
ditions required in order to be natural transformations and thus to be morphisms in
the functor category Ŝ0.

Summarizing, we have that, up to equivalence of categories,A can be described
as the category whose objects (resp. morphisms) are families of finite-dimensional
vector spaces (resp. linear maps), indexed by the objects of S0. Furthermore, it is
easy to check that sums inA are given, via this equivalence, by direct sums of vector
spaces.

In otherwords, the additive structure ofA is trivial. The interesting structure is the
monoidal structure, and this can be quite complicated. In particular, the associativity
isomorphismsα and thebraiding isomorphismsσ , thoughgiven (like anymorphisms)
by linear maps, need not have a particularly simple structure.

The analysis of the multiplicative structure of A can be facilitated by taking
advantage of the semisimplicity of A and the fact that ⊗ distributes over ⊕. If
we know how ⊗ acts on simple objects, distributivity determines how it acts on
sums of simple objects, and, by semisimplicity, those are all the objects. Moreover,

7There are set-theoretic issues if C is a proper class rather than a set, but these issues need not
concern us here. The finiteness conditions imposed on our anyon category A ensure that it is
equivalent to a small, i.e., set-sized, category.
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because the associativity andbraiding isomorphisms are natural, and thus in particular
commute with the injection and projection morphisms of sums, the behavior of these
isomorphisms on arbitrary objects is determined by their behavior on simple objects.
Better yet, the pentagon and hexagon conditions will be satisfied in general as soon
as they are satisfied for simple objects.

Thus, the additive and multiplicative structure ofA can be completely described
by giving

1. a complete list of non-isomorphic simple objects (including the unit or vacuum
1),

2. for each pair of objects in this list, their ⊗-product, expressed as a sum of objects
from the list,

3. the associativity isomorphisms αX,Y,Z for all X,Y, Z in the list, and
4. the braiding isomorphisms σX,Y for all X,Y in the list,

subject to the pentagon and hexagon conditions.
We shall not be concerned here with duality and ribbon structure, but it could also

be reduced to a consideration of the simple cases.
Often, items (1) and (2) here determine or at least greatly constrain items (3) and

(4) via the pentagon and hexagon conditions. One such situation is the subject of the
next section. Other examples, both of strong constraints on (3) and (4) and of weak
constraints can be found in [2].

8.5 Fibonacci Anyons

8.5.1 Definition and Additive Structure

In this section, we consider the special case of Fibonacci anyons. These are defined
by specifying the category A as follows. There are just two simple objects, 1 (the
vacuum, the unit for ⊗) and τ . Each is its own dual. (Recall that Axiom 8 requires
each object to have a dual; dualization is additive, so we need only specify the duals
of the simple objects.) The monoidal structure is given by τ ⊗ τ = 1 ⊕ τ (plus the
fact that 1 is the unit, so 1 ⊗ τ = τ ⊗ 1 = τ and 1 ⊗ 1 = 1).

The terminology “Fibonacci anyon” comes from the fact, easily verified using the
distributivity of ⊗ over ⊕, that iteration of ⊗ gives τ⊗n = fn−1 · 1 ⊕ fn · τ , where
the f ’s are the Fibonacci numbers defined by the recursion f−1 = 1, f0 = 0, and
fn+1 = fn + fn−1. Here and below, we use the notation k · S to mean the sum of k
copies of the object S of A . (The notation makes sense for arbitrary objects S, but
we shall need it only for simple S.)

As explained in Sect. 8.4, we can identify the category A with the category of
pairs (V1, Vτ ) of finite-dimensional complex vector spaces. Explicitly, an object X
is identified with the pair (Hom(1, X),Hom(τ, X)). In particular, the unit 1 in A
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is identified with (C, 0), and τ is identified with (0, C). This identification respects
the additive structure: ⊕ inA corresponds to componentwise direct sum of pairs of
vector spaces.

8.5.2 Tensor Products

The multiplicative structure of A , on the other hand, is quite far from component-
wise tensor product of vector spaces, as the latter would make τ ⊗ τ = τ (because
C ⊗ C ∼= C). Our goal in the rest of this paper is to determine the multiplicative
structure in terms of pairs of vector spaces.

The equation τ n = fn−1 · 1 ⊕ fn · τ mentioned above already determines that
structure as far as the objects are concerned, but there remains much to be said about
the morphisms.

Amorphism fromone pair of vector spaces (V1, Vτ ) to another such pair (W1,Wτ )

is a pair of linear transformations (m1 : V1 → W1,mτ : Vτ → Wτ ). We can think of
it as a pair of matrices, provided we fix bases for all the vector spaces involved here.

The choice of bases involves considerable arbitrariness, but there is a (somewhat)
helpful guiding principle, namely that, if we have already chosen bases for two vector
spaces, then the union of those bases serves naturally as a basis for the direct sum of
those vector spaces. Some caution is needed, though, because the same vector space
can arise as a direct sum in several ways and can thus have several equally natural
bases. Indeed, much of our work belowwill be finding the transformations that relate
such bases.

The guiding principle tells us nothing about choosing bases for the one-dimen-
sional spaces V1 and Vτ in the pairs 1 = (V1, 0) and τ = (0, Vτ ). There isn’t even any
non-zero morphism between these simple objects to suggest a correlation between
the choice of bases. Nor do we get canonical bases here by evaluating compound
expressions that fuse to τ or to 1 or to a sum of these. So we might as well identify
these one-dimensional spaces with C and use the number 1 as the basis vector in
both of them.

Then τ ⊗ τ = 1 ⊕ τ = (C, C) already has a basis for each of the two vector
spaces. Let us turn to the triple product

τ ⊗ (τ ⊗ τ) = τ ⊗ (1 ⊕ τ) = (τ ⊗ 1) ⊕ (τ ⊗ τ) = τ ⊕ (1 ⊕ τ) = 1 · 1 ⊕ 2 · τ.

As a pair of vector spaces, it is isomorphic to (C, C
2), but we have some additional

information about it, namely that it was obtained as the sum of τ ⊗ 1 = τ and τ ⊗
τ = 1 ⊕ τ . Our guiding principle thus suggests choosing a basis in C

2 that respects
this sum decomposition. That is, one of the basis vectors in C

2 should come from
the first τ and the other should come from the second summand, 1 ⊕ τ .

Consider, however, the analogous computation with the other way of parenthe-
sizing the triple product:
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(τ ⊗ τ) ⊗ τ = (1 ⊕ τ) ⊗ τ = (1 ⊗ τ) ⊕ (τ ⊗ τ) = τ ⊕ (1 ⊕ τ) = 1 · 1 ⊕ 2 · τ.

It also leads to the pair of vector spaces (C, C
2), and it also provides a suggestion

for a basis of C
2. There is, however, no guarantee that this suggestion agrees with

the one in the preceding paragraph. We shall see below that the two suggestions
are actually guaranteed to disagree. We have two bases for C

2, and there will be a
non-trivial matrix transforming the one into the other. We shall find that this matrix
is almost uniquely determined.

There could, a priori, have also been two different natural bases for the first
component C in τ⊗3, although we shall see that, in this particular situation, they
coincide.

These basis transformationmatrices, relating the bases that arise from τ ⊗ (τ ⊗ τ)

and from (τ ⊗ τ) ⊗ τ , amount to the associativity isomorphismατ,τ,τ in the definition
of the monoidal category A .

Recall from Sect. 8.4 that all the associativity isomorphisms ofA are determined
by those with simple objects as subscripts. One of these is the ατ,τ,τ mentioned just
above; the others involve one or more 1’s in the subscript. Fortunately, all those
others are identity maps, thanks to the identification of 1 ⊗ X and X ⊗ 1 with X . So
the entire associativity structure of A comes down to two matrices, a 2 × 2 matrix
relating the two bases for C

2 and a number (a 1 × 1 matrix) relating the two bases
for C. These matrices are subject to the constraint given by the pentagon condition
(Fig. 8.1). Below, we shall calculate that constraint explicitly. It will almost uniquely
determine α.

We shall also calculate the constraint imposed by the hexagon condition on the
braiding isomorphisms σ (Fig. 8.2). Again, the only component that needs to be
computed is στ,τ . The components where at least one subscript is 1 are trivial, and
the components with non-simple objects as subscripts reduce, by distributivity, to
ones with simple subscripts.

8.5.3 Notation for Basis Vectors

In order to compute the isomorphisms ατ,τ,τ and στ,τ for Fibonacci anyons, we
shall view them as matrices, using suitable bases for the relevant vector spaces, and
we shall calculate the constraints imposed on those matrices by the pentagon and
hexagon conditions. We begin by setting up a convenient notation for those bases.

The domains and codomains of the morphisms under consideration are obtained
from τ and 1 by iterated⊗. Wemust, of course, be careful about the parenthesization
of such⊗-products because, as we saw above, different parenthesizations can lead to
different bases; indeed, ατ,τ,τ contains exactly the information about how two such
bases are related.

In general, given a parenthesized⊗-product of τ ’s and 1’s, we can use the defining
equations for Fibonacci anyons, particularly τ ⊗ τ = 1 ⊕ τ , and the distributivity of
⊗ over ⊕, to convert the given product into a sum of τ ’s and 1’s. Each summand in
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that sum arises from the original product as a result of certain choices of 1 or τ when
expanding some occurrences of τ ⊗ τ .

For example, in the equation

τ ⊗ (τ ⊗ τ) = τ ⊗ (1 ⊕ τ) = (τ ⊗ 1) ⊕ (τ ⊗ τ) = τ ⊕ (1 ⊕ τ) = 1 · 1 ⊕ 2 · τ

considered above, the summand 1 at the right end of the equation arose from the
τ ⊗ (τ ⊗ τ) at the left end by first choosing the summand τ in the evaluation of
(τ ⊗ τ) at the first step in the equation, and then, after applying the distributive law
at the second step, choosing the summand 1 in the evaluation of τ ⊗ τ at the third
step. These choices can be visualized as the tree

τ
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��
��

��
��

��
τ
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��
��

τ
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��
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�

τ
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1

or, in a more compressed notation,

(τ ·
1
(τ ·

τ
τ )).

Here the three τ ’s and the parentheses describe the ⊗-product τ ⊗ (τ ⊗ τ) that we
began with, and the symbols under the dots indicate the choice of summand at each
step. The inner ·

τ
indicates that, from the evaluation of the inner τ ⊗ τ = 1 ⊕ τ , we

chose the τ summand. After applying distributivity, that leads us to τ ⊗ τ , from
which, as indicated by the outer ·

1
, we chose the summand 1.

The other possible choices during the same evaluation would be written

(τ ·
τ
(τ ·

τ
τ )) and (τ ·

τ
(τ ·

1
τ))

and depicted by the trees
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.
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The first of these indicates that, as before, we chose the τ summand when evaluating
the inner ⊗, obtaining, when distributivity is applied, the summand τ ⊗ τ = 1 ⊕ τ ,
but then we chose the τ rather than the 1. The second indicates that, when evaluating
the inner τ ⊗ τ , we chose the summand 1, so that, after applying distributivity, we got
τ ⊗ 1.Here, there is no choice remaining to bemade; τ ⊗ 1 is simply τ . Nevertheless,
we write τ under the outer dot and at the root of the tree, to make it obvious that the
final result here is τ .

In what follows, we shall systematically use the compressed notation, but the
reader can easily draw the tree diagrams. Indeed, these diagrams are just the parse
trees of the compressed notations. The trees can also be viewed as a sort of Feynman
diagrams, depicting how the anyons at the leaves of the tree fuse on their way to the
root.

In our notation, we write a product of τ ’s or 1’s, with τ ’s or 1’s also under the
dots, to represent specific summands (1 or τ ) in the fully distributed expansion of a
⊗-product of τ ’s and 1’s. To evaluate (X ·

1
Y ), first evaluate X and Y ; then apply ⊗

to them; and then take the 1 summand in the result. To evaluate (X ·
τ
Y ) do the same

except that you take the τ summand in the result. These notations will never be used
in situations where they would be meaningless because the required summand is not
present in the result; that is, we never write (X ·

1
Y ) when one of X,Y evaluates to 1

and the other to τ , for then⊗ yields only τ ; and we never write (X ·
τ
Y )when both of

X,Y evaluate to 1. As in one of the examples above, we include the subscript under
the dot even when that subscript is forced because one of the factors evaluates to 1.

Notice that our notation provides symbols, like the three examples above, that
denote not only an object 1 or τ (which can be read off by just looking under the
outermost dot in the notation) but also a particular occurrence of that 1 = (C, 0)
or τ = (0, C) as a subspace (direct summand) of a specific ⊗-product, namely the
product with the same factors and the same parentheses as in our notation.

In other words, if we are given a parenthesized ⊗-product of 1’s and τ ’s, repre-
senting the pair of vector spaces (V1, Vτ ), then by replacing each ⊗ by either ·

1
or

·
τ
, we obtain (either a meaningless expression because some required summand is

absent or) a notation for a subspace of V1 or Vτ . It denotes a subspace of V1 (resp.
Vτ ) just in case the outermost ⊗ was replaced by ·

1
(resp. ·

τ
).

Our notation provides names for certain summands 1 = (C, 0) or τ = (0, C) of
certain objects (V1, Vτ ) of the Fibonacci category A . We shall also use the same
notation for the resulting basis vectors. That is, once we have a copy of, say, (C, 0)
in (V1, Vτ ), the number 1 in C corresponds to some vector in V1, and we shall use
the same notation for this vector as for the summand. The same goes for the case of
copies of (0, C) in (V1, Vτ ); they provide vectors in Vτ .

Notice that, if we begin with some parenthesized ⊗-product of 1’s and τ ’s, with
value (V1, Vτ ) inA , and if we form all possible (meaningful) notations by replacing
⊗ by ·

1
or ·

τ
, then the resulting vectors, as described in the preceding paragraph,

constitute bases for the vector spaces V1 and Vτ . This observation is just a restatement
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of the fact that the original parenthesized⊗-product is the direct sum of all the simple
objects obtainable by making the choices indicated by the subscripts in our notation.

8.5.4 Associativity

Now that we have a general notation system for the basis vectors in parenthesized
⊗-products, we turn to the specific cases involved in associativity and the pentagon
condition.

The unique “interesting” component of associativity, ατ,τ,τ , which we sometimes
abbreviate as simply α, is an isomorphism from (τ ⊗ τ) ⊗ τ to τ ⊗ (τ ⊗ τ), both
of which are, as pairs of vector spaces, a 1-dimensional V1 and a 2-dimensional Vτ .
The first parenthesization gives a basis vector

((τ ·
τ
τ ) ·

1
τ) for V1

and two basis vectors

((τ ·
1
τ) ·

τ
τ ) and ((τ ·

τ
τ ) ·

τ
τ ) for Vτ .

The second parenthesization similarly gives a basis vector

(τ ·
1
(τ ·

τ
τ )) for V1

and two basis vectors

(τ ·
τ
(τ ·

1
τ)) and (τ ·

τ
(τ ·

τ
τ )) for Vτ .

Our task is to compute the transformation α between these bases.8 This α has two
components, the first relating two bases of the one-dimensional space V1 and the
second relating two bases of the two-dimensional space Vτ . These are given, respec-
tively, by a non-zero number p such that

((τ ·
τ
τ ) ·

1
τ) = p(τ ·

1
(τ ·

τ
τ ))

8We have chosen to regard V1 and Vτ as each being a single space, independent of the parenthesiza-
tion. The different parenthesizations give (possibly) different bases for these spaces. An alternative
view is that each parenthesization gives its own V1 and Vτ , isomorphic to C and C2 respectively,
with their standard bases, while α gives an isomorphism between the two V1’s and an isomorphism
between the two Vτ ’s. The two viewpoints are easily intertranslatable and the computations that
follow would be the same in either picture.
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and a non-singular matrix

(
q r
s t

)
such that

((τ ·
1
τ) ·

τ
τ ) = q(τ ·

τ
(τ ·

1
τ)) + r(τ ·

τ
(τ ·

τ
τ ))

((τ ·
τ
τ ) ·

τ
τ ) = s(τ ·

τ
(τ ·

1
τ)) + t (τ ·

τ
(τ ·

τ
τ )).

Here “non-zero” for p and “non-singular” for the matrix embody the requirement
that α is an isomorphism.

We shall now investigate the constraints imposed on p, q, r, s, t by the pentagon
condition.

(τ ⊗ τ) ⊗ (τ ⊗ τ)

ατ,τ,τ⊗τ

����������������

((τ ⊗ τ) ⊗ τ) ⊗ τ

ατ⊗τ,τ,τ

����������������

ατ,τ,τ ⊗ Iτ
��

τ ⊗ (τ ⊗ (τ ⊗ τ))

(τ ⊗ (τ ⊗ τ)) ⊗ τ
ατ,τ⊗τ,τ

�� τ ⊗ ((τ ⊗ τ) ⊗ τ)

Iτ ⊗ ατ,τ,τ

		

That condition involves the ⊗-product of four τ ’s, parenthesized in five ways, and
we shall need to consider the natural bases for all five parenthesizations. Since τ⊗4 =
(C2, C

3), each parenthesization will give two vectors as a basis for the 1 component
and three as a basis for the τ component. We begin by considering the τ components,
whose bases are displayed below. (There is no significance to the chosen ordering of
the five bases, nor the ordering of the three vectors within each basis.)

(((τ ·
τ
τ ) ·

1
τ) ·

τ
τ ) (((τ ·

1
τ) ·

τ
τ ) ·

τ
τ ) (((τ ·

τ
τ ) ·

τ
τ ) ·

τ
τ )

((τ ·
1
τ) ·

τ
(τ ·

τ
τ )) ((τ ·

τ
τ ) ·

τ
(τ ·

1
τ)) ((τ ·

τ
τ ) ·

τ
(τ ·

τ
τ ))

((τ ·
1
(τ ·

τ
τ )) ·

τ
τ ) ((τ ·

τ
(τ ·

1
τ)) ·

τ
τ ) ((τ ·

τ
(τ ·

τ
τ )) ·

τ
τ )

(τ ·
τ
((τ ·

τ
τ ) ·

1
τ)) (τ ·

τ
((τ ·

1
τ) ·

τ
τ )) (τ ·

τ
((τ ·

τ
τ ) ·

τ
τ ))

(τ ·
τ
(τ ·

1
(τ ·

τ
τ ))) (τ ·

τ
(τ ·

τ
(τ ·

1
τ))) (τ ·

τ
(τ ·

τ
(τ ·

τ
τ )))

Each row in this picture is a basis for the 3-dimensional Vτ ; specifically, it is the basis
arising from the same parenthesization of τ ⊗ τ ⊗ τ ⊗ τ as the parenthesization in
our notation.

When writing transformation matrices between these bases, we must regard each
basis as given in a specific order, because rows of a matrix come in an order. We
(arbitrarily) choose the orders in which the bases are displayed above.

The five isomorphisms that appear in the pentagon condition amount to five trans-
formations between these bases. Let us consider these one at a time, beginning with
the one connecting the first two bases in the table. Here we are dealing with the
isomorphism
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ατ⊗τ,τ,τ : (((τ ⊗ τ)⊗)τ ⊗ τ) → ((τ ⊗ τ) ⊗ (τ ⊗ τ)).

The first subscript of this α, namely τ ⊗ τ , can be decomposed as the sum 1 ⊕ τ , and
the naturality of α then implies that ατ⊗τ,τ,τ is the direct sum of α1,τ,τ and ατ,τ,τ . The
first of these two summands is the identity, like all associativity isomorphisms where

one of the three factors is 1. The second summand is given by our matrix

(
q r
s t

)
. As

a result, we find that the transformation ατ⊗τ,τ,τ connecting the first two bases in our
list is (taking into account the order in which the basis vectors are listed)

ατ⊗τ,τ,τ =
⎛

⎝
0 q r
1 0 0
0 s t

⎞

⎠ .

In this matrix, the 1 in the (2,1) position and the two zeros in its row arise from the
fact that the identity map α1,τ,τ sends the second vector in our first basis to the first
vector in the second basis. Had we listed (((τ ·

1
τ) ·

τ
τ ) ·

τ
τ ) first rather than second in

our first basis, the matrix for ατ⊗τ,τ,τ would have been a block diagonal matrix with
1 in the upper left corner.

An exactly analogous computation gives the isomorphism between the second
and the last bases in our list:

ατ,τ,τ⊗τ =
⎛

⎝
q 0 r
0 1 0
s 0 t

⎞

⎠

Multipying these two matrices, we get the transformation from the first basis
(parenthesized to the left) to the last (parenthesized to the right) that corresponds
to the “short” side of the pentagon (two morphisms, across the top of the diagram).
This product is ⎛

⎝
rs q rt
q 0 r
st s t2

⎞

⎠ .

Turning to the long side of the pentagon (three morphisms), we find that the
middle one, corresponding to rows 3 and 4 in our list of bases and to the bottom of
the diagram, is quite analogous to the two that we have already computed. It is

ατ,τ⊗τ,τ =
⎛

⎝
q 0 r
0 1 0
s 0 t

⎞

⎠ .

The remaining two isomorphisms for the long side of the pentagon (the vertical
arrows in the diagram) are a bit different, as they involve α’s on three of the four
factors and an identitymap on the remaining factor. Let us considerατ,τ,τ ⊗ Iτ , which
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connects the first basis in our list to the third. In effect, this ignores the rightmost
factor and acts like α on the first three factors. In other words, it is given by the same
matrix as the transformation from the basis

((τ ·
τ
τ ) ·

1
τ) ((τ ·

1
τ) ·

τ
τ ) ((τ ·

τ
τ ) ·

τ
τ )

to the basis
(τ ·

1
(τ ·

τ
τ )) (τ ·

τ
(τ ·

1
τ)) (τ ·

τ
(τ ·

τ
τ )).

Notice that, in each of these bases the first element is in the V1 component, so that
component of α, namely p, enters the picture. Indeed, the matrix connecting these
bases is

ατ,τ,τ ⊗ Iτ =
⎛

⎝
p 0 0
0 q r
0 s t

⎞

⎠ .

Similarly, the remaining isomorphism on the long side of the pentagon is also

Iτ ⊗ ατ,τ,τ =
⎛

⎝
p 0 0
0 q r
0 s t

⎞

⎠ .

Multiplying the three matrices for the long side of the pentagon, and equating, as
the pentagon condition requires, the resulting product to the product that we obtained
for the short side of the pentagon, we have

⎛

⎝
p2q prs prt
prs q2 + rst qr + r t2

pst qs + st2 rs + t3

⎞

⎠ =
⎛

⎝
rs q rt
q 0 r
st s t2

⎞

⎠ .

This is the Vτ part of the pentagon condition. Before turning to the V1 part, let us
extract as much information as possible from the matrix equation that we have just
derived.

Suppose, toward a contradiction, that p �= 1. Then the (1,3) and (3,1) components
of our matrix equation give r t = st = 0, so either r = s = 0 or t = 0. If r = s = 0,
then the (1,2) component of the matrix equation gives that q = 0 also, but this

contradicts the fact that

(
q r
s t

)
is non-singular. There remains the case that t = 0.

Then the (2,2) component says q = 0, the (2,3) component says r = 0, and we again

contradict the non-singularity of

(
q r
s t

)
. So we have contradictions in all cases if

p �= 1.
So p = 1. Now the (1,1) entry of the matrix equation gives q = rs. Substituting

that into the (2,2) component, we get q(q + t) = 0, so either q = 0 or q = −t . The
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first of these options leads, via the (1,2) entry, to rs = 0 and thus to a contradiction
to non-singularity, as before. Therefore q = −t .

From the (2,3) and (3,2) entries, we get that (q + t2)r = r and (q + t2)s = s.
We cannot have both r = 0 and s = 0, as that would give q = 0 in the (1,2) entry
and contradict non-singularity. So we must have q + t2 = 1. In view of q = −t , this
means q2 + q − 1 = 0 and therefore

q = −t = −1 ± √
5

2
.

This evaluation of q and t , together with the earlier results

p = 1 and rs = q,

satisfy, as one easily checks, the entire matrix equation above. The least trivial item to
check is the (3,3) entry, rs + t3 = t2, which, in view of the equations above, becomes
q − q3 = q2, i.e., 0 = q(q2 + q − 1), and this is true because q was obtained as a
solution of q2 + q − 1 = 0.

All of the preceding calculation was based on the Vτ component of τ⊗4; we still
have the V1 component of the pentagon equation to work out. Again, we have a list
of five bases, now for a 2-dimensional space, as follows.

(((τ ·
1
τ) ·

τ
τ ) ·

1
τ) (((τ ·

τ
τ ) ·

τ
τ ) ·

1
τ)

((τ ·
1
τ) ·

1
(τ ·

1
τ)) ((τ ·

τ
τ ) ·

1
(τ ·

τ
τ ))

((τ ·
τ
(τ ·

1
τ)) ·

1
τ) ((τ ·

τ
(τ ·

τ
τ )) ·

1
τ)

(τ ·
1
((τ ·

1
τ) ·

τ
τ )) (τ ·

1
((τ ·

τ
τ ) ·

τ
τ ))

(τ ·
1
(τ ·

τ
(τ ·

1
τ))) (τ ·

1
(τ ·

τ
(τ ·

τ
τ )))

Computations analogous to (but shorter than) the earlier ones give, for the short
side of the pentagon,

ατ⊗τ,τ,τ =
(
1 0
0 p

)
and ατ,τ,τ⊗τ =

(
1 0
0 p

)
.

So the product for the short side is simply

(
1 0
0 p2

)
. For the long side, we get

ατ,τ⊗τ,τ =
(
1 0
0 p

)

and

ατ,τ,τ ⊗ Iτ = Iτ ⊗ ατ,τ,τ =
(
q r
s t

)
.
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Equating the product of the long side and the product of the short side, we get

(
1 0
0 p2

)
=

(
q2 + prs qr + ptr
qs + pts rs + pt2

)
.

This matrix equation is automatically satisfied because of the equations that we
had already derived from the Vτ component of the pentagon condition. So there is
no new information in the V1 component.

We can, however, get some additional information if we impose the require-
ment that the associativity isomorphisms be unitary transformations. This amounts
to requiring the vector spaces of morphisms Hom(X,Y ) to be Hilbert spaces and
requiring our natural bases for them to be orthonormal.

Unitarity tells us nothing new about p, since we already know p = 1, but unitarity

of

(
q r
s t

)
gives the equations

q2 + |r |2 = q2 + |s|2 = 1 and q(s̄ − r) = q(s − r̄) = 0,

where bars denote complex conjugation and where we used the fact that q is real. So
s = r̄ and, since rs = q, we get first that q has to be positive,

q = −1 + √
5

2
,

and second that
r = √

qeiθ and s = √
qe−iθ

for some real θ . Thus, we finally have, under the assumption of unitarity,

ατ,τ,τ =
⎛

⎝
1 0 0
0 q

√
qeiθ

0
√
qe−iθ −q

⎞

⎠

with q = −1+√
5

2 and θ arbitrary. The presence of θ here is an artifact of our choice of
bases. If we modified the final vector in each of our bases, ((τ ·

τ
τ ) ·

τ
τ ) in the domain

of ατ,τ,τ and (τ ·
τ
(τ ·

τ
τ )) in the codomain, by a phase factor e−iθ , then, with respect

to the new bases, we would have

ατ,τ,τ =
⎛

⎝
1 0 0
0 q

√
q

0
√
q −q

⎞

⎠ .
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8.5.5 Braiding

We now turn to the task of computing the braiding σ in the Fibonacci anyon category
A . The only nontrivial component of the natural isomorphism σ is στ,τ , because
components with a subscript 1 are identity morphisms and components with non-
simple subscripts reduce to direct sums of components with simple subscripts.

The nontrivial component στ,τ is an isomorphism from τ ⊗ τ = 1 ⊕ τ to itself.
Representing objects of A by pairs of vector spaces, we have that στ,τ is an auto-
morphism of (C, C), so it amounts to two non-zero scalars, a multiplying vectors
in the first (1) component and b multiplying vectors in the second (τ ) component.
These are subject to the hexagon identity, which equates the composites

τ ⊗ (τ ⊗ τ)
στ,τ⊗τ �� (τ ⊗ τ) ⊗ τ

ατ,τ,τ



											

(τ ⊗ τ) ⊗ τ

ατ,τ,τ

��












στ,τ ⊗ Iτ 

											 τ ⊗ (τ ⊗ τ)

(τ ⊗ τ) ⊗ τ
ατ,τ,τ

�� τ ⊗ (τ ⊗ τ)

Iτ ⊗ στ,τ

��












as well as the analogous identity with σ−1 in place of σ .
Consider the first (1) component of this equation. In the bottom composition, the

στ,τ factors in the first and third morphisms must act on the τ components so that the
⊗-product with Iτ has a 1 component. So both of these are b. The α between them,
acting on the 1 component, is an identity map, because our previous calculation gave
p = 1. So the bottom of the hexagon is b2. In the top, both of the α’s are again just 1.
The σ in the middle of that row is στ,1⊕τ , i.e., the direct sum of στ,1 and στ,τ . The first
of these two summands has no 1 component; the second does, and it is a. So the top
of the hexagon is just a, and the hexagon condition reads a = b2. (The corresponding
calculation for σ−1 gives only a−1 = b−2, which is no new information.)

Now consider the second (τ ) component of the hexagon equation. We do the
calculation in matrix form, using the natural bases

((τ ·
1
τ) ·

τ
τ ) and ((τ ·

τ
τ ) ·

τ
τ ) for (τ ⊗ τ) ⊗ τ

and
(τ ·

τ
(τ ·

1
τ)) and (τ ·

τ
(τ ·

τ
τ )) for τ ⊗ (τ ⊗ τ).
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With respect to these bases, ατ,τ,τ is given by

(
q r
s t

)
as computed earlier. Both

στ,τ ⊗ Iτ and Iτ ⊗ στ,τ are given by

(
a 0
0 b

)
=

(
b2 0
0 b

)
,

because in each case, στ,τ acts as a on the first basis vector (where it interchanges
two τ ’s that were combined to 1) and as b on the second (where it interchanges two
τ ’s that were combined to τ ). Finally, στ,τ⊗τ is the direct sum of στ,1, which is 1,
and στ,τ acting on the τ component, which is b; since that direct sum decomposition

matches our choice of bases, στ,τ⊗τ is given by the matrix

(
1 0
0 b

)
. Multiplying the

matrices for each of the rows, we find that the hexagon identity, in the τ component,
reads (

q2 + brs (q + bt)r
(q + bt)s rs + bt2

)
=

(
b4q b3r
b3s b2t

)
.

Since we know, from our associativity calculation, that r and s are not zero, the (1,2)
and (2,1) entries of this matrix equation reduce to q + bt − b3 = 0, or, since t = −q,

b3 = q(1 − b).

The (1,1) and (2,2) entries give, after we remember that rs = q and cancel a common
factor q,

q + b = b4 and 1 + bq + b2 = 0.

The last of these equations, being quadratic in b, can be solved explicitly:

b = −q ± √
q2 − 4

2
.

We note that, since q =
√
5−1
2 is between 0 and 1, the square root in the formula

for b is imaginary, so the two values of b are each other’s complex conjugates. The
product of the two values for b is 1, so b is a complex number of absolute value 1
with real part −q

2 .
The ambiguity in the choice of b is unavoidable in this situation. Replacing one

choice by the other just replaces σ by its inverse (since |b| = 1), and there is nothing
in the algebra ofA that distinguishes the counterclockwise motion defining σ from
the clockwise motion defining σ−1. To put it another way, the change from one value
of b to the other can be exactly compensated by reflecting the orientation of the
(2-dimensional) space in which the anyons live.
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Althoughwe have now computed b and thus also a = b2, we can get amore useful
view of these numbers by manipulating the three equations above that relate b to q.
Solving the last one for q in terms of b, and substituting the result, q = −b2−1

b into
the other two equations, we obtain from the first equation that

b3 = b3 − b2 + b − 1

b
, i.e., b4 − b3 + b2 − b + 1 = 0,

which means that −b is a primitive fifth root of unity and therefore b is a primitive
tenth root of unity. The third equation above confirms that by reducing to b5 = −1.

Among the four primitive tenth roots of unity only two, e±3π i/5, have negative
real parts, as b does (recall that its real part is −q/2). So we conclude that, up to
complex conjugations,

b = e3π i/5 and therefore a = e6π i/5.

This completes the calculation of the braiding σ for Fibonacci anyons.

Remark 2 The multiplicative structure for Fibonacci anyons, summarized by the
fusion rule τ ⊗ τ = 1 ⊕ τ , is perhaps the simplest nontrivial fusion rule.Other fusion
rules have been analyzed, either by hand as we have done here or with computer
support. The appendix of [2] summarizes much of what is known about specific
examples. There does not, however, seem to be any general theory for arbitrary
fusion rules.

8.5.6 Fibonacci Anyons and Quantum Computation

In Sect. 8.2, wementioned the hope that, by using anyons to encode qubits, one could
use braiding to transform anyon states in various ways, thereby enabling quantum
computation. Two anyons are not sufficient for this purpose, because the braid group
on two strands is abelian, whereas quantum computation needs non-commuting uni-
tary transformations. In the case of Fibonacci anyons, the computation in the preced-
ing subsection shows that the braiding transformation στ,τ is diagonal in a suitable
basis, so it splits into one-dimensional representations; this again shows its inade-
quacy for quantum computation.

With three Fibonacci anyons, the situation improves dramatically. In a suitable
basis, the transformation that braids the first two of the three anyons, στ,τ ⊗ Iτ , is
still diagonal. The same goes for the transformation that braids the second and third
anyons, but the suitable bases in these two cases are not the same. They differ by
an associativity isomorphism α. More precisely, one is the conjugate of the other by
ατ,τ,τ . They do not commute.
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In fact, such braiding transformations suffice to approximate arbitrary unitary
transformations of the two-dimensional Hilbert space Vτ for τ⊗3. Furthermore, using
six Fibonacci anyons to code two qubits, one can approximate, by braiding, the so-
called “controlled not” gate, which, in combination with one-qubit gates, is sufficient
to produce all unitary gates for an arbitrary number of qubits; that is, it is sufficient for
quantum computation. We refer to [9, Sect. 6] for these combinations of Fibonacci
braidings.
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Chapter 9
Taking Physical Infinity Seriously

Don Perlis

Abstract The concept of infinity took centuries to achieve recognized status in
the field of mathematics, despite the fact that it was implicitly present in nearly all
mathematical endeavors. Here I explore the idea that a similar development might
be warranted in physics. Several threads will be speculatively examined, including
some involving nonstandard analysis. While there are intriguing possibilities, there
also are noteworthy difficulties.

Keywords Non-standard analysis · Infinity · Physics

9.1 Introduction

Infinity plays a central role in mathematics, and arguably always has—despite occa-
sional negative characterizations (even by some of the most esteemed practitioners).
Today surely there is little question about its importance in the minds of the vast
majority of mathematicians.1 There is also very wide appreciation of the idea that
whither goes mathematics, there also goes physics (and often the other way around).
And yet in physics the notion of infinity plays a rather curious “fix-it-up” role, rather
like duct tape, that is brought out for use whenever needed but then put firmly back

1In [8] Martin Davis includes a discussion of infinity in mathematics in terms of imaginative
powers of our minds (my words, not his), and (partly) justifies this by analogy with physics—
somewhat the reverse of my point here, but one I am equally sympathetic to.

My thanks for helpful comments and clarifications from: Paulo Bedaque, Juston Brodie, Jeff
Bub, Jean Dickason, SamGralla, Dan Lathrop, Carlo Rovelli, Ray Sarraga, and two anonymous
reviewers—none of whom however is to be blamed for any errors or outrageousnesses that
remain.
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in the tool box again. Thus it is not kept front and center in actual physical models,
quite unlike its now central and fundamental role in mathematics.2

This is part of a much larger issue: how mathematics relates to physical reality.
This involves many aspects that we will not touch on here, other than some brief
comments. For instance, Wigner [26] regards it as “unreasonable” that there is such
a strong connection between math and physics. And Kreisel [14] has considered
whether quantities that are physically observable (according to a given physical
theory) can be generated by a Turing machine; such a theory he calls “mechanical”.
See also [1, 16, 22], all of whom discuss cosmological issues such as whether space
is infinite in extent; Rovelli [22] in particular distinguishes—similarly to a distinction
we shall draw—between infinite divisibility and infinite extent.

A related question is: what sort of universe is needed in order for there to be a
possibility ofmathematics at all? That is, not actualmathematical practice, but simply
the possibility of “stuff” sufficient to allow, for instance, such things as sequences,
records, relations. There would seem to be a requisite minimum level of temporality
and spatiality even for natural numbers to have any meaningfulness. And, perhaps
deeper: what counts as stuff, and what is it for stuff to “be”? But we will leave these
questions aside, and return to our main theme.3

Here I will describe a number of examples in which infinity is used explicitly in
physics, and possible developments that these might suggest, including a few detours
along the way.4 Yet I must add that, as a non-physicist, I also approach the broader
topic with some trepidation; and while I have consulted a number of physicists in
the writing of this paper, still any misconceptions are completely my own. I trust
the reader will pardon any sense that I am throwing in the kitchen sink; this essay
represents some possibly far-flung imaginings that perhaps do not fall altogether
within customary styles in scientific writing.

The rest of this paper is organized as follows: We describe the examples just
referred to above, to distinguish several modes of use of infinities in physics; next I
review some ideas due to Jose Benardete on a Zeno-like puzzle about infinity, and
some related issues concerning particles, densities, and spin; we then turn to non-
standard analysis as one methodology that appears to shed some light (in connection
with Dirac delta functions), but has difficulties of its own.

2One prominent example that will not be discussed at any length here are the divergent Feynman
integrals (among others) of quantum field theory (QFT). See for instance the excellent Wikipedia
entry for Renormalization [28].
3I can’t resist noting that in roughly 1968-9 Martin Davis mentioned to me that in his estimation
a huge unclarity underlay foundational issues in mathematics and in particular set theory: what
counts as a thing?
4That the topic is appropriate to a volume dedicated to Martin Davis, I justify with the observations
that (i) Martin helped instill in me a general love for ideas on topics far and wide; and (ii) at least
two of Martin’s writings bear on related themes: nonstandard analysis [7] and quantum physics [6].
I note that Rovelli [21] entertains an idea already present in [6], namely that of observer-dependent
reference frames in quantum mechanics; and (personal note from Rovelli) this also apparently has
come up in writings of Kochen and Isham as well, all after Martin’s contribution appeared. See also
[24] for more on this theme.
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9.2 Multiple Uses of Infinity in physics

Quantum mechanics provides us with many intriguing examples of our subject; I
give three here. First, Schrödinger’s solution of his wave equation for the energy
levels of the hydrogen atom involves an argument in which infinity plays the role of
a kind of reductio, or proof by contradiction, leading to the rejection of the infinity.
Second, that same solution results in an infinite set of energy levels, which are point-
edly not rejected. Third, Dirac introduced the (infinite-valued on an infinitesimal
interval) delta function because it provided a highly simplifying and intuitively sat-
isfying notation for his vastly influential treatment of quantum mechanics. I briefly
summarize each of these uses of infinity below.

In a 1926 paper, Schrödinger solved his famous wave equation for the special case
of the hydrogen atom. Along the way he had to set to zero certain series terms, since
otherwise they would lead to variables with infinite values. (The remaining terms
provide solutions for energy levels of the hydrogen atom that are the familiar Bohr
ones that closely match experiment5—but not quite close enough; later refinements
were needed, including spin and relativistic effects.) So in this case, a variable taking
on an infinite value is used as a reason to reject it and instead consider only alternative
lines of argument. This of course is not new to Schrödinger but in fact is a common
form of argument, applicable whenever the variable in question is something one has
reason to think should be finite. I provide this particular example of such a reductio
use of infinity here (as opposed to any number of others) simply because it is curious
that it arises in the same setting in which the next example occurs. We may refer
to this first as a dense physical infinity: a physical variable (that in principle might
be measured by means of instruments within certain physical confines) taking on
(but perhaps should not do so) an infinite value. This is employed via a reductio to
eliminate the infinity (sometimes easily as above, sometimes with enormous effort
and controversy as in QFT).

Yet a result of Schrödinger’s argument is that the distinct possible energy levels
of the hydrogen atom alluded to above are infinite in number, and in fact a specific
formula is derived for the possible energies, En where n = 1, 2, .... This infinitude
is not shrugged off as unphysical; each and every En is taken as representing an
in-principle possible physical energy for the atom.6 Indeed, it is the excellent match-
up with experiment that makes the Schrödinger result so convincing.7 Of course,
it is similar in kind to the infinitude of possible heights (or potential energies) of
a projectile above ground level, which is also not seen as unusual. These perhaps

5E.g., when associated to the spectral lines found by Balmer in 1886.
6A very recent result [9] even derives the famous centuries-old Wallis formula for π from the very
same infinite sequence of hydrogen’s energy levels, something no one had the faintest idea could
happen, suggesting that the infinitude has yet further significance—although just what that may be
is unclear.
7For instance, had Schrödinger’s calculation led instead to a sequence of values for En that stopped
after n = 20, surely there would have been a frenzied attempt by experimentalists to find twenty-one
energy levels to test the theoretical result.
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amount, in the end, to little more than the fact that the infinite (unbounded) set of
real numbers, R, is taken as the possible range of values for many physical variables
(with some limitations as dictated by a given situation—but the infinitude is not
in general ruled out). This is a range-of-values physical infinity: a mere listing of
possible values, of which there may be infinitely many. Yet it is a possibility that, in
some sense, describes (a working picture of) the universe: the universe has in it an
unbounded range of allowable values for certain variables.8

One way to make these two standard physical uses of infinity more intuitive may
be this: if a variable represents a measurable quantity, something that one might
detect in an experiment, then the measured value must be finite: we have no means to
measure an actual infinity; whereas any—even an infinite—number of finite values
might bemeasured (given enough time). Or: theremay be an infinite amount of space,
matter, or energy, in the universe; but not right where the measuring instruments are
located. Note that we are not taking a stand on such a view; in fact, we are exploring
alternative possibilities!

Indeed, one can reason: there may be things physically present that we cannot
measure. One such that comes to mind is the wavefunction itself; this is sometimes9

characterized as the fundamental “reality” of which ourmeasurements ferret out (and
evenmodify) some features but never reveal the full thing in itself. If thewavefunction
is really there, yet never fully revealed, why not also infinite energies and other
quantities? Or consider space and time (or spacetime) themselves: we never measure
all of space or time, by any means. Yet in measuring bits and pieces, we convince
ourselves that there is a great deal more, and in the case of some theories even that
the universe has an infinitude of such pieces, either extended (range-of-values) or
densely packed.

Our third example is Dirac’s delta function. This is in wide use by physicists (and
not only in quantummechanics). Yet the delta function is routinely viewed as a useful
fiction, not something to take seriously except as a convenient shorthand for a much
more cumbersome and less intuitive set of tools. This mode we then call the useful
fiction infinity: we use it but we don’t believe it corresponds to anything physical.10

Nonetheless, it seems to fall also into the dense mode of infinity.
Thus we have cases where a dense infinity is outlawed (by reductio), and others

where it is accepted as a useful fiction; and there are also cases (range-of-values)

8The chapter by Blass andGurevich in this volume similarly comments on “infinitelymany possible
values, for example of position or momentum” and the corresponding infinite-dimensional Hilbert
space of such a system’s states. This is closely realted to the idea of an infinite extent of space,
which may or may not be the case—but such is not seen as a reason to reject a model outright.
Similarly, the infinitely-many possible reference frames in quantum mechanics suggested in [6] is
not suspect on the basis of the infinity involved.
9More so some decades ago; it seems now a minority view.
10This is reminiscent of the early uses of imaginary numbers: they were clearly useful, but it was
far less clear that such a number could be a thing in any sense available back then. Eventually two
developments helped: (i) the observation that imaginary numbers can be interpreted as rotations,
and (ii) formal/abstract methodology: if something has a consistent mathematical use, that is all
that is needed in order for it to be an object of mathematical study.
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where infinity is accepted as quite physically sensible. Much of what we are con-
sidering here is whether some of the “fiction” cases should perhaps be considered
as less fiction and more real physics. Delta functions are one case in point (we shall
return to them below) but not the only one.

9.3 Benardete’s Challenge

Benardete [4] discusses novel variants of a paradox of Zeno. Here is a version that
suits our purposes: Imagine that an impenetrable barrier is erected at each point
x = 1/2n for n = 1, 2, . . .; we suppose the barriers to be of zero thickness (or of
decreasing thickness as they close in on x = 0, so that they do not overlap or touch
each other, and so that they do not overlap or touch x = 0). Moreover, imagine that
each barrier is immovable once so placed. Finally, imagine that a projectile is aimed
at the barriers from a point to the left, i.e., from some x < 0.

Let us first of all note that this appears to be a case of dense infinity. There is an
infinitude of physical entities in a finite region. To be sure, this particular setup is
highly implausible; we are bringing it into the discussion as an easy warmup case,
before proceeding to more physically plausible cases.

Now, what will happen as the projectile moves rightward? Since there is nothing
apparent to impede the projectile at negative positions (x < 0), it would seem that
it should continue its rightward motion until it strikes a barrier. But before it can
strike a barrier at x = 1/2n it must first strike (and pass through) all those to its left
(at x = 1/2m for all m > n). This is impossible by the conditions of the problem.
So it cannot strike any barrier at all! Hence it must stop its rightward motion, never
passing zero, yet without touching anything that would be a cause for its rightward
motion to cease.

This has been debated in various philosophical papers; see [13, 19, 30]. In [18]
standard physics is brought to bear on the puzzle in the forms of classical mechanics,
quantum mechanics, and relativity, showing for instance in the classical case that a
field effect in the form of a repulsive force is mandated by Newton’s Laws, so that
the projectile is bounced back to the left before passing zero. But the lesson for us
here is that even a dense infinity need not be paradoxical when seen from within
standard physical theory. (Of course, one can resurrect a paradox by insisting the
barriers produce no forces outside their own immediate locations; and the lesson
then would be that this is inconsistent with standard physics.)

Another version of the puzzle involves a continuous barrier-wall extending from
some point b > 0 all the way back to, but not including, x = 0. That is, this is
a wall of width b but with its left face missing. While a seeming bit of physical
nonsense (at least in terms of materials made of atoms) it is a familiar enough entity
in mathematics, essentially a half-open half-closed interval. And the same form of
argument applies as in the earlier Benardete example. It would seem that physical
entities cannot be isolated quite as well as our imaginations might like: physical
interactions will occur and cannot be dismissed by mere stipulation.
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Thus the Benardete examples provide a kind of dense infinity, but not apparently
one that “breaks” anything. Perhaps this is because it does not directly involve an
infinite density of standard physical quantities like mass or charge or energy. (A
closer analysis might turn up an infinite sort of potential energy, however.) In any
event, when we turn to something “real” such as an electron, the situation presents
itself more starkly.

9.4 The Electron—Getting to the Point

An electron presents a somewhat related challenge. An electromagnetic field exists
around any charged particle. If the particle is not in motion, then it is simply an
electric field, E, given by Coulomb’s Law. But the same law mandates that the
field’s magnitude E increases at locations closer to the particle, approaching infinity
in the limit. In addition, the charge density is zero outside the immediate location
of the electron, and infinity at that location. Finally, the mass density is also infinite
at the location of the electron, and zero elsewhere. These claims are based on the
not uncommon assumption that an electron has no spatial extent and is located at a
literal mathematical point; experimentally, the electron’s radius is less than 10−22 m
[15].11 A similar situation arises in the case of a black hole, where the mass density
becomes infinite at the mathematical point (singularity) of the hole itself.12

One way to mathematically represent the situation of an infinite point density is
via a Dirac delta function, namely one that is infinite at the point in question, and
zero elsewhere. This—usually taken as a convenient fiction as already noted—does
the trick really well and surprisingly often, and is now a standard item in the physics
toolbox. However, delta functions can quickly turn from convenience to headache,
due to the nonlinearity of many applications. That is, the usual way to “precisify” a
delta function is as a Schwartz distribution: a linear functional on a space of func-
tions. However—as Wald [25] points out—in many applications (nonlinear ones)
delta functions (when viewed as distributions) cannot be sensibly multiplied, and
this poses significant difficulties for their use where there are point sources of fields.
This is a bit outrageous: why cannot one multiply two functions? The answer is that
the Schwartz representation really groups these “fiction-functions” into equivalence
classes (ones that provide the same results for certain special integration proper-
ties13), and integration does not always respect some of the desired characteristics

11But see for instance [23].
12See [27] for an interesting discussion of electrons as black holes. A related set of issues involve the
self-force and self-energy of an electron (or any point charge): the field created by a charge affects
not only space surrounding the charge but also at the charge location(s) as well. Thus an electron’s
field influences it’s own behavior. Similar considerations apply to any particle with non-zero mass:
the associated gravitational field should affect the particle itself; see [25].
13Namely:

∫ +∞
−∞ f1(x)g(x) = ∫ +∞

−∞ f2(x)g(x) for all “test” functions g.
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needed for non-linear applications. Yet once ungrouped from each other and treated
as genuine functions, delta functions can indeed by multiplied, as we will see in the
next section.14

Summarizing a bit, one way that infinity arises in physics is as follows: a vector
field (such as gravitational or electrostatic force) depends on the spatial separation
between one body and another, in a way that increases without bound as that distance
decreases to zero. In particular, in these two instances, the force is proportional to the
reciprocal of the square of the distance. When that distance is zero, the expression
for the force becomes one divided by zero: 1/0.

