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Preface

After volcanic ash from the eruption of the Icelandic volcano Eyjafjallajökull in
2010 had shut down air traffic across the Atlantic Ocean for several days in a row,
an angry airline CEO appeared in a television interview with the BBC and blamed
civil aviation authorities for basing their decision to close the transatlantic airspace
on ‘mere models.’While the CEO’s frustration may have been understandable from
a business point of view, from the viewpoint of science it was a rather disingenuous
way of reacting: After all, modern aircraft, too, are designed on the basis of models
of flow, turbulence, atmospheric motion, and material behavior, which embody
basically the same fundamental theoretical principles, whether one is dealing with
the distribution of volcanic ash or its effects on jet engines. Modern science and
technology are saturated with models—so much so that it is difficult to imagine
what the modern scientific world would look like without the use of models. The
ubiquity of models in contemporary science and technology is hardly news to any
working scientist or engineer, but the realization that scientific inquiry and tech-
nological innovation are inextricably intertwined with scientific models has not yet
sunk in with the general public and its representatives. Consider the case of climate
change: Even today, it is not uncommon to come across pundits and politicians who
dismiss the carefully cross-checked predictions of climate scientists on the grounds
that they are ‘just based on models’—yet the very same people then happily go on
to make policy on the basis of (model-based) forecasts of economic growth.
Models, then, are all around us, whether in the natural or social sciences, and any
attempt to understand how science works had better account for, and make sense of,
this basic fact about scientific practice.

This book is an attempt to come to philosophical terms with the ubiquity and
indispensability of models in contemporary science and technology. As such, it is a
contribution to a growing body of work by scholars in the history and philosophy of
science. Historians and sociologists of science, over the past twenty-odd years or
so, have amassed a vast number of case studies that describe and analyze specific
scientific models in great detail. At the same time, a lively philosophical debate has
developed, which focuses on general questions concerning the nature of models and
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the possibility of model-based representation. Yet, too often, these two projects—
the in-depth study of specific cases of scientific models and the abstract concern for
model-based representation—have stood side by side with one another, without
entering into a true dialogue. By contrast, one of the guiding methodological
assumptions of this book is that descriptive adequacy and normative–theoretical
ambition need not be mutually exclusive: As I hope to show, careful attention to
scientific modeling as a practice may itself be a source of insight about what gives
model-based science its cohesion and makes it successful—and about what its
limitations are. At the heart of this approach is the thought that the key to answering
any of the more general philosophical questions about scientific models lies in the
diversity of their varied uses and functions.

The structure of this book is as follows. The first two chapters provide a concise
survey of the existing philosophical debate about scientific models, first from an
ontological angle, by tackling the question ‘What are Scientific Models?’ (Chap. 1),
and then by addressing the problem of scientific representation in relation to sci-
entific models and theories (Chap. 2). While the main focus is on systematic
questions, both chapters also retrace some of the historical trajectory of the debate,
for example by showing how our current notion of ‘scientific model’ is indebted to
the nineteenth-century notion of ‘mechanical analogy’ (Chap. 1, Sect. 1.2), or how
philosophers in the twentieth century—especially in the wake of Nelson
Goodman’s philosophy of art—have reconsidered the notion of (scientific) repre-
sentation (Chap. 2, Sect. 2.2). Chapter 3 looks in detail at a number of case studies
from across the natural sciences in order to identify recurring strategies of model
building. Examples discussed range from population biology (Lotka–Volterra
model) to condensed matter physics (BCS and Ginzburg–Landau models of
superconductivity); special attention is given to the question of whether modeling
necessarily involves trade-offs between different theoretical desiderata (such as
generality and precision) and whether the existence of trade-offs can serve as a
demarcation criterion between different scientific disciplines, notably biology and
physics. The final two chapters advance the philosophical debate in distinct ways,
by identifying a number of previously overlooked functions and uses of scientific
models. Thus, Chap. 4 discusses exploratory uses of scientific models and seeks to
establish exploration as one of the core functions of scientific modeling, alongside
the more traditional goals of explanation and prediction. Chapter 5, finally, links the
debate about scientific models to questions in the philosophy of technology, in
particular the question of how artifacts simultaneously enable and constrain certain
actions and how we, as users of such artifacts, engage with them at a phe-
nomenological level. Models, I conclude, are not simply neutral tools that we use at
will to represent aspects of the world around us; rather, they contribute new ele-
ments—which are neither to be found in the underlying ‘fundamental theory’ nor to
be found in the empirical data—to the process of scientific inquiry and, by medi-
ating between different types of user–model–world relations, enable the generation
of new scientific knowledge.

My philosophical interest in scientific models began when, as a physics student
studying quantum many-body models, I first realized that the very same models
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could be used to describe radically different target systems and were sometimes
invoked by different researchers in support of incompatible research agendas. Yet,
in spite of this diversity of uses and functions of models, there is also a palpable
sense in which model-based science is marked by great cohesion and has vastly
improved our scientific understanding of the world around us. After a dozen or so
years of thinking and writing about scientific models, I am now more convinced
than ever that the strength of models as tools of inquiry lies precisely in their
diversity and flexibility. While the choice of examples in this book—notably, the
prominence given to models from many-body physics—no doubt reflects the early
origins of my interest in models, special care has been taken to also include
examples from disciplines such as biology, chemistry, and sociodynamics. While
all the material in this book has been thoroughly rewritten, several of the chapters
draw on previously published (or, in some cases, forthcoming) work. Thus, Chaps.
1 and 2 draw on material from my chapter ‘The Ontology of Scientific Models’ in
the forthcoming Springer Handbook of Model-Based Science (eds. Lorenzo
Magnani and Tommaso Bertolotti). Chapter 3 (esp. Sects. 3.6 and 3.7) overlaps
with my paper ‘Strategies of Model-Building in Condensed Matter Physics: Trade-
Offs as a Demarcation Criterion Between Physics and Biology?’, Synthese, Vol.
190, No. 2, 2013, pp. 252–273. Section 5.2 of Chap. 5 is based on my discussion
note ‘Symbol Systems as Collective Representational Resources: Mary Hesse,
Nelson Goodman, and the Problem of Scientific Representation,’ Social
Epistemology Review and Reply Collective, Vol. 4, No. 6, 2015, pp. 52–61, while
Sect. 5.3 of the same chapter (along with Chap. 3, Sect. 3.3) is heavily indebted to
my chapter ‘Between Rigor and Reality: Many-Body Models in Condensed Matter
Physics’ in Brigitte Falkenburg’s and Margaret Morrison’s jointly edited volume
Why More is Different: Philosophical Issues in Condensed Matter Physics and
Complex Systems, Heidelberg: Springer 2015, pp. 201–226.

Over the years, I have had the good fortune to encounter many sympathetic and
supportive colleagues and scholars from whom I have learnt a great deal about the
philosophy of scientific models. While it would be impossible to name all of them
and acknowledge every single influence on my thinking about models, I do wish to
acknowledge the following individuals, all of whom in one way or another have
personally left their mark on the work presented here—whether by sending me
written comments, by participating in joint workshops, or by simply making time to
discuss my work on models during a coffee break at a conference: Anna
Alexandrova, Sorin Bangu, Ann-Sophie Barwich, Robert Batterman, Justin Biddle,
Agnes Bolinska, Marcel Boumans, Alex Broadbent, Anjan Chakravartty, Hasok
Chang, Chuanfei Chin, Jeremy Chong, Tamás Demeter, Paul Dicken, Steffen
Ducheyne, Kevin Elliott, Brigitte Falkenburg, Uljana Feest, Stephan Hartmann,
Michael Heidelberger, Mary Hesse, Paul Humphreys, Cyrille Imbert, Stephen John,
Jaakko Kuorikoski, Martin Kusch, Sabina Leonelli, Lorenzo Magnani, Simone
Mahrenholz, Uskali Mäki, John Matthewson, Cornelis Menke, Boaz Miller, Teru
Miyake, Jacob Mok, Mary Morgan, Robert Nola, Alfred Nordmann, Wendy Parker,
Chris Pincock, Demetris Portides, Hans-Jörg Rheinberger, Mauricio Suárez, Adam
Toon, Marion Vorms, and Jeff White. I am especially grateful to Gabriele
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Gramelsberger, Tarja Knuuttila, and Margaret Morrison for their long-standing
support and continued collaboration.

I have profited enormously from a reading group which convened four times
over the course of two weeks in July 2015 and during which an almost complete
draft of the book was discussed. I am especially grateful to Grant Fisher, Lina
Jansson, Eric Kerr, Joel Chow, Bernadette Chin, and Will Zhang for taking the time
to engage closely with my arguments and for offering a host of useful suggestions
(along with several important corrections). Thanks are due to the Office of the
Deputy President (Research and Technology), Humanities and Social Sciences
Division, National University of Singapore, for providing funding for this reading
group (‘The Epistemology of Technology and Technoscience,’ WBS: R-106-000-
040-646). Chapter 4 (‘Exploratory Uses of Scientific Models’) was conceived and
written while on sabbatical leave in Berlin during the first half of 2015; early
versions of the argument were presented at the philosophy departments of Leibniz
Universität Hannover, Technische Universität Darmstadt, and Freie Universität
Berlin. I am grateful to audiences on all three occasions for their valuable feedback
and to Sybille Krämer for hosting me in her research group during the Berlin
portion of my sabbatical. Funding for research assistance and artwork was provided
by the Faculty of Arts and Social Sciences, National University of Singapore, in the
form of a book grant (WBS: R-106-000-048-133), for which I am grateful. This has
allowed me to hire a research assistant, Bernadette Chin, who has done a superb job
proofreading and indexing the manuscript, and also to commission illustrations
from Jerry Teo with whom it was a pleasure to work. I am grateful to Anatomisches
Museum Basel for granting me permission to use an image of one of their wax
models and to Nick Hopwood for providing me with a high-quality reproduction of
that image.

I hope that this book will prove useful to various audiences. While its main
target audience is professional philosophers of science, it should also be accessible
enough for classroom use at the graduate and advanced undergraduate levels.
Working scientists, too, I hope, will find fresh insights in the following five
chapters; while this book will not teach them how to construct models for specific
scientific problems, it may alert them to some of the broader desiderata of model
building as a scientific practice. So, with a bit of luck, readers may not only learn
about how science is done with models, but may also develop an appreciation of
why models are essential to good science.

Singapore Axel Gelfert
October 2015
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Chapter 1
Between Theory and Phenomena: What
are Scientific Models?

1.1 Introduction

Models can be found across a wide range of scientific contexts and disciplines.
Examples include the Bohr model of the atom (still used today in the context of
science education), the billiard ball model of gases, the DNA double helix model,
scale models in engineering, the Lotka-Volterra model of predator–prey dynamics
in population biology, agent-based models in economics, the Mississippi River
Basin model (a 200-acre hydraulic model of the waterways in the entire Mississippi
River basin!), and general circulation models (GCM) which allow scientists to run
simulations of the Earth’s climate system. The list could be continued indefinitely,
with the number of models across the natural and social sciences growing day by
day. Indeed, the deployment of models has not only become central to the scientific
enterprise at large, but also to the very image scientists have of themselves. As John
von Neumann put it, with some hyperbole: ‘The sciences do not try to explain, they
hardly even try to interpret, they mainly make models’ [1, p. 492]. Whatever shape
and form the scientific enterprise might have taken in the absence of models, given
their de facto pervasiveness across many disciplines and subdisciplines, it seems
safe to say that science without models would not look anything like science as we
presently know it.

Philosophical discussions of scientific models likewise distinguish between a
bewildering array of different kinds of models. The Stanford Encyclopedia of
Philosophy gives the following list of model-types that have been discussed by
philosophers of science: ‘Probing models, phenomenological models, computa-
tional models, developmental models, explanatory models, impoverished models,
testing models, idealized models, theoretical models, scale models, heuristic
models, caricature models, didactic models, fantasy models, toy models, imaginary
models, mathematical models, substitute models, iconic models, formal models,
analogue models and instrumental models’ [2]. As early as 1968, the proliferation
of models and model-types, in the sciences as well as in the philosophical literature,
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led Nelson Goodman to lament in his book Languages of Art: ‘Few terms are used
in popular and scientific discourse more promiscuously than “model”’ [3, p. 171]. If
this was true of science and popular discourse in the late 1960s, it is all the more
true of twenty-first century philosophy of science.

As an example of a mathematical model in physics, consider the Ising model,
proposed in 1925 by the German physicist Ernst Ising as a model of ferromagnetism
in certain metals. The model starts from the idea that a macroscopic magnet can be
thought of as a collection of elementary magnets, whose orientation determines the
overall magnetization. If all the elementary magnets are aligned along the same
axis, then the system will be perfectly ordered and will display a maximum value of
the magnetization. In the simplest one-dimensional case, such a state can be
visualized as a chain of ‘elementary magnets’, all pointing the same way:
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The alignment of elementary magnets can be brought about either by a suffi-
ciently strong external magnetic field or it can occur spontaneously, as will happen
below a critical temperature, when certain substances (such as iron and nickel)
undergo a ferromagnetic phase transition. Whether or not a system will undergo a
phase transition, according to thermodynamics, depends on its energy function
which, in turn, is determined by the interactions between the component parts of the
system. For example, if neighbouring ‘elementary magnets’ interact in such a way
as to favour alignment, there is a good chance that a spontaneous phase transition
may occur below a certain temperature. The energy function, then, is crucial to the
model and, in the case of the Ising model, is defined as

E ¼ �
X

i;j

JijSiSj

with the variable Si representing the orientation (+1 or −1) of an elementary magnet
at site i in the crystal lattice and Jij representing the strength of interaction between
two such elementary magnets at different lattice sites i, j.

Contrast this with model organisms in biology, the most famous example of
which is the fruit fly Drosophila melanogaster. Model organisms are real organisms
—actual plants and animals that are alive and reproduce—yet they are used as
representations either of another organism (for example when rats are used in place
of humans in medical research) or of a biological phenomenon that is more uni-
versal (e.g., when fruit flies are used to study the effects of crossover between
homologous chromosomes). Model organisms are often bred for specific purposes
and are subject to artificial selection pressures, so as to purify and ‘standardize’
certain features (e.g., genetic defects or variants) that would not normally occur or
would occur only occasionally in populations in the wild. As Rachel Ankeny and
Sabina Leonelli put it, in their ideal form ‘model organisms are thought to be a
relatively simplified form of the class of organism of interest’ [4, p. 318]; yet it
often takes considerable effort to work out the actual relationships between the
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model organism and its target system (whether it be a certain biological phe-
nomenon or a specific class of target organisms). Tractability and various experi-
mental desiderata—e.g., a short life cycle (to allow for quick breeding) and a
relatively small and compact genome (to allow for the quick identification of
variants)—take precedence over theoretical questions in the choice of model
organisms; unlike for the Ising model, there is no simple mathematical formula that
one can rely on to study how one’s model behaves, only the messy world of real,
living systems.

The Ising model of ferromagnetism and model organisms such as Drosophila
melanogaster may be at opposite ends of the spectrum of scientific models. Yet the
diversity of models that occupy the middle ground between theoretical description
and experimental system is no less perplexing. How, one might wonder, can a
philosophical account of scientific models aspire to any degree of unity or gener-
ality in the light of such variety? One obvious strategy is to begin by drawing
distinctions between different overarching types of models. Thus, Max Black [5]
distinguishes between four such types: scale models, analogue models, mathe-
matical models, and theoretical models. The basic idea of scale and analogue
models is straightforward: a scale model increases or decreases certain (e.g., spatial)
features of the target system, so as to render them more manageable in the model;
an analogue model also involves a change of medium (as in the Phillips machine, a
once-popular hydraulic model of the economy, where the flow of money was
represented by the flow of liquids through a system of pumps and valves).
Mathematical models are constructed by first identifying a number of relevant
variables and then developing empirical hypotheses concerning the relations that
may hold between the variables; through (often drastic) simplification, a set of
mathematical equations is derived, which may then be evaluated analytically or
numerically and tested against novel observations. Theoretical models, finally,
begin usually by extrapolating imaginatively from a set of observed facts and
regularities, positing new entities and mechanisms, which may be integrated into a
possible theoretical account of a phenomenon; comparison with empirical data
usually comes only at a later stage, once the model has been formulated in a
coherent way. Peter Achinstein [6] includes mathematical models in his definition
of ‘theoretical model’, and proposes an analysis in terms of sets of assumptions
about a model’s target system. This allows him to include Bohr’s model of the
atom, the DNA double helix model—considered as a set of structural hypotheses
rather than as a physical ball-and-stick model—the Ising model, and the
Lotka-Volterra model among the class of theoretical systems.

When a scientist constructs a theoretical model, she may help herself to certain
established principles of a more fundamental theory to which she is committed.
These may then be adapted or modified, notably by introducing various new
assumptions specific to the case at hand. Often, an inner structure or mechanism is
posited which is thought to explain features of the target system. The great variety
of models that may thus be generated makes vivid just how central the use of
models is to the scientific enterprise. At the same time, it might make one wonder
whether it is at all reasonable to look for a unitary philosophical account of models.
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This has led some commentators to abandon the search for an account of the nature
of models and further to the conclusion that, as Bernd Mahr puts it, modeling can
only ‘be understood if one stops looking for an answer to the question of the nature
of the model and starts asking instead what justifies conceiving of something as a
model’ [7, p. 305]. In the absence of any widely accepted unified account of
models, it may be natural to assume, as indeed many contributors to the debate have
done, that ‘if all scientific models have something in common, this is not their
nature but their function’ [8, p. 194]. Furthermore, ‘if we accept that models are
functional entities, it should come as no surprise that when we deal with scientific
models ontologically, we cannot remain silent on how such models function as
carriers of scientific knowledge’ [9, p. 120]. Two broad classes of functional
characterizations of models can be distinguished, according to which it is either
instantiation or representation that lie at the heart of how models function.

As Ronald Giere [10] sees it, on the instantial view, models instantiate the
axioms of a theory, where the latter is understood as being composed of linguistic
statements, including mathematical statements and equations. By contrast, on the
representational view, ‘language connects not directly with the world, but rather
with a model, whose characteristics may be precisely defined’; the model then
connects with the world ‘by way of similarity between a model and designated parts
of the world’ [10, p. 56]. Other proponents of the representational view have
de-emphasized the role of similarity, while still endorsing representation as one of
the key functions of scientific models. Within the class of representational views,
one can further distinguish between views that emphasize the informational aspects
of models and those that take their pragmatic aspects to be more central. Anjan
Chakravartty nicely characterizes the informational variety of the representational
view as follows: ‘The idea here is that a scientific representation is something that
bears an objective relation to the thing it represents, on the basis of which it
contains information regarding that aspect of the world’ [11, p. 198]. The term
‘objective’ here simply means that the requisite relation obtains independently of
the model user’s beliefs or intentions as well as independently of the specific
representational conventions he or she might be employing. By contrast, the
pragmatic variety of the representational view of models posits that models func-
tion as representations of their targets in virtue of the cognitive uses to which
human reasoners put them. The basic idea is that a scientific model facilitates
certain cognitive activities—such as the drawing of inferences about a target sys-
tem, the derivation of predictions, or perhaps a deepening of the scientific under-
standing—on the part of its user and, therefore, necessarily involves the latter’s
cognitive interests, beliefs, or intentions.

These examples and classifications are necessarily rough sketches, and much of
the rest of this book is devoted to giving more depth to our philosophical picture of
scientific models. This will involve giving detailed discussions of various cases
from across the sciences and exploring their implications for how we should best
understand scientific models. The central assumption of this approach is that the
key to answering any of the more fundamental questions about scientific models
lies in the diversity of their varied uses and functions. While this will require careful
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attention to the actual uses and applications of scientific models, it would be quite
misguided to think that a descriptive approach to scientific modeling could, by
itself, tell us what makes something a model, let alone a good model. For this, we
will need to look beyond the level of case studies and identify possible vantage
points from which to judge the success or fruitfulness of a model. A number of
philosophical theories have, of course, attempted just that, for example by thinking
of models in the same terms as scientific theories. However, one should remain
open to the possibility that careful attention to scientific modeling as a practice may
itself turn up a ‘middle range’ of factors which, though strictly speaking not uni-
versal, nonetheless help us explain both the success of model-based science and
certain recurring patterns of how models are deployed across different disciplines.
As I shall argue in later parts of the book, some of the uses and functions of
scientific models—e.g., their exploratory role in inquiry—are more akin to certain
types of experimentation than to the traditional goals of scientific theories.
Furthermore, models often contribute new elements to the theoretical description
and empirical investigation of their target systems—elements which are neither part
of the fundamental theory nor can be easily ‘read off’ from the data. Before turning
to these questions in more depth, however, it will be instructive to first look more
closely at the history of the term ‘model’ in science, so as to gain a better under-
standing of what motivates the use of models in scientific inquiry in the first place.

1.2 Models, Analogies, and Metaphor

Given their centrality to contemporary science, it should come as no surprise that
scientific models have enjoyed a long and varied history. With our current concepts
in hand, it may seem easy to identify past instances of models being employed in
science. However, the term ‘model’ has itself undergone a number of changes
throughout the history of science. Indeed, it was not until the nineteenth century that
scientists began to engage in systematic self-reflection on the uses and limitations of
models. Philosophers of science took even longer to pay attention to models in
science, focusing instead on the role and significance of scientific theories. Only
from the middle of the twentieth century onwards did models begin to attract
significant philosophical interest in their own right. Yet in both science and phi-
losophy, the term ‘model’ underwent important transformations. In this section, one
such transformation—from a narrow focus on mechanical models to our much
broader contemporary understanding of the term ‘scientific model’—will be traced.

Take, for example, Pierre Duhem’s dismissal, in 1914, of what he takes to be the
excessive use of models in Maxwell’s theory of electromagnetism, as presented in
an English textbook published at the end of the nineteenth century:

Here is a book intended to expound the modern theories of electricity and to expound a new
theory. In it there are nothing but strings which move round pulleys which roll around
drums, which go through pearl beads, which carry weights; and tubes which pump water
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while others swell and contract; toothed wheels which are geared to one another and engage
hooks. We thought we were entering the tranquil and neatly ordered abode of reason, but
we find ourselves in a factory. [12, p. 7]

What Duhem is mocking in this passage, which is taken from a chapter titled
‘Abstract Theories and Mechanical Models’, is a style of reasoning that is domi-
nated by the desire to visualize physical processes in purely mechanical terms. His
hostility is thus directed at mechanical models only—as the implied contrast in the
chapter title makes clear—and does not extend to the more liberal understanding of
the term ‘scientific model’ in philosophy of science today.

Indeed, when it comes to the use of analogy in science, Duhem is much more
forgiving. The term ‘analogy’, which derives from the Greek expression for ‘pro-
portion’, itself has multiple uses, depending on whether one considers its use as a
rhetorical device or as a tool for scientific understanding. Its general form is that of
‘pointing to a resemblance between relations in two different domains, i.e. A is
related to B like C is related to D’ [13, p. 110]. An analogy may be considered
merely formal, when only the relations (but not the relata) resemble one another, or
it may be material, when the relata from the two domains (i.e., A and B on one side,
C and D on the other) have certain attributes or characteristics in common. Duhem’s
understanding of ‘analogy’ is more specific, in that he conceives of analogy as
being a relation between two sets of statements, such as between one theory and
another:

Analogies consist in bringing together two abstract systems; either one of them already
known serves to help us guess the form of the other not yet known, or both being for-
mulated, they clarify the other. There is nothing here that can astonish the most rigorous
logician, but there is nothing either that recalls the procedures dear to ample but shallow
minds. [12, p. 97]

Consider the following example: When Christiaan Huygens (1629–1695) pro-
posed his theory of light, he did so on the basis of analogy with the theory of sound
waves: the relations between the various attributes and characteristics of light are
similar to those described by acoustic theory for the rather different domain of
sound. Thus understood, analogy becomes a legitimate instrument for learning
about one domain on the basis of what we know about another. In modern parlance,
we might want to say that sound waves provided Huygens with a good theoretical
model—at least given what was known at the time—for the behaviour of light.

There is, however, a risk of ambiguity in that last sentence—an ambiguity
which, as D.H. Mellor [14, p. 283] has argued, it would be wrong to consider
harmless. Saying that ‘sound waves provide a good model for the theory of light’
appears to equate the model with the sound waves—as though one physical object
(sound waves) could be identified with the model. At first sight this might seem
unproblematic, given that, as far as wave-like behaviour is concerned, we do take
light and sound to be relevantly analogous. However, while it is indeed the case that
‘some of the constructs called “analogy” in the nineteenth century would today be
routinely referred to as “models”’ [15, p. 46], it is important to distinguish between,
on the one hand, ‘analogy’ as the similarity relation that exists between a theory and
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another set of statements and, on the other hand, the latter set of statements as the
‘analogue’ of the theory. Furthermore, we need to distinguish between the analogue
(e.g., the theory of sound waves, in Huygens’s case) and the set of entities of which
the analogue is true (e.g., the sound waves themselves). (On this point, see [14,
p. 283].) What Duhem resents about the naive use of what he refers to as ‘me-
chanical models’, is the hasty conflation of the visualized entities—(imaginary)
pulleys, drums, pearl beads, and toothed wheels—with what is in fact scientifically
valuable, namely the relation of analogy that exists between, say, the theory of light
and the theory of sound.

This interpretation resolves an often mentioned tension—partly perpetuated by
Duhem himself, through his identification of different styles of reasoning (the
‘English’ style of physics with its emphasis on mechanical models, and the
‘Continental’ style which prizes mathematical principles above all)—between
Duhem’s account of models and that of the English physicist Norman Robert
Campbell (1880–1949). Thus, Mary Hesse, in her seminal 1963 essay Models and
Analogies in Science [16], imagines a dialogue between a ‘Campbellian’ and a
‘Duhemist’. At the start of the dialogue, the Campbellian attributes to the Duhemist
the following view: ‘I imagine that along with most contemporary philosophers of
science, you would wish to say that the use of models or analogues is not essential
to scientific theorizing and that […] the theory as a whole does not require to be
interpreted by means of any model.’ To this, the Duhemist, who admits that
‘models may be useful guides in suggesting theories’, replies: ‘When we have
found an acceptable theory, any model that may have led us to it can be thrown
away. Kekulé is said to have arrived at the structure of the benzene ring after
dreaming of a snake with its tail in its mouth, but no account of the snake appears in
the textbooks of organic chemistry.’ The Campbellian’s rejoinder is as follows: ‘I,
on the other hand, want to argue that models in some sense are essential to the logic
of scientific theories’ [16, pp. 8–9]. The quoted part of Hesse’s dialogue has often
been interpreted as suggesting that the bone of contention between Duhem and
Campbell is the status of models in general (in the modern sense that includes
theoretical models), with Campbell arguing in favour and Duhem arguing against.

But we have already seen that Duhem, using the language of ‘analogy’, does
allow for theoretical models to play an important part in science. This apparent
tension can be resolved by being more precise about the target of his criticism:
‘Kekulé’s snake dream might illustrate the use of a visualizable model, but it
certainly does not illustrate the use of an analogy, in Duhem and Campbell’s sense’
[14, p. 285]. In other words, Duhem is not opposed to scientific models in general,
but to its mechanical variety in particular. And, on the point of overreliance on
mechanical models, Campbell, too, recognizes that dogmatic attachment to such a
style of reasoning is ‘open to criticism’. Such a dogmatic view would hold ‘that
theories are completely satisfactory only if the analogy on which they are based is
mechanical, that is to say, if the analogy is with the laws of mechanics’ [17, p. 154].
Campbell is clearly more sympathetic than Duhem towards our ‘craving for
mechanical theories’, which he takes to be firmly rooted in our psychology. But he
insists that ‘we should notice that the considerations which have been offered justify
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only the attempt to adopt some form of theory involving ideas closely related to
those of force and motion; it does not justify the attempt to force all such theories
into the Newtonian mould’ [17, p. 156]. To be sure, significant differences between
Duhem and Campbell remain, notably concerning what kinds of uses of analogies
in science (or, in today’s terminology, of scientific—including theoretical—models)
are appropriate. For Duhem, such uses are limited to a heuristic role in the dis-
covery of scientific theories. By contrast, Campbell claims that ‘in order that a
theory may be valuable […] it must display analogy’ [17, p. 129]—though, it
should be emphasized again, not necessarily analogy of the mechanical sort. (As
Mellor argues, Duhem and Campbell differ chiefly in their views of scientific
theories and less so in their take on analogy, with Duhem adopting a more ‘static’
perspective regarding theories and Campbell taking a more realist stance that makes
room for scientific models as a way of confirming and modifying a scientific theory;
see [14, pp. 286–287].)

It should be said, though, that Hesse’s ‘Campbellian’ and ‘Duhemist’ are at least
partly intended as caricatures and serve as a foil for Hesse’s own account of models
as analogies. The account hinges on a three-part distinction between ‘positive’,
‘negative’, and ‘neutral’ analogies [16]. Using the billiard ball model of gases as her
primary example, Hesse notes that some characteristics are shared between the
billiard balls and the gas atoms (or, rather, are ascribed by the billiard ball model to
the gas atoms); these include velocity, momentum, and collision. Together, these
constitute the positive analogy. Those properties we know to belong to billiard
balls, but not to gas atoms—such as colour—constitute the negative analogy of the
model. However, there will typically be properties of the model (i.e., the billiard
ball system) of which we do not (yet) know whether they also apply to its target (in
this case, the gas atoms). These form the neutral analogy of the model. Far from
being unimportant, the neutral analogy is crucial to the fruitful use of models in
scientific inquiry, since it holds out the promise of acquiring new knowledge about
the target system by studying the model in its place: ‘If gases are really like
collections of billiard balls, except in regard to the known negative analogy, then
from our knowledge of the mechanics of billiard balls we may be able to make new
predictions about the expected behaviour of gases’ [16, p. 10].

In dealing with scientific models we may choose to disregard the negative
analogy (which results in what Hesse calls ‘model1’) and consider only the known
positive analogy and the neutral analogy—that is, only those properties that are
shared, or for all we know may turn out to be shared, between the target system and
its analogue. (On Black’s and Achinstein’s terminology, mentioned in Sect. 1.1
above, model1 would qualify as a ‘theoretical model’.) This, Hesse argues, typically
describes our use of models for the purpose of explanation: we resolve to treat
model1 as taking the place of the phenomena themselves. Alternatively, we may
actively include the negative analogy in our considerations, resulting in what Hesse
calls ‘model2’ or a form of analogue model. Given that, let us assume, the model
system (e.g., the billiard balls) was chosen because it was observable—or, at any
rate, more accessible than the target system (e.g., the gas)—model2 allows us to
study the similarities and dissimilarities between the two analogous domains;
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model2, qua being a model for its target, thus has a deeper structure than the system
of billiard balls considered in isolation—and, like model1, importantly includes the
neutral analogy, which holds out the promise of novel insights and predictions. As
Hesse puts it, in the voice of her Campbellian interlocutor: ‘My whole argument is
going to depend on these features [of the neutral analogy] and so I want to make it
clear that I am not dealing with static and formalized theories, corresponding only
to the known positive analogy, but with theories in the process of growth’ [16,
pp. 12–13].

Models have been discussed not only in terms of analogy, but also in terms of
metaphor. ‘Metaphor’, more explicitly than ‘analogy’, refers to the linguistic realm:
a metaphor is a linguistic expression that involves at least one part that is being
transferred from a domain of discourse where it is common to another—the target
domain—where it is uncommon. The existence of an analogy may facilitate such a
transfer of linguistic expression; at the same time, it is entirely possible that ‘it is the
metaphor that prompts the recognition of analogy’ [13, p. 114]—both are com-
patible with one another and neither is obviously prior to the other. Metaphorical
language is widespread in science, not just in connection with models: for example,
physicists routinely speak of ‘black holes’ and ‘quantum tunneling’ as important
predictions of general relativity theory and quantum theory, respectively. Yet, as
Janet Soskice and Rom Harré note, there is a special affinity between models and
metaphor:

The relationship of model and metaphor is this: if we use the image of a fluid to explicate
the supposed action of the electrical energy, we say that the fluid is functioning as a model
for our conception of the nature of electricity. If, however, we then go on to speak of the
‘rate of flow’ of an ‘electrical current’, we are using metaphorical language based on the
fluid model. [18, p. 302]

In spite of this affinity, it would not be fruitful to simply equate the two—
let alone jump to the conclusion that, in the notion of ‘metaphor’, we have found an
answer to the question ‘What is a model?’. Models and metaphors both deal in
descriptions, and as such they may draw on analogies we have identified between
two otherwise distinct domains; more, however, needs to be said about the nature of
the relations that need to be in place for something to be considered a (successful)
model of its target system or phenomenon.

1.3 The Syntactic View of Theories

The syntactic view of theories originated from combining the fundamental tenets of
two research programmes: the philosophical programme, going back to Pierre
Duhem (1861–1961) and Henri Poincaré (1854–1912), of treating (physical) the-
ories as systems of hypotheses designed to ‘save the phenomena’, and the math-
ematical programme, pioneered by David Hilbert (1862–1943), which sought to
formalize (mathematical) theories as axiomatic systems. By linking the two, it
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seemed possible to identify a theory with the set of logical consequences that could
be derived from its fundamental principles (which were to be treated as axioms),
using only the rules of the language in which the theory was formulated.

The label ‘syntactic’ derives from the distinction, typically drawn in the study of
formal languages and their interpretations, between the syntax and the semantics of
a language L. The syntax of a language L is made up of the vocabulary of L, along
with the rules that determine which sequence of symbols counts as a well-formed
expression in L; in turn, the semantics of L provides interpretations of the symbolic
expressions in L, by mapping them onto another relational structure R, such that all
well-formed expressions in L are rendered intelligible (for example via rules of
composition) and can be assessed in terms of their truth or falsity in R. Though this
distinction is sharpest in logic, the restriction to formal languages is often dropped,
such that it provides a framework for thinking also about scientific theories (which
are often formulated in ways that are closer to natural language than to logic). The
contrast between the syntax and the semantics of a language allows for two different
perspectives on the notion of a ‘theory’. A theory T may either be defined syn-
tactically, as the set of all those sentences that can be derived, through a proper
application of the syntactic rules, from a set of axioms (that is, statements that are
taken to be fundamental); or it may be defined semantically, as all those (first-order)
sentences that a particular structure, M, satisfies. The syntactic view adopts the
former perspective and seeks to fashion scientific theories in the image of fully
axiomatized systems of statements, perhaps the best example of which would be
Euclidean geometry, which consists of five axioms and all the theorems derivable
from them using geometrical rules.

In spite of its emphasis on syntax, the syntactic view is not entirely divorced
from questions of semantics. When it comes to scientific theories, we are almost
always dealing with interpreted sets of sentences, some of which—the fundamental
principles or axioms—are more basic than others, with the rest derivable using
syntactic rules. The question then arises at which level interpretation of the various
elements of a theory is to take place. This is where the slogan ‘to save the phe-
nomena’ points us in the right direction: on the syntactic view, interpretation only
properly enters at the level of matching singular theoretical predictions, formulated
in strictly observational terms, with the observable phenomena. Higher-level
interpretations—for example pertaining to purely theoretical terms of a theory (such
as posited unobservable entities, causal mechanisms, laws etc.)—would be
addressed through correspondence rules, which offered at least a partial interpre-
tation, so that the meaning of such higher-level terms of a theory could be expli-
cated in observational sentences. In order for this approach to work, a clear
distinction between theoretical and observational terms needs to be maintained. As
the growing recognition of the theory-ladenness of observation began to call this
distinction into question, so correspondence rules began to lose much of their
appeal.

As an illustration of what the syntactic view looks like in practice, consider the
example of classical mechanics. Similar to how Euclidean geometry can be fully
derived from a set of five axioms, classical mechanics is fully determined by
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Newton’s laws of mechanics. At a purely formal level, it is possible to provide a
fully syntactic axiomatization in terms of the relevant symbols, variables, and rules
for their manipulation—that is, in terms of what Rudolf Carnap (1891–1970) called
the ‘calculus of mechanics’. If one takes the latter as one’s starting point, it requires
interpretation of the results derived from within this formal framework, in order for
the calculus to be recognizable as a theory of mechanics, i.e. of physical phe-
nomena. In the case of mechanics, we may have no difficulty stating the axioms in
the form of the (physically interpreted) Newtonian laws of mechanics, but in other
cases—perhaps in quantum mechanics—making this connection with observables
may not be so straightforward. As Carnap notes, ‘[t]he relation of this theory [= the
physically interpreted theory of mechanics] to the calculus of mechanics is entirely
analogous to the relation of physical to mathematical geometry’ [19, p. 57]. As in
the Euclidean case, the syntactic view identifies the theory with a formal language
or calculus (including, in the case of scientific theories, relevant correspondence
rules), ‘whose interpretation—what the calculus is a theory of—is fixed at the point
of application’ [20, p. 125].

For proponents of the syntactic view of theories, models played a marginal or at
best auxiliary role. Carnap famously urged his readers ‘to realize that the discovery
of a model has no more than an aesthetic or didactic or at best a heuristic value, but
is not at all essential for a successful application of the physical theory’ [21, p. 210].
Others were more forgiving, but the role they attributed to models looks rather
unlike how models are, in fact, employed in science. For example, Richard
Braithwaite (1900–1990) made room for models as a way of—‘hypothetically’, as
it were—addressing an epistemological challenge we face when we confront sci-
entific theories. As he sees it, theoretical principles, though meant to explain
observable facts and in this sense ‘logically prior to the lower-level hypotheses’, are
‘epistemologically posterior’ to them in the sense that the meaning of theoretical
terms (and, by extension, the development of theory) is itself dependent on
empirical findings [22, p. 89]. Models are a way of bringing these opposite
movements into alignment, if only hypothetically: in a model, ‘the logically prior
premisses determine the meaning of the terms occurring in the representation in the
calculus of the conclusion’ [22, p. 90]. While Braithwaite acknowledges that this is
‘frequently the most convenient way of thinking about the structure of the theory’
[22, p. 91], he emphasizes that models lend themselves to abuse. In particular, he
identifies two dangers: the hasty identification of a theory with a model for it, and
the projection of characteristics of the model—notably, the logical necessity of
some of its features—onto the theory. Though more accommodating than other
syntactic theorists, Braithwaite’s discussion still ends with a stern warning: ‘The
price of the employment of models is eternal vigilance’ [22, p. 93].

