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Chapter 1
Introduction

We develop here a theory for free boundary problems which applies to a large class
of systems arising from problems in various, even distant, areas of research and
which share a common mathematical structure. As we shall see in some detail,
these are models for heat conduction, queuing theory, propagation of fire, interface
dynamics, population dynamics and evolution of biological systems with selection
mechanisms.We shall considermodels in continuumand interactingparticle systems.
Their common mathematical features are the following:

(1) Microscopic particle dynamics stem from interactions of
topological nature.

(2) Macroscopic evolution is ruled by a free boundary problem.

In fact in themodelswe consider the particlesmove ind = 1dimension so that there is
a rightmost and a leftmost particle, called boundary particles. The rules of dynamics
are the usual ones, particles are either free (independent random walks or Brownian
motions) or they have some local interaction (for instance simple exclusion) and on
top of that there may be creations of new particles or particles may duplicate via a
branching process. In addition, in order to keep (approximatively) constant the total
number of particles, boundary particles are subject to a death process.

The topological nature of the interaction refers to the fact that the boundary par-
ticles are special as they may disappear at some given rate, being then replaced by
new boundary particles, the rightmost and leftmost particles among those which have
survived. Thus the “inside particles”, i.e. those in between the boundary particles,
evolve in the “usual” way, but the inside particles are not fixed a priori and may
eventually become boundary particles depending on the evolution itself.

As a consequence of particle evolution, the spatial domain occupied by the parti-
cles varies in time. In particular the location of the boundary particles changes in the
course of time due to the death process at the boundary. Correspondingly, as we shall

© The Author(s) 2016
G. Carinci et al., Free Boundary Problems in PDEs and Particle Systems,
SpringerBriefs in Mathematical Physics 12, DOI 10.1007/978-3-319-33370-0_1

1



2 1 Introduction

discuss extensively in this volume, themacroscopic version of themodels is provided
by a free boundary problem for a PDEwith Dirichlet condition supplemented by pre-
scribing the boundary flux. As often occurs, one can relate a macroscopic evolution
to microscopic dynamics via a scaling limit procedure (hydrodynamic limit).

The basic example that we will study in detail here is given by the linear heat
equation

∂ρ

∂t
= 1

2

∂2ρ

∂r2

in the time varying domain [0, Xt ] with some initial condition ρ(r, 0) = ρ0(r) ≥ 0
and boundary conditions

−1

2

∂ρ

∂r
(0, t) = j > 0, ρ(Xt , t) = 0 .

The free boundary Xt (also called the edge in this book) is not given a priori but
it should be determined in such a way that

−1

2

∂ρ

∂r
(Xt , t) = j.

Interpreting ρ as a mass density, the last condition states that the mass flux leaving
the system at Xt must be equal to j , and since j is also the mass flux entering at 0
(as fixed by the boundary condition at 0), the total mass in the system is preserved.
From this perspective the free boundary problem becomes a control problem: find
an edge evolution Xt in such a way that the total mass is constant in time.

Well known theorems on the Stefan problem yield a local existence theorem
for our basic example when we have “classical initial data”. We will define here a
weak version of the problem and prove global existence and uniqueness of a relaxed
solution for general initial data. The other models that we will consider in this work
have similar structure and the strategies of proof are very close to that in the basic
example. The key point in all of them is:

Construct upper and lower barriers that squeeze the solution we are
looking for.

The correct notion of order for these problems is defined bymass transport. Referring
to the basicmodel described above for the sake of definiteness, the barriers are defined
in terms of a simplified evolution where we introduce a time grid of length δ and the
evolution is ruled by the heat equation in R+ in the open intervals (nδ, (n + 1)δ)
with boundary condition

−1

2

∂ρ

∂r
(0, t) = j .
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At the times nδ we remove an amount of mass equal to jδ so that at these times
the mass conservation is restored. The key point is that we get an upper barrier if
we start by removing mass already at time 0 while we get a lower barrier when
we remove mass from time δ on: the order here is in the sense of moving mass to
the right. A key step is to prove that the barriers have a unique separating element.
Once we have this we conclude by showing that the solution we are considering
is trapped in between the barriers which then identifies the solution as the element
separating the barriers. As we will see this part of the proof exploits extensively
probabilistic ideas and techniques based on the well known relation between heat
equation and Brownian motion and between the hitting distribution at the boundaries
and the Dirichlet condition in the heat equation.

We think it can be useful for the reader to have one case worked out in all details,
so that in Part I we prove the above in the context of our basic example by proving
global existence and uniqueness of the relaxed solution of the problem; we also show
that this is the limit of the empirical mass density of the associated particle system
(in the hydrodynamic limit). In Part II we discuss, in a very sketchy way, several
other models, the conjecture being that the results proved for the basic model extend
to these other cases. So far the conjecture has been proved for a few cases that we
review, referring to the original papers for a full account.



Part I
The Basic Model



Chapter 2
Introduction to Part I

In Part I of this work we study a model for mass transport where Fick’s law is
satisfied. Fick’s law is the analogue for mass of Fourier’s law for heat conduction.
Fourier’s law, see [1], specifies the amount of heat flux in a metal bar when we heat
it from one side and cool it from the other. Its analogue for mass fluxes is Fick’s law,
formally described by the same equation. Since the transversal direction to the flow
is not relevant we model our system as one dimensional. The ideal experiment of
mass transport that we have in mind is the following: for t ≥ 0 the system occupies
a time varying space interval [0, Xt ], where Xt is a given positive, continuous and
piecewise C1 function; for instance we move the edge Xt with constant velocity for
some time, then we change velocity and so on. We act on the system by injecting
mass from its left boundary 0 at rate j > 0 while we remove mass from the right
boundary Xt in such a way as to keep the mass density at Xt equal to 0 for all t ≥ 0.
The evolution of the mass density ρ(r, t) in the interior of the spatial domain is ruled
by combining the continuity equation and Fick’s law, so that, supposing a constant
conductivity (set equal to 1/2), we have

∂ρ

∂t
= −∂ J

∂r
, J = −1

2

∂ρ

∂r
(2.0.1)

where J (r, t) is the local mass-flux and ρ(r, t) the mass density. Thus ρ(r, t) solves
the heat equation

∂ρ

∂t
= 1

2

∂2ρ

∂r2
(2.0.2)

in the time varying domain [0, Xt ] with some initial condition ρ(r, 0) = ρ0(r) and
boundary conditions

J (0, t) = j, ρ(Xt , t) = 0 . (2.0.3)

Physically these boundary conditions mean that the system is in contact with a
current reservoir which sends in mass at rate j and thus imposes a current j at the
origin; instead at the other endpoint Xt there is a density reservoir which removes
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8 2 Introduction to Part I

mass as fast as needed to fix the mass density to be constantly equal to zero. As a
consequence, in this setting, the total mass of the system is not a conserved quantity.

Themainquestionwewant to studyhere ariseswhenwe requiremass conservation
at all times. To achieve this, one needs to regard Xt as a control parameter and one
is lead to study the following control problem:

Is it possible to choose Xt in such a way that the total mass in the
system is constant ?

We clearly succeed if we can solve the free boundary problem (FBP) given by (2.0.2)
with initial datum ρ(r, 0) = ρ0(r), r ∈ [0, X0], and

− 1

2

∂ρ

∂r
(0, t) = j, −1

2

∂ρ

∂r
(Xt , t) = j, ρ(Xt , t) = 0 . (2.0.4)

In fact the rate at which mass is taken out of the system from Xt is

J (Xt , t) = −1

2

∂ρ

∂r
(Xt , t)

which, by (2.0.4), is exactly equal to the rate at which we inject mass at 0 so that the
total mass is constant.

As discussed in the next chapter (see Sect. 3.3) we can find in the existing liter-
ature on FBP an affirmative answer for special initial data and for finite times. In
fact one can readily check (see Sect. 3.3 for details) that the current J (r, t) solves
the classical Stefan problem for which the theory (in particular in one dimension) is
very rich with many detailed results available [2–6]. As a consequence local exis-
tence and uniqueness of classical solutions can be proved for the FBP defined by
(2.0.2) and (2.0.4) for smooth initial data which satisfy the boundary conditions. In
some cases the classical solution is global extending to all times, but this is not true
in general as it is known that singularities may develop.

Thus our control problem when stated for an arbitrarily long time interval [0, T ]
and for general initial data cannot always be solved via the above FBP. Take for
instance ρ0 ∈ L1(R+), bounded, continuous and everywhere strictly positive: in such
a case the whole problem has to be redefined. As usual the idea is to study a relaxed
version: we thus introduce an accuracy parameter ε > 0 and replace ρ0 by a nice
function ρ(ε)0 , smooth, non-negative and with compact support, requiring however
that

∫ |ρ0(r) − ρ(ε)0 (r)| dr ≤ ε. We may also ask that ρ(ε)0 satisfies (2.0.4) so that, for
what said above, we have a classical solution of FBP for some time [0, S]. However
this could be shorter than the interval [0, T ] we have fixed initially, in which case
the problem still remains. Moreover even if S ≥ T we have a poor control of the
solution and it is hard to see how this behaves when we remove the relaxation taking
ε → 0. The idea then is to further simplify the problem by relaxing also the boundary
condition at the edge. We refer to the next chapter for a precise definition of suitably

http://dx.doi.org/10.1007/978-3-319-33370-0_3
http://dx.doi.org/10.1007/978-3-319-33370-0_3
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relaxed solutions. Here we just say that in Part I we will prove that any ε-relaxed
solution converges to a unique limit when ε → 0. This will allow us to define a notion
of relaxed solution of the problem which is global in time and applies to a large class
of initial data.

In the last chapter of Part I we study a particles version of the above basic model.
The system has N particles so that the mass distribution is no longer continuous
but instead concentrated on points (the positions of the N particles). To simulate an
initial condition ρ0(r) (we assume

∫
ρ0(r)dr = 1 for simplicity), we distribute the

N particles independently of each other and with law ρ0(r)dr . We then define the
“empirical mass density measure”

π(N )
0 (dr) = 1

N

N∑

i=1

δBi (0)(r)dr (2.0.5)

where Bi (0) are the random positions of the N particles and δa(r) is the Dirac delta
at a. The value 0 refers to time, so far we have been describing the situation at time
0. Thus π(N )

0 (dr) is a probability measure on R which is random as the terms Bi (0)
are the random positions of the particles. If we denote by E the expectation with
respect to the law of the Bi (0) and by f (r) a test function, we have

E
[ ∫

π(N )
0 (dr) f (r)

]
=

∫
ρ0(r) f (r)dr. (2.0.6)

By the law of large number if N is large we do not need to take the expectation
because, with large probability,

∫
π(N )
0 (dr) f (r) is close to

∫
ρ0(r) f (r)dr .

Let us now make the particles move. We first consider the free case where the
particles are independent Brownian motions Bi (t) on R+ with reflection at 0. Call
π(N )
t (dr) the random mass distribution at time t and denote now by E the joint law

of the initial distribution of the particles and of their Brownian evolution. We then
have

E
[ ∫

π(N )
t (dr) f (r)

]
=

∫
ρ(r, t) f (r)dr (2.0.7)

where ρ(r, t) is the solution of (2.0.2) on R+ with Neumann boundary condition at
0 given by ∂ρ

∂r (0, t) = 0. All that is the well known relation between heat equation
and Brownian motions.

We next go to the injection-removal of mass mechanism. This is simply done as
follows: at exponential times of intensity j N the rightmost particle moves to the
origin (which is the same as saying that we add a new Brownian particle at 0 and
simultaneously we take out the particle which at that time is the rightmost one).
In between such actions the particles move as independent Brownian motions (with
reflection at the origin). We denote again by E the expectation with respect to the law
of this process (which includes the initial distribution of the particles, their motion
and the injection-removal of particles). Thus the total mass (i.e. the total number of
particles) is conservedbut as in the continuumweare injectingmass at 0 and removing
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mass on the right. Such a simple action however creates strong correlations among
the particles: the choice of the rightmost particle requires knowledge of the positions
of all the others. We thus lose the independency property and the analysis of the left-
hand side of (2.0.7) in this case becomes highly non-trivial. Existence of the process
is easy but the relation with the continuum version is harder. The question becomes
simpler if we study the asymptotic behavior of the system as N → ∞, namely its
“hydrodynamic limit”. We would like that:

lim
N→∞ E

[ ∫
π(N )
t (dr) f (r)

]
=

∫
ρ(r, t) f (r)dr (2.0.8)

where ρ(r, t) is the solution of the control problem described previously and in
particular of the FBP when this has a classical solution. In Chap. 11 we prove (2.0.8).
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Chapter 3
The Basic Model, Definitions and Results

In this chapter we expand the analysis presented in the Introduction by giving a
detailed definition of the control problem and its relaxed version. We then show that
for special initial conditions the control problem is related to a free boundary prob-
lem (FBP) which is solved locally in time using the existing literature on the Stefan
problem. We then present the main result of Part I (Theorem3.2) which states that
the relaxed control problem has a unique global solution. The proof uses inequal-
ities based on mass transport. We introduce lower and upper barriers obtained by
a time discretization of (2.0.2)–(2.0.3) and state the other main theorem of Part I
(Theorem3.14), which says that there is a unique element which separates the lower
and upper barriers. The proof of Theorem3.14 starts in Chap.4 and is completed
in Chap.7. The proof of Theorem3.2 is carried out in Chap. 9 and 10, using proba-
bilistic ideas that are introduced in Chap. 8. The essential point is to show that the
elements of an optimal sequence are eventually squeezed between the barriers and
therefore their limit points coincide with the unique element which separates the
barriers.

3.1 The Basic Problem

As discussed in the Introduction we consider the heat equation (2.0.2) in the time
varying domain [0,Xt], Xt a positive, continuous and piecewise C1 function, with
boundary conditions (2.0.3) and initial datum ρ0.

Definition 3.1 (Assumptions on ρ0) We suppose throughout the sequel that ρ0(r) is
a non-negative function belonging to the set

U =
{

u ∈ L∞(R+,R+) ∩ L1(R+,R+) :
∫

u > 0

}

. (3.1.1)
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Definition 3.2 (The basic problem) The function ρ(r, t) is a solution of the basic
problem in the time interval [0,T ] with initial datum ρ0 if there exists Xt positive so
that ρ(r, t) solves (2.0.2)–(2.0.3) with initial condition ρ0 and

∫ Xt

0
ρ(r, t) dr =

∫ X0

0
ρ0(r) dr for all t > 0. (3.1.2)

Definition 3.3 (The ε-relaxed problem) For ε > 0, the function ρ(ε)(r, t) is a
ε-relaxed solution of the basic problem with initial datum ρ0 in the time interval
[0,T ] if
• ∫ |ρ0(r) − ρ(ε)(r, 0)|dr ≤ ε,
• there exists X(ε)

t , t ∈ [0,T ], positive, continuous and piecewise C1 so that for each
t ∈ [0,T ], ρ(ε)(r, t) has support in [0,X(ε)

t ],
• ρ(ε)(r, t) solves (2.0.2)–(2.0.3) in [0,T ] with Xt replaced by X(ε)

t and with initial
condition ρ(ε)(r, 0),

• approximate mass conservation is satisfied, i.e.

∣
∣
∣

∫ X(ε)
t

0
ρ(ε)(r, t) dr −

∫ X(ε)
0

0
ρ(ε)(r, 0) dr

∣
∣
∣ ≤ ε for all t ∈ [0,T ]. (3.1.3)

Definition 3.4 (Optimal sequences) The sequence ρ(εn)(r, t) is an optimal sequence
relative to ρ0 and T > 0 if for each n ∈ N the function ρ(εn)(r, t) is an εn-relaxed
solution in [0,T ] of the basic problemwith initial datum ρ0 and if εn → 0 as n → ∞.

Definition 3.5 (Relaxed solution) ρ(r, t) is a relaxed solution in [0,T ] of the basic
problem with initial datum ρ0 if it is a weak limit of the elements ρ(εn)(r, t) of an
optimal sequence in [0,T ] with initial datum ρ0.

3.2 Stationary Solutions

The basic problem (see Definition3.2) has special global solutions given by the
stationary profiles:

ρ(st)(r|M) =
(
a(M) − 2jr

)
1a(M)−2jr≥0,

∫
ρ(st)(r|M)dr = M (3.2.1)

where 1 denotes the indicator function. Since mass is conserved we have a one
parameter family of stationary solutions indexed by the mass (denoted above byM).
We conjecture that these are the only stationary solutions but we do not have a proof.