Now, division by zero is extremely problematic; it is not simply that it is not
defined, but that it is both overdetermined and underdetermined. 0/0 can be set
equal to any number (0/0 = x) with impunity, since 0 = 0x . And 1/0 cannot be
set equal to any number at all, since 1 �= 0x . So there is no non-arbitrary nor even
consistent way to define division by zero that respects the basic concept of division:
(a/b)b = a, that is, as the inverse of multiplication.

It is tempting to say that this is because the real numbers are too restrictive, and
that 1/0 = ∞. But then what is 2/0? And do we allow 1 = 0 × ∞? These notions
contain hints of a possible solution. In fact, mathematical physics often employs such
intuitions, in the form of infinitesimals and infinities; again think of the standard delta
function, that is zero at all non-zero reals, yet when infinitesimally close to zero it
rises up to infinity.

But mathematicians have invented many sorts of numbers, going well beyond the
familiar real and complex fields, including some that explicitly contain infinities as
first-class objects. Which fits the physical situation best? We shall not attempt to
answer this here, nor even to survey the existing options. Instead, we shall discuss
just one such option, with particular application to delta functions and—possibly—to
point particles.

9.5 NSA

One well-known approach to making sense of infinite and infinitesimal quantities
is nonstandard analysis (NSA), where the real number system R is extended to
*R, which includes “numbers” that are larger than every real, and also ones that
are smaller than every positive real and yet are themselves larger than 0. The latter
(small ones) and their negatives become the infinitesimals in common use in physical
reasoning. This was the aim of Robinson [20]: to develop *R and to show that in fact
the familiar intuitive arguments using infinitesimals then become quite rigorous.

14This is not to say that successful application to non-linear differential equations is an automatic
benefit; as noted, it is not the product per se but rather integration properties of products that is at
issue.
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But infinitesimals are not the same thing as zero; they are simply very very close
to zero; one might say that they form a kind of fuzzy zero—and more generally, that
each real r has about it a band of new numbers (r plus any infinitesimal) that “coat”
r so closely that for ordinary purposes r and its coat are indistinguishable.15

A key point is that, while being in zero’s coat, an infinitesimal ε nonetheless has
a well-defined reciprocal 1/ε, which is infinite (larger than every real). We still do
not have a reciprocal for zero itself, but perhaps we can dispense with that, and when
a variable “approaches” zero we may try to regard it as being in zero’s coat rather
than being zero itself. More generally, the coat of a real r then provides stand-ins for
r, which are r-ish in more or less degree (but all of them are r-ish and not s-ish for
any other real s).

As Robinson has shown, *R can be given a very rigorous definition, so that
it remains an algebraic field and respects the “usual” mathematical properties of
R. These properties are given sharp characterization, roughly as follows: for any
sentence S that can be expressed in a particular formal language L (including much
of standard math notations, for instance +, ×, constants, =, <, ∀, set-membership,
etc.—but NOT using a symbol for R itself), S is true when interpreted as being
about elements in R iff it is true about *R.16 Now this “transfer principle” between
R and *R is the basis for a great many applications of NSA.17 But results of such
applications—at least when those results are interpreted as being about R (or more
precisely about the “set-theoretic superstructure for R”)—generally are theorems
that can also be proven (though maybe less easily or intuitively) without NSA. One
of the suggestions we are raising here is this: perhaps *R (or its superstructure) can
be taken seriously as a model of physical reality, to see whether this sheds light on
infinities that arise in physics.18

One very nice (traditional) application of NSA is the delta function, which now
can be defined an as actual (non-fictional) function from *R to *R. For instance, given
an infinitesimal ε, let δ(x) = 0 for all numbers (in *R) that lie outside [−ε/2, ε/2],
and let δ(x) = 1/ε for numbers in that interval. The graph of such a function then
is an infinitesimally thin, infinitely high rectangle, and the area under it is exactly
ε × 1/ε = 1. And then the integral of δ(x) times any function *f from *R to *R (that
is an appropriate extension of an integrable function f on the reals), gives f(0)—or
more precisely, gives the average value of *f in that interval, which is itself in the
coat of—and so normally indistinguishable from—f(0).

15I apologize for introducing the term coat for this; already in use are: monad, haze, cloud, halo.
My excuse is that a coat of paint is thin, hugs close to its target, and is not to be touched by other
entities (at least while wet).
16 Details can get a bit complicated; see [7].
17There are by now dozens of books and hundreds or articles on the subject of NSA in general and
applications of the transfer principle in particular. See for instance [2, 5].
18See [12] for a rare exceptional—but alas all too preliminary—treatment of NSA’s nonstandard
universe itself as having physical significance, in this case to QFT.
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But now the product of any two such delta functions from *R to *R is unprob-
lematically another function from *R to *R. There is a tradeoff, however. For we
must choose a particular delta function to use in a given application, rather than opt
for the distributional approach that lumps many such together.19

9.6 Back to the Real World

Now we return to physics, and in particular to the electron. We regard it as being
a point, or rather, we take its radius to be in the coat of 0 (or whatever point it
is centered on). That is, we will postulate it to be a ball of infinitesimal radius. In
particular, let some εe be that radius, and assume itsmassm is uniformly distributed.20

Now we will attempt to characterize its spin (�/2) as a physical angular momentum
L of actual rotation, namely with an angular frequency ω so that we get the usual
classical formula:

L = �/2 = Iω = (2/5)mε2eω

Since εe is infinitesimal then ω must be infinite, since the LHS is finite.
The idea of treating spin as a possible rotational phenomenon was considered

long ago (see below), but taking the radius to be a positive real r; this led to trouble
with special relativity (SR). A point on the surface of the electron ball would—in
order that the rotation provide the proper angular momentum of spin, have to travel
at speeds in excess of the speed of light. But to reach such a speed would require
infinite energy, according to SR, and that traditionally is taboo. Here then is a possible
advantage of NSA: suppose we allow physical quantities to be infinite.

Let’s calculate the speed v of a point on the surface of an “electron ball” with
(initially real) radius r that is rotating with angular momentum �/2. From the above
equation, we get

v = ω(1/2π)(2πr) = ωr = 5�/(4mr)

If we insist that v < c then we find

c > 5�/(4mr)

or

r > 5�/(4mc) = 0.5 × 10−12 m.

19Further investigation (I am unaware of any work on this topic) may reveal advantages to particular
“natural” choices for a delta function in particular applications. For now I simply point out one from

Robinson’s book (p. 138): 1√
επ

exp(− x2
ε

). For real values of ε this is just an ordinary Gaussian,
which arises quite naturally in many situations, and has very nice mathematical properties. Possibly
in the nonstandard realm it will also play a helpful role. Note that this is not claimed to resolve
issues about non-linear applications where integration properties of products arise.
20Note that this means the ball will be a proper subset of the coat, since coats have no boundary;
if they did, then for instance 2εe would be outside the coat, which makes no sense for it too is
infinitesimal.



252 D. Perlis

This is essentially the negative result found by Goudsmit and Uhlenbeck [11] that
made them (and others) give up the idea of spin as deriving from an actual physical
rotation, since it was known even then that r is less than 3 × 10−15 m.21

There is an alternative: allowing v ≥ c, and also allowing infinite energies, as
well as replacing r by εe. But why insist that r be infinitesimal? This is not strictly
necessary. But since as already noted, it is commonly thought that r = 0 (an electron
is an actual point with no extent, no volume)22 and since we are allowing infinities
anyway, it is tempting to go “all the way” (at least all the way to infinitesimals, if not
literally to zero).

Back to our calculations: if εe is infinitesimal then as noted above, the angular
frequency ω is infinite. But what then is the speed of a point in the electron coat, at
distance εe from the origin of rotation? It will be as above, but replacing r with εe,
hence infinite:

v = ωεe = 5�/(4mεe)

This infinite speed precisely produces the finite angular momentum �/2. That is,
the infinite speed of a point within the electron coat (which itself is at infinitesimal
distance εe from the origin of rotation),works togetherwith that infinitesimal distance
to produce the needed finite angular momentum of spin.

However, not everything works out so nicely. The kinetic energy of mass m with
speed v, in SR, is

T = mc2(γ − 1)

where γ = 1/
√
1 − (v/c)2)

When v = c, γ is infinite, hence T would seem to be infinite. This is well-known,
of course, and is a primary reason that c is regarded as an unreachable upper limit on
all speeds of massive objects. But it is now even worse: for this infinity (of γ ) seems
to be of the totally impossible kind: 1/0.23

There is however another interpretation: multiplying through by
√
1 − (v/c)2),

we get √
1 − (v/c)2)T = mc2(1 −

√
1 − (v/c)2))

and for v = c this becomes0 × T = mc2.A reasonable conclusionnow is thatm = 0:
a particle traveling at light-speed has no mass.24 And T is not further constrained
here, infinite or otherwise. Presumably it can (for v = c) be taken as the energy of

21But see for instance [10, 17], for this is still a topic of dispute.
22For many purposes; but in QFT for instance this is not quite right.
23It is no good trying to wriggle out of this by supposing T is an NSA sort of infinity; that would
correspond to v being “almost” the same as c (in the same coat, so that v/c is in the coat of 1). For
in fact we need—for the Goudsmit/Uhlenbeck model—that v be even greater than c. And then γ

actually has an imaginary value! This leads into the even stranger physics of tachyons.
24This can actually be given a positive spin (pun intended). The Higgs field endows particles with
mass according to whether they are retarded by it—retarded from traveling at light-speed, that is.
Particles that are not so retarded are by definition massless!
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an appropriate light-speed particle. Whether this is physical nonsense or not, at least
we are getting some sort of “results” from such an approach.

9.7 Summary and Discussion

We have isolated three uses of infinities in physics: dense, range-of-values, and
useful-fiction. Range-of-values seems generally unproblematic, but illustrative of
the idea that our understanding of the universe can involve infinities of some sort.
These are not directly measured, but rather are supported by a mix of inductive
reasoning and evidence; and they do not seem to present major difficulties.

The infinities in the Benardete example perhaps lie in between range-of-values
and dense: many location values are posited, yet they come close to representing an
infinite density of something—but it is not clear just what. And there is no outright
paradox if we apply ordinary physics and a little commonsense.

But when we replace imagined barriers with actual physical entities such as fields,
things can quickly get bizarre, as in infinite values for charge and force and mass
densities. While our discussion focused on a point-model of the electron, any point-
source field will do. There are standard tools for representing this—for instance the
delta function—but these are usually seen as merely useful calculational devices
and not as possible models of what the universe is like. I am arguing that the great
success of such tools speaks to the strong possibility of an underlying phenomenon
well-worth trying to model.

I am not urging that NSA need be the mathematical physics of the future. There
are certainly other directions to consider, such as the surreal numbers studied by
Conway, Kruskal and others (seeWikipedia entry [29]). In addition, Bell [3] presents
an approach to infinitesimals (but not infinities) based on “smooth worlds” where
logic (and geometry) gets even stranger than in NSA yet where physics again comes
into play. And indeed infinity (of the dense kind) might happen not to be physically
sensible at all. But the idea should not be discarded out of hand.
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Chapter 10
Banishing Ultrafilters
from Our Consciousness

Domenico Cantone, Eugenio G. Omodeo and Alberto Policriti

The reader who remembers these key points will do well in what
follows. In particular, it is now quite all right to entirely forget
how the nonstandard universe was defined and to banish
ultrafilters from our consciousness.

(Martin Davis, Applied Nonstandard Analysis, 1977)

Abstract The way in which Martin Davis conceived the first chapter of his book
“Applied nonstandard analysis” is a brilliant example of information hiding as a
guiding principle for the design of widely applicable constructions and methods of
proof. We discuss here a common trait that we see between that book and another
writing of the year 1977, “Metamathematical extensibility for theorem provers and
proof-checkers”, which Martin coauthored with Jacob T. Schwartz. To tie the said
part of Martin’s study on nonstandard analysis to proof technology, we undertake a
verification, by means of a proof-checker based on set theory, of key results of the
non-standard approach to analysis.
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10.1 Introduction

Year 1977: Martin Davis appears in print with “Applied nonstandard analysis” [14],
whose subject is less close to computability and computational logic than the various
areas to which Martin has contributed before. Nevertheless we will tie that book—
appropriately, we believe—to another publication of the same year, “Metamathemat-
ical extensibility for theorem provers and proof-checkers” [23, pp. 120–146], jointly
authored byMartin and his friend and colleague “Jack” (namely Jacob T. Schwartz).1

We aim at unveiling an affinity between some of the matter which that book treats in
preparation for analysis proper and the field of automated reasoning of whichMartin
has been a trailblazer since its early days,2 and at taking advantage of that link for a
proof-checking undertaking which we see as promising.

Martin’s book is dedicated to the memory of Abraham Robinson, the creator of
nonstandard analysis. At the Summer Institute for Symbolic Logic held at Cornell
University, a scientific gathering that both had attended in 1957, Robinson gave a
talk in which he “made the provocative remark that the auxiliary points, lines, or
circles ‘constructed’ as part of the solution to a geometry problem can be thought
of as being elements of what is now called the Herbrand universe for the problem”
[15, pp. 7–8].3 At the same meeting Martin reported on his own implementation,
three years earlier on a JOHNNIAC machine, of Presburger’s decision procedure
for elementary additive number theory [12]. This proximity of interests between the
two distinguished scholars about automating proofs was, presumably, coincidental.

In 1977, on the other hand, disappointment is beginning to take place in the auto-
mated deduction community (see [5]), as researchers experience the combinatorial
explosion plaguing the automatic search for mathematical proofs even if pruned by
the best available techniques. More emphasis is now placed on comfortable inter-
action between man and computerized proof assistants, and on proof checkers (see,
e.g., [38]) as opposed to fully automatic theorem provers. Specific knowledge per-
taining to diverse branches of mathematics begins to be perceived as essential for
an advancement of the proof techniques; Ballantyne and Bledsoe [3] (see also [2])
succeed in automating the proofs of hard theorems in analysis using methods which
rely on the nonstandard viewpoint.

The new context brings to the fore issues related to correct-program technol-
ogy and proof engineering. An emblem of the times is the Clear specification

1See [22] and, therein, the enjoyable [16]; see also [21] and [1, pp. 478–480]. The above-cited [23]
led to the sole joint publication by Martin and Jack, namely [24].
2Landmark contributions of Martin to automatic theorem-proving in 1st-order predicate logic have
been [10, 13, 19, 20, 25], historically occurring between Paul C. Gilmore’s and Dag Prawitz’
methods, on the one hand, and J. Alan Robinson’s resolution principle on the other. Concerning the
linked conjunct method then proposed by Martin and his team at Bell Labs, see [29, 39].
3The term ‘Herbrand universe’, today widely used, appeared for the first time in the influential
paper [13] (reviewed in [34]); but [17, p. 432] contends that it would be more historically correct
to credit the construction of that universe to Thoralf Skolem.
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language [7], paving the way to the OBJ family of languages, which will integrate
specification, prototyping, and verification into a system with a single underlying
logic: theorem-proving is now aimed at providing mechanical assistance for proofs
that are needed in the development of software and hardware. This is the scene en-
countered by the joint work [24] of Martin and Jack, at the dawn of large-scale proof
technology.

Here is the issue they raised. “For use of mechanized proof verifier systems to
remain comfortable over a wide range of applications, · · · it should be possible to
augment the system by adding new symbols, schemes of notation, and extended
rules of inference of various kinds” [24, p. 217]. A stringent requirement is that
the envisioned changes to a system do not disrupt its soundness: a proof verifier
should, therefore, be furnished with the metamathematical capability of justifying
its progressive augmentations.

Use of a metamathematical extension mechanism, [24] points out, leads to the
common acceptance of algebraic calculations in lieu of detailed predicate calculus
proofs. Although recourse to the methods of nonstandard analysis in lieu of the ε-δ
methods is not mentioned in that paper, we see that less familiar but expedient detour
as being in accord with the matter under discussion.

————

As an arena for experimenting with this circle of ideas, we have undertaken a
merciless formal remake of [14, Chap. 1] with Jack’s proof checker Ref, see [35,
Chap. 4], which embodies a variant of the Zermelo-Fraenkel set theory. This task,
which has hardly anything to do with analysis per se, is an essential prerequisite if we
are to bring the methods of nonstandard analysis within the scope of Ref. As a result
of the “mathematical simplicity, elegance, and beauty of these methods”—and of
“enthusiasm · · · not unrelated to thewell-known pleasures of the illicit”—,we expect
to eventually get the reward of “their far-reaching applications” (see [14, p. viii]).

Our effort will also suggest changes to Ref’s current implementation which can
improve its metamathematical extensibility.

We have set up substantial ground for specifying and proving, by means of the
Ref verifier (very succinctly described in Sect. 10.6), the two consequences of Łoś’s
theoremwhichwe need (namely, Theorems 10.1 and 10.2 in Sect. 10.3): oncewewill
have fully achieved those goals, we will move on to work on Robinson’s concurrence
theorem and on a few other crucial propositions (Theorems 10.3, 10.4, 10.5, and 10.6
of Sect. 10.4). To complete our job we must then introduce “schemes of notation and
extended rules of inference of various kinds” that properly assist Ref’s users in
exploiting nonstandard methods.

In order to reach the goals of our experiment, we must express in set-theoretic
termsmetalevel notions such as the evaluation of a sentence in a universe; another not
entirely trivial task concerns the representation of individuals (thought of as ‘non-
sets’) within a formal system which deals with sets whose construction ultimately
relies on nothing but the null set ∅. For these twomatters, to be discussed in Sect. 10.9
and in Sects. 10.7 and 10.8 respectively, our experiment is innovative, at least as
regards theRef proof checker. In other respects, we can benefit fromwork previously
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done: among other things we found, already adequately formalized, a theory of
ordinal numbers conceived à la Raphael M. Robinson, and the ultrafilter theorem
obtained using Zorn’s lemma.

Concerning proof checkers, issues of reuse have an even greater relevance than
for theorem provers. Such issues pertain more to proof engineering than to compu-
tational logic:4 rather than going through the same proof pattern several times, one
should abstract a common method to be recalled over and over again, with all the
conveniences offered by technology.

Reuse is supported in Ref by a construct named ‘Theory’ (see [31] and [35, pp.
19–25]), similar to—although of a less algebraic nature—a mechanism for parame-
terized specifications of the aforementionedClear specification language. This paper
will discuss how to organize Theorys that enable one to tackle without reiteration
of techniques the foundations of nonstandard analysis; hopefully, it will stimulate
reflections on good “proof hiding” practices, of the kind whichMartin’s passage [14,
p. 42], quoted in the epigraph to this paper, seems eager to suggest.

10.2 Basic Construction for Nonstandard Analysis

Why nonstandard analysis? Nonstandard analysis is a technique rather than a subject · · ·
The subject can be claimed to be of importance insofar as it leads to simpler, more accessible
expositions, or (more important) to mathematical discoveries. [14, p. 1]

The initial part of [14] dwells on how to enlarge a standard universe into a nonstandard
one. While taking stock at the end of the first chapter, Martin stresses that much of
the machinery developed up to there is not used in the remainder of the book; then, in
recapitulating which key points the reader should remember, he underlines the three
main tools of nonstandard analysis: transfer principle, concurrence, and internality.

We will now give a quick account of the elaborate ultrapower construction whose
details Martin deems “quite all right”, after that turning point, “to banish from our
consciousness”. We thereby undertake a formal recasting of that construction with
Ref, in order to encapsulate it within Ref’s Theorys.

The standard universe is the superstructure

ŝ =

s3︷ ︸︸ ︷
s1︷ ︸︸ ︷

s ∪ P(s) ∪P(s ∪ P(s))︸ ︷︷ ︸
s2

∪P(s ∪ P(s) ∪ P(s ∪ P(s))) ∪ · · ·

4See [8, pp. 5–6]. In a recent personal web-page, David Aspinall (Univ. of Edinburgh) defines Proof
Engineering to mean the activity on construction, maintenance, documentation and presentation
of large formal proof developments. Within Proof Engineering, according to Aspinall, “Software
Engineering provides the techniques to develop large, structured and well-specified repositories
of computer code; proof checking provides the mechanisms to provide a complete semantics and
formal correctness as an absolute quality criterion.”.
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built on a set s = s0, whose (n + 1)-st stage is sn+1 = sn ∪ P(sn) for each n ∈ N =
{0, 1, 2, . . . } (as customary,P designates the powerset operator). It is essential that
s consists of individuals; namely that ∅ /∈ s and that no element of any element of
s pops up at any stage, viz., ŝ ∩ ⋃

s = ∅. Every set w of individuals generates a
superstructure ŵ, much as we have just indicated for s; e.g., ∅̂ consists of the entities
known as hereditarily finite sets.

The superstructure ŝ gets embedded into another one, ŵ, built on a specific set
w ⊃ s of individuals, by means of a function x �→ ∗x ; in particular ∗s = w. A set
w̃ ⊂ ŵ is cut out of the wider superstructure: this w̃, satisfying the revealing equality
w̃ = ⋃

i∈N

∗si , will be the nonstandard universe paired with ŝ.
Such companions ŝ, w̃ will—in a sense—have the same properties. An unre-

strained formulation of this principle would have paradoxical consequences, though,
and we must postpone to Sect. 10.3 the precise formulation of criteria enabling the
transferability of properties. In a major instance studied in [14, Chap. 2], s includes
an Archimedean ordered field D, e.g., the field Q of rational numbers or the field
R of real numbers; then ∗D, included in w, will still satisfy the laws of an ordered
field but will violate the Archimedean property which—roughly speaking—rejects
infinitely large or infinitely small elements.5

Before showing how to construct w̃, let us make it clear which are the sets which
qualify as universes:6

Definition 10.1 A setU is called a universe if ∅ ∈ U and the following properties
hold for all x, y:

Upward closure: If x, y ∈ U , then {x, y} ∈ U .
Downward closure: If x ∈ U and x ∩ U �= ∅, then x ⊆ U

(this says that each element x ofU is either an individual, hence
has no element in U , or is included in U ). 

The upward closure property readily yields that a universe U is always closed
with respect to the Kuratowski ordered pair formation 〈x, y〉 =Def {{x} , {x, y}};
by also exploiting downward closure we get, for each function g ∈ U such that
g ∪ dom(g) ⊆ U , that the result g�x of applying g to a set x belongs to U . (By
function we mean here a single-valued set of ordered pairs; moreover, when g fails
to be a function or x does not belong to its domain, g�x is meant to designate ∅.)
Every superstructure based on a set of individuals is a universe, so it is closed with
respect to pair formation and to function application.

5In particular, when D = R, we get a field, ∗
R, of entities called hyperreal numbers. In ∗

R there
are positive numbers lying infinitely close to zero; the reciprocals of such infinitesimals must, of
course, exceed any positive integer.
6Our definition of universe marginally differs from the one given in [14, p. 15] in that we are
not assuming individuals to be given beforehand. Certain proper classes can also be regarded as
universes, according to a plain generalization of this definition to be seen in Fig. 10.5.
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The construction of w̃ relies on a pair æ, ï such that

(1) æ ⊆ P(ï) \ {∅};
(2) x ∩ y ∈ æ for all x, y ∈ æ;
(3) y ∈ æ whenever x ∈ æ and x ⊆ y ⊆ ï;
(4) no strict superset of æ meets the filter conditions (1)–(3).

(Consequently, see [14, p. 10], {x ∩ ï , ï \ x} ∩ æ �= ∅ holds for every set x .) Bywell-
established terminology,æ is anultrafilter7 over the index set ï = ⋃

æ.Momentarily
we do not commit our choice of æ and ï in any way; this choice is most relevant,
though, for the applicability of the nonstandard techniques.

We say that a property C( j) of elements of ï holds a.e. (‘almost everywhere’) if
{ j ∈ ï | C( j)} ∈ æ, that is, if the indices satisfyingC form a setwhich belongs toæ.
Thus, for example, the condition g j = hj a.e. defines an equivalence relation over s ï,
the set of all functions from the index set into standard individuals; we can then pick
a representative element ρg out of each equivalence class

{
h ∈ s ï | g j = hj a.e.

}
,

and finally get the set

w =
{

ρ g : g ∈ s ï
}

of nonstandard individuals. This is an enlargement of s, whose elements can in fact
be put in natural correspondence with the representatives of a.e. constant functions
(the injection of s into w is x �→ ρ gx , where gx ∈ {x}ï, i.e. gx = ï × {x}). We will
manage to enforce the strict inclusion w � s in Sect. 10.4; our present assumptions
only suffice to ensure that w ⊇ s.

The construction at issue continues with the specification of a function, ,̄ whose
set of values will be the universe w̃ we are after and whose domain is layered in a
way mimicking the hierarchical organization

ŝ = ⋃
n∈N

sn = s0 � ⊎
n∈N

(
P(sn) \ sn

)

(where � and
⊎

designate disjoint unions) of the standard universe:

¯ :
⋃

n∈N

{
f ∈ ŝ ï | f j ∈ sn a.e.

}
−→ ŵ .

For each f ∈ ŝ ï such that f j ∈ s0 a.e., we put f̄ = ρg, where g ∈ s ï is such that
f j = g j a.e. Next, for successive numbers n ∈ N, we define à la Mostowski the
image f̄ of each function f such that f j ∈ P(sn) \ sn a.e., by putting

f̄ = {
ḡ : g ∈ ŝ ï | g j ∈ sn ∩ ( f j) a.e.

}
.

7A slicker characterization of ultrafilters will be shown in Fig. 10.7.
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The following facts admit straightforward proofs:

• w̃, the set of all images f̄ , is a universe;
• f̄ ∈ ḡ if and only if f j ∈ g j a.e.;
• f̄ = ḡ if and only if f j = g j a.e.

Much as before, there is a natural one-one correspondence between ŝ and those
functions, in the domain of ,̄ which are a.e. constant; hence the embedding ∗of ŝ into
w̃ announced at the beginning of this section is plainly induced by ¯ . This function
∗will soon be extended by bringing into its domain many subsets of ŝ which do not
belong to ŝ.

————
Before going any further, let us pause to recall thatMartinworks under the assump-

tion that “we have available some given sufficiently large set I of true individuals
(sometimes called urelemente), about which we assume nothing except that they are
not sets” [14, p. 11], and he repeatedly stresses that questions as to the true ‘nature’
of such entities are irrelevant to mathematical practice.8 Anyway, we will have to
face this issue (see Sect. 10.8) while carrying out our formalization task, because our
framework will be a set theory devoid of individuals proper: our ‘individuals’ will
simply be sets whose elements are ‘inaccessible’ from within the superstructure.

10.3 Bounded Formulae and the Transfer Principle

The link between logic and computing is to a great extent the notion of a formal language,
which is the kind of language machines understand. [18, p. 83]

Formulas ofLU can be used not only to make assertions aboutU , but also to define subsets
of U . [14, p. 23]

In order to make assertions about a universeU and to introduce its definable subsets,
[14, pp. 20–21] specifies a language LU endowed with:

T0. constants c, which are in one-one correspondence with the elements of U
(each c is meant to designate the corresponding element c of U );

T1. a countable infinitude x1, x2, x3, . . . of variables (each ranging over U );
T2. dyadic function symbols 〈s,,, t〉 and (s ��� t) (which are meant to designate, re-

spectively, ordered pair formation and function application);

F0. dyadic relation symbols (s = t) and (s ∈ t) (designating = and ∈);
F1. propositional connectives ¬¬¬ (monadic) and & (dyadic);
F2. bounded quantifiers of the form (∃∃∃ xn ∈ t), where t stands for a term where xn

does not appear.

8In a similar attitude, [11, p. 54] states that “one possible view is that the integers are atoms and
should not be viewed as sets. Even in this case, one might still wish to prevent the existence of
unrestricted atoms. In any case, for the ‘genuine’ sets, Extensionality holds and the other sets are
merely harmless curiosities.”.
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More detailed syntactic rules about terms and formulae of LU , as well as the
semantics of LU , follow the pattern familiar to anyone who has encountered first-
order predicate languages; we leave them as understood for the time being and will
belabor this point when arriving at our formalization task (see Sect. 10.9). Anyway,
it will best suit our purposes to handle only formulae in negative normal form: hence
we admit as primitive constructs also the propositional connective ∨∨∨ and bounded
universal quantifiers (∀∀∀ xn ∈ t); moreover, we confine¬¬¬ inside contexts of the forms
¬¬¬(s = t) and¬¬¬(s ∈ t), shortened as usual to (s �= t) and (s /∈ t).

If exactly one variable, say xn , occurs free in a formula α ofLU , then we indicate
by α(c) the sentence9 resulting from α when all free occurrences of xn get replaced
by a constant, c, that designates some c ∈ U .

Definition 10.2 A set d ⊆ U is called definable if there is a formula α of LU

with one free variable such that d = {c ∈ U | α(c) is true in U }. 
Consider, now, the languages Lŝ and Lw̃ of the standard universe and of its

nonstandard counterpart. Let the notation |= α express the fact that α, a sentence of
Lŝ, is true in ŝ; similarly, indicate by ∗∗∗|=β the fact that β, a sentence of Lw̃, is true
in w̃.

A translation λ �→ ∗∗∗λ of terms and formulae from Lŝ into Lw̃ can be specified
as follows: to get ∗∗∗λ, replace every constant c occurring in λ by the constant ∗∗∗c that
designates the image ∗c of c.

We can now state two propositions, both easily obtainable from Łoś’s theorem, a
fundamental result of model theory which we underplay here:

Theorem 10.1 If α, β are formulae of Lŝ where the only free variable is x1 and

{c ∈ ŝ | |= α(c)} = {c ∈ ŝ | |= β(c)}

holds, then
{c ∈ w̃ | ∗∗∗|= ∗∗∗α(c)} = {c ∈ w̃ | ∗∗∗|= ∗∗∗β(c)} .

Theorem 10.2 (Transfer principle) For every sentence α of Lŝ,

∗∗∗|= ∗∗∗α if and only if |= α .

Thanks toTheorem10.1,we can add to the domain of the function ∗every definable
subset d of ŝ, via the unambiguous stipulation that

∗d = {c ∈ w̃ | ∗∗∗|= ∗∗∗α(c)} when d = {c ∈ ŝ | |= α(c)} .

9When the need will arise, we will adjust this notation also to terms, indicating by t (c) a term devoid
of variables resulting from replacement of a variable of t by a constant c.
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Davis thus briefly conveys the significance of the transfer principle:

There is a formal language that can be used to make assertions that are ambiguous in that
they can refer to either of the two structures. · · · The transfer principle roughly states that the
same assertions of the formal language are true in the standard universe as in the nonstandard
universe. It is typically used by proving a desired result in the nonstandard universe, and
then, noting that the result is expressible in the language, concluding that it holds in the
standard universe as well. [14, pp. 2–3]

————
Let us pause again, to observe that the task of formalizing within set theory such

model-theoretic propositions as the above Theorems 10.1 and 10.2 presupposes that
we encode terms and formulae via sets: wewill display a technique for that purpose in
Sect. 10.9. Similar tasks arise frequently in logic, when it comes to investigate inside
a formal system some meta-theoretical issues regarding the system itself. E.g., in
preparation for the proof that an axiomatic theory of sets is essentially undecidable
onewill encode its formulae, inside ∅̂ (see [33]) or even bymeans of natural numbers.
Our encoding cannot be carried outwith the sameparsimonyofmeans, due to the tight
interplay between syntax and intended semantics in our languages (see the formation
rule T0 of each LU ); we will manage, nonetheless, to encode the formulae of Lŝ

inside ŝ and the ones of Lw̃ inside ŵ.

10.4 A Kind of ‘All-at-Once Compactification’

Another technique is concurrence. This is a logical technique that guarantees that the ex-
tended structure contains all possible completions, compactifications and so forth. [14, p. 3]

Suppose that s is infinite. If ï is also infinite and an injection g of ï into s exists,
it will suffice to require that no finite set belongs to the ultrafilter æ in order that
g j �= x a.e. for any x ∈ s; thus g must differ from any function h from ï to s which
is a.e. constant, and nonstandard individuals exist! This is one way of making the
nonstandard enlargement non-trivial (see [28, p. 52]).

Preliminary to the construction of a much richer nonstandard universe, [14, p. 34]
defines concurrence. In our own, slightly readjusted terms:

Definition 10.3 Relative to a universe U , a dyadic relation r such that r ∈ U and
r ∪ dom(r) ⊆ U is said to be concurrent if to every finite d ⊆ dom(r) there
corresponds some b ∈ U s.t. d × {b} ⊆ r . 

Now let ï be the set of functions φ such that dom(φ) is the set of all concurrent
relations r ∈ ŝ and φ r is a finite subset of dom(r) for each such r . The ultrafilter æ
will then be chosen so that ï = ⋃

æ holds and the membership relation

{φ ∈ ï | ψ r ⊆ φ r for each concurrent r ∈ ŝ } ∈ æ
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also holds, for each ψ ∈ ï. Here comes a key theorem, due to Abraham Robinson:

Theorem 10.3 (Concurrence theorem) To every concurrent relation r ∈ ŝ there cor-
responds some 
 ∈ w̃ such that {∗a : a ∈ dom(r)} × {
} ⊆ ∗r .

From this claim, [14, p. 36] draws the conclusion that nonstandard individuals
exist: for, assuming N ⊆ s in order to slightly simplify the argument, one such is the
‘limit’ element 
 corresponding to the concurrent relation

{〈n,m〉 : n ∈ N , m ∈ N | n < m} ;

in fact, 
 ∈ ∗
N \ s.

The third technique is internality. A set s of elements of the nonstandard universe is internal
if s itself is an element of the nonstandard universe; otherwise, s is external. A surprisingly
useful method of proof is one by reductio ad absurdum in which the contradiction is that
some set one knows to be external would in fact be internal under the assumption being
refuted. [14, p. 3]

Definition 10.4 We call

external set: every element of ŵ \ w̃;
internal set: every element of w̃ \ w. 

After showing, with the aid of the transfer principle, that ∗
N \ N is an external set,

[14, pp. 39–41] provides criteria for demonstrating the internality of specific sets:

Theorem 10.4 (Internality theorem) If d ⊆ w̃ is definable in w̃ and a is an internal
set, then a ∩ d is an internal set.

Theorem 10.5 If a and b are internal sets, then so is a × b.

Theorem 10.6 (Internal function theorem) If f ∈ ba, where a and b are internal
sets, and for a suitable term t of Lw̃ involving one free variable

f c is the value of t (c) in w̃ , for each c ∈ a ,

then f is internal.

Along the way, [14, pp. 39–41] shows N to be an external set.

10.5 Key Application of the Nonstandard Methods

In [14, Chap. 2] the construction of the nonstandard universe is used twice: first
to obtain R, the field of real numbers, from the field Q of the rationals; on second
application, to work out the structure of ∗

R from R. The first use can supersede such
classical constructions as the ones devised by George Cantor and Richard Dedekind.
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The second use brings infinitesimals into play, along with their inverses, which are
infinite numbers: one is thus led into the realm of hyperreal numbers.

To briefly see how these embeddings work, consider first an ordered field D (in
the customary sense). For any such field, we can assume w.l.o.g. that Q ⊆ D.

Definition 10.5 Put

F = ⋃
n∈N

{ x ∈ D | 0 ≤ x ≤ n ∨ 0 < −x ≤ n } ,

I = { x ∈ D | x = 0 ∨ (1/x) ∈ D \ F } .

An element x of D is said to be finite, infinite, or infinitesimal, depending as
whether x ∈ F , x ∈ D \ F , or x ∈ I . For x, y in D, we say that x is near y if
x − y ∈ I ; if so, we write x ≈ y.

D is called Archimedean if F = D; otherwise stated, if I = {0}. 
As is plain, I is an ideal in the subring F of D; moreover, ≈ is an equivalence
relation on D, whose restriction to F equals the equivalence relation induced by
I . Consequently, the quotient F/ ≈= F/I is a ring; actually, it is an Archimedean
ordered field.

Suppose next that D is an Archimedean ordered field and that D ⊆ s, where s is
as in Sects. 10.2, 10.3, and 10.4. By virtue of the transfer principle, the ∗D resulting
from D through the ultrapower construction is, in its turn, an ordered field (of which
D is a subfield). It is no longer Archimedean, though; for, its nonnull subset ∗

N \ s
consists of elements which are infinite. If we now designate by F and I the set of
all finite, respectively infinitesimal, elements of ∗D, then it readily turns out that the
canonical homomorphism ◦ of F onto F/I acts as a monomorphism of D into F/I.
After so embedding D in the Archimedean field F/I, [14, p. 51] goes on to prove that
F, D, I, and ∗D \ F are all external subsets of ∗D; then, by resorting to the concurrence
theorem, [14] obtains the following:

Theorem 10.7 (Dedekind’s Theorem) If A, B are nonnull subsets of D such that
a < b holds for all a ∈ A and b ∈ B, then there is a c ∈ F/I such that a ≤ c ≤ b
holds for all a ∈ A and b ∈ B.

From this, [14] gets that

Theorem 10.8 F/I is a complete ordered field,

after noting that between two elements x, y of an Archimedean ordered field such
that x < y there always lies a q ∈ Q such that x < q < y. Archimedean ordered
fields exist (one such is, of course, Q); therefore, a complete ordered field exists as
well. Up to isomorphism, this must be unique (owing, in particular, to the fact that
any complete ordered field is Archimedean): by definition, R is taken to be this field.

If we go over the same construction again, now taking D = R ⊆ s, we can natu-
rally identifyF/IwithR and, accordingly, think of ◦ as being the field homomorphism
that sends each finite hyperreal number to its standard part, namely to the sole real
number which lies near it. It can also be shown (see [14, pp. 53, 56]) that infinitesi-
mally near each real number there is a q ∈ ∗

Q.



266 D. Cantone et al.

Typical notions of elementary real analysis can be captured in new terms from
the nonstandard viewpoint, after which classical theorems can be obtained by non-
standard methods. Various illustrations of this are provided in [14, pp. 56–74], e.g.:

Theorem 10.9 Consider a sequence { sn : n ∈ N \ {0} } of real numbers sn and a
real number 
. Then

• the sequence converges to 
 if and only if (∗s)n ≈ 
 holds for all infinite n ∈ ∗
N;

• (∗s)n ≈ 
 holds for some infinite n ∈ ∗
N if and only if, for each ε > 0 in R, the

inequality |sn − 
| < ε is satisfied for infinitely many n ∈ N.

Theorem 10.10 Let f be a real-valued function on the closed interval [a, b] =Def

{ x ∈ R | a ≤ x ≤ b }, where a, b ∈ R and a < b. Then f is continuous at x0 ∈
[a, b] if and only if, for all x ∈ ∗[a, b], x ≈ x0 implies ∗ f (x) ≈ ∗ f (x0).

Theorem 10.11 Let f be a continuous real-valued function on the closed interval
[a, b]. If f (a) < 0 < f (b), then f (c) = 0 holds for some c ∈ [a, b].
Proof 1 (Sketch) Consider the function t : N × N −→ R defined as follows:

t ( n, i ) =
{
a + i (b − a)/n if n ∈ N \ {0} and 0 ≤ i ≤ n ,

0 otherwise,

so that ∗t : ∗
N × ∗

N −→ ∗
Rmeets an analogous condition, by the transfer principle.

Choose ν ∈ ∗
N \ N. Since L = { i ∈ ∗

N | f (∗t(ν, i)) > 0 and i ≤ ν } is a defin-
able subset of ∗s, L is also internal by Theorem 10.4; and since ν ∈ L , there is a least
element j > 0 in L . If we take c to be the standard part of ∗t(ν, j), it turns out that c ≈
∗t(ν, j) ≈ ∗t(ν, j − 1); therefore f (c) ≈ f (∗t(ν, j)) ≈ f (∗t(ν, j − 1)), and hence
f (c) = ◦( f (∗t(ν, j))) = ◦( f (∗t(ν, j − 1))), where the inequalities ◦( f (∗t(ν, j)))
≥ 0 and ◦( f (∗t(ν, j − 1))) ≤ 0 hold. We conclude that f (c) = 0, as desired. �

10.6 Basic Features of Our Proof Checker

Our proof-checker Ref, a.k.a. ÆtnaNova or Referee, processes script files, named
scenarios, which consist of definitions, theorems, and detailed proofs of the theo-
rems. After checking a scenario for syntactic validity, Ref verifies that the proofs are
compliant with the version of set theory built into it. The language in which scenarios
are written extends the usual language of first-order predicate logic with constructs
reflecting the theory which underlies Ref: we can for example, as shown by most
of the abbreviating definitions in Fig. 10.1,10 exploit a very flexible set abstraction
construct of the form

10About Ref’s built-in operator arb (X) that occurs thrice in Fig. 10.1, suffice it to say for the time
being that it selects an element of its operand X when X �= ∅, and that arb (∅) = ∅.
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Fig. 10.1 A few basic operations over sets and maps; two special properties

{
term : iterators | condition

}

to specify many familiar operations and relations over sets.
Ref’s second-order construct named Theory enables one to package definitions

and theorems into reusable proofware components. Besides providing theorems of
which it holds the proofs, a Theory has the ability to bring into a mathematical
discourse decisive clues.11 Like procedures of a programming language, Ref’s The-
orys have input formal parameters, in exchange for whose actualization they supply
useful information. Actual input parameters must satisfy a conjunction of statements,
called the assumptions of the Theory. A Theory usually encapsulates the defi-
nitions of entities related to the input parameters and it supplies, along with some
consequences of the assumptions, theorems talking about those internally defined
entities that the Theory returns as output parameters. After having been derived by
the user once and for all inside the Theory, the consequences of the assumptions,
as well as the claims involving the output parameters, are available to be exploited
repeatedly.

Two Theory interfaces are shown in Fig. 10.2. The Theory finiteImage awaits
as input parameters a set f0, assumed to be finite, and a global function g, namely one
that sends every set x to a value g x ; whenever applied to fitting actual parameters,
this finiteImagewill simply produce a claim of the formFinite

( {g x : x ∈ f0}
)
. The

other one, reachGlob,12 only expects a global function g; it will return the global
function globΘ sending every set b to the smallest superset

{
b, g b, g

(
g b

)
, . . .

}
of

11In a passage echoing AbrahamRobinson’s ‘provocative remark’ which we have recalled in the In-
troduction throughMartin’swords, Jack says about this ability of Theorys [35, p. 9]: “· · · definitions
serve to ‘instantiate’, that is, to introduce the objects whose special properties are crucial to an in-
tended argument. Like the selection of crucial lines, points, and circles from the infinity of geometric
elements that might be considered in a Euclidean argument, definitions of this kind often carry a
proof’s most vital ideas”. A typical case of this kind is, in arithmetic, the selection of the least
natural number that meets some key property.
12This is a specialized variant of the Theory reachability presented in [35, Sect. 7.3]. As seen
here, the formal output parameters of a Theory always carry a subscript Θ .
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Fig. 10.2 Interfaces of two Ref Theorys

{b} which is closed under application of g to its own elements, as precisely stated by
the claims which this Theory will supply.

An example of the use of reachability through a global function is the construction
of the set of all natural numbers intended à la von Neumann, which can be carried
out in two steps:13

Apply 〈globΘ : count〉reachGlob
(
g(X) �→ X ∪ {X} )⇒Thm natsa: [Upwardcounting]

〈∀ y, x, z | y ∈ count(x) & z ∈ count(y) → z ∈ count(x)〉 &
〈∀ b, x, y | b ∈ count(b) &

(
x ∈ count(b) & y = x ∪ {x} → y ∈ count(b)

)〉 &
〈∀ b, t | b ∈ t & 〈∀x ∈ t | x ∪ {x} ∈ t〉 → count(b) ⊆ t〉 &
〈∀ b | count(b) = {b} ∪ {u ∪ {u} : u ∈ count(b)} 〉.

Def nats: [vonNeumann′snaturalnumbers] N =Def count(∅).

It would be pointless to discuss here the inferential armory of Ref, because we
are still in the phase of designing how to formalize the basic techniques underlying
nonstandard analysis, and the expected outcome of such a formalization is best
described by a plan concerning the core Theory interfaces and by choices as to how
implement some key definitions.

————

An important enhancement to the Zermelo-Fraenkel set theory came historically
with von Neumann’s introduction of an axiom,

∀ x ∃ a ∀ y ∈ x ( a ∈ x & y /∈ a ),

which forbids membership to form infinite chains 
0 � 
1 � 
2 � · · · ; this is tersely
stated by singling out, for any given set x , a set a disjoint from x that belongs to x
unless x = ∅. In Ref this principle is embodied by a construct, arb (X), such that

13What follows is not meant to imply that the definition of N shown is the ideal one.
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∀ x
(
arb (x) ∩ x = ∅ & arb (x) ∈ x ∪ {x}

)

(implying arb (∅) = ∅). Themeaning of arb is competently handled by amost basic
inference method of Ref.

To appreciate the usefulness of arb, consider the Theory whose interface ap-
pears on the left of Fig. 10.3. Upon receipt of a set n0 that meets a given property
P , this Theory will return a set transfIndΘ still enjoying P but none of whose
elements satisfies P . In its hidden internal working, transfInduction first applies the
Theory reachGlob seen in Fig. 10.2 to g(X) = arb ({u ∈ X | P(u)}) and then
applies the resulting globΘ to n0 to get a set N0 = {

n0 , g n0 , g
(
g n0

)
, . . . ,∅}

such
that arb ({w ∈ N0 | P(w)}) is the sought transfIndΘ .

In Ref the well-foundedness of membership also lies behind a definition mecha-
nism based on ∈-recursion, shown at work with the specification of img in Fig. 10.4
and which we will repeatedly use in the ongoing. A discussion about the syntax of
∈-recursive definitions can be found in [35, pp. 216–217]); concrete illustrations of
it will suffice here. A basic example is

rk (X) =Def

⋃ {
rk (y) ∪ {rk (y)} : y ∈ X

}
,

defining the rank of a set X . The mechanism at stake is akin to recursion as used
in computer programming; like it, it resorts to a base case to avoid circularity: in
fact, rk (X) = ∅ when X = ∅, since obviously {rk (y) ∪ {rk (y)} : y ∈ ∅} = ∅. But
rk (X) might also be an infinite set (actually, a transfinite ordinal), a situation which
will occur, e.g., when X is infinite or has some infinite elements.

Fig. 10.3 Transfinite induction contrasted with finite induction. The former exploits the well-
foundedness of ∈while the latter exploits the well-foundedness of �over finite sets. Other classical
forms of induction, e.g., arithmetic induction or induction over ordinals, can be conveniently hooked
to membership or inclusion

Fig. 10.4 A viable specification of the iterated images of g and of the output symbol globΘ inside
the Theory reachGlob of Fig. 10.2. Here σ∞ is a Ref’s built-in constant subject to the assumption
that σ∞ �= ∅ & 〈∀x ∈ σ∞ | {x} ∈ σ∞〉
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Let us digress briefly. The α’s satisfying the equality α = rk (α) turn out to be
precisely the sets known, after von Neumann, as ordinal numbers;14 and it is not
hard to prove, about the indexed class of sets which satisfy the conditions

V∅ = ∅ ,

Vγ∪{γ } = P
(
Vγ

)
for every ordinal number γ ,

Vλ = ⋃
β∈λ Vβ for every nonnull ordinal λ not of the form γ ∪ {γ }

—historically called the cumulative hierarchy—, that Vα consists, for each ordinal
α, of all sets whose ranks lie below α. Now consider the property

V (L) ↔Def L = ⋃ {P(
) : 
 ∈ L | V (
)} .

In this new instance of ∈-recursion, the reader can recognize a streamlined definition
of the stages of the cumulative hierarchy: as one readily sees, V (∅) holds; more
generally, one can show that V (L) is logically equivalent to the existence of an
ordinalα such that L = Vα .We do not prove this fact but do call attention to it because
a similar change of perspective will motivate our formalization of superstructures in
the following section.

10.7 Top-Down Recognition of Superstructure Stages

Concerning the unusual way, just hinted at, of approaching the cumulative hierarchy,
one might contend that it is presumably harder—or, if anything, less transparent—to
infer directly from the definition of V (L) a statement such as

(
V (L ′) & V (L ′′)

)
→ (L ′

� L ′′ ↔ L ′ ∈ L ′′)

than to prove, for any pair α, β of ordinals, the biimplications

(
Vβ � Vα ↔ β ∈ α

)
&

(
Vβ ∈ Vα ↔ β ∈ α

)
.

A tentative reply is that transfinite induction of the kind schematized in Fig. 10.3 (left)
is often a shortcut compared to a proof pattern relying on the theory of ordinals. On

14A common definition of ordinals, owing to a simplification due to Raphael Robinson, is:

Ord(U ) ↔Def ∀ x (x ∈ U → x ⊆ U ) & ∀ x ∀ y
( {x, y} ⊆ U → (x ∈ y ∨ y ∈ x ∨ x = y)

)
.
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a smaller scale, as will now be seen, we can treat superstructures without numbering
their stages: with virtually no recourse to natural numbers.15

We can exploit recursion to describe sets L which are stages of a superstructure.
The first of the three definitions shown below is ∈-recursive and specifies a function
seeking a set s of individuals (recall Sect. 10.2) such that sm = L for some m ∈ N;
if such an s exists, it can be found by repeated extraction

L � log L � log log L � · · · � s

of the ‘logarithm’ of L , where 
 = log L momentarily means that L = 
 ∪ P(
)

(needless to say, this equation has either one or no solution—in the former case,
∅ ∈ L and hence L cannot be regarded as a set of individuals):

basis(L) =Def if ∅ /∈ L & L ∩ ⋃
L = ∅ then L

elseif
(∃ 
 | L = 
 ∪ P(
) &P(
) ∩ ⋃

(
 \ P(
)) = ∅)

then arb ({basis(
) : 
 ∈ L | L = 
 ∪ P(
)})
else {∅} fi ;

Stage(L , S) ↔Def L = ∅ ∨ (
basis(L) = S & S �= {∅} ) ;

Ur (S) ↔Def ∅ /∈ S & S ∩ ⋃
S = ∅ &(∀ 
 | Stage(
, S) → P(
) ∩ ⋃

S = ∅)
.

