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Preface

Fundamental to sustainable economic development, functioning of healthy ecosys-
tems, reliable agricultural productivity, dependable power generation, maintenance of
desirable environmental quality, continuing industrial growth, enjoyment of quality
lifestyle, and renewal of land and air resources is water. With growing population,
demands for water for agriculture and industry are skyrocketing. On the other hand,
freshwater resources per capita are decreasing. There is therefore a need for effective
water resources management strategies. These strategies must also consider the nexus
between water, energy, environment, food, and society. With these considerations in
mind, the International Conference on Water, Environment, Energy and Society
(WEES-2016) was organized at AISECT University in Bhopal, MP, India, from
March 15–18, 2016. The conference was fifth in the series and had several objectives.

The first objective was to provide a forum to not only engineers, scientists, and
researchers, but also practitioners, planners, managers, administrators, and policy
makers from around the world for discussion of problems pertaining to water,
environment, and energy that are vital for the sustenance and development of
society.

Second, the Government of India has embarked upon two large projects one on
cleaning of River Ganga and the other on cleaning River Yamuna. Further, it is
allocating large funds for irrigation projects with the aim to bring sufficient good quality
water to all farmers. These are huge ambitious projects and require consideration of all
aspects of water, environment, and energy as well as society, including economics,
culture, religion, politics, administration, law, and so on.

Third, when water resources projects are developed, it is important to ensure that these
projects achieve their intended objectives without causing deleterious environmental
consequences, such as water logging, salinization, loss of wetlands, sedimentation of
reservoirs, loss of biodiversity, etc.

Fourth, the combination of rising demand for water and increasing concern for
environmental quality compels that water resources projects are planned, designed,
executed and managed, keeping changing conditions in mind, especially climate
change and social and economic changes.
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Fifth, water resources projects are investment intensive and it is therefore
important to take a stock of how the built projects have fared and the lessons that
can be learnt so that future projects are even better. This requires an open and frank
discussion among all sectors and stakeholders.

Sixth, we wanted to reinforce that water, environment, energy, and society
constitute a continuum and water is central to this continuum. Water resources
projects are therefore inherently interdisciplinary and must be so dealt with.

Seventh, a conference like this offers an opportunity to renew old friendships and
make new ones, exchange ideas and experiences, develop collaborations, and
enrich ourselves both socially and intellectually. We have much to learn from each
other.

Now the question may be: Why India and why Bhopal? India has had a long
tradition of excellence spanning several millennia in the construction of water
resources projects. Because of her vast size, high climatic variability encompassing
six seasons, extreme landscape variability from flat plains to the highest mountains
in the world, and large river systems, India offers a rich natural laboratory for water
resources investigations.

India is a vast country, full of contrasts. She is diverse yet harmonious, mysterious
yet charming, old yet beautiful, ancient yet modern. Nowhere can we find as high
mountains as snow-capped Himalayas in the north, the confluence of three seas and
large temples in the south, long and fine sand beaches in the east as well as architectural
gems in the west. The entire country is dotted with unsurpassable monuments, temples,
mosques, palaces, and forts and fortresses that offer a glimpse of India’s past and
present.

Bhopal is located in almost the centre of India and is situated between Narmada
River and Betwa River. It is a capital of Madhya Pradesh and has a rich, several
century-long history. It is a fascinating amalgam of scenic beauty, old historic city,
and modern urban planning. All things considered, the venue of the conference
could not have been better.

We received an overwhelming response to our call for papers. The number of
abstracts received exceeded 450. Each abstract was reviewed and about two-thirds
of them, deemed appropriate to the theme of the conference, were selected. This led
to the submission of about 300 full length papers. The subject matter of the papers
was divided into more than 40 topics, encompassing virtually all major aspects of
water and environment as well energy. Each topic comprised a number of
contributed papers and in some cases state-of-the art papers. These papers provided
a natural blend to reflect a coherent body of knowledge on that topic.

The papers contained in this volume, “Climate Change Impacts,” represent one
part of the conference proceedings. The other parts are embodied in six companion
volumes entitled, “Hydrologic Modelling,” “Groundwater,” “Environmental
Pollution,” “Water Quality Management,” “Energy and Environment,” and “Water
Resources Management.” Arrangement of contributions in these seven books was a
natural consequence of the diversity of papers presented at the conference and
the topics covered. These books can be treated almost independently, although
significant interconnectedness exists amongst them.
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This volume contains four parts. The first part deals with some aspects of
climatic characteristics ranging from changes in temperature and sunshine hours to
downscaling to global climate patterns and effects of ENSO and IOD on extreme
rainfall. Part II covers rainfall analysis, including changes in regional rainfall series,
analysis of non-stationarity, summer monsoon, and rainfall scenarios. Impacts of
climate change are treated in Part III. Change point analysis, greenhouse gas
emissions, rainfall variability, water resources variability, and water resources
sustainability are discussed in this part. The concluding Part IV is on low flow and
drought. It deals with the SPI concept and assessment of drought.

The book will be of interest to researchers and practitioners in the field of water
resources, hydrology, environmental resources, agricultural engineering, watershed
management, earth sciences, as well as those engaged in natural resources planning
and management. Graduate students and those wishing to conduct further research
in water and environment and their development and management may find the
book to be of value.

WEES-16 attracted a large number of nationally and internationally well-known
people who have long been at the forefront of environmental and water resources
education, research, teaching, planning, development, management, and practice. It
is hoped that long and productive personal associations and friendships will be
developed as a result of this conference.

College Station, USA
Bhopal, India
Hazaribagh/Bhopal, India

Vijay P. Singh, Conference Chair
Shalini Yadav, Conference Organizing Secretary

Ram Narayan Yadava, Conference Co-Chair
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Trends in Temperature for the Himalayan
Environment of Leh (Jammu
and Kashmir), India

Rohitashw Kumar, Zeenat Farooq, Deepak Jhajharia and V.P. Singh

Abstract Climate parameters variability affects significantly on water resources,
and therefore on the livelihood of the common people, especially in water scarce
countries. The aim of this study was to explore changes in the maximum, minimum,
and mean temperatures using the monthly data of Leh taking last 15 years from
2000 to 2014, which is situated in the western Indian Himalaya. Trends analyses
were performed with nonparametric statistics proposed by Mann-Kendall at
different time scales in arid environments of Leh. On monthly basis, a significant
falling trend in maximum temperature and minimum temperature has been observed
at 5% significance level in the month of July at the rate of 1.7 °C per decade and in
the month of August at the rate of 1.3 °C per decade, respectively. However, no
trend has been observed in other time scales at 5% level of significance. The
observed change in temperature will affect all biochemical reactions of photosyn-
thesis thus in turn will have negative impact on plant growth.

Keywords Trend � Mann-Kendall � Maximum and minimum temperature
Himalayan region, Leh
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Introduction

Climate change has brought in unexpected changes not only in India but all over the
regions across the world. Emergence of global warming due to climate change is
the new and most talked subject of today’s world as it is the most threatening issue
for very existence of life on the earth. One of the consequences of climate change is
the alteration of rainfall patterns and increase in temperature. According to
Intergovernmental Panel on Climate Change (IPCC 2001) reports, the surface
temperature of the earth has risen by 0.6 ± 0.2 °C over the twentieth century. Also
in the last 50 years, the rise in temperature has been 0.13 ± 0.07 °C per decade. As
the warming depends on emissions of greenhouse gases in the atmosphere, the
IPCC has projected a warming of about 0.2 °C per decade. Further, surface air
temperature could rise by between 1.1 and 6.4 °C over twenty-first century. In case
of India, the climate change expected to adversely affect its natural resources,
forestry, agriculture, and change in precipitation, temperature, monsoon timing, and
extreme events. Due to global warming, precipitation amount, type and timing are
changing or expected to change because of increased evaporation, especially in the
tropics.

The pattern and amount of rainfall are among the most important factors that
affect agricultural production (Jhajharia et al. 2015). Agriculture is vital to India’s
economy and the livelihood of its people. Agriculture is contributing 21% to the
country’s GDP, accounting for 115 of total export, employing 56.4% of the total
workforce, and supporting 600 million people directly and indirectly (Beena 2010;
McVicar et al. 2010, 2012). Temperature drives the hydrological cycle, influencing
hydrological processes in a direct or indirect way. A warmer climate leads to
intensification of the hydrological cycle, resulting in higher rates of evaporation and
increase of liquid precipitation. These processes, in association with a shifting
pattern of precipitation, will affect the spatial and temporal distribution of runoff,
soil moisture, groundwater reserves, and increase the frequency of droughts and
floods. The future climatic change, though, will have its impact globally and will be
felt severely in developing countries with agrarian economies, such as India.
Surging population and associated demands for freshwater, food, and energy would
be areas of concern in the changing climate. Changes in extreme climatic events are
of great consequence owing to the high vulnerability of the region to these changes.
Parry et al. (2001) have shown that there is a steep rise in the water shortage curve
when plotted against rise in temperature. They reported that this is due to large
urban populations in China and India being newly exposed to risk. There has not
been conducted previous study on behavior of temperature for the Himalayan
environment of Leh, this study was carried out to analyze the temperature trend of
Leh using Mann-Kendall test for the year 2000–2014.

4 R. Kumar et al.



Materials and Methods

Study Area

The Indian Himalayan Region (IHR) is spreading to 10 states (administrative
regions) namely, Jammu & Kashmir, Himachal Pradesh, Uttaranchal, Sikkim,
Arunachal Pradesh, Meghalaya, Nagaland, Manipur, Mizoram, Tripura, and hill
regions of two states viz. Assam and West Bengal of Indian Republic. It contributes
about 16.2% of India’s total geographical area, and most of the area is covered by
snow-clad peaks, glaciers of higher Himalaya, dense forest cover of mid-Himalaya.
The IHR shows a thin and dispersed human population as compared to the national
figures due to its physiographic condition and poor infrastructure development, but
the growth rate is much higher than the national average.

In this study Himalayan region of Leh was taken into consideration. Mountains
dominate the landscape around the Leh as it is at an altitude of 3,500 m. Leh has a
cold desert climate with long, harsh winters, with minimum temperatures well
below freezing for most of the winter. The city gets occasional snowfall during
winter. The weather in the remaining months is generally fine and warm during the
day. Average annual rainfall is only 102 mm. The temperature can range from
−42 °C in winter to 33 °C in summer. In 2010, the Leh city experienced flash
floods which killed more than 100 people. The study area of Himalayan region is
shown in Fig. 1.

The data sets used in this study was obtained from High Mountain Research
Station Leh, Sher-e-Kashmir University of Agricultural Sciences and Technology
of Kashmir for the period of 15 years from 2000 to 2014 of cold desert.

The trend analysis of temperature at monthly, annual and seasonal (winter, spring,
summer and autumn) basis was carried out. Trends in data can be identified by using

Fig. 1 Study area of Leh
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either parametric or nonparametric methods. In the recent past, both methods have
been widely used for the detection of trends (WMO 1997; Mitosek 1992; Chiew and
McMahon 1993; Burn and Elnur 2002). Then parametric tests are more suitable for
non-normally distributed, censored data, including missing values, which are fre-
quently encountered in hydrological time series (Hirsch et al. 1984).

Mann-Kendall Test

Mann-Kendall test is a statistical test widely used for the analysis of trend in
climatologic and in hydrologic time series. There are two advantages of using this
test. First, it is a nonparametric test and does not require the data to be normally
distributed. Second, the test has low sensitivity to abrupt breaks due to inhomo-
geneous time series. According to this test, the null hypothesis H0 assumes that
there is no trend (the data is independent and randomly ordered) and this is tested
against the alternative hypothesis H1, which assumes that there is a trend.
Mann-Kendall test is a nonparametric test for identifying trends in time series data.
This test compares the relative magnitudes of data rather than the data values
themselves (Gilbert 1987). This test assumes that there exists only one data value
for a time period. When multiple data points exist for a single time period, the
median value will be used. The initial value of the Mann-Kendall statistic S is
assumed to be 0. If a data value from a later time period is higher than a data value
from an earlier time period, S is increased by 1. On the other hand, if the data value
from the later time period is lower than a data valued sampled earlier, it is decreased
by 1. The net result of increments and decrements yields the final value of S. This
method is more suitable for non-normally distributed and censored data, and is less
influenced by the presence of outliers in the data (Mann 1945; Kendall 1975).

Let x1, x2, x3, …, xn represent n data points, then the Mann-Kendall test statistic
S is given by

S ¼
Xn�1

i¼1

Xn

j¼iþ 1

sgnðxj � xiÞ; ð1Þ

where n is the number of observations and xj is the jth observation and sgn (h) is the
sign function which can be defined as follows:

sgn hð Þ ¼
1 if h[ 0
0 if h ¼ 0
�1 if h\0

2
4 ð2Þ

Under the assumption that the data are independent and identically distributed,
the mean and variance of the S statistic are given by (Kendall 1975)
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E Sð Þ ¼ 0 ð3Þ

n n� 1ð Þ 2nþ 5ð Þ �Pm
i¼0 ti ti � 1ð Þ 2ti þ 5ð Þ

18
¼ VS; ð4Þ

where m is the number of groups of tied ranks, each with tied observations.
The Z-statistic can be computed as follows:

Z ¼ S� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Sð Þð Þp IF S[ 0 ð5Þ

Z ¼ 0 If S ¼ 0 ð6Þ

Z ¼ Sþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Sð Þð Þp if S\0 ð7Þ

Estimation of Magnitude of Trends

The magnitude of the identified trends in the meteorological parameters was
obtained through the parametric linear regression test, a commonly used parametric
method.

The linear relationship between two variables is represented by a straight line,
which is given as

y ¼ m� xþ c

x denote the time variable
m slope of regression line
c intercept

Results and Discussion

The value of Z statistics with p-value in parenthesis obtained by Mann-Kendall test
for all the parameters on monthly and annual time scales are tabulated below. The
value test Statistics (z) is summarized in Table 1.

It is witnessed from Table 1 that the statistically significant falling trends are
witnessed inmaximum temperature in themonth of July at the rate of 1.70 °C/decade,
at 5% level of significance as the values of Z (test statistics) obtained through the MK
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test are more than −1.96 (Table 1). However, the remaining months witnessed no
statistically significant trends in maximum temperature at 5% level of significance as
the Z values are between +1.96 and −1.96 (or at 10% level of significance as the
Z values are between +1.65 and −1.65). The monthly trend in maximum temperature
during 2000–2014 is shown in Fig. 2a–d.

It is evident from Table 1 that in case of minimum temperature MK test revealed
that statistically significant falling trend at 5% level of significance, as the values of
Z (test statistics) obtained, is more than −1.96 and was witnessed in the month of
August at the rate of 1.31 °C/decade (Fig. 3a–d). Statistically significant falling
trend was witnessed in the month of December at the rate of 1.74 °C/decade at 10%
significance level as the Z value is more than 1.65 and less than 1.96. However,
the remaining months witnessed no significant trends at 5% level of significance as
the Z values are between +1.96 and −1.96 (or at 10% level of significance as the
Z values are between +1.65 and −1.65).

Table 1 The value of test
statistics (z) obtained through
Mann-Kendall test on
monthly and annual basis

Month Maximum
temperature

Minimum
temperature

January 0.291
(0.923)

0.132
(0.846)

February −0.172
(0.254)

−0.357
(0.282)

March 0.306
(0.495)

0.325
(0.328)

April 0.363
(0.282)

0.254
(0.298)

May 0.038
(0.814)

0.166
(0.457)

June 0.097
(0.697)

0.073
(0.435)

July −2.114
(0.032)

0.122
(0.656)

August 0.116
(0.137)

−1.999
(0.015)

September 0.068
(0.657)

−0.139
(0.495)

October 0.032
(1.000)

−0.132
(0.770)

November 0.320
(0.804)

0.132
(0.626)

December 0.052
(0.298)

−0.138
(0.499)

Annual 0.014
(0.846)

0.138
(0.770)

Note: Bold values denote statistically significant at 5% level of
significance. Italic values are cases of no trends (statistically
non-significant even at 10% level of significance)
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On annual basis, no significant trend was witnessed in case of maximum and
minimum temperature at 5% level of significance as the Z values are between +1.96
and −1.96 (or at 10% level of significance as the Z values are between +1.65 and
−1.65). The annual trend of maximum and minimum temperature is shown in
Fig. 4a–b.

Test statistics (Z) values with p-value in parenthesis obtained through the
Mann-Kendall test on seasonal basis is tabulated and shown in Table 2.

It is evident from Table 2 that on seasonal basis no significant trend was wit-
nessed in case of maximum and minimum temperature at 5% level of significance
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Fig. 2 a–d Time series of maximum temperature on monthly basis with linear trend lines
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as the Z values are between +1.96 and −1.96 (or at 10% level of significance as the
Z values are between +1.65 and −1.65). The graphical representation of seasonal
basis between maximum temperature is shown in Fig. 5a–b.

The seasonal trend in minimum temperature in different years was also carried.
The graphical representation of seasonal basis between minimum temperatures is
shown in Fig. 6a–b.
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Fig. 3 a–d Time series of minimum temperature on monthly basis with linear trend lines
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Fig. 4 a–b Time series of different weather parameters on annual basis

Table 2 Value of Z statistics with p-value in parenthesis on seasonal basis

Season Maximum temperature Minimum temperature

Spring 0.306
(0.179)

0.261
(0.667)

Summer −0.135
(0.667)

0.370
(0.114)

Autumn 0.198
(1.000)

0.058
(0.923)

Winter −0.017
(0.590)

−0.452
(0.659)
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Fig. 5 a–b Maximum temperature on seasonal with linear trend lines
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Conclusions

The weather is a continuous, data-intensive, multidimensional, dynamic and com-
plex process and these properties make weather forecasting a formidable challenge.
Thus an attempt has been made in is study to estimate the trends of maximum and
minimum temperature, on monthly, seasonal, and annual basis over climatic con-
ditions of Himalayas because of the importance of these parameters in water bal-
ance studies, irrigation planning, planning, and operation of reservoirs. The trends
in different climatic parameters were investigated using the nonparametric
Mann-Kendall (MK) test. The conclusions drawn from the study are summarized as
follows:

1. In case of maximum temperature a significant falling trend has been observed at
5% significance level in the month of July.

2. In case of minimum temperature a significant falling trend has been observed at
5% significance level in the month of August and at 10% significance level in
the month of December.

3. On annual and seasonal basis, it was witnessed that neither maximum nor
minimum temperature showed significant falling trend at 10% significance level.

Acknowledgements The authors are highly thankful to the Division of Agricultural Engineering,
SKUAST—Kashmir and All India Coordinated Research project on Plasticulture Engineering and
Technology for providing all necessary facilities to conduct this study.
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Changes in Sunshine Duration in Humid
Environments of Agartala (Tripura), India

D. Jhajharia, P.K. Pandey, Vanita Pandey, P.P. Dabral,
R.R. Choudhary, R. Kumar and V.P. Singh

Abstract Study of changes in the global solar radiation is one of the key factors in
sustainable agricultural production and management. Therefore, we investigated
trends in the solar radiation using sunshine duration as a suitable alternative, based
on the recommendation of the FAO Irrigation and Drainage—Paper No. 56, by
using the Mann-Kendall (MK) test at different time scales in the humid environ-
ments of Northeast India. The average annual bright sunshine hours over Agartala
is found to be 6.6 hours (h) with a standard deviation of 0.4 h and coefficient of
variation of 6.4%. On annual (seasonal) time scale, statistically significant
decreasing trends in bright sunshine duration through the MK test were observed at
5% level of significance at the rate of 0.245 h/decade (0.545 and 0.118 h/decade in
winter and monsoon) over Agartala. Similarly, sunshine decreases were observed in
the months of January, February, March, May, September, October, and December
in the range of 0.237–0.688 h/decade. The observed decreases in sunshine duration
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modify the evapotranspiration process and affect the crop water requirements,
which, in turn, will negatively influence the agricultural production in humid
environments of Northeast India.

Keywords Trend � Mann-Kendall � Sunshine duration � Agartala

Introduction

The anthropogenic-induced climate change has increased greatly in last few dec-
ades. Magnus et al. (2011) reported that temperature increased by an estimated
0.73 °C during the 43 years period from 1959 to 2002 globally. The decreasing
trends in solar radiation are reported from various parts of the world under different
environments. The occurrence of a reduction in global irradiance may lead to the
global dimming. Global dimming refers to the decrease in the flux of solar radiation
reaching the earth’s surface both in the direct solar beam and in the diffuse radiation
scattered by the sky and clouds (Stanhill and Cohen 2001). If aerosols and solar
radiation would have remained at the 1959 level, then the expected global average
temperature would have been 1.09 °C higher (Magnus et al. 2011).

Global dimming created a cooling effect that partially masked the effect of
greenhouse gasses on global warming. The sunshine hour is the most important
influencing parameter of evapotranspiration process (Pandey et al. 2014, 2016).
Also, the global dimming interfered with the hydrological cycle by reducing
evaporation, and may have reduced rainfall in some areas. Therefore, solar radiation
is one of the most important factors affecting climate. Studying trends in radiation
are of much concern in climate change studies and agricultural sustainability
assessment. Solar radiation is also responsible for the photosynthesis in plants,
which is the main essence in agriculture, and therefore any change in radiation
pattern must be analyzed.

The objective of this work is to identify whether there is any sign of solar
dimming or brightening over the Northeast India as there is nonavailability of solar
radiation measured data not only in this region but around the globe. Usually, the
solar radiation is recorded with the help of pyranometers. However, the data of
bright sunshine duration are available for a number of sites because of ease in
measurements of sunshine duration using the Campbell–Stokes sunshine recorder.
Sunshine duration having strong linear relation with global solar radiation could be
utilized in place of the solar radiation (Allen et al. 1998). Stanhill (1965) have
reported that sunshine duration measurements are the most highly and linearly
correlated with the global radiation. In this paper, sunshine duration data were
tested for trend identification using the Mann-Kendall (MK) method in monthly,
seasonal, and annual time scales in the humid environments of Agartala, Northeast
India.
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Materials and Methods

Study Area and Meteorological Data

The main ecosystem in the northeastern region of India is a tropical wetland. The
Northeast India is the most appropriate region for cultivation of world-class tea,
paddy, various forest products, like bamboo, different types of fruit crops, and
orchids. The bright sunshine duration data of Agartala needed for this study were
obtained from India Meteorological Department (IMD), Pune on a monthly basis
from 1969 to 2007. The IMD uses Campbell–Stokes sunshine recorder to measure
the bright sunshine hours over different locations in India. The sunshine recorder
provides major information on changes in solar irradiance as it automatically
records the duration of direct solar beam irradiance above a threshold of
120 W m−2 (WMO 1997). The monthly data of 3 years (1993, 1995, and 1997)
were missing and were filled with the average values of sunshine of the previous
5 years over Agartala. Figure 1 shows the location of the site in the Tripura state in
the northeastern region of India.

Methods of Trend Analysis

Trends in the data can be identified by using parametric or nonparametric methods,
and both the methods are widely used. The nonparametric Mann–Kendall
(MK) method (Mann 1945; Kendall 1975) is used for identifying the trends in solar

Fig. 1 Location of Agartala site (Tripura), Northeast India
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radiation because it is distribution-free and has a higher power than many other
commonly used tests (Hess et al. 2001). This method does not require normality of
time series and is less sensitive to outliers and missing values. The MK testis based
on the test statistic, S, defined as follows:

S ¼
Xn�1

k¼1

Xn

j¼kþ 1

sgnðxj � xkÞ; ð1Þ

where n is the number of observations, and xj is the jth observation and sgn(�) is the
sign function. The mean of the S statistic is zero for the data set assumed to be
independent and identically distributed. The variance of the S statistic, under the
assumption that the data are independent and identically distributed, is given as:

V Sð Þ ¼ n n� 1ð Þ 2nþ 5ð Þ �Pm
i¼1 ti ti � 1ð Þ 2ti þ 5ð Þ

18
; ð2Þ

where m is the number of groups of tied ranks, each with ti tied observations.
The MK statistic, designated by Z, can be computed as

Z ¼
S�1ffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þ

p S[ 0

0 S ¼ 0
Sþ 1ffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þ

p S\0

8
><

>:
ð3Þ

The values of the Z statistic are calculated and if the value lies within (−) 1.96
and (+) 1.96, i.e., �Z1�a=2 � Z � Z1�a=2, then the null hypothesis of no trend can be
accepted at the 5% level of significance using a two-tailed test. Otherwise, the null
hypothesis can be rejected, and the alternative hypothesis of trends in the data at the
5% significance be accepted.

The MK test requires that a series should not be serially dependent. The
pattern-free prewhitening (TFPW) methodology was connected to remove of serial
associations in the time series, on the off chance that they existed, to fit in with this
necessity. This was carried out with the “R” software. In this technique, the slope
was assessed. In the situation slope close to zero, it is not necessary to carry out
pattern examination. In the case that the slope contrasts from zero, it is thought to be
linear, then the series is detrended by the slope; the autoregressive model of order 1
is then processed for the detrended series. The residuals should be independent, and
afterward, the trend and residuals are mixed. Last, the MK test is connected to the
combined series to know the significance of the trend. Finally, MK test was applied
to the data, if there existed a trend at the 95% significance level. The magnitude of
trends identified in sunshine duration can be obtained by using the linear regression
test. The total changes in bright sunshine duration are obtained by multiplying the
value of slope with a total length of the sunshine data at Agartala.
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Results and Discussion

The monthly data obtained from the IMD Pune were used to compute the seasonal
and the annual time series of bright sunshine duration over Agartala, Tripura (NE
India). The definition of four different seasons in the NE India given by Jhajharia
et al. (2009, 2012), are as follows: winter (January–February), pre-monsoon
(March–May); monsoon (June–September) and post-monsoon (October–
December). Statistical parameters, such as, mean (in hours, h), standard deviation
(h), coefficient of variation (%), and maximum (h) and minimum (h) values of
sunshine duration are calculated to describe the characteristics of sunshine, and its
variability over Agartala (see Table 1). The average annual bright sunshine duration
for the considered period over Agartala is found to be 6.6 h with a standard
deviation of 0.4 h and coefficient of variation of 6.4%.

The mean sunshine duration in winter and post-monsoon seasons are determined
to be about 7.9 h. However, the bright sunshine hours fell drastically to 5.1 in the
monsoon season over Agartala due to the presence of dark (rainy) clouds during the
months of June to September. The bright sunshine duration in the winter,
pre-monsoon and post-monsoon seasons are comparatively higher (mean the sun-
shine more than 7.3 h) due to the presence of clear skies at Agartala during these
three seasons. The CV of bright sunshine duration in monsoon (10.2%) is found to
be the highest, which shows that the bright sunshine intensity has high variability

Table 1 Statistical properties of sunshine duration (h) over Agartala

Time scale Mean (h) Max (h) Max (h) S (h) Cv (%)

January 7.69 9.20 6.10 0.83 10.81

February 8.05 9.10 6.40 0.71 8.82

March 7.70 8.80 6.50 0.70 9.09

April 7.49 9.00 5.90 0.68 9.06

May 6.77 9.30 3.10 1.40 20.67

June 4.26 5.90 2.40 1.06 24.81

July 4.02 5.70 2.00 0.71 17.56

August 5.17 6.80 3.00 0.88 16.93

September 5.19 7.80 3.40 1.12 21.50

October 7.04 8.50 5.10 1.03 14.64

November 7.83 9.00 6.90 0.57 7.33

December 8.00 9.10 6.10 0.74 9.25

Yearly 6.60 7.26 5.64 0.40 6.40

Winter 7.87 8.95 6.55 0.69 8.79

Pre-monsoon 7.32 8.77 6.03 0.63 8.60

Monsoon 5.14 6.34 3.98 0.52 10.19

Post-monsoon 7.91 8.65 6.80 0.47 5.95

Note Max, Min, S and Cv denote maximum, minimum, standard deviation, and coefficient of
variation, respectively
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during the months of June to September over Agartala as compared to the CV

(5.95%) of sunshine in post-monsoon season. Similar characteristics of sunshine
duration are observed on the monthly time scale at Agartala. The mean bright
sunshine duration is found to be the highest (8.05 h) and second largest (8.0 h)
during the months of February and December, respectively over Agartala.
However, the months of July and June witnessed the lowest (4.02 h) and the second
lowest (4.26 h) values of sunshine duration at Agartala, respectively because of
intense rainfall activities and cloudy weather in these 2 months. The highest value
of the CV (24.81%) of sunshine duration is witnessed in the month of June that
shows comparatively higher variability in bright sunshine in this month at Agartala.

Table 2 shows the trend results obtained through the MK test in different
durations: all 12 months; the four seasons; and the yearly time scale in sunshine
duration. The slope of the trend lines are computed using the linear regression test,
and the magnitude of the trends (in h/decade) are given in Table 2. Dinpashoh et al.
(2011) report that the value of the Z statistic lying within the confidence limits
presents a value due to random fluctuations, meaning not much in the inferring
existence of a trend from the statistical standpoint. On an annual time scale, the
statistically significant trend at the 5% level of significance was witnessed as the
absolute of Z statistics (3.81) was more than the tabulated value of 1.96. The
decreasing trend in sunshine duration at the rate of 0.245 h/decade was witnessed
over Agartala in annual time scale. Figure 2 shows the percent deviation of annual
bright sunshine hours from the long-term average annual sunshine over Agartala

Table 2 Changes in sunshine duration at Agartala (Tripura)

Time scale Test statistics (Z) value Magnitude of trends (h/decade)

January −3.720 −0.688

February −3.504 −0.403

March −2.289 −0.237

April −0.933 −0.083

May −2.421 −0.36

June −0.218 −0.003

July 0.545 0.041

August 0.182 0.069

September −1.683 −0.263

October −3.196 −0.435

November −1.214 −0.206
December −2.640 −0.373

Yearly −3.812 −0.245

Winter −4.091 −0.545

Pre-monsoon −3.123 −0.227

Monsoon −1.986 −0.118

Post-monsoon −2.809 −0.289

The bold number denote the statistically significant trends at 5% level of significance obtained
through the t-test
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from 1969–2007. About 65% cases witnessed positive deviation from long-term
average values of sunshine during 20 years from 1969 indicating to the phe-
nomenon of brightening happening over the city of Agartala. However, 16 years
witnessed negative deviation from long-term average values of sunshine since 1990
at Agartala, which was quite opposite from the recordings of possible sunshine
hours before 1990 (see Fig. 2). The decreasing trends witnessed in the sunshine in
humid environments of Agartala confirm global dimming since 1984 over the
northeastern region of India.

On a seasonal time scale, Agartala witnessed statistically significant decreasing
trends in sunshine duration in all the four seasons at 5% level of significance in the
range of 0.545 (winter) and 0.118 (monsoon) h/decade. Figures 3a–d show the
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percent deviation of annual bright sunshine hours from the long-term average
sunshine data in four different seasons over Agartala from 1969 to 2007. On a
monthly time scale, 7 months (January to March, May, September, October, and
December) witnessed statistically significant decreasing trends in the sunshine in
the range of 0.69 (January) and 0.237 (March) h/decade. On the other hand, no
trends were witnessed in bright sunshine hours in the remaining five months (April,
June to August, and November) over Agartala.

Various studies are available in the literature, which reports changes in different
meteorological parameters over Agartala in last 30 years or more. These studies
confirm the anthropogenic-induced climate change is occurring over humid envi-
ronments of Agartala. Decreasing trends in annual rainfall were reported at the rate
of 2.4 mm/year at Agartala, Tripura (Jhajharia et al. 2007, 2009). The trends in
annual rainfall at Agartala were in agreement with the decreasing trends observed in
the total cloud amount over Agartala. Decreasing trends in pan evaporation and
reference evapotranspiration over different sites of the NE India are also reported in
last one decade (Jhajharia et al. 2009, 2012). Significant reduction in pan evapo-
ration and reference evapotranspiration occurred mainly due to stilling (wind speed
decreases) and dimming over different parts of Northeast India. Stilling is the
process of significant reduction in wind speed at a place in last few years. McVicar
et al. (2012) and Jhajharia et al. (2009) reported decreasing trends in wind speed on
annual and seasonal time scales over different sites of NE India.

Figure 4a, b depict the relationship between rainfall and sunshine duration in
annual time scale and monsoon season. Findings reveal that the total rainfall has
increased on both annual and monsoon seasonal time scales at the rate of 30.3 and
63.2 mm/decade, respectively. It is worthwhile to mention that sunshine duration
has decreased on both time scales over the site which may be due to the increase in
intense cloud formation, i.e., more the cloud formation higher the rainfall amount,
hence less sunshine availability over Agartala.

Conclusions

Availability of solar radiation is necessary for agricultural production, because
sunlight is essential for photosynthesis and various solar appliances. Any study on
changes in solar radiation is important for agriculture and energy sector. The trends
in sunshine duration over Agartala are also investigated in annual, monthly, and
seasonal (winter, pre-monsoon, monsoon, and post-monsoon) time scales by using
the Mann-Kendall’s nonparametric test. The average annual bright sunshine dura-
tion over Agartala is found to be 6.6 h with a standard deviation of 0.4 h and
coefficient of variation of 6.4%. The mean sunshine duration in winter and
post-monsoon seasons are about 7.9 h, and 5.1 h in monsoon season. The highest
(lowest) mean bright sunshine duration is found to be 8.05 h (4.02 h) in the months
of February (July) over Agartala.
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Statistically, significant decreasing trends in bright sunshine duration were
observed by using the MK test at 5% level of significance at the rate of
0.245 h/decade in annual duration (in the range of 0.545 and 0.118 h/decade in
seasonal time scale) over Agartala. On a monthly time scale, Agartala observed
sunshine decreases during 7 months in the range of 0.237–0.688 h/decade.
Decreasing trends witnessed in sunshine over Agartala support the happening of
global dimming over Northeast India in last two decades. Solar brightening phe-
nomenon was observed from 1969 to 1982 over Agartala due to increased bright
sunshine duration. However, a solar-dimming phenomenon occurred due to
decreased sunshine duration for the remaining period of analysis. Crop water bal-
ance and evapotranspiration are closely coupled to solar radiation, and therefore,
solar radiation decreases are likely to reduce water use and evapotranspiration.

Acknowledgements The authors thank the India Meteorological Department (Pune) for pro-
viding the climatic data used in this study.
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Application of Multiple Linear Regression
as Downscaling Methodology for Lower
Godavari Basin

Gayam Akshara, K. Srinivasa Raju, Ajit Pratap Singh and A. Vasan

Abstract This paper focused on future precipitation scenarios adopting statistical
downscaling approach, namely, Multiple linear regression (MLR) for Lower
Godavari basin, India. Global Climate Model (GCM), namely, GFDL-CM3 sim-
ulations, are used for downscaling purpose. Five grid points of Lower Godavari
basin are considered. Reanalysis data from National Centre for Environmental
Prediction (NCEP) of the study area from 1969 to 2005 is used for analysis.
Precipitation is chosen as predictand. Representative Concentration Pathways
(RCPs) scenarios, 4.5 and 6.0 are used for the study. Projected precipitation from
2006 to 2100 is obtained by the developed MLR model. Downscaled precipitation
predictions show that there is increase in precipitation in the future.

Introduction

Climate change is becoming a challenge in the global environment. Continued
emissions of greenhouse gases would further increase the existing risks and create
new ones for society and ecosystems (IPCC 2014). In this regard, it is required to
predict the future climate changes to analyze its possible impacts in a river basin.
Global Climate Models (GCM’s) are one of the approaches available for assessing
change in climate. In addition, statistical downscaling approaches are becoming
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important due to their ability to derive quantitative relationship between local
surface variables, i.e., predictands and large-scale atmospheric variables, i.e., pre-
dictors (Wilby and Wigley 1997). This study has been taken to synthesize the future
precipitation scenarios adopting statistical downscaling approach, namely, Multiple
Linear Regression (MLR) for Lower Godavari basin, India using the simulations of
GCM, GFDL-CM3. Present paper covers the literature review, study area,
methodology, results and discussion followed by summary and conclusions.

Literature Review

Numerous studies have been carried out for assessing the climate change impact
adopting various downscaling approaches. Schoof and Pryor (2001) conducted a
study to downscale temperature and precipitation using regression and Artificial
Neural Networks. They compared the performance of downscaling models and
discussed the possible improvements. It was concluded that performance of ANN’s
was clearly superior to MLR. Tatli et al. (2004) carried out a study to downscale
monthly total precipitation over Turkey. They observed that a large-scale analysis is
required due to the existence of complex relationships between large-scale pro-
cesses and local atmospheric conditions. Fowler et al. (2007) presented
state-of-the-art review on downscaling techniques for hydrologic modeling appli-
cations. They suggested applied research that can handle future uncertainties.

Hashmi et al. (2009) presented a study to deal uncertainty aspects associated
with statistical downscaling of monthly precipitation in a watershed by applying a
Bayesian framework to develop Weighted Multi-Model Ensemble (WMME). They
strongly supported multi-model ensemble downscaling for hydrological impact
assessment. Goyal and Ojha (2010) analyzed various linear regression models as a
part of downscaling for the case study of Pichola lake region in Rajasthan. The
results of the study indicated that direct regression outperformed all other methods.

Similar studies were made by Meenu et al. (2012) for Tungabhadra river basin,
India; Latt and Wittenberg (2014) for multi-step forecasting of Chindwin River
floods, northern Myanmar; Elhakeem et al. (2015) for United Arab Emirates
(UAE).

It is observed from literature review that statistical downscaling approaches are
useful and can be used as the basis for adaptation studies. Keeping this in view, it is
felt necessary to study the effect of climate change on precipitation for the case
study of Lower Godavari Basin, India. Summing up, the following objectives have
been carried out:

(a) To study the applicability of MLR as statistical downscaling approach.
(b) To generate future precipitation at the basin level.
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Study Area

The study area, Lower Godavari Basin starts from the river’s confluence with the
Manjira to the mouth which lies between North latitudes 16° 19′–19° 03′ and East
longitudes 80° 01′–82° 94′. Godavari basin has a tropical climate. Comparatively
the weather is hotter in the western most parts of the basin as compared to the
northern, central and eastern regions. Southwest monsoon is the major source of
rainfall. Variation of annual rainfall of the basin is from 755 to 1531 mm whereas
average annual rainfall is 1096.92 mm over a period of (1971–2005). Variation of
annual maximum temperature is from 31 to 33.5 °C over a period of (1969–2004)
(Godavari River Basin 2014). Accordingly predictor variables are chosen in the
study to arrive at the future climatic scenario in the basin.

Methodology

Selection of Predictors and Predictands

Lower Godavari Basin is divided into 5 grid points for the present study based on
the grid resolution available for the India Meteorological Department (IMD) data,
i.e., 17.5N–80.5E, 17.5N–81.5E, 18.5N–81.5E, 18.5N–80.5E, 18.5N–82.5E. All
the data were processed using following steps (Fig. 1).

Precipitation (Prec) is chosen as predictand in downscaling methodology. In this
regard, historical monthly data of Prec for the five grids of Lower Godavari Basin
was obtained from the IMD, for the period of 1969–2005 (baseline period).
Predictors were established for predictand and presented in Table 1. All the chosen
predictors are interdependent which collectively affect the change in precipitation.
Hence it is expected to obtain a relationship between the predictands and predictors
which would essentially help to evaluate performance of downscaling process
(Anandhi et al. 2009; Mujumdar and Nagesh Kumar 2012).

NCEP reanalysis data of the study area have been taken from 1969 to 2005 for the
listed predictor variables (Table 1) and used for calibration along with IMD data.
Once the model is developed, it can be used for generating future scenarios from
GCM data. This data is obtained at a grid resolution of 2.5° � 2.5° (lati-
tude � longitude) on a daily scale and averaged to obtain monthly scale data (http://
pcmdi9.llnl.gov/esgf-web-fe).
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Fig. 1 Schematic view of the present methodology

28 G. Akshara et al.



Selection of GCM and Representative Concentration
Pathways (RCPs)

Choosing a suitable GCM is a crucial step as it decides the outcome of the study.
Chaturvedi et al. (2012) suggested GFDL-CM3 for both temperature and precipi-
tation. Hence, GCM outputs of GFDL-CM3 have been considered from 2006 to
2100 for projecting future scenarios of precipitation (Akshara 2015).

GFDL-CM3 was developed by Geophysical Fluid Dynamics Laboratory of
USA. The model has a resolution of 2° � 2.5° (latitude � longitude) covering
90 � 144 global grids. Information about input data is presented in Table 1.
The GCM data for RCP 4.5 and RCP 6.0 are used in this study (IPCC 2014).
Interpolation technique is used to bring the data at common resolution for com-
parative purposes.

Data Preparation

The first step in climate modeling is to acquire observed meteorological data rel-
evant to the study area. The future time series has been developed using MLR
technique with predictor variables of NCEP and GFDL-CM3 (RCP4.5 and RCP6.0)
data sets which are described below:

NCEP 1969–2005: Set contains 37 years of normalized daily observed predictor
data, extracted from NCEP reanalysis.

GFDL-CM3 (RCP4.5 and RCP 6.0): 1969–2100: This set contains 132 years of
monthly predictor data, derived from the GFDL-CM3, RCP 4.5 and RCP 6.0
experiments, normalized over the 1969–1998 (30 years) period.

Table 1 Predictor variables for downscaling precipitation

Predictor variables Notation

Eastward wind @ 500 hpa p5_u

Eastward wind @ 850 hpa p8_u

Northward wind @ 500 hpa p5_v

Northward wind @ 850 hpa p8_v

Geopotential height @ 500 hpa p500

Geopotential height @ 850 hpa p850

Air pressure @ mean sea level mslp

Near surface relative humidity hurr

Near surface specific humidity hurs
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Statistical Downscaling

MLR analysis is used as the statistical downscaling approach to find the degree of
interrelationship among number of variables. The initial screening of predictor
variables has also been performed (Ghosh and Mujumdar 2008; Wilby and Dawson
2013).

Results and Discussion

Regression analysis is performed with respect to each grid and R2 is evaluated.
p5_u, p8_u, p8_v, p500, p850, mslp, hurr, hurs are the chosen predictors after
screening for grids 1, 2, 3, and 4 whereas p8_v, p500, p850, mslp, hurs for grid 5.
Both the dependent variable and the independent variables are organized grid-wise
and are given as input to the linear regression. Five regression equations are for-
mulated with respect to each of the five grids considered in the study area. The
calculated R2 has been found in the range of 0.596–0.696 and grid 4 has the highest
R2 value compared to all other grids. Overall, the regression models are found to be
satisfactory. These inferences were based on the outputs related to five grids and
innumerable trial and errors conducted on varying combinations of predictors.

Application of Downscaled Scenarios for Future Periods

The standardized GCM predictors for the period 2006–2100 are now introduced in
the models developed by calibrating the IMD observed data with NCEP predictor
variables for the baseline period (1969–2005) to project the future precipitation for
both the scenarios, i.e., RCP 4.5 and RCP 6.0. Three time periods 2020s (2020–
2029), 2050s (2050–2059) and 2080s (2081–2089) were considered in order to
observe the changes occurring in these periods.

Analysis for Grid 1: 17.5N–80.5E

It is observed from Fig. 2 (for RCP 4.5) that there is minimum precipitation in
January and December and maximum in July and August; the trend for future
precipitation exhibits intermediate peaks in April; the change in precipitation is
significant from baseline period to 2020s as well as 2020s–2050s. It is observed
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from Fig. 3 (for RCP 6.0) that precipitation is increasing on the whole. Heavy
precipitation can be expected in July and August; Precipitation before and after
monsoon followed a decreasing pattern with monsoon period as a center in the
baseline period. It is not the same with future periods; the maximum precipitation
observed in 2020s is 9 mm/month, 2050s is 14 mm/month and in 2080s
19 mm/month.
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Fig. 2 Prec trend for RCP 4.5 for different time periods for grid 1
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Analysis for Grid 2: 17.5N–81.5E

It can be inferred (for RCP 4.5) that precipitation decreases by a small amount for
2020s in the post-monsoon and increases significantly for all months in 2050s and
2080s relative to baseline period; It is noted that precipitation in 2020s in few
months coincides with that of baseline period; Significant changes in precipitation
are observed from 2020s to 2050s rather than 2050s to 2080s. It is observed (for
RCP 6.0) that maximum precipitation occurs in July and August and minimum is
observed in January and December. Precipitation is following a zig zag pattern in
the first five months. The post-monsoon rains have also increased by a considerable
amount.

Analysis for Grid 3: 18.5N-80.5E

It is noted that (for RCP 4.5) amount of precipitation is very high in June, July and
August and there is very little amount of precipitation in January and December.
There is a significant increase in precipitation from 2020s to 2050s whereas the
difference from 2050s to 2080s is slightly low. The precipitation has gradually
decreased for winter season and increased for post monsoon as observed for RCP
6.0. The peak value is observed in July for all time periods. The maximum pre-
cipitation in 2080s is expected to be around 34 mm in July.

Analysis for Grid 4: 18.5N–81.5E

It is observed for RCP 4.5 that changes in precipitation is very large from 2020s to
2050s whereas very small change is observed from 2050s to 2080s. Peak is observed
in August for all time periods; Precipitation is following a zig zag pattern in the first
5 months. The post-monsoon rains have also increased by a considerable amount.
Precipitation is increasing gradually from one time period to another. The difference
between baseline period to 2020s is observed to be very low whereas the difference
between successive time periods has increased gradually (for RCP 6.0). Precipitation
follows an increasing trend from January to March and decreases up to May and then
increases gradually till the month of August and then decreases till December, but
compared to baseline, the amounts of precipitation have increased significantly in all
future periods considered.
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Analysis for Grid 5: 18.5N–82.5E

There is a gradual decrease in increase of precipitation in pre-monsoon and
post-monsoon period and significant increase in monsoon period for RCP 4.5.
Precipitation in winter has reduced by a great amount; no significant decrease is
observed in precipitation change from 2050s to 2080s. It can be inferred from RCP
6.0 scenario that precipitation increased gradually till April and a decrease in trend
is formed in May; whereas June, July and August have the highest amounts of
precipitation compared to the remaining months; January and December are
reported to be the driest months.

Summary and Conclusions

Linear Regression analysis is applied to Lower Godavari Basin. The predictor
variables of NCEP from 1969 to 2005 are used to develop the relationship with
observed monthly precipitation obtained from IMD. The relationship obtained by
regression analysis is used to predict the monthly precipitation using the surface
predictors obtained from GCM outputs. The GFDL-CM3 has been used in present
study.

Downscaled precipitation predictions show that there is an increase in the
amount of precipitation in the future. Precipitation for all the grids on an average
has increased from 8 to 10 mm/month in the baseline period to 20–25 mm/month in
2080s. Considering the RCP’s, no noticeable difference between RCP 4.5 and RCP
6.0 is observed except for slight variations in few months. Amount of precipitation
will be very high from June to August and very low in January and December.

The present study is based on the chosen GCM, RCPs, and downscaling
approach. The results may vary depending on the chosen combinations. However,
focus of the present work is to suggest a methodology that can be replicated in due
course of time depending on the availability of data and resources.
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Statistical Downscaling of Minimum
Temperature of Raipur (C.G.) India

R.K. Jaiswal, H.L. Tiwari, A.K. Lohani and R.N. Yadava

Abstract The future projected climate parameters obtained from using generalized
circulation models (GCMs) cannot be used directly on regional or basin scale
because of coarse resolution. The dynamic or statistical downscaling procedures are
used to convert global scale output to regional scale condition. The statistical
downscaling because of its less computational skills is preferably used for gener-
ation of future climate and in the present study, minimum temperature of Raipur
was forecasted for three future periods using Canadian Global Climate Model
(CGCM) predictors for A1B and A2 climate forcing conditions. The statistical
downscaling model (SDSM) has been used using k-fold validation technique for
generation of multitemporal series for periods FP-1 (2020–2035), FP-2
(2046–2064), and FP-3 (2081–2100). The specific humidity at 850 hpa (ncep-
s850gl), 500 hpa geopotential height (ncepp500gl), and surface airflow strength
(ncep_fgl) were found to be the most appropriate parameters to generate future
scenarios. The comparison of mean monthly minimum temperature of generated
scenarios with base period confirmed 1.1–11.2% increase of minimum temperature
under A1B climate forcing and 2.88–24.44% in summer months will have adverse
effect on various demands and human health in future and adaptation measures need
to be devised for the region.
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Introduction

The different reports of Intergovernmental Panel on Climate Changes (IPCC 2003,
2007) and other independent researches have confirmed that climate is changing on
global and regional scale which is likely to affect availability and supplies of water
(Milly et al. 2005; Gleick 1987), health, agriculture, and livestock (McCarthy et al.
2001; Ravindran et al. 2000; FAO 2001; Menzel et al. 2006; Sivakumar et al. 2012)
and many more areas of human life. It can be emphasized here that changing
climate has intensified probability of extreme events such as floods (Milly et al.
2002, 2005), droughts (Huntington 2006), etc. The temperature among other cli-
matological parameters is the most important and easily detectable parameter to
show impact of climate change on water availability and demands, agriculture
production, human health, and many more areas of life. The prediction of future
climate, its implication, and adaptation measures are keys to cope up the future
challenges.

This problem of coarse grid data can be solved by downscaling GCMs to local
and basin scale with the help of dynamic or statistical downscaling techniques that
bridge the large-scale atmospheric conditions with local scale climatic data (Wilby
and Wigley 1997; Xu 1999; Fowler et al. 2007; Tisseuil et al. 2010; etc.). The
dynamic downscaling techniques use physically based model run in time slice
mode and limited area (Giorgi and Mearns, 1999) having major drawback of
dynamic downscaling is its complexity and high computation cost (Anandhi et al.
2008) and propagation of systematic bias from GCM to RCM (Salathe 2003).
However, statistical downscaling techniques are reasonably accurate in developing
relationships between GCM predictors and regional/station climatic data (Fowler
et al. 2007), simple, flexible in adjustment and movement to different regions, less
costly, and computationally undemanding in comparison to dynamic downscaling
proved its reliability and compatibility in future projections (Hewitson and Crane
2006; Tripathi and Nanjundiah 2006; Lopes 2008; Ethan et al. 2011). In the present
study, statistical downscaling model (SDSM 5.2) has been used to predict vari-
ability in minimum temperature using Canadian Global Circulation Model (CGCM)
weather predictor data for A1B and A2 SRES scenarios.

Statistical Down Scaling Model (SDSM)

The SDSM is user-friendly software developed under sponsorship of A Consortium
for Application of Climate Impact Assessments (ACACIA), Canadian Climate
Impacts Scenarios (CCIS) Project and Environment Agency of England and Wales.
The SDSM can develop multiple, low-cost scenarios of daily surface weather
variables using seven key functions namely quality control and data transformation,
selection of downscaling predictor variables, model calibration, weather generator,
data analysis, graphical analysis, and scenarios generation for the task of daily
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weather downscaling and forecasting. The quality control function is used to
identify the gross error, gaps, statistics, and outliers in the data which is an
important step prior to calibration. The spatial and temporal variability in
explanatory power of predictors makes selection of appropriate predictors difficult
and screen variable operation in SDSM assists examination of seasonal variation,
intercorrelation in predictors, and their correlations with predictand. The scatter
diagram, correlation, partial correlation, explained variance, etc., can be used to
select suitable predictors to develop statistical relationships.

After selecting the most appropriate predictors, the calibrate model tab is used to
develop multiple linear regression techniques with efficient dual simplex algorithm
(forced entry method) to develop a relationship between predictand and user
specified set of predictors in conditional (in case of precipitation) or unconditional
(in case of temperature, wind speed, etc.) process. The synthetic series for future
periods can be generated using weather generator tab of SDSM software using
developed relationships from calibration and CGCMs obtained predictors set from
future periods. The SDSM links automatically all required predictors in a regression
model developed in calibration process for a user specified period. The data analysis
operation in SDSM model is carried out using summary statistics and frequency
analysis operation. The frequency analysis tab is useful to compare observed and
synthesized series with the help of quantile plot, PDF plot, line plot, and frequency
analysis. The time series analysis tool is used to analyze observed and modeled
series graphically. The scenario generation can be used to generate ensembles of
synthetic daily weather series giving a treatment of percent changes in mean,
occurrence or variance or linear, exponential or logistic trend in any series. The
detail about the application of SDSM can be found in Goodess et al. (2003), Wilby
and Dettinger (2000), Wilby et al. (2001, 2003). The graphical representation of
various steps used in SDSM based downscaling can be seen in Fig. 1.

Study Area and Data Used

The study area for the present study is Raipur city, the capital of Chhattisgarh state
of India. The Raipur is an important city of eastern India and has large-scale
commercial and industrial development since its inception of capital of
Chhattisgarh state in 2000. The river Seonath, an important tributary of river
Mahanadi, passes through the city and is used to supply water for industrial and
domestic demands of district. The map of the study area is presented in Fig 2. The
long-term series of observed daily minimum temperature from 1971 to 2003 of
Raipur city, the capital city lying in upper Mahanadi basin, has been used for
calibration and validation of statistical model. The NCEP reanalyzed predictors
from 1971 to 2003 and SRES A1B and B2 data of Canadian Global Circulation
Model CGCM 3.1/T47 from 2001 to 2100 were used to generate future scenarios.
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Fig. 1 Work flow in SDSM-DC (reproduced from Wilby et al. 2014)

Fig. 2 Location of Raipur in Chhattisgarh state of India
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Methodology

The methodology for application of SDSM for generation of minimum temperature
series for future climatic scenarios consists of verification of predictand and pre-
dictors series, analysis of predictand, predictor relationship, and selection of
appropriate predictors which can explain the temporal and spatial variability of
predictand with reasonable degree of agreement, calibration and validation of model,
generation of future time series using GCM predictors series, computation of
statistics and comparison of statistics of present and future scenarios. In the present
study, correlation coefficient, partial correlation coefficient, and P-value-based
method along with scatter diagram were used. The correlation coefficients between
predictand (precipitation) and predictors (26 NCEP rescaled parameters) were
computed using unconditional approach for annual, monthly, and monsoon season
(Mahmood and Babel 2013, 2014). The correlation coefficients were then arranged
in descending order and top ten predictors were selected for further analysis. The
predictors ranked first in this process can be termed as super predictor (SP) and using
this super predictor, absolute correlation coefficient, absolute partial correlation, and
the P-value were computed for remaining nine predictors with predictand. In order to
avoid multicollinearity, all predictors having P-value more than 0.05 and other
predictors having high individual correlation with super predictor (more than 0.70
for this study) were removed from consideration. The percentage reduction (PR) was
then computed for remaining predictors using following equation (Pallant 2007).