Inmany problems stationary profiles are helpful because they can be used to “trap”
trajectories and thus give a-priori estimates. We will prove that the relaxed solutions

http://dx.doi.org/10.1007/978-3-319-33370-0_2
http://dx.doi.org/10.1007/978-3-319-33370-0_2
http://dx.doi.org/10.1007/978-3-319-33370-0_2
http://dx.doi.org/10.1007/978-3-319-33370-0_2
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of the basic problem (see Definition3.5) preserve order and this together with the
knowledge of the stationary solutions will play an important role in the sequel.

3.3 The FBP for the Basic Model

ρ0 is a classical initial datum if it is a smooth, strictly positive function in [0,X0),
X0 > 0, and it is such that

lim
r→X0

ρ0(r) = 0, lim
r→0

dρ0(r)

dr
= −2j, lim

r→X0

dρ0(r)

dr
= −2j. (3.3.1)

Theorem 3.1 (Local classical solutions) If ρ0 is a classical initial datum then the
basic problem (of Definition3.2) has a local solution: namely there exists T > 0 and
{Xt, t ∈ [0,T ]}, so that (2.0.2) with initial datum ρ0 has a solution ρ(r, t) which sat-
isfies (2.0.4) for all t ∈ [0,T ]. If v(r, 0) := − 1

2
dρ0
dr (r) − j ≥ 0 then the local solution

extends to all times.

The proof of Theorem3.1 given below follows from the theory of the Stefan
problem as we are going to see. The Eqs. (2.0.2) and (2.0.4) complemented by the
initial datum ρ0 in the unknowns Xt and ρ(·, t) define a free boundary problem,
FBP, where the datum at the free boundary involves both the value of ρ and its space
derivative. In the Stefan problem, the prototype of FBP’s, instead the datum is the
speed of the edge:

∂v

∂t
= 1

2

∂2v

∂r2
v(r, t)

∣
∣
∣
r=0,Xt

= 0,

dXt

dt
= −(2j)−1 ∂v(r, t)

∂r

∣
∣
∣
r=Xt

. (3.3.2)

Local existence for (3.3.2) is proved in [1–5].

Proof of Theorem3.1. Given Xt and v(r, t) satisfying (3.3.2) we set

ρ(r, t) = 2
∫ Xt

r

(
v(r′, t) + j

)
dr′. (3.3.3)

One can then check that (2.0.2) and (2.0.4) are all satisfied. The non-negativity of
ρ(·, t) follows from the maximum principle. Following Fasano and Primicerio, see
e.g. [1], we say that if v(r, 0) ≥ 0 then (3.3.2) has a “sign specification”. With a sign
specification the solution is global hence the last statement in Theorem3.1. �

Uniqueness of the local classical solution for the Stefan problem (3.3.2) is also
known. As mentioned if there is a sign specification the solution of (3.3.2) is global
while if there is no sign specification in general we only have local existence with

http://dx.doi.org/10.1007/978-3-319-33370-0_2
http://dx.doi.org/10.1007/978-3-319-33370-0_2
http://dx.doi.org/10.1007/978-3-319-33370-0_2
http://dx.doi.org/10.1007/978-3-319-33370-0_2
http://dx.doi.org/10.1007/978-3-319-33370-0_2
http://dx.doi.org/10.1007/978-3-319-33370-0_2
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examples where singularities do appear. The analysis of their structure is a very
interesting and much studied problem, see for instance [6–9].

3.4 Main Theorem: Existence and Uniqueness

By default throughout this chapter the initial datum ρ0 ∈ U , see Definition3.1.
Theorem 3.2 (Existence and uniqueness)

Let ρ0 ∈ U , then for any T > 0 there exists a unique relaxed solution of the basic
problem in [0,T ] with initial datum ρ0 (see Definition3.5). Moreover:

(a) As implicit in the above statement there exist optimal sequences in [0,T ] with
initial datum ρ0.

(b) The elementsρ(εn)(r, t) of an optimal sequence relative toρ0 andT > 0, converge
weakly to a limit ρT (r, t).

(c) The limit ρT (r, t) is independent of the optimal sequence and if S > T, ρS(r, t) =
ρT (r, t), t ∈ [0,T ]. We denote by ρ(r, t) the function which agrees with ρT (r, t)
for all T > 0.

(d) For all t > 0 ρ(r, t) is in L1 and
∫

ρ(r, t)dr = ∫
ρ0(r)dr.

(e) If ρ0(r) ≤ ρ�
0(r) then ρ(r, t) ≤ ρ�(r, t) ∀ r ∈ R+ and ∀ t > 0.

(f) ρ(·, t) converges weakly to ρ0(·) as t → 0.

Moreover, if ρ0(r) is continuous and with support in [0,X0], then
(g) ρ(r, t) is a continuous function in (r, t) which converges pointwise to ρ0 as

t → 0.
(h) If ρ0 is a classical initial datum ρ(r, t) solves the FBP of Sect.3.3 locally in time.

Since any classical solution {(Xt, ρ(·, t)), t ∈ [0,T ]}, of the FBP defined by
(2.0.2) and (2.0.4) is also an optimal sequence, (choosing X(εn)

t = Xt and ρ(εn)(r, t) =
ρ(r, t) for any n), then ρ(·, t) coincides with the function defined in Theorem3.2 and
item (h) follows.

The weak point in the above theorem is the lack of control of the edge. We have
only what is stated in the following Corollary which is an immediate consequence of
item (e) of Theorem3.2 and of the existence of a stationary solution of the classical
FBP as discussed in Sect. 3.2. Recall (3.2.1) for notation.

Corollary 3.6 If ρ(st)(r|M ′) ≤ ρ0(r) ≤ ρ(st)(r|M ′′) then

ρ(st)(r|M ′) ≤ ρ(r, t) ≤ ρ(st)(r|M ′′) for all t > 0. (3.4.1)

In particular if ρ0(r) has compact support then there exists X > 0 so that ρ(r, t) = 0
for all r ≥ X.

We will prove Theorem3.2 using a variational method which is explained in the
next sections.

http://dx.doi.org/10.1007/978-3-319-33370-0_2
http://dx.doi.org/10.1007/978-3-319-33370-0_2
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3.5 The Upper and Lower Barriers

Wedo not have enough information on the elements ρ(εn)(r, t) in an optimal sequence
to directly prove that they converge as εn → 0. We will instead introduce a different
relaxation procedure where the removal of mass occurs only at discrete times nδ,
n ∈ N, δ > 0. The evolution in the time intervals (nδ, (n + 1)δ) is free, namely given
by (2.0.2) with only the boundary condition at 0, i.e. the first one in (2.0.3), the other
one at Xt is dropped. Therefore in these time intervals the total mass increases and
the mass density is strictly positive on the whole R+. At the times nδ we restore
mass conservation and remove the right amount of mass, equal to jδ, by cutting the
right part of the function which after the cut has compact support. Such evolutions
are much simpler than those in the optimal sequence but they have also the extra
advantage of monotone properties, this is why we call them upper and lower barriers.
Monotonicity will allow us to control the limit as δ goes to 0 of the barriers and then
to relate this to the limit of the ρ(εn)(r, t). We start here with the definition of the
barriers.

To this end we introduce a time mesh δ > 0 and will define the barriers at the
times kδ, k ≥ 0. We use the following notation:

Uδ = {u ∈ U :
∫

u > jδ} (3.5.1)

where U has been defined in (3.1.1), and we introduce two operators, i.e. the cut
operator Cδ on Uδ and the free evolution operator Tδ on U .
Definition 3.7 (The cut operator) The cut operator Cδ maps u ∈ Uδ into U as fol-
lows:

Cδu(r) = 1r≤Ruu(r), where Ru :
∫ ∞

Ru

u(r)dr = jδ. (3.5.2)

Observe that
∫
Cδu = ∫

u − jδ.

To define the free evolution operator we use the Green functions:

Definition 3.8 (The Green function) Define for r, r′ and t > s ≥ 0 the Green func-
tion

Gneum
s,t (r′, r) = Gt−s(r

′, r) + Gt−s(r
′,−r), Gt(r

′, r) = e− (r−r′)2
2t√

2πt
(3.5.3)

and write for any u ∈ U :

Gneum
s,t ∗ u(r) =

∫

R+
Gneum

s,t (r′, r)u(r′) dr′. (3.5.4)

http://dx.doi.org/10.1007/978-3-319-33370-0_2
http://dx.doi.org/10.1007/978-3-319-33370-0_2
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To simplify notation we shall sometimes write

Gneum
t−s (r′, r) = Gneum

s,t (r′, r). (3.5.5)

The following proposition explains why Gneum
t is called the Green function.

Proposition 3.9 The function (r, t) �→ Gneum
t (r′, r), t > 0, r′, r > 0, solves the heat

equation (2.0.2) and for any t > 0,

lim
r→0

∂

∂r
Gneum

t (r′, r) = 0.

Moreover if u ∈ U is a continuous function

Ttu(r) := Gneum
t ∗ u(r) + j

∫ t

0
Gneum

s′,t (0, r) ds′ (3.5.6)

solves (2.0.2), converges to u(r) as t → 0 and for any t > 0

lim
r→0

∂

∂r
Ttu(r) = −2j. (3.5.7)

Proof The above statements are direct consequence of the following properties of
the Gaussian kernel. For t > 0:

( ∂

∂t
− 1

2

∂2

∂r2

)e−r2/2t

√
2πt

= 0, (3.5.8)

lim
t→0+

∫ ε

−ε

e−x2/2t

√
2πt

dx = 1, for any ε > 0, (3.5.9)

lim
x→0+

∫ t

0

x

t − s

e−x2/2(t−s)

√
2π(t − s)

ds = 1. (3.5.10)

�

We are now ready for the definition of the free evolution operator:

Definition 3.10 (The free evolution operator) The free evolution operator Tδ maps
U into itself and Tδu is equal to the expression (3.5.6) with t = δ.

It follows directly from the definition that:

∫
Tδu = jδ +

∫
u (3.5.11)

http://dx.doi.org/10.1007/978-3-319-33370-0_2
http://dx.doi.org/10.1007/978-3-319-33370-0_2
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and therefore that the products

CδTδ and TδCδ preserve the mass (3.5.12)

(the latter defined on Uδ). The barriers are defined by iterating those two products.

Definition 3.11 (The barriers) The upper barrier Sδ,+
kδ u, k ≥ 0, is defined as

Sδ,+
kδ u = (TδCδ)

ku, u ∈ Uδ (3.5.13)

while the lower barrier Sδ,−
kδ u, k ≥ 0, is

Sδ,−
kδ u = (CδTδ)

ku, u ∈ U . (3.5.14)

Proposition 3.12 At all times the barriers have the same total mass as initially:

F(0; Sδ,±
kδ u) = F(0, u) (3.5.15)

where

F(r; u) =
∫ ∞

r
u(r′) dr′, r ≥ 0. (3.5.16)

Proof It follows immediately from Definition3.11
In Chap.4 we will prove that the upper barriers are equi-bounded and equi-

continuous as a function of (r, t) onR+ × [ε,T ], for any ε > 0 and T > 0 which
yields convergence by subsequences. To gain full convergence we will use inequal-
ities based on the order by mass-transport, defined in the next section.

3.6 Mass Transport

We use a notion of order (in the sense of mass transport) under which we will prove
that the upper barriers are larger than the lower barriers and that the convergence as
δ → 0 is monotone. Inequalities by the above order will be of paramount importance
in the proof of Theorem3.2 as we will show that the elements ρ(εn)(r, t) in an optimal
sequence are eventually squeezed (as εn → 0) between the upper and the lower
barriers. Observe that the notion of barriers for the construction of solutions of
partial differential equations is well known [10, 11] (see also [12] in the context of
motion bymean curvature). The notion of order that we use to define upper and lower
barriers is:

Definition 3.13 (Partial order) For any u, v ∈ U we set

u � v iff F(r; u) ≤ F(r; v) for all r ≥ 0 (3.6.1)

http://dx.doi.org/10.1007/978-3-319-33370-0_4
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where F(r; u) is defined in (3.5.16).

When u and v have the same total mass, then u � v if and only if v can be
obtained from u by moving mass to the right. This statement will be made precise in
Proposition (6.1), hence the above partial order is related to mass transport.

The next theorem justifies the name of upper and lower barriers. We first consider
a very special case namely the inequality

Sδ,−
δ u � Sδ,+

δ u (3.6.2)

whose proof we hope will give a feeling of what is going on. Define u1 by writing

u = Cδu + u1, u1 = u − Cδu.

Recalling the definition of Cδ , u1 has mass jδ which is to the right of the mass of
Cδu. By (3.5.6)

v := Tδu = Gneum
δ ∗ {Cδu + u1} + j

∫ δ

0
Gneum

δ−s (0, r) ds.

Then Sδ,−
δ u is obtained from v by cutting a mass jδ to the right of v, while Sδ,+

δ u
is obtained from v by erasing the term Gneum

δ ∗ u1: thus S
δ,+
δ u is obtained from Sδ,−

δ u
by moving mass to the right, hence (3.6.2). More details can be found in the proof
of Lemma(6.6).

3.7 Barrier Theorems

The following theorem is the key step in the proof of Theorem3.2. Its content is
divided in three parts: inequalities among barriers, convergence theorems and prop-
erties of the limit. It is proved in Chaps. 4, 5, 6 and 7, a summary is given in Sect. 7.2.

Theorem 3.14 (Barriers and separating elements) If not stated otherwisewe assume
u ∈ U and t > 0.
Inequalities among barriers:

(1) If u ∈ Uδ then
Sδ,−
t u � Sδ′,+

t u, t = kδ = nδ′, k, n ∈ N. (3.7.1)

(2) For any δ > 0, u ∈ Uδ and t = kδ, k ∈ N

∫
|Sδ,−

t u(r) − Sδ,+
t u(r)|dr ≤ 2jδ. (3.7.2)

http://dx.doi.org/10.1007/978-3-319-33370-0_6
http://dx.doi.org/10.1007/978-3-319-33370-0_6
http://dx.doi.org/10.1007/978-3-319-33370-0_4
http://dx.doi.org/10.1007/978-3-319-33370-0_5
http://dx.doi.org/10.1007/978-3-319-33370-0_6
http://dx.doi.org/10.1007/978-3-319-33370-0_7
http://dx.doi.org/10.1007/978-3-319-33370-0_7
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(3) For n so large that u ∈ U2−nt and for all r ≥ 0, F(r; S2−nt,−
t u) is a non-decreasing

function of n and F(r; S2−nt,+
t u) is a non-increasing function of n. Moreover, as

proved in (3.5.15), F(0; S2−nt,±
t u) = F(0; u).

Convergence:

(4) There exists a bounded function Stu(r) continuous in (r, t) for t > 0 such
that S2

−nt,+
t u(r) converges to Stu(r) uniformly in the compacts of (r, t) ∈

R+ × (0,∞) and for all t > 0 S2
−nt,+

t u(r) converges to Stu(r) in L1.
(5) The convergence is monotone in the mass transport order of Definition3.13:

F(r; Stu) = lim
n→∞F(r; S2−nt,±

t u), (3.7.3)

hence, by (3), F(0; Stu) = F(0; u).
Properties of Stu:

(6) Stu separates the barriers:

F(r; Stu) = inf
δ:t=kδ,k∈N

F(r; Sδ,+
t u) = sup

δ:t=kδ,k∈N
F(r; Sδ,−

t u). (3.7.4)

(7) Stu → u weakly as t → 0 and if u is continuous with compact support then
Stu → u point-wise as t → 0.

(8) If u � v then Stu � Stv.
(9) If u ≤ v point-wise then Stu ≤ Stv point-wise for all t > 0.

The first step in the proof of Theorem3.2 after Theorem3.14 is the following
identification theorem:

Theorem 3.15 (Identification theorem) For anyT > 0 andu ∈ U there exist relaxed
solutions of the basic problem in [0,T ] with initial datum u and they are all equal to
Stu.