The chain L = L0, Ln+1 = log Ln of logarithms surely has finite length but may
end with a set Lm such that either ∅ ∈ Lm or Lm ∩ ⋃

Lm �= ∅ holds, in which cases
Lm cannot serve as a set of individuals. When this happens, basis(L) will flag the
failure by returning {∅}; but failure can be detected earlier during the descent, should
P(Ln) ∩ ⋃

(Ln \ P(Ln)) be nonnull at some point. The predicate Stage(L , S)

indicates L as a potential stage of the superstructure—if any—generated by its ‘ulti-
mate logarithm’ S = basis(L) when the latter is obtained without failure; but even
when so, S does not qualify as a set of individuals unless one can indefinitely as-
cend, starting with S, through stages none of which reveals the inner structure of its
elements. The property Ur (S) captures the sense of our last remark.

Under the assumption Ur (s0), we have in fact checked with the assistance of Ref
that ŝ0 behaves as desired (see Fig. 10.5), even though genuine individuals (‘ure-
lemente’ of the nature set forth in [14, p. 11]) do not exist in the von Neumann
cumulative universe of all sets.

The interface, shown in Fig. 10.5, of the Theory superstructure may look in-
timidating, the cause being that it exploits the property 〈∃
 | Stage(
, s0) & X ∈ 
〉

15Natural numbers will play an irreplaceable role in the informal arguments providing the rationale
for the formal constructions that follow; within the formal treatment, their collection N will act as
a set whose infinitude is easiest to prove (and infinite sets will be crucial in Sect. 10.8).
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Fig. 10.5 Interfaces of the Theorys of universes and superstructures

as a temporary surrogate of the sought ŝ0. Only its final claim shows that the X ’s
enjoying that property form a set, namely the output parameter sstrΘ to be then
actualized as ŝ0 outside the Theory; even so we can exploit the said property as a
universe to get, through the Theory universe, derived closure properties. Observe,
in fact, that the second-to-last and penultimate claim of superstructure match the
assumptions of universe and its internally derived conclusions.

The moral is that our recursive characterization of the stages of a superstructure
disclosed handy patterns to our formal reasoning about them; however, at one point
we had to resort to a construction from below, closer in spirit to [14, Sect. 1.3]:
this happened when it came to ascertaining that the union-class of all the stages is,
in fact, a set. For that purpose, we applied the Theory reachGlob (see Fig. 10.2
above) to the actual input parameter if X = ∅ & s0 �= ∅ then s0 else X ∪ P(X) fi,

thus getting a function glob whence the sought superstructure was obtained simply
by taking sstrΘ = ⋃

glob(∅). The following triad of equations conveys the idea, in
functionally equivalent terms:
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nextStage(L) = if L = ∅ & s0 �= ∅ then s0 else L ∪ P(L) fi ,

stage(I ) = arb ({nextStage(stage( j)) : j ∈ I }) ,

sstrΘ = ⋃ {stage(i) : i ∈ σ∞} .

These equations, in fact, adjust the construction of Fig. 10.4 to the case at hand; as
said under that figure, σ∞ is a Ref’s built-in witnessing that infinite sets exist.

10.8 Forging Companion Sets of Individuals

When undertaking the construction of a standard universe, in practice one starts with
a pre-defined, infinite basis—say the setR of all real numbers—whose elements may
have an inner structure that prevents their direct use as individuals. If so, how can
we conceal their structure? We need a technique for converting a set s ′ whatsoever
into a set s ′′ so that Ur

(
s ′′) holds and there is a one-one correspondence between s ′

and s ′′.
One plainly sees that Ur

(
s ′′) cannot hold if any set of finite rank belongs to s ′′;

on the other hand, imposing that ∅ /∈ s ′′ and that all elements of elements of s ′′ share
the same infinite rank r suffices to ensure that Ur

(
s ′′) holds—one shows inductively,

in fact, that each stage originating from s ′′ is the union of a set of finite rank with a
set whose elements have ranks exceeding r . This observation makes it rather easy
to conceive an injection ur whose domain is the given s ′ and whose set of values,
s ′′ = {

ur x : x ∈ s ′}, can serve as basis in place of s ′ in the construction of the
standard superstructure. Should any rationale arise for doing so, we can even tune
the range of s ′′ by means of an auxiliary ‘gauge’ set c′, as suggested by the interface
of the Theory urification in Fig. 10.6.

This Theory receives sets s ′, c′ such that s ′ ∪ c′—and hence rk
(
s ′ ∪ c′)—is infi-

nite; it manufactures and produces in output a function urΘ sending injectively each
x ∈ s ′ to a set urΘ(x) all of whose elements have rank rk

(
s ′ ∪ c′)+ = rk

(
s ′ ∪ c′) ∪

Fig. 10.6 Gauged
transformation of a set s′
whatsoever into a set of
individuals
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{
rk

(
s ′ ∪ c′)}, where R+ =Def R ∪ {R}. The definition of urΘ—internally hidden,

insofar as immaterial outside the Theory urification—could well be

urΘ(X) =Def

{
s′ \ {X} ∪ {

s′ ∪ c′}
}

.

What really counts to us is that Ur
({

urΘ(x) : x ∈ s ′}) holds, as we aimed at.
To see a more sophisticated exploitation of the Theory at hand, suppose next

that we are given a set s along with an infinite set i ′ that we want to use as index
set for enlarging s, seen as a standard set of individuals, into a set w of nonstandard
individuals. To ease the discussion, we momentarily dismiss the concurrence issue
debated in Sect. 10.4; we will content ourselves with an ultrafilter none of whose
elements is a finite set, over (a counterpart i ′′ of) i ′.

First move. Convert i ′ into a set i ′′ so that all indices j in i ′′ have the same infinite
rank r , exceeding the rank of s, and there is a one-one correspondence u(X) between
i ′ and i ′′:

Apply (urΘ : u) urification( s′ �→ i ′, c′ �→ s ) ⇒ · · ·
Def i ′′ =Def

{
u(x) : x ∈ i ′

}

Second move. Observe that when W is a set of functions from i ′′ to s then each
element of

⋃
W is an ordered pair 〈 j, x〉 = {{ j} , { j, x}}, whose rank is infinite.

Trivially ∅ /∈ W and hence Ur (W ) holds.
Third move. Introduce an ultrafilter æ such that

⋃
æ = i ′′ and æ ⊇ {

i ′′ \ { j} : j ∈ i ′′
}

,

and at this point specify W as follows:

ρ(g) =Def arb
({
h ∈ si

′′ | {
j ∈ i ′′ | h j = g j

} ∈ æ
})

,

W =Def

{
ρ(g) : g ∈ si

′′
}

.

Now regard this W and its subset

S =Def

{
h ∈ W | (∃ y | dom

( (
i ′′ × {y}) ∩ h

) ∈ æ
)}

,

respectively, as the ‘wide’ and the ‘small’ set of all nonstandard individuals and of
the standard ones: it should be clear that S can act as a counterpart of the original
s, in view of the natural correspondence between the two.

What precedes has offered clues about how to implement the Theory whose
interface is shown in the lower part of Fig. 10.7.
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Fig. 10.7 Transformation of a set s into a set wΘ of nonstandard individuals

10.9 Set-Encoding of Bounded-Quantifier Formulae

Before we can exploit Ref to state and prove propositions such as the transfer prin-
ciple (not to mention Łoś’s theorem, see Sect. 10.3), we must devise a set-encoding
of terms and formulae that enables easy specifications of how to

(A) evaluate a term or formula under a set-assignment for its variables,
(B) determine the truth value of a sentence,
(C) replace a free variable by a constant within a term or formula,

and the like. Then we will be able to reason formally with Ref about the languages
of specific universes.

The set-theoretic representation of terms and formulae can be conceived of rather
liberally. By seeing each universe U as embedded in the class of all sets, which is
Ref’s domain of discourse, we will in particular

• treat the different languages LU by a single encoding instead of separately,
• specify the function val that evaluates a ‘term’ t under a set-assignment v for
the variables occurring in it so that val(t, v) yields a result even when t does not
encode a term.
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Fig. 10.8 Theory about the set-encoding of terms

About one feature of the representation of the syntax, we see no reason for being
flexible: each variable xn will be encoded by its subscript n, a positive integer.

The Theory interface displayed in Fig. 10.8 formulates the constraints to which
we submit our encoding of terms, effected via two properties, Pair and Appl, and
three functions: lft , rgt, and cst. The two properties are meant to indicate which sets
encode terms of the respective forms 〈
,,, r〉 and (
 ��� r); lft(p) and rgt(p)will provide,
when applied to a set p that encodes a termof the form 〈
,,, r〉, the two sets encoding the
immediate subterms, 
 and r respectively; lft(q) and rgt(q)will behave likewisewhen
q encodes a term of the form (
 ��� r). As for cst, it will send each set c to a constant
c designating it univocally: not only cst(c) �= cst(k) must hold whenever c �= k,
but we require also that ¬Pair(cst(c)), ¬Appl(cst(c)), and cst(c) /∈ N, to avoid
‘collision’ between cst(c) and any set encoding a non-constant term. Unambiguous
readability also demands that p /∈ N, q /∈ N, and p �= q hold when Appl(p) and
Pair(q) hold. This is the rationale behind the first two claims issued by the Theory
termEncoding. To understand the third, fourth, and fifth claim thereof, think of ∅ as
non-encoding set par excellence: for every pair x, y of sets which differ from ∅, we
want unique sets p, q to exist such that lft(p) = lft(q) = x , rgt(p) = rgt(q) = y, and
Pair(p), Appl(q) hold; conversely, we want lft(s) and rgt(s) to differ from ∅ when
either Pair(s) or Appl(s) holds. The last claim of termEncoding plays a technical
role: since the only built-in kind of recursion in Ref is ∈-recursion, by imposing that
the immediate subterms of any compound term t (as encoded by a set) belong to t ,
this claim will ease the recursive definition of functions over all terms.

Figure10.9 suggests onewayof implementing thewanted functions andproperties
inside termEncoding, based on the remark that when ∅ /∈ {x, y} the projections x, y
can be retrieved from both variants 〈x, y〉 ∪ {x, y}, 〈x, y〉 ∪ {x, y} ∪ {∅} (the former
of which equals {x, y}+ ∪ {{x}}) of Kuratowski’s pair 〈x, y〉.

Assuming that terms are encoded according to a quintuple such as the one pro-
duced by termEncoding, it is easy to implement their evaluation thus developing
the Theory evalTerm whose interface is shown in Fig. 10.10.
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Fig. 10.9 Aviable implementation of the quintuple needed to encode terms, followed by encodings
of literals of the forms (s ∈ t), (s /∈ t) and of bounded quantifiers of the forms (∃∃∃ xn ∈ t), (∀∀∀ xn ∈ t).
Equality can be eliminated in terms of membership

Fig. 10.10 A Theory about the evaluation of terms

ThisTheory receives, alongwith a quintuple of the said kind, a function th(N , V )

supplying the value of the N -th variable in a set-valued assignmentV ; itmanufactures
and produces in output the evaluating function valΘ . In order to represent a set-valued
assignment it suffices to use a finite-length list which must, in its turn, be modeled
somehow: in a manner—we propose—complying with the Theory interface shown
in Fig. 10.11.

The property Lst produced by the Theory list is meant to indicate which sets
represent lists; the dyadic function th associates with any such set 
 the number
of components of the list and the sets occupying those components.16 Specifically,
supposing thatLst(
) holds, th(0, 
)will exceed by one the overall number of compo-
nents of 
, and th(n, 
)will provide the n-th component of 
when 0 < n < th(0, 
).
It should be clear from this explanation that the three claims issued by list state that:

16One way of implementing lists is discussed in [30, pp. 127–128].
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Fig. 10.11 A Theory of lists

1. the length of every list is a finite ordinal;
2. the equality criterion for lists 
,m is that 
 and m have the same length h and the

same n-th component for n = 1, . . . , h;
3. from every triple m, h, x consisting of a list m, a natural number h, and a set x ,

one can obtain a list 
 of length h whose last component—if any—is x and whose
n-th component is th(n,m) for n = 1, . . . , h − 1; viz.:


 =
{ 〈 〉 if h = 0 ,

〈th(1,m), . . . , th(h − 1,m), x〉 otherwise.

For a sparing encoding of formulae, we can think of equality as a derived con-
struct; a logical equivalence by which it can be eliminated is in fact (s = t) ↔
(∃∃∃ xn ∈ 〈s,,, s〉)(t ∈ xn), where xn does not occur in s or in t . It is also advisable
to treat conjunction and disjunction as polyadic connectives, so that the only for-
mulae which need to be encoded directly are the ones of the forms (s ∈ t), (s /∈ t),

(∃∃∃ xn ∈ t)
(∧h

i=0 ϕi

)
, and (∀∀∀ xn ∈ t)

(∨k
j=0 ψ j

)
, where each ϕi and each ψ j has in

its turn one of these forms. An expedient way of representing a multiple conjunction
or disjunction, that owes much to Martin Davis for its dissemination in the early
1960s, is as the sets of conjuncts or disjuncts, respectively;17 we will rely on this
representation for completing our endeavor.

10.10 Related Work

Often [· · · ] the nonstandard definition of a concept is simpler than the standard definition
(both intuitively simpler and simpler in a technical sense, such as quantifiers over lower types
or fewer alternations of quantifiers). As a result, nonstandard analysis sometimes makes it
easier to find proofs. [4, p. 37]

17This way of representing formulae in conjunctive normal form is widely used today. In recent
years [32] resorted to it, to give a Ref-based correctness proof for the DPLL satisfiability algorithm.
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Inwhat follows, we rely on [6] as an up-to-date comparative survey on systemswhich
offer automated proof abilities related to real analysis. Some of the formalizations
supported by such systems characterize real numbers axiomatically, as a given set
with specific operations and properties; others construct real numbers either from
rational Cauchy sequences or as Dedekind cuts. Nonstandard analysis is available
in ACL2(r) and in Isabelle/HOL (see [26, 27], respectively): both achievements are
reminiscent of [2, 3].

The semi-automated theorem prover ACL2, which ACL2(r) potentiates, offers
limited support to quantifier handling (cf. [27, pp. 323–324]); in order to circumvent
that difficulty, ACL2(r) focuses on the extension ∗

R of the reals. With hyperreal
numbers, in fact, the quantifier alternation∀ ε > 0 ∃ δ > 0 . . . which affects the usual
formulas about limits becomes unnecessary, hence the proofs benefit from a higher
degree of automation. The formalism of ACL2(r) is based on an axiomatization of
∗
R as an autonomous domain.
The Isabelle/HOL-mechanization of real analysis, on the other hand, introduces

the standard, along with the nonstandard, definition of each concept; thereby, ‘users
will have the freedom either to stick with classical (standard) techniques, use non-
standard ones, or a combination of both’ [26, p. 161]. ‘Our first task’, the author
notes, ‘each time we introduce a new concept from analysis, is to prove that the two
definitions are equivalent’ [26, p. 150]. Thus, albeit implicitly, the transfer principle
plays a central role. It is ‘neither an axiom nor a theorem, but a meta-theorem, since it
applies to theorem statements’ and, as such, ‘it is not directly proved in Isabelle/HOL’
[6]; nevertheless, since this principle informs the general pattern followed by all the
equivalence proofs, the ultrapower construction of the hyperreals presupposed that
a proof of Zorn’s lemma and a theory of filters and ultrafilters were developed for
Isabelle/HOL (cf. [26, p. 145]).

As an eventual reward of the exploration discussed in this paper, we hope to
get Ref-based, nonstandard proofs of theorems of real analysis and to check by
means of Ref many of the results presented in Martin Davis’s chapter on hyperreal
numbers [14, Sects. 2.3–2.8]. However, a formal remake of real analysis along un-
conventional lines is only an incidental issue here. As discussed at the beginning, we
rather feel confronted with a proof-engineering issue—akin to metamathematical
extensibility—which our proof assistant could tackle well because a proof of the
relevant meta-theorem can be set up with relative ease in a full-fledged set theory.

After all, the guidelines for a Ref-based development of analysis which J. T.
Schwartz sketched in [35, Chap. 5] stick to the tradition; the use of nonstandard
methods can lead to much simpler and more elegant proofs than the classical ones,
but one can contend that it calls for an extra amount of work spent on preliminary
constructions, which may be out of scale with a proof of Rolle’s theorem (to cite a
result of analysis proper).
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For a large-scale endeavor, this additional work is justified by considerations such
as the following:

Not only does nonstandard analysis provide a rigorous treatment of infinitesimals in the area
of mathematics where they were originally used, it also gives elegant approaches to some
ideas that developed later.

[4, p. 37]

10.11 Concluding Remarks

The well known theorem of Gödel shows that every system of logic is in a certain sense
incomplete, but at the same time it indicates means whereby from a given system L of logic
a more complete system L ′ may be obtained. By repeating the process we get a sequence L ,
L1 = L ′, L2 = L ′

1, L3 = L ′
2, . . . of logics each more complete than the preceding.

(A. M. Turing, 1938)

The authors have at this point prepared the ground for verifying, with a proof-checker
based on set theory, the propositions in the first chapter of [14].18 A variant of the
Zermelo-Fraenkel set theory, postulating global choice, regularity and infinity,19 un-
derlies the logical armory of the proof-checker, Ref, on which our experimental
activity relies. The formally checked proofs regard, for the time being, only certain
parts of our planned work: in particular, we proved the conclusions of the The-
orys about universes, superstructures, and ‘urification’ shown in Figs. 10.5 and 10.6,
as well as the unique readability of the sets that encode terms inside the Theory
termEncoding (see Figs. 10.8 and 10.9); the proof of the ultrafilter theorem was
available from the outset,20 along with many minor but useful facts about finiteness,
rank, ordinals, the set constructs P,

⋃
, etc.

In the phase on which we have reported, anyway, our work has been mainly ar-
chitectural: given the availability of a second-order construct, ‘Theory’, supporting
modularization and proof reuse in Ref, we deem it wise to invest in designing the
Theory interfaces before formalizing proofs meticulously.

18A website reporting on our experiment is at
http://www2.units.it/eomodeo/InitialSetupForNonStandardAnalysis.html,
http://aetnanova.units.it/scenarios/InitialSetupForNonStandardAnalysis/.
19In Ref the well-foundendess of membership and statements of the axiom of choice easily result
from the availability of the construct arb discussed in Sect. 10.6, thanks to the interplay of arb
with abstract set formers; infinity is embodied by Ref’s built-in constant σ∞.
20For a Ref-based proof of Zorn’s lemma (whence the ultrafilter theorem follows easily), see [35,
pp. 373–405]. This lemma was used in Ref’s proof of the maximal ideal theorem for Boolean
algebras as presented in [9].

http://www2.units.it/eomodeo/InitialSetupForNonStandardAnalysis.html
http://aetnanova.units.it/scenarios/InitialSetupForNonStandardAnalysis/
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We are confident thatwe canfinish the envisaged proof-development taskswithout
getting entangled in unforeseen difficulties. Then, as said in the introduction, wemust
adopt schemes of notation and extended rules of inference that conveniently assist
Ref’s users in exploitations of the nonstandard methods.

Even after those enhancements, Ref’s theory will be a conservative extension
of the specific set theory available in Ref’s initial endowment. A more challenging
and intriguing view on the extensibility of proof-checkers should cope with the
progressive extension of theories, in a frame of mind close to some of Alan Turing’s
early investigations (see [37]).
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Chapter 11
What Is Essential Unification?

Peter Szabo, Jörg Siekmann and Michael Hoche

Abstract A unifier of two terms s and t is a substitution σ such that sσ = tσ . For
first-order terms there exists a most general unifier σ in the sense that any other
unifier τ can be composed from σ with some substitution λ such that τ = σ ◦ λ.
For many practical applications it turned out to be useful to generalize this notion
to E-unification, where E is an equational theory, =E is equality under E and σ is
an E-unifier if sσ =E tσ . Depending on the equational theory E , the set of most
general unifiers is always a singleton (as above) or it may have more than one unifier,
either finitely or infinitely many unifiers and for some theories it may not even exist,
in which case we call the theory of type nullary. The set of most general unifiers is
denoted as μU �E (Γ ) for a unification problem Γ , which is a system of equations
and an equational theory E . Unfortunately the set μU �E (Γ ) may be very large
in general—even if it is finite—and for all practical purposes not really useful. For
this and other reasons there is hence (i) a strong interest to compute a much smaller
generating set ofminimal unifiers and then (ii) to find efficient engineering solutions
to handle these sets.Essential unifiers, as introduced byHoche and Szabo, generalize
the notion of a most general unifier and they have a dramatically pleasant effect: the
set of essential unifiers is often much smaller than the set of most general unifiers.
Essential unification may even reduce an infinitary theory to an essentially finitary
theory. For example the one variable string unification problem is essentially finitary
whereas it is infinitary in the usual sense. The most drastic reduction known so
far is obtained for idempotent semigroups, or bands as they are called in computer
science, which are of type nullary: there exist two unifiable terms s and t, but the
set of most general unifiers does not exist. This is in stark contrast to essential
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unification: the set of essential unifiers for bands always exists and is finite. The key
idea for essential unification is to base the notion of generality not on the standard
subsumption order for terms with the associated subsumption order for substitutions,
but on the encompassment order for terms and substitutions. Hence we propose the
encompassment order as a more natural order relation for minimal and complete sets
of E-unifiers and call these sets essential unifiers, denoted as eU �E (Γ ). This paper
introduces essential unification, provides a definitional framework based on order
relations and surveys what is presently known. We conclude with a list of some of
the more important open problems, including the main open problem, namely how
to build essential unification into an automated reasoning system.

Keywords E-Unification · Order relations for unification ·Most general unifiers ·
Essential unifiers · Unification theory

11.1 Introduction

Unification is a well established concept in artificial intelligence and automated theo-
rem proving, in computational linguistics and universal algebra as well as in theoret-
ical and applied computer science like for example in the semantics of programming
languages, for the semantic web and in many other areas (see [50, 65, 76] for several
application areas). Surveys of unification theory can be found in [7, 8, 31, 50, 76]
and there is more recent work on unification in description logics [4, 10, 11], modal
logics [5], nominal unification [81], disunification [9] and other application areas.
The current state of the art is represented at the UNIF workshop series.1 A survey
of the related topic of rewriting systems is presented in [22] and in the “emerging”
textbook [48]; a list of open problems can be found in [68]. A standard textbook is by
Franz Baader and Tobias Nipkow, Term Rewriting and All That [6]. An interesting
collection of open and solved unification problems for several common algebraic
structures like groups, vector spaces, commutative rings, Boolean algebras and oth-
ers is collected by Stanley Burris2 and a recent survey on higher order unification is
presented in [41].

Unification algorithmswere first invented for automated theorem proving systems
and the historically first computer generated mathematical proof for a theorem was
found by a program fromMartinDavis in 1954. It postulated the remarkable fact that
the product of two even numbers is again even, formulated in a decidable fragment
of first order logic, called Pressburger Arithmetic. The first complete unification
algorithm for first order logic is due to Prawitz [64], but a complete algorithm as

1First workshop in Val d’Ajol in 1987 and since then annually. Since 1997, there is a website
UNIF1997,UNIF1998,UNIF1999up toUNIF2005 in Japan andUNIF2006at theFLOCconference
in Seattle, UNIF2007 and UNIF2008 at the Schloss Hagenberg, Linz, Austria. The current UNIF’s
can be found at UNIF2013, UNIF2014 and UNIF2015.
2http://www.math.uwaterloo.ca/~snburris/htdocs/WWW/PDF/e_unif.pdf.

http://www.math.uwaterloo.ca/~snburris/htdocs/WWW/PDF/e_unif.pdf
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we know it today was working already in 1963 in Martin Davis’s “Davis-Putnam
Procedure” [20], where improvements were implemented by D. McIlroy and Peter
Hinman. All of this, including Martin’s linked conjunct method, was later subsumed
byAlan J. Robinson’s resolution principle [67], where the unification algorithm is the
corner stone of this method. Resolution dominated the field of automated reasoning
then for many decades to come and is still the most wellknown inference rule in
artificial intelligence.

Unification aswe see it today is a generalmechanism to solve equational problems.
For practical applications it is often crucial to have a minimal representation of the
solutions, fromwhich all other solutions (unifiers) can be derived. This is an essential
feature of any of todays resolution, matrix, rewrite or tableaux based automated
reasoning systems, where the most general unifier represents the infinitely many
elements from the Herbrand Universe that had to be enumerated and instantiated
into the universally quantified variables of earlier automated deduction systems. All
of these early sytems implemented the key idea of Herbrands work [84], that a first
order formula can be proven by instantiating in a systematic fashion the quantified
universal variables by ground terms, (now often called the Herbrand Universe)3

and then prove it by some decision procedure for propositional logic. These early
systems like Gilmore [33], Wang [83], Kangar [45], Davis [20], Veenker [82] and
others differed in their struggle to find the “right” instances out of the infinite set
of potential ground terms and it took a little more than a decade until the notion
of a complete first order unification algorithm became standard. Martin Davis’s
article “The prehistory and early history of automated deduction” [17] gives a lively
historical account of these early developments and the two volumes [78] collect the
most important contributions in these early days.

Martin also worked with Julia Robinson on Hilbert’s Tenth Problem [18], a topic
we shall pick up again in paragraph 4.2 where we discuss its relationship to string
unification. For all these well known and influential contributions and many more
personal reasons this article is dedicated to Martin Davis.

For unification problems in the free algebra of terms (also known as syntactic uni-
fication), there exists always a unique unifier for solvable unification problems from
which all other unifiers can be derived by instantiation. This unique (up to renaming)
unifier is called the most general unifier, but for equational algebras the situation is
completely different: the minimal complete set of unifiers is not always finite and it
may not even exist, which was conjectured by Gordon Plotkin [63] in his seminal
paper in 1972. This paper introduced the idea to take some troublesome axioms like
associativity or commutativity out of the data base and to build them directly into
the deduction machinery. Since then unification problems and equational theories
have been classified with respect to the cardinality of their minimal complete set of
unifiers. These results led to the development of general approaches and algorithms,
which can be applied to a whole class of theories. This is the topic of universal
unification, see e.g. [75, 80].

3Actually several other logicians of the time had this idea and it is not known who came first.
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More specifically, a unification problem s =? t for two given terms s and t is
the problem to find a unifier σ such that sσ = tσ . A substitution σ is more general
than a substitution τ if there is a substitution λ such that τ = σ ◦ λ. We will also
say σ subsumes τ . The unifier σ is a most general unifier, if for any other unifier
τ of s and t we can find a substitution λ such that τ = σ ◦ λ. We often have the
need to limit the equality on substitutions to a set of variables and write σ =V τ if
xσ = xτ for all variables x ∈ V . Generalizing this notion to E-unification, where
E is an equational theory, =E is equality under E and σ is an E-unifier for s and t
with sσ =V

E tσ , we may have more than one most general unifier. A minimal and
complete set of E-unifiers, denoted μU �E for s and t , is a set such that for every
σ ∈ μU �E we have sσ =V

E tσ . The set is complete if for any E-unifier τ there exists
some σ inμU �E such that τ =V

E σ ◦ λ. The setμU �E isminimal in the sense that
for every two unifiers σ , τ inμU �E there is no λwith σ =V

E τ ◦ λ, that is all unifiers
in μU �E are independent. We say that a unification problem is unitary if μU �E

is a singleton, it is finitary if μU �E is finite for every s and t and it is infinitary if
there are terms s and t such that μU �E is infinite. Unfortunately there are theories
such that two terms are unifiable, but the set μU �E is not recursively enumerable.
In this case we call the problem nullary or of type zero. This classification according
to the type naturally leads to a hierarchy of equational theories called the unification
hierarchy.

It turned out that this well established view of unification theory changes dras-
tically, if we redefine the notion of a most general unifier. Recall that a unifier σ

subsumes another unifier τ if:
τ =V

E σ ◦ λ

Hence standard unification theory is based on the subsumption relation.We gener-
alize this notion anddefinean encompassment relationon substitutions: a substitution
σ is encompassed by a substitution τ , if there exist substitutions λ1 and λ2 such that

τ =V
E λ1 ◦ σ ◦ λ2

where λ1 has to have certain properties to be defined in the next paragraph below.
The idea is that λ2 is used to establish the known subsumption relation between τ

and σ as in standard unification theory and is composed as usual “from the right” in
the tripartition λ1 ◦ σ ◦ λ2. The substitution λ1 allows us also to compose “from the
left” and this can drastically reduce the cardinality of the set of minimal E-unifiers,
which we now call essential E-unifiers: an E-unifier σ is an essential E-unifier if for
any other unifier τ there exist substitutions λ1 and λ2 such that τ =V

E λ1 ◦ σ ◦ λ2.
We say τ encompasses σ and the set of essential E-unifiers, denoted as eU �E , is
the set of E-unifiers such that for any unifier τ there is some σ ∈ eU �E , such that
τ =V

E λ1 ◦ σ ◦ λ2.
We say a unification problem is e-unitary (is e-finitary) if the set of essential

unifiers is always a singleton (is always finite). A unification problem is e-infinitary
(e-nullary) if there are two terms such that the set of essential unifiers is infinite (does
not exist).
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11.2 Notions and Notation

Notation and basic definitions in unification theory are well known and have found
their way intomany and diverse academic fields andmost monographs and textbooks
on automated reasoning contain sections on unification.

In the following we unify the various presentations of the necessary concepts for
unification towards a concise notation which serves our purpose and we show how
the additional concepts for essential unification can be built upon these definitions.
The notion of an algebra given below embraces algebraic structures and the original
notions in computational logic, recursive function theory, theory of automata or
automated theorem proving are compatible and natural applications.

11.2.1 Signatures, Terms and Term Algebras

A signature is a finite set F of function symbols with a nonnegative integer n, called
arity, that is assigned to each member f of F and f is an n-ary function symbol.
The subset of n-ary function symbols in F is denoted by Fn . An algebra of type F is
an ordered pairA = 〈A, F〉 where A is a nonempty set and F is a family of finitary
operations on A indexed by the signature F such that corresponding to each n-ary
function symbol f in Fn there is an n-ary operation f A on A. The set A is called the
carrier of the algebra A = 〈A, F〉.

Let X be a set of (distinct) variables. Let F be a signature. The set T (F, X) of
(syntactic) terms of F over X is the smallest set

(i) comprising X and F0 and
(ii) if t1, . . . , tn in T (F, X) and f in Fn then f (t1, . . . , tn) in T (F, X)

The set of variable-free terms are called ground terms. The set of variables occur-
ring in a term t is denoted by Var(t). The set of sub terms of a term f (t1, . . . , tn)
contains the term itself and is closed recursively by containing t1, . . . , tn . It is denoted
by Sub(t).

Given F and X , then the term algebra of type F over X , denoted by 〈T (F, X), F〉,
has as its universe the set of terms T (F, X) and the fundamental operations satisfying

f 〈T (F,X),F〉(t1 . . . , tn) = f (t1 . . . , tn)

for f in Fn and terms t1, . . . , tn in T (F, X). Term algebras give an algebraic structure
to (syntactic) terms and focus the attention on Herbrand interpretations, where the
set of terms itself is the carrier.
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11.2.2 Substitutions

A substitution is a (unique) homomorphism in the term algebra generated by a map-
ping σ : X −→ T (F, X) from a finite set of variables to terms. Substitutions are
generally denoted by small Greek letters α, β, γ, σ etc. and they are represented
explicitly as a function by a set of variable bindings σ = {x1 �→ s1, . . . , xm �→ sm}.
SF,X denotes the set of all substitutions. The application of the substitution σ to a
term t , denoted tσ , is defined by induction on the structure of terms

tσ =
⎧
⎨

⎩

si if t = xi
f (t1σ, . . . , tnσ) if t = f (t1, . . . , tn)
t otherwise

The substitution ε = {} with tε = t for all terms t in TF,X is called the identity. A
substitution σ = {x1 �→ s1, . . . , xm �→ sm} has the finite domain:

Dom(σ ) := {x |xσ �= x} = {x1, . . . , xm};

The range is the set of terms

Ran(σ ) :=
⋃

x∈Dom(σ )

{xσ } = {s1, . . . , sm ′ },m ′ � m

The set of variables occurring in the range is VRan(σ ) := Var(Ran(σ )) and
Var(σ ) = Dom(σ ) ∪ VRan(σ ). The restriction of a substitution σ to a set of vari-
ables Y ⊆ X , denoted by σ |Y , is the substitution which is equal to the identity
everywhere except over Y ∩ Dom(σ ), where it is equal to σ . The composition of
two substitutions σ and θ is written σ ◦ θ (to emphasize the composition) or just as
σθ and its application is defined by tσθ = (tσ)θ . This is fine if σθ has no contra-
dictory variable bindings, otherwise if xσ �= xθ for some variable x, this binding in
θ is applied to σ and eliminated in σθ , (see [8] p. 451, for details). A substitution σ

is idempotent if σσ = σ and this is true iff Dom(σ ) ∩ V Ran(σ ) = ∅. The appli-
cation of a substitution to a term can be tricky, if it is not idempotent, for example if
it contains infinite cycles or contradictory bindings, and there are several solutions
proposed for this problem in the literature. In the area of automated reasoning there
is the convention that the variables in si are always renamed into new variables and
contradictory bindings are removed. If σ is not idempotent, then the set representa-
tion of a substitution is inadequate, as the application order of the individual bindings
matters. In that case σ = {x1 �→ s1, x2 �→ s2, . . . , x �→ sm}, is often rewritten into
“triangle form” [8]:

{x1 �→ s1}{x2 �→ s2} . . . {xm �→ sm}

and then applied sequentially and component wise, sometimes called dag solvent
form.
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Relations such as =,�, . . . between substitutions sometimes hold only if they
are restricted to a certain set of variables V . A relation R which is restricted to V is
denoted as RV , and defined as σ RV τ ⇐⇒ xσ Rxτ for all x in V. Two substitutions
σ and θ are equal, denoted σ = θ iff xσ = xθ for every variable x , they are equal
restricted to V, xσ =V xθ , iff xσ = xθ for all variables x in V.

11.2.3 Congruences and Equation

An equivalence relationΘ on the underlying set (the carrier) of an algebraA of type
F is a congruence, if for each n-ary function symbol f in F and elements ai , bi of
A, for all i in 1 � i � n we have

aiΘbi ⇒ f A(a1, . . . , an)Θ f A(b1, . . . , bn)

The quotient algebra A Θ is the algebra whose carrier are the equivalence classes
A/Θ and whose operations satisfy

f A/Θ(a1/Θ, . . . , an/Θ) = f A(a1, . . . , an)/Θ

We are interested in quotient algebras, where the congruence is defined by a set
of equations E , which is denoted as=E . For a term t in T (F, X) and the congruence
E the equivalence class of t is denoted as [t]E .

11.2.4 Orders

A term t is (syntactically) an instance of a term s, denoted s � t , if sσ = t for some
substitution σ :

s � t ⇐⇒ ∃σ : sσ = t

We say s subsumes t and this relation is a quasiorder (or preorder as it is sometimes
called. That is, it is reflexive and transitive). We call it the subsumption order on
terms.
A term t (syntactically) encompasses a term s, denoted s � t , if a sub term of t is an
instance of s:

s � t ⇐⇒ ∃σ : sσ ∈ Sub(t)
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Syntactically encompassment conveys the notion that s appears in t with a context
“above” and a substitution instance “below”. We say t encompasses s or s is encom-
passed by t and � is the encompassment order. In particular we define s � t , called
strict encompassment, if sσ is a proper sub term of t.4

So in summary we have the following orders on terms:

Definition 11.1 (syntactic)

1. A term s is a sub term of t if s ∈ Sub(t) and we denote this order by s � t .
2. A term s subsumes t, denoted s � t , if there exists a substitution σ with sσ = t
3. A term s is encompassed by t , denoted s � t , if there exists a substitution σ such

that sσ ∈ Sub(t).

These standard order relations are now extended to equality modulo E for the con-
gruences induced by the equations in E .

Definition 11.2 (modulo E)

1. A term s is a sub term of t modulo E, denoted s �E t , if there is a term t ′ =E t
and s � t ′.

2. A term s subsumes t modulo E, s �E t , if there exists a substitution σ with
sσ =E t

3. A term s is encompassed by t modulo E, s �E t if there is a substitution σ such
that sσ �E t .

We will now lift these order relations on terms component-wise to order relations on
substitutions: for all variables in the domain of the substitution we require that the
images fulfill the corresponding relation.

Definition 11.3 (syntactic)
Let V be some set of variables.

1. A substitution σ is a sub-substitution of τ , denoted as σ � τ , if Dom(σ ) =
Dom(τ ) and for all x in this domain xσ is a sub term of xτ , that is,
xσ ∈ Sub(xτ). SUB(τ ) denotes the set of sub-substitutions of τ .

2. A substitution σ subsumes a substitution τ or τ is an instance of σ , denoted
σ �V τ , if there exists a substitution λ such that τ =V σλ. The relation � is a
quasiorder, called the subsumption order for substitutions.

3. A substitution σ is encompassed by τ , denoted by σ �V τ , if there exists λ, such
that (σλ) |V is a sub-substitution of τ . That is (σλ) |V∈ SUB(τ ).

The corresponding order on substitutions modulo E, σ �E τ and σ �E τ is
defined as:

Definition 11.4 (substitution ordering modulo E restricted to a set of variables)
Let V be some set of variables.

4Signs and notation are still not uniform in all related fields, in particular our notation is used
more often in the literature on automated theorem proving and unification theory [6], whereas term
rewriting systems usually prefer notational conventions such as �and �; see [22, 23].
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1. A substitution σ is a sub-substitution of τ modulo E, denoted as σ �V
E τ , if

Dom(σ ) = Dom(τ ) and for all x in this domain, xσ is a sub term of xτ modulo
E.

2. A substitution σ subsumes a substitution τ modulo E restricted to V, denoted as
σ �V

E τ , if there exists a substitution λ such that τ =V
E σλ. The relation �V

E is
called the subsumption order for substitutions modulo E restricted to V.
We denote subsumption equivalence as σ ∼

V
E τ , if σ �V

E τ and τ �V
E σ .

3. A substitution σ is encompassed by τ modulo E restricted to V, denoted σ �V
E τ ,

if there exists λ, such that (σλ) |V is a sub-substitutionof τ modulo E restricted
to V. We denote encompassment equivalence as
σ ≈

V
E τ , it holds if σ �V

E τ and τ �V
E σ .

An example for the syntactic sub-substitutions of
τ = {x �→ f (a, z)} is:

SUB(τ ) = {{x �→ a},
{x �→ z},
{x �→ f (a, z)} }

because x{x �→ a} = a ∈ Sub(xτ) = Sub( f (a, z)) = { f (a, z), a, z}; and similarly
for the other elements of SUB(τ ).
To demonstrate the analogy between the better known encompassment definition for
terms with the new encompassment order on substitutions, consider the terms s and
t and substitutions σ and τ :

s = f (x, y), t = f (x, g(a, b)), and λ = {y �→ g(a, b)}

then s /∈ Sub(t), but sλ ∈ Sub(t), i.e. s � t .
Now consider the substitutions

σ = {x �→ a, y �→ g(a, z)}
τ = {x �→ f (a, b), y �→ f (a, g(a, b))}

λ2 = {z �→ b}

where σ /∈ SUB(τ ) but σλ2 ∈ SUB(τ ), that is σ � τ .
With

λ1 = {
x �→ f (x, b), y �→ f (a, y)

}

we can brake τ apart into a tripartition λ1σλ2, with V = {x, y}:
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τ =V λ1σλ2

=V
{
x �→ f (x, b), y �→ f (a, y)

} {x �→ a, y → g(a, z)}{z �→ b}
=V

{
x �→ f (x, b), y �→ f (a, y)

} {x �→ a, y �→ g(a, b)}
=V {x �→ f (a, b), y �→ f (a, g(a, b))}

and hence σ encompasses τ , σ � τ .
Our claim is that the encompassment order is better suited for a general framework

for E-unification than the standard order �E . To get a feeling for the advantage let
us look at the following example.
Substitutions form a semigroup with respect to their composition and this fact was
used to define the subsumption order on unifiers, namely

σ �E τ ⇐⇒ ∃λ2 : τ =V
E σ ◦ λ2,

which led to the notion of a most general unifier.
Now consider the equational theory of associativity A = {x(yz) = (xy)z}, that is the
free semigroup, and the unification problem Γ = {ax =?

A xa}. This has an infinite
set of most general unifiers σn = {{x �→ an}| n � 1}. However, the essential unifier
in this set seems to be intuitively σ0 = {x �→ a}, because every most general unifier
contains this unifier in a certain sense, namely with

λn = {x �→ an−1x}

we have

σn = λn ◦ σ0, n > 1.

Since substitutions form a semigroup, the dual of the subsumption order, namely
left-composition instead of right-compositionwould induce a semigroup aswell with
the advantage that the above infinitary problemwould become a unitary one. So if we
use the order�A with left composition ∃λ : σ =A λτ we have a unitary problem. But
this is not compatible with the original notion of generality and of course it would
not quite work in general as long as the λ can be any substitution. Our solution
is based on lifting the encompassment order on terms to the encompassment order
on substitutions modulo E. In particular the encompassment order on substitutions
allows us to represent τ as a tripartition with left and right composition:

σ �V
E τ =⇒ ∃ λ1∃λ2 : τ =V

E λ1σλ2

If λ1 is empty this is the usual subsumption relation and if λ2 is empty then τ is
not an instance and σ is a proper sub-substitution and so it is encompassed by τ .
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11.2.5 E-Unification

Let E be an equational theory and let � be the signature of the term algebra. An
E-unification problem is a finite set of equations

Γ = {s1 =?
E t1, . . . , sn =?

E tn}

An E-unifier of Γ is a substitution σ , such that

s1σ =E t1σ, . . . , snσ =E tnσ

The set of all E-unifiers of Γ is denoted U �E (Γ ). A complete set of E-unifiers
cU �E (Γ ) for Γ is a set of E-unifiers, such that for every E-unifier τ there exists
σ ∈ cU �E (Γ )with σ �E τ . The setμU �E (Γ ) is called aminimal complete set of
E-unifiers forΓ , if it is complete and for all distinct elements σ and σ ′ inμU �E (Γ )

σ �E σ ′ implies σ =E σ ′.
When a minimal complete set of E-unifiers of a unification problem Γ exists, it

is unique up to subsumption equivalence ∼E . Minimal complete sets of E-unifiers
need not always exist, and if they do, they might be singular, finite, or infinite. Since
minimal complete sets of E-unifiers are isomorphic whenever they exist, they can
be used to classify theories with respect to their corresponding unification problem
as well. This leads naturally to the concept of a unification hierarchy which was
first introduced in Siekmann’s doctoral thesis in 1976 [73] and further refined and
extended by himself and his later students as well as by many subsequent workers
in the field of unification theory, see [7, 8, 31, 50, 76] for the standard surveys on
this aspect.

A unification problem Γ is:

• nullary, ifΓ is unifiable, but the minimal complete set of E-unifiers does not exist.
• unitary, if it is not nullary and the minimal complete set of E-unifiers for Γ is of
cardinality less or equal to 1.

• finitary, if it is not nullary and the minimal complete set of E-unifiers is always
finite.

• infinitary, if it is not nullary and the minimal complete set of E-unifiers is infinite.

An equational theory E is:

• unitary, if all unification problems for E are unitary
• finitary, if all unification problems are finitary.
• infinitary, if there is at least one infinitary unification problem and all unification
problems have minimal complete sets of E-unifiers.

• If there exists a solvable unification problem Γ not having a minimal complete set
of E-unifiers, then the equational theory E is nullary or of type zero.

The subsumption order and the encompassment order for E-unifiers are inherited
from the above order on substitutions, that is an E-unifier σ is more general than an
E-unifier τ , denoted as σ �E τ , if there exists a substitution λ such that τ =V

E σλ.
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11.2.6 Essential E-Unification

In Sect. 2.4 we showed the steps for the extension of the subsumption quasiorder for
terms to substitutions and then extended it to equational theories =E in order to get
the concept of a most general E-unifier.

However for all practical purposes, we do not only have the unpleasant situation
that there are nullary E-unification theories [2, 30, 69], but even more importantly
there is such an enormous plenitude of most general unifiers that it defies its original
purpose: there are very simple theories such as associativity that are infinite and even
the finite theories may have sets of most general unifiers that are beyond practical
usefulness. For example the theory of associativity and commutativity AC has expo-
nentially many unifiers, in fact for a base B there are B with a tower of exponentials
many unifiers [12, 25, 46, 47]. So the question is: can we find amore general concept
for the generating set, than the set of most general unifiers. As a step in this direction
we propose the notion of an essential unifier, whose definition is not based on the
generality order of the past, but on the encompassment order lifted to substitutions
and extended to equational theories. So the concept of an essential E-unifier is as
follows:

Definition 11.5 (essential E-unifier)

1. An E-unifier σ for a unification problem Γ modulo the equational theory E and
the variables V = Var(Γ ), is encompassed by an E-unifier τ for Γ , denoted
as above by σ �V

E τ , if there exists a substitution λ, such that (σλ) |V is a sub-
substitution of τ .

2. An E-unifier σ for a unification problem Γ modulo the equational theory E that
does not encompass any other E-unifier for Γ is called an essential E-unifier.
We denote the set of essential E-unifiers as eU �E (Γ ). Two unifiers σ and τ are
encompassment equivalent modulo E, denoted ≈

V
E , if σ �V

E τ and τ �V
E σ .

3. A complete set of essential E-unifiers for Γ is a set of E-unifiers, such that for
each E-unifier τ there exists σ in the set with σ �V

E τ .
4. The set eU �E (Γ ) is called a minimal complete set of essential E-unifiers for

Γ , or simply the set of essential E-unifiers for Γ , if it is a complete set and for
all σ and σ ′ in eU �E (Γ ) σ and σ ′ are encompassment equivalent.

Proposition 11.1 The encompassment order on substitutions is a quasiorder, that
is, it is reflexive and transitive.

Proof reflexivity: σ �E σ means that there are substitutions λ1, λ2 : σ =E λ1σλ2,
setting λ1 and λ2 to the substitution identity ε we have σ =E εσε = σ .

transitivity: σ �V
E τ and τ �V

E ψ implies σ �V
E ψ , where by definition we have

Dom(σ ) = Dom(τ ) = Dom(ψ) =: V , so

τ =V
E λ1,1σλ2,1

ψ =V
E λ1,2τλ2,2

http://dx.doi.org/10.1007/978-3-319-41842-1_2
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which implies
ψ =V

E (λ1,2λ1,1σλ2,1λ2,2) ⇒ σ �V
E ψ

�
A well known property of unification in the free term algebra is that the most

general unifier is unique (up to renaming of variables), if the unification problem is
solvable. This is a property we would like to have for sets of essential unifiers as
well.

One way to generate the set of all E-unifiers from the minimal set of most general
unifiers, μU �E (Γ ), is via a closure operator. The notion of a closure operator is
well established and plays a central role in many areas of algebra, computational
logic and mathematics in general (see for example [29]). For a set M a mapping
C : P(M) → P(M) from the power set of M to itself, is a closure operator if
it is extensive, monotone increasing and idempotent. It can be shown that the set
eU �E (Γ ) of essential unifiers can be closed and generates all E-unifiers for Γ as
well.

Proposition 11.2 The set of essential unifiers eU �E (Γ ) is unique up to part equiv-
alence ≈E .

Proof Suppose it is not unique, then there would be two complete sets of essential
unifiers eU �1

E and eU �2
E . Let σ2 be in eU �2

E\eU �1
E , now because eU �1

E is
complete, there exists some τ1 in eU �1

E which encompasses σ2: τ1 �E σ2. On the
other hand, because eU �2

E is a set of essentials, i.e. in particular it is also complete,
there exists σ3 in eU �2

E with σ3 �E τ1. But then σ3 �E τ1 �E σ2 and by transitivity
we have σ3 �E σ2, contradicting the assumption that eU �2

E is minimal. �
Lemma 11.1 The set of essential unifiers of a non nullary unification problem Γ is
a subset of the set of most general unifiers: eU �E (Γ ) ⊆ μU �E (Γ ).

Proof This follows easily from the fact that the subsumption order is a special case
of encompassment, where λ1 is the empty substitution ε. More explicitly: if σ is
an essential E-unifier, it is not encompassed by any other unifier, hence it is not
subsumed by any other unifier either. �

The important observation is that the set of essential E-unifiers can be lovely, that
is, it can be extremely small in comparison to its superset of most general unifiers.
The results currently known in this small subfield of unification theory—that is still
at its infancy and under development—are summarized in Sect. 11.4.

11.3 Essentially Nullary Theories

Gordon Plotkin [63] conjectured in his seminal paper in 1972, that there may be
sets of most general unifiers modulo E, that are not recursively enumerable, that is,
subsumption modulo E is not a “well quasiorder”.
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Definition 11.6 A quasiorder � on a set S is a well quasiorder, if for any infinite
descending chain s0 � s1 � s2 � · · · in S there exists some i < j such that si � s j
and there are no infinite anti chains, where an anti chain consists of incomparable
elements with respect to �.