PR ¼ Pr�R
R

; ð1Þ

where Pr and R are the partial and absolute correlation coefficient, respectively. At
the end, a predictor having lowest PR value was considered the second super
predictor. Similar approach was applied to get third, fourth, and other predictors. In
general, one to three predictors are sufficient to model climatic variability (Xu 1999;
Chu et al. 2010). After selecting the appropriate predictors, empirical relations
between predictand and selected predictors were developed considering appropriate
transformation, process (conditional for precipitation and unconditional for other
climatic parameters), k-fold cross validation, and model types (monthly, seasonal or
annual model). The whole series of predictor and selected predictands of base
period is divided in two parts considering k-fold cross validation technique avail-
able in SDSM-DC. In this technique, the whole series can be divided into k equal
size subsamples, where one sample is used for calibration while remaining for
testing or validation (Bedia et al. 2013; Casanueva et al. 2014). If results of cali-
bration and validation were found appropriate, the weather generator in SDSM can
be used to generate future predictor series using predictors obtained from different
GCM scenarios.
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Analysis of Results

In the present study, SDSM 5.2 software has been employed to generate minimum
temperature series for current and future climate forcing. For the present study, 26
NCEP rescaled predictors for the period of 1971–2003 and predictor as minimum
temperature series of Raipur (Chhattisgarh) for the same period were analyzed. The
scatter diagram, correlation coefficient, and partial correlation based percentage
reduction were used to identify an appropriate combination of predictors which can
forecast predictand with acceptable degree of error. The scatter diagram of few
predictors was presented in Fig. 3. The specific humidity at 850 hpa (nceps850gl)
displayed the highest correlation coefficient as 0.649 and was considered as the first
super predictor. The PR values of remaining nine predictors having next highest
correlation were computed and 500 hpa geopotential height (ncepp500gl) and
surface airflow strength (ncep_fgl) were shortlisted as second and third super
predictor for calibration. The threefold cross-validation was used which divided the
whole series of data from 1971 to 2003 into two parts where first two-third parts
were considered for calibration while remaining one-third part for validation.

The coefficient of determination (R2) and standard error for different months
during calibration and validation obtained from analysis are presented in Table 1.
From the analysis, it has been observed that the standard error varies from 1.01 to
3.45 in calibration and 1.20 to 3.60 in validation. The Nash–Sutcliff efficiency of
minimum temperature for calibration and validation was computed as 71.55 and
73.89%, respectively, which may be considered as reasonably acceptable match.
The comparison of observed versus calibrated and validated mean monthly mini-
mum temp of Raipur has been presented in Fig. 4. The finally selected parameters
in calibration were further used to synthetically generate time series of minimum
temperature under CGCM supplied data of A1B and A2 forcing conditions.
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CGCM A1B Forcing Condition

The finally selected combination of variables with calibrated parameters was used
to synthetically generate 20 series for three future periods FP-1 (2020–2035), FP-2
(2046–2064) and FP-3 (2081–2100) using gridded predictors obtained from
Canadian general circulation model (CGCM) under climatic forcing condition of
A1B. The statistics including mean monthly minimum temperature, peak below
threshold (PBT: number of days/year below 10 °C minimum temperature), vari-
ance, inter-quantile range, etc., were computed. The mean monthly minimum
temperature and PBT of base period (1971–2003) and all three periods FP-1, FP-2,
and FP-3 can be seen in Fig. 5. From the analysis, it has been observed that mean
monthly minimum temperature may increase by 1.1–11.2% during summer months

Table 1 Coefficient of determination and standard error during calibration and validation

Month Calibration Validation

R2 Std. error R2 Std. error

January 0.0241 3.1167 0.0025 3.1807

February 0.0042 2.9721 0.0014 3.0024

March 0.0183 2.7412 0.0021 2.7810

April 0.0682 2.6013 0.0140 2.7221

May 0.0212 2.5334 0.0020 2.6341

June 0.1180 2.3174 0.0648 2.4051

July 0.0031 1.2724 0.0749 1.3794

August 0.0199 1.1167 0.0302 1.2006

September 0.0146 1.1001 0.0487 1.1999

October 0.1072 2.5883 0.0162 2.8488

November 0.0667 3.4525 0.0190 3.5963

December 0.0462 2.7824 0.0020 2.9153

Mean 0.0426 2.3829 0.0232 2.4888
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Fig. 4 Observed and calibrated/validated mean monthly minimum temperature in SDSM
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(February to May) in all three future predictive periods while decrease by 0.5–
14.2% in remaining months (June to January) under A1B climate forcing condition.
The average number of days/year below 10 °C may increase in November and
January while decrease in all other months.

Generation of Series for A2 Forcing Condition

The weather generator tab of SDSM was used to generate 20 ensembles for three
different periods FP-1 (2020–2035), FP-2 (2046–2064), and FP-3 (2081–2100)
using CGCM gridded data under A2 forcing condition. The generated series for all
the periods was used to compute statistics including mean, maximum, peak below
threshold (10 °C), variance, etc., and compared with the same for the period 1973–
2003. The mean monthly minimum temperature series for different periods with
observed data has been presented in Fig. 6. From the analysis, it has been found
that the mean monthly minimum temperature may increase by 2.88–24.61% in
most of the months except June to October where there may be slight decrease of
minimum temperature. The increased minimum temperature during summer and
winter months may increase user demands and water requirements of crops in rabi
season. The number of cold days below 10 °C may increase significantly in
November and January while decrease slightly in December and February in all
three future periods.
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Conclusion

The changing climate of the world has adverse effect on different facets of life and
there is need to develop adaptation strategy for water resource management, agri-
culture, health, and many more areas of life. The changes in minimum temperature
and extreme events are now clearly visible in different parts of earth. The statistical
downscaling model (SDSM) has been used to generate several future predictive
series for three different periods 2020–2035 (FP-1), 2046–2064 (FP–2), and 2081–
2100 (FP-3). The different goodness of fit criterions including scatter diagram,
correlation coefficient, and percentage reduction confirmed specific humidity at
850 hpa (nceps850gl), 500 hpa geopotential height (ncepp500gl) and surface air-
flow strength (ncep_fgl) were found the most appropriate parameters to generate
future scenarios. The multiple series for each three predictive periods for A1B and
A2 climate forcing conditions were generated and compared statistically with base
series (1971–2003). It may be concluded that mean monthly temperature may
increase significantly during summer months in both A1B and A2 climate sce-
narios. The winter months may observe decrease of minimum temperature in A1B
condition while slight increase under A2 climate condition.
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Statistical Downscaling of Daily
Temperatures and Precipitation Data
from Coupled Model Inter-comparison
Project 5 (CMIP5)-RCPs Experiment: In
Weyib River Basin, Southeastern Ethiopia

Abdulkerim Bedewi Serur and Arup Kumar Sarma

Abstract Impact of climate change on the temperature and precipitation charac-
teristics of Weyib River basin in Ethiopia has been investigated using CanESM2
model for the RCP2.6, RCP4.5, and RCP8.5 scenarios. The statistical downscaling
model calibrated and validated using the observed daily data of 12 meteorological
stations was used to generate the future scenario. The change in mean annual
maximum temperature from the base period has indicated an increment of 0.16,
0.14, and 0.15 °C for RCP2.6, 0.12, 0.19, and 0.21 °C for RCP4.5, and 0.12, 0.22
and 0.32 °C for RCP8.5 for the 2020s, 2050s, and 2080s, respectively. Mean
annual minimum temperature has shown an increment of 0.30, 0.43, and 0.39 °C
for RCP2.6, 0.31, 0.48, and 0.57 °C for RCP4.5, and 0.34, 0.66 and 1.04 °C for
RCP8.5 for the 2020s, 2050s and 2080s, respectively. For the percentage change in
mean annual precipitation from the base period, the increment has been 8.68, 12.93,
and 11.34% for RCP2.6, 9.54, 14.36, and 16.94% for RCP4.5, and 14.70, 19.14,
and 28.69% for RCP8.5 for the 2020s, 2050s, and 2080s, respectively. There was a
significantly (at 5% significant level) increasing trend of both temperatures and
precipitation in all the three RCPs for future until the year 2100. The increment of
rainfall in the study area was comparatively higher in the dry season 20.68% in the
2020s, 33.65% in 2050s, and 53.74% in 2080s for RCP8.5 which might have
positive impact on pastoral region of the study area and it might affect the highland
areas negatively since this season is expressly main crop harvesting period.
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Introduction

It is observed that there is a substantial scale gap between what Global Circulation
Models (GCMs) supply the predictors and what the hydrological models require
climatic inputs to simulate hydrological processes. This scale discrepancy sources
to a sizeable trouble for the valuation of climate change effect through hydrological
models. Hence, significant awareness should be drawn to the development of
downscaling methodologies so as to obtain local scale climate variables (mainly
precipitation and temperatures) from coarse resolution ESMs. There are two prime
methodologies accessible for the downscaling of large-scale resolution ESMs
output to the finer (local) scale resolution (Wilby and Dawson 2007) namely
dynamical (a higher resolution regional climate model is enforced to use ESMs
output) and statistical (forms empirical relationships between large-scale atmo-
spheric ESM variables, the predictors and local (finer or catchment) scale climate
variables, the predictands) downscaling methodologies.

The projected mean annual temperature in Ethiopia are found to be in the ranges
0.9–1.1, 1.7–2.1, and 2.7–3.4 °C by 2030, 2050, and 2080 time slices, respectively
(Ethiopian National Meteorological Agency 2007). The projected mean annual
maximum and minimum temperature shows rising trend in southeastern part of
Ethiopia (Shawul et al. 2016). The increment of large-scale mean surface temper-
ature by the end of the twenty-first century are found to be in the ranges 2.6–4.8 °C
(RCP8.5), 1.1–2.6 °C (RCP4.5), and 0.3–1.7 °C (RCP2.6) (IPCC 2013). In gen-
eral, temperatures revealed an increasing trend (Kruger and Shongwe 2004; New
et al. 2006; Unganai 1996) which tends to glacier to melt, sea level to rise, and
alteration in circulation pattern which influence precipitation, water availability, and
extremes of floods and droughts; just to name a few. There has been observed
substantial variability in rainfall (rise about 20% and also declined by about 20%) in
the globe (Bates et al. 2008). Larger spatial variation of precipitation (from a drop
of about 25–50% to rise to 25–50%) has been reported in East Africa (Faramarzi
et al. 2013). Increase in rainfall has been observed (Shongwe et al. 2009) in the
tropics. Rainfall variability is more in the African continent and resulted in variation
in water availability. For instance, a decline in water availability (streamflow) (Beck
and Bernauer 2011) by 2050s has been reported. Nevertheless, the rise of water
availability (Graham et al. 2011) has also been stated. As we have seen in various
literatures that there is an argument on the amount of decreasing or increasing of
water availability on the globe.

The present unpredictable climate is a striking plenteous threat to Ethiopia by
mainly disturbing water resources and agricultural sectors. Recent flooding inci-
dences, as well as the widespread drought in Ethiopia, could remain placed as
visible indications for these influences (Ethiopian National Meteorological Agency
2007). The Weyib River basin is used for several purposes (i.e., various water
resources schemes involved to the flow of the river) but rises in temperature and
change in rainfall magnitude and pattern affect the basin negatively. Therefore, in
this study, statistical downscaling methodology using multiple linear regression
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(MLR) based statistical downscaling model (SDSM) has been used to downscale
daily temperatures (maximum and minimum) and precipitation data for 12 arbitrary
meteorological stations found inside study area of Weyib River basin using
CMIP5-CanESM2 for the RCP8.5, RCP4.5, and RCP2.6 scenarios. These future
downscaled temperatures and precipitation data can be used as an input for
hydrological models to simulate future, various surfaces, and subsurface hydro-
logical processes. The analysis of future maximum and minimum temperature and
precipitation was carried out on an annual, seasonal, and monthly basis for three
(the 2020s; represents 2011–2040 time series data, 2050s; represents 2041–2070
time series data and 2080s; represents 2071–2100 time series data) time slices in
future periods.

Materials and Methods

Study Area (Weyib River Basin)

The Weyib River basin (Fig. 1) has an area of 4215.93 km2 and is situated between
6.50 and 7.50°N latitude and 39.50–41.00°E longitude. The altitude variation
ranges around 4389 m (a.m.s.l.) at the highest point to 898 m at the confluence
point. Mean annual maximum and minimum temperature of the study area are
22.30 and 7.60 °C, respectively. The average rainfall in the study area ranges
749.34–1368.90 mm (mean of 1037.40 mm) per annum. The Eutric Vertisol and
Dystric Cambisol are the two main soil types, and agriculture is a leading land use
type. Roughly, 70.54% of the basin area covered with 0–15% land slope. Mean
annual total water availability (in the simulation period 1984–2004) has to be
553.46 mm.

Earth System Model (ESM) and RCP Scenarios

In this study, a bias-corrected CMIP5-ESMs climate model for the RCP8.5 (very high
emission scenario), RCP4.5 (an intermediate emission scenario), and RCP2.6 (very
low emission scenario) scenarios has been used. The historical and future predictor
variables have been downloaded through official website (http://ccds-dscc.ec.gc.ca/?
page=pred-canesm2) of Canadian Centre for ClimateModelling and Analysis (http://
ccds-dscc.ec.gc.ca/?page=pred-canesm2CCCMA). These predictors are assigned in
zip file format and have five files inside (CanESM2_historical_1961-2005,
CanESM2_rcp26_2006-2100, CanESM2_rcp45_2006-2100, CanESM2_rcp85_
2006-2100 and NCEP-NCAR_1961-2005) the predictors prepared, this technique
was used as an input in SDSM.
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Types of Data Used

Daily weather data and ESM data were utilized for this study. The daily weather
data (daily precipitation, Tmax, Tmin, mean wind speed, relative humidity and
sunshine hours) for 12 weather stations (detailed in Table 1) were collected from
National Meteorological Service Agency of Ethiopia (NMSA). The source of ESM
data is the official website of Canadian Centre for Climate Modelling and Analysis
mentioned above in ‘earth system model (ESM) and RCP Scenarios’ section. The
mean monthly rainfall (mm) and temperature (°C) characteristics of Weyib River
basin are depicted in Fig. 2.

Fig. 1 Study area: location map, reach, basin, and selected weather stations of the Weyib River
basin
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Downscaling Methods

There are two prime methodologies accessible for the downscaling of large-scale
spatial ESMs output to the local scale spatial resolution (Wilby and Dawson 2007)
namely dynamical (a higher resolution regional climate model is enforced to use
ESMs output) and statistical downscaling methodologies. The statistical down-
scaling method establishes empirical relationships between large-scale ESM out-
puts, the predictors, and local scale climatic variables (for instance, Tmax, Tmin,
and precipitation), the predictands with the help of some transfer function as shown
in the following relation.

Table 1 Details of the 12 meteorological stations and their data records

S. No. Station
name

Data
recording
periods

Latitude
(°N)

Longitude
(°E)

Altitude
(m)

Total annual
mean
precipitation
(mm)

Mean
annual
max.
temp
(°C)

Mean
annual
min.
temp
(°C)

1 Robe 1984–2011 7.133 40.000 2464 804.14 21.79 8.00

2 Goba 1998–2007 7.017 40.000 2613 980.03 20.13 6.52

3 Dinsho 1981–2007 7.100 39.783 3072 1368.90 17.43 3.43

4 Agarfa 1988–1997 7.267 39.817 2465 762.36 22.38 8.13

5 Sinnana 1982–2008 7.067 40.217 2364 894.35 21.39 8.02

6 Adaba 1980–2010 7.000 39.383 2415 823.65 23.87 5.10

7 Homa 1988–2010 7.133 39.933 2505 846.58 21.75 7.33

8 Ali 1988–2005 7.017 40.350 2460 1264.17 20.47 6.68

9 Gassera 1980–2010 7.367 40.183 2337 1181.12 20.67 6.95

10 Goro 1981–2005 7.000 40.467 1806 887.14 26.77 7.89

11 Ginnir 1980–2012 7.133 40.700 1929 1030.04 23.82 13.20

12 Hunte 1980–2011 7.100 39.417 2413 749.34 23.71 6.73
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Fig. 2 Mean (12 stations) monthly rainfall and temperature characteristics of Weyib River basin
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Y ¼ f Xð Þ; ð1Þ

where Y is local Tmax, Tmin, and precipitation that were being downscaled,
X stands for a set of large-scale potential predictor variables (for instance, mean sea
level pressure, geopotential heights and specific humidity at the surface and
850 hpa), and f represents a stochastic function that relates the predictands and
predictors.

The “f” function is determined empirically from historical observations by
training and validating the model. Thus, the achievement of the statistical down-
scaling method was based on the relationship used and choice of potential predictor
variables, whose performance can be verified through estimation of various sta-
tistical indices (for instance, R2, RMSE, and NSE). It is roughly divided into three
classes (weather typing, weather generators, and regression-based downscaling).
Regression analysis is very powerful for forecasting (Ghosh and Mujumdar 2008);
it is divided into two categories namely simple regression and multiple regressions.
The statistical downscaling method has its own merits and demerits. Key demerits
of statistical downscaling contain the assumption that observed relations between
large-scale predictors and local predictands will continue in a changing climate.
Similarly, some merits of statistical downscaling contain: it is easy to apply, has the
possibility to downscale from many ESMs and different emission scenarios, and
downscales comparatively fast and inexpensive. Therefore, in this study, the
independent variables are more than one, so MLR using SDSM has been used to
downscale daily temperatures and precipitation data from Ensembles of ESM for
the future RCP scenarios.

Statistical Downscaling Model (SDSM)

The SDSM can perform a combination of the stochastic weather generator and
regression-based on the family of the transfer function (Liu et al. 2011). It performs
the spatial downscaling through daily predictor–predictand relationships using
MLR and creates predictands that represent the local weather condition.
Regression-based in the family of transfer function method is the well-known
technique of downscaling (Ghosh and Mujumdar 2008) that depends on the direct,
measurable link between predictand and predictors through some form of regres-
sion. SDSM version 4.2.9 a decision support tool (Wilby and Dawson 2007) has
been used for this study to downscale daily future Tmax, Tmin, and precipitation.
This model was downloaded from the website http://co-public.lboro.ac.uk/cocwd/
SDSM/. There are seven major steps to be followed in developing the best per-
forming MLR equation for the downscaling processes in this version of SDSM.
Detailed discussions of the steps are given in (Wilby et al. 2002; Wilby and
Dawson 2007).
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The choice of appropriate downscaling potential predictor variables has been
done with the help of the screen variables option of the SDSM using correlation
analysis, partial correlation analysis, and scatter plot. Screening the potential pre-
dictors has been done through choosing seven or eight predictors at a time and their
explained variance has been analyzed, thereby choosing those predictors which
have greater explained variance and drop the rest. Then partial correlation analysis
has been done for nominated predictors to see the level of association with each
other; these statistics identify the extent of the descriptive power of the predictor to
describe the predictand. Therefore, the predictors used for downscaling should be
reliably generated by ESMs, freely accessible from ESM outputs archive and
strongly linked with the local climate variables of concern (Tmax, Tmin, and
precipitation in this case).

The calibration process in SDSM constructs downscaling model based on MLR
equations, with given daily station wise weather data (predictand) and potential
predictors. The model calibration operation has been run for station wise precipi-
tation, Tmax and Tmin along with a set of possible predictor variables, and com-
putes the parameters of MLR equations through an optimization algorithm (Dual
simplex has used in this case). SDSM’s weather generator enables to produce
ensembles of synthetic current daily weather data based on inputs of the measured
time series data and the MLR parameters generated during the calibration
step. Finally, station wise Tmax, Tmin, and precipitation scenario have been gen-
erated until the year 2100 using CMIP5-CanESM2 model outputs (potential pre-
dictor variables for the future period) for the RCP8.5, RCP4.5, and RCP2.6
emission scenarios. Twenty ensembles of synthetic daily Tmax, Tmin and pre-
cipitation time series data were generated for the period from 2006 to 2100 for all
stations and the mean of these 20 ensembles was used as final daily Tmax, Tmin,
and precipitation data for the stated period. Moreover, then the future Tmax, Tmin,
and precipitation scenarios have been established by dividing the later date series
into three (the 2020s, 2050s, and 2080s) time slices for the 12 averaged arbitrary
spatial weather stations.

Precipitation and Temperatures Scenario Statistics

Percentage and absolute change have been used to calculate three-time slices of
30 years precipitation and temperatures, respectively.

A percentage change has been used for precipitation;

D2020s ¼ V2020s� Vbaseð Þ � 100
Vbase

ð2Þ

D2050s ¼ V2050s� Vbaseð Þ � 100
Vbase

ð3Þ
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D2080s ¼ V2080s� Vbaseð Þ � 100
Vbase

: ð4Þ

Absolute difference has been used for temperatures,

D2020s ¼ V2020s� Vbase ð5Þ

D2050s ¼ V2050s� Vbase ð6Þ

D2080s ¼ V2080s� Vbase; ð7Þ

where, Vbase is the mean of 20 ensembles of Tmax, Tmin and precipitation for the
base period for each ESM-RCP and each station. V2020s, V2050s, and V2080s are
the average of 20 ensembles of Tmax, Tmin, and precipitation for the period of
2011–2040, 2041–2070, and 2071–2100, respectively, for each ESM-RCP exper-
iment and each station.

Mann–Kendall Trend Test

A nonparametric rank-based procedure has frequently been used to evaluate if there
is a rise or decline trend in the time series of meteorological and hydrological data
(Hamed 2008; Karpouzos et al. 2010). The Mann–Kendall test was applied in this
study to see the existing trends (rise or decline) of Tmax, Tmin, and precipitation
for the RCP8.5, RCP4.5, and RCP2.6 scenarios in future periods.

SDSM Performance Evaluation

In order to evaluate the SDSM performance relative to the observed Tmax, Tmin,
and precipitation data, the following three statistical model performance evaluation
measures, in addition to graphical technique, were used during the calibration and
validation periods.

Coefficient of Determination (R2)

It was given by (Krause and Boyle 2005) as shown in Eq. 8

R2 ¼
P

Xi� Xav½ � Yi� Yav½ �ð Þ2P
Xi� Xavð Þ2P Yi� Yavð Þ2 ; ð8Þ
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where, Xi is measured value, Xav is average measured value, Yi is simulated value,
and Yav is average simulated value.

Nash–Sutcliffe Coefficient (E)

It was given by (Nash and Sutcliff 1970) as shown in Eq. 9

E ¼ 1�
Pn

i¼1 Xobs;i � Xmodel
� �2Pn

i¼1 Xobs;i � Xobs
� �2 ; ð9Þ

where Xobs is observed values and Xmodel is modeled values at time/place i.

Root Mean Square Error (RMSE)

It was given by (Singh et al. 2004) as shown in Eq. 10

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Xobs;i � Xmodel;i
� �2

n

s
; ð10Þ

where Xobs is observed values, Xmodel is modeled values at time/place i, and n is
number of observation.

Results and Discussion

Selected Potential Predictor Variables

The lists of selected common potential predictor variables in the entire basin that
gave better correlation results at p < 0.05 for CanESM2 are listed in Table 2.

Results revealed that different atmospheric variables affect different local vari-
ables. For instance, precipitation is more sensitive to mean sea level pressure,
specific humidity (at surface and 850 hPa), zonal velocity (at 500 and 850 hPa),
and geopotential heights (at 500 hPa). Mean sea level pressure, geopotential heights
(at 500 and 850 hPa), average temperature (at 2 m height), specific humidity (at
near surface and 850 hPa), and wind direction (at 850 hPa) affect both the maxi-
mum and minimum temperature under the CanESM2-historical model.
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Table 2 List of selected potential predictor variables that provided better correlation results at
p < 0.05 from CanESM2-historical model for study area of Weyib River basin

Predictand Predictor full name Notations Parti.cor.
(r-value)

p-value

Precipitation Mean sea level pressure ceshmslpgl.dat 0.050 0.020

Specific humidity at
850 hPa

ceshs850gl.dat 0.090 0.000

Surface specific humidity ceshshumgl.dat 0.077 0.002

500 hPa zonal velocity ceshp5_ugl.dat −0.094 0.000

850 hPa zonal velocity ceshp8_ugl.dat −0.119 0.000

500 hPa geopotential
height

ceshp500gl.dat 0.056 0.016

Maximum
temperature

Mean sea level pressure ceshmslpgl.dat 0.148 0.000

500 hPa geopotential
height

ceshp500gl.dat 0.134 0.000

Specific humidity at
850 hPa

ceshs850gl.dat −0.268 0.000

Mean temperature at 2 m ceshtempgl.dat −0.235 0.000

850 hPa wind direction ceshp8thgl.dat 0.110 0.000

850 hPa geopotential
height

ceshp850gl.dat −0.200 0.000

Surface specific humidity ceshshumgl.dat −0.274 0.000

Minimum
temperature

Mean sea level pressure ceshmslpgl.dat −0.308 0.000

500 hPa geopotential
height

ceshp500gl.dat 0.222 0.000

Surface specific humidity ceshshumgl.dat 0.146 0.000

Mean temperature at 2 m ceshtempgl.dat 0.323 0.000

Specific humidity at
850 hPa

ceshs850gl.dat −0.116 0.000

850 hPa geopotential
height

ceshp850gl.dat −0.103 0.000

850 hPa wind direction ceshp8thgl.dat 0.078 0.000

850 hPa zonal velocity ceshp8_ugl.dat −0.116 0.000

Note The partial correlation coefficient (r) shows the explanatory power that is specific to each
predictor. All are significant at p � 0.05. hpa is a unit of pressure, 1 hPa = 1 mbar =
100 Pa = 0.1 kPa
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Calibration and Validation of SDSM for Both Temperatures
and Precipitation

For downscaling of maximum temperature and minimum temperature, and pre-
cipitation MLR, using SDSM, was used to calibrate and validate the model. The
entire length of the observed data was available from 1981 to 2005. This data was
divided into two parts for calibration and validation. Data from 1981 to 1993 was
used for the calibration whereas data from 1994 to 2005 was used for the validation
of the model.

Calibration and validation results for 12 averaged spatial stations maximum
temperature downscaling model are shown in (Fig. 3a, b). The coefficients of
determination (R2), RMSE and NSE values were 0.95, 0.44, and 0.79, respectively,
for calibration period whereas R2, RMSE and NSE values of 0.94, 0.46, and 0.82,
respectively, for validation period. For minimum temperature (Fig. 3c, d), the R2,
RMSE, and NSE values were 0.92, 0.58, and 0.86, respectively, for calibration
period whereas R2, RMSE, and NSE values were 0.93, 0.58, and 0.88 for validation
period. Calibration and validation results for 12 averaged spatial stations precipi-
tation downscaling model are shown in (Fig. 3e, f). The R2, RMSE, and NSE
values were 0.83, 0.98, and 0.78, respectively, for calibration period whereas R2,
RMSE, and NSE values of 0.86, 0.79, and 0.84, respectively for validation period.

Fig. 3 a Calibration result of SDSM for maximum temperature from average of 3 ESMs (1981–
1993) (upper left), b same as (a) but for validation period (1994–2005) (upper right), c calibration
result of SDSM for minimum temperature (middle left), d same as (c) but for validation period
(middle right), e calibration result of SDSM for precipitation (bottom left), f same as (e) but for
validation period (bottom right)
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From these results, we can argue that the model is well performed for the maximum
and minimum temperature, and precipitation downscaling for both calibration and
validation period.

Scenarios Developed for Future Temperatures
and Precipitation

Maximum Temperature Scenarios

The projected mean seasonal maximum temperature shows a decreasing trend in the
dry season in all the three future time slices for RCP2.6, RCP4.5, and RCP8.5
scenarios except for RCP2.6 scenario which is an increasing trend in the dry season
of the 2020s. However, it has shown an increasing trend for both an intermediate
and wet seasons in all the three future time slices for RCP2.6, RCP4.5, and RCP8.5
scenarios except for RCP2.6 scenario which is a decreasing trend in a wet season of
the 2020s. The absolute changes of maximum temperature from the base period for
three scenarios in future time slice for each season are presented in Table 3.

The projected mean monthly maximum temperature has a larger magnitude of
increment on the month of June 2080s which was 0.58, 0.80, and 1.37 °C for
RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. On the other hand, the larger
decrement on December 2080s 0.75, 0.38 °C, and on December 2050s 0.32 °C
occurred for RCP8.5, RCP4.5, and RCP2.6 scenarios, respectively (Figs. 4, 5 and
6). The absolute change in mean maximum temperature was observed to be sizable
due to a substantial increase and decrease of maximum temperature on different
months. For instance, in the months of January, February, November, and
December, the decrement of the maximum temperature was observed and an
increment on the rest of the months was observed.

Generally, the change in average monthly maximum temperature might range
between −0.25 °C on December and +0.48 °C on June for the coming 2020s
(2011–2040); −0.50 °C on December and +0.91 °C on June for 2050s (2041–
2070) and −0.75 °C on December and +1.37 °C on June for 2080s (2071–2100) for
the RCP8.5 scenario. The change in average monthly maximum temperature for
RCP4.5 scenario varies between −0.25 °C on December and +0.47 °C June for the
coming 2020s; −0.33 °C on December and +0.70 °C on June for 2050s and
−0.38 °C on December and +1.37 °C on June for 2080s. For RCP2.6, ranges
−0.12 °C on August and +0.42 °C on December for 2020s; −0.32 °C on December
and +0.58 °C on June for 2050s and −0.28 on December and +0.55 °C on June for
2080s.

For each time slice, the change in mean annual maximum temperature has
indicated a slight increment from the base period, 0.16, 0.14, and 0.15 °C
for 2020s, 2050s, and 2080s, respectively, for RCP2.6 scenario, 0.12, 0.19, and
0.21 °C for 2020s, 2050s, and 2080s, respectively, for RCP4.5 scenario, and 0.12,
0.22, and 0.33 °C for 2020s, 2050s, and 2080s, respectively, for RCP8.5 scenario.
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The variability of maximum temperature is higher for RCP8.5 than RCP4.5 and
RCP2.6, and the linear trend line for three scenarios has indicated a significantly (at
5% significant level) increasing trend of average annual maximum temperature until
the end of the century (Table 6 and Fig. 7). Comparatively, RCP8.5 (very high
emission scenario) prevails higher change in maximum temperature trend at the end
of the century than the RCP4.5 (an intermediate emission scenario) and RCP2.6
(very low emission scenario).
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Fig. 4 Change in average monthly and seasonal maximum temperature in the future from the base
period for CanESM2-RCP2.6 scenario
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Fig. 5 Change in average monthly and seasonal maximum temperature in the future from the base
period for CanESM2-RCP4.5 scenario
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Minimum Temperature Scenarios

The projected mean seasonal minimum temperature shows an increasing trend in all
the seasons (Dry, intermediate, and wet) in all the three future time horizons for all
the RCP (RCP2.6, RCP4.5, and RCP8.5) scenarios. The changes of minimum
temperature from the base period for the three scenarios in future time slice for each
season are presented in Table 4. The projected mean monthly minimum tempera-
ture has a larger magnitude of increment on the month of October 2080s which was
2.13, 1.24, and 0.95 °C for RCP8.5, RCP4.5, and RCP2.6 scenarios, respectively,
at the end of the century. On the other hand, the larger decrement on February
2080s 0.51, 0.48, and 0.36 °C occurred for RCP8.5, RCP4.5, and RCP2.6 sce-
narios, respectively, at the end of the century (Figs. 8, 9 and 10). The absolute
change from the base period in mean minimum temperature was observed to be
significant due to a substantial increase and decrease of minimum temperature on
different months. For instance, in the months of February, September, and
December, the decrement of the minimum temperature was observed and an
increment on the rest of the months was observed. In both extreme conditions (rise
or decline), the change in minimum temperature was higher in the 2080s.

Commonly, the change in average monthly minimum temperature might range
between −0.30 °C on February and +0.87 °C on October for the coming 2020s;
−0.41 °C on February and +1.38 °C on October for 2050s and −0.51 °C on
February and +2.13 °C on October for 2080s for the RCP8.5 scenario. For RCP4.5
scenario, it varies between −0.32 °C on February and +0.69 °C October for the
coming 2020s; −0.42 °C on February and +1.12 °C on October for 2050s and
−0.48 °C on February and +1.24 °C on October for 2080s. For RCP2.6 scenario,
ranges become −0.30 °C on February and +0.74 °C on October for the 2020s;
−0.31 °C on February and +0.94 °C on October for 2050s and −0.36 °C on
February and +0.95 °C on October for 2080s.

For each time slice, the change in mean annual minimum temperature has
indicated a slight increment from the base period, 0.30, 0.43, and 0.39 °C for
2020s, 2050s, and 2080s, respectively, for RCP2.6 scenario, 0.31, 0.48, and
0.57 °C for 2020s, 2050s, and 2080s, respectively, for RCP4.5 scenario and 0.34,
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0.66, and 1.04 °C for 2020s, 2050s, and 2080s, respectively, for RCP8.5 scenario.
The variability of minimum temperature is higher for RCP8.5 than RCP4.5 and
RCP2.6, and the linear trend line for three scenarios has indicated a significantly (at
5% significant level) increasing trend of average annual minimum temperature until
the end of the century (Table 6 and Fig. 11). Comparatively, RCP8.5 prevails
higher change in minimum temperature trend at the end of the century than the
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Fig. 8 Change in average monthly and seasonal minimum temperature in the future from the base
period for CanESM2-RCP2.6 scenario
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Fig. 9 Change in average monthly and seasonal minimum temperature in the future from the base
period for CanESM2-RCP4.5 scenario
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RCP4.5 and RCP2.6 scenarios. The future scenarios have shown slightly increasing
trend on both maximum and minimum temperature.

The results of average temperature for this study come to an agreement, with the
slight variation of RCP8.5 scenario, with the study reported (IPCC 2013) and the
results revealed the rise in global average surface temperature by the end of
the twenty-first century to be in the ranges 2.6–4.7, 1–2.5, and 0.3–1.6 °C for
the RCP8.5, RCP4.5, and RCP2.6 scenarios, respectively. The projected mean
annual temperature in Ethiopia was found to be in the ranges 0.9–1.1, 1.7–2.1, and
2.7–3.4 °C by 2030, 2050, and 2080 time slices, respectively (Ethiopian National
Meteorological Agency 2007). The projected mean annual maximum and minimum
temperature show rising trend in southeastern part of Ethiopia (Shawul et al. 2016).
The mean annual temperature of this study comes to an agreement with all the
literature given above regarding direction (pattern), but with slight variation
regarding magnitude (amount). This slight variation of mean annual temperature
increment might arise due to the types of GCM/ESM and emission scenario used, a
method of downscaling, and spatial variation of temperature.

Precipitation Scenarios

The projected mean seasonal precipitation scenarios have indicated an increase of
precipitation in all the seasons (Dry, intermediate, and wet) in all the three future
time slices for RCP2.6, RCP4.5, and RCP8.5 scenarios except for an intermediate
period of the 2020s (a decreasing trend) for RCP2.6 and RCP4.5 scenarios. The
percentage changes of precipitation from the base period for the three scenarios in
future time horizon for each season are presented in Table 5.

The projected mean monthly precipitation has a larger magnitude of increment
on the month of October 2080s 81.02, 54.66, and 42.77% for RCP8.5, RCP4.5, and
RCP2.6 scenarios, respectively, at the end of the century. Conversely, the larger
decrement on February 2020s 8.20 ‘(RCP8.5)’, 10.25% ‘(RCP4.5)’, and 10.90%
‘(RCP2.6)’ was observed (Figs. 12, 13 and 14). The percentage change from the
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base period in mean monthly precipitation was observed to be significant due to a
substantial rise and decline of precipitation on different months. For instance, in the
months of February, September, and December, the decrement of precipitation was
observed and an increment in the rest of the months was shown.

Characteristically, the percentage change in average monthly precipitation might
range between −8.20% on February and +42.59% on October for the coming
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Fig. 12 Percentage change in average monthly and seasonal precipitation in the future from the
base period for CanESM2-RCP2.6 scenario

-20.00
-10.00

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00

Ja
n

Fe
b

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug Se

p

O
ct

N
ov D
ec

D
ry

In
te

rm
ed

ia
te

W
et

C
ha

ng
e 

in
 p

re
ci

pi
ta

tio
n 

(%
)

Time (Month & Season)

CanESM2-RCP4.5: 2020s CanESM2-RCP4.5: 2050s CanESM2-RCP4.5: 2080s

Fig. 13 Percentage change in average monthly and seasonal precipitation in the future from the
base period for CanESM2-RCP4.5 scenario
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base period for CanESM2-RCP8.5 scenario
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2020s; −6.50% on February and +55.61% on October for 2050s and +1.58% on
August and +81.02% on October for 2080s for the RCP8.5 scenario. For RCP4.5
scenario, the range tends to be between −10.35% on February and +34.53% on
October for the coming 2020s; −9.36% on February and +49.90 on October for
2050s and −7.42% on February and +54.66% on October for 2080s. For RCP2.6
scenario, percentage change in average monthly precipitation ranges between
−10.80% on February and +35.41% on October for 2020s; −8.59% on February
and +42.55% on October for 2050s and −9.37% on February and +42.77% on
October for 2080s.

For each time slice, the percentage change in mean annual precipitation has
indicated a considerable increment from the base period, 8.68, 12.93, and 11.34%
for 2020s, 2050s, and 2080s, respectively, for RCP2.6 scenario, 9.54, 14.36, and
16.94% for 2020s, 2050s, and 2080s, respectively for RCP4.5 scenario and 14.70,
19.14, and 28.69% for 2020s, 2050s, and 2080s, respectively, for RCP8.5 scenario.
The variability of precipitation is higher for RCP8.5 than RCP4.5 and RCP2.6, and
the linear trend line for three scenarios has indicated a significantly (at 5% sig-
nificant level) increasing trend of average annual total precipitation until the end of
the century (Table 6 and Fig. 15). Comparatively, RCP8.5 prevails higher change
in precipitation trend at the end of the century than the RCP4.5 and RCP2.6
scenarios.

Figure 15 indicated the pattern of future total mean annual precipitation with a
range of 1124.00–1540.16 mm in the year 2028 and 2099, respectively, for RCP8.5
scenario, 1065.43–1359.59 mm in the year 2018 and 2064, respectively, for
RCP4.5 scenario and 1100.74–1300.24 mm in the year 2096 and 2050, respec-
tively, for RCP2.6 scenario. It has shown the substantial variability of total mean
annual precipitation from year to year throughout simulation period. There has been
observed substantial variability in rainfall (rises about 20% and also declined by
about 20%) in the globe (Bates et al. 2008). Larger spatial variation of precipitation
(from a reduction of 25–50% to an increase of 25–50%) has been reported in East
Africa (Faramarzi et al. 2013). Increase in rainfall has been observed

Table 6 Mann–Kendall trend test for future average annual both temperatures and precipitation
under three RCP scenarios

scenarios Kendall’s tau p-value Alpha Sen’s slope Trend

Tmax for rcp2.6 0.492 <0.0001 0.05 0.117 Significantly increasing

Tmax for rcp4.5 0.521 <0.0001 0.05 0.117 Significantly increasing

Tmax for rcp8.5 0.634 <0.0001 0.05 0.211 Significantly increasing

Tmin for rcp2.6 0.196 <0.0001 0.05 0.106 Significantly increasing

Tmin for rcp4.5 0.256 <0.0001 0.05 0.109 Significantly increasing

Tmin for rcp8.5 0.435 <0.0001 0.05 0.118 Significantly increasing

pcp for rcp2.6 0.186 0.0003 0.05 0.378 Significantly increasing

pcp for rcp4.5 0.193 0.0005 0.05 0.546 Significantly increasing

pcp for rcp8.5 0.201 0.0009 0.05 0.607 Significantly increasing
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(Shongwe et al. 2009) in the tropics, which is also the case in this study. Generally,
increment of rainfall in this study is comparatively higher in the dry season 20.68%
in the 2020s, 33.65% in 2050s, and 53.74% in 2080s for RCP8.5 scenario which
might have positive impact on pastoral region of the study area and it might affect
the highland areas negatively since this season is expressly main crop harvesting
period.

Mann–Kendall Trend Test of Future Temperatures
and Precipitation

Based on the standardized test statistic, it is possible to infer that Mann–Kendall test
has revealed a statistically significant trend in the study area for both future pre-
cipitation and temperatures at the 5% significant level. The maximum and minimum
temperature and precipitation for RCP2.6, 4.5 and 8.5 scenarios have revealed a
significantly (at 5% significant level) increasing trend for future until the year 2100
as shown in Table 6.

Summary and Conclusion

This study tried to downscale daily temperatures and precipitation data from the
CMIP5-CanESM2 output for the RCP8.5, RCP4.5, and RCP2.6 emission scenarios
for future periods until year 21000 in the study area of Weyib River basin.
The SDSM was used to generate future possible local Tmax, Tmin, and precipi-
tation in the study area and it has a good ability to replicate the baseline Tmax,
Tmin, and precipitation for the baseline period.

For each time slice, the change in mean annual maximum temperature has
indicated a slight increment from the base period, 0.16, 0.14, and 0.15 °C for
2020s, 2050s, and 2080s, respectively, for RCP2.6 scenario, 0.12, 0.19, and
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Fig. 15 Future pattern of average annual total precipitation
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0.21 °C for 2020s, 2050s, and 2080s, respectively, for RCP4.5 scenario, and 0.12,
0.22, and 0.33 °C for 2020s, 2050s, and 2080s, respectively, for RCP8.5 scenario.
For mean annual minimum temperature, the increment from the base period has
been found to be 0.30, 0.43, and 0.39 °C for 2020s, 2050s, and 2080s, respectively,
for RCP2.6 scenario 0.31, 0.48, and 0.57 °C for 2020s, 2050s, and 2080s,
respectively, for RCP4.5 scenario and 0.34, 0.66, and 1.04 °C for 2020s, 2050s,
and 2080s, respectively, for RCP8.5 scenario. The percentage change in mean
annual precipitation has indicated a considerable increment from the base period
8.68, 12.93, and 11.34% for 2020s, 2050s, and 2080s, respectively, for RCP2.6
scenario, 9.54, 14.36, and 16.94% for 2020s, 2050s, and 2080s, respectively, for
RCP4.5 scenario and 14.70, 19.14, and 28.69% for 2020s, 2050s, and 2080s
respectively for RCP8.5 scenario.

The variability of both temperatures (maximum and minimum) and precipitation
is higher for RCP8.5 than RCP4.5 and RCP2.6, and the linear trend line for all the
three scenarios has indicated a significantly (at 5% significant level) increasing
trend of both temperatures and precipitation for future until the year 2100.
Comparatively, RCP8.5 prevails higher change in both temperatures and precipi-
tation trend at the end of the century than the RCP4.5 and RCP2.6 scenarios. The
increment of rainfall in the study area is comparatively higher in the dry season
20.68% in the 2020s, 33.65% in 2050s, and 53.74% in 2080s for RCP8.5 which
might have positive impact on pastoral region of the study area and it might affect
the highland areas negatively since this season is specifically main crop harvesting
period.
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Global Climate Pattern Behind
Hydrological Extremes in Central India

Kironmala Chanda and Rajib Maity

Abstract The concurrent influence of large-scale, coupled oceanic–atmospheric
circulation patterns was established to have an effect on hydrologic variability
across the world. El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole
(IOD) are, in particular, important for Indian hydroclimatology. However, it is now
established that rather than just a few well-known teleconnection patterns, a Global
Climate Pattern (GCP) comprising of a global field of several climate anomalies are
responsible for above-normal and below-normal precipitation events over entire
India. The existence of a GCP for hydrological extremes in an even smaller spatial
scale is illustrated in this study. The central part of India, consisting of the con-
tiguous homogeneous meteorological subdivisions—West Madhya Pradesh, East
Madhya Pradesh, Vidarbha, and Chattisgarh (hereinafter ‘central India’), is selected
as the study area. Hydrological extremes (this study focus on precipitation) in the
study area are identified in terms of the Standardized Precipitation Anomaly Index
(SPAI), which is suitable for quantifying extreme events in a monsoon-dominated
climatology. After investigation of the global anomaly fields of five climate vari-
ables, a set of 19 specific zones of climate anomalies from across the world are
found to constitute the GCP for the hydrological extremes in the study region. The
identified GCP is further utilized in a Support Vector Machine (SVM) model to
investigate the potential of the GCP in foreseeing dry and wet extremes over the
study area.
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Introduction

The association of large-scale atmospheric–oceanic circulation patterns and hydro-
logic variables across the world has been established through several studies. Recent
studies have confirmed that asymmetry in the response of rainfall anomalies in
different parts of the world result from opposite phases of low variability oceanic
circulation patterns (King et al. 2013; Qiu et al. 2014). For example, observed
changes in the frequency and intensity of precipitation extremes in Europe are now
largely explained by the persistence in atmospheric circulation patterns over the
North Atlantic (Willems 2013). Changes in large-scale circulation patterns are found
to be responsible for the observed long-term warming and drying in central Europe
(Philipp et al. 2007). For the past two decades, the role of specific oceanic–atmo-
spheric circulation phenomenon such as, El Niño–Southern Oscillation (ENSO),
Indian Ocean Dipole (IOD), Equatorial Indian Ocean Oscillation (EQUINOO),
Pacific Decadal Oscillation (PDO), Atlantic Multi-decadal Oscillation (AMO),
North Atlantic Oscillation (NAO) in triggering and enhancing droughts and floods
on a continental scale have been the focus of research (Chiew and McMahon 2002;
Terray et al. 2003; Gadgil et al. 2004; Goswami et al. 2006; Maity and Nagesh
Kumar 2006, 2008; Feng and Hu 2008; Li et al. 2008; Mo and Schemm 2008; Ting
et al. 2011; Singhrattna et al. 2012; Oubeidillah et al. 2012; Jiang et al. 2013; Rogers
2013; Wang et al. 2013). Some of the recent advances establish the influence of
ENSO and AMO in relation to the variability of China’s summer precipitation (Gu
et al. 2009; Ye 2014) as well as the frequency of its extreme precipitation events (Fu
et al. 2013). The effect of NAO is found to affect winter precipitation, river flow, and
temperature in the Mediterranean region (Brandimarte et al. 2011).

Some of the most frequently researched phenomena are ENSO and IOD, pri-
marily because they influence rainfall anomalies in a large number of countries
across the world. For instance, the unusual warming of the central and eastern
tropical Pacific Ocean during the El Niño events is known to be responsible for
below-normal precipitation in Indonesia and the surrounding Pacific islands and
above-normal precipitation in the western coast of South America. The role of
ENSO in biennial relationship of rainfall variability between Central and equatorial
South America was also recently identified (Wu and Zhang 2010). In the Indian
context, the occurrence of an El Niño event in the Pacific generally indicates that
rainfall deficiencies are in the offing––dry and drought conditions may be expected
due to poor Indian Summer Monsoon Rainfall (ISMR). However, the relationship
between circulation patterns and the occurrence of anomalous continental scale
hydrologic behavior is often very complicated. This is due to the possible
involvement of a number of factors, some more rare than others, which lead to the
optimum conditions for the development of an extreme hydrologic event. Thus, in a
recent study, a direct relationship (as opposed to an inverse relationship) of ENSO
with the rainfall and streamflow series in Mahanadi river basin of south India was
observed (Panda et al. 2013). Again, some studies postulate that the ENSO-ISMR
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relationship has weakened over the years (Viswambharan and Mohanakumar
2014). Apart from ENSO, the other most significant circulation pattern affecting
ISMR is the IOD (Saji et al. 1999; Webster et al. 1999). A positive IOD event,
which is accompanied by high SST over the western Indian Ocean, is known to
affect ISMR positively with abundant rainfall in the Indian subcontinent and dry
and drought conditions in Australia and Indonesia.

Existing literature indicates that most of the previous studies had investigated the
role of specific large-scale Oceanic–Atmospheric Circulation Patterns (OACPs) in
causing extreme hydrologic events such as droughts and floods. However, it is now
established that apart from the well-known teleconnection patterns such as ENSO,
IOD, etc., the concurrent effect of global anomaly fields of several climate variables
influences hydrologic events in a regional scale (Chanda and Maity 2016).
Considering the entire Indian landmass (also referred as all-India) as the test bed, it
was demonstrated that a distinct Global Climate Pattern (GCP) consisting of 15
climate anomaly zones is responsible for the occurrence of dry and wet events. The
potential of the GCP in predicting dry and wet events on an all-India scale is also
established. In fact, the GCP is found to be more useful as precursor of hydrologic
extremes in India compared to the most commonly used hydroclimatic telecon-
nection patterns in the Indian context. The objective of this study is to explore the
existence of a distinct GCP for hydrologic events on a smaller spatial scale. Central
India is selected as the target area to explore the association of regional dry/wet
events with global anomaly fields of five climate variables––sea surface tempera-
ture, surface pressure, air temperature, wind speed, and total precipitable water. The
specific GCP for central India, once identified, is utilized as an input to a prediction
model for categorizing hydrologic events into dry, normal, and wet. Based on
experience from the previous study, a temporal scale of three months is adopted for
this study as the climate anomaly zones are found to be sufficiently well-defined at
this scale for identification of GCP.

Study Area and Data

The India Meteorological Department (IMD) divides India into 36 homogenous
meteorological subdivisions. Out of these, four contiguous subdivisions, namely,
West Madhya Pradesh, East Madhya Pradesh, Vidarbha, and Chattisgarh are
considered together as the study area (Fig. 1). The study area is referred as ‘central
India’. The monthly precipitation data of the aforementioned four subdivisions are
obtained from IMD for the period 1959–2010. The datasets are downloaded from
the website of Indian Institute of Tropical Meteorology (IITM) (ftp://www.tropmet.
res.in/pub/data/rain/iitm–regionrf.txt). The method of development of the
dataset along with the information of the raingauge distribution may be found in
Parthasarathy et al. (1995), Rajeevan et al. (2006). The climate variables used for
this study are the global fields of Sea Surface Temperature (SST), Surface Pressure
(SP), Air Temperature (AT), Wind Speed (WS), and Total Precipitable Water
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(TPW). Monthly global gridded datasets of these variables are obtained from
National Oceanic and Atmospheric Administration (NOAA) (http://www.esrl.noaa.
gov/psd/data/gridded/data.ncep.reanalysis.surface.html) for the period 1958–2010.
The spatial resolution of AT, SP, WS and TPW data is 2.5° lat � 2.5° lon and that
of SST data is of 2° lat � 2° lon.

Methodology

Quantification of Dry and Wet Events Through Standardized
Precipitation Anomaly Index (SPAI)

Since the study area (i.e., central India) encompasses of the four aforementioned
meteorological subdivisions, the monthly rainfall of these four meteorological
subdivisions is averaged to get the monthly time series rainfall over the study area.
In order to identify the GCP for dry and wet extremes, the time series of
Standardized Precipitation Anomaly Index (SPAI) is computed from the obtained

Fig. 1 Study area consisting of the four contiguous homogeneous meteorological Sub divisions
of India––West Madhya Pradesh, East Madhya Pradesh, Vidarbha, and Chattisgarh (modified from
map provided by Indian Institute of Tropical Meteorology, Pune, web address: www.tropmet.res.in
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precipitation time series. Details of the anomaly-based SPAI can be found in
Chanda and Maity (2015). The SPAI is established to be a generalized index that is
suitable for the characterization of meteorological droughts in monsoon-dominated
climatology such as India (Chanda and Maity 2015). A temporal scale of three
months is used for SPAI computation and the period 1961–1990 is used to represent
the long-term climatology, based on which the rainfall anomalies are calculated.
Following the guideline of the U.S. Drought Monitor regarding the threshold value
of Standardized Precipitation Index (SPI) indicating drought, the criteria adopted
for this study are: SPAI–3 values less than −0.8 are designated as dry events, those
greater than 0.8 are designated as wet events and those in between are designated as
normal events.

Identification of the Global Climate Pattern (GCP)
for Central India

Since a temporal scale of 3 months is used for identifying the dry and wet events,
the global climate anomaly fields are also considered at a temporal scale of three
months. For each dry event (i.e., SPAI-3 < −0.8), the climate anomaly field at the
preceding 3-month period is considered. For instance, for a dry event comprising
the months April–May–June, the global climate anomaly field is obtained from the
period January–February–March. For each of the climate variables, the global
anomaly field corresponding to all observed dry events during the period 1959–
2000 is obtained and they are averaged event-wise to get the mean global gridded
climate anomaly field for dry events (Chanda and Maity 2016). A similar procedure
is followed to get the mean global gridded climate anomaly field for wet events for
each climate variable. For a given climate variable, the grid-wise difference of
anomalies between dry and wet events is computed and maps showing the anomaly
differences are plotted. On inspection of these maps, it is found that contrasting
(above-normal/below-normal) features of climate anomalies are revealed during dry
and wet events at the target location. A particular zone on the globe consisting of
opposite anomalies of a climate variable corresponding to dry and wet events at the
study area is considered as one of the variables constituting the GCP. All such
variables, together forming the GCP, are used as input to a prediction model for
categorizing dry and wet events.

Utilization of the Identified GCP for Prediction of Dry
and Wet Events in Central India

The potential of the GCP in prediction of dry and wet events in India has been
recently established (Chanda and Maity 2016). In this study, a smaller target area,
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i.e., central India has been selected and the GCP responsible for dry and wet
extremes in this region is investigated. The potential of the identified GCP for
prediction of hydrologic extremes in central India is assessed through the following
steps.

Reduction of Dimensionality of GCP

Since the curse of dimensionality of inputs could affect the prediction process, it is
wise to reduce the large number of variables constituting the GCP. However, the
information contained in the identified inputs must not be lost in the process.
Hence, principal component analysis (PCA) (Jolliffe 1986) is used to orthogonally
transform the dataset from a number of observed correlated variables to a number of
uncorrelated components which explain the variance of the target variable in a
gradually decreasing order. The number of principal components considered should
be such that it should be large enough to substantially explain the variability.
However, it should not be too large so as to hamper the SVM training owing to high
dimensionality.

Model for Classification of Dry and Wet Events

Once a number of principal components of the GCP are identified as inputs, the
next step is to devise a prediction model that can classify the events into different
categories. The three categories that are considered in this study are dry
(SPAI < −0.8), normal (−0.8 � SPAI � 0.8) and wet (SPAI > 0.8), respec-
tively. It is true that sometimes more number of categories, indicating different
levels of severities of dry and wet events, are of interest. However, any finer
categorization is avoided here since the observed number of events in each category
would then become too less to train the prediction model as well as to evaluate the
prediction performance. Support Vector Machines (SVM) are one of the machine
learning techniques that classify data points using a hypothesis space of linear
functions in a high-dimensional feature space. It maps the input space to a higher
dimensional feature space and selects a hyperplane to attain maximum separation
between the different classes. SVMs have been successfully used in hydrological
applications (Bray and Han 2004; Qin et al. 2005; She and Basketfield 2005;
Tripathi et al. 2006; Lin et al. 2006; Anirudh and Umesh 2007; Kişi and Çimen
2009; Chen et al. 2010; Maity et al. 2010; Samsudin et al. 2011; Bhagwat and
Maity 2012; Zakaria and Shabri 2012; Raghavendra and Deka 2014). SVM-based
models may be suitably used in classifying dry, normal and wet events based on the
selected components (Chanda and Maity 2016).