A further criticism, which is directed at both the syntactic and the semantic view
(see next section), argues that underlying both views is a misguided general picture
of how science works. As Nancy Cartwright has pointedly argued, there is a shared
—mistaken—assumption that theories are a bit like vending machines: ‘[Y]ou feed
it input in certain prescribed forms for the desired output; it gurgitates for a while;
then it drops out the sought-for representation, plonk, on the tray, fully formed, as
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Athena from the brain of Zeus’. This limits what we can do with models, in that
there are only two stages: firstly, ‘eyeballing the phenomenon, measuring it up,
trying to see what can be abstracted from it that has the right form and combination
that the vending machine can take as input; secondly, […] we do either tedious
deduction or clever approximation to get a facsimile of the output the vending
machine would produce’ [23, p. 247]. Cartwright rejects the assumed automatism
implicit in the ‘vending machine view’, which she sees as fueling false hopes of a
shortcut from evidence to theory, as though an assessment of the evidential sig-
nificance of observations and their relation to our hypothesized models and theories
could ever be divorced from the specific empirical circumstances of the case at
hand. By contrast, real science, including model construction, ‘is an incredibly
difficult and creative activity’—in need of a ‘much more textured, and […] much
more laborious, account’ [23, p. 247/248] than the ‘vending machine view’. Even if
this stark contrast may seem a little exaggerated, the fact remains that, by modeling
theories after first-order formal languages, the syntactic view limits our under-
standing of what theories and models are and what we can do with them.

1.4 The Semantic View

One standard criticism of the syntactic view is that it conflates scientific theories
with their linguistic formulations. Proponents of the semantic view argue that by
adding a layer of (non-linguistic) structures between the linguistic formulations of
theories and our assessment of them, one can side-step many of the problems faced
by the syntactic view. According to the semantic view, a theory should be thought
of as the set of set-theoretic structures that satisfy the different linguistic formula-
tions of the theory. A structure that provides an interpretation for, and makes true,
the set of sentences associated with a specific linguistic formulation of the theory is
called a model of the theory. Hence, the semantic view is often characterized as
conceiving of theories as ‘collections of models’. This not only puts models—
where these are to be understood in the logical sense outlined earlier—centre-stage
in our account of scientific theories, but also renders the latter fundamentally extra-
linguistic entities.

An apt characterization of the semantic view is given by Frederick Suppe as
follows:

This suggests that theories be construed as propounded abstract structures serving as
models for sets of interpreted sentences that constitute the linguistic formulations. […W]hat
the theory does is directly describe the behavior of abstract systems, known as physical
systems, whose behaviors depend only on the selected parameters. However, physical
systems are abstract replicas of actual phenomena, being what the phenomena would have
been if no other parameters exerted an influence. [24, pp. 82–83]

According to a much-quoted remark by one of the main early proponents of the
semantic view, Patrick Suppes, ‘the meaning of the concept of model is the same in
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mathematics and in the empirical sciences’. However, as Suppe’s quote above
makes clear, models in science have additional roles to play, and it is perhaps worth
noting that Suppes himself immediately continues: ‘The difference to be found in
these disciplines is to be found in their use of the concept’ [25, p. 289]. Supporters
of the semantic view often claim that it is closer to the scientific practices of
modeling and theorizing than the syntactic view. On this view, according to Bas
van Fraassen, ‘[t]o present a theory is to specify a family of structures, its models;
and secondly, to specify certain parts of those models (the empirical substructures)
as candidates for the direct representation of observable phenomena’ [26, p. 64].
Unlike what the syntactic view suggests, scientists do not typically formulate
abstract theoretical axioms and only interpret them at the point of their application
to observable phenomena; rather, ‘scientists build in their mind’s eye systems of
abstract objects whose properties or behavior satisfy certain constraints (including
laws)’ [27, p. 154]—that is, they engage in the construction of theoretical models.

Unlike the syntactic view, then, the semantic view appears to devote more
attention to the defining features of models in general. In line with the account
sketched so far, a model of a theory is simply a (typically extra-linguistic) structure
that provides an interpretation for, and makes true, the set of axioms associated
with the theory (assuming that the theory is axiomatizable). Yet it is not clear that,
in applying their view to actual scientific theories, the semanticists always heed
their own advice to treat models as both giving an interpretation, and ensuring the
truth, of a set of statements. More importantly, the model-theoretic account
demands that, in a manner of speaking, a model should fulfil its truth-making
function in virtue of providing an interpretation for a set of sentences. Other ways of
ensuring truth—for example by limiting the domain of discourse for a set of fully
interpreted sentences, thereby ensuring that the latter will happen to be true—
should not qualify. Yet, as Martin Thomson-Jones [28] has argued, purported
applications of the semantic view often stray from the original model-theoretic
motivation. As an example, consider Suppes’ ‘axiomatization’ of Newtonian par-
ticle physics. (The rest of this section follows [28, pp. 530–531].) Suppes [29]
begins with the following definition (in slightly modified form):

Definition A system b ¼ P; T; s;m; f ; gh i is a model of particle mechanics if and
only if the following seven axioms are satisfied:
KINEMATICAL AXIOMS

The set P is finite and nonempty.
The set T is an interval of real numbers.
For p in P, sp is twice differentiable.

DYNAMICAL AXIOMS

For p in P, m(p) is a positive real number.
For p and q in P and t in T,
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f p; q; tð Þ ¼ �f ðq; p; tÞ

For p and q in P and t in T,

s p; tð Þ � f p; q; tð Þ ¼ �s q; tð Þ � f q; p; tð Þ

For p in P and t in T,

m pð ÞD2sp tð Þ ¼
X

q2P
f p; q; tð Þþ g p; tð Þ:

At first sight, this presentation adheres to core ideas that motivate the semantic
view. It sets out to define an extra-linguistic entity, b, in terms of a set-theoretical
predicate; the entities to which the predicate applies are then to be singled out on the
basis of the seven axioms. But, as Thomson-Jones points out, a specific model
S defined in this way ‘is not a serious interpreter of the predicate or the “axioms”
that compose it’ [28, p. 531]; it merely fits a structure to the description provided by
the fully interpreted axioms (1)–(7), and in this way ensures that they are satisfied,
but it does not make them come out true in virtue of providing an interpretation (i.e.,
by invoking semantic theory).

What this suggests is that the semantic view’s project of identifying scientific
models with truth-making structures in the model-theoretic sense may, at least for
the sciences, be an unfulfilled promise. While it may be possible, in principle, to
proceed in this way, if applying the semantic approach to specific cases turns out to
be rather unwieldy, it may be preferable to adopt a more pragmatic stance—or so
the criticism goes. Perhaps, then, we should settle for a less ambitious, though
nonetheless informative, definition—for example by thinking of a model as ‘a
mathematical structure used to represent a (type of) system under study’ [28,
p. 525]. Characterizing models in this way draws attention to their formats and uses,
and also coheres well with analyses that are closer to scientific practice. For
example, as we shall see in Chaps. 4 and 5, mathematical models may often be
thought of as the output of a ‘mature mathematical formalism’ [30], and may be
used for explanatory and predictive as well as exploratory uses.

1.5 ‘Folk Ontology’ and Models as Fictions

What one finds across a range of scientific disciplines is the practice of taking
models as ‘stand-ins’ for systems that are not, in fact, instantiated. As Peter
Godfrey-Smith puts it, ‘modelers often take themselves to be describing imaginary
biological populations, imaginary neural networks, or imaginary economies’ [31,
p. 735]—that is, they are aware that due to idealization and abstraction, model
systems will differ in their descriptions from a full account of the actual world.
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A model, thus understood, may be thought of as a ‘description of a missing system’.
The corresponding research practice of describing and characterizing model sys-
tems as though they were real instantiated systems (even though they are not) is
sometimes referred to as the ‘face-value practice’ of scientific modeling [32,
pp. 285–286]. Not surprisingly, this face-value practice has shaped a fairly wide-
spread view of what models are:

[…] to use a phrase suggested by Deena Skolnick, the treatment of model systems as
comprising imagined concrete things is the ‘folk ontology’ of at least many scientific
modelers. It is the ontology embodied in many scientists’ unreflective habits of talking
about the objects of their study—talk about what a certain kind of population will do, about
whether a certain kind of market will clear. […O]ne kind of understanding of model-based
science requires that we take this ‘folk ontology’ seriously, as part of the scientific strategy.
[31, p. 735]

The ontology of ‘imagined concrete things’—that is, of entities that, if real,
would be on a par with concrete objects in the actual world—leads quickly into the
difficult territory of fictionalism. Godfrey-Smith is explicit about this when he likens
models to ‘something we are all familiar with, the imagined objects of literary
fiction’ (ibid.)—such as Sherlock Holmes, J.R.R. Tolkien’s Middle-earth etc.
Implicit in this suggestion is, of course, a partial answer to our question ‘What is a
model?’—namely, that the ontological status of scientific models is just like that of
literary (or other) fictions.

Exactly what it means to say that a scientific model is fictional ‘in just the same
way’ as a literary character, is a thorny question. As early as 1965, Marx Wartofsky
noted that, of the various frameworks that scientists help themselves to, scientific
models bear an especially close affinity to fictions:

But models, like characters in fiction, are not transparent as appearances are; they are
deliberate constructions, artifacts, and however much we consider them ‘ways’ in which
something is understood to exist, as ‘crutches for the imagination’, as ‘computation devi-
ces’ or ‘inferences machines’, they are themselves intermediate entitities. [33, p. 26]

Cartwright echoes this when she writes that a ‘model is a work of fiction’, in that
it combines, in hybrid fashion, ‘genuine properties of the object modelled’ and mere
‘properties of convenience’ [34, p. 153]. More recently, Mauricio Suárez has
argued that what sets apart scientific fictions from their (literary and non-literary)
counterparts is their superior ‘expediency in inference’ [35, p. 169].1 According to
another recent fictionalist proposal, model systems are to be regarded as ‘imagined
physical systems, i.e. as hypothetical entities that, as a matter of fact, do not exist
spatio-temporally but are nevertheless not purely mathematical or structural in that
they would be physical things if they were real’ [37, p. 253]. Plausible though this
may sound, the devil lies in the details. A first—perhaps trivial—caveat concerns
the restriction that model systems ‘would be physical things if they were real’. In
order to allow for the notion of model to be properly applied to the social and

1Suárez’s edited volume Fictions in Science [36] has recently sparked renewed interest in fic-
tionalism about scientific models in particular.
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cognitive sciences, such as economics and psychology, it is best to drop this
restriction to physical systems. This leaves as the gist of the folk-ontological view
the thought that model systems, if they were real, would be just as we imagine them
(or, more carefully, just as the model instructs us to imagine them).

In order to sharpen our intuitions about fictions, let us introduce an example of a
literary fiction, such as the following statement from Arthur Conan Doyle’s The
Adventure of the Three Garridebs (1924): ‘Holmes had lit his pipe, and he sat for
some time with a curious smile upon his face.’ There is, of course, no actual human
being that this statement represents: no one is sitting smilingly at 221B Baker
Street, filling up the room with smoke from their pipe. (Indeed, until the 1930s, the
address itself had no real-world referent, as the highest number on Baker Street then
was No. 85.) And yet there is a sense in which this passage does seem to represent
Sherlock Holmes and, within the context of the story, tells us something infor-
mative about him. In particular, it seems to lend support to certain statements about
Sherlock Holmes as opposed to others. If we say ‘Holmes is a pipe smoker’, we
seem to be asserting something true about him, whereas if we say ‘Holmes is a
non-smoker’, we appear to be asserting something false. One goal of the ontology
of fictions is to make sense of this puzzle.

Broadly speaking, there are two kinds of philosophical approaches—realist and
anti-realist—regarding fictions. On the realist approach, even though Sherlock
Holmes is not an actual human being, we must grant that he does exist in some
sense. Following Alexius Meinong (1904), we might, for example, distinguish
between ‘being’ and ‘existence’ and consider Sherlock Holmes to be an object that
has all the requisite properties we normally attribute to him, except for the property
of existence. Or we might take fictions to have existence, but only as abstract
entities, not as objects in space and time. By contrast, anti-realists about fictions
deny that they have independent being or existence and instead settle for other ways
of making sense of how we interpret fictional discourse. Following Bertrand
Russell, we might paraphrase the statement ‘Sherlock Holmes is a pipe smoker and
resides at 221B Baker Street’ without the use of a singular term (‘Sherlock
Holmes’), solely in terms of a suitably quantified existence claim: ‘There exists one
and only one x such that x is a pipe smoker and x resides at 221B Baker Street.’
However, while this might allow us to parse the meaning of further statements about
Sherlock Holmes more effectively, it does not address the puzzle that certain claims
(such as ‘He is a pipe smoker’) ring true, whereas others do not—since it renders
each part of the explicated statement false. This might not seem like a major worry
for the case of literary fictions, but it casts doubt on whether we can fruitfully think
about scientific models in those terms, given the epistemic role of scientific models
as contributors to scientific knowledge.

In recent years, an alternative approach to fictions has garnered the attention of
philosophers of science, which takes Kendall Walton’s notion of ‘games of
make-believe’ as its starting point. Walton introduces this notion in the context of
his philosophy of art, where he characterizes (artistic) representations as ‘things
possessing the social function of serving as props in games of make-believe’ [38,
p. 69]. In games of make-believe, participants engage in behaviour akin to
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children’s pretend play: when a child uses a banana as a telephone ‘to call grandpa’,
this action does not amount to actually calling her grandfather (and perhaps not
even attempting to call him); rather, it is a move within the context of play—where
the usual standards of realism are suspended—whereby the child resolves to treat
the situation as if it were one of speaking to her grandfather on the phone. The
banana is simply a ‘prop’ in this game of make-believe. The use of the banana as a
make-believe telephone may be inspired by some physical similarity between the
two objects (e.g., their elongated shape, or the way that each can be conveniently
held to one’s ear and mouth at the same time), but it is clear that props can go
beyond material objects to include, for example, linguistic representations (as
would be the case with the literary figure of ‘Sherlock Holmes’). While the rules
governing individual pretend play may be ad hoc, communal games of
make-believe are structured by shared normative principles which authorize certain
moves as legitimate, while excluding other moves as illegitimate. It is in virtue of
such principles that fictional truths can be generated: for example, a toy model of a
bridge at the scale of 1:1000 prescribes that, ‘if part of the model has a certain
length, then, fictionally, the corresponding part of the bridge is a thousand times
that length’ [39, p. 38]—in other words, even though the model itself is only a
metre long, it represents the bridge as a thousand metres long. Note that the scale
model could be a model of a bridge that is yet to be built—in which case it would
still be true that, fictionally, the bridge is a thousand metres long: props, via the
rules that govern them, create fictional truths.

One issue of contention has been what kinds of metaphysical commitments such
a view of models entails. Talk of ‘imagined concrete things’ as the material from
which models are built has been criticized for amounting to an indirect account of
modeling, by which ‘prepared descriptions and equations of motion ask us to
imagine an “imagined concrete system” which then bears some other form of
representation relation to the system being modelled’ [40, pp. 308, fn. 14].
Recently, more thoroughgoing direct views of models as fictions have been put
forward, including by Roman Frigg and Adam Toon. As an illustration of what
such a direct view amounts to, Toon considers the following sentence from H.G.
Wells’s The War of the Worlds: ‘The dome of St. Paul’s was dark against the
sunrise, and injured, I saw for the first time, by a huge gaping cavity on its western
side’ [41, p. 229]. As Toon argues:

There is no pressure on us to postulate a fictional, damaged, St. Paul’s for this passage to
represent; the passage simply represents the actual St. Paul’s. Similarly, on my account, our
prepared description and equation of motion do not give rise to a fictional, idealised
bouncing spring since they represent the actual bouncing spring. [40, p. 307]

By treating models as prescribing imaginings about the actual objects (where
these exist and are the model’s target system), we may resolve to imagine all sorts
of things that are, as a matter of fact, false; however, so the direct view holds, this is
nonetheless preferable to the alternative option of positing independently existing
fictional entities. (See [39, p. 42].) Why might one be tempted to posit, as the
indirect view does, that fictional objects fitting the model descriptions must exist?
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An important motivation has to do with the assertoric force of our model-based
claims. As Giere puts it: ‘If we insist on regarding principles as genuine statements,
we have to find something that they describe, something to which they refer’ [42,
p. 745]. In response, proponents of the direct view have disputed the need ‘to regard
theoretical principles formulated in modelling as genuine statements’; instead, as
Toon puts it, ‘they are prescriptions to imagine’ [39, p. 44]. One attraction of the
direct approach, then, is its parsimonious metaphysics. As Frigg asserts, rather
bluntly: ‘What metaphysical commitments do we incur by understanding models in
this way? The answer is: none’ [37, p. 264].

One potential criticism of the models as fictions view derives from the worry
that, by focusing on the user’s imaginings, what a model is becomes an entirely
subjective matter: if a model is merely a place-holder for whatever is needed to
sustain the activity of imagining on the part of an agent, how can one be certain that
the same kinds of props reliably give rise to the same kinds of mental imaginings?
Yet, defenders of the models as fictions view can respond to this criticism as
follows: recall that, unlike in individual pretend play (or unconstrained imagining),
in games of make-believe certain imaginations are sanctioned by the prop itself and
the—public, shared—rules of the game. As a result, ‘someone’s imaginings are
governed by intersubjective rules, which guarantee that, as long as the rules are
respected, everybody involved in the game has the same imaginings’ [37, p. 264]—
though, it should be added, not necessarily the same mental images.

1.6 The Challenge from Scientific Practice

From the 1960s onwards, in a ‘historical turn’ that is often attributed to the pub-
lication, in 1962, of Thomas Kuhn’s The Structure of Scientific Revolutions [43],
philosophers of science have increasingly shifted attention from questions of how
science can be formalized using logic and mathematics to questions of scientific
practice. Unsurprisingly, this move has also affected their view of scientific models.
While the semantic view, discussed above in Sect. 1.4, was initially part of a
broader philosophical project that aimed at making sense of how it is that we can
interpret representations as being about their targets, over time this gave way to a
narrower focus on the ways in which scientists use models in inquiry. What helped
this gradual transition was the fact that, from early on, the semantic view was
perceived to be better able than its precursors to account for how scientists actually
go about developing models and theories. Even so, critics have claimed that the
semantic view is unable to accommodate the great diversity of scientific models and
faces special challenges from, for example, the use of inconsistency in many
models.2 Not all critics were outright opponents of the semantic view: thus, Stephen

2For a discussion of inconsistent modeling assumptions, not only in the application but also in the
construction of models, see [44].
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Downes argued that, as a result of the aforementioned ‘practice turn’ among
semantic theorists, the term ‘model’ had simply become too vague, misleading
philosophers into erroneously thinking that the logical sense of ‘model’ could also
do the job of unifying our understanding of scientific practice. Instead, Downes
argued, what was needed was a ‘deflationary view’, according to which philoso-
phers of science should ‘form a loose confederacy for studying scientific theorizing,
gathered around the common insight that model-building is one of the most
important components of [scientific] theorizing’ [45, p. 151]. This challenge from
the reality of scientific practice has given rise to two rather distinct responses. The
first response consists in modifying the semantic view and finding ways of retaining
its overall outlook while making adjustments that are able to accommodate those
aspects of scientific practice that do not fit with the original view. An alternative
way of responding consists in abandoning the attempt to provide a unitary theo-
retical account of scientific models and acknowledging, at a more fundamental
level, the radical heterogeneity of what, in scientific practice, is considered a
‘scientific model’. In the remainder of this section, we will discuss prominent
examples of each of these two responses.

As an example of an attempt to reconcile the spirit of the semantic view with
scientific practice, let us consider what has been called the ‘partial structures
approach’, which was pioneered by Newton da Costa and Steven French and whose
vocal proponents include Otávio Bueno, James Ladyman, and others. (See [46], and
references therein.) Like proponents of the semantic view, partial structures theorists
hold that models are to be reconstructed in set-theoretic terms, as ordered n-tuples of
sets: a set of objects with (sets of) properties, quantities and relations, and functions
defined over the quantities. A partial structuremay then be defined asA ¼ hD;Riii2I
whereD is a non-empty set of n-tuples of just this kind and each Ri is a n-ary relation.
Unlike on the traditional semantic view, the relations Ri need not be complete iso-
morphisms, but crucially are partial relations: that is, they need not be defined for all
n-tuples of elements ofD. More specifically, for each partial relation Ri, in addition to
the set of n-tuples for which the relation holds and the set of n-tuples for which it does
not hold, there is also a third set of n-tuples for which it is underdetermined whether or
not it holds. (There is a clear parallel here with Hesse’s notion of positive, negative,
and neutral analogies which, as da Costa and French put it, ‘finds a natural home in the
context of partial structures’ [46, p. 48].) A total structure is said to extend a partial
structure, if it subsumes the first two sets without change (i.e. includes all those
objects and definite relations that exist in the partial structures) and renders each
extended relation well-defined for every n-tuple of objects in its domain. This gives
rise to a hierarchy of structures and substructures, which together with the notion of
partial isomorphism loosens the requirements imposed on models, since all that is
needed for two partial models A and A’ to be partially isomorphic is that a partial
substructure of A be isomorphic to a partial substructure in A’.

Proponents of the partial structures approach claim that it ‘widens the framework
of the model-theoretic approach and allows various features of models and theories
—such as analogies, iconic models, and so on—to be represented’ [47, p. 306], that
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it can successfully contain the difficulties arising from inconsistencies in models,
and that it is able to capture ‘the existence of a hierarchy of models stretching from
the data up to the level of theory’ (ibid.). Others have taken issue with the general
idea that preserving the spirit of the semantic view is a worthwhile enterprise at all,
and with the partial structures approach in particular. One frequent criticism
directed at the latter concerns the proliferation of partial isomorphisms, many of
which will trivially obtain; however, if partial relations are so easy to come by, how
can one tell the interesting from the vast majority of irrelevant ones? Christopher
Pincock puts this nicely when he voices his worry that such a view is in ‘danger of
trivializing our representational relationships’ [48, p. 1254]. Suárez and Cartwright
add further urgency to this criticism, by noting that the focus on set-theoretical
structures obliterates all those uses of models and aspects of scientific practice that
do not amount to the making of claims: ‘So all of scientific practice that does not
consist in the making of claims gets left out […]. Again, we maintain that this
inevitably leaves out a great deal of the very scientific practice that we are interested
in’ [49, p. 72]. The debate about whether the semantic view, or one of its immediate
descendants, is able to account for the variety of models and their uses remains a
lively one, with defenders of the semantic view arguing that it has the resources to
account for, amongst others, iconic and material models, which were thought by its
critics to pose insurmountable difficulties to the semantic view.3

As an alternative response to the challenge from scientific practice, a number of
authors have proposed accounts that give pride of place to the model user’s cog-
nitive interests, intentions, and beliefs. Thus understood, models are no longer
treated merely as abstract structures that stand in a relation of isomorphism, or
partial isomorphism, to a target system, but as tools of inquiry for a model user.
Attention is shifted from two-place relations that might obtain between a model and
its target to three-place relations involving model, target, and user. Further con-
textual factors, ranging from facts about the user (e.g., her goals and interests) to the
context of use (e.g., in instruction), may then be added. For example, Uskali Mäki
proposes that an object M counts as a model if and only if an ‘[a]gent A uses object
M as a representative of some target system R for purpose P, addressing audience E,
prompting genuine issues of resemblance to arise, and applies commentary C to
identify and align these components’ [51, p. 32]. As this example indicates, the turn
towards the pragmatics of modeling goes hand in hand with a focus on the variety
of uses and functions of models. Indeed, it is not only the function of models—e.g.,
their capacity to represent target systems—which is seen as dependent on the
beliefs, intentions, and cognitive interests of their users, but also their very nature:
what models are is crucially determined by their being the result of a deliberate
process of model construction. Model construction, most pragmatic theorists of
models insist, is marked by ‘piecemeal borrowing’ [49, p. 63] from a range of
different domains. Such conjoining of heterogeneous components to form a model
cannot easily be accommodated by structuralist accounts, or so it has been claimed;

3For one such defence, see [50].
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at the very least, there is considerable tension between, say, the way that the partial
structures approach allows for a nested ‘hierarchy’ of models (connected with one
another via partial isomorphisms) and the much more ad hoc manner in which
modellers piece together models from a variety of ingredients.

A good example of this second type of approach, which places scientific practice
at the heart of its analysis of models, is the ‘model-as-mediators’ view (to be
discussed in greater detail in Sect. 5.1). According to this view, models are to be
regarded neither as a merely auxiliary intermediate step in applying or interpreting
scientific theories, nor as constructed purely from data. Rather, they are thought of
as mediating between our theories and the world in a partly autonomous manner. As
Margaret Morrison and Mary Morgan put it, models ‘are not situated in the middle
of an hierarchical structure between theory and the world’, but operate outside the
hierarchical ‘theory-world axis’ [52, pp. 17–18]. A central tenet of the
models-as-mediators view is the thesis that models ‘are made up from a mixture of
elements, including those from outside the domain of investigation’; indeed, it is
thought to be precisely in virtue of this heterogeneity that they are able to retain ‘an
element of independence from both theory and data (or phenomena)’ [52, p. 23].
Even in cases where models initially seem to derive straightforwardly from fun-
damental theory or empirical data, closer inspection reveals the presence of other
elements—such as ‘simplifications and approximations which have to be decided
independently of the theoretical requirements or of data conditions’ [52, p. 16].

Other authors have taken up the idea of models as heterogeneous entities, but
have emphasized that, over and above acknowledging that models are partially
autonomous from theory and data, what is needed is an account of how models
come to enjoy such partial autonomy. As Tarja Knuuttila argues, materiality is the
key enabling factor that imbues models with such autonomy: it is ‘the material
dimension, and not just “additional elements”, that makes models able to mediate’
[53, p. 48]. Materiality is also seen as explaining various of the epistemic functions
that models have in inquiry, not least by way of analogy with scientific experi-
ments. For example, just as in experimentation much effort is devoted to mini-
mizing unwanted external factors (such as noise), in scientific models certain
methods of approximation and idealization serve the purpose of neutralizing
undesirable influences. Models typically draw on a variety of formats and repre-
sentations, in a way that enables certain specific uses, but at the same time con-
strains them. On this view, models are seen as epistemic tools: ‘concrete artefacts,
which are built by various representational means, and are constrained by their
design in such a way that they enable the study of certain scientific questions and
learning through constructing and manipulating them’ [54, p. 267]. This hints at an
interesting link between the philosophical debate about models and questions in the
philosophy of technology, for example the question of how artefacts function and
how we, as users of such artefacts, engage with them at a phenomenological level.
If it is indeed the case that specific encounters with models always require some
concrete format or representation—be it a set of diagrams scribbled on a piece of
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paper, or an elaborate three-dimensional model that mimics the ‘look and feel’ of a
target system—what we can learn from a model will fundamentally depend on how
we encounter the world through it or in it.4
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Chapter 2
Scientific Representation and the Uses
of Scientific Models

2.1 Models and Their Functions

The great variety of models in scientific practice, which is reflected by the some-
what sprawling taxonomies of model-types we encountered in Chap. 1, has led
some philosophers to propose quietism as the only viable attitude towards the
ontological question of what a model is. As Steven French puts it, ‘whereas positing
the reality of quarks or genes may contribute to the explanation of certain features
of the physical world, adopting a similar approach towards theories and models—
i.e., reifying them as entities for which a single unificatory account can be given—
does nothing to explain the features of scientific practice’ [1, p. 245]. (Quietism is
usually a position of last resort in philosophy and, perhaps not surprisingly,
French’s professed quietism has not stopped him and others from developing an
elaborate, if controversial, unified framework for thinking about models and the-
ories.) In the present chapter, we will instead follow the alternative suggestion to
treat models as ‘functional entities’ [2, p. 120]; on this view, the various functions
of models in scientific inquiry are our best—and perhaps only—guide when it
comes to finding answers to any of the more fundamental questions about scientific
models, including those about their ontology, epistemic status, confirmation, and so
forth.

In exploring the different functions of scientific models, it will be useful to keep
in mind some of the distinctions drawn in the previous chapter (Sect. 1.1), notably
between instantial and representational views of models, and among the latter,
between informational and pragmatic versions of the view. The instantial view
regards models as instantiations of the axioms of a theory and considers the rela-
tionship between models and theories to be the primary locus of philosophical
significance. By contrast, the representational view takes models to be a way of
accessing the world, thereby shifting attention to the way models represent the
world. Various locutions are typically employed in order to characterize what is
involved in treating a model as a representation: thus, a model may be said to ‘stand
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in for’ its target system, or its relation to the target system may be described as
analogous to that between a map and the territory it shows. In its most general form,
the representational view thus considers models to be ‘tools for representing the
world’ [3, p. 44]. ‘[T]he crux of the problem of representation’, as Margaret
Morrison puts it, then becomes the following question: ‘in virtue of what do models
represent and how do we identify what constitutes a correct representation?’ [4, p.
70] Informational views take representation to be an objective relation between the
model and its target, which imbues the former with information about the latter,
irrespective of a model user’s beliefs or intentions, and regardless of the cognitive
uses to which he or she might put the model. This contrasts with more pragmatic
versions of the representational view, according to which one cannot ‘reduce the
essentially intentional judgments of representation-users to facts about the source
and target object or systems and their properties’ [5, p. 768]. Similarly, in his
defence of similarity as the basis of model-based representation, Ronald Giere,
although committed to the idea that ‘what is said to be similar to what, in what
ways, and to what degrees’ can always be specified, insists that there are ‘many
possible specifications depending on the particular interests of those doing the
modeling’ [3, p. 46]. Model-based representation, thus understood, is essentially a
three-place relation between the model, its target, and the model user. The value and
function of models then derives from their role in inquiry, i.e. from the way they
enable users to draw inferences on their basis about the target system, make pre-
dictions, or facilitate other courses of action. In its widest sense, the term ‘model’
may then be understood, as Günter Abel puts it, ‘as a reconstruction of central
features of a concrete object, process, or system, which itself becomes a matter of
further investigation’ [6, p. 33].

Before discussing two specific proposals of how model-based representation
comes about—R.I.G. Hughes’s DDI account (Sect. 2.3) and Mauricio Suárez’s
inferential account (Sect. 2.4)—it will be instructive to consider, in the next section
(Sect. 2.2), whether there is anything distinctive about scientific representation in
particular, or whether representation in science is of a piece with representation
more generally. The final section of this chapter (Sect. 2.5) will comment on the
issue of realism and anti-realism in the context of model-based representation and
will broaden the perspective further to also consider non-representational uses of
models in science.

2.2 Scientific Representation

Human beings, through biological and cultural evolution, have developed elaborate
ways of representing the world around them: via the mental representations that
feature in cognition, through language and its ever-expanding vocabulary, and
through the deliberate creation of artefacts in art, technology, and science.
‘Representation’, conceived of as an umbrella term for these various activities and
relations, may seem like a nebulous philosophical concept, which might explain
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why many philosophers of representation restrict their theories to rather more
specific domains. Thus, Bas van Fraassen states rather categorically that he ‘will
have no truck with mental representation, in any sense’, claiming that the way
philosophers of mind have historically discussed the notion ‘has nothing to con-
tribute to our understanding of scientific representation’ [7, p. 2]. With respect to
scientific representation, van Fraassen’s own position has changed considerably
over the years. Whereas in The Scientific Image [8] van Fraassen argued that ‘[t]o
present a theory is to specify a family of structures, its models’, and that a theory ‘is
empirically adequate if it has some model such that all appearances [as described in
experimental and measurement reports] are isomorphic to empirical substructures of
that model’ [8, p. 64], almost thirty years later his position has moved to a much
more pragmatic account of scientific representation: ‘There is no representation
except in the sense that some things are used, made, or taken, to represent some
things as thus or so.’ [7, p. 23; italics original] Hence, the notion of ‘use’ and
pragmatic considerations are to be ‘give[n] pride of place in the understanding of
scientific representation’ [7, p. 25], even if a unified ‘theory of representation’ may
turn out to be elusive. In a similar spirit, Morrison argues that even ‘[w]ithout
articulating a specific theory of representation we can nevertheless appeal to some
general ideas about what it means for models to represent phenomena or systems’
[9, p. 125]. This deflationary approach seems exactly right to me: even in the
absence of a widely accepted general theory of representation, it seems perfectly
possible to characterize scientific representation in productive and insightful ways
—so long as one’s account does not hinge on overly controversial assumptions
regarding the general problem.

In his seminal book Languages of Art [10], Nelson Goodman aimed to bring
together previously separate debates about the nature of representation in language,
art, and science, as indicated by the subtitle of the book which promises ‘an
approach to a theory of symbols’. Traditionally, philosophers have distinguished
between natural and non-natural signs. Whereas non-natural signs acquire their
meaning by way of—e.g., linguistic—convention, natural signs stand in certain
non-arbitrary (typically: causal) relations that connect them to their target. Thus, the
word ‘fire’ refers non-naturally, simply because as competent speakers of English
we take it to be a symbol of fire, whereas smoke is a natural sign of fire since the
latter is usually the cause of the former. One might ask where along the
natural/non-natural spectrum we should locate representation. Surely it would be
too strong to demand that a representation must be causally dependent on its target;
indeed, in the example just given, one might find it more appropriate to consider
smoke evidence of fire (rather than a representation of it). Goodman introduces the
notion of ‘denotation’ in order to capture an important ingredient in any repre-
sentational relationship, namely the fact that a representation ‘stands in for’ its
target (where such a target, in fact, exists).1 Denotation, thus understood, frees the

1Whereas in Languages of Art (1968/1976), Goodman offers no definition of the term 'denotation',
in Of Mind and Other Matters (1984), he writes: ‘This common relationship of applying to or
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representational relationship from the constraints of causality or resemblance, in
that it may be entirely stipulative: ‘almost anything may stand for almost anything
else.’ [10, p. 5]

From this it does not follow that any attempted act of denotation will auto-
matically succeed at representing a target. For one, in order for there to be an
instance of denotation, what is being denoted must exist; if the purported target
does not exist—for example, because we are dealing with non-existent entities such
as unicorns or the ether—denotation must necessarily fail. Goodman hints at
workarounds for this problem, by distinguishing between a) what a representation
denotes, and b) what kind of representation it is—so that, say, a certain picture
could be a unicorn-representation (i.e. would belong to the class of unicorn-images)
without thereby denoting a unicorn (since unicorns do not exist): ‘A picture that
represents a man denotes him; a picture that represents a fictional man is a
man-picture; and a picture that represents a man as a man is a man-picture denoting
him’ [10, pp. 27–28]. Furthermore, successful representation of an existing target
requires more than mere denotation. While Goodman, in various places, gives the
impression that anything may represent anything else, he also acknowledges that
successful representation is subject to de facto constraints. Even before issues of
faithfulness, accuracy, and truth arise, there is the question of whether a given
representation makes relevant information salient and whether it can draw on
entrenched denotative practices: ‘Representation […] is apt, effective, illuminating,
subtle, intriguing, to the extent that’ its originator ‘grasps fresh and significant
relationships and devises means for making them manifest’ [10, pp. 32–33].

Much of Goodman’s philosophy is an attempt to negotiate the tension between,
on the one hand, the arbitrariness that seems to follow from the radical contingency
of thought and action and, on the other hand, the apparent stability of our con-
ceptual frameworks and practices. Hence, while ‘there are countless alternative
systems of representation and description’, these are themselves ‘the products of
stipulation and habituation in varying proportions’ [10, p. 40]. To be sure, we often
find that we inherit established notational systems and representational formalisms,
which—though in principle arbitrary—for this very reason are no longer ‘up to us’.
Although we have some degree of choice among such systems, given a particular
system, ‘the question whether a newly encountered object is a desk or a
unicorn-picture […] is a question of the propriety, under that system, of projecting
the predicate “desk” or the predicate “unicorn-picture” […], and the decision both is
guided by and guides usage for that system’ [10, pp. 40–41]. Yet critics of
Goodman have found this appeal to entrenchment and past usage a little too casual:
if the only resistance we face when introducing new concepts and predicates is in
terms of past usage that needs to be overcome, this would seem to leave little room

(Footnote 1 continued)

standing for, I call denotation—not to preclude but rather to introduce examination of various
types of denotation in different symbol systems and also the relationships between denotation and
other types of reference.’ [11, p. 80].
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for any independent contribution from the world ‘out there’. As Joseph Margolis
remarks, somewhat pointedly, Goodman has ‘no theory of the actual behavior of
scientific thinking’, which makes his account of entrenchment, along with the goal
of ‘ultimate acceptability’ (which Goodman considers a legitimate substitute for
truth, [11, p. 38]), ultimately untenable: ‘under historicized and radically relativized
circumstances, the governing notion of “ultimate acceptability” and its regularized
bearing on these other distinctions are rendered completely meaningless or inop-
erable’ [12, p. 121]. Whatever the merits of these more specific criticisms of
Goodman’s project, what matters for our purposes is the general realization that
representation arises from the interplay of denotation (which affords considerable,
though not unlimited latitude) and the various factors that determine whether one
thing can successfully ‘stand in for’ another (i.e., make relevant relationships in the
target system manifest to its user).