In the early 1980s the first equational theories of unification type nullarywere discov-
ered [30] and in particular idempotent semigroups (with the axioms of associativity
and idempotency, also called bands [2, 69]), became well known. So a natural ques-
tion is: are there essentially nullary theories as well? Franz Baader gave in [3] an
example of an equational theory F and a nullary matching problem for F, which is
illuminating for our demonstration here as well. We show first, that this particular
problem, which is nullary in the traditional sense, is essentially unitary, that is it is
e-unitary in this new sense. This and other examples presented in 4.1 and 4.2 below
gave rise to the early hope that there are no e-nullary theories and that many infinitary
problems may collapse to e-finitary or even e-unitary problems. However a slight
modification of F and of the matching problem shows that there are unfortunately
still essentially nullary (e-nullary) problems as well.
Let F be the following equational theory with constant symbols a and b and the
function symbols f, g, h and q

F1 : g(x, f (a, z), f (a, y)) = g(x, z, y),
F2 : h(x, y, f (a, z)) = h(x, y, z),
F3 : h(x, y, b) = b,
F4 : q(g(x, y, z)) = h(x, y, z)

Let Γ1 be the equational unification problem q(x) =?
F b , with V = Var(Γ1) = {x}

and let ϕn(x) be defined as ϕ0(x) = x and ϕi+1(x) = f (a, ϕi (x)) for i � 0.
Franz Baader shows in [3], that the following complete set of F-unifiers of Γ1,
cU �F (Γ ) = {θ0, θ1, θ2, . . .} with θi = {x �→ g(x ′, y′, ϕi (b))}, has an infinite
decreasing chain with respect to �F , namely θ0 �F θ1 �F θ2 �F . . .

Clearly θi �F θi+1, because with λ = {y′ �→ f (a, y′)} and with the axioms in F we
have:

θi+1λ = {x �→ g(x ′, y′, ϕi+1(b))}{y′ �→ f (a, y′)}
= {x �→ g(x ′, f (a, y′), ϕi+1(b)), y

′ �→ f (a, y′)}
=V {x �→ g(x ′, f (a, y′), ϕi+1(b))}
= {x �→ g(x ′, f (a, y′), f (a, ϕi (b)))}
=F1 {x �→ g(x ′, y′, ϕi (b))}
= θi

The chain θ0 >F θ1 >F θ2 >F · · · has no lower bound, hence Γ 1 is indeed nullary.
Now, let us look at the encompassment ordering modulo F for the same problem.
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As the following reasoning shows, the theory F is no longer nullary in the ordinary
sense, but in fact it collapses to an e-unitary theory.
As before θ0 encompasses θ1, i.e. θ0 �F θ1, because with λ = {y′ �→ f (a, y′)}:

θ1λ = {x �→ g(x ′, y′, ϕ1(b))}{y′ �→ f (a, y′)}
=V {x �→ g(x ′, f (a, y′), ϕ1(b))}
= {x �→ g(x ′, f (a, y′), f (a, b))} by definition of ϕi (x)

=F1 {x �→ g(x ′, y′, b)}
= θ0

But in this case θ1 also encompasses θ0 modulo F , since there are substitutions
λ1,0 = {x �→ g(x ′, y′, f (a, q(x)))} and λ2,0 = ε such that θ1 =F λ1,0 θ0 λ2,0,
because:

λ1,0 θ0 λ2,0 = {x �→ g(x ′, y′, f (a, q(x)))}{x �→ g(x ′, y′, b)}
= {x �→ g(x ′, y′, f (a, q(g(x ′, y′, b))))}
=F4 {x �→ g(x ′, y′, f (a, h(x ′, y′, b))}
=F3 {x �→ g(x ′, y′, f (a, b)}
= θ1

Therefore θi encompasses θ0 for i�1, because θi = {x �→ g(x ′, y′, ϕi (b)} =F

{x �→ g(x ′, y′, ϕi (q(x))}θ0. Since �F is transitive, θ0 encompasses all θi modulo F ,
because with λi = {y′ �→ ϕi (y′)} we have θ0 =F θiλi = {x �→ g(x ′, ϕi (y′), ϕi (b))}
=F1 {x �→ g(x ′, y′, b)}. Consequently they all are encompassment equivalent. Ta-
king θ0 as the representative for this equivalent class, θ0 is the only essential F-unifier
for Γ 1, which means, that Γ1 is now an e-unitary problem.

But unfortunately not all is well: this collapse does not hold in general and in fact
a slight modification of F and Γ1 turns this back into an e-nullary problem. Consider
the equational theory H defined by the following axioms, which are almost identical
to the theory F, except in axiom H3:

H1 g(x, f (a, z), f (a, y)) = g(x, z, y),

H2 h(x, y, f (a, z)) = h(x, y, z),

H3 h(x, y, b) = h(b, b, b),

H4 q(g(x, y, z)) = h(x, y, z)

Using ϕi (x) as defined before take the following H -unification problem:
Γ2 =

{
q(x) =?

H h(b, b, b)
}

Let the rewrite →Hi denote the rule from left to wright of the axiom Hi, i=1,2,3,4.
For example the rule for H2 is h(x, y, f (a, z)) →H2 h(x, y, z). Analogously ←Hi

denotes the rule from right to left.
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We now want to show that the complete set of unifiers for Γ1, i.e. cU �F (Γ1) is the
same (up to renaming) as the set cU �H (Γ2). For this we need a few observations.5

Proposition 11.3 Every unifier for Γ1 or Γ2 is of the form σ = {x �→ g(s1, s2, s3)},
where the si are some terms.

This is easy to see as q(x)σ =?
F b (or q(x)σ =?

H h(b, b, b)) must first apply axiom
F4 (or H4) respectively.

Proposition 11.4 For every unifier σ = {x �→ g(s1, s2, s3)} for Γ2, the correctness
of q(x)σ =?

H h(b, b, b) can be shown by a minimal sequence of rewrites of the form
q(g(s1, s2, s3)) →H4 h(s1, s2, s3) →n

H2 h(s1, s2, b) →H3 h(b, b, b), n � 0, where
n>0 is the smallest number of steps.

Proof Thefirst stepwith→H4 is obvious, as no other axiomapplies and as immediate
is the last step with →H3.

For the intermediate sequence we show by induction:
h(s1, s2, s3)

n→H2 h(s1, s2, b) if and only if s3 = ϕn(b), where n
is the smallest number of steps and ϕn(b) = f (a, ϕn-1) is defined as above.
Using induction over the minimal number of rewrite steps:
“ ⇐=”
n = 1 : s3 = ϕ1(b) = f (a, b) =⇒ h(s1, s2, s3) = h(s1, s2, f (a, b))

→H2 h(s1, s2, b)
n → n + 1 : s3 = ϕn+1(b) = f (a, ϕn(b))) =⇒
h(s1, s2, f (a, ϕn(b))) →H2 h(s1, s2, ϕn(b)) and by induction hypothesis
h(s1, s2, ϕn(b)) →n

H2 h(s1, s2, b).
“ =⇒”
n = 1 : h(s1, s2, s3) →H2 h(s1, s2, b) =⇒ s3 = f (a, b) i.e. s3 = ϕ1(b).
n → n + 1 : h(s1, s2, s3) →H2 h(s1, s2, s ′

3) →n
H2 h(s1, s2, b) =⇒ s ′

3 = ϕn(b)
using the induction hypothesis. Therefore h(s1, s2, s3) →H2 h(s1, s2, ϕn(b)).
But this is only possible if f (a, ϕn(b)) = ϕn+1(b).

Hence h(s1, s2, s3)
n+1→H2 h(s1, s2, b) and s3 = ϕn+1(b). �

Lemma 11.2 TheunificationproblemsΓ1: q(x) =?
F b andΓ2: q(x) =?

H h(b, b, b)
have the same complete set of unifiers (up to renaming):

cU �F (Γ1) = cU �H (Γ2).

Proof “ =⇒”
Every unifier in cU �F (Γ1) is in cU �H (Γ2):
By Proposition 11.3 every unifier is of the form σ = {x �→ g(s1, s2, s3)}. So let

σF = {x �→ g(s1, s2, s3)} be in cU �F (Γ1) then there exists a chain of equational
steps:

5Unfortunately we do not know if the axioms H1 to H4 can be directed into a canonical rewrite
system as the axioms F1 to F4 in ([2]). So we make a little detour and look at the actual derivation,
instead of the more elegant proof by Franz Baader for F1 to F4, based on the canonical rewrite
system for F, in ([2]). Thanks to Franz Baader for this hint.
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q(x)σF = q(g(s1, s2, s3)) →F4 h(s1, s2, s3) →n
F2 h(s1, s2, b) →F3 b, n � 0,

where each F-step involves just one axiom from F.
W.l.o.g. we may also assume that the axiom F3 = h(x, y, b) is only used once as

the last step. But then
q(x)σH = q(g(s1, s2, s3)) →H4 h(s1, s2, s3) →n

H2 h(s1, s2, b) →H3 h(b, b, b),
n � 0, is also a valid sequence, since H and F have the same axioms except for
H3 and F3.

Hence σF is also a unifier for Γ2.
“ ⇐=”
Now for the other direction, let σH be a unifier in cU �H (Γ2). By Proposition11.3

it is of the form σH = {x �→ g(s1, s2, s3)} and by Proposition11.4 there exists a chain
q(x)σH = q(g(s1, s2, s3)) →H4 h(s1, s2, s3) →n

H2 h(s1, s2, b) →H3 h(b, b, b),
with n � 0, which has no application of H3 except for the last step. But then
q(x)σF = q(g(s1, s2, s3)) →F4 h(s1, s2, s3) →n

F2 h(s1, s2, b) →F3 b is a valid
sequence in H as well and hence σH is a unifier for Γ1 and so it is in cU �F (Γ1)

(up to renaming). �

Theorem 11.1 There are essentially nullary and essentially infinitary theories.

Proof The infinite chain θ0 �H θ1 �H θ2 �H . . . has no lower bound. Otherwise,
there would be indices i, j with 1 	 i < j , such that θ j �H θi . That is θi is
encompassed by θ j , hence xθiλi �H xθ j , with λi = {y′ �→ ϕ j−i (y′)}. But this is
impossible, because xθ j = g(x ′, ϕ j (y′), ϕ j (b)) and there is no H -equivalent term,
xθ j =H p j with a sub term of p j which contains a term beginning with the symbol
g. Only the axiom H1 contains g. This axiom introduces, or deletes only f symbols,
so a sub term beginning with g never comes up. This means, that there is no tripar-
tition of any θi =V

H θi+1λ. But then the encompassment relation �H specializes to
the instantiation relation �H and the above chain is identical to the �F chain, so
the minimality condition cannot be fulfilled (see [3]). Hence H must be an e-nullary
theory. �

Intuitively the point is that in the theory F it was possible to derive a term with
g(x ′, y′, b) as a sub term. For example:

xθ2 = g(x ′, y′, f (a, f (a,b)))

=F g(x ′, y′, f (a, f (a,h(x′, y′,b))))

=F g(x ′, y′,q(g(x′, y′,b)))

But this chain of equations is not valid in the term algebra modulo H .

Currently we are experimenting with a stronger relation than encompassment so
that there are no nullary theories.
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11.4 What Is Currently Known

We shall now summarize and reference what is known so far (by the end of 2015).

11.4.1 Associativity and Idempotency

The equational theory of associativity and idempotency (AI) for one dyadic function
symbol f , called idempotent semigroups as defined by

AI = { f (x, f (y, z)) = f ( f (x, y), z) and f (x, x) = x}

demonstrates an interesting case for essential unifiers. It has been studied very early
in the history of unification theory as it is a standard data structure in computer
science and artificial intelligence called bands [40]. It was the first case to prove
Gordon Plotkin’s conjecture that there are theories where the minimal set of unifiers
μU �E (Γ ) does not always exist, see [2, 30, 69].
However, with respect to the encompassment order �E this well-known situation
changes completely as this theory is in fact e-finitary. Associativity and idempotency
constitute the algebra of idempotent strings and for technical convenience these two
axioms can be reformulated into the equivalent theory for strings

AI = {xx = x, xyz = xz i f Symb(y) ⊆ Symb(x) = Symb(z)}

whereSymb(s) denotes the symbols occurring in s. This encoding is due to [40] and in
[77]we showed, that it can be directed into a canonical (i.e. confluent and terminating)
conditional rewrite system. Based on this result Hoche and Szabo showed in [39]
that:

Proposition 11.5 The theory of AI is not nullary with respect to essential unifiers.

Looking at the proof of this theorem one may suspect that this theory is even unitary,
however there are AI-unification problems with more than one essential unifiers:

Proposition 11.6 AI is not unitary with respect to essential unifiers.

So finally we have the most striking result:

Theorem 11.2 The theory AI is finitary with respect to essential unifiers.
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11.4.2 Associativity

The unification problem in free semigroups, where

A = { f (x, f (y, z)) = f ( f (x, y), z)}

and the set of terms are built up as usual over constants, variables, but only one
function symbol f with arity( f ) = 2 is called string unification, since we can just
drop the f s and brackets and write strings (or words as they are more commonly
called in the mathematical literature [56, 57]) over the alphabet of constants and
variables. In addition we will simply write = for the equality of strings instead of
=A. This is probably the most famous unification problem, respectively called the
solvability of word equations and the question is: can similar results as in 4.1. above
be obtained as well for strings.

In the 1950s A. A. Markov was interested in Hilbert’s 10th problem, which is one
of the 23 famous problems Hilbert proposed in 1900 during his seminal talk in Paris.
It is the following problem: Does there exist an algorithm (a decision procedure) to
compute whether a Diophantine equation has a solution in rational integers. Martin
Davis and JuliaRobinson,working first separately and then, joined byHilary Putnam,
in collaboration, proved that it would follow that there is no such algorithm, if a single
polynomial equation were found with a particular exponential growth property [21].
Finally, the young mathematician Yuri Matiyasevich [60] solved the problem by
producing such an equation, something the three had been unable to accomplish
despite a decade of trying [19].6

A.A. Markov tried to reduce it to the solvability of word equations in free semi-
groups: he noted that every word equation over a two constant alphabet can be
translated into a set of diophantine equations [59]. Using this translation he hoped
to find a proof for the unsolvability of Hilbert’s 10th problem by showing that the
solvability of word equations is undecidable [61]. This put the problem firmly on the
map and others joined in: Lentin and Schützenberger [54], J.I. Hmelevskij [34–36],
V.K. Bulitko [13], A. Lentin [53], V.G. Durnev [28] and many others, see [1] for a
survey as well as the volumes edited by several mathematicians under the pseudonym
of M. Lothaire on Algebraic Combinatorics on Words [56, 57].

The problem was finally solved in the affirmative in the seminal work by G.S.
Makanin [58]. An exposition of Makanin’s algorithm with several improvements is
presented inter alia by Klaus Schulz [70, 71] and by Volker Diekert [24]. Algorithms
for the computation of a minimal set of unifiers are given in [26, 43] and there is a
history of improved algorithms and their complexity bounds, a standard reference

6See also http://www.springer.com/article/10.1007%2FBF03024472#page-1. There is actually a
nice film about the three and how JohnMcCarthy informedMartin about the result, see http://www.
zalafilms.com/films/jrbackground4.html.

http://www.springer.com/article/10.1007%2FBF03024472#page-1
http://www.zalafilms.com/films/jrbackground4.html
http://www.zalafilms.com/films/jrbackground4.html


304 P. Szabo et al.

is [62]. Some more recent articles are for example [14, 27, 51] and since then the
amount of works and results for this and related problems has exploded even more.7

The most interesting observation is probably that the problem is decidable,
whereas H10 is undecidable—hence Markov’s idea would not have worked any-
way.

The decision procedure for word equations due to G. Makanin is one of the most
complex known algorithms and it marks in an interesting way the borderline between
decidable and undecidable problems.

Apart from its theoretical and mathematical interest, the problem became more
widely known, because of its relevance in computer science, artificial intelligence and
automated reasoning. Examples are equations over lists with concatenation, the data
structure string in pattern invoked procedures in AI and finally building associativity
into a resolution style theorem prover. Gordon Plotkin [63], Jörg Siekmann [55, 72,
73] and André Lentin [53] independently found an algorithm to enumerate the set of
most general unifiers for strings, which is infinite in general.

As opposed to the above cited works on decidability, which just enumerate all
solutions and make the decidability or the existence of a solution their primary focus,
in our community we are more interested in the latter works, inspired by automated
theorem proving, where the set μU � of the most general unifiers is the focus of
attention.

The most common and simple example to show that string unification in free
semigroups is infinitary is the following already mentioned case:

xa = ax

with the set of most general unifiers

μU � = {{x �→ a}, {x �→ aa}, {x �→ aaa}, . . .}.

It is easy to see that indeed this is a solution set and it is not as immediate, but still
not too hard to show that there does not exist any other more general set of unifiers
μU � for this problem. Finally μU � is minimal, which again is obvious, as an is
ground and thus the unifiers do not yield to instantiation. Hence in general

string unification is infinitary.

Aswe have said, this is a well known fact since themid seventies and it is probably
the most often quoted example in any lecture or monograph on unification theory.

7Google scholar finds 62,600,000 entries in 0.21 s for word equations this year (not all of which
is relevant for our topic of course, but narrowing it down to “word equations” still leads to 1500
entries in 0.16 s) and several 100,000 more entries if one is patient enough to continue the search
and to filter gold from garbage. In the year 2008, at the unification workshop, where we published
a preliminary result, we asked Dr. Google and “he” found 70,300 entries for “word equations” in
0.13 s—so what are we to make of this fact?
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A similar example
xa = bx

is usually chosen to demonstrate that the naive string unification algorithms as for
example in [55, 63, 72, 73] are not decision procedures: although it is obvious that
the above example is not unifiable, the naive algorithms would run forever. However
J. Jaffar’s algorithm [43], which is built upon Makanin’s work, would recognize this
situation and halt.

In contrast to string unification as it has been understood up to now, the first
problem has a finite set (in fact an even e-unitary set) of essential unifiers

eU � = {{x �→ a}} = {σ1}

and any other most general unifier can be obtained with λn = {x �→ an−1x},
n > 1. In other words, for any unifier σn = {x �→ an}, n > 1:

σn = λnσ1

= {x �→ an−1x} ◦ σ1

= {x �→ an−1x} ◦ {x �→ a}
= {x �→ an}

where λn obeys the structural property, as defined in Sect. 2.6.
Once this observationhadbeenmademanyyears ago, therewas an intense struggle

to find the correct definitional framework in order to generalize this observation to
the whole string unification problem and to prove the conjecture

string unification is e-finitary.

We have shown in [37, 38] that this conjecture is false in general, albeit it holds
for subclasses of strings, for example the one variable strings.
Let us summarize the main results and denote the set of string equations as Γ =
{u1 = v1, . . . , un = vn} where the ui and the vi are strings. Var(Γ ) is the set of free
variable symbols occurring in ui and vi . Let V = Var(Γ ), then a (string-) unifier
σ : V �→ �∗ is a solution for Γ if uiσ = viσ, 1 � i � n. The set of all unifiers is
denoted as U �A(Γ ) and we may now drop the A.

Let us look first at a few motivating examples, which show that indeed an infinite
set of most general unifiers μU � collapses to a finite set of essential unifiers eU �.
Our first example is the well known string unification problem mentioned in the
introduction:

ax =? xa with σn = {x → an}, n > 0

has infinitelymanymost general unifiers σn , but there is just one e-unifier σ0 = {x →
a} because of

σn = {x → an−1x} ◦ σ0.

http://dx.doi.org/10.1007/978-3-319-41842-1_2
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The next example taken from the Burris-Problem-List8 has two variables:

xy =? yx

and it has infinitely many most general unifiers σi, j = {x → zi , y → z j }, i, j > 0,
where i and j are relative prime, i.e. gcd(i, j) = 1. The condition for i and j to be
relatively prime ensures that we get only most general unifiers, not just any unifier
(see example 15 in the Burris-Problem-List).

But it has only one e-unifier σ0 = {x → z, y → z} because of

σi, j = {x → zi−1x, y → z j−1y} ◦ σ0

Our next example is taken from J. Karhumäki in Combinatorics of Words [15] see
also [56, 57]. The system {

xaba =? baby
abax =? ybab

}

has infinitely many most general unifiers

σn = {x → b(ab)n, y → (ab)na}, n � 0

But it has only one e–unifier σ0 = {x → b, y → a} because of

σn = {x → x(ab)n, y → (ab)n y} ◦ σ0.

Exploiting the analogy between the first and the second example above, we can
easily construct more examples in this spirit.

Our fourth example is taken from J. Karhumäki as well:

axxby =? xaybx

It has infinitely many most general unifiers

σi, j = {x → ai , y → (aib) j ai }, i � 1, j � 0

but it has only one e–unifier σ1,0 = {x → a, y → a} which is essential because of

σi, j = {x → yai−1, y → (aib) j xai−1} ◦ σ1,0

that is σ1,0 � σi, j and σ1,0 does not encompass any other unifier. The final example
is a bit more elaborate but still in the same spirit:

zaxzbzy =? yyzbzaz

8See http://www.math.uwaterloo.ca/~snburris/htdocs/WWW/PDF/e_unif.pdf, example 15.

http://www.math.uwaterloo.ca/~snburris/htdocs/WWW/PDF/e_unif.pdf
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has infinitely many most general unifiers

σn = {x → b2na, y → bnabn, z → bn}, n > 0

but it has only one e–unifier, namely σ1 = {x → bba, y → bab, z → b} because of

σn = {x → b2n−2x, y → bn−1ybn−1, z → bn−1z} ◦ σ1

String unification with at most one variable is e-finitary
Let us assume our unification problem

Γ = {u1 =? v1, . . . , un =? vn}

over the signature � has at most one variable, but arbitrarily many constants. With-
out loss of generality, each set of string equations can be encoded into a single
string equation preserving the solutions, which is well known (for example see J.I.
Hmeleyskij [36]). Volker Diekert in [24] used the following construction

{u1a . . . unau1b . . . unb =? v1a . . . vnav1b . . . vnb}

where a and b are distinct constants. It can be shown, that the two equational problems
have the same solutions.
The following facts are known, see [16] and also [44], and we shall use them for our
main result as well. Note, a word is primitive if it is not a power of any other word.

Theorem 11.3 A string unification problemΓ in one variable has either no solution
or μU �A(Γ ) = F ∪ {x �−→ (pq)i+1 p, i � 0} for some p, q in �, pq is primitive
and F is a finite set of unifiers, which is bounded by O(log | Γ |).
Proof see Theorem 3 and Lemma 1 in [16] �

It is also known that

Proposition 11.7 Let Γ = {u0xu1. . .xun = xv1. . .xvn} be a solvable string equa-
tion with at most one variable x. Then all unifiers are ground substitutions:

∀σ ∈ U �A(Γ ) : xσ ∈ �∗

Proof Suppose by contradiction with an arbitrary unifier {x �→ w} ∈ U �A(Γ ) :
w = w1zw2 where z is a new variable z �= x such that w1 is the ground prefix of w.
Applying the unifier x → w1zw2 yields

u0wu1 . . . = wv1 . . . = u0w1zw2u1 . . . = w1zw2v1 . . .

Consider the prefixes u0w1 . . . = w1z . . . Since |u0w1| � |w1z| and u0 is nonempty,
z must be a symbol in u0w1, which is impossible, since u0 and w1 are ground by
assumption.
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Hence Var(w) is empty and the set of solutions is even minimal:
U �A(Γ ) = μU �A(Γ ). �

So finally we have

Theorem 11.4 String unification with one variable is e-finitary and the number of
unifiers is bounded by O(log | Γ |).
Proof In [38] �

String unification in general is e-infinitary
String unification with at most one variable in the signature � is e-finitary as we

have seen above and surely there aremanymore special cases of signature restrictions,
where the set of e-unifiers is always finite or even unitary.

However the general result for essential string unification is:

Theorem 11.5 String unification with more than one variable is e-infinitary

Proof see [38] �

A general A-theorem
Let E be a set of equational axioms containing the associativity axiom of a binary

operator ∗, i.e. A = {x ∗ (y ∗ z) = (x ∗ y) ∗ z} and E = A ∪ R, where R is some
set of equations. We call the theory modulo E A-separate, if any equation in R can
not be applied to a pure string s1 ∗ s2 ∗ · · · ∗ sn (the brackets are suppressed).

For instance consider distributivity (which is an infinitary unification theory), see
[6, 80]

D = {x ∗ (y + z) = (x ∗ y) + (x ∗ z), (x + y) ∗ z = (x ∗ z) + (y ∗ z)},

then the theory of E = A ∪ D is A-separate. To see this, note that no equation of
D can be applied to a string of x1 ∗ x2 ∗ · · · ∗ xn , simply because there are no sums
involving the plus sign +, but each equation in D has the sum symbol + on its left
and on its right hand side.

Formally, E = A ∪ R is A-separate, if for all elements u of the A-theory u =R v

implies u = v.

Theorem 11.6 All not e-nullary A-separate E-theories are e-infinitary

Proof see [38] �

As noted above the not e-nullary theory A ∪ D is A-separate and hence:

Theorem 11.7 The theory A ∪ D is e-infinitary.

Note that the theorem does not imply that D alone is e-infinitary: D is infinitary [79,
80], but the essential case for D is not yet known.
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11.4.3 Commutativity

The equational theory C consisting of the single axiom C = { f (x, y) = f (y, x)} is
also one of the first axioms that has been investigated alone and in combination with
other axioms. It is well-known that this theory is finitary [74] and since the set of
essential unifiers is a subset of the set of most general unifiers, we have:

Theorem 11.8 The set of essential unifiers for commutativity is e-finitary

Unfortunately however it does not collapse into an e-unitary theorywithin our current
definitional framework:

Theorem 11.9 The theory of commutativity is not e-unitary

Proof Consider the problem Γ = { f (x, y) =?
C f (a, b)} which has two unifiers:

σ1 = {x �→ a, y �→ b} and σ2 = {x �→ b, y �→ a}. Both unifiers are ground with
a single constant symbol, so obviously they do not encompass any other unifier.
Hence eU �C(Γ ) = {σ1, σ2}. �

11.4.4 Idempotency

The theory I = { f (x, x) = x} is also well-known as a finitary theory and similar to
C it is also not e-unitary:

Theorem 11.10 The theory of idempotency is not e-unitary

Consider the problem Γ = { f ( f (a, x), f (y, b)) =?
I f (a, b)} which has two uni-

fiers: σ1 = {x �→ a, y �→ b} and σ2 = {x �→ b, y �→ a} and since both unifiers are
ground and they do not encompass any other unifier, they are both in eU �I (Γ ),
hence the theory is e-finitary.

Finally we have

Theorem 11.11 The theory of idempotency and commutativity is e-finitary

Proof It is known that IC is finitary [66], but could it be e-unitary? Unfortu-
nately not, because consider the problem Γ = { f ( f (a, x), y) =?

C I f (a, b)}. Since
f (a, b) =C f (b, a) and f ( f (a, b), f (a, b)) =I f (a, b)we have two unifiers: σ1 =
{x �→ a, y �→ b} and σ2 = {x �→ b, y �→ f (a, b)}. Both unifiers are ground and not
encompassment equivalent, hence the result. �



310 P. Szabo et al.

11.5 Conclusion

At this stage of development there are more problems open than solved:
(i) The most obvious thing to do is to investigate more equational theories to

compare eU � with the known results for the corresponding set of most general
unifiers μU �. A particularly interesting case is the theory of associativity and
commutativity (AC) because of its huge proliferation of most general unifiers.

(ii) The most pressing open problem is to find a practically useful integration of
e-unifiers into the deductive machinery of a reasoning system. The standard lifting
lemma for resolution does not work, so we are currently looking at other proof
techniques as for example the abstract lifting lemma due to Pat Hayes. Another
promising alley may be to look at constraint resolution, where set(s) of e-unifiers are
carried along in the constraints.

(iii) As we collect more essential knowledge about the landscape of equational
theories, we may find that the encompassment order is still not the best choice: the
reduction of the size of the set of unifiers is not always worth the effort with respect
to the overall computation in space and time. The problem is to find the right balance
between the effort to compute the set eU � and the effort to compute the specific
unifier at each resolution step (from the set eU �). At one extreme we would spend
no computational time on the first task and just enumerate the Herbrand universe to
instantiate the universally quantified variables as we go along and then spend all the
time within the deductive search, as in early deduction systems. On the other hand
we could have a very general finite representation (which by the way could be the
unification problem itself) and then spend all computational effort on computing the
unifiers: for example {ax =?

E xa} is obviously a finite representation for the infinitely
many unifiers {x �→ an | n � 1}. So the open problem is to find feasible ways out
of these two unreasonable extremes. Instance based automated theorem proving as
in the early systems by P. C. Gilmore, Martin Davis, Hao Wang and others found a
revival and for several decades now there is a new interest in this work. Since the
work on hyperlinking by Lee and Plaisted [52] there are numerous publications as
surveyed in Harald Ganzinger and Konstantin Korovin [32, 49] and Swen Jacobs
and Uwe Waldmann [42].

(iv) The essential idea for our new representation of a generator set eU �E (Γ ) is
that we instantiate not only “from the right” as in δ = σλ, where σ is an mgu, but
also from “the left” as in δ = λ1σλ2 where σ is an essential unifier. Now this opens
up possibilities to search separately for λ1 and λ2. Depending on the search space
and the structure of the term algebra modulo E under scrutiny, different heuristics
may apply in automated reasoning, planning, computer vision, the semantic web or
wherever the actual unification problem may arise.
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Chapter 12
DPLL: The Core of Modern Satisfiability
Solvers

Donald Loveland, Ashish Sabharwal and Bart Selman

Abstract Propositional theorem provers have become a core technology in a range
of areas, such as in hardware and software verification, AI planning, and mathemat-
ical discovery. The theorem provers rely on fast Boolean satisfiabilty (SAT) solving
procedures, whose roots can be traced back to the work by Martin Davis and col-
leagues in the late 1950s. We review the history of this work with recent advances
and applications.

Keywords Boolean satisfiability · SAT solvers ·Davis-Putnam procedure ·DPLL ·
Theorem proving

12.1 Introduction

For practical reasons there is considerable interest in Boolean satisfiability (SAT)
solvers. This interest extends to complete SAT solvers, many based on the Davis-
Putnam-Logemann-Loveland (DPLL) procedure, a variant of theDavis-Putnam (DP)
procedure. Complete solvers determine both satisfiability and unsatisfiability. The
DPLL procedure focuses on one-literal clauses, branches on truth assignments, and
performs a backtrack search in the space of partial truth assignments. Since its intro-
duction in 1962, the major improvements to DPLL have been smart branch selection
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heuristics, extensions like clause learning and randomized restarts, and well-crafted
data structures. The DP and DPLL procedures, and the major improvements that
followed, will be reviewed in this paper.1

The DPLL procedure, even half a century after its introduction, remains a foun-
dational component of modern day SAT solvers. Through SAT solvers [4], as well
as through satisfiability modulo theory (SMT) [40] and answer set programming
(ASP) [19] solvers that build upon SAT techniques, the DPLL procedure has had a
tremendous practical impact on the field with applications in a variety of areas such
as formal verification, AI planning, and mathematical discovery.

TheDP andDPLLprogramswere among the earliest propositional provers. It hap-
pens that all these earliest algorithms or programswere formulated in 1958 (excepting
DPLL), in independent efforts.2 It is instructive to briefly consider these earliest pro-
grams for they collectively contain all the major features of the DPLL procedure
except the most basic feature, introduced with the DP procedure.

12.2 The DP and DPLL Procedures with Historical Context

It was no accident that the first propositional provers were developed simultaneously.
For one thing, computers of substantial speed and memory size were just becoming
available outside of special locations.Moreover, IBMwas looking to support projects
that demonstrated that computers could do tasks other than numerical work. (All of
the projects we review were executed at IBM except for the DP and DPLL projects.)
Also, logicians became aware of work done by Newell and Simon on automating
human problem solving and reasoning. We discuss this below.

Actually, the earliest program that addressed a task in logic was the implemen-
tation of the Presburger algorithm by Martin Davis in 1954. Davis programmed the
IAS computer to execute the Presburger algorithm, which decides queries in ele-
mentary number theory involving only addition [8].3 The IAS computer was a very
early computer built at the Institute for Advanced Study directly under John von
Neumann’s direction and its specifications were followed by a number of the early
computers. That included the storage: 1024 40-bit words.

Two years later, in 1956, Newell and Simon completed the Logic Theorist, a
program that explored how humans might reason when tackling some theorems from
Whitehead and Russell’s Principia Mathematica [39]. A few logicians were also
aware of the ongoing Geometry-Theorem Proving Machine project, an automated
deduction program that proved theorems in high school geometry, making use of
the diagrams presented to students [17, 18].4 The appearance of the Newell-Simon

1The papers introducing DP [12] and DPLL [11] each have over 3000 citations listed in Google
Scholar (May 2015), which is indicative of their tremendous influence over the years.
2The Dunham, Fridshal, and Sward project might have begun in 1957.
3Almost all of the papers cited in the introduction can be found in [46].
4This project was also executed at IBM.
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paper lead some logicians to observe that algorithms using tools of logic certainly
could well outperform the Logic Theorist. This is not to state that these logicians
were unsympathetic to studying computer simulation of human reasoning, but they
felt that any study of the power of computers in deduction warranted understanding
what the best procedures can yield.

There were three major projects that were developed simultaneously with the DP
procedure. We start with the method by P.C. Gilmore that is explicitly examined
in the DP paper [12]. Shortly after joining IBM, in 1958 Paul Gilmore undertook
programming a theorem prover to teach himself elementary programming. He also
wished to attend the IFIP conference in Paris (1959), so he thought he could learn
some programming and have a paper for submission to the conference at the same
time. He knew of the Logic Theorist, and was sure that he could do better using some
results from logic [20]. His proof method was motivated by the semantic tableaux of
Beth and Hintikka, but Gilmore acknowledges that the result owes more to Herbrand
and Gentzen.

Like most of the other provers we consider, Gilmore’s prover tested for validity
of predicate logic formulas rather than unsatisfiability of propositional formulas [21,
22]. However, his program centered on a propositional prover for unsatisfiability,
and we focus on this propositional prover.

Gilmore’s propositional prover effectively involved a succession of conjunctive
normal form (CNF) formulas (a conjunction of disjunctions or “clauses”) being
folded into an existing disjunctive normal form (DNF) formula, a disjunction of con-
junctions. This involves “multiplying out” the new CNF formula over the DNF for-
mula using the familiar distributive law ((a ∨ b) ∧ c) ↔ ((a ∧ c) ∨ (b ∧ c)). Using
arithmetical notation (+ for ∨), (a + b + c + d)(̇e f + gh + i j) yields 12 partial
products, andone sees the explosion that quickly overwhelms any computer.Gilmore,
of course, saw this and used clever programming encodings to compress and speed
the computation. One device, the truth list, allowed Gilmore to save variable names,
important to Gilmore’s coding design. It also introduced a one-literal deletion rule,
and propagation of this rule, that later was a key component of the DP algorithm.

Gilmore did not explicitly note the possible propagation effect, and could never
observe it because any computer run was almost immediately terminated with mem-
ory overflow.

To understand the truth list, consider the CNF formula (a + b)c multiplied by
the existing DNF formula cd + c f + e f + eg + be.5 After removal of contradictory
clauses and redundant literals, we have ace f + aceg + acbe + bce f + bceg + bce.
The literal c occurs in each clause, as could be anticipated because we were “multi-
plying” a one-literal clause c into the existing DNF formula. When a literal appears
in each clause it is added to the truth list and eliminated from each clause. Thereafter,
any new occurrence of this literal or its complementary literal is ignored.6 Also, after
the contradictory clauses containing c were removed during simplification, the vari-
able e now occurs in each clause, as seen above, and is treated as a one-literal clause;

5c denotes not c here.
6A complementary literal has the same variable name but opposite negation status.
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it is removed and entered on the truth list. In this sense the one-literal clause property
propagates. To justify the truth list action, note that were the literal retained, later
reentering that literal in any clause would cause merging with the existing literal;
adding the complementary literal would cause that clause to be contradictory.

Dunham, Fridshal and Sward (DFS) developed a method strictly for testing valid-
ity in the propositional calculus [13, 14]. The DFS method shares with DPLL the
branching property, and seems to be the first method to use this property. By split-
ting the given formula recursively, the reduced formula allows simplification at each
level, which for many formulas allows shallow trees and fast processing. Formulas
were placed in negative normal form (NNF) which requires that all negation symbols
be next to variables; the formula is not processed further. (This is not a true normal
form.)

A literal is in a partial state if there are no complementary literal occurrences in
the formula and no literal occurrence in the scope of an ↔ symbol. A literal not in
a partial state is in a full state. At each level literals in a partial state are removed by
setting their truth value to 0 (false) and using the simplification rules given below.
(This is a generalization of the affirmative-negative rule of the DP procedure.) Since
no partial state literal is in the scope of a negation or an ↔ symbol, assigning false
to any such literal is consistent with any falsifying assignment, if one exists.

The method initiates the validity test by simplifying the given formula and then
branching on a full state variable, if one exists. Simplifying a formula involves use
of the following simplification rules along with the associative and commutative
properties of ∧, ∨, ↔, and returns the reduced formula to NNF if needed.

Φ ∨ 1 ⇔ 1 Φ ∨ 0 ⇔ Φ

Φ ∧ 1 ⇔ Φ Φ ∧ 0 ⇔ 0
Φ ↔ 1 ⇔ Φ Φ ↔ 0 ⇔ ¬Φ

L ↔ L ⇔ 1 L ∨ L ⇔ L L ∧ L ⇔ L
L ↔ L ⇔ 0 L ∨ L ⇔ 1 L ∧ L ⇔ 0

Here L denotes a literal, and Φ denotes a formula. Note that, upon simplification,
one always has a nonempty formula or a 1 or 0.

We give the program as a recursive algorithm although the implementation was an
iterative program. This presentation invites comparison with the DPLL presentation
of this paper; the similarity is notable, but is primarily a consequence of the use
of branching. We note that this paper appeared two years before the DPLL paper.
(However, the DPLL method design was not influenced by this paper. See the sum-
mary of the DPLL creation process given later.) It should bementioned that Dunham,
Fridshal and Sward explicitly promote the branching device, with the split formulas
conducive to further simplification.

In the DFS- recursive algorithm, F |� denotes the simplified formula after all
occurrences of literal � have been replaced by 0.
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Hao Wang, looking far ahead, envisioned proof methods that could tackle prob-
lems such as proving that

√
2 is irrational andwell-known analysis theorems (e.g., the

Heine-Borel theorem). He argued, however, that it would be wrong to attempt to skip
over provers for the predicate calculus in the pursuit of mechanical mathematics [49].

Algorithm 1: DFS-recursive(F, ρ)

Input : A NNF formula F and an initially empty partial assignment ρ
Output: {the top-level return value} valid or non- valid
begin

(F, ρ) ← PartialVariable (F, ρ)
if F = 1 then return valid
if F = 0 then return non- valid
� ← a variable not assigned by ρ // the branching step
if DFS-recursive (F |�, ρ ∪ {�}) = non- valid then return non- valid
return DFS-recursive (F |¬�, ρ ∪ {¬�})

sub PartialVariable(F, ρ)
begin

while there exists a literal � in partial state do
F ← F |�
ρ ← ρ ∪ {�}

return (F, ρ)

Wang produced programs for the predicate calculus that tackled several decision
problems, subdomains of the predicate calculus, and along the way proved all 350
theorems inPrincipia Mathematica that fellwithin the realmof the predicate calculus
with equality. Surprisingly, this could be done with a program that could handle
propositional formulas, a restricted part of the AE predicate calculus and a scattering
of other formulas [49–51].7

Wang developed a complete validity-testing propositional prover for use within
his first-order logic prover, and did not dedicate himself to optimal speed in this
prover. He, in fact, acknowledged that the Dunham, Fredshal, and Sward and the
DP provers were superior on complex formulas. (Wang knew of the DP provers
only in preparation of his paper for publication, whereas he likely knew of the other
programs through the IBM connection.)

In spite of Wang’s lack of focus on the speed of his propositional prover, we do
comment on this prover as it was developed coincident to the other early propositional
provers. Also, this allows us to note the major accomplishments of Wang’s work,
executed in this same timewindow.The proverwas based on aHerbrand-Gentzen cut-
free logical framework. He employed ten connective introduction rules formulated
in terms of sequents. Axioms are of the form λ → π , where λ and π are nonempty
strings of variables (atomic formulas), and share a common variable.

7An AE formula is a formula with all quantifiers leftmost with no existential quantifier to the left
of a universal quantifier.
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There are two connective introduction rules for each of the five connectives ¬, ∨,
∧, ⊃, and ↔. The proof search is done in reverse order, from theorem statement to
axioms, forming a tree as induced by the rules that have two premise sequents. We
give four of these rules followed by a simple example to illustrate the proof technique.
Here η, ζ, λ, ρ, π are formula strings (perhaps empty or a single formula) and ϕ and
ψ are formulas. (The rules for negation are correct; the introduction of negation is
applied to formulas in extreme positions.) The proof search reduces the leftmost
symbol. The proof search system is propositionally complete with the full rule set.

(1a) Rule → ¬: If ϕ, ζ → λ, ρ, then ζ → λ,¬ϕ, ρ.

(1b) Rule ¬ →: If λ, ρ → π, ϕ, then λ,¬ϕ, ρ → π .

(2a) Rule → ∨: If ζ → λ, ϕ,ψ, ρ, then ζ → λ, ϕ ∨ ψ, ρ.

(2b) Rule ∨ →: If λ, ϕ, ρ → π , and λ,ψ, ρ → π then λ, ϕ ∨ ψ, ρ → π .

We give a proof of a valid sequent in the manner of proof search Wang employed,
but with a different line notation than adopted by Wang. On the left is the line
number. To the right we indicate the line for which this line is the antecedent by
the rule named. The task is to reduce the purported theorem to axioms by applying
the rules in reverse. Rule (2b) causes a split, resulting in a simple search tree. Wang
explored search trees depth first.

(1) ¬(P ∨ Q),¬Q ∨ ¬R → ¬P ∨ ¬R Given
(2) ¬Q ∨ ¬R → ¬P ∨ ¬R, P ∨ Q (1)[1b]
(3) ¬Q → ¬P ∨ ¬R, P ∨ Q (2)[2b], branch 1
(4) → ¬P ∨ ¬R, P ∨ Q, Q (3)[1b]
(5) → ¬P,¬R, P ∨ Q, Q (4)[2a]
(6) P → ¬R, P ∨ Q, Q (5)[1a]
(7) R, P → P ∨ Q, Q (6)[1a]
(8) R, P → P, Q, Q (7)[2a]

Axiom
(9) ¬R → ¬P ∨ ¬R, P ∨ Q (2)[2b], branch 2
(10) → ¬P ∨ ¬R, P ∨ Q, R (9)[1b]
(11) → ¬P,¬R, P ∨ Q, R (10)[2a]
(12) P → ¬R, P ∨ Q, R (11)[1a]
(13) R, P → P ∨ Q, R (12)[1a]
(14) R, P → P, Q, R (13)[2a]

Axiom

The given formula is a valid sequent, and a valid formula if the sequent arrow is
replaced by the implication connective.

The fourth method undertaken in 1958 is the Davis-Putnam procedure. (Although
the labels method and procedure usefully define schema and their complete specifi-
cation, respectfully, we have followed tradition and refer to the DP and DPLL pro-
cedures. The label “procedure” is correct if one views unspecified decision points
as selection of the first qualified item. The refinements to the DPLL “procedure”
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discussed here certainly dramatize that DP and DPLL are methods.) Like Gilmore’s
method, the DP procedure is a complete prover for validity in the predicate calculus
using a propositional prover that tests for unsatisfiability. The propositional proce-
dure was conceived in the summer of 1958, and expanded to the quantification theory
procedure in 1959. The reason work on the procedure spread over two summers is
that their focus was elsewhere, on Hilbert’s 10th problem. Although their 1960 paper
reads as if they were motivated by the propositional inefficiencies of the Gilmore and
Wangmethods, Davis and Putnam had no knowledge of the parallel efforts when they
undertook this project [9]. The setting that spawned the DP procedure is described
in [10].

Many of the readers of this paper know the DP rules, but it is important to note
that not only did Davis and Putnam introduce significant rules, they also introduced
the entire structure now used by most of the automated deduction provers. If one
recalls the three methods previously discussed, one notes none used CNF pursuing
an unsatisfiability test. One advantage of the DP format is in formula preparation.
A conjectured theorem is negated by simply negating the theorem assertion and
placing each axiom individually in CNF. This is very significant if the axiom set is
large. Also, seeking satisfying assignments is more intuitive than seeking falsifying
assignments. Certainly the pursuit of the SAT problem is much more appealing than
pursuing the falsifiability problem. At the first-order level they introduced the use of
Skolem functions.

We now consider the DP procedure. The goal of the procedure is to report a
model (i.e., satisfying truth assignment) for a formula, if the formula is satisfiable,
or otherwise, report “unsatisfiable.”

We present the rules of the DP procedure not as one would implement them, but as
a concept. The focus of these rules is on variable elimination. At each stage a variable
p is chosen and the formula is written in the form (A ∨ p) ∧ (B ∨ ¬p) ∧ R, where
A, B and R are formulas in CNF free of the variable p (or its negation). This is done
using the distributive laws, if necessary. CNF formula A is the conjunction of all
clauses that contained p, but with the p removed; similarly for B.

I The one-literal rule. If A and B both contain the empty clause, then the algorithm
terminates with a declaration of unsatisfiability. The empty clause is always false
for any truth assignment, so both conjunctions A and B are always false and can
be discarded. This leaves p and¬p as one-literal clauses, which is contradictory.
Otherwise, suppose (only) A contains the empty clause. Then p must be true
if the given formula is satisfiable, so one can delete A, p and ¬p. That is, the
formula (A ∨ p) ∧ (B ∨ ¬p) ∧ R is unsatisfiable iff B ∧ R is. The working
clause set becomes B ∧ R and we can add p to the partial model. We have the
symmetric case if B contains the empty clause.

II The affirmative-negative rule. If p is absent in the working clause set then ¬p
may be declared true and added to the partial model. Since (A) ∧ (B ∨ ¬p) ∧ R
is unsatisfiable iff A ∧ R is, the working clause set becomes A ∧ R. Again, we
have the symmetric case for ¬p.
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III Rule for eliminating atomic formulas. (A ∨ p) ∧ (B ∨ ¬p) ∧ R is unsatisfiable
iff (A ∨ B) ∧ R is unsatisfiable. The working clause set becomes the CNF for-
mula for (A ∨ B) ∧ R. Note that each clause of the CNF of (A ∨ B) is the
disjunction of a clause from A and a clause from B. In any interpretation, one of
p and ¬p is false, so one of A or B has a true literal in each clause. Thus, Rule
III preserves models of the formula upon which it operates. Any tautological
clause is removed.8

If the working clause set is the empty set of clauses, then the original formula is
satisfiable. To find a model for the given formula one has a start with the partial
model, but must do further work with the other variables to find a satisfying truth
assignment. Although each rule eliminates a variable, we stick with the original label
for rule III which declares that explicitly. It is now referred to as the resolution rule.

The implementation is, of course, somewhat different from the above definition.
One selects one literal clauses in turn and removes clauses containing that literal
and removes the complementary literal from all clauses. One then seeks to remove
clauses that have a literal with no complementary literal elsewhere (Rule II). After
Rules I and II are exhausted, the algorithm calls for Rule III to be applied. Here
the original algorithm called for selecting a literal from the first clause of minimal
length and eliminating that literal. One then returns to Rule I. This whole program
is repeated until either the empty clause is obtained (unsatisfiability), or there are no
more clauses to treat (satisfiability).

We might note that the affirmative-negative rule is a global one, whereas the other
rules are not. However, if all clauses are in fast memory, and one builds literal lists
that point to all occurrences of that literal, then one can quickly apply the affirmative-
negative rule to any literal where the complement literal list is empty.

Davis [10] mentions that the splitting rule was considered as an option. It would
have been surprising if Davis and Putnam had not considered any such reasonable
alternative. The choice of the resolution-style Rule III was an intelligent one on paper.
Rule III is certainly themore elegant one, and better suited their focus of immediately
eliminating one variable per operation, for certainly one of the split formulas would
be considerably delayed in its treatment. We state the splitting rule as a lead into the
discussion of the DPLL variant.

III∗ The Splitting Rule. Let the given formula F be put in the form (A ∨ p) ∧ (B ∨
¬p) ∧ R where A, B and R are free of p. Then F is unsatisfiable if and only if
A ∧ R and B ∧ R are both unsatisfiable.

Although the DP procedure was conceived in the summer of 1958, the birth only
occurred in the summer of 1960, and it was a still-birth. The rule III proved to be
too space-consuming; it was the distributive law application that killed the Gilmore
procedure, in miniature. One took the product of all the clauses containing literal
p with those containing ¬p, minus those two literals. The concept of eliminating a

8A tautological clause contains p ∨ ¬p for some variable p.
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variable, so elegant in theory, proved too costly in implementation. So, the Davis-
Putnam-Logemann-Loveland variant, discussed below, was born of necessity.

In the spring of 1960, Martin Davis recruited George Logemann and Donald
Loveland to undertake the DP implementation that summer. The two students, early
in their Ph.D. pursuit, were glad to have a summer job, and an exciting one at that.
George Logemann came to the Courant Institute of Mathematical Sciences (CIMS)
at NYU to study appliedmath at then perhaps the top appliedmath program. (In 2014
it is so ranked.9) He was a skilled programmer, acquiring some of that experience at
CalTech where he did his undergraduate work. (After receiving his Ph.D. Logemann
worked as a computer scientist for a few years, then, an accomplished cellist, he
pursued a musical career, which included computer music. He passed away in 2012.)
Donald Loveland considered himself a probability/statistics student, as there was no
logic opportunity at the CIMS, Davis having moved to Yeshiva University. (See [10]
for Davis’s view of this period.) Loveland’s interest was in artificial intelligence (AI),
and both logic and probability theory were good mathematics background for that.
He already could be said to be in the field of Automated Deduction, had that field and
name then existed, having been a programmer on the Geometry-Theorem Proving
Machine [18].