The proof of Theorem3.15 is themost original part of thiswork. It uses extensively
probability ideas and techniques as it relies on the representation of the solution of the
heat equationwithDirichlet boundary conditions in terms ofBrownianmotion and its
hitting distribution at the boundary. After showing in Chap.9 the existence of optimal
sequence, we prove in Chap.10 that given any δ > 0 the elements ρ(εn) of an optimal
sequence in the limit as n → ∞ are squeezed in between Sδ,±

t ρ0. By the arbitrariness
of δ this implies that ρ(εn) converges weakly, its limit being from one side equal to Stu
while, from the other side, is by definition a relaxed solution, hence Theorem3.15.
Thus the relaxed solution inherits all the properties of the separating element stated in
Theorem3.14 which allows us to complete the proof of Theorem3.2, see Sect. 10.4.

http://dx.doi.org/10.1007/978-3-319-33370-0_9
http://dx.doi.org/10.1007/978-3-319-33370-0_10
http://dx.doi.org/10.1007/978-3-319-33370-0_10


20 3 The Basic Model, Definitions and Results

References

1. A. Fasano, Mathematical models of some diffusive processes with free boundaries. SIMAI
e-Lecture Notes (2008)

2. A. Fasano, M. Primicerio, General free boundary problems for the heat equation. I. J. Math.
Anal. Appl. 57, 694–723 (1977)

3. A. Fasano, M. Primicerio, General free boundary problems for the heat equation. II. J. Math.
Anal. Appl. 58, 202–231 (1977)

4. A. Fasano, M. Primicerio, General free boundary problems for the heat equation. III. J. Math.
Anal. Appl. 59, 1–14 (1977)

5. A. Fasano, M. Primicerio, Free boundary problems for nonlinear parabolic equations with
nonlinear free boundary conditions. J. Math. Anal. Appl. 72, 247–273 (1979)

6. J. Crank, R.S. Gupta, A method for solving moving boundary problems in heat-flow using
cubic splines or polynomials. J. Inst. Math. Appl. 10, 296–304 (1972)

7. A. Fasano, M. Primicerio, S.D. Howison, J.R. Ockendon, Some remarks on the regularization
of supercooled one-phase Stefan problems in one dimension. Q. Appl. Math. 48, 153–168
(1990)

8. A. Fasano, M. Primicerio, S.D. Howison, J.R. Ockendon, On the singularities of one-
dimensional Stefan problems with supercooling, in Mathematical Models for Phase Change
Problems, Int. Ser. NumericalMathematics 88, ed. by J.F. Rodrigues (Birkhauser, Basel, 1989),
pp. 215–225

9. J.R. Ockendon, The role of the Crank-Gupta model in the theory of free and moving boundary
problems. Adv. Comput. Math. 6, 281–293 (1996)

10. G.M. Lieberman, Second order parabolic differential equations. World scientific (1996)
11. A. Friedman, Partial Differential Equations of Parabolic Type (Holt, Reinhart, and Winston

Inc., New York, 1964)
12. E. DeGiorgi, New ideas in calculus of variations and geometric measure theory, inProceedings

of the ConferenceMotion byMean Curvature and Related Topics, held in Trento, 1992, (Walter
de Gruyter, Berlin 1994), pp. 63–69



Chapter 4
Regularity Properties of the Barriers

In this chapter we will prove some regularity properties of the barriers Sδ,±
t u, u ∈ Uδ .

By the smoothness of Gneum
t (r, r ′), t > 0, it is easy to prove that for any n > 0,

Sδ,+
nδ u ∈ C∞(R+)while Sδ,−

nδ u isC∞ in the interior of its support. Such a smoothness
however, being inherited from Gneum

δ , depends on δ, while we want properties which
hold uniformly as δ → 0. The main results in this chapter is that the family Sδ,+

t u(r)
is equi-bounded and equicontinuous in space-time for t away from0, these statements
are proved in the following three sections.

4.1 Equi-Boundedness

We denote by ‖u‖∞ and ‖u‖1 = F(0; u) the L∞ and L1 norm of u ∈ U .

Theorem 4.1 There is a constant c so that the following holds. Let δ > 0 and
u ∈ Uδ , then

‖Sδ,±
t u‖∞ ≤ c

{
j + ‖u‖∞ for all t ∈ δN, t ≤ 1,
j + ‖u‖1 for all t ∈ δN, t > 1.

(4.1.1)

Proof Let t = nδ, n a positive integer, then

Sδ,±
t u(r) ≤

∫
dr ′Gneum

0,δ (r ′, r)Sδ,±
t−δu(r

′) + j
∫ t

t−δ

dsGneum
s,t (0, r).

The inequality is because we are neglecting Cδ . Iterating we get for 0 ≤ m < n,

Sδ,±
t u(r) ≤

∫
dr ′Gneum

mδ,t (r
′, r)Sδ,±

mδ u(r
′) + j

∫ t

mδ

dsGneum
s,t (0, r). (4.1.2)

© The Author(s) 2016
G. Carinci et al., Free Boundary Problems in PDEs and Particle Systems,
SpringerBriefs in Mathematical Physics 12, DOI 10.1007/978-3-319-33370-0_4
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Let t ≤ 1, take m = 0 in (4.1.2) then

Sδ,±
t u(r) ≤

∫
dr ′Gneum

0,t (r ′, r)‖u‖∞ + j
∫ t

0
ds

2√
2π(t − s)

which proves (4.1.1) when t ≤ 1.
Let nδ be the smallest integer such that τ := δnδ ≥ 1. Let t ∈ [kτ , (k + 1)τ ] and

mδ = (k − 1)τ in (4.1.2). Then

Sδ,±
t u(r) ≤

∫
dr ′ 2√

2πτ
Sδ,±
(k−1)τu(r

′) + j
∫ t

(k−1)τ
ds

2√
2π(t − s)

≤ c( j + ‖Sδ,±
(k−1)τu‖1).

By Proposition3.12 ‖Sδ,±
t u‖1 = ‖u‖1 hence (4.1.1). �

4.2 Space Equi-Continuity

In this section we will prove that the family {Sδ,+
t u(r)} is equi-continuous in r for

any fixed t > 0. We need a preliminary lemma where we use the following notation:

wδ,+
s,t (r) :=

∫
dr ′Gneum

t−s (r, r ′)Sδ,+
s u(r ′), vδ,+

s,t := Sδ,+
t u − wδ,+

s,t . (4.2.1)

Lemma 4.2 There is a constant c so that the following holds. For all δ > 0, u ∈ Uδ ,
0 ≤ s < t , s, t ∈ δN, t − s ≤ 1,

‖ ∂

∂r
wδ,+

s,t (r)‖∞ ≤ c
‖u‖∞ + ‖u‖1 + j√

t − s
, (4.2.2)

‖vδ,+
s,t ‖1 ≤ 2 j (t − s), ‖vδ,+

s,t ‖∞ ≤ cj
√
t − s. (4.2.3)

Proof By (4.1.1)

| ∂

∂r
wδ,+

s,t (r)| ≤ c‖Sδ,+
s u‖∞

∫
dr ′ |r − r ′|

t − s
Gneum

s,t (r ′, r) ≤ c′ ‖u‖∞ + ‖u‖1 + j√
t − s

which proves (4.2.2).
By (4.1.2) with s = mδ,

vδ,+
s,t ≤ j

∫ t

s
ds ′Gneum

s ′,t (0, r). (4.2.4)

http://dx.doi.org/10.1007/978-3-319-33370-0_3
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To get a lower bound we first define, for any τ ∈ δN,

v(δ)τ (r) := 1r≥RS
δ,+
τ u(r), R :

∫ ∞

R
Sδ,+

τ u(r) dr = jδ. (4.2.5)

By (4.1.1)

‖v(δ)τ ‖∞ ≤ C, C = c
(
j + ‖u‖∞ + ‖u‖1

)
. (4.2.6)

By neglecting the contribution of the mass injection we get:

Sδ,+
t u ≥ Gneum

δ ∗
(
Sδ,+
t−δu − v

(δ)
t−δ

)

and, calling s = mδ,

Sδ,+
t u ≥ Gneum

t−s ∗ Sδ,+
mδ u −

n−1∑

k=m

Gneum
(n−k)δ ∗ v

(δ)
kδ .

This together with (4.2.4) gives

|vδ,+
s,t (r)| ≤

n−1∑

k=m

Gneum
(n−k)δ ∗ v

(δ)
kδ (r) + j

∫ t

s
ds ′Gneum

s ′,t (0, r). (4.2.7)

Recalling that
∫
v
(δ)
kδ = jδ,

‖
n−1∑

k=m

Gneum
(n−k)δ ∗ v

(δ)
kδ ‖∞ ≤

n−1∑

k=m

1√
2π(n − k)δ

jδ ≤ cj
√
t − s.

Then we have:

‖ j
∫ t

mδ

ds ′Gneum
s ′,t (0, r)‖∞ ≤ cj

√
t − s

so that
‖vδ,+

s,t ‖∞ ≤ cj
√
t − s (4.2.8)

and the second inequality in (4.2.3) is proved. To prove the first one we use (4.2.7)
and (4.2.1) to write

‖vδ,+
s,t ‖1 ≤ j (t − s) +

n−1∑

k=m

∫
dr

∫
dr ′Gneum

(n−k)δ(r, r
′)v(δ)kδ (r

′) = 2 j (t − s)

which concludes the proof of (4.2.3). �
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Theorem 4.3 Given u ∈ U , for any δ > 0, t ∈ δN and ζ > 0 there is d > 0 which
depends on ζ, t , ‖u‖∞ and ‖u‖1 so that

|Sδ,+
t u(r) − Sδ,+

t u(r ′)| < ζ, |r − r ′| < d. (4.2.9)

Proof By (4.2.1) we can write

Sδ,+
t u(r) − Sδ,+

t u(r ′) = wδ,+
s,t (r

′) − wδ,+
s,t (r) + vδ,+

s,t (r
′) − vδ,+

s,t (r).

We then use (4.2.2) and (4.2.3) and get for any s ∈ δN, 0 ≤ s < t ,

|Sδ,+
t u(r) − Sδ,+

t u(r ′)| ≤ c(‖u‖∞ + ‖u‖1 + j)
|r − r ′|√
t − s

+ 2cj
√
t − s. (4.2.10)

We choose s so that 2cj
√
t − s < ζ/2 and for such a value of s we take d so that

c(‖u‖∞ + ‖u‖1 + j)
d√
t − s

<
ζ

2
.

�

4.3 Time Equi-Continuity

Theorem 4.4 Let u ∈ U , then for any δ > 0, t ∈ δN, t > 0, ζ > 0 there is
τ = τζ,t > 0 so that

‖Sδ,+
t ′ u − Sδ,+

t u‖∞ < ζ, t ′ ∈ δN ∩ (t, t + τζ,t ). (4.3.1)

Proof By (4.2.8)

|Sδ,+
t ′ u(r) − Gneum

t,t ′ ∗ Sδ,+
t u(r)| ≤ cj

√
t ′ − t .

Let ζ ′ < ζ and d ′ the corresponding constant in Theorem4.3, then

|Sδ,+
t ′ u(r) − Sδ,+

t u(r)| ≤ ‖Sδ,+
t u‖∞

∫

r ′ :|r−r ′ |≥d ′
Gneum

t,t ′ (r ′, r) dr ′

+ ζ ′ + cj
√
t ′ − t .



4.3 Time Equi-Continuity 25

If δ > τ there is no t ′ : t < t ′ < t + τ and (4.3.1) is automatically satisfied. Let
then δ ≤ τ . There is a constant c1 so that

∫

r ′ :|r−r ′ |≥d ′
Gneum

t,t ′ (r, r ′) dr ′ ≤ c1e
−(d ′)2/(4τ )

Thus

|Sδ,+
t ′ u(r) − Sδ,+

t u(r)| ≤ c1‖Sδ,+
t u‖∞e−(d ′)2/(4τ ) + ζ ′ + cj

√
τ

which concludes the proof of the theorem. �



Chapter 5
Lipschitz and L1 Estimates

In this chapter we first prove some elementary inequalities and then Lipschitz esti-
mates for the operators involved in the definition of barriers. We finally prove that
upper and lower barriers are L1 close, proportionally to δ.

5.1 Elementary Inequalities

Recall that Uδ is defined in (3.5.1).

Proposition 5.1 Let u ∈ Uδ , then

u ≥ Cδu point-wise. (5.1.1)

Moreover if u, v ∈ Uδ and u ≤ v point-wise, then

Cδu ≤ Cδv, Tδu ≤ Tδv, Sδ,+
nδ u ≤ Sδ,+

nδ v, point-wise. (5.1.2)

Proof Equation (5.1.1) follows immediately from the definition of Cδ , namely
Cδu(r) = u1r≤Ru , Ru : ∫ ∞

Ru
u = jδ. Ifu ≤ v then Ru ≤ Rv henceCδu ≤ Cδv. Recall-

ing the definition of Tδ we get

Tδv(r) − Tδu(r) =
∫ ∞

0
dr ′[v(r ′) − u(r ′)]Gneum

δ (r ′, r)

which is non-negative. The last inequality in (5.1.2) with n = 1 follows from the
previous ones which we have already proved. By induction the inequality is then
proved for n > 1 as well. �

© The Author(s) 2016
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5.2 Lipschitz Properties

Recall thatU ,Uδ and F(r; u) are defined in (3.1.1), (3.5.1) and (3.5.16), respectively.
We also write | f |1 = ‖ f ‖1 for the L1 norm of f .

Proposition 5.2 Let δ > 0 and let u ∈ Uδ , then

|u − Cδu|1 = jδ, F(0; u) = F(0;Cδu) + jδ = F(0; Tδu) − jδ. (5.2.1)

Let also v ∈ Uδ , then

|Cδu − Cδv|1 ≤ |u − v|1, |Tδu − Tδv|1 ≤ |u − v|1, (5.2.2)

|Sδ,±
kδ u − Sδ,±

kδ v|1 ≤ |u − v|1, for all k ∈ N. (5.2.3)

Proof The second and third equalities in (5.2.1) follow directly from the definition
of the operators Cδ and Tδ . The first one follows from (5.2.1) and the second one.
To prove the first inequality in (5.2.2) we recall (3.5.2) for the definition of Ru and,
assuming that Ru ≤ Rv ,

|Cδu − Cδv|1 =
∫ Ru

0
|u − v| +

∫ Rv

Ru

v.

We can then add
∫ ∞

Rv

v and subtract
∫ ∞

Ru

u as they are both equal to jδ:

|Cδu − Cδv|1 =
∫ Ru

0
|u − v| +

∫ ∞

Ru

v −
∫ ∞

Ru

u ≤ |u − v|1.

To prove the second inequality we use (3.5.6) so that

|Tδu − Tδv|1 ≤
∫

dr |
∫

dr ′Gneum
δ (r ′, r)u(r ′) − Gneum

δ (r ′, r)v(r ′)|

≤
∫

dr
∫

dr ′Gneum
δ (r ′, r)|u(r ′) − v(r ′)|

which is equal to |u − v|1 because
∫
Gneum

δ (r ′, r)dr = 1. Equation (5.2.3) is a direct
consequence of (5.2.2). �
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5.3 L1 Estimates

In this section we prove that the upper and lower barriers are L1 close for small δ.

Theorem 5.3 Let u ∈ Uδ , then for all k ∈ N,

|Sδ,+
kδ u − Sδ,−

kδ u|1 ≤ 2 jδ. (5.3.1)

Proof We need to bound
∫ |φ − ψ |, where

φ := CδTδ · · ·CδTδu, ψ := TδCδ · · · TδCδu k times.

Call

v = Cδu, vk = TδCδ · · · Tδv, uk = TδCδ · · · Tδu k times

so that φ = Cδuk and ψ = vk . Hence using (5.2.1),

|ψ − φ|1 = |Cδuk − vk |1 ≤ |Cδuk − uk |1 + |vk − uk |1
= jδ + |vk − uk |1 ≤ jδ + |u − v|1 = 2 jδ. �



Chapter 6
Mass Transport Inequalities

We present in this chapter some known facts about mass transport and use them to
prove properties which will then be extensively used in the sequel.

6.1 Partial Order and Mass Transport

In this section we relate the notion of partial order discussed so far to the notion of
mass transport. To define the latter, consider a non-decreasing map f : R+ → R+
and interpret f (r) as the position of r after the “displacement”. Moving mass to the
right then means that f (r) ≥ r for all r . If there was initially a mass M in an interval
[a, b], then after the displacement there will be amassM in the interval [ f (a), f (b)].
Thus if the initial mass density is u then the final mass density v is such that for any
a < b, ∫ b

a
u =

∫ f (b)

f (a)
v.