Similarity, Goodman argues, fails as a criterion of successful representation:
though it may play an auxiliary role in certain contexts, it contributes nothing
essential to the representational relationship.2 Considering different versions of this—
as he puts it: ‘most naive’—view of representation (‘A represents B if and only if
A appreciably resembles B’, or ‘A represents B to the extent that A resembles B’),
Goodman claims, with some hyperbole, that ‘more error could hardly be compressed
into so short a formula’ [10, pp. 3–4]. Why does Goodman think resemblance fails as
a basis of representation? For one, resemblance is a reflexive and symmetric relation,
whereas representation is neither. Nothing resembles a portrait of the Duke of
Wellington more than the painting itself, but that does not mean that the portrait
represents itself. Furthermore, the painting resembles the Duke of Wellington to
exactly the same degree as the Duke resembles the painting, but it does not follow that
the Duke represents the painting. And in any case, the painting arguably is more
similar to other two-dimensional paintings than it is to the three-dimensional,
flesh-and-blood Duke or his identical twin brother—yet, this neither prevents the
painting from representing the Duke, nor renders the twins representations of one
another. We must therefore already have resolved to treat one thing as a represen-
tation of the other (and not vice versa!) before questions of faithfulness or accuracy
can be raised: this is precisely the function of denotation. Importantly, any account of
representation should also make room for misrepresentation. As van Fraassen
reminds us: ‘Misrepresentation is a species of representation’ [7, p. 14]. Thus, a
caricature may, as a political statement, purposely represent Tony Blair as GeorgeW.
Bush’s lapdog and, in doing so, may misrepresent him as considerably smaller in size
than his American friend, yet it remains no less a representation of the two men (as
opposed to, say, a hypothetical owner/dog pair).

Having sketched some of the complexities and constraints of a general theory of
representation, let us focus more narrowly on scientific representation. As we shall
see, the very idea that ‘scientific representation’ merits special treatment has been

2For a defence of resemblance as the basis of representation, at least for the case of depiction, see
[26].
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the subject of much contestation—not least since it has proved notoriously difficult
to arrive at any general demarcation criterion that would allow us to tell science
from non-science. For the moment, let us assume that we have a good enough grasp
of what constitutes a scientific context to be able to recognize certain representa-
tional devices—e.g. scientific theories, models, hypotheses, data etc.—as instances
of scientific representation. Focusing on scientific models as one class of scientific
representations, we may then return to Morrison’s earlier question: ‘in virtue of
what do models represent and how do we identify what constitutes a correct rep-
resentation?’ [4, p. 70]. As Craig Callender and Jonathan Cohen have noted, this
question really addresses two distinct problems: the first part of the question con-
cerns the problem of what constitutes the representational relation between a model
and the world, whereas the second relates to ‘the normative issue of what it is for a
representation to be correct’ [13, p. 69]. Let us call the first problem the constitutive
question and the second the evaluative question. Callender and Cohen claim that
Morrison and other contemporary philosophers of science, in their focus on sci-
entific practice, have tended to run both questions together when, in fact, the two
should be contrasted sharply. We will return to Callender’s and Cohen’s criticism
shortly; before doing so, it will be instructive to draw a few more useful
distinctions.

In the previous section, we already encountered a broad distinction, within the
representational view of models, between informational and pragmatic approaches.
An even more basic distinction derives from opposing stances concerning the
prospects of analyzing representation in terms of more basic relations, such as
similarity or isomorphism. If one holds that representation—whether in science or
in general—can be fully analyzed in terms of such more fundamental relations, one
would properly be called a reductionist about representation. By contrast, if one
believes such a reduction to be impossible and instead holds that representation is a
basic relation sui generis, one should be deemed a non-reductionist about repre-
sentation.3 A further distinction may be drawn between substantive and deflationary
accounts of representation, with the latter settling for a broad characterization of the
functional point of representation—e.g., the fact that it allows users of represen-
tational devices to gain new information about the target—and the former aiming
for a deeper, more ‘robust’ explanation of the functional utility of a representation
in terms of an underlying constituent relation between a representation and its target
(see [14, p. 94].) Accounts that equate representation with similarity relations
between a representational device and its target are a good example of reduction-
ism, as are structuralist accounts that analyze representation purely in terms of
relations of (partial) isomorphism between models and their targets. Both types of
accounts have been the target of criticism, as exemplified by Goodman’s attack on
similarity-based accounts and as discussed in the previous chapter in connection

3Similar to ‘non-reductionism’ about the representational relation, Suárez describes as ‘primi-
tivism’ any position that ‘claims that the representational relation, if there is any, may not be
further analysed’ [14, p. 94].
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with structuralist accounts (see Sect. 1.6). In Sects. 2.3 and 2.4 below, we will
encounter two examples of non-reductionist accounts which, however, will differ in
regard to their place along the substantive/deflationary spectrum.

On the issue of terminology, while it has become customary to refer to that
which is being represented as the ‘target’ (or ‘target system’), there is less agree-
ment on what, in general, to call that which does the representing. When dealing
exclusively with one type of representation—portraits, say, or mathematical models
—this difficulty can be easily avoided: what represents the Duke of Wellington is
simply the portrait that depicts him. Speaking in more general terms, it is certainly
possible to refer to ‘a representation’ of a target—as indeed I already have on
various occasions. However, this usage runs the risk of eliding the distinction
between the general representation relation and specific realizations of it. Some
authors prefer to speak of ‘sources’ and their targets; other locutions include
‘representational device’ or ‘representational vehicle’. It is obvious that the con-
stitutive question pertains to the nature of the representation relation in general,
whereas the evaluative question—what it takes for a given realization to be a
correct, faithful, or accurate representation of its target—will depend on the spe-
cifics of the case at hand. Suárez makes a useful distinction between the constituents
of representation and its means, with the former being implicitly defined by
whatever it takes to establish representation for any source–target pair and the latter
referring to the variable, context-dependent resources a model user draws on when
reasoning about a target by way of engaging a model of it [14, p. 93]. It is clear that
the means of representation employed by a given representational vehicle will
heavily determine its overall effectiveness and ‘representational power’ [15,
p. 294]. As we shall see in Chap. 5, an important function of models is that they
allow us to move back and forth between the representational means and aspects of
the target system—sometimes effortlessly, but often in a way that requires explicit
attention to the format and medium of representation.

What about those who criticize as incoherent the very idea that there is some-
thing which sets scientific representation apart from representation-at-large? On this
view, there simply is no special problem of ‘scientific representation’, since rep-
resentation in science is no different in character from representation in other
domains. Such critics, to be sure, can point to various bits of evidence in support of
their denial of the coherence of the notion of ‘scientific representation’. For one,
there is the absence, already mentioned, of a clear-cut (e.g. logical) demarcation
criterion between science and non-science. Within science, too, there is consider-
able disagreement between different disciplines about what constitutes a viable
representational target; this is reflected in a mind-boggling diversity and disunity
concerning the representational vehicles employed across the various sciences. Last
but not least, scientists often differ in their axiological commitments regarding the
standards and criteria for what makes something a good representation. Apart from
these intra-scientific considerations, there is also the further observation that ‘sci-
entists use entities other than models—language, pictures, mental states, and so on
—to represent the very same targets that models represent’. This, Callender and
Cohen argue, points to model-based (scientific) representation being derivative of
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representation outside science since ‘it would be surprising that scientific, linguistic,
pictorial, mental, and other sorts of representations should coincide in their repre-
sentational targets were they not at all related’ [13, p. 71]. More specifically, they
propose that all representations, including ‘the varied representational vehicles used
in scientific settings (models, equations, toothpick constructions, drawings, etc.)
represent their targets (the behavior of ideal gases, quantum state evolutions,
bridges) by virtue of the mental states of their makers/users’ [13, p. 75]. Thus, when
a theoretical biologist writes down the Lotka-Volterra equation and stipulates that it
should represent the population dynamics of a predator–prey system, he intends that
his audience recognize his intention to activate in them the belief that the equations
should be taken as a stand-in for the real-world system. The representational vehicle
—in this case, the set of equations—is merely a useful prop for facilitating con-
versation about predator–prey systems and for expressing the modeler’s beliefs
about them.

By linking representation-at-large—including scientific representation—to the
expression of intentions on the part of the modeler, Callender and Cohen emphasize
the stipulative element in our representational practices. However, they are keen to
point out that representation by stipulative fiat alone is not the norm, in science or
elsewhere; as already noted by Goodman, our representational devices often depend
on entrenched symbolic systems and the utility of our representational vehicles
depends on them. Questions of utility, however, are simply ‘questions about the
pragmatics of things that are representational vehicles, not questions about their
representational status per se’ [13, p. 75], or so Callender and Cohen argue. In other
words, ‘virtually anything can be stipulated to be a representational vehicle for the
representation of virtually anything’ [13, p. 74], leaving the evaluative question of
the suitability of a given representational vehicle entirely a matter of contingent,
context-dependent factors. The basic idea that scientific representation is continuous
with representation-at-large and is fully derivative of actions and intentions on the
part of the modeler, is not new. Marx Wartofsky, in a paper first published in 1966,
makes essentially the same point the other way around, by equating all represen-
tation with model-based representation of one sort or another:

We begin by modelling, therefore, with our first mimetic acts, and with our first use of
language. And we continue modelling by way of what, on various grounds, have been
distinguished as analogies, models, metaphors, hypotheses and theories. [16, p. 10]

Models, Wartofsky argues, are ‘used to communicate an intended factually true
description’ (ibid.); that is, they serve communicative purposes and depend on us as
modelers: ‘Our own cognitive activity enters here, to take one as representing the
other’, subject only to pragmatic ‘constraints on what may or may not be made into
a model’ [16, p. 4]. Regarding the specific constraints that various substantive
accounts impose as conditions of scientific representation, Callender and Cohen
argue that these, too, are of merely pragmatic significance:

Likewise, we suggest that, while resemblance, isomorphism, partial isomorphism, and the
like are unnecessary for scientific representation, they have important pragmatic roles to
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play; namely, they can (but need not) serve as pragmatic aids to communication about one’s
choice of representational vehicle [13, p. 76].

This attempted dissolution of the problem of scientific representation by
reducing it to a matter of stipulation—subject only to pragmatic constraints, in order
to facilitate the communication of the modeler’s intention to represent a given target
—has been criticized for assigning the model user rather too central a role in
bringing about successful representation. As Morrison objects: ‘There may be no
representation without users, but that doesn’t mean that users determine what’s
required for something to represent something else’ [9, p. 128].

Callender’s and Cohen’s approach lends itself to an even more fundamental
criticism. While models, along with other scientific representations, often serve the
purpose of enabling communal inquiry, by functioning as means for the commu-
nication of one party’s intentions and mental states to another, their role goes far
beyond that of being a mere ‘facilitator’ of inquiry. Morrison hints at this when she
argues that, often, ‘scientific representation is about conceptualising something in a
way that makes it amenable to a theoretical or mathematical formulation’ [9,
p. 129], and Callender and Cohen seem to acknowledge as much when they note
that sometimes a modeler may include himself in the audience at which the model is
aimed [13, p. 77]. What, one might ask, would be the point of directing a model at
oneself, if a model is nothing but a mere prop for communicating one’s beliefs and
intentions? The answer, it seems to me, must be that the role of models in inquiry is
not exhausted by their functioning as mere props for communicating mental states
in the way suggested by Callender and Cohen. Models can surprise us, open up
unforeseen lines of inquiry, and lead to novel insights about their targets, all of
which suggests that they enjoy considerable autonomy. Mathematical models, in
particular, are imbued with a considerable internal structure and dynamics, which
renders them partially independent from the intentions of their users. None of this is
easily captured by Callender’s and Cohen’s account, which accords them only an
auxiliary role as vehicles of pre-existing intentions and beliefs on the part of their
users. Rather than thinking of models as mere facilitators, I want to suggest—in a
phrase that I will unpack in detail in Chap. 5—that we should think of them as
contributors to inquiry.

2.3 The DDI Account of Model-Based Representation

R.I.G. Hughes [17] has proposed an account of scientific representation, according
to which the representational capacity of theoretical models is due to the interplay
between three components: denotation, demonstration, and interpretation.
Denotation, following Goodman, is conceived of as the basic relation whereby
certain elements of a model ‘stand for’, or are ‘a symbol of’, elements in the
physical world; as such, it accounts not only for the fact that theoretical elements of
a model purport to refer to elements in the physical world, but also for the
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asymmetry that exists between a representational device and its target system. The
possibility of demonstration—either within a theoretical model, through the
application of mathematical derivation techniques, or via experimental intervention
in the case of material models—attests to the fact that models possess an internal
dynamic and can lead to new results and insights. Interpretation, finally, relates
what has been demonstrated back to the physical world. Though Hughes is careful
to distance himself from the reductionist claim ‘that denotation, demonstration, and
interpretation constitute a set of acts individually necessary and jointly sufficient for
an act of theoretical representation to take place’ [18, p. 155], he considers all three
components to be involved in scientific representation and takes the interplay
between them to be distinctive of the way models represent reality—which is why
he takes his DDI account to be ‘a very general account of theoretical representation’
[18, p. 153]. Thus, in the terminology introduced in the previous section, Hughes’s
account may be deemed a substantive, non-reductionist account of scientific
representation.

Although Hughes’s DDI account follows Goodman’s advice that ‘we must
examine the characteristics of representation as a special kind of denotation’ [10,
p. 5], it does not simply equate denotation and representation; instead, it demands
that denotation be put to the test by successful demonstration and interpretation.
Consider the case of a mathematical model of a physical phenomenon, e.g. a set of
partial differential equations intended to represent the flow of heat in a solid. The
theoretical activity of modeling heat flow using the calculus of partial differential
equations involves the interplay between what Chris Pincock has called the physical
attitude—‘which insists that throughout we are talking about physical systems and
physical magnitudes’—and the mathematical attitude, which considers such steps
as taking the ‘unphysical’ limit Dx ! 0 (e.g. in order to mathematically define the
temperature ‘at a given point’—even though temperature, in the physical sense,
only applies to spatially extended ensembles of particles) as ‘involving only
mathematical objects’ [19, p. 88]. When we resolve to treat certain variables as
denoting physical quantities, we clearly do so by taking a physical attitude towards
the model, and we again need to adopt this stance when interpreting results—e.g.
concerning the final distribution of temperature—as predictions the model makes
about the target system. In between, however—that is, during the phase of
derivation—we can rely on a host of tried and tested mathematical derivation
techniques. While such techniques may have their own practical and conceptual
problems, they do not directly touch upon the question of how theoretical models
represent a reality external to themselves. Mathematical demonstration, thus, may
take place entirely from within the mathematical attitude, yet it is no less essential
to the process of modeling as a whole, both insofar as it allows for the derivation of
results and predictions from a model, and because it makes salient that a mathe-
matical model, by virtue of its being a mathematical object, has an internal
dynamic. For Hughes, this insight is fundamental to the use of models in physics in
general:
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To be predictive, a science must provide representations that have a dynamic of this kind
built into them. That is one reason why mathematical models are the norm in physics. Their
internal dynamic is supplied, at least in part, by the deductive resources of the mathematics
they employ [17, p. 332].

Once again, this points to models as being more than a vehicle for a user’s
intentions or beliefs: by tapping into the rich resources of mathematics, mathe-
matical models are imbued with considerable deductive resources and an internal
dynamic that may go well beyond what an individual user may intend or be able to
survey.

Interpretation, like the other two components of the DDI account, is an important
ingredient in the way theoretical models represent. Without it, demonstrated results
would remain merely formal results within a deductive mathematical structure,
lacking empirical meaning. What is needed is ‘a function that takes us from what
we have demonstrated […] back into the world of things’ [17, p. S333], and
interpretation plays this role. Whereas denotation picks out features in the world,
which are then referred to by elements within the model, interpretation projects
internally-derived results back onto the world, where they must be assessed in terms
of their empirical adequacy. This may require considerable ingenuity and imagi-
nation. In the case of a mathematical model, even when a result has been suc-
cessfully derived within the formalism of the model equations, its empirical
interpretation may not always be self-evident. As an example, consider the case of
mathematical divergences: if one or more of a model’s variables diverge for certain
parameter values, the user may be faced with the choice of either dismissing it as an
‘unphysical’ result—for example because the corresponding physical magnitude is
recognised as necessarily finite for any finite physical system under consideration—
or interpreting it as an indicator of a real feature in the world (e.g., a phase tran-
sition), which the model may simply be unable to capture in its entirety. Neither
denotation nor interpretation comes with a guarantee of success, but when they
succeed—that is, when a model picks out the right features in the world, and
interpretation assigns empirically adequate meanings to demonstrated results—
denotation and interpretation may indeed be said to be the inverse of each other, and
the model as a whole may be deemed a successful representation.

2.4 Representation and Surrogate Reasoning: Suárez’s
Inferential Account

By relying on denotation for the requisite representational asymmetry between
model and target, the DDI account of scientific representation is open to the earlier
criticism that, for denotation to be successful, its intended target must exist. Yet
scientific models sometimes deals with systems that do not—or perhaps could not
—exist, such as higher-dimensional or infinitely extended systems. While there
may be workarounds for the problems arising from the non-existence of intended
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targets, some modifications of the DDI account appear to be necessary. The second
key ingredient of the DDI account—demonstration—may also be less straightfor-
ward than appears at first sight. As Mauricio Suárez has noted, ‘for Hughes, rep-
resentation involves demonstration essentially, and hence requires the actual
carrying out of inferences about the target on the part of some agent’ [5, p. 770]:
that is, it requires the actual performance of demonstrating a result, whether
mathematically or, in the case of material models, via physical manipulation and
reasoning on its basis. Even more fundamentally, although Hughes distances
himself from reductionism (see previous section), his account remains committed to
giving a substantive account of scientific representation, in that scientific repre-
sentation is thought to be characterized by the tight integration of the three theo-
retical ingredients of denotation, demonstration, and interpretation—that is, by
more than just its functional role in inquiry.

Partially in response to these shortcomings, Suárez has proposed an alternative,
inferential account of scientific representation—one that is unabashedly
‘deflationary’ in character, in that it seeks ‘no deeper features to representation other
than its surface features’ [5, p. 771]. Giving up on the possibility of a substantive
account, however, should not be misunderstood as a lack of ambition; instead, it
reflects the need to refocus on the core question of what makes certain types of
representation instances of scientific representation. In this regard, Suárez’s infer-
ential account explicitly commits itself to a demarcation between scientific and
non-scientific forms of representation. While both types share certain general fea-
tures of the representation relation—its asymmetry, non-reflexivity, and
non-transitivity—what distinguishes scientific representations is their ‘characteristic
form of objectivity’, which renders them of ‘cognitive value because they aim to
provide us with specific information regarding their targets’ [5, pp. 771–772]. More
specifically, on the inferential account, a representational vehicle A and its target
B are related in such a way that

A represents B only if (i) the representational force of A points towards B, and (ii) A allows
competent and informed agents to draw specific inferences regarding B. [5, p. 773]

The expression ‘representational force’ here refers to what, on the DDI account
and following Goodman, is achieved by denotation, namely the stipulated asym-
metry whereby A is to be treated as a representation of B (but not vice versa).
Though denotation may often be involved in generating representational force, the
inferential account allows for the possibility of other sources of representational
force, thereby sidestepping the problems associated with non-existent targets of
representation.

It is worth comparing the second part of the above formulation of the inferential
account with its correlative element in the DDI account: demonstration. Recall that
one criticism of the DDI account was that it requires the actual carrying out of steps
amounting to a demonstration of results, either by mathematical derivation or by
physical manipulation. The inferential account’s demands, by contrast, are sub-
stantially weaker, in that it merely requires that A have ‘the internal structure that
allows informed agents to correctly draw inferences about the B, but […] does not
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require that there be any agents who actually do so’ [5, pp. 774–775]. Potential
suitability for the purpose of enabling inferences about the target system may thus
take the place of actual derivation of results. By separating the issue of represen-
tational force from the question of whether a given model supports the drawing of
inferences about its target, the inferential account is able to account for various
ways in which our use of models can go awry: either because a model misses its
target, or because an agent lacks the requisite competence to draw valid inferences
on the basis of the model. Furthermore, the account recognizes the importance of
choosing formats and media of representation that enable the drawing of inferences,
for example by making relevant information in the model salient to its user. As
Suárez puts it, models must be ‘inferentially suited to their targets’ [5, p. 778].
Whether a given model is suited to its target in such an inference-enabling way is
thought to be an objective fact and not reducible to the intentions or mental states
on the part of a specific user.

There exists an unresolved tension within the inferential account, which, though
falling far short of inconsistency, calls for further refinement. On the one hand, the
account recognizes that, in spelling out the necessary conditions for scientific
representation, ‘the reference to the presence of agents and the purposes of inquiry
is essential’ [5, p. 773]. On the other hand, the account insists that we need not
attribute any properties to those agents—not even, as we saw in the previous
paragraph, their actual existence. This raises the question of how we are to think
about such hypothetical agents, especially given that the absence of competent
users need not invalidate a model’s status as a scientific representation. If all that
matters is that some hypothetical agent with sufficient inferential prowess and
access to relevant information could, in principle, use the model to correctly draw
inferences from it about the target system, one may wonder just how much in terms
of inferential and epistemic ability it is reasonable to demand. Presumably, an
omniscient (or nigh-omniscient) agent would be able to achieve a great deal more
by way of inference than we ever could, and she would be able to do so on the basis
of models that are far too complex for us mere mortals to comprehend. Yet we
would rightly hesitate to speak of ‘scientific representation’ in such a case. At the
very least, then, the degree of competence and inferential prowess required for a
model to serve as a representation must be within human reach.

Whereas Suárez is explicit about his deflationism concerning scientific repre-
sentation, others have built on his inferential account in an attempt to reinstate a
full-fledged substantive account of scientific representation. Thus, Gabriele
Contessa has argued for what he calls an ‘interpretational conception’ of scientific
representation, according to which ‘a vehicle is an epistemic representation of a
certain target (for a certain user) if and only if the user adopts an interpretation of
the vehicle in terms of the target’ [20, p. 57]. On this view, an agent employing a
model of the atom—say, Thomson’s plum pudding model, which conceives of the
electrons as embedded in an evenly distributed positive charge the size of the atom,
like plums in a pudding—resolves to treat (i) the representational vehicle as a whole
as standing for the target system (the atom), (ii) some elements of the vehicle as
standing for some component parts of the target system, and (iii) some of the
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properties and relations that obtain in the vehicle as corresponding to properties and
relations holding between component parts of the target system [20, p. 59]. This
interpretation of the representational vehicle in terms of the target system, Contessa
argues, allows us to explain ‘why, if a vehicle is an epistemic representation of a
certain target, users are able to perform valid surrogative inferences from the
vehicle to the target and allows us to tell which inferences from a vehicle to a target
are valid’ [20, p. 61]. As he sees it, this renders the (substantive) interpretational
account superior to the (deflationary) inferential account proposed by Suárez, since
the latter simply posits the agent’s ability to perform valid inferences from a vehicle
to a target as a ‘brute fact’ [ibid.]. However, it seems to me that Contessa is moving
too quickly here. For, as mentioned earlier in this section, Suárez is well aware of
the fact that representational vehicles—in virtue of the different formats and media
they employ—have different constraining and enabling effects on their users:
whether a vehicle is inferentially suited to its target depends not only on factors
intrinsic to the vehicle itself, but also on how we conceive of the epistemic
capacities of the prospective model users—including their inferential prowess and
interpretative abilities. Recognizing that the interaction between the model user and
the representational vehicle is mediated by a variety of representational means
renders the ability to perform valid inferences from a vehicle to a target far less
mysterious than it might seem at first sight.

2.5 Realism, Instrumentalism, and the Varied Uses
of Models

One of the core debates in the philosophy of science concerns the issue of scientific
realism. Even setting aside sceptical worries about the existence of the external
world or regarding the possibility of knowledge in general, one might harbour
doubts about the status of scientific knowledge. Is the world really as science
describes it? Are scientific claims to be taken ‘at face value’, and are they (by and
large) true, or at least approximately true? And is science as a collective enterprise
getting ever closer to a true and complete account of the world? These are some of
the staple questions in the debate about scientific realism, and while they were
traditionally directed at scientific theories, it is easy to see why they may also be
raised—perhaps with even more urgency—in relation to scientific models.
Anti-realists who are doubtful either about the historical thesis that science is
moving closer to the truth or about the existence of unobservable entities posited by
scientific theories, may be aghast at the casualness with which scientists readily
help themselves to inconsistent models and employ idealizations and false
assumptions in their model-building practices. Scientific realists, in turn, need to
explain how science as a whole can be ‘on the right track’, when so much of it relies
on models, many of which are false ‘by design’, as it were.
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In the past, it was not uncommon to assume a stance of instrumentalism towards
models. As discussed in the previous chapter (Sect. 1.3), during the time the syn-
tactic view of theories held sway, philosophers of science tended to accord models
at best a marginal role in scientific inquiry. Models were largely seen as limiting
cases or approximations, or as mere heuristic tools to be used in the derivation of
explanations or predictions from fundamental theories, which in turn were regarded
as the proper object of realist evaluation. Models were at best thought ‘to serve an
auxiliary function in leading theories to the test’ [21, p. 31] by generating testable
predictions. As Wartofsky puts it, on this view

the burden of commitment is passed on to the theory of which some […] model may be
constructed. The postulates of the theory may make existential claims, therefore, but the
model serves merely to channel these to some confrontation with experimentally testable
consequences [21, p. 31].

While the view reported (but not endorsed) by Wartofsky may simply reflect an
overly narrow understanding of the role of models in scientific inquiry, a more
thoroughgoing instrumentalism would extend similar considerations to the under-
lying theory itself, with the latter

being itself no more than an instrument for coherent organization and testing, and the
question remains—of what? The reference beyond such theory-model ‘instruments’
remains forever delayed; or it is defined in terms of practical purposes, decisions con-
cerning which lie outside the theory, but are vaguely defined as ‘successful prediction’ or
‘control of the environment’. [ibid.]

Though instrumentalism at first sight may appear to be more modest, in that it
foregoes a commitment to the truth, or approximate truth, of models and theories,
this may be seen as simply pushing the crucial question one step further back, since
the instrumentalist must now lay out criteria for what constitutes an instance of
successful prediction or control.

Given that the focus in philosophical discussions of scientific models, as in the
present chapter, is often on their representational function, one might expect the
issue of scientific realism in connection with models to be largely decided by the
question of how faithfully scientific models represent their targets. Against this
expectation, William Wimsatt, in a paper with the programmatic title ‘False Models
as Means to Truer Theories’, has argued that philosophers should not ignore ‘the
role that false models can have in improving our descriptions and explanations of
the world’ [22, p. 94]. Taking his lead from evolutionary biology, Wimsatt con-
siders the case of so-called neutral models, i.e. models of species and populations
which do not include selection pressures. Absence of selection does not entail that
there is no change in the form of speciation or extinction events; rather, it might
mean that such events, when they occur, are simply random. For many—perhaps
most—evolutionary processes that biologists are interested in, including all those
that are the result of adaptation to environmental pressures, a neutral model would
be false; yet even in those cases neutral models may be essential, insofar as they
provide a ‘baseline’ for further inquiry, ‘for the explicit purpose of evaluating the

2.5 Realism, Instrumentalism, and the Varied Uses of Models 39

http://dx.doi.org/10.1007/978-3-319-27954-1_1


efficacy of variables that are not included in the model’ [22, p. 100].4 Other epis-
temically valuable uses of false models include situations where an incomplete
model may be used ‘as a template, which captures larger or otherwise more obvious
effects that can then be “factored out” to detect phenomena that would otherwise be
masked or be too small to be seen’, or the consideration of two or more false models
which ‘may be used to define the extremes of a continuum of cases in which the real
case is presumed to lie’ [22, p. 100]. All in all, Wimsatt considers twelve distinct
ways in which false models may facilitate, or even be essential to, the search for
better theories and scientific inquiry more generally, and it seems plausible to
assume that any such list is likely to be incomplete.5

Wimsatt’s observation that models, even when false—and sometimes deliber-
ately false—may make a positive contribution to our overall epistemic situation is
significant, in that it productively blurs a number of distinctions, whether between
realist and instrumentalist stances towards models or between representational and
non-representational uses of models. Non-representational uses of models, in par-
ticular, have been treated only cursorily in philosophical discussions—as hinted at
in the earlier quote by Wartofsky who notes that notions such as ‘control of the
environment’ or ‘success’ are often left undefined. Yet non-representational uses of
models abound, in pure science as well as in more applied contexts such as engi-
neering. Of course, not every non-representational use is of interest: someone might
find a three-dimensional material model beautiful and use it as a decorative
sculpture in his living room, but this would be of little relevance to us. What matters
for the present argument are non-representational uses that nonetheless facilitate
learning about the world—where, following Till Grüne-Yanoff’s analysis of such
cases, model-based learning can be defined as occurring when a model justifies
‘changing one’s confidence in some hypothesis about the world’ [23, p. 852]. As an
example, Grüne-Yanoff discusses Thomas Schelling’s checkerboard model, which
consists of two types of tokens distributed randomly across a checkerboard, with
tokens being moved in each iteration according to a fixed rule, until no further
movements occur. The rule is simple: if more than half of the neighbouring fields
are occupied by tokens of the opposite type, a given token will move to any vacant
field where this is not the case. In other words, tokens of a given type may be
interpreted as having a preference for being in a neighbourhood where they are not
in a minority. Over time, this reliably gives rise to patterns in which the two types
of tokens are spatially segregated. Schelling did not claim that the rule reflected
actual behavioural patterns or that the geometry of the checkerboard, the initial
distribution of tokens, or their relative proportion represented aspects of the actual
world. Yet, as Grüne-Yanoff rightly notes, we learn from Schelling’s model: what

4Similarly, Uskali Mäki [28, pp. 12–13] notes that, in many cases, apparent falsehoods included in
models are best interpreted as (true) claims about the neglibility of certain empirical factors.
5For example, Alisa Bokulich has argued that models that are false in virtue of being ‘fictional-
ized’—because they involve ‘fictional entities or processes that are not related to the true ones in
the world by what might be thought of as a distortion or series of successive cases’ [27]—can
nonetheless offer genuine scientific explanations.

40 2 Scientific Representation and the Uses of Scientific Models



the model shows is that spatial segregation, of the sort found in racialized urban
geographies of American cities, can occur simply due to individuals not wanting to
be in a minority (rather than due to overtly racist preferences): ‘The model result
thus justified changing one’s confidence in hypotheses about racist preferences
being a necessary cause of segregation.’ [23, p. 856] Another non-representational
aspect of models is their performative use. A case in point is the discipline of
economics which, as Michel Callon [24] has argued, not only studies, but at the
same time performs the economy. If this sounds too abstract, consider the example
of the Black-Scholes equation in finance, which purports to be a model of the
efficient pricing of stock options. As Donald MacKenzie [25] has shown, the model
gained empirical adequacy largely because traders adopted it as a method for
identifying, say, overvalued stocks and based their selling decisions on it, thereby
effectively bringing stocks in line with what the model ‘demanded’—at least until
the next stock market crash.6

Finally, it is worth noting the case of exploratory models, discussed in detail in
Chap. 4. Much exploratory modeling aims only indirectly at the representation of
actual target systems or empirical phenomena, and instead concerns itself more
immediately with models that lack specific intended targets. For example, mathe-
matical physicists might study certain model equations in higher (d[ 3) spatial
dimensions, so as to get a qualitative understanding of certain limiting cases or of
the range of behaviours their model may be expected to display. Given that such
models do not purport to represent, however imperfectly, any real target system, it
does not seem quite right to consider them ‘false’ in the way that idealized rep-
resentations of actual system may be deemed false. Often, the exploratory use of
models aims at greater mastery and understanding of the repertoire of modeling
techniques as a whole. All else being equal—with some obvious caveats, to be
discussed in Chap. 4—the exploratory use of models is entirely legitimate, yet it,
too, requires moving beyond the traditional narrow focus on the representational
functions and uses of scientific models.
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Chapter 3
Strategies and Trade-Offs
in Model-Building

3.1 Strategies of Model-Building

In the previous two chapters, we have come across a number of accounts of how
scientific models may be thought of as functioning in general. This chapter will
look in some detail at a number of case studies from across the natural sciences in
order to identify recurring strategies of model-building. Speaking of ‘strategies’ in
the context of scientific modeling may call out for explanation. Richard Levins, in
the title of an influential paper published in 1966, refers to ‘The Strategy of
Model-Building in Population Biology’ in the singular. Yet in the main part of his
argument, he notes that ‘several alternative strategies have evolved’ [1, p. 422],
each of which models biological populations in a way that sacrifices one of several
theoretical desiderata—generality, realism, and precision—to the others. Models in
population biology, Levins argues, thus are subject to inevitable trade-offs. Where
Levins distinguishes between alternative strategies of model-building within a
specific discipline, Peter Godfrey-Smith, more recently, has suggested that we
should ‘treat models and model-building as characteristic of one particular approach
to theorizing, a strategy of model-based science’ [2, p. 725]. The present chapter
aims to steer a middle path between conceiving of model-based science as a unitary
strategy of scientific theorizing and distinguishing between different
discipline-specific strategies of model-building. The underlying methodological
assumption in what follows is that it is possible to identify a ‘middle range’ of
recurring strategies that cut across different scientific disciplines. In this sense, the
plurality of strategies of model-building to be discussed in this chapter is located
somewhere between the overarching general accounts in Chaps. 1 and 2, and the
intra-disciplinary concerns that might dominate discussions in individual
disciplines.

Among the general types of scientific models to be discussed in what follows are
phenomenological models, causal-microscopic models, and instances of target-
directed modeling. This is by no means an exhaustive or mutually exclusive
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taxonomy, yet discussing an example of each type will help bring out recurring
features of model-building strategies that can be found across a range of different
branches of science. Thus, whereas phenomenological models start from questions
such as ‘What are the sets of phenomena that naturally occur?’ or, more generally,
‘What are the world’s possible manifestations?’, causal-microscopic models
attempt to answer the question ‘How does it work?’.1 It has been claimed, notably
by Nancy Cartwright, that phenomenological models, in virtue of making an honest
attempt to relate to the world of phenomena directly (rather than through theoretical
intermediaries, such as positing unobservable causal mechanisms or allegedly
fundamental laws of nature), are better able to capture reality in its full empirical
detail. However, as we shall see in Sect. 3.2.3, this leads to rather counterintuitive
restrictions on what types of models are permissible, especially in the realm of
quantum physics. As it turns out, phenomenological models—though purportedly
less ‘theoretical’ in character—have trouble accounting for the sense of intelligi-
bility that comes with building causal-microscopic models. Target-directed mod-
eling, finally, involves a ‘match-making’ process between an existing or novel
structure and a target system and then analyzing to what extent the model indeed
represents its target accurately.

Each type of model-building strategy has its advantages and disadvantages, and
different strategies are suited to different purposes. While this may sound like a
truism, it raises the question of what determines the suitability of a given strategy to
a particular purpose. A philosophical account that gives centre-stage to the varied
functions of models, I submit, is best able to give some unity to the bewildering
array of model-building strategies. Thus, target-directed modeling may be appro-
priate when one wants to get a tentative grasp of a phenomenon for which one lacks
causal or theoretical understanding. Phenomenological models may be tailored
more precisely to fit specific cases, while causal-microscopic models may allow a
researcher to pick out a class of target systems that broadly share the same
underlying causal structure. Different intended functions of models come with
different sets of desiderata, and it will often be impossible to simultaneously
maximize all desiderata. This leads to the question of trade-offs, mentioned above
(and discussed in detail in Sect. 3.5), which first attracted attention amongst pop-
ulation biologists, but which is increasingly becoming relevant to such areas as
nanophysics, or so I shall argue (Sect. 3.6). Trade-offs are also a common occur-
rence in the context of application (Sect. 3.7), not least when results are needed
before one has the chance to assemble a full representation of the target system;
sometimes, instead of aiming for an empirically adequate model of the total target
system, it may be necessary to make do with partial representations that are ade-
quate for specific (e.g. practical) purposes.

1I am borrowing this way of contrasting phenomenological and mechanism-based models from
[29, p. 427].
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3.2 The Case of Superconductivity: Ginzburg-Landau
Approach and the BCS Model

An important characteristic of solids is their electric behaviour, which allows us to
group them into, amongst others, insulators, conductors, and semiconductors. In the
absence of an external electric field, most solids—including conductors—are
neutral. How a solid responds once an external electric field is applied depends on a
number of factors, including the type of chemical bond that dominates: when
electrons are tightly bound to particular sites, as in an ionic crystal lattice, few
electrons are available for sustaining an electric current, and the solid will behave as
an insulator. By contrast, in metals, where the valence electrons are free to move
through the crystal lattice and are not tightly bound to specific lattice sites, even a
small external field will give rise to a macroscopic electric current. When travelling
through the solid, electrons experience resistance in the form of thermal vibrations
(phonon scattering) and lattice defects, due to grain boundaries, inclusions, or other
impurities; these are the reason why, under normal circumstances, a conductor
maintains its resistance even at very low temperatures. Yet, in 1911, Heike
Kamerlingh Onnes (1853–1926), who was studying the electrical resistance of pure
metals at temperatures only a few degrees above absolute zero, found that, in
mercury, the resistance drops abruptly to zero when the sample is cooled below a
critical temperature Tc of –269 °C (4.2 K). Since then, such transitions to a
superconducting state have been observed in hundreds of substances, mostly at
critical temperatures just above absolute zero, but in some cases—the so-called
high-Tc superconductors—at temperatures as high as 138 K.

Superconductivity is associated with other striking phenomena. Perhaps the most
iconic laboratory demonstration is a small magnet levitating above a supercon-
ductor (see Fig. 3.1).

This phenomenon is caused by the Meissner effect, which consists in the
expulsion of magnetic flux from a metal when it undergoes a phase transition to a
superconducting state. The expulsion is due to electric surface currents, which in

Fig. 3.1 A magnet levitating
above a superconducting disk
as the result of the Meissner
effect
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turn induce a magnetic field that cancels out the applied magnetic field within the
superconductor’s interior. Due to the virtually infinite conductivity of the super-
conductor, the currents producing this effect do not decay over time and the
magnetic field they produce can counteract that of a small magnet, which then floats
above the superconductor. Other changes associated with the superconducting state
involve the solid’s thermal conductivity and specific heat. The salience of these
various phenomena prompted intense theoretical speculation and led researchers to
devise a number of models that attempted to describe superconducting behaviour.
Among the first were the brothers Fritz and Heinz London who, in 1935, proposed a
two-fluid model of the superconductor, which posited that a fraction of the con-
duction electrons behaved abnormally, in that they were immune to scattering by
impurities or the quantized vibrations of the crystal lattice (phonons); the relative
proportion of such superconducting electrons defines an order parameter for the
phase transition (and vanishes above the critical temperature). This idea required a
modification of the usual electrodynamic equations—not by calling into question
Maxwell’s fundamental equations, but by modifying Ohm’s law. The London
brothers’ macroscopic model happily accommodated measurable regularities such
as the Meissner effect and predicted the (small) penetration depth of an external
magnetic field inside the superconductor.2 Further refinements of this approach,
notably a non-local generalization of the Londons’ equations by Brian Pippard,
eventually led Vitaly Ginzburg and Lev Landau to propose, in 1950, their phe-
nomenological model, to be discussed below; a microscopic explanation, based on
a theoretical model of a purported causal mechanism, was not forthcoming until
1957, when John Bardeen, Leon Cooper, and John Robert Schrieffer developed
what has come to be known as the BCS model of superconductivity (see
Sect. 3.2.2).