The task of implementing the DP procedure was split. Logemann undertook the
parsing of the CNF formula, entered in Polish notation, the formula preparation hav-
ing been done by hand. Logemann also handled the structuring of the set of clauses,
while Loveland took on the testing of the clause set for consistency. The program
was written in SAP, the Symbolic Assembler Program, the assembly language for
the IBM 704. After the first runs, which quickly saturated the 32,768 36-bit words
of available storage, George Logemann suggested that Rule III be replaced with a
splitting rule. He noted that it was easy to save the current environment on tape,
and retrieve it on backtracking. As for the other systems with splitting rules, this led
to depth-first search. Thus, with the new program, instead of clause addition there
was clause removal. Interspersed with applications of Rules I and II, the program
recursed on Rule III∗, saving the environment on tape for backtracking. This solved
the space issue, at least until the input clause set overwhelmed the memory. Now
very important, but not emphasized at the time, was the easy definition of a satisfying
assignment should there be one. It is unclear why “turning off” and then “turning
on” various clauses and literals on backtracking was not pursued, as writing to tape
is a slow operation. Using the appropriate list structures, top level routines existed
that quickly deleted all occurrences of a specified literal and eliminated the appropri-
ate related clauses. These could just black out these entities instead. But the chosen
implementation worked well; considerable pains had been taken in data structure
design and in coding to minimize run times. There was awareness of the importance
of choosing the right one-literal clause for Rule I, although no experimentation was
done in this regard.

9U.S. News and World Report: Best Grad Schools 2014.
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We now briefly consider an actual implementation of the DPLL procedure. Algo-
rithm 2, DPLL-recursive(F, ρ), sketches the basic DPLL procedure on CNF for-
mulas. The idea is to repeatedly select an unassigned literal � in the input formula F
and recursively search for a satisfying assignment for F |� and F |¬�. (The notation
F |� denotes the formula F with � set to true followed by formula simplification,
done by the removal of true clauses and false literals.) The step where such an � is
chosen is commonly referred to as the branching step. Setting � to true or false
when making a recursive call is called a decision, and is associated with a decision
level which equals the recursion depth at that stage. The end of each recursive call,
which takes F back to fewer assigned variables, is called the backtracking step.

Algorithm 2: DPLL-recursive(F, ρ)

Input : A CNF formula F and an initially empty partial assignment ρ
Output: UNSAT, or an assignment satisfying F
begin

(F, ρ) ← UnitPropagate(F, ρ)
if F contains the empty clause then return UNSAT
if F has no clauses left then

Output ρ
return SAT

� ← a literal not assigned by ρ // the branching step
if DPLL-recursive(F |�, ρ ∪ {�}) = SAT then return SAT
return DPLL-recursive(F |¬�, ρ ∪ {¬�})

sub UnitPropagate(F, ρ)
begin

while F contains no empty clause but has a unit clause x do
F ← F |x
ρ ← ρ ∪ {x}

return (F, ρ)

A partial assignment ρ is maintained during the search and output if the formula
turns out to be satisfiable. If F |ρ contains the empty clause, the corresponding clause
of F from which it came is said to be violated by ρ. To increase efficiency, unit
clauses are immediately set to true as outlined in Algorithm 2; this process is
termed unit propagation. Pure literals (those whose complement does not appear)
are also set to true as a preprocessing step and, in some implementations, during
the simplification process after every branch. Modern solvers can set millions of
variables per second in the unit propagation process. The number of backtracks per
second is in the order of several hundred thousands. Unit propagation is generally the
most time consuming component of the SAT solving process. Therefore, the more
efficient the unit propagation process is implemented, the better the SAT solver.
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Variants of this algorithm form the most widely used family of complete algo-
rithms for formula satisfiability. They are frequently implemented in an iterative
rather than recursive manner, resulting in significantly reduced memory usage. The
key difference in the iterative version is the extra step of unassigning variables when
one backtracks. In this step, generally large numbers of variables (hundreds to tens
of thousands) assigned via unit propagation need to be unassigned. The naive way
of unassigning variables in a CNF formula is computationally expensive, requiring
one to examine every clause in which the unassigned variable appears. However, a
clever data structure approach involving so-called watched literals gets around these
inefficiencies.

12.3 The Long Wait

The DP and DPLL procedures were developed in the two year period from 1958
to 1960. Somewhat incredibly, there were no further developments for propositional
reasoning or SAT solving for another thirty years. Only in the early 1990s, didwe start
to see new developments and research in this area. However, the progress since then
has been dramatic. Around 1990, using the basic DPLL procedure, one could solve
CNF formulaswith a fewhundred variables and a fewhundred clauses in a reasonable
amount of time (up to several hours of CPU time), but practical formulas with more
than around 500 variables and clauses were out of reach. This kept propositional
reasoning largely of academic interest because most real-world reasoning tasks, e.g.,
in verification or AI planning, require tens of thousands or hundreds of thousands
of variables and clauses when encoded as CNFs. Fortunately, we have since seen
dramatic progress. In the last two decades, new SAT solvers have been developed
that can now handle formulas with up to 10 million variables and over 100 million
clauses. This has opened up a whole range of practical applications of SAT solver
technology, ranging from program verification, to program synthesis, to AI planning,
and mathematical discovery. It is safe to say that no-one could have foreseen such
dramatic advances. Much of the progress has been made by building on the ideas
behind DPLL. We will summarize the extensions to DPLL below.

Before we proceed, let us briefly reflect on why there was a thirty year “stand-
still” in the area of propositional reasoning or SAT solving. Firstly, in the early days
of theorem proving, it was noted that more expressive formalisms were needed to
obtain interesting results e.g. for proving theorems in mathematics and other appli-
cations. This led to an extensive research effort on first-order theorem proving based
on predicate calculus. Robinson’s resolution based solvers provided a major step
forward. However, the search space for first-order theorem proving is substantially
more difficult to explore than in the propositional domain. The difficulty with such
provers led to a shift towards proof assistance and reasoning support systems instead
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of fully automated solvers. Another difficulty for a propositional approach is that
even if translations to SAT were possible, they tended to be much too large for main
memory at the time.

The 1970s saw rapid developments in computational complexity theory, intro-
ducing the problem class NP, with SAT as the first problem demonstrated to be
complete for the class NP [7, 33]. Under the widely believed assumption that P�=NP,
this means that no polytime algorithm for SAT exists. Given the worst-case exponen-
tial scaling of SAT procedures, the general sense was that encoding reasoning tasks
and other problems into SATwas not a promising avenue to pursue. Of course, much
of this point of view is predicated upon the idea that worst-case complexity pro-
vides a good measure for the scaling behavior of algorithms and search methods on
practical problem instances. Our recent experience with SAT solvers has shown that
this perspective on problem complexity needs to be reconsidered. More specifically,
although the basic DPLL backtrack search procedure for SAT shows exponential
scaling behavior on almost all problem domains, the recently added extensions of
the procedure brings the scaling down to a very slow growing exponential or even a
polynomial in a number of practical problem domains. The work on backdoor vari-
ables discussed in Sect. 12.4 provides a formal analysis of this phenomenon [52]. To
understand this phenomena at an intuitive level, it is useful to think of modern SAT
solvers as combining a basic backtrack search with clever polynomial time algorith-
mic strategies that can exploit hidden problem structure in the underlying domains.
These algorithmic strategies are invoked repeatedly throughout the backtrack search
process, and are often so effective that hardly any backtracking is required in order to
find a solution or prove that the formula is unsatisfiable. The most basic, but already
powerful, algorithmic strategy is unit propagation, which occurs after each branching
point in the search. Unit propagation was already part of DPLL but the propagation
process has been implemented with incredible efficiency in modern solvers. Unit
propagation is combined with other clever algorithmic ideas such as clause learning,
branching variable selection, non-chronological backtracking, and random restarts
(see Sect. 12.4). Modern SAT solvers have shown that developing new algorithmic
strategies in the context of NP-complete problems is in fact a useful pursuit with
real practical impact. It would be incorrect to think of these improvements as just
clever “heuristics.” The term “heuristics” is generally reserved for algorithmic ideas
that are somewhat adhoc and often cannot be formally analyzed. However, the ideas
implemented in modern SAT solvers combined with an understanding of general
domain properties do allow us to derive formal guarantees on the overall behavior
of the solver, at least in principle.

In the early nineties, there was renewed interest in the field of knowledge repre-
sentation and reasoning (KR&R), a subfield of AI, about how to deal with worst-case
intractable reasoning tasks. During the 1980s, researchers had developed a series of
knowledge representation languages that allowed for worst-case tractable reasoning
but the formalisms were generally considered too restrictive for real-world appli-
cation. This raised the question as to whether one could allow some representation
language constructs that would lead to intractable inference in the worst-case but per-
haps such worst-case behavior might not be observed in practice. These questions
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were first explored in a propositional setting by considering SAT encodings of rea-
soning problems and the behavior of SAT solvers on such encodings. It was found
that on certain random SAT problem distributions, DPLL scaling could go from
polynomial to exponential depending on the choice of problem distribution [36].
The work also led to new types of SAT solvers based on local search style stochastic
algorithms, such as GSAT and WalkSAT [44, 45]. These solvers are incomplete in
that they can be quite effective in finding satisfying assignment but cannot show
unsatisfiability. TheWalkSAT solver could solve problem instances beyond what the
basic DPLL could handle. This led to promising practical results on SAT encodings
of AI planning problems [32]. Interestingly, propositional AI planning is actually
a PSPACE-complete problem, because certain plans can be exponential in the size
of the problem instances. To bring the problem down to NP-complete, one simply
considers the bounded plan length version of AI planning, where one only considers
plans up to a predefined length of k steps (k is polynomial in the original problem
size). The work on translating bounded length AI planning into SAT provided the
impetus to explore a similar approach for hardware and software verification, by
considering the so-called bounded model-checking problem and translating it into
SAT. (In the bounded model-checking problem, one explores whether there exists
an execution of up to a fixed number of steps that leads to an undesirable state.
Such a “bug trace” is very similar to a plan that reaches a certain goal state from
a given initial state in an AI planning formulation.) SAT-based planning and ver-
ification approaches have become very successful over the last decade or so. The
success of stochastic incomplete solvers led researchers to search for extensions of
the DPLL strategy to improve the complete solvers. This led to the dramatic increase
of performance of such solvers. In most applications, the complete solvers are now
more effective than the stochastic solvers but stochastic solvers are also still being
improved upon. Moreover, by moving to distributed solvers running on cloud based
platforms, a scale up to 10 million variable and 100 million clause problems would
appear to be within reach. This would again open up a range of new applications, for
example in program synthesis and mathematical discovery.

12.4 Modern Complete SAT Solvers

The efficiency of state-of-the-art complete SAT solvers, extending the basic DPLL
approach, relies heavily on various features that have been developed, analyzed, and
tested over the last two decades. These include fast unit propagation using watched
literals, learning mechanisms, deterministic and randomized restart strategies, non-
chronological backtracking, effective constraint database management (clause dele-
tion mechanisms), and smart static and dynamic branching heuristics. We give a
flavor of some of these later in this section, referring to [4, 24] for more detailed
descriptions.
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Algorithm 3: DPLL-WithClauseLearning
Input : A CNF formula
Output: UNSAT, or SAT along with a satisfying assignment
begin

decision level ← 0
status ← UnitPropagate
if status = CONFLICT then return UNSAT
while true do

if no more free variables then
return (SAT, current variable assignment)

DecideNextBranch
while true do

status ← UnitPropagate
if status = CONFLICT then

if decision level = 0 then return UNSAT
blevel ← AnalyzeConflictAndLearn
Backtrack(blevel)

else break

We begin with a variation of Algorithm 2 that mirrors more closely the high level
flowofmodern day SAT solvers.While fundamentally similar to the recursive formu-
lation of DPLL, this iterative version, outlined in Algorithm 3, makes explicit certain
key aspects such as unit propagation, conflict detection and analysis, backtracking
to a dynamically computed search tree level, and stopping search on a satisfiable
formula when all variables have been assigned a value. One important feature that is
not included in this pseudocode for simplicity is restarting the solver every so often.
The details of various sub-procedures are beyond the scope of this article, but we
briefly mention some highlights.

The algorithm maintains a decision level, which starts at zero, is incremented
with each branching decision, and decremented (by one or more) upon backtracking.
UnitPropagate, as discussed earlier, simplifies the formula by effectively removing
true clauses and false literals, setting any resulting unit clauses (i.e., those containing
only one active variable) to true, and repeatinguntil nomore simplification is possible.
This process has a unique fixed point, irrespective of the order in which propagation
steps are performed.Algorithm3 returnsUNSAT if it encounters an empty, and hence
unsatisfiable, clause during unit propagation at decision level zero. On the other hand,
if all variables have been successfully assigned a value without generating the empty
clause (a “conflict”), the algorithm returns SAT. Note that this check for satisfiability
is different from asking whether the current partial assignment yields a true literal
in every clause; this latter test is inefficient when using lazy data structures that will
be discussed shortly.

DecideNextBranch heuristically identifies a free variable, assigns it a value, and
increments the decision level by one. Again, this is somewhat different from explic-
itly branching “both ways” on a variable. Instead, clause learning makes the solver
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implicitly flip the value of the assigned variable upon backtracking. The decision
level to which the algorithm backtracks upon encountering a conflict is determined
dynamically using a graph-based analysis of the unit propagation steps leading to the
conflict. This analysis, performed in AnalyzeConflictAndLearn, also makes the
algorithm learn (i.e., add to its set of clauses) a new clause that explains the conflict
being analyzed and prevents unnecessary future branching on variables that would
lead to a conflict for a similar reason.

With this overall structure in mind, we are ready to explore some of the most
prominent features of modern SAT solvers that build upon the DPLL framework.
Many of these features directly involve, are guided by, or are necessitated by clause
learning.

12.4.1 Key Features

Variable (and value) selection heuristic is a feature that often varies from one SAT
solver to another. Also referred to as the decision strategy, it can have a significant
impact on the efficiency of the solver (see e.g. [34] for a survey). The commonly
employed strategies vary from randomly fixing literals to maximizing a moderately
complex function of the current variable- and clause-state, such as theMOMS (Max-
imum Occurrence in clauses of Minimum Size) heuristic [30] or the BOHM heuris-
tic [6]. One could select and fix the literal occurring most frequently in the yet
unsatisfied clauses (the DLIS or Dynamic Largest Individual Sum heuristic [35]),
or choose a literal based on its weight which periodically decays but is boosted if
a clause in which it appears is used in deriving a conflict, like in the VSIDS (Vari-
able State Independent Decaying Sum) heuristic [37]. Solvers like BerkMin [23],
Jerusat [38], MiniSat [15], and RSat [42] employ further variations on this theme.

Clause learning has played a critical role in the success of modern complete SAT
solvers. The idea here is to cache “causes of conflict” in a succinct manner (as learned
clauses) and utilize this information to prune the search in a different part of the
search space encountered later. A DPLL style procedure backtracks when it reaches
an inconsistency, i.e., the settings of the variables selected on the current branch
of the backtrack search tree combined with the implied unit propagations violates
one or more of the original problem clauses. The procedure will then backtrack to
explore another truth value setting of at least one of the variables on the branch. In
clause learning, the procedure explores what variables lie at the core of reaching the
inconsistency. This process is called conflict analysis, and may identify a relatively
small subset of the variables set on the current branch. For example, on the current
branch, variables x1 and x5 set to False and True, respectively. In the remaining
search, one would not want to revisit this particular setting of these two variables
when exploring other branches. To prevent this from happening, one can add the
clause (x1 ∨ ¬x5) to the problem instance. This is called a “learned clause.” Setting
x1 to False on a branch will now immediately force x5 to be set to False via unit
propagation, avoiding another exploration of x5 to True (with x1 to False). The
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clause is implied (since the negation added to the formula leads to an inconsistency),
so the satisfiability of the problem instance is not affected. However, the clause helps
to prune parts of the remaining search space. It can be shown formally that adding
such clauses can in fact exponentially reduce the search space of the basic DPLL
procedure.

There is extensive research on how to analyze conflicts quickly, what learned
clauses are most effective for pruning, and how many learned clauses should be
stored. Storing too many learned clauses will start to slow down the solver. To high-
light the importance of the learned clause strategies in modern SAT solvers, these
solvers are sometimes referred to as Conflict Driven Clause Learning (CDCL) based
solvers, even though DPLL still provides for the core framework. For further details,
see [4, 24].

The watched literals scheme of Moskewiez et al. [37], introduced in their solver
zChaff, is now a standard method used by most SAT solvers for efficient constraint
propagation. This technique falls in the category of lazy data structures introduced
earlier by Zhang [53] in the solver Sato. The key idea behind the watched literals
scheme, as the name suggests, is to maintain and “watch” two special literals for
each active (i.e., not yet satisfied) clause that are not false under the current partial
assignment; these literals could either be set to true or be as yet unassigned. Recall
that empty clauses halt the DPLL process and unit clauses are immediately satisfied.
Hence, one can always find such watched literals in all active clauses. Further, as
long as a clause has two such literals, it cannot be involved in unit propagation. These
literals are maintained as follows. Suppose a literal � is set to false. We perform
two maintenance operations. First, for every clause C that had � as a watched literal,
we examine C and find, if possible, another literal to watch (one which is true or
still unassigned). Second, for every previously active clause C ′ that has now become
satisfied because of this assignment of � to false, we make ¬� a watched literal for
C ′. By performing this second step, positive literals are given priority over unassigned
literals for being the watched literals.

With this setup, one can test a clause for satisfiability by simply checking whether
at least one of its two watched literals is true. Moreover, the relatively small amount
of extra book-keeping involved in maintaining watched literals is well paid off when
one unassigns a literal � by backtracking—in fact, one needs to do absolutely noth-
ing! The invariant about watched literals is maintained as such, saving a substantial
amount of computation that would have been done otherwise. This technique has
played a critical role in the success of SAT solvers, in particular those involving
clause learning. Even when large numbers of very long learned clauses are con-
stantly added to the clause database, this technique allows propagation to be very
efficient—the long added clauses are not even looked at unless one assigns a value
to one of the literals being watched and potentially causes unit propagation.

Randomized restarts, introduced by Gomes et al. [26], allow clause learning
algorithms to arbitrarily stop the search and restart their branching process from
decision level zero. Restarts are motivated by the observation that the runtime of
DPLL-style backtrack search methods can vary dramatically depending on the vari-
able and value selection heuristics. The inherent exponential nature of the backtrack
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search process appears to magnify the unpredictability of search procedures, mak-
ing it common to observe a solver “hang” on a given instance, whereas a different
heuristic, or even just another randomized run, solves the instance quickly. Indeed,
the runtime of such solvers depicts heavy tailed behavior [16, 25, 29], which can
be avoided by periodically restarting the solver. For DPLL solvers employing clause
learning, all clauses learned so far are retained and now treated as additional ini-
tial clauses. Most of the current SAT solvers, starting with zChaff [37], employ
aggressive restart strategies, sometimes restarting after as few as 20 backtracks. This
has been shown to help immensely in reducing the solution time. Theoretically, if
allowed sufficiently many restarts, SAT solvers are known to be able to realize the
full power of the underlying resolution proof system [2, 43].

Related to this is the notion of backdoor variables introduced by Williams et al.
[52], which explains the surprisingly short runs also observed in backtrack search
solvers exhibiting heavy-tailed behavior. Intuitively, a backdoor is a subset of vari-
ables such that once the solver assigns values to them, the rest of the formula becomes
very easy to solve with a polynomial time sub-solver. For example, the residual
formula may take the 2-SAT or Horn form, or be solvable simply by unit propaga-
tion. Even though computing minimum backdoor sets is worst-case intractable [48],
extremely small backdoors have been shown to exist in many interesting real-world
instances. For example, a logistics planning formula with nearly a thousand vari-
ables and several thousand clauses can have a backdoor of size only about a dozen
variables. This highlights an implicit structure present in many real-world instances
that DPLL-based SAT solvers are able to exploit.

Conflict-directed backjumping, originally introduced by Stallman and Sussman
[47], allows a solver identifying a conflict when branching on variable x at decision
level d to backtrack directly to a decision level d ′ < d (often d ′ < d − 1) if all vari-
ables other than x involved in the conflicts at both branches on x have decision levels
at most d ′. This simulates what would have happened had the solver chosen to branch
on x at level d ′ + 1 to beginwith, namely, that the conflicts currently observed at level
d would have been observed at level d ′ + 1. Skipping the unnecessary intermediate
branching levels thus maintains completeness of the search while often significantly
enhancing efficiency.

In the context of Algorithm 3, a related technique, sometimes referred to as fast
backjumping, is employed. It is relevant mostly to the now-popular 1-UIP learning
scheme used in SAT solvers Grasp [35] and zChaff [37]. The idea is to let the
solver jump directly to a decision level d ′ < d when even only one branch at level d
leads to a conflict involving variables at levels at most d ′ (in addition to the variable
x at level d). One then simply selects a new variable and value for level d ′ + 1,
and continues search with a new learned clause added to the database as well as a
potentially a new implied literal (which may or may not be a literal of x). With clause
learning, this stillmaintains completeness of search and is experimentally observed to
often increase efficiency. Note, however, that while conflict-directed backjumping is
always beneficial (in that it only discards redundant branches), fast backjumpingmay
not be so; the latter discards intermediate decisions at levels d ′ + 1 through d − 1,
which may, in the worst case, be made again unchanged after fast backjumping.
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Assignment stack shrinking based on conflict clauses is a relatively new tech-
nique introducedbyNadel [38] in the solver Jerusat, and is nowused in other solvers
as well. When a conflict occurs because a clause C ′ is violated and the resulting con-
flict clause C to be learned exceeds a certain threshold length, the solver backtracks
to almost the highest decision level of the literals in C . It then starts assigning to
false the unassigned literals of the violated clause C ′ until a new conflict is encoun-
tered, which is expected to result in a smaller and more pertinent conflict clause to
be learned.

Conflict clause minimizationwas introduced by Eén and Sörensson [15] in their
solver MiniSat. The idea is to try to reduce the size of a learned conflict clause
C by repeatedly identifying and removing any literals of C that are implied to be
false when the rest of the literals in C are set to false. This is achieved using
the subsumption resolution rule, which lets one derive a clause A from (x ∨ A) and
(¬x ∨ B) where B ⊆ A (the derived clause A subsumes the antecedent (x ∨ A)).
This rule can be generalized, at the expense of extra computational cost that usually
pays off, to a sequence of subsumption resolution derivations such that the final
derived clause subsumes the first antecedent clause.

Glue clauses were introduced by Audemard and Simon [1] in their solver
Glucose. The idea emerged from the study of practical ways to determine which
of the millions of learned clauses derived by a solver were important and which
weren’t—a critical piece of the puzzle when deciding which learned clauses to peri-
odically discard in order to keep the overhead induced by rapid clause learning to a
minimum. While shorter clauses are generally more powerful than longer ones, the
idea behind glue clauses is to look instead at literals that “propagate together” in the
current search context, as characterized by the decision level associated with them,
and treat them as a single unit. The so-called LBD (Literal Block Distance) level of
a clause then is the number of different such units in it, and a clause with LBD level
2 is termed a glue clause. A common heuristic is to never discard glue clauses, as
they, despite generally being longer, behave essentially like powerful 2-clauses (i.e.,
those with 2 literals) in terms of propagation strength and formula simplification.

Parallel and distributed SAT solvers are increasingly gaining attention as multi-
core and cloud-based systems become popular. The most common approach is a
portfolio style one, where one exploits the variability across solver parameters and
formulas by running multiple, differently parameterized, independent solvers in par-
allel, each on the entire problem instance [27]. This approach can be extended to
include sharing of clauses across multiple compute cores on a single machine [3]
and across several connected machines [5]. With the advent of very fast graphic
processing units (GPUs), attention has also shifted to utilizing such special-purpose
hardware for suitable aspects of SAT solver computation such as unit propagation,
supporting parallel propagation on different parts of the data while the main compu-
tation remains sequential [41]. While effectively exploiting parallel computing hard-
ware in a SAT solver beyond a few dozen compute cores remains a challenge [28,
31], it is also a highly promising direction that may help reduce computation time
on real-world instances from several days to a few hours.
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12.5 Conclusions

Wepresentedwork on automated propositional reasoning usingBoolean satisfiability
(SAT) solvers as initiated by Martin Davis and colleagues in the late 1950s and early
1960s. They introduced two key procedures, which are now widely known by the
names of their developers, DP, the Davis-Putnam procedure, and DPLL, the Davis-
Putnam-Logemann-Loveland7 procedure. Complete modern SAT solvers, as well
as SMT and ASP solvers that build upon these solvers, derive directly from this
early work. We saw how, after a thirty year gap, work on SAT solvers dramatically
accelerated in the early 1990s. Even though SAT is an NP-complete problem, and
therefore believed to be worst-case intractable, modern SAT solvers can handle real-
world problem encodings with millions of variables and tens of millions of clauses.
This development has changed our view on “intractable” combinatorial problems,
and has opened up a wide range of applications tackled via SAT-based encodings,
such as software and hardware verification, program synthesis, AI planning, and
mathematical discovery, resulting in a rich and vibrant research community centered
around propositional reasoning. On one hand, Davis’s DPLL work shows the power
of algorithmic approaches through a clear practical impact of modern SAT, SMT, and
ASP solvers in a range of domains, while, on the other hand, his work on Hilbert’s
tenth problem represents a truly foundational advance providing a concrete example
of the fundamental limits of algorithmic approaches.
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Chapter 13
On Davis’s “Pragmatic Platonism”

Hilary Putnam

Abstract (added by editor). A comparison is made between Martin Davis’s realism
in mathematics and the forms of mathematical realism defended by Hilary Putnam.
Both reject the idea that mathematics should be interpreted as referring to immaterial
objects belonging to a “second plane of reality” and put emphasis on the use of
quasi-empirical arguments in mathematics. The author defends Hellman’s use of the
formalism of modal logic to explicate his own modal realism.

Keywords Mathematical truth · Objectivity · Modal realism · Indispensability
argument · Consilience
When Martin Davis learned that I was going to write about his fascinating essay,1 he
emailed me as follows, “Reading your old ‘What is Mathematical Truth?’2 (which
was new tome) it seems tome that the position expressed there is pretty close to what
I was suggesting.” That (1975) essay did, in fact, say some things that jibe with what
Davis was to write in “Pragmatic Platonism”, and I still believe those things. Does
that mean I agree with “Pragmatic Platonism”? It does. Not only does it formulate
Davis’s (and my) view that mathematics includes (but, of course, does not solely
consist in) what I called “quasi-empirical” (and Davis calls “inductive”) arguments
in a remarkably clear way, it argues persuasively that, while this is something Gödel

1Martin Davis published “Pragmatic Platonism” online:
http://foundationaladventures.files.wordpress.com/2012/01/platonic.pdf; shortly after I completed
the present essay, Davis sent me an expanded (forthcoming) version, “Pragmatic Realism; Math-
ematics and the Infinite”, in Roy T. Cook and Geoffrey Hellman (eds.), Putnam on Mathematics
and Logic (Cham, Switzerland: Springer International Publishing, forthcoming). The online ver-
sion was read at a conference celebrating Harvey Friedman’s 60th birthday. All the passages from
“Pragmatic Platonism” I quote here are retained verbatim in the expanded version.
2“What is Mathematical Truth?”Historia Mathematica 2 (1975): 529–543. Collected in myMathe-
matics, Matter and Method (Cambridge: Cambridge University Press, 1975), 60–78. The expanded
version of Davis’s “Pragmatic Platonism” referred to in the previous note contains a fine discussion
of “What is Mathematical Truth”, for which I am grateful.
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too believed, and while it is a support for what one might call realism with respect
to mathematics, one does not have to be a Gödelian Platonist to agree with this.
‘Pragmatic Platonism’ is realism enough. This claim is what I shall write about here.

The structure of this essay is as follows: I first describe the form of realism
that Martin defends (being prepared, of course, to learn that I misunderstand it),
and say something about the sort of realism (“modal realism”) that I defended in a
“MathematicsWithout Foundation”3 aswell as in “What isMathematical Truth”, and
have subsequently gone on to elaborate and defend4 (together withGeoffreyHellman
who has brilliantly worked out the details5), and discuss the relation between Davis’s
view in “Pragmatic Platonism” and the views I defend. I will close by describing an
argument I have given in the past for realismwith respect tomathematics, an argument
that has been misdescribed as the “Quine-Putnam indispensability argument”,6 and
close by discussing a question that occurred tome on reading “Pragmatic Platonism”,
the question as to whether my indispensability argument is needed, or whether the
considerations Davis offers in favor of regarding mathematical truth as objective are
actually sufficient.

13.1 Martin Davis’s Realism in Mathematics

In “Pragmatic Platonism”, Davis points out that an ancestor of the integral calcu-
lus, “the method of indivisibles”7 was used by Torricelli in the seventeenth century
to obtain results—one of the most surprising at the time being the existence of a
solid (the “Torricelli trumpet”) with infinite surface area and finite volume. These
results could be checked (but not discovered) by other methods, and the method of
indivisibles (and other methods that lacked rigorous justification until the nineteenth
century, including the use of complex numbers in calculating the real roots of an
equation) became part of the mathematician’s repertoire. Nor does the story stop in
the nineteenth century; the Axiom of choice was introduced by Zermelo in 1904, but
cannot be justified from the other axioms of Zermelo-Frankel set theory.”8 Yet, as
Davis remarks (op. cit. p.9), “The obligation to always point out a use of the axiom

3“Mathematics without Foundations,” Journal of Philosophy 64.1 (19 January 1967): 5–22. Col-
lected in Mathematics, Matter and Method, 43–59. Repr. In Paul Benacerraf and Hilary Putnam
(eds.). Philosophy of Mathematics: Selected Readings, 2nd ed. (Cambridge: Cambridge University
Press, 1983), 295–313.
4In “Set Theory, Replacement, and Modality”, collected in Philosophy in an Age of Science (Cam-
bridge, MA: Harvard University Press, 2012), and “Reply to Steven Wagner”, forthcoming in The
Philosophy of Hilary Putnam (Chicago: Open Court, 2015).
5Geoffrey Hellman, Mathematics without Numbers (Oxford: Oxford University Press, 1989).
6For a description of the argument and its misunderstandings see my “Indispensability Arguments
in the Philosophy of Mathematics”, in Philosophy in an Age of Science, 181–201.
7The method of indivisibles was invented by Bonaventura Cavalieri in 1637.
8For a detailed account, see Kanamori, Akihiro (2004), “Zermelo and set theory”, The Bulletin of
Symbolic Logic 10 (4): 487–553, doi:10.2178/bsl/1102083759, ISSN 1079-8986, MR 2136635.
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of choice is a thing of the past.” And he adds, “I haven’t heard of anyone calling the
proof of Fermat’s Last Theorem into question because of the large infinities implicit
in Grothendieck universes.” (In “What is Mathematical Truth”, I similarly pointed
out that since Descartes the isomorphism of the geometrical line with the continuum
of real numbers has become fundamental to virtually all of analysis without a “proof”
from other axioms.) Davis boldly concludes, “What can we say about Torricelli’s
methodology? He was certainly not seeking to obtain results by ‘cogent proofs from
the definitions’ or ‘in ontological terms, from the essences of things’. He was exper-
imenting with a mathematical technique that he had learned, and was attempting to
see whether it would work in an uncharted realm. In the process, something new
about the infinite was discovered. I insist that this was induction from a body of
mathematical experience.”

Although the remarks I have just quoted are primarily epistemological, both the
use of the term “discovered” and the title “Pragmatic Platonism” (emphasis added)
indicate that Davis believes that mathematical knowledge is objective, and, in fact,
he goes on to say so explicitly. (I shall quote the place in a moment.) But Davis
(like myself) cannot go along with Gödel’s view that mathematical objects exist in
a Platonic realm that (parts of which) the mind is somehow capable of perceiving. I
now quote two paragraphs from Davis’s essay that seem to me to capture the essence
of what I am calling his “realism”.

If the objects of mathematics are not in nature and not in a “second plane of reality,” then
where are they? Perhaps we can learn something from the physicists. Consider for example,
the discussion of the “Anthropic Principle” [1]. The advocates of this principle note that
the values of certain critical constants are finely tuned to our very existence. Given even
minor deviations, the consequence would be: no human race. It is not relevant here whether
this principle is regarded as profound or merely tautological. What I find interesting in this
discussion of alternate universes whose properties exclude the existence of us, is that no one
worries about their ontology. There is simply a blithe confidence that the same reasoning
faculty that serves physicists so well in studying the world that we actually do inhabit, will
work just as well in deducing the properties of a somewhat different hypothetical world.
A more mundane example is the ubiquitous use of idealization. When Newton calculated
the motions of the planets assuming that each of the heavenly bodies is a perfect sphere of
uniform density or even a mass particle, no one complained that the ontology of his idealized
worlds was obscure. The evidence that our minds are up to the challenge of discovering
the properties of alternative worlds is simply that we have successfully done so. Induction
indeed! This reassurance is not at all absolute. Like all empirical knowledge it comes without
a guarantee that it is certain.

My claim is that what mathematicians do is very much the same. We explore simple austere
worlds that differ from the one we inhabit both by their stark simplicity and by their openness
to the infinite. It is simply an empirical fact that we are able to obtain apparently reliable
and objective information about such worlds. And, because of this, any illusion that this
knowledge is certain must be abandoned.

The key notions in these paragraphs are “hypotheticalworlds”, “idealizedworlds”,
and “objective information”. For Davis, mathematics is not about worlds that actu-
ally exist in some hyper-cosmology (unlike David Lewis’s “possible worlds”9), but

9David Lewis, On the Plurality of Worlds (Oxford: Blackwell, 1986).
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about what would be the case if certain idealized worlds existed, worlds that would
contain infinities (in some cases “large infinities”) if they really did exist.10 If a
reader were to ask me whether the difference between Davis’s hypothetical worlds,
which I find it reasonable to talk about, and Lewis’s possible worlds, which I don’t,
isn’t “rather thin”, I would reply that it is like the difference between saying that a
solid gold mountain actually exists somewhere, only not in this world, which was
Lewis’s view (“real” is just what we call our world; all possible worlds are equally
real to their inhabitants) and saying that physically possibly a solid gold mountain
could exist, which is the case according to present day physics. I interpret Davis’s
term “hypothetical” to mean that he, like me, conceives of mathematical structures as
ones that, in some sense of “could”, could exist. If I have him right, they exist hypo-
thetically, but not actually, not even in a Platonic heaven. I don’t find the difference
between saying that certain worlds or structures are possible and saying that they
exist “thin” at all. We reason about such hypothetical worlds by using our human
abilities to imagine and to idealize and to deduce from given assumptions. Because
it is obtained in this way, mathematical knowledge is fallible (pace Gödel, there is
nothing “perceptual” about it), but the consilience of the results11 justifies our taking
the results to be objective information. There is a fact of the matter about what would
be the case if those “hypothetical worlds” were real.

13.2 The Sort of Realism I Defend

I recently (Dec. 2014) described my philosophy of mathematics12 in three posts on
my blog (putnamphil.blogspot.com). In brief, the main points were:

(1) An interpretation ofmathematicsmust be compatible with scientific realism. It is
not enough that the theorems of pure mathematics used in physics come out true
under one’s interpretation of mathematics—even some antirealist interpretations
arguably meet that constraint—the content of the “mixed statements” of science
(empirical statements that contain some mathematical terms and some empirical
terms) also needs to be interpretable in a realist way. For example, if a theory talks
about electrons, according to me it is talking about things we cannot see with the
naked eye, and not simply about what measuring instruments would do under
certain circumstances, as operationalists and logical positivists maintained. I
believe many proposed interpretations fail that test.13

10Here I am going by Davis’s reference to the use of Grothendieck’s infinity topoi by Wiles and
Taylor in their proof of Fermat’s “Last Theorem”.
11By “consilience” I mean that the results are not only consistent, but that they extend one another,
often in unexpected directions.
12The relevant publications are, in addition to the already mentioned “What is Mathematical Truth”
and “Mathematics without Foundations”, are “Set Theory, Replacement, and Modality”, collected
in Philosophy in an Age of Science (Cambridge, MA: Harvard University Press, 2012), and “Reply
to StevenWagner”, forthcoming in The Philosophy of Hilary Putnam (Chicago: Open Court, 2015).
13Brouwer’s Intuitionism was my example of an interpretation that is incompatible with scientific
realism in “What is Mathematical Truth”, 75.

http://putnamphil.blogspot.com/
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(2) Both objectualist interpretations (interpretations under which mathematics pre-
supposes the mind-independent existence of sets as “intangible objects”14 and
potentialist/structuralist interpretations (interpretations under which mathemat-
ics only presupposes the possible existence of structures that exemplify the struc-
tural relations ascribed to sets), maymeet the foregoing constraint. For example,
under both Gödel’s (or Quine’s) Platonist interpretations and Hellman’s and my
modal logical interpretation the logical connectives are interpreted classically. In
contrast to this, under Brouwer’s interpretation, the logical connectives (includ-
ing “or” and “not”) are interpreted in terms of (Brouwer’s version of) provability.
For example, in Intuitionism, “P or Q” means “There is a proof that either there
is a proof of P or there is a proof of Q”. But according to scientific realists, the
statement that a physical system either has a property P or has a property Q,
does not entail that either disjunct can be proved, or even empirically verified. A
statement can be true without being verifiable at all.15 But if statements of pure
mathematics are interpreted intuitionistically, mustn’t statements of physics also
be interpreted in terms of the same non-classical understanding of the logical
connectives?

(3) But, while positing the actual existence of sets as “intangible objects” may jus-
tify the use of classical logic, it suffers not only from familiar epistemological
problems (not to mention conflicting with naturalism, which is the reason Davis
gives for rejecting it), but from a generalization of a problem first pointed out
by Paul Benacerraf,16 a generalization I call “Benacerraf’s Paradox”, namely
that too many identities (or proposed identities) between different categories of
mathematical “objects” seem undefined on the objectualist picture—e.g. are sets
a kind of function or are functions a sort of set? Are the natural numbers sets,
and if so which sets are they? etc. For me, the objectualist’s lack of an answer
that isn’t completely arbitrary tips the scales decisively in favor or potential-
ism/structuralism.

(4) Rejecting objectualism (as Martin and I both do) does not requires one to say
that sets, functions, numbers, etc., are fictions. (I hope Martin agrees.)

In “Mathematics without Foundations”, where I first proposed the modal logical
interpretation), I claimed that objectualism and potentialism are “equivalent descrip-
tions”, which was a mistake. I now defend the view that potentialism is a rational
reconstruction of our talk of “existence” in mathematics, rather than an “equivalent”
way of talking. Rational reconstruction does not “deny the existence” of sets (or, to
change the example), of “a square root of minus one”; it provides a construal of such

14Gödel’s Platonism is a prototypical “objectualist” interpretation, but the term “intangible objects”
was used byQuine in Theories and Things, (Cambridge,MA: Harvard University Press, 1981), 149.
15For a fine defense of the claim that a statement can be true but unverifiable, see Tim Maudlin
“Confessions of a Hard-Core, Unsophisticated Metaphysical Realist”, forthcoming in The Philoso-
phy of Hilary Putnam. Maudlin rightly criticizes me for giving it up in my “internal realist” period
(1976–1990); after I returned to realism sans phrase in 1990 I defended the same claim in a num-
ber of places, e.g. “When ‘Evidence Transcendence’ Is Not Malign: A Reply to Crispin Wright,”
Journal of Philosophy 98.11 (November 2001), 594–600.
16Paul Benacerraf (1965), “What Numbers CouldNot Be”Philosophical ReviewVol. 74, pp. 47–73.
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talk that avoids the paradoxes. In Davis’s language, the mathematician is talking
about, for example, entities that play the role of a square root of minus one in certain
hypothetical worlds, but unlike Gödel she does not suppose that such entities exist in
some Platonic realm. (Gödel claimed we can perceive them with the aid of a special
mental faculty.)

13.3 Relations Between Davis’s and My Forms
of Mathematical Realism

Strange as itmay seem, the largest difference betweenDavis’s “Pragmatic Platonism”
and my “Mathematics without Foundations” and its “modal logical interpretation”
is not metaphysical but mathematical. It is not metaphysical, because both essays,
my 1967 essay and Davis’s recent on-line essay, reject the idea that mathematics
must be interpreted as referring to immaterial objects, à la either Gödel or Quine.17

Both essays argue that mathematics can and does discover objective truths about
what would be the case if certain abstract structures were real, and that the success of
mathematics and the consilience of results obtained by different mathematical meth-
ods, including ones whose justification is “quasi-empirical” (my term) or “inductive”
(Davis’s term), justifies the belief that this is so. This is common ground between us,
and it is substantial.

However, my “Mathematics without Foundations” sketched a program for “trans-
lating” assertions that quantify over set into explicitly modal statements, a program
carried out and then extended in new directions by Hellman; a program that suggests
new ways of motivating key axioms of set theory and some of its large cardinal
extensions, while Davis’s brief essay basically leaves set theory as it is.

This difference exists because already in “Mathematics without Foundations” I
was concerned to be consistent with the idea, that I believe to be correct, that there
is no such thing as “the totality of all sets”—not even in a “hypothetical world”. Any
hypothetical world (to use Davis’s language) of sets is only an initial segment of
another possible world of sets. Possible models of set theory are inherently extend-
able. (This is the idea that led to Hellman’s current efforts to deploy extendability
principles to motivate possible existence of large cardinals in standard models of set
theory.) The key idea of my “Mathematics without Foundations” was to reformulate
statements of set theory that are “unbounded”, in the sense of quantifying over sets
of all ranks, without assuming the existence of even a possible totality of such sets.
As Hellman describes18:

17Quine is often described as a “reluctant” Platonist because of statements like this one: “I have felt
that if I must come to terms with Platonism, the least I can do is keep it extensional”, Theories and
Things (Cambridge, MA: Harvard University Press, 1990), 100.
18Hellman, ibid, second page (the page proofs I have seen do not indicate the forthcoming page
numbers).
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Putnam took initial steps in illustrating howmodal translation would proceed without falling
back on set-theoretic language normally associatedwith “models.” To this end, he introduced
models of Zermelo set theory as “concrete graphs” consisting of “points” and “arrows”
indicating the membership relation, so that, except for the modal operators, the modal log-
ical translation required only nominalistically acceptable language. Finally (in this brief
summary), Putnam proposed an intriguing translation pattern19 for set-theoretic sentences
of unbounded rank (standardly understood as quantifying over arbitrary sets of the whole
cumulative hierarchy or set-theoretic universe) in which all quantifiers are restricted to items
of a (concrete, standard20) model but the effect of “unbounded rank” is got by modally
quantifying over arbitrary possible extensions of models.

But it is time to return to philosophy.
Both the differences and the similarities between Davis’s views and mine, in the

essays I have been discussing stem from the fact that Davis considers whole hypo-
thetical worlds without discussing relations (such as one world’s being an extension
of another) between these “worlds”.

On the side of “similarities”. First, there is the already-emphasized fact that both
of us believe that it is right to recognize the objectivity, the “there-being-a-fact-of-
the-matter”, of mathematical statements, and that this is realism enough. Coupled
with rejection of the claim that all mathematical knowledge is apriori,21 and our
(independent) emphasis on the use of quasi-empirical argument in mathematics, this
is a large measure of agreement indeed.

It may seem to be a difference that I worry about Benacerraf’s problem (or para-
dox) andDavis does not, but in fact once one gives up the idea that talk of numbers and
sets is talk of real objects in favor of a conception of them as elements of a possible
(or “hypothetical”) model, there is no call to worry about which otherwise-specified
object the number two is (or the square root of minus one is, although that one did
worry British algebraists for a hundred years22). Such problems simply disappear.

What may be a difference is that Davis only worries about puremathematics, and
from the beginning I am concerned with finding an interpretation of mathematical
truth that is consistent with a scientific realist interpretation of empirical statements,
of what I called “mixed statements” above. How to interpret mixed statements in a
modal-logical framework is something that Hellman and I discussed over the years,

19An example of my translation method (from “Mathematics without Foundations”) is this: If the
statement has the form (x)(Ey)(z)Mxyz, where M is quantifier-free, then the translation is:
Necessarily: If G is any graph that is a standard model for Zermelo set theory and if x is any point
in G, then it is possible that there is a graph G ′ that extends G and is a standard concrete model
for Zermelo set theory and a point y in G ′ such that � (if G ′′ is any standard concrete model for
Zermelo set theory that extends G ′ and z is any point in G ′′, then Mxyz holds in G ′′).
20Amodel of Zermelo (or Zermelo-Fraenkel) set theory is standard just in case (1) it is well-founded
(no infinite descending membership chains), and (2) power sets are maximal.
21Actually, I believe that all so-called “a priori” truths presuppose a background conceptual system,
and that no conceptual system is guaranteed to never need revision. For this reason, I prefer to
speak of truths being conceptually necessary relative to a conceptual background. I would not be
surprised if Martin Davis agreed with this.
22Menahem Fisch, “The Emergency Which has Arrived: The Problematic History of 19th Century
British Algebra—A Programmatic Outline”, The British Journal for the History of Science, 27:
247–276, 1994.
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and some of the most ingenious work in Mathematics without Numbers is devoted
to it. For example, in applied mathematics one needs to talk (to put it heuristically23)
about possible worlds in which the physical objects are as they actually are, not
about possible worlds simpliciter, and formalizing this is non-trivial. And I repeat,
extension relations among possible worlds (or “hypothetical worlds”, or “idealized
worlds”, or whatever you want to call them), and between possible worlds and the
actual world, need to be considered if potentialist approaches are to be spelled out
in a rigorous way.

13.4 Indispensability Arguments—What Mine Was,
and Are They Necessary

If one consults the Stanford Encyclopedia of Philosophy on the topic “Indispensabil-
ityArguments in the Philosophy ofMathematics,”24 one finds (as part of amoderately
lengthy entry written by Mark Colyvan) the following statements:

From the rather remarkable but seemingly uncontroversial fact that mathematics is indis-
pensable to science, some philosophers have drawn serious metaphysical conclusions. In
particular, Quine…25 and Putnam…26 have argued that the indispensability of mathemat-
ics to empirical science gives us good reason to believe in the existence of mathematical
entities….This argument is known as the Quine-Putnam indispensability argument for math-
ematical realism.

Frommy point of view, Colyvan’s description of my argument(s) is far from right.
In “What is Mathematical Truth” what I argued was that the internal success and

23Officially, Hellmann and I avoid literal quantification over possible worlds or possibilia, relying
entirely on modal operators that officially we avoid literal quantification over possible worlds or
possibilia, relying entirely on modal operators.
24MarkColyvan, “IndispensabilityArguments in the Philosophy ofMathematics,” inE.N.Zalta, ed.,
The Stanford Encyclopedia of Philosophy (Fall 2004 Edition), http://Plato.stanford.edu/archives/
fall2004/entries/mathphil-indis/. Colyvan is also the author of The Indispensability of Mathematics
(Oxford: Oxford University Press, 2001).
25The author of this entry, Mark Colyvan, is referring to W.V. Quine, “Carnap and Logical Truth,”
reprinted in The Ways of Paradox and Other Essays, revised edition (Cambridge, Mass.: Harvard
University Press, 1976), 107–132 and in Paul Benacerraf and Hilary Putnam, eds., Philosophy of
Mathematics, Selected Readings (Cambridge: Cambridge University Press,1983), 355–376; W.V.
Quine, “On What There Is,” Review of Metaphysics, 2 (1948): 21–38; reprinted in From a Logical
Point of View (Cambridge, Mass.: Harvard University Press, 19802), 1–19; W.V. Quine, “Two
Dogmas of Empiricism,” Philosophical Review, 60, 1 (January 1951): 20–43; reprinted in his
From a Logical Point of View (Cambridge, Mass.: Harvard University Press, 1961), 20–46; W. V.
Quine, “Things and Their Place in Theories,” in Theories and Things (Cambridge, Mass.: Harvard
University Press, 1981), 1–23; W.V. Quine, “Success and Limits of Mathematization,” in Theories
and Things (Cambridge, Mass.: Harvard University Press, 1981), 148–155.
26Colyvan is referring to “What is Mathematical Truth” and Hilary Putnam, Philosophy of Logic
(New York: Harper and Row, 1971), reprinted inMathematics, Matter and Method: Philosophical
Papers Vol. 1, 2nd edition, (Cambridge: Cambridge University Press, 1979), 323–357.

http://Plato.stanford.edu/archives/fall2004/entries/mathphil-indis/
http://Plato.stanford.edu/archives/fall2004/entries/mathphil-indis/
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coherence ofmathematics is evidence that it is true under some interpretation, and that
its indispensability for physics is evidence that it is true under a realist interpretation—
the antirealist interpretation I considered there was Intuitionism. This is a distinction
that Quine nowhere draws. It is true that in Philosophy of Logic I argued that at
least some set theory is indispensable in physics as well as logic (Quine had a very
different view on the relations of set theory and logic, by the way), but both “What
Is Mathematical Truth?” and “Mathematics without Foundations” were published in
Mathematics, Matter and Method together with “Philosophy of Logic,” and in both
of those essays I said that set theory did not have to be interpreted Platonistically. In
fact, in “What Is Mathematical Truth?”27 I said, “the main burden of this essay is that
one does not have to ‘buy’ Platonist epistemology to be a realist in the philosophy
of mathematics. The modal logical picture shows that one doesn’t have to ‘buy’
Platonist ontology either.” Obviously, a careful reader of Mathematics, Matter and
Method would have had to know that I was in no way giving an argument for realism
about sets as opposed to realism about truth values on a modal interpretation.