Following Chanda and Maity (2016), two SVM models (named SVM-I and
SVM-II) are used simultaneously to process the inputs, i.e., the selected principal
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components. SVM-I performs classification into two categories––dry
(SPAI < −0.8) and not dry (SPAI � −0.8), while SVM-II performs classification
into two categories––not wet (SPAI � 0.8) and wet (SPAI > 0.8). After training
the two SVM models during the model development period (1959–2000), they are
used for classification for both model development (1959–2000) and testing period
(2001–2010). At any given time step, the output from the two SVM models is
logically joined to obtain the final output. When the output of SVM-I is dry and that
of SVM-II is not wet, then the event is categorized as dry. When the output of
SVM-I is not dry and that of SVM-II is wet, then the event is categorized as wet.
When the outputs of SVM-I and SVM-II are not dry and not wet, respectively, the
event is categorized as normal. If the outputs of the two SVM models are contra-
dictory, i.e., SVM-I classifies the event as dry and SVM-II classifies it as wet, then
the model fails to categorize the event. However, these events are also categorized
into normal to prevent loss of data during evaluation of prediction performance,
which is a little deviation from Chanda and Maity (2016). The categorization
procedure is illustrated with the help of a flowchart (Fig. 2). It may be noted that
three-way classification (say, groups A, B, and C) through SVMs is also possible.
However, in such cases, two steps need to be followed. First, the classification has
to be performed between ‘Group A’ versus ‘Group B and Group C’. In the next
step, the candidates falling in the second category may be classified further into
‘Group B’ and ‘Group C’. For such classification, training the SVM becomes
computationally too intensive. Thus, in this study, two separate SVM models for
bi-category classification are used simultaneously and their outputs are logically
joined to obtain a three-way classification.

Selected Principal 
Components

SVM II

SVM I

Dry

Not Dry

Not Wet

Wet

Dry

Normal

Normal

Wet

Fig. 2 Flowchart showing logical combination of the outputs of two SVMs to obtain final
categorization of hydrological events
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Evaluation of the Prediction Performance
Using GCP as Input

After obtaining the final output obtained from the logical combination of the two
SVM models, the prediction performance may be evaluated by constructing a
contingency table for both the development and the testing period. The potential of
classification of dry, normal, and wet events in the target area using the GCP as
input may be assessed by inspecting the number of events (in the three-way con-
tingency table) which are categorized correctly. Quantitatively, the model perfor-
mance may be assessed in terms of Contingency Coefficient (C) (Pearson 1904),
which is used to measure the degree of association in a contingency table for
N samples (Gibbons and Chakraborti 2011). It is expressed as

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Q
QþN

r

; ð1Þ

where Q is a statistic that tests the null hypothesis that there is no association
between the observed and predicted categories. Q is expressed as

Q ¼
X

m

i¼1

X

n

j¼1

NXij � Xi:Y:j
� �2

NXi:Y:j
; ð2Þ

where Xij is the number of cases falling in ith observed and jth predicted category,
m and n are the number of observed and predicted categories respectively, and
Xi: ¼

Pn
j¼1 Xij and Y:j ¼

Pm
i¼1 Yij. The statistics Q approximately follows

chi-square distribution with m ¼ m� 1ð Þ n� 1ð Þ degrees of freedom. The null
hypothesis (no association between observed and predicted categories) may be
rejected if the p-value is very low. The higher the value of C, the better the
association between observed and predicted categories. The maximum value of C is
theoretically 1, but its upper bound is given by

Cmax ¼
ffiffiffiffiffiffiffiffiffiffi

t � 1
t

r

; ð3Þ

where t ¼ min m; nð Þ (Gibbons and Chakraborti 2011). The C value as well as the
ratio C=Cmax may be used as a measure of the degree of association (Maity et al.
2013).
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Results and Discussions

Identification of the Global Climate Pattern for Central India

The SPAI values computed from the trimonthly rainfall series of central India are
used to categorize each time step in the development (1959–2000) and testing
period (2001–2010) as dry, normal and wet event. During the development period,
the number of dry, normal and wet events are found to be 90, 308, and 106
respectively. During the testing period, the same is found to be 27, 72, and 21
respectively.

As mentioned earlier, for each of the climate variables (SST, SP, AT, WS,
TPW), the global anomaly field corresponding to all observed dry events during the
period 1959–2000 is obtained and they are averaged event-wise to get the mean
global gridded climate anomaly field for dry events. Following a similar procedure,
the mean global gridded climate anomaly field for wet events is also obtained for
each variable. The grid-wise anomaly difference maps are subsequently investigated
for identifying the zones with contrasting anomaly features during dry and wet
events. For many grid locations, the difference in anomalies is found to be statis-
tically significant at 99% confidence level. From the large contiguous zones of
statistically significant anomaly differences, the core areas are selected as con-
stituent variables forming the GCP. In all, the GCP for central India is characterized
by 19 globally distributed zones from five climate variables. The spatial location
and extent of the zones are discussed in comparison to those identified in case of
‘all-India’ analysis (Chanda and Maity 2016) in the following subsections.

Global Fields of Sea Surface Temperature (SST)

Figure 3a reproduces the SST anomaly difference map for ‘all-India’ analysis from
Chanda and Maity (2016). For dry and wet extremes in central India, which is the
target area for this study, the global SST anomaly difference map is shown in
Fig. 3b.

The large positive anomaly zone (5°N–5°S and 100°W–140°W) in the equatorial
Pacific Ocean is evident in the case of all-India analysis as well as ‘central India’
analysis. However, for central India, this zone is not as strong as in the case of the
SST patterns for all-India. The lessening of this zone in extent as well as magnitude
may be indicative of the fact that the effect of El Niño on dry and wet extremes in
central India are weaker than the same on dry and wet extremes occurring on
all-India scale. In both Fig. 3a, b, the positive anomaly differences in northern
Pacific Ocean (40°N–48°N and 150°W–165°W) are even stronger than those in the
equatorial region. The two negative anomaly zones in the Pacific (20°S–26°S and
160°E–170°E; 40°S–50°S, 114°W–124°W) are found to be potent in both Fig. 3a,
b. However, the negative anomaly region (26°N–34°N, 136°E–144°E) along the
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coast of Japan is found to be relatively less well defined in case of central India
(Fig. 3b). In general, it is observed that warm anomaly pockets in the eastern part of
Pacific Ocean and cold anomaly pockets in the western part of Pacific Ocean are
associated with dry events in central India as well as ‘all-India’.

As in case of the SST over Pacific Ocean, the negative anomaly regions in
sub-equatorial Indian Ocean (8°S–16°S and 74°E–80°E) and to the west of
Australia (6°S–14°S and 114°E–124°E) are similar in extent and magnitude in
Fig. 3a, b. The strong negative anomaly region (16°N–26°N and 70°W–80°W)
between the North and South Americas is also equally well defined in both the
figures.

Thus, it may be concluded that the global SST zones responsible for dry and wet
extremes in central India are identical to those of all-India. Hence, 8 SST zones are
selected as constituents of the GCP for central India.

Fig. 3 Differences in mean SST anomalies during dry events (SPAI-3 < −0.8) and wet events
(SPAI-3 > 0.8) over a India (Chanda and Maity 2016) and b central India
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Global Fields of Surface Pressure (SP)

Figure 4a reproduces the SP anomaly difference map for ‘all-India’ analysis from
Chanda and Maity (2016). For dry and wet extremes in central India, the global SP
anomaly difference map is shown in Fig. 4b. The positive anomaly zone in northern
Pacific (55°N–65°N and 145°W–160°W) as well as the negative anomaly zone in
tropical Pacific (15°N–30°N, 145°W–160°W) is found to be very well defined and
strong for both ‘all-India’ and central India. In addition to these two regions in
Pacific Ocean, a very prominent positive anomaly zone in the western part of
equatorial Pacific (5°S–5°N, 170°E–210°E) is observed in case of central India. The
whole of Arabian Sea, Indian Ocean, and Bay of Bengal exhibit positive anomalies
in both Fig. 4a, b. The signature of this region is represented through the zone 10°
N–20°N, 55°E–65°E. The mild negative anomaly region in the Atlantic is also
similar in extent and magnitude in both the figures. Thus, a total of 5 SP zones is
selected as constituents of the GCP for central India.

Fig. 4 Differences in mean SP anomalies during dry and wet events in a India (Chanda and Maity
2016) and b central India
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Global Fields of Air Temperature (AT), Wind Speed (WS),
and Total Precipitable Water (TPW)

Since the variables AT, WS, and TPW generally influence convective activity on a
smaller spatial scale, the anomaly fields of these variables are investigated around
the Indian subcontinent region. The patterns of anomaly differences of AT during
dry and wet events in case of ‘all-India’ and in case of ‘central India’ are shown in
Fig. 5a, b, respectively. Similar comparative figures for WS and TPW are shown in
Figs. 6a, b and 7a, b, respectively. In case of AT, it is observed that a positive
anomaly region at the nook of the Bay of Bengal is associated with dry events for
all-India as well as for central India. For central India, a negative anomaly zone
below the landmass of Pakistan and Iran is also found to be very much prominent in
extent and magnitude, much more than that observed in case of the all-India study.
Hence, both the AT zones––(20°N–30°N and 85°E–95°E) and (20°N–25°N and
60°E–65°E) are considered in the pool of GCP for central India.

Positive WS anomalies in the Indian Ocean are found to be associated with dry
events in all-India as well as central India. As observed in case of AT, here also, a
zone of importance can be located over the landmass of Pakistan and Iran. This
positive anomaly region was evident in case of ‘all-India’ also, but the magnitude of
the anomaly was not as large as in the present case. As a result, two WS zones––
(0°–5°N, 70°E–85°E) and (25°N–30°N, 60°E–70°E) are considered while devel-
oping the GCP for central India.

Very strong negative TPW anomalies around the Persian Gulf are found to be
associated with dry events in ‘India’ as well as ‘central India’. Additionally, a
positive anomaly zone located to the west of Pakistan is also found to be very
prominent in case of central India. The hint of this zone was evident in case of

Fig. 5 Differences in mean AT anomalies during dry and wet events in a India (Chanda and
Maity 2016) and b central India
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all-India study also, but was not as well defined. Thus, TPW zones––(5°N–15°N
and 55°E–65°E) and (25°N–30°N and 55°E–60°E) are considered for central India.

Thus, in all, a total of 19 variables, each being denoted by a specific climate
anomaly from a distinct part of the globe, together constitutes the GCP for dry and
wet events in central India. The extent of these zones is specifically mentioned in
Table 1. It is observed that many of the variables are equally important factors
affecting hydrologic extremes in the ‘central India’ region as well as on an
‘all-India’ scale. However, it is noted that often the extent of the anomaly zones as
well as their magnitudes differ in case of the present study concerning central India

Fig. 6 Differences in mean WS anomalies during dry and wet events in a India (Chanda and
Maity 2016) and b central India

Fig. 7 Differences in mean TPW anomalies during dry and wet events in a India (Chanda and
Maity 2016) and b central India
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and the all-India study. Moreover, some local factors (such AT, WS and TPW)
which have limited influence on the hydrologic extremes of India are found to be
more influential in case of central India.

Utilization of the Identified GCP for Prediction of Dry
and Wet Events in Central India

As mentioned earlier, the number of principal components selected should sub-
stantially explain the variability and also alleviate the curse of dimensionality. It is
found that the first seven principal components together explain about 72.5% of the
variability. Hence, the seven selected principal components of the 19-dimensional
GCP for the model development period are used as inputs to train the two SVM
models. The models are then used for classification of the events at each time step
(both development and testing period) into dry, normal, or wet category. The
prediction performance is subsequently assessed by inspecting the contingency
table (Table 2). During the development period, 59 out of the 90 observed dry
events are correctly predicted while 12 and 19 observed droughts are wrongly
predicted as normal and wet respectively. Of the 106 observed wet events, 60 are

Table 1 Identified representative zones of climate anomalies to characterize the global climate
pattern (GCP) responsible for hydrologic extremes in central India

Physical variable Symbol Latitude Longitude

Air temperature AT1 20°N–30°N 85°E–95°E

Air temperature AT2 20°N–25°N 60°E–65°E

Wind speed WS1 0°N–5°N 70°E–85°E

Wind speed WS2 25°N–30°N 60°E–70°E

Total precipitable water TPW1 5°N–15°N 55°E–65°E

Total precipitable water TPW2 25°N–30°N 55°E–60°E

Surface pressure SP1 15°N–30°N 145°W–160°W

Surface pressure SP2 30°S–40°S 0°W–10°W

Surface pressure SP3 55°N–65°N 145°W–160°W

Surface pressure SP4 10°N–20°N 55°E–65°E

Surface pressure SP5 5°S–5°N 170°E–210°E

Sea surface temperature SST1 40°N–48°N 150°W and 164°W

Sea surface temperature SST2 16°N–26°N 70°W–80°W

Sea surface temperature SST3 20°S–26°S 160°E–170°E

Sea surface temperature SST4 4°N and 4°S 100°W and 140°W

Sea surface temperature SST5 8°S and 16°S 74°E and 80°E

Sea surface temperature SST6 6°S–14°S 114°E–124°E

Sea surface temperature SST7 40°S–50°S 116°W–124°W

Sea surface temperature SST8 26°N–34°N 136°E–144°E
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correctly predicted while 30 and 16 observed wet events are wrongly predicted as
dry and normal, respectively. During the testing period, the number of observed dry
events predicted correctly is 11 (out of a total of 27) and the number of observed
wet events predicted correctly is 17 (out of a total of 21). The value of the
Contingency Coefficient C is obtained as 0.281 and 0.364 during the development
and testing period respectively. The low p-values and reasonably good C/Cmax

ratios indicate a good performance considering that prediction of regional hydro-
logical extremes is immensely complicated due to large uncertainty in the climatic
system. Thus, it is observed that GCP identified for hydrological extremes in central
India may serve as effective precursors of dry and wet events.

Conclusion

This study reinforces the fact that hydrological extremes at the regional scale are
caused by the concurrent effect of several climate anomaly fields across the globe
rather than only well-known atmospheric–oceanic circulation patterns. A total of 19
globally distributed anomaly zones of different climate variables are found to
constitute the Global Climate Pattern (GCP) responsible for hydrological extremes
in central India. For the large-scale variables such as sea surface temperature and
pressure, the zones of importance for central India are more or less similar to that of
all India. However, for variables like air temperature, wind speed and total pre-
cipitable water, the number of influential zones is found to be more in number and
relatively better defined for central India than that in case of all-India.

The identified GCP for central India is found to have potential use as precursor
of hydrologic extremes in the target area. The SVM-based modeling approach used
in this study exhibits reasonably good potential of GCP in foreseeing the above-
and below-normal precipitation events. It may be possible to obtain more reliable
prediction using GCP by adopting further sophisticated modeling approach.
Moreover, as a future extension of this work, the illustrated methodology may be
applied for other homogeneous meteorological subdivisions of India having con-
siderably different precipitation regime.
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Changes in ENSO and IOD Effects
on the Extreme Rainfall of Hyderabad
City, India

V. Agilan and N.V. Umamahesh

Abstract The global physical processes such as El Niño-southern oscillation
(ENSO) and Indian Ocean dipole (IOD) have a significant impact on Indian
extreme rainfall. Recent studies show that the impact of ENSO cycle on Indian
rainfall has changed. Therefore, understanding the changes in the effects of these
physical processes on extreme rainfall of an urban area may help us to reduce the
damage caused by urban floods. In this study, the changes in ENSO and IOD effects
on the Hyderabad city monsoon/non-monsoon extreme rainfall between 1901–1950
and 1951–2004 are analyzed. The findings of this study indicate that the effect of
IOD on non-monsoon months’ extreme rainfall of the Hyderabad city is signifi-
cantly reduced while there is no significant change in monsoon season
relationship. In addition, a significant increase in ENSO effects on non-monsoon
months’ very extreme rainfall of the Hyderabad city is observed.

Keywords ENSO cycle � Extreme rainfall � Indian ocean dipole � Hyderabad city

Introduction

The El Niño-southern oscillation (ENSO) cycle is the fluctuations in temperature
between the ocean and the atmosphere in the east-central Equatorial Pacific (Zelle
et al. 2004; Agilan and Umamahesh 2015b). In ENSO cycle, the cold phase is
referred as La Niña and the warm phase is referred as El Niño. These deviations
from normal surface temperatures can have large-scale impacts not only on ocean
processes, but also on global weather and climate (Zelle et al. 2004). The ENSO
cycle is the most important coupled ocean-atmosphere phenomenon to cause global
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climate variability on interannual time scales. The recent studies show the effect of
ENSO cycle on extreme precipitation at local and regional scale (Kenyon and
Hegerl 2010; Zhang et al. 2010; Agilan and Umamahesh 2015a). Revadekar and
Kulkarni (2008) demonstrated the effect of ENSO cycle on extreme rainfall over
India. Recently, Agilan and Umamahesh (2015a) presented the effect of ENSO
cycle on the Hyderabad city extreme rainfall.

During the past decade, a dipole mode in the tropical Indian Ocean is discovered
(Saji et al. 1999) and this Indian Ocean dipole (IOD) is quantified with Dipole
Mode Index (DMI) (Saji et al. 1999). The DMI is the Sea Surface Temperature
(SST) difference between the tropical western Indian Ocean (50°E–70°E,
10°S–10°N) and the tropical southeastern Indian Ocean (90°E–110°E, 10°
S-Equator) (Saji et al. 1999). When the DMI is positive, it leads to drought over
the Indonesia region and heavy rains and floods over the East Africa (Ashok et al.
2001). When the sign of the DMI reverses, these anomalous fluctuations also swing
to the opposite phase (Ashok et al. 2001; Ashok and Saji 2007). Ashok et al. (2001)
analyzed the impact of the IOD on the relationship between the Indian Monsoon
Rainfall and ENSO and discovered that the ENSO-induced Indian summer mon-
soon rainfall anomalous circulation over the Indian region is either countered or
supported by the IOD-induced anomalous meridional circulation. Ashok and Saji
(2007) studied the impacts of ENSO and IOD events on the sub-regional Indian
summer monsoon rainfall (ISMR) and concluded that the magnitude of
ENSO-ISMR correlations is greater than the magnitude of IOD-ISMR correlations.
Ajayamohan and Rao (2008) analyzed the effect of IOD on the extreme rainfall
events over India and showed the first evidence that the extreme rainfall events in
central India in recent decades are strongly modulated by IOD.

From the above two paragraphs, it is clear that the ENSO cycle and IOD have a
significant influence on Indian region extreme rainfall. Recently, it is found that the
inverse relationship between the ENSO cycle and the Indian summer monsoon has
broken down in recent decades (Kumar et al. 1999). In addition, the frequency of
extreme Indian Ocean dipole events is increasing due to global warming (Cai et al.
2014). Moreover, the frequency of El Niño events (part of ENSO cycle) will
increase if the concentration of future greenhouse-gas is more (Timmermann et al.
1999). In the other hand, urban flooding and the damage to infrastructure and
society are problems in both developing and developed countries (Agilan and
Umamahesh 2015b). Note that the high-intensity (extreme) rainfall has a significant
contribution in urban area flooding and the key challenge in urbanized area is to
provide good quality detailed forecasts. Hence, understanding and quantifying the
changes in global physical processes’ impacts on extreme rainfall of an urban area
may help us in urban flood forecasting. In this study, the changes in ENSO and IOD
effects on the extreme rainfall of Hyderabad city, India are analyzed.
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Study Area and Data

The Hyderabad city is the capital of the state of Telangana in India. Location map
of the Hyderabad city is shown in Fig. 1. The Hyderabad city lies between the
latitudes of 17.25°N and 17.60°N and longitudes of 78.20°E and 78.75°E and
situated at a height of about 500 m above the mean sea level. It is classified as a
semi-arid region and the Köppen-Geiger classification is BSh (Peel et al. 2007).

High-resolution gridded (1° Longitude � 1° Latitude) daily rainfall data pre-
pared with the help of more than 1800 gauge observation over India is available for
India for the period of 1901–2004 (Rajeevan et al. 2008). This data set is prepared
by India Meteorological Department (IMD) and the details about the preparation of
this data set is available in Rajeevan et al. (2008). This dataset is increasingly being
used in studies on Indian rainfall (Kulkarni et al. 2012; Mondal and Mujumdar
2015). For this study, the high-resolution gridded rainfall is procured from IMD and
the Hyderabad city grid’s data is extracted for the period of 1901–2004.

The ENSO cycle is represented by several ENSO indices such as
Multivariate ENSO Index (MEI), southern oscillation index (SOI) and Sea Surface
Temperature (SST), etc. Different studies use different ENSO indices, i.e. SOI (Katz
et al. 2002), SST (Mondal and Mujumdar 2015). Further, Revadekar and Kulkarni
(2008) reported that the intensity and frequency of extreme precipitation in Southern
India have a strong correlation with NINO 3.4 SST anomalies 4–6 months in
advance. In addition, some earlier studies reported that the MEI is better for mon-
itoring ENSO than the SOI or various SST indices because the MEI integrates more
information than other indices, it reflects the nature of the coupled ocean-atmosphere
system better than either component, and it is less vulnerable to occasional data

Fig. 1 Location map of Hyderabad city (Agilan and Umamahesh 2015a)
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glitches in the monthly update cycles (Wolter and Timlin 1998). Therefore, in this
study, MEI, SOI and SST are used as ENSO indicators. The monthly DMI derived
from HadISST dataset is downloaded from http://www.jamstec.go.jp/frcgc/research/
d1/iod/DATA/dmi.monthly.txt (Accessed on 15-06-2015) to represent IOD. The
annual MEI and DMI calculated from the monthly MEI and DMI is plotted in Fig. 2.

Methodology

The word “extreme” may refer to many different things in the climate literature and
there is no unique climatological definition for extreme (Stephenson 2008). But in
the case of climate variable, such as precipitation, an extreme can be reasonably
well defined referring to values in the tails of the distribution that would be
expected to occur infrequently (Zeng and Zwires 2013). In this study, the changes
in ENSO and IOD effects on the daily extreme rainfall of Hyderabad city, India are
analyzed. Therefore, the Hyderabad city daily rainfall obtained from IMD for the
period of 1901–2004 is divided into two time slices, i.e. 1901–1950 and 1951–
2004. In each time slice, the rainy days which have rainfall more than 1 mm is
extracted from the raw daily rainfall record and they are separated by season
(Monsoon and Non-Monsoon). Then the rainfall intensity–probability curve is
developed for each time slice and season. In the rainfall intensity–probability
curve (Fig. 3), the intensity is rain rate (mm/day) and the probability is exceedance
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probability. The extreme rainfall is defined with different levels of exceedance
probability for each time slice and season. In particular, rainfall values which have
exceedance probability as 0.1, 0.075, 0.05, 0.025 and 0.01 are calculated from the
intensity–probability relationship for the monsoon season. As the number of rainy
days in a non-monsoon season of Hyderabad city is less when compared to the
monsoon season rainy days, the 0.01 exceedance probability rainfall days will be
very less and it will have a statistically insignificant relationship with the physical
processes (ENSO and IOD). Thus, only four extreme rainfall values are calculated
for the non-monsoon season (i.e. 0.1, 0.075, 0.05, 0.025 exceedance probability
rainfall values). Once the threshold values of the extreme rainfall are calculated, the
extreme rainfall series (series of rainfall values which have an intensity greater than
defined threshold) with different probabilities of exceedance is extracted from the
original series for two time slices (1901–1950 and 1951–2004) and two seasons
(Monsoon and Non-Monsoon). Further, these extreme rainfall series are used to
analyze the changes in ENSO and IOD effects on the extreme rainfall of Hyderabad
city, India. In detail, the absolute correlation coefficient (Eq. 1) between these
extreme rainfall series and the physical processes (ENSO and IOD) are calculated
and the changes in the absolute correlation coefficient value between two periods
(1901–1950 and 1951–2004) are presented.

r ¼
Pn

i¼1 Ri � R
� �

Ei � E
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 Ri � R
� �2 Pn

i¼1 Ei � E
� �2

q

�
�
�
�
�
�
�

�
�
�
�
�
�
�

ð1Þ

where n is the length of the extreme rainfall series, r is absolute correlation coef-
ficient, Ri is extreme rainfall value, �R is the mean of extreme rainfall, Ei is the
corresponding month index which represents the physical process (ENSO or IOD)
and �E is the index mean value. As mentioned before, the ENSO cycle is represented
by several ENSO indices such as MEI, SOI and SST, etc. Different studies use
different ENSO indices, i.e. SOI (Katz et al. 2002), SST (Mondal and Mujumdar
2015) and MEI (Singh 2001). Further, some studies considered lag in ENSO index
and some of them have not. Therefore, it is not clear that which ENSO index is best
for the Hyderabad city and how much lag is to be considered to analyze the relation
between ENSO cycle and the Hyderabad city extreme rainfall. Similarly, the lag
between IOD and Hyderabad city extreme rainfall is also unknown. Therefore, the
best ENSO index with the best lag and the best lag value for DMI are identified for
each extreme rainfall series. The changes in ENSO effects on the Hyderabad city
extreme rainfall series are analyzed with the best ENSO index and the best lag value
and the changes in IOD effects on the Hyderabad city extreme rainfall series is
analyzed with the best lag value of DMI.
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Results and Discussions

The monsoon months’ intensity–probability relationship for 1901–1950 time slice
is plotted in Fig. 3 and this relationship is used to estimate the extreme rainfall
which has 0.1, 0.075, 0.05, 0.025 and 0.01 exceedance probability. Similarly, the
intensity–probability relationships for 1901–1950 time slice non-monsoon months’
rainfall, 1951–2004 time slice monsoon and non-monsoon months’ rainfall are
developed and the extreme rainfall values of different exceedance probability are
calculated.

Then the extreme rainfall series with different probabilities of exceedance is
extracted from the original series for two time slice (1901–1950 and 1951–2004)
and two seasons (Monsoon and Non-Monsoon) using the calculated threshold
values. Before calculating the relationship between extreme rainfall series and
physical processes (ENSO and IOD), the best ENSO index with best lag value and
the best lag value of DMI is identified. The variations in absolute correlation
coefficient value between monsoon months’ 0.01 exceedance probability extreme
rainfall time series of 1901–1950 time slice and physical processes (ENSO and
IOD) indices with different lag values are shown in Fig. 4.

From Fig. 4, for monsoon months’ 0.01 exceedance probability extreme rainfall
time series of 1901–1950 time slice, it is observed that the SOI with 3 months lag is
the best ENSO cycle indicator and the best lag value for DMI is 5 months. In a
similar way, the best ENSO index with the best lag value and the best lag value of
DMI have identified for all extreme rainfall series. From Fig. 4, it is also to be noted
that the correlation between extreme rainfall and indices are varying significantly
with respect to lag value. Therefore, analyzing the changes in ENSO and IOD
effects without identifying the best index and the best lag is perilous.

The absolute correlation coefficient between extreme rainfall of the Hyderabad
city and two physical processes, namely, ENSO and IOD is given in Table 1 and

Fig. 3 1901–1950 Monsoon months’ intensity–probability relationship
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plotted in Fig. 5. From Fig. 5a, it is observed that the relationship between ENSO
and monsoon months’ extreme rainfall of the Hyderabad city is not changed sig-
nificantly between two time periods (1901–1950 and 1951–2004). However, the
relationship between ENSO and non-monsoon months’ very extreme (0.05 and
0.025 exceedance probability) rainfall of the Hyderabad city is increased signifi-
cantly (maximum of around 60% increase).

Similar to the ENSO cycle relationship, the relationship between IOD and
monsoon months’ extreme rainfall of the Hyderabad city is not changed signifi-
cantly between two time periods. But, the relationship between IOD and 1951–
2004 time period non-monsoon months’ extreme rainfall of the Hyderabad city is

Fig. 4 The variations in absolute correlation coefficient value between monsoon months’ 0.01
exceedance probability extreme rainfall time series of 1901–1950 time slice and MEI, SST, SOI
and DMI with different lag values

Table 1 The absolute correlation coefficient between extreme rainfall of the Hyderabad city and
ENSO and IOD

Rainfall exceedance probability ENSO IOD

1901–1950 1951–2004 1901–1950 1951–2004

Monsoon

0.1 0.12 0.10 0.12 0.07*

0.075 0.15 0.15 0.16 0.08*

0.05 0.12* 0.19 0.09 0.13

0.025 0.23 0.19 0.21 0.22

0.01 0.37 0.37 0.35 0.34

Non-monsoon

0.1 0.17 0.10 0.18 0.11*

0.075 0.23 0.21 0.25 0.12*

0.05 0.27 0.31 0.29 0.22

0.025 0.26* 0.42 0.31 0.19*

*Not significant at 0.1 significance level. Other values are significant
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decreased significantly (maximum of around 50% decrease) when compared to
1901–1950 relationship.

Summary

In this study, with the help of IMD gridded daily rainfall, the changes in ENSO and
IOD effects on the Hyderabad city extreme rainfall intensity between two time
periods, i.e. 1901–1950 and 1951–2004 are analyzed. The findings of this study
indicate that the effect of IOD on non-monsoon months’ extreme rainfall of the
Hyderabad city is significantly reduced (maximum of 50% decrease) while there is
no significant change in monsoon season relationship. In addition, a significant
increase (maximum of 60% increase) in ENSO effects on non-monsoon months’
very extreme rainfall of the Hyderabad city is observed.
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Part II
Rainfall Analysis



Detecting Changes in Regional Rainfall
Series in India Using Binary
Segmentation-Based Multiple
Change-Point Detection Techniques

Shagufta Akbari and M. Janga Reddy

Abstract In this chapter, the rainfall patterns of five homogeneous regions in India
namely Northwest, West Central, Central Northeast, Northeast and Peninsular India
for the years 1871–2013 were analyzed using two change-point detection
(CPD) techniques namely Binary Segmentation based on Cumulative sum and
Likelihood ratio approaches. The CPD methodology involves estimation of
threshold values based on Monte Carlo simulation. On applying the CPD tech-
niques for five regions, the results showed that for most of the regions there were no
significant change-points in annual/monsoon rainfall series except for monsoon
rainfall in Northeast India. Further, the study extended to detect the changes in
future rainfall for Northeast region by analyzing the outputs from global climate
models. The findings of this study can help in better understanding the spatial
variations and changing patterns of rainfall across India, and consequently in proper
planning and management of water resources in the region.

Keywords Rainfall � Change-point detection � Binary segmentation
Monte Carlo simulation

Introduction

Hydrologists dealing with stochastic time series usually make the stationarity
assumption for operations of hydropower systems, reservoirs and construction of
hydraulic structures, etc. This assumption is itself questionable as some of the
hydrometeorological time series exhibit an abrupt shift in distributional parameters
due to recent changes in landuse patterns, construction of hydraulic structures and
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human induced as well as natural climatic change. Hence, there is a pressing need to
analyze such series with using change-point detection techniques such as that
presented in the current study. Therefore, non-stationarity analysis of hydromete-
orological series (such as rainfall, temperature, discharge, etc.) is gaining high
significance as it plays a key role in proper planning and management of river
basins. Change-point detection (CPD) analysis of hydrometeorological series
involves detecting a probable temporal location for a shift in distributional
parameters (mean/variance). It could help to take decisions on continuance or
change in water management policy. Several techniques are available in literature
for CPD analysis in univariate/multivariate time series (Potter 1981; Buishand
1982; Winjngaard et al. 2003; Alexandersson 1986; Tripathi and Govindaraju 2009;
Perreault et al. 2000; Tomozeiu et al. 2000), with the assumption that there is at
most one CP (AMOC) in the series. However, the problem of identifying multiple
CPs in the hydrometeorological time series is largely unexplored with a few
exceptions (Seidou and Ouarda 2007; Djibo et al. 2015). Moreover, the assumption
that there is at most one CP (AMOC) in the time series can be unrealistic. Hence,
multiple change-point detection (MCPD) techniques should be applied to
hydro-climatic series for understanding the dynamics of the times series. For the
MCPD, some researchers have extended the single CPD techniques to detect at
most one CP and applied them iteratively to detect multiple change-points
(Rodionov 2005). Few studies also noted the difficulty in extending the method-
ology to the MCPD setting because of computational complexity. Vostrikova
(1981), first proposed Binary Segmentation (BS) in a stochastic process multi-
variate setting. This study attempted to revisit the BS algorithm for MCPD
techniques, i.e. BS based on the Cumulative sum (Cusum) and Likelihood ratio
(LR)-based approaches.

Rainfall is the key driver of most hydrological processes. Non-stationarity in
rainfall input may lead to inadequate interpretation for future predictions and would
directly influence the water resources of a region. Thus, analysis of the spatial and
temporal distribution of rainfall and its changing pattern will lead to proper plan-
ning and management of water resources in the region. Hence, the present study
focusses on analyzing the rainfall patterns of five homogeneous regions in India
namely Northwest; West Central; Central Northeast; Northeast and peninsular India
for the years 1871–2013 using two change-point detection techniques (Binary
Segmentation based on Cumulative sum/Likelihood ratio approaches).

The rest of the chapter is organized as follows. In next section, first, the
methodology of the BS-based MCPD techniques and then the procedure for esti-
mating threshold (or penalty) is explained. Then the proposed methodology was
applied to the annual and monsoon rainfall time series for five homogeneous
regions in India. In the last section, the overall concluding remarks on the perfor-
mance of BS-based MCPD techniques are presented.
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Methodology

Estimation of the Multiple Change-Points Using Binary
Segmentation Approach

Binary segmentation (BS) is arguably the most established algorithm for multiple
change-point detection (MCPD) analysis in univariate as well as multivariate series
and was applied by various researchers (Vostrikova 1981; Killick et al. 2012).
Using BS algorithm any single CPD technique can be extended to multiple CPs by
iteratively repeating the single CPD technique on different subsets of the sequence.
The advantage of BS algorithm includes low computational complexity, conceptual
simplicity, and the fact that it is usually easy to code, even in more complex models
unlike many of the MCPD techniques. More details of the BS algorithm can be
found in Eckley et al. (2011). The BS-based MCPD techniques are discussed in the
following sub-sections.

The methodology of Binary segmentation (BS) techniques, (i.e. BS based on the
Cumulative sum (BS-Cusum) and Likelihood ratio (BS-LR) approaches) to uni-
variate series can be explained in the following steps:

1. The test statistics K �ð Þ was estimated using single CPD technique (Cumulative
sum approach/Likelihood ratio approach) for the data.

2. The parameters of the distributions were estimated using maximum-likelihood
estimation (MLE) method. Best fitted distribution for data is selected employing
Akaike Information Criteria, AIC (Akaike 1974; Bozdogan 2000).

3. The threshold value/penalty C� was estimated using Monte Carlo simulation as
given below:
Let simulated repetitions of the test statistic K �ð Þ for the selected distribution be
denoted as C�

t , t ¼ 1; 2; 3. . .N; and estimated threshold value (C�) at the sig-
nificance level a is C�

1�að Þ Nþ 1ð Þ , where C�
r is the rth order value estimation

based on N = 5000 simulations. From the past literature, it was noticed that in
the BS algorithm, the threshold value/Penalty C� was assumed to be constant
when it was compared with the test statistics of the splitted series, i.e.
K xs:eð Þ [C�; where s; e½ � is starting and ending of splitted series.

4. If threshold value/penalty C� estimated at a level of significance a ¼ 5%ð Þ is
greater than the test statistics K �ð Þ, the null hypothesis H0 was accepted and then
no CP is detected and the technique stops. Otherwise, the univariate series are
splitted into two segments consisting of the sequence before and after the
identified CP, s and the test statistics K �ð Þ are estimated using CP technique
(Cusum/Likelihood ratio technique) to each new segment. If either or both
segments are rejected, data were split into further segments at the newly iden-
tified CPs applying the detection technique to each new segment. This proce-
dure is repeated until no further CP is detected. The flowchart for MCPD using
BS approach is given in Fig. 1.
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Estimation of Test Statistics Lambda

Let x1; . . .xT be the univariate series; �xk ¼
Pk

i¼1
xi

k ;�xk00 ¼
PT

i¼kþ 1
xi

T�k and�xT ¼
PT

i¼1
xi

T
The test statistic based on Cumulative sum (Cusum) approach, KCS �ð Þ (Page

1954; Scott and Knott 1974; Csorgo and Horvath 1997) is given by

CSk ¼
P

1� i� k xi � k�xi
n

� �� �

T
k 2 1; T½ � ð1Þ

KCS x1:Tð Þ ¼ max CSkð Þ ð2Þ

The test statistic for BS based on Likelihood ratio (LR) approach, KLR �ð Þ
(Hawkins 1977), is given by

LRk ¼
Xi¼T

i¼1
xi � �xTð Þ2 �

Xi¼k

i¼1
xi � �xkð Þ2 þ

Xi¼T

i¼kþ 1
xi � �xk00ð Þ2

h i
k 2 1; T½ �

ð3Þ

Fig. 1 Methodology for estimating the multiple change-points using binary segmentation
approach
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and

KLR x1:Tð Þ ¼ max LRkð Þ ð4Þ

If K �ð Þ[C�, then significant CP is detected, where C� is the threshold
value/penalty.

This Cusum and LR-based single CP techniques were extended to multiple CPD
using BS algorithm (Eckley et al. 2011), in this study. The following section
describes the application of the Binary Segmentation based on Cumulative sum
(BS-Cusum) approach and Likelihood ratio (BS-LR) approach to rainfall time series.

Study Area and Data

In this study, the rainfall patterns of five homogeneous regions in India namely
Northwest India (NWI); West Central India (WCI); Central Northeast India (CNEI);
Northeast India (NEI) and peninsular India (PENSI) were analyzed. Figure 2 shows
the location details of the study area.

Fig. 2 Location map of study region shows five homogeneous regions in India
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Regional monthly rainfall time series for five homogeneous regions for the
period 1871–2013 is collected from Indian Institute of Tropical Meteorology
(IITM), Pune (http://www.tropmet.res.in), and used for change-point detection
analysis. On the basis of climate characteristics, India was divided into five
homogeneous regions (Parthasarathy et al. 1993), covering 30 meteorological
subdivisions excluding the island subdivisions and hilly areas. The regional rainfall
time series for each of the five homogeneous regions were prepared by IITM,
assigning the subdivision area as the weight to each of the subdivisions in the
region. In past, a number of studies have been carried out with same dataset
(Guhathakurta and Rajeevan 2008; Krishnakumar et al. 2009). The annual and
monsoon rainfall time series were extracted from the monthly regional rainfall data
for five homogeneous regions and taken for the MCPD analysis. The average
annual rainfall (AAR) of the homogeneous regions and the percentage (%) con-
tribution of monthly and monsoon rainfalls to AAR of the five homogeneous
regions are presented in Table 1. It can be observed that rainfall pattern of
Northeast India (NEI) region is the highest rainfall receiving region among the five
homogeneous regions.

Table 1 Contribution of monthly rainfalls and seasonal rainfalls to AAR of five homogeneous
regions and All India

Northwest India (NWI) Central Northeast India
(CNEI)

Northeast India (NEI)

Month P in mm AAR (%) P in mm AAR (%) P in mm AAR (%)

January 6.94 1.27 15.51 1.29 14.12 0.69

February 7.55 1.38 18.73 1.56 28.99 1.41

March 5.35 0.98 14.57 1.22 61.61 3.00

April 3.99 0.73 16.65 1.39 132.34 6.44

May 11.02 2.02 42.64 3.56 233.21 11.35

June 65.24 11.93 163.39 13.63 375.97 18.30

July 186.80 34.17 317.08 26.46 395.58 19.26

August 156.53 28.63 309.45 25.82 353.44 17.21

September 83.01 15.18 208.14 17.37 282.08 13.73

October 11.89 2.17 71.61 5.98 140.13 6.82

November 4.39 0.80 14.14 1.18 140.13 1.37

December 4.04 0.74 6.49 0.54 8.43 0.41

Monsoon 491.58 89.91 998.06 83.28 1407.06 68.50

Annual 549.7* 100.00 1198.39 100.00 2054.11** 100.00

West Central India
(WCI)

Peninsular India
(PENSI)

All India (AI)

Month P in mm AAR (%) P in mm AAR (%) P in mm AAR (%)

January 9.14 0.85 11.19 0.96 10.70 0.98

February 9.76 0.91 9.59 0.82 12.81 1.18
(continued)
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Change-point detection analysis becomes more complex for the future than the
past because there is not one time series of climate, but rather many future pro-
jections from different climate models run with a range of CO2 emissions scenarios.
It is unrealistic to analyze only one climate model for any given emission scenario,
but rather multi-model ensembles quantify the range of plausible future climates
under different emissions scenarios. Therefore in this study, the future change in
monsoon rainfall in the Northeast India Region from the output of seven climate
models and multi-model ensemble (simple averaging approach) were studied. For
future Rainfall analysis the CMIP3 output data of seven climate models were
obtained from the website of SWAT—Texas A&M University, (http://
globalweather.tamu.edu/cmip/). The data is available at daily scale for the entire
globe (Dile and Srinivasan 2014; Fuka et al. 2014).

The rainfall data was already downscaled to 0:50 � 0:50 grid using the statistical
downscaling method with bias correction (Thrasher et al. 2012; Girvetz et al. 2013).
Therefore, no further preprocessing needed for the rainfall data. For this study, A1B
scenario categorized as ‘medium’ in greenhouse gas emissions (Errasti et al. 2011),
was considered.

The rainfall data available at a 0:50 � 0:50 grid (98 gridpoints) fall in Northeast
India region (Fig. 3), was extracted from the region. The summary of the seven
climate models namely CCCMA-CGCM3.1; CNRM-CM3; GFDL-CM2.0; GFDL
CM2.1; IPSLCM4; MIROC3.2; MRI CGCM2.3.2 selected in this study is given in
Table 2.

Table 1 (continued)

West Central India
(WCI)

Peninsular India
(PENSI)

All India (AI)

March 9.31 0.87 13.66 1.17 15.01 1.38

April 12.42 1.16 38.77 3.33 26.60 2.45

May 21.10 1.97 84.81 7.29 52.66 4.84

June 170.25 15.87 165.64 14.24 164.16 15.10

July 305.11 28.44 189.01 16.25 271.99 25.02

August 266.14 24.81 157.24 13.52 241.98 22.26

September 184.52 17.20 148.11 12.73 170.32 15.67

October 59.71 5.57 182.04 15.65 77.83 7.16

November 18.22 1.70 122.08 10.49 31.26 2.88

December 7.14 0.67 41.12 3.54 11.67 1.07

Monsoon 926.03 86.32 660.00 56.74 848.45 78.06

Annual 1072.82 100.00 1163.27 100.00 1086.99 100.00

Note Double and single asterisks (*) represent highest and lowest rainfall receiving regions
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Results and Discussion

The Binary segmentation-based Cusum and Likelihood ratio approaches (i.e.
BS-Cusum and BS-LR) are applied for multiple change-point detection (MCPD) in
the mean of rainfall time series in five homogeneous regions at annual and seasonal
scale. For seasonal analysis, southwest monsoon series was taken (June–
September). The temporal variation of annual rainfall and monsoon rainfalls are
shown in Fig. 4a–f for Northwest India (NWI); West Central India (WCI); Central
Northeast India (CNEI); Northeast India (NEI), peninsular India (PENSI) and All
India (AI) regions, respectively.

Fig. 3 Locations of rainfall gridpoints from 7 climate models in Northeast India region

Table 2 The summary of seven climate models used in this study

Climate model Model
abbreviation

Organisation

CCCMA-CGCM3.1 CGCM3 Canadian Centre for climate modelling and
analysis, Canada

CNRM-CM3 CNRM Centre National de Recherches Meteorologiques,
France

GFDL-CM2.0 GFDL1 Geophysical Fluid Dynamic Laboratory, USA

GFDL CM2.1 GFDL2 Geophysical Fluid Dynamic Laboratory, USA

IPSLCM4 IPSLCM Institute Pierre Simon Laplace, France

MIROC3.2 MEDRES Centre for Climate Research, Japan

MRI CGCM2.3.2 MRI Meteorological Research Institute, Japan
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The results of BS-Cusum and BS-LR for annual and monsoon rainfall time
series are presented in Table 3. From the results of MCPD analysis (Table 3), the
following key observations are noted:

Both the BS-Cusum and BS-LR techniques identified no CP for annual rainfall
series in all regions.

• Except for monsoon rainfall of Northeast India region, in general the series is
stationary for all the homogeneous regions.

• Applying the BS-Cusum technique, the monsoon rainfall in Northeast India
region identified CPs in mean and their CP locations (in Year) are 1956, 1974,
1986, 2001 and 2008. Monsoon rainfall is showing an abrupt decrease in mean
after 1956 and 1974 (Fig. 5). But, in the year 1986 there was abrupt increase and
consequently an abrupt decrease in the year 2008. The last estimated segment
for the year 2009–2013 can be viewed as the ‘current’ regime of stationarity.
The quantification of the magnitude of change was estimated to be 49.29; 68.98;
−87.15; 38.99 and 210.35 mm for the corresponding six segments (having 5
CPs), respectively. Positive/Negative signs indicate the abrupt decrease/increase
in monsoon rainfall, respectively. The current regime (Year 2009 onwards) of
monsoon time series has implications in forecasting monsoon rainfall future
values for Northeast India regions. However, the BS-LR technique has missed
few earlier CPs year 2008 which was actually significant CPs. By visual
interpretation also the abrupt changes in mean can be visualized for the
Northeast India region (Fig. 5a, b).

Above findings of the study gives an indication of a possible shift of monsoon in
the Northeast India region, and the magnitudes of change in mean were quantified.

Fig. 4 Temporal variation of annual and monsoon rainfalls in India
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Moreover, for understanding the future non-stationary behaviour of monsoon in the
Northeast India region, monsoon rainfall data for the period 2046–2064 (19 years)
were analyzed. The rainfall data available at a 0:50 � 0:50 grid (98 grid points) fall
in Northeast India region (Fig. 3), which were averaged to get weighted average
areal monsoon rainfall for the region. Figure 6 shows the mean Monsoon rainfall
for the period 2046–2064 at different grid points (98 grid points) lying in Northeast
India region.

The change-point analysis using BS-Cusum and BS-LR was applied to the
extracted future monsoon rainfall data for Northeast India region. Figure 7 shows
the time series of Monsoon Rainfall averaged over Northeast India from seven
climate models and Multi-Model Mean for A1B scenario.

Fig. 5 CP detection analysis for Monsoon rainfalls in Northeast region for a period of 1871–2013
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The results of BS-Cusum and BS-LR for monsoon rainfall time series for the
seven climate models and multi-model mean are presented in Table 4.

It was seen that the monsoon rainfall time series for future during 2046–2064 is
stationary for all the seven climate models and multi-model mean for northeast
India region. Results for northeast India region show overall increases in rainfall
with climate change which may be due to increased frequency of rainfall events
rather than an increase in rainfall intensity. Such results suggest that, regional
increases in rainfall are consistent with expected future climate changes. This study
can be further extended and analyzed with CMIP5 climate models data with dif-
ferent scenarios and for different periods.
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Fig. 7 Non-stationarity
analysis for monsoon rainfall
time series from seven climate
models and ensemble (A1B
scenarios) for northeast India
region

Table 4 Binary segmentation-based cusum and likelihood ratio approach for monsoon rainfall
series for Northeast India regions

Climate
model

BS-Cusum BS-LR Mean
rainfall
(cm)

Significant
CPs (year)

Homogeneous
period (year to
year)

Significant
CPs (year)

Homogeneous
period (year to
year)

CGCM3 No CP 2046–2064 No CP 2046–2064 118.71

CNRM 169.90

GFDL1 208.78

GFDL2 191.25

IPSLCM 113.46

MIROC 188.05

MRI 89.20

Multi-model
Mean

154.19

Note Significant CPs are estimated at 5% significance level
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Summary and Conclusions

Hydrologists dealing with stochastic time series usually make the stationarity
assumption which is itself questionable as some of the hydrometeorological time
series exhibit abrupt change due to changing landuse pattern or climate change.
Hence, there is a pressing need to analyze such series using change-point detection
techniques. The present work attempted to identify presence and location of a
change-point CPs in annual and monsoon rainfall series for five homogeneous
regions in India. It is seen that changes in the mean for annual rainfall series are not
yet large enough to be detected for all the five regions. Hence the results indicate
that stationarity in rainfall series except for monsoon rainfall series of the northeast
region. To know the future changes in rainfall patterns for Northeast region the
outputs from Global climate models for A1B scenario are analyzed using the two
MCPD techniques. It was seen that the monsoon rainfall time series for the future
year 2046–2064 is stationary for all the seven climate models and multi-model
mean for Northeast India region. It may imply that in Northeast India region, the
impacts of climate change and human induced change is not yet warranted for the
period 2046–2064. This study suggests that the knowledge of changes in rainfall
patterns could be useful for the water resource planners for effective utilization of
water resource in the region and to make appropriate decisions for operations of
various water resource projects.
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Analyzing Non-stationarity
in the Hyderabad City Rainfall
Intensity-Duration-Frequency Curves

V. Agilan and N.V. Umamahesh

Abstract The infrastructure design is primarily based on rainfall intensity-
duration-frequency (IDF) curves and the current IDF curves are based on the
concept of stationary extreme value theory (i.e. occurrence probability of extreme
precipitation is not expected to change significantly over time). But, the extreme
precipitation events are increasing due to global climate change and questioning the
reliability of our current infrastructure design. In this study, the trend in Hyderabad
city 1-, 2-, 3-, 6-, 12-, 24- and 48-h duration annual maximum rainfall series are
analyzed using the Mann–Kendall (M–K) test, and a significant increasing trend
is observed. Further, based on recent theoretical developments in the extreme value
theory (EVT), non-stationary rainfall IDF curve for the Hyderabad city is developed
by incorporating linear trend in the location parameter of the generalized extreme
value (GEV) distribution. The study results indicate that the IDF curves developed
under the stationary assumption are underestimating the precipitation extremes.

Keywords Extreme rainfall � IDF curves � Hyderabad city � Non-stationarity

Introduction

The rainfall intensity-duration-frequency (IDF) curves are commonly used in storm
water management and other engineering design applications across the world
(Endreny and Imbeah 2009) and these curves are developed based on historical
rainfall time series data by fitting a theoretical probability distribution to annual
maximum rainfall series or partial duration series (Cheng and AghaKouchak 2014).
The existing IDF curves are based on the concept of stationary extreme value theory
(i.e. occurrence probability of extreme precipitation is not expected to change
significantly over time (Jakob 2013)). However, in recent years, the extreme
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precipitation events are escalating due to global climate change (Tramblay et al.
2012; Xu et al. 2015). In specific, in recent years, the impact of different climate
processes on the changes in daily extreme precipitation has been analyzed, such as
el niño-southern oscillation (ENSO) cycle (Revadekar and Kulkarni 2008; Agilan
and Umamahesh 2015a), Global warming (Kunkel et al. 2013; Villafuerte and
Matsumoto 2015). Furthermore, reasonable literature reported the possible changes
in precipitation due to urbanization (Kishtawal et al. 2009). Especially Burian and
Shepherd (2005) hypothesized the possible role of urbanization in diurnal rainfall
distribution. In addition, recent studies reported the influence of urbanization in
extreme rainfall events as well (Lei et al. 2008; Miao et al. 2011).

Hence, the various physical processes (discussed in the above paragraph) are
expected to alter the intensity, duration and frequency of rainfall extremes over
time. Consequently, the time series will have a non-stationary component in it and
the IDF curves developed based on the stationary extreme value theory may
underestimate the extreme event. In other words, the future extreme rainfall events
that exceed the capacity of existing drainage systems may occur more frequently if
the drainage is designed based on the concept of stationary extreme value theory
(Zahmatkesh et al. 2015). In addition, urban flooding and the damage to infras-
tructure and society are problems in both developing and developed countries.
Therefore, the non-stationarity in the rainfall IDF curves of an urban area needs to
be analyzed for better urban flood management. In this study, the non-stationarity
(trend) in the Hyderabad city extreme rainfall series is analyzed using the Mann–
Kendall (M–K) test. Further, based on recent theoretical developments in the
extreme value theory (EVT), non-stationary rainfall IDF curve for the Hyderabad
city is developed by incorporating linear trend in the location parameter of the
generalized extreme value (GEV) distribution and they are compared with sta-
tionary IDF curves.

Study Area and Data

The Hyderabad city is the capital of the state of Telangana in India. Location map
of the Hyderabad city is shown in Fig. 1. The Hyderabad city lies between the
latitudes of 17.25°N and 17.60°N and longitudes of 78.20°E and 78.75°E and
situated at a height of about 500 m above the mean sea level. It is classified as a
semi-arid region and the Köppen–Geiger classification is BSh (Peel et al. 2007).
The major urbanization of Hyderabad city took place after 1990. During
1971–1990, the average rainfall of Hyderabad city was 796 mm per year. But, it has
increased to 840 mm per year during 1991–2013. The wettest month of the city is
August and the average rainfall in this month is 163 mm.

For this study, the hourly observed rainfall data for Hyderabad city is procured
from the India Meteorological Department (IMD) for the period of 1 January
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1972–31 December 2013 (42 years). This data is gauge observation and it is
observed at the centre of Hyderabad city, i.e. 78.46°E and 17.45°N. The location of
this gauge is given in Fig. 1 (star mark).

Methodology

The methodology of this study comprises of following two sections,

1. Analyzing the trend present in the annual maximum rainfall series of 1-, 2-, 3-,
6-, 12-, 24- and 48-h duration using the Mann–Kendall test.

2. Developing non-stationary rainfall IDF relationship for the Hyderabad city.

Trend Analysis

Statistical tests that are used to detect trends in time series are broadly classified
into two groups: parametric and nonparametric methods. As the hydrometeorological
time series data are generally non-normally distributed and censored, the nonpara-
metric tests are most appropriate for hydrometeorological time series (Bouza-Deaño
et al. 2008). The nonparametric Mann–Kendall (M–K) test (Mann 1945;

Fig. 1 Location map of Hyderabad city (Agilan and Umamahesh 2015b)
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Kendall 1962) for trend analysis have a long tradition of use in hydrology and have
been applied in the case of extremes (Villarini et al. 2009; Cheng and AghaKouchak
2014). Thus, in this study, the MK test is used to detect trends in annual maximum
rainfall intensity of the selected stormdurations (i.e. 1, 2, 3, 6, 12, 18, 24, 36 and 48 h).
The power of the MK test depends on pre-assigned significance level, the magnitude
of the trend, sample size and the amount of variations within the time series (Yue et al.
2002).