3.2.1 Ginzburg and Landau’s Phenomenological Approach

Phenomenological models take as their starting point known phenomena, remaining
largely neutral with respect to the purported causal mechanisms or underlying
fundamental theory. This is not to suggest that phenomenological models do not
rely on theory at all or never include theoretical assumptions that go well beyond
what is given in the form of empirical observations. Indeed, as the discussion of the
Ginzburg-Landau and BCS models of superconductivity will show, the extent to
which a model may be deemed ‘phenomenological’ is a matter of degree. Thus,
while the BCS model is more theoretically ambitious than the Ginzburg-Landau
model, in that it develops a theoretical model of an underlying microscopic
mechanism, it still does not amount to a derivation from ‘first principles’, i.e. from
the fundamental laws of quantum mechanics. In scientific usage, too, one finds

2See [30] for further discussion of the London model.

46 3 Strategies and Trade-Offs in Model-Building



considerable fluidity of the terms ‘phenomenological’ and ‘theoretical’—which is
why Ginzburg and Landau’s phenomenological approach is often referred to as the
Ginzburg-Landau theory.

The starting point of Ginzburg and Landau’s approach to the phenomenon of
superconductivity was a more general theory, developed by Landau in 1937, which
explained second-order phase transitions in fluids in terms of the minimization of
the Helmholtz free energy. Following the London brothers, Ginzburg and Landau
conceived of the conducting electrons as constituting a fluid that could appear in
two phases, a superconducting phase and a normal (non-superconducting) phase.3

However, they extended the phenomenological London model in a number of
ways: first, by taking into account spatial variations and, second, by adding on
certain quantum-mechanical considerations, in order to account for the observation
that the motion of the ‘electron fluid’ is affected by the presence of magnetic fields.
Specifically, the ‘strength’ of the superconducting state was to be defined by an
order parameter w, a complex-valued quantity with some of the characteristics of a
quantum mechanical wave function (‘pseudo-wave function’):

awþ b wj j2 wþ 1
2
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where α and β are experimental constants and A is the local vector potential. Spatial
variations in the concentration of superconducting electrons and the kinetic energy
of the supercurrent contribute to the free energy; minimizing the free energy in
order to calculate the equilibrium state leads to a complicated nonlinear differential
equation for w which, together with a standard formula for the electric current
density (Gordon’s formula, which had already been employed by the London
brothers, but now needed to be applied to the pseudo-wave function w), constitutes
the Ginzburg-Landau equations. Several aspects of the model are worth noting: the
spatial gradient of w favours long-range order and accounts for why spatial changes
in a superconductor occur at the scale of a characteristic coherence length. Another
characteristic length, the penetration depth, which determines the quick exponential
decay of an external magnetic field inside the superconductor, also emerges natu-
rally from within the Ginzburg-Landau model.

Insofar as the Ginzburg-Landau approach conjoins disparate theoretical insights,
building on earlier descriptions of the phenomenon (the classical London equations)
and uniting them with new theoretical concepts (the quantum wave function), it
cannot be ‘derived’ from any one of the theories involved: models such as Ginzburg
and Landau’s ‘are not models of any of the theories that contribute to their con-
struction’ [3, p. 244].4 Noting that physicists describe Ginzburg and Landau’s

3This discussion follows [31, p. 248f.].
4There has been considerable debate about whether the case of superconductivity supports
Cartwright’s claims, or whether it can be accommodated by theory-driven accounts of modeling.
(For a defence of the latter claim, see [33].) At the same time, as Cartwright points out in a joint
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approach as proceeding from broadly inductive generalization on the basis of
experimental findings, Towfic Shomar gives an apt characterization of the goal of
such phenomenological modeling: namely, ‘to present a mathematical structure that
can be consistent with a representation of the phenomenon, trying to relate different
bits and pieces from the shattered information provided through years of experi-
mentation’ [4, p. 1262]. Furthermore, in line with the textbook characteristics of a
phenomenological model, the Ginzburg-Landau model does not purport to give a
fundamental microphysical explanation of the phenomenon of superconductivity.
To be sure, by drawing on theoretical elements such as Gordon’s formula, Ginzburg
and Landau’s model ‘also depended partly on microscopic factors [… and]
employed their knowledge about fundamental theories; yet nobody considered their
model as fundamental’ [4, p. 1262].

Instead of attempting to either deduce a model from fundamental theory or
identify a fundamental causal mechanism, the Ginzburg-Landau model draws lib-
erally on general thermodynamic results and relations, combining them with an
eclectic mix of theoretical tools in an attempt to reproduce a number of macroscopic
properties, ranging from the general shape of the phenomena (e.g. the Meissner
effect) to specific features such as the characteristic penetration depth and coherence
length. Just how much the phenomenological approach of Ginzburg and Landau’s
model was held against it, can be seen from the initial disapproval it received from
more theory-minded physicists:

Why in 1950 did it take such a long time for the Ginsburg-Landau theory to be recognized?
[…] Well, there is quite a good reason for this. […] It was that in the Ginsburg-Landau
theory the parameter κ […] is determined by the penetration depth and by certain other
parameters such as the transition temperature. The penetration depth in London theory,
which the Ginsburg-Landau theory incorporates, is fixed by the number of superconducting
electrons and their mass. In other words, the penetration depth is a fundamental parameter
according to London. […] But Ginsburg and Landau implied that when you alloy a
superconductor, making the mean-free-path shorter, the penetration depth increases and κ
changes because the fundamental parameters which go into the theory change. I found that
quite unacceptable. [5, p. 8]

Even though the Ginzburg-Landau model offered a ‘prepared description’ of the
phenomenon of superconductivity—that is, it succeeded in ‘presenting the phe-
nomenon in a way that will bring it to the theory’ [6, p. 133]—and even today is
seen by some as ‘a more fruitful theoretical representation to understand and to
predict the features of superconductivity and superconductive materials’ [4,
p. 1256], it lacks the grounding in fundamental theory that many physicists con-
tinue to regard as key to a full theoretical explanation. As Pippard recounts, the
successes of the phenomenological Ginzburg-Landau model came to be accepted

(Footnote 4 continued)

paper with Mauricio Suárez, the position she and her collaborators defend has sometimes been
misinterpreted as an outright rejection of any constraining role of theory, when in fact it only
asserts ‘that theories function as tools, not as sets of models already adequate to account for the
startling phenomena that reveal their power’ [32, p. 66].
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only once they had been reproduced using the microscopic BCS model: ‘It was
only, I think, when Gorkov produced from the Green’s function treatment of the
B.C.S. theory an explicit demonstration of how the microscopic parameters could
be interpreted, that the Ginsburg-Landau theory fell into place.’ [5, p. 9] By con-
trast, in the case of high-Tc superconductivity, physicists ‘are still very far from
having a generally agreed microscopic model’, yet ‘substantial progress has been
achieved’ in using Ginzburg-Landau-type models ‘to calculate the observable
electromagnetic properties’ [7, p. 134], attesting to the power of the phenomeno-
logical approach.

3.2.2 Bardeen, Cooper, and Schrieffer’s Microscopic Model

What prompted theoretical physicists, notably John Bardeen, to renew their efforts
to develop an alternative to the phenomenological Ginzburg-Landau model by
pursuing a theoretically grounded microscopic model, was the experimental con-
firmation, in 1950, of the so-called isotope effect. The phenomenological models so
far, from the Londons’ two-fluid model onwards, had all assumed that supercon-
ductivity was a purely electronic phenomenon. The isotope effect, however, showed
that the critical temperature at which electrical resistance vanishes depends strongly
on the isotopic mass of the substance, which is a characteristic of the atoms in the
crystal lattice. This suggested that the crystal lattice somehow had to be involved in
bringing about the superconducting state.

Two theoretical ideas preceded, and drove, the formulation of the microscopic
BCS model of superconductivity. First, it was shown that electrons, which would
normally repel each other, may under certain conditions experience an attractive
force when in a crystal; second, as Cooper demonstrated, electrons with opposite
momentum can form correlated pairs (now known as ‘Cooper pairs’), allowing
them to interact with each other via phonons, thereby changing their individual
momenta without varying the total (zero) momentum of the electron pair.5 This
mode of interaction, in the presence of the lattice potential, may lead to an overall
decrease of total potential energy that is greater than the increase in kinetic energy
associated with the electrons’ moving about in the crystal (thus carrying an electric
current). In other words, the ground state of a system—that is, the state in which the
system is most energy-efficient—may correspond to a situation in which some
electrons move about freely in Cooper pairs, rather than each being bound to
individual atoms in the crystal lattice. If this is the case, the substance will display
superconducting behaviour.

The BCS model of superconductivity reflects this theoretical picture of how
electrons behave at the microscopic level in a superconductor, by modeling the

5For an insightful discussion of how the notion of ‘electron pairing’ developed over time, see [28,
pp. 140–145].
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behaviour of the system as a whole as the collective effect of a small number of
mechanisms, each of which is represented by a separate theoretical model. These
are then to be added up to form the overall Hamiltonian (after [8, p. 1179]):

H ¼
X
k[ kF
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Thus, one finds contributions to the Hamiltonian that represent the movement of
all electrons through the crystal potential field, the Coulomb repulsion between
electrons (partially ‘screened off’ by the positive lattice ions), as well as the
phonon-mediated electron–electron interaction. The first two contributions are not
specific to the BCS model of superconductivity: all conduction electrons in a metal
(‘Bloch electrons’) have a certain kinetic energy, associated with their movement,
and experience a periodic lattice potential. Likewise, all electrons in close proximity
to one another will experience some degree of mutual Coulomb repulsion; how
much of it is screened off depends on the geometry of the lattice. The geometry of
the crystal lattice is itself an important, though sometimes overlooked, ingredient of
the model: after all, each of the additive terms of a quantum many-body
Hamiltonian is itself the sum over all entities involved in the process in question;
however, which particles we need to sum over depends partly on the stoichiometry
of the crystal lattice.

It is in the last term of the Hamiltonian, which specifies an effective (indirect)
electron–electron interaction, that genuinely new content enters the BCS model.
Unlike the screened Coulomb potential, this electron–electron interaction does not
arise from any properties the electrons have either intrinsically or because of
immersion into a uniform crystal; rather, it arises from dynamic interactions
between electrons and phonons. The fundamental idea is that an electron passing
through a crystal deforms the lattice in its immediate neighbourhood. In the for-
malism of quantized lattice phenomena, deformation is represented microscopically
as the absorption or emission of phonons (corresponding to the intensity of par-
ticular normal modes of vibration). A second electron passing by may then ‘reg-
ister’ this lattice deformation and react to it. This results in an effective—indirect,
phonon-mediated—electron–electron interaction, which is independent of the usual
Coulomb interaction and, therefore, need not be repulsive. Indeed, it is the emer-
gence of an attractive indirect electron–electron interaction that is credited with
bringing about the formation of Cooper pairs which, on the BCS model, are the
microscopic basis of the phenomenon of superconductivity.

Taking a theoretical picture of a possible causal mechanism as its starting point,
the BCS model thus proceeds constructively, drawing on theoretical resources to
model the imagined processes separately, rather than aiming for a ‘prepared
description’ of the phenomenon per se.

50 3 Strategies and Trade-Offs in Model-Building



3.2.3 How Phenomenological is the BCS Model?

Earlier, in Sect. 3.2.1, I mentioned that contrasting the Ginzburg-Landau and the
BCS models would lead to the conclusion that the extent to which a model may be
deemed ‘phenomenological’ is a matter of degree. The discussion so far has made
clear that, both in terms of their aims and strategies, the two approaches differ
considerably. Where the Ginzburg-Landau model aims at capturing the macro-
scopic phenomena in a way that makes them amenable to mathematical analysis,
the BCS model conjectures microscopic mechanisms, which are then modeled
using the complete apparatus of many-particle theory, in the hope of finding
behaviour in the model that will map onto the observed phenomenon. Whereas the
Ginzburg-Landau model is closely tied to empirical phenomena and is able to
reproduce, and give meaning to, two characteristic lengths—the correlation length
and the penetration length—the BCS model, like other quantum many-body
models, offers little to go on in terms of easily accessible empirical content. Its
component parts are theoretical representations of posited fundamental mecha-
nisms, which may or may not be related to macroscopically observable quantities.

One might think that, in light of this prima facie dissociation between the
phenomenon—superconductivity, with all its attendant empirical aspects—and the
piecemeal nature of the BCS Hamiltonian, whose components are determined by
theoretical fiat, adherents of the phenomenological approach might turn up their
noses at the BCS model. Not so. Its saving grace, from the viewpoint of proponents
of phenomenological models, is the fact that the BCS model is not derived from
‘first principles’, i.e. from what purports to be fundamental theory. Talk of ‘first
principles’ (or, in the context of simulations, ‘ab initio’) is widespread among
condensed matter physicists, who use the expression in explicit contradistinction to
phenomenological approaches:

The first principles approach to condensed matter theory is entirely different from this. It
starts from what we know about all condensed matter systems—that they are made of
atoms, which in turn are made of a positively charged nucleus, and a number of negatively
charged electrons. The interactions between atoms, such as chemical and molecular
bonding, are determined by the interactions of their constituent electrons and nuclei. All of
the physics of condensed matter systems arises ultimately from these basic interactions. If
we can model these interactions accurately, then all of the complex physical phenomena
that arise from them should emerge naturally in our calculations. [9]

While the BCS model’s strategy may superficially resemble the first-principles
approach, in that it likewise assumes that all the relevant physics arises ultimately
from a small number of basic interactions—which therefore, in contrast to the
strategy of phenomenological modeling, need to be identified first, before one
attempts to reproduce the empirical phenomena—it is far more selective and con-
structive in the way it proceeds. In particular, there is no attempt to derive the BCS
Hamiltonians from ‘fundamental theory’, if by that one means the complete set of
coupled *1023 equations that a quantum mechanical representation of the solid
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would involve. Instead, the constituent parts of the model’s Hamiltonians are
conjectured ‘bottom up’, by an exercise of the modeler’s theoretical imagination.6

Furthermore, the components of the BCS Hamiltonian happen to correspond, by
and large, to a set of ‘basic interpretative models’ that have been studied inde-
pendently and are well-understood, both on theoretical grounds and from empirical
contexts [3, p. 264]. For adherents of the phenomenological approach such as
Cartwright, this renders them inoffensive, as they have proved their mettle in the
past by successfully describing empirical phenomena. Hence, basic interpretative
model Hamiltonians, such as the textbook examples of the central potential, scat-
tering, the Coulomb interaction, the harmonic oscillator, and kinetic energy, may be
considered an innocuous part of the background theory—in much the same way
that the Ginzburg-Landau model relies on background theories such as thermo-
dynamics and statistical physics. Indeed, Cartwright turns this concession into a
broader thesis about quantum theory itself which, she argues, ‘extends to all and
only those situations that can be represented as composed of central potentials,
scattering events, Coulomb interactions and harmonic oscillators’ (and possibly a
small number of others that may in due course be added to our ‘catalogue of
interpretative models’; [3, p. 265]). Only the use of those five or so stock examples,
Cartwright argues, is licensed by ‘bridge principles’ which help ‘make the pre-
dictions about what happens intelligible to us’ [3, p. 246]. Representative models
that tell us what happens in specific situations—for example, when superconduc-
tivity occurs—need to be built up from these basic interpretative models. As
Margaret Morrison puts it, on Cartwright’s view interpretative models are a way of
‘fitting out’ abstract theoretical principles ‘in more concrete form before repre-
sentative models can be built in a principled or systematic way’ [10, p. 68].

While I concur with Cartwright that theoretical ‘first principles’ can rarely be
applied straightforwardly to concrete situations, I disagree with her restrictive view
that only a handful of interpretative models (all of which have counterparts in
classical physics) are able to make quantum phenomena ‘intelligible’ to us.
Intelligibility is, of course, an important function of modeling; as Mieke Boon and
Tarja Knuuttila put it rather succinctly, ‘[m]odels are typically constructed in such a
way that they constrain the problem at hand […] thereby rendering the situation
more intelligible and workable’ [11, p. 695]. But intelligibility can be achieved in a
variety of different ways, and prior familiarity with classical counterparts is neither
necessary nor sufficient. For example, as we shall see in the next section (and in
more detail in Chap. 5, Sect. 5.2), mastery of a formalism—especially when the
latter is set up in a way that allows one to ‘build up’ more complex representations
from simpler ones—can equally contribute to the intelligibility of representational
models and to our understanding of how they relate to the specific situations at

6Because of the presence of parameters in the model that have not been derived from ‘first
principles’, the BCS model is sometimes classified as 'phenomenological' by physicists: ‘However,
[the BCS theory] must be considered as a phenomenological theory with respect to the use of an
“effective potential” which describes the Coulomb and phonon-induced interactions between the
electrons in a model.’ [34, p. 79].
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hand. In other words, intelligibility arises not just from being able to link a rep-
resentative model to an empirically and predictively successful interpretative
model, but also from theoretical integration and from ‘the presence of model
resources that can be manipulated’ by the model user [12, p. 29]. Yet, Cartwright is
adamant that ‘with each new case it is an empirical question whether these models,
or models from some other theory, or no models from any theory at all will fit’ [3,
p. 266]. Hence, even as proponents of phenomenological models on this occasion
defend the more theoretically-oriented approach of the BCS model, they insist that
specific knowledge of the target phenomenon, which the model is meant to render
intelligible, always trumps whatever theoretical reasons one might have for positing
specific mechanisms and modeling them separately.

3.3 The Hubbard Model: Constructing Many-Body
Models

The case of the Ginzburg-Landau approach and the BCS model, discussed in the
previous section, illustrates nicely how, even where models are part of the same
research programme, significant differences persist. Where the BCS model aimed to
specify theoretical models of the purported causal mechanisms operating at a
microscopic level in the superconductor, Ginzburg and Landau approached the
problem of superconductivity from a more global perspective, attempting to
account for features of the phenomenon itself rather than searching for causal
mechanisms at the quantum level. The BCS model, in this sense, is more theory-
driven than Ginzburg and Landau’s phenomenological model. Yet even within the
theory-driven paradigm of modeling, different types of approaches can be distin-
guished. The most ambitious such approach—deriving a model from ‘first princi-
ples’, i.e. by applying the underlying theory to the complete problem situation (e.g.
a solid consisting of *1023 interacting particles)—has already been mentioned, but
in most cases is simply not feasible. The BCS model is more typical: it stipulates a
limited number of causal mechanisms and gives a theoretical description of this
more restricted model system. The example to be discussed in this section, the
Hubbard model of strongly correlated many-body systems with itinerant electrons,
illustrates two further theory-driven approaches, which will be found to be com-
plementary. The first such approach simulates a ‘first-principles’ derivation, not for
the complete system (an extended solid), but only for its building-blocks (a cell
consisting of an atom and its nearest neighbours). The second approach proceeds
entirely constructively, in that it draws on the mature mathematical formalism of
many-particle physics to create—‘from scratch’, as it were—the relevant compo-
nents of the Hubbard Hamiltonian. As we shall see, this second approach casts
doubt on Cartwright’s insistence, already mentioned in the previous section, that
only Hamiltonians that are licensed by specific bridge principles linking them to
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empirical features of the problem situation, are legitimate candidates for quantum
many-body models.

The first approach takes as its starting point not the full theory of all *1023

particles in the solid, but instead begins from the smallest building-block of the
extended crystal, by considering the minimal theory of two atoms that are gradually
moved together to form a pair of neighbouring atoms in the crystal. One can think
of this way of constructing models as involving a thought experiment regarding
how a many-body system condenses from a collection of isolated particles. Such an
approach remains firmly rooted in ‘first principles’, in that the thought experiment
involving the two neighbouring atoms approaching one another is being calculated
using the full theoretical apparatus (in this case, the theoretical framework of
non-relativistic quantum mechanics). Needless to say, numerous background
assumptions and approximations need to be made in deriving the final model
equations, not least in order to capture aspects of the intended target system. For
example, it is assumed that the lattice potential is strong and the mobility of the
electrons small (though not zero, as otherwise no itinerant behaviour of the elec-
trons could be expected). With these assumptions in place, the many-body system’s
overall Hamiltonian can be approximated as the sum of the atomic (single-particle)
Hamiltonians, and the wave function as the atomic wave functions. This signifi-
cantly eases calculations, as the wave functions will then satisfy Bloch’s theorem,
which states that in a system with periodic lattice potential, the wave function
should be invariant with respect to translation (except for a phase factor). Assuming
further that the wave functions are highly localized, the effect that two neighbouring
particles have on each other as they are being moved closer together can be
approximated by neglecting higher-order terms, leaving as contributions only the
non-interacting part of the Hamiltonian and—in keeping with the idea that only the
basic building-block of the crystal should play a role—the most important inter-
actions between nearest neighbours.

In order to convey a sense of what the result of such a derivation from ‘first
principles’, restricted to neighbouring atoms in a unit cell, looks like, consider the
interacting part of the Hamiltonian Hee:

Hee ¼ 1
2

X
ijkl

vðij; klÞâyirâyjr0 âlr0 âkr

where the sum runs over neighbouring atoms. Much of the physics is contained in
the matrix element vðij; klÞ, which is constructed from atomic wave functions u:

v ij; klð Þ ¼ e2

4pe0

ZZ
d3r1d

3r2
u�ð~r1 �~RiÞu�ð~r2 �~RjÞuð~r2 �~RlÞuð~r1 �~RkÞ

~r1 �~r2j j

The matrix element bears a clear resemblance to the classical Coulomb potential,
F� q=ð4pe0 r1

!� r2
!�� ��Þ, but it also takes into account the quantum effects between

the two particles, as indicated by the ‘mixed’ integral. As a final step of
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approximation, it can be assumed that, because of the small overlap between atomic
wave functions centred around different lattice sites, the intra-atomic matrix ele-
ment U ¼ vðii; iiÞ will dominate. This also allows one to replace the mixed creation

and annihilation operators, âyi and âj, with the simple number operator n̂i ¼ âyi âi,.
Adding the result to the non-interacting part of the Hamiltonian, which accounts for
the movement of electrons from one lattice site i to another j (with the so-called
‘hopping integrals’ Tij indicating the likelihood of such movement), one arrives at
the final Hubbard Hamiltonian:

H ¼
X
ijr

Tijâ
y
irâjr þ

1
2
U
X
ir

n̂irn̂i;�r

Such ‘derivations’ of many-body models from ‘first principles’—with restrictions
and approximations as noted above, and often with considerable degree of hindsight
—are usually found in textbooks of many-body theory (e.g. [13]). However, while
such a derivation makes vivid which kinds of effects—e.g., single-particle kinetic
energy, particle–particle Coulomb repulsion, and genuine quantum exchange
interactions between correlated particles—may be expected to become relevant,
they are not the only way one can go about constructing a many-body Hamiltonian.
This is where the second kind of procedure in model construction—what I shall call
the formalism-driven approach—needs to be highlighted. Far more ubiquitous than
is commonly acknowledged, this approach helps itself to (physically interpreted)
mathematical formalisms as tools for the construction and interpretation of models.7

Considering mathematical models as the output of well-established formalisms,
rather than as either derived from theoretical first principles or tailored to specific
empirical situations, drives home the point that many models enjoy a considerable
degree of independence from specific experimental contexts, and even from
quantitative standards of accuracy.

On the account I am proposing, formalism-driven model construction relies on
the availability of a ‘mature mathematical formalism’, i.e. of ‘a system of rules and
conventions that deploys (and often adds to) the symbolic language of mathematics;
it typically encompasses locally applicable rules for the manipulation of its nota-
tion, where these rules are derived from, or otherwise systematically connected to,
certain theoretical or methodological commitments’ [14, p. 272]. In order to
understand how the formalism-driven strategy in model construction works, let us
return to the case under consideration, namely strongly correlated systems with
itinerant electrons. How is one to model the itinerant nature of conduction elec-
trons in such metals as cobalt, nickel, and iron? In order to answer this question,
the formalism-driven approach helps itself to an existing theoretical resource:
the quantum mechanical formalism of so-called creation and annihilation operators,

7Regarding the notion of ‘mathematical formalisms’, and their ubiquity across the sciences, see
[37].
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âyi and âj, which has its natural place in elementary particle physics, where particles
and anti-particles can be created and annihilated in particle collisions at extremely
high speeds. In many-body physics, creation and annihilation operators may refer to
the addition, or removal, of a single particle from the many-body quantum state.
Neither of these processes—total annihilation or creation ex nihilo of particles at
high energies, or the removal of an electron from a solid—can, however, be
assumed to take place in a metal, where electrons flow, rather than being destroyed
or removed. From the viewpoint of ‘fundamental theory’, therefore, turning to the
formalism of creation and annihilation operators is by no means an obvious choice.
Yet the formalism can be seamlessly adapted to model the behaviour of moving
electrons in a solid at room temperature (i.e. low energies): we simply need to posit,
as a further rule for applying the formalism to the case of electrons in a solid, that
creation and annihilation operators must never appear in isolation. Instead, an
annihilation operator acting at one lattice site must always be matched by a creation
operator acting at another lattice site. For, it is this sequence—disappearance of an
electron from one lattice site and reappearance at another—which reflects precisely
what itinerant behaviour of electrons is about in the first place: the unrestricted
movement of electrons from one place to another.

As this example shows, the formalism of creation and annihilation operators, in
conjunction with the basic assumption of preservation of particle number, already
suggests how to model the kinetic behaviour of itinerant electrons, namely through
the following contribution to the Hamiltonian:

Hkin ¼
X
ijr

Tijâ
y
irâjr

When the operator product âyi;râj;r acts on a quantum state, it first annihilates an
electron of spin σ at lattice site j (provided such an electron happens to be asso-
ciated with that lattice site) and then creates an electron of spin σ at another site i:
because electrons are indistinguishable, it appears, from within the formalism, as if
an electron of spin σ had simply moved from j to i. The value of the hopping
integrals Tij then simply determines the probability of occurrence of such electron
‘hopping’ from one place to another. In cobalt, nickel, and iron, the electrons are
still comparatively tightly bound to their associated ions, so hopping to distant
lattice sites will be rare. This is incorporated into the model for the kinetic beha-
viour of the electrons by including in the model the assumption that hopping only
occurs between nearest neighbours. The interacting part of the Hubbard
Hamiltonian can be derived even more straightforwardly: since the Coulomb force
will be greatest for electrons at the same lattice site (which must then have opposite
spins, σ and –σ, due to the Pauli exclusion principle), one can simply count—using

the number operator n̂ir ¼ âyirâir —whether this is the case for a particular lattice
site i, in which case the electron pair contributes U/2 to the overall energy:
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HCoulomb ¼
X
ir

U
2
n̂irn̂i;�r

Once again, the formalism of creation and annihilation operators itself suggests a
straightforward way to account for the Coulomb contribution to the Hamiltonian,
proving itself to be a powerful resource for model construction.

Formalism-driven model construction differs considerably from both
‘first-principles’ and phenomenological approaches. For one, it models the pre-
sumed microscopic processes such as hopping and Coulomb interaction separately,
adding up the resulting components and, in doing so, constructing a many-body
model ‘from scratch’, without any implied suggestion that the Hamiltonian so
derived is the result of approximating the full situations as described by the
underlying fundamental theory. Interestingly, Cartwright, whom we earlier found to
be tolerant towards the use of certain ‘basic interpretative models’ in the BCS
Hamiltonian, argues against what she calls a ‘mistaken reification of the separate
terms which compose the Hamiltonians we use in modelling real systems’.
Although Cartwright grants that, on occasion, such terms ‘represent separately what
it might be reasonable to think of as distinct physical mechanisms’, she insists that
‘the break into separable pieces is purely conceptual’ [3, p. 261] and that what is
needed are ‘independent ways of identifying the representation as correct’ [3,
p. 262]. For Cartwright, when modeling many-body systems, we face a stark
choice: either construct phenomenological models from the empirical ground up, in
a way that incorporates empirically observable regularities, or rely on the very
small number of independently licensed ‘stock interpretative models’ as building
blocks for more complex models. Only then do we have any assurance at all that
our attempts at model construction will be true to the world of phenomena: ‘When
the Hamiltonians do not piggyback on [its] specific concrete features […] then their
introduction is ad hoc and the power of the derived prediction to confirm the theory
is much reduced’ [3, p. 264].

To be sure, the formalism-driven approach often proceeds in disregard of
specific empirical phenomena and in this respect might be considered as remote
from Cartwright’s preferred level of description—the world of physical phenomena
—as the more ‘first-principles’-based approaches. It is also clear that reliance on a
formalism allows for greater arbitrariness. In the example at hand, a modeler can
simply decree, through the choice of operators, whether (and when) electrons
should flip their spins, which lattice sites they can move to, and so forth. But one
should not prematurely reject the formalism-driven approach for this reason alone,
just as one should not jump to the conclusion that it is simply an extension of
‘fundamental theory’. It is certainly true that the formalism-driven approach is not
theory-free. But much of the fundamental theory is hidden in the formalism: the
formalism, as we shall see at greater length in Chap. 5 (Sect. 5.2), may be said to
‘enshrine’ various theoretical, ontological, and methodological commitments and
assumptions. Furthermore, it seems hasty of Cartwright to dismiss as ‘a mistaken
reification’ the tendency of many-body physicists to interpret different components
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of their models as ‘picturing individually isolatable physical mechanisms’ [3, p.
261]; for, while such interpretations are necessarily tentative, they need not be
naïve: in many cases, it is because Hamiltonian parts can be interpreted literally,
drawing on the resources furnished by fundamental theory as well as by (inter-
preted) domain-specific mathematical formalisms, that they generate
understanding.

Rather than thinking of the formalism-based approach as drawing a veil over the
world of physical phenomena, shrouding them in a cocoon of symbolic systems,
one should think of formalisms such as the many-body operators discussed above as
playing a liberating role, by allowing for the exploration of a greater number of
potential processes and scenarios. (On the issue of model-based exploration, see
also Chap. 4.) While the formalism-based approach is not unique in its ability to
model selected aspects of complex systems (in particular, different co-existing
‘elementary’ processes), it does so with an especially high degree of economy,
thereby allowing the well-versed user of a many-body model to develop a ‘feel’ for
the model and to probe its properties with little explicit theoretical mediation.

3.4 Modeling Dynamic Populations: The Lotka-Volterra
Model

The models discussed so far were drawn from physics, more specifically: the
physics of quantum many-body systems. It would, of course, be misleading to think
that all forms of model constructions can be adequately illustrated by examples
drawn from just one branch of physics. However, my choice of examples was not
so much driven by a belief in the primacy of physics, let alone quantum many-body
physics, but rather by a desire to identify models and phenomena that occupy a
middle ground between fundamental theory and mere descriptions of phenomena,
either because of the complexity of the target system or because of uncertainty
about what the general shape of the phenomenon is in the first place, and what a
fundamental theory might look like for the domain in question. Solid-state phe-
nomena and models in condensed matter physics, by the lights of fundamental
physics, are already far removed from a direct application of fundamental theory—
if by that one means our current best account of, say, elementary particle physics.
Yet, obviously, this does not render the examples above any less heavily geared
towards physics. Not least in order to address this imbalance, the present section
will discuss an example from a rather different scientific discipline: population
biology.8

The model to be discussed is the Lotka-Volterra model of predator–prey
dynamics, which has its origins in empirical observations: in the aftermath of World

8Further examples from other disciplines, including theoretical chemistry and traffic flow theory,
will be discussed in Chap. 4.
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War I, Italian fishermen experienced lean years, even though most had anticipated
abundant catches, given that there had been comparatively little fishing during the
war years—which, people expected, should have given the fish populations time to
recover. When the biologist Umberto d’Ancona (1896–1964) examined the sta-
tistical data—the numbers of different species sold in the fish markets of Trieste,
Venice, and his hometown Fiume—he found that, during the war years, the per-
centage of predator species (such as sharks and other selachians) had trebled, at the
expense of traditional food fish species. In other words, the lack of fishing activity
during the war years seemed to have selectively benefited the predator species.
D’Ancona consulted his father-in-law, the mathematical physicist Vito Volterra
(1860–1940), who devised a set of equations from which it followed that, contrary
to what one might expect, some degree of fishing needs to be maintained in the
presence of predators, if one is to get the highest sustainable catches of desirable
food fish species.9

Mathematically, the Lotka-Volterra model consists of a pair of first-order,
non-linear, differential equations which are intended to mimic the population
dynamics of a two-species systems, with one species feeding on the other. More
specifically, it models the rate of change in each population as dependent on the
other, though not in the same way: For the prey—typically a fast-reproducing
species—the dominant effects are reproduction (proportionate to the existing pop-
ulation size) and mortality due to predation (proportionate to its own population
size and to that of the predator species); for the predator species, mortality is due to
a constant death rate, so the total number of deaths is proportionate to its population
size, while the total number of births is assumed to be proportionate to both its own
population size and to that of the prey which, after all, sustains the predators. This
gives rise to the following equations (with x standing for the size of the prey
population, y for the number of predators, t for time, a for the prey’s birth rate, b for
the predator’s death rate, and α, β positive coefficients representing the effect each
population has on the other):

dx
dt

¼ x a� ayð Þ

dy
dt

¼ y bx� bð Þ

Because of the way the two populations are coupled, plotting the size of the
predator and prey populations over time leads to a remarkable finding: both pop-
ulations will oscillate indefinitely, with the predator population lagging slightly
behind in time and the prey population overshooting more dramatically (see

9A few years before, in 1920, Alfred Lotka (1880–1949) had published essentially the same set of
equations, though Volterra apparently had no knowledge of Lotka’s work. For the original articles,
see [38, 39].
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Fig. 3.2). There is no stable equilibrium that would withstand even slight pertur-
bations (which, of course, would inevitably occur in the wild).

Each ‘cycle’, in the world of the Lotka-Volterra model, follows the same pattern:
When there are few predators, the prey population will increase rapidly, even as the
predator population begins to recover, which in turn will grow until it begins to
bring down the total number of prey, even below the number that would be required
to sustain the (now increased) predator population.

Michael Weisberg aptly characterizes the Lotka-Volterra model as an example of
target-directed modeling. This strategy of modeling involves three distinct ele-
ments: ‘development of the model, analysis of the model, and targeting the model to
a real-world system’ [15, p. 74]. Though conceptually distinct, these elements need
not always be separated in practice and, in particular, should not be thought of as
always coming in temporally distinct stages. The Lotka-Volterra model is a good
illustration of how an initial concern for a specific target phenomenon guided (but
did not, in any strong sense, determine) the development of the model equations. As
Weisberg notes, ‘when Volterra first constructed the mathematical structure for the
Lotka-Volterra model, he had no previous biological models from which to work’
[15, p. 75]; in this sense, he proceeded ‘from scratch’, guided only by some basic
assumptions about the macroscopic dependencies between predator and prey spe-
cies. In other cases of target-directed modeling, scientists may borrow existing
structures and equations—not ‘any old structure’, but ‘a structure that has an
adequate representational capacity for their chosen target’ [15, p. 75]. In the
Lotka-Volterra case, the three components—model construction, analysis, and
targeting—were deeply intertwined: the target phenomenon, the unexpected
increase in the relative number of predators due to the lack of fishing, both led to the
search for a suitable mathematical model (thereby ‘fixing the target’) and was
subsequently recognized, through close analysis of the mathematical equations, as a
more general consequence of the dynamics of two-species predator–prey systems.
This is why, beyond Volterra’s initial target phenomenon, biologists now speak
more generally of Volterra’s principle, according to which a uniform reduction of
both populations, proportional to their total number, will lead to an increase of the

Fig. 3.2 Predator-prey cycles
as modeled by the Lotka-
Volterra equations
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average prey population and a decrease of the average predator population. While
model construction, analysis, and targeting proceeded largely simultaneously in this
case, the three elements can, on occasion, come apart. As we shall see in Chap. 4,
this may give rise to certain types of exploratory modeling, such as when a model’s
mathematical (or other) characteristics imbue it with superior potential represen-
tational capacity. In such cases, a model may be ‘in search of a target phenomenon’,
so to speak, and the same model equations may find unexpected applications across
a range of different domains and disciplines.

3.5 The Question of Trade-Offs: Origins of the Debate

As mentioned in the introduction to this chapter, Levins argued that the models
used in population biology were subject to inescapable constraints, insofar as
certain theoretical desiderata—notably generality, precision, and realism—cannot
simultaneously be maximized. This places significant restrictions on what indi-
vidual models in population biology can achieve. For example, if one tailors a
model exactly to a particular ecosystem, by including in detail all operative causal
mechanisms (e.g., the various predator-prey relationships) as well as precise mea-
surements of significant parameters (e.g., of reproduction rates and the nutritional
needs of each species), this will inevitably restrict the generality of the model—if
successful, it will pick out one, and only one, real target system in the world. This
suggests that the theoretical desiderata of generality, precision, and realism ‘trade
off’ against one another.