Unlike my argument in “What is Mathematical Truth”, Davis’s argument against
Gödel’s version of “Platonism” does not mention “indispensability for physics”,
and this raised for me the question I mentioned at the beginning of this essay, the
question as to whether my “indispensability argument is needed, or whether the
considerations Davis offers in favor of regarding mathematical truth as objective
are actually sufficient.” To discuss this question, we have to return to the notion of
objectivity.

Assuming that Davis and I are on the same wavelength with respect to that notion,
and recalling that antirealist philosophies of mathematics all identify truth with prov-
ability, in one sense or another of “provability”, this reduces to the question as to
whether his arguments really rule out the possibility that mathematical truth is the
same thing as provability. Let us begin with two clarifications.

First, the question isn’t whethermathematical truth = provability in some one fixed
formal system that “we can see to be correct”. Even before the Gödel Incompleteness
Theoremswere proved, Brouwer’s Intuitionismdid not depend on assuming—in fact,
Brouwer didn’t believe—that constructive provability could be captured by any one
formal system. And after the Gödel theorems were proved, Turing thought that we
can see from Gödel’s argument that reflection28 on any formal system that is strong
enough for arithmetic and thatwe can intuitively see to be correctwill enable us to find
a more powerful system, in fact a constructive transfinite sequence of stronger and
stronger systems, such that a proof in any one of them would still intuitively count

27“What is Mathematical Truth?”, 72.
28“Reflection” here denotes producing a stronger system by adding a consistency statement for a
given system. If the systems are indexed by notations for constructive ordinals—that is, elements
of a recursive well-ordering—and the ordering is already proved to be a well-ordering, one can
continue “reflection” into the transfinite, when one comes to a “limit notation” by adding a suitably
formalized statement to the effect that the union of the systems with indexes below the limit notation
is a consistent system.
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as an acceptable “mathematical proof”.29 (However, it had better not be possible
to “see from below” just how far up the hierarchy of constructive ordinals such
metamathematical reflection can take us, if we are not to run into contradiction.) So
there may be a sense of “proof” in which what is “provable” outruns what is formally
provable in one system that we can see to be correct.
And the Gödel results are not enough to exclude identification of mathematical truth
with provability is such a sense.DoDavis’s arguments exclude such an identification?

I assume they are meant to. In philosopher’s jargon, views according to which
mathematical truth is just provability (from axioms human mathematicians can see
to be correct) count as antirealist and I have been assuming that, like me, Davis is
a realist. It would be a disappointment to find out he isn’t, and I have been laboring
under a serious misconception!

One reason for supposing that Davis is not an antirealist is that he clearly thinks
that our means of mathematical discovery are often “inductive”, that is, they are not
just deductions from self-evident axioms. Indeed, that is the main point of his essay.
So I am not seriously worried that I have misunderstood ”Pragmatic Platonism”.
But the question now arises in another form: if “Pragmatic Realism” is an argument
against identifying truth with provability is the argument good enough? In “What
is Mathematical Truth” I had written that “the consistency and fertility of classical
mathematics is evidence that it—or most of it—is true under some interpretation.
But the interpretation might not be a realist interpretation.”30 And I went on to rule
out this possibility with the aid of two arguments I have already mentioned: the
indispensability argument and the argument that an antirealist interpretation of pure
mathematics does not fit together with a scientific realist interpretation of physics.
Was this last step actually unnecessary?

What Davis’s arguments show is that mathematicians do not proceed by proof
alone. They also use “induction”, that is, quasi-empirical methods. But does the fact
that mathematical discovery is first made—in many cases—without formal proof
show that correctness of the result isn’t simply provability? Arguably, Torricelli’s
results were correct in the sense that, and only in the sense that, they were provable
from acceptable axioms, even if Torricelli himself didn’t have either the proof or the
axioms.

Well, both Davis and I (in “What is Mathematical Truth”) mention that new
axioms sometimes get accepted in mathematics. But (1) this does not happen very
often; and (2) when it does happen, it happens because the new axioms are appealing
for mathematical reasons. The indispensability argument considers the need for an
interpretation of the mathematical concepts when they function in empirical science,
and argues that antirealism has no satisfactory account of this. Davis’ argument
considers only what goes on in pure mathematics. It certainly confirms a claim I
made in “What is Mathematical Truth”, the claim that mathematics does not only use
deduction, but is full of quasi-inductive elements. But is that something an antirealist

29Turing, A.M. (1939), ‘Systems of Logic Based on Ordinals’, Proceedings of the London Mathe-
matical Society, Ser. 2 45, pp. 161–228.
30“What is Mathematical Truth”, 73.
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need be impressed by?Couldn’t an antirealist say that Davis’s essay has to dowith the
context of discovery, and, perhaps, has also to do with an often-unrecognized context
of “quasi-empirical justification”, but notwith the question of realism. Ifmathematics
yields, as Davis says, “objective information”, is that “objective information” about
more than what we humans count as proof? We both think it is about more than that,
but I still think that the success of applied mathematics needs to be brought into the
picture in order to make the best case. But I look forward happily and affectionately
to Davis’s response.



Chapter 14
Pragmatic Platonism

Martin Davis

Abstract It is argued that to a greater or less extent, all mathematical knowledge is
empirical.

Although I have never thought of myself as a philosopher, Harvey Friedman has told
me that I am “an extreme Platonist”. Well, extremism in defense of truth may be no
vice, but I do feel the need to defend myself from that description.

Gödel’s Platonism

When one thinks of Platonism in mathematics, one naturally thinks of Gödel. In a
letter to Gotthard Günther in 1954, he wrote:

When I say that one can …develop a theory of classes as objectively existing entities, I do
indeed mean by that existence in the sense of ontological metaphysics, by which, however,
I do not want to say that abstract entities are present in nature. They seem rather to form
a second plane of reality, which confronts us just as objectively and independently of our
thinking as nature.1

If indeed that’s extreme Platonism, it’s not what I believe. I don’t find myself
confronted by such a “second plane of reality”.

In his Gibbs lecture of 1951, Gödel made it clear that he rejected any mechanistic
account of mind, claiming (with no citations) that

1See [5], vol IV, pp. 502–505.
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…some of the leading men in brain and nerve physiology …very decidedly deny the possi-
bility of a purely mechanistic explanation of psychical and nervous processes.2

In a 1974 letter evidently meant to help comfort Abraham Robinson who was dying
of cancer, he was even more emphatic:

The assertion that our ego consists of protein molecules seems to me one of the most ridicu-
lous ever made.3

Alas, I’m stuck with precisely this ridiculous belief. Although I wouldn’t mind at all
having the transcendental mind Gödel suggests, I’m aware of no evidence that our
mental activity is anything but the work of our physical brains.

In his Gibbs lecture Gödel suggests another possibility:

Ifmathematics describes an objectiveworld just like physics, there is no reasonwhy inductive
methods should not be applied in mathematics just the same as in physics. The fact is that
in mathematics we still have the same attitude today that in former times one had toward all
science, namely we try to derive everything by cogent proofs from the definitions (that is,
in ontological terminology, from the essences of things). Perhaps this method, if it claims
monopoly, is as wrong in mathematics as it was in physics.4

I will claim that mathematicians have been using inductive methods, appropriately
understood, all along. There is a simplistic view that induction simply means the
acceptance of a general proposition on the basis of its having been verified in a large
number of cases, so that for example we should regard the Riemann Hypothesis as
having been established on the basis of the numerical evidence that has been obtained.
But this is unacceptable: no matter how much computation has been carried out, it
will have verified only an infinitesimal portion of the infinitude of the cases that
need to be considered. But inductive methods (even those used in physics) need to
be understood in a much more comprehensive sense.

Gödel Incompleteness and the Metaphysics of Arithmetic

Gödel has claimed that it was his philosophical stance that made his revolutionary
discoveries possible and that his Platonism had begun in his youth. However, an
examination of the record shows something quite different, namely a gradual and
initially reluctant embrace of Platonism as Gödel considered the philosophical impli-
cations of his mathematical work [3]. It is at least as true that Gödel’s philosophy
was the result of his mathematics as that the latter derived from the former.

In 1887, in an article surveying transfinite numbers from mathematical, philo-
sophical, and theological viewpoints, Georg Cantor made a point of attacking a little
pamphlet on counting and measuring written by the great scientist Hermann von
Helmholtz. Cantor complained that the pamphlet expressed an “extreme empirical-
psychological point of view with a dogmatism one would not have thought possible
…” He continued:

2See [5] vol. III, p. 312.
3See [5] vol. V, p. 204.
4See [5], vol. III, p. 313.
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Thus, in today’s Germany we see, as a reaction against the overblown Kant-Fichte-Hegel-
Schelling Idealism, an academic-positivistic skepticism that powerfully dominates the scene.
This skepticism has inevitably extended its reach even to arithmetic, in which domain it has
led to its most fateful conclusions. Ultimately, this may turn out most damaging to this
positivistic skepticism itself.

In reviewing a collection of Cantor’s papers dealing with the transfinite, Frege chose
to emphasize the remark just quoted, writing [6]:

Yes indeed! This is the very reef on which this doctrine will founder. For ultimately, the role
of the infinite in arithmetic is not to be denied; yet, on the other hand, there is no way it can
coexist with this epistemological tendency. Thus we can foresee that this issue will provide
the setting for a momentous and decisive battle.

In a 1933 lecture, Gödel, considering the consequences of his incompleteness theo-
rems, and perhaps not having entirely shaken off the positivism of the Vienna Circle,
showed that the “battle” Frege had predicted was taking place in his own mind:

The result of our previous discussion is that our axioms, if interpreted as meaningful state-
ments, necessarily presuppose a kind of Platonism, which cannot satisfy any critical mind
and which does not even produce the conviction that they are consistent.5

The axioms to which Gödel referred were an unending sequence produced by per-
mitting variables for ever higher “types” (in contemporary terminology, sets of ever
higher rank) and including axioms appropriate to each level. He pointed out that to
each of these levels there corresponds an assertion of a particularly simple arithmetic
form, what we now would call aΠ0

1 sentence, which is not provable from the axioms
of that level, but which becomes provable at the next level. In the light of later work,6

a Π0
1 sentence can be seen as simply asserting that some particular equation

p(x1, x2, . . . , xn) = 0,

where p is a polynomialwith integer coefficients, has no solutions in natural numbers.
To say that such a proposition is true is just to say that for each choice of natural
number values a1, a2, . . . , an for the unknowns,

p(a1, a2, . . . , an) �= 0.

Moreover a proof for each such special case consists of nothing more than the
sequence of additions andmultiplications needed to compute the value of the polyno-
mial together with the observation that that value is not 0. So in the situation to which
Gödel is calling attention, at a given level there is no single proof that subsumes this
infinite collection of special cases, while at the next level there is such a proof.

This powerfulway of expressingGödel incompleteness is not available to onewho
holds to a purely formalist foundation for mathematics. For a formalist, there is no
“truth” above and beyond provability in a particular formal system. Post had reacted

5See [5] vol. III, p. 50.
6See [4] pp. 331–339.
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to this situation by insisting that Gödel’s work requires “at least a partial reversal
of the entire axiomatic trend of the late nineteenth and early twentieth centuries,
with a return to meaning and truth as being of the essence of mathematics”.7 Frege’s
reference to the “role of the infinite in arithmetic” is very much to the point here.
It is the infinitude of the natural numbers, the infinitude of the sequence of formal
systems, and finally, the infinitude of the special cases implied by a Π0

1 proposition
that point to some form of Platonism.

Infinity in the Seventeenth Century

Hilbert saw the problem of the infinite as central to resolving foundational issues.
Perhaps succumbing a bit to hyperbole, he said:

The infinite has always stirred the emotions of mankindmore deeply than any other question;
the infinite has stimulated and fertilized reason as few other ideas have; but also the infinite,
more than any other notion is in need of clarification.8

People have pronounced and speculated about what is and isn’t true about infinity
since they began thinking abstractly. Aristotle’s views on the subject in particular
had a great influence. A discovery made by the Italian mathematician Torricelli in
1641 provides a very revealing example.9 He found that the volume of a certain solid
of infinite extent is finite. The solid in question is obtained by rotating about an axis
a certain plane figure with infinite area. Specifically, in modern terminology, it is
the figure bounded by the hyperbola whose equation is y = 1/x , the line x = 1 and
the horizontal asymptote of the hyperbola, namely the X -axis. Torricelli’s solid is
formed by rotating this figure about the X -axis. Although showing that this solid
of revolution has a finite volume is a routine “homework” problem in a beginning
calculus course,

π

∫ ∞

1

1

x2
dx = π,

at the time it created a sensation because it contradicted prevalent views about the
infinite. Torricelli himself remarked “…if one proposes to consider a solid, or a plane
figure, infinitely extended, everybody immediately thinks that such a figure must be
of infinite size.” In 1649, Petri Gassendi wrote,

Mathematicians…weave those famous demonstrations, some so extraordinary that they even
exceed credibility, like what …Torricelli showed of a certain…solid infinitely long which
nevertheless is equal to a finite cylinder.

Writing in 1666, Isaac Barrow found Torricelli’s result contradicting what Aristotle
had taught. He referred to Aristotle’s dictum, “there is no proportion between the
finite and the infinite”:

The truth of which statement, a very usual and well known axiom, has been in part broken
by …modern geometricians [who] demonstrate …equality of …solids protracted to infinity
with other finite …solids which prodigy …Torricelli exhibited first.

7See [9] p. 295.
8See [10] p. 371.
9This discussion, including the quotations, is based on Paolo Mancosu’s wonderful monograph [7].
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Much can be learned from this example about the way in which mathematicians
expand the applicability of existing methods to new problems and with how they
deal with the philosophical problems that may arise. Torricelli used a technique
called the method of indivisibles, a method pioneered by Cavalieri that provided a
short-cut for solving area and volume problems. Torricelli used this technique to
prove that his infinite body had the same volume as a certain finite cylinder. The
method conceived of each of the two bodies being compared as constituted of a
continuum of plane figures. Although there was no rigorous foundation for this,
Cavalieri and later Torricelli showed how effective it could be in easily obtaining
interesting results. They were well aware of the Eudoxes-Archimedes method of
exhaustion (which they called “the method of the ancients”), and used it to confirm
their results and/or to convince skeptics.10 But, Torricelli insisted on the validity of
the new method.

What can we say about Torricelli’s methodology? He was certainly not seeking to
obtain results by “cogent proofs from the definitions” or “in ontological terms, from
the essences of things”. He was experimenting with a mathematical technique that
he had learned, and was attempting to see whether it would work in an uncharted
realm. In the process, something new about the infinite was discovered. I insist that
this was induction from a body of mathematical experience.

Robustness of Formalism

An interesting example is provided by the development of complex numbers. The fact
that the square of any non-zero real number is positive had been generally accepted as
implying that there could be no number whose square is negative. Sixteenth century
algebra brought this into question. The quadratic formula, essentially known since
antiquity, did seem to lead to solutions which did involve square roots of negative
quantities. But those were simply regarded as impossible. But the analogous formula
for cubic equations, discovered by Tartaglia and published in Cardano’s book of
1545, forced a rethinking of the matter. In the case of a cubic equation with real
coefficients and three real roots, the formula led to square roots of negative numbers as
intermediary steps in the computation. Bombelli discussed this in his book of 1572. In
particular, he noted that although the equation x3 − 15x − 4 = 0 had the three roots
4,−2 + √

3,−2 − √
3, the Tartaglia formula forced one to consider

√−109. Soon
mathematicians were working freely with complex numbers without questioning
whether they really exist in some “second plane of reality”. What this experience
illustrates is the robustness of mathematical formalisms. These formalisms often
point the way to expansions of the subject matter of mathematics before any kind
of convincing justification can be supplied. This is again a case of induction in
mathematical practice.

Leibniz referred to this very experience when asked to justify the use of infinites-
imals. As Mancosu explains

10The method of exhaustion typically required one to have the answer at hand, whereas with
indivisibles the answer could be computed.
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…the problem for Leibniz was not, Do infinitely small articles exist? but, Is the use of
infinitely small quantities in calculus reliable?11

In justifying his use of infinitesimals in calculus, Leibniz compared this with the
use of complex numbers which had become generally accepted although at the time,
there was no rigorous justification.

In another example, the rules of algebra, including the manipulation of infinite
series was applied to operators with scant justification. This can be seen in Boole’s
[2] massive tract on differential equations in whichmarvelous manipulative dexterity
is deployed with not a theorem in sight.

The Ontology of Mathematics

If the objects of mathematics are not in nature and not in a “second plane of reality,”
then where are they? Perhaps we can learn something from the physicists. Consider
for example, the discussion of the “Anthropic Principle” [1]. The advocates of this
principle note that the values of certain critical constants are finely tuned to our
very existence. Given even minor deviations, the consequence would be: no human
race. It is not relevant here whether this principle is regarded as profound or merely
tautological. What I find interesting in this discussion of alternate universes whose
properties exclude the existence of us, is that no one worries about their ontology.
There is simply a blithe confidence that the same reasoning faculty that serves physi-
cists so well in studying the world that we actually do inhabit, will work just as
well in deducing the properties of a somewhat different hypothetical world. A more
mundane example is the ubiquitous use of idealization. When Newton calculated the
motions of the planets assuming that each of the heavenly bodies is a perfect sphere
of uniform density or even amass particle, no one complained that the ontology of his
idealized worlds was obscure. The evidence that our minds are up to the challenge of
discovering the properties of alternative worlds is simply that we have successfully
done so. Induction indeed! This reassurance is not at all absolute. Like all empirical
knowledge it comes without a guarantee that it is certain.

My claim is that what mathematicians do is very much the same. We explore
simple austereworlds that differ from the onewe inhabit both by their stark simplicity
and by their openness to the infinite. It is simply an empirical fact that we are able to
obtain apparently reliable and objective information about suchworlds. And, because
of this, any illusion that this knowledge is certain must be abandoned. If, on a neo-
Humean morning, I were to awaken to the skies splitting open, hearing a loud voice
bellowing, “This ends Phase 1; Phase 2 now begins,” I would of course be astonished.
But I will not say that I know that this will not happen. If presented with a proof
that PA is inconsistent or even that some huge natural number is not the sum of four
squares, I would be very very skeptical. But I will not say that I know that such a
proof must be wrong.

11See [7] p. 172.
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Infinity Today

Mathematical practice obtains information about what it would be like if there were
infinitely many things. It is not at all evident a priori that we can do that. But math-
ematicians have shown us that we can. Our steps are tentative, but as confidence is
acquired we move forward. Our theorems are proved in many different ways, and
the results are always the same. Our formalisms are robust and yield information
beyond the original intent. To doubt the significance of the concrete evidence for
the objectivity of mathematical knowledge is like anti-evolutionists doubting the
evidence of paleontology by suggesting that those fossils were part of creation. As
was discussed above, Gödel’s work has left us with a transfinite sequence of formal
systems involving larger and larger sets. Models of these systems can be obtained
from initial segments of the famous hierarchy obtained by iterating transfinitely the
power set operation P:

V0 = ∅; Vα+1 = PVα; Vλ =
⋃

α<λ

Vα, λ a limit ordinal

Thus, Vω2 is a model of the original Zermelo axioms. To obtain a model of the
more comprehensive Zermelo-Fraenkel (ZF) axioms, no ordinal whose existence is
provable in ZF will do.12 To continue the transfinite sequence of formal systems, it
is necessary to enter the realm of large cardinals in which there has been intensive
research.Workers in this realm are pioneers on dangerous ground: althoughwe know
that no proof of the consistency with ZF of the existence of these enormous sets is
possible, it is always conceivable that a proof in ZF of the inconsistency of one of
themwill emerge thereby destroying a huge body ofwork. But the empirical evidence
is encouraging. Although the defining characteristics of the various large cardinal
types that have been studied seeming quite disparate, they line themselves up neatly
in order of increasing consistency strength. Moreover, they have shown themselves
to be the correct tool for resolving open questions in descriptive set theory.

So far Gödel incompleteness has had only a negligible effect on mathematical
practice. Cantor’s continuum hypothesis remains a challenge: although the Gödel-
Cohen results prove its undecidability from ZF, if the iterative hierarchy is taken
seriously, it does have a truth value whether we can ever find it or not. In the realm of
arithmetic many important unsolved problems, including the Riemann Hypothesis
and the Goldbach Conjecture, are equivalent to Π0

1 sentences. However, so far no
undecidable Π0

1 sentences have been found that are provably equivalent to questions
previously posed (as has been done for uncomputability). However,Harvey Friedman
has produced a remarkable collection of Π0

1 and Π0
2 arithmetic sentences with clear

combinatorial content that can only be resolved in the context of large cardinals.

12Because otherwise the consistency of ZF would be provable in ZF contradicting Gödel’s second
incompleteness theorem. For that matter the set Vω2 cannot be proved to exist from the Zermelo
axioms alone; in ZF its existence follows using Replacement.
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The Chimerical Effort to Seek Certainty

Mark Twain suggested the lovely notion of a “Sunday truth”: something fervently
believed in church on Sunday but having no effect on behavior in the rest of the
week. Many mathematicians will profess a belief in formalism when foundational
matters are discussed. But in their day-to-day work as mathematicians, they remain
thoroughgoing Platonists. The “crisis” in foundations from the turn of the 20th cen-
tury to the 1920s has quietly dissipated. Set theory as a foundation is evident in the
initial chapter of many graduate-level textbooks. The obligation to always point out a
use of the axiom of choice is a thing of the past. I haven’t heard of anyone calling the
proof of Fermat’s Last Theorem into question because of the large infinities implicit
in Grothendiek universes.13 But there are those who wish to draw a line between safe
and unsafe proof methods. The line is drawn by some who insist on some variety
of constructivity. Others demand predicativity. Contemporary foundational research
makes such notions precise and obtains theorems on the relative strengths of differ-
ent methods. But there is no pointless attempt to restrict mathematicians. History
suggests that they will use whatever methods work including the higher realms of
the infinite.
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Chapter 15
Concluding Comments by Martin

Martin Davis

Abstract After a very brief comment on Yuri Matiyasevich’s contribution, I discuss
at greater length proposals to use modal logic to clarify foundational issues in set
theory. Finally, I very sadly bid farewell tomy friend and collaborator Hilary Putnam.

15.1 Comments on Yuri Matiyasevich’s Essay

First I want to express my thanks to my good friend Yuri for his generous account of
my contributions to the solution of Hilbert’s Tenth Problem. The theorem that every
listable set is Diophantine that, as Yuri explains, I had conjectured in my doctoral
dissertation, is often referred to as Matiyasevich’s Theorem because he supplied the
crucial final step. He kindly suggests calling it DPRM to emphasize the role each of
us played in its eventual proof. It is also sometimes referred to as MRDP.

I would like to comment briefly on a few of the matters he discusses. Although,
as Yuri emphasizes, my conjecture was widely disbelieved because of its counter-
intuitive consequences, I want to mention one argument in its favor that impressed
me, perhaps unduly. Namely it was easy to prove (non-constructively) that there
is a Diophantine set whose complement is not Diophantine. Namely, because the
class of Diophantine subsets of Nn is closed under existential quantification (i.e.,
projection), if it were also closed under complementation, it would be closed under
universal quantification as well. Therefore it would include all arithmetic sets. But
this is impossible because all Diophantine sets are listable and there are arithmetic
sets that are not listable. Thus I knew that the class of Diophantine sets shares with
the class of listable sets the properties of being closed under union, intersection and
existential quantification, but not under complementation.
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In connection with the arithmetic representation of listable sets involving only a
single bounded universal quantifier (what Raphael Robinson called Davis Normal
Form), I’d like to point out that while fromone point of view it is a simple reduction of
Gödel’s representation with several universal quantifiers, given what Hilary Putnam,
Julia Robinson, and I knew in 1959, Davis Normal Form was crucial for our proof
of the DPR theorem. This was because without assuming JR, the variable exponents
introduced by the elimination of the innermost universal quantifier from Gödel’s
representation, could not be eliminated to permit iterating the process. Of course
after Yuri proved JR, this was no longer an issue, and contemporary proofs of DPR
no longer need mention Davis Normal Form.

Yuri mentions his own crucial contribution in a single modest sentence. His won-
derful proof of JR, showing that the relation between a number n and the 2nth
Fibonacci number is Diophantine by an explicit construction, accomplished some-
thing that we others had been trying unsuccessfully to do for twenty years.

Although Yuri mentions my recent conjecture in connection with Bjorn Poonen’s
work on rings of rational numbers, referring tomeas a “guru”, I amnot very optimistic
about the usefulness of that conjecture. However, he does not mention my most
successful conjecture of all. During the period when DPR had been proved so that
it was known that the truth of my conjecture and thus the unsolvability of Hilbert’s
Tenth Problem would follow if JR were proved, I gave a number of talks in which I
emphasized the consequences of either the truth or the falsity of JR, noting that, in
either case, some of those consequences were rather implausible. Asked during the
question period for my own opinion as to the truth of JR, I would reply, half in jest:
Oh, I think that JR is true and will be proved by a clever young Russian.

Martin Davis, June 13, 2015

15.2 Comments on Hilary Putnam’s Remarks
on “Pragmatic Platonism”

I was delighted to learn that Hilary and I agree about so much concerning the nature
of mathematical knowledge. Here I will concern myself with a few aspects where his
remarks suggest that our views may differ, as well as to see say a little more about
certain topics than I did in my original essay.

Mathematics and Natural Science

To a mathematician it is certainly gratifying that our field is so richly applicable in
science, if only for the economic advantages that accrue even to those of us whose
work is remote from applications. And of course there are important and difficult
philosophical problems in understanding this relationship. As was indicated in a
famous essay by Eugene Wigner, it all seems almost too good to be true. But I don’t
see that this relationship sheds any light on the question with which my essay deals:
how is that we can obtain objective knowledge about infinite entities.

Hilary suggests that this connection helps to show that intuitionism is unsatisfac-
tory as a foundation ofmathematics. I ammore persuaded by a semi-facetious remark



15 Concluding Comments by Martin 359

that Hilary himself made to me in conversation many years ago: “Do the intuitionists
intend to put people who use non-intuitionisitic methods in jail?” Mathematicians
will just use whatever methods seem to work and when faced with methodological
difficulties will not long retreat to “safe methods” but learn how best to work around
the difficulties. The evolution of the ideas of the great mathematician HermannWeyl
illustrates this well. Convinced that full-blooded mathematical analysis was method-
ologically unsustainable, even remarking that it was a “house built on sand”, he
became a disciple of Brouwer, writing (much to the chagrin of his teacher Hilbert)
“Brouwer, Das ist die Revoultion!” Many years later, writing Hilbert’s obituary, still
admiring Brouwer,Weyl wrote that trying to developmathematics in an intuitionistic
setting leads to “an almost unbearable awkwardness” [4]. Weyl was well acquainted
with mathematical physics, especially with relativity, but never referred to that as a
reason to abandon intuitionism.

The Benacerraf Problem

Benacerraf deems inappropriate, properties that set-theoretic objects intended to
serve a specific mathematical function possess that are not relevant to that function.
Thus in von Neumann’s explication:

1 = {∅}; 3 = {∅, {∅}, {∅, {∅}, {∅, {∅}}}}

we get the “inappropriate” 1 ∈ 3. My tendency when faced with a philosophical
problem regarding mathematics is to look to mathematical history and practice for
help. Beginning in the 19th century, mathematicians were faced with a number of
important equivalence relations and the need to see the equivalence as a kind of
equality. Perhaps the first was Gauss’s use of the congruence relation, where a ≡
b mod r is defined to mean that the natural number r , called the modulus, is a divisor
of the integer b − a. The equivalence classes form a ring, and in the case that r is
prime, a field. It has become customary to designate each such residue class by its
least non-negative member. So for example, with the modulus 5, we have a finite
field whose elements one writes as {0, 1, 2, 3, 4}. And we write such equations as
3 + 4 = 2 and 2 · 3 = 1. In effect the equivalence classes are each represented by
one of its members. But the Benacerraf “problem” applies here. The property 2 < 4
is “inappropriate” in just the same way as in the example above. It wouldn’t occur
to a mathematician to be concerned with the question of whether these irrelevant
properties show that e.g., the number 2 is not truly the class of numbers congruent
to 2 modulo 5. Is there really a philosophical puzzle here?

The Frege-Russell attempt to define the cardinal numbers as, in effect, the equiv-
alence classes corresponding to the relation between a pair of sets of the existence
of a one-one correspondence between them. Of course the attempt failed because
the classes were too large. What von Neumann did was to choose a member of each
equivalence class to designate the class according to the elegant recursion:

0 = ∅; n + 1 = {0, 1, . . . , n}
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so that the number n is designated by a set that does have exactly n members. This
should trouble only philosophers who truly seek to know what a number “really” is.

New Axioms

Since Hilary does mention new axioms, I’ll take the opportunity, to say a little about
the topic, although I suspect that Hilary will not disagree with much of what I say.
Zermelo’s axiom of choice is the obvious example of a proposed axiom that has
gained general acceptance although it excited considerable controversy in the early
years of the twentieth century. There was a prominent group of French mathemati-
cians who went to considerable lengths to avoid the axiom, so that, for example, they
didn’t permit themselves to say without qualification: The union of a countable set
of countable sets is countable. By the second half of the century, it had become an
indispensable tool in various branches of mathematics.

The branch of mathematics called descriptive set theory, pioneered in Eastern
Europe during the first half of the twentieth century, provides an interesting example
of the power of a new axiom. We write R for the set of real numbers and for a set
B ∈ Rn+1, we write Proj(B) for the set

A = {〈x1, . . . , xn〉 ∈ Rn | ∃y ∈ R[〈x1, . . . , xn, y〉 ∈ B]}.

The hierarchy of projective sets is defined simultaneously in allRn as follows:

�1
0 = the set of Borel sets

�1
m = {A ⊆ Rn | Rn − A ∈ �1

m}
�1

m+1 = {A ⊆ Rn | ∃B ∈ �1
m[A = Proj(B)]}

Lusin proved the key hierarchy theorem: For non-negative integers m, �1
m ⊂ �1

m+1
and �1

m ⊂ �1
m+1. Also, for m > 0, �1

m − �1
m 
= ∅.

Souslin proved that the Borel sets are exactly those that are in both �1
1 and �1

1,
and in 1917 Lusin showed that every set in �1

1 is Lebesgue measurable. It seemed
plausible to researchers, noting that known proofs of the existence of non-measurable
sets used the axiom of choice, that sets that had explicit definitions should be mea-
surable. This leads to the conjecture that projective sets, evidently being explicitly
definable, should all be Lebesgue measurable. But efforts to prove this failed. When
Cohen developed his forcing method, it became clear why success was so elusive.
The proposition that all projective sets are Lebesgue measurable turned out to be
undecidable in ZFC.

A new axiom seemed to be called for to settle the question, and it turned out
that the concept of determinacy provided the key: Associated with a set A of real
numbers is an infinite game defined as follows: Players I and II alternately move by
each specifying a binary digit 0 or 1. They thus specify the binary expansion of a real
number x in the unit interval. If x is the fractional part of a member of A, then I wins;
otherwise II wins. The set A is determined if either I or II has a winning strategy.
The axiom of projective determinacy (PD), states that every projective set of real
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numbers is determined. And PD does yield the desired result that every projective
set is Lebesguemeasurable. In fact a number of other open questions about projective
sets can be settled when PD is assumed. Tony Martin and John Steel were able to
derive PD froma suitable large cardinal axiom, thus providing a satisfying conclusion
to those who view large cardinals with equanimity.1

On the other hand, axioms asserting the existence of “large” cardinals are certainly
not being widely accepted. Harvey Friedman has found a considerable number of
propositions in combinatorial mathematics, some of them rather attractive, that can
only be proved by assuming such axioms.

Modal Logic and Mathematical Existence

I agree with Hilary in general terms that when set theorists talk about all sets, it needs
to be understood in a relative manner. Relative to what? To the ordinals available to
serve as ranks. It is the large cardinals that extend this range. So uncovering a new
large cardinal concept augments the universe of sets. As Hellman [2] points out, this
conception can already be seen, at least in embryo, in Zermelo’s account in his [5].

But Hilary suggests more: a program to use the formal apparatus of modal logic
develop the idea that the class of sets and proper classes generally have only a possible
existence.2 And his student Geoffrey Hellman has made a bravura effort to carry out
this program in his [2]. However, to paraphrase a trenchant comment of Poincaré:

It is difficult to see that the word possibly acquires when written ♦, a virtue it did not possess
when written possibly.3

Of course Frege, Russell, and Hilbert had answers for Poincaré: Frege and Russell
used a conceptual apparatus using ⊃ and other symbols to demonstrate that math-
ematics could be formalized in a formal system, and Hilbert proposed to use that
knowledge to overcome the doubts about set-theoretic mathematics. And what came
after would have been a surprise to them as well as to Poincaré.

Hellman uses second order S5 to prove that a “modalist” need not give up any-
thing that’s available to the mathematical platonist, that, as it were, for mathematical
purposes possible existence is an adequate substitute for actual existence. But his
formalism is syntactic: to provide meaning to his formalism would land him back in
the platonic soup. Moreover his second order formalism includes full comprehen-
sion axioms, and as Quine pointed out long ago, this is to admit at least a modicum
of set theory. So while I admire Hellman’s heroic effort, I wonder whom it is for.
Will it convince mathematical constructivists or predicativists to give up their doubts
about set theory? Not the ones I know! Will set theorists who, while making free use
of proper classes in their technical work, have qualms about about the concept, be
reassured? Again I doubt it. Certainly no one will propose a full modal formalism

1The cardinal in question is in fact quite large: a countable infinity of Woodin cardinals with a
measurable cardinal above them.
2Recent work by Joel Friedman on modalism [1] should also be mentioned.
3“It is difficult to see that the word if acquires when written ⊃, a virtue it did not possess when
written if.” [3], p. 156.
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for the purpose of computer proof verification. So I am skeptical, but I will be very
pleased if I am proved wrong, if this remarkable project turns out to yield fruitful
results.

Martin Davis, June 13, 2015

Farewell to Hilary Putnam (1926–2016)

I have been very fortunate in having Hilary Putnam in my life as a close friend and
a collaborator. Our families lived together in a house in Ithaca, New York in the
summer of 1957 where Hilary and I were attending a five week Institute for Logic at
Cornell University. We spent the following three summers working together, 1958
and 1959 in Eastern Connecticut, where I was on the faculty of the Connecticut
branch of Rensselaer Polytechnic Institute, and 1960 at the University of Colorado
Boulder where we attended a conference on physics for mathematicians.

In our time together there was hardly a topic in the full range of human intellectual
inquiry into which our conversations did not range. This was in addition to our
technical work which certainly includes contributions of which I’m very proud. Also
our educations had been sufficiently complementary that we were really able to
learn from each other; this included matters remote from our technical work. When
I showed Hilary a copy of my first book that had just arrived from the publisher
smelling of printer’s ink, he offered to find an error on any page. When I offered the
reverse side of the title page, certain that the few lines of text on that page would be
free of error, Hilary noticed that the word “permission” was missing its first “i”!

Hilary’s sharp mind, wit, and humane attitude toward life made his company a
pleasure and our work together always fun. I miss him very much.

Martin Davis, June 13, 2015
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Chapter 16
Martin Davis’s Bibliography 1950–2015

Eugenio G. Omodeo

Abstract This appendix offers a comprehensive list of articles and books which
Martin Davis has published till the present day, cross-referenced with a list of bib-
liographic entries regarding conference proceedings, paper collections, and books,
to which he has contributed. Our list does not include the many reviews written by
Martin Davis, in particular the ones which have appeared on The Journal of Symbolic
Logic.

This appendix offers a comprehensive list of articles and books which Martin
Davis has published till the present day, cross-referenced with a list of bibliographic
entries regarding conference proceedings, paper collections, and books, to which he
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Appendix A
“Feasible Computational Methods
in the Propositional Calculus”, the Seminal
Report by M. Davis and H. Putnam

“Our report for the NSA, entitled Feasible Computational Methods in the Propositional
Calculus is dated October 1958. It emphasizes the use of conjunctive normal form for
satisfiability testing (or, equivalently, the dual disjunctive normal form for tautology testing).
The specific reduction methods whose use together have been linked to the names Davis-
Putnam are all present in this report.” (M. Davis, this volume p. 15)

“The DPLL procedure, even half a century after its introduction, remains a foundational
component of modern day SAT solvers. Through SAT solvers · · · , as well as through sat-
isfiability modulo theory · · · and answer set programming · · · solvers that build upon SAT
techniques, the DPLL procedure has had a tremendous practical impact on the field with
applications in a variety of areas such as formal verification, AI planning, and mathematical
discovery.” (D. Loveland et al., this volume p. 316)

A research report which Martin Davis and Hilary Putnam jointly wrote in 1958 is
faithfully reproduced in this appendix, where it gets published for the first time; three
papers which promoted its wide influence on later research in the field of automated
deduction are:

[1] A Computing procedure for Quantification Theory by Davis and Putnam, 1960
(a typescript of which appears inside a research report of 1959);

[2] A Machine Program for Theorem-Proving by Davis, George Logemann, and
Donald W. Loveland, 1962 (preprinted as a research report in 1961);

[3] Eliminating the Irrelevant from Mechanical Proofs by Davis alone, 1963 (trans-
lated into Russian in 1970).

The 1958 report tackles propositional calculus from a broader angle than the
subsequent papers just cited. Its first part discusses the advantage of putting formulas
into some normal form (such as the Gégalkine polynomial form); it notes that not
all normal forms have the same properties and argues that conjunctive normal form
is usually preferable to the disjunctive one for treatment by satisfiability testing
methods; moreover, it adds, it is convenient to have ‘more than one such method
available · · · , since in case one method fails one can then always attempt the others’.

© Springer International Publishing Switzerland 2016
E.G. Omodeo and A. Policriti (eds.), Martin Davis on Computability,
Computational Logic, and Mathematical Foundations,
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In [1], Davis and Putnamwill propose a satisfiability decision algorithm for propo-
sitional formulas in conjunctive normal form. This will consist of three rules drawn
or adapted from the kit of rules described in the 1958 report. Two of these, named
elimination of one-literal clauses and affirmative-negative rule, will be retained also
in [2, 3]. The third, named rule for eliminating atomic formulas, will be replaced
in [2, 3] by another one called, ever since, the splitting rule. The new rule is theo-
retically equivalent to the superseded one but preferable, for practical reasons duly
explained in [2].

The revised procedure has today acquired great renown under the name DPLL
(from the initials of its inventors). The two interchanged rules were specified in [1,
2], respectively, in the following terms:

Rule for Eliminating Atomic Formulas. Let the formula F [given in conjunctive
normal form] be put into the form (A∨ p) & (B ∨ p̄) & R, where A,B, and R are
free of p. (This can be done simply by grouping together the clauses containing p
and “factoring out” occurrences of p to obtain A, grouping the clauses containing
p̄ and “factoring out” p̄ to obtain B, and grouping the remaining clauses to obtain
R.) Then F is inconsistent if and only if (A ∨ B) & R is inconsistent.

Splitting Rule. Let the given formula F be put in the form (A∨ p) & (B∨ p̄) & R,
where A,B, and R are free of p. Then F is inconsistent if and only if A & R and
B & R are both inconsistent.

In the 1958 report as reproduced below, these rules are specified in dual form (that
is, they refer to tautology testing of an F which is given in disjunctive normal form)
and they bear the respective names ‘rule for eliminating variables’ and ‘rule of case
analysis’; the latter, in particular, reads:
∥∥∥∥∥∥

Let F ′ and F ′′ be obtained from F by substituting 0 and 1 respectively for all
occurrences of p in F and making the obvious simplifications. Then F is a
tautology if and only if F ′ and F ′′ both are.

————

The second part of the 1958 Davis-Putnam report presents a Gentzen-type sys-
tem for a version of propositional calculus embodying the exclusive disjunction
connective. It shows that such a system is complete and that it remains such if the
cut inference rule is withdrawn; through this system, another decision procedure
alternative to truth-table methods is obtained.

————

Davis and Putnamwere showing somuch interest in feasible computational meth-
ods for propositional calculus ten years before the notion ofNP-completeness began
to emerge and Stephen Cook brought the propositional satisfiability problem under
the spotlight of the very challenging question as to whether P = NP.
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It is a consequence of a well-known result of Church and Turing that there is no
effective calculating procedure for determining whether or not a given schema of
elementary quantification theory is or is not valid. But if we restrict ourselves to
schemata of the propositional calculus, then, as has long been known (since Post’s
thesis of 1921, cf. Post [1]), an effective calculating procedure does exist, namely
the method of truth-tables. Unfortunately, this solution of the decision problem for
the propositional calculus is mainly of theoretical interest. Since the truth-table for
a formula containing n variables must contain 2n lines, truth-table methods are quite
unfeasible for use in practical computation once the number of variables becomes at
all large.

The present report summarizes our investigations of alternative computational
methods which could be employed where truth table methods are inapplicable. Part
I of this report presents several techniques, none of which is superior to truth-table
methods in all cases, but which are nonetheless vastly better than truth-tables in the
sorts of cases which can be expected to arise in practice. In Part II, a modified version
of the Gentzen-type system of Kleene [1] for propositional calculus (modified to
allow exclusive disjunction as a primitive connective) is discussed. Its completeness
and a version of theGentzenHauptsatz are derived. This is shown to lead to a decision
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procedure for the propositional calculus, which, however, is not particularly superior
to truth-table methods. Nevertheless, we feel that this represents a promising line of
investigation. For, if a complete system could be constructed which has all of the
present desirable properties andwhich enjoys one additional property to be described
below, such a system could be used to provide a decision procedure which would
probably be quite useful.

Part I: Case Methods, Boolean Methods, and a Combinatorial Method for
Propositional Calculus

1. Validity and Disjunctive Normal Form

(i) An important special case of the decision problem for propositional calculus.
No known method of testing formulas of the propositional calculus for consistency
exists which is uniformly superior to the truth-table method. The search for feasible
methods of computation in the propositional calculus when truth-table developments
are unfeasible naturally concentrates, therefore, on important special cases. Themost
important of these special cases will now be described, since the methods to be
explained below are all presented with this case in mind.

We shall use ∼ for negative, · for conjunction, ∨ for inclusive disjunction, + for
exclusive disjunction, ⊃ for material implication, and ≡ for material equivalence.
Parentheses will be omitted wherever possible without confusion (in Part I), and
where possible because of associative operations. Also, for single letters we write
e.g. p̄ for∼ p. Alsowe often omit the dot of conjunction,writing e.g. pqr̄ for p·q· ∼ r.

The principal case we consider is that of a formula or system of formulas to be
tested for consistency. Let us suppose that the formulas in the system have been actu-
ally written down as a formalization of some practical problem. What specialization
does this introduce?

In the first place, we can not assume that the number of variables is small. One
formula can easily contain over 20 variables without being very long, e.g.1 (pqrs ∨
tu) · (uv̄ ∨ w) · (pabc ∨ de∨ gh) · (ijkl ∨mno). Thus, a system of, say, 10 formulas
could easily contain over a hundred distinct propositional variables. But we can
assume that the formulas are relatively short. Indeed, this is already assumed when
we suppose that the system is capable of being written down by a human being.
A formula or system of formulas with 100 distinct propositional variables could be
as long as, say, 250 symbols without having, so far as is known, any shorter normal
equivalent. However, any system of formulas actually written down by human beings
will presumably have far fewer than 250 symbols.

We shall, therefore, concentrate on the following case: The case of a system of
formulas each one of which is short enough to be “manageable” (i.e., short enough
for a clerk to perform algebraic manipulations on the formula, such as putting the
formula in normal form), although the number of formulas in the system may be

1In the present part formulas may be thought of as names of themselves.



376 Appendix A: “Feasible Computational Methods in the Propositional Calculus” …

too large for the system as a whole2 to be “manageable” in the same sense. E.g. a
conjunction of 30 formulas, each of which has 10 clauses when put in “conjunctive
normal form” (explained below), may have 1030 clauses in its “conjunctive normal
form”. Thus such a system is certainly not “manageable” taken as a whole, although
its individual component formulas are.

Emphasis on consistency, rather than validity, in the case of a conjunction of
formulas is likewise natural. For a conjunction is valid if and only if each of its
constituents is valid. Thus one can test a conjunction for validity piece by piece:
but one cannot proceed in this way to test for consistency, since a conjunction of
formulas may be inconsistent notwithstanding the fact that each of the formulas is
consistent taken by itself. It is thus no accident that the cases actually arising of
systems too complex to be dealt with by truth-tables are of conjunctions to be tested
for consistency (or, dually, of disjunctive systems to be tested for validity.

(ii) Normal forms. The advantage of putting formulas into normal form is that
we thereby impose a simple and relatively transparent structure. Unfortunately (for
our purposes) not all normal forms have the same properties. Thus the “polynomial
normal form” (described below) tells us whether a formula is (a) consistent, and
(b) a tautology.3 The “disjunctive normal form” tells us whether a formula is con-
sistent: but there is no known uniform method (except the truth-table method, and
methods which are in general of at least equal complexity) for determining whether
or not a formula in disjunctive normal form is valid; and, finally, the “conjunctive
normal form” tells us whether or not a formula is valid, but not whether or not it is
consistent.

We proceed to define these normal forms and certain related terms which will be
much used in the sequel.

Definition 1.1. A literal is a propositional variable or a single negated propositional
variable.

Examples: p, q, r, p̄, q̄, r̄, etc.
Definition 1.2. A clause is any conjunction4 of literals appearing as a disjunc-

tive component of a larger formula, or any disjunction of literals appearing as a
conjunctive component of a larger formula.

Examples: pqr̄ and st are clauses of pqr̄∨st, and (p∨q∨ r̄) and (s∨ t) are clauses
of (p ∨ q ∨ r̄)(s ∨ t).

Definition 1.3. A disjunction of clauses is said to be a formula in disjunctive
normal form, provided that no propositional variable occurs both negated and not
negated in any clause.

Example: pqr̄ ∨ st is a formula in disjunctive normal form.
Definition 1.4. If A is in disjunctive normal form and A is logically equivalent to

B, A is called a disjunctive normal form of B.

2A system of formulas will, when convenient, be regarded as a single formula,—namely as the
conjunction of its component formulas.
3We follow customary usage in referring to valid formulas of the propositional calculus as “tau-
tologies”.
4In Part I, disjunctions and conjunctions are permitted to have any positive integral number of
constituents. E.g. we write p∨q∨ r not restricting ourselves to (p∨q)∨ r and p∨ (q∨ r). A single
literal may also be considered as a disjunction or conjunction (with one member).
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Example: pq ∨ p̄q̄ is a disjunctive normal form of p ≡ q.
Definition 1.5. A conjunction of clauses is said to be a formula in conjunctive

normal form, provided that no propositional variable occurs both negated and not
negated in any clause.

Example: (p ∨ q ∨ r̄)(s ∨ t̄) is a formula in conjunctive normal form.
Definition 1.6. If A is in conjunctive normal form and A is logically equivalent to

B, then A is called a conjunctive normal form of B.
Example: (p ∨ q̄)(q ∨ p̄) is a conjunctive normal form of p ≡ q.
For further discussion of conjunctive and disjunctive normal forms the reader may

consult Hilbert and Ackermann [1], which also establishes the following properties:
(i) a formula has a disjunctive normal form if and only if it is consistent; (ii) a formula
has a conjunctive normal form as defined here if and only if it is not valid.

We define:
Definition 1.7. Let P be any polynomial with zero and one as coefficients, and

with no exponents >1. P may be regarded as a formula of the propositional calculus
by simply interpreting the variables as propositional variables. Such a formula P will
be called a formula in polynomial normal form.

Definition 1.8. If A is in polynomial normal form and A is logically equivalent to
B, A is called the polynomial normal form of B.

Example5: 1 + p + pq is the polynomial normal form of p ⊃ q.
Every formula of the propositional calculus has unique polynomial normal form.

The polynomial normal form of a contradiction is 0; that of a tautology is 1. (These
results were first obtained by Gegalkine (1927). The polynomial normal form was
used byM.H. Stone (1936) to prove an important representation theorem. (Cf. Church
[1], pp. 103–104.)

Procedures for putting a formula into disjunctive and conjunctive normal formmay
be found in Hilbert Ackermann [1]. A formula may be put into polynomial normal
form by first writing it in terms of +, ·, and 1, and thenmaking the usual algebraic sim-
plifications. The following rules are used to eliminate exponents and coefficients >1:

p · p ≡ p

p + p ≡ 0.

(That is, coefficients may be reduced modulo 2, and all non-zero exponents may be
replaced by 1.)

(iii)Consistency and conjunctive normal form. If the given system of equations is
short enough to be put into normal form, then our problem is solved. Namely, we try
to put the system into (disjunctive) normal form. If the entire system “cancels” (i.e.,
every clause contains a propositional (variable) and its negation), then the system
is inconsistent. Otherwise, a normal form of the system will be obtained, and the
system is then consistent. This method does dispose of one important special case:
namely, the case in which the number of formulas is small (<10). Thus, suppose we

5In this report, 0 and 1 denote the truth-values “falsity” and “truth”, respectively.
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are given a system of six formulas, each of which has six clauses in its disjunctive
normal form. Suppose the systemhas 30distinct propositional variables. Then a truth-
table would have 230 lines, which would make the truth-table method unfeasible; but,
the disjunctive normal form of the whole system has only 66 clauses, which would be
quite manageable for a modern digital computer. We shall return to this remark later.
For themomentwe note: the complexity of a normal form development depends upon
different factors than the complexity of a truth-table development. The complexity of
a truth-table development is a function of the number of variables; that of a disjunctive
normal form development is a function of the number of formulas, and of the number
of clauses in the normal form of each formula.