As a consequence

F(a; u) =
∫ ∞

a
u =

∫ ∞

f (a)
v ≤ F(a; v)

(because f (a) ≥ a). Thus if v is obtained from u by moving mass to the right then
u � v. The converse is proved next:

Proposition 6.1 (The mass displacement lemma)Given u � v in U with F(0; u) =
F(0; v) we define for r ∈ R+:

f (r) := sup
{
r ′ :

∫ r ′

0
v(z) dz =

∫ r

0
u(z) dz

}
. (6.1.1)
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Then
f (r) ≥ r (6.1.2)

and for any function φ ∈ L∞(R+,R),
∫ ∞

0
v(r)φ(r) dr =

∫ ∞

0
u(r)φ( f (r)) dr. (6.1.3)

Proof Since F(0; u) = F(0; v),
∫ r

0
u(z) dz + F(r; u) =

∫ r

0
v(z) dz + F(r; v)

and since F(r; u) ≤ F(r; v),
∫ r

0
u(z) dz ≥

∫ r

0
v(z) dz

which yields (6.1.2). By a density argument (6.1.3) follows from (6.1.2). �

Corollary 6.2 Let u � v in U and F(0; u) = F(0; v), then for all bounded, non-
decreasing functions h on R+:

∫ ∞

0
u(r)h(r) dr ≤

∫ ∞

0
v(r)h(r) dr. (6.1.4)

Proof Observe that (6.1.4) is verified by definition for all functions h of the form
1[R,∞), R ≥ 0. Its validity for functions h as in the text follows from (6.1.3) because

∫ ∞

0
v(r)h(r) dr =

∫ ∞

0
u(r)h( f (r)) dr

and h( f (r)) ≥ h(r) by (6.1.2). �

6.2 A Relaxed Notion of Partial Order

Definition 6.3 (Partial order modulo m) For any u and v in U andm > 0, we define

u � v modulo m iff F(r; u) ≤ F(r; v) + m for all r ≥ 0. (6.2.1)
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Lemma 6.4 Let u � v modulo m and v � w modulo m ′, then

u � w modulo m + m ′. (6.2.2)

Proof F(r; u) ≤ F(r; v) + m ≤ (F(r;w) + m ′) + m. �

6.3 Inequalities for the Cut and the Free Evolution
Operators

In this section by default δ > 0, u and v are in U and if needed in Uδ (as when
applying the cut operator Cδ). We first state and prove the following lemma:

Lemma 6.5 Let u � v and assume that m := F(0; v) − F(0; u) > 0. Define R̃ so

that
∫ R̃

0
v = m, then

u � v 1[R̃,+∞) =: ṽ, F(0; u) = F(0; ṽ). (6.3.1)

Proof From F(0; u) = F(0; v) − m = F(0, ṽ) we get

∫ r

0
u(z)dz + F(r; u) =

∫ r

0
v(z)dz + F(r; v) − m.

Since F(r; u) ≤ F(r; v), for all r ≥ R̃,

∫ r

0
u(z)dz ≥

∫ r

0
v(z)dz − m =

∫ r

R̃
v(z)dz =

∫ r

0
ṽ(z)dz.

Also for r < R̃ we have
∫ r

0
u ≥ 0 =

∫ r

0
ṽ, so that

∫ r

0
u ≥

∫ r

0
ṽ for all r . Since

F(0; u) = F(0; ṽ) the previous inequality implies that F(r; u) ≤ F(r; ṽ). �

Lemma 6.6 Let u, v and δ as above and let u � v. Then

Gneum
δ ∗ u � Gneum

δ ∗ v, Tδu � Tδv, (6.3.2)

Cδu � u, Cδu � Cδv. (6.3.3)
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Proof By (3.5.6) the second inequality in (6.3.2) follows from the first one. To prove
the first one we first observe that since F(0; u) ≤ F(0; v) there exists R̃v (which
may be equal to 0) so that

∫ ∞

R̃v

v(r)dr =
∫ ∞

0
u(r)dr.

Call ṽ(r) = v(r)1r≥R̃v
, then by Lemma6.5 u � ṽ and F(0; u) = F(0; ṽ). For any

R ≥ 0,

F(R;Gneum
δ ∗ ṽ) =

∫ ∞

0
ṽ(r ′)φR(r

′)dr ′, φR(r
′) =

∫ ∞

R
Gneum

δ (r, r ′) dr

and analogously

F(R;Gneum
δ ∗ u) =

∫ ∞

0
u(r ′)φR(r

′)dr ′.

By an explicit computation:
d

dr ′ φR(r
′) > 0, so that by Corollary6.2

F(R;Gneum
δ ∗ u) ≤ F(R;Gneum

δ ∗ ṽ)

hence the first inequality in (6.3.2) because ṽ ≤ v.
The inequality Cδu � u holds trivially because Cδu ≤ u. Furthermore we have

Cδu − Cδv = (u − v) 1[0,Ru ] − v 1(Ru ,Rv ]

where Ru is such that
∫ ∞
Ru

u = jδ and Rv is defined similarly. Hence

F(r;Cδu) − F(r;Cδv) ≤
(
F(r; u) − F(r; v)

)
1[0,Ru ] − 1(Ru ,Rv ]

∫ Rv

r
v(r ′)dr ′

which is therefore ≤ 0. �

Lemma 6.7 Let u � v modulo m, then

Tδu � Tδv modulo m, Gneum
t ∗ u � Gneum

t ∗ v modulo m. (6.3.4)

Proof By (3.5.6) we just need to prove the second inequality which obviously holds
if F(0; u) ≤ m. We thus suppose F(0; u) > m and define

u∗ := u 1[0,Rm ] with Rm :
∫ ∞

Rm

u = m. (6.3.5)

http://dx.doi.org/10.1007/978-3-319-33370-0_3
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We are going to show that
u∗ � v. (6.3.6)

In fact F(r; u∗) = F(r; u) − m when r ≤ Rm so that F(r; u∗) ≤ F(r; v). Since
F(r; u∗) = 0 for r ≥ Rm then F(r; u∗) ≤ F(r; v) so that (6.3.6) is proved. By
(6.3.2)

F(r;Gneum
δ ∗ u) = F(r;Gneum

δ ∗ u∗) + F(r;Gneum
δ ∗ (u − u∗))

≤ F(r;Gneum
δ ∗ v) + F(0;Gneum

δ ∗ (u − u∗))
= F(r;Gneum

δ ∗ v) + m.

�

Lemma 6.8 Let u � v modulo m, then

u � Cδv modulo m + jδ. (6.3.7)

Proof We have F(r; u) ≤ F(r; v) + m and F(r; v) ≤ F(r;Cδv) + jδ hence

F(r; u) ≤ F(r;Cδv) + m + jδ

which proves (6.3.7). �

Lemma 6.9 Let u � v modulo m, m ≥ jδ, then

Cδu � v modulo m − jδ. (6.3.8)

Proof By the definition of Cδ for r ≤ Ru we have

F(r;Cδu) = F(r; u) − jδ ≤ F(r; v) + m − jδ.

If instead r ≥ Ru ,

F(r;Cδu) = 0 ≤ m − jδ ≤ F(r; v) + m − jδ

hence (6.3.8). �

Lemma 6.10 Let u, v in Uδ , u � v modulo m, then

Cδu � Cδv modulo m. (6.3.9)
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Proof By Lemma6.8

u � w := Cδv modulo m + jδ.

By Lemma6.9
Cδu � w modulo m

hence (6.3.9). �

6.4 Inequalities for the Barriers

The following theorems are consequence of the inequalities established in the pre-
vious section.

Theorem 6.11 Let δ > 0, u, v ∈ Uδ , u � v modulo m ≥ 0. Let k ∈ N, then

Sδ,±
kδ u � Sδ,±

kδ v modulo m. (6.4.1)

Proof It follows from Lemmas6.7 and 6.10. �

Theorem 6.12 Let δ > 0, u ∈ Uδ and k ∈ N, then

Sδ,−
kδ u � Sδ,+

kδ u. (6.4.2)

Proof We proceed as in the proof of Theorem5.3 and write

Sδ,−
kδ u = CδTδ · · ·CδTδu, Sδ,+

kδ u = TδCδ · · · TδCδu k times.

Call

v = Cδu, vk = TδCδ · · · Tδv, uk = TδCδ · · · Tδu k times

so that Sδ,+
kδ u = vk and Sδ,−

kδ u = Cδuk . By (6.3.7) with u = v,

u � Cδu modulo jδ.

By Lemmas6.7–6.8
uk � vk modulo jδ

http://dx.doi.org/10.1007/978-3-319-33370-0_5
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and by Lemma6.9

Sδ,−
kδ u = Cδuk � vk = Sδ,+

kδ u.

�

Theorem 6.13 Let δ′ > 0, δ = nδ′, n ∈ N, u ∈ Uδ and t = kδ, then

Sδ,−
t u � Sδ′,−

t u. (6.4.3)

Proof We postpone the proof that

Sδ,−
δ u � Sδ′,−

δ u′ if u � u′. (6.4.4)

By (6.4.4) with u′ = u we get Sδ,−
δ u � Sδ′,−

δ u so that using again (6.4.4)

Sδ,−
δ (Sδ,−

δ u) � Sδ′,−
δ (Sδ′,−

δ u), Sδ,−
2δ u � Sδ′,−

2δ u

which by iteration proves (6.4.3).
Proof of (6.4.4). We have

Sδ′,−
δ u′ = Sδ′,−

nδ′ u′ = Cδ′Tδ′ · · ·Cδ′Tδ′u′ n times,

Sδ,−
δ u = CδTδu = Cn

δ′T n
δ′u.

We will prove by induction on k that

Ck
δ′T k

δ′u � Cδ′Tδ′ · · ·Cδ′Tδ′u k times. (6.4.5)

Equation (6.4.4) will then follow by setting k = n and using Lemma6.6. We thus
suppose that (6.4.5) holds with k and want to prove that it holds for k + 1. We
preliminarily show that for any integer h > 0,

Ch
δ′Tδ′v � Tδ′Ch

δ′v. (6.4.6)

In fact by (6.3.7) v � Ch
δ′v modulo jhδ′. Then by (6.3.2),

Tδ′v � Tδ′Ch
δ′v modulo jhδ′

and by (6.3.8) Ch
δ′Tδ′v � Tδ′Ch

δ′v. Equation (6.4.6) is proved.
Call v = T k

δ′u then using (6.3.3) and (6.4.6),

Ck+1
δ′ T k+1

δ′ u = Cδ′Ck
δ′Tδ′v � Cδ′Tδ′Ck

δ′v.
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By assumption (6.4.5) holds with k so that calling w its right-hand side, Ck
δ′v � w.

By Lemma6.6,
Cδ′Tδ′Ck

δ′v � Cδ′Tδ′w

which is (6.4.5) with k + 1. �

Theorem 6.14 Let u ∈ U , δ = hδ′, h a positive integer and t = kδ, then

Sδ′,+
t u � Sδ,+

t u. (6.4.7)

Proof We postpone the proof that

Sδ′,+
δ u � Sδ,+

δ u′ if u � u′. (6.4.8)

By (6.4.8) with u′ = u we get Sδ′,+
δ u � Sδ,+

δ u so that, using again (6.4.8),

Sδ′,+
δ (Sδ′,+

δ u) � Sδ,+
δ (Sδ,+

δ u), Sδ′,+
2δ u � Sδ,+

2δ u

which by iteration yields (6.4.7). Proof of (6.4.8). We have

Sδ′,+
δ u = Sδ′,+

hδ′ u = Tδ′Cδ′ · · · Tδ′Cδ′u h times,

Sδ,+
δ u′ = TδCδu = T h

δ′Cδu
′.

By (6.3.7) u′ � Cδu′ modulo jδ so that, by Lemma6.4, u � Cδu′ modulo jδ. By
(6.3.8) Cδ′u � Cδu′ modulo jδ − jδ′. By (6.3.4),

Tδ′Cδ′u � Tδ′Cδu
′ modulo jδ − jδ′.

Call w := Tδ′Cδ′u and v′ := Tδ′Cδu′, then w � v′ modulo jδ − jδ′. By (6.3.8)
Cδ′w � v′ modulo jδ − 2 jδ′ and by (6.3.4)

Tδ′Cδ′w � Tδ′v′ modulo jδ − 2 jδ′.

Equation (6.4.8) then follows by iteration. �

For general δ and δ′ we will use the following bound:

Lemma 6.15 There is c so that for any 0 < δ < δ′, u ∈ Uδ and n ≥ 1,

|Sδ,+
nδ u − Sδ′,+

nδ′ u|1 ≤ c|u|1n δ′ − δ

δ3/2
. (6.4.9)
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Proof By (5.2.2) for any u, v ∈ U , |Cδu − Cδv|1 ≤ |u − v|1. We also have

|Cδw − Cδ′w|1 ≤ j (δ′ − δ), |Gneum
δ ∗ w − Gneum

δ′ ∗ w|1 ≤ c(δ′ − δ)

δ3/2
|w|1.
(6.4.10)

Recalling that Sδ,+
δ u = Gneum

δ ∗ Cδu, we get that |Sδ,+
δ w − Sδ′,+

δ′ v|1 is bounded
by

≤ |Gneum
δ ∗ Cδ′w + Gneum

δ ∗ (Cδ − Cδ′)w − Gneum
δ′ ∗ Cδ′w − Gneum

δ′ ∗ Cδ′(v − w)|,

hence

|Sδ,+
δ w − Sδ′,+

δ′ v|1 ≤ |w − v|1 + c
δ′ − δ

δ3/2
|w|1 + j (δ′ − δ). (6.4.11)

We use (6.4.11) to prove (6.4.9) by induction on n. We prove (6.4.9) when n = 1
by setting w = v = u in (6.4.11). We suppose by induction that (6.4.9) hods till
n − 1. We then set w = Sδ,+

(n−1)δu and v = Sδ′,+
(n−1)δ′u in (6.4.11) getting (6.4.9). �

http://dx.doi.org/10.1007/978-3-319-33370-0_5


Chapter 7
The Limit Theorems on Barriers

In this chapter we will prove Theorem3.14. An analogous theorem is proved in [1]
when Gneum

t is replaced by the Green function with Neumann condition both at 0
and at 1.

7.1 The Limit Function ψ

In this section we define a function ψ(r, t) which in the next section will be proved
to be the function Stu(r) of Theorem3.14. We fix T > 0, u ∈ U , τ > 0 and t0 > 0,
call Δτ := {2−nτ , n ∈ N}, Tτ ,n = {t = k2−nτ , k ∈ N} and Tτ = {t = k2−nτ , n ∈
N, k ∈ N}.

7.1.1 Convergence of the Upper Barriers

In Chap.4 we proved that the family of upper barriers is equi-bounded and equi-
continuous so that it converges by subsequences. In this subsection we will prove
convergence, see (7.1.5) below. More precisely we restrict to δ ∈ Δτ and define a
function ψ(n)(r, t) on R+ × [t0, T ] by first setting

ψ(n)(r, t) = S2
−nτ ,+

t u(r), r ∈ R+, t ∈ [t0, T ] ∩ Tτ ,n

and then extending ψ(n)(r, t) to t ∈ [t0, T ] by linear interpolation. As mentioned
above we have proved in Chap.4 that the family {ψ(n)} is equi-bounded and equi-
continuous so that, by the Ascoli-Arzelà theorem, it converges by subsequences in
sup norm (on the compacts) to a continuous function ψ(r, t) on R+ × [t0, T ]. To
prove full convergence we will show that {F(r;ψ(n)), r ≥ 0} converges, the proof
will follow from themonotonicity properties of the barriers and the following a priori
bound:

© The Author(s) 2016
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Lemma 7.1 There is c > 0 so that

Sδ,+
t u(r) ≤

∫
dr ′u(r ′)Gneum

0,t (r ′, r) + cj
√
te−r2/(4t). (7.1.1)

Proof It follows from (4.1.2) with m = 0 and bounding for s ≤ t ,

G0,s(0, r) ≤ e−r2/(4t)
(
(2πs)−1/2e−r2/(4s)

)
.

�
Equation (7.1.1) guarantees convergence of F(r;ψ(n)(·, t)).