Levins’s claim that not all three desiderata can be optimized simultaneously
leads to a natural classification of modeling strategies into three types, depending on
which desideratum ‘loses out’ in the process of optimizing the other two. In type I
cases, the ecologist tailors her model to the specific empirical detail and causal
mechanisms of a particular system, thereby sacrificing generality for realism and
precision. In type II modeling, by contrast, realism is sacrificed for precision and
generality; models of this type are characterized by ‘general equations that give
precise outputs, but involve unrealistic idealisations and assumptions’ [16, p. 325].
Type III models, finally, sacrifice precision for generality and realism; while such
models do not lend themselves to making quantitatively precise predictions, they
are thought to be true to the dominant causal relationships that exist in the general
class of systems whose behaviour they are meant to explain. Though precision,
realism, and generality are all equally considered to be desiderata of modeling, it is
the latter—type III models—that Levins is often thought to have promoted (cf. [17,
p. 1273]). This may have been more than just a personal preference, in that Levins
found it important to rehabilitate generality and realism against a perceived
overemphasis on precision as the ultimate goal of model-building in his own dis-
cipline, population biology. Indeed, as Peter Taylor puts it:
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Levins’ strategy is, in effect, an advocacy of exploratory modeling as a means of theory
generation. I take this to be the meaning of his favoring generality and realism at the
expense of precision. [18, p. 202]

As we shall see in Chap. 4, exploration is an often overlooked function of
scientific modeling, and exploratory modeling, in spite of the diversity of forms it
can take, is an activity that is quite distinct from target-oriented modeling.

Why might one expect the simultaneous maximization of precision, realism, and
generality to be unattainable in a domain like population biology? There are two
main types of reasons. The first is the result of practical and technical limitations,
which constrain our ability to maximize all three desiderata; the second is due to
features of the target system itself, which may, for example, make it impossible to
arrive at suitable generalizations. Consider first what it would take to construct, and
evaluate, type I models that aim at representing ecosystems in their full complexity.
Such models would involve ‘perhaps 100 simultaneous partial differential equa-
tions’ [1, p. 421], each with numerous parameters, to be obtained from lengthy field
studies. Even if it were possible to obtain accurate measurements of the relevant
parameters, Levins argues, the resulting equations would be ‘insoluble analytically
and exceed even the capacities of good computers’ [1, p. 421]. Furthermore, in
those rare cases where solutions might be within reach, interpreting the results
might still be beyond the cognitive capacity of finite human reasoners. As Jay
Odenbaugh has argued, the fact that we have difficulty making sense of compar-
atively simple models does not bode well for the interpretation of complex, ‘pho-
tographically perfect’ models [19, pp. 1498–1499].

A second set of considerations stems from general characteristics of the target
system itself. In order to better appreciate which features of a system may be
relevant to the question of trade-offs, let us briefly look in particular at the trade-off
between precision and generality.10 In certain cases it is immediately obvious that
this trade-off cannot be blamed on issues of feasibility and lack of information
alone: for example, if one specifies the parameter values that go into a mathematical
model more precisely, then it will trivially pick out fewer possible target systems.
Conversely, by relaxing one’s standards of precision, a larger set of possible target
systems may be accommodated by the model. However, as Weisberg [20] has
argued, this inverse relation between precision and generality, strictly speaking,
only holds if generality is measured by how many logically possible target systems
a model picks out. Such ‘p-generality’ is conceptually distinct from ‘a-generality’,
which is measured by how many actual target systems a model applies to. It is
obvious that the two can come apart: many logically possible target systems can be
excluded on the basis of background knowledge about what the world is like, and
any loss of p-generality that is due to the exclusion of such ‘unphysical’ (or
otherwise uninstantiated) possibilities is not going to make any difference in actual
contexts of empirical inquiry. The extent to which the intuitive trade-off between
p-generality and precision translates into an actual trade-off between a-generality

10My presentation in this paragraph mainly follows [20, pp. 1075–1079].
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and precision depends, Weisberg argues, on the homogeneity of the set of target
systems the model is intended to apply to, as well as on the scope of inquiry—i.e.,
which aspects of the target system(s) are deemed relevant.

In contexts of actual scientific inquiry, the costliness of the—otherwise largely
abstract—trade-off between precision and generality is thus determined by the
degree of heterogeneity within the set of intended target systems: the more
heterogeneous a class of target systems, the more difficult it will be to simultane-
ously increase precision and generality, for example by subsuming a range of target
systems under one and the same model-based account. Levins likewise notes that,
for population biologists today, who work under the evolutionary paradigm of
selective pressures being exerted on organisms by the environment, ‘environmental
heterogeneity is an essential ingredient of the problems and therefore of our
mathematical models’ [1, p. 422]. Conversely, when dealing with highly homo-
geneous sets of target systems, increases in precision need not greatly affect gen-
erality, since the systems are similar in all relevant respects. Nothing in science, of
course, is more similar than identical elementary particles. As John Matthewson
argues:

It is possible to model the behaviour of electrons very precisely and generally, because they
all have the same properties. But it is not possible to model the behaviour of any particular
type of ecosystem both precisely and generally, because ecosystems vary with respect to
many of their important properties. [16, p. 331]

The lack of homogeneity in the case of biological entities, especially complex
entities such as ecosystems, is reflected by the relative dearth of law-like general-
izations in biology. While physics and, to a large extent, chemistry rely heavily on
purported laws of nature, most biological ‘laws’ describe overall empirical patterns
that typically allow for exceptions. To be sure, there are some biological regularities
such as the Hardy-Weinberg principle, which states that, absent specific distur-
bances, the allele and genotype frequencies in a population remain constant.
However, such biological laws typically either supervene on factors, such as
evolved genetic mechanisms, that are themselves contingent (in ways that rele-
vantly contrast with, say, physics), or apply at the systems level (e.g., ecoystems or
idealized populations) rather than, with nomic force, at the object level of individual
organisms.11 Whereas an electron always responds to an external magnetic field in
precisely the same way, organisms are complex adaptive systems that often exhibit
a range of possible reactions to external stimuli. In addition, how a biological entity
behaves often depends on its past exposure and responses; its trajectory is
path-dependent. Examples include learned behaviour at the individual level and
genetic drift at the species level. As we shall see in the next section, it is this
evolvability of biological systems which is sometimes thought to render the exis-
tence of trade-offs a distinctive feature of biological models.

11Spelling out exactly how biological and physical ‘laws’ contrast with respect to universality,
nomic force, or scope lies beyond the scope of this chapter. For a review of the debate about
biological laws, see [35].
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3.6 Trade-Offs as a Demarcation Criterion?

Talk of ‘trade-offs’, at least in relation to desiderata of theoretical models, is not as
widespread in physics as it is, for example, in population biology. A quick search in
physics databases reveals that the term is mostly used to refer to trade-offs between
accuracy (of computer simulations and other calculations) and ease of computation,
due to limited computational resources, not to trade-offs at the level of abstract
desiderata of models as such. The relative sparsity of references to theoretical
trade-offs in other disciplines has not gone unnoticed by philosophers of biology.
Thus, Steven Orzack and Elliott Sober note:

It is of relevance that claims about trade-offs similar to Levins’s have not, to our knowledge,
arisen in physics and chemistry. [21, p. 544]

As discussed in the previous section, there are good reasons for expecting
biological models to be especially prone to trade-offs. These have to do with the
status of biological entities as evolved objects which exhibit variation,
path-dependency, and adaptability. As Matthewson argues, this is what sets biol-
ogy, and population biology with its emphasis on relations between (evolved)
species in particular, apart from other branches of science:

The requirement of ‘variation that leads to important downstream effects within a popu-
lation’ does not arise in the other natural sciences. So population biology specifically deals
with ensembles of entities that must be heterogeneous, in a way that does not arise in
chemistry or physics. [16, p. 332]

It might seem, then, that the presence or absence of trade-offs in model-building
might be considered a demarcation criterion of sorts between the physical sciences,
which (to borrow a phrase from Orzack and Sober; [21, p. 544]) have the ‘potential
for generality’, and disciplines such as ecology, population biology, and evolu-
tionary theory, which cannot ignore the evolved, heterogeneous nature of their basic
objects of investigation.

It would be wrong, however, to assume that the idea of trade-offs is wholly
absent from physics and chemistry. Indeed, scientists in both disciplines are well
aware of the theoretical choices that are forced upon them by the existence of
unavoidable trade-offs. Daniela Bailer-Jones, in a series of interviews, has
attempted to document how scientists think of models. While the sample size is too
small to allow for wholesale generalizations, it is nonetheless striking that those of
Bailer-Jones’s interviewees who hint at ‘trade-off’-like characteristics in scientific
modeling all have a background in condensed matter physics, broadly construed as
comprising both its ‘hard’ (solid-state physics) and ‘soft’ (granular media, surface
physics) variety. John Bolton, one of the solid state theorists among her intervie-
wees, is described as relating ‘the missing predictive accuracy of models with the
insights provided by a model—insight compensates for lack of detail’ [22, p. 286].
In Bolton’s own words:
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[S]ometimes getting, I suppose, a possible match to reality is not everything. What you are
looking for is an understanding of what’s happening in nature, and sometimes a simple
model can give you that, whereas a very large computer program can’t. (Quoted after [22,
p. 286].)

The sentiment that Bolton expresses in this quote stems, of course, from pre-
cisely the trade-off identified in the previous section: between the empirical success
of one’s models (as measured, amongst others, by their predictive accuracy) and the
sense of understanding that comes with generality. The idea that accuracy—espe-
cially in situations where access to knowledge and (computational) resources is
limited—may trade off against the explanatory goal of identifying the fundamental
mechanisms that drive the system under investigation, is echoed by other inter-
viewees. Thus, Nancy Dise observes that ‘because you are limited by time and
money and by your knowledge of the system you take what you believe are the
most important drivers of that process’, which are then included in the model.12

Notwithstanding the very real differences between biological entities and the
fundamental entities of physics, in terms of both evolvability and heterogeneity, it
may nonetheless be worth exploring alternative interpretations that do not start from
presumed ontological differences between the research objects of various scientific
disciplines, but instead look at differences in scientific practice in order to explain
why trade-offs have been more salient in one discipline rather than another. For
example, the relatively ‘benign’ nature of trade-offs in physics, as opposed to their
salience and limiting consequences in ecology and population biology, might also
be seen as a by-product of the general tendency of physicists to focus on com-
paratively homogeneous systems which can be characterized by the same small
number of parameters across a wide range of situations. Arguably, most systems
traditionally studied by physics do not exhibit the sort of ‘path-dependence’ and
evolvability of biological systems. Yet it is not immediately obvious to what extent
this preference is necessitated by fundamental facts about physical reality in general
or simply by a preference of physicists to direct their attention at systems that
display just the kind of homogeneity that we have come to expect from physics.
This is not to say that homogeneity and heterogeneity are merely in the eye of the
beholder: clearly, the world needs to cooperate in various ways for a researcher to
be able to ignore issues of ‘evolved uniqueness’ when it comes to a target system or
its constituents, thereby enabling her to treat the system as homogeneous. In some
cases, homogeneity occurs naturally, as in the case of lattice systems such as
crystals, where symmetry allows for the rare macroscopic expression of the
underlying microscopic uniformity among constituent parts. In other cases, for
example a population consisting of members of the same species, heterogeneity
among its members is the norm, and homogeneity can at best be enforced artifi-
cially—e.g. via cloning—and only with considerable effort. These are the kinds of
systems that biologists have long been accustomed to, whereas physicists in the past
have tended to study systems of the former kind. But as experimental and

12Quoted after [22, p. 285].

3.6 Trade-Offs as a Demarcation Criterion? 65



computational abilities have advanced over time, there is no in-principle reason
why physicsts should not also turn their attention to systems of the latter kind.

In the case of biology, it is the heterogeneity of biological entities which explains
why they resist law-like generalizations; the heterogeneity itself is explained, in
turn, by their status as evolved objects. Evolution and evolvability are the driving
forces behind it: after all, one of the important realizations of the synthetic theory of
evolution is not only that no species is quite like any other, but that no two
subpopulations of the same species will typically behave in quite the same way.
Ultimately, it is the evolved uniqueness of particular systems that gives rise to the
overall heterogeneity among them. In contemporary condensed matter physics, the
traditional focus on analyzing highly homogeneous systems—describing macro-
scopic phenomena basically as perturbations (of various sorts) of ordered systems
that lend themselves to description in terms of law-like generalizations—has
increasingly given way to a broader perspective that includes systems that are
heterogeneous in ways that resemble the situation in biology. This includes such
systems as granular media, quasi-crystals, or colloids, where the symmetries that
assure homogeneity among target systems are broken. Granular media are known to
exhibit phenomena such as hysteresis, whereby the behaviour of the system is
path-dependent: it then becomes impossible to predict, at a macroscopic level, a
system’s future behaviour without knowledge of its past history. As a result, sys-
tems that appear to be in the same macroscopic state may well behave quite dif-
ferently, depending on the trajectories by which each arrived in this state. While this
is still a far cry from the evolutionary path-dependence of biological systems, it
does introduce an ‘historical’ element into the study of physical systems, thus
increasing their heterogeneity. As a result, increases in the ability to model and
predict the specific behaviour of such systems may come at the expense of gen-
erality, given that models now need to be individuated by, and tailored to, their
initial conditions and causal histories, not merely in terms of their macroscopic
properties or a set of basic mechanisms that are thought to drive their behaviour.

Whereas path-dependence means that systems can no longer be classified on the
basis of their macroscopic descriptions alone, the final example I wish to discuss
appears to dispense with the idea of classes of target systems altogether—at least to
the extent that it no longer regards it as the primary goal to explain the actual
behaviour of a specific system as an instance of a general class of target systems.
The example I have in mind concerns so-called ‘fingerprint effects’ in mesoscopic
systems, which manifest themselves as ‘time-independent stochastic magnetore-
sistance patterns’, which ‘vary between samples but are reproducible (at a given
temperature) within a given sample’ [23, p. 1039]. It is thought that such
‘magneto-fingerprints’ arise as the joint effect of, on the one hand, disorder and
impurities and, on the other hand, the fact that quantum interference in mesoscopic
systems acts over a characteristic length much larger than the size of an atom. As a
result, each sample of a material will have its own—experimentally reproducible,
yet theoretically unpredictable—“fingerprint-like” behaviour (see [24, p. 171]). It is
important to emphasize the experimental reproducibility of these ‘magnetic fin-
gerprints’, since—unlike in the case of thermal fluctuations—the seemingly chaotic
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behaviour does not ‘average out’ over time but is ‘frozen in time’, as it were.
Magneto-fingerprints are unusual—and quite unlike traditional statistical features of
complex systems—in that their shape and form is determined not, as it were, by a
given system’s membership in a larger reference class of like systems, but instead
by the brute atom-by-atom particularity of the specific sample in question.

Due to this novel combination of empirical replicability with sample-specificity,
magnetic fingerprints are genuinely new characteristics that can also be exploited
technologically. Thus, physicists have developed nano-scale transistors that bear
‘unique fingerprint-like device-to-device differences attributed to random single
impurities’; the same group emphasizes the ‘critical need’ [25] to model such
fingerprint-like behaviour. It is clear that no model of the unique ‘fingerprint-like’
behaviour of a specific target system can possibly generalize to another sample
(unless the two are microscopically one and the same). The case of
magneto-fingerprints is but one example of a broader trend in physics, as techno-
logical and computational advances make it increasingly possible to analyze matter
at ever greater resolution, allowing researchers to identify highly localized,
sample-specific—yet individually reproducible—regularities that previously would
have been either dismissed as ‘noise’ or regarded as idiosyncracies of a given
experimental setup, standing neither in need of explanation nor much chance of
being accounted for by one’s models. Not just biological organisms, but matter
itself—at least in its condensed form—may thus come to be recognized as ulti-
mately consisting of individually unique and collectively heterogeneous assem-
blages, whose behaviour it may only be possible to predict accurately on a
case-by-case basis, by sacrificing some of the generality of explanatory models for
the ability to describe (and eventually exploit) the material constitution and
sample-specific characteristics of systems at the nano-scale.

3.7 Models in the Context of Application

Thus far in this chapter, we have encountered a number of examples which—
notwithstanding their specific idiosyncracies—are representative of more general
approaches to scientific modeling: phenomenological models, causal-microscopic
models, target-directed models, and so forth. In any sustained research programme,
and especially in applied contexts, different approaches will typically coexist, so
one should not expect particular instances of scientific modeling to fit one and only
one category. This, once again, reflects the fact that scientific models may serve a
number of different functions, each of which has its own set of theoretical
desiderata. As the discussion of trade-offs in population biology (and, perhaps more
controversially, in nanophysics) has shown, it is often not practical, and sometimes
impossible, to simultaneously maximize all desiderata. For example, if the model
user’s goal is to make precise quantitative predictions, this will trade off against the
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—otherwise equally legitimate—goal of providing a general account that would
subsume multiple targets under the same model. Given that the choice of theoretical
desiderata depends on the interests and goals of the model user, the example of
trade-offs already suggests that a full understanding of scientific models requires
attention to the varying contexts of their application.

Yet the importance of applied contexts runs deeper than the question of
trade-offs alone. For example, being aware of the relevant context of application is
crucial to judging whether or not a model is sufficiently well-confirmed. This
applies especially to situations that require time-sensitive decision-making. As
Sandra Mitchell has argued, the traditional model of waiting until one has nearly
complete information, and then basing one’s future actions on predictions that
reflect ‘objective (or consensual) probability assignments’ on its basis—what she
calls the ‘predict-and-act model’ of decision-making—has its limitations, for,

in cases of complex systems, it may very well be that waiting until there is agreement of
confidence in the quantitative probability assigned to possible outcomes is unreasonable.
For example, we may be waiting until it is too late to act to avoid seriously undesirable
consequences. [26, p. 89]

Models in contemporary climate science are a case in point. Such models, no
doubt, serve a representational function: they represent the Earth’s climate system
and its underlying processes. Yet, given the urgency of global climate change and
the need for policy-relevant advice, it would be foolish to aim for a complete
representation of all the possibly relevant processes and mechanisms—especially
when this might mean postponing indefinitely the creation of a workable
model. What is called for, in this particular instance of a ‘context of application’—
arguably, one of global significance—is not a perfect representation of the Earth’s
climate system in its full complexity, but a more pragmatic sense of
‘adequacy-for-purpose’ [27]. Yet, as Wendy Parker notes,

adequacy-for-purpose does not work like truth and empirical adequacy [in regard to
empirical fit]; from the assumption that a model is adequate for an explanatory or predictive
purpose, information about how the model is likely to perform in various other respects, or
information about what other properties the model is likely to possess, does not simply
follow as a matter of course. [27, p. 238]

In other words, rather than aiming for a model that reflects every available detail
of the target system, it may be preferable to have a model that makes adequate
predictions primarily of those features that matter to us—say, changes in rainfall
patterns in agriculturally productive parts of the world—even if it misrepresents
other parts of the target system as a whole. Needless to say, such an approach raises
difficult epistemological questions: for example, it will often be far from obvious
how we can extrapolate from variable X (for which, let us assume, the model has
been optimized from the start) to variable Y (which, although related to X by some
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causal process, was not initially the focus of achieving adequacy-for-purpose). This
is why testing and cross-checking of complex models is of eminent importance,
both at the process level and at the level of system-wide predictions.13
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Chapter 4
Exploratory Uses of Scientific Models

4.1 Model-Based Understanding and the Tacit Dimension

In the popular imagination, the main goals of science include giving explanations,
making predictions, applying its findings in instrumentally successful ways, and
generally furthering our understanding of the world around us. Unlike explanation,
prediction, and instrumental success, however, scientific understanding has tended
to be sidelined in 20th-century philosophy of science. To a large extent, this was the
result of the logical empiricist emphasis on objective criteria for assessing science,
such as empirical testability and logical form. Carl Hempel’s distinction between
scientific explanation and scientific understanding is a good case in point.
Whereas Hempel believed that explanation could be construed rigorously and
objectively, namely along the lines of his famous deductive-nomological (D-N)
model—according to which the explanandum is to be logically deduced from
premisses containing at least one universal law—understanding, according to
Hempel, necessarily involves a subjective element: the feeling of grasping a deeper
connection between the explanandum and the explanans. On this view, ‘under-
standing in the psychological sense of a feeling of empathic familiarity’ and sci-
entific understanding ‘in the theoretical, or cognitive, sense of exhibiting the
phenomenon to be explained as a special case of some general regularity’ [1,
p. 413] needed to be strictly separated; best, then, to dispense with the notion of
understanding and its psychological overtones altogether.

Such wholesale dismissal of the notion of understanding on the part of the
epistemic subject was by no means uncontroversial. Even at the time, it was met
with significant criticism. Thus, Michael Scriven criticized Hempel’s account for
unjustifiably neglecting the importance of ‘context, judgment and understanding’,
insisting instead that ‘understanding is not a subjectively appraised state any more
than knowing is; both are objectively testable and are, in fact, tested in examina-
tions’ [2, pp. 196/176]. Others have sought to develop positive accounts of sci-
entific understanding that would both respect its distinctiveness as an aim of science
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and satisfy the demands of objectivity. The main two approaches along these lines
are unificationism, pioneered by Michael Friedman and Philip Kitcher, and Wesley
Salmon’s causal-mechanistic approach. According to the former, explanations
increase our understanding if they succeed in providing a unified account of a
greater range of different phenomena; according to the latter, ‘to understand why
certain things happen, we need to see how they are produced by these mechanisms’
[3, p. 132]. In recent years, it has become more acceptable to take scientific practice
at face value, along with judgments and pronouncements concerning scientific
understanding as an aim of science.1 This turn towards the pragmatics of scientific
understanding takes as its starting point the way scientists typically invoke the term
‘scientific understanding’ when they evaluate scientific models and theories, and
thus renders its philosophical analysis closer to actual usage. However, as critics
have urged, it is not always clear that the role of ‘understanding’ in science is
substantively different from the more traditional business of devising scientific
explanations. Perhaps what has been called ‘scientific understanding’ is merely a
psychologically salient way of relating to scientific explanations, in the manner of
an ‘aha experience’. Thus, Michael Strevens has defended what he calls ‘the simple
view’, according to which an individual ‘has scientific understanding of a phe-
nomenon just in case they grasp a correct scientific explanation of that phe-
nomenon’ [4, p. 510]. Others have doubted whether we should set much store by
the mere feeling of understanding, even if we grant that such feelings may well be
‘the phenomenological mark of the fulfilment of an evolutionarily determined
drive’ [5, p. 300] for seeking explanations. As Anna Alexandrova and Robert
Northcott put it rather memorably: ‘We know better than to look for orgasm to
make sure that reproduction happened. Similarly, we should know better than to
look for “aha” feelings to make sure that actual explanation happened’ [6, p. 266].
These are valid concerns, and we will address the limitations—and dangers—of
equating scientific understanding with a merely professed sense of understanding in
the final section of this chapter. For the moment, given that our main interest is in
scientific models (rather than in scientific understanding per se), an informal
understanding of the term ‘scientific understanding’ will suffice for bringing out the
multiple functions and uses of models in scientific inquiry.

Peter Godfrey-Smith notes that, where scientific modeling is pursued
self-consciously—that is, in a manner characterized by ‘its own skill-set, subcul-
ture, and language’—what one tends to find is ‘scientific elaboration and formal-
ization of a more general and psychologically deep capacity for model-based
understanding’ [7, p. 729]. Indeed, the thought that understanding in science is
deeply connected with scientific models has a long ancestry, going back at least to
William Thomson, who declared: ‘It seems to me that the test of “Do we or do we
not understand a particular subject in physics?” is, “Can we make a mechanical

1For recent collections of papers on the problem of scientific understanding, see [57, 60].
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model of it?”’2 [8, p. 111] In the case of model-based understanding in science, one
needs to further distinguish between our understanding of the model (considered
qua representational vehicle, e.g. as a set of mathematical equations) and our
model-based understanding of the target system. Sang Wook Yi puts this nicely
when he writes that understanding the model ‘involves, among other things,
exploring its potential explanatory power using various mathematical techniques,
figuring out various plausible physical mechanisms for it and cultivating our
physical intuitions’, and that only ‘[a]fter we understand a model, we may employ
the model to understand its target phenomena in the world’ [9, p. 89]. It is clear
from this characterization that understanding a model is not purely a matter of
theoretical knowledge, but also requires skill—for example, in the case of mathe-
matical models, the ability to derive new results or identify interesting limiting
cases. This coheres well with recent analyses of scientific understanding more
generally, which have begun to acknowledge the role of skill and tacit knowledge in
generating understanding. For example, de Regt maintains that understanding a
scientific theory T requires the ability to ‘recognize the qualitative consequences of
T without performing exact calculations’ [10, p. 33].

This tacit dimension of model-based understanding is sometimes loosely
described as developing ‘a feel for’ the model (and, by extension, for the behaviour
of its target system). Drawing on Michael Polanyi’s notion of personal knowledge,
Theodore Kisiel gives an apt characterization of this locution, which enjoys con-
siderable currency among scientists in general:

In the vernacular, it is a matter of “getting a feel for” nature in the way science currently
comes in contact with it. This tacit knowledge can only be conveyed by practice and from
practicing scientists, through whom the novice assimilates the subliminal premises of his
science. These premises weave the framework within which all of his scientific assertions
are made, and yet, for this very reason, they themselves cannot be asserted. [11, p. 270]

When it comes to models, this language is often employed in connection with
instances of manipulation or simulation. As Manfred Stöckler puts it: ‘[S]imulations
help to develop a “feeling” for the decisive features of higher-level description’ [12,
p. 365]. By simulating a model’s behaviour in time, one may get a feeling for how
sensitive a model is to changes in the initial conditions; by varying other param-
eters, one may be able to get a sense of what kinds of real-world scenarios or
phenomena a model can represent. Simulation, however, is but one way to develop
‘a feel for’ a model. Manipulation, too, is often a good way of deepening one’s
understanding of a model. Such manipulation may be physical—for example, when
we try out possible molecular configurations using a material ball-and-stick model

2It is worth keeping in mind that the term ‘model’, as discussed in Chap. 1 (Sect. 1.2), used to have
a more restrictive meaning, referring primarily to mechanical models, with other models com-
monly referred to as ‘analogies’.
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—or it may be symbolic, as when we explore chemical configurations using
structural formulas.3 As Mary Morgan puts it succinctly, ‘representations only
become models when they have the resources for manipulation’ [13, p. 27]. What
this suggests is that, beyond their explanatory, predictive, and instrumental per-
formance in specific empirical contexts, models often possess significant internal
resources that allow for a more exploratory mode of interacting with them.

4.2 On the Notion of ‘Exploration’

Exploration, in common parlance, is first and foremost an activity: an ‘explorer’ is
someone who sets out to traverse as yet uncharted territory or—in an age that no
longer knows any blank spots on the map—seeks to navigate difficult terrain, for
example by climbing a mountain. Historians used to speak of the ‘Age of
Exploration’ and the ‘Age of Discovery’, using the terms virtually synonymously to
refer to the era of European global exploration from the 15th century onwards. One
might conclude from this usage that exploration is simply an activity that aims at
the discovery of new facts, with the term ‘exploration’ designating a behavioural
pattern and ‘discovery’ referring to a new epistemic advance in our cognitive state.
Unlike the concept of scientific discovery, however, the various kinds of explo-
ration that precede such discoveries have not, so far, received systematic attention
from philosophers of science.

Unlike philosophers, psychologists—especially developmental psychologists,
and those studying motivation, attention, and interest—along with scholars in
education have attempted to devise a taxonomy of different types of exploratory
behaviour. In his seminal book Conflict, Arousal and Curiosity (1960), Daniel
Berlyne distinguished between specific and diversive exploration [14]. Specific
exploration is a set of behaviours in response to a novel or unexpected stimulus;
that is, it is stimulus-oriented. Some such behaviours may, of course, be reflexive—
such as blinking and turning one’s head in response to a sudden puff of air across
the side of one’s face. Other behaviours may include focusing one’s attention on an
incongruity in what one perceives, trying to resolve the incongruity by rehearsing
learned behaviours, physically manipulating a new object, or engaging in more
theoretical strategies of focused investigation. Though behavioural psychologists
have tended to study specific exploration in terms of their subjects’ response to
environmental stimuli—where relevant attributes include incongruity, novelty, and
change in the presentation of external objects—similar considerations apply to other
problem situations. For example, we may also focus our attention on a salient
theoretical question, explore ways of completing a mathematical proof, or attempt
to resolve an ambiguity in meaning by trying out different interpretations.

3For a discussion of mature symbol systems as a form of ‘“cognitive scaffolding”, which allow
their users to “offload” or “externalize” cognitive load’, see [33, p. 59].

74 4 Exploratory Uses of Scientific Models



Understood in this way, specific exploration converges upon a specific question,
fact, detail, or ‘missing link’. This contrasts with a divergent sense of ‘explo-
ration’—one that is not directed at a specific object, question, or stimulus, but is
response-oriented, in that the cognitive subject seeks novelty or surprise for its own
sake. Such diversive exploration aims less at finding answers and more at relieving
boredom; ranging over an open-ended (thematic or spatial) domain, a subject
engaging in diversive exploration may hit upon surprising findings, perhaps acci-
dentally, but may quickly lose interest and move on—or, alternatively, may latch on
to a narrower set of questions and switch to a mode of specific exploration.

Interestingly, this dual character of exploration is reflected in the etymology of
the term. According to the Oxford English Dictionary [15, p. 575], the verb ‘to
explore’, in its earliest usage dating back to the late 16th century, has the meaning
‘to investigate, seek to ascertain or find out (a fact, the condition of anything)’, and
relatedly, ‘to look into closely, examine into, scrutinize’. This closely mirrors the
convergent character of specific exploration. From the 17th century onwards,
however, ‘to explore’ has taken on a second meaning, namely ‘to search into or
examine (a country, a place, etc.) by going through it: to go into or range over for
the purpose of discovery’—that is, a meaning much closer to diversive exploration.
To be sure, exploration in this sense need not be solely driven by a desire for
diversion, or relief of boredom, but it tends to be less focused and less constrained.
Although there is a tension between the two senses of exploration—inasmuch as it
is hard to see how one could simultaneously be focusing on a specific set of
particulars and traversing a potentially open-ended domain—they may also be
thought of as complementary. As we saw earlier, it is via diversive exploration that
a subject may latch on to a specific set of questions and switch to a more specific
mode of investigation. In the case of science, diversive exploration may be an
excellent general tool for the generation of hypotheses, the more promising of
which may then be investigated in more detail. The researcher may then switch to a
mode of specific exploration by investigating the consequences of particular
hypotheses, either theoretically or by conducting an experiment.4

As we shall see in the remainder of this chapter, experimentation and modeling
both have important exploratory uses. Just as an experiment does not always serve
the function of testing a theory, neither does a model always have to render an
empirical phenomenon amenable to subsumption under a pre-existing theory. While
traditional analyses of modeling may give us a good enough grasp of the various
functions of models in situations where the underlying theory cannot be applied
directly, an analysis of its exploratory uses is needed to account for situations where
an underlying theory is unavailable, or where—as James Clerk Maxwell put it—it
is essential ‘to avoid the dangers arising from a premature theory’ [16, p. 159].

4This is one of the reasons why experimentation and exploration are not mutually exclusive;
drawing a contrast between ‘the experimental’ and ‘the explorative’ gives rise to a number of false
dichotomies, of the sort found in [59, p. 191].
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4.3 Exploration and Experimentation

The importance of exploration to science has recently been emphasized by a
number of historians and philosophers of science writing on scientific experimen-
tation. Based on historical case studies from 19th century research on electro-
magnetism, Friedrich Steinle has described exploratory experimentation as a
research activity that is ‘driven by the elementary desire to obtain empirical regu-
larities and to find out proper concepts and classifications by means of which those
regularities can be formulated’; such activity typically occurs in periods or problem
situations where ‘no well-formed theory or even no conceptual framework is
available or regarded as reliable’ [17, p. S70]. Exploratory experimentation, as
Steinle sees it, is marked by an elaborate intertwining of experimental intervention
and concept formation—that is, of action and meaning. Unlike in the case of testing
—which has traditionally been regarded by philosophers as the main function of
carrying out an experiment—exploratory experimentation aims not just at bringing
about a well-defined observable change in the world, but also serves as a testing
ground for new, yet to be stabilized concepts. As a result, ‘the process of forming
and stabilizing the [new] conceptual framework’ [17, p. S72] may take considerable
time and effort, and exploratory experimentation is seen as playing a key role in this
process.

While Steinle’s examples are mainly drawn from the physical sciences, other
authors have come to similar conclusions on the basis of examples from the bio-
logical and social sciences. Richard Burian, in a paper published the same year as
Steinle’s, studied the exploratory character of the histochemical techniques
employed in the work of the Belgian biochemist Jean Brachet (1909-1988); like
Steinle, Burian notes the existence of a mode of experimentation in situations
which, at a theoretical level, are at best ‘partially understood’. The main goal, in
such cases, is once again stabilization—in this case: ‘stabilization of the protocols
for locating particular molecular species and for identifying, and reidentifying the
molecules thus localized’, and rendering them ‘relevant to the experimental and
theoretical analyses of such other investigative traditions’ [18, p. 42] as may be
available, without subsuming them under any one theoretical framework in par-
ticular. Writing from the perspective of the social sciences, Uljana Feest emphasizes
that the link between experimentation and concept formation works both ways: in
disciplines like psychology, proposing operational definitions of concepts, however
tentatively, may be a precondition for meaningful experimentation. As Feest notes,
‘operational definitions function as tools for the generation of empirical evidence in
a given domain, but they are themselves gradually refined, stabilized, and validated’
[19, p. 185]. Concepts may thus themselves play an exploratory role in enabling the
experimental study of empirical phenomena. In spite of such differences in
emphasis, most contributors to the debate agree that exploratory experimentation,
even though it is constituted by ‘a bundle of different experimental strategies’ [17,
p. S73], is nonetheless a distinct mode of experimental research in the absence of
fully-formed scientific theories about the domain in question. C. Kenneth Waters

76 4 Exploratory Uses of Scientific Models



summarizes this nicely, when he writes that ‘the aim of exploratory experiments is
to generate significant findings about phenomena without appealing to a theory
about these phenomena for the purpose of focusing experimental attention on a
limited range of possible findings’ [20, p. 279] (italics original).

In order to make vivid just how exploratory experimentation differs from
theory-driven experimentation, it may be instructive to consider a historical
example. For this purpose, I shall draw on Steinle’s discussion of how various
researchers in the 1820s and 1830s made early forays into the study of electro-
magnetic phenomena, but will limit myself to his example of the work of Michael
Faraday (1791–1867). Unlike many of the more prominent scientists at the time,
Faraday did not have an academic education in the sciences, but was largely
self-educated. Following Hans Christian Ørsted’s discovery, in 1820, that a com-
pass needle would be deflected from its position by a nearby electric current, many
established scientists had only grudgingly come around to the idea that electricity
and magnetism were not separate classes of phenomena. The reason for this
reluctance, as André-Marie Ampère put it in a letter to Jacques Roux-Bordier in
February 1821, was ‘Coulomb’s hypothesis on the magnetic effect; everybody
trusted this hypothesis as if it were a fact; it denied any possibility of interaction
between electricity and magnetism’.5 Faraday, in an act of what Steinle calls
‘tentative, but well-directed, theoretical speculation’ [17, p. S68], reckoned that
Ørsted’s findings might be reversed: if electricity had been found to act on mag-
netism, perhaps magnetism in turn could act on electricity. Faraday attempted
various experimental set-ups, and in doing so ‘tried to facilitate and to enhance the
expected effect, for example by winding up the wire into coils or by using soft iron’,
which by then was known to be highly effective in electromagnets. Finally, in
August 1831, Faraday settled on the design of an induction ring:

Two coils are wound on different sides of a massive iron ring. At the moment when one of
them is connected to a battery, one can detect a short pulse current in the other, which is
connected to the galvanometer. Since there is no electric conduction between the two coils,
Faraday inferred that the effect was due to [magnetic] induction. [17, p. S68]

Interestingly, Faraday’s design appears to be driven as much by the desire to
demonstrate a (positive) link between electricity and magnetism as by the (negative)
need to rule out electric conduction as a possible cause of any effects that might be
observed in the second coil. Though, at the time, no theoretical framework was
available for how one should interpret the observed effect of magnetism on elec-
tricity, the experiment was designed to demonstrate an expected effect. In this
regard, the induction ring experiment contrasted with another of Faraday’s exper-
iments, conducted two months later, which he deemed ‘truly elementary’:

A wire was bent into rectangular form. A sensitive galvanometer was integrated in one of
the longer sides. During the experiment, this side remained fixed. Every time the other side

5Quoted after [48, p. 351]. The French original is: ‘…elle est dans l'hypothèse de Coulomb sur la
nature de l'action magnétique; on croyait à cette hypothèse comme à un fait; elle écartait absol-
ument toute idée d'action entre l'électricité et les prétendus fils magnétiques’ [49].
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was moved such that it crossed the direction of the earth’s magnetic dip, a current was
induced in the circuit. [17, p. S68]

Unlike in the earlier case of the induction ring, which was designed to
demonstrate a predicted—though, from the vantage point of physical theory, still
problematic—effect, the second experiment came ‘after intense experimental
activity’, during which ‘Faraday systematically varied a lot of parameters of the
arrangement such as the direction of motion (relative to the magnetic dip), the mode
of motion (e.g., various parts of the circuit or the circuit in its entirety), the form of
the circuit, and so on’ [17, p. S68]. Such simultaneous variation of different
parameters, following the realization that there was a causal link between mag-
netism and electricity, contrasts with the former case, given that the induction ring
is ‘a rather fixed device which does not allow many variations, either in the
arrangement, or in the experimental outcome’ [17, p. S69]. In this sense, the
induction ring experiment—although temporally prior—may be regarded as less
exploratory in character than the subsequent investigation that led to Faraday’s
‘truly elementary’ experiment.6

While the absence of a fully-developed underlying theory is often crucial to the
activity of exploratory experimentation, it would be misleading to think of explo-
ration as entirely theory-free. For one, in devising experiments, one typically needs
to be able to rely on significant background knowledge, including background
theories. While these need not be overtly about the specific phenomena one is
exploring, they may inform one’s interpretation of the results and one’s experi-
mental design. Second, as Kevin Elliott has noted, theory often ‘plays the role of a
starting point or a “foil” in the exploratory process’ [21, p. 327]—as it did in
Faraday’s case, when he took the potential reversibility of Ørsted’s findings as his
starting point. One way to think of the way in which expectations—guided by
theoretical background knowledge, but without thereby aiming at the testing of
scientific theories—may shape experimental activity is in terms of David Gooding’s
notion of construals. The term ‘construal’, according to Gooding, is meant to draw
attention to its dependence ‘on the context of action (in a way the word “inter-
pretation” does not)’. On this view, construals ‘are to the experience of processes
what ostensive definition is to naming entitities and properties’; they order ‘phe-
nomena into an intelligible form’ and ‘enable an ascent from the immediate and
concrete world’, thereby creating ‘communicable representations of new experience
and at the same time integrat[ing] these into an existing system of experimental and
linguistic practices’. Importantly, ‘a construal cannot be grasped independently of
the exploratory behaviour that produces it’ [22, p. 87]. Not only does this speak to
the significance of exploration as a precursor to theorizing, it also broadens the

6Both experiments were exploratory, insofar as no firm theoretical foundation was available at the
time; therefore, an alternative interpretation might consider the first experiment—which aimed at
demonstrating the existence of a causal link—an instance of ‘convergent’ exploration, whereas the
second experiment, with its simultaneous variation of different parameters, might be considered as
a case of ‘divergent’ exploration.
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notion of exploration itself to include various strategies that may be deemed
theory-laden. Steinle includes the following in his list of typical methodological
‘guidelines’ for exploratory experimentation:

• varying a large number of different experimental parameters,
• determining which of the different experimental conditions are indispensable,

which are only modifying,
• looking for stable empirical rules,
• finding appropriate representations by means of which those rules can be for-

mulated […] [17, p. S70].