Our present problem, however, is how to deal with cases in which the number
of formulas is too large to make it feasible to put the whole system into disjunctive
normal form (or, for the same reason, into polynomial normal form). In such cases
there is still one normal form we can use: namely, the conjunctive normal form.

That the conjunctive normal form can be employed follows from the remark that to
put a whole system into conjunctive normal form we have only to put the individual
formulas into conjunctive normal form. Thus, even if the system has hundreds or
thousands of formulas, it can be put into the conjunctive normal form “piece by
piece”, without any “multiplying out.” This is a feasible (if laborious) task even
for hand computation: thus no specialization is introduced here beyond the one
we have already made in supposing that the individual formulas in the system are
“manageable” and that the whole system can be written down by a human being.

Henceforth, therefore, we shall be concerned with the following problem: the
problemofprovidingmethods to determinewhether or not conjunctive normal form is
consistent.

Also, throughout this paper we shall make free use of the following Principle of
Duality:

A formula is inconsistent if and only if its dual6 is valid.
In view of the duality principle, our problem is equivalent to the following: to

find a method for determining whether or not a formula in disjunctive normal form is
valid.

Since conjunctive normal formdoes not reveal consistency, the readermaywonder
why we take the trouble to put the given system into conjunctive normal form. The
answer is simply that we thereby vastly reduce the structural complexity that we
have to deal with. For instance, every formula F in conjunctive normal form has
the structure ABR where A is the conjunction of the clauses containing a given
propositional variable (say, p), B is the conjunction of the clauses containing the
negation of that variable (say, p̄), and R is the conjunction of the remaining clauses.
Moreover, it can be shown that F is inconsistent if and only if A′R and B′R are both
inconsistent, where A′ is obtained form A by deleting occurrences of p, and B′ is

6The dual of a truth-table is obtained by interchanging 0 and 1 throughout the table. Connectives
are dual if their truth-tables are dual (e.g. ∨ and · are dual; negation is self-dual). The dual of a
formula is obtained by replacing each connective by its dual.
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obtained from B by deleting occurrences of p̄. Such regularities are hardly to be
hoped for in the case of arbitrary formulas of the propositional calculus.

In summary: we shall be concerned with the problem of testing formulas in con-
junctive normal form for consistency; or, dually, with the problem of testing formulas
in disjunctive normal form for validity. We have seen that a solution to this problem
would yield a complete solution to the special case of the decision problem that
concerns us. Although a general solution to this problem has not yet been obtained,
in the sequel we shall present methods that solve this problem in important special
cases.

To askwhether a formula in disjunctive normal form is valid is equivalent to asking
whether or not it has p∨ p̄ as a normal form,—and, in fact, as a shortest normal form.
Thus our problem is a special case of the problem which has been investigated by
Quine cf. Quine [1], and others: viz, given a formula in disjunctive normal form, to
find a shortest normal equivalent. The methods produced by Quine all deal with the
case where truth-tables are feasible: thus they are of no help to us here. However it
seems likely that further progress can be made, both in connection with the problem
of “shortest normal equivalents”, and in connection with the extremely interesting
special case that concerns us: telling whether or not a formula in disjunctive normal
form is a tautology.

(iv) Taking advantage of chance. The methods to be described in Part I all have
the common feature that they try to “make advantage of chance.” That is, there is no
proof that they will be uniformly superior to truth-tables, but they are constructed so
that in fact, in typical cases they will be vastly superior to truth-tables. In employing
them one is therefore taking a “gamble”: if the problem proves tractable, one will
obtain a decision; but there is always the risk that the formulas obtained will prove
unmanageable in length or in number, and in such a case one will have to record
a failure. There is, therefore, an advantage to having more than one such method
available (provided the methods are essentially different), since in case one method
fails one can then always attempt the others.

2. A Modified Case Method

(i) Characteristics of the method to be presented. The method to be described in the
present section is one that will frequently work in the case of even moderately large
formulas (e.g. a disjunction of 100 clauses). Moreover, certain “earmarks” can be
listed by means of which one can recognize a formula on which the method is likely
to succeed. Namely, the method is most likely to succeed on a formula that has short
(<10 literals) clauses, and in which some of the variables occur in many clauses.
In particular if striking out, say, 10 of the variables produces a formula with some
one-literal clauses (i.e. clauses consisting of a single literal), and if striking out the
variable which occurs in the one-literal clause (in a manner to be described below)
produces further one-literal clauses, etc., then the method is guaranteed to work.

(ii) Elimination of one-literal clauses. The key idea of the method is a way of
eliminating one-literal clauses from a formula. Of course the given formula may not
contain any one-literal clauses to begin with. Then we apply a rule of case-analysis
(explained below) to eliminate, say, 10 of the variables. The resulting formulas may
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then contain one-literal clauses. If so, we can start applying the rule to be described.
The result may contain further one-literal clauses. If so we can continue the process
until we strike out the whole formula, or reduce the formula to l, or obtain a formula
with no one-literal clauses. In the latter case we can try further use of the rule of case
analysis, and so on until either a decision is reached or the number of formulas to be
tested becomes unmanageably large.

The following is the rule for the elimination of one-literal clauses:
(a) If a formula F in disjunctive normal form contains a variable p as a one-literal

clause and also contains p̄ as a one-literal clause then F may be replaced by 1. (I.e.,
F is a tautology).

(b) If case (a) does not apply, and if a propositional variable p appears as a clause
in a formula F in disjunctive normal form, then one may modify F by striking out
all clauses that contain p affirmatively,7 and deleting all occurrences of p̄ from the
remaining clauses, thus obtaining a formula F ′ which is a tautology if any only if F
is.

(c) If case (a) does not apply and p̄ appears as a clause in a formulaF in disjunctive
normal form, then one may modify F by striking out all clauses that contain p̄, and
deleting all occurrences of p from the remaining clauses, again obtaining a formula
F ′ which is a tautology if and if F is.

Justification. The justification of case (a) of the rule is obvious. For case (b), let
the formula F be p ∨ A. Then F is clearly true when p = 1: Hence F is a tautology,
provided F is true when p = 0. Substituting 0 for p in F and simplifying has the
following effect: All clauses that contain p affirmatively reduce to 0 and may be
deleted. All clauses that contain p negatively reduce to 1 (in case the whole clause
was p̄) or to 1B, where B is the remainder of the clause. But there cannot be any
clauses which consist of just p̄ (otherwise case a) would apply); and 1B = B. Hence
the effect of substituting 0 for p inF and simplifying is just to strike out all clauses that
contain p affirmatively, and delete all occurrences of p̄ from the remaining clauses.
Thus F ′ is a tautology if and if only if F is true whenever p = 0 if and only if F is a
tautology. Case (c) is symmetrical to case (b).

Examples: (1) Let us put the self-distributive law of implication (i.e., the formula
(p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))) into normal form. The result is:

pqr̄ ∨ pq̄ ∨ p̄ ∨ r

There are two one-literal clauses. Elimination of these leads immediately to
q ∨ q̄ = 1.

(2) Let us consider the formula pq∨ p̄∨ p̄qr̄. Elimination of the one-literal clause
yields p ∨ p̄r̄, which in turn yields r̄. Hence this formula is not valid.

(iii) A further rule. In addition to the elimination of one-literal clauses, there are
further simplifications that can sometimes bemade on formulas in disjunctive normal
form. In particular, it is desirable to include as part of our method the following rule:

7Any occurrence of p which is not in the scope of negation is called an affirmative occurrence (in
a normal formula). Any occurrence of p̄ is called a negative occurrence of p.
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The affirmative-negative rule: If a variable p occurs in a formula F in disjunctive
normal form only affirmatively, or if p occurs only negatively, then all clauses con-
taining p may be deleted. The resulting formula F ′ is a tautology if and only if F is.
(If F ′ is empty, then F is not tautology).

Justification. Let p occur in F only affirmatively, and let F be A ∨ R, where A is
the disjunction of all the clauses that contain p. Then if F is a tautology, F is true
when p = 0. But when p = 0 we have A = 0, and therefore A∨ R ≡ R when p = 0.
Hence, if F is a tautology, so is R. But, since R ⊃ A ∨ R, if R is a tautology so is F.
(If R is empty, F = 0 when p = 0, and therefore F is not a tautology.) The argument
is similar when p occurs only negatively, using p = 1 instead of p = 0.

The affirmative-negative rule justifies us in restricting our attention to normal
formulas in which every variable occurs both affirmatively and negatively: for any
formula without this property can be immediately simplified by the rule.

Example: The formula pq̄ ∨ p̄q ∨ qr̄ ∨ q̄r̄ contains r only negatively. By the
affirmative-negative rule it is a tautology only if pq̄ ∨ p̄q is.

(iv) The rule of case analysis. To complete the method we add the following rule:
The rule of case analysis: Let F ′ and F ′′ be obtained from F by substituting 0 and

1 respectively for all occurrences of p in F and making the obvious simplifications.
Then F is a tautology if and only if F ′ and F ′′ both are.

Justification: Obvious.
It will be observed that the rule of case analysis by itself is only an instruction

for constructing a truth-table. But by using it in conjunction with the other rules
presented above, one obtains decisions muchmore rapidly than by using truth-tables.
E.g., consider the following formula:

pq ∨ p̄q̄ ∨ pr ∨ p̄r̄ ∨ qr ∨ q̄r̄ .

We have constructed this formula so that neither the rules for eliminating one-literal
clauses, nor the affirmative-negative rule can be immediately applied. We begin,
therefore, by applying the rule of the case analysis:

pq ∨ p̄q̄ ∨ pr ∨ p̄r̄ ∨ qr ∨ q̄r̄

(p = 0) (p = 1)
q̄ ∨ r̄ ∨ qr ∨ q̄r̄ q ∨ r ∨ qr ∨ q̄r̄

r̄ ∨ r r ∨ r̄
1 1

whereas a full truth-table would have had 8 rows, one application of the rule of case-
analysis yields two formulas, each of which reduces to r ∨ r̄ (or r̄ ∨ r) upon a single
application of the rule for the elimination of one-literal clauses.

3. Boolean Methods for the Propositional Calculus

(1) Boolean methods and truth-table methods. It appears to be widely assumed that
truth-table methods and Boolean methods are completely equivalent (with respect to
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complexity) in the propositional calculus. In fact this is not so: case methods (truth-
tables) depend in a simple exponential way on the number of propositional variables;
whereas, as remarked above, Boolean methods depend on the number of calculus to
be “multiplied”. In the case of formulas in disjunctive normal form, this dependence
assumes a simple form, given by the following:

Theorem 3.1. A formula in disjunctive normal form is valid if and only if every
conjunctions formed by selecting one literal from each clause is contradictory.

Proof: Let C be a conjunction formed by choosing one literal from each clause
of a formula F in disjunctive normal form. If C does not contain any propositional
variable both affirmatively and negatively (i.e., ifC is consistent) then wemay falsify
F simply by assigning 0 as a value to every variable that occurs affirmatively in C
and 1 to each variable that occurs negatively in C. Hence F is not a tautology.
Conversely, if F is not a tautology, then some assignment γ falsifies F. Then γ must
make (at least) one literal in each clause take on the value 0. Thus, we obtain a C
of the kind required by the theorem by simply choosing one such literal from each
clause. Q.e.d.

Let m be the maximum number of literals in any clause. Suppose there are k
clauses in F. Then the number of ways of choosing one literal from each clause
� mk . Once again we observe that the exponent k is not the number of propositional
variables, but rather the number of clauses.

Thus there appear to be two fundamentally different ways of ascertaining the
character (valid or not valid) of formulas in disjunctive normal form: (a) ways
depending on the number of variables (case methods); (b) ways depending on the
number of clauses. (Boolean methods). In the preceding section, we described a
modified case method, designed to “take advantage of chance” (or of the presence of
short clauses.) In the present section we shall present a similarity modified Boolean
method.

(ii) Characteristics of the method to be presented. The method to be presented
is a method for eliminating variables once at a time from the given formula. The
method may be continued to obtain a decision until and unless the complexity of the
algebra exceeds the capacity of the computer being employed. In practical cases the
complexity will frequently remain manageable for two reasons:

(1) There are cancellations which almost invariably appear at each step, and mak-
ing these keeps the actual complexity far below the theoretical upper limit.

(2) The complexity depends on the number of clauses containing a given variable.
In particular, if the formula has the property that any one variable occurs in only a
few clauses, then the complexity will be low.

(iii) Statement of the method. The entire method is given by the following rule:
Rule for eliminating variables: Let the given formula F be put into the form

Ap ∨ Bp̄ ∨ R where A, B, and R are free of p. (This can be done simply by grouping
together the clauses containing p and deleting occurrences of p to obtain A, grouping
the clauses containing p̄ and deleting occurrences of p̄ to obtain B, and grouping
together the remaining clauses to form R.) Then F is a tautology if and only if
AB ∨ R is a tautology.
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Justification. By the rule of case-analysis, F is a tautology if and only if A ∨ R
and B∨ R are both tautologies. Hence F is a tautology if and only if (A∨ R)(B∨ R)

is, and (A ∨ R)(B ∨ R) ≡ AB ∨ R.
In applying the rule it is necessary to “multiply out” AB in order to get the formula

AB ∨ R back into disjunctive normal form. We see, therefore, why it is that the
complexity will be small if p occurs affirmatively or negatively in only a few clauses.

It is clear in a great many cases of interest, the formula under consideration will
have short (<10 literal) clauses, although the number of these may be large. In
these cases, the methods described in this and the preceding section are obviously
complementary: if every letter appears in a great many clauses, then by eliminating
a few (<10) letters by the method of case analysis, there is a good chance that we
will obtain a formula with many one-literal clauses. Hence it is advisable to use the
method described in Sect. 2. If, on the other hand, any given variable occurs in only
a few clauses, the method of the present section is indicated.

Example:

pr ∨ ps̄ ∨ p̄s ∨ p̄r̄ ∨ sr̄ ∨ s̄r

(r ∨ s̄) p ∨ (r̄ ∨ s) p̄ ∨ sr̄ ∨ s̄r

sr ∨ s̄r̄ ∨ sr̄ ∨ s̄r (p eliminated)

(s ∨ s̄) r ∨ (s ∨ s̄) r̄

s ∨ s̄ (r̄ eliminated).

Note that the number of steps is 2(n − 1), where n is the number of variables.

4. Complementary Elimination

(i) Characteristics of the method to be presented. In the present section we study
a novel approach to propositional calculus: the rule of complementary elimination
proposed by Symonds andChisholm [1]. Althoughwe have not been able to construct
a feasible decision procedure based on this approach, we believe that it is very much
worthy of study. In the first place, it is a completely new combinatorial approach to
the propositional calculus. Just because it stands so completely apart from the usual
methods, it appears likely that further studies into this and related methods may yield
real insights. The results presented here cannot claim tomore than scratch the surface
in this direction. Even so, we have been able to extend the method so as to obtain a
method which is demonstrably complete. In other words, if a formula is a tautology,
then one can always prove that it is by our extended method. Moreover, the proof is
usually quite short. In this sense, the method to be presented is feasible as a proof
procedure if not as a decision procedure.

(ii) The rule of complementary elimination. In the present section we shall con-
sider formulas in conjunctive normal form. The problem that will concern us is that
of determining the consequences of such formulas. (Testing for consistency is obvi-
ously a special case of this problem, since a formula is inconsistent if and only if
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it implies both p and p̄. This is the dual8 of the previously considered problem of
testing formulas in disjunctive normal form for validity.)

Before starting the rule of complementary elimination, it is useful to introduce
one following definition:

Definition 4.1. (i) Each of A1, . . . ,An will be called a disjunct of the formula
A1 ∨A2 ∨ · · · ∨An (ii) A disjunct of a disjunct of a formula F is a disjunct of F. (iii)
No formula is a disjunct of a formula F unless its being so follows from (i) and (ii).

The following is the rule of complementary elimination:
Rule of complementary elimination: Let A1, . . . ,An be given formulas of the

propositional calculus. Form the disjunction A1∨A2∨· · ·∨An. From this disjunction
form a formula F by deleting up to n − 1 complementary pairs of disjuncts, each
pair consisting of a formula and its negation. (One also deletes parentheses and
occurrences of ∨ if necessary, so that F will be well formed.) Then F is implied by
the conjunction of the premises A1,A2, . . . ,An.

Example: Consider the premises:

(a) p ⊃ q

(b) q ⊃ r

Writing these in terms of ∨ and ∼ we have:

p̄ ∨ q

q̄ ∨ r

Applying the rule of complementary elimination (c.e.) we get:

(i) p̄ ∨ q ∨ q̄ ∨ r

(ii) p̄ ∨ r

Thus p̄∨r (or p ⊃ r) is implied by (a) and (b). This is the transitive law of material
implication.

Note that (ii) is not implied by (i). In fact (i) is a tautology. Nevertheless, the rule
correctly tells us that (ii) is implied by the conjunction of (a) and (b).

Justification: Assume the given premises A1, . . . ,An are true (under some assign-
ment γ of truth-values). Then A1 ∨ A2 ∨ · · · ∨ An contains (at least) n true disjuncts
under this assignment. Deleting n − 1 complementary pairs removes at most n − 1
true disjuncts (and an equal number of false ones). Hence some true disjunct must
remain. Q.e.d.

Corollary. If the elimination of n−1 complementary pairs reduces the disjunction
A1 ∨ A2 ∨ · · · ∨ An to the empty formula, then the premise set A1,A2, . . . ,An is
inconsistent.

(iii) Extension of the method; Conjunction of results. Let F be a formula in
conjunctive normal form, say F = A1A2A3 · · ·An. Then the rule of c.e. allows us to
be delete up to n − 1 pairs consisting of a single variable and its negation from F.

8The dual of a truth-table is obtained by interchanging 0 and 1 throughout the table. Connectives
are dual if their truth-tables are dual (e.g. ∨ and · are dual; negation is self-dual). The dual of a
formula is obtained by replacing each connective by its dual.
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However, this rule is still not strong enough to reveal all cases of implication, even
between formulas in conjunctive normal form. For instance, consider the formula:

(p ∨ q)(p̄ ∨ q̄)(p ∨ q̄)(p̄ ∨ q)

This is inconsistent: Hence the disjunction p∨q∨ p̄∨ q̄∨p∨ q̄∨ p̄∨q should reduce
to the empty formula. But the best one can get by eliminating three complementary
pairs is q ∨ q̄, hardly a significant consequence.

We therefore extend the method as follows:
Rule of conjunction: (i) If Ai1 ,Ai2 , . . . ,Aik and Aj1 ,Aj2 , . . . ,Aje are subsets, not

necessarily disjoint, of A1, . . . ,An, and if F1 is implied by Ai1Ai2 · · ·Aik while F2 is
implied by Aj1Aj2 · · ·Aje , then F1,F2, and F1F2 are implied by A1A2 · · ·An. (ii) If
B is implied by A and C is implied by B, then C is implied by A.

The second part of this rule formalizes the transitive property of logical implica-
tion, while the first part of the rule allows us to conjoin formulas that are implied by
some or all of the given premises, and to assert that the conjunction is implied by the
given premises. Returning now to our example:

(p ∨ q)(p̄ ∨ q̄)(p ∨ q̄)(p̄ ∨ q)

(p ∨ q)(p ∨ q̄) yields p ∨ p (≡ p)

(p̄ ∨ q)(p̄ ∨ q̄) yields p̄ ∨ p̄ (≡ p̄)

pp̄ yields φ, the empty formula.

In the first line we have used the rule of c.e. to infer p ∨ p from two of the given
clauses, namely, from (p∨q)(p∨ q̄). In line ii) we have similarly inferred p̄∨ p̄ from
(p̄ ∨ q̄)(p̄ ∨ q). The conjunction of the results (after simplification) is pp̄, which is
immediately contradictory (this is shown in the proof by the fact that pp̄ reduces to
the empty formula by the rule of c.e.). In order to justify the simplifications made in
lines (i) and (ii) we must however state explicitly the following rule:

Rule of simplification: p ∨ p may be replaced by p in any formula.
For a further example, let us consider:

(p ∨ q)(p̄ ∨ q̄)(p ∨ r)(p̄ ∨ r̄)(q ∨ r)(q̄ ∨ r̄) .

We get:
(i) (p ∨ q)(p ∨ r)(q̄ ∨ r̄) yields p ∨ p (≡ p)

(ii) (p̄ ∨ q̄)(p̄ ∨ r̄)(q ∨ r) yields p̄ ∨ p̄ (≡ p̄)

(iii) pp̄ yields φ

(iv) Proof of completeness. We now prove:
Theorem 4.1. If F is a contradiction in conjunctive normal form, then F can be

reduced to the empty formula by using the rules of c.e., conjunction, and simplifica-
tion.

Proof: By induction on the number of clauses in F.
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If F consists of 1 clause, F is consistent.9

Assume the theorem is true whenever F has fewer than n clauses. Suppose F has
n clauses. Since F is a contradiction, some variable must occur both affirmatively
and negatively if F. (Otherwise we could make F true by assigning the value 1 to
every variable occurring affirmatively and the value 0 to every variable occurring
negatively.) Let p be such a variable. Then F = ABR, where A is the conjunction of
the clauses containing p, B is the conjunction of the clauses containing p̄, and R is
the conjunction of the remaining clauses (R may be empty). F is thus equivalent to
the formula (A′ ∨p)(B′ ∨ p̄)R, where A′ is obtained by factoring out10 all occurrences
of p from A and B′ is obtained by factoring out all occurrences of p̄ from B.

Case (a) A′ �= 0 and B′ �= 0. A′R and B′Rmust have at least one clause fewer than
F. By the induction hypothesis, A′R can be reduced to the empty formula by using
rules of c.e., conjunction and simplification. Making the same series of applications,
but starting with AR, yields a formula which must be of the form p∨p∨· · ·∨p (or a
conjunction of such formulas11) and which therefore reduces to p by simplification.
Similarly, making the series of applications that reduces B′R to φ, but starting with
BR, yields a formula which must be of the form p̄ ∨ p̄ ∨ · · · ∨ p̄ (or a conjunction
of such formulas10) and which therefore reduces to p̄ by simplification. Conjoining
the “p” obtained from the subset {A,R} with the “p̄” obtained from the subset {B,R}
yields pp̄, which reduces to φ by c.e.

Case (b) A′ = 0 and B′ = 0. Then A must be of the form A1pA2, where either of
A1 and A2 may be empty. Since p follows from {p} by c.e. (eliminating zero pairs), p
follows from {A,R} by the rule of conjunction. p̄ follows from {B,R} by the argument
of the preceding case, and hence pp̄ follows from ABR = F.

Case (c) A′ = 0 and B′ = 0. Symmetrical to the preceding case.
Case (d) A′ = 0 and B′ = 0. Then A must be of the form A1pA2 and B must

be of the form B1p̄B2, where any of A1,A2,B1, and B2 may be empty. Hence p
follows from {A,R} (as in case b) and p̄ follows from {B,R}, so pp̄ follows from
ABR = F. Q.e.d.

5. A Complicated Example

(i) Using case analysis. In the preceding sections we have given only such examples
as were necessary to make clear the nature of the various methods being presented.
However, we have tried these methods on a number of more complicated examples,
and, in the case of every example we have constructed, extremely satisfactory results
have been obtained. In the present section we shall present one such example and
apply in turn each of the preceding methods.

The following is the example in question:

9Since F is in conjunctive normal form, and a disjunction of literals cannot be inconsistent.
10I.e., one uses the fact that ∨ is distributive with respect to·
11If the last line is a conjunction of formulas of the form p ∨ p ∨ · · · ∨ p, then it suffices to infer
any one of these formulas from itself by the rule of c.e. (eliminating zero pairs); and hence (by the
rule of conjunction) one can obtain a single formula of the form p ∨ p ∨ · · · ∨ p from the whole
conjunction.
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cd ∨ c̄dab ∨ cd̄abuw ∨ c̄d̄abuwpqrs ∨ ab̄uwpqrs ∨ ab̄uwpqrs∨
āb̄uwpqrs ∨ uw̄pqrs ∨ ūwpqrs ∨ ūw̄pqrs ∨ pqrs̄ ∨ pqr̄s∨
pqr̄s̄ ∨ pq̄ ∨ p̄q ∨ p̄q̄

Of course this formula is still relatively quite short; but it should be realized that
we were considering only examples which could be worked by pencil and paper
(i.e., without a large-scale digital computer). Moreover, this example is already quite
sufficient to illustrate the superiority of the presentmethods over truth-tablemethods.
In fact a truth-table for the above formula would have over 1000 rows!

Let us begin by employing our method of modified case-analysis.
(i) (a) p = 0 then the last two clauses reduce to q ∨ q̄. Hence the entire formula
reduces to 1 (by the rule for eliminating one-literal clauses.)

(b) p = 1. Then the third from the last clause reduces to q̄, so the one-literal
clause rule applies, yielding:

cd ∨ c̄dab ∨ cd̄abuw ∨ c̄d̄abuwrs ∨ ab̄uwrs ∨ ābuwrs ∨ āb̄uwrs∨
uw̄rs ∨ ūwrs ∨ ūw̄rs ∨ rs̄ ∨ r̄s ∨ r̄s̄

(ii) (a) r = 0. Then the last two clauses reduce to s ∨ s̄.

(b) r = 1. Then the third from the last clause reduces to s̄, so the one-literal
clause rule applies, yielding:

cd ∨ c̄dab ∨ cd̄abuw ∨ c̄d̄abuw ∨ ab̄uw ∨ ābuw ∨ āb̄uw∨
uw̄ ∨ ūw ∨ ūw̄

(iii) (a) u = 0. Last two clauses become w ∨ w̄.

(b) u = 1. Third from last becomes w̄. As before, we get:

cd ∨ c̄dab ∨ cd̄ab ∨ c̄d̄ab ∨ ab̄ ∨ āb ∨ āb̄

(iv) (a) a = 0. Last two clauses become b ∨ b̄.

(b) a = 1. Third from last becomes b̄. As before, we get:

cd ∨ c̄d ∨ cd̄ ∨ c̄d̄

(v)
c = 0 c = 1

d ∨ d̄ d ∨ d̄

1 1

Hence, our formula is valid.
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(ii)Using the Booleanmethod for eliminating variables. Here is the same example
worked by our second method:

(i) c(d∨d̄abuw)∨ c̄(d̄ab∨d̄abuwpqrs)∨ (remaining clauses not containing c).
(ii) dab∨ d̄abuwpqrs∨ab̄uwpqrs∨ ābuwpqrs∨ āb̄uwpqrs∨uw̄pqrs∨ ūwpqrs∨

ūw̄pqrs ∨ pqrs̄ ∨ pqr̄s ∨ pqr̄s̄ ∨ pq̄ ∨ p̄q ∨ p̄q̄. (c eliminated).
(iii) d(ab) ∨ d̄(abuwpqrs) ∨ (remaining clauses not containing d).
(iv) abuwpqrs ∨ ab̄uwpqrs ∨ ābuwpqrs ∨ āb̄uwpqrs ∨ uw̄pqrs ∨ ūwpqrs ∨

ūw̄pqrs ∨ pqrs̄ ∨ pqr̄s ∨ pqr̄s̄ ∨ pq̄ ∨ p̄q ∨ p̄q̄. (d eliminated).
(v) a(buwpqrs ∨ b̄uwpqrs) ∨ ā(buwpqrs ∨ b̄uwpqrs)∨ (remaining clauses not

containing a).
(vi) buwpqrs∨ b̄uwpqrs∨ uw̄pqrs∨ ūwpqrs∨ ūw̄pqrs∨ pqrs̄∨ pqr̄s∨ pqr̄s̄∨

pq̄ ∨ p̄q ∨ p̄q̄. (a eliminated).
(vii) b(uwpqrs) ∨ b̄(uwpqrs)∨ (remaining clauses not containing b)
(viii) uwpqrs∨ uw̄pqrs∨ ūwpqrs∨ ūw̄pqrs∨ pqrs̄∨ pqr̄s∨ pqr̄s̄∨ pq̄∨ p̄q∨ p̄q̄

(b eliminated)
(ix) u(wpqrs∨w̄pqrs)∨ū(wpqrs∨w̄pqrs)∨(remaining clauses not containingu).
(x) wpqrs ∨ w̄pqrs ∨ pqrs̄ ∨ pqr̄s ∨ pqr̄s̄ ∨ pq̄ ∨ p̄q ∨ p̄q̄ (u eliminated).
(xi) w(pqrs) ∨ w̄(pqrs) ∨ (remaining clauses not containing w).
(xii) pqrs ∨ pqrs̄ ∨ pqr̄s ∨ pqr̄s̄ ∨ pq̄ ∨ p̄q ∨ p̄q̄ (w eliminated).
(xiii) p(qrs ∨ qrs̄ ∨ qr̄s ∨ qr̄s̄ ∨ q̄) ∨ p̄(q ∨ q̄)
(xiv) qrs ∨ qrs̄ ∨ qr̄s ∨ qr̄s̄ ∨ q̄ (p eliminated).
(xv) q(rs ∨ rs̄ ∨ r̄s ∨ r̄s̄) ∨ q̄
(xvi) rs ∨ rs̄ ∨ r̄s ∨ r̄s̄ (q eliminated).
(xvii) r(s ∨ s̄) ∨ r̄(s ∨ s̄)
(xviii) s ∨ s̄ (r eliminated).

The number of steps is 18 = 2(n − 1) where n is the number of variables. The
important thing is not the number of steps, but rather the fact that the algebra did
not in any case lead to a more complicated formula than one started with. Since this
method does not involve any “branching” it seems extremely attractive as a method
to try when the number of variables becomes large.

Of course, in this presentation the method is purely mechanical. Actually, for
example, it is quite clear that line xvi is a tautology.And, anyoneworking the problem
would be strongly tempted to factor pqrs in line viii:

pqrs(uw ∨ uw̄ ∨ ūw ∨ ūw̄) ∨ pqrs̄ ∨ pqr̄s ∨ pqr̄s̄ ∨ pq̄ ∨ p̄q ∨ p̄q̄ .

But since uw ∨ uw̄ ∨ ūw ∨ ūw̄ is obviously valid, this becomes

pqrs ∨ pqrs̄ ∨ pqr̄s ∨ pqr̄s̄ ∨ pq̄ ∨ p̄q ∨ p̄q̄

≡ pq(rs ∨ rs̄ ∨ r̄s ∨ r̄s̄) ∨ pq̄ ∨ p̄q ∨ p̄q̄

≡ pq ∨ pq̄ ∨ p̄q ∨ p̄q̄

≡ 1.
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This may serve to emphasize that fact that in both methods presented, any sim-
plifying techniques may be used at any stage.

(iii)Using complementary elimination. To work the same example using comple-
mentary elimination, we must first write down the dual of our formula:

(c ∨ d)(c̄ ∨ d ∨ a ∨ b)(c ∨ d̄ ∨ a ∨ b ∨ u ∨ w)

(c̄ ∨ d̄ ∨ a ∨ b ∨ u ∨ w ∨ p ∨ q ∨ r ∨ s)

(a ∨ b̄ ∨ u ∨ w ∨ p ∨ q ∨ r ∨ s)(ā ∨ b ∨ u ∨ w ∨ p ∨ q ∨ r ∨ s)

(ā ∨ b̄ ∨ u ∨ w ∨ p ∨ q ∨ r ∨ s)(u ∨ w̄ ∨ p ∨ q ∨ r ∨ s)

(ū ∨ w ∨ p ∨ q ∨ r ∨ s)(ū ∨ w̄ ∨ p ∨ q ∨ r ∨ s)(p ∨ q ∨ r ∨ s̄)

(p ∨ q ∨ r̄ ∨ s)(p ∨ q ∨ r̄ ∨ s̄)(p ∨ q̄)(p̄ ∨ q)(p̄ ∨ q̄)

Then to prove our formula valid we have to show that its dual is inconsistent.
Here is the proof using complementary elimination.

(i) (p ∨ q)(p̄ ∨ q̄) yields p̄
(ii) (p ∨ q̄)p̄ yields q̄
(iii) (p ∨ q ∨ r̄ ∨ s̄)p̄q̄ yields r̄ ∨ s̄
(iv) (p ∨ q ∨ r̄ ∨ s)p̄q̄ yields r̄ ∨ s
(v) (r̄ ∨ s̄)(r̄ ∨ s) yields r̄
(vi) (p ∨ q ∨ r ∨ s̄)p̄q̄r̄ yields s̄
(vii) (ū ∨ w̄ ∨ p ∨ q ∨ r ∨ s)p̄q̄r̄s̄ yields ū ∨ w̄

(viii) (ū ∨ w ∨ p ∨ q ∨ r ∨ s)p̄q̄r̄s̄ yields ū ∨ w

(ix) (ū ∨ w̄)(ū ∨ w) yields ū
(x) (u ∨ w̄ ∨ p ∨ q ∨ r ∨ s)ūp̄q̄r̄s̄ yields w̄

(xi) (ā ∨ b ∨ u ∨ w ∨ p ∨ q ∨ r ∨ s)ūw̄p̄q̄r̄s̄ yields ā ∨ b
(xii) (ā ∨ b̄ ∨ u ∨ w ∨ p ∨ q ∨ r ∨ s)ūw̄p̄q̄r̄s̄ yields ā ∨ b̄
(xiii) (ā ∨ b)(ā ∨ b̄) yields ā
(xiv) (a ∨ b̄ ∨ u ∨ w ∨ p ∨ q ∨ r ∨ s)āūw̄p̄q̄r̄s̄ yields b̄
(xv) (c̄ ∨ d̄ ∨ a ∨ b ∨ u ∨ w ∨ p ∨ q ∨ r ∨ s)āb̄ūw̄p̄q̄r̄s̄ yields c̄ ∨ d̄
(xvi) (c ∨ d̄ ∨ a ∨ b ∨ u ∨ w)āb̄ūw̄ yields c ∨ d̄
(xvii) (c̄ ∨ d̄)(c ∨ d̄) yields d̄
(xviii) (c̄ ∨ d ∨ a ∨ b)d̄āb̄ yields c̄
(xix) (c ∨ d)c̄d̄ yields φ. Q.e.d

Comments:
(1) In the above proof we have used the rules of conjunction in a very convenient
form: At the left of any line we allowed ourselves to write the conjunction of any
formulas previously obtained and/or any of the given clauses; next, we wrote the
word “yields”, and then, finally, whatever we obtained using the rule of c.e.

(2) It was not necessary to use simplification in the above proof.

(3) The above proof is quite short. Although at present c.e. is a proof procedure
rather than a decision procedure, further investigation seems desirable to determine
whether the above sort of proof-technique might not be mechanized.
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Part II:TheGentzenHauptsatz andComputations in thePropositionalCalculus

1. A Gentzen-Type Formal System

We introduce a formal system as follows:

Alphabet:

p q r s p′ q′ r′ s′ p′′ etc. (propositional variables)

∼ ⊃ · ∨ + (propositional connectives)

[ ] , (punctuation)

→ (arrow)

Well-formed formulas (w.f.f’s):
A formula (i.e. a finite sequence of the above symbols) is called well-formed (w.f.)
if there is a finite sequence of formulas, of which it is the last, each of which is either
a propositional variable, or has the form ∼ A where A is a preceding formula in the
sequence, or has one of the forms [A ⊃ B], [A · B], [A ∨ B], [A + B] where A and
B are preceding formulas in the sequence.

Formula sequence: The formula A1,A2, . . . ,An is called a formula sequence if the
Ai’s are well-formed formulas. It is not excluded that n = 0. The Ai’s are called the
formulas of the formula sequence.

We shall use capital Greek letters to denote formula sequences.

Sequents: The formula � → � is called a sequent if � and� are formula sequences.
Here � is called the antecedent, and� the succedent of the sequent. A w.f.f. is called
a formula of � → � if it is a formula of � or of �.

E.g. the following formulas are all sequents:

p,∼ p → p

[p ⊃ q] →
→ q, [∼ p ∨ q]
→ .

p is a formula of the first sequent but not of the second or third.
With each w.f.f. A we associate a truth-function A◦ obtained by regarding the

propositional variables as genuine variables having the truth values 0, 1 as their
range, and interpreting the symbols as in Part I.

If S is the sequent

A1,A2, . . . ,An → B1,B2, . . . ,Bm ,

then S◦
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is the truth-function given by the expression:

[A◦
1 · A◦

2 · . . . · A◦
n] ⊃ [B◦

1 ∨ B◦
2 ∨ . . . ∨ B◦

m] .

Here the vacuous conjunction is taken to be the constant 1, and the vacuous disjunc-
tion the constant 0.

A w.f.f. A (or a sequent S) is called a tautology if A◦ (or S◦) is a tautology.
Axioms. If A is any w.f.f., the sequent A → A is an axiom, and, there are no others.
Rules of Inference. The rules of inference are divided naturally into three groups as
follows;

Group 1. Rule for introducing connectives.

Introducing in succedent in antecedent

∼ A, � → �

� → �,∼ A

� → �, A

∼ A, � → �

⊃ A, � → �, B

� → �, [A ⊃ B]
� → �,A B, � → �

[A ⊃ B], � → �

· � → �, A � → �,B

� → �, [A · B]
A, � → �

[A · B], � → �

B, � → �

[A · B], � → �

∨ � → �, A

� → �, [A ∨ B]
A, � → � B, � → �

[A ∨ B], � → �

� → �, B

� → �, [A ∨ B]

+
� → �,A B, � → �

� → �, [A + B]
A, � → � B, � → �

[A + B], � → �

A, � → � � → �, B

� → �, [A + B]
� → �, A � → �, B

[A + B], � → �
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Group 2. Structural Rules.

in succedent in antecedent

Thinning
� → �

� → �,C

� → �

C, � → �

Contraction
� → �,C, C

� → �,C

C, C, � → �

C, � → �

Interchange
� → �,C, D,�

� → �,D, C,�

�,D, C, � → �

�,C, D, � → �

Group 3. Cut.

� → 	,M M, 
 → �

�,
 → 	,� .

An array of sequents consisting of a finite number of rows, each containing a finite
number of sequents is called a proof of the sequent � → � if:

(1) the final row consists of the sequent � → �, and
(2) each sequent which occurs in a row of the proof is either an axiom or follows

from formulas of the preceding row by one of the rules of inference.
We shall write 
 � → � to mean that there is a proof of � → �. � → � is then

called a theorem. We write 
 A (where A is a w.f.f.) to mean 
 → A.
We shall indicate the rule for introducing, e.g. ⊃, in the succedent, by →⊃,

proceeding analogously for the other connectives; likewise, e.g. · → represents the
rule for introducing · in the antecedent. T, C, I, will abbreviate thinning, contraction,
and interchange, respectively. A double underline will indicate one or more uses of
T, C, and/or I.

We now derive sequents which, in effect, express the truth-tables for the various
connectives.

B → B

A, B → B
B → [A ⊃ B] →⊃

Therefore: 
 B → [A ⊃ B] (A.1)



Appendix A: “Feasible Computational Methods in the Propositional Calculus” … 393

A → A

A → B, A

B → B

B, A → A
[A ⊃ B],A → B

⊃→
A → B,∼ [A ⊃ B]
A,∼ B →∼ [A ⊃ B] ∼→

→∼

Therefore: A,∼ B →∼ [A ⊃ B]. (A.2)

A → A

A → A, B
→ A, [A ⊃ B]

∼ A → [A ⊃ B] ∼→
→⊃

Therefore: 
∼ A → [A ⊃ B]. (A.3)

A → A

A, B → A

B → B

A, B → B
A, B → [A · B] → ·

Therefore: 
 A, B → [A · B] (A.4)

B → B

[A · B] → B
· →

→ B,∼ [A · B]
∼ B →∼ [A · B] −

Therefore: 
∼ B →∼ [A · B] (A.5)

A → A

[A · B] → A
· →

→ A,∼ [A · B]
∼ A →∼ [A · B] ∼→

→∼

Therefore: 
∼ A →∼ [A · B] (A.6)

A → A

A → [A ∨ B] → ∨

Therefore: 
 A → A ∨ B]. (A.7)
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B → B

B → [A ∨ B] → ∨

Therefore: 
 B → A ∨ B]. (A.8)

A → A

A → A,B

B → B

B → A,B
[A ∨ B] → A, B

∨ →
∼ B, [A ∨ B] → A

∼→
∼ A,∼ B, [A ∨ B] →
∼ A,∼ B →∼ [A ∨ B] →∼

∼→

Therefore: 
∼ A,∼ B →∼ [A ∨ B]. (A.9)

A → A

A,B → A

B → B

A,B → B
[A + B],A,B → + →
A,B →∼ [A + B]. →∼

Therefore: 
 A, B →∼ [A + B]. (A.10)

A → A

A → B, A

B → B

B, A → B
A → B, [A + B]

A,∼ B → [A + B] ∼→
→ +

Therefore: 
 A,∼ B → [A + B]. (A.11)

A symmetrical proof gives:


∼ A,B → [A + B]. (A.12)

A → A

A → A,B

B → B

B → A,B
[A + B] → A,B

∼ B, [A + B] → A
∼→

∼ A,∼ B, [A + B] →
∼ A,∼ B →∼ [A + B] →∼

∼→

+ →

Therefore: 
∼ A,∼ B →∼ [A + B]. (A.13)
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2. A Proof of Completeness

By a truth-value assignment γ for a w.f.f. A we understand a mapping which asso-
ciates one of the truth-values 0, 1 with each of a certain finite set of propositional
variables including all those occurring in A. Then, by A◦(γ ) we mean the value of
the truth-function A◦ for the assignment γ . Furthermore, by Aγ we mean just A if
A◦(γ ) = 1 and ∼ A if A◦(γ ) = 0. Then we have:

Theorem 2.1. (Kalmár’s lemma). Let b1, b2, . . . , bm be a list of propositional
variables including all of thosewhich occur inA, and letγ be a truth-value assignment
for A. Then,


 bγ

1 , bγ

2 , . . . , bγ
m → Aγ .

Proof: By induction on the number n of propositional connectives occurring in A.
For n = 0, Amust be one of the bi’s, and the result follows at once using thinning. Let
n = k + 1 where the result is assumed known for k connectives and let � abbreviate
bγ

1 , bγ

2 , . . . , bγ
m.

Case 1a. A is ∼ B, B◦(γ ) = 1. Then, Bγ is B, Aγ is ∼ A, i.e. ∼∼ B and, by
induction hypothesis:


 � → B.

The proof of this can be continued as follows giving the desired conclusion:

B → B

∼ B,B → ∼→
� → B B →∼∼ B

� →∼∼ B
Cut

→∼

Case 1b. A is ∼ B, B◦(γ ) = 0. Then, Bγ is ∼ B, Aγ is A, i.e. ∼ B, and the
induction hypothesis is precisely what needs to be shown.

Case 2a. A is [B ⊃ C], C◦(γ ) = 1. Then, Cγ is C, Aγ is A, i.e. [B ⊃ C], and the
induction hypothesis yields:


 � → C.

The proof of this can be continued as follows using (1) above:

� → C C → [B ⊃ C]
� → [B ⊃ C] Cut

Case 2b. A is [B ⊃ C], B◦(γ ) = 0. Then, Bγ is ∼ B, Aγ is A, i.e., [B ⊃ C], and
the induction hypothesis yields:


 � →∼ B.
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Continuing, using (3),

� →∼ B ∼ B → [B ⊃ C]
� → [B ⊃ C] Cut

Case 2c. A is [B ⊃ C], B◦(γ ) = 1, C◦(γ ) = 0. Then, Bγ is B, Cγ is ∼ C, Aγ is
∼ A, i.e. ∼ [B ⊃ C], and the induction hypothesis yields:


 � → B and 
 � →∼ C

Continuing, using (2),

� → B B,∼ C →∼ [B ⊃ C]
�,∼ C →∼ [B ⊃ C]

� →∼ C ∼ C, � →∼ [B ⊃ C]
�,� →∼ [B ⊃ C]
�,→∼ [B > C]

Cut

Cut

Case 3a. A is [B · C], B◦(γ ) = 1, C◦(γ ) = 1. Then, B◦ is B, C◦ is C, A◦ is A,
namely [B · C], and the induction hypothesis yields:


 � → B and 
 � → C

Continuing, using (4),

� → B B,C → [B · C]
�,C → [B · C]

� → C C, � → [B · C]
�,� → [B · C]
�,→ [B · C]

Cut

Cut

Case 3b. A is [B ·C], B◦(γ ) = 0. Then, Bγ is ∼ B, Aγ is ∼ A, namely ∼ [B ·C],
and the induction hypothesis yields:


 � →∼ B.

Continuing, using (6),

� →∼ B ∼ B →∼ [B · C]
� →∼ [B · C] Cut

Case 3c. A is [B · C], C◦(γ ) = 0. Handled symmetrically to case 3b, using (5).
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Case 4a. A is [B ∨ C], B◦(γ ) = 1. Then, Bγ is B, Aγ is A, namely [B ∨ C], and
the induction hypothesis yields,


 � → B.

Continuing, using (7),

� → B B → [B ∨ C]
� → [B ∨ C] Cut

Case 4b. A is [B ∨ C], C◦(γ ) = 1. Handled symmetrically to case 4a, using (8).
Case 4c. A is [B ∨ C], B◦(γ ) = 0,C◦(γ ) = 0. Then, Bγ is ∼ B, Cγ is ∼ C, Aγ

is ∼ A, namely ∼ [B ∨ C], and the induction hypothesis yields:


 � →∼ B and 
 � →∼ C.

Continuing, using (9),

� →∼ C

� →∼ B ∼ B,∼ C →∼ [B ∨ C]
�,∼ C →∼ [B ∨ C]
∼ C, � →∼ [B ∨ C]

Cut

�,� →∼ [B ∨ C]
� →∼ [B ∨ C].

Cut

Case 5a. A is [B + C], B◦(γ ) = 1,C◦(γ ) = 1. Then, Bγ is B, Cγ is C, Aγ is
∼ A, namely ∼ [B + C], and the induction hypothesis yields:


 � → B and 
 � → C.

Continuing, using (10)

� → C

� → B B,C →∼ [B + C]
�,C → ∼ [B + C]
C, � → ∼ [B + C]

Cut

�,� → ∼ [B + C]
� → ∼ [B + C].

Cut

Case 5b. A is [B+C],B◦(γ ) = 1, C◦(γ ) = 0. Then Bγ is B, Cγ is C ∼ C, Aγ is
A, namely [B + C], and the induction hypothesis yields:


 � → B and 
 � →∼ C.
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Continuing, using (11),

� →∼ C

� → B B,∼ C → [B + C]
�,∼ C → [B + C]
∼ C, � → [B + C]

Cut

�,� → [B + C]
� → [B + C].

Cut

Case 5c. A is [B + C], B◦(γ ) = 0, C◦(γ ) = 1. Handled symmetrically to case
5b, using (12).

Case 5d. A is [B + C], B◦(γ ) = 0, C◦(γ ) = 0. Then, Bγ is ∼ B, Cγ is ∼ C, Aγ

is A, namely ∼ [B + C], and the induction hypothesis yields:


 � →∼ B and 
 � →∼ C.

Continuing, using (13),

� →∼ C

� →∼ B ∼ B,∼ C →∼ [B + C]
�,∼ C → ∼ [B + C]
∼ C, � → ∼ [B + C]

Cut

�,� → ∼ [B + C]
� → ∼ [B + C].

Cut

Theorem 2.2. If 
 �, A → � and 
 �,∼ A → �, then 
 � → �.
Proof: We continue as follows:

�,A → �

A, � → �

� → �,∼ A

�,∼ A → �

∼ A, � → �
�,� → �,�

� → �

Cut

Theorem 2.3. If A is a w.f.f. which is a tautology, then 
 A.
Proof: Let b1, b2, . . . , bm be the variables which occur in A. Then, by Theorem

2.1,

 bγ

1 , bγ

2 , . . . , bγ
m, bγ

m → A, for all γ . In particular, for any γ ,

 bγ

1 , bγ

2 , . . . , bγ

m-1, bm → A.

 bγ

1 , bγ

2 , . . . , bγ

m-1,∼bm → A.
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Hence, by Theorem 2.2,


 bγ

1 , bγ

2 , · · · , bγ

m-1 → A.

Continuing this process, we eventually obtain


 → A.

Theorem 2.4. If the sequent S is a tautology, then 
 S.
Proof: The proof divides into four cases:

Case 1. Neither antecedent nor succedent is vacuous. Let S be:

A1,A2, · · · ,An → B1, · · · ,Bm.

Since S is a tautology, the w.f.f.

[[A1 · [A2 · . . . · An] . . . ] ⊃ [B1 ∨ [B2 ∨ · · · ∨ Bm] . . . ]]

which we write [R ⊃ S], is a tautology.
Hence, by Theorem 2.3, 
 → [R ⊃ S]. Then, we may continue as follows:

→ [R ⊃ S]

R → R

R → S,R

S → S

S,R → S
[R ⊃ S],R → S

R → S
Cut

Finally, using · → and → ∨ the appropriate number of times, using cut as we go,
we obtain 
 S.

Case 2. Antecedent is vacuous; succedent is not.
Let S be

→ B1, · · · ,Bn

Then, as before


 → [B1 ∨ [B2 ∨ · · · ∨ Bm] . . . ],

and

 → [B1, · · · ,Bm]

Case 3. Succedent is vacuous; antecedent is not. Similar to case 2.

Case 4. Sequent reduces to: →.
This is not a tautology and so there is nothing to prove.
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The converse of Theorem 2.4 is easily seen to hold; this shows that the present
version of propositional calculus is complete.