In addition, the MK test is free of normally distributed data assumption, but data
independency remains as an assumption of this test. Thus, the MK test rejects the
null hypothesis of no trend more often than that specified by the significance level a
when the data are serially correlated (von Storch 1995). If the time series has
significant lag-one autocorrelation, the series should be pre-whitened before
applying the MK test to avoid the effect of serial correlation (von Storch 1995;
Bayazit and Önöz 2007). The method proposed by von Storch (1995) to
pre-whitening the series is given as follows (Eqs. (1)–(3)):

x0i ¼ xi � qxi�1 ð1Þ

q ¼
1

n�1

Pn�1
i¼1 xi � E xið Þð Þ xiþ 1 � E xið Þð Þ

1
n

Pn
i¼1 xi � E xið Þð Þ2 ð2Þ

E xið Þ ¼ 1
n

Xn
i¼1

xi ð3Þ

where x′ is pre-whitened data series, x is original series and n is the size of data
series. If the original series has significant lag-one autocorrelation, the MK test is
applied to pre-whitened data series. Otherwise, the MK is applied to the original
data series.

The Non-stationary IDF Curves

Consider an annual maximum series of n independent and identically distributed
(iid) random variable x1, x2,…,xn. The annual maximum series converges to gen-
eralized extreme value (GEV) distribution and the cumulative distribution function
is given by Eq. (4) (Coles 2001).

F x; l; r; nð Þ ¼ exp � 1þ n x� lð Þ
r

� ��1=n
( )

; r[ 0; 1þ n x� lð Þ
r

[ 0; n 6¼ 0

exp � exp � x� lð Þ
r

� �� �
; r[ 0; n ¼ 0

ð4Þ
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where µ, r and n are; location, scale and shape parameters of the GEV distribution,
respectively. As the precise estimation of shape parameter is difficult, it is unreal-
istic to assume it as a smooth function of time (Coles 2001) and modelling temporal
changes in scale parameter (r) requires long-term observations (Cheng et al. 2014).
Thus, the scale and shape parameters are kept constant and the non-stationarity is
introduced only in the location parameter of GEV. The non-stationary setting for
the location parameter of the GEV as a function of the covariate (f(T)) is given by
Eq. (5).

l tð Þ ¼ 1 f Tð Þ½ � l0
l1

� �
ð5Þ

The slope parameters l1 represent the trend in the location parameter due to the
covariate f(T). For computational simplicity, f(T) must be standardized before
non-stationary setting. As an approximation, the linear trend is often used to rep-
resent a long-term trend (Cheng et al. 2014; Cheng and AghaKouchak 2014;
Yilmaz and Perera 2014). In particular, Sugahara et al. (2009) analyzed the
non-stationarity in the extreme daily rainfall in the Sao Paulo city, Brazil by
introducing linear trend in scale parameter of the Generalized Pareto distribution.
Cheng and AghaKouchak (2014) developed a non-stationary rainfall IDF curves by
incorporating linear trend in the location parameter of the GEV distribution. Yilmaz
and Perera (2014) investigated the non-stationarity in the IDF curves of Melbourne,
Australia by incorporating linear trend in location and shape parameters of the GEV
distribution. The covariate for linear trend in the location parameter of the GEV is
given by Eq. (6).

f Tð Þ ¼ T ð6Þ

where T = 1, 2, 3… n (n is the size of the annual maximum rainfall series). In this
study, the parameters of the non-stationary GEV distribution are estimated by the
method of maximum likelihood, as the method of maximum likelihood can be
easily extended to the non-stationary case (Coles 2001; Katz 2013). The
non-stationary rainfall intensity is estimated using the model parameters of the
non-stationary GEV model. But, unlike the stationary model, the location parameter
value will vary over the time. In this study, the low risk (more conservative)
approach (Cheng et al. 2014) is used to calculate location parameter value, i.e. the
95 percentiles of the location parameter values and it is given by Eq. (7). The 95
percentiles of the location parameter value give the effective return level (Cheng
et al. 2014).

bl95 ¼ Q95 blt1; blt2; . . .; blt100;ð Þ ð7Þ

Estimation of 1/p return level is given by Eq. (8) (Coles 2001; Cheng et al.
2014).
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zT ¼ blþ brbn � log 1� pð Þð Þ�bn�1
� �

; bn 6¼ 0

blþ br � log � log 1� pð Þð Þ½ �; bn ¼ 0

8<
: ð8Þ

where p (the exceedance probability) is the frequency (i.e. how frequently an
extreme rainfall of specified intensity and duration is expected to occur).

Results and Discussion

Before analyzing the trend present in the annual maximum rainfall series of 1-, 2-,
3-, 6-, 12-, 24- and 48-h duration using the MK test, the presence of serial corre-
lation in the rainfall series are analyzed. Significant lag-one autocorrelation is
detected in the data series of 1-, 24- and 48-h rainfall durations. The remaining
rainfall durations do not show any statistically significant lag-one autocorrelation
and they are considered to be independent series. Then the autocorrelated series (i.e.
1-, 24- and 48-h durations rainfall series) are pre-whitened using the method dis-
cussed in Sect. 4.1. The MK test is then applied to the pre-whitened 1-, 24- and
48-h duration time series and the original data sets of the remaining rainfall
durations (i.e. 2-, 3-, 6- and 12-h). Table 1 shows the results of MK test with
different duration annual maximum rainfall series. The ‘Tau’ value of the MK test is
similar to correlation coefficient and its value varies from −1 to 1 (i.e. positive Tau
value indicate increasing trend and negative Tau value indicate decreasing trend).

In this study, all duration rainfall series are having positive Tau value and it
indicates that the annual maximum rainfall series of all duration (i.e. 1-, 2-, 3-, 6-,
12-, 24- and 48-h) are having increasing trend. The two-tailed p-value given in
Table 1 indicates that the increasing trend present in the 12-h duration rainfall series
is statistically significant at 0.05 significance level, and the increasing trend present
in the 6- and 48-h duration rainfall series is statistically significant at 0.1 signifi-
cance level. The increasing trend in remaining duration data series is not significant
at 0.1 significance level. In addition, the previous studies indicate that the precip-
itation extremes in several regions of the world have increased (Westra et al. 2013).

Table 1 MK test results S. No. Duration (h) Tau p-value

1 1 0.06 0.60

2 2 0.10 0.35

3 3 0.15 0.17

4 6 0.20 0.06

5 12 0.23 0.03

6 24 0.16 0.14

7 48 0.18 0.09
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But, most ground-based stations do not exhibit a strong trend and only limited
stations show a statistically significant non-stationary behaviour (Westra et al.
2013; Cheng and AghaKouchak 2014). Moreover, the purpose of analyzing trend
using the MK test is to avoid implementing a time varying extreme value analysis
on a data that does not show a significant change in extremes over time. The recent
studies highlight the need to go beyond subjective criteria for significance analysis,
especially in a non-stationary world (Rosner et al. 2014). Thus, the non-stationarity
can be applied to all data sets regardless of their trend, avoiding a subjective
significance measure (Cheng and AghaKouchak 2014). In this study, the
non-stationarity is applied to annual maximum rainfall series of all duration (i.e. 1-,
2-, 3-, 6-, 12-, 24- and 48-h) and compared with stationary models of each duration.

The rainfall IDF relationship for 2, 5 and 10 year return period are developed
based on the non-stationary GEV models. The IDF curves of Hyderabad city for 2,
5 and 10 year return periods are shown in Fig. 2a–c, respectively. In this study, it is
observed that the IDF curves derived from the stationary models are underesti-
mating the extreme events. If such an IDF curve (developed from the stationary
model) is used for an infrastructure design, the project may not be able to withstand
the very extreme events.

For example, for an event with a return period of 2 years and duration of 2-h, the
difference between the non-stationary (35.74 mm/h) and stationary (26.73 mm/h)
extreme rainfall is about 8.98 mm/h. Even for a small watershed, this extra
8.98 mm/h rainfall will lead to a significant increase in peak runoff. In addition, for
an event with a return period of 5 years and 2-h duration, the non-stationarity and
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Fig. 2 Non-stationary intensity-duration curves of Hyderabad city for a 2-year, b 5-year and
(10) 10-year return periods
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stationarity extreme rainfall are 41.81 and 32.88 mm/h, respectively. The
non-stationary extreme rainfall of 2 year return period (35.74 mm/h) is more than
the stationary extreme rainfall of 5 year return period (32.88 mm/h). In other
words, the return of period of an extreme rainfall of the Hyderabad city is reducing.
In other words, the future extreme rainfall events that exceed the capacity of
existing drainage systems may occur more frequently if the drainage is designed
based on the concept of stationary extreme value theory.

Summary

In this study, with the help of IMD 42 years’ hourly rainfall observations, the trend
in the Hyderabad city 1-, 2-, 3-, 6-, 12-, 24- and 48-h duration annual maximum
rainfall series are analyzed using the Mann–Kendall (M–K) test and a significant
increasing trend is observed. Further, based on recent theoretical developments in
the extreme value theory (EVT), non-stationary rainfall IDF curve for the
Hyderabad city is developed by incorporating linear trend in the location parameter
of the generalized extreme value (GEV) distribution. The study results indicate that
the IDF curves developed under the stationary assumption are underestimating the
precipitation extremes. In other words, the return of period of an extreme rainfall of
the Hyderabad city is reducing.
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Development of Finer Resolution Rainfall
Scenario for Kangsabati Catchment
and Command

P.M. Dhage, N.S. Raghuwanshi and R. Singh

Abstract Study of the regional scale hydrology of a basin due to impacts of climate
change has gained the attention of researchers in the recent past. The general cir-
culation model (GCM), widely used tools for assessing the impacts of climate
change, usually predict the hydrological variables of interest at a large-scale, which
necessitates the use of downscaling techniques. In this study, Multi-Linear
Regression (MLR) and Kernel Regression (KR) two downscaling techniques were
compared on the basis of performance statistics, Mean, root mean square error
(RMSE), and Nash Sutcliffe Efficiency (NSE). The eleven predictors used from the
NCEP/NCAR reanalysis and four GCMs namely, CanESM2, MPI-ESM-LR,
CNRM-CM5, and IPSL-CM5A-LR. The best-performed technique among these two
techniques was used to develop multi-GCM ensemble daily rainfall scenario at rain
gauge stations of Kangsabati study area for high emission scenario (RCP8.5).

Keywords Statistical downscaling � Rainfall scenario � Kangsabati
RCP8.5 scenario

Introduction

Studying the impact of climate change on is a challenge facing the climate science
community currently. The General Circulation Model (GCM)s are good in simu-
lating the large climate variables accurately but cannot be directly used for
hydrologic impact assessment because of their coarse resolution. The objective of
downscaling is to predict regional scale hydrologic variables of interest (e.g.,
rainfall) based on large-scale climatological variables (e.g., specific humidity, mean
sea level pressure, temperature, etc.) simulated by a GCM. Climate change study
basically involves the downscaling of coarse resolution variables data which are
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well simulated by GCMs by using two well-known techniques viz. Dynamic
downscaling and Statistical Downscaling (Salvi et al. 2013). Every GCM is sim-
ulating different climatic predictions because of their physics and varied assump-
tions from one to another (Benioff et al. 1996). Accordingly, the downscaled
(dynamical or statistical) GCMs output tends to develop different predictions at the
station scale. Multi-GCM ensemble prediction is well accepted in climate change
studies (Yun et al. 2005). Therefore, Four GCMs (CanESM2, MPI-ESM-LR,
CNRM-CM5, and IPSL-CM5A-LR) were used from CMIP5 data archive for
developing multi-GCM ensemble daily rainfall scenario. The present study is
conducted to use the effective statistical downscaling technique by comparing the
performance of Multi-Linear Regression (MLR) (linear regression) and Kernel
Regression (KR) (nonlinear regression based) techniques for developing daily
rainfall scenario at station scale in the Kangsabati reservoir catchment and com-
mand in West Bengal (India). Further, the best-performed statistical downscaled
technique is applied to predict the rainfall with multi-GCM ensemble outputs for
the 2011–2040, 2041–2070 and 2081–2100 time slices under RCP8.5 (high
emission) scenario. These predictions are important so that appropriate decisions on
adaption and mitigation strategies can be worked under climate change.

Study Area and Data Acquisition

The Kangsabati reservoir, located in the Kangsabati Kumari river basin in West
Bengal, India was constructed in 1965, as a multipurpose reservoir for agriculture,
water supply and flood control. The annual average rainfall of catchment and
command of Kangsabati reservoir is 1302 and 1652 mm. The historical long term
daily rainfall (predictand) season at 8 stations for 1971–2005 period is obtained
from Indian Meteorological Department (IMD), Pune (Fig. 1). National Centers for
Environmental Prediction (NCEP) of National Oceanic and Atmospheric
Administration (NOAA) data for downscaling model are downloaded from http://
www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html link. The four
GCMs namely, CanESM2, IPSL-CM5A-LR, MPI-ESM-LR, and CNRM-CM5
predictors data are collected at daily time scale for historical and Representative
Concentration Pathways (RCP)8.5 scenario from CMIP5 portal. The change in
predicted rainfall for three future time slices 2011–2040, 2041–2070 and 2071–
2100 are estimated using an observed reference period of 1976–2005.

Methodology

Eight stations located in the study area were considered for downscaling station
rainfall data (Fig. 1). The MLR and KR downscaling techniques were employed for
monsoon (June, July, August, and September) season.
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Development of Downscaling Model for NCEP Reanalysis
Outputs

The NCEP predictors and rainfall time series for the period 1971–1990 and 1991–
2005 were used for calibration and validation of MLR and KR downscaling
techniques. Ideally, the geophysical processes are associated with fine resolution
rainfall. Predictors that directly affect rainfall processes are used in statistical
downscaling as input variables. The large-scale atmospheric 11 predictors (pre-
cipitation flux, surface zonal and meridional wind, surface based air temperature,
mean sea level pressure, geopotential height at 500 hPa, meridional wind at 500
and 850 hPa, specific humidity at 500 and 850 hPa and air temperature at 500 hPa)
were selected on the basis of literature and variability of predictors from GCM.
These predictors followed the three criteria (Wilby et al. 1999) in statistical
downscaling. The selected NCEP and GCM predictors for the calibration and
validation period were standardized for monsoon season to remove the units of
predictors and scale down to single uniform scale. Standardized data suffers from
collinearity. It cannot be directly used for the development of statistical relationship
due to instability and unnecessarily complications in statistical downscaling.
Therefore, Principal Component analysis (PCA) was used to convert them into a set
of uncorrelated variables. The PC based large-scale predictors were calibrated and

Fig. 1 Location of eight raingauge stations in Kangsabati reservoir catchment and command
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validated using statistical downscaling techniques for a predefined period. In this
study, the statistical relationship between coarse resolution predictors are linked to
the fine resolution predictand using two MLR and KR techniques are briefly
described as below.

Multiple Linear Regression (MLR)

This technique fits linear equation between NCEP/GCM predictors (independent
variables) and predictand (dependent variable). The MLR equation is given as:

Y ¼ b0 þ b1x1 þ b11x11 ð1Þ

where x1; x2; . . .; x11 = NCEP predictors, Y = Predictand (Rainfall), and
b1; b2; . . .b11 = Regression coefficients.

Kernel Regression (KR)

The KR is a nonparametric approach to estimate the conditional expectation of
random variable. The Gaussian kernel function with a zero mean and unit standard
deviation is used here.

E Y jXð Þ ¼ f ðXÞ ð2Þ

f ðxÞ ¼ ðnhÞ�1
Xn
i¼1

K x� xijhð Þð Þ ð3Þ

where, K(�) = kernel function of predictand, xi = ith rainfall observation,
n = number of observations, and h = smoothing parameter known as bandwidth.

Performance Evaluation of MLR and KR Downscaling
Techniques

In order to examine the effectiveness of these two techniques in simulating daily
rainfall, the performance evaluation of all techniques for eight raingauge stations
was carried out using three statistical measures namely, mean, Root Mean Square
Error (RMSE) and Nash–Sutcliffe Efficiency (NSE) (Nash and Sutcliffe 1970). The
use of three statistical indicators, in this study, facilitated to explore the relative
potential of these indicators in analyzing technique results. The best-performed
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technique for the study area was used to estimate the rainfall for future years 2011–
2100. The mathematical expressions for these measures are given as follows:

Mean ¼ 1
n

Xn
i¼1

Xi ð4Þ

Correlation Coefficent ¼
P

Pi � P
� �

Oi � O
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Pi � P
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Oi � O
� �2q ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
Pi � Oið Þ2

r
ð6Þ

NSE ¼ 1�
Pn

i¼1 Pi � Oið Þ2Pn
i¼1 Oi � O

� �2 ð7Þ

where, Xi = ith observation, n = number of observations, P = Predicted rainfall,
O = Observed rainfall, O = Mean of observed rainfall.

Establishment of Downscaling Technique for Multi-GCM
Ensemble Outputs

The well-performed downscaling technique with NCEP outputs was used for
development of the downscaling model with the same atmospheric domain, the same
set of selected GCM predictors for the historical observed period (1971–2005). The
assumption was appropriated that selected predictors are valid for both NCEP and
GCM downscaling models as the raingauge station remained same for both models.
The GCM predictors were preprocessed through interpolation, standardization, bias
correction and PCA before statistically linked with the predictand. Bilinear interpo-
lation was performed on GCMpredictors to match its outputs on NCEP (2.5° � 2.5°)
grid. The bias correction was performed for removing the systematic error of GCM
with reference of NCEP outputs using equidistant quantile mapping method (Li et al.
2010) for the past 1971–2005 and future 2006–2100 periods. Thereafter, the bias
corrected four individual GCMs predictors are prepared through preprocessing steps
as same as of NCEP predictors for the historical period. Thereafter, the
best-performed technique was used to downscale the outputs of predefined four
GCMs (CanESM2, IPSL-CM5A-LR, MLP-ESM-LR, CNRM-CM5) with historical
climate (1976–2005) and future climate (2006–2100) data for prediction of future
rainfall scenario. The simplest averaging method was used for deriving an ensemble
prediction. The outputs of four individual GCMs pertaining to historical and future
climate were introduced to MLR downscaling technique to generate multi-GCM
ensemble outputs for predicting the rainfall at station scale into future.
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Results and Analysis

Performance Comparison of MLR and KR Statistical
Downscaling Techniques

The MLR and KR techniques were calibrated with monsoon season and validated
for the predefined period using NCEP predictors. The performance of MLR and KR
downscaling techniques were evaluated by using mean, RMSE and NSE for the
validation period (Table 1). The mean of observed rainfall showed good agreement
with the MLR simulated mean for monsoon season as compared to the results
obtained from KR technique. In order to have a better idea about the performance of
MLR and KR techniques, RMSE and NSE were also calculated. All two techniques
showed the higher value of RMSE at all station. But, among these techniques, MLR
was obtained lower RMSE than KR technique. Another performance statistic NSE
was achieved higher for MLR technique than the other technique, whereas KR
showed poor performance for developing daily rainfall, due to higher RMSE,
lowest NSE and higher variability of mean rainfall (Table 1). The results of sta-
tistical indicators, i.e., mean, RMSE and NSE were better in the case of simple
MLR technique under monsoon season. Therefore, it can be concluded from the
above analysis that the MLR technique performs relatively better than KR tech-
nique at the eight stations. Sachindra et al. (2014) also concluded that MLR
technique has the capability to reproduce finer resolution rainfall. Therefore, the
MLR technique was successfully implemented in obtaining GCM historical and
future predictions with RCP8.5 scenario at 8 stations of West Bengal.

Table 1 Performance statistic for daily rainfall amount (mm) for validation period 1991–2005

Statistic RMSE NSE Mean (mm)

Technique MLR KR MLR KR Observed MLR KR

Simulia 6.41 8.63 0.49 0.18 9.35 8.56 8.24

Rangagora 5.28 8.31 0.46 0.19 8.00 8.04 7.16

Kharidwar 4.62 7.54 0.45 0.14 8.91 8.53 7.41

Tusama 5.30 6.91 0.49 0.14 8.87 9.99 8.14

Kangsabati Dam 4.51 9.16 0.44 0.23 9.35 8.85 8.71

Bankura 5.69 7.61 0.46 0.29 11.85 12.07 9.76

Jhargram 9.33 12.42 0.45 0.32 12.83 12.36 11.43

Kharagpur 4.43 6.00 0.45 0.21 9.77 10.39 7.74
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Multi-GCM Ensemble Rainfall Prediction for Historical
and RCP8.5 Scenarios

From the time series plot (Fig. 2a), it can be easily observed that the mean and
standard deviation of observed data showed a good match with simulated mean and
standard deviation obtained from MLR downscaling technique. The rainfall vari-
ability is captured better way using MLR downscaling technique with 11 NCEP and
GCM predictors. Figure 2b shows a scatter plot of intersite correlations computed
by the models versus actual correlations between the sites, for validation years

Fig. 2 a Rainfall reproduced by MLR statistical downscaling technique with NCEP and
multi-GCM ensemble average at for calibration (1971–1990) and validation period (1991–2005),
b scatter plot of multi-GCM ensemble reproduced and observed rainfall for validation period
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1991–2005. It shows a capability of the MLR technique in simulating the daily
rainfall for monsoon season using multi-GCM ensemble for Kangsabati reservoir
catchment and command.

In the case of high emission RCP8.5 scenario, rainfall will be increasing at
Jhargram and Bankura in command area and at Tusama station of catchment for
monsoon season. The magnitude of increase in rainfall is observed to be more under
RCP8.5 scenario than historical scenario. Figure 3 shows the spatial variation of
mean daily rainfall for RCP8.5 scenario for 2011–2040, 2041–2070 and 2071–2100
periods. The increase in future monsoon rainfall in this study area is in line with
studies of Kumar et al. (2013), Salvi et al. (2013) in northeastern part (West Bengal)
of India under high emission scenario. Mishra et al. (2009) also found that under
high emission scenario (A2) predicted rainfall of 2051–2100 was higher than

Fig. 3 Spatial variation of mean monsoon rainfall for historical period (1976–2005) and RCP8.5
scenario for 2011–2040, 2041–2070 and 2071–2100 periods
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2011–2050 and the historical period for Kangsabati catchment study area. The
heavy rainfall implies that in future will increase in these areas that may lead to
flooding, crop damage problem in Kharif season.

Conclusions

In this study, the rainfall was predicted for RCP8.5 scenario using well-performed
technique for Kangsabati reservoir catchment and command. The intercomparison
of two statistical downscaling techniques viz., MLR and KR was carried out to
identify the effective prediction technique for rainfall. In statistical downscaling,
calibration and validation was performed using 11 NCEP predictors and observed
rainfall predictand for the period of 1971–1990 and 1991–2005, respectively. The
results of calibration and validation showed the MLR technique performed better
than KR technique at all stations for rainfall. Therefore, future prediction of rainfall
was carried out only by employing MLR technique using four GCM variables for
RCP8.5 scenario. The results showed that the predicted rainfall will be increased
over the observed reference period 1976–2005 and among the three time slices
under high emission scenario. The use of multi-GCM while predicting future cli-
mate condition and ensuring impacts could help to capture key climate features are
not well explained by one of the GCM. Hence, future attempts for region could rely
on realizations from multi-GCMs.
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Investigation of the Relationship Between
Natural Aerosols and Indian Summer
Monsoon Rainfall Using a Climate Model

Charu Singh, Dilip Ganguly and S.K. Dash

Abstract Using all forcing simulations of fully coupled climate model GFDL-CM3,
an attempt has been made to represent the role of natural aerosols (such as dust) in
modulating the summer monsoon rainfall over the Central Indian region. For this
purpose, long-term data set of dust, winds and rainfall have been obtained from
CMIP5 data portal for the past 54 years of time period. The spatial pattern of dust
load from GFDL-CM3 is able to capture the potential dust sources such as Sahara
Desert, Arabian Peninsula region. Further to this, it has been observed that the load
of dust over the Arabian Sea and Arabian Peninsula is significantly correlated
(significant at 1% significance level) with the rainfall over the central Indian region,
suggesting an in-phase relationship between the two parameters.

Keywords Climate model � Natural aerosol � CMIP5 � Significant

Introduction

Atmospheric aerosols are the suspended liquid or solid particles in the air, which
could be of different compositions, sizes, shapes and optical properties, and these
aerosol properties depend upon their source of origin such as natural and anthro-
pogenic. Aerosols through their optical properties modify the Earth’s radiation
budget. Aerosols could cut down the solar radiation before it reaches the Earth
surface, and hence are responsible for the reduction in the land surface temperature
thereby affecting the vegetation growth (Prasad et al. 2004, 2005).
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The aerosols are considered as one of the major contributors in Earth’s climate
change; however, the exact role of aerosols in modifying Earth’s climate is not yet
quantified. Several previous studies documented the fact that the Indian summer
monsoon rainfall is significantly related to the amount of the aerosols (Jin et al.
2014; Vinoj et al. 2014; Singh et al. 2015, 2017a,b). Aerosols modulate the
monsoon in different ways. Ramanathan et al. (2005) proposed that the aerosols
induce the cooling effect by absorption and scattering of the solar radiation, which
could reduce the land–ocean temperature difference and in turn reduces the Indian
summer monsoon rainfall. This theory is known as “solar dimming effect”. Lau
et al. (2006) documented the elevated heat pump theory, and elaborated the fact that
the absorbing aerosols coupled with the Tibetan Plateau heating induce the strong
land–ocean temperature gradient which is responsible for the early arrival and
intensification of the monsoon rainfall. Recently, based on GFDL-CM3 climate
model simulations, Bollasina et al. (2011) suggested that the anthropogenic aerosols
are responsible for the reduction in the monsoon rainfall over the central Indian
region. The fast and slow responses of the monsoon system to the anthropogenic
aerosols have been discussed in detail by Ganguly et al. (2012a, b). Previous studies
for example, Kuhlmann and Quaas (2010), Gautam et al. (2009) reported that the
dust aerosols contribute more towards the aerosol loading over the Arabian Sea
during pre-monsoon and monsoon period. Therefore, this study is designed to
investigate the relationship between the amount of natural aerosols (i.e. dust) and
the Indian summer monsoon rainfall using a long-term data set simulated by a
climate model.

Data Set and Methods

The load of dust, surface winds and precipitation data sets corresponding to all
forcing simulations of the climate model GFDL-CM3 have been obtained from
CMIP5 (coupled model intercomparison project 5) data portal. Data set for the time
period from 1951 to 2004 has been utilised in the present study. Based on the
spatial pattern of dust, the regions with significant dust loading are identified and
further to this, the relationship between the dust over the identified regions and the
rainfall over the central Indian region have been studied using scatter plot and lead–
lag relationship. The significance of the correlation is tested using t-test under the
null hypothesis of r = 0 (i.e., no correlation exists between the variables). The test
statistics of the t-test to estimate the significance of the correlation between
N number of samples, may be expressed as follows:

Test statistics ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðN � 2Þ
ð1� r2Þ

s

ð1Þ
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Results

The climatology of the load of dust simulated by GFDL-CM3 for the past 50 years
of the time period is shown in Fig. 1. TOM’s aerosol index and GOCART dust
optical depth are also illustrated in the top panel of Fig. 1 for the comparison
purpose. It appears that the GFDL-CM3 is able to identify the dust sources such as
Sahara Desert, Arabian Peninsula region and Gobi Desert, etc., and follows the
GOCART dust optical depth pattern. Based on the previous studies (Vinoj et al.
2014; Jin et al. 2014; and references therein) and as per the spatial pattern of the
dust load, four sub-regions which indicate sufficiently high dust loading are selected
for the further study in this present work. Four regions are shown in the top panel of
Fig. 1 (SD: Middle West part of Africa encompassing the Sahara Desert, AP:
Arabian Peninsula, AS: The Arabian Sea and CI: central Indian).

Spatial plots illustrate the TOMS aerosol index, dust optical depth from
GOCART model in the top panel and dust load from GFDL-CM3 in the bottom
panel. The colour bars in the top panel represents the aerosol index and optical
depth, respectively, and the colour bar in the bottom panel indicates dust load in
mg/m2. The four identified regions are shown by white text in the first figure.

Fig. 1 Spatial distribution of the climatological Jan–Dec load of dust for the time period starting
from 1951 to 2004
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Further to this, the scatter plots are generated for load of dust and winds (surface
winds) over the four identified regions and the rainfall over the central Indian
region. For this purpose, monthly data sets of dust load, winds and rainfall from
1951 to 2004 have been utilised. The correlation coefficient has also been computed
between the two parameters (i.e. winds and dust and dust and winds). Based on t-
test, 0.2 is the significant correlation coefficient for 648 samples at 1% significance
level. Estimated correlation coefficients are provided on respective panels. For
illustration, please refer Fig. 2.

Rainfall over the central Indian region is significantly positively correlated with
a load of dust over the distant sources (Fig. 2). Further to this, it appears that the
correlation between the area averaged central India rainfall improves when one
moves from the Sahara dust source to the Arabian Peninsula and then to the

Fig. 2 a Scatter plot generated for the rainfall over Central Indian region and dust load and
surface winds over the Sahara region for Jan–Dec in the past 50 years of time period (1951–2004).
b Same as (a) but for the Arabian Peninsula. c Same as (a) but for the Arabian Sea. d Same as
(a) but for the central India. Correlation coefficient estimated between the two data sets are
provided on respective panels. Please refer colour bar for the colour scheme used. Red text shows
the correlation coefficients between winds and dust, while blue text is used for the correlation
coefficient between dust load and rainfall. X-axis represents dust load in mg/m2 and Y-axis shows
rainfall in mm/day and winds in m/s
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Arabian Sea. However, the correlation coefficient reduces when the coefficient is
estimated between the dust load and rainfall over the central India. The strongest
relationship is observed between the central Indian rainfall and dust load over the
Arabian Sea. Surface winds over the Sahara region are weakly positively correlated
with the amount of dust, whereas the strong positive correlation between the surface
winds and dust load is noted over the Arabian Peninsula and the Arabian Sea.
Additionally, dust load over the central Indian region found to be negatively cor-
related with the surface winds. This is also worth to mention here that the corre-
lation between the dust load and winds improves substantially over the Central
India for 850 hPa winds (correlation coefficient *0.67). However, the relationship
between the winds and dust load weaken over the Arabian Peninsula (0.19) and
Sahara region (−0.49) for 850 hPa winds (figures are not shown).

In this study, we also examined the lead-lag relationship between the load of
dust and winds over the four identified regions and the rainfall over the central
Indian region (Fig. 3). It appears from the figure that the dust load shows the

Fig. 3 a Cross correlation estimated between the precipitation over Central Indian region and dust
load and surface winds over the Sahara region for Jan–Dec in the past 50 years of time period
(1951–2004) and denoted as a function of lead and lag at monthly scale. b Same as (a) but for the
Arabian Peninsula. c Same as (a) but for the Arabian Sea. d Same as (a) but for the central India.
Load of dust is considered as a leading parameter for the computation. X-axis represents lead-lag in
months and Y-axis shows correlation coefficients
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maximum correlation with the surface winds for zero lag (i.e. for same month) over
the Arabian Peninsula, Arabian Sea and Central India, however similar association
is not seen in the Sahara region. Further, the dust load over the Sahara region seems
to lead the central Indian rainfall by one to two months’ time difference. On the
other hand, the dust load over the Arabian Peninsula, the Arabian Sea and central
India found to be leading ahead of the central Indian rainfall by one month, since
the maximum correlation appears corresponding to the 1 month lead period for all
these three regions.

Summary

Using historical simulations of GFDL-CM3 climate coupled model, the relationship
between the amount of dust and the rainfall is examined in the present work. It is
observed that the GFDL-CM3 represents the potential dust sources reasonably well.
Our analysis reveals that the amount of dust over the Arabian Sea and Arabian
Peninsula region influence more to the central Indian rainfall, when compared to the
dust loading over the central India itself or Sahara region. Moreover, the amount of
dust over these regions is significantly positively correlated with the central Indian
rainfall suggesting that more dust emission could enhance the amount of rainfall
over the central India. In climate models, dust emissions are simulated in associ-
ation with a particular surface wind speed, therefore the correlation between the
surface winds and dust load has also been estimated in this study. It is found that the
dust load over the Sahara region is poorly associated with the surface winds,
whereas dust load over the Arabian Peninsula and the Arabian Sea show significant
correlation with the surface winds. Poor correlation between the surface winds and
dust load over the Sahar region may be attributed to the inability of the climate
model to represent the proper dust emission over this region (Evan et al. 2014).
Dust load over the Central India found to be significantly positively correlated with
the 850 hPa winds, which suggests that stronger 850 hPa winds transport more dust
over the Central Indian region rather than the surface winds. This could also be
related to the presence of the elevated aerosol layer, which helps to maintain the
land–Ocean thermal contrast crucial for the monsoon season rainfall as suggested
by Lau et al. (2006). Further to this, dust loading over the Arabian Peninsula,
Arabian Sea and Central India lead central Indian rainfall by 1 month time dif-
ference. Results presented in this study are encouraging and would help to
understand the dust and rainfall relationship both in space and time. Results from
one CMIP5 model has been discussed here; therefore, it is suggested to carry out
the analysis with more number of climate model data sets to establish the robustness
of the results.

Acknowledgements First author wishes to thank Head MASD, Group Director ER and SS Group
and Director, IIRS for providing the support and encouragement to carry out the present work. We
acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling,

142 C. Singh et al.



which is responsible for CMIP5, and we thank the climate modelling groups (specifically
GFDL-CM3) for producing and making available their model output. TOMS aerosol index and
GOCART dust optical depth have been downloaded from http://disc.sci.gsfc.nasa.gov/data-
hldings/PIP/aerosol_index.html and http://acd-ext.gsfc.nasa.gov/People/Chin/gocartinfo.html
respectively.

References

Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the
South Asian summer monsoon. Science 502–505

Evan AT, Flamant C, Fiedler S, Doherty O (2014) An analysis of aeolian dust in climate models.
Geophys Res Lett 41. doi:10.1002/2014GL060545

Ganguly D, Rasch PJ, Wang H, Yoon J-H (2012a) Fast and slow responses of the South Asian
monsoon system to anthropogenic aerosols. Geophys Res Lett 39:L18804. doi:10.1029/
2012GL053043

Ganguly D, Rasch PJ, Wang H, Yoon J-H (2012b) Climate response of the South Asian monsoon
system to anthropogenic aerosols. J Geophys Res 117:D13209. doi:10.1029/2012JD017508

Gautam R, Hsu NC, Lau KM, Kafatos M (2009) Aerosol and rainfall variability over the Indian
monsoon region: distributions, trends and coupling. Ann Geophys 27:3691–3703

Jin Q, Wei J, Yang Z-L (2014) Positive response of Indian summer rainfall to middle east dust.
Geophys Res Lett. doi:10.1002/2014GL059980

Kuhlmann J, Quaas J (2010) How can aerosols affect the Asian summer monsoon? Assessment
during three consecutive pre-monsoon seasons from CALIPSO satellite data. Atmos Chem
Phys 10(10):4673–4688. doi:10.5194/acp-10-4673-2010

Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct
forcing: the role of the Tibetan Plateau. Clim Dynam 26(7–8):855–864. doi:10.1007/s00382-
006-0114-z.1

Prasad AK, Singh RP, Singh A (2004) Variability of aerosol optical depth over Indian
subcontinent using MODIS data. J Indian Soc Remote Sens 32(4) (Dec 2004 Issue)

Prasad AK, Singh RP, Singh A, Kafatos M (2005) Seasonal variability of aerosol optical depth
over Indian subcontinent. In: IEEE, pp 35–38

Ramanathan V et al (2005) Atmospheric brown clouds: impacts on South Asian climate and
hydrological cycle. Proc Natl Acad Sci USA 102(15):5326–5333. doi:10.1073/pnas.
0500656102

Singh C, Thomas L, Kumar KK (2015) Impact of aerosols and cloud parameters on Indian summer
monsoon rain at intraseasonal scale: a diagnostic study. Theor Appl Climatol. doi:10.1007/
s00704-015-1640-6

Singh C, Ganguly D, Dash SK (2017a) On the dust load and rainfall relationship in South Asia:
an analysis from CMIP5. Clim Dyn. doi:10.1007/s00382-017-3617-x

Singh C, Ganguly D, Dash SK (2017b) Dust load and rainfall characteristics and their relationship
over the South Asian monsoon region under various warming scenarios. J Geophys Res:
Atmos 122. doi:10.1002/2017JD027451

Vinoj V et al (2014) Short-term modulation of Indian summer monsoon rainfall by West Asian
dust. Nat Geosci 7:308–313. doi:10.1038/ngeo2107

Investigation of the Relationship Between Natural Aerosols … 143

http://disc.sci.gsfc.nasa.gov/data-hldings/PIP/aerosol_index.html
http://disc.sci.gsfc.nasa.gov/data-hldings/PIP/aerosol_index.html
http://acd-ext.gsfc.nasa.gov/People/Chin/gocartinfo.html
http://dx.doi.org/10.1002/2014GL060545
http://dx.doi.org/10.1029/2012GL053043
http://dx.doi.org/10.1029/2012GL053043
http://dx.doi.org/10.1029/2012JD017508
http://dx.doi.org/10.1002/2014GL059980
http://dx.doi.org/10.5194/acp-10-4673-2010
http://dx.doi.org/10.1007/s00382-006-0114-z.1
http://dx.doi.org/10.1007/s00382-006-0114-z.1
http://dx.doi.org/10.1073/pnas.0500656102
http://dx.doi.org/10.1073/pnas.0500656102
http://dx.doi.org/10.1007/s00704-015-1640-6
http://dx.doi.org/10.1007/s00704-015-1640-6
http://dx.doi.org/10.1007/s00382-017-3617-x
http://dx.doi.org/10.1002/2017JD027451
http://dx.doi.org/10.1038/ngeo2107


Part III
Impacts of Climate Change



Change Point Analysis of Air Temperature
in India

N.R. Chithra, Santosh G. Thampi, Dilber Shahul,
Sankar Muralidhar, Upas Unnikrishnan and K. Akhil Rajendran

Abstract Change point analysis was performed on air temperature at different
pressure levels in the Indian subcontinent to identify the time at which a major
change in trend, if any, has occurred. Pettit test, a nonparametric test to identify
change points in a time series was used for this purpose. It tests, the null hypothesis
that the variable follows one or more distributions that have the same location
parameter against the alternate hypothesis that a change point exists. The signifi-
cance of the change point is determined and if it is greater than the considered level
of 90% confidence, then, the change point is considered to be significant. The test
was performed on the surface temperature data of the Indian subcontinent for the
period 1949–2014, obtained from the NCEP/NCAR reanalysis data set at a reso-
lution of 2.5°. The results of the test for the dry period indicate that the southern,
northern and northeastern parts of India exhibited a significant change point in the
nineteen seventies. During the wet season and the southwest monsoon season, a
significant change was observed in the southern, central and eastern parts of India in
the last decade. Analysis of the annual mean temperature revealed that a significant
change point occurred in South India in the last decade.

Introduction

It has been observed inmany studies that the global climate has taken a significant turn
in the recent decades. The impact of climate change is projected to have different
effects within a country and between countries. Information about such changes is
required at global, regional and basin scales for a variety of purposes. According to the
assessments by the Intergovernmental Panel on Climate Change (IPCC) 2001,
increase in greenhouse gas concentrations caused an increase in the annual mean
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global temperature by 0.6 ± 0.2 °C since the late nineteenth century (Houghton et al.
2001). According to the estimates by the IPCC (2007), the earth’s linearly averaged
surface temperature has increased by 0.74 °C during the period 1901–2005 (Pachauri
and Reisinger 2007). Weather reports indicate that the global mean surface temper-
ature has risen, approximately by 0.6 °C, since 1850. It is expected that by 2100, the
increase in temperature could be in the range 1.4–5.8 °C (Singh et al. 2008).

The study by Srivastava et al. (1992) on decadal trends in climate over India
gave the first indication that temperature trends in India are quite different from that
observed over various parts of the globe. They observed that the maximum tem-
peratures show much larger increasing trends than a minimum temperature, over a
major part of the country and an overall slightly increasing trend of the order of
0.35 °C over the last 100 years. Rupa Kumar et al. (1994) have shown that the
countrywide mean maximum temperature has risen by 0.6 °C. Lal et al. (1995)
suggested that increase in the annual mean minimum and maximum surface air
temperatures would be of the order of 0.7–1.0 °C in the 2040s, when compared to
that in the 1980s. Tabari and Hosseinzadeh Talaee (2011) analysed temperature
series from 29 stations in Iran for the period 1966–2005 using the Mann–Kendall
and Mann–Whitney tests. Results indicated that the annual mean temperature
increased at 25 out of 29 stations, of which 17 stations showed significant trends.
The analysis also indicated that most of the positive significant change points
occurred first in 1972 at all stations except the coastal stations.

Bisai et al. (2014) performed change point analysis for the Krishnanagar weather
observatory, West Bengal, India by applying cumulative sum chart and boot-
strapping test to the time series of temperature data. They concluded that the major
change point in the annual mean temperatures occurred around the year 2001. In
this study, change point analysis was performed using Pettit’s test for air temper-
ature to identify the time at which major changes have occurred in this during the
Indian subcontinent.

Methodology

Study Area

The study area chosen for this study consists of the Indian subcontinent, between
8° 4′ and 37° 6′ north latitude and 68° 7′ and 97° 25′ east longitude. This area
contains a variety of geographical features. The Indian subcontinent is surrounded
by the Arabian Sea in the west, the Bay of Bengal in the east and the Indian Ocean
in the south. South India is a peninsula with two coastal lines at the boundaries and
a plateau in the centre. North India occurs in the valley of the Himalayas and
northeastern India is mainly the foothills and peaks of the Himalayas. There exists a
wide variation in geographical features and this could result in highly varying
climatic conditions. The study area is presented in Fig. 1.
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Data Used

This study uses the National Center for Environmental Protection/National Center
for Atmospheric Research (NCEP/NCAR) reanalysis data for the period of 1948–
2014. This is the output of an offline run of the T62 operational model in
2.5° � 2.5° grid. As data assimilation has changed considerably in the satellite era,
time-dependant in-homogeneities may be present. However, the NCEP/NCAR data
is a reliable basis for analysis of the natural variability over the last several decades,
especially in the Northern Hemisphere (Rudeva and Gulev 2011). Due to the lack of
availability of observed meteorological data in extremes terrains like the north-
eastern parts of India, the reanalysis data is considered most complete and a
physically consistent data set (Simmonds and Keay 2000; Dell’Aquila et al. 2005).
The data assimilation system uses a 3-D variational analysis scheme, with 28 sigma
levels in the vertical and a triangular truncation of 62 waves which corresponds to a
horizontal resolution of approximately 200 km (Kalnay et al. 1996). As the data

Fig. 1 Latitude and longitude of study area
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points are available only in grids of 2.5°, the Indian subcontinent was divided into
grids of the same measure and 47 data points were identified (presented in Fig. 1).

Pettit’s Test

The method was proposed by A.N. Pettit in 1979. The Pettit test is a nonparametric
method, used to identify a change point in a time series (Pettit 1979). Let
X1;X2. . .Xn be a sequence of random variables; the test statistic Ut,T is given by

Ut;T ¼
Xt

i¼1

XT

j¼tþ1

sgnðxi � xjÞ ð1Þ

where sgnðxÞ ¼ 1 if x > 0, 0 if x = 0, −1 if x < 0.
A change point is identified where the value KT ¼ jUt;T j is maximum. This is

performed for each point. The significance of the obtained change point is deter-
mined using the formula

q ¼ exp
�6K2

T

T3 þ T2

� �
ð2Þ

If the value of this parameter is greater than the considered level of 90% con-
fidence (0.90), then the change point is considered significant (Zhang et al. 2009).

Results and Discussions

Change Point Analysis

The Pettit’s test was conducted for all grid points at various pressure levels in all
seasons in the Indian subcontinent. In the dry season, at surface level, 14 points
showed significant change as per Pettitt’s test. 10N 77.5E, 12.5N 77.5E, 15N 75E,
25N 87.5E had a change point around the year 1976–‘78. 25N 85E, 25N 92.5E,
27.5N 92.5E, 27.5N 95E had a change point around the period 1972–‘73.35N 77.5E,
35N 80E had a change point in the year 2004. The other points are 27.5N 82.5E,
25.0N 82.5E, 22.5N 87.5E, 12.5N 80.0E which had a change point at 1970, 1966,
1988 and 1997, respectively. This indicates the presence of a change in trend during
the period 1976–‘78 in South India and 1972–‘73 in northeastern India.

Similarly, a change in trend was detected in level 1000 mb in Southern and
Central India during the past decade. Northern Plains had a change in the pattern of
temperature during 1973–‘75 at the level 850 mb. Almost all points had a change
point in the period 2004–‘06 at the level 500 mb. The same is illustrated in Fig. 2.

150 N.R. Chithra et al.



For the wet season, at surface level, it can be concluded that all of southern India
and eastern coastal area exhibit a major change in the trend of temperature during
the past decade. At level 1000 mb, it is observed that southern India showed a
significant change point in the last decade and Kashmir showed a significant change
point during 1970–‘71. Southern and northeastern India has a significant change
point in 2004–‘12 at 850 mb level. The region comprising the states of Kerala,
Karnataka, Andhra Pradesh and Tamil Nadu has a change in pattern in the period
2006–‘08 and the region consisting of Maharashtra, Madhya Pradesh and Orissa
has a change in the period of 1976–‘79 at 500 mb level (illustrated in Fig. 3).

During the southwest monsoon season, at surface level, the conclusion drawn is
that all of south India, an eastern coastal region extending till West Bengal and
northeast region show a significant change of pattern in the last decade. It is
observed that, at 1000 mb level, a change in pattern exists in southern India, the

Fig. 2 Significant change points (year) in monthly mean temperature during the dry season
estimated using Pettit’s test (clockwise from left top level surface, level 1000, level 500, level 850)
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eastern coastal region extending till West Bengal and northeast India during the last
decade. Kashmir region showed a significant change point during the year 1971. At
850 mb level, southern India, eastern and western coastal regions and northeast
India showed a significant change in the pattern of temperature during the period
2004–‘12 (refer Fig. 4).

From these results, it can be observed that the major change points exist in the
past decade. In order to identify any other significant pattern before this period, an
annual analysis was performed till the year 1999. The monthly data was averaged to
obtain annual data for the years and Pettit’s test was performed. The result obtained
indicates that, on a surface level, south India showed a significant change point in
the period 1976–‘84. Central India had a significant change of pattern in the period
of 1960–‘73. North and northeastern India showed a significant change point in the
period 1970–‘80. Similarly at 1000 mb pressure level, south India showed a

Fig. 3 Significant change points (year) in monthly mean temperature during the wet season
estimated using Pettit’s test (clockwise from left top level surface, level 1000, level 500, level 850)
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significant change point in 1976–‘97, central India showed a change in pattern in
the period of 1960–‘74 and north and northeastern India showed a significant
change point in 1970–‘88. At 850 mb pressure level, south India had a change point
during the period 1976–’97, central India showed a change in the period 1960–’74’,
whereas north and northeastern India showed a change point in the period
1970–‘88. At 500 mb level, south India showed a change point in the year 1979,
central India showed a change point during the period 1982–‘83, north and
northeastern India had a change point during the period 1957–‘69. This is illustrated
in Fig. 5.

Fig. 4 Significant change points (year) in monthly mean temperature during the southwest
monsoon season estimated using Pettit’s test (clockwise from left top level surface, level 1000,
level 500, level 850)
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Summary and Conclusions

In this study, change point analysis using Pettit’s test was performed on air tem-
perature at different pressure levels. The test was first done on the seasonal subsets
and then on the whole data taken annually.

The results indicated that except for the dry season, all other seasonal data
showed a change point during the period of 2000–‘14 in the southern peninsula and
northeastern India. Results for the dry season showed a change point during the
1970s for this region. Further, on analysis of the data, excluding the data for the
period since 2000, it is observed that South India had a change of pattern in
1974–‘84, Central India experienced the same in the 1960s and North and
Northeastern India experienced this during the 1970s.

Fig. 5 Significant change points (year) in annual mean temperature (excluding 2000–2014)
estimated using Pettit’s test (clockwise from left top level surface, level 1000, level 500, level 850)
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Greenhouse Gas Emissions from Sewage
Treatment Plants Based on Sequential
Batch Reactor in Maharashtra

Vipin Singh, Harish C. Phuleria and Munish K. Chandel

Abstract Wastewater treatment systems contribute significantly to anthropogenic
greenhouse gas emissions. The main greenhouse gases emitted during the
wastewater treatment processes are methane (CH4), nitrous oxide (N2O) and carbon
dioxide (CO2). Sequential batch reactor (SBR) is a type of an activated sludge
process, and due to its high efficiency, currently, this is the preferred technology for
the construction of new wastewater treatment plants (WWTPs). This study presents
the estimation of greenhouse gas (GHG) emissions from SBR domestic wastewater
treatment plants in Navi Mumbai, Maharashtra. We estimated direct emissions from
wastewater treatment processes as well as indirect emissions due to energy usage
during the treatment process. A total emission of *35 kt CO2-eq/year was esti-
mated for six SBR-based WWTPs having combined treatment capacity of 474
MLD. All except one of these plants were well managed. In the case of not so
well-managed SBR plants, significant methane production occurs during the
treatment process. In the long run, if these plants are not well managed, the
emission could increase by three to fourfolds for the same treatment capacity. In
either case, major GHG emissions are due to CH4 emission during the treatment
process. The contribution of N2O is negligible towards total GHG emissions.

Keywords Greenhouse gases � Methane emission � Nitrous oxide emission
Emission factor � Domestic wastewater � IPCC guidelines

Abbreviation

MLD Million litre per day
GHG Greenhouse gas
CO2 Carbon dioxide
CO2-eq Carbon dioxide equivalent
WWTP Wastewater Treatment Plant
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N2O Nitrous oxide
CH4 Methane
GWP Global warming potential

Introduction

Wastewater treatment systems contribute significantly to anthropogenic greenhouse
gas emissions (USEPA 1997; Rittmann and McCarty 2001). The main greenhouse
gases emitted during the wastewater treatment processes are methane (CH4), nitrous
oxide (N2O) and carbon dioxide (CO2). Carbon dioxide is formed as a result of
aerobic microbial degradation and combustion of organic matter whereas methane
is produced through the anaerobic degradation of organic matter. Nitrous oxide, on
the other hand, is generated as a result of nitrification and denitrification processes.

This is observed that GHG emission and energy utility analysis for sewage
treatment is the country wide challenge in India as their environmental impact, e.g.
GHG emissions and global warming have not been assessed. According to USEPA
(2014), Wastewater treatment plants (WWTPs) are the eight largest sectors that
contribute to CH4 and N2O emissions. So in such case, the emission estimation
from WWTPs could be one of the important sectors to consider along with treat-
ment efficiency of the plant.

The sequencing batch reactor (SBR) is upgraded form of the activated sludge
process (ASP). In SBR, the processes of filling, aeration, settling and decanting are
consecutively carried out in the same tank. These phases constitute a cycle; during
which, the fluid volume inside the reactor increases from a set working base water
level. Mixed liquor is recycled into a selector from aeration zone during
fill–aeration. End of the air circulation permits the biomass to flocculate and settle
under at a predetermined time of the cycle. The treated supernatant is tapped after a
particular setting period. The solids are isolated from the reactor amid the emptying
stage. This system does not use secondary clarifier system for concentrating the
sludge. The activated sludge is recycled, whereas the surplus is discarded from the
basin. The BOD removal efficiency is higher in this type of treatment systems,
which can be achieved up to 98% in case of BOD removal through SBR-based
WWTPs (Compendium of Sewage Treatment Technologies 2009). Another study
(Wakode and Sayyad 2014) in Mumbai has shown the average biochemical oxygen
demand (BOD) removal of *95–97% for SBR wastewater treatment plant.
According to Loganathan et al. (2012) the removal efficiency of carbonaceous
fractions (e.g. BOD, COD and TSS) was achieved more than 90%, similar removal
efficiencies (80–90%) were shown in another study by Iaconi et al. (2008), whereas
the BOD removal efficiencies for ASP-based WWTPs were seen in the range of 77–
95% in Delhi (Jamwal et al. 2009) and for UASB based WWTPs 67% in Surat
(Nair and Ahammed 2015) and Seghezzo et al. (1998) reported in the range of
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50–70% in Netherland for UASB treatment plant. The COD removal was reported
43–56% and 68–85% for ASP and UASB, respectively (Sperling et al. 2001).

The sequencing batch reactor (SBR) is a kind of recent wastewater treatment
technology, and there are not many studies found regarding GHG emissions from
these type of WWTPs. A study in Noida, India (Gupta and Singh 2012) on a 33
MLD WWTP based on SBR technology using IPCC 2006 and population equiv-
alent data found 3027.8 CO2-eq/year.

Due to the latest technology for wastewater treatment because of its great
removal efficiency, SBR could be one of the choices of selectors for the estab-
lishment of new WWTPs in India. Considering this, the WWTPs were selected for
the present study of Navi Mumbai, Maharashtra state of India, as a part of esti-
mation of GHG emissions contributed by WWTPs sectors interestingly all plants
are based upon SBR technology.

Materials and Methodology

Six differently located SBR-based WWTPs for 474 MLD capacity were selected for
our research study. All WWTPs have similar design and consist of preliminary,
secondary and advance treatment processes within. A schematic diagram of SBR
wastewater treatment plant in Navi Mumbai has been shown in Fig. 1.

The personal visits were made to individual WWTP and required data such as
Treatment Capacity and BOD were collected from individual WWTPs in Navi
Mumbai. For these WWTPs the range of BOD (raw sewage) was found to be 118–
164 mg/l, with an average value of 138.7 mg/l (Table 1). The data for per capita
intake of protein per day was taken 52.7 gm for Maharashtra state (NSSO 2014),
which is required for N2O emission calculation. On the basis of average wastewater
generation in India, the per capita generation of wastewater is taken
121 l/capita/day, which is based on the studies carried out by Central Pollution
Control Board (CPCB 2009). The global warming potential (GWP) is taken as 25
and 298 for CH4 and N2O respectively (IPCC 2006).

Setting system boundary: The system boundary is sewage treatment plant
which includes the CH4 and N2O emissions from sewage treatment process and

Fig. 1 Process flow diagram for SBR WWTP in Navi Mumbai
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CO2 emissions due to use of electricity in the WWTPs. The emissions from the
sludge treatment were not considered in this study due to data constraints CO2

emissions of biogenic origin were not considered in the treatment process.
Direct and Indirect GHG emissions: There are three greenhouse gases cal-

culated in the scope of present study, i.e. CO2, N2O and CH4 using IPCC guide-
lines, 2006. The direct GHG emission was calculated from the generation of CO2

by the breakdown of the organic component during the treatment process. The
amount CH4 is generated in case of improper management of WWTP which could
be specific in aeration basin as there is no primary clarifier in the WWTPs con-
sidered. The N2O emission was calculated on the basis of protein intake per capita.
The Indirect GHG emission was calculated through power consumed in WWTPs.
The total electrical power use in all six WWTPs was 1169.6 MWh/month for the
capacity of 474 MLD wastewater treatment. The details of power uses for the
operation of individual WWTP has been shown in Table 1, which was collected by
the visit of WWTPs in Navi Mumbai.