However, beyond the demand that exploratory experimentation must not be
driven by theory, there is no need to exclude theoretical considerations altogether
from this list. Rather, as Elliott puts it, it may be best to think of exploratory
experimentation as ‘an attempt to study a phenomenon using as many tools and
techniques as possible so as to understand it more fully and to gain more solid
epistemic access to it’ [21, p. 328].

4.4 Exploratory Models

Once it is acknowledged that exploratory strategies are not limited to experimen-
tation, but are a feature of scientific practice more generally, one can try to apply the
idea of exploration to the case of scientific models. It is worth emphasizing,
however, that extending the above discussion to scientific models is not as simple
and straightforward as one might think. For one, not all strategies of exploration are
equally interesting and informative. Consider the first in Steinle’s list of strategies
for exploratory experimentation: simultaneously varying a large number of different
parameters. For the experimenter who intervenes in nature and explores the
dynamics of the target system through causal means, variation of experimental
parameters requires skill and, when successful, constitutes a great achievement. For
models, this need not be the case: variation of parameters, for example in the case of
mathematical models, may come too cheaply. When dealing with a set of poly-
nomial equations, one can independently vary the coefficients in a largely arbitrary
way—yet such a scanning of the parameter space is exploratory at best in a generic
sense. It may have its place in scientific inquiry, in that it may enable preliminary
curve-fitting (e.g. as a first step towards model-building), but it may not be the best
—or even the most typical—way of generating understanding or granting more
solid epistemic access to a target phenomenon. Variation of parameters in a model
is by no means always trivial: not all models are mathematical in character, and
varying the parameters of a material model—e.g., its size, geometry, density, or
material constitution—is more akin to carrying out an experiment than it is to
changing the value of mathematical coefficients. It is important, however, to remain
alert to the differences between experimentation and modeling, and to survey those
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exploratory strategies that afford specific insight into the practice of scientific
modeling.

Scientists themselves have occasionally commented on the exploratory character
of much of what goes under the heading of scientific modeling, though they have
typically done so in passing and without much concern for conceptual rigour. Thus,
while the following examples are intended to convey a sense of why scientists turn
to models as exploratory tools, this descriptive approach can only be a first step
towards a theory of exploratory modeling; a more systematic account of the
exploratory uses and functions of models will be given in the next section. As a first
example from scientific practice, consider how John H. Holland, a computer sci-
entist and pioneer in research on genetic algorithms, describes how exploratory
models shed light on ‘complex phenomena in terms of a limited set of mechanisms
and constraints’. As he sees it, such models often suggest ‘“places to look” for
salient phenomena, regularities hidden in complex data, etc.’ and, over time, may
‘take on aspects of an existence proof or predictive model’ [23, p. 25]. Holland
refers to a group of theoretical ecologists around Joan Roughgarden who have
discussed the exploratory character of modeling under the label of ‘minimal models
for ideas’. As they see it, ‘a minimal model for ideas is intended to explore a
concept without reference to a particular species or place’ [24, p. 26]. Most early
models in theoretical ecology, they claim, were of this type. These models were not
intended to be applied to specific target systems in the real world, let alone to make
testable predictions. Examples include the Lotka-Volterra models of predator–prey
dynamics and the logistic equation, which mimics, in a qualitative way, the
speed-up and slow-down of population growth in an environment with limited
resources. Roughgarden et al. [24] contrast the notion of a ‘minimal model’ with
that of a ‘synthetic model for a system’, which synthesizes a great deal of ecological
knowledge, including descriptive detail about the system’s components, into a
model that aims to be an empirically adequate representation of a specific target
system.7

Interestingly, the term ‘minimal model’ has also caught on in the theory of phase
transitions, where it is used to describe a model that, as the theoretical physicist
Nigel Goldenfeld puts it, ‘most economically caricatures the essential physics’ [25,
p. 33]. As in theoretical ecology, minimal models in physics are not intended to be
faithful representations of any target system in particular, but are meant to allow for
the exploration of universal features of a large class of systems; indeed, as Robert
Batterman notes, ‘[t]he adding of details with the goal of “improving” the minimal
model is self-defeating—such improvement is illusory’ [26, p. 22]. In the social
sciences, too, exploring general features and relationships may take precedence
over representing specific target systems or phenomena—even if this is not widely
recognized. As Daniel Hausman laments, ‘few writers on economic methodology

7Whereas early minimal models tend to derive their dynamics from system-level equations,
modern synthetic models in contemporary theoretical ecology tend to be ‘bottom-up, representing
many small spatial units or individuals and their behavior’, with their ‘system dynamics emerg
[ing] from the interaction of the components’ [36, p. 367].
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recognize that the activities of formulating economic models and investigating their
implications are a sort of conceptual exploration’; instead, ‘most mistakenly regard
these activities as offering empirical hypotheses’ [27, p. 115].8

As these examples show, scientists are ready to acknowledge the exploratory
role of modeling, yet this acknowledgment is not usually followed up by a more
detailed analysis of exploratory strategies and their specific functions. Among
philosophers of science, the overall picture is similarly sketchy. While scientific
models and the activity of modeling are rarely explicitly described as ‘exploratory’,
a number of authors have recognized functions of models that deserve this label, or
have proposed accounts that can accommodate exploratory uses of scientific
models. As an example of the former, consider William Wimsatt’s defence of ‘the
deliberate use of false models as tools to better assess the true state of nature’ [28,
p. 132]. Several of the potential uses that Wimsatt identifies for false models may,
in fact, be best accounted for by acknowledging their exploratory character:

An oversimplified model may act as a starting point in a series of models of increasing
complexity and realism. […] A false model may suggest the form of a phenomenological
relationship between the variables [… Such a model may serve] to generate new predictive
tests of or to give new significance to features of an alternative preferred model. [28,
pp. 104–105; 127]

By framing his discussion in terms of the truth or falsity of models, Wimsatt
risks obscuring what it is that makes some false models more successful than others:
namely their suitability for exploratory purposes.9 That idealization and abstraction
render most models literally false as representations of a specific target system is,
after all, a widely acknowledged feature of scientific modeling; what calls out for an
explanation, then, is the continued success of some—by representational standards:
egregiously—false models, while many other (‘truer’) models fall out of favour. As
an early example of a general account that can accommodate exploratory uses of
scientific models, we can turn to Mary Hesse’s analogical view of models (see
Sect. 1.2). Recall that Hesse distinguishes between negative, neutral, and positive
analogy, depending on whether the model’s properties differ from, may turn out to
be in common with, or are in fact shared with the target system. While the negative
part is typically disregarded, it is precisely the neutral part of the analogy that
allows us to arrive at novel insights about the target system by exploring what

8Hausman’s account of modeling as a form of conceptual exploration, however, is weaker than
what I have in mind: as Uskali Mäki observes, on Hausman’s account, ‘a model as such contains
no truth claims about the world, it is rather a definition of a predicate given by the assumptions of
the model’ [56, p. 15]; only theoretical hypotheses about the applicability of model to particular
situation are truth-valued. I agree with Mäki that this insulates models too much from potential
challenges arising from the realist concern with truth.
9Michael Redhead seems to entertain a similar idea when he suggests that, ‘[b]y exploring models
[…] for a theory T we can probe how approximations AM to the model M […] misrepresent M and
the true behaviour of M as opposed to AM can now be used as a guide how to T behaves’ [54,
p. 153].
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follows from the model that isn’t already included from the outset in the positive
analogy.10

An interesting, and unusually detailed, take on exploratory modeling was pro-
vided by the ecologist Peter J. Taylor in a short article that focused on the ‘different
ways we revise models and thereby contribute to theory generation’ [29, p. 122].
Taking mathematical models in biology as his starting point, Taylor argues that
some theoretical tools function merely as a schema, in that they focus our attention
on certain relevant processes or constraints—e.g., in the case of the logistic
equation, population growth and limitations on available resources. However,

if the schema can be expressed in a mathematical formulation, the model becomes what I
call an exploratory tool. It can be explored systematically as a mathematical system, e.g.
how does the system’s behaviour change as its parameters change or become variables, as
time lags are added, and so on? Such mathematical investigation may help us derive new
questions to ask, new terms to employ, or different models to construct. [29, p. 122]

While such a model may occasionally fit the observations associated with a
specific empirical phenomenon, such observational fit—at this stage of ‘theory
generation’—is neither necessary nor sufficient. As Taylor insists, only if ‘inde-
pendently of that fit there is evidence for its accessory [background] conditions,
then we are justified in acting as if the model represented the biological relations
that generated the observations, i.e. in accepting the model as a generative repre-
sentation’ [29, p. 122]. Echoing Batterman’s point regarding the futility of adding
more empirical details to minimal models in physics, Taylor notes that revision of
exploratory models ‘is not necessarily directed at tightening the [empirical] fit of a
model; it may run a gradient from attempting to expand acceptance of the model to
attempting to disturb acceptance’ [29, p. 123]. The exploratory use of models may
thus itself become a tool of persuasion—which, as we shall see in the final section
of this chapter, is not without its own problems.

While mathematics is not the only representational format that enables explo-
ration, it is perhaps significant that a number of authors have independently argued
that mathematics—whether considered in a wholesale manner as mathematics-
at-large, or in the form of locally applicable (e.g. discipline-specific) ‘mature
mathematical formalisms’ [30]—is especially suited for this purpose. Contrasting
the use of schematic flow charts with more explicit mathematical models in a 1933
essay by the economist Ragnar Frisch (1895–1973), Morgan writes that, ‘[i]n the
[visual] schema, there are resources that can be reasoned with, but they can not be
manipulated in such a way’ as to generate deeper understanding. Though rich in
content, the format of visual flow charts inhibits systematic exploration of the
model’s consequences. By contrast, when the model is cast in mathematical form,

10On this point, see [58, p. 119]. While Bailer-Jones is one of the few philosophers of science to
explicitly state that models provide ‘material for exploration’ (ibid.), she appears to regard
exploration as mainly associated with an understanding of models as metaphors; this, it seems to
me, does not do justice to the specific character of model-based exploration discussed in the
present chapter.
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‘[t]he equations have less content in the sense that there are fewer elements and
causal links, but the form (or language) of that content (equations) enables the use
of a deductive mode of manipulation so that Frisch can reason mathematically
about the nature of the business cycle’ [13, pp. 29–30]. Traditionally, one of the
main advantages of mathematical reasoning in science has been thought to be the
fact that it is truth-preserving; yet, in addition to this general desideratum, mathe-
matics also affords exceptionally well-developed theoretical and symbolic means
for manipulation and conceptual exploration. This allows for diverse ways of
model-building, while at the same achieving ‘integration of [the various] ingredi-
ents in such a way that the result—the model—meets certain a priori criteria of
quality’ [31, p. 94]. Mathematics, in this regard, is not merely an auxiliary tool for
applying fundamental theories to specific empirical situations or phenomena.
Rather, as Mary Hesse puts it, ‘any particular piece of mathematics has its own
ways of suggesting modification and generalisation’ which, in turn, may take the
place of the more traditional ‘pointers towards further progress’ (such as the easy
visualizability of mechanical models). [32, p. 200] While mathematics thus affords
considerable potential for exploration, whether or not its exploratory use in mod-
eling will lead to overall scientific progress also depends on the presence, or
absence, ‘of a scientific community whose members are skilled in applying and
modifying models and theories, and which, collectively, is able to arrive at deter-
minations regarding the fruitfulness (or “progress”) of new theoretical proposals’
[33, p. 57].

4.5 The Uses and Functions of Exploratory Models

So far, our discussion of the exploratory potential of models has been entirely
general, with examples cited mainly as precedents or for illustrative purposes. In the
present section, I aim to give a more systematic account of the exploratory uses and
functions of scientific models. In particular, I shall identify four distinct functions
that models often serve in exploratory research: they may function as a starting
point for future inquiry, feature in proof-of-principle demonstrations, generate
potential explanations of observed (types of) phenomena, and may lead us to
assessments of the suitability of the target. These functions are neither mutually
exclusive, nor are they thought to exhaust the exploratory potential of models. They
do, however, represent the spectrum of exploratory uses to which models may be
put, which ranges from what one might call ‘weak’ uses—such as taking a model as
a ‘starting point’, for want of a better alternative—to ‘stronger’ (e.g. explanatory)
uses, which may result in greater understanding or lead to a reformulation of the
initial research question. Let us discuss each of the four functions in turn.
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4.5.1 Exploratory Models as Starting Points

In his list of potential uses of ‘false models as means to truer theories’, Wimsatt lists
as the first example cases where a model ‘may act as a starting point in a series of
models of increasing complexity and realism’ [28, p. 104]. Perhaps because he
deems this the most basic among the twelve types of uses of false models he
distinguishes, Wimsatt neither provides an example nor elaborates on how the
falsity of a model affects its suitability as a starting point for a series of more
realistic models. Perhaps the thought is simply that, in the absence of a firm grasp of
the underlying theory or mechanism, model-based inquiry—if it is to get off the
ground—has to begin somewhere and that, at such an early stage, questions con-
cerning the model’s truth or empirical adequacy would be premature. If this is the
case, however, then it would perhaps be more accurate to say that a model’s
suitability for exploratory purposes may, in the early stages of inquiry, outweigh its
truth or empirical adequacy. In other words, whether a model is true or false—
which, in the early stages of inquiry, may be impossible to judge, given the lack of a
good theoretical measure—it may nonetheless serve as a tool for exploration by
providing a starting point for future inquiry, which may then lead to increasingly
realistic and sophisticated models. One might worry that this renders too many
models ‘exploratory’, simply in virtue of their being used as a starting point of
inquiry. But recall that, as in the case of experimentation, exploratory modeling is a
distinct research activity only inasmuch as it takes place in the absence of a
fully-formed theoretical framework, even while aiming at gaining more solid
epistemic access to a phenomenon (or class of phenomena). Hence, a physicist who
sets out to construct a model of the mathematical pendulum, based on the
well-known theoretical principles of Newtonian physics, would not (normally) be
considered as engaging in exploratory modeling. Likewise, merely fitting a para-
metric equation or curve to observed data, or sifting through measurements by
means of sophisticated mathematical techniques such as nonlinear system identi-
fication, need not be considered exploratory—unless it is matched by an equal effort
to improve our understanding of the system in question, i.e. by an attempt to peer
into the ‘black box’, as it were. Exploratory modeling neither simply applies fun-
damental theory nor limits itself to aggregating (or accommodating) observational
data, but typically involves a constructive effort at model-building.

As an example of exploratory modeling that serves as a starting point in a series
of increasingly realistic models, consider car-following models of traffic flow.11

Whereas early models of traffic flow were sometimes inspired by analogies with
fluid dynamics in physics, there exists no readily available underlying fundamental
theory of how human-operated vehicles behave at a collective level. While some
basic constraints, such as the definition of a vehicle n’s velocity as
vnðtÞ ¼ dxnðtÞ=dt, carry over from physics, other assumptions familiar from phy-
sics, such as uniform acceleration, do not apply. Acceleration, in particular, will

11For a detailed account of the evolution and timeline of traffic flow models, see [50].
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depend on a variety of factors, such as roadway conditions, the drivers’ preferred
maximum speed, their tendency to ‘close the gap’ with the car in front, their
reaction time, and so forth. This gives rise to a great latitude in potential ways of
modeling traffic flow, both in terms of relevant factors and in terms of mathematical
methods. For example, should the model be time-continuous or should it involve
discrete time steps? This might depend on whether one sees traffic flow primarily as
vehicular motion or as a series of decisions by the driver to brake or accelerate. It is
no surprise, then, that the history of early car-following models is marked by a great
deal of exploration of relevant factors and relationships. Louis Pipes, in 1953, was
the first to model the position xn�1 of the leader in terms of the position of its
follower n and his safe following distance: xn�1 ¼ xn þ dþ Tvn þ lvehn�1, with d the
distance between the two vehicles at rest, lvehn�1 the length of the car in front, and Tvn
the (velocity-dependent) ‘legal distance’. The model captures the idea that traffic
flow is determined by the dynamic between each vehicle and its follower but, apart
from a few obvious geometrical constraints (e.g. length of the vehicles), makes
minimal theoretical assumptions. Subsequent models went on to elaborate, and
modify, various components of Pipes’s elementary model. Thus, Eiji Kometani and
Tsuna Sasaki (1961) introduced a time lag τ to reflect the reaction time needed for
the follower to adjust his speed in response to the vehicle in front. Finally, fol-
lowing a series of modifications to render the basic model more realistic, Peter
Gipps refined car-following models by assuming that each driver ‘travels as fast as
safety and the limitations of the vehicle permit’ [34, p. 108] and defining various
coefficients accordingly. While there has been much theoretical refinement in the
study of traffic flows in the meantime, along with a proliferation of mathematical
and numerical approaches, the early car-following models are a good example of
how exploratory models can, in a non-trivial way, serve as a starting point in a
series of models marked by increasing realism and sophistication.

4.5.2 Exploratory Models and Proof-of-Principle
Demonstrations

A second important exploratory use of models concerns their deployment in
proof-of-principle demonstrations. The expressions ‘proof of principle’ or ‘proof of
concept’ originate from the engineering sciences, where they refer to prototypes or
designs that showcase the feasibility, in principle, of a manufacturing process,
mechanism, or method, according to certain stated criteria of success. In an anal-
ogous way, exploratory models often feature in proof-of-principle demonstrations.
There are at least two ways in which the notion of ‘proof of principle’ may be
understood in this context. First, a model may establish, by way of its own example,
that a certain type of approach or methodology is able to generate potential rep-
resentations of a target phenomenon. Second, a model may propose a specific
mechanism or process that, once it has been modelled and its consequences have
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been explored, is found—‘within the world of the model’ [35, p. 33], to borrow a
phrase from Margaret Morrison and Mary Morgan—to exhibit the kind of beha-
viour associated with the phenomenon, or class of phenomena, to be explained.

A good illustration of both of these aspects of exploratory models as ‘proofs of
principle’ is the Lotka-Volterra model, already discussed in Chap. 3 (Sect. 3.4),
which, as mentioned in the previous section, has on occasion been labelled ‘ex-
ploratory’ by ecologists themselves. Recall that the Lotka-Volterra model of
predator–prey dynamics grew out of Umberto d’Ancona’s empirical observation
that reduced fishing activity led to an increase in the population of predator species,
at the expense of food fish. The model developed by Vito Volterra consists of a pair
of first-order, non-linear, differential equations which are interpreted as describing
the mutual dependencies in a two-species system, with one species feeding on the
other. Whereas the birth rate of the predator species depends on an ample supply of
prey, any increase in the number of predators will increase the prey’s death rate.
The dynamic behaviour of the model resembles that found in actual predator–prey
systems: both populations oscillate, with the number of prey overshooting first,
leading to an increase in the number of predators, before both populations decline
again. While the model affords qualitative insight into how the mutual dependencies
between different species can affect the dynamics of their populations, neither
Volterra nor d’Ancona claimed to be able to predict the future percentages of
predator and prey species on its basis. The significance of the Lotka-Volterra
equations and similar exploratory models does not lie in their presumed ability to
make empirically adequate predictions. In the words of two contemporary ecolo-
gists, ‘[t]hese models are not intended to make testable predictions, or even to be
applied to specific real systems’ [36, p. 367]. Instead, what makes the
Lotka-Volterra model significant is its character as a two-fold proof of principle:
first, it demonstrates that it is possible to generate insight about discrete populations
—whose size is measured in integer values—using continuous differential equa-
tions. Second, and more importantly, it demonstrates that periodic oscillations in the
size of predator–prey populations may arise purely internally, without any external
forcings.12 The lasting value of the Lotka-Volterra model, then, consists not in its
suitability as a tool for the numerical prediction of fish stocks, but in its character as
a proof of principle, opening up new ways of mathematically modeling the
dynamics of populations.

12The Lotka-Volterra equations do, in fact, permit for an equilibrium solution; however, the
equilibrium point is unstable, so that any perturbation—however small—suffices to trigger the
oscillatory behaviour.
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4.5.3 Exploratory Models and Potential Explanations

Much of the value of scientific models, in general, comes from their explanatory
role: many models, especially those that explicitly represent mechanisms and
causes, purport to tell us why, and how, things happen. Nancy Cartwright has
proposed an account that places models at the heart of what constitutes a scientific
explanation. On her simulacrum account of explanation, ‘to explain a phenomenon
is to construct a model which fits the phenomenon into a theory’ [37, p. 17]. While
the laws of the underlying fundamental theory are taken to be true of the objects in
the model and are used to derive specific accounts of their behaviour, the question
of whether or not the various elements in the model have counterparts in reality is
left open; at most, we are committed to saying that they have ‘the right sort of
appearance’. Yet, if to explain a phenomenon is to construct a model by which it
can be subsumed under a theory, the question remains what to do when no fun-
damental theory is available. This is where exploratory models have an important
role to play: they help us devise potential explanations, for example by envisaging
scenarios that, if true, would give rise to the kinds of phenomena that constitute the
explanandum. While this use of exploratory models is closely related to the
proof-of-principle demonstrations discussed above—especially when it concerns
‘how-possibly’ questions—it can also be more theoretically ambitious, either by
drawing more explicitly on existing theories in the vicinity of the domain of
investigation, or by aiming for the development of new theoretical frameworks. In
what follows, I shall briefly discuss two such examples, one from 19th century
physics, the other from early 20th century physical organic chemistry.

In Sect. 4.3, we encountered Faraday’s experimental studies of electromagnetism
as paradigmatic cases of what Steinle calls exploratory experimentation.
Interestingly, some of the earliest attempts to develop theoretical frameworks for
the newly discovered electromagnetic phenomena proceeded via exploratory
modeling. This is especially evident in the work of James Clerk Maxwell (1831–
1879). In his 1856 paper ‘On Faraday’s Lines of Force’, Maxwell had deployed the
mechanical analogy of flow of an incompressible fluid in order to explore the
physical geometry of lines of force, which were imagined to be pervading space,
even in the absence of any objects on which such a force could act. In pursuing the
analogy with mechanics, Maxwell did not wish to suggest that electromagnetic
phenomena were mechanical in nature—he insisted that the imagined substance
was ‘not even a hypothetical fluid’ [16, p. 160]—but instead attempted ‘to bring
before the mind, in a convenient and manageable form, those mathematical ideas
which are necessary to the study of the phenomena of electricity’ [16, p. 157]. Why
give the mathematical equations a physical interpretation in the first place? At the
beginning of his paper, Maxwell lays out the shortcomings of both a purely
mathematical and a theory-driven approach:

In the first case we entirely lose sight of the phenomena to be explained; [in the second
case] we see the phenomena only through a medium, and are liable to that blindness to facts
and rashness in assumption which a partial explanation encourages. [16, pp. 155–156]

4.5 The Uses and Functions of Exploratory Models 87



Given that no existing theory could satisfactorily explain the new phenomena,
what was needed was an approach that would lay out clearly and systematically, but
without recourse to ‘physical hypothesis’, the relationship that a future theory
would have to explain:

We must therefore discover some method of investigation which allows the mind at every
step to lay hold of a clear physical conception, without being committed to any theory
founded on the physical science from which that conception is borrowed, so that it is
neither drawn aside from the subject in pursuit of analytical subtleties, nor carried beyond
the truth by a favourite hypothesis. [16, p. 156]

Whereas Maxwell, in his 1856 paper, insists that he is ‘not attempting to
establish any physical theory’ [16, p. 157], in his 1861 paper ‘On Physical Lines of
Force’, his exploratory work is more overtly directed at offering explanations and
developing a new theoretical framework. This is evident from his assessment of an
1847 paper by William Thomson which, similar to Maxwell’s earlier work, aimed
at illustrating the new phenomena by means of ‘mechanical representations’: ‘The
author of this method of representation’, Maxwell writes about Thomson, ‘does not
attempt to explain the origin of the observed forces […], but makes use of the
mathematical analogies of the two problems to assist the imagination in the study of
both’ [16, p. 453]. Maxwell’s project, by then, had grown more ambitious, cul-
minating in the development of his famous mechanical ether model, which visu-
alized the lines of magnetic force around a magnet as though they were vortices
within a continuous fluid (see Fig. 4.1).

The ether model combined easy visualizability with the conceptual clarity of the
mechanical analogies employed, while staying largely clear of substantive onto-
logical commitments with respect to the precise nature of the model’s constituents.
This rendered it an excellent tool for the exploration of the nascent theory of
molecular vortices, and Maxwell guides his readers by giving them detailed
instructions regarding how to interpret, and bring to life, the model of which they

Fig. 4.1 Maxwell’s vortex
model, representing the flow
of electricity from A to B; the
large cells are the vortices, the
smaller circles the ‘idle
wheels’
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are only given a momentary ‘snapshot’: ‘Let the current from left to right com-
mence in AB. The row of vortices gh above AB will be set in motion in the opposite
direction to a watch […]. We shall suppose the row of vortices kl still at rest, then
the layer of particles between these rows will be acted on by the row gh’ [16,
p. 477], and so forth. At the same time, Maxwell is explicit about the exploratory
role of the model and its interim status, while a more fundamental theory of
electromagnetism is still being pursued: as he sees it, anyone who ‘understands the
provisional and temporary character’ of the mechanical ether model ‘will find
himself rather helped than hindered by it in his search after the true interpretation of
the phenomena’ [16, p. 486]. In his Treatise of 1873, reflecting on his earlier
studies, Maxwell again acknowledges their provisional and exploratory character:
‘The attempt which I then made to imagine a working model of this mechanism
must be taken for no more than it really is, a demonstration that mechanism may be
imagined capable of producing a connexion mechanically equivalent to the actual
connexion of the parts of the electromagnetic field’ [38, pp. 416–417]. Yet, as a
demonstration of this kind, his exploratory model had proved unusually fruitful and
explanatorily successful: not only was it able to account for light as an electro-
magnetic phenomenon, following the realization that the velocity of transversal
waves in the stipulated medium would correspond to the ratio of the electric and the
magnetic units (which, in turn, had been found to have the dimension of a velocity
and a numerical value in the same range as the experimentally established value of
the speed of light); it also helped explain other phenomena, such as the effect of
magneto-optic rotation.

Let us turn to the second, more recent example of how exploratory models may
provide potential explanations, which is drawn from early 20th century physical
organic chemistry.13 The late 19th century had seen a rapid growth of knowledge in
physical and organic chemistry, accompanied by a growing recognition of the
structural complexity of organic compounds. Early researchers, such as August
Laurant in 1854, had assumed that transformations of organic compounds were
subject to a principle of minimal structural change, which posited that changes
would largely be limited to peripheral atoms. However, it quickly became clear that
there were other more complex molecular rearrangements, many of which involved
the migration of a whole group, e.g. a methyl group (–CH3) or allyl group
(H2C=CH–CH2–), from one carbon atom to another. The two-fold challenge of the
nascent discipline of physical organic chemistry at the beginning of the 20th cen-
tury therefore consisted in classifying the various types of structural transformations
and explaining their occurrence by identifying the underlying molecular mecha-
nisms. It is perhaps worth recalling that such discussions took place against the
backdrop of an only gradually emerging qualitative understanding of the chemical
bond in general. Gilbert N. Lewis and Irving Langmuir, during and after World
War I, had developed the idea that the chemical bond involved pairs of electrons,

13My discussion of this example draws heavily on [40].
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which would either be shared between two atoms (‘covalent bond’) or would result
from one atom losing electrons to the other (‘ionic bond’).

Elements of Lewis and Langmuir’s theory inspired other theoretical proposals,
specifically in relation to reaction mechanisms for organic compounds. Thus
Christopher Ingold, a former adherent of the (non-electronic) affinity view of
chemical reactions, and his collaborator Edward Hughes developed an account of
how intramolecular forces could give rise to molecular structures such as the
benzene ring and their reconfigurations. As Ingold put it in a lecture in 1946: ‘The
idea of intramolecular electric interaction is the central theme of all our theories of
reactivity.’14 An important theoretical ingredient in the Hughes-Ingold account was
the thought that organic reactions required, as part of their mechanism, the spon-
taneous emergence—through a posited ‘inductive effect’—of highly polarized
reaction sites, for which electrons either needed to ‘be drawn away from […] or be
driven into, the rest of the molecule’ [39, pp. 49–50]. Depending on direction and
stipulated causes, these processes were to be described in terms of an elaborate
terminology, which classified them as ‘mesomeric’, ‘tautomeric’, ‘inductomeric’,
and ‘synartetic’, among others.15 Though both accounts, the Lewis-Langmuir
theory and the Hughes-Ingold theory, developed creative ways of conceptualizing
molecular processes, they were largely speculative, given that intramolecular forces
could not be observed in real time. Indeed, in a textbook two decades later, in 1953,
Ingold [39] acknowledged, in relation to the rearrangement issue, that, ‘if a cyclic
transition state is internally set up, there is no conceivable way in which we could
tell which way round the electrons moved in order to form it, or even whether they
were displaced heterolytically in pairs, or in homolytic fashion by the breaking and
constitution of pairs’.16

At the time, in the 1940s, the speculative character of the competing theoretical
frameworks, and their evident incompleteness, did not stop researchers from
attempting to extend it to ever more complicated molecular rearrangements. Several
complex rearrangements had been known for some time, predating the emergence
of the Lewis-Langmuir and the Hughes-Ingold theories. One such example is the
Claisen rearrangement, named after Rainer Ludwig Claisen (1851–1930), which
concerns isomeric changes in allyl ethers of enols and phenols, and essentially
involves the shift of the allyl group (H2C=CH–CH2–) to the ortho-position (relative
to the oxygen atom; see Fig. 4.2):

Claisen studied this type of rearrangement experimentally and found that the
C=O=C group was essential; allyl ethers lacking it failed to rearrange. Together
with his collaborator E. Tietze, he developed what was in essence a non-electronic
mechanism in terms of the spatial proximity of the atoms involved, which allowed
for the temporary formation of a cyclic arrangement of bonds linking the allyl group
to the carbon atom in the ortho-position (see Fig. 4.3). Adherents of the emerging

14Quoted after [44, p. 222].
15For a discussion of Ingold’s system of classifications, see [45].
16Quoted after [40, p. 567].
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electronic paradigm of bond formation criticized this explanation for its
spatial-mechanical emphasis on ‘close contact’ between the different constituents;
as Stanley Tarbell wrote in a review in 1940, the two authors had given ‘primarily a
description of the rearrangement’, when what was needed was an explanation ‘in
electronic terms’.17

Interestingly, however, when it came to explaining molecular rearrangements in
electronic terms, even the proponents of the new theories continued to rely on the
(non-electronic) considerations employed by their predecessors. Grant Fisher, in a
case study of early 20th century models of molecular rearrangements, discusses the
example of Arthur Cope and his student, Elizabeth Hardy, who set out, in 1940, to
apply the Hughes-Ingold theory to a new rearrangement, which has since come to
be known as the Cope rearrangement. Deploying the Hughes-Ingold terminology of
the ‘electromeric effect’ and the ‘inductive effect’, they argued that such effects
were the driving forces behind the allyl group’s shifting from the electron-attracting
α-carbon atom to the less electron-attracting γ-carbon atom, accompanied by the
formation of a carbonyl group, via the migration of a double bond (see Fig. 4.4).

In order to explicate the (hypothetical) steps of how such a rearrangement could
occur, Cope and Hardy modeled their mechanisms for the Cope rearrangements
closely after Claisen and Tietze’s earlier (non-electronic) model. Yet, as Fisher
notes, ‘what makes Cope and Hardy’s approach puzzling is that before 1940 it had
already been made clear that the Hughes-Ingold theory in particular was not a
suitable candidate for explaining these rearrangements’ [40, p. 575]. In other words,
even though Cope and Hardy were committed to the electronic nature of the Cope
rearrangement and proposed their model explicitly as an application of the
Hughes-Ingold theory, their model nonetheless remained fundamentally indebted to

Fig. 4.2 The ortho-Claisen rearrangement of an allyl phenyl ether

Fig. 4.3 The Claisen and Tietze model of the Claisen rearrangement

17Quoted after [40, p. 571].
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the earlier non-electronic considerations by Claisen and Tietze, and proceeded in
the absence of a unified electronic theory of molecular rearrangements.

What are we to make of this puzzling story of the Cope-Hardy model of
molecular rearrangement? First, the case nicely illustrates a key ingredient of
Morgan and Morrison’s ‘models-as-mediators’ approach, according to which
models ‘are not situated in the middle of an hierarchical structure between theory
and the world’, but ‘are made up from a mixture of elements’, which often includes
resources from outside the ‘theory–world axis’ [35, pp. 17f.; p. 23). (For a more
detailed discussion of the ‘models-as-mediators’ approach, see Chap. 5, Sect. 5.1.)
As Fisher observes, ‘Cope and Hardy’s use of analogies with the Claisen rear-
rangement is suggestive of the use of resources in model construction that lie
outside of the theory-world axis’ [40, p. 575]. Second, the Cope-Hardy model was
clearly intended to be of explanatory value: ‘The allyl group shift with inversion
was what required explanation, and while it may not have been impossible given
chemists’ background assumptions, it was certainly puzzling, perhaps even baffling,
to physical organic chemists’ [40, p. 578]. However, unlike traditional explanations
in terms of laws of nature, which aim to show how—given suitable background
conditions—an observed phenomenon had to occur necessarily, the Cope-Hardy
model provided an answer to a ‘how-possibly’18 question: while the Hughes-Ingold
theory did not explain why, necessarily, the allyl group and double bonds shifted
the way they did, it did not rule out the possibility either, and Cope and Hardy, by
drawing on the analogy with the Claisen rearrangement, were able to suggest a way
in which the rearrangement could have happened. Fisher acknowledges the
exploratory character of devising potential explanations via possible mechanisms
when he writes that ‘Cope and Hardy built models […] that explored or tested out
the Hughes-Ingold theory by generating how-possibly explanations’ [40, p. 578].
However, where Fisher sees Cope and Hardy’s models as ‘resources for the
exploration of theory’ [40, p. 582; emphasis added], it may be more economical—
not least in light of the failure of theory, in this case, to provide any independent
guidance, at least not without relying on the earlier arguments by Claisen and Tietze
—to deem exploration simpliciter the model’s primary function, without making it

Fig. 4.4 Cope and Hardy’s proposed mechanism of the Claisen rearrangement

18The notion of a ‘how-possibly’ question goes back to the philosopher of history William Herbert
Dray who had argued that ‘the demand for explanation is, in some contexts, satisfactorily met if
what happened is merely shown to have been possible; there is no need to go on to show that it was
necessary as well’ [46, p. 157] That is, how-possibly explanations are offered as genuine and
complete explanations of particular phenomena without pretending to subsume them under general
laws or generalizations (see [55] for a more recent discussion).
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subservient to theory. Either way, the case of model-building in early physical
organic chemistry serves as a good example of exploratory modeling that aims at
devising potential explanations for phenomena that cannot readily be understood
on the basis of existing (and often competing) theories of the domain in question.

4.5.4 Exploring the Suitability of the Target

Another application of exploratory modeling is for the purpose of assessing the
suitability of the target. At first this may seem surprising, or even misguided: after
all, shouldn’t our models fit the world, rather than the other way round? When we
have a good grasp of what constitutes the target phenomenon—even while we may
not (yet) be able to explain it—tailoring the model to the target may be a promising
strategy. But often in the context of exploratory research—that is: in the absence of
comprehensive theoretical knowledge—determining where the target system begins
and where it ends, reliably picking it out from background noise, and arriving at a
stable ‘research object’ are not at all straightforward tasks. This is why scientists
modeling empirical phenomena often spend considerable time and effort identifying
appropriate initial and boundary conditions, which are required to render the fun-
damental laws, typically expressed in the form of differential equations, applicable
to the case at hand.19 In order to delineate a target phenomenon and converge upon
a set of relevant properties and relations (which may subsequently come to define
the target system or phenomenon), we must operate with some preconception of
which factors are significant or salient; in the first instance, this will plausibly
require grasping—tentatively, through an exercise of a well-trained theoretical
imagination—certain facts about the way things present themselves to us. At an
early stage of inquiry, before the stability of the target phenomenon has been
ascertained, our conception of the target phenomenon will necessarily be subject to
revision.20 It is in such situations that exploratory modeling may lead to a recon-
sideration of the target system.