3. Elimination of Cut

An examination of the proof given for the completeness of the present system makes
it appear that “cut” must play a crucial role. And yet, as Gentzen first showed for
a closely relate system, the class of theorems is not diminished if “cut” is entirely
eliminated.

We begin by introducing a new rule of inference:

� → 	 
 → �

�,
M → 	M�
Mix

where the w.f.f. M is a formula of 	 and of 
, and where 	M and 
M are the results
of eliminating from 	 and 
, respectively, all occurrences of M. M is then called
the mix formula.

Theorem 3.1. If the rule “cut” is replaced by the rule “mix”, the class of sequents
which can be proved remains unchanged.

Proof: Since “mix” obviously preserves the property of being tautologous, it
suffices to prove that each use of “cut” can be replaced by a use of “mix”. But, this
is easy since the “cut”:

� → 	,M M, 
 → �

�,
 → 	,�
Cut

can be accomplished as follows:

� → 	,M M, 
 → �

�,
M → 	M,�

�,
 → 	,�

Mix

This completes the proof.
Now we shall begin our proof that the class of provable formulas remain

unchanged if the rule “mix” (and therefore, by what has just been shown, also “cut”)
is entirely eliminated. Let us suppose that we have a proof which contains just one
mix and which terminates immediately after the mix. I.e. let the “bottom” of the
proof be as follows:

� → 	 
 → �

�,
M → 	M,�
Mix

We shall show how to replace this proof by another in which either no mixes occur,
or in which the mixes which do occur are in a suitable sense simpler than the original
mix.
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In explaining the sense in which the new mixes will be simpler, we shall use the
following terminology:

The grade of a mix is the number of propositional connectives in the mix for-
mula M.

The mix is said to be of left-rank p in our proof if the proof contains the following
structure above the mix:

�p-1 → 	p-1
...

...

�2 → 	2

�1 → 	1

� → 	 
 → �

�,
M → 	M,�
Mix

where M is a formula of 	1,	2, . . . , 	p-1 and is not a formula of the succedent in
any sequent just above and used in the derivation of �p-1 → 	p-1.

Right-rank is defined similarly but with reference to the antecedents of the
sequents involved.

Whatwe shall show is that the proofwe are considering can be replaced by another
in which, either:

(1) there are no mixes, or
(2) the mixes which occur have lower grade, and no greater left- or right-rank or
(3) the mixes which occur have lower left-rank, and no greater grade right-rank or
(4) the mixes which occur have lower right-rank and no greater grade or left-rank.

Now, oncewe succeed in showing this, our taskwill be completed. For, the process
can be iterated. Since, the grade, left-rank and right-rank can each be decreased only
a finite number of times, and since the process to be described can introduce only a
finite number of new mixes, eventually the mix will be eliminated. In a proof with
more than one mix, the top mix can be eliminated first, then the next, etc. Thus, we
shall have proved:

Theorem 3.2: (Gentzen’s Hauptsatz). The class of derivable sequents remains the
same if the rules “cut” and “mix” are not used.

Proof: Our proof that (1), (2), (3), or (4) must occur will proceed by cases:
Case 1a. M occurs in �. Then, the bottom of the proof can replaced as follows,

thus eliminating the mix:


 → �

�,
M → 	M,�

Case 1b. M occurs in �. Then, once again, the bottom of the proof can be made
mixless:

� → 	

�,
M → 	M,�
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Case 2. M occurs neither in � nor in �. The mix is both of left-rank 1 and
right-rank 1.

Case 2a. � → 	 is derived by use of a structural rule. Since M does not occur
in the succedent in a sequent used in deriving � → 	,	 must be of the form �, M,
and the rule used must be a thinning as follows:

� → �

� → �,M
T


 → �

�,
M → �,�
Mix

But then, the bottom of the proof can be replaced by:

� → �

�,
M → �,�

Case 2b. 
 → � is derived by use of a structural rule. As in Case 2a 
 must be
of the form M,� and the bottom must be;

� → 	,M
� → �

M,� → �

�,� → 	M,�
Mix

which can be replaced by:

� → �

�,� → 	M,�

In the remaining subcases under Case 2, we assume that Cases 2a and 2b not arise.
Case 2c. � → 	 is derived by use of →∼. Then, 
 → � is derived by ∼→,

and the bottom of our proof must be as follows, where M is ∼ A and 	 is �,M and
� is M, 
:

A,� → �

� → �,∼ A

� → �,A

∼ A,� → �

�,� → �,�
Mix

But, wemay then replace the bottom as follows, where the grade of themix is smaller
by 1:

� → �,A A,� → �

�,�A → �A,�

�,�,→ �,� .

Mix

Case 2d. � → 	 is derived by use of →⊃. Then, 
 → � is derived by ⊃→,
and the bottom of our proof must be as follows, where M is [A ⊃ B]:
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A,� → �,B

� → �, [A ⊃ B]
� → �,A B,� → �

[A ⊃ B],� → �

�,� → �,� .
Mix

This bottom can be replaced as follows:

� → �,A A,� → �,B

�,�A → �A,�,B
Mix

B,� → �

�,�A,�B → �A,�B,�

�,� → �,�

Mix

where both mixes are of smaller grade.

Case 2e. � → 	 is derived by use of → ·. Then 
 → � is derived by · →, and
the bottom of our proof must be as follows, where M is [A · B] and Q is either A or
B.

� → �,A � → 	,B

� → 	, [A · B]
Q,� → �

[A · B],� → �

�,� → �,�
Mix

The bottom can then be replaced by

� → �,Q Q,� → �

�,�Q → �Q,�

�,� → �,�

Mix

where the mix is of lower grade.

Case 2f. Like 2e but with ∨ instead of ·.
Case 2g. � → 	 is derived by use of → +. Then 
 → � is derived by + →,

and the bottom of our proof must be as follows where M is [A + B]

� → �, [A + B] [A + B],� → �

�,� → �,�
Mix

Examining the rules → + and + → we see that the bottom of the proof can be
replaced by one of the following:

� → �,A A,� → �

�,�A → �A,�

�,� → �,�

Mix

or
� → �,B B,� → �

�,�B → �B,�

�,� → �,�

Mix



404 Appendix A: “Feasible Computational Methods in the Propositional Calculus” …

or
� → �,B B,� → �

�,�B → �B,�

�,� → �,�

Mix

or
� → �,A A,� → �

�,�A → �A,�

�,� → �,�

Mix

Case 3. M occurs neither in � nor in �. The mix is of left-rank >1.

Case 3a. � → φ is derived by use of T, C, or I in the succedent and the formula
M is the formula introduced, or the formula contracted, or one of the formulas
interchanged, respectively. Then, the bottom of the proof will be:

� → �

� → 	 
 → �

�,
M → 	M,�
Mix

Now, from the hypothesis it follows that�M is identical with	M. Hence, we may
reduce the left-rank by 1 as follows:

� → � 
 → �

�,
M → 	M,�
Mix

Case 3b. � → 	 is derived by use of T, C, or I but Case 3a does not hold.
Then, the bottom of the proof must be as follows where the letter S is T, or C, or I,
whichever is appropriate:

� → �

� → 	
S


 → �

�,
M → 	M,�
Mix

Now, M is a formula of � (since otherwise the left-rank would = 1). Hence we
may replace the bottom of the proof by the following where the left-rank has been
decreased by 1: � → � 
 → �

�,
M → �M,�
Mix

�,
M → �,�M

�,
M → 	M,�

Case 3c. � → 	 is derived by a one premise connective-introducing rule, intro-
ducing the formula M in the succedent. Then the bottom of the proof is of the
following form, where L is the rule used:
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�1, � → �,�2

� → �,M
L


 → �

�,
M → �M,�
Mix

By hypothesis, M is a formula of�, and is not a formula of�. Hence wemay replace
the above by:

�1, � → �,�2 
 → �

�1, �,
M → �M,�2,�

�1, �,
M → �M,�,�2

�,
M → �M,�,M
L

Mix


 → �

�,
M, 
M → �M,�,�

�,
M → �M,�

Mix

Case 3d. Like Case 3c, but M is not brought into the succedent by the rule. Then
the bottom must be as follows:

�1, � → �,�2

�1,� → �,�2
L


 → �

�1, �,
M → �M,�2,�
Mix

Letting �3 be either �2 or empty according as �2 is not or is M, we can replace the
bottom by:

�1, � → �,�2 
 → �

�1, �,
M → �M,�3,�

�1, �,
M → �M,�,�2

�1, �,
M → �M,�,�2

�1, �,
M → �M,�2,�

L

Mix

Case 3e. Like Case 3c, but with a two premise rule. Then, the bottom of the proof
is of the following form where L is the rule used:

�1, � → �,�2 �3, � → �,�4

� → �,M 
 → �

�,
M → �M,�
Mix

L
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Here M is a formula of �, and not of �. Hence, the above may be replaced by:

�1, � → �,�2 
 → �

�1, �,
M → �M,�2,�

�1, �,
M → �M,�,�2

Mix
�3, � → �,�4 
 → �

�3, �,
M → �M,�4,�

�3, �,
M → �M,�,�4

Mix

�,
M → �M,�,M 
 → �

�,
M, 
M → �M,�,�

�,
M → �M,�

Mix
L

Case 3f. Like Case 3d, but with a two premise rule. Then the bottom of the proof
is as follows where L is the rule used:

�1, � → �,�2 �3, � → �,�4

�1, � → �,�2 
 → �
L

�1, �,
M → �M,�2,� .
Mix

Letting �5 be �2 or empty according as �2 is not or is M, and �6 likewise for
�4, we can replace the bottom by:

�1, � → �,�2 
 → �

�1, �,
M → �,�5�

�1, �,
M → �M,�,�2

Mix
�3, � → �,�4 
 → �

�3, �,
M → �M,�6,�

�3, �,
M → �M,�,�4

Mix

�1, �,
M → �M,�,�2

�1, �,
M → �M,�,�

L

Case 4. M occurs neither in 	 nor in �. The mix is of right-rank >1. Handled
symmetrically to Case 3.

This completes the proof of the Gentzen Hauptsatz.

4. Computational aspects of the Gentzen Hauptsatz

Definition 4.1.A subformula of the w.f.f. A is a w.f.f. B which occurs as part of A.
Theorem 4.1. (Subformula Property). Each derivable sequent S may be proved by

a proof such that all formulas occurring in sequents of the proof are subformulas of
formulas of S.

Proof: Immediate fromGentzen’sHauptsatz and the effect of the rules of inference
of our system other than cut.

Corollary. Any derivable sequent S may be proved by a proof in which no con-
nectives occur that do not also occur in S.

In fact, as is easily seen, the Gentzen Haupstatz leads to a decision procedure for
the propositional calculus. To see this, we construct a modified system as follows:

Axioms. C, � → �, C is an axiom.

Rules of inference.
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Introducing in succedent in antecedent

∼ A,�→�,∼A
�→�,∼A

∼A,�→�,A
∼A,�→�

⊃ A,�→�,[A⊃B],B
�→�,[A⊃B]

[A⊃B],�→�,A B,[A⊃B],�→�

[A⊃B],�→�

�→�,[A·B],A �→�,[A·B],B
�→�,[A·B]

A,[A·B],�→�

[A·B],�→�

B,[A·B],�→�

[A·B],�→�

∨ �→�,[A∨B],A
�→�,[A∨B]

A,[A∨B],�→� B,[A∨B],�→�

[A∨B],�→�

�→�,[A∨B],B
�→�,[A∨B]

+ �→�,[A+B],A B,�→�,[A+B]
�→�,[A+B]

A,[A+B],�→� B,[A+B],�→�

[A+B],�→�

A,�→�,[A+B],�→�,[A+B,B]
�→�,[A+B]

[A+B],�→�,A [A+B],�→�,B
[A+B],�→�

In this new formulation, there are no structural rules. However, the antecedent
and succedent are to be interpreted as finite sets rather than sequences of formulas.
Thus, no attention is to be paid to order or repetition. This convention gives the effect
of I and C. It is left to the reader to verify that the change in introduction rules and
in the axioms precisely gives the effect of T. In this new formulation, a decision
procedure is immediate. It is only necessary to try all possible rules which apply,
going backwards. This process (as is easily seen) must terminate. Then a sequent
will be derivable if and only if it goes back to an axiom on at least one branch.

The decision procedure which this yields is, unfortunately, of little practical inter-
est in its present form. This is because at each stage there will be branching corre-
sponding to the different rules which could apply. And, this branching will produce
exponentiation. It is possibly of interest that where truth-table methods lead to expo-
nentiation on the number of variables, and normal form methods on the number of
clauses, the present methods lead to exponentiation on the total number of connec-
tives present (counting commas and →).

The following is proposed as an interesting unsolved problem which would shed
considerable light on the question of computation in the propositional calculus:

To construct a Gentzen-type of system which has the property that any sequent is
immediately derivable from at most one other single sequent.

If such a system could be produced, branching would be eliminated, and a feasible
computational method might well result.
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Appendix B
“Research on Hilbert’s Tenth Problem”,
the Original Paper by M. Davis
and H. Putnam

“It was in the summer of 1959 that Hilary and I really hit the jackpot. We decided to see how
far we could get with the approach we had used at the Logic Institute in Ithaca, if, following
Julia Robinson’s lead, we were willing to permit variable exponents in our Diophantine
equations.” (M. Davis, this volume p. 16)

The research report faithfully reproduced in this appendix was submitted for pub-
lication in 1959 by Martin Davis and Hilary Putnam, but then withdrawn, and gets
published here for the first time. It proves that
∥∥∥∥∥

if for every n there are n primes in arithmetic progression, then every recursively
enumerable predicate can be existentially defined in terms of polynomials and
the function y = 2x.

The premise of this proposition (here shown in italics), dubbed P.A.P. hypothesis
at the time, will become a theorem in 2004 thanks to Ben Green and Terence Tao;
thus the Davis-Putnam result can be seen, today, as a proof of the fact that every
recursively enumerable predicate is existentially definable in terms of Diophantine
‘exponential polynomials’. As recounted in Martin’s autobiography in this volume,
Julia Robinson accelerated the course of events by simplifying the proof found by
Davis and Putnam and by making recourse to the P.A.P. hypothesis unnecessary; the
three jointly published the celebrated Davis-Putnam-Robinson theorem in 1961.

To better highlight the bearing of this result on the study of Hilbert’s 10th problem,
let us indicate by D, E, and R the collections of predicates which in the following
paper are called: Diophantine, existentially definable, and recursively enumerable.
The inclusionsD ⊆ E ⊆ R are readily seen; it is far from obvious, though, that they
hold as equalities. Around 1950 Julia Robinson had proposed the hypothesis that a
Diophantine predicate of exponential rate of growth exists (J.R.), and proved that it
would implyD = E. At about the same time Martin Davis conjectured thatD = R .
He also found a normal form for recursively enumerable predicates that, at least
superficially, seems close to the definition ofD; namely where that definition stipu-
lates a string of existential quantifiers, Davis’s normal form interrupts that string with

© Springer International Publishing Switzerland 2016
E.G. Omodeo and A. Policriti (eds.), Martin Davis on Computability,
Computational Logic, and Mathematical Foundations,
Outstanding Contributions to Logic 10, DOI 10.1007/978-3-319-41842-1
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a single bounded universal quantifier. Davis and Putnambeganwith this normal form,
and showed how the additional expressiveness made possible by the freedom to use
variable exponents together with their assumption of P.A.P. made it possible to prove
the Davis-Putnam-Robinson theorem, namely, E = R. Thus, Davis’s conjecture—
and, consequently, the algorithmic unsolvability of Hilbert’s 10th problem—were
reduced to the J.R. hypothesis, which Yuri Matiyasevich will prove in 1970.
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Rensselaer Polytechnic Institute, Hartford Graduate Division.
Mathematical Sciences Directorate, Air Force Office of Scientific Research,
Washington 25, D.C.

AFOSR TR59-124
A COMPUTATIONAL PROOF PROCEDURE;

AXIOMS FOR NUMBER THEORY;
RESEARCH ON HILBERT’S TENTH

PROBLEM

Martin Davis
Associate Professor of Mathematics
Rensselaer Polytechnic Institute
Hartford Graduate Division

and
Hilary Putnam

Assistant Professor of Philosophy
Princeton University

Contract No.: AF 49(638)-527 October 1959

Qualified requesters may obtain copies of this report from the ASTIADocument Ser-
vice Center, Arlington Hall Station, Arlington 12, Virginia. Department of Defense
contractors must be established for ASTIA services, or have their “need-to-know”
certified by the cognizant military agency of their project or contract.
Abstract of Part III

On Hilbert’s Tenth Problem

Hilbert’s tenth problem is the problem of finding an algorithm for determining, given
a diophantine equation, whether or not it has a solution. A closely related problem
is that which arises if “diophantine equation” is taken in the following sense (which
is wider than Hilbert’s sense of the term): equation of the form P = 0, where P is
a “polynomial” whose exponents may themselves be variables as well as constants,
to be solved in integers. E.g., the Fermat equation xn + yn = zn is a “diophantine
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equation” in this wider sense, but not in Hilbert’s sense, whereas x3 + y3 = z3 is a
diophantine equation in the Hilbert (and, so also in the wider) sense.

The present part establishes several theorems bearing on these problems. In par-
ticular, we show that if for every n there are n primes in arithmetic progression, then
the problem of determining whether or not a diophantine equation in the “wider”
sense possesses a solution is recursively unsolvable. In fact we show that if the above
hypothesis about primes in arithmetic progression is true, then every recursively
enumerable predicate can be existentially defined in terms of polynomials and the
function y = 2x. (By Julia Robinson’s work, it follows that if for every n there are n
primes in arithmetic progression, and also there exists a diophantine equation whose
solutions are of “roughly exponential” rate of growth, then every recursively enu-
merable predicate is “diophantine”.) In addition, we improve our results in [3],12 by
eliminating all but one of the “critical” predicates, there given.

Part III: On Hilbert’s Tenth Problem

Hilbert’s tenth problem is the problem of finding an algorithm for determining, given
a diophantine equation, whether or not it has a solution. Here “diophantine equation”
means equation of the form P = 0 (where P is a polynomial) to be solved in rational
integers. A closely related problem is that which arises if “diophantine equation” is
taken in the following sense (which is, of course, wider than Hilbert’s sense of the
term): equation of the form P = 0, where P is a “polynomial” whose exponents
may themselves be variables as well as constants, to be solved in integers. E.g., the
Fermat equation xn + yn = zn is a “diophantine equation” in this wider sense, but
not in Hilbert’s sense, whereas x3 + y3 = z3 is a diophantine equation in the Hilbert
(and, so also in the wider) sense.

Previous work (cf. bibliography at the end of this paper) has dealt with attempts
to prove Hilbert’s problem recursively unsolvable (i.e., to show the non-existence of
the required algorithm), and, in effect, with the relation between these two problems.
In particular, Julia Robinson, in a fundamental paper (cf. [8]) has shown that if
there is any diophantine equation P(x1, . . . , xn, d) = 0 with finitely many solutions
(for a given value of d) whose solutions x1, . . . , xn are, in an appropriate sense, of
“roughly exponential” rate of growth (in terms of d), then the decision problems for
diophantine equation in the ordinary sense and that for diophantine equation in the
“wider” sense are equivalent.

The present paper will be concerned with establishing several theorems bearing
on these problems. In particular, we shall show that if for every n there are n primes in
arithmetic progression, then the problem of determiningwhether or not a diophantine
equation in the “wider” sense possesses a solution is recursively unsolvable. In fact
we shall show that if the above hypothesis about primes in arithmetic progression
is true, then every recursively enumerable predicate can be existentially defined in
terms of polynomials and the function y = 2x. (By Julia Robinson’s work, it follows
that if for every n there are n primes in arithmetic progression, and also there exists
a diophantine equation whose solutions are of “roughly exponential” rate of growth,

12Cf. the bibliography at the end of Part III.
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then every recursively enumerable predicate is “diophantine” in the sense defined
immediately below.) In addition, we improve our results in [3], by eliminating all
but one of the “critical” predicates, there given.

1. General Remarks. Roman letters will ordinarily stand for integers, and more-
over, unless the contextmakes the contrary explicit, forpositive integers.Greek letters
will stand for positive real numbers. An upper case Roman letter with a superscript
n, will abbreviate a corresponding sequence of lower case letters with subscripts;
e.g. X(n) abbreviates x1, x2, . . . , xn. [α] is the greatest integer � α.

A monomial is an expression of the form

bxm1
1 xm2

2 · · · xmn
n

where b is an integer positive, negative, or zero andm1,m2, . . . ,mn are fixed integers.
An exponential-monomial is an expression of the same form in which them’s as well
as the x’s may be variables or constants. A restricted exponential-monomial is one
in which for each factor xmi

i either xi or mi is a constant. By a polynomial we mean
a finite sum of monomials. Similarly an exponential-polynomial is a finite sum of
exponential-monomials, and a restricted exponential-polynomial is a finite sum of
restricted exponential-monomials.

A predicate R(X(n)) of positive integers is diophantine if it can be written in the
form

(∃Y (m))
{
P
(
X(n),Y (m)

) = 0
}

where P is a polynomial. It is existentially definable13 if it can be written in the same
form with P an exponential polynomial. It is diophantine (existentially definable) in
terms of predicates R1

(
Y (m)

)
, . . . ,Rk

(
Y (m)

)
if it can be written in the form

(∃Y (m)
{
P
(
X(n),Y (m)

) = 0&R1
(
Y (m)

)
& · · · &Rk

(
Y (m)

)}

where P is a polynomial (exponential-polynomial). Thus, an existentially definable
predicate is one which is diophantine in terms of predicates of the form z = xy.

Julia Robinson [8] has proved that the predicate y = x! is existentially definable.
Moreover, in the same paper she has considered the question of predicates of expo-
nential rate of growth. Such a predicate R(u, v) is defined as one which satisfies the
conditions:

(i) R(u, v) → v < uu

(ii) For each n, there are u, v such that:

R(u, v) & v � un .

13Julia Robinson [8] has employed the term existentially definable to mean what we are calling
diophantine here (and in [1–3, 7]). However, in [8], the principal concern is with what we are here
calling existentially definable predicates.
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Robinson [8] has proved that an existentially definable predicate is diophantine in
terms of any predicate R which is of exponential rate of growth. From this it fol-
lows readily, that in the definition of existential definability, P can be taken to be
a restricted-exponential polynomial. (For e.g., the predicate v = 2u & u > 2 is
of exponential rate of growth.) This suggests considering the following hypothesis,
which we shall call J.R.:

There exists a diophantine predicate of exponential rate of growth.14

Then, J.R. implies that a predicate is existentially definable if and only if it is
diophantine.

As is well-known,15 the recursive unsolvability of Hilbert’s tenth problem would
follow at once if it could be shown that every recursively enumerable predicate is
diophantine. In [3], we produced certain critical predicates with the property that if
they are diophantine, so is every recursively enumerable predicate. Our first result is
the following improvement of Theorem 3 of [3].16

Theorem 1. If the predicate

z =
y∑

k=1

[
q

1 + ks

]

is diophantine, then so is every recursively enumerable predicate.

We also are able to prove:

Theorem 2. If the predicate17

(k)y
{
Rem(q, 1 + ks) � y

}

is existentially definable, then so is every recursively enumerable predicate.

14Robinson [8] has proved that an equivalent (though apparently weaker) hypothesis is obtained if

uu is replaced by uu
u
or uu

uu

etc.
15Cf. [1, 2].
16Equation (5) of [3] should be corrected as follows: The sequence of subscripts b, b, a should be,
b, b, e. This (5) is essentially the critical predicate of our present Theorem 1.
17(k)y means: for all k between 1 and y. Rem(q, 1 + ks) is the least non-negative remainder on
dividing q by 1 + ks. The predicate of this theorem is (7) of [3].
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Theorem 2 has the immediate:

Corollary. If the predicate of Theorem 2 is diophantine and J.R. is true, then every
recursively enumerable predicate is diophantine.

Wehave been able to completely eliminate the critical predicates only by assuming
the following additional hypothesis which we shall call P.A.P.:

For each integer n, there are n primes in arithmetic progression.

Then, we have:

Theorem 3. If P.A.P. is true, then every recursively enumerable predicate is exis-
tentially definable.

From Theorem 3, remarks that have been made above, and the basic theorems of
recursive function theory (cf. [2]), we infer:

Corollary. If P.A.P. is true, then there is a restricted exponential polynomial
P
(
x,Y (n)

)
such that, the predicate (∃Y (n))

{
P
(
x,Y (n)

) = 0
}
is not recursive.

Corollary. If P.A.P. is true, then the problem of determining for a given restricted
exponential polynomial equation whether it has a solution in positive integers is
recursively unsolvable.

Corollary. If P.A.P. is true, then there is a restricted exponential polynomial,
P(m, x,Y (n)) such that for each recursively enumerable set S, there is m for which:

S =
{
x | (∃Y (n))

(
P
(
m, x,Y (n)

)
= 0

)}

Theorem 3 also has the interesting consequence that if one could construct a
recursively enumerable predicate which is not existentially definable, then it would
follow that P.A.P. was false.

If we assume, in addition to P.A.P., that J.R. is true, Theorem 3 is strengthened as
follows:

Theorem 4. If P.A.P. and J.R. are both true, then every recursively enumerable
predicate is diophantine.

Similarly, the Corollaries to Theorem 3 can all be strengthened in the obvious
way if J.R. is assumed true. In particular we have:

Corollary. If P.A.P. and J.R. are both true, then the problem of determining
whether a given diophantine equation has a solution in positive integers is recursively
unsolvable, and hence18 so is Hilbert’s tenth problem.

18Hilbert stated the problem for solutions in integers positive, negative, or zero. However, given an
algorithm for Hilbert’s tenth problem, one could determine whether or not P(x1, . . . , xn) = 0 has
a solution in positive integers by inquiring as to whether or not

P(p21 + q21 + r21 + s21 + 1, . . . , p2n + q2n + r2n + s2n + 1) = 0

has a solution in integers, positive, negative, or zero.
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Finally, using the results of [7], we have:

Corollary. If P.A.P. and J.R. are both true, then there is a polynomial P
(
n,Y (m)

)

such that for each n the range of P includes 0 and all negative integers and such that
for each non-empty recursively enumerable set S of positive integers, there is an n0,
for which S consists of all positive integers taken on by P

(
n0,Y (m)

)
.

2. Existential definability of some auxiliary predicates. The methods used in Julia
Robinson [8] in existentially defining y = x! are extended below in order to existen-
tially define certain predicates which are employed in deriving our present results.

For a > 1, 0 < k � n, α = p

q
> 0, we have:

aαk(1 + a−α)α = aαk
∞∑

j=0

(
α

j

)
a−αj

�
k∑

j=0

(
α

j

)
aα(k−j) +

∞∑

j=k+1

(
α

j

)
a−α

�
k∑

j=0

(
α

j

)
aα(k−j) +

(
2

a

)α

.

I.e.

0 � aαk(1 + a−α)α −
k∑

j=0

(
α

j

)
aα(k−j) �

(
2

a

)α

(B.1)

Letting, e.g.,

a = (3qkk!)q, so that a is a perfect q-th power and

(
2

a

)α

<
1

qkk! , (B.2)

we have:

k∑

j=0

(
α

j

)
aα(k−j) =

[
aαk(1 + a−α)αqkk!]

qkk! (B.3)

Replacing k by k − 1 in (1) and using the same value of a,

0 � aα(k−1)(1 + a−α)α − a−α

k−1∑

j=0

(
α

j

)
aα(k−j) <

1

qkk! . (B.4)



Appendix B: “Research on Hilbert’s Tenth Problem” … 417

Hence,
k−1∑

j=0

(
α

j

)
aα(k−j) = aα

[
aα(k−1)(1 + a−α)αqkk!]

qkk! (B.5)

From (3) and (5),

(
α

k

)
=
[
aαk(1 + a−α)αqkk!]− aα

[
aα(k−1)(1 + a−α)αqkk!]

qkk! (B.6)

Equation (6) enables us to prove:

Lemma 2.1. The predicate:

r/s =
(
p/q

k

)

is existentially definable.
Proof. We first note that, for

a = (3qkk!)q, we have

z =
[
a

p
q k(1 + a− p

q )
p
q qkk!

]

↔ z � a
p
q k(1 + a− p

q )
p
q qkk! < z + 1

↔ zq(3qkk!)p2 � (3qkk!)pqk((3qkk!)p + 1)p(qkk!)q < (z + 1)q(3qkk!)p2

Similarly,

w =
[
a

p
q (k−1)

(1 + a− p
q )

p
q qkk!

]

↔ wq(3qkk!)p2 � (3qkk!)pq(k−1)((3qkk!)p + 1)p(qkk!)q < (w + 1)q(3qkk!)p2 .

But, by (6),

r/s =
(
p/q

k

)
↔ (∃a, z, w)

{
rqkk! = sz − (3qkk!)psw

& a = (3qkk!)a & z =
[
a

p
q k(1 + a− p

q )
p
q qkk!

]

& w =
[
a

p
q (k−1)

(1 + a− p
q )

p
q qkk!

] }
.

Lemma 2.2. The predicate z =
y∏

k−1
(r + sk) is existentially definable.
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Proof :
y∏

k−1

(r + sk) = sy
y∏

k−1

( r
s

+ k
)

= syy!
(

(r/s) + y

y

)
.

Lemma 2.3. The predicate

p

q
=

y∑

k=1

1

r + ks
& s � r

is existentially definable.

The proof of Lemma 2.3 will be based on the following lemmas:

Lemma 2.4.
y∑

k=1

1

α + k
= �′(α + y + 1)

�(α + y + 1)
− �′(α + 1)

�(α + 1)
.

Proof :Differentiation of the equation log �(α+k+1)−log �(α+k) = log(α+k)
yields:

�′(α + k + 1)

�(α + k + 1)
− �′(α + k)

�(α + k)
= 1

α + k
.

Now, sum from k = 1 to y.

Lemma 2.5. For α > 1, �′′(a) <

(
1

α − 1
+ α

)
�(α) .

Proof.

�′′(a) =
∫ ∞

0
(log t)2 tα−1e−tdt

=
∫ 1

0
(log t)2 tα−1e−tdt +

∫ ∞

1
(log t)2 tα−1e−tdt

<

∫ 1

0
tα−2e−tdt +

∫ ∞

1
tαe−tdt

< �(α − 1) + �(α + 1)

=
(

1

α − 1
+ α

)
�(α),

where we have used the elementary inequality: log t <
√
t .19

Lemma 2.6. For α > 1, and m > 2
α−1 ,

19The function
√
t − log t clearly assumes its minimum value at t = 4, and is positive there.
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0 <
�′(α)

�(α)
− m

{
1 − �(α − 1

m )

�(α)

}
<

1

2m

(
2α

α − 1
+ α2

)
.

Proof. By Lagrange’s form of Taylor’s theorem,

�(α − 1

m
) = �(α) − 1

m
�′(α) + 1

2m2
�′′(α − θ

m
),

where 0 < θ < 1. Hence,

�′(α) = m

{
�(α) − �(α − 1

m
)

}
+ 1

2m
�′′(α − θ

m
).

Thus,

0 <
�′(α)

�(α)
− m

{
1 − �(α − 1

m )

�(α)

}
= 1

2m

�′′(α − θ
m )

�(α)
.

But, for m >
2

α − 1
, we have α − θ

m
− 1 >

1

2
(α − 1) > 0. Hence, using Lemma

2.5, and the fact that � is an increasing function for arguments � 2, we have for
such m,

1

2m

�′′(α − θ
m )

�(α)
<

(
1

α − θ
m − 1

+ α − θ

m

)
�(α − θ

m )

2m �(α)

<
1

2m

(
2

α − 1
+ α

)
�(α + 1 − θ

m )

(α − θ
m ) �(α)

<
1

2m

(
2

α − 1
+ α

)
�(α + 1)

�(α)

= 1

2m

(
2α

α − 1
+ α2

)
.

Lemma 2.7 If α is not an integer, m >
2

α − [α] , and if

� = m

{
y∏

k=1

α + k − 1
m

α + k
− 1

} [α]+1∏

j=1

α − [α] − 1
m + j − 1

α − [α] + j − 1
, (B.7)

then
∣∣∣∣∣

y∑

k=1

1

α + k
− �

�(α − [α] − 1
m )

�(α − [α])

∣∣∣∣∣ <
1

m

{
2 + 2

α
+ (α + y + 1)2

}
.
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Proof. By Lemmas 2.4 and 2.6,

∣∣∣∣∣

y∑

k=1

1

α + k
− m

{
�(α + y + 1 − 1

m )

�(α + y + 1)
− �(α + 1 − 1

m )

�(α + 1)

}∣∣∣∣∣

<
1

2m

{(
2(α + y + 1)

α + y
+ (α + y + 1)2

)
+ 2(α + 1)

α
+ (α + 1)2

}

<
1

m

{
2 + 2

α
+ (α + y + 1)2

}
.

But, since (α − 1
m ) − [

α − 1
m

] = α − [α] − 1
m ,

m

{
�(α + y + 1 − 1

m )

�(α + y + 1)
− �(α + 1 − 1

m )

�(α + 1)

}

= m

{
y∏

k=1

α + y + 1 − 1
m − k

α + y + 1 − k
− 1

}
�(α + 1 − 1

m )

�(α + 1)

= �
�(α − [α] − 1

m )

�(α − [α]) .

Lemma 2.8. For 0 < α < 1,

∣∣∣∣
1

�(α)
− n1−α

(
α + n − 1

n

)∣∣∣∣ <
1√
n

.

Proof. We begin with the inequality, valid for 0 < α < 1:

∣∣∣∣
�(α + n)

�(n) nα
− 1

∣∣∣∣ � nn

enn! <
1√
2πn

(B.8)

(For the first part of this inequality, cf. [5], p. 350; the second follows from Stirling’s
formula.) Thus

∣∣∣∣n
1−α

(
α + n − 1

n

)
− 1

�(α)

∣∣∣∣ <
1√

2πn �(α)
<

1√
n

,

since �(α) > 1
2 .

Lemma 2.9. If |L − 1| < ε <
1

2
, then

∣∣∣∣
1

L
− 1

∣∣∣∣ < 2ε.

Proof.

∣∣∣∣
1

L
− 1

∣∣∣∣ = |L − 1|
|L| < 2ε.

Lemma 2.10. For 0 < α < 1,
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∣∣∣∣∣�(α) − nα−1

(
α+n−1

n

)

∣∣∣∣∣ <
1

α
√
n

.

Proof. By (8) and Lemma 2.9,

∣∣∣∣
�(n) nα

�(α + n)
− 1

∣∣∣∣ <
1√
n

.

Hence, ∣∣∣∣∣
nα−1

(
α+n−1

n

) − �(α)

∣∣∣∣∣ <
�(α)√

n

= �(α + 1)

α
√
n

<
1

α
√
n

.

Lemma 2.11. If α is not an integer, m > 2
α−[α] , if � is defined by (7), and if

� = n1−α+[α]
(

α − [α] + n − 1

n

)
, (B.9)

� = nα−[α]− 1
m −1

(
α−[α]− 1

m +n−1
n

) , (B.10)

then
∣∣∣∣∣

y∑

k=1

1

α + k
− ���

∣∣∣∣∣ <
1

m

{
2 + 2

α
+ (α + y + 1)2

}
+ 3�

(α − [α] − 1
m )

√
n

.

Proof. By Lemma 2.7,

∣∣∣∣
y∑

k=1

1

α + k
− ���

∣∣∣∣

<
1

m

{
2 + 2

α
+ (α + y + 1)2

}
+ �

∣∣∣∣∣
�(α − [α] − 1

m )

�(α − [α]) − ��

∣∣∣∣∣ .

But, using Lemmas 2.8 and 2.10,
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∣∣∣∣∣
�(α − [α] − 1

m )

�(α − [α]) − ��

∣∣∣∣∣ �
∣∣∣∣�(α − [α] − 1

m
) − �

∣∣∣∣+ �

∣∣∣∣
1

�(α − [α]) − �

∣∣∣∣

<
1

(α − [α] − 1
m )

√
n

+ �√
n

<
1√
n

{
1

(α − [α] − 1
m )

+ �(α − [α] − 1

m
) + 1√

n(α − [α] − 1
m )

}

= 1

(α − [α] − 1
m )

√
n

(
1 + �(α − [α] − 1

m
+ 1) + 1√

n

)

� 3

(α − [α] − 1
m )

√
n

.

Lemma 2.12.
y∑

k=1

1

r + ks
= 1

s

[
���P + 1

2

]

P
, where �,�,� are defined in (7),

(9), (10), P =
y∏

k=1
(r + ks), and α = r

s
is not an integer, if

m >
2

α − [α] ,

m > 4P

(
2 + 2

α
+ (α + y + 1)2

)
, and

n > 144 P2�2m2 .

Proof. By Lemma 2.11, the stated conditions on m, n, imply that,

∣∣∣∣∣

y∑

k=1

1
r
s + k

− ���

∣∣∣∣∣ <
1

2P
.

Hence,

P
y∑

k=1

1
r
s + k

< P��� + 1

2
< P

y∑

k=1

1
r
s + k

+ 1 ,

i.e.

P
y∑

k=1

1
r
s + k

=
[
P��� + 1

2

]
.

Proof of Lemma 2.3. By Lemma 2.12, we have:

p

q
=

y∑

k=1

1

r + ks
& s � r
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↔ (∃m, n, a, b, c, d, e, f ,P,Q,R, S,T)

{
a =

[ r
s

]
& r �= as

& P =
y∏

k=1

(r + ks) &
b

c
=
( r

s − a + n − 1

n

)

&
d

e
=
( r

s − a − 1
m + n − 1

n

)
& Q =

y∏

k=1

(mr + mks − s)

& R =
y∏

k=1

(mr + mks) & S =
a+1∏

j=1

(mr − ams − s + msj − ms)

& T =
a+1∏

j=1

(mr − ams − s + msj) & m >
2

r
s − a

& m > 4P

(
2 + 2s

r
+
( r
s

+ y + 1
)2)

& n > 144 P2

(
Q

R
− 1

)2 S2

T 2
m4

& psP = qf & f =
[
m

(
Q

R
− 1

)
SbeP

Tcd
n− 1

m + 1

2

]}
.

In this expression, the clauses involving binomial coefficients and
∏

are existentially
definable byLemmas 2.1 and 2.2. The clauses involving inequalities between rational
numbers are equivalent, in an obvious way, to inequalities involving integers, which
can be handled in the usual manner. Finally,

a =
[ r
s

]
↔ as � r < (a + 1) s, and

f =
[
m

{
Q

R
− 1

}
SbeP

Tcd
n− 1

m + 1

2

]

↔ (2f − 1)m n �
{
m

(
Q

R
− 1

)
SbeP

Tcd

}m

< (2f + 1)m n .

3. Reduction to two critical predicates. We begin with two easy number-theoretic
lemmas.

Lemma 3.1. Let rk < mk , 1 � k � y, where the mk’s are relatively prime in pairs.

Then,
y∑

k=1

rk
mk

is an integer if and only if rk = 0 for k = 1, 2, . . . , y.

Proof. Let
y∑

k=1

rk
mk

= N . Then,

r1m2 · · ·my + m1r2 · · ·my + · · · + m1m2 · · · ry = Nm1m2 · · ·my .

Hence, e.g., m1 | r1m2 · · ·my , i.e. m1 | r1 which implies r1 = 0.
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Similarly, r2 = r3 = · · · = ry = 0.

Lemma 3.2.
y∑

k=1
Rem(A, r + ks) ≡ Ay − r

y∑
k=1

[
A

r + ks

]
(mod s).

Proof. We have

A =
[

A

r + ks

]
(r + ks) + Rem(A, r + ks).

Hence,

Ay = r
y∑

k=1

[
A

r + ks

]
+ s

y∑

k=1

k

[
A

r + ks

]
+

y∑

k=1

Rem(A, r + ks),

which yields the desired result.
As in [3], we recall that every recursively enumerable predicate H(X(n)) may be

represented in the form

(∃y)(k)y(∃Z (m))
{
P(y, k,X(n),Z (m)) = 0

}
,

where
P(y, k,X(n),Z (m)) = 0 → (i)m(zi � y). 8 (B.11)

Let20

P2(y, k,X(n),Z (m)) =
N∑

v0,v1,...,vm=0

Qv0,...,vm(y,X
(n)) kv0zv11 · · · zvmm .

We let
∑

stand for
N∑

v0,v1,...,vm=0
and Q(y,Xn) for Qv0,...,vm(y,Xn).

Let RP(r, s, y) be a predicate with the properties:

(a) RP(r, s, y) →
{
r + ks is relatively prime
to r + js for 1 � j < k � y.

(b) For every y, there are arbitrarily large values of r + s for which r, s satisfy
RP(r, s, y).

(c) RP(r, s, y) → s � r.

In particular, we may take for RP(r, s, y) the existentially definable predicate:

r = 1 & y! | s & s �= 1. 9 (B.12)

20ThatH can be represented as asserted may be seen e.g. fro the proof of Theorem 3.8, pp. 113–114,
[2].
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Then, using the Chinese remainder theorem as in [3], and setting
K = 2N(m + 1), we have 21

H(X(n)) ↔ (∃y)(∃Z(m)
1 )(∃Z(m)

2 ) · · · (∃Z(m)
y )

{∑ y∑

k=1

Q(y,X(n))kv0 zv11 · · · zvmm = 0
}

↔ (∃y)(∃r)(∃s)(∃a0) · · · (∃am)
{∑

Q(y,X(n))

y∑

k=1

m∏

i=0

Remvi (ai, r + sk) = 0

& RP(r, s, y) & r + s > yK & (k)y
(
Rem(a0, r + sk) = k

)}

↔ (∃y)(∃r)(∃s)(∃a0) · · · (∃am)
{

∑
Q(y,X(n))

y∑

k=1

Rem(av0
0 av1

1 · · · avm
m , r + sk) = 0

& RP(r, s, y) & r + s > yK & (k)y(Rem(a0, r + sk) = k)

& (i)m(Rem(ai, r + sk) � y)
}

.

To see that the last equivalence is correct, we note that (using (11)) the matrix of
each side of the equivalence implies r + s > yK and (i)m(Rem(ai, r + sk) � y).

But, then
m∏
i=0

Remvi(ai, r + sk) � yN(m+1) < yK < r + s � r + sk, so that, since

m∏

i=0

Remvi(ai, r + sk) ≡ Rem(av0
0 a

v1
1 · · · avm

m , r + sk) (mod r + sk),

we have
m∏

i=0

Remvi(ai, r + sk) = Rem(av0
0 a

v1
1 · · · avm

m , r + sk).

We now introduce the variables tv0,v1,...,vm where each vi has the range
0 � vi � N , with the understanding that, e.g. (∃t) abbreviates
(∃t0,0,...,0)(∃t1,0,...,0) · · · (∃tN,N,...,N ), and that tv0,...,vm = Q(v0, . . . , vm) abbreviates
t0,0,...,0 = Q(0, 0, . . . , 0) & · · · & tN,N,...,N = Q(N,N, . . . ,N).

Then,

21Cf. [4], or [2], p. 45, Lemma.
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H(X(n)) ↔ (∃y)(∃r)(∃s)(∃a0) · · · (∃am)(∃t)
{∑

Q(y,X(n)) t = 0 & tv0,...,vm =
y∑

k=1

Rem(av0
0 · · · avm

m , r + ks)

& RP(r, s, y) & r + s > yK & (k)y
(
Rem(a0, r + sk) = k

)

& (i)m
(
Rem(ai, r + sk) � y

)}
.

(B.13)

But, the conditions on Rem(ai, r+ sk) and s in (13) imply tv0,...,vm < s. Hence, using
Lemma 3.2,

H(X(n)) ↔ (∃y)(∃r)(∃s)(∃a0) · · · (∃am)(∃t)
{∑

Q(y,X(n)) t = 0 & tv0,...,vm ≡
y∑

k=1

[
av0
0 · · · avm

m

r + sk

]
(mod r + sk)

& tv0,...,vm < s & RP(r, s, y) & r + s > yK & (k)y
(
Rem(a0, r + sk) = k

)

& (i)m
(
Rem(ai, r + sk) � y

)}
.

(B.14)
Now, using Lemma 3.1, we note that RP(r, s, y) implies:

(k)y
(
Rem(a0, r + sk) = k

)

↔ (k)y
(
Rem(a0 − k, r + sk) = 0

)

↔
y∑

k=1

Rem(a0 − k, r + sk)

r + sk
is an integer

↔
y∑

k=1

a0 − k

r + sk
is an integer

↔
(
a0 + r

s

) y∑

k=1

1

r + sk
− y

s
is an integer

↔ (∃p)(∃q)
{
p

q
=

y∑

k=1

1

r + sk
& qs | (pa0s + pr − yq)

}
.

where, by Lemma 2.3, this last predicate is existentially definable. Thus (14) enables
us to obtain an existential definition ofH(X(n)) in terms of the two critical predicates:

z =
y∑

k=1

[
A

r + ks

]
(B.15)

(k)y
(
Rem(A, r + ks) � y

)
. (B.16)
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In fact, if we take (12) for RP(r, s, y), we may set r = 1 in (15) and (16) obtaining
the two critical predicates:

z =
y∑

k=1

[
A

1 + ks

]
(B.17)

(k)y(Rem(A, 1 + ks) � y), (B.18)

in terms of which all recursively enumerable predicates can be existentially defined.

4. Proof of Theorem 1. According to [6], page 117, problem 4, if y+ 1 < 1+ ks,
then [

A

1 + ks

]
−
[
A − y − 1

1 + ks

]
= 0 or 1,

according as
Rem(A, 1 + ks)

1 + ks
� y + 1

1 + ks
or

y + 1

1 + ks
.

Hence,

(k)y
(
Rem(A, 1 + ks) � y

) ↔ (k)y
(
Rem(A, 1 + ks) < y + 1

)

↔ y =
y∑

k=1

[
A

1 + ks

]
−

y∑

k=1

[
A − y − 1

1 + ks

]
,

so that all instances of (18), can be replaced in (14) by predicates which are existen-
tially definable in terms of (17).

Theorem 1 now follows at once from the following:

Lemma 4.1. If z =
y∑

k=1

[
A

1 + ks

]
is diophantine, then J.R. is true.

Proof. Let

P(z, y) ↔ yz =
y∑

k=1

[
y

1 + k

]
& z > 6.

Then, the hypothesis clearly implies that P(z, y) is diophantine.

Now, P(z, y) →
y∑

k=1

y
k+1 − y < zy �

y∑
k=1

y
k+1 , i.e., estimating the sums by integrals,

y log

(
y + 2

2

)
− y < zy < y log(y + 1),

ez − 1 < y < 2ez+1 − 2.

Hence, if for some n, and all y, z,
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P(z, y) → y < zn,

we should have for a sequence of z’s approaching∞, ez−1 < znwhich is impossible.
Moreover, since P(z, y) → z > 6 we have:

P(z, y) → y < 2ez+1 − 2 < 2ez+1 < zz.

Thus, P(z, y) satisfies J.R.

5. Proof of Theorem 2. Returning to (14), we note that each occurrence in it of a

sum of the form
y∑

k=1

[
A

r + ks

]
is in a context which implies that:

(k)y
(
Rem(A, r + ks) � y

K
2

)
.

But since the matrix of (14) implies r + ks > yK , we have:

y∑

k=1

Rem(A, r + ks)

r + ks
<

y∑

k=1

y
K
2

yK
= 1

y
K
2 −1

< 1.

Hence,
y∑

k=1

[
A

r + sk

]
=
[

y∑

k=1

A

r + sk

]
.

But, by Lemma 2.3,

z =
[

y∑

k=1

A

r + sk

]
↔ z �

y∑

k=1

A

r + sk
< z + 1

is existentially definable.

Hence, we have:

Lemma 5.1. Every recursively enumerable predicate is existentially definable in
terms of (16), or even, using (12) for RP(r, s, y), in terms of (18).

Lemma 5.1 immediately implies Theorem 2.

6. Proof of Theorem 3. In this section, we shall employ the hypothesis P.A.P.
Then, using the notation (a, b) for the greatest common divisor of a and b, we may
take for RP(r, s, y) the predicate:

(
y∏

k=1

(r + ks), (r + s − 1)!
)

= 1 & y < r & r > 1 . (B.19)
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For, this predicate implies that
√
r + ks <

√
r + rs <

√
r2 + 2rs + s2 = r + s, so

that none of the r + ks can have a divisor less than its square root, and so each r + ks
must be a prime. Moreover, since r + rs is composite for r > 1, P.A.P. implies that
for each y there are r, s with r > y such that (19) is satisfied. Finally, that r (and
hence22 r + s) may be made arbitrarily large for given y is clear from the fact that,
taking (19) for RP(r, s, y):

RP(r, s, y2) & y1 < y2 → RP(r, s, y1).

Now, (19) may be written:

(∃u)(∃v)

⎧
⎨

⎩

(
u

y∏

k=1

(r + ks) − v(r + s − 1)!
)2

= 1 & y < r & r > 1

⎫
⎬

⎭ ,

and so, is (cf. Lemma 2.2) existentially definable. Finally, P.A.P. and (19) implies:

(k)y
(
Rem(A, r + ks) � y

) ↔ (k)y(∃i)y+1(r + ks) | (A − i + 1)

↔ (k)y(r + ks) |
y+1∏

i=1

(A − i + 1)

↔
y∏

k=1

(r + ks) |
y+1∏

j=1

(A − y − 1 + j) . 11

Lemma 2.2 and 5.1 now suffice for the proof of Theorem 3.23
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