Lemma 7.2 Letψ be any limit point of {ψ(n)}, then for any r ∈ R and t ∈ [t0, T ]∩Tτ ,

lim
n→∞ F(r; S2−nτ ,+

t u) = F(r;ψ(·, t)). (7.1.2)

As a consequence there is a unique limit point ψ of {ψ(n)} and for any n and
t ∈ Tτ ,n,

F(r; S2−nτ ,+
t u) ≥ F(r;ψ(·, t)). (7.1.3)

Moreover

ψ(·, t) ≤
∫

dr ′u(r ′)Gneum
0,t (r ′, r) + cj

√
te−r2/(4t). (7.1.4)

Proof By Theorem6.14 F(r; S2−nτ ,+
t u), t ∈ Tτ , is a non-increasing function of n

hence the existence of the limit n → ∞. To identify the limit we observe that the
right-hand side of (7.1.1) is for each t ≤ T an L1 function of r . Equation (7.1.2) then
follows using the Lebesgue dominated convergence theorem. Thus all limit functions
ψ(r, t) agree on t ∈ [t0, T ] ∩ Tτ and since they are continuous they agree on the
whole [t0, T ], thus the sequence ψ(n)(r, t) converges in sup-norm as n → ∞ to a
continuous function ψ(r, t) (and not only by subsequences).

Equation (7.1.3) follows from (7.1.2) because F(r; S2−nτ ,+
t u) is a non-increasing

and (7.1.4) follows from (7.1.1) because we have already proved that S2
−nτ ,+

t u con-
verges to ψ(r, t). �

By the arbitrariness of t0 and T the function ψ(r, t) extends to the whole R+ ×
(0,∞). Thus, by (7.1.1),

lim
n→∞ ‖S2−nτ ,+

t u − ψ(·, t)‖∞ = 0, t > 0, t ∈ Tτ , (7.1.5)

the convergence being uniform in t ∈ Tτ when it varies on the compacts not con-
taining 0.

The drawback of this result is that the functionψwe have defined actually depends
on τ , to underline this wewill write it asψτ (r, t).Wewill prove in the next subsection
that all ψτ (r, t) are identical to each other.

http://dx.doi.org/10.1007/978-3-319-33370-0_4
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7.1.2 Independence of τ

Theorem 7.3 ψτ is independent of τ .

Proof It suffices to prove that for any τ and τ ′,

F(r;ψτ (·, t)) = F(r;ψτ ′(·, t)), r ≥ 0, t > 0

as ψτ ′ and ψτ are continuous. We suppose that τ ′ /∈ {kτ2−n, k, n ∈ N} (the case
when they are rationally related is proved using Theorem6.14). We fix t ′ = nδ′,
δ′ = τ ′2−m . Let δ = kτ2−q , δ < δ′. By Lemma6.15, for all r ≥ 0,

F(r; Sδ′,+
t ′ u) ≥ F(r; Sδ,+

nδ u) − c|u|1n δ′ − δ

δ3/2
.

Write δ = kpτ2−p so that kp = k2p−q is a positive integer for p large enough.
Then by Theorem6.14,

F(r; Sδ,+
nδ u) ≥ F(r; Sτ2−p,+

nδ u).

By taking p → ∞:

F(r; Sδ′,+
t ′ u) ≥ F(r;ψτ (·, nδ)) − c|u|1n δ′ − δ

δ3/2
.

We then let δ → δ′ on {kτ2−n, k, n ∈ N}. In this limit nδ → t ′ and by the
continuity of ψτ (·, s) in s we get

F(r; Sδ′,+
t ′ u) ≥ F(r;ψτ (·, t ′)).

We next take m → ∞, recall δ′ = τ ′2−m , and get

F(r;ψτ ′(·, t ′′)) ≥ F(r;ψτ (·, t ′′)), for any t ′′ ∈ {kτ ′2−n, k, n ∈ N}.

In an analogous fashion we get

F(r;ψτ (·, t)) ≥ F(r;ψτ ′(·, t)), for any t ∈ {kτ2−n, k, n ∈ N}.

Then ψτ (·, t) = ψτ ′(·, t) for all t in a dense set, hence they are equal everywhere
being both continuous. �

We can thus drop τ and simply write ψ(r, t). We can then summarize:

Corollary 7.4 There is a continuous functionψ(r, t) onR+ ×[0,∞)which satisfies
the bound (7.1.4) and such that for any τ > 0 S2

−nτ ,+
t u(r) converges to ψ(r, t) on

the compacts.

http://dx.doi.org/10.1007/978-3-319-33370-0_6
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7.1.3 Continuity at 0

Proposition 7.5 Let u ∈ U , then ψ(·, t) converges weakly to u as t → 0 and

lim
t→0

F(r;ψ(·, t)) = F(r; u). (7.1.6)

Suppose further that u is a continuous function with compact support. Then

lim
t→0

‖ψ(·, t) − u‖∞ = 0. (7.1.7)

Proof Let t ∈ Tτ , then by (4.2.1)–(4.2.3) with s = 0 we have

|S2−nτ ,+
t u(r) −

∫
dr ′u(r ′)Gneum

t (r ′, r)| ≤ cj
√
t . (7.1.8)

By (7.1.5), letting n → ∞,

|ψ(r, t) −
∫

dr ′u(r ′)Gneum
t (r ′, r)| ≤ cj

√
t . (7.1.9)

Since ψ(r, t) is continuous in t , (7.1.9) holds for all t > 0. Gneum
t ∗ u converges

weakly to u as t → 0, hence alsoψ(r, t) convergeweakly to u as t → 0.Analogously,
since

lim
t→0

∫ R

r
dr ′′

∫
dr ′u(r ′)Gneum

t (r ′, r ′′) =
∫ R

r
dr ′′u(r ′′)

then by (7.1.9)

lim
t→0

∫ R

r
dr ′′ψ(r ′′, t) =

∫ R

r
dr ′′u(r ′′).

Hence

lim inf
t→0

∫ ∞

r
dr ′′ψ(r ′′, t) ≥

∫ R

r
dr ′′u(r ′′)

and by the arbitrariness of R it is ≥ ∫ ∞
r dr ′′u(r ′′). To prove the upper bound we use

(7.1.4) to say that for any ε > 0 there is Rε so that for all t ≤ 1
∫ ∞
Rε

dr ′′ψ(r ′′, t) ≤ ε

and
∫ ∞
Rε

dr ′′u(r ′′) ≤ ε as well. Then

lim sup
t→0

∫ ∞

r
dr ′′ψ(r ′′, t) ≤ ε + lim sup

t→0

∫ Rε

r
dr ′′ψ(r ′′, t) ≤ ε +

∫ ∞

r
dr ′′u(r ′′).

http://dx.doi.org/10.1007/978-3-319-33370-0_4
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Thus (7.1.6) is proved. By (4.2.1)

Sδ,+
t u(r) − u(r) =

∫
dr ′[u(r ′) − u(r)]Gneum

t (r ′, r) + v
(δ,+)
0,t (r). (7.1.10)

Hence by (4.2.3) there is a function ε(t) which vanishes as t → 0 such that

‖Sδ,+
t u − u‖∞ ≤ ε(t). (7.1.11)

By (7.1.5)
‖ψ(·, t) − u‖∞ ≤ ε(t) (7.1.12)

so that (7.1.7) is proved. �

7.2 Proof of Theorem 3.14

We shall now prove Theorem3.14. The items below correspond to the items in
Theorem3.14.

• (1) follows from Theorems6.12, 6.13 and 6.14.
• (2) is proved in (5.3.1).
• (3) with the + is proved in Theorem6.14, with the − in Theorem6.13.
• (4) is proved in Corollary7.4. Convergence in L1 follows from the convergence
on the compacts and the uniform bound (7.1.1).

• (5) with the + is proved in (7.1.3). Monotonicity with the − has already been
proved, see (3), and by (2) which has also been proved, the limit with the − is the
same as with the +.

• (6) follows from (6.4.2) and (3) which has also been proved.
• (7) is proved in Proposition7.5.
• (8) follows by (5) and (1) which have been already proved.
• (9) follows from Proposition5.1 and (4) which has been already proved.
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Chapter 8
Brownian Motion and the Heat Equation

The proof of Theorem3.2 uses extensively a representation of the solution of the
heat equation in terms of Brownian motions. We will recall in this chapter the main
properties and in particular we re-derive a formula, (8.3.23) below, for the solution
ρ(r, t) of (2.0.2)–(2.0.3) with initial datum ρ(r ′, s) at time s in terms of Brownian
motions. We will write the Green function for (2.0.2)–(2.0.3) in terms of the first
exit time distribution of a Brownian motion, (8.3.12), and then relate the exit time
distribution density to the derivative of the solution of the heat equation at the edge.
The latter gives the rate ofmasswhich is dissipated because of theDirichlet boundary
conditions thus themass loss is directly related to the exit probability of the Brownian
motion.

By default in the sequel X = (
Xt , t ∈ [0, T ]), is a positive continuous function

piecewise C1 and with right and left derivatives at all times.

8.1 Brownian Motion on the Line

We start from the heat equation on the whole R. We call Qr,s , r ∈ R, s ≥ 0, the law
on C(R, [s,∞)) of the Brownian motion Bt , t ≥ s, which starts from r at time s,
i.e. Bs = r . For each t > s the law of Bt is absolutely continuous with respect to the
Lebesgue measure and has a probability density Gs,t (r ′, r) which is the Gaussian
Gt−s(r ′, r) defined in (3.5.3). Thus

EQr ′ ,s [ f (Bt )] =
∫

Gs,t (r
′, r) f (r)dr, f ∈ L∞(R). (8.1.1)

We can read (8.1.1) by saying that we start a Brownian motion from r ′ at time
s and run it till time t . We then compute f at the final point and integrate over all
samples: this is the same as integrating f with the Green function Gs,t (r ′, r).

© The Author(s) 2016
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Since Gs,t (r ′, r) as a function of (r, t) solves the heat equation for t > s, see
(3.5.8), then by differentiating (8.1.1) with respect to t we get

d

dt
EQr ′ ,s [ f (Bt )] = 1

2
EQr ′ ,s [ f ′′(Bt )], f ∈ C2(R). (8.1.2)

By (3.5.8)–(3.5.9) if ρ(r ′, s) is a continuous function of r ′, then

ρ(r, t) :=
∫

ρ(r ′, s)Gs,t (r
′, r) dr ′ (8.1.3)

solves the heat equation in R with datum ρ(r ′, s) at time s hence analogously to
(8.1.1)

∫
f (r)ρ(r, t)dr :=

∫
ρ(r ′, s)EQr ′ ,s [ f (Bt )] dr ′, f ∈ L∞(R). (8.1.4)

8.2 Reflected Brownian Motion with Mass Injection

We denote by Pr,s , r ≥ 0, s ≥ 0, the probability law on the space C(R+, [s,∞))

of the Brownian motion Bt , t ≥ s, which starts from r at time s, i.e. Bs = r , and
which is reflected at 0, Er,s denoting its expectation. Pr,s may be defined as the law
of |Bt |, t ≥ s, under Qr,s . Thus for any f ∈ L∞(R+),

Er ′,s[ f (Bt )] = EQr ′ ,s [ f (Bt )1Bt≥0 + f (−Bt )1Bt<0]. (8.2.5)

Hence

Gneum
s,t (r ′, r) := Gs,t (r

′, r) + Gs,t (r
′,−r) = Gs,t (r

′, r) + Gs,t (−r ′, r) (8.2.6)

is the Lebesgue density of the law of the reflected Brownian motion Bt :

Er ′,s[ f (Bt )] =
∫

R+
Gneum

s,t (r ′, r) f (r)dr, f ∈ L∞(R+). (8.2.7)

Thus by Proposition3.9 the Lebesgue density of the law of the reflected Brownian
motion Bt solves the heat equation with Neumann conditions at 0 and if ρ(r ′, s) is a
continuous function of r ′,

ρ(r, t) :=
∫

R+
ρ(r ′, s)Gneum

s,t (r ′, r) dr ′ (8.2.8)

http://dx.doi.org/10.1007/978-3-319-33370-0_3
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http://dx.doi.org/10.1007/978-3-319-33370-0_3
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solves the heat equation in R+ with Neumann conditions at 0 and initial datum
ρ(r ′, s) at time s. Moreover if φ(r), r ≥ 0, has a C2 symmetric extension to R, i.e.
r → ψ(r) = φ(|r |) is C2(R), then by (8.2.5) and (8.1.2),

d

dt
Er ′,s[φ(Bt )] = 1

2
Er ′,s[φ′′(Bt )]. (8.2.9)

The operator in (3.5.6) can be written as

Ttρ(r)dr =
∫

R+
ρ(r ′)Pr ′,0(Bt ∈ dr) dr ′ + j

∫ t

0
P0,s(Bt ∈ dr)ds. (8.2.10)

8.3 Brownian Motion with Reflection at 0 and Absorption
at the Edge

Let Bt , t ≥ s ≥ 0, be the Brownian motion starting at s from r and with reflections
at 0, Pr,s its law. Recall that X = (Xt , t ≥ 0, ) is a positive continuous function
piecewise C1 and with bounded left and right derivatives at all t . Given s ≥ 0, we
define

τ X
s = inf{t ≥ s : Bt ≥ Xt }, and = ∞ if the set is empty (8.3.11)

and denote by FX
r,s(ds

′) the probability distribution of τ X
s induced by Pr,s ; it depends

continuously on r and s, other properties of FX
r,s(ds

′) will be stated later.

Proposition 8.1 Forany s ≥ 0andr ′ ∈ [0, Xs) the function (r, t) → GX, neum
s,t (r ′, r),

{(r, t) : r ∈ [0, Xt ), t > s},

GX, neum
s,t (r ′, r) = Gneum

s,t (r ′, r) −
∫ t

s
F X
r ′,s(ds

′)Gneum
s ′,t (Xs ′ , r) (8.3.12)

is smooth and for all f ∈ L∞([0, Xt )),

Er ′,s[ f (Bt ); τ X
s > t] =

∫

R+
f (r)GX, neum

s,t (r ′, r)dr. (8.3.13)

GX, neum
s,t (r ′, r) solves the heat equation in {(r, t) : r ∈ [0, Xt ), t > s}with bound-

ary conditions

∂

∂r
GX, neum

s,t (r ′, r)
∣
∣
∣
r=0

= 0 for r ′ > 0 (8.3.14)

and GX, neum
s,t (r ′, Xt ) = 0 for r ′ ≥ 0.

http://dx.doi.org/10.1007/978-3-319-33370-0_3
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Finally if ρ(r ′, s) ∈ C([0, Xs),R+) then

lim
t→s

∫
ρ(r ′, s)GX, neum

s,t (r ′, r)dr ′ = ρ(r, s). (8.3.15)

Proof The smoothness of GX, neum
s,t (r ′, r) is inherited from the smoothness of

Gneum
s,t (r ′, r). To prove (8.3.13) we first use the strong Markov property to write

Er ′,s[ f (Bt )] = Er ′,s[ f (Bt ); τ X
s > t] +

∫ t

s
F X
r ′,s(ds

′)EXs′ ,s ′ [ f (Bt )]

and then (8.2.7). Since Gneum
s,t (r ′, r) solves the heat equation, then GX, neum

s,t (r ′, r)
solves it as well. Similarly the Neumann boundary condition at 0 follows from
the same property for Gneum

s,t (r ′, r). To prove the Dirichlet condition at Xt we will
use the invariance of the law of Brownian motion under time reversal. Let δ > 0,
s∗ := s + δ < t , then, by the Markov property,

Er ′,s[ f (Bt ); τ X
s > t] =

∫

R+
h(r ′′)Er ′′,s∗ [ f (Bt ); τ X

s∗ > t]dr ′′ (8.3.16)

with h(r ′′) = GX, neum
s,s∗ (r ′, r ′′). By the invariance of the lawofBrownianmotion under

time reversal
∫

R+
h(r ′′)Er ′′,s∗ [ f (Bt ); τ X

s∗ > t]dr ′′ =
∫

R+
f (r)Er,s∗ [h(Bt); τ X ′

s∗ > t]dr, (8.3.17)

where X ′
s∗+σ = Xt−σ ,σ ∈ [0, t − s∗]; h and f are any two L∞ functions. By (8.3.17)

Er ′,s[ f (Bt ); τ X
s > t] =

∫

R+
f (r)Er,s∗ [h(Bt); τ X ′

s∗ > t]dr (8.3.18)

which yields, for f ≥ 0,

Er ′,s[ f (Bt ); τ X
s > t] ≤ ‖h‖∞

∫

R+
f (r)Pr,s∗ [τ X ′

s∗ > t]dr (8.3.19)

with ‖h‖∞ ≤ (2πδ)−1/2. We fix r ∈ [0, Xt ) and take f = fε, an approximate Dirac
delta centered in r with support (for ε small enough) on [r − ε, r + ε], so that (by
the continuity of r → GX, neum

s,t (r ′, r)),

GX, neum
s,t (r ′, r) = lim

ε→0
Er ′,s[ fε(Bt ); τ X

s > t] ≤ (2πδ)−1/2Pr,s∗ [τ X ′
s∗ > t] (8.3.20)

whichvanisheswhen r → Xt = X ′
s∗ recalling that Xt is Lipschitz (actually piecewise