The methodology for the estimation of emissions is based on IPCC guidelines
for national greenhouse gas inventories (2006). Estimation of methane emissions is
done using the following equation:

ECH4 ¼ kg BOD � EF� 365ð Þ � S� R ð1Þ

where

ECH4 Total methane emissions from waste water (kgCH4)
BOD Total organic waste load (kg BOD/year)
EF Emission factor for wastewater type (kgCH4/kg BOD)

Sludge removal and methane recovery were excluded from this study due to
unavailability of required data and it has been considered zero as default as per
IPCC guidelines. The Emission factor for methane was calculated as follows:

Table 1 Detail data of WWTPs in Navi Mumbai

WWTPs
code

WWTP
capacity in
MLD

Total electricity use
(KWh/month)

BOD
(inlet)
mg/l

Wastewater
generation by
population

WWTP1 100 236,170 128 723,140

WWTP2a 87.5 227,220 140 826,446

WWTP3 100 235,500 164 826,446

WWTP4 87.5 226,880 132 723,140

WWTP5 19 45,420 118 157,025

WWTP6 80 198,400 150 661,157

Total 474 1,169,590 3,917,355
aWWTP with improper management
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EF ¼ B0 �MCF ð2Þ

where

B0 Maximum methane producing capacity from raw sewage (default value for
B0 is 0.6 kgCH4/kgBOD, IPCC 2006)

MCF Methane correction factor (for SBR the default value of well-managed
WWTP is 0 whereas it is 0.1 in case of not well-managed Pant)

Calculation of CO2 emissions due to electricity use (IPCC 2006):

CO2 Emissions from electricity use ¼ Total Use of electricity in MWh� EFGE

ð3Þ

where

MWh Electricity consumption in megawatt hour.
EFGE Emission factor for generation of electricity in Maharashtra was taken 0.88

t CO2/MWh from Central Electricity Authority of India (CEA 2011).

Estimation of nitrous oxide emissions is done using the following equation
(IPCC 2006):

TotalN2O ¼ Emission Factor � Conversion Factor of kg N2O� N to kg N2O
� NEffluent

ð4Þ

where

NEffluent ¼ HP� P� FNPR � FNON�CON � FIND�COM ð5Þ

NEffluent Total amount of nitrogen in the wastewater effluent annually
HP Population of Human being contributing to the generation of wastew-

ater generation
Protein Per capita protein consumption annually (kg/person/year)
FNPR Nitrogen’s fraction in protein (the default value = 0.16, kg N/kg

protein)
FNON-CON Factor for non-consumed protein added to the wastewater (the value for

developing countries is 1.1)
FIND-COM Factor of commercial and industrial co-discharged protein into the

sewerage system (the default value is 1.25)

N2O–N to kgN2O = 1.57
Emission Factor = 0.0005 kgN2O–N/KgN
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Results and Discussion

The total estimated GHG emissions for the six SBR-based WWTPs was
*35 kt CO2-eq/year in current operation of WWTPs, whereas 83.33% WWTPs
were properly managed. Where as if all plants are partially managed, the emissions
will be *127 kt CO2-eq/year (Fig. 2).

Since the SBR is an aerobic process, methane emissions are negligible.
However, if the WWTP is not functioning properly, methane could be generated
during the treatment process. Hence, in case of partially managed WWTPs and
*87% of total GHG emission is due to the production of CH4. In the current
working conditions, where all plants, except one are well-managed, the methane
emissions are estimated to *53%.

The total N2O emissions were *3.9 kt CO2-eq/year from all WWTPs; out of
which the N2O contribution to total GHG emissions is 11.2% in current working
conditions of WWTPs and will reduce to 3.1% if WWTPs do not work well. The
total emissions due to electricity consumption were 12.4 kt CO2/year which is
35.7% (of the total GHG emissions) in the current situation and 9.7% in not
well-managed WWTPs (Fig. 3).
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Fig. 2 Total GHG emissions from WWTPs in Navi Mumbai, Maharashtra
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The GHG emissions data from WWTPs is very sparse in India. Gupta and Singh
(2012), estimated GHG emissions from a SBR-based WWTP in Noida, India with a
treatment capacity of 33 MLD. They have reported *90 t CO2/year emission from
the WWTP, whereas we estimate *75 t CO2/year GHG emission for per MLD
treatment of wastewater in Navi Mumbai. The slight difference in emissions could
be due to the working condition of the WWTPs and efficiency of the individual
units, perhaps also due to climatic conditions.

In most of the cases, it has been seen the methane generated in all WWTPs is
discharged in the atmosphere and in some cases it is flared which adds to GHG
concentration. The WWTPs also produce sludge during the treatment of wastewater
in these WWTPs but it has been observed that there is no proper utilization or
treatment of generated sludge as well as WWTPs were not equipped for capturing
of generated methane. Bianchini et al. (2015) reported the energy content in sludge
in the range of 12.7–15.5 MJ/kg of dry sludge. So if the produced sludge can be
further utilized such as for biogas generation, then the energy could be generated
and utilized in respective WWTPs. Similarly, if the generated methane in the
WWTPs could be captured and utilized for energy generation. Thus, the overall
GHG emission could be reduced as there will be less requirement of energy from
external sources.

Conclusion

The study has estimated greenhouse gas emissions from SBR-based WWTPs in
Navi Mumbai, Maharashtra for current operation as well as in case the WWTPs are
not managed properly. The GHG emissions are primarily due to the treatment of
sewage water and energy used associated in mechanical or electrical part of the
WWTPs. Methane emissions contribute majorly in not so well-managed WWTPs,
whereas the generation of N2O and CO2 emissions are same in both the situations,
i.e. if the WWTPs functioning well or not. So if all WWTPs are partially managed,
GHG emissions are estimated to be*127 kt CO2-eq/year for the whole wastewater
treatment capacity available in Navi Mumbai. In this current situation, where most
of the WWTPs are in proper working conditions the GHG emission is found to be
*35 kt CO2-eq/year.

The recommendations could be proper management and utilization of sludge
and, capturing of methane if it is produced during treatment of wastewater for
generation of energy, which could be used within respective WWTP. That way, it
may likely reduce energy dependency of WWTP and plants can be self-sustained to
some extent. It would also help in reduction of environmental burden in terms of
overall GHG emissions.
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Study of Climate Change in Uttarakhand
Himalayas: Changing Patterns
of Historical Rainfall

Archana Sarkar and Vaibhav Garg

Abstract The subject area of climate change is vast, but the changing pattern of
rainfall is a topic within this field that deserves urgent and systematic attention since
it affects the availability of freshwater, food production and the occurrence of water
related disasters triggered by extreme events. The detection of trends in rainfall is
essential for the assessment of the impacts of climate variability and change on the
water resources of a region. In June 2013, several days of extremely heavy rain
caused devastating floods in the region, resulting in more than 5000 people missing
and presumed dead. The present study aims to determine trends in the annual,
seasonal, and monthly rainfall over Uttarakhand State. Long-term (1901–2013)
gridded daily rainfall data at 0.25° grid have been used. Daily rainfall data at ten
grid center locations (five each in Garhwal and Kumaon divisions) in the vicinity of
Haridwar, Tehri, Uttarkashi, Rudraprayag, Joshimath, Almora, Bageshwar,
Munsiyari, Pithoragarh, and Rudrapur have been processed and analyzed for a
period of 113 years (1901–2013). Historical trends in daily rainfall have been
examined using parametric (regression analysis) and non-parametric (Mann–
Kendall (MK) statistics). On the basis of regression and MK test, rising and falling
trend in rainfall and anomalies at various stations have been analyzed. The result
shows that many of these variables demonstrate statistically significant changes
occurred in last eleven decades. Statistically significant increasing trends of annual
as well as monsoon rainfall have been observed at Haridwar, Rudraprayag,
Joshimath, Almora, and Munsiyari whereas statistically significant decreasing
trends of monthly rainfall (August, September, and October) have been observed at
Uttarkashi and Tehri stations.
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Introduction

The climate of earth was never stable for any extended period. Potential climate
change and its impacts on hydrologic systems pose a threat to water resources
throughout the world. There are a number of natural causes of climate variability,
namely variations in the amount of energy emitted by the Sun, changes in the
distance between the Earth and the Sun, the presence of volcanic pollution in the
upper atmosphere and presence of green house gases, etc. (Scafetta and West 2005).
Natural and human influences, called “forcings” in the climate-science literature
alter the flow of radiant energy in the atmosphere, cooling and warming Earth by
perturbing its energy balance. Positive forcings warm the planet while negative
ones cool it. One of these forcings is induced by the greenhouse gases, which alter
the planet’s energy balance by absorbing infrared radiation that would otherwise
escape to space. The major greenhouse gases include CO2, methane, nitrous oxide,
tropospheric ozone, chlorofluorocarbons (CFCs), and water vapor. With the
exception of water vapor, the concentrations of all the greenhouse gases are more or
less directly dependent on human activities. (Water vapor levels depend on Earth’s
temperature and the availability of liquid water, and thus are indirectly affected by
humans). Other forcings include reflective aerosols (mostly sulfate particles from
burning of fossil fuel), black carbon particles (soot), land-cover changes, variations
in solar output, and cloud-cover changes resulting from global temperature varia-
tions and aerosols (IPCC 2013).

The important climatic variables that influence the ecosystem are precipitation,
radiation, temperature and stream flow. It is a challenge to the scientific community
to understand the complicated processes involved in climate change and alert the
society to tackle the problem. The changing pattern of precipitation deserves urgent
and systematic attention as it will affect the availability of food supply (Dore 2005)
and the occurrence of water related disasters triggered by extreme events.
Precipitation is the major driving force of the land phase of the hydrologic system,
and changes in its pattern could have direct impacts on water resources. A higher or
lower rainfall or changes in its distribution would influence the spatial and temporal
distribution of runoff, soil moisture, groundwater reserves, and would alter the
frequency of droughts and floods.

The southwest monsoon, which brings about 80% of the total precipitation over
the country, is critical for the availability of fresh water for drinking and irrigation.
Changes in climate over Indian region, particularly the southwest monsoon, would
have a significant impact on agriculture production, water resources management,
and overall economy of the country. According to IPCC (2013), future climate
change is likely to affect agriculture, increase the risk of hunger and water scarcity,
and would lead to more rapid melting of glaciers. Freshwater availability in many
river basins in Asia is likely to decrease due to climate change. This reduction along
with population growth and rising living standards could adversely affect more than
a billion people in Asia by the 2050s. Accelerated glacier melt is likely to cause an
increase in the number and severity of glacier melt related floods, slope
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destabilization and a decrease in river flows as glaciers recede (IPCC 2013). Lal
(2001) has discussed implications of climate change on Indian water resources.
Gosain et al. (2006) have quantified the impact of climate change on the water
resources of Indian River systems.

Global averaged precipitation is projected to increase, but both increases and
decreases are expected at the regional and continental scales (IPCC 2007). Similar
trends were reported in rainfall by various authors in India (Thapliyal and
Kulshrestha 1991; Kumar et al. 1992; Sinha Ray and De 2003; Singh et al. 2008).
Though the monsoon rainfall in India is found to be trendless over a long period of
time, particularly on the all India scale, pockets of significant long-term rainfall
changes have been identified (Srivastava et al. 1998). Climate change projections
using various global climate models (GCMs) and regional climate models (RCMs)
showed increasing temperature and changing patterns in rainfall during the twen-
tyfirst Century over India (Kumar et al. 2006; Rajendran and Kitoh 2008).

In last few decades, several individual and collaborative researches were
undertaken to study climate change. The linear relationship is one of the most
common methods used for detecting rainfall trends (Hameed et al. 1997). Both
parametric and non-parametric tests are widely used for trend study. The advantage
with a non-parametric test is that it only requires data to be independent and can
tolerate outliers in the data (Hameed and Rao 1998). One of the popular
non-parametric tests widely used for detecting trends in the time series is the Mann–
Kendall test (Mann 1945; Kendall 1955). The two important parameters of this test
are the significance level that indicates the trend strength and the slope magnitude
that indicates the direction as well as the magnitude of the trend (Burn and Elnur
2002). The advantage of the test is that it is distribution-free, robust against outliers
and has a higher power than many other commonly used tests (Hess et al. 2001).
Many climate studies applying Mann–Kendall test have been carried out in the last
decade. Modarresa and Silva (2007) studied the rainfall trend in Iran; Birsan et al.
(2005) used the test to study the stream flow trend in Switzerland; Shan Yu et al.
(2002) studied the impact of climate change on water resources in Taiwan; Hesse
et al. (2005) studied the temperature trends over India; Zhang et al. (2005) analyzed
the trend of precipitation, temperature, and runoff in the Yangtze basin China.
Mcbean and Rovers (1998) examined historical trends in precipitation, temperature,
and stream flows in the Great Lakes using regression analysis and Mann–Kendall
statistics.

Keeping in view the above back ground, the present study has been carried to
evaluate the trend of rainfall in the State of Uttarakhand, India. The Uttarakhand
State is located in the Himalayan region has been selected for the study. Several
major and minor hydro-electric power stations are being built in over the tributaries
of Ganga River in the mountainous part of the State several more are under con-
sideration. Hence, it is very important to understand the impact of climate change
on the hydrology of this Hilly State for proper planning and management of the
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water resources. The major objective of the study was to observe the trend of
rainfall in the State in the last 113 years. Trend analysis has been carried out using
linear regression method and Mann–Kendall test.

Study Area and Data Used

Uttarakhand is a state in the northern part of India. It is often referred to as the
“Land of the Gods” due to the many holy Hindu temples and pilgrimage centers
found throughout the state. Uttarakhand is known for its natural beauty of the
Himalayas, the Bhabhar, and the Terai. It borders the Tibet Autonomous Region on
the north; the Mahakali Zone of the Far-Western Region, Nepal on the east; and the
Indian states of Uttar Pradesh to the south and Himachal Pradesh to the northwest.
The state is divided into two divisions, Garhwal and Kumaon, with a total of 13
districts. Two of the most important rivers in Hinduism originate in the region, the
Ganga at Gangotri and the Yamuna at Yamunotri.

Uttarakhand has a total area of 53,484 km2, of which 93% is mountainous and
65% is covered by forest. Most of the northern part of the state is covered by high
Himalayan peaks and glaciers. Uttarakhand lies on the southern slope of the
Himalaya range, and the climate and vegetation vary greatly with elevation, from
glaciers at the highest elevations to subtropical forests at the lower elevations. The
highest elevations are covered by ice and bare rock. Below them, between 3,000
and 5,000 m (9,800 and 16,400 ft.) are the western Himalayan alpine shrub and
meadows. The temperate western Himalayan sub-alpine conifer forests grow just
below the tree line. At 3,000–2,600 m (9,800–8,500 ft.) elevation they transition to
the temperate western Himalayan broadleaf forests, which lie in a belt from 2,600 to
1,500 m (8,500 to 4,900 ft.) elevation. Below 1,500 m (4,900 ft.) elevation lie the
Himalayan subtropical pine forests. The Upper Gangetic Plains moist deciduous
forests and the drier Terai-Duar savanna and grasslands cover the lowlands along
the Uttar Pradesh border in a belt locally known as Bhabhar. These lowland forests
have mostly been cleared for agriculture, but a few pockets remain. In June 2013,
several days of extremely heavy rain caused devastating floods in the region,
resulting in more than 5000 people missing and presumed dead. The flooding was
referred to in the Indian media as a “Himalayan Tsunami.”

Daily rainfall data at ten grid center locations (five each in Garhwal and Kumaon
divisions) in the vicinity of Haridwar, Tehri, Uttarkashi, Rudraprayag, Joshimath,
Almora, Bageshwar, Munsiyari, Pithoragarh, and Rudrapur procured from India
Meteorological Department (IMD) have been used in this study. These stations are
shown in Fig. 1 which represents the study area, i.e., the Uttarakhand State.
Analysis has been performed for a period from 1901 to 2013, i.e., 113 years.
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Methodology

Trend Analysis

In the present study, two methods viz. regression and MK test have been used.
These are described in the following sections.

Regression Model

One of the most useful parametric models to detect the trend is the “Simple Linear
Regression” model. The method of linear regression requires the assumptions of
normality of residuals, constant variance, and true linearity of relationship (Helsel

Station

Fig. 1 Study area
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and Hirsch 1992a, b). The model for Y (e.g., precipitation) can be described by an
equation of the form:

Y ¼ atþ b ð1Þ

where,

t time (year)
a slope coefficient; and
b least-squares estimate of the intercept

The slope coefficient indicates the annual average rate of change in the hydro-
logic characteristic. If the slope is significantly different from zero statistically, it is
entirely reasonable to interpret that there is a real change occurring over time.
The sign of the slope defines the direction of the trend of the variable: increasing if
the sign is positive, and decreasing if the sign is negative.

Mann Kendall Model

Simple linear regression analysis may provide a primary indication of the presence
of a trend in the time-series data. Other methods, such as the non-parametric Mann–
Kendall (MK) test, which is commonly used for hydrologic data analysis, can be
used to detect trends that are monotonic but not necessarily linear. The MK test
does not require the assumption of normality, and only indicates the direction but
not the magnitude of significant trends (USGS 2005).

The trend in the data if any was quantified using Mann–Kendall’s S-statistic
(Mann 1945; Kendall 1955). The MK method assumes that the time series under
research is stable, independent, and random with equal probability distribution
(Zhang et al. 2005). The MK test is applied to uncorrelated data because it was
reported that the presence of serial correlation might lead to an erroneous rejection
of the null hypothesis (Helsel and Hirsch 1992a, b; Kulkarni and von Storch 1995;
Yue et al. 2002; Yue and Wang 2002; Yue and Pilon 2003).

The computational procedure for the MK test is described in Adamowski and
Bougadis (2003). Let the time series consist of n data points and Ti and Tj be two
sub—sets of data where i = 1, 2, 3…, n − 1 and j = i + 1, i + 2, i + 3,…n. Each
data point T is used as a reference point and is compared with all the Tj data points
such that:

SignðTÞ ¼
1 for Tj [ Ti
0 for Tj ¼ Ti
�1 for Tj\Ti

8
<

: ð2Þ
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The MK test used in the present study is based on the test statistic, S, defined as
follows:

S ¼
Xn�1

i¼1

Xn

j¼iþ 1

signðTj � TiÞ ð3Þ

The variance for the S-statistic is defined by:

r2 ¼ nðn� 1Þð2nþ 5Þ �Pn
i¼1 tiðiÞði� 1Þð2iþ 5Þ

18
ð4Þ

where ti denotes the number of ties to extent i. The summation term in Eq. (4) is
only used if data series contains the “tied” values. The test statistic, Zs, can be
calculated as

Zs ¼
ðS� 1Þ=r for S[ 0
0 for S ¼ 0
ðSþ 1Þ=r for S\0

8
<

: ð5Þ

In which, Zs follows a standard normal distribution. Equation (5) is useful for
record lengths greater than 10 and if the number of tied data is low. The test
statistic, Zs is used as a measure of the significance of the trend. In fact, this test
statistic is used to test the null hypothesis, H0: There is no monotonic trend in the
data. If |Zs| is greater than Za/2 where a represents the chosen significance level
(usually 5%, with Z0.025 = 1.96), then the null hypothesis is rejected, meaning that
the trend is significant. For this study, the simple regression analysis technique was
used to test the slopes of the trend lines for statistical significance at 5% level. The
Mann–Kendall trend test procedure is applied to further verify the outcomes of
regression analysis for the hydrological variables considered.

MK test holds well in the case of non-auto-correlated time-series data. For
auto-correlated data, modified Mann–Kendall test proposed by Rao and Hamed
(1997) was used, which is robust in presence of autocorrelation. It is based on the
modified variance of S given by Eq. (5).

V � ðSÞ ¼ varðSÞ n
n�s

¼ nðn� 1Þð2nþ 5Þ
18

n
n�s

ð6Þ

The recommended approximate value of n=n�s n/n2 is given by the Eq. (7)

n
n�s

¼ 1þ 2
nðn� 1Þðn� 2Þ

Xn�1

i¼1

ðn� iÞðn� i� 1Þðn� i� 2ÞqsðiÞ ð7Þ

where n is the actual number of observations and qsðiÞ is the autocorrelation
function of the ranks of the observations. The accuracy of the approximation given
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by the Eq. (6) was found to improve as n increases. The autocorrelation between
ranks of observations qsðiÞ is first evaluated. The value of ranks of observations
qsðiÞ, however, must be calculated after subtracting a suitable non-parametric trend
estimator (Sen 1968). Due to the nature of calculation in Eq. (5), which involves a
large number of terms, it was found that insignificant values of qsðiÞ will have an
adverse effect on the accuracy of the estimated variance of S. Therefore, only
significant values of qsðiÞ are used in Eq. (6). This is achieved by requiring a
suitable preset significance level for the autocorrelation to be included in the cal-
culations, which can be taken equal to that of the rest.

In the present study, non-parametric Mann–Kendall trend test and modified
Mann–Kendall test as proposed by Rao and Hamed (1997) were applied to study
the historical trend in annual and monthly rainfall described in the following
sections.

Data Preparation

The daily hydro-meteorological data available for above cited period at different
grids/stations have been used to prepare annual, seasonal, and monthly series of
rainfall as described below:

(1) Annual: Using the daily data, series of average annual data have been prepared
for trend analysis for all the variables at various grids/stations

(2) Seasonal: Four types of average seasonal data series have been prepared. Data
were divided into four seasons, namely pre-monsoon (March–May), monsoon
(June–August), post-monsoon (September–November), and winter (December–
February) based on the prevailing climate of India.

(3) Monthly: Using the daily data, series of average monthly data have been pre-
pared for trend analysis for all the variables at various grids/stations.

Trend Analysis and Results

Using the gridded data of daily rainfall from IMD for the ten grid center locations
(referred to as stations hereafter) under the present study, monthly, seasonal and
annual rainfall series were generated for all the ten stations. Then, the time series
were checked for randomness, autocorrelation, and long-term persistence before
conducting the Mann–Kendall test. Time series having no autocorrelation were
analyzed with Mann–Kendall’s Test for the detection of trend and if significant
autocorrelation was found in the data, the time series was tested with modified
Mann–Kendall test as suggested by Rao and Hamed (1997). In this study, monthly,
seasonal and annual rainfall for ten grid points were analyzed as given in Table 1
and Table 2 for Garhwal and Kumaon region, respectively. The selected stations
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Table 1 Trend in different season for rainfall data (Garhwal Region)

Period MKZ statistics

Joshimath Rudraprayag Uttarkashi Tehri Haridwar

January −0.38 −0.93 −1.22 −0.75 −1.09

February +0.76 +1.17 +1.34 +1.46 +0.96

March +1.04 +0.53 +1.21 +1.27 −0.39

April −0.28 +1.08 +1.49 +1.87 +0.72

May +1.87 +1.85 +2.43 +2.05 +0.85

June +1.37 +1.44 +0.78 +0.47 +3.48
July +2.85 +2.84 −1.66 −1.73 +2.75
August +1.49 +0.87 −2.57 −2.50 +1.17

September −1.14 −0.99 −5.12 −5.15 −1.28

October −1.39 −1.62 −2.43 −2.26 −0.94

November −0.37 −1.20 −1.18 −0.83 −1.87

December −0.01 +0.58 +0.06 +0.21 +1.35

Pre-mon −1.01 −0.50 −0.26 −0.19 −0.33

Monsoon +2.92 +2.47 −0.32 −0.59 +2.81
Post-mon +0.72 +0.17 −0.10 −0.05 +0.50

Winter −0.36 +0.62 −0.87 −0.07 −2.25
Annual +2.27 +3.05 −0.07 −0.37 +2.78

Table 2 Trend in different season for rainfall data (Kumaon region)

Period MKZ statistics

Almora Bageshwar Pithoragarh Rudrapur Munsiyari

January −1.25 +0.30 −0.41 +0.24 +0.28

February +0.21 +0.61 +0.97 +0.38 +1.11

March −0.62 +0.24 −0.09 −0.88 +0.58

April −0.05 +0.13 +0.26 +0.43 +0.33

May +0.17 +0.70 +0.88 +2.71 +0.86

June +1.11 +0.09 −0.18 +2.60 +0.20

July +0.46 +0.54 −0.74 +0.29 +1.75

August +0.22 −0.22 −1.20 −0.77 +0.64

September −1.83 −1.66 −1.95 −1.89 −1.08

October −1.23 −1.59 −1.75 −0.91 −1.77

November −1.40 −0.57 −1.45 −0.86 −0.43

December −0.03 −0.23 −0.41 +0.85 −0.29

Pre-mon −0.62 −0.75 +0.52 +0.17 −0.22

Monsoon +2.00 +1.35 +0.38 +1.53 +2.27
Post-mon −0.41 +0.08 −0.02 +1.09 +0.90

Winter −1.65 −0.06 −0.22 −1.67 +1.12

Annual +2.05 +1.73 +0.58 +1.73 +2.63
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have 113 years of record length each. Linear regression analysis has been carried
out for all the stations. Graphical presentations are shown in Fig. 2 for trends in
annual and monsoon rainfall for all the stations. Annual and seasonal spatial trends
in the Uttarakhand state are shown in Fig. 3.

Annual analysis of rainfall trends (Tables 1 and 2) shows a significantly
increasing trend (at 5% significance level) at five rainfall stations, three in the
Garhwal region and two in the Kumaon region. Monsoon rainfall also follows
similar trends. However, the monthly rainfall analysis shows significantly
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increasing trend of rainfall in the month of April over Bageshwar and Pithoragarh
stations in the Kumaon region of the State. Statistically significant increasing
rainfall trend has also been observed over Chamoli station of the Garhwal region
during the month of August. Besides the above trends, the regression analysis
shows increasing as well as decreasing trend of rainfall in all the stations during the
different time period, but such trend is not statistically significant.
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Conclusions

The Himalayas are highly sensitive to climate change. Any change in rainfall highly
influences stream flow downstream. The Himalayan Rivers have witnessed a steep
rise in glacial retreat in recent past. These events are a strong indication of climate
change in the Uttarakhand State. However, the influence of anthropogenic factors
cannot be rejected. The present study is based on the analysis daily rainfall data
using simple linear regression and non-parametric Mann–Kendall trend test.
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Trends of Monsoon Rainfall Trends of Pre-Monsoon Rainfall

Trends of Winter Rainfall Trends of Post-Monsoon Rainfall

Fig. 3 Trend of annual rainfall over 113 Years (1901–2013)
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It demonstrates statistically significant changes in rainfall over some stations during
the last 113 years.

The analysis shows significantly increasing trend in annual and monsoon rainfall
at some of the stations, however, increasing trend in monthly rainfall has been
observed for some of the months at few stations. The results observed in this study
are an encouragement to explore the impact of climate change on the local climate
of the region. Also, there is need to understand the rainfall regime of the
Uttarakhand State in detail with more rainfall station data and the likely impacts of
climate change to plan and manage the water resources for future.
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The Impact of Climate Change on Rainfall
Variability: A Study in Central Himalayas

L.N. Thakural, Sanjay Kumar, Sanjay K. Jain and Tanvear Ahmad

Abstract The impact of anthropogenic activities on the earth atmosphere and its
systems has been an area of extensive research and engaging the attention of
planners, governments, and politicians worldwide. The countries across the world
are engaged in working out the impacts and associated vulnerabilities to the pro-
jected climate change. In India, the meteorological records indicate rise in the mean
annual surface air temperature by 0.4 °C with not much variations in absolute
rainfall. However, the rates of change in temperatures and precipitation have been
found to be varying across the region. The intensity and frequency of heavy pre-
cipitation events have increased in the last 50 years. No change in the total quantity
of rainfall is expected, however, the spatial pattern of the rainfall is likely to change,
with rise in number and intensity of extreme rainfall events. The continuous
warming and resulting change in rainfall pattern over different regions of Indian
may adversely impact the natural resources on which majority of the population is
dependent. Thus there is an ever increasing recognition of the need for micro and
macro level assessments for greater understanding about the impact and implication
of the current climate variability especially in eco-sensitive Himalayan region,
where such studies are limited due to lack of adequate observational sites and
related data. This study investigates the rainfall variability trends on annual and
seasonal scales in the central Himalayan region. Eight observational sites at
Almora, Nainital, Ranikhet, HawalBagh, Mukteshwar, Mukhim, Dehradun, and
Mussoorie situated at different altitude in the central Himalaya region are consid-
ered for the study. These sites are situated within the altitude range of 682–2311 m.
Statistical tools such as Mann–Kendall test, Sens’s estimator of slope method
(nonparametric) and regression (parametric), have been applied to analyze the
rainfall variability trends at these observational sites. The significance of these
trends has been tested at the 95% confidence level. The results indicate that there is
decreasing trend at all the stations annually, however; only two stations show
significantly decreasing trends at 95% confidence level. At seasonal scale, monsoon
rainfall indicates decreasing trends at most of the stations in the region, whereas
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winter rainfall also shows the similar patterns. These temporal and spatial patterns
of rainfall variability in central Himalayas may provide useful insights for the
long-term planning and management of water resources and also useful for climatic
studies in this region.

Keywords Climate change � Mann–kendal test � Regression analysis
Sen’s estimator

Introduction

Water is of paramount importance and precious for the livelihood, from crucial
drinking water to food production, production of energy to development of
industries, and from the management of natural resources to environment conser-
vation. The scarcity of water resources and its tremendous increasing demand,
which is the outcome of growing population, intensification of agriculture sector,
industrial and urban expansion, has necessitated its proper planning and manage-
ment. Moreover, global warming and climate change have further added more
intricacy. Himalayan region aptly called the water tower of Asia is to be greatly
affected due to change in climatic conditions and impact the streamflow of
snow-fed rivers originating from the region. The Himalaya is the youngest, highest
and one of the most unstable regions of the world for which, the ecosystem is
particularly fragile and more susceptible to the impacts of rapid climate change.

The changes in temperature, precipitation, and other climatic variables are likely
to influence the amount and distribution of runoff in all river systems globally.
Rainfall is an important factor in shaping the hydrology, water quantity and quality
and the vegetal cover throughout the earth. A higher or lower rainfall or changes in
its distribution would influence the spatial and temporal distribution of runoff, soil
moisture, and ground water reserves and would increase the frequency of droughts
and floods. The detection of trends in hydro-climatic data, particularly temperature,
precipitation, and streamflow is essential for the assessment of impacts of climatic
variability and its change on the water resources of a region. Trend analysis may
thus focus on the overall pattern of change over time, help temporal and spatial
comparisons for deriving future projections. Estimates of rainfall and temperature
anomaly were better estimated using long-term series data. Several statistical
methods apply parametric and nonparametric approach for the detection of trends.

Several studies in India have been carried out to determine the changes in
temperature and rainfall and its association with climate change. Long-term trends
in the maximum, minimum, and mean temperatures over the north-western
Himalaya during the twentieth century (Bhutiyani et al. 2007) suggest a significant
rise in air temperature in the north-western Himalaya, with winter warming
occurring at a faster rate. Dimri and Ganju (2007) simulated the winter temperature
and precipitation over the western Himalaya and found that temperature is under-
estimated and precipitation is overestimated in Himalaya. The changing trends of
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temperature and precipitation over the western Himalaya were examined and it was
found that there was an increasing trend in temperature and decreasing trend in
precipitation at some specific locations. Sharma et al. (2000) found an increasing
trend in rainfall at some stations and a decreasing trend at other stations in Koshi
basin in eastern Nepal and Southern Tibet. Similar trends in rainfall were found by
Kumar et al. (2005) for the state of Himachal Pradesh. Basistha et al. (2009)
investigated changes in the rainfall pattern for 30 stations during the twentieth
century in the Indian Himalayas. They found that there was an increasing trend up
to 1964 after which trend decreased during 1965–1980 for this region and changes
were most explicit over the Shivaliks and southern part of Lesser Himalayas.
Kumar and Jain (2010) analyzed rainfall and rainy days time series at five stations
in Kashmir valley of India. They observe decreasing rainfall at four stations and
increasing rainfall at one station, but none of the observed trends in annual rainfall
were statistically significant. Choudhury et al. (2012) analyzed the long-term data
(1983–2010) to detect a trend in the in Umiam located at mid altitude in Meghalaya.
The results of the study indicated that there was a nonsignificant increasing trend
(3.72 mm/year) in the total annual rainfall. Rai et al. (2010) investigated the per-
sistence, trend, and periodicity in hydro-climatic variables in Yamuna river basin.
The results indicated a significant difference in the patterns of monsoon and
non-monsoon rainfall in terms of persistence and periodicity and about 20% of
rainfall time series indicated the presence of persistence. They also observed an
overall declining trend in the annual and monsoon rainfall, annual and monsoon
rainy days and aridity index along with a rising trend in the onset of effective
monsoon.

However, in Himalaya due to the poor and inadequate network of hydro-
meteorological observations owing to inaccessibility for being rugged, dangerous
with harsh climatic conditions, there is absence of relatively long-term consistent
data. In the present paper, an attempt is made to analyze the trend of rainfall on
seasonal and annual scales in the central Himalaya region.

The Study Area

The study is conducted for the eight stations of which five lie in the Kumaon region
while other three stations lie in the Garhwal region of Uttarakhand state. Spatial
distribution of the metrological stations is shown in Fig. 1. Uttarakhand state is
located in the fragile region of Central Himalaya, India. The state has a total
geographical area of 53,484 km2 out of which 93% is mountainous, of which 65%
is covered by forest. The state lies on the southern slope of the Himalaya range and
has a highly varied topography with snow covered peaks, glaciers. Most of the
northern part of the state is covered by high Himalayan peaks and glaciers. Two
Indian largest rivers namely the Ganges and the Yamuna originates from the gla-
ciers of Uttarakhand and fed by numerous lakes, glacial melts, and streams. It lies in
the Northern part of India between the latitudes 28° 43′–31° 27′N and longitudes
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77° 34′–81° 02′E having a maximum dimension of east-west 310 and 255 km
north–south covering an area of 53,484 km2 with the elevation ranging from 210 to
7817 m above msl. The climate and the vegetation vary greatly with elevation, from
glaciers at the highest elevations to subtropical forests at the lower elevations. The
highest elevations are covered by ice and bare rock. Below them, between 3,000
and 5,000 m are the western Himalayan alpine shrub and meadows.

Data Used

For the present study, records on rainfall data have been collected from the IMD,
Pune and Vivekananda Parvatiya Krishi Anusandhan Sansthan (VPKAS), Almora,
and were further used for analysis. Moreover, the rainfall records at these stations
were selected for different periods having continuous rainfall data. The meteoro-
logical stations used in the study and their details are shown in Table 1. For
investigation of changes in rainfall at different time scales, a year was divided into
four principal seasons:

1. Pre-monsoon season prevailing from March to May
2. Monsoon season prevailing from June to September
3. Post-monsoon season prevailing from October to November
4. Winter season prevailing from December to February

Fig. 1 Location of the metrological stations over central Himalaya
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For evaluation of trend in rainfall, daily data have been used to form monthly
totals. Monthly data of rainfall were further used to compute the seasonal and
annual time series, which were in turn used for the investigation of trend on
seasonal and annual time scale.

Methodology

Trends in data can be identified by using either parametric or nonparametric
methods, and both the methods are widely used. The nonparametric methods do not
require normality of time series and also are less sensitive to outliers and missing
values. The nonparametric methods are extensively used for analyzing the trends in
several hydrologic series namely rainfall, temperature, pan evaporation, wind speed
etc. (Chattopadhyay et al. 2011; Dinpashoh et al. 2011; Fu et al. 2004; Hirsch et al.
1982; Jhajharia and Singh 2011; Jhajharia et al. 2009, 2011; Tebakari et al. 2005;
Yu et al. 1993).

The present study analyzes the trends of rainfall series of each individual station
using simple regression (parametric), Mann–Kendall test and Sens’s estimator of
slope (nonparametric).

Determination of Anomalies

For a better understanding of the observed trends, first of all, seasonal and annual
anomalies of rainfall for each station were computed with reference to the mean of
the respective variable for the available records. Further, these anomalies were
plotted against time and the trend was examined by fitting the linear regression line.
The linear trend value represented by the slope of the simple least square regression
provided the rate of rise or fall in the variable.

Table 1 Details of the meteorological stations located in the study area

Station Longitude (dms) Latitude (dms) Altitude (m) Period

Almora 79.67 29.6 1585 1980–2012

Dehradun 78.08 30.45 682 1957–2007

HawalBagh 79.634 29.642 1242 1981–2009

Mukhim 78.33 30.57 1945 1957–2007

Mukteshwar 79.65 29.47 2311 1901–1950

Mussoorie 78.08 30.45 1988 1930–1986

Nainital 79.47 29.4 1953 1953–1978

Ranikhet 79.43 29.643 1778 1974–2013
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Regression Model

One of the most useful parametric models to detect the trend is the “Simple Linear
Regression” model. The method of linear regression requires the assumptions of
normality of residuals, constant variance, and true linearity of relationship (Helsel
and Hirsch 1992). The model for Y (e.g. precipitation) can be described by an
equation of the form:

Y ¼ atþ b ð1Þ

where,

t time (year)
a slope coefficient; and
b least-squares estimate of the intercept

The slope coefficient indicates the annual average rate of change in the hydro-
logic characteristic. If the slope is significantly different from zero, statistically, it is
reasonable to interpret that there is a real change occurring over time. The sign of
the slope defines the direction of the trend of the variable: increasing if the sign is
positive, and decreasing if the sign is negative.

Magnitude of Trend

The magnitude of trend in a time series was determined using a nonparametric
method known as Sen’s estimator (Sen 1968). This method assumes a linear trend
in the time series and has been widely used for determining the magnitude of trend
in hydro-meteorological time series (Lettenmaier et al. 1994; Yue and Hashino
2003; Partal and Kahya 2006). In this method, the slopes (Ti) of all data pairs are
first calculated by the following:

Ti ¼ xj � xk
j� k

for i ¼ 1; 2; . . .;N ð2Þ

where xj and xk are data values at time j and k (j > k) respectively. The median of
these N values of Ti is Sen’s estimator of slope, which is calculated as follows:

b ¼
TNþ 1

2
if N is odd,

1
2 TN

2
þ TNþ 2

2

� �
if N is even:

(
ð3Þ

A positive value of b indicates an upwards (increasing) trend and a negative
value indicates a downwards (decreasing) trend in the time series.
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Significance of Trend

To ascertain the presence of a statistically significant trend in hydrologic climatic
variables such as temperature, precipitation, and streamflow with reference to cli-
mate change, the nonparametric Mann–Kendall (MK) test has been employed by a
number of researchers (Yu et al. 1993; Douglas et al. 2000; Burn et al. 2004; Singh
et al. 2008a, b). The MK method searches for a trend in a time series without
specifying whether the trend is linear or nonlinear. The MK test was also applied in
the present study. The MK test checks the null hypothesis of no trend versus the
alternative hypothesis of the existence of an increasing or decreasing trend.
Following Bayazit and Onoz (2007), no pre-whitening of the data series was carried
out as the sample size is large (n � 50) and slope of the trend was high (>0.01).

The statistic S is defined as (Salas 1993):

S ¼
XN�1

i¼1

XN
j¼iþ 1

sgnðxj � xiÞ ð4Þ

where N is the number of data points. Assuming (xj − xi) = h, the value of sgn (h) is
computed as follows:

sgnðhÞ ¼
1 if h[ 0;
0 if h ¼ 0;
�1 if h\0:

8<
: ð5Þ

This statistic represents the number of positive differences minus the number of
negative differences for all the differences considered. For large samples (N > 10),
the test is conducted using a normal distribution (Helsel and Hirsch 1992) with the
mean and the variance as follows:

E S½ � ¼ 0

VarðSÞ ¼ NðN � 1Þð2Nþ 5Þ �Pn
k¼1 tkðtk � 1Þð2tk þ 5Þ

18
ð6Þ

where n is the number of tied (zero difference between compared values) groups
and tk is the number of data points in the kth tied group. The standard normal
deviate (Z-statistics) is then computed as (Hirsch et al. 1993):

Z ¼
S�1ffiffiffiffiffiffiffiffiffiffiffiffi
VarðSÞ

p if S[ 0

0 if S ¼ 0
Sþ 1ffiffiffiffiffiffiffiffiffiffiffiffi
VarðSÞ

p if S\0:

8><
>:

ð7Þ
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If the computed value of│Z│ > za/2, the null hypothesis H0 is rejected at the a
level of significance in a two-sided test. In this analysis, the null hypothesis was
tested at 95% confidence level.

Results and Discussion

For better comprehension and visual interpretation of the observed trends, first of
all, seasonal and annual anomalies of rainfall for each station were computed with
reference to the mean of the respective variable for the available records. Further,
these anomalies were plotted against time and the trend was examined by fitting the
linear regression line. The linear trend value represented by the slope of the simple
least square regression provided the rate of rise/fall in the variable. Thereafter,
Mann–Kendall (MK) test has been used for identification and to test the statistical
significance of trend at a confidence interval of 95%. Prior to which data series of
all the variables were checked for the presence of auto-correlation. The Sen’s
estimator of slope (SE) was then applied to estimate the magnitude of the trend over
the study period. The SE was applied to verify the outcomes of simple regression
analysis. The outcomes of the analysis are shown in the form of Table and/or graph.

The anomalies of rainfall and their trends were determined for all the stations
considered in the study. Anomalies in annual rainfall and their trends for the all the
meteorological stations within the study area are shown in Fig. 2.

The figure shows the outcomes of the parametric approach which shows that
there are a decreasing trend in almost all the stations. Further analysis using the

Fig. 2 Anomalies in annual rainfall (% of mean) for stations over central Himalaya
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parametric approach has been detailed in Table 2. It indicates that the annual
rainfall at all the stations is showing decreasing trend with a maximum decrease
(−24.07 mm/year) at Nainital with a minimum decrease (−0.262 mm/year) at
Mukhim. However, these decreasing trends are significant at 95% confidence level
only at stations Hawal Bagh and Mussoorie.

Seasonal analysis of rainfall trends shows that pre-monsoon rainfall shows
negative trends for Almora, Hawal Bagh, Mukteshwar, and Ranikhet whereas
stations Dehradun, Mukhim, Mussoorie, and Nainital shows increasing trend.
Table 2 also indicates that none of these increasing or decreasing trends are sta-
tistically significant. Similar analysis of monsoon rainfall shows decreasing trend at
all stations except Almora and Mukteshwar. However, none of these
increasing/decreasing trends are significant except at Mussoorie (−12.9 mm/year)
which shows a statistically significant decreasing trend. In post-monsoon rainfall,
all station except Mukhim and Mussoorie are showing decreasing trend. These
trends are significant at Mukhim (0.725 mm/year) and Nainital (−5.57 mm/year).
The winter rainfall analysis shows decreasing trends at Almora, HawalBagh,
Mukhim, Mussoorie and Nainital whereas stations Dehradun, Mukteshwar, and
Ranikhet show increasing trends. Winter rainfall trends at two stations namely
Almora (−3.53 mm/year) and Hawal Bagh (−3.37 mm/year) are statistically
significant.

Conclusions

The mountainous basin is highly sensitive to climate change. Any change in rainfall
and temperature highly influences stream flow downstream. The detection of trends
and magnitude of variations due to climatic changes in hydro-climatic data, par-
ticularly temperature, precipitation and stream flow, is essential for the assessment
of impacts of climate variability and change on the water resources of a region. The
present study is based on the analysis of trends in rainfall data using parametric
(linear regression) and nonparametric (Mann–Kendall test and Sen’s estimator of
slope) methods on seasonal and annual scales for the Central Himalaya.

The analysis shows that all the stations indicate a decreasing trend in the annual
rainfall. These decreasing trends are found statistically significant at the 95%
confidence level at two stations HawalBagh and Mussoorie. The seasonal rainfall
analysis shows a mix of increasing and decreasing trends. These trends, however,
are not significant for pre-monsoon rainfall. Monsoon rainfall is found to be sig-
nificant at Mussoorie whereas post-monsoon rainfall is significant at two stations.
The winter rainfall trends have significant decreasing trends at Almora and
HawalBagh. More such analysis is required to examine the trend in other clima-
tological variables in other Himalayan basins. Also, there is need to understand the
behavior of this basin to climate change and its future impact to plan and manage
the water resources.

190 L.N. Thakural et al.



References

Bayazit M, Onoz B (2007) to prewritten or not to prewritten in trends analysis? Hydrol Sci J 52
(4):611–624

Basistha A, Arya DS, Goel NK (2009) Analysis of historical changes in rainfall in the Indian
Himalayas. Int J Climatol 29:555–572

Bhutiyani MR, Kala VS, Power NJ (2007) Long-term trends in maximum, minimum and mean
annual air temperatures across the northwest Himalaya during the twentieth century. Clim
Change 85(1–2):159–177

Burn DH, Cunderlick JM, Pietroniero A (2004) Hydrological trends and variability in the Liard
river basins. Hydrol Sci J 49(1):53–67

Choudhury BU, Das A, Ngachan SV, Slong A, Bordoloi LJ, Chouwdhury P (2012) Trend analysis
of long term weather variables in mid altitude Meghalaya, North-East India. J Agric Phys 12
(1):12–22. ISSN 0973–032X

Chattopadhyay S, Jhajharia D, Chatopadhyay G (2011) Univariate modeling of monthly maximum
temperature time series over North East India: neural network versus Yule-walker equation
based approach. Meteorolog Appl 18:70–82. doi:10.1002/met.2011

Dimri AP, Ganju A (2007) Wintertime seasonal scale simulation over western Himalaya using
RegCM3. Pure Appl Geophys 164(8–9):1733–1746

Dinpashoh Y, Jhajharia D, Fakheri-Fard A, Singh VP, Kahya E (2011) Trends in reference
evapotranspiration over Iran. J Hydrol 399:422–433

Douglas EM, Vogel RM, Knoll CN (2000) trends in flood and low flows in the United States:
impact of spatial correlation. J Hydrol 240:90–150

Fu G, Chen S, Liu C, Shepard D (2004) Hydro-climatic trends of the Yellow river basin for the last
50 years. Clim Change 65:149–178

Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Elsevier, Amsterdam, p 522
Hirsch RM, Slack JR, Slack RA (1982) Techniques of trend analysis for monthly water quality

data. Water Resour Res 18(1):107–121
Hirsch RM, Helsel DR, Cohn TA Gilroy EJ (1993) Statistical treatment of hydrologic data. In:

Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York, USA, pp 17.1–17.52
Jhajharia D, Shrivastava SK, Sarkar S (2009) Temporal characteristics of pan evaporation trend

under the humid conditions of Northeast India. Agric. Forest Meteorol. 149:763–770
Jhajharia D, Singh VP (2011) Trends in temperature, diurnal temperature range and sunshine

duration in Northern India. Int J Climatol 31(9):1353–1367
Jhajharia D, Dinpashoh Y, Kahya E, Singh VP, Fakheri-Farid A (2011) Trends in reference

evapotranspiration in the humid region of North-east India. Hydrol Process 26(3):421–435
Kumar V, Singh P, Jain SK (2005) Rainfall trend over Himachal Pradesh, Western Himalaya,

India. In: Proceedings of conference on development of hydro power projects—a prospective
challenge, Shimla

Kumar V, Jain SK (2010) Trends in seasonal and annual rainfall and rainy days in Kashmir valley
in the last century. QuatInt 212(1):64–69

Lettenmaier DP, Wood EF, Wallis JR (1994) Hydro-climatological trends in the continental
United States, 1948–88. J Climate 7:586–607

Partal T, Kahya E (2006) Trend analysis in Turkish precipitation data. Hydrol Process 20:2011–
2026

Rai RK, Upadhyay A, Ojha CSP (2010) Temporal variability of climatic parameters of Yamuna
river basin: spatial analysis of persistence, trend and periodicity. Open Hydrol J 4:184–210

Salas JD (1993) Analysis and modeling of hydrologic time series. In: Maidment DR
(ed) Handbook of hydrology. McGraw-Hill, New York, pp 19.1–19.72

Sharma KP, Moore B, Vorosamarty CJ (2000) Anthropogenic, climatic and hydrologic trends in
the kosi basin, Himalaya. Clim Change 47:141–165

Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Statist Assoc
63:1379–1389

The Impact of Climate Change on Rainfall Variability: A Study … 191

http://dx.doi.org/10.1002/met.2011


Singh P, Kumarm V, Thomas T, Arora M (2008a) Change in rainfall and relative humidity in
different river basins in the northwest and central India. Hydrol Process 22:2982–2992

Singh P, Kumar V, Thomas T, Arora M (2008b) Basin-wide assessment of temperature trends in
the northwest and central India. Hydrol Sci J 53(2):421–433

Tebakari T, Yoshitani J, Suvanpiomol C (2005) Time-space trend analysis in pan evaporation
kingdom of Thailand. J Hydrol Eng 10(3):205–215

Yu YS, Zou S, Whittemore D (1993) Non-Parametric trend analysis of water quality data of rivers
in Kansas. J Hydrol 150:61–80

Yue S, Hashino M (2003) Temperature trends in Japan: 1900-1990. Theoret Appl Climatol 75:
15–27

192 L.N. Thakural et al.



Estimation of Changes in Annual Peak
Flows in Netravathi River Basin,
Karnataka, India

Arega Mulu, T.M. Fasnamol and G.S. Dwarakish

Abstract Flood is one of the most chronic and hazardous natural calamities all
over the world. Information about the magnitude of peak streamflow and flood
frequency with specified recurrence intervals is necessary to safely and economi-
cally design structures that are in, or near streams. The present study is carried out
with a view to understand the effects of changing historical peak flows and
flood-frequency computations for streams in Netravathi river basin at Bantwal
gauging station, Karnataka, India. To accomplish this objective, 39-year records of
annual stream flows were tested for historical flood-frequency analyses. The
magnitude of annual peak-flow changes over time was computed using the Sen’s
slope and Mann–Kendall Test. Peak flows with 50, 20, and 1% exceedance
probability (2, 5 and 100-year recurrence interval, respectively) were computed for
a stream gauge Bantwal in Netravathi river basin and found out 3933, 5238 and
8804 m3/s, respectively. Sen’s slope from showed the decreasing trend of peak flow
with the magnitude of −38.355 corresponding to Mann–Kendall Test.

Keywords Trend analysis � Annual daily peak stream flow � Flood frequency
AEPs � Sen’s slope

Introduction

Flood is one of the most chronic and hazardous natural calamities all over the
world. Extreme rainfall events and the resulting floods can take thousands of lives
and cause billions of dollars in damage. So, the flood plain management and
designs for flood control works, reservoirs, bridges, and other investigations need to
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reflect the likelihood or probability of such events. So the trend analysis of stream
flows and frequency studies are equally important to hydrologists.

Trends are important indicators of the temporal variability of phenomena (dis-
charges). By analysing the time sequence of the discharges, we can assess the
magnitude and significance of the temporal variability. Hydrologic systems are
sometimes impacted by extreme events, such as severe storms, floods, and
droughts. The magnitude of an extreme event flood is inversely related to its
frequency of occurrence, very severe events occurring less frequently than more
moderate events. The objective of frequency analysis of hydrologic data is to relate
the magnitude of extreme events to their frequency of occurrence through the use of
probability distributions. The hydrologic data analysed are assumed to be inde-
pendent and identically distributed, and the hydrologic system producing them is
considered to be stochastic, space independent and time independent. The hydro-
logic data employed should be carefully selected so that the assumptions of inde-
pendence and identical distribution are satisfied. In practice, this is achieved by
selecting the annual maximum of the variable being analysed with the expectation
that successive observations of this variable from year to year will be independent.
Knowledge of the magnitude and probable frequency of recurrence of floods is
necessary to the proper design and location of structures such as dams, bridges,
culverts, levees, highways, waterworks, sewage disposal plants, and industrial
buildings. Bantwal stream gauge for 39 years of recorded been tested for historical
flood frequency to provide some insight into future flood frequency.

The main objective of present study is carried out with a view to understand the
effects of changing historical peak flows on flood-frequency computations for
streams in Netravathi river basin, Karnataka, India and there is also an attempt to
study both Mann–Kendall and Sen’s Slope statistics for the detection of the trend of
peak flows in Nethravathi river basin.

Study Area

The research was conducted at Netravathi river basin. It has an area of about
3,312 km2. It also has geographical coordinates of 12° 29′ 11″–13° 11′ 11″N lat-
itudes and 74° 49′ 08″ to 75° 47′ 53″E longitude with large elevation difference
varying from 0 to 1400 m above MSL (Babar and Ramesh 2013). The Netravathi
River, one of the major west flowing rivers in Karnataka, originates in the South of
Samse village, at an altitude of approximately 1200 m from mean sea level in the
Western Ghats of Karnataka. The river flows westward for about 103 km with a
drainage area of 3657 km2 (Shobitha 2012) and empties into the Arabian Sea, after
joining Gurpur River at Mangalore city. The river joined with Mundaja Neriya,
Shishla Uppar, Kumaradhara and Beltangady nallas from either side. Average
annual rainfall in the region is about 3930 mm. June–September is Southwest
monsoon season which contributes 90% of annual rainfall, but the remaining 10%
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of rain fall is during pre and post monsoon. This river is the major source of water
for Bantwal, Mangalore city, Industries, Hydropower production and agricultural
activities in the basin (Fig. 1).

Data Used and Methodology

Thirty-nine years of stream flow data of Netravathi river basin at Bantwal stream
gauge station from 1971 to 2009 were used for analysis of this study. The data were
acquired from central water commission (CWC), India.

Trend of Historical Changes of Annual Peak Flows

In the present study, trend analysis has been done by using non-parametric Mann-
Kendall test. This is a statistical method which is being used for studying the spatial
variation and temporal trends of hydro-climatic series. A non-parametric test is
taken into consideration over the parametric one since it can avoid the problem
revived by data skew (Smith 2000). Mann–Kendall test had been formulated by
Mann (1945) as non-parametric test for trend detection and the test statistic

Fig. 1 Location map of the study area
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distribution had been given by Kendall (1975) for testing non-linear trend and
turning point. The Mann–Kendall statistic S is given as follows:

S ¼
Xn
i�2

Xi�1

j�1

sign xi � xj
� � ð1Þ

where, n is the number of data points.
xi and xj are two generic sequential data values, the function sign (xi − xj)

assumes the following values

sign xi � xj
� � ¼ 1; if xi � xj

� �
[ 0;

0; if xi � xj
� � ¼ 0;

�1; if xi � xj
� �

\0:

8<
: ð2Þ

This statistics represents the number of positive differences minus the number of
negative differences for all the differences considered, for large samples N � 8 the
test is conducted using a normal distribution, Mann (1945) and Kendall (1975),
with the mean and the variance as follows:

E S½ � ¼ 0

VAR Sð Þ ¼ 1
18 n n� 1ð Þ 2nþ 5ð Þ � Pg

p�1
tp tp � 1
� �

2tp þ 5
� �" #

ð3Þ

where n is the length of the times series, t is the extent of any given tie (zero
difference between compared values) and

P
tp denotes the summation over all ties.