Taking the logistic equation (see Sect. 4.4) as his example, Taylor credits
exploratory modeling with reminding us that it is not always clear ‘that the quickest
route to better generative representations relies on every new idea being framed as a
hypothesis and directly tested’. Instead of treating the logistic equation as a tool for
predictions, which may then be tested against empirical observations, ‘we could
move back to the level where the logistic is an exploratory tool and examine the
effects of the model population being genetically heterogeneous or spatially

19Something like this seems to be Jordi Cat’s point in [51], though he appears to think that
scientists and philosophers alike have tended to overlook the importance of initial and boundary
conditions.
20The difficulty of stabilizing phenomena in the absence of agreed-upon criteria for what counts as
a successful experiment is known as the ‘experimenter’s regress’; for a discussion of its analogue
in the case of scientific models and simulations (‘simulationist’s regress’), see [52].
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distributed’, or include new background assumptions: ‘Out of such explorations
might emerge ideas about the conditions under which the logistic might work as a
generative representation’ [29, p. 123]. Similar considerations apply in the engi-
neering sciences where, as Susan Sterrett notes, modeling often leads to revisions of
the original problem, sometimes leading to a reconsideration of the target system:

But, occasionally, the person carrying out the model-making also gains some insight about
the model, the target, and the behavior of interest that makes him or her question the
suitability, not of the model, but of the target. The model-making points out a certain
feature of the target, and questioning the suitability of the target for solving the larger
engineering problem that occasioned interest in pursuing the problem in the first place can
lead to a complete overhaul of the conception of the problem. [41, p. 36]

What this suggests, in line with general analyses of scientific practice, is that the
traditional picture of modeling as a unidirectional activity—either leading from
theory to phenomena, via simplifications and idealizations, or the other way round,
by aggregating empirical data into a format that can be subsumed under theory—is
inadequate; instead, modeling is a complex process of integration and exploration.
Modeling need not always come after a fundamental theory has been established or
an empirical phenomenon has been stabilized; as the examples above show,
sometimes scientists devise models in search of an empirical phenomenon.
Philosophers of science, in recent years, have become more careful to distinguish
between modeling as an activity and scientific models as the products of that
activity. This has led to a recognition that not all modeling is immediately tied to a
specific target system or theory. As Arnon Levy writes:

When a model is proposed it might not be clear at first what target it is tied to, and there
might be a period in which the right target is sought. But later, assuming the model is
retained, this issue is usually clarified. [42, p. 796]

It would, however, be unwise to view this indeterminacy with respect to a
model’s target as simply a shortcoming of early-stage modeling, standing in urgent
need of clarification. Rather, assessing the suitability of a proposed target is pre-
cisely one of the functions of exploratory modeling, and it is as much its purpose to
enable the zeroing in on a set of known phenomena as it is to open new lines of
inquiry.

4.6 Exploratory Modeling: Prospects and Caveats

This chapter has discussed a variety of closely related uses of models which, I have
argued, are best described collectively as exploratory modeling. As in the case of
exploratory experimentation, applying the label ‘exploratory’ to models is intended
to capture a particular mode of doing science; the same model—be it a physical
model, or a set of equations—may be exploratory in one context, but not in another.
Yet, as the discussion in the previous section has aimed to show, whether or not an
instance of modeling is exploratory is not just in the eye of the beholder:
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exploratory modeling serves specific, identifiable purposes, some of which—e.g.,
the generation of potential explanations—are closely aligned with the traditional
goals of science, such as explanation and prediction. Others, however, go beyond
the standard dimensions along which scientific activity is typically evaluated. In
particular, as we have seen, exploratory modeling often serves the purpose of
developing a grasp of (as yet theoretically inaccessible) phenomena and may lead to
serious reconsideration of the suitability of the target. Such uses might previously
have been brushed off as belonging to the ‘context of discovery’, yet looking at
them through the lens of ‘exploration’ reveals their continuity with other, more
established uses and functions of models. While the four typical functions of
exploration listed in the previous section are meant to be neither exhaustive nor
mutually exclusive, my contention is that they can be found across different dis-
ciplines—as indeed is also suggested by the examples I have discussed, which were
drawn from physics, chemistry, biology, and the study of collective social phe-
nomena. Beyond its uses in individual scientific disciplines, exploratory modeling
is also relevant to broader questions in the history and philosophy of science. While
acknowledging the exploratory character of much of scientific modeling holds out
the promise of a richer and more complete understanding of scientific practice, one
needs to be equally aware of the prospects of exploratory modeling and some
important caveats. By way of conclusion, I wish to highlight only two such aspects,
one of which illustrates how an acknowledgment of exploratory modeling may help
improve our historical understanding of science, while the other speaks to a
legitimate worry concerning the limitations of exploratory modeling.

Consider the case of the Ising model. Originally proposed in 1925 by the
German physicist Ernst Ising (1900–1998) at the suggestion of his then supervisor
Wilhelm Lenz (1888–1957), it was published under the modest title ‘A
Contribution to the Theory of Ferromagnetism’ and its conclusions were negative
throughout. According to a summary in that year’s volume of Science Abstracts, the
model is

an attempt to modify Weiss’ theory of ferromagnetism by consideration of the thermal
behavior of a linear distribution of elementary magnets which … [have] only a
non-magnetic action between neighboring elements. It is shown that such a model pos-
sesses no ferromagnetic properties, a conclusion extending to a three-dimensional field.21

The basic idea of the model was simple, in that it pictured a magnet as a
collection of classical particles, each behaving as a tiny elementary magnet by
pointing in one of two directions. If all the elementary magnets were aligned, the
(macroscopic) system would display perfect magnetization, whereas in the case of
total thermal disorder, no net magnetization would result. Ising’s original hope was
that a model along those lines would be able to explain magnetic phase transitions,
i.e. the spontaneous emergence of a net magnetization below a certain critical
temperature. The failure of the model to mimic such behaviour for any finite
temperature is but one aspect of the story. For, as Niels Bohr (1911) and Hendrika

21Quoted after [47, p. 140].
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Johanna van Leeuwen (1919) had rigorously shown, prior to the Ising model’s
development, no purely classical system—i.e. no system of classical particles
obeying the laws of electrodynamics—could ever display spontaneous magneti-
zation (though, of course, it might become magnetized in response to an external
field). As a model of spontaneous ferromagnetism, the Ising model was therefore
doomed to failure. Interestingly, however, this did not spell the end of the Ising
model, either in physics or beyond. Indeed, contemporary applications of the Ising
model range from the magnetic behaviour in linear polymer chains to belief
polarization in social systems, and the swimming patterns of schools of fish. In most
of these cases, the Ising model is not expected to make precise empirical predic-
tions; rather, its flexibility and internal mathematical structure is used as a resource
for the systematic exploration of disparate phenomena.22 Without an acknowl-
edgment of the exploratory character of much of what passes as scientific modeling,
it would be hard to see how one might explain the longevity of a prima facie
unsuccessful model such as the Ising model: it would remain an inexplicable his-
torical anomaly.

Exploration in general is not without risk, though, and in the case of exploratory
modeling, too, success is neither guaranteed nor without dangers. Precisely because
exploratory modeling precedes the full articulation of an underlying fundamental
theory, standards for judging an instance of exploration successful tend to be
implicit, often depending on a tacit component. As discussed in Sect. 4.1, scientists
themselves often use the phrase ‘getting a feel for [a model or phenomenon]’.
Models, in Morgan’s turn of phrase, are ‘resources for manipulation’, and with an
increase in skill and manipulative facility often comes an increased subjective sense
of understanding. Mastery of mature mathematical formalisms and manipulative
prowess tend to be markers of expertise and skill, yet they are not alone sufficient to
guarantee the empirical validity of inferences made on their basis about the target
system. Morgan’s distinction between ‘the world in the model’ [13, p. 37]—for
example the internal dynamics of a set of mathematical equations—and the outside
world represented by the model comes to mind here. This is echoed by Taylor in his
discussion of models in mathematical ecology: ‘Strictly speaking, without a
quantitative analysis of correspondence the insights from exploration are insights
about a mathematical system’ [29, p. 123]. Danger lurks when researchers mistake
their facility at exploring the ‘world in the model’, e.g. via symbolic manipulation
of mathematical equations, for an improved understanding of the target system
itself. Indeed, as Jaakko Kuorikoski and Petri Ylikoski point out: ‘Sometimes the
ease of use increases the chances of the illusion of depth of understanding by
making “toying with the model” too easy in such a way which crowds out thinking
about the crucial background assumptions needed to reliably infer with the model to

22The same holds for other many-body models such as the Hubbard model, discussed in Chap. 3
(Sect. 3.3). As I have noted elsewhere, often ‘the “exploratory” phase of understanding a proposed
many-body model and cultivating intuitions about the interplay of themicroscopic mechanisms it is
designed to represent is drawn out over many years; whether the model will in the end match an
empirical phenomenon in many cases remains an open question’ [53, p. 263].
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a real world phenomenon’ [43, p. 17]. While exploratory modeling may indeed be
especially vulnerable in this respect, this only goes to show that exploration, if left
unchecked by theory and observation, may go astray; it does not mean that
exploratory research, whether in scientific experimentation or modeling, can be
made redundant by reliance on theory and observation alone. Indeed, from the
perspective of a functional account of scientific models, and in light of the wide
range of examples discussed in this chapter, it seems far more compelling to
acknowledge exploration as standing alongside explanation and prediction as one of
the core functions of scientific modeling, and ineliminably so.
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Chapter 5
Models as Mediators, Contributors,
and Enablers of Scientific Knowledge

5.1 Models as Mediators

Over the course of the previous four chapters, we have encountered a range of uses
and functions of models and a variety of ways in which models can be constructed,
applied, and evaluated in their own right—that is, without treating models as a
merely auxiliary step in the application of fundamental theory to the complex and
messy real world. By acknowledging models as autonomous in this way, the
argument developed in this book is in broad agreement with what has come to be
called the ‘models-as-mediators’ view, due to Margaret Morrison and Mary Morgan
—though, as we shall see, there are also a number of crucial differences [1].

The models-as-mediators view starts from an observation concerning how
models are typically constructed. Model-building, Morrison and Morgan argue, is
‘not only a craft but also an art, and thus not susceptible to rules’ [1, p. 12]. When
scientists build models, they draw on a range of different resources and (theoretical
and material) ingredients, and ‘it is because [models] are made up from a mixture of
elements, including those from outside the original domain of investigation, that
they maintain [their] partially independent status’ [1, p. 14]. Any model that is
intended to be applicable to a specific process or phenomenon necessarily depends
on considerations that are extraneous to fundamental theory:

Because models typically include other elements, and model building proceeds in part
independently of theory and data, we construe models as being outside the theory–world
axis. It is this feature which enables them to mediate effectively between the two. [1,
pp. 17–18]

Of the various elements that together make up a scientific model, some may
derive from theory, whereas others may originate from extra-theoretical consider-
ations: ‘model construction involves a complex activity of integration’ [2, p. 44].
More often than not, for example when certain elements of a model are incom-
patible, this integration can be neither perfect nor complete. A case in point is the
Bohr model’s conflicting demands that the electrons in an atom should be
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conceived of as orbiting the nucleus on circular paths without losing energy, while
at the same time viewing them as objects of classical electrodynamics.

The thought that models ‘mediate’ between theory and data, while suggestive,
requires some unpacking, lest it remain vague. As Morrison has recently empha-
sized, early versions of the models-as-mediators view involved two different senses
of mediation. In the first case, ‘the starting point is some physical system about
which we have insufficient knowledge; so we construct a model in an attempt to
learn more about its hypothetical features’. In other words, the model serves as a
hypothetical realization of a scenario whose theoretical ramifications may then be
studied in more detail (the example Morrison gives is of ‘models that describe
physics beyond the standard model’). In the second case, we begin by modeling a
target system in a particular way and then find ways of fruitfully applying ‘highly
idealised and abstract laws to phenomena’—for example by modeling an electron
encountering an impurity in a solid in terms of the wave function of a quantum
particle in a potential well [3, pp. 119–120]. In the latter type of cases, it may be
preferable to speak of the ‘putative target’, given that not all situations to which
highly idealized and abstract laws can be applied need to be, in fact, realized (for
example, Morrison herself mentions the ‘infinite potential well’ as an example).
More recently, the model-as-mediators view has been further generalized to also
include cases where a model functions ‘as a mediator in its role as the “object” of
inquiry’; that is, ‘the model itself, rather than the physical system, is the thing being
investigated’ [3, p. 120].

If models indeed routinely include ‘additional “outside” elements’—i.e., ele-
ments that can neither be deduced from theory nor be found among the data—the
question arises how they can nonetheless acquire the requisite degree of cohesion
that we would expect from ‘autonomous agents’ [2]. This question is all the more
pressing if one considers the range of different types of elements that are thought to
feature in models. Thus Marcel Boumans, in his study of business-cycle models in
economics, lists as some of the key ingredients ‘theoretical notions, metaphors,
analogies, mathematical concepts and techniques, policy views, stylised facts and
empirical data’ [4, p. 94]. In the case of economic models, many of which are
formulated in the language of mathematics, much of the integrative work is due to
what Boumans calls ‘mathematical moulding’, the definition of which also applies
to mathematical models in other disciplines:

Mathematical moulding is shaping the ingredients [of a model] in such a mathematical form
that integration is possible, and contains two dominant elements. The first element is
moulding the ingredient of mathematical formalism in such a way that it allows the other
elements to be integrated. The second element is calibration, the choice of the parameter
values, again for the purpose of integrating all the ingredients. [4, p. 90]

Boumans’s explicit mention of ‘mathematical formalism’ as an ingredient in
modeling is significant, and the specific contribution that mathematical formalisms
make to the construction of models—already discussed in some detail in Chap. 3—
will be taken up in more detail in the next section. For Boumans, formalisms stand
alongside other, equally important ‘ingredients’, which include ‘theoretical ideas,
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policy views, mathematisations of the [business] cycle, metaphors and empirical
facts’ [5, p. 4]. Model-builders therefore pursue ‘an adaptive strategy until all
ingredients [are] integrated’, so as to achieve ‘empirical significance’ [5, p. 50].
Sometimes, mathematical moulding may be as simple as choosing suitable
parameter values in order to accommodate certain model assumptions; often,
however, it will require adapting existing formalisms to a particular type of target
system. In a similar vein, Morgan likens the process of integration to the pulling
together—‘as ingredients of a recipe are’—of the various theoretical and empirical
ingredients [6, p. 46].

When can we say that integration of the various elements into an autonomous
model has been achieved, such that the latter is capable of ‘mediating’ between
theory and data? Given that integration is a matter of degree, this will depend in part
on the model user’s purposes, which fits well with the earlier characterization (see
Chap. 1) of the models-as-mediators approach as a pragmatic account of scientific
modeling. This, however, does not mean that no more can be said; indeed, the
question of what makes for successful integration is intimately related to the criteria
for the appraisal of models as mediators more generally. Proponents of the
models-as-mediators approach such as Boumans have argued that the main goal ‘in
the context of discovery is the successful integration of those items that satisfy the
criteria of adequacy’ [4, p. 67], thereby placing a premium on the empirical per-
formance of a model and its various elements. This is thought to also explain why,
‘in the integration process, “tuning” is essential’: in Boumans’s case study of
models of the business cycle, much of the integration via mathematical moulding is
achieved by ensuring that various parameter values are ‘chosen such that the model
could precisely mimic specific facts about the cycle’ [5, p. 50].

The idea that models should be assessed by how well they can be moulded to fit
specific empirical contexts can be traced back to early versions of the
models-as-mediators view. In one of the first papers to explore the conception of
models as mediators, Morrison emphasized that ‘the proof or legitimacy of the
representation arises as a result of the model’s performance in experimental,
engineering and other kinds of interventionist contexts—nothing more can be said!’
This would suggest that model construction should primarily be driven by a con-
cern for whether its products—the models—are empirically successful, that is: by
how well they fit with observed phenomena. Yet, as we have seen—both in the
context of specific examples from across the natural sciences (Chap. 3) and in the
case of exploratory modeling more generally (Chap. 4)—models, including suc-
cessful ones (as measured, for example, by their contribution to scientific under-
standing or insight), need not always be closely tied to specific empirical
phenomena or contexts. Sometimes a model can afford insight, for example by
exploring counterfactual (or even merely conceptual) dependencies, even in the
absence of an actual target system. This is why Morrison’s most recent acknowl-
edgment that ‘a model can also function as a mediator in its role as the “object” of
inquiry’ [3, p. 120] is significant: sometimes, for example when we lack in-principle
access to (potential) target systems, all we know is how the model behaves, yet
even this may be a source of significant scientific insight.
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5.2 Mature Mathematical Formalisms
as a Representational Resource

In order to better understand how models, considered as objects of inquiry, behave,
it is often useful to look a how they were constructed. In this section, we shall
discuss in detail a type of model-construction we already encountered, if only
briefly, in Chap. 3 above: ‘formalism-driven’ model construction. The term
‘formalism-driven’ is meant to reflect the fact that models thus constructed are the
result of deploying a ‘mature mathematical formalism’—that is, an integrated and
entrenched system of rules and conventions for the manipulation of various sym-
bols and terms, which are typically expressed in the language of mathematics and
interpreted in accordance with a set of theoretical and methodological commit-
ments.1 The specific example we considered was the formalism of creation and

annihilation operators, âyi and âj, as applied to the physics of quantum many-body
systems. The formalism of creation and annihilation operators originates from
quantum field theory, which governs the behaviour of particles and fields at high
energies, but has been fruitfully extended to strongly correlated, low-energy sys-
tems such as delocalized electrons in a metal. It is the latter type of system that, for
example, the Hubbard model (see Chap. 3, Sect. 3.3) is intended for. In such a
system, the electrons can be thought of—to a first (very crude) approximation—as a
uniformly spread-out ‘sea’ of electrons, consisting of a quantum superposition of
‘electron waves’, each of which is characterized by a unique wave vector ~k, indi-
cating its energy and momentum, as well as a spin variable (with an electron’s spin
σ pointing either ‘up’ or ‘down’ along the direction of measurement). Changes in
the system, for example an energy excitation brought about by an external per-
turbation, may then be described in terms of the creation and annihilation of new
electron waves—thereby adding or removing contributions to the system’s overall
state. The formalism of quantum mechanics allows for the representation of such
processes in terms of operators acting on the many-body quantum state of the

system—hence the creation and annihilation operators ây~kr and â~kr.

The mere deployment of a certain branch of mathematics—in this case, operator
algebra—does not by itself constitute a mature mathematical formalism in the sense
intended here. Obviously, from a purely mathematical viewpoint, speaking of the
‘creation’ or ‘annihilation’ of ‘particles’ in relation to the deployment of certain
types of operators is quite meaningless: for such talk to make sense, the mathe-
matical operations need to be given a physical interpretation—for example, of the
type sketched in the previous paragraph. Furthermore, a (physically interpreted)
mature mathematical formalism needs to constrain the wide range of mathemati-
cally permissible scenarios so as to ensure that it does not lead to (too many)

1see also [36].
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expressions that lack a physical interpretation. This is why, in addition to their
mathematical aspects, mature formalisms often incorporate a number of theoretical
and methodological commitments—either explicitly, for example in the form of
rules that prohibit certain operations within the formalism, or implicitly, through
shared judgments about what constitutes an acceptable use of the formalism.

As an example of how mathematical formalisms need to be properly constrained,
consider the example of the conservation of particle number in quantum
many-body systems. At the fairly low energies involved in condensed-matter
phenomena such as conductivity and magnetism—unlike, say, in the case of col-
lisions in a particle accelerator—no elementary particles can be annihilated com-
pletely or created ex nihilo. Yet there is nothing in the mathematics of operator
algebra—or indeed in the formalism of creation and annihilation operators as used
in high-energy physics—that rules out the possibility of a varying number of par-
ticles in a system. If one were to deploy creation and annihilation operators ‘in
isolation’, as it were, then (on the standard interpretation) their net effect would be
such that they would seem to describe states where an individual electron has been
created ex nihilo, or destroyed without a trace. This is why, in the case at hand, it is
stipulated that, as a general rule, creation and annihilation operators cannot feature
in isolation in the Hamiltonians describing quantum many-body models, but must
always occur in pairs. This way, an electron that is ‘annihilated’ in one place will
immediately be ‘recreated’ at a different point in the system, so that the system at no
point violates conservation of particle number. This constraint on how operators
may be deployed within the formalism is matched by a convention regarding how

to interpret its output, such as the operator product âyi âj: although the formalism
does not allow for the explicit representation of time, such that there appears to be
no ‘time lag’ between the annihilation of an electron at site j and its reappearance at
site i, physicists nonetheless choose to give a dynamic interpretation to the overall
effect of the combination of an annihilation and a creation operator, by simply

interpreting the expression âyi âj as describing the movement of an electron from one
place in the crystal lattice to another.

The example of creation and annihilation operators in many-body physics thus
illustrates an important feature of mature mathematical formalisms: namely, their
dual character as both enabling and constraining the development of scientific
representations. On the one hand, the details of a formalism enable what can be
easily represented by it; in other words, mature mathematical formalisms afford
their users certain ways of model construction and thereby function as represen-
tational resources. Thus, the rules governing creation and annihilation operators
shape how a many-body theorist will go about modeling complex phenomena, e.g.
in the form of simple additive contributions to the overall Hamiltonian, and—as in
the case of ‘electron hopping’ (mentioned in the previous paragraph and discussed
in detail in connection with the Hubbard model in Chap. 3, Sect. 3.3)—they often
suggest specific ways of representing physical processes, thereby contributing to the
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intelligibility of a model and a sense of understanding on the part of its user.2 On
the other hand, mature formalisms also impose various restrictions and come to
have a constraining role. Many such restrictions are implicit in the rules of a
formalism: as formalisms mature, they undergo a process of elaboration, enrich-
ment, and entrenchment, and come to embody theoretical, ontological, and
methodological commitments and assumptions. Importantly, these constraints and
commitments may no longer be obvious to either the novice or the proficient user,
since they are usually ‘enshrined’ in the formalism, cloaked behind purely nota-
tional rules which, in turn, determine which subset of possible processes and
mechanisms a formalism lends itself to representing.

The importance of formalisms to the construction of scientific representations
has been recognized before by others, but their precise function and characteristics
have sometimes been obscured by a hasty assimilation of the issue of mathematical
formalisms to the more general question of the applicability of mathematics to
nature. One of the first to recognize that mathematical formalisms often have rather
specific heuristic and theoretical roles in scientific inquiry was Mary Hesse. In her
1953 paper on models in physics, she notes: ‘Mathematical formalisms, when used
as hypotheses in the description of physical phenomena, may function like the
mechanical models of an earlier stage in physics, without having in themselves any
mechanical or other physical interpretations’. More specifically, according to Hesse,
mathematical formalisms have an important role to play in those areas of modern
physics, such as quantum theory, where ‘we are told that we must not ask for
picturable mechanical or electrical models’, but should instead rely exclusively on
‘formal mathematical hypotheses’ [8, p. 199]. In such highly abstract areas of
science, what is desperately needed, in the absence of visualizable aids to reasoning
such as mechanical models, are alternative ‘pointers towards further progress’. As
Hesse sees it, what takes the place of easily pictured mechanical models

is provided by the nature of the mathematical formalism itself—any particular piece of
mathematics has its own ways of suggesting modification and generalisation; it is not an
isolated collection of equations having no relation to anything else, but is a recognisable
part of the whole structure of abstract mathematics, and this is true whether the symbols
employed have any concrete physical interpretation or not. [8, p. 200]

Two points are worth highlighting especially in this context. First, Hesse argues
that mathematical formalisms fulfil a similar heuristic function as picturable
mechanical models, in that both have often been suggestive of new directions of
research. The tentative language is important here: picturable mechanical models as
well as mathematical formalisms ‘point towards’ progress and ‘suggest’ new steps
of modification and generalization, rather than logically entailing them or making
them otherwise inevitable. Second, mathematical formalisms do not merely
accommodate whatever hypotheses one may already have formulated regarding the
target system, but instead also constrain the ways in which a system can be rep-
resented. As a ‘particular piece of mathematics’, each formalism ‘has its own ways

2On this point, see also Chap. 3 (Sect. 3.2.3).
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of suggesting modification and generalisation’ (italics added); that is, every choice
of a particular mathematical formalism involves a trade-off between certain affor-
dances and constraints.

While there exists a great deal of affinity between Hesse’s views and my sug-
gestion that mature mathematical formalisms occupy a special place in model
construction, there also remain several crucial differences. Thus, when Hesse
equates a mathematical formalism with ‘any particular piece of mathematics’, this
may be rather too global a characterization for our purposes. The mere deployment
of the formal methods of one particular branch of mathematics does not by itself
constitute a mature mathematical formalism. For this to be the case, a formalism
must lend itself to physical interpretation, as in the case of creation and annihilation
operators in many-body physics (this already marks a point of contrast with Hesse
who, in the block quote above, remains neutral as to ‘whether the symbols
employed have any concrete physical interpretation or not’). Furthermore, a mature
mathematical formalism must be sufficiently general to be applicable to a range of
physical problems; at the same time, it will typically fall short of universality, in the
sense that certain cases—though logically and physically permissible—do not lend
themselves to being modeled using the formalism. This is simply the flip side of a
mature mathematical formalism’s having already incorporated certain theoretical,
methodological, and heuristic assumptions that are not themselves part of either the
mathematical framework at large or the ‘underlying’ physical theory. Much of the
value of a mature formalism derives from precisely such built-in theoretical con-
straints: they ensure that its output—e.g. a many-body Hamiltonian—will auto-
matically satisfy important conditions (e.g. preservation of particle number, Fermi’s
exclusion principle, etc.). This is why more is required for a mature formalism than
just the wholesale application of mathematics-at-large to scientific problems; it
takes additional rules and notational conventions, which are appropriate to the
specific domain of application, for a ‘particular piece of mathematics’ to count as a
mature formalism.

The emphasis on mathematical formalisms as representational vehicles should
not obscure the fact that similar considerations also apply to other (e.g. visual or
diagrammatic) symbol systems. While this is not the place for developing a full
definition of what constitutes a ‘symbol system’, this much seems uncontroversial:
typically, a symbol system requires that well-formed arrangements such as marks
on paper, figures in a table, etc., be registered semantically as instances of a par-
ticular character (i.e., that such a system, in Nelson Goodman’s terminology, be
‘syntactically articulate’), and that certain other features (e.g., compositionality)
allow for the manipulation and interpretation of expressions within that system. As
an example, consider the case of the notational system of Feynman diagrams, which
was developed with the goal of representing a potentially indefinite number of
physical processes in quantum electrodynamics. Each Feynman diagram consists of
points (‘vertices’) and arrows (of different orientation) attached to the vertices,
representing interacting electrons and positrons, as well as wavy lines signifying
photons that may be emitted or absorbed. Enshrined in the formalism of Feynman
diagrams are both rules for the construction of new diagrams (e.g., ‘At every vertex,
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conservation of energy and momentum among the interacting particles is required’),
as well as for the interpretation of the diagrams thus generated (e.g., ‘Lines in
intermediate stages in the diagram represent “virtual particles”, which may “tem-
porarily” violate the relativistic energy-momentum relation, but which are
in-principle unobservable if they do not’). While the formalism of Feynman dia-
grams was developed on the basis of an overarching theoretical conception—which
takes each diagram to represent a contribution to the total amplitude for a (multiply
realizable) quantum process—it has taken on ‘a life of its own’ in certain areas of
high-energy physics, where it has developed from a mere shorthand to what one
might call a notational lingua franca.

The ubiquity of mature notational systems across the sciences—ranging from
mathematical formalisms in physics to structural formulas in chemistry and the use
of cladograms in evolutionary biology—attests to their utility as aids to scientific
inference. Much of this utility derives from the fact that mature formalisms and
notations provide powerful representational resources, which scientists can draw on
in their attempts to represent reality, explore the consequences of their models, and
convince colleagues of the merits of their theories and hypotheses. Furthermore,
mature formalisms and notations also function as a way of outsourcing inferential
work, for example by ensuring that results derived within the formalism satisfy the
requisite criteria of validity. As Lorenzo Magnani notes, while such ‘external forms
of representation’

can give people access to knowledge and skills that are unavailable to internal represen-
tations, help researchers to easily identify aspects and to make further inferences, they
constrain the range of possible cognitive outcomes in a way that some actions are allowed
and others forbidden. [9, p. 443]

This is especially obvious in the case of mathematics, given the truth-preserving
nature of logical and mathematical reasoning, but it applies equally to physically
interpreted formalisms such as Feynman diagrams and the operator formalism in
quantum physics, where adherence to certain syntactic rules of the formalism often
automatically ensures that certain physical constraints—conservation of energy and
momentum, or conformity with Pauli’s exclusion principle—will be satisfied.
Importantly, such formalisms and notations need to be entrenched and sustained
through collective social practices; in the case of Feynman diagrams, as historians
of science have noted, there was much initial resistance, with the method being
perceived as ‘too new, and too idiosyncratic’ [10, p. 91]. Yet, although physicists
initially ‘practiced drawing and interpreting the diagrams in distinct ways, toward
distinct ends’ [11, p. 165], over time these methods converged into a powerful and
near-universal representational medium. Once such representational formalisms
have collectively solidified, and have been mastered at the individual level, they
allow their users ‘to alleviate the cognitive load and increase the reliability of [their]
inferences’ [12, p. 7]. While it would be an exaggeration to say that mature for-
malisms and notations ‘do the thinking’ for their users, neither would it be adequate
to treat them simply as neutral tools; instead, they constitute powerful representa-
tional resources that both enable and constrain what can be done with them.
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5.3 Models as Contributors

As argued in the previous section, the existence of a mature formalism—such as the
formalism of creation and annihilation operators in many-body physics—can
ensure that a model generated on its basis is, in various ways, sensitive to the
phenomenon or target system it represents. Thus, in the case of models of strongly
correlated electron systems, correctly deploying the formalism ensures that the
resulting models will conform to certain basic theoretical commitments, such as the
Pauli principle governing the behaviour of fermions. At the same time, the for-
malism frees the model from other types of constraints. Consider again the Hubbard
model. As we saw in our earlier discussion, one of the core contributions to the
Hubbard Hamiltonian arises from the movement (‘hopping’) of electrons from one
site in the crystal lattice, i, to another, j. The extent of this contribution is reflected
by the hopping integrals, Tij, an estimate of which can be derived from ‘first
principles’ by calculating the influence of the wave functions of neighbouring
atoms. This would seem to impose an enormous burden on the modeler to get the
numerical values for Tij ‘just right’ (where this might mean reproducing empirical
results—provided these are available—or employing quasi-exact numerical tech-
niques). However, by switching perspectives and moving from a ‘first-principles’
approach to a formalism-driven approach, this burden can be easily alleviated: from
a formalism-driven perspective, the hopping integrals are simply parameters that
can be chosen largely arbitrarily (except perhaps for certain symmetry require-
ments). No matter what one’s specific choice of numerical values for Tij, the
resulting model will count as a valid output of the formalism, and the modeler is
free to adjust her choice of parameters depending on her goals of inquiry. Reliance
on mature formalisms, thus, may not only serve to enforce conformity with certain
(e.g. theoretical) constraints, thereby ensuring that the resulting model is sensitive
to certain features of the target systems, but may also liberate the model from
overly exacting demands, e.g. concerning the specific choice of parameter values.

The example discussed in the previous paragraph suggests that it would be quite
misguided to think, as a naive conception of modeling would have it, that the
success of a model need always be tied to how well they approximate, or instan-
tiate, fundamental ‘first principles’. Indeed, in the case at hand, a number of
approximations have already gone into the derivation from ‘first principles’, for
example by positing that interactions between atoms and their orbitals be limited to
nearest neighbours. When the formalism-driven approach lifts restrictions on the
hopping integrals Tij, by treating them as parameters that can be freely chosen
(rather than as values that need to be derived from fundamental theory), this need
not entail any additional ‘loss’ of accuracy as compared with the ‘first principles’
approach. At the very least, given the unavailability of an exact solution to the full
‘first principles’ problem, there is no principled way of telling whether freely
chosen parameters are further from the truth than values that have been derived via
a series of approximations. More generally, any view that subjugates models to
fundamental theory—or to empirical data, for that matter—risks overlooking the
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fact that models themselves often contribute new elements to the description and
investigation of their target systems—elements which are not themselves part of the
fundamental theory (or, as it were, cannot be ‘read off’ from it) but which may take
on an interpretative or otherwise explanatorily valuable role.

Contributions of novel criteria, quantities, and structural features at the level of
models can take many forms. Some of these novel contributions may come to
inform the way scientists think about a class of target systems and may suggest new
lines of research. Let us stick with the example of the Hubbard model in order to
illustrate several kinds of such novel contributions. At a fairly basic level, new
quantities and parameters may be generated by combining different elements of the
model in novel ways. Thus, in the Hubbard model one finds two sets of parameters
U; Tij

� �
, with the former being a measure of the on-site Coulomb repulsion

between electrons at the same lattice and the latter being the hopping integrals. In
the interest of simplicity, let us assume that we are dealing with a cubic lattice and
nearest-neighbour interaction, in which case the interaction Tij between different
lattice sites will either be zero or have the same fixed value t. By combining both
parameters—U and t—into a single ratio, U=t, it is then possible to study how the
relative strength of the interaction between electrons (as compared with their
individual kinetic movement) affects the behaviour of the model. This is because,
from ‘within the world of the model’ (to use Morgan’s evocative phrase; [6,
p. 238]), the ratio U=t is a unique and exact measure of the relative importance of
the electrons’ dynamics as compared with their on-site repulsion. Though initially
introduced as parameters, the two quantities U and t are now linked by the model in
a way that allows the modeler to explore the relative strength of the two processes:
on-site repulsion and hopping. On the one hand, this gives more internal cohesion
to the model, on the other hand it has implications for how one should, and should
not, go about modifying the model. For example, an attempt to make the model
more accurate by adding new (higher-order) terms to the model (perhaps
accounting for higher-order interactions of strengths V ;W ;X; Y ; Z\U; t), may be
undesirable, as it may be more useful to have a single measure of the relative
strength of the electron–electron interactions—U=t—rather than a whole set of
different measures U=t;V=t;W=t; . . .f g. If one’s goal is to gain a deeper under-
standing of the model and its target, rather than merely making numerical predic-
tions, it may simply not be desirable to replace an intuitively meaningful quantity
with a set of parameters that lack a straightforward interpretation, even if such a
move might lead to more accurate numerical results.

The ‘active’ contribution of the model, that is, its contributing new elements
rather than merely integrating theoretical and experimental (as well as further,
external) elements, is not only relevant to interpretative issues, but also opens up
new dimensions of assessment and of linking seemingly unrelated models. In the
case of many-body models, one especially salient class of novel contributions—
known as rigorous results—illustrates both these points quite strikingly. The
expression ‘rigorous results’, which is not without its problems, has become a term
of art in theoretical physics, especially among practitioners of statistical and
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many-body physics (see for example [13]). It therefore calls for some clarification.
What makes a result ‘rigorous’ is not the qualitative or numerical accuracy of a
particular prediction of the theory or model. In fact, the kind of ‘result’ in question
will often have no immediate empirical connection with the model’s target system
or phenomenon. Rather, it concerns an exact mathematical relationship between
certain mathematical variables, or certain structural components, of the mathe-
matical model—which may or may not reflect an empirical feature of the target
system.3 Put crudely, in much the same way as Pythagoras’ theorem (a2 þ b2 ¼ c2)
is not merely true of a particular set of parameters, e.g. fa; b; cg ¼ f3; 4; 5g, but
holds for all rectangular triangles, so a rigorous result for a type of mathematical
model holds for any instance of it, not just for a particular choice of parameter
values. At the same time, rigorous results are true only of a model (or class of
models) as defined by a particular Hamiltonian, unlike, say, certain symmetry or
conservation principles that follow directly from fundamental theoretical consid-
erations. In other words, they are genuinely novel contributions at the level of
models, rather than at the level of fundamental theory or empirical data.

Rigorous results may also connect different models in unexpected ways, which
can neither be readily deduced from fundamental theory (since rigorous results do
not hold generally but only for certain types of models), nor be inferred from
empirical data (since the corresponding target systems of the different models may
be radically different). For our preferred example of the Hubbard model it can been
rigorously shown that, at half filling—when half of the quantum states in the
conduction band are occupied—and in the strong-coupling interaction limit,
U=t ! 1, the Hubbard model can be mapped on to the spin-1/2 antiferromagnetic
Heisenberg model.4 The Heisenberg model was first proposed by Werner
Heisenberg in 1928 as a simple quantum mechanical model of magnetic insulators.
Whereas the (classical) Ising model, discussed in Chap. 1 (Sect. 1.1), was based on
the idea that a macroscopic magnet consists of ‘elementary magnets’, each of which
can take only two values, Si ¼ þ 1 (‘up’) and Si ¼ �1 (‘down’), the Heisenberg
model replaces the classical variables Si with quantum mechanical spin operators Ŝi.
Heisenberg was thus able to give a physical interpretation of the (previously merely
posited) ‘elementary magnets’ in terms of the newly discovered quantum
mechanical property of spin. The introduction of quantum operators also funda-
mentally alters the algebraic properties of the Heisenberg model, as compared to the
classical Ising model. What matters in the present context, however, is not the
extent to which the Heisenberg model constitutes an advance over the Ising model,
but rather the fact that the Heisenberg model was proposed as a model of magnetic
insulators, whereas the Hubbard model reflects the itinerant behaviour of electrons

3One way to think about rigorous results is to regard them as akin to mathematical theorems that
are provable from within the model or theory under consideration. Indeed, the notions of ‘theorem’
and ‘rigorous result’ are frequently used interchangeably in scientific texts, especially in theoretical
works such as [38].
4see, for example, [14].
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in conductors. Conductors and insulators constitute very different classes of target
systems, so it is surely surprising that a model for the former—the Hubbard model
at half filling in the strong-coupling limit—maps onto a rather different type of
model for the latter, the Heisenberg model. While the Hubbard model with infinitely
strong electron–electron interaction (U=t ! 1) cannot claim to describe an actual
physical system (since the strength of any actual interaction is necessarily finite),
various mathematical and numerical techniques can nonetheless be applied in the
strong-coupling limit. This allows for the testing of the adequacy of the Hubbard
model by exploring the numerically and analytically more tractable antiferromag-
netic Heisenberg model—a truly astonishing result.