C1).
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We will next prove (8.3.15). For the sake of brevity we will write ρ(r) instead of
ρ(r, s). It follows from (8.3.17) that

∫

R+
ρ(r ′)GX, neum

s,t (r ′, r)dr ′ = Er,s[ρ(Bt ); τ X ′
s > t]. (8.3.21)

By Doob’s inequality (see e.g. [1]), and writing xt = mins ′∈[s,t] X ′
s ′ ,

Pr,s[τ X ′
s ≤ t] ≤ Pr,s

[
max
s ′∈[s,t] Bs ′ ≥ xt

]
≤ 4Qr,s

[
Bt ≥ xt

]
(8.3.22)

which vanishes in the limit t → s. Thus by (8.3.12),

lim
t→s

∫

R+
ρ(r ′, s)GX, neum

s,t (r ′, r)dr ′ = lim
t→s

∫

R+
ρ(r ′, s)Gneum

s,t (r ′, r)dr ′

which is equal to ρ(r, s) by (3.5.6) with j = 0. �

Corollary 8.2 Let ρ(r ′, s) ∈ C([0, Xs),R+). Then

ρ(r, t) =
∫

R+
ρ(r ′, s)GX, neum

s,t (r ′, r) dr ′ + j
∫ t

s
GX, neum

s ′,t (0, r) ds ′ (8.3.23)

solves (2.0.2)–(2.0.3) with initial datum ρ(r ′, s) at time s so that if φ is a bounded
function

∫

R+
ρ(r, t)φ(r) dr =

∫

R+
dr ′ρ(r ′, s)Er ′,s [φ(Bt ); τ X

s > t] + j
∫ t

s
ds′E0,s′ [φ(Bt ); τ X

s′ > t].
(8.3.24)

Proof By Proposition8.1 it follows that ρ(r, t) solves the heat equation (2.0.2) with
initial datum ρ(r ′, s) at time s and that it vanishes at Xt . Using again Proposition8.1,

∂

∂r
ρ(r, t)

∣
∣
∣
r=0

= j
∫ t

s

∂

∂r
Gneum

s ′,t (0, r)
∣
∣
∣
r=0

ds ′ = −2 j

by (3.5.3) and (3.5.10). Equation (8.3.24) follows from (8.3.23) and (8.3.13). �

8.4 Mass Lost at the Edge

Let ρ(r, t), t ≥ s, be the solution of (2.0.2)–(2.0.3) which at time s is equal to u ∈
L∞([0, Xs),R+). We will give in Lemma8.3 a nice probabilistic representation for
the mass ΔX

I (u), I = [t1, t2], t1 ≥ s, which has been lost in the time interval I by
ρ(r, t), ∈ I . The mass lost ΔX

I (u) is defined by

http://dx.doi.org/10.1007/978-3-319-33370-0_3
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ΔX
I (u) :=

∫

R+
ρ(r, t1)dr −

∫

R+
ρ(r, t2)dr + j (t2 − t1). (8.4.25)

Notice that if ΔX
I (u) = j |I | then the mass is conserved.

Lemma 8.3 (Mass loss) With the above notation

ΔX
I (u) =

∫

R+
u(r ′)Pr ′,s

[
τ X
s ∈ I

]
dr ′ + j

∫ t2

s
P0,s ′

[
τ X
s ′ ∈ I

]
ds ′. (8.4.26)

Proof By integrating (8.3.23) over r we get

∫

R+
ρ(r, t)dr =

∫

R+
dr ′u(r ′)Pr ′,s[τ X

s > t] + j
∫ t

s
P0,s ′ [τ X

s ′ > t] ds ′

=
∫

R+
dr ′u(r ′) + j (t − s) −

∫

R+
dr ′u(r ′)Pr ′,s[τ X

s ≤ t]

− j
∫ t

s
P0,s ′ [τ X

s ′ ≤ t] ds ′.

We use the above formula to compute
∫

ρ(r, t2)dr − ∫
ρ(r, t1)dr . We then use

the equality

∫ t2

s
ds ′ Pr ′,s ′ [τ X

s ′ ≤ t2] −
∫ t1

s
ds ′ Pr ′,s ′ [τ X

s ′ ≤ t1] =
∫ t1

s
ds ′ Pr ′,s ′ [τ X

s ′ ∈ I ]

+
∫ t2

t1

ds ′ Pr ′,s ′ [τ X
s ′ ≤ t2].

We then get (8.4.26) after observing that Pr ′,s ′ [τ X
s ′ ≤ t2] = Pr ′,s ′ [τ X

s ′ ∈ I ] for s ′ ≥
t1. �

Writing (8.4.26) in differential form we get

ΔX
I (u) =

∫

I
μ(dt) (8.4.27)

where

μ(dt) =
∫

R+
dr ′ u(r ′)FX

r ′,s(dt) + j
∫ t

s
ds ′FX

0,s ′(dt). (8.4.28)

We also have

ΔX
I (u) = −1

2

∫

I

∂

∂r
ρ(r, t)

∣
∣
∣
∣
r=Xt

dt. (8.4.29)
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In fact by Theorem 2.6 in [2], ∂
∂r ρ(r, t) has a limit when r → Xt under the

assumption that the initial datum is smooth and that Xt is Lipschitz. We denote this
limit by −2λX

u,s(t). Therefore from (8.4.27) and (8.4.29) we get

∫

R+
dr ′ u(r ′)FX

r ′,s(dt) + j
∫ t

s
ds ′FX

0,s ′(dt) = λX
u,s(t)dt (8.4.30)

and by (8.3.12) and (8.3.23) the solution ρ(r, t) can be written as

ρ(r, t) = (Tt−sρ(·, s))(r) −
∫ t

s
λX
u,s(s

′)Gneum
s ′,t (Xs ′ , r) ds ′ (8.4.31)

where Tt−sρ(·, s) is defined in (3.5.6), namely

(Tt−sρ(·, s))(r) =
∫

R+
ρ(r ′, s)Gneum

t (r ′, r)dr ′ + j
∫ t

s
Gneum

s ′,t (0, r) ds ′

With j = 0 this shows that the exit distribution of the Brownian has a density
with respect to Lebesgue when the starting point has a smooth distribution and Xt

is Lipschitz. In [3] it is proved that Fr,s(dt) has a continuous density gr,s(t) if Xt

is C1, the proof extends to our case when Xt is piecewise C1 at all points with the
possible exception of thosewhere the derivative of Xt is discontinuous. Thus (8.4.30)
becomes ∫

R+
dr ′ u(r ′)gr ′,s(t) + j

∫ t

s
ds ′g0,s ′(t) = λX

u,s(t). (8.4.32)
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Chapter 9
Existence of Optimal Sequences

In this chapter we will prove that there exist optimal sequences (see Definition3.4)
and in the following one we will conclude the proof of Theorem3.2. The proofs in
both chapters use extensively the representation of the solution of the heat equation
in terms of Brownian motions given in Chap.7.

9.1 The Existence Theorem

Recalling Definition3.3 we will prove in this chapter:

Theorem 9.1 For any T > 0, ε > 0 and u ∈ U there is an ε-relaxed solution of the
basic problem in [0, T ] with initial datum u.

By the arbitrariness of ε Theorem9.1 proves the existence of optimal sequences.
Since ε > 0 is fixed we will drop it from the notation and simply write Xt , ρ0 for
X (ε)
t , ρ(ε)(·, 0). We take ρ0 continuous, with compact support and such that

∫ |u −
ρ0| ≤ ε. Let then X0 be such that [0, X0] contains the support of ρ0 and let

Xt = X0 +
∫ t

0
dsVs, Vs piecewise constant in [0, T ]. (9.1.1)

We will show that for a suitable choice of the piecewise constant velocity Vs the
solution of (2.0.2)–(2.0.3) is the ε-relaxed solution we are looking for. The proof is
iterative, we introduce a time grid of length t∗, t∗ = j−1ε, and prove that there is V
so that the solution ρ(r, t), t ∈ [0, t∗], of (2.0.2)–(2.0.3) with Xt = X0 + V t is such
that

∣
∣
∣
∣

∫

R+
ρ(r, t) dr −

∫

R+
ρ0(r) dr

∣
∣
∣
∣ ≤ ε,

∫

R+
ρ(r, t∗) dr =

∫

R+
ρ0(r) dr. (9.1.2)

We will prove also uniformity on the initial datum to iterate.
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9.2 The First Step of the Iteration

Let

V ∗ = − X0

t∗
, V > V ∗, XV

t = X0 + V t

and u be a continuous, non-negative function with support in [0, X0] such that
∫
u =∫

ρ0. Let u(V )(r, t), t ∈ [0, t∗], be defined as

u(V )(r, t) :=
∫

R+
GX, neum

0,t (r ′, r)u(r ′) dr ′ + j
∫ t

0
GX, neum

s,t (0, r) ds. (9.2.3)

Then, see (8.3.23), u(V )(r, t) is the solution of (2.0.2)–(2.0.3) with edge XV
t and

initial datum u. We denote by ΔXV

[0,t](u) the mass lost in the time interval [0, t], see
(8.4.25). The next lemma proves the intuitively evident fact that if Xt∗ → 0 then
all the mass is taken out of the system, both that present initially and that injected
through the origin.

Lemma 9.2 ΔXV

[0,t∗](u) converges to j t∗ + F(0; u) as V → V ∗.

Proof Let V > V ∗ and shorthand δ = XV
t∗ = X0+V t∗ = (V −V ∗)t∗ so that δ → 0

as V → V ∗. Then by (8.4.25) and (8.3.23)

0 ≤ j t∗ + F(0; u) − ΔXV

[0,t∗](u) =
∫

R+
ρ(r, t∗) dr

≤
∫

R+
u(r ′)Pr ′,0

[
Bt∗ ≤ δ

]
dr ′ +

∫ t∗

0
j P0,s

[
Bt∗ ≤ δ

]
ds.

By (8.2.6),

Pr ′,0

[
Bt∗ ≤ δ

]
≤ 2δ√

2πt∗
, P0,s

[
Bt∗ ≤ δ

]
≤ 2δ√

2π(t∗ − s)

which yields

0 ≤ j t∗ + F(0; u) − ΔXV

[0,t∗](u) ≤ F(0; u) · 2δ√
2πt∗

+ 4 jδ
√
t∗√

2π
.

Thus ΔXV

[0,t∗](u) → j t∗ + F(0; u) as V → V ∗ because δ = (V − V ∗)t∗. �

Also the next lemma is quite evident as it claims that there is no mass loss in
the limit V → ∞. These two lemmas together with Lemma9.4, which states that
ΔXV

[0,t∗](u) depends continuously on V , will then show that there is a value of V for

which ΔXV

[0,t∗](u) = j t∗. The second equality in (9.1.2) will then be proved.
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Lemma 9.3 ΔXV

[0,t∗](u) converges to 0 as V → ∞.

Proof Let ζ > 0, V = ζ− 3
4 and r ′ < X0 − ζ

1
4 . Call tk = kζ and rk = X0 + V tk ,

then

Pr ′,0

[
τ XV

0 ≤ t∗
]

≤
∞∑

k=1

Pr ′,0

[
max
t≤tk

Bt ≥ rk−1

]
.

Denoting by Qr ′;0 the law of the Brownian motion on the whole R (i.e. without
reflections at 0), we have

Pr ′,0

[
max
t≤tk

Bt ≥ rk−1

]
≤ 2Qr ′,0

[
max
t≤tk

Bt ≥ rk−1

]
.

By Doob’s inequality (see [1])

Pr ′,0

[
max
t≤tk

Bt ≥ rk−1

]
≤ 4Qr ′,0

[
Btk ≥ rk−1

]
≤ 4

∫ ∞

kζ
1
4

e− x2

2kζ√
2πkζ

dx

≤ 4e− k
4
√

ζ

∫ ∞

kζ
1
4

e− x2

4kζ√
2πkζ

dx ≤ 4
√
2e− k

4
√

ζ (9.2.4)

so that the first term on the right-hand side of (8.4.26) is bounded by

‖u‖∞ζ
1
4 + 4

√
2 ‖u‖1

∞∑

k=1

e− k
4
√

ζ

which vanishes as ζ → 0. An analogous argument (which is omitted) applies to the
second term on the right hand side of (8.4.26). �
Lemma 9.4 ΔXV

[0,t∗](u) depends continuously on V in (V ∗,∞).

Proof We consider the difference ΔXV

[0,t∗](u)−ΔXV ′
[0,t∗](u) with V ∗ < V < V ′ and call

δ = (V ′ − V )t∗. We need to prove that the difference vanishes as δ → 0. To make
notation lighter we shorthand X = {Xt = X0 + V t} and X ′ = {X ′

t = X0 + V ′t}.
Then by (8.4.27) and (8.4.28),

∣
∣
∣ΔX

[0,t∗](u) − ΔX ′
[0,t∗](u)

∣
∣
∣ ≤

∫ t∗−δ

0
F(ds) PXs ,s

[
τ X ′
s > t∗

]
+ Rδ (9.2.5)

F(ds) =
∫

R+
dr ′u(r ′)FX

r ′,0(ds) + j
∫ s

0
ds ′ FX

0,s ′(ds).

Rδ :=
∫

R+
dr ′u(r ′)Pr ′,0

[
τ X
0 ∈ [t∗ − δ, t∗]

]

+ j
∫ t∗

0
ds P0,s

[
τ X
s ∈ [

max{s, t∗ − δ}, t∗]
]
.
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We are going to prove that there is a function o(δ) which vanishes as δ → 0 so
that

sup
0≤s≤t∗−δ

PXs ,s

[
τ X ′
s > t∗

]
≤ o(δ). (9.2.6)

Fix s ≤ t∗ − δ and define σs := inf{t ≥ s : Bt /∈ (Xs − δ
3
4 , Xs + αδ)}, with

α > V ′ + 1, then

PXs ,s

[
τ X ′
s > t∗

]
≤ PXs ,s

[
σs > s + δ

]
+ PXs ,s

[
Bσs < X ′

σs
;σs ≤ s + δ

]

≤ PXs ,s

[
σs > s + δ

]
+ PXs ,s

[
Bσs = Xs − δ

3
4

]
(9.2.7)

because, by the choice of α, if Bσs = Xs + αδ then Bσs > X ′
σs
, as one can check

that Xs +αε > X ′
s+δ . Since Pr;s

[
Bσs = Xs − δ

3
4

]
is a linear function of r which has

value 1 at r = Xs − δ
3
4 and is equal to 0 at r = Xs + αδ, it follows that

PXs ,s

[
Bσs = Xs − δ

3
4

]
≤ α δ

1
4 (9.2.8)

Since the probability density of Bs+δ − Xs is e−x2/(2δ)(2πδ)−1/2 we have

PXs ,s

[
σs > s + δ

]
≤ PXs ,s

[
|Bs+δ − Xs | ≤ δ

3
4

]
≤ 2√

2π
· δ

1
4 (9.2.9)

so that (9.2.6) is proved. We then have that the first term on the right-hand side of
(9.2.5) is bounded by:

o(δ)
∫ t∗

0
h(s) ds ≤ o(δ) · (

F(0; u) + j t∗
)
.

We shall next bound the probabilities in Rδ . Call Y = Xt∗−δ = X0 + V (t∗ − δ),
then

Pr ′,0

[
τ X
0 ∈ [t∗ − δ, t∗]

]
≤ Pr ′,0

[
Bt∗−δ ∈ [Y − δ

1
4 ,Y ]

]

+ sup
r ′′≤Y−δ

1
4

Pr ′′,t∗−δ

[
max

t∈[t∗−δ,t∗]
Bt ≥ Y

]
. (9.2.10)

As before we have

Pr ′,0

[
Bt∗−δ ∈ [Y − δ

1
4 ,Y ]

]
≤ δ

1
4√

2π(t∗ − δ)
.
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Now suppose r ′′ ∈ [0,Y − δ
1
4 ], then

Pr ′′,t∗−δ

[
max

t∈[t∗−δ,t∗]
Bt ≥ Y

]
≤ Pr ′′,t∗−δ

[
max

t∈[t∗−δ,t∗]
(Bt − r ′′) ≥ δ

1
4

]
.