The standardised test statistic Z is given by the following:

z ¼
S�1ffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þ

p if S[ 0

0 if S ¼ 0
Sþ 1ffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þ

p if S\0

8><
>:

9>=
>; ð4Þ

The test statistics Z is used as a measure of significance of trend. A positive
Z indicates an increasing trend in the time series, while a negative Z indicates a
decreasing trend.

Sen’s Slope Estimator Test

The magnitude of annual peak-flow changes over time was computed using the
Sen’s slope (also known as the Kendall–Theil robust line). This slope is computed
as the median of all possible pairwise slopes in the temporal data set (Helsel and
Hirsch 2002). That is the slope (Ti) of all data pairs is computed as shown in below.
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Ti ¼ xj � xk
j� k

ð5Þ

where, xj and xk are considered as data values at time j and k
(j > k) correspondingly.

The median of these N values of Ti is represented as Sen’s estimator of slope and
is computed as

Qmed ¼ T N þ 1ð Þ=2; if N appears odd
TN=2þ T N þ 2ð Þ=2½ �=2; if N appears even

�
ð6Þ

The magnitude of trend can be analysed by the value of Sen’s slope and its
positive value indicates the increasing trend and its negative value indicates the
decreasing trend.

Flood-Frequency Analyses for Full Periods of Record

Peak flows with 100, 5 and 2-year recurrence intervals were computed for the
Bantwal stream gauge station using the full available annual peak-flow record.
Extreme Value Type I probability function was used to find the exceedance
probabilities and recurrence interval and corresponding streamflow (Chow et al.
1988). Extreme values are selected maximum or minimum values of sets of data.
Distributions of extreme values selected from sets of samples of any probability
distribution have been shown by Fisher and Tippett (1928) to converge to one of
three forms of extreme value distributions. The properties of extreme value type I
(EVI) probability distribution function were developed by Gumbel (1941).

EVI probability distribution function for the recurrence interval T is

F xð Þ ¼ exp � exp � x� u
a

� �h i
�1� x�1 ð7Þ

The parameters are estimated as

a ¼
ffiffiffi
6

p
s

p
ð8Þ

u ¼ x� 0:5772a ð9Þ

where, �x and s are the mean and standard deviation, respectively. The parameter u is
the mode of the distribution (point of maximum probability density). A reduced
variate yT can be defined as
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yT ¼ � ln ln
T

T � 1

� 	
 �
ð10Þ

xT ¼ uþ ayT ð11Þ

where, xT is the maximum discharge with the frequency of T years.

Results and Discussions

Trend analysis of Nethravathi river basin has been done in the present study with
39 years of streamflow data from 1971 to 2009. Mann–Kendall and Sen’s Slope
Estimator has been used for the determination of the trend. The annual daily peak
stream flows over 39 years is 9832 m3/s and minimum annual daily peak stream
flow is 1781 m3/s (Fig. 2). Average peak flow for 39 years is 4175 m3/s. Sen’s
slope from Fig. 2 shows the decreasing trend of peak flow with the magnitude of -
38.355 corresponding to Mann–Kendall Test.

Flood-Frequency Analysis for Observed Peak Stream Flows

Flood-Frequency Analysis for Observed daily maximum peak flows is done using
50 20 and 1% annual exceedance probabilities (AEPs) (equivalent to 2, 20 and
100 years recurrence interval, respectively). Based up on selected AEPs observed
peak flows are 3933, 5238 and 8804 m3/s for 50, 20 and 1% AEPs as shown in
Table 1.

Fig. 2 Annual peak discharge of 39 years
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Conclusion

The annual daily peak stream flow over 39 years (1971–2009) for Netravathi River
Basin at Bantawal gauging station is 9832 m3/s. Trend analysis of Netravathi River
Basin at this gauging station shows negative value of Sen’s slope which shows
decreasing trend of annual daily peak stream flow corresponding to Mann–Kendall
test. Therefore; in Netravathi River Basin at Bantawal gauging station annual daily
peak stream flow and flood frequency with 1%, AEPs will decrease in the future.
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Table 1 Observed peak flows with 50, 20 and 1% annual exceedance probabilities (AEPs)

Stream flow
gauging station

Years of
record

Annual exceedance
probability (%)

Observed stream
flow (m3/s)

Bantwal 39 50 3933

Bantwal 39 20 5238

Bantwal 39 1 8804
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Potential Impacts of Climate Change
on Water Resources in Semi-Arid Region
of Chittorgarh, India

Ajit Pratap Singh, Parnika Shrivastava and A.K. Vidyarthi

Abstract Climate change is considered as a substantial anthropogenic global
environment threat. This paper presents a framework for assessing climate change
impacts on water resources of the Chittorgarh district, Rajasthan (India). Various
vulnerability indicators have been considered as the assessment criteria which deal
mainly with vulnerability aspects of water availability, climatic conditions, the
current status of agriculture/irrigation area, sensitivity, water governance and cop-
ing capacity. These factors are finally integrated to evaluate potential impacts of
climate change on water resources in the selected region. An outranking method is
applied to obtain a temporal ranking of the alternatives, i.e. year-wise performance
of the region. To increase the reliability of results, verification is performed using
two multi-criteria approaches, namely analytical hierarchy process and social
choice methods by taking into consideration of above assessment criteria. A future
trend of vulnerability aspects has also been derived using various prediction
techniques.
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Introduction

Climate change is defined as the long-term changes in various climatic parameters
such as rainfall, temperature, evapotranspiration, etc. Inter-governmental panel on
climate change (IPCC) defines climate change as a change in the state of climate
that can be identified by changes in the mean and/or the variability of its properties
and that persists for an extended period, typically for a decade or longer. Climate
change was first addressed in 1992 by United Nations framework convention on
climate change (UNFCC). Since then, the importance and significance of the
uncertainty in climate change is being realized, and now climate change is recog-
nized as a threat to environment globally. On an average, every decade there is a
temperature rise of about 1 °C globally. It adversely effects food production and
security, biodiversity of forests and other natural ecosystems, sustained water
supply, human health and settlements (Ravindranath 2011). Climate change can be
caused because of natural factors such as earth’s axial and orbital changes, plate
movements, asteroid collision, chemical weathering, etc., and anthropogenic factors
such as industrialization, use of fossil fuels, urbanization, excessive agriculture and
live-stocks, changing land use pattern, etc. According to IPCC, concentration of
greenhouse gases such as carbon dioxide (CO2), methane (CH4) and nitrous oxide
(N2O) during the natural and anthropogenic actions contribute significantly towards
exponential climate change over the past few decades.

Water is a key natural resource, an essential human need and a valuable national
asset. Its management deals with solving problems related to many challenges (Jain
2012; Singh et al. 2007). Though India is gifted with a large number of rivers and
about 400 � 1010 m3 of water is available in Indian territory, there is significant
variations in annual rainfall both spatially and temporally. The highest annual rainfall
in Cherrapunji is 11,500 mm, whereas the minimum annual rainfall is 215 mm at
Jaisalamer. There exist recurring monsoon failures or floods during monsoon peri-
ods.Water demand is ever increasing which leads various sociological problems. The
problems of water resources becomes even more worsening due to climatic change,
which is essentially dependent on two most critical parameters, viz. temperature and
precipitation. The rise in temperature leads to global warming phenomena which
further disturbs the hydrological cycle. With a rise in temperature, water from the
atmosphere will reach earth’s surface more as rainfall and less as snow. Also,
increasing temperature indicates melting of snow caps and lead to excessive run-off.
Rising temperature also increases evapotranspiration from crops and vegetation,
leading to higher water demand for agricultural and other beneficial uses of human
kind. Industrial sectors have also become a major concern in recent years as they are
polluting different components of our environment. Various studies have demon-
strated how industrial sectors dealing with steel production, refinery, coal mining,
thermal power plant and the chemical industries have been impacting the climate
(Vidyarthi et al. 2015).

Rajasthan, the largest state of India (area-wise) falls within the areas of great
climate sensitivity. Water sustainability is a prominent concern with increasing
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population in the state mainly due to the extreme climatic conditions, irregular and
low rainfall and reduced per capita water availability (Singh 2008). Chittorgarh, the
14th largest district of Rajasthan (population-wise), is one such climate change
effected district located in the Mewar (southern Rajasthan) region which has the
total population of about 15 lakhs (2011 Census).

The main objective of the study is to formulate an integrated district profile for
assessing the vulnerability of climate change over the temporal scale. To cater this
goal, various criteria are being integrated encompassing water, agriculture, climatic,
sensitivity and governance conditions. Further, outranking and multi-criteria
approaches are applied to the problem to obtain year-wise performance of water
resources by deriving ranking on the basis of selected vulnerability criteria. This
paper also demonstrates the future climatic condition and its vulnerability using
various prediction techniques. The next section highlights the entire study frame-
work including study area, data collection and methodology used with appropriate
illustrations.

Methodology

IPCC defines vulnerability as the degree to which a system is susceptible to or
unable to cope with adverse effects of climate change, including climate variability
and extremes. The paper applies the above principle to the study area using various
vulnerability indices mainly focusing on water and agricultural sector.

Study Area

In this study, Chittorgarh district in southern Rajasthan, as shown in Fig. 1, is
selected for climate change assessment. The total area of the district is around
7.50 lakhs ha with a sown area of 3.13 lakhs ha, i.e. 41.74% of agricultural land.
Nearly, 50% of the area falls in the Banas catchment and average rainfall of the
district is around 70.65 mm. There are totally 11 tehsils (sub-divisions) with urban
population of 12.59 lakhs and 2.85 lakhs, adding to a total district population of
15.44 lakhs (Statistics: Chittorgarh 2014).

Study Framework

The main goal of this study is to assess the climate change impact on the water
resources and study its vulnerability. To cater this goal, five major assessment
criteria/indicators are being employed namely water vulnerability index,
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agricultural vulnerability index, climate vulnerability index, sensitivity and coping
capacity of the district. Further these criteria are being classified into various
sub-criteria, as shown in Fig. 2, elaborating them in a better manner.

Fig. 1 Location of Chittorgarh district in Rajasthan, India (Source http://www.india.gov.in/maps)

• Water Availability 
• Rainfall Yield

Water Vulnerability 
Index 

• Average Rainfall   Humidity  
• Temperature 

Climate Vulnerability 
Index 

• Irrigated Area
• Area Sown

Agricultural 
Vulnerability Index

• Water Demand
• Water SupplySensi vity

• Water Governance
• PovertyCoping Capacity 

•

Fig. 2 Various vulnerability
assessment criteria and
sub-criteria
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Table 1 Input values of sub-criteria for temporal scale

Sub-criteria 1996 1997 1998 1999 2000 2001 2002

Water availability
(MCM)

2282 1338 1432 2025 1524 1548 1962

Rainfall yield (MCM) 6454 3289 2768 5460 3069 4152 2551

Average rainfall (mm) 1189 606 510 1006 580 765 470

Temperature (°C) 22.4 23.9 25.5 24.3 26.5 27.8 29.3

Humidity (%) 65 62 51 56 51 51 58

Area irrigated (ha) 231,186 219,473 162,336 184,494 108,267 165,220 72,793

Area sown (ha) 616,778 634,281 607,575 592,622 475,848 556,446 460,021

Water demand (LPCD) 89 92 99 87 98 95 103

Water supply (LPCD) 82 85 80 80 85 83 80

Water governance Medium Medium Good Medium Medium Medium Good

Poverty, monthly per
capita (Rs.)

378.98 404.23 444.35 465.92 512.85 548.98 559.63

Further, a temporal scale is considered from 1996 to 2002 to assess values of the
sub-criteria assessment indicators. Lastly, year-wise performance with appropriate
ranking has been evaluated using multi-criteria approaches.

Data Collection

The values of various sub-criteria for each of the year is being taken from annual
reports of various organizations such as Central Ground Water Board (CGWB),
Irrigation Department, Public Health Engineering Department (PHED), Centre for
Pollution Control Board (CPCB) Ministry of Water Resources (MoWR), etc. Also,
due to limited data available, few parameters’ data have been interpolated. Table 1
underlines the input data collected from various agencies.

Data Analysis Using PROMETHEE

For ranking of the temporal scale, based on the various sub-criteria, Preference
Ranking Organization Method for Enrichment Evaluation (PROMETHEE) tech-
nique has been applied (Singh and Shrivastava 2014). An academic version of
Visual PROMETHEE software has been used for complete analysis of the study.
The initial stages of the analysis were to input the definition of criteria and alter-
natives. Further, using statistical calculations and predefined help option, preference
function for each alternative has been designed This process enables to estimate the
preference function automatically on the basis of numerical data and statistical
calculations, by the inbuilt preference function assistance. Finally, positive, negative
and net flows have been computed using PROMETHEE-GAIA as shown in Table 2.
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Results and Discussion

Table 2 gives the ranking of year-wise performance of water resources in the region
on the basis of net flow (u) value. A higher u value represents a better climate
change profile and hence, low vulnerability whereas for lower u values, higher
vulnerability is encountered with a fluctuating climate change profile. Another
important result from the above computation is the PROMETHEE Rainbow. It is a
dis-aggregated view of the net flow. The actions are displayed from left to right
according to the final ranking, as shown in Fig. 3. It helps in visualizing the
characteristic profiles of the actions along with weights of criteria. For each action,
a multi-coloured bar is drawn. Each slice within the bar corresponds to the con-
tribution of one criterion in the computation of the multi-criteria net flow. Its height
is equal to the uni-criterion net flow value multiplied by the weight of the criterion.
This way, the multi-criteria net flow value is the sum of all the slices (positive one
minus negative one). Larger positive slices (most important good) features of the

Table 2 Positive, negative
and net flows of various
alternatives (years)

Rank Year u u+ u−

1 1996 0.3661 0.5187 0.1525
2 1999 0.1805 0.3544 0.1739

3 2001 0.0065 0.2257 0.2192

4 1997 −0.0699 0.2305 0.3004

5 2000 −0.0850 0.2026 0.2876

6 2002 −0.1379 0.2058 0.3436

7 1998 −0.2603 0.1018 0.3621

Fig. 3 PROMETHEE rainbow based on net flows
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action are on the top and larger negative slices (most important weakness) are on
the bottom of the slice.

Hence, according to PROMETHEE technique, the ranking order of vulnerability
of climate change has been obtained as 1996 < 1999 < 2001 < 1997 < 2000
< 2002 < 1998 with the lowest and highest vulnerabilities in the years 1996 and
1998, respectively. For verification of these results, two multi-criteria approaches
have been used as discussed in the next section.

Verification of Results

The results obtained from data analysis using PROMETHEE approach are verified
using two different multi-criteria approaches as discussed below.

Using Analytical Hierarchy Process

In this approach, Expert Choice software has been used to apply concepts of
analytical hierarchy process (AHP) in assessing vulnerability of climate change
over the temporal scale during 1996–2002. This involves construction of pair-wise
decision matrix among the criteria and respective sub-criteria, as shown in Table 3.

Table 3 Criteria and sub-criteria weight allocation using AHP

Criteria Sub-criteria Weight

Water vulnerability index 0.350

Water availability 0.833

Rainfall yield 0.167

Climate vulnerability index 0.165

Average rainfall 0.714

Temperature 0.147

Humidity 0.138

Agricultural vulnerability index 0.188

Area irrigated 0.800

Area sown 0.200

Sensitivity 0.248

Water demand 0.143

Water supply 0.857

Coping capacity 0.049

Water governance 0.167

Poverty 0.833
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The alternatives’ decision matrixes are entered in a proportional ratio of their
actual numerical values. Finally, as shown in Fig. 4, the ranking order of year-wise
performance has been evaluated using criteria weights and alternatives’ compari-
son. The overall inconsistency obtained is 3%, which is within limits of 10%, hence
the analysis is consistent and correct.

Hence, according to AHP the ranking order of vulnerability of climate change is
1996 < 1999 < 2001 < 1997 < 2002 < 1998 < 2000 with the lowest and highest
vulnerabilities in the years 1996 and 2000, respectively.

Using Social Choice Method

In Social Choice Method, ranking of the alternatives is done strictly by the decision
maker based on his/her perception about the overall scenario. Hare system (suc-
cessive deletion) method is used in the study wherein the deletion of less attractive
alternatives take place until the most preferred alternative is found. Table 4 enlists
three decision makers’ ranking for the temporal scale based on average rainfall,
rainfall yield and total irrigated area, respectively.

The successive deletion method is applied, i.e. deleting the less important
alternatives till the highest important alternative is encountered. Hence, according
to social choice method (Hare system) the ranking of vulnerability in climate
change is (lowest vulnerability) 1996 < 1999 < 2000 < 1997 < 2002 < 2001
< 1998 (highest vulnerability).

Fig. 4 Ranking of various alternatives (years) using Expert Choice software

Table 4 Decision makers evaluation for temporal scale scenarios

Temporal scale Year
1996

Year
1997

Year
1998

Year
1999

Year
2000

Year
2001

Year
2002

Decision maker 1 1 2 7 4 5 6 3

Decision maker 2 2 4 6 1 5 3 7

Decision maker 3 6 2 5 3 1 7 4
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Hence, using the above two multi-criteria approaches ranking obtained from
PROMETHEE is compared. It concludes that though the highest vulnerability year
(alternative) is varying for each technique, but the year having lowest vulnerability
remains the same. Further, an integrated approach can be applied so as to obtain
more reliable results. This concludes the climate change vulnerability assessment
using previous years’ data. Next section attempts to predict the climate change
profile in future using prediction techniques.

Climate Change Impact and Its Prediction

According to Narain et al. (2005), the predicted per capita water availability in
Rajasthan yearly was 840 m3 in 2001 which is expected to remain 439 m3 by the
year 2050, beside the nation-wide average of 1,140 m3 in 2050. Due to the global
warming and subsequent rise in temperature, the entire season cycle has been
disturbed. The high temperature and changes in precipitation lead to severe
droughts in Mewar region in late 1990s. The agriculture is the main occupation in
the state is also being severely disturbed due to irregular spells and higher tem-
perature through recent years. Chittorgarh comprising of the majority of rural
population is facing various difficulties, decreasing the coping capacity of the area
subsequently. Climate change vulnerability profile includes another element of
prediction of effects of climate change on water resources in future. This section
deals in depth with prediction of various criteria (assessment indicators’) values so
as to generate a trend, completing the climate change assessment profile. The
emission of greenhouse gases is considered as an elementary reason for climate
change, according to IPCC. It is estimated that by 2020, 2050 and 2080 in South
Asia as a result of future greenhouse emissions, probably annual change in tem-
perature will be 1.36, 2.69 and 3.84 °C, respectively, whereas precipitation changes
will be around 2.9, 6.8 and 11.0%, respectively (Lal 2004). The present domestic
water demand is around 100 LPCD, which is going to increase about 5% in near
future. Hence, with this predicted data, vulnerability profile corresponding to these
years have been calculated, as shown in Table 5.

With these projected values, once again the analysis was done using
PROMETHEE, which ranked these alternatives (temporal scale) as (lowest

Table 5 Projected numerical values of sub-criteria for 2020, 2050 and 2080

Sub-criteria Year 2020 Year 2050 Year 2080

Average rainfall (mm) 787.185 817.02 849.15

Temperature (°C) 31.86 33.19 35.34

Water demand (LPCD) 135 145 155

Water governance Good Good Good

Poverty; monthly per capita (Rs.) 758.93 988.65 1252.20
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vulnerability)
2080 < 2050 < 2020 < 1996 < 1999 < 2001 < 2002 < 2000 < 1998 < 1997
(highest vulnerability), as shown in Fig. 5. The projections done are based on opti-
mistic approach and hence, a better profile is obtained for future years.

This paper deals with the future projections of the climatic conditions and
vulnerability index. The approximations used here are actually for the global scale,
and hence applying the same to regional level to Chittorgarh leads of various
anomalies.

Conclusions

Climate change irregularities are an essential global challenge and effects agricul-
tural, water resources and forest cover. In the study, a climate vulnerability
assessment profile was framed to judge the temporal scale (1996–2002) based on
various assessment indicators encompassing water, agriculture, climate, water
governance and sensitivity. These indicators form the backbone of this paper, and
hence their selection, quantification and normalization are very important steps in
overall evaluation of climate change impacts.

Evaluation of these indicators on the temporal scale has been primarily per-
formed using PROMETHEE techniques which have generated a preferential
ranking among the various years, with 1996 being lowest vulnerable and 1998
highest vulnerable. For verification of the results so obtained, two different
multi-criteria approaches were applied though there are many techniques available
today (Singh et al. 2015). First, Analytical Hierarchy Process which involved
pair-wise comparison of the criteria and their respective sub-criteria. The

Fig. 5 Predicted PROMETHEE rainbow for future years
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alternatives were also compared based on their numerical input. Similar to above
approach, a ranking order was generated stating 1996 as lowest vulnerability year,
whereas 2000 has been found the highest vulnerable year. The third approach
applied in the study dealt with Social Choice Method, allocating ranking to tem-
poral scale strictly based upon the opinion of the decision maker. Further, suc-
cessive deletion of less attractive alternatives until the best alternative is obtained,
produced similar results as in the case of PROMETHEE technique.

Lastly, this study also projected the future climatic condition and its vulnera-
bility which is an integral part of vulnerability profile. An optimistic approach is
being considered while projecting, leading to a better future. This paper presents an
integrated overview of impact of climate change on water resources, agricultural
and coping capacity.
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Water Availability Under Changing
Climate Scenario in Ur River Basin

T. Thomas, S. Goyal, V.C. Goyal and R.V. Kale

Abstract The Bundelkhand region in Central India is facing several environmental
issues since the last decade including recurrent droughts, dominant land use
changes due to many influencing factors including over exploitation of the natural
resources and its degradation, climatic variability and decreased agricultural pro-
ductivity. The agriculture of the region is mostly rain-fed which has now become a
non-lucrative livelihood option for the local population due to the vagaries of the
climate and its variability. The threat of climate change which now seems to be real
is likely to aggravate the already precarious scenario, which therefore calls for a
detailed investigation into the impacts of climate change on the water resources of
the region. The Ur river basin has been selected as a pilot basin in Bundelkhand for
the development of a decision support system (DSS) integrating climate change,
hydrology and livelihood. An attempt has been made to study the impact of climate
change by forcing hypothetical climate scenarios on a conceptual water balance
model setup for the watershed. The analysis reveals that a 10% reduction in pre-
cipitation results in more than 40% reduction in surface runoff whereas a 1 °C
increase in temperature results in 6% reduction in surface runoff. A 1 °C rise in
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temperature coupled with a 10% reduction in rainfall leads to a further 50%
reduction in surface runoff whereas a 2 °C rise in temperature coupled with a 10%
reduction in rainfall leads to reduction in surface runoff by 59%. This analysis is
being used in the development of a DSS for making effective policy recommen-
dations to assist the decision makers and stakeholders in selecting appropriate water
management practices on a sustainable basis.

Keywords Water balance � Supply-demand � Bundelkhand � Water resources
management � Climate change

Introduction

The freshwater availability in adequate quantity and quality is crucial for the sus-
tenance of life and economic development of any region. Since water is critical to
all forms of life in a watershed including domestic, livestock, agricultural, forest
and industrial requirements, any shortages in the availability of water supply poses
the greatest threat to the watershed health and productivity. Therefore, the water
resources planning and development needs to be carried in an appropriate manner
so that the precious resource can be used beneficially on a sustainable basis. This
calls for accurate estimation of the supply-demand scenario prior to introducing
planning interventions. In semi-arid watersheds particularly located in the rural
areas, lack of basic data on the water resources generally leads to erratic planning
and unsustainable practices thereby causing depletion of the available water
resources. Therefore it is imperative to understand the water balance of an area.
However the inter-relationships between the various components of the water
balance viz., rainfall, evapotranspiration, groundwater recharge, groundwater draft,
surface and groundwater storages are very complex and any intervention in any of
the component of the water balance, is ought to have an impact on the other
components of the water balance.

The intergovernmental panel on climate change (IPCC) reported that the
ecosystems and natural resources shall be affected if the if the projected doubling of
atmospheric carbon-di-oxide occurs within the next century (Houghton et al. 1990).
It is believed that the climate change will enhance the hydrologic cycle thereby
causing changes in the rainfall pattern and its distribution leading to variation in the
water storages and fluxes at the land surface, soil moisture storage, groundwater,
reservoirs, snowpack, runoff and evapotranspiration. Dickinson (1986) stated that
as a consequence of climate change, the terrestrial biosphere will be affected due to
the changes in the regional energy balance. This will alter the regional water
balance due to seasonal shifts in water balance due to changes in precipitation and
other climatic conditions (Eagleson 1986). It is also predicted that the changes in
soil moisture and evapotranspiration are likely to have large impacts on water and
forest resources (Neilson et al. 1992). Changes in the regional water cycle will
influence feedbacks between vegetation and climate Rind (1984).
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The monthly water balance models have been found useful for water resources
assessment and management on a regional scale by identifying hydrologic conse-
quences of changes in temperature, precipitation, and other climate variables
(Gleick 1986; Schaake and Liu 1989; Mimikou et al. 1991; Arnell 1992; Xu and
Halldin 1997; Xu and Singh 1998). There are many factors to be considered while
selecting a model (Gleick 1986). The purpose of study and data availability is the
dominant factors responsible for choice of a particular model (Ng and Marsalek
1992; Xu 1999). Marks et al. (1993) evaluated the potential effects of climate
change on runoff and soil moisture in the Columbia river basin using 2xCO2

scenario data from the geophysical fluid dynamics laboratory (GFDL) general
circulation model (GCM). Calvo (1986) evaluated the Thornthwaite’s water bal-
ance technique in predicting stream runoff in Costa Rica. Jiang et al. (2007) studied
the hydrological impacts of climate change simulated by six hydrological models in
the Dongjiang basin, South China. Xiong and Guo (1999) developed a
two-parameter monthly water balance model to simulate the runoff of seventy
sub-catchments in the Dongjiang, Ganjiang and Hanjiang basins in the south of
China. They suggested that this model can be efficiently incorporated in the water
resources planning program and the climate impact studies to simulate monthly
runoff conditions in the humid and semi-humid regions.

Study Area

The Ur river basin, a tributary of the River Dhasan located in Tikamgarh district of
Madhya Pradesh has been selected for carrying out the assessment of water
availability under various alternate climate scenarios. The study area represents the
typical topography and geology of the Bundelkhand region and is one of the most
vulnerable areas in respect of climate change and drought related indicators. Ur
river basin lies on the Bundelkhand plateau and extends between latitudes
24° 35′ 00″N and 25° 05′ 00″N and between 78° 50′ 00″E and 79° 10′ 00″E
longitudes with a total geographical area of 990.37 km2. The basin is bounded by
Chhattarpur district in the east, Lalitpur district in the west, Jhansi district in the
north and Sagar district in the south. The basin is elongated with length of 119 km
and an average width of 80 km. The location map of the study area is given in
Fig. 1.

The topography of the basin is undulating and comprises of high hills along the
ridge line with the elevation varying between 200 and 400 m above mean sea level.
The elevation gradually decreases from the southern part of the basin towards the
north. The River Ur also flows in a north-easterly direction till its confluence with
River Dhasan. Agriculture is the dominant land use (58.6%) followed by scrub land
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(13.3%). Other land use classes include settlements (2.0%), dense forests (4.5%),
water bodies (3.5%), fallow lands (7.0%) and barren (11.1%). The forests are
located towards the western portion of the basin, whereas the scrubs are located
mostly towards the south-western, western and north-western parts. The agricultural
area is well distributed possibly because of a large number of tanks spread all over
the basin. The soil in the Ur basin comprises of three dominant soil types. The
major portion of the basin is covered by sandy loam soil (68.1%) followed by sandy
clay loam (28.5%) and silty clay loam (3.4%) of the total basin area. The land use
map and the soil map of the study area are given in Fig. 2a, b. The daily rainfall
data of Tikamgarh district comprising of the various blocks located in and around
the basin viz., Tikamgarh, Jatara, Baldevgarh and Palera have been obtained from
Superintendent of Land Records, Tikamgarh and the daily climatic data including
maximum and minimum temperature, relative humidity, wind speed, solar radiation
have been obtained from India Meteorological Department (IMD), Pune. The cli-
mate of the study area is semi-arid with four distinct seasons.

The winter season extends from December to February followed by the summer
season from March to mid-June; rainy season from mid-June to September and the
post-monsoon season from October to November. The relative humidity is high
during the monsoon season being generally above 70% whereas in summer season
the relative humidity is less than 20%.

Fig. 1 Index map of the Ur basin
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Methodology

Computation of Aerial Average Rainfall

The average areal rainfall has been estimated using the Thiessen polygon method,
wherein the representative weights of each of the four influencing rain gauge sta-
tions has been derived from the Thiessen Polygon prepared for the basin and the
aerial average rainfall for the basin has been computed using Eq. (1),

Pseas ¼ A1P1 þA2P2 þA3P3 þA4P4

A1 þA2 þA3 þA4
ð1Þ

Potential Evapotranspiration

The potential evapotranspiration has been computed by the Penman–Monteith
method, which is the sole standard method of determining evapotranspiration as
suggested by FAO and has a strong likelihood of correctly predicting ETo in a wide

Fig. 2 a Land use map b soil map
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range of locations and climates and has provision for application in data-short
situations also. The FAO Penman–Monteith method is given in Eq. (2),

ETo ¼
0:408D Rn � Gð Þþ c 900

T þ 273 u2 es � eað Þ
Dþ c 1þ 0:34u2ð Þ ð2Þ

where,

ETo reference evapotranspiration (mm day−1);
Rn net radiation at the crop surface (MJ m−2 day−1);
G soil heat flux density (MJ m−2 day−1);
T mean daily air temperature at 2 m height (°C);
u2 wind speed at 2 m height (m s−1);
es saturation vapor pressure (kPa);
ea actual vapor pressure (kPa);
es − ea saturation vapor pressure deficit (kPa);
D slope vapor pressure curve (kPa °C−1);
c psychrometric constant (kPa °C−1).

Soil Conservation Service Curve Number (SCS-CN) Model

The direct surface water runoff has been estimated by the soil conservation service
curve number (SCS-CN) model at the outlet of the watershed. The SCS-CN model
is based on the single parameter curve number (CN), which depends on the land
use, land cover, soil type and the antecedent moisture conditions prevailing in the
watershed. The composite curve number (CCN) for the watershed is estimated as 78
using hydrologic soil group and land use for the AMC-II condition (average).
The AMC changes to dry or wet conditions depending on the 5-day antecedent
rainfall. The direct surface runoff has been estimated using the SCS-CN model
given in Eqs. (3)–(5).

Q ¼ P� Iað Þ2
P� Ia þ Sð Þ for P[ Ia ð3Þ

Q ¼ 0; for P� Ia ð4Þ

S ¼ 25,400
CN

� 254 ð5Þ

where,

Q direct surface runoff (mm);
S potential retention (mm);
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CN curve number;
Ia initial abstraction = 0.2S for general soils; 0.3S for AMC-I and black soils;

and = 0.1S for AMC-III.

Monthly Water Balance Model

The understanding of the catchment response in respect to the changing climate and
weather pattern is important in the identification and evaluation of the expected
changes in the hydrological components including the evapotranspiration, runoff
and recharge to ground water which play a significant role in the water availability
and demand scenario within a watershed. The expected changes in the present as
well the future scenario can only be quantified based on a simple and complete
water balance model, incorporating all the important components of the hydro-
logical cycle which may get affected due to the possible changes in the climate due
to the natural and anthropogenic climate forcing. To assess the impacts of the
impending climate change on the water resources in the watershed, a water balance
model needs to be initially setup and run based on the normal data of rainfall and
evapotranspiration based on the average values of the available long-term data.
Subsequently, the changes in the climate generally represented by the changes in
the rainfall or/and the changes in the temperature can be forced on the model to
simulate the catchment responses under alternate climate change scenarios.

The Thornthwaite and Mather (1957) water balance model (TMWB) which is a
simple but an effective modeling tool has been employed to analyze the impacts of
climate change in the Ur river basin. The TMWB which is a simple model and has
already been established as a tool for estimating the hydrological effects of climate
change has been chosen as it provides reliable estimation of surface runoff on a
monthly time scale using minimal climatic data. As a modification, the potential
evapotranspiration (PET) has been estimated by the Penman–Monteith method. The
procedure followed in the setup of the model includes:

1. Computation of the average monthly precipitation data (P) using daily station
rainfall data by Thiessen Polygon method.

2. Computation of PET on monthly basis using climatic data by Penman–
Monteith method.

3. Estimation of the overall water availability scenario with water excess as (+)
and water deficit as (−) for each month using Eq. (6),

Surplus or Deficit ¼ P� PET ð6Þ

4. Computation of accumulated potential water losses (APWL) starting from the
month in which the P < PET to account for gross potential deficit during each
month using Eq. (7),
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APWL ¼
Xt

0

Deficit ð7Þ

5. Computation of monthly soil moisture storage. The release of soil moisture is
assumed to be an exponential function given by Eq. (8),

SMt ¼ AWC � expAc P� PETð Þ
AWC

limited to a maximum of AWC ð8Þ

where, SMt = actual storage of soil moisture AWC = available water content,
i.e. storage capacity of soil moisture zone Ac(P − PET) = accumulated values
of (P − PET).

6. Computation of change in storage (DSMt) for each month as given by Eq. (9),

DSMt ¼ SMt � SMt�1 ð9Þ

when the storage remains at capacity level, i.e. AWC, the change in soil
moisture, SMt = 0, but when soil moisture reaches values of less than its
capacity, then DSMt is calculated as the difference in soil moisture between soil
moisture of present month and soil moisture of the previous month. A negative
change in soil moisture (DSMt) implies extraction of water from the soil
moisture storage for evapotranspiration, whereas a positive change implies
infiltration of water into the soil leading to addition in the soil moisture storage.

7. Computation of actual evapotranspiration is based on the rainfall, PET and
DSMt.

fAETt ¼ Pt; for Pt\PETt and AETt = PETt; for Pt [ PETtg for þ veDSMt

fAETt ¼ Pþ DSMtg for �ve DSMt ð10Þ

8. The soil moisture deficit starts getting reduced once the precipitation starts
getting stored in the soil moisture storage with the onset of the monsoon season.
The soil moisture eventually attains field capacity and thereafter the further
precipitation excess escapes by gravitational drainage.

9. Thereafter, the computation of the net deficit or net surplus which is based on
the change in soil moisture being negative and vice versa is computed as given
by Eqs. (11) and (12),

Net Deficitt ¼ PETt � AETt or ð11Þ

Net Surplust ¼ Pt � DSMt � AETt ð12Þ
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10. The total average runoff (TAVRO) for the first time step during which P > PET
is considered equal to the net surplus estimated in the above step. The total
average runoff comprises of surface runoff and detention component. It is
assumed that 50% of the TAVRO flows down the stream as surface runoff
(SRO) and the balance is detained in the watershed as detention storage
(DETN).

11. However for the subsequent months of the analysis, the total average runoff is
computed as given by Eq. (13),

TAVROt ¼ Net Surplust þDETNt�1 ð13Þ

12. Therefore, about 50% of the surplus water that is available for runoff in any
month actually runs off as SRO. The rest of the surplus is detained in the
subsoil, ground water, small lakes and canals and is available for runoff during
the subsequent month.

Assessment of Climate Change Impacts

The impact of climate change on the water resources systems in the Ur river
watershed has to be understood for developing a Decision Support System linking
the climate change aspects also. The impact of the climate change can be under-
stood by the scenario analysis based on the climatic data. The climate data per-
taining to various scenarios are available for many general circulation models
(GCM) simulated based on the historical data and is able to give the future climatic
data. However owing to the computational constraints, the GCM simulations are
available at coarse resolutions and cannot be directly applied for basin scale studies
for hydrological application. Under such circumstances, the coarse resolution GCM
data needs to be downscaled to a finer resolution so that it can be applied for
hydrological applications.

In this study, an effort has been made to study the impacts of climate change
using hypothetical scenarios of decrease in precipitation and increase in tempera-
ture, both on a standalone basis as well as on a combined basis and thereby
analyzing the impact on the water availability under each scenario. The scenarios
considered include decrease in normal precipitation by 10, 20 and 30%; increase in
temperature by 1, 2, 3 °C and combinations of both precipitation decrease and
temperature increase scenarios. The precipitation decrease as well as the tempera-
ture increase has been considered, as both will lead to reduced water availability in
the basin. The model has initially been setup with the normal rainfall and PET data,
and subsequently the inputs have been varied based on these scenarios. The
increase in temperature is accounted by the increased potential evapotranspiration,
which has been estimated separately for each degree rise in temperature. The
comparison of the surface runoff availability with the under normal conditions and
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alternate climate scenarios helps to understand the impacts of possible climate
change. The use of the downscaled climate data based on various scenarios from the
GCM will definitely give a better idea of the complex mechanisms and their
interaction leading to future water availability, even though these analyses still
involve considerable uncertainties.

Results and Discussion

The long-term daily average rainfall at each of the four stations have been obtained
by taking the average daily rainfall values during 1999–00 to 2009–10 and the
monthly average rainfall at these stations have been computed thereafter and the
mean areal rainfall computed using the Thiessen Polygon Method. The area of
influencing raingauge stations is given in Table 1. It can be observed that the rain
gauges at Jatara and Tikamgarh have maximum influence followed by Baldevgarh
and the rain gauge at Palera has minimal influence on the rainfall distribution in the
basin.

The PET has been estimated by the Penman–Monteith method, considering the
normal climatic data available at Tikamgarh (Table 2). The average daily evapo-
transpiration at Tikamgarh is 4.30 mm/day.

The Thornthwaite water balance model has been set up for the Ur river basin.
The available water capacity (AWC) has been considered to be 150 mm as the soil
mostly comprises of sandy clay loam. The water balance computations are given in
Table 3. The computations for the accumulated potential water loss (APWL) starts
from the month of October when P < PET and continues up to June. No APWL is
observed in the computations during July, August and September as the P > PET
during this period and situation is of surplus water. The soil moisture (SM) is at its
full capacity only during August and September after which it starts reducing up to
June. The actual evapotranspiration from the basin is at the potential rate only
during July, August and September, when P > PET. Considerable surface runoff is
observed during August to December after which minimal flows are sustained in the
river. The total runoff observed in the basin is 162.1 mm for the normal rainfall of
844.3 mm. The runoff coefficient based on the normal climatic data is 0.19 which
seems to reasonable, but cannot be validated as the catchment is ungauged. The
graph showing the temporal variation of the important water balance components

Table 1 Thiessen weights of influencing rain gauge stations in Ur river basin

S. No. Raingauge station Influencing area (km2) Thiessen weight

1 Tikamgarh 313.37 0.32

2 Baldevgarh 275.63 0.28

3 Jatara 324.66 0.33

4 Palera 76.70 0.07
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Table 3 Water balance computations for Ur river basin

Water balance components Jun Jul Aug Sep Oct Nov

Precipitation (P) 73.8 263.8 282.0 163.9 29.8 2.8

PET (mm) 200.7 151.9 123.7 122.1 121.8 93.9

Surplus/deficit (P − PET) −126.9 111.9 158.3 41.8 −92.0 −91.1

Accumulated potential water
loss (APWL)

−039.4 0.0 0.0 0.0 −92.0 −183.2

Soil moisture (SM) 0.1 112.1 150.0 150.0 81.2 44.2

Change in soil moisture (ΔSM) −0.2 111.9 37.9 0.0 −68.8 −37.0

Actual ET (AET) 74.0 151.9 123.7 122.1 98.6 39.7

Net deficit 126.7 0.0 0.0 0.0 23.2 54.2

Net surplus 0.0 0.0 120.4 41.8 0.0 0.0

Total average runoff (TAVRO) 0.2 0.0 120.4 102.0 51.0 25.5

Surface runoff (SRO) 0.1 0.0 60.2 51.0 25.5 12.8

Detention 0.1 0.0 60.2 51.0 25.5 12.8

Water balance components Dec Jan Feb Mar Apr May

Precipitation (P) 4.4 10.7 6.0 3.7 0.9 2.4

PET (mm) 76.6 77.2 89.9 133.3 169.2 211.4

Surplus/deficit (P − PET) −72.2 −66.5 −83.8 −129.6 −168.3 −209.0

Accumulated potential water
loss (APWL)

−255.3 −321.8 −405.7 −535.2 −703.5 −912.5

Soil moisture (SM) 27.3 17.6 10.0 4.2 1.4 0.3

Change in soil moisture (ΔSM) −16.9 −9.8 −7.5 −5.8 −2.9 −1.0

Actual ET (AET) 21.3 20.5 13.5 9.6 3.8 3.4

Net deficit 55.3 56.7 76.3 123.7 165.4 208.0

Net surplus 0.0 0.0 0.0 0.0 0.0 0.0

Total average runoff (TAVRO) 12.8 6.4 3.2 1.6 0.8 0.4

Surface runoff (SRO) 6.4 3.2 1.6 0.8 0.4 0.2

Detention 6.4 3.2 1.6 0.8 0.4 0.2

All units are in mm
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based on the normal climatic data is given in Fig. 3. The computation of the
monthly water balance helps to identify and quantify the important hydrological
components during various months of a water year. The analysis reveals that about
20% of the precipitation is converted into surface runoff, whereas the remaining
water gets stored in ground water aquifers, lakes, detention storages including initial
abstraction and evapotranspiration losses.

In order to study the range of variation of individual water balance components,
the water balance model has been subsequently run based on the observed rainfall
and climatic data during the period between 1999–00 and 2009–10. The compar-
ison of the surface runoff generated by this model as well as that obtained by the
SCS-CN method during the monsoon season have been compared and is given in
Table 3. It has been observed that the seasonal surface runoff generated by TMWB
model is higher than that generated by the SCS-CN model on most occasions as
SCS-CN produces the direct runoff only instead of the total surface runoff which
includes base flow. Also the SCS-CN model computed the runoff on a daily basis,
and therefore the rainfall pattern and its distribution also gets reflected in the
catchment response whereas the TMWB model computes the surface runoff on a
monthly basis based in the water available in the soil moisture storage (Table 4).

However, it can be observed that both models reproduce the surface runoff with
reasonable degree of accuracy, even though the individual model responses cannot
be validated due to lack of observed stream flow data as the basin is ungauged. The
comparison of the seasonal runoff generated by both models is given in Fig. 4.

Assessment of Climate Change Impacts

Since the TMWB model is able to produce the surface runoff satisfactorily, it can
therefore be readily applied for analyzing the impacts of climate changing by
forcing various scenarios and studying the runoff pattern emerging from the
catchment under changed climatic conditions. The scenarios considered include

Table 4 Comparison of
seasonal surface runoff
(MCM)

Year TMWB model SCS-CN model

1999–00 468.75 300.55

2000–01 60.97 44.65

2001–02 77.87 20.53

2002–03 170.04 108.52

2003–04 297.60 205.90

2004–05 67.64 76.65

2005–06 39.59 63.24

2006–07 20.91 22.01

2007–08 0.00 0.04

2008–09 356.92 333.02

2009–10 71.93 76.55
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decrease in normal precipitation by 10, 20 and 30%; increase in temperature by 1, 2,
3 °C; and combinations of both precipitation decrease and temperature increase
scenarios. The TMWB model has been run separately for each of these scenarios
and the change in the surface water availability compared amongst various sce-
narios. The comparison of the surface water availability under various alternate
climate scenarios is given in Fig. 5. It has been observed that there is substantial
variation in the catchment response in the form of generated surface runoff for each
of the climate scenario.
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The change in surface runoff under various alternate climate scenarios can be
better understood by critically analyzing Fig. 6 gives the percentage reduction in
runoff. It is observed from the analysis that a 10% reduction in precipitation leads to
more than 40% reduction in surface runoff whereas a 20% reduction in precipitation
leads to more than 80% reduction in surface runoff. Similarly for various temper-
ature scenarios, a 1 °C increase in temperature which leads to increase in PET
ultimately results in 6% reduction in surface runoff whereas an increase in tem-
perature by 2 and 3 °C leads to reduction in surface runoff by 15 and 20%,
respectively.

However, the combination of reduced precipitation coupled with the increased
temperature leads to more drastic reduction in the surface runoff availability sce-
nario. A 1 °C rise in temperature coupled with a 10% reduction in rainfall leads to
reduction in surface runoff by 50% whereas a 2 °C rise in temperature coupled with
a 10% reduction in rainfall leads to reduction in surface runoff by 59%. The
analysis under the various climate scenarios helps to understand the change in the
hydrologic regime due to the changing climate scenario which has become more
pronounced in recent times and is expected to continue so with greater impacts in
the future too.

Conclusions

The range of variation of individual water balance components has been studied
using the TMWB model and simulation performed during 1999–00 to 2009–10.
The surface runoff generated by the TMWB model has been compared with the
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runoff generated by SCS-CN model. The comparison of the runoff generated by
both models reveals that the SCS-CN model underestimates the runoff as it gives on
the direct surface runoff and is computed on a daily basis thereby incorporating the
effects of rainfall pattern and distribution and antecedent moisture conditions.
Various model runs have been carried out using the hypothetical scenarios of
decrease in normal precipitation by 10, 20 and 30%; increase in temperature by 1, 2,
3 °C, and combinations of both precipitation decrease and temperature increase. It
is observed that a 10% reduction in precipitation leads to more than 40% reduction
in surface runoff. Similarly a 1 °C increase in temperature results in 6% reduction in
surface runoff whereas an increase in temperature by 2 and 3 °C leads to reduction
in surface runoff by 15 and 20% respectively. However, the combination of reduced
precipitation coupled with the increased temperature leads to more drastic reduction
in the surface runoff availability scenario. A 1 °C rise in temperature coupled with a
10% reduction in rainfall leads to reduction in surface runoff by 50%, whereas a 2 °
C rise in temperature coupled with a 10% reduction in rainfall leads to reduction in
surface runoff by 59%. The analysis under the various climate scenarios helps us to
understand the change in the hydrologic regime due to the changing climate sce-
nario which has become more pronounced in recent times and is expected to
continue so with greater impacts in the future too. However, the use of downscaled
GCM datasets of precipitation and temperature for various future emission sce-
narios give better representation of the climate change impacts as the relationship
between the temperature rise and precipitation is very complex and therefore the use
of hypothetical scenarios can only throw an insight into the approximate changes in
the water balance components.
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Water Sustainability Assessment Under
Climatic Uncertainty—A Case Study
of Chhattisgarh (India)

Surendra Kumar Chandniha and M.L. Kansal

Abstract Water sustainability and vulnerability in terms of economic, social, and
environmental terms is a holistic concept that affects the society at large. Assessing
water sustainability is a decision-making problem that involves multiple stake-
holders and perspectives. Precipitation is one of the key parameters in water
resources sustainability. In the present case study, techniques based on
Standardized Precipitation Index (SPI) has been advocated for assessment of
drought and non-drought conditions at regional level. These conditions are sub-
categorized into drought, near normal, and wet conditions, whereas near normal and
wet conditions are considered as non-drought events. On the basis of long-term
rainfall time series, the performance parameters such as reliability, resilience,
vulnerability, and relative vulnerability are assessed and utilized for quantification
of district wise water sustainability index (WSI). Finally, an overall WSI is esti-
mated at the regional level using the distance-based approach on the basis of most
pessimistic, most optimistic, and neutral approach. The proposed methodology is
illustrated with the help of a real time case study for the state of Chhattisgarh in
India. Further, in order to study the impact of climate change on drought conditions,
two possible scenarios, i.e., HadCM3 A2 and B2 are considered to generate the
future downscaled rainfall series. On the basis of the generated rainfall series and by
using the proposed methodology, WSI for all the districts of the Chhattisgarh state
has been assessed.
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Introduction

Water security is a holistic concept that protects the society against related threats,
risks, or vulnerability. In other terms, water sustainability affects the society in
terms of economic, environmental, and social aspects. Assessing water sustain-
ability is a decision-making problem that involves the hydrological uncertainties
such as rainfall and the perspective of the decision maker and their index of opti-
mism. Further, droughts are generally classified into four categories, i.e., meteo-
rological, hydrological, agricultural, and socioeconomic. Meteorological drought is
associated with inadequacy of normal precipitation. Hydrological drought is related
to the inadequacy of water resources to meet the demands. Agricultural drought is
related to soil moisture or wilting point of the site specific cropping system.
Socioeconomic drought is based on ensuing economic consequences for the region
(Maity et al. 2012). Also, drought is termed as climatic entity and its occurrence is a
natural phenomenon. Recent years are witness of global drought scenarios which
have been identified by various researchers (Sridhar et al. 2008). Drought is best
characterized by multiple climatological and hydrological aspect and is also a good
indicator of climate change (Mishra and Singh 2010). The term meteorological
drought is used to identify those conditions which indicate that the precipitation
amount has decreased with respect to long-term average values (Khalili et al. 2011).

Standardized precipitation index (SPI) is one of the well-known parameters to
assess the long-term behavior of precipitation in terms of drought or non-drought
conditions. Drought condition represents the below normal availability of water.
Various researchers have carried out drought analysis using SPI. Various indices
suggested by different researchers are as follows: Munger’s Index (Munger 1916),
Precipitation Effectiveness Index (Thornthwaite 1931), Blumenstock’s Index
(Blumenstock 1942), antecedent precipitation index (API) (McQuigg 1954;
Waggoner and O’Connell 1956), palmer drought severity index (PDSI) (Palmer
1965; Alley 1984; Dai et al. 2004), Rainfall Anomaly Index (RAI) (Van Rooy
1965; Moron 1994), Drought Area Index (Bhalme and Mooley 1980; Bhalme et al.
1983), Standardized Precipitation Index (SPI) (McKee et al. 1993; Guttman 1998,
1999a, b), Effective precipitation (Byun and Wilhite 1999), and Normalized ante-
cedent precipitation index (Heggen 2001). This study focusses on meteorological
drought which is based on SPI.

Suitable strategies are required for smooth implementation of various water
sector activities and sustainable development in future. Commonly accepted defi-
nition of sustainable development is reported in Brundtland Commission’s report
(Brundtland et al. 1987), which says that sustainable development is that devel-
opment which meets the needs of current generations without compromising the
ability of future generations to meet their own needs. There are three major indi-
cators of sustainable development, which are economic, environment, and social
(Pahl-Wostl 2002) which further depends on various sub indicators (Loucks and
Gladwell 1999). Sustainability assessment covers the review process of planning,
implementation and benefits accrued from water resources development and
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management in qualitative and quantitative terms. Various researchers (Raskin et al.
1996; Loucks and Gladwell 1999; Salameh 2000; Lawrence et al. 2002; Sullivan
2002) have carried out sustainability analysis by focusing on these three indicators.

From the adaptation and mitigation point of view, water sustainability index
(WSI) is one of the best indicators of representing the sustainable development of a
system. Therefore, in this study, a distance-based WSI is assessed by using the
various performance parameters of SPI such as reliability, resilience, and vulner-
ability (Hashimoto et al. 1982). The proposed methodology is demonstrated
through a case study of Chhattisgarh state in India. The WSI has been quantified for
each district and thereafter, it is assessed for the entire state using the distance-based
approach as per historical and future projected time series of rainfall.

Terminology Used in the Assessment of WSI

Standardized Precipitation Index (SPI)

The SPI, which is a probability index and shows a better presentation of abnormal
wetness or dryness, was proposed by (McKee et al. 1993) to quantify the precip-
itation deficit or excess on multiple time scales (monthly, 3-monthly, 6-monthly,
yearly and 2-yearly). In order to estimate SPI, long-term precipitation data is
required. Multiple long-term time series data is fitted into a probability distribution
(generally a two parametric gamma distribution). The fitted distribution is evaluated
using goodness-of-fit (GoF) tests and then transformed into a normal distribution
where the mean SPI is zero. Zero mean reflect the normal condition while positive
and negative values indicate the non-drought and drought conditions. The param-
eters of gamma distribution depend on the observed precipitation and their spatial
variation. The newly fitted series obtained from the gamma distribution is expressed
as a function of precipitation amount, mean, and the standard deviation of the fitted
series (McKee et al. 1993; Guttman 1999a, b; Komuscu 1999; Lana et al. 2001; Wu
et al. 2007). Finally, SPI is calculated as

SPI ¼ xi � �x
r

ð1Þ

where xi individual observed precipitation; �x and r are the mean and standard
deviation of the fitted series.

Generally, in a long-time series, the value of SPI varies from −3 to +3. Negative
and positive scales reflect the dryness/wetness of a year. In this study, SPI has been
categorized into seven subcategories, namely, extremely wet (EW), severely wet
(SW), moderately wet (MW), near normal (NNC), moderately dry (MD), severely
dry (SD), and extremely dry (ED) and its corresponding ranges are shown in
Table 1.
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These classes are grouped under two major conditions such as Drought and
Non-drought (Normal and Wet) as shown in Fig. 1.

Probability Density Function Used in SPI

The main purpose of fitting any distribution in different time scales is to identify the
general behavior or pattern of the time series. Three distributions, namely, gamma,
Weibull, and log-normal have been considered for the purpose. Weibull distribution
is identified as the heavy-tailed distribution in precipitation fitting (Vicente-Serrano
et al. 2011; Zhu et al. 2011; Yusof et al. 2014). Gamma distribution is found to be
best fitted for estimation of SPI (McKee et al. 1993, 1995; Hayes et al. 1999; Shiau
2006). The probability density function (PDF) and cumulative distribution function
(CDF) of the gamma distribution are as follows:

f x; a; bð Þ ¼ x a�1ð Þ e
x
b

baC að Þ for x[ 0 ð2Þ

f x; a; bð Þ ¼
Zx
0

f u; a; bð Þdu ¼
c a; xb

� �
C að Þ ð3Þ

for x[ 0 and a; b[ 0where; C að Þ ¼ R10 xa�1e�x dx and c s; xð Þ ¼ R x0 ts�1e�t dt is
the lower incomplete gamma function, a is the shape parameter, and b is the scale
parameter.