Rigorous relations between different many-body models not only provide fertile
ground for testing of mathematical and numerical techniques, and for the ‘explo-
ration’ (in the sense discussed in Chap. 4) of models more generally. They can also
give rise to a transfer of empirical warrant across models that were intended to
describe very different physical systems. The mapping, in the strong-coupling limit
(U=t ! 1), of the Hubbard model onto the spin-1/2 antiferromagnetic Heisenberg
model is one such example. For, the latter—the antiferromagnetic Heisenberg
model—has long been known as an empirically successful ‘“standard model” for
the description of magnetic insulators’ [14, p. 75], yet the Hubbard model at low
coupling (U=t ¼ 0, indicating zero electron–electron interaction) reduces to an
ideal Fermi electron gas—a perfect conductor. It has therefore been suggested that,
for some finite value between U=t ¼ 0 and U=t ! 1, the Hubbard model must
describe a system that undergoes a transition from conductor to insulator. Such
transitions, for varying strengths of electron–electron interaction, have indeed been
observed in physical systems and are known as Mott insulators. Thanks to the
existence of a rigorous relation between the two models, initial empirical support
for the Heisenberg model as a model of a magnetic insulator thus translates into
support for a new—and originally unintended—representational use of the
Hubbard model, namely as a model of Mott insulators. In other words, ‘empirical
warrant first flows from one model to another, in virtue of their standing in an
appropriate mathematically rigorous relation’ [15, p. 516], from which one may
then gain new insights regarding the empirical adequacy of the model.5 As this
example illustrates, rigorous results neither borrow their authority from funda-
mental theory nor do they always need to prove their mettle in experimental con-
texts; instead, they are genuine contributions of the models themselves and afford
their users new ways of confirmation, assessment, and exploration—well beyond
the narrow focus on a model’s empirical performance ‘in experimental, engineering
and other kinds of interventionist contexts’ [7, p. 81].

5This case of cross-model support between many-body models that were originally motivated by
very different concerns is discussed in detail in [15].
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5.4 Models as Epistemic Tools

The idea that models and their various functions in scientific inquiry are best
analyzed by paying close attention to representational means and their ‘character-
istic limitations and affordances’ [16, p. 695], has been developed more fully in
recent work on models in the engineering sciences by Tarja Knuuttila and Mieke
Boon. Starting from the realization that, in the engineering sciences, the goal of
accurately representing extant target systems often takes second place to actively
intervening in the world in order to generate new objects, Boon and Knuuttila argue
that it is best to ‘consider scientific models in engineering as epistemic tools for
creating or optimizing concrete devices or materials’. This, they argue, generalizes
to scientific modeling more broadly, which may be characterized ‘as a specific
scientific practice in which concrete entities, i.e. models, are constructed with the
help of specific representational means and used in various ways, for example, for
the purposes of scientific reasoning, theory construction and design of other arti-
facts and instruments’ [16, p. 689]. By explicitly adopting a ‘functional perspective’
[16, p. 696], this view not only aligns itself with pragmatic approaches more
generally (as discussed in Chap. 1, Sect. 1.6), but also coheres well with the overall
approach developed in this book, which is based on a recognition of the diversity of
uses and functions of scientific models.

Emphasizing their character as concrete objects is of central importance to the
view of scientific models as epistemic tools. As Knuuttila puts it elsewhere, models
ought to be regarded ‘as concrete artefacts that are built by specific representational
means and are constrained by their design in such a way that they facilitate the
study of certain scientific questions […] by means of construction and manipula-
tion’ [17, p. 262]. Indeed, its recognition of the concrete material dimension of
models is put forward as a criterion for what distinguishes this view from the
models-as-mediators view with its emphasis on the partial autonomy of models
from both theory and data; as Boon and Knuuttila argue, ‘it is not sufficient that
[models] are considered as autonomous; they also need to be concrete in the sense
that they must have a tangible dimension that can be worked on’ [16, p. 694]. One
might worry that this emphasis on the concrete materiality of model is too limiting,
in that it makes it difficult to see how, on this view, abstract models—including
mathematical models—can function as tools of inquiry. Boon and Knuuttila aim to
address this worry by explicitly extending their analysis to abstract models: ‘when
working with them we typically construct and manipulate external representational
means such as diagrams or equations’. Abstract models may be given material form
via ‘scale models, pictures, diagrams, different symbolic formulas and mathematical
formalisms’, all of which ‘suggests that the material dimension of models and the
diverse representational means they make use of are crucial for their epistemic
functioning’ [16, p. 695]. The example of Feynman diagrams, discussed in Sect. 5.2
above, though not directly mentioned by Boon and Knuuttila, is a good illustration
of how the use of external representational means—even when their material
dimension consists only in marks on paper, combined with conventions regarding
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their use and interpretation—facilitates abstract reasoning and stabilizes inferences
by anchoring them in a more accessible medium.

It is clear, from this brief summary, that there are strong affinities between this
view of models as epistemic tools and the view, developed above and in the
preceding chapters, that models are functionally diverse contributors to scientific
inquiry, which draw on a range of representational resources. Both views
acknowledge the dual nature of models as enabling and constraining what their
user can do with them; indeed, as Boon and Knuuttila aptly put it, ‘modellers
typically proceed by turning the constraints […] built into the model into affor-
dances’ [16, p. 695]. At the same time, there remain certain differences between the
two views, some of which are a matter of emphasis, while others point to contrasts
that run deeper. For one, there remains a gap between viewing models as epistemic
tools, which emphasizes their concreteness, and making sense of certain uses to
which models are put. As we saw in Chap. 4 (esp. Sect. 4.4), models often do not
aim at representing individual target systems, but aim at exploring universal fea-
tures of classes of target systems—which, in many cases (such as
higher-dimensional systems in physics, or multi-sex species in biology) are not, and
perhaps could not be, instantiated. In the case of physical tools, although multiple
utilizability is often considered a key characteristic of how tools function [18, p.
227], any particular use is causally tied to a particular target, not to a whole class of
target system. How, then, is it possible for models to allow us to represent, explore,
and otherwise investigate whole classes of models, including counterfactual sce-
narios? To be sure, when a user interacts with a specific external representation—
e.g., when she simplifies an equation on the whiteboard, or when she manipulates a
given Feynman diagram—such interactions are indisputably concrete; yet,
acknowledging this only pushes the question back one step: at the very least, what
is needed is an account of how it is that we can so easily move between the concrete
world of representational media and the (real or fictitious) target systems that are
being modeled. In the next section, an attempt will be made to develop a general
framework for making sense of how models enable us to gain epistemic access to
(information about) their—real or purported—target systems qua interacting with
representational means that are typically different in character from the target.

None of this, however, should detract from the significance of realizing that there
are important parallels between models and tools. For material models, of course,
this similarity has long been noted and has been accompanied by the realization that
physical manipulation, on occasion, can take the place of theoretical derivation. As
Davis Baird observes in relation to orreries (i.e., mechanical models that ‘re-enact’
the motion of various planets and their moons), the very way these models are
materially constituted allows one to use them—in a hands-on way, by setting them
in motion—‘to demonstrate […] the shape of the moon’s orbit relative to the sun’.
Similarly, in the case of the physical ball-and-stick model of the DNA double helix
(see Fig. 5.1), it is entirely appropriate to say that ‘the sticks in Watson and Crick’s
model denote bond lengths, not rigid metallic connection’ [19, p. 38].
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In other words, the interactions that the material realization of a model affords its
users crucially shape what kinds of targets it is suitable for and what kinds of
inferences it enables. Perhaps the strongest endorsement of the importance of
representational media to the utility of models comes from scientific practitioners.
James Watson, in his historically controversial first-person account of the discovery
of the structure of DNA and the research leading up to it (including Linus Pauling’s
discovery of the protein α-helix), gives vivid expression to this insight: ‘The α-helix
had not been found by staring at X-ray pictures; the essential trick, instead, was to
ask which atoms like to sit next to each other. In place of pencil and paper, the main
working tools were a set of molecular models superficially resembling the toys of
preschool children’ [20, p. 34]. Whatever the shortcomings of Watson’s historical
narrative, not least regarding his portrayal of Rosalind Franklin’s contribution, this
much he is getting right: the ability to physically manipulate a material model—
whether in the case of the α-helix, or the full-fledged DNA double helix model—
was important not just for illustrative purposes, or because it somehow provided a

Fig. 5.1 James Watson (left) and Francis Crick (right) interacting with their physical model of the
DNA double helix. Artwork by Jerry Teo
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convenient shortcut for theoretical reasoning based on empirical data, but because it
afforded novel ways of exploring and approaching the target system.6

A final caveat about viewing scientific models as epistemic tools concerns the
implied neutrality of models as instruments of inquiry. If models are thought of as
(passive) tools, which a user may or may not help herself to, then it may be
tempting to view the function of models in solely instrumental terms: on this
account, a model’s success would be defined by how seamlessly and efficiently it
allows its user to achieve an intended outcome. Philosophers of technology have
challenged this ‘neutrality assumption’ regarding the use of tools and technology in
a twofold way. First, a close look at how technological devices are deployed reveals
that, once they become sufficiently widely adopted, they can no longer be said to
instrumentally realize pre-existing goals and intentions, but instead begin to reshape
social reality in a way that also affects human desires and interests. There is no
reason to think that the situation is any different in the case of epistemic tools;
indeed, a number of case studies from the history of science have shown that,
depending on social and cultural context, the ‘same’ models may be put to quite
different uses and may have divergent effects on the collective development and
assessment of theories and research programmes.7 Second, the specific constraints
and affordances of technological devices may directly affect how individual users
perceive problem situations and what they focus their attention on. Notoriously, ‘to
someone with a hammer, everything looks like a nail’; similarly, a scientist’s choice
of a particular type of model—which, more often than not, will itself not be an
unconstrained decision—may determine which scientific problems they judge
significant and how they assess specific scientific hypotheses. Sometimes, as in the
case of Watson and Crick’s double helix model, a model can focus attention on, and
give stability to, a theoretical hypothesis—in this case, concerning the molecular
structure of DNA—even in the face of unclear or misleading empirical evidence (in
this case, crystallographic evidence from X-ray diffraction). Sometimes, as in the
case of models of the cell membrane, attachment to a particular structural model—
the ‘unit membrane’ model, which portrayed the membranes of all cell types as
having a trilaminar protein-lipid-protein structure—can steer inquiry away from a

6The allusion to ‘exploration’ as a function of material models is entirely deliberate: for, as Baird
notes, material manipulation ‘is particularly important when conceptual manipulations are
impossible either for lack of a theory or because analytical manipulations would be too difficult’
[19, p. 39]. Similarly, Magnani identifies as one of the core features of what he calls ‘manipulative
abduction’ that ‘manipulations have to be able to introduce potential inconsistencies in the
received knowledge and so to open new possible reasoning opportunities’ [9, p. 444]. Baird’s and
Magnani’s remarks cohere well with my earlier characterization, in Chap. 4, of exploratory
modeling as model-based research in the absence of a fully-formed theoretical framework;
interestingly, Magnani explicitly refers to the experimental work of Ørsted (see the discussion in
Chap. 4, Sect. 4.3) as an instance of successful ‘manipulative abduction’.
7For example, Grant Fisher has demonstrated how cultural differences between communities of
physical organic chemists in the UK and the United States impeded convergence in their modeling
strategies, specifically in relation to the molecular rearrangements discussed in Chap. 4 (Sect. 4.5.3).
See [35, pp. 580–581].
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true account of the target system (which, in this case, turned out to be far messier
than anticipated, with the cell membrane now known to consist of a lipid bilayer
and an irregular distribution of proteins—some integral, some peripheral—rather
than being made up of a highly ordered trilaminar structure).8 In both of these cases,
and across the natural and social sciences more generally, models actively shape the
course of scientific inquiry, even as they themselves are subject to a range of
empirical, social and historical factors. Therefore, rather than thinking of models
first and foremost as (passive) tools—which then, in a second step, creates the need
for addressing issues arising from their non-neutrality—it may perhaps be more apt
to acknowledge their active role in inquiry from the start. This is what the proposed
view of models as contributors to inquiry is intended to highlight, though it is
important to stress that this amounts to a difference in emphasis rather than to a
fundamental disagreement with Knuuttila’s and Boon’s view of models as epis-
temic tools.

5.5 Models as Enablers of Scientific Knowledge

What does it mean to say that a successful model functions as an ‘enabler’ of
scientific knowledge? For one, it means that, for a model to be successful, more is
required than that it stand in the right sort of objective relationship to its target
system. Consider a ‘black box’ whose inner structure maps perfectly onto a target
system, but which at the same time prevents any user from accessing its
information-carrying inner relations. Such an object could hardly be said to be a
good model of its target, given that, for lack of accessibility, it would be impossible
for us to learn anything from it about the target system. A successful model should
enable such learning, by making relevant information about its target accessible to
us—not only in principle, but in a sufficiently salient way, such that a reasonably
skilled user would be able to draw relevant inferences about the target system from
interacting with the model via the representational means it employs. A putative
model that failed to make salient to us any relevant connections that exist between
the model and its target would be of as little use to us as a model that lacked such a
connection in the first place. Hans-Jörg Rheinberger makes a similar point when he
gives the following characterization of models, which can also be read as a nor-
mative statement about how successful models ought to function: ‘What models
basically enable is an overview at one glance of a multiplicity of data and of how
they interrelate’ [21, p. 325]. In other words, in order for a model to enable us to
acquire scientific knowledge about aspects of the world, it must not only stand in
the right sort of objective relation to its target, but must also afford us some kind of
cognitive access to the information it contains.

8For a detailed discussion of models of the cell membrane, see [39].
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This much is largely uncontroversial. What is more contentious is how one
should best characterize this dual relation of models to their users and targets. One
possible approach is to distinguish between, on the one hand, different degrees of
immediacy in the way users can interact with a model (qua representational device)
and, on the other hand, different degrees of directness in the relation between model
and target system. Immediacy and directness, thus understood, are qualitatively
different: the former relates to the phenomenology of our interaction with the
representational means deployed by a model, whereas the latter concerns the link by
which a model can be said to contain information about its target system. Because
they concern different components in the complex ‘user–model–target’ relationship
that gives rise to model-based representation, immediacy (in the way a user
accesses a model) and directness (in the relation between model and world) can
come apart. A model that is immediately accessible to its user may nonetheless
stand only in a highly indirect relation to its target system, in that its construction
requires many steps of idealization, abstraction, and approximation; similarly, a
model may contain information directly obtained from its target system, without
thereby being immediately accessible. As an example of the latter, consider a
complex mathematical model that includes as parameters direct measurements
obtained from its target system. Due to its high degree of mathematical complexity,
the model may still require significant ‘decoding’ and interpretation on the part of
its user; in other words, although it directly represents information about the target
system, it may nonetheless lack immediacy from the user’s perspective.

The point that immediacy and directness can come apart is, of course, entirely
general and not limited to scientific models. Indeed, for certain modes of repre-
sentation—such as visualization—it has attracted considerable attention. For
example, Megan Delehanty notes that, in diagnostic imaging techniques such as
PET or fMRI, the production of visual images often requires ‘that extensive
mathematical transformation occur to produce the data that can then be represented
in the form of an image’ [22, p. 161]. Thus, when a patient is sent through a PET
scanner, the initially recorded output is a vast array of numerical values associated
with spatial coordinates; in order to produce an image, it is necessary to translate the
numerical data into visual stimuli, for example by displaying different intensities in
different locations as coloured pixels on a three-dimensional grid. Visualization,
then, is a deliberate strategy to increase immediacy: ‘The epistemic value of cog-
nitive accessibility, then, is not that images contain spatial information that is not
present in the corresponding numerical data, but that they make it much easier to
get it into our heads; to produce belief or knowledge’ [22, p. 170]. Similarly, John
Kulvicki notes that it is the ‘immediate availability of a great many pieces of
abstract information [which] accounts for some of the epistemological weight given
to images and graphs, not to mention photographs’ [23, p. 298; italics added].
Visual immediacy is but one example of how representational means can determine
cognitive accessibility; similar considerations apply to the modalities of touch,
hearing, and so forth.

Moving from these global considerations to the case of scientific models, let us
look at how immediacy and directness interact in material models, specifically in
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the case of wax models of biological organisms, which once were (and in some
quarters continue to be) widely used as instructional tools. Such models may rep-
resent various stages of an organism’s development, yet the most prominent
example, which has received considerable attention from historians of science and
medicine, are three-dimensional wax models of different stages of the embryo. In
his study of the history of three-dimensional wax models in embryology, Nick
Hopwood waxes lyrical (pardon the pun) about how ‘scale, texture, and colour
worked together to convert delicate and shimmering but tiny and elusive forms into
solid and opaque but huge and memorable shapes’ [24, p. 193]. The naturalistic
effect of some such models, especially those created by Wilhelm His (1831–1904),
is indeed striking (see Fig. 5.2). Having perfected his technique of ‘plastic recon-
struction’—which results in scale models that mimic the texture and appearance of
the original specimen—His described the purpose of his models as ‘giving body’ to
what would otherwise have been at best partial depictions of the organism.
Hopwood aptly characterizes this representational strategy when he observes that,
for His, ‘“the form of our body” was not a self-evident problem awaiting expla-
nation’, but instead required plastic reconstruction in order to reproduce a more
immediate ‘bodily apprehension of form’ [25, p. 466]. Of course, a given wax

Fig. 5.2 Embryo model in
black wax, by Wilhelm His.
Reproduced with permission
from Anatomisches Museum
Basel
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model need not, and rarely will, represent a specific (real-life) embryo: those cre-
ating the models would usually have aggregated information from different sources,
including the study of actual specimens, in order to create a model of an ‘average’
embryo, which includes the typical features that would be expected at the corre-
sponding stage of development, while leaving out individual variations. Yet, a
given wax model nonetheless lends itself to being treated as a specific concrete
object. Even if the model does not directly represent any particular target object, the
kind of cognitive access it affords—at least in cases such as His’s naturalistic wax
models—closely mirrors the (visual or tactile) immediacy that we would experi-
ence, were we to encounter a real specimen. As one 19th-century anatomist put it,
His’s models presented students with different embryonic stages ‘in corporeal and,
we might even say, graspable form’ [26, p. 545; emphasis added].9

How do models such as His’s wax models function, and how does the interplay
between immediacy and directness affect the way models work more generally?
Given the variety of available formats and media, and the large number of ways in
which we could potentially relate to them, it might seem that nothing much in
general could be said about the immediacy and directness with which models allow
us to learn about the world. Yet, some degree of unification, I want to suggest, can
be achieved by shifting the focus away from the diverse material qualities of models
towards the phenomenology of user–model relations. Taking the idea of models as
‘tools of inquiry’ seriously then allows us to draw on a rich body of work in the
phenomenology of human–technology interaction. Just as tools and technologies
afford their users different ways of accessing and manipulating the world, so models
enable different kinds of user–model–target relations, or so I shall argue. Among
philosophers of technology, Don Ihde stands out as one of the most thorough
analysts of how humans relate to the world via technology. In particular, he
develops a taxonomy of human–technology–world relations, at the core of which is
a distinction between what Ihde calls embodiment relations and hermeneutic
relations.10 Though developed primarily with technological artefacts in mind, this
distinction, as we shall see, also provides a fruitful framework for analyzing how
users access and explore the world using scientific models. Before this framework
can be developed further, however, a brief characterization of Ihde’s twin notions of
embodied versus hermeneutic human–technology–world relations is in order.

When we interact with technologies through embodiment relations, technologies
are already incorporated into our experience ‘in a particular way by way of per-
ceiving through such technologies and through the reflexive transformation of [our]
perceptual and body sense’ [p. 72].11 Optical technologies—such as glasses,
binoculars, or telescopes—are a good example of this, since they literally allow

9Quoted after [24, p. 184].
10Ihde uses the slightly clumsy expression ‘intentionality relations’ as an umbrella term and
distinguishes between embodiment, hermeneutic, alterity, and background relations. See [27].
11Unless otherwise stated, all page numbers in this and the next paragraph refer to [27].
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their user to ‘see through’ the mediating layer of technology and, in the case of
wearing glasses, are treated as de facto extensions of one’s sensory organs. In such
cases of embodiment, tools and technologies are not given focal attention as
technologies; instead, they ‘become part of the way I ordinarily experience my
surroundings; they “withdraw” and are barely noticed’ [p. 73]. Typically, embod-
iment relations require integration across multiple sensory modalities, along with a
high degree of coordination between a technological device and its user. A good
example is the technologically mediated activity of driving: ‘One embodies the car,
too, in such activities as parallel parking: when well embodied, one feels rather than
sees the distance between car and curb—one’s bodily sense is “extended” to the
parameters of the driver-car “body”’ [p. 74]. When it comes to technologies that
essentially depend on embodiment—for example, in the case of remote manipu-
lators, prosthetic devices, or endoscopic probes—it is clear ‘that the design per-
fection is not one related to the machine alone but to the combination of machine
and human’ [p. 74].

By contrast, hermeneutic relations involve ‘a special interpretive action within
the technological context’ that ‘calls for special modes of action and perception,
models analogous to the reading process’ [p. 80]. Reading—in the sense of reading
of a text or reading an instrument—‘is a specialized perceptual activity and praxis’,
which involves one’s body and sensory-motor system ‘in certain distinctive ways’
[p. 81]. At the same time, the target of one’s attention—the text, formula, chart, or
dial—is typically assumed to stand in a representational relation to an aspect of the
world:

If the object-correlate, the “text” in the broadest sense, is a chart, as in the navigational
examples, what is represented retains a representational isomorphism with the natural
features of the landscape. The chart represents the land- (or sea-)scape and insofar as the
features are isomorphic, there is a kind of representational “transparency.” The chart in a
peculiar way “refers” beyond itself to what it represents. [p. 81]

As Ihde’s choice of example—a graphical chart—indicates, the hermeneutic
dimension of our interaction with representations goes well beyond interacting with
linear text that is given in a natural (or formal) language. When we deal with
language, it is clear that we cannot do without interpretation, since linguistic rep-
resentations depend essentially on shared rules and conventions. Yet even graphical
representations like a navigational chart require some hermeneutical work: reading
a map is an activity that is structured by assumptions about the veracity of the
representation, by conventions about the interpretation of the various graphical
elements (e.g., lines, colours, symbols), and by an awareness of the interpretive
process itself. While there exist similarities between the reading of a map and, say,
the aerial viewing of the charted territory, one crucial difference (among others) is
the fact that ‘during the act of reading, the perceptual focus is the chart itself, a
substitute for the landscape’ [p. 81]. Readable technologies—including such
examples as measurement instruments, computing devices, dials, gauges, charts,
maps, etc.—tell us about the world, not by allowing us to access it immediately, but
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by serving as an interface with it.12 Both the printed map and the handheld tele-
scope are visual technologies of sorts; but whereas in the case of a telescope, we can
‘become one with’ and, through skilled embodied use—as an extended self, we
might say—look through it at the world, in the case of the map the representational
medium itself occupies the focal point of our attention: when we read a map, we are
looking at the map, not through it at the world; at best, we might be said to be
encountering the world indirectly, as a composite technology–world system.

One might expect the distinction between immediacy of access and directness of
representation to map onto the distinction between embodiment and hermeneutic
relations. After all, the attraction of highly accessible models such as His’s wax
models consists in their seemingly replicating putative target systems so natural-
istically, and along the same sensory modalities (visual, tactile, etc.), that they may
be treated almost as though they were individual specimens of the kinds that they
represent. However, even when the representational means employed by the model
ensure a high degree of immediacy, it does not follow that we can access the ‘world
out there’ in an embodied fashion; modeling, after all, is often a highly indirect way
of representing the world. And yet, there is a sense in which we can more imme-
diately gain knowledge about an organism via a life-like wax model than if we were
to consult, say, a sequence of diagrams and data points. One potential explanation
of this difference lies in the fact that visual and tactile media more easily support our
entering into a ‘game of make-believe’.13 When faced with a wax replica of an
embryo, we can successfully pretend that what is, in fact, a stand-in—the material
model—may, within the context of model-based inquiry, be treated as ‘the real
thing’: that is, the target. For example, if we inspect the wax model closely and find
what looks like a distinct anatomical structure in the object in front of us, we are to
assume that the embryo—not just the lump of wax we are examining—really does
exhibit this feature at the particular stage of development that is being repre-
sented.14 What makes it possible to treat some models in this way is the fact that
they successfully replicate the empirical richness of the original and that they utilize
the same sensory modalities as the target system to convey information about them;
His’s wax models invite us to pretend that, if we were to look at an actual embryo,
this is what we would see. The case, then, is similar to the embodiment relations

12Patrick Heelan, in a similar vein, notes that in natural and artificial languages, while ‘the
meanings of words and sentences are given directly, that is, non-inferentially, they are nevertheless
mediated by the forms and structures of the words used’ [42, p. 190]. Heelan extends this analysis
to the structured output of measurement instruments, which a scientist may routinely (and, over
time, effortlessly) use in order to learn about the world and about the unobservable theoretical
entities it contains. Thus, a scientist might use ‘standard scientific instruments, and when these
function for a perceiver as readable technologies, they become what Merleau-Ponty calls “de-
tachable [sense] organs”, and they make possible new forms of perception capable of detecting
particulars of the kinds named by the scientific theory’ [42, p. 193].
13See the discussion in Chap. 1 (Sect. 1.5).
14Recall that, on the ‘models as make-believe’ account, physical models may be regarded ‘as props
in games of make-believe, which represent their objects by prescribing imaginings about them’
[40, p. 82].
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discussed earlier, with the exception that, for as long as the user immerses himself
in the world of the model, it is the model which ‘becomes’ the target system. There
is no contradiction between this state of make-believe immersion and the tacit
acknowledgment that the model is simply a proxy for the target system. Indeed, it
will often be necessary to suspend the make-believe attitude and look at the model
‘from the outside’, as it were—treating it as an artefactual representation rather
than as a substitute target. Equally importantly, it takes more than just a decision on
the part of the model user for such an embodied state of immersion to be possible.
In particular, the model must be so constituted as to allow for the suspension of the
usual distinction between model and target.

So far, our focus has been on material models, in particular those that aim to
replicate aspects of their target systems such that they allow their users to immerse
themselves in the world of the model by treating it as though it were the target.
What about models that lack the requisite sensory continuity between the repre-
sentational means and the material qualities of the target system? In previous
chapters, a great deal of the discussion was devoted to mathematical models. Such
models, arguably, are very different in character from material objects like His’s
wax models. While the view of models as epistemic tools (see Sect. 5.4 above) has
successfully emphasized that mathematical models, too, must draw on external
representational means, not even the defenders of this view would argue that the
types of representational means typically employed in such a cases—e.g. diagrams
on paper, symbol systems, etc.—are of a kind that would be able to sustain anything
like an embodied state of immersion on the part of the model user. Equations on a
piece of paper or Feynman diagrams on a blackboard do not replicate their target
systems along the same sensory modalities; rather, they represent aspects of these
systems in a symbolic language. As a result, when dealing with mathematical
models, the hermeneutic dimension of the user–model–target relationship will
prevail. Given that hermeneutic relations differ in their phenomenology from
embodied relations insofar as the medium itself becomes a more salient focus of
attention, one might worry that this might make extracting information more dif-
ficult. But lack of immediacy need not come at the expense of epistemic utility. On
the contrary: once we have mastered the requisite rules of interpretation, a
hermeneutic technology holds out the promise of giving us more precise—and
more explicit—information than its embodied analogue. Thus, when we read a
thermometer, we can learn the precise temperature of our surroundings in a more
reliable and explicit manner than if we were to rely on the embodied (felt) sense of
hot and cold. Precisely because hermeneutic technologies can single out relevant
bits of information from the totality of our experience as a whole, they allow for a
precise and reliable uptake of information, even if at the expense of a somewhat
impoverished phenomenology: ‘There is an instantaneity to such reading, as it is an
already constituted intuition (in phenomenological terms)’ [27, p. 85]. It is also
worth noting that the act of reading need not always be strenuous, even in the case
of mathematical equations or diagrams: just as reading and interpreting linear text
has, for most of us, become ‘second nature’, so the hermeneutic activity of reading
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an equation or writing down a series of Feynman diagrams, for those who use them
on a daily basis, may over time become almost effortless.15

Earlier in this section, I claimed that, similar to the way tools afford their users
different ways of accessing and manipulating the world, scientific models enable
different forms of user–model–target relations. This claim can now be made more
precise. For one, the preceding discussion has identified the two central types of
relations in question: embodiment relations and hermeneutic relations. Different
types of models have greater affinities with one or the other: material models lend
themselves more readily to embodied forms of interaction, while mathematical
models require specific modes of interpretive action, more akin to reading. But in
real-life cases of scientific models, this is rarely an either/or affair: as proponents of
the models-as-mediators account have convincingly shown, models ‘are made up
from a mixture of elements’ [28, p. 14], and this heterogeneity often entails that
some parts of a model may be continuous with our ordinary sensory modalities,
whereas others require significant interpretation. More often than not, actual sci-
entific models will be characterized by a coexistence of embodied and hermeneutic
user–model–target relations. Consider the case of scale models in engineering,
which are commonly used to study the structural, mechanical, and/or aerodynamic
features of their targets.16 An engineer designing a new type of aeroplane might
begin by constructing a model that has the appearance of the full-scale aircraft,
including its geometrical proportions, only to find that not all relevant properties
(such as drag, weight, friction etc.) scale proportionately with size; in such cases,
one would need to suspend immersive engagement with what looked to be a good
stand-in for the target system and ‘read’ the model in a more detached way: for
example, by taking measurements, making appropriate modifications (e.g. adjusting
the relative wing size), or adding further elements (e.g. additional background
assumptions) to it. Working with models often requires such ‘switching’ between
embodied and hermeneutic modes of interaction. This leads to the second modi-
fication of my general claim: not only do scientific models support different types of
user–model–target relations, but they often enable their users to switch back and
forth between them. In short, models may function as mediators between different
user–model–target relations.

In order to substantiate this claim, let us consider two ‘mixed’ cases—that is,
instances of models which combine features that contribute to a more embodied
model–user interaction with elements that require a more interpretive stance. As we
shall see, each case requires some degree of switching of the sort discussed in the
previous paragraph, not because of any malfunctioning of the model, but simply as
a matter of successfully using the model as a way of deriving knowledge from it.
The examples in question are the Phillips machine, developed in the late 1940s as a

15So much so that, as discussed in Chap. 4 (Sect. 4.1), scientists often speak of having developed
‘a feel for’ a model, even in the case of highly abstract mathematical models.
16For an insightful discussion of scale models in engineering and their dependence on similarity
principles, which supply criteria for characterizing situations and translating information from one
situation to another, see [41].
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hydraulic model of the economy, and the use of interactive computer graphics in
contemporary protein modeling. A full discussion of these examples would be well
beyond the scope of this book; here, I shall restrict myself to certain aspects of how
users interact with each model and how, in each case, they are able to acquire
knowledge about the model’s putative target system.17

Described variously as ‘legendary’, ‘unique’, and altogether ‘best seen rather
than described’ [29, p. 21], the Phillips machine was constructed by William
Phillips in 1949 as a hydraulic model of the macro-economic relationships between
stocks and flows in an open economy. The machine operates via the flow of water
(laced with dye to allow for easier observation), which is pumped up from a tank
(named ‘transaction balances’) and then makes its way—representing the flow of
income—through a system of glass tubes, valves, and tanks (which represent
stocks, taxes, and money flows in the economy). Various elements of the model can
be adjusted by its user: for example, the experimenter can adjust how much of their
own disposable income individuals spend, thereby modeling a range of different
scenarios. Though thoroughly mechanical (and therefore non-digital) in its opera-
tion, it can nonetheless be ‘programmed’, as it were, by changing its settings; it may
thus function either as a model of Keynesian economic theory or as a neoclassical
model, depending on the impact its settings allow fiscal policy (as represented in the
model) to have on aggregate demand and output. From the vantage point of eco-
nomic theory today, which puts a premium on highly abstract models, the Phillips
machine may seem eccentric, inasmuch as it was not formulated in the language of
mathematics, but instead ‘involved metal, liquid, plastic, electricity and glass’ [30,
p. 118]. But its materiality is key to how the machine models economic processes.
For example, the viscosity of water, which affects the speed with which it flows
through the model, introduces a time lag that reflects ‘the necessary time gap, or
lag, in the interactions between investment and income’ [6, p. 210].

To the uninitiated user, the Phillips machine may look like a curiosity; without
reading the labels and instructions, it is certainly not obvious how to make sense of
its various flows, water levels, and other elements. Clearly, then, some degree of
interpretive ‘reading’ of the machine is required: although the materiality of the
model is just as important to the Phillips machine as it was for His’s wax models, in
the former case it does not readily support an immersive experience on the part of
its user. Or does it? To be sure, we cannot expect any material model of the
economy to represent its target system with the same degree of immediacy as a wax
replica of an organism is able to represent its target. But the Phillips model is often
credited with making vivid—in a manner that approaches the degree of embodi-
ment and accessibility afforded by other material models—otherwise abstract
relationships and difficult-to-grasp processes. The economist David Vines argues
that, while ‘[i]t is not true that “everything is in the machine” […] there is in fact

17Readers interested in analyses of these models in their own right may wish to turn to [6],
esp. Chap. 5, and [32] for the Phillips model, and to [33, 34] for the use of interactive computer
graphics in protein modeling.
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more in the machine […] than is allowed in macroeconomic conventional wisdom.
And it is immensely visible’ [31, p. 49; italics original.]. Others concur with this
assessment, noting that ‘[a] student of economics can never forget the difference
between an economic stock and flow after seeing the machine in operation’ [29,
p. 21], and the same applies to the more complex operations it performs: ‘The
Phillips machine is capable, not simply of representing these concepts visually, it
can also vividly show the inter-relationships between all these aggregates’ [29,
p. 26]. As Mary Morgan and Marcel Boumans put it: ‘Phillips built the machine to
learn and understand economics through his eyes and fingers rather than through
mathematics and word’ [32, p. 388]. Rather than viewing the Phillips machine as a
way of merely illustrating macroeconomic relationships, as some of its early
detractors did, perhaps it would be more apt to say that, once the machine has been
set in motion, it performs these relationships in such a way that users can access
them with greater immediacy, and in a more embodied fashion, than would be
possible by relying on symbolic means of representation alone.

The second example of how users may gain knowledge from a model by moving
back and forth between an embodied and a hermeneutic stance is the increasingly
widespread use of interactive computer graphics in protein modeling. Modeling the
structure of proteins is an exceedingly difficult task and requires not only significant
background knowledge, but also imagination and considerable skill. Before the
advent of computer technology, figuring out the structure of a particular protein
required the construction of material models, as in the already mentioned case of
Pauling’s use of paper models in the run-up to his discovery of the α-helix. In such
cases, the embodied dimension of models is evident. As Natasha Myers puts it in
her study of molecular ‘body-work’ in protein crystallography:

The ‘haptic’ dimension involved in the manipulation and handling of physical materials
was key for the production of models that could give modelers a sense of the structure and
dynamics of the molecule, and offered a means for researchers to use their bodies to
incorporate structural knowledge. [33, p. 174]

One of the difficulties of modeling the structure of a protein lies in the fact that
there is no straightforward way of predicting its three-dimensional shape on the
basis of the linear sequence of amino acids. A sequence of amino acids will ‘fold’
into the most energy-efficient three-dimensional structure, yet determining this
structure involves running numerically demanding simulations which, in turn,
requires the extensive use of computer technology. In the early days of
computer-aided protein modeling, researchers would write computer programmes
for specific problems (e.g. specific molecules) and such code would, on occasion,
be passed from one lab to another. Molecular structure, within this framework of
modeling, is then represented by the spatial coordinates of the individual atoms (or
groups of atoms), and the overall shape of the protein can be ‘read off’ only by
decoding this information: ‘In the absence of any other form of interface, the
interaction between user and computer was in the form of these numerical repre-
sentations’ [34, p. 413]. In its early days, and to a lesser extent also today,
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computational protein modeling thus involves an ineliminable hermeneutic element
in the way users access potential molecular structures.

Yet, in recent years, thanks to ever-greater computing power, more and more
sophisticated visualization and modeling techniques have developed, which are
sometimes referred to collectively as molecular graphics. Integrated software
packages now offer their users full-scale simulation and visualization environments,
in which users can simply ‘drag and drop’ atoms (or molecular groups such as
amino acids) on a computer screen, while an algorithm calculates likely spatial
arrangements in real time. These can then be displayed, either in vector graphics
format or as space-filling models which can be rotated and manipulated using
various computer-based commands, and which may be further visually enhanced
using virtual lighting techniques such as ambient occlusion. As Myers describes it,
onscreen protein modeling involves pulling up multiple windows on the computer
and moving back and forth between ‘restless gestures of the mouse and the
quick-paced and sometimes clumsy tapping out of keyboard commands’:

In one window, data will be streaming up the screen, and in another, the crystallographer
holds the skeleton-like interactive rendering of a model. She keeps it alive in space and
depth, rotating it onscreen and zooming in and out, keeping it visible at multiple angles,
constantly shifting her visual and haptic relationship to it. [33, p. 179]

It is such rapid shifting between different ways of relating to the model—from
visual to haptic and, one might add: from embodied to hermeneutic—that enables
protein modelers to ‘learn how to see, feel, and build protein structures through
their embodied interactions’ and ‘to acquire their “feeling for the molecule”’ [33,
p. 181].

Whereas the heterogeneity of models in science and the diversity of their uses
and functions are nowadays widely acknowledged, what has perhaps been over-
looked is that not only do models come in various forms and shapes and may be
used for all sorts of purposes, but they also give unity to this diversity by mediating
not just between theory and data, but also between the different kinds of relations
into which we enter with the world. Models, then, are not simply neutral tools that
we use at will to represent aspects of the world; they both constrain and enable our
knowledge and experience of the world around us: models are mediators, con-
tributors, and enablers of scientific knowledge, all at the same time.
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