By the same argument used in (9.2.4), the latter is bounded by

2Pr ′,t∗−δ

[
Bt∗ − r ′ ≥ δ

1
4

]
≤ 2

∫ ∞

δ
1
4

e− x2

2δ√
2πδ

dx ≤ 4
√
2e− 1

4
√

δ

Analogous bounds are proved for P0,s
[
τ X
s ∈ [t∗ − δ, t∗]

]
, we omit the details.

We have thus proved that also Rδ is infinitesimal with δ. �

9.3 The Iteration

Corollary 9.5 There exists a V such that

ΔXV

[0,t∗](u) = j t∗ and sup
t≤t∗

|ΔXV

[0,t](u) − j t | ≤ j t∗. (9.3.11)

Proof The equality in (9.3.11) follows from Lemmas9.2–9.4. The last statement
holds because ΔXV

[0,t](u) is a non-decreasing function of t which is equal to j t∗ at
t = t∗. �

By (8.3.12) and (9.2.3) the function uV (r, t∗) is continuous with support on
[0, XV

t∗ ] and by (9.3.11),
∫
uV (r, t∗)dr = ∫

ρ0(r)dr . Thus uV (r, t∗) has the same
properties as the initial u and we can iterate the procedure constructing a function
ρX (r, t) with Xt having constant velocity in each interval [kt∗, (k + 1)t∗) and such
that | ∫ ρX (r, t)dr − ∫

ρ0(r, t)dr | ≤ ε at all times t ∈ [0, T ]. Theorem9.1 is then
proved.
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Chapter 10
Proof of the Main Theorem

In this chapterwewill first proveTheorem3.15 and thenTheorem3.2. Themain point
will be to show that the elements of an optimal sequence are eventually squeezed
between the upper and lower barriers which will be proved using the representation
of the solution of (2.0.2) and (2.0.4) in terms of Brownian motions, as discussed in
Chap.8. In Sect. 10.2 we will use this to prove Theorem3.15 while Theorem3.2 will
be proved in Sect. 10.4.

10.1 The Key Inequality

We fix T > 0 and ρ0 ∈ U . Let δ0 > 0 be such that ρ0 ∈ Uδ0 , by default in the sequel
δ < δ0. We also fix an optimal sequence in [0, T ] with initial datum ρ0, see Defini-
tion3.4. We will prove:

Theorem 10.1 Let t ∈ (0, T ], δ ∈ {2−k t, k ∈ N} with k large enough. Then

Sδ,−
t ρ(εn)(·, 0) � ρ(εn)(·, t) � Sδ,+

t ρ(εn)(·, 0) modulo
t

δ
2εn. (10.1.1)

The proof of Theorem10.1 is reported in Sect. 10.3. We first use it to prove The-
orem3.15.

10.2 Proof of Theorem 3.15

From the key inequality (10.1.1) Theorem3.15 easily follows. In fact by definition
of optimal sequences,

∫ |ρ(εn)(r, 0) − ρ0(r)|dr ≤ εn , then

ρ0 � ρ(εn)(·, 0) modulo εn, ρ(εn)(·, 0) � ρ0 modulo εn.
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Thus by (6.4.1) Sδ,−
t ρ0 � Sδ,−

t ρ(εn)(·, 0) modulo εn . By Lemma6.4 and (10.1.1),
Sδ,−
t ρ0 � ρ(εn)(·, t) modulo εn + t

δ
2εn . An analogous argument applies to Sδ,+

t ρ0,
hence

Sδ,−
t ρ0 � ρ(εn)(·, t) � Sδ,+

t ρ0 modulo
t

δ
2εn + εn. (10.2.2)

We keep δ fixed in (10.2.2) and let εn → 0:

F(r; Sδ,−
t ρ0) ≤ lim inf

εn→0
F(r; ρ(εn)(·, t)) ≤ lim sup

εn→0
F(r; ρ(εn)(·, t)) ≤ F(r; Sδ,+

t ρ0).

(10.2.3)
By Theorem3.14 letting δ → 0,

F(r; Stρ0) ≤ lim inf
εn→0

F(r; ρ(εn)(·, t)) ≤ lim sup
εn→0

F(r; ρ(εn)(·, t)) ≤ F(r; Stρ0)

which proves that
lim
εn→0

F(r; ρ(εn)(·, t)) = F(r; Stρ0). (10.2.4)

This shows that ρ(εn)(·, t) converges in distribution to Stρ0 and hence it converges
weakly as well.

10.3 Proof of Theorem10.1

To simplify notation we write ε for εn , u for ρ(εn)
0 , call t = Nδ, u(r, kδ) = ρ(ε)(r, kδ).

Theorem10.1 then follows from showing that for all k ≤ N :

Sδ,−
kδ u � u(·, kδ) � Sδ,+

kδ u modulo 2kε (10.3.1)

because (10.1.1) is (10.3.1) with k = N . The proof is by induction on k. The case k =
1 is notationally simpler and even if it can be recovered by the induction procedure
when we start it from k = 0 (for which (10.3.1) trivially holds), we will prove it
explicitly to give an idea of the general case. The only difference when treating the
case k = 1 is that (10.3.1) holds modulo ε, while in the general case there is the extra
factor 2: this is due to the fact that the approximate mass conservation gives:

|Δ[0,t](u) − j t | ≤ ε, |Δ[s,t](u) − j (t − s)| ≤ 2ε. (10.3.2)

10.3.1 The First Step of the Induction

We will prove separately the two inequalities in (10.3.1) with k = 1.
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10.3.1.1 Lower Bound

We shorthand Sδ,−
δ u = v−(·, δ). With this notation the lower bound in (10.3.1) for

k = 1 reads as
v−(·, δ) = CδTδu � u(·, δ) modulo ε. (10.3.3)

By (8.2.10)

F(r; Tδu) =
∫

R+
u(r ′) Pr ′,0

[
Bδ ≥ r

]
dr ′ + j

∫ δ

0
P0,s

[
Bδ ≥ r

]
ds

while, by (8.3.24),

F(r; u(·, δ)) =
∫

R+
u(r ′) Pr ′,0

[
τ X
0 > δ; Bδ ≥ r

]
dr ′

+ j
∫ δ

0
P0,s

[
τ X
s > δ; Bδ ≥ r

]
ds.

Since
sup
t∈[0,δ]

∣
∣
∣ΔX

[0,t](u) − j t
∣
∣
∣ ≤ ε.

by (8.4.26)

F(r; u(·, δ)) ≥
∫

R+
u(r ′) Pr ′,0

[
Bδ ≥ r

]
dr ′ + j

∫ δ

0
P0,s

[
Bδ ≥ r

]
ds

− ( jδ + ε) ≥ F(r; Tδu) − ( jδ + ε).

Thus
Tδu � u(·, δ) modulo jδ + ε

and therefore by (6.3.8)

CδTδu � u(·, δ) modulo ε

which proves (10.3.3).

10.3.1.2 Upper Bound

We shorthand Sδ,+
δ u = v+(·, δ); u1 = u − Cδu; u0 = u − u1 = Cδu. Then

v+(r, δ) =
∫

R+
u0(r

′)Gneum
0,δ (r ′, r)dr ′ + j

∫ δ

0
Gneum

s,δ (0, r)ds = Tδu0(r).
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By (8.4.31) and writing in the sequel λX
u0(s) for λX

u0,0(s),

u(r, δ) = Tδu0(r) −
∫ δ

0
λX
u0(s)G

neum
s,δ (Xs, r)ds +

∫

R+
u1(r

′)GX,neum
0,δ (r ′, r)dr ′.

Calling
I (r) := F(r; v+(·, δ)) − F(r; u(·, δ)) (10.3.4)

we then get

I (r) =
∫ δ

0
dsλX

u0(s)PXs ,s[Bδ ≥ r ] −
∫

R+
dr ′u1(r ′)Pr ′,0[Bδ ≥ r; τ X

0 > δ]

which can be rewritten as

I (r) =
∫ δ

0
ds λX

u0(s) PXs ,s[Bδ ≥ r ]

−
∫

R+
dr ′ u1(r ′) Pr ′,0[τ X

0 > δ] Pr ′,0[Bδ ≥ r | τ X
0 > δ] (10.3.5)

with

Pr ′,0[Bδ ≥ r | τ X
0 > δ] = Pr ′,0[Bδ ≥ r; τ X

0 > δ]
Pr ′,0[τ X

0 > δ]

the conditional probability that {Bδ ≥ r} given that {τ X
0 > δ}. Let

D :=
∫ δ

0
ds λX

u0(s) −
∫

R+
dr ′ u1(r ′) Pr ′,0[τ X

0 > δ]. (10.3.6)

D can be rewritten and then bounded as follows:

D =
∫ δ

0
ds λX

u (s) −
∫

R+
dr ′ u1(r ′), |D| ≤ ε. (10.3.7)

The inequality follows from the following facts:
∫ δ

0 λX
u (s)ds = Δ0,δ(u),∫

dr ′u1(r ′) = jδ, by the definition of u1 and |Δ0,δ(u) − jδ| ≤ ε.
Let q be such that

∫ δ

0
ds λX

u0(s) =
∫

R+
dr ′ q u1(r ′) Pr ′,0[τ X

0 > δ]. (10.3.8)
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By (10.3.6)–(10.3.7)

∣
∣
∣(1 − q)

∫

R+
dr ′ u1(r ′) Pr ′,0[τ X

0 > δ]
∣
∣
∣ = |D| ≤ ε (10.3.9)

so that

∣
∣
∣
∣I (r) −

(∫ δ

0
dsλX

u0(s)PXs ,s[Bt ≥ r ] (10.3.10)

−
∫

R+
dr ′ q u1(r ′) Pr ′,0[τ X

0 > δ] Pr ′,0[Bt ≥ r | τ X
0 > δ]

)∣
∣
∣
∣ ≤ ε.

Wewill prove that for any r the curly bracket is non-negative which by (10.3.4) gives
the desired upper bound

u(·, δ) � v+(·, δ) modulo ε.

Since the measures λX
u0(s)ds on [0, δ] and {qu1(r ′)Pr ′,0[τ X

0 > δ]}dr ′ on [0, X0] have
same mass, and since they are both non-atomic, by the theory of Lebesgue measures,
see for instance Roklin [1], there is a map Γ : [0, X0] → [0, δ] such that

∫ δ

0
ds λX

u0(s) PXs ,s[Bt ≥ r ]

=
∫

R+
dr ′ q u1(r ′) Pr ′,0[τ X

0 > δ] PXΓ (r ′),Γ (r ′)

[
Bδ ≥ r

]
. (10.3.11)

In the next subsection we will prove that

Pr ′,0

[
Bδ ≥ r

∣
∣ τ X

0 > δ
]

≤ PXt ,t

[
Bδ ≥ r

]
, r ′ ∈ [0, X0), t ∈ [0, δ) (10.3.12)

which completes the proof of the upper bound.

10.3.2 A Stochastic Inequality

In this subsection we will prove (10.3.12), by using coupling between Brownian
motions. Let r ′ and t be as in (10.3.12). Recalling (8.3.16),

Pr ′,0

[
Bδ ≥ r

∣
∣ τ X

0 > δ
]

=
∫ Xt

0
GX, neum

0,t (r ′, z) Pz,t
[
Bδ ≥ r

∣
∣ τ X

t > δ
]
dz

http://dx.doi.org/10.1007/978-3-319-33370-0_8
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so that (10.3.12) will follow from

Pz,t
[
Bδ ≥ r

∣
∣ τ X

t > δ
]

≤ PXt ,t

[
Bδ ≥ r

]
, z ∈ [0, Xt ), t ∈ [0, δ) (10.3.13)

which will be proved in the remaining part of this subsection.
Let γ−1 be a positive integer (eventually γ → 0), B(1)

i , i = 1, .., γ−1 independent
Brownian motions which start moving at time t from Xt and denote by P (1) their
law and by E (1) the corresponding expectation. We will use the identity:

PXt ,t

[
Bδ ≥ r

]
= E (1)

[
γ

γ−1
∑

i=1

1[r,+∞)(B
(1)
i (δ))

]
. (10.3.14)

We can proceed in an analogous way with Pz,t
[
Bδ ≥ r

∣
∣ τ X

t > δ
]
which is now

conveniently rewritten as

Pz,t
[
Bδ ≥ r

∣
∣ τ X

t > δ
]

= Pz,t
[
Bδ ≥ r ; τ X

t > δ
]

×
(
1 +

{ 1

1 − α(z)
− 1

})
, α(z) = Pz,t

[
τ X
t ≤ δ

]
. (10.3.15)

Calling Nγ := the integer part of γ−1
{

1
1−α(z) − 1

}
, we then consider B(2)

i , i =
1, .., γ−1 + Nγ , independent Brownian motions which start at time t from z and are
removed once they reach the edge Xt . We denote by P (2) such a law and by E (2) the
corresponding expectation. We have:

Pz,t
[
Bδ ≥ r

∣
∣ τ X

t > δ
]

= lim
γ→0

E (2)
[
γ

γ−1+Nγ∑

i=1

1[r,+∞)(B
(2)
i (δ))

]
. (10.3.16)

The equality follows using (10.3.15): it holds only in the limit because of the
integer part in the definition of Nγ . We are going to couple the Brownians B(1)

i (s)
and B(2)

i (s): this means that we will define a probability P on all B(1)
i and B(2)

i such
that the marginal law of the B(1)

i is P (1) and the marginal law of the B(2)
i is P (2).

At the initial time t we have γ−1 + Nγ (2)-particles at z and γ−1 (1)-particles at Xt .
We say that the (2)-particle with label i ≤ γ−1 is married with the (1)-particle with
the same label i . The (2)-particles with label i > γ−1 are called single. We are going
to couple the evolution of the married pairs in the following way. B(1)

i (s) and B(2)
i (s),

s ≥ t , i ≤ γ−1 move independently of each other till when they meet, from then on
they move in the same way (observe that B(2)

i (s) ≤ B(1)
i (s) because the inequality

holds initially). The coupling stops when B(2)
i (s) = Xs because at that time B(2)

i (s)
must be erased. We let all married pairs move independently of each other and of
the single particles and this defines the coupled process till the first time s when the
(2)-particle, say with label i , in a married pair reaches Xs . We define the process after
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time s by redefining the broken pair: we take the single (2)-particle still alive at time
s with smallest label, say j , and we say that at time s+ the (2)-particle with label j
is married with the (1)-particle with label i . The process is then continued with same
rules till time δ. If it happens that there are no longer (2) single particles, a broken
pair cannot be reconstructed and there are (1)-particles which become single. We
denote by P the law of this coupled process and by E the corresponding expectation.
The important features of this construction are:

• In a married pair the position of the (1)-particle is always ≥ than the position of
the (2)-particle.

• Single particles are all of type (2) till when the number of deaths of (2)-particles
is ≤ Nγ and are all of type (1) afterwards.

Therefore

PXt ,t

[
Bδ ≥ r

]
− Pz,t

[
Bδ ≥ r

∣
∣ τ X

t > δ
]

≥ − lim
γ→0

E
[
γKγ

]
(10.3.17)

where

Kγ = max
{
0; Nγ −

γ−1+Nγ∑

i=1

1B(2)
i (s)=Xs , for some s,∈[t,δ]

}
.

By the law of large numbers for independent variables, for any ζ > 0,

lim
γ→0

P
[ ∣

∣
∣γ

γ−1+Nγ∑

i=1

1B(2)
i (s)=Xs , for some s ∈[t,δ]

−(1 + γNγ)Pz,t [τ X
t ≤ δ]

∣
∣
∣ ≤ ζ

]
= 1. (10.3.18)

Recalling the definition of α(z) we have

lim
γ→0

(1 + γNγ)Pz,t [τ X
t ≤ δ] = α(z)

1 − α(z)
= lim

γ→0
γNγ .

Thus from (10.3.18) we have that

lim
γ→0

P
[ ∣

∣
∣γ

γ−1+Nγ∑

i=1

1B(2)
i (s)=Xs , for some s ∈[t,δ] − γNγ

∣
∣
∣ ≤ ζ

]
= 1,

hence lim
γ→0

P
[
γKγ ≤ ζ

] = 1 which yields lim
γ→0

E
[
γKγ

] = 0, thus the right-hand side

of (10.3.17) is equal to 0. �
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10.3.3 The Generic Step of the Induction

We suppose by induction that for all n ≤ k:

Sδ,−
nδ u � u(·, nδ) � Sδ,+

nδ u modulo 2nε. (10.3.1)

The lower bound. Call u∗(·) = u(·, kδ). Then

Sδ,−
δ u∗ � u(·, (k + 1)δ) modulo 2ε. (10.3.2)

The proof of (10.3.2) is the same as that in Sect. 10.3.1.1, here we have a bound
with 2ε because unlike in Sect. 10.3.1.1 we have

sup
t∈[0,δ]

∣
∣
∣ΔX

[0,t](u
∗) − j t

∣
∣
∣ ≤ 2ε.