Table 1 SPI range and corresponding wetness/dryness category

SPI range Category of wet/dry conditions Drought/non-drought

2.00 and above Extremely wet (EW) Non-drought events

1.50 to 1.99 Severely wet (SW)

1.00 to 1.49 Moderately wet (MW)

−0.99 to 0.99 Near normal (NN) Near normal

−1.00 to −1.49 Moderately dry (MD) Drought events

−1.50 to −1.99 Severely dry (SD)

−2.00 and less Extremely dry (ED)

Fig. 1 SPI based drought and non-drought conditions
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Thus, for carrying out SPI analysis, alpha (shape) and beta (scale) parameters in
the gamma probability density function are estimated for each station on yearly
basis. As suggested by Stacy and Mihram (1965), the maximum likelihood concept
is used to estimate a and b as mentioned below:

â ¼ 1
4A

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4A

3

r !
ð4Þ

b̂ ¼ �x
â

ð5Þ

where

A ¼ ln �xð Þ �
P

ln xð Þ
n

n = number of precipitation observations.

Goodness-of-Fit Tests

Goodness-of-fit (GOF) tests are used to test the fitness of a distribution to a set of
observations and measures. In order to test the compatibility of the proposed dis-
tribution with the observed data, a statistical goodness-of-fit (GOF) test is carried
out. GOF typically summarizes the discrepancy between observed and expected
values from the model in question. The best-fitted distribution is then chosen based
on the minimum error. These errors may be estimated by any of the following test
statistics: Kolmogorov–Smirnov (KS), Anderson–Darling (AD), or Chi-square.

The KS test statistics is defined as

D ¼ max
1� i�N

F xið Þ � i� 1
N

����
����; i

N
� F xið Þ

����
����

� �
ð6Þ

where xi is the increasing ordered data, F is the theoretical cumulative distribution,
and N is the sample size.

Anderson–Darling (AD) is used to compare the model on the basis of observed
CDF with an expected CDF for a particular distribution. The AD test statistics is
defined as

A2 ¼ �n� 1
n

Xn
i�1

2i� 1ð Þ ln F Xið Þþ ln 1� F Xnþ 1¼ið Þð Þ½ � ð7Þ

where F is the CDF of the specified distribution and Xi are the ordered data.
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Chi-square test statistics is defined as

v2 ¼
Xk
i¼1

Oi � Eið Þ2
Ei

ð8Þ

where Oi is the observed frequency for bin i, and Ei is the expected frequency for
bin i calculated by

Ei ¼ F x2ð ÞþF x1ð Þ

where F is the CDF of probability distribution being tested, and x1, x2 are the limits
for bin i.

Although there is no optimal choice for the number of bins (k), there are several
formulas which can be used to calculate this number based on the sample size (N).
For example, EasyFit uses

k ¼ 1þ log2 N

Various statistical software is available in the market which can suggest the
best-fitted distribution for any time series data. In this study EasyFit-5.4 (profes-
sional) is used for estimating the GoF for testing the type of best-fitted distribution
of the rainfall series.

Reliability–Resilience–Vulnerability for SPI Time Series

The concept of Reliability, Resilience, and Vulnerability in water resources systems
was incorporated by Hashimoto et al. (1982). In this study, the same concept is used
for SPI time series. As mentioned in Table 1 and Fig. 2, the variation of SPI is
termed as satisfactory (non-drought) and unsatisfactory (drought) conditions. The
fluctuation of SPI depends upon precipitation at a particular location. Let X1, X2, X3,
…, XN be the time series of SPI having data series length (N) and SPI at any time is
represented by XT. If XT � NN condition, it is considered as satisfactory conditions
(S), here ZT is 1 and if XT � NN condition, it is considered as unsatisfactory
conditions or failure condition (U), here ZT is 0. Index ZT signifies a satisfactory or
unsatisfactory state of a system (Bradley et al. 2003).

Fig. 2 Qualitative classification of WSI
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ZT ¼ 1; if XT 2 S
0; if XT 2 U

�
ð9Þ

An index, WT , is defined to capture the transition between S and U state

(Hashimoto et al. 1982) WT ¼ 1; if XT 2 U and XT þ 1 2 S
0; otherwise:

�

Reliability

Reliability is defined by the probability that a system is in a satisfactory state
(Hashimoto et al. 1982). Mathematically, reliability a is stated as

a ¼ P XT 2 Sð Þ ð10Þ

where S = the satisfactory stage as started before. From the time series, a can be
computed as

a ¼ Lt
n!1

1
n

Xn
t¼1

ZT

where ZT ¼ 1 ; if XT 2 S and ZT ¼ 0 ; if XT 2 U (a unsatisfactory set).
The reliable or satisfactory conditions are identified as the SPI values varying

from −1 to +3. SPI values below −1 are considered as unsatisfactory condition.
Therefore, reliability can be estimated as a ratio of total number of satisfactory
events to the total number of events in the time series, i.e.,

Reliability SRelð Þ ¼ Number of satisfactory values (wet condition)
Total number of values (lenght of time series)

: ð11Þ

Resilience

Resilience is a measure that indicates how quickly the system can return to a
satisfactory stage (Near normal condition) after it has fallen below the satisfactory
threshold (Hashimoto et al. 1982; Sandoval-Solis et al. 2010). This can be defined
as the ratio of the probability of transition from the unsatisfactory (drought con-
dition) to the satisfactory stage (near normal condition) and the probability of
failure, i.e.,
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c ¼ P XT 2 U;XT þ 1 2 Sð Þ
P XT 2 Uð Þ ð12Þ

where S and U are as defined earlier. The numerator, probability of transition from
the unsatisfactory to the satisfactory stage and is denoted by q. In the long run, the
number of times the system transforms from the satisfactory to the unsatisfactory
stage and from the unsatisfactory to the satisfactory stage will be the same.
Therefore, it can be eventually expressed as q ¼ P XT 2 U;XT þ 1 2 Sð Þ
¼ P XT 2 S;XT þ 1 2 Uð Þ. From the time series, q can be calculated as

a ¼ Lt
n!1

1
n

Xn
t¼1

WT ð13Þ

where WT = event of transformation from the satisfactory to the unsatisfactory
stage (or vice versa) and WT ¼ 1; if XT 2 S andXT þ 1 2 U andWT ¼ 0 otherwise.
The denominator of Eq. 11 can be expressed as P XT 2 Uð Þ ¼ 1� P XT 2 Sð Þ.
Again P XT 2 Sð Þ is expressed as reliability a as explained before. Thus, Eq. (12)
can be expressed as

c ¼ q
1� a

ð14Þ

A number of time steps of satisfactory values (non-drought condition) following
an unsatisfactory value (drought condition) are counted to the total number time
steps of unsatisfactory values. The ratio of these two numbers of time steps is
termed as resilience of the system.

Relsilience SResð Þ ¼ Number of time steps of satisfactory value follows an unsatisfactory value
Number of unsatisfactory values

ð15Þ

Vulnerability

Vulnerability is a measure of severity of a failure event, once it has occurred
(Hashimoto et al. 1982; Sandoval-Solis et al. 2010). It is defined as

t ¼
X
j2U

sjej ð16Þ

where sj = the numerical indicator of severity for an observation xj; which belongs
to the unsatisfactory state; ej = the probability of that xj; corresponding to sj which
is the most unsatisfactory and severe outcome that occurs from the set of unsatis-
factory states. In the context of SPI, vulnerability is a probability weighted average
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of the deficit conditions (with respect to the NN condition) of failure events. Thus,
the events below the NN condition is the severity indicator and vulnerability is
measured in terms of the Expected Extent and Expected Duration of the SPI vul-
nerability. Mathematically,

Vulnerability SVulð Þ ¼ EEunsatisfactory values � EDunsatisfactory values ð17Þ

EEunsatisfactory values ¼ Cumulative extent of failure
Number of individual failure events

ð18Þ

EDunsatisfactory values ¼ Total number of failure events in a time series
Number of continuous series of failure events

ð19Þ

where

EEunsatisfactory values = Expected extent of unsatisfactory values
EDunsatisfactory values = Expected duration of unsatisfactory values.

Relative Vulnerability

Relative vulnerability is a dimensionless vulnerability measure and is defined as

Relative Vulnerability ¼ tP
T2Jn XT

ð20Þ

where t is calculated using Eq. (14), Jn refers to the unsatisfactory period that t
represents and XT is Maximum Vulnerability among all alternatives at time step
T. Alternatively, it may be defined as the ratio of vulnerability and maximum extent
of failure event in entire time series.

Relative Vulnerability SRelative Vulð Þ ¼ Vulnerability SVulð Þ
Maximum extent of failure event in a entire time series

ð21Þ

Water Sustainability

Since reliability, resilience, and vulnerability are the criteria of water sustainability,
these can be combined to assess the water sustainability. A multiplicative index is
proposed by various researchers (Hashimoto et al. 1982; Sandoval-Solis et al. 2010;
Maity et al. 2012) for aggregating these three criteria as shown in Eq. 22.
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Water Sustainability Index ¼ Reliability� Resiliency
� 1� Relative Vulnerabilityð Þ ð22Þ

In order to represent the water sustainability in qualitative terms, it is proposed to
categorize it subcategories such as poor, satisfactory, moderate, good, very good,
and outstanding as shown in Fig. 2.

Distance-Based Multicriteria Decision Making

A Multicriteria Decision-Making (MCDM) problem means either a multi attribute
or a multi objective decision problem or both. Water sustainability assessment is
also a MCDM problem in the sense that it is based on reliability, resilience, and
vulnerability of seasonal or annual rainfall. There are a number of possible solution
types in MCDM theory which depend on the type of problem and the required
solution. Some of these are: Value and utility theory, distance-based techniques—
goal and compromise programming, outranking techniques, sequential solution
method, the 2 constraint method, weighting method, and the surrogate worth
trade-off (SWT) analysis technique. In this study, a distance-based goal program-
ming approach is used for assessing the water sustainability on the basis of three
criteria, i.e., reliability, resilience, and vulnerability of SPI. Goal programming
allows the decision maker (DM) to specify a target for each objective criterion.
A preferred solution is then defined as the one that minimizes the sum of the
deviations from the prescribed set of target values. The basic principle is based on
the measures of the distance between a feasible pay-off vector and the goal point. In
case of uncertainty, the decision making is carried using following criteria:

1. Laplace;
2. Mini-max;
3. Savage Regret;
4. Hurwicz.

In case of uncertainties, these criteria differ in the degree of conservatism of the
decision maker.

Hurwicz criteria reflect a range of decision-making attitudes from the most
optimistic to the most pessimistic. If a varies 0–1 and V(ai, Sj) represent gain then
selected action on the chosen action must be associated with

Max
ai

a
Max
Sj

Vðai; SjÞþ ð1� aÞMin
Sj

Vðai; SjÞ
� 	
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If V ai; Sj

 �

is loss

Min
ai

a
Min
Sj

Vðai � SjÞþ ð1� aÞMax
Sj

Vðai; SjÞ
� 	

If a = 0 represent the conservative approach (i.e., max-min or mini-max criteria).
If a = 1 represent the optimistic approach (best of the best).
If a = 0.5 represents the neutral approach (Laplace approach).

Proposed Methodology for Water Sustainability Assessment

This study uses the concept of SPI as a measure of water sustainability at district
level. Once the SPI is calculated for each of the district, it estimates the reliability,
resilience and vulnerability of SPI for these districts. Thereafter, the overall WSI for
the entire state is estimated by following the distance-based approach as mentioned
above. The proposed methodology is shown in the form of a flow chart in Fig. 3.

The steps of proposed methodology are:

1. Arrange the observed rainfall time series and determine the statistics of the
series.

2. Since two-parameter gamma distribution works well for the SPI, the gamma
distribution is fitted in the observed rainfall series and the parameters of the
distribution are estimated along with the GoF. One can use the software like
EasyFit for the purpose.

3. On the basis of the two parameters of the fitted gamma distribution, prepare the
calculated time series of the rainfall and estimate the mean and standard devi-
ation of the fitted series.

4. Calculate the SPI as suggested in Eq. 1 and prepare the series of SPI.
5. Using the classification shown in Table 1, identify the years as dry or wet.
6. Use the series as mentioned in step 5 to determine the reliability, resilience,

vulnerability, and relative vulnerability of the series.
7. Estimate the district wise water sustainability using Eq. 22.
8. Using the district wise WSI, the state level WSI is estimated on the basis of

distance from the ideal point depending on the index of optimism (such as
maximum of maximum (pessimistic), minimum of maximum (optimistic) and
average of maximum (neutral)) approach applied on the basis of SPI values of
all the districts.
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Arrange the rainfall series and check consistency

Fit the Probability Distribution 

Check the Goodness of Fit (GoF)

Identify the Parameters of Selected Distribution

Prepare the Fitted Series & List its Statistics

Using the observed rainfall and the fitted series, estimate the 
Standardized Precipitation Index (SPI)

Define Categories of SPI

Estimate the performance parameters of 
SPI Series

If, the 
classification 

ok

Reliability Resilience Vulnerability 

Estimate the District Level WSI

Pessimistic  Neutral Optimistic 

No

Yes

Characteristic of the DM 

State Level WSI

Identify the ideal point for each performance parameter and the 
distance from these ideal points for each district

Fig. 3 Proposed methodology for estimating WSI
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Case Study

An attempt has been made to estimate the water sustainability for the state of
Chhattisgarh on the basis of district wise historical and downscaled monthly rainfall
under suggested climate change scenarios. In the observed data for each district,
two-parameter gamma distribution is fitted and the parameters of the distribution
are estimated. On the basis of the estimated parameters of the distribution, fitted
time series for each of the district is prepared. Further, GoF is checked on the basis
of Kolmogorov–Smirnov (KS), Anderson Darling (AD) and Chi-Squared statistics
test. For the historical rainfall series, the district wise gamma distribution statistics
are calculated and summarized in Table 2.

The values of SPI for all the districts are shown in Table 3. For illustration
purpose, the SPI variation for Koriya district (D10) is shown in Fig. 4.

On the basis of SPI, the WSI for each district is calculated. For example, cal-
culations for the Koriya district are as follows:

Total number of events = 111; Non-drought events = 96;
Drought events = 15; Reliability of the system = 96/111 = 0.86
No. of times satisfactory value (s) follow an unsatisfactory value = 10;
Hence, Resilience = 10/15 = 0.67
Cumulative extent of failure = 9.73;
Expected extent of unsatisfactory values = 9.73/15 = 0.65
Maximum extent of failure event in an entire time series = 1.73
Number of continuous series of failure events = 10
Expected duration of unsatisfactory values = 15/10 = 1.5
Hence, vulnerability = 0.65 � 1.5 = 0.97, and
Relative Vulnerability = 0.97/1.73 = 0.56
Therefore, WSI = 0.86 � 0.67 � (1−0.56) = 0.254, i.e., Poor.

On the same lines, WSI for all the districts is calculated and is shown in Table 4.
From the Table 4, it may be noted that on the basis of historical rainfall data, the

Bilaspur district has the maximum water sustainability, i.e., 0.57. The worst is the
condition of Dhamtari district with water sustainability of 0.09. Although, relia-
bility is more in case of Dhamtari district as compared to Bilaspur, but the overall
sustainability is worse due to high vulnerability. Graphically, the maps of relia-
bility, resilience, vulnerability, relative vulnerability, and WSI are prepared on the
historical record basis and are shown in Fig. 5a–e.
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In order to assess the state level WSI, the WSIs for all the districts are used as the
input data. For example, from Table 4, one can determine the ideal points for the
parameters reliability, resilience, and relative vulnerability. Thereafter, the distance
from the ideal points is calculated for each of the district as shown in Table 5. On
the basis of the maximum distance from the ideal point and with different levels of
optimism, the WSI for the entire state is calculated as shown in Table 5

It may be noticed that if the decision maker (DM) is pessimistic in approach, he
will select the maximum of maximum distance from the ideal point as the critical
point, and hence the overall WSI. In Table 5, it is maximum for relative vulnera-
bility for district Dhamtari district (i.e., 0.86) and hence the WSI for the state is
0.14. If the DM is optimistic in approach, he will consider the minimum of the
maximum distance from the ideal points of the performance criteria. For example,
minimum of maximum distance among all the districts is for Dantewada district,
i.e., 0.28. Therefore, WSI for the state will be 0.72. If the DM is neutral and
unbiased, i.e., neither optimistic nor pessimistic, then one can take the average of
maximum distance of all the districts. For example, it is 0.53 in this case. Therefore,
the WSI for the state can be taken as 0.47.

WSI Under HadCM3-A2 Climate Change Scenario

The district wise gamma distribution statistics are summarized in Table 6.
The category wise frequency distribution of SPI for all the districts is shown in

Table 7.
Using the SPI values for each district, the reliability, resilience and vulnerability

are assessed. Thereafter, the WSI for all the districts is calculated. The results are
shown in Table 8.

Fig. 4 Graphical
representation of SPI for
Koriya district in Chhattisgarh
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Fig. 5 Spatial map of a reliability, b resilience, c vulnerability, d relative vulnerability and
e water sustainability index
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From the Table 8, it may be noted that on the basis of downscaled rainfall data,
the Raipur district has the maximum water sustainability, i.e., 0.57. The worst is the
condition of Durg district with water sustainability of 0.29. Although, reliability is
more in case of Durg district as compared to Raipur, but the overall sustainability is
worse due to high vulnerability.

In order to assess the state level WSI, the WSIs for all the districts are used as the
input data. For example, from Table 8, one can determine the ideal points for the
parameters reliability, resilience, and relative vulnerability. Thereafter the distance
from the ideal points is calculated for each of the district as shown in Table 9. On
the basis of the maximum distance from the ideal point and with different levels of
optimism, the WSI for the entire state is calculated as shown in Table 9.

It may be noticed that if the decision maker (DM) is pessimistic in approach, he
will select the maximum of maximum distance from the ideal point as the critical
point, and hence the overall WSI. In Table 9, it is maximum for relative vulnera-
bility for district Rajnandgaon district (i.e., 0.54), and hence the WSI for the state is
0.46. If the DM is optimistic in approach, he will consider the minimum of the
maximum distance from the ideal points of the performance criteria. For example,
minimum of maximum distance among all the districts is for Raipur district, i.e.,
0.26. Therefore, WSI for the state will be 0.74. If the DM is neutral and unbiased,
i.e., neither optimistic nor pessimistic, then one can take the average of maximum
distance of all the districts. For example, it is 0.46 in this case. Therefore, the WSI
for the state can be taken as 0.54.
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Fig. 5 (continued)
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WSI Under HadCM3-B2 Climate Change Scenario

For the projected rainfall series (HadCM3-B2), the district wise gamma distribution
statistics are summarized in Table 10.

The category wise distribution of SPI for all the districts is shown in Table 11.
Using the SPI values for each district, the reliability, resilience, and vulnerability

are assessed. Thereafter, the WSI for all the districts is calculated. The results are
shown in Table 12.

From Table 12, it may be noted that on the basis of downscaled rainfall data, the
Dhamtari district has the maximum water sustainability, i.e., 0.60. The worst is the
condition of Kanker district with water sustainability of 0.19. Although, reliability
is more in case of Dhamtari district as compared to Kanker, but the overall sus-
tainability is worse due to high vulnerability.

In order to assess the state level WSI, the WSIs for all the districts are used as the
input data. For example, from Table 12, one can determine the ideal points for the
parameters reliability, resilience, and relative vulnerability. Thereafter, the distance
from the ideal points is calculated for each of the district as shown in Table 13. On
the basis of the maximum distance from the ideal point and with different levels of
optimism, the WSI for the entire state is calculated as shown in Table 13.

It may be noticed that if the decision maker (DM) is pessimistic in approach, he
will select the maximum of maximum distance from the ideal point as the critical
point, and hence the overall WSI. In Table 13, it is maximum for relative vulner-
ability for district Kanker district (i.e., 0.73), and hence the WSI for the state is 0.27.
If the DM is optimistic in approach, he will consider the minimum of the maximum
distance from the ideal points of the performance criteria. For example, minimum of
maximum distance among all the districts is for Janjgir district, i.e., 0.20. Therefore,
WSI for the state will be 0.80. If the DM is neutral and unbiased, i.e., neither
optimistic nor pessimistic, then one can take the average of maximum distance of
all the districts. For example, it is 0.37 in this case. Therefore, the WSI for the state
can be taken as 0.63.

Conclusions

In this paper, a new approach has been suggested for assessment of WSI for the
regional level study. The proposed methodology uses the concepts of SPI, relia-
bility, resilience, and vulnerability, and the index of optimism of the decision
maker. The approach has been named as the “Distance based approach” for
assessment of WSI. The suggested methodology has been applied for assessment of
WSI for the state of Chhattisgarh in India. It has been estimated using the historical
rainfall data as well as the projected rainfall series under the two possible scenarios
under climate change conditions HadCM3 A2 and B2. On the basis of historical
rainfall series, the WSI for the Chhattisgarh state was found to be 0.47 with neutral
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index of optimism but can vary from 0.14 to 0.72 from the most pessimistic and
most optimistic feeling of the DM. Further, under climate change HadCM3-A2
possible scenario, the WSI index for the Chhattisgarh state is assessed as 0.54,
which varies from 0.46 to 0.74 under most pessimistic and most optimistic feeling
of the DM. Under HadCM3-B2 scenario, the overall WSI has been assessed as 0.63
which varied from 0.27 to 0.80 under most pessimistic and most optimistic feeling
of the DM. The adopted methodology may also help to assess the status of WSI in
regional level study using the SPI. It is one of the simplest techniques to access the
WSI because its only depends upon precipitation. It may help for water resources
planning and mitigation for future perspectives.
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Coupling of Tennant Concept
with Standardized Precipitation Index
(SPI) for the Prediction of Environmental
Flow Condition from Rainfall in Upper
Narmada Basin

Kumar Amrit, S.K. Mishra and R.P. Pandey

Abstract In this study, an effort has been made to describe the environmental flow
condition of a watershed using standardized precipitation index (SPI), a drought
index based on the precipitation. Mohegaon, Manot, Hridaynagar, and Sher are the
four watersheds of upper Narmada Basin that have been taken for the analysis. The
purpose of this study is to derive relationship between environmental flow condition
and the corresponding estimates of standardized precipitation index which is used
as measure of drought conditions. It is expected that these relationship will be
useful in determining environmental flow conditions in ungauged sub-basins using
rainfall data only. The study revealed an excellent relationship between SPI and
percentage of average annual flow as the value of coefficient of determination are
greater than 0.75. The analysis indicates that for each of the four watersheds, the
percentage of average annual flow increases with the increase in the value of SPI. It
can be concluded that the relationships presented in this paper will be useful for
estimating the EF condition for ungauged watersheds.

Keywords Tennant method � Narmada basin � SPI � Environmental flow

Introduction

Water is necessary for life and it is regarded an important natural resource for the
well-being of society and existence of life on the earth. The water demand is
increasing day by day which exceeds the water supply due to increasing water
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demand for growing population and industrialization. For the conservation of
natural ecosystem, water has to be preserved in the rivers and it should be clean so
that a healthy ecosystem can be maintained. The minimum amount of water
required for the survival of rivers is known as environmental flow (EF). For a
healthy ecosystem, environmental flows are one of the important factors. The
minimum supply of water is maintained in the steams called EF requirement which
helps in the sustainability of aquatic lives and other natural ecosystem. The lack of
requisite flow will influence the whole ecosystem. So the EF is necessary to carry
out the needs of animal, vegetation, and aquatic lives which depend on the river for
their sustainability.

The socioeconomic development and climate change has affected the global
hydrological cycles, threatening human water security, the health of aquatic envi-
ronments, and river biodiversity largely during past few decades (Vörösmarty et al.
2010; Jacobsen et al. 2012; Van Vliet et al. 2013). These situations attract the
attention towards the assessment of environmental flow requirement (EFR) and
water scarcity (Vörösmarty et al. 2010; Kirby et al. 2014). Thus EFR is defined as
the quality, quantity, and timing of the water flows required maintaining freshwater
and estuarine ecosystems and the human livelihoods and well-being that depend
upon these ecosystems (Brisbane Declaration 2007). More than 200 methods are
available and being used worldwide to calculate EFR to maintain healthy rivers
(Tharme 2003). These methods can be grouped into four categories: hydrological
approach, hydraulic rating, habitat simulation, and holistic methods.

Drought is a natural calamity, occurring due to less than average rainfall over a
given period of time at given space which consequently leads to stream flow
reduction and short-term water deficit. Further, the droughts cause lowering of
water levels in lakes, reservoirs, tanks, etc. There are various drought indices were
developed which are very useful for drought monitoring based on different
parameters. Some of the common drought indices used to assess the meteorological
droughts in India, are standardized precipitation index (SPI) (McKee et al. 1993),
Effective Drought Index (EDI) (Byun and Wilhite 1999), and percentage departure
of annual and seasonal rainfall from corresponding mean are applied for identifi-
cation of onset, termination and quantification of severity of drought events.

The SPI is used to quantify the dry and wet conditions based on the precipitation,
and Tennant method is used to describe the environmental flow condition of a river
from severe degradation to flushing flow, i.e., whether the river runs dry or have
maximum flow based on the flow data. Since both SPI and Tennant Method are
used to describe the dry and wet conditions based on the different parameters so,
there might have some possibility to establish a relationship between these two
methods.

Despite the fact there exist a large number of EF methods, none of them has the
efficacy to predict EF for ungauged watersheds, i.e. using rainfall only. On the other
hand, SPI has the efficacy to describe a similar dry or wet situation, but in terms of
drought. Thus, there exists a possibility to explore a relationship between these two,
for EF prediction from rainfall, useful for ungauged watersheds, which forms the
primary objective of this study.
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Fig. 1 Index map of study area

Study Area

Narmada is the largest west-flowing river of the Indian peninsula. It is one of the
important rivers of India. The Narmada basin extends over an area of 98,796 km2

and lies between longitudes 72° 32′E to 81° 45′E and latitudes 21° 20′N to
23° 45′ N. Here for the study, four catchments of Upper Narmada basin are selected
based on the availability of data viz. Mohegaon, Manot, Hridaynagar, and
Sher having the catchment area of 3978 km2, 4884 km2, 3370 km2 and 2901
km2 respectively. The region has sub tropical and sub humid climate with average
annual rainfall ranging from 1000 mm to 1400 mm. The summer is very hot and
winter is quite cold. The area comprises of both flat and undulating lands covered
with timber, grasses, and cultivated land. Soils vary from black to mixed red soils.
The location map of the study catchments are presented in Fig. 1.

Methodology

Standardized Precipitation Index

Drought monitoring is based on identification and quantification of various drought
characteristics viz. frequency, duration, and severity. The magnitude of deficit can
also be assessed for the past drought events. There are so many methods and indices
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that were developed and being widely used for the assessment of drought events.
Among the various drought indices, the standardized precipitation index
(SPI) (McKee et al. 1993) is very popular and widely used for drought monitoring.
Since SPI has some advantages over other indices first, SPI require only precipi-
tation data so its evaluation is relatively easy and second, the SPI enables drought
monitoring over different time scales viz. 1 month, 3 months, 6 months, 9 months,
12 months, 24 months, etc. The standardized precipitation index (SPI) for any
location is calculated, based on the long-term precipitation record for a desired
period. This long-term record is fitted to a probability distribution preferably
gamma distribution, which is then transformed to a normal distribution so that the
mean SPI for the location and desired period is zero (McKee et al. 1993; Edwards
and McKee 1997). SPI is normalized index representing the occurrence of an
observed rainfall when compared with the average rainfall of a particular location
over a long reference period. SPI values represent the deviation of rainfall from
long-term mean. SPI values describes from extremely wet to extremely dry con-
dition. Negative SPI values represent the deficiency in rainfall while positive values
of SPI show the surplus rainfall. The magnitude of SPI negative values are used to
classify the severity of drought event. Higher the negative SPI value, more severe
the drought event are likely to occur. Table 1 represents the different conditions
classified on the basis of SPI values by McKee et al. (1993).

Tennant Method

This method was developed by Donald Tennant in Montana region of USA
Tennant (1975, 1976a, b), also called as Montana approach and developed for the
needs of fish. It used 58 cross-section and 38 different flows of 11 streams in
Wyoming, Montana, and Nebraska (Mann 2006). He established a relationship
between aquatic habitat suitability and flow using subjective assessment of habitat
quality and the empirical hydraulic data obtained from cross-channel transects. This
method is based on the assumption that to uphold good stream environment some
percentage of average flow is required. According to Tennant, for short-term sur-
vival the average depth and velocity of flow should be at least 0.3 m and 0.25 m/s

Table 1 Drought conditions
classified on the basis of SPI

SPI values Condition

2.00 or more Extremely wet

1.50 to 1.99 Very wet

1.00 to 1.49 Moderately wet

−0.99 to 0.99 Near normal

−1.00 to −1.49 Moderately dry

−1.50 to −1.99 Severely dry

−2.00 or less Extremely dry
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respectively and the depth between 0.45 and 0.6 m and velocity ranging from 0.45
to 0.6 m/s found to be optimal for the fish. These conditions were found at 10 and
30% of average annual flow (AAF) respectively in the different streams he studied.
The different flow conditions based on percentage of average annual flow for low
(October–March) and high (April–September) flow periods (Tennant 1976a, b) are
given in Table 2.

In this study, the SPI on 9-month time scale for the month of June was evaluated
for every year. In the same manner the average flow of 9 months (October–June)
was calculated for every year which is termed as annual flow. The average of
annual flow of all the years is calculated and the percentage of annual flow of a
particular year with respect to average annual flow is termed as percentage of
average annual flow of that year. The analysis has been done to check the relation
between the percentage of average annual flow which describes the environment
flow condition and SPI, the index based on precipitation.

Results and Discussion

The analysis has been done for the different catchments to explore the relationship
between environmental flow condition and SPI. The EF condition is described on
the basis of percentage of average annual flow (AAF) (Tennant 1976a, b). The
study is concern with non-monsoon season (October–June).

Mohegaon Catchment

The rainfall and runoff data of 1982–1989 were used. The average flow of the 9
months (October–June) for each year was computed to estimate AAF, and %AAF
to describe different flow conditions of the catchment. On the other hand, SPI for
the same 9 months for each year was determined. A plot between %AAF and SPI is
shown in Fig. 2. As seen from the figure, as SPI increases, %AAF also increases to

Table 2 Tenant method for EFR assessment

Flow condition Oct–Mar Apr–Sep

Flushing flow 200% AAF 200% AAF

Optimum range of flow 60–100% AAF 60–100% AAF

Outstanding 40% AAF 60% AAF

Excellent 30% AAF 50% AAF

Good 20% AAF 40% AAF

Fair or degrading 10% AAF 30% AAF

Poor or minimum 10% AAF 10% AAF

Severe degradation 10% AAF to zero flow 10% AAF to zero flow

Coupling of Tennant Concept with Standardized … 269



describe a similar condition. The value of R2 is 0.764, which shows a very good fit.
Thus, from the available rainfall data, the EF condition of this catchment can be
easily ascertained with the help of SPI.

Hridaynagar Catchment

The rainfall and flow data of 9 years (1981–1989) were used. Following the similar
procedure, as above, the derived %AAF is plotted against the corresponding SPI for
Hridaynagar catchment in Fig. 2. R2 = 0.818 exhibits an excellent relationship
between %AAF and the corresponding SPI. Thus, EF condition for this catchment
can be ascertained using SPI.

Manot Catchment

The data of 8 years (1982–1989) were used, and the requisite plot with R2 = 0.864
is shown in Fig. 2, again indicating an excellent fit.

Sher Catchment

Similar to the above, Fig. 2 shows an excellent %AAF-SPI relation with
R2 = 0.993 with rainfall-runoff data of 6 years (1978–1983), leading to similar
inference as above.

The flow condition corresponding to SPI values for each of the four catchments
is presented in Fig. 2.
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Conclusion

The study has been done over the four catchments viz. Mohegaon, Manot,
Hridaynagar and Sher of Narmada basin in Madhya Pradesh. The analysis has been
done for different time period in different catchments based the data availability.
The rainfall and flow data of these catchments were used in the analysis. The
rainfall data were used to calculate the SPI on 9-month time scale for the month of
June for these catchments. Average annual flows in the sub-basins were estimated
using the flow data. The percentage of average annual flow which describes the
environmental flow condition has been estimated for the lean period (October–
June) for every year. The plot of %AAF and SPI for all the watersheds over which
study has been done shows an increasing trend. The R2 value for each of the
watershed has been found to be greater than 0.75 which shows the best fit. The
analysis revealed that in the lean period for a particular watershed the percentage of
average annual flow increases with the corresponding increase in the SPI value, i.e.,
higher the SPI value, environmental flow condition is good.
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Assessment of Drought in Balangir District
of Odisha, India Using Drought Indices

A. Sudarsan Rao, Jyotiprakash Padhi and Bitanjaya Das

Abstract Droughts are normally triggered due to lack of rainfall and prolonged
droughts have a multiplying effect and mount tremendous stress on natural resources
leading to scarcity of water, food, and fodder. Balangir district is a chronically
drought-prone area. Therefore this study was carried out to determine drought indi-
ces, drought index (DI), moisture indicator (MI), hydrothermal coefficient (HTC),
and standardized precipitation index (SPI) to have a preliminary idea to forecast the
possibility of occurrence of droughts for the 14 blocks of the district by treating each
block as a unit. The drought indices were developed by utilizing historical rainfall
data and temperature data during 1961–2007. Marginal droughts return period varies
from 2–4 years, 4–16 years for moderate droughts and 24–48 years in case of severe
droughts for all the blocks of Balangir district. Deogaon, Loisinga, and Titlagarh are
chronically drought-prone areas; therefore these blocks need urgent attention from
drought point of view. Balangir, Loisinga, Patnagarh, Puintala, Tentulikhunti, and
Titlagarh blocks faced extreme agricultural drought conditions as per 3 months’ SPI
value. Extreme hydrological drought conditions faced by Belpara, Balangir,
Loisinga, Patnagarh, Puintala, and Tentulikhunti blocks according to 12 months’ SPI
value. Agalpur, Bongomunda, Deogaon, Khaprakhol, Muribahal, Saintala, and
Tureikela blocks did not experience any extreme dry events based on 3, 6,
and 12 months’ SPI value. The analysis of these drought indices led to several useful
and practicable inferences for better understanding the drought attributes of the study
area. For this reason, this study will help in planning drought preparedness and its
mitigation in a realistic and appropriate manner.
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Introduction

The climate of a region is determined by long-term average, frequency, and
extremes of several weather variables, notably precipitation, and temperature. In a
large semiarid country such as India, precipitation is precious and varies both in
space and time (Patel et al. 2007). Thus, any departure in precipitation patterns
seldom leads to widespread natural disasters such as drought and floods affecting
natural habitats, ecosystems and, importantly, agricultural and economic sectors.
Drought, in particular, is considered by many to be the most complex but least
understood of all natural hazards, affecting more people than any other hazard
(Hagman 1984). Drought develops in a region and gradually spreads to the
adjoining areas over a period of time and hence can be considered as a creeping
phenomenon. It occurs in all agro-climatic zones although the magnitude and
impacts differ in different zones. Drought differs from most other natural hazards in
many ways, especially in the sense that its onset and termination is difficult to
predict (McKee et al. 1993).

The Indian sub-continent experiences tropical monsoon climate and about
70–80% of rainfall occurs in the summer monsoon. The Indian sub-continent is
very much prone to natural calamities, i.e., droughts and floods every year in some
part of the country or other either individually or collectively during the monsoon
(June to September) period. Twenty-one large scale droughts have occurred in the
past century in India in the years 1891, 1896, 1899, 1905, 1911, 1915, 1918, 1920,
1941, 1951, 1965, 1966, 1972, 1974, 1979, 1982, 1986, 1987, 1988, 1999, 2000
(Rao 1997; Narain et al. 2000). Sinha Ray and Shewale (2000) have indicated that
El Nino brings about adverse climatic changes in different part of the country and is
also partly responsible for drought. The State of Odisha experiences floods,
cyclones, and droughts almost on a regular basis either separately or collectively.
According to final report on Community Disaster Resilience Fund 2009, in between
1955 and 2008, Odisha has experienced 28 years of flood, 19 years of drought and
7 years of cyclone along with the Super Cyclone in 1999. In between 1990 and
2008, Odisha has experienced 12 years of flood, 5 years of drought, one Super
Cyclone and many depressions and cyclones.

A study on the drought-prone areas and chronically drought-affected areas of
India by Appa Rao (1991) indicated that most of the drought-prone areas identified
above are in either arid or semiarid regions where droughts occur more frequently.
Therefore, arid and semiarid regions with little or no development of irrigation
facilities are by far the worst affected due to droughts. Drought results insignificant
impacts, regardless of level of developments although the character of these impacts
will differ profoundly (Subbiah 1993; Benson and Clay 1998, 2000; Wilhite 2000;
Wilhite and Vanyarkho 2000). Prolonged droughts have a multiplying effect and
mount tremendous stress on natural resources leading to scarcity of water, food, and
fodder (Rao 1997; Narain et al. 2000). Droughts being a climatic anomaly, hence,
even if a methodology to forecast droughts is possible, droughts are inevitable.
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Therefore, there remains a need for implementation good management practices to
ensure better crop and to keep the agriculture sector sustainable.

The characteristics of droughts such as intensity, duration, etc., vary from each
other from place to place. Deficiency in rainfall or severity it causes due to the
deficiency of rainfall is referred to as intensity. The intensity of drought is measured
by the deviation of a climatic variable from normal. This intensity together with
period affected determines the impacts of drought. Drought indices, in general,
enable the detection of the onset of drought events and enable their severity to be
measured, thereby allowing an examination of the spatial and temporal character-
istics of drought, and comparisons between different regions to be made (Alley
1984). There are more than 150 drought indices that exist and many more new
indices came into account in the last decades; and not only many drought indices
are developed every year across the globe but also sincere attempts also have been
made reviewing the drought indices and the different climatic parameters such as
precipitation, soil moisture, vegetation moisture, land surface temperature,
humidity, land cover change, etc., which plays direct or indirect role in develop-
ment of drought indices (Wang and Qu 2009; Mishra and Singh 2010; Zhang et al.
2010; Zargar et al. 2011) and improving the existing ones. The most commonly
used drought indices include the Palmer drought severity index (PDSI) and the
moisture anomaly index (Z-index) (Palmer 1965), the standardized precipitation
index (SPI) (McKee et al. 1993, 1995), aridity index (Gore and Sinha Ray 2002)
and Percent Normal, Deciles (Gibbs and Maher 1967). The various indices that are
in widespread use nowadays are standardized precipitation index, drought index
(Rathore 2005), moisture indicators (Budyko 1958; Hounam et al. 1975) and
hydrothermal coefficients (Selyaninov 1930). However, selection strongly depends
upon the requirement like availability of resources/data, field of application of
interest, specific boundary conditions, and according to the necessity of spatial or
temporal resolution.

Pandey et al. (2008) have used the geographical information system based
spatial and time series information modeling (SPATSIM) and daily water resources
assessment modeling (DWRAM) software for drought analysis on monthly and
daily basis respectively and its spatial distribution in both dry and wet years.
SPATSIM utilizes standardized precipitation index (SPI), effective drought index
(EDI), deciles index and departure from long-term mean and median; and DWRAM
employs only EDI. They have stated that the analysis of data from the Kalahandi
and Nuapada districts of Odisha (India) revealed that droughts in this region
occurred with a frequency of once in every 3–4 years, droughts occurred in the year
when the ratio of annual rainfall to potential evapo-transpiration was less than 0.6
and SPI, EDI, and annual deviation from the mean showed a similar trend of
drought severity. Sahoo (2015) analyzed the various drought indices such as
standard precipitation index, reclamation drought index (RDI), normalized differ-
ence vegetation index (NDVI), and streamflow drought index (SDI) for KBK
districts of Odisha by taking the entire district as a unit.

Though it is not possible to avoid a drought, it is quite feasible to be better
prepared for coping with it. Therefore it is necessary to understand the rainfall
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pattern and use various drought indices in different ways to appraise quantitatively
the severity (Pandey et al. 2008). Very few studies have been conducted to assess
the drought condition at the block level using various drought indices by utilizing
the historical rainfall and temperature data. In this study, an attempt has been made
for identifying various drought indices in different blocks of Balangir district to
assess the drought conditions in that area which will help the people to remain in
well preparedness and to take precautionary measures to meet any adverse impacts
in such drought conditions.

Description of Study Area

This study was conducted in the Balangir district of the state Odisha, India with a
geographical area of 65,755 km2 (Fig. 1). The Balangir district is encompassed
between latitude of 20° 09′N and 21° 05′N and Longitude 82° 41′E and 83° 42′E.
The district comprises of 14 blocks (Belpara, Balangir, Deogaon, Khaprakhol,
Muribahal, Patnagarh, Puintala, Saintala, Titlagarh, Tentulikhunti, Bongomunda,
Tureikela, Loisinga, and Agalpur). The climate in the district is generally cold in
winter and hot in summer with temperature ranging from 13 to 42 °C and normal
annual rainfall is 1041 mm. Drought index (DI), moisture indicator (MI),
hydrothermal coefficient (HTC), and standard precipitation index (SPI) were esti-
mated for the 14 blocks of the district by treating each block as a unit. These
climatic indices were developed by utilizing the rainfall and temperature data for
the past 47 years (1961–2007) for all the blocks whereas 38 years (1970–2007) of
data used for the Balangir district as a whole. The consistency of the observed
rainfall data is checked by double mass analysis and the rainfall data is found to be
consistent.

Droughts are classified into three categories: meteorological (it is a situation
where there is more than 25% decrease in precipitation from normal over an area),
hydrological (when meteorological drought prolonged results in depletion of sur-
face and groundwater indicates hydrological drought), and agricultural drought (it
occurs when the soil moisture and rainfall are inadequate during the growing season
to support healthy crop growth to maturity) as per National commission on
Agriculture in India. According to India Meteorological Department (IMD), if the
deficiency (%) of rainfall from normal is � 25%, it is known as marginal drought,
moderate if deficiency lies between 26 and 50% and if the deficiency is more than
50%, then drought is said to be severe. Hydrothermal coefficient (HTC), a
non-dimensional indicator popularly known as G.T. Selyaninov’s hydrothermal
coefficient has been widely used (Selyaninov 1930) in Russia to indicate the aridity
condition of an area. HTC is defined as
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Fig. 1 The study area of different blocks of Balangir district of Odisha, India
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HTC ¼ R
0:1

P
T
; ð1Þ

where R is the total precipitation for the period having an average air temperature of
greater than 10 °C; and RT is the sum of average daily air temperatures for the same
period. The denominator 0.1RT in the above equation also represents evaporation
quite well. HTC indicates an arid area from 0.4 to 1.3, an extremely arid area from
0.4 to 0.7, slightly arid area from 1.0 to 1.3 and moist area when the coefficient is
more than 1.3. Moisture indicator (MI) is defined as (Budyko 1958; Hounam et al.
1975),

MI ¼ R
0:18

P
T
; ð2Þ

where R is the total rainfall (mm) in a year and RT is evaporation, equivalent to the
sum of the temperatures for the period when the temperature was over 10° C. The
intensity and frequency of drought visits is indicated by Drought Index (DI) which
is calculated on the basis of the equation (Rathore 2005),

DI ¼ P� Xð Þ
SD

; ð3Þ

where P is the annual precipitation in mm, X is the long-term mean rainfall in mm,
and SD is the standard deviation of rainfall in mm. Based on DI values, drought can
be classified into four categories: very severe drought (DI � −0.8), severe drought
(DI � −0.5), moderate drought (DI � −0.2), and light drought (DI � −0.1).

The standard precipitation index (SPI) was proposed by McKee et al. (1993) to
quantify precipitation deficits or surpluses on a variety of time scales. The standard
precipitation index is the ratio of difference between the precipitation and the
average precipitation divided by the standard deviation of precipitation at a given
time scale. Because of the fact that the SPI is normalized, wetter and drier climates
can be represented using the SPI. The SPI values at different time scales reflect
different aspects of hydrological cycle. Soil moisture conditions respond to pre-
cipitation anomaly on a relatively short time scales of 2–3 months, stream flow may
be described by SPIs with time scales of 2–6 months, while ground water and
reservoir storage reflect longer term precipitation anomalies (Lloyd-Hughes and
Saunders 2002). Hence, the different time scales for which the index is computed
address the various types of drought; the shorter seasons for agricultural and
meteorological drought, the longer seasons for hydrological drought (Heim 2000).
Many studies have also demonstrated that a short-term (3-month) SPI provides an
indication of the seasonal anomaly in precipitation and thereby considered as an
agricultural drought indicator (McKee et al. 1993; Hayes et al. 1999; Ji and Peters
2003).

According to McKee et al. (1993), there are seven classifications based on SPI
values; extremely dry (SPI � −2.0), severely dry (−1.5 > SPI > −1.99),
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moderately dry (−1.0 > SPI > −1.49), near normal (−0.99 < SPI < 0.99), moder-
ately wet (1.0 < SPI < 1.49), very wet (1.5 < SPI < 1.99), and extremely wet
(SPI � 2.0). In this study, SPI calculated for 3, 6, and 12 months’ time scale. SPI
for September was calculated for 3 months’ time scale and SPI December for
6 months’ time scale for all the years. SPI September value was estimated because
it covers the rainfall for July, August, and September, which contributes maximum
rainfall during monsoon season.

Results and Discussion

Maximum, minimum, and average annual rainfall of Balangir district was 1765, 614,
and 1132 mm, respectively. Highest monsoon rainfall (i.e., 1657 mm) occurred in
the year 2001 whereas minimum amount of rainfall (i.e., 562 mm) observed in 1996.
Average monsoonal rainfall observed in the district was 1041 mm. Similarly max-
imum amount of non-monsoon rainfall took place in 1990 and in the year 1989, least
amount of rainfall occurred. The district experienced 16 marginal and 5 moderate
drought events out of 38 years (1970–2007) and no severe drought event was
observed. Marginal droughts return period varies from 2–4 years, 4–16 years for
moderate droughts and 24–48 years in case of severe droughts for all the blocks of
Balangir district. Table 1 shows the number of marginal, moderate and severe
droughts occurred over 47 years for the fourteen blocks of the Balangir district and
also shows the probability of occurrence of those drought events. It can be observed
from Table 1 that Belpara, Saintala, and Tureikela blocks did not face any severe
drought events over this period of time. Deogaon and Titlagarh experienced highest
number of marginal drought events (i.e., 23) whereas Muribahal faced maximum
number of moderate drought events (i.e., 11). Deogaon, Saintala, and Titlagarh
experienced 28 drought events (i.e., marginal, moderate and severe) whereas Belpara
faced least number of all drought events (i.e., 21). If the drought occurs in an area
with a probability of 0.2 � P � 0.4, the area is classified as drought-prone area
and if the probability of occurrence is greater than 0.4, the area can be termed as
chronically drought-prone area (Subramanya 2013). As per the above definition,
Deogaon, Loisinga, and Titlagarh are chronically drought-prone areas. Within the
same district, drought events occurred differently among various blocks due to
spatial and temporal distribution in the amount of rainfall.

Table 2 shows the value of HTC, DI and MI for all the blocks of Balangir
district and also for the district as a whole for marginal droughts. It can be observed
from Table 2 that, DI value varies from 0.00 to −0.09 that means all the blocks
experienced light drought which also matched the condition of normal drought. MI
value was lowest for Tureikela block (i.e., 0.55) and maximum for Agalpur block
(i.e., 0.70). Tureikela block categorized as arid area (as HTC value was 0.99)
whereas the remaining blocks comes under slightly arid area, as the HTC values
varied from 1.01 to 1.26.
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Drought index (DI), moisture indicator (MI), and hydrothermal coefficients
(HTC) for moderate droughts in different blocks of Balangir district are presented in
Table 3. DI values were comparatively lower during moderate drought (i.e., −0.82

Table 1 Probability and nos. of marginal, moderate and severe droughts in different blocks of
Balangir District

Block Drought events (nos.) Probability of occurence

Marginal Moderate Severe Marginal Moderate Severe

Balangir 17 4 2 0.35 0.08 0.04

Belpara 12 9 0 0.25 0.19 0.00

Deogaon 23 4 1 0.48 0.08 0.02

Khaprakhol 17 6 1 0.35 0.13 0.02

Patnagarh 19 4 2 0.40 0.08 0.04

Saintala 19 9 0 0.40 0.19 0.00

Puintala 14 7 2 0.29 0.15 0.04

Muribahal 12 11 1 0.25 0.23 0.02

Agalpur 16 6 1 0.33 0.13 0.02

Loisinga 21 3 1 0.44 0.06 0.02

Titlagarh 23 4 1 0.48 0.08 0.02

Bongomunda 15 8 1 0.31 0.17 0.02

Tureikela 19 7 0 0.40 0.15 0.00

Tentulikhunti 18 6 2 0.38 0.13 0.04

Table 2 Drought index (DI), moisture indicator (MI) and hydrothermal coefficients (HTC) for
marginal droughts in different blocks of Balangir district

Block Marginal drought

Drought index Moisture indicator Hydrothermal coeff.

Belpara −0.06 0.68 1.22

Bolangir −0.04 0.56 1.01

Deogaon −0.05 0.61 1.09

Khaprakhol −0.04 0.58 1.04

Muribahal −0.02 0.55 0.99

Patnagarh 0.00 0.59 1.07

Puintala 0.00 0.66 1.20

Saintala −0.03 0.60 1.08

Titlagarh −0.02 0.60 1.08

Tentulikhunti −0.03 0.61 1.09

Bongomunda −0.06 0.65 1.18

Tureikela −0.09 0.55 0.99

Loisinga −0.04 0.59 1.07

Agalpur −0.04 0.70 1.26

District as a whole −0.08 0.59 1.07
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to −1.46) in comparison to marginal drought condition (0.00 to −0.09). Similar
trend is also observed for moisture indicator values for all the blocks. The maxi-
mum MI value was observed for Belapara block (i.e., 0.51) and minimum for
Muribahal block (i.e., 0.40). All the blocks categorized under arid area as the HTC
value varied from 0.73 to 0.92. DI, MI and HTC for severe droughts in different
blocks of Balangir district are presented in Table 4.

Table 3 Drought index (DI), moisture indicator (MI) and hydrothermal coefficients (HTC) for
moderate droughts in different blocks of Balangir district

Block Moderate drought

Drought index Moisture indicator Hydrothermal coeff.

Belpara −1.25 0.51 0.92

Balangir −1.05 0.42 0.76

Deogaon −1.10 0.46 0.83

Khaprakhol −1.18 0.42 0.76

Muribahal −1.07 0.40 0.73

Patnagarh −1.02 0.45 0.81

Puintala −1.04 0.49 0.87

Saintala −0.82 0.44 0.80

Titlagarh −1.12 0.44 0.80

Tentulikhunti −1.46 0.42 0.75

Bongomunda −1.00 0.48 0.86

Tureikela −0.95 0.44 0.79

Loisinga −1.07 0.45 0.81

Agalpur −1.03 0.48 0.87

District as a whole −1.17 0.44 0.79

Table 4 Drought index (DI), moisture indicator (MI) and hydrothermal coefficients (HTC) for
severe droughts in different blocks of Balangir district

Block Severe drought

Drought index Moisture indicator Hydrothermal coeff.

Balangir −2.18 0.35 0.62

Deogaon −2.37 0.26 0.46

Khaprakhol −2.32 0.28 0.51

Muribahal −1.81 0.30 0.54

Patnagarh −1.95 0.28 0.51

Puintala −1.91 0.25 0.45

Titlagarh −2.17 0.30 0.54

Tentulikhunti −2.03 0.31 0.55

Bongomunda −1.85 0.31 0.55

Loisinga −2.37 0.31 0.55

Agalpur −2.03 0.34 0.61
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The maximum MI value was observed for Balangir block (i.e., 0.35) and min-
imum for Puintala block (i.e., 0.25). 11 blocks categorized under extremely arid
area as the HTC value varied from 0.4 to 0.7, which also justified the severe
drought condition. Drought index varied from −1.81 to −2.37 for the blocks
experiencing. Based on these DI values, these blocks faced very severe drought
conditions.

It can be observed from Fig. 2 that, the block Agalpur experienced severe dry
conditions in the years 1974, 1979, and 1996 according to 3, 6, and 12 months’ SPI
scales. During these years, the block faced agricultural as well as hydrological
drought. Extreme wet condition was detected in 2001. In 1987, moderately dry
condition was observed as per 3, 6, and 12 months’ SPI values. For this reason, the
block experienced agricultural as well as hydrological drought but the severity was
less as compared during the years 1974, 1979, and 1996. Most of the times, the
block experienced near normal condition. In the years 1973, 1989, and 2000
moderately dry condition was observed in Belapara block (Fig. 3). As per 6 and
12 months’ time SPI, the block faced moderately dry condition whereas near
normal condition as per 3-months’ time of SPI in 1981. In the year 1987, severely
dry condition for 3 and 6 months’ time scale (i.e., agricultural drought) whereas
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Fig. 2 SPI for 3, 6, and 12-month time scales during the period 1961–2007 in Agalpur
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Fig. 3 SPI for 3, 6, and 12-month time scales during the period 1961–2007 in Belpara
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extremely dry condition for 12 months’ SPI (hydrological drought). Extremely wet
condition was experienced by the block in 1994.

Balangir block experienced moderately dry condition during the years 1965,
1979, and 2000 whereas extremely dry situation observed in 1974 (Fig. 4). In 1996,
the severity of agricultural drought was extreme as per 3 and 6 months’ SPI values
whereas severely dry for 12 months’ SPI value. Severely dry, moderately dry and
near normal condition was experienced for 3, 6, and 12 months’ SPI value
respectively in 1963. Therefore the severity of drought decreased as the SPI time
scale increased from 3 months to 12 months period which implies the availability
of soil moisture over 12 months period was highest whereas lowest over 3 months’
time scale. During 2002 severe agricultural drought condition was experienced by
the block as per 3 and 6 months’ SPI value and as per 12 months SPI value
moderate hydrological drought condition was observed. Extremely wet condition
was detected as per 6 and 12 months’ SPI whereas severely wet condition expe-
rienced according to 3 months’ SPI value in 2007.

It can be observed from Fig. 5 that, Bongomunda block experienced moderate
agricultural and hydrological drought situations during 1976, 1977, and 2002
according to 3, 6, and 12 months’ time scales. During the years 1984, 1987, and
1999, moderately dry condition was detected as per 3 and 6 months’ time scales
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Fig. 4 SPI for 3, 6, and 12-month time scales during the period 1961–2007 in Balangir
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Fig. 5 SPI for 3, 6, and 12-month time scales during the period 1961–2007 in Bongomunda
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SPI value whereas near normal situation for 12-month SPI value. Severe agricul-
tural and hydrological drought was detected in 1974 and very wet situation
observed in 2001. During 1990, extremely wet condition was experienced as per 3
and 6 months’ time scales whereas very wet situation was detected based on
12-month time scale SPI value. Severely dry and moderately dry condition was
experienced by Deogaon block in the year 1974 and 2000 respectively (Fig. 6).
Similarly, very wet condition was observed during 2006 and 2007 whereas extre-
mely wet situation in 1994 and 2001. In 2002, the block faced moderate agricultural
drought condition according to 3 and 6 months’ SPI value whereas near normal
situation for 12-month SPI value.

It can be observed from Fig. 7 that, Khaprakhol block experienced moderately
dry conditions during the years 1987, 1988, 1989, and 2000. Severely dry condition
observed in 1996 within the block. Very wet conditions were detected in 2006 and
2007 whereas extremely wet situation in 1985. Loisinga block experienced mod-
erately dry situation in the years 1965, 1996, and 1999 (Fig. 8). Severely dry
condition was observed in 1974 and extremely dry situation was detected in 1979.
In the year 1972, moderately dry situation observed as per 12 months’ time scale
SPI whereas near normal condition as per 3 and 6 months’ time scales SPI.
Extremely wet condition was observed in 1994. SPI value for the 3, 6, and
12 months’ time scales are presented in Fig. 9 for Muribahal block. Severely dry
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Fig. 6 SPI for 3, 6, and 12-month time scales during the period 1961–2007 in Deogaon
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Fig. 7 SPI for 3, 6, and 12-month time scales during the period 1961–2007 in Khaprakhol
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condition was observed in 1974. In 1981, moderately dry situation as per
12 months’ time scale whereas near normal condition occurred according to 3 and
6 months’ time scale SPI. During 1982, moderately dry condition was experienced
as per 3 and 6 months’ time scale and near normal according to 12 months’ time
scale SPI. Moderately dry situation was experienced by the block during the years
1983, 1996, and 1998.

Severely dry condition was detected in 2002 and during 2006, extremely wet
condition observed in the block. Moderately dry condition as per 3 and 6 months’
time scale and near normal according to 12 months’ time scale SPI value in
Patnagarh block (Fig. 10). Near normal situation observed during the years 1983
and 1988 as per 3 and 6 months’ time scales whereas moderately dry according to
12 months’ time scale SPI. Extremely dry situation was experienced by the block
during 1987. Moderately dry situation was observed in the years 1989 and 1996
whereas severely dry condition faced by the block in 2000. Extremely wet situation
occurred in 2001.

According to 3 and 6 months’ time scales, moderately dry situation was
observed whereas near normal condition as per 12 months’ time scales SPI during
1965 in Puintala block (Fig. 11).
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Fig. 8 SPI for 3, 6, and 12-month time scales during the period 1961–2007 in Loisinga
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Fig. 9 SPI for 3, 6, and 12-month time scales during the period 1961–2007 in Muribahal
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Moderately dry condition was experienced by the block in the years 1974 and
1979 and severely dry condition in 1982. In 1983, moderately dry situation as per 3
and 6 months’ SPI whereas severely dry according to 12 months’ SPI. Extremely
dry condition occurred in 1996. According to 6 months’ SPI, moderately dry
condition and near normal as per 3 and 12 months’ SPI value in 2004. Very wet
situation experienced by the block in 2001. It can be observed from Fig. 12,
moderately dry condition occurred in Saintala block in the years 1974, 1983, 1998,

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00
SP

I 

Years

3-month 6-month 12-month

Fig. 10 SPI for 3, 6, and 12-month time scales during the period 1961–2007 in Patnagarh
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Fig. 11 SPI for 3, 6, and 12-month time scales during the period 1961–2007 in Puintala
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Fig. 12 SPI for 3, 6, and 12-month time scales during the period 1961–2007 in Saintala
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and 2000. Extremely wet situation observed by the block in 2001. Moderately dry
situation occurred in Tentulikhunti block in the years 1965, 1974, 1979, and 1998
and extremely dry condition was observed in 1983 (Fig. 13). In 1989, severely dry,
moderately dry and near normal condition experienced as per 3, 6, and 12 months’
SPI value respectively. Severely dry situation was detected in 1996. Extremely wet
situation observed in 1994 whereas very wet condition faced by the block in 2006.

In the years 1974, 1979, and 1998, Titlagarh block experienced moderately dry
condition whereas severely dry situation was observed in 1983 (Fig. 14).
Moderately dry condition as per 3 and 6 months’ SPI and severely dry according to
12 months’ SPI were observed in 1989. In 1996, extremely dry situation occurred
according to 3 and 6 months’ SPI whereas severely dry condition occurred based
on 12 months’ SPI value. Extremely wet condition occurred in 1994 and moder-
ately wet situation experienced in 2001. In the years 1974, 2002 and 2004,
Tureikela block faced moderately dry situation (Fig. 15). Near normal condition as
per 3 and 6 months’ SPI and moderately dry based on 12 months’ SPI occurred in
the years 1978, 1980, and 1983. In 1979, severely dry condition was detected based
on 3 and 6 months’ SPI whereas moderately dry condition occurred according to
12 months’ SPI value. Moderately dry condition was experienced by the block
according to 3 and 6 months’ SPI and near normal based on 12 months’ SPI. In the
years 1961, 1970, and 1994, extremely wet condition was observed in the blocks.
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Fig. 13 SPI for 3, 6, and 12-month time scales during the period 1961–2007 in Tentulikhunti
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Fig. 14 SPI for 3, 6, and 12-month time scales during the period 1961–2007 in Titlagarh

Assessment of Drought in Balangir District of Odisha … 287



The pattern of drought events was not similar for 14 blocks of the Balangir
district based on the SPI value for 3, 6, and 12 months’ time scale due to spatial and
temporal variation of rainfall. Therefore different management strategy has to be
adopted in order to tackle the different types of drought situation experienced by
different blocks. The blocks, which were facing frequent dry situations, should have
provision for storage of water in order to overcome the agricultural as well as
hydrological drought. For the blocks experiencing frequent agricultural droughts,
cropping pattern has to be changed. Small duration crops or water-resistant crop
varieties may be planted for these types of blocks.

Different types of drought events were experienced by the 14 blocks of Balangir
district based on 3, 6, and 12 months’ SPI value as presented in Table 5. Extremely
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Fig. 15 SPI for 3, 6, and 12-month time scales during the period 1961–2007 in Tureikela

Table 5 Number of drought events for different blocks of Balangir District based on SPI value

Block Near normal
(−0.99 to 0.99)

Moderately
dry (−1.00 to
−1.49)

Severely dry
(−1.50 to
−1.99)

Extremely dry
(�−2.00)

3 6 12 3 6 12 3 6 12 3 6 12

Agalpur 35 33 33 3 5 5 3 3 2 0 0 0

Belpara 33 33 34 5 5 5 1 1 0 0 0 1

Balangir 34 33 32 3 4 4 2 1 1 2 2 1

Bongomunda 32 31 32 6 6 4 1 1 1 0 0 0

Deogaon 35 35 35 3 3 1 2 2 2 0 0 0

Khaprakhol 34 34 34 5 5 4 1 1 2 0 0 0

Loisinga 35 35 32 3 3 4 1 1 1 1 1 1

Muribahal 34 36 33 5 5 6 1 1 1 0 0 0

Patnagarh 35 35 32 3 3 4 1 2 2 1 0 1

Puintala 35 35 35 4 5 2 1 1 2 1 1 1

Saintala 37 36 35 4 4 4 0 0 0 0 0 0

Tentulikhunti 32 32 34 4 5 5 2 1 1 1 1 1

Titlagarh 33 33 34 3 3 2 2 2 4 1 1 0

Tureikela 33 33 29 5 5 7 1 1 0 0 0 0
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drought events were experienced by Balangir, Loisinga, Patnagarh, Puintala,
Tentulikhunti, and Titlagarh as per 3 months’ SPI scale, therefore these blocks
faced extreme agricultural drought conditions. Extreme hydrological drought con-
ditions were faced by Belpara, Balangir, Loisinga, Patnagarh, Puintala, and
Tentulikhunti blocks according to 12 months’ SPI value. Highest number of
severely drought conditions were detected in Titlagarh block based on 12 months’
SPI value whereas maximum number of moderately drought situations faced by
Tureikela block. Agalpur, Bongomunda, Deogaon, Khaprakhol, Muribahal,
Saintala, and Tureikela blocks did not experience extreme dry events based on 3, 6,
and 12 months’ SPI value. Both Titlagarh and Agalpur block experienced highest
number (i.e., 8) of severely drought events. Seventeen moderately drought events
occurred altogether according to 3, 6, and 12 months’ SPI in Tureikela.

Conclusion

In this study, the capabilities of different drought indicators, including SPI, DI, MI,
and HTC, in detecting the severity of drought across 14 blocks of Balangir district
using precipitation and temperature data were evaluated. SPI index was found to be
suitable among all the drought indices, as through this index, the severity of
drought can be easily identified. Belpara, Saintala, and Tureikela blocks did not
face any severe drought events during 1961–2007. Maximum number of marginal
drought events (i.e., 23) were experienced by Deogaon and Titlagarh blocks
whereas Muribahal faced maximum number of moderate drought events (i.e., 11).
Deogaon, Loisinga, and Titlagarh are chronically drought-prone areas. Marginal
droughts return period varies from 2–4 years, 4–16 years for moderate droughts
and 24–48 years in case of severe droughts for all the blocks of Balangir district.
Since precipitation is fundamental for rain-fed crops in these drought-prone regions,
improvements in drought monitoring and early warning will improve the capacity
to detect, anticipate, and mitigate famine. Agalpur, Bongomunda, Deogaon,
Khaprakhol, Muribahal, Saintala, and Tureikela blocks did not experience any
extreme dry events based on 3, 6, and 12 months’ SPI value. Balangir, Loisinga,
Patnagarh, Puintala, Tentulikhunti, and Titlagarh blocks faced extreme agricultural
drought conditions. Extreme hydrological drought conditions were faced by
Belpara, Balangir, Loisinga, Patnagarh, Puintala, and Tentulikhunti blocks. Early
warning systems to predict possible likelihood of droughts by developing the
drought indices will help people to perceive the possible occurrence of droughts and
prepare themselves to adapt to drought conditions by adopting alternative cropping
patterns to reduce the risk. It will also help the policy makers to take early measures
to review the situation such as the progress of agricultural operations; condition of
the standing crops; adequacy of stock of food grains available in the district and
adequacy of water for kharif through Canals/Minor Irrigation Project/Lift Irrigation
points, etc. The analysis of these drought indices led to several useful and
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practicable inferences for better understanding the drought attributes of the study
area. This study will help in planning drought preparedness and its mitigation in a
realistic and appropriate manner.
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Impact of HFC Fire Extinguishing Clean
Agents on Climate Change and Its System
Design Requirements for Fire Hazards
in India—A Brief Study

R.S. Chimote

Abstract This paper discusses the impact on climate change of hydrofluorocar-
bons (HFCs) in fire suppression applications. Alternatives and substitutes for HFCs,
perfluorocarbons (PFCs), and ozone depleting substances (ODSs) have recently
been extensively evaluated. NFPA 2001 defines a clean fire extinguishing agent as
an electrically non-conducting, volatile, or gaseous fire suppressant that does not
leave a residue upon evaporation. A clean agent must have no known effect on the
ozone layer and also, no effect on any human survival within an enclosure protected
by a clean agent, and in normally occupied areas must be used in a concentration
that is less than “no observed adverse effect level (NOAEL)”. NOAEL is a measure
of clean agent toxicity to humans under test conditions. The HFCs that are projected
for large volume use have global warming potentials (GWPs) lower than the
replacing ODSs. GWPs of HFCs replacing ODSs ranges from 120 to 12,000 as per
the year 2000 data of Intergovernmental Panel on Climate Change (IPCC). HFC-23
with a GWP of 12,000 is used as a replacement for ODSs to a very limited extent.
However, there are relatively large emissions of HFC-23 from the HCFC-22
manufacturing process. However, the majority of HFCs have GWPs much lower
than that of HFC-23. NFPA 2001 standard demonstrates the fact that the GWP
value considered by itself does not provide an indication of the impact of fire
extinguishing clean agent on climate change. Further, the paper briefly describes the
clean agent fire extinguishing system design considerations to extinguish fires either
by flame extinguishment or by inerting in accordance with the changing charac-
teristics of fire hazard scenarios in building and industrial occupancies. An
important finding of this brief study is that the value of 0.4858 kg/m3 is a total
flooding factor for HFC-227ea fire extinguishing agent representing the quantity of
halocarbon clean agent required to achieve a selected design fire extinguishing
concentration of 6% at a specified ambient temperature of 21 °C. It is further
important to understand that the impact of a fire extinguishing clean agent on
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climate change is a function of both the GWP of the gas and the amount of gas
emitted. For example, carbon dioxide has one of the lowest GWP values of all
greenhouse gas emissions (GWP = 1), yet emissions of CO2 account for approxi-
mately 85% of the impact of all greenhouse gas (GHG) emissions. The charac-
teristics of fire hazard scenarios with respect to anticipated fires have been
continuously changing in India due to emerging trends in the up gradation/modern
furnishing and interior design considerations/requirements in almost all the urban,
semi-urban, and rural occupancies. The data from IPCC and Asia Pacific Fire
Magazine, October 25, 2011 showed that if nothing changes, the HFC emissions
are likely to be equivalent to between 9 and 19% of global greenhouse gas emis-
sions by 2050, which indicates that the impact of HFC fire extinguishing clean
agents on climate change is minuscule. As a result, HFCs are expected to remain
viable, sustainable, and environmentally acceptable replacements for Halon 1301,
which was phased out due to ozone depletion potential problems under Montreal
and other protocols.

Keywords Climate change � Hydro fluorocarbons (HFCs) � Fire extinguishing
agents � Fire hazards � System design

Introduction

The results of a study of the effect of chlorofluorocarbons (CFCs) on the ozone layer
won the Nobel Prize for two chemists (1–38) at the University of California Irvine,
Frank Sherwood Rowland and Mario Mocina which resulted in a landmark inter-
national agreement, the Montreal Protocol, signed by the United States and 24 other
countries in 1987, with significant amendments in 1990 and 1992. Alternatives and
substitutes for HFCs, perfluorocarbons (PFCs), and ozone depleting substances
(ODSs) have recently been extensively evaluated. The Montreal Protocol
Technology and Economic Assessment Panel (TEAP) and its technical committees
published a comprehensive assessment. Furthermore, reports were published within
the framework of the joint IPCC/TEAP workshop and the second non-CO2 green-
house gases conference.

Kofi Annan, former Secretary General of the United Nations, said “perhaps the
single most successful international agreement to date was the Montreal Protocol of
1987.” The agreement was intended to sharply restrict the production of chemicals
that had been identified as contributing to depletion of the stratospheric ozone layer.
The ozone layer is a protective layer of our stratosphere that helps to filter the
ultraviolet rays of the sun before they reach Earth. In the absence of the ozone layer,
the incidence of skin cancer and melanoma increase. An ozone molecule consists of
three oxygen atoms (O3). Freon, released from air conditioners, and halogenated
extinguishing agents rise to the stratosphere. Bromine and chlorine molecules from
these agents break up the O3 molecules and attach themselves to one of the free
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oxygen molecules. These gases, therefore, were included in the list of ozone
depleting agents.

In advance of the Montreal Protocol, the Vienna Convention for the Protection
of the Ozone Layer provided the framework for negotiations in 1985 (1–38).
Immediately subsequent to the initial signing of the Montreal Protocol, evidence
continued to mount that the ozone layer was continuing to shrink at a frightening
rate. Numerous additional countries signed the Montreal Protocol, and the target
date for ceasing production of halogenated hydrocarbons was advanced to January
1994. At present, 191 nations have signed the Montreal Protocol, making it one of
the planet’s most successful international agreements.

The cessation of halon production rapidly rendered existing halon systems (1–
38) which are to be gradually phased out of the fire protection industry, has placed
owners of halon systems and the companies that insure the hazards protected by
halon systems, in an extremely uncomfortable position. Although the Montreal
Protocol did not call for removing all existing halon systems, it prohibited the
manufacture of new halon—making it impractical to legally purchase new halons.
Owners and insurers of halon systems were faced with the prospect of a total loss of
fire protection pursuant to an accidental or purposeful halon system discharge.

Figure 1 shows (1–9) (a) Arctic map from world atlas (b) Artic Ozone Hole,
yellow area within red circle, could expose millions of people, wildlife and plants to

Fig. 1 It shows a arctic map from world atlas b artic ozone hole, yellow area within red circle,
could expose millions of people, wildlife and plants to dangerous UV ray levels c the area that will
be affected by formation of arctic ozone hole above the redline
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dangerous UV ray levels; and (c) the area that will be affected by formation of
Arctic Ozone Hole above the redline. To protect against this eventuality, many
system owners opted to replace their halon systems with either a substitute gaseous
system replacement or a water-based system replacement. Although introductory
background of halon’s replacements is covered in this paper, the primary focus is
on clean agents and halon-alternative fire extinguishing agents.

Clean Fire Extinguishing Agents

NFPA 2001 (3–7) defines a clean agent as an electrically non-conducting, volatile,
or gaseous fire extinguishant that does not leave a residue upon evaporation. For an
agent to qualify as a clean agent, it must have no known effect on the ozone layer, it
must have no effect on human survival within an enclosure protected by a clean
agent, and in normally occupied areas must be used in a concentration that is less
than the NOAEL—an abbreviation for “no observed adverse effect level.” NOAEL
is a measure of clean agent toxicity to humans, under test conditions. At present
time, no drop-in agent is available that would allow Halon 1301 to be removed and
an equivalent amount of replacement agent inserted. Systems with gaseous halon
replacement agents require that more gas than halon be stored on a volumetric basis,
with differing devices and appurtenances required. Clean agents have been found to
be effective for electrical or electronic applications, telecommunication facilities,
flammable liquids and gases, and high-value assets. They also may be considered
for explosion suppression systems. NOAEL and LOAEL—lowest observable
adverse effect level—% for halocarbon suppression agents as shown on Table 1.

Table 2 shows the Atmospheric properties [lifetime, global warming potential
(GWP)] for the HFC chemicals.

Table 1 NOAEL and
LOAEL percentages for
halocarbon clean agents
(NFPA 2004)

S. No. Agent NOAEL (%) LOAEL (%)

1 FC-3-1-10 40 >40

2 FK-5-1-12 10.0 >10.0

3 HCFC Blend A 10.0 >10.0

4 HCFC-124 1.0 2.5

5 HFC-125 7.5 10.0

6 HFC-227ea 9.0 >10.5

7 HFC-23 30 >50

8 HFC-236fa 10 15

Source NFPA (2004)
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Clean Agent Classification

The two basic classifications of clean agents are halocarbon agents and inert gas
agents. Agents addressed by NFPA 2001 are listed on Table 3 (1–38). Halocarbon
agents consist of hydrofluorocarbons (HFCs), hydro-chlorofluorocarbons (HCFCs),
and perfluorocarbons (PFCs) and are given numerical descriptions as shown in
Table 3 in accordance with ANSI (American National Standards Institute) and
ASHRAE (American Society of Heating, Refrigerating and Air Conditioning
Engineers) standards. Halocarbons are stored as a liquid and distributed to the
hazard as a gas, and extinguish fires by chemical and physical mechanisms, as
opposed to oxygen deprivation. The extinguishment mechanism is breaking the
combustion chain. Inert gas agents contain one or more non-reactive gases, such as
helium, neon, and argon, mixed with nitrogen or carbon dioxide. They extinguish

Table 2 Atmospheric properties [lifetime, global warming potential (GWP)] for the HFC
chemicals (1–38)

S.
No.

Sub-sector Chemical formula Lifetime
(year)
(IPCC
1996)

GWP
(100 year)
(IPCC
1996)

Lifetime
(year)
(IPCC
2000)

GWP
(100 year)
(IPCC
2000)

1 HFC-23 CHF3 264 11,700 260 12,000

2 HFC-32 CH2F2 5.6 650 5.0 550

3 HFC-125 CHF2CF3 32.6 2800 29 3400

4 HFC-134a CH2FCF3 14.6 1300 13.8 1300

5 HFC-143a CH3CF3 48.3 3800 52 4300

6 HFC-152a – 1.5 140 1.4 120

7 HFC-227ea CF3CHFCF3 36.5 2900 33 3500

8 HFC-245faa CF3CH2CHF2 – – 7.2 950

9 HFC-365mfca CF3CH2CF2CH3 – – 9.9 890

10 HFC-4310mee CF3CHFCHFCF2CF3 17.1 1300 15 1500

11 R-404A

44% HFC-125 3260

4% HFC-134a

52% HFC143a

12 R-407C

23% HFC-32 1525

25% HFC-125

52% HFC-134a

13 R-410A

50% HFC-32 1725

50% HFC-125

14 R-507

50% HFC-125 3300

50% HFC-143a
aAtoms of middle Carbon-Cl2
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fires by lowering the oxygen concentration within a room from normal condition of
21% to a level below 15%—usually 12–13%, less than the level required to sustain
combustion for most combustibles. Inert gas agents are approximately the same
density as air and, therefore, mix better and display less settling to the floor than
other gaseous agents such as carbon dioxide.

Discussion

In 1986, less than half of total ODS use was in insulating foams, fire protection,
refrigeration, air conditioning, and heat pumps, withmore than half as aerosol product
propellants, non-insulating foam, solvent, and specialized applications (1–38).
Alternatives and substitutes for HFCs, perfluorocarbons (PFCs), and ozone depleting
substances (ODSs) have recently been extensively evaluated. The Montreal Protocol

Table 3 Clean fire extinguishing agents (1–38)

1 FC-3-1-10 Perfluorobutane C4F10
2 FK-5-1-12 Dodecafluoro-2-methylpentan-3-one CF2CF2C(O)CF

(CF3)2
3 HCFC blend A Dichlorotrifluoroethane

HCFC-123 (4.75%)
Chlorodifluoromethane
HCFC-22 (82%)
Chlorotetrafluoroethane
HCFC-124 (9.5%)
Isopropenyl-1-methylcyclohexene
(3.75%)

CHCl2CF3
CHClF2
CHClFCF3

4 HCFC-124 Chlorotetrafluoroethane CHClFCF3
5 HFC-125 Pentafluoroethane CHF2CF3
6 HFC-227ea Heptafluoropropane CF3CHFCF3
7 HFC-23 Trifluoromethane CHF3
8 HFC-236fa Hexafluoropropane CF3CH2CF3
9 FIC-1311 Trifluoroiodide CF3I

10 IG-01 Argon Ar

11 IG-100 Nitrogen N2

12 IG-541 Nitrogen (52%) N2

Argon (40%) Ar

Carbon dioxide (8%) CO2

13 IG-55 Nitrogen (50%) N2

Argon (50%) Ar

Notes Other agents could be added via the NFPA process in future editions or amendments of the
standard. Composition of inert gas agents are given in vol.%. Composition of HCFC blend A is
given in wt%. The full analogous ASHRAE nomenclature for FK-5-1-12 is FK-5-1-12 mmy2.
Source NFPA 2001 (2004)
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Technology and Economic Assessment Panel (TEAP) and its technical committees
published a comprehensive assessment (UNEP 1999b). Furthermore, reports were
published within the framework of the joint IPCC/TEAP workshop and the second
non-CO2 greenhouse gases conference.

The HFCs that are projected for large volume use have global warming
potentials (GWPs) which are generally lower than those of the ODSs they replace.
The GWP of HFCs replacing ODSs range from 140 to 11,700. HFC-23 with a
GWP of 11,700 is used as a replacement for ODSs to only a very minor extent.
However, there are relatively large emissions of HFC-23 from the HCFC-22
manufacturing process. The majority of HFCs have GWPs much lower than that of
HFC-23. PFCs have GWPs that are generally higher than those of the ODSs they
replace, ranging from 7000 to 9200 as shown in Table 2 (1–38).

However, by 1997 (1–9), the global consumption of fluorocarbons (CFCs,
HCFCs, and HFCs) had decreased by about 50% as solvent, aerosol product, and
non-insulating foam applications switched to alternatives other than fluorocarbons.
Refrigeration, air conditioning, and insulating foam accounted for about 85% of the
remaining total fluorocarbon use. Eighty percent of projected chlorofluorocarbon
demand was avoided by reducing emissions, redesign, and use of non-fluorocarbon
technologies.

As CFCs, halons, and HCFCs are phased out globally, the quantities of
fluorocarbons are expected to continue to decline in the short term, but are expected
to grow in the longer term. Most HFCs are used for energy-consuming applications
such as refrigeration, air conditioning and heat pumps, and building and appliance
insulation. Life cycle climate performance (LCCP) analysis is being used to esti-
mate the net contribution to climate change. The LCCP is a very system specific
parameter that can be used to make relative rankings. However, LCCP analysis
involves regional differences—including different fuel sources—and the related
equipment operating conditions; the results can therefore not be generalized in order
to make globally valid comparisons.

The energy efficiency of equipment and products can be expressed in at least
three ways: theoretical maximum efficiency, maximum efficiency achievable with
current technology, and actual efficiency for commercial scale production (often
expressed as a range of values). Unlike anthropogenic greenhouse gases emitted as
an immediate consequence of the burning of fossil fuels to generate energy, most
HFCs and PFCs are contained within equipment or products for periods ranging
from a few months (e.g., in aerosol propellants) to years (e.g., in refrigeration
equipment) to decades (e.g., in insulating foams). Thus, emissions significantly lag
consumption and, because HFC systems are relatively new, emissions will continue
to grow after 2010. Systems optimized for a new refrigerant have been compared to
sub-optimum systems with other refrigerants.

Furthermore, appliance sizes and features that influence energy performance
vary between studies and test conditions, and methodologies are often significantly
different. These factors have led to a wide range of energy efficiency claims in
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technical reports and commercial publications. Ultimately, the performance and
cost effectiveness of specific products from commercial scale production must be
directly compared. Furthermore, costs reported might not always be comparable
because of differing estimation methods, including estimates based on both con-
sumer and producer costs.

Future global HFC and PFC consumption and/or emissions as substitutes for
ODSs have been estimated by IPCC (1995). Projected consumption data for 2000
and 2010 are primarily based on UNEP reports (1–9).

Considering that emissions lag consumption by many years, none of the sce-
narios have considered the implications of new uses of HFCs or PFCs other than as
substitutes for ODSs (1–9).

With regard to the impact of HFCs in fire suppression on climate change, the
International Fire Protection Magazine article “Climate Change and the HFC-Based
Clean Extinguishing Agents” referenced in the original post for a factual discussion is
worth reading (8–9). Based on US EPA data, the contribution of HFCs in fire sup-
pression applications to climate change represents approximately 0.01% of the con-
tribution of all greenhouse gases.With regard to regulations, HFCs in fire suppression
applications are being treated differently than HFCs employed in other applications,
and as a result it is important when encountered with an assertion of impending
legislative or regulatory action related to HFCs in fire suppression applications to
always request two items: (i) a copy of the legislation and (ii) the location of the text
that is specifically related to HFCs in fire suppression applications (1–9).

FM-200 (HFC-227ea) and Novec 1230 are fire extinguishing agents character-
ized by zero ODP and whose use in fire suppression applications results in a
negligible contribution to climate change (global warming). There are three major
differences between Novec 1230 and all of the other clean agents, including
FM-200. As regard to Chemical reactivity (8–9), unlike the HFC and inert gas clean
agents, which are characterized by very low chemical reactivity, Novec 1230 is
characterized by high chemical reactivity. The HFC and inert gas clean agents are
all unreactive with water, alcohols, amines, and solvents. Novec 1230, on the other
hand, is characterized by high chemical reactivity.

For example, Novec 1230 design manuals indicate (8–9) the following:
(i) Contact of Novec 1230 with water or solvents either polar or hydrocarbon could
render Novec 1230 fluid ineffective, (ii) the transfer of Novec 1230 requires the use
of a drier because humid air may cause the agent to convert to acid. It is reported
(8–9) that Novec 1230 is chemically reactive with nucleophiles such as alcohols.
Novec 1230 is also chemically reactive with other fire extinguishing agents (8–9),
e.g., it has been reported that Novec 1230 undergoes reaction with sodium bicar-
bonate. The reaction of Novec 1230 with water produces HFC-227ea and
Perfluoropropionic acid, a strong, corrosive organic acid. Due to its high reactivity,
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Novec 1230 is the only clean agent that is classified as a volatile organic compound
(VOC) (8–9).

As regard to the interaction in the body (8–9), unlike the HFC and inert gas
agents, Novec 1230 undergoes reaction in the lungs. Novec 1230 reacts to form
HFC-227ea and Perfluoropropionic acid when it crosses the lung-air interface. In
contrast, FM-200 does not react to form potentially hazardous products; the toxicity
of FM-200 is so low that it is approved for use as a propellant in metered dose
inhalers (MDIs), where it is employed to propel a medicament down the throat of
the patient into his/her lungs. As regard to the physical state, unlike the HFC and
inert gas clean agents, which are all gaseous at room temperature, Novec 1230 is a
high boiling liquid which increases the possibility of a liquid discharge with Novec
1230 compared to the other clean agents and also affects its performance. For
example, recent studies within the aviation industry have indicated that Novec 1230
is ineffective in several civil aviation applications (8–9).

Human Safety Concerns with Clean Fire Extinguishing
Agents (1–9)

NFPA 2001 does not recommend exposure to halon-carbon clean agents for more
than 300 s with less exposure in higher concentrations, as shown on Tables 4, 5, 6
and 7. Designers of fire protection systems need to specially exercise care in the

Table 4 Time for safe egress for halocarbon clean agents (NFPA 2001 2004)

Time for safe human exposure at stated concentrations for HFC-125

S. No. HFC-125
concentration

Maximum permitted human exposure time (min)

%v/v ppm

1 7.5 75,000 5.00

2 8.0 80,000 5.00

3 8.5 85,000 5.00

4 9.0 90,000 5.00

5 9.5 95,000 5.00

6 10.0 100,000 5.00

7 10.5 105,000 5.00

8 11.0 110,000 5.00

9 11.5 115,000 5.00

10 12.0 120,000 1.67

11 12.5 125,000 0.59

12 13.0 130,000 0.54

13 13.5 135,000 0.49

Notes Data derived from the EPA-approved and peer-reviewed physiologically based
pharmacokinetic (PBPK) model or its equivalent. Based on LOAEL of 10.0% in dogs
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Table 5 Time for safe human exposure at stated concentrations for HFC-236fa (NFPA 2001
2004)

Time for safe human exposure at stated concentrations for HFC-236fa

S. No. HFC-236fa
concentration

Maximum permitted human exposure time (min)

%v/v ppm

1 10.0 100,000 5.00

2 10.5 105,000 5.00

3 11.0 110,000 5.00

4 11.5 115,000 5.00

5 12.0 120,000 5.00

6 12.5 125,000 5.00

7 13.0 130,000 1.65

8 13.5 135,000 0.92

9 14.0 140,000 0.79

10 14.5 145,000 0.64

11 15.0 150,000 0.49

Note Data derived from EPA-approved/peer-reviewed PBPK model on LOAEL of 15% in dogs

Table 6 Time for safe human exposure at concentrations for HFC-227ea (NFPA 2001 2004)

Time for safe human exposure at stated concentrations for HFC-227ea

S. No. HFC-227ea
concentration

Maximum permitted human exposure time (min)

%v/v ppm

1 9.0 90,000 5.00

2 9.5 95,000 5.00

3 10.0 100,000 5.00

4 10.5 105,000 5.00

5 11.0 110,000 1.13

6 11.5 115,000 0.60

7 12.0 120,000 0.49

Note Data derived from EPA-approved/peer-reviewed PBPK model on LOAEL of 10.5% in dogs

Table 7 Time for safe human exposure at stated concentrations for FIC-1311 (NFPA 2001 2004)

Time for safe human exposure at stated concentrations for FIC-1311

S. No. FIC-1311
concentration

Maximum permitted human exposure time (min)

%v/v ppm

1 0.20 2000 5.00

2 0.25 2500 5.00

3 0.30 3000 5.00

4 0.35 3500 4.30

5 0.40 4000 0.85

6 0.45 4500 0.49

7 0.50 5000 0.35

Note Data derived from EPA-approved/peer-reviewed PBPK model on LOAEL of 0.4% in dogs

302 R.S. Chimote



design of clean agent systems for enclosures where human exposure to the agent is
possible.

Of particular concern is human exposure to the decomposition byproducts
formed by breakdown of the extinguishant when exposed to high temperatures or
an open flame. For example, halocarbon agents containing fluorine have the
potential to form toxic hydrogen fluoride. Inert gas agents do not create decom-
position products, but care must be taken to avoid high application concentrations.
Table 8 lists the toxicity of clean agents. Inert gas agents contain about 8% carbon
dioxide, but the CO2 is not a concern at normal inert gas concentrations. Care must
be taken to avoid over-design which could result in excessive inert gas concen-
trations and reduce oxygen concentrations below 10%. NFPA 2001 (2004) pro-
hibits the application of halocarbon agents into occupied rooms at concentrations
greater than 24% and requires that the NOAEL limits listed in Table 1 not be
exceeded for any clean agent.

Table 8 provides information for designers relative to NOAEL and LOAEL %
ages for halocarbon clear agents and time for safe exposure for HFC-125,
HFC-236fa, HFC-277ea, and FIC-1311.

The ALC is the approximate lethal concentration. The cardiac sensitization
levels are based on the observance or non-observance of serious heart arrhythmias
in a dog. The usual protocol is a 5-min exposure followed by a challenge with
epinephrine. High concentration values are determined with addition of oxygen to
prevent asphyxiation.

These tables enable clean agent system designers to consider methodologies for
keeping human exposure to a minimum. Methods to protect personnel exposed to
clean agents include

• Ensuring that exits are well situated, well marked, and well lighted, adequate
number and width to allow rapid egress of all occupants, and are readily
accessible with clear and unobstructed aisles or passageways to the exits.

• Consider the provision of extra egress doors; specifying that doors are required
to swing in the direction of egress travel and to reclose automatically.

Table 8 Toxicity information for halocarbon clean agents (NFPA 2001 2004)

S. No. Agent LC50 or ALC (%) NOAEL (%) LOAEL (%)

1 FC-3-1-10 >80 40 >40

2 FIC-1311 >12.8 0.2 0.4

3 FK-5-1-12 >10.0 10 >10.0

4 HCFC Blend A 64 10 >10.0

5 HCFC-124 23–29 1 2.5

6 HFC-125 >70 7.5 10

7 HFC-227ea >80 9 10.5

8 HFC-23 >65 50 >50

9 HFC-236fa >18.9 10 15

Notes LC50 is the concentration lethal to 50% of a rat population during a 4-h exposure
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• Providing adequate alarm notification before clean agent discharge.
• Providing training of personnel to ensure proper identification and response to

an alarm; and providing continuous alarms during discharge and agent
containment.

• Providing alarms, locks, signs and methods to prevent reentry to a room during
agent containment.

• Specifying placement of breathing apparatus and room ventilation requirements.
• Specifying a plan for rescue of anyone who may become trapped within the

room or otherwise overexposed to the suppressing agent and its combustion
byproducts.

Consideration also must be given to the possibility of confusion or disorientation
of occupants during discharge. Clean agent discharge may be noisy, and the force
of discharge may create reduced visibility. It may produce a swirl of dislodged
papers or other loose materials. The low temperature of discharging gas may be a
shock to a personnel. Training of responsible personnel is a necessity, and the
specification of clean agent systems should not be considered for “at risk” persons,
such as in public and patient areas in hospitals and nursing homes.

Clean Agent System Design Consideration
for Urban/Semi-urban Occupancies in India

The clean agent system design considerations for the halon-alternative fire extin-
guishing agents that must be planned and designed for urban and semi-urban
occupancies in India such that the fire extinguishant containers should not be in the
hazardous area, and it shall suitably be in a protected location as close as possible to
the hazard. Piping and fittings must be of a pressure rating commensurate with
expected system pressures, and must be corrosion-resistant. Piping and fittings must
be metallic, and the fittings cannot be of cast iron and it may be of welded, brazed,
or malleable iron. Fire suppression and detection shall be selected/designed to be
appropriate for the anticipated class of fires and emerging fire load density
pattern/layout with appropriately designed discharge flow rate, particle/droplet size
distribution with respect to fire extinguishing efficiency parameters.

An existing detection system may possibly be reused when designing a clean
agent system, provided that the characteristics of the anticipated fire have not been
changed because local application has not been found to be effective by the com-
mittee responsible for the technical content of NFPA 2001 (2004), clean agent
systems are to be specified and designed for total flooding of enclosures. The
enclosure protected by a clean agent must be rendered amenable to the application
and retention of agent by

• Arranging for the automatic closing of doors
• Sealing opening and cracks around doors and windows
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• Clipping down and restraining ceiling tiles and sealing them where necessary
• Shutting down supply and return air to a room with dampers in ducts to prevent

loss of clean agent
• Attempting to limit loss of clean agent through floor drains, trenches, pipe

penetrations through walls, and other wall and floor penetrations
• Shutting down gas or other flammable supplies
• Shutting down electrical power to energized electrical components where

necessary

Systems must be designed such that the agent containers are not in the hazard
area, and are in a protected location as close as possible to the hazard. Piping and
fittings must be of a pressure rating commensurate with expected system pressures,
and must be corrosion-resistant. Piping and fittings must be metallic, and fittings
cannot be cast iron. They can be welded, brazed, or malleable iron. Detection shall
be selected to be appropriate for the anticipated fire, as discussed. An existing
detection system possibly may be reused when designing a clean agent system for a
room currently protected by halon, provided that the characteristics of the antici-
pated fire have not changed.

Designing Halocarbon Clean Agents Total Fire Suppression
Quantitative Requirement (1–9)

Clean agent systems are designed to extinguish fires either by flame extinguishment
or by inerting. For reduction of flammable concentration in an atmosphere, inerting
is required to be done below one-half of its lower flammable limit. Flame extin-
guishment is designed to cease combustion of a combustible solid or a flammable
liquid. Halogenated clean agents are required to possess the properties listed in
Table 9, and their systems are required to be designed to operate within the working
pressure as shown in Table 10. Halocarbon agent total flooding quantity, assuming
normal leakage from a tight enclosure, is calculated by using the same formula
being used for halon

W ¼ Vð Þ: Cð Þ: Að Þ
sð Þ: 100� Cð Þ

Table 9 Halogenated agent quality requirements (NFPA 2001 2004)

S. No. Property Specification

1 Agent purity, mole%, minimum 99.0

2 Acidity, ppm (by weight HCl equivalent), maximum 3.0

3 Water content, % by weight, maximum 0.001

4 Nonvolatile residues, g/100 ml maximum 0.05
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s ¼ K1ð Þþ K2:Tð Þ;

where W = weight of halocarbon clean agent (kg); V = net volume of protected
enclosure (m3); S = specific volume (m3/kg); A = altitude correction factor as per
Table 11 (NFPA 2001 2004).

C = halocarbon clean agent design concentration that represents percentage of
clean agent per volume. For example, if the halocarbon clean agent concentration is
6%, C = 6, not 0.06, and if the concentration is 6.5%, C = 6.5, not 0.065. k1 and
k2 = constants that relate to the specific volume of hydrocarbon agent used; these
constants are listed in Table 12 (NFPA 2001 2004).

Alternatively, the required agent quantity can be determined using the flooding
factors found in Annexure A of NFPA 2001. For each agent, the flooding factor
multiplied by the room volume gives the agent quantity, which is multiplied by the
altitude correction factor. This can be better illustrated from following examples for
the general understanding of the readers for the clean agents: HFC-227ea and
IG-541.

Table 10 Minimum design working pressure for halocarbon clean agent system piping (1–9)

S.
No.

Agent Agent container
maximum fill
density (kg/m3)

Agent container
charging pressure
at 21 °C (kPa)

Agent
container
pressure at 55 °
C (kPa)

Minimum piping
design pressure at
21 °C (kPa)

1 HFC-227ea 1260.75 1029 1708.14 1372

1210.32 2469.6 3567.2 2853.76

1210.32 4116 7031.5 5625.2

2 FC-3-1-10 1344.8 2469.6 3087 2469.6

3 HCFC
blend A

944.722 4116 5831 4664.8

944.722 2469.6 3704.4 2963.52

4 HFC 23 806.88 4177.05a 11751.18 9405.06

756.45 4177.05a 10701.6 8561.28

672.4 4177.05a 9480.52 7587.16

588.35 4177.05a 8629.88 6908.02

504.3 4177.05a 7943.88 6359.22

5 HCFC-124 1243.94 1646.4 2428.44 1941.38

6 HCFC-124 1243.94 2469.6 3978.8 3183.04

7 HFC-125 907.74 2469.6 4218.9 3375.12

8 HFC-125 941.36 4116 7168.7 5734.96

9 HFC-236fa 1243.94 1646.4 2469.6 1920.8

10 HFC-236fa 1260.75 2469.6 4116 3292.8

11 HFC-236fa 1243.94 4116 7546 6036.8

12 FK-5-1-12 1512.9 2469.6 2833.18 2469.6
aNot super-pressurized with nitrogen
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Case 1: Design of HFC-227ea Halocarbon Clean Agent
Concentration

A sophisticated instrumentation room of size: 3 m wide � 6 m long � 3 m height
with an ambient temperature of 21 °C is protected by a halocarbon clean agent,
HFC-227ea, at a 6% design concentration. Design HFC-227ea requirement by
weight to protect the room, assuming an elevation at sea level?

Solution: As specific volume of superheated HFC-227ea vapor can be
approximated by the formula:

s ¼ k1ð Þþ k2:tð Þ;

where t = temp. (°C) given as 21 °C, k1 = 0.1209 and k2 = 0.00049 for
HFC-227ea.

Therefore

s ¼ 0:1209þ 0:00049: t ¼ 0:1209þ 0:00049 � 21ð Þ
¼ 0:1313m3=kg

Refer Table 11, approx. same value at 21 °C.

V ¼ 3 mð Þ � 6 mð Þ � 3 mð Þ ¼ 54 m3

C ¼ 6 givenð Þ

Table 11 Atmospheric correction factors (NFPA 2001 2004)

S.
No.

Equivalent altitude
(km)

Enclosure pressure
(mm Hg)

Atmospheric correction
factor

1 −0.92 840 1.11

2 −0.61 812 1.07

3 −0.30 787 1.04

4 0.00 760 1.00

5 0.30 733 0.96

6 0.61 705 0.93

7 0.91 678 0.89

8 1.22 650 0.86

9 1.52 622 0.82

10 1.83 596 0.78

11 2.13 570 0.75

12 2.45 550 0.72

13 2.74 528 0.69

14 3.05 505 0.66
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A = sea level, or 0 feet elevation, and the correction factor is therefore 1, per
Table 10.

W ¼ Vð Þ: Cð Þ: Að Þ
s: 100� Cð Þ ¼

54ð Þ: 6ð Þ: 1ð Þ
0:1312ð Þ: 100� 6ð Þ

¼ 26:23 � 27 kg

An alternative method of determining that design flooding quantity is to use the
tables contained in the Annex of NFPA 2001. The table for HFC-227ea is included
as Table 12.

The weight requirement corresponding to 21 °C and 6% is shown as 0.4858.
Multiplying this factor times the room volume gives

W ¼ 0:4858
kg
m3

� �
� 54 m3� � ¼ 26:23 � 27 kg

It may be noted that for this Case-1, the results are identical whether using the
formula or the table. NFPA 2001 (2004) includes a table for each clean agent
recognized by the standard.

The value 0.4858 kg/m3 is a flooding factor, representing the quantity of halo-
carbon clean agent required to achieve a selected design concentration (6%) at a
specified temperature (21 °C).

Inert Gas Clean Agent Total Flooding Quantity

Inert gas agents are required to be used at the minimum working pressures shown in
Table 13 (NFPA 2001 2004) and must possess the quality shown in Table 14
(NFPA 2001 2004).

Inert gas quantity is based on finding the volume of gas needed, as opposed to
finding the weight, as we did with halocarbons.

The formula for determining the volume of gas required is

Vg ¼ 2:303ð Þ: Vð Þ: VS

s

� �
: log 10

100
100� C

� �
: Að Þ

where

s (k1) + (k2.T)
V net volume of protected enclosure (m3)
S specific volume of inert gas (m3/kg) at specified temperature
C inert gas clean agent design concentration (v%)
Vs specific volume of inert gas at 21 °C
A altitude correction factor, refer Table 11.
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k1 + k2 constants that relate to the specific volume of inert gas clean agent used, as
listed on Table 14.

Note that Table 14 provides constants for IG-541 only, and that NFPA 2001
should be consulted for other inert gas agents.

Vg = volume of inert gas added at standard conditions per volume of hazard
space.

Case 2: Design of IG-541 Inert Gas Clean Agent
Concentration

A compartment/room of size: 6.06 m wide by 15.15 m long by 2.42 m height with
an ambient temperature of 21 °C, is protected by inert gas clean agent IG-541, with
a concentration of 34%. Design the minimum volume requirement of IG-541 to
protect the compartment/room, assuming an elevation at sea level? (Given: Vs for
IG-541 at 21 °C is 0.675 m3/kg.)

Solution: As specific volume of superheated IG-541 vapor can be approximated
by the formula

Table 13 Minimum design working pressure for inert gas clean agent system piping (NFPA 2001
2004)

S.
No.

Agent Agent container
pressure at 21 °C
(kPa)

Agent Container
Pressure at 55°C
(kPa)

Minimum design pressure at 21 °C of
piping upstream of pressure reducer
(kPa)

1 IG-01 16,341 18,271 16,341

20,436 22,781 20,436

2 IG-541 14,997 17,755 14,997

19,996 23,671 19,996

3 IG-55 15,320 17,065 15,320

20,423 22,753 20,423

30,634 34,130 30,634

4 IG-100 16,575 19,299 16,575

22,312 26,015 22,312

28,000 32,778 28,000

Table 14 Inert gas agent quality requirements (NFPA 2001 2004)

S.
No.

IG-01 IG-100 IG-541 IG-55

1 Composition, % by
volume

N2

Ar
CO2

Minimum
99.9%

Minimum
99.9%

52% ± 4%
40% ± 4%
8% + 1% − 0.0%

50% ± 5%
50% ± 5%

2 Water content, %
by weight

Maximum
0.005%

Maximum
0.005%

Maximum
0.005%

Maximum
0.005%
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s ¼ k1 þ k2:t;

where t = temperature (°C); k1 = 0.6271 and k2 = 0.00229 for IG-541.
Therefore,

s ¼ 0:6271ð Þþ 0:00229� 21ð Þ
¼ 0:675 m3=kg

Table 15 IG-541 total flooding quantity (NFPA 2001 2004)

S. No. Temp,
t

Specific vapor
volume s

Volume requirements of agent per unit volume of hazard,
Vagent/Venclosure

b

Design concentration (% by volume)e

(°C)c (m3/kg)d 34 38 42 46 50 54 58 62

1 −40 0.5353 0.524 0.603 0.686 0.802 0.873 0.977 1.096 1.218

2 −34.4 0.5480 0.513 0.590 0.672 0.760 0.855 0.958 1.070 1.194

3 −29 0.5608 0.501 0.576 0.657 0.743 0.836 0.936 1.046 1.166

4 −23 0.5735 0.490 0.563 0.642 0.726 0.817 0.915 1.022 1.140

5 −17.7 0.5863 0.479 0.551 0.628 0.710 0.799 0.895 1.000 1.116

6 −12 0.5990 0.469 0.539 0.615 0.695 0.782 0.876 0.979 1.092

7 −6.6 0.6117 0.459 0.528 0.602 0.681 0.766 0.858 0.958 1.069

8 −1 0.6245 0.450 0.517 0.590 0.667 0.750 0.840 0.939 1.047

9 4.44 0.6372 0.441 0.507 0.578 0.653 0.735 0.824 0.920 1.026

10 10 0.6499 0.432 0.497 0.566 0.641 0.721 0.807 0.902 1.006

11 15.55 0.6627 0.424 0.487 0.555 0.628 0.707 0.792 0.885 0.987

12 21 0.6755 0.416 0.478 0.545 0.616 0.693 0.777 0.868 0.968

13 26.6 0.6882 0.408 0.469 0.535 0.605 0.681 0.762 0.852 0.950

14 32 0.7009 0.401 0.461 0.525 0.594 0.668 0.749 0.836 0.933

15 37.7 0.7137 0.393 0.453 0.516 0.583 0.656 0.735 0.821 0.916

16 43 0.7264 0.386 0.445 0.507 0.573 0.645 0.722 0.807 0.900

17 49 0.7392 0.380 0.437 0.498 0.563 0.634 0.710 0.793 0.884

18 54.4 0.7519 0.373 0.430 0.489 0.554 0.623 0.698 0.779 0.869

19 60 0.7647 0.367 0.422 0.481 0.544 0.612 0.686 0.766 0.855

20 65.5 0.7774 0.361 0.415 0.473 0.535 0.602 0.675 0.754 0.841

21 71 0.7902 0.355 0.409 0.466 0.527 0.593 0.664 0.742 0.827

22 76.6 0.8029 0.350 0.402 0.458 0.518 0.583 0.653 0.730 0.814

23 82 0.8157 0.344 0.396 0.451 0.510 0.574 0.643 0.718 0.801

24 87.7 0.8284 0.339 0.390 0.444 0.502 0.565 0.633 0.707 0.789

25 93 0.8412 0.334 0.384 0.437 0.495 0.557 0.624 0.697 0.777

Note The manufacturer’s listing specifies the temperature range for operation
aAtoms of middle Carbon-Cl2
bAtoms of middle Carbon-Cl, F
cAtoms of middle Carbon-F2
dAtoms of middle Carbon-Cl, H
eAtoms of middle Carbon-H, F
fAtoms of middle Carbon-H2
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Refer Table 15, approx. same value at 21 °C.

V ¼ 6:06ð Þ � 15:15ð Þ � 2:42ð Þ ¼ 222:17 m3

Concentration %ð Þ;C ¼ 34 givenð Þ
Vs ¼ 0:675 m3=kg; as per NFPA 2001

A = sea level elevation, and the correction factor is, therefore 1, as per Table 11.

Vg ¼ 2:303ð Þ: 222:17ð Þ: 0:675
0:675

� �
: log10

100
100� 34

� �
: 1ð Þ

¼ 2:303ð Þ � 222:17ð Þ � 1ð Þ � 0:1805ð Þ � 1ð Þ ¼ 92:35 m3

In a manner analogous to the tabular solution presented in Case-1, designers can
use Table 15 to obtain a solution. It may be very important to note that the flooding
factor corresponding to 21 °C and 34% concentration is 0.416 m3/m3 which when
multiplied with 222.17 m3 gives rise to 92.42 m3 of IG-541, which is slightly more
than what was obtained using the design calculation method, which could be
attributed to rounding of logarithmic functions.

• Vg [agent volume requirements (kg/m3)] = Kilogram of agent required per cubic
meter of protected volume to produce indicated concentration at temperature
specified.

Vg ¼ 2:303� VS

s

� �
: log10

100
100� C

� �
¼ VS

s

� �
� ln

100
100� C

� �

• t [temperature (°C)] = the design temperature in the hazard area.
• s [specific volume (m3/kg)] = specific volume of superheated IG-541 vapor can

be approximated by the formula: s = 0.6271 + 0.00229t, where t = temperature
(°C).

• C [concentration (%)] = Vol. Conc. of IG-541 in air at the temperature indicated.

Note: Vs = the term Vg = ln [100/(100 − C)] gives volume at a rated concen-
tration (%) and temperature to reach air-agent mixture at the end of flooding time in
a volume of 1 m3.

Halocarbon and Inert Gas Discharge Time

Halocarbon clean agents must be discharged within 10 s. Inert gas agents that do
not create decomposition products may be discharged within one minute. The room
must hold the gas for a time sufficient to extinguish a deep-seated fire without
re-ignition.

Impact of HFC Fire Extinguishing Clean Agents … 313



Clean Agent Storage and Nozzle Discharge Arrangement

A clean agent storage arrangement, clean agent nozzles and clean agent discharge
are shown in Fig. 2 for suppression of fires in a room or compartment.

Pressure Relief Venting for Clean Agent Systems

NFPA 2001 (2004) requires that where clean agent valving arrangements on the
pilot piping or on the discharge piping create closed piping arrangements where
pressure could increase beyond the pressure rating of the piping, fittings, and
nozzles, pressure relief devices are to be installed. The pressure relief devices are
required to discharge in such a manner as not to be hazardous to personnel.
The NFPA 2001 Annex describes pressure relief isometric diagrams for clean agent
cylinders, showing pressure compatibilities for a variety of clean agent storage
conditions. The Annex further recommends that pressure relief venting for closed
piping sections follow the FSSA Pipe Design Handbook.

Novel and New Water-Based Options for Halon
Replacement Options

Three water-based options for Halon replacement are

1. Water mist system
2. Double-interlocked pre-action Water Mist systems
3. Standard automatic water mist systems

Fig. 2 A clean agent storage arrangement and discharge from nozzles
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Concluding Remarks

1. The design of new halon systems has been essentially halted as the result of
cessation of production of halon in accordance with the Montreal Protocol,
which prohibits the manufacture of halogenated agents in countries participating
in the agreement. Although pure halon in concentrations between 5 and 10% is
considered nontoxic to humans during brief exposure, the products of decom-
position can be dangerous if breathed.

2. Clean agent systems may be considered as halon system replacements when
designed in accordance with NFPA 2001.

3. From Case-1 study, it may be important to note that the value of 0.4858 kg/m3

is a total flooding factor of HFC-227ea fire extinguishing agent representing the
quantity of halocarbon clean agent required to achieve a selected design fire
extinguishing concentration of 6% at a specified ambient temperature of 21 °C.

4. From Case-2 Study, it may be very important to note that the flooding factor for
IG-541 clean agent fire extinguishing agent corresponding to ambient temper-
ature of 21 °C and minimum fire extinguishing 34% concentration is 0.416 m3/
m3, which is slightly more than that was obtained using the design calculation
method, which could be attributed to rounding of logarithmic functions.

5. The clean agent containers should not be kept/mounted in the hazardous area,
and it shall suitably be installed in a protected location as close as possible to the
hazard. Piping and fittings must be of a pressure rating commensurate with
expected system pressures, and must be corrosion-resistant. Piping and fittings
must be metallic, and the fittings cannot be of cast iron and it may be of welded,
brazed, or malleable iron.

6. Fire suppression and detection shall be selected/designed to be appropriate for
the anticipated class of fires and emerging fire load density pattern/layout with
appropriately designed discharge flow rate, particle/droplet size distribution with
respect to fire extinguishing efficiency parameters.

7. An existing detection system may possibly be reused when designing a clean
agent system, provided that the characteristics of the anticipated fire have not
been changed

8. Clean agents include halocarbon and inert gas agents that are in conformance
with NOAEL and EPA guidelines.

9. Halocarbon agents develop products of decomposition that may be harmful to
personnel, hence such agents may be strategically used as per EPA and local
government guidelines, rules, and regulations prevailing under Protocol
Agreement.
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