By the induction hypothesis

Sδ,−
kδ u � u∗ modulo 2kε. (10.3.3)

Then by Theorem6.12

Sδ,−
(k+1)δu � Sδ,−

δ u∗ modulo 2kε (10.3.4)

which by (10.3.2) yields

Sδ,−
(k+1)δu � u(·, (k + 1)δ) modulo 2(k + 1)ε. (10.3.5)

The upper bound. The same proof applies for the upper bound. We just repeat it
for the reader’s convenience. We have

u(·, (k + 1)δ) � Sδ,+
δ u∗ modulo 2ε. (10.3.6)

Using the same proof as that in Sect. 10.3.1.2, again the bound with 2ε is due to
the bound |ΔX

[0,t](u∗) − j t | ≤ 2ε. By the induction hypothesis

u∗ � Sδ,+
kδ u modulo 2kε. (10.3.7)

Then by Theorem6.11

Sδ,+
δ u∗ � Sδ,+

(k+1)δu modulo 2kε (10.3.8)

which by (10.3.6) yields

u(·, (k + 1)δ) � Sδ,+
(k+1)δu modulo 2(k + 1)ε. (10.3.9)

http://dx.doi.org/10.1007/978-3-319-33370-0_6
http://dx.doi.org/10.1007/978-3-319-33370-0_6
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10.4 Proof of Theorem 3.2

• (a) is proved in Theorem9.1.
• (b) is proved in Theorem3.15.
• (c) is also proved in Theorem3.15 where we identify a relaxed solution with the
element Stρ0 which separates the barriers.

• (d) follows from the identification theorem, Theorem3.15, and item (5) of Theo-
rem3.14.

• (e) follows from property (9) of Theorem3.14 (via Theorem3.15).
• (f) follows from Theorem3.15 and item (7) in Theorem3.14.
• (g) follows from (7) of of Theorem3.14 (via Theorem3.15).
• (h) Let ρ0 be a classical initial datum and let u be the (local in time) solution whose
existence has been proved in Theorem3.1. Since u can be regarded as an optimal
sequence with εn = 0 for all n, then by (c) u ≡ ρ.
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Chapter 11
The Basic Particle Model and Its
Hydrodynamic Limit

In this chapter we study the hydrodynamic limit of the particle version of the basic
model which has been introduced in Chap.2. We will prove in this chapter conver-
gence of the empirical density to the solution of the FBP of Part I, see Theorem3.1.
In Sect. 11.1 we recall the definition of the particle system and state the main result.
In Sect. 11.2 we outline the strategy of the proof which is then given in the successive
sections.

11.1 The Model and the Main Result

We fix an initial “macroscopic profile” ρ0(r), r ∈ R+: we suppose that ρ0(r) is
smooth, has compact support and satisfies the assumptions in Theorem3.1, so that
the FBP with initial datum ρ0 has a solution (at least for a positive time interval).

The N particle “approximation” ofρ0 consists of a systemof N particles,with their
positions, x1(0), . . . , xN (0), distributed independently with the same law ρ0(r)dr .
Their dynamics are defined by letting the particles move as independent Brownian
motions (with reflections at the origin) till the first time t1 of a Poisson point process
on R+ of intensity N (for notational simplicity we take here the parameter j of Part
I equal to 1; we are interpreting the events of the Poisson point process as times).
At t1 the rightmost particle is moved to the origin. After t1 the particles move again
as independent Brownian motions(with reflections at the origin) till the second time
t2 of the Poisson process when the rightmost particle (at time t−2 ) is moved to the
origin. The operation is repeated with the same rules and the process is thus defined
for all times (because with probability 1 the Poisson process in a compact has a finite
number of events).We denote by x(t) = (x1(t), . . . , xN (t)) the particle configuration
at time t and by P (N ) the law of {x(t), t ≥ 0}.

We finally define the “empirical mass density” at time t ≥ 0 as the probability
measure on R+ given by
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π
(N )
t (dr) = 1

N

N∑

i=1

δxi (t)(r)dr. (11.1.1)

Our main result in this chapter is:

Theorem 11.1 [Hydrodynamic limit] For any t ≥ 0 and any ε > 0,

lim
N→∞ P (N )

[
sup
r≥0

∣
∣
∣

∫ ∞

r
π

(N )
t (dr ′) −

∫ ∞

r
Stρ0(r

′)dr ′
∣
∣
∣ > ε

]
= 0 (11.1.2)

where Stρ0 is defined in Theorem3.14.

Stρ0(r) coincides with the solution ρ(r, t) of the FBP till when the latter exists,
as it follows from Theorems3.15 and item (f) of Theorem 3.2.

11.2 Strategy of Proof

The proof of Theorem11.1 follows the way we proved Theorem3.2. The first step
in fact is to introduce stochastic upper and lower barriers xδ,±(t) with the property
that for all t = kδ, k ∈ N,

xδ,−(t) � x(t) � xδ,+(t) (11.2.1)

with P (N )-probability 1. The relation � is defined as in (3.6.1), namely two config-
urations x and y are ordered, x � y, if for any r ≥ 0,

|x ∩ [r,∞)| ≤ |y ∩ [r,∞)|, (11.2.2)

having regarded x and y as subsets of R+. (11.2.2) can also be stated in terms of
the empirical mass densities: calling π(dr) and π ′(dr) the probability measures
associated to x and y via (11.1.1), then (11.2.2) can be written as

∫ ∞

r
π(dr ′) ≤

∫ ∞

r
π ′(dr ′).

The definition of the stochastic barriers xδ,±(t) is completely analogous to the
definition of the barriers Sδ,±

t u and it will be given in Sect. 11.3 together with a proof
of (11.2.1).

The second step in the proof of Theorem11.1 is to relate the stochastic and the
deterministic barriers. Fix t > 0 and by default in the sequel δ ∈ {2−nt, n ∈ N}. We
will prove that for any ε > 0,

http://dx.doi.org/10.1007/978-3-319-33370-0_3
http://dx.doi.org/10.1007/978-3-319-33370-0_3
http://dx.doi.org/10.1007/978-3-319-33370-0_3
http://dx.doi.org/10.1007/978-3-319-33370-0_3
http://dx.doi.org/10.1007/978-3-319-33370-0_3
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lim
N→∞ P (N )

[
sup
r≥0

∣
∣
∣|xδ,±(t) ∩ [r,∞)| − N

∫ ∞

r
Sδ,±
t ρ0(r

′)dr ′
∣
∣
∣ > N ε

]
= 0.

(11.2.3)
The proof of (11.2.3) is not too hard because the processes xδ,±(t) are essentially
independent Brownian motions (with reflections at the origin) except at a finite
number of times, namely the times kδ ≤ t . Equation (11.2.3) is proved in Sect. 11.4.

The conclusion of the proof of Theorem11.1 is at this point a three ε argument
as we use (11.2.1) to relate x(t) to xδ,±(t), (11.2.3) to relate xδ,±(t) to Sδ,±

t ρ0 and
Theorem3.14 to relate Sδ,±

t ρ0 to Stρ0, the details are given in Sect. 11.5.

11.3 The Stochastic Barriers

We fix δ > 0, K ∈ N, and with probability 1 we may and will tacitly suppose in the
sequel that no Poisson event occurs at the times kδ, k ∈ N. We define the processes
xδ,±(t), t ≤ K δ, iteratively. We thus suppose to have defined xδ,±(t) for t ≤ kδ and
want to define it till time t ≤ (k + 1)δ.

We start from xδ,−(t). The particles of xδ,−(t) move as independent Brownian
motions (with reflections at the origin) till time t1 which is the first Poisson event
after kδ. At t+1 a new particle with label N + 1 is added to xδ,−(t−1 ) and put at the
origin. The same rule is used at the successive times tn ∈ [kδ, (k + 1)δ] of the Poisson
process so that at time (k + 1)δ we will have a configuration y with N + m particles,
m the number of Poisson events in [kδ, (k + 1)δ]. xδ,−((k + 1)δ) is then obtained
from y by taking away the rightmost m particles and relabeling the remaining N
with labels 1, . . . , N in some arbitrary way.

The definition of the upper barrier xδ,+(t) requires some more care as it will be
defined for each δ only in a subset whose probability however goes to 1 as N → ∞.
Such a subset depends only on the Poisson process: denote by nk the number of
events of the Poisson process in the time [kδ, (k + 1)δ]; we will then define xδ,+(t),
t ≤ K δ, on the subset {nk < N , k = 0, . . . , K − 1} observing that for any K and
any δ ∈ (0, 1),

lim
N→∞ P (N )

[
{nk < N , k = 0, . . . , K − 1}

]
= 1. (11.3.1)

We next restrict to realizations of the Poisson process such that {nk < N , k =
0, . . . , K − 1}, we suppose iteratively to have defined xδ,+(t) for t ≤ kδ and want
to define it till time t ≤ (k + 1)δ. We start by taking away from xδ,+((kδ)−) the
rightmost nk particles and let the remaining particles move as independent Brownian
motions (with reflections at the origin) till the first time s1 of the Poisson event in
[kδ, (k + 1)δ]. At this time we add a new particle at the origin and keep repeating the
above procedure till time (k + 1)δ where we have added nk particles, namely exactly
the same number of particles we had taken away initially, so that xδ,+((k + 1)δ)+)

has again N particles.

http://dx.doi.org/10.1007/978-3-319-33370-0_3
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To prove the stochastic inequalities we will use the following notion: two Brown-
ian motions x(t) and y(t) with reflections at the origin are coupled increasingly if:

• y(0) ≥ x(0).
• x(t) and y(t) are independent B-motions (with reflections at the origin) till the
first time τ ≥ 0 when they meet.

• x(·) is a B-motion (with reflections at the origin) and y(t) = x(t) for t ≥ τ .

Themarginal laws of x(t) and y(t) are the laws of Brownianmotions with reflections
at the origin.

11.3.1 Stochastic Inequalities: Lower Bound

We will prove here the first inequality in (11.2.1) for all t = kδ, k ≤ K . We suppose
inductively to have proved that for k ≤ n there is a relabeling of xδ,−(nδ) such that

xδ,−
i (nδ) ≤ xi (nδ). (11.3.2)

We couple increasingly each pair xδ,−
i (t), xi (t), i = 1, . . . , N , (each pair being

independent of the others) till the first time t of the Poisson process in [nδ, (n + 1)δ].
If xi (t−) is the rightmost particle in x(t−) then xi (t+) = 0. We then set

xδ,−
i (t+) = 0, xδ,−

N+1(t
+) = xδ,−

i (t−).

We repeat this procedure for all Poisson times t1, . . . , tm in [nδ, (n + 1)δ], (with
probability 1 we are supposing that no Poisson event occurs at the times kδ). Thus
at time t = ((n + 1)δ)−

xδ,−
i (t) ≤ xi (t), i = 1, . . . , N .

If there have been m Poisson events in [nδ, (n + 1)δ] then xδ,−(t−) has m other
particles, xδ,−

i (t), i = N + 1, . . . , N + m.
xδ,−(t+) is obtained by removing from xδ,−(t) its rightmost m particles. We do it

iteratively. First we remove the rightmost particle, if its label is i > N we just take
it away. If instead i ≤ N we relabel particle N + 1 as particle i , observing that

xδ,−
i (t+) = xδ,−

N+1(t
−) ≤ xδ,−

i (t−) ≤ xi (t).

Thus after the first removal the inequalities xδ,−
i (t+) ≤ xi (t), i = 1, . . . , N are

preserved. The same rule is used for the successive removals: if the rightmost particle
at a step has label >N we just remove it, if instead it has label i ≤ N we take the
particle with the smallest label >N and relabel it as particle i . In this way we get

xδ,−
i (((n + 1)δ)+) ≤ xi (n + 1)δ), i = 1, . . . , N . (11.3.3)
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Thus by induction (11.3.2) is proved for all n ≤ K hence the first inequality in
(11.2.1).

11.3.2 Stochastic Inequalities: Upper Bound

Wewill also use induction to prove the second inequality in (11.2.1).We thus suppose
to have proved that for k ≤ n there is a relabeling of xδ,+(nδ) so that

xi (nδ) ≤ xδ,+
i (nδ), i = 1, . . . , N (11.3.4)

and want to prove that the inequality remains valid at time (n + 1)δ.
y(nδ) := xδ,+((nδ)+) is obtained from xδ,+((nδ)−) by taking away its m right-

most particles, having called m the number of events in the Poisson process in
the time interval [nδ, (n + 1)δ]. We paint in red the particles to be taken away
and in blue the others so that the system at time (nδ)+ is described by the triple
(x(nδ), y(nδ), σ (nδ)), where σi (nδ) ∈ {R, B}, i = 1, . . . , N , according to the color
of yi . If σi = R the particle yi (nδ) is fictitious, it is just put for convenience, the only
particles in xδ,+

i ((nδ)+) are the blue ones, i.e. those with σi = B.
We will next define a joint process (x(t), y(t), σ (t)), t ∈ (nδ, (n + 1)δ], with the

property that its marginal x(t) has the law of the true process while the marginal y(t)
once restricted to the blue particles has the law of xδ,+(t). We will also check that

xk(t) ≤ yk(t), 1 ≤ k ≤ N , t ∈ (nδ, (n + 1)δ] (11.3.5)

and prove that at the final time (n + 1)δ no red particles are left, so that the second
inequality in (11.2.1) will be proved.

We define the process iteratively and in such a way that in between clock events
each pair xi (t), yi (t) is coupled increasingly and independently of the other pairs.
We thus need to check that at the clock events the inequalities are preserved. Let t
be a clock event and suppose by induction that xk(t−) ≤ yk(t−), k = 1, ..N . Let

• i : xi (t−) = maxk xk(t−),
• j : x j (t−) = maxσk=R xk(t−).

All colors σk and positions xk and yk of particles with label k different from i and j
do not change at t . When i = j (namely when σi = R) we set xi (t+) = yi (t+) = 0,
σi (t+) = B. Instead when i 	= j we set

• xi (t+) = yi (t+) = 0, σi (t+) = B.
• x j (t+) = x j (t−), y j (t+) = yi (t−), σ j (t+) = B.

We then have:

• The x-process is the true one.
• The y(t)-process restricted to the blue particles has the same law as xδ,+(t).



76 11 The Basic Particle Model and Its Hydrodynamic Limit

• xk(t+) ≤ yk(t+), k = 1, . . . , N , so that the induction property is proved.
• The number of reds decreases by 1 at each clock event, so that at the end there are
no red left and y(nδ) = xδ,+(nδ). By (11.3.5) the second inequality in (11.2.1) is
proved.

11.4 Hydrodynamic Limit for the Stochastic Barriers

In this section we will prove convergence in the limit N → ∞ of the stochastic
barriers to the deterministic ones. We will use extensively in the proof the following
semi-norms which are “sort of weak L1 norms”.

11.4.1 Semi-norms

Let I be a partition of R+ into intervals of length � > 0, the generic interval I ∈ I
being [n�, (n + 1)�). To be specific from now on we take � = N−β , β ∈ (0, 1), and
write IN for I. Let μ and ν be positive, finite measures on R+ with same total mass.
We restrict in the sequel to the case where μ is the counting measure associated
to xδ,±(t) and ν(dr) = NSδ,±

t ρ0(r)dr , t = kδ. With this in mind we define for any
subset A ⊂ IN ,

‖μ − ν‖A =
∑

I∈A
‖μ − ν‖I , ‖μ − ν‖I = {μ(I ) − mI + ν(I ) − mI } (11.4.1)

where for each I :

mI = sup{m ∈ Z : m ≤ min
(
μ(I ), ν(I )

)}. (11.4.2)

Observe that mI ≥ 0 and that

|μ(I ) − ν(I )| ≤ ‖μ − ν‖I , μ(I ) ≤ ‖μ − ν‖I + ν(I ). (11.4.3)

We will derive upper bounds for ‖μ − ν‖I by taking a real number m in (11.4.2)
which is≤ μ(I ) and≤ ν(I ) (namely not necessarily the best valuemI ). This is used
in the proof of the next lemma:

Lemma 11.2 Suppose there are a real number αI , a subset A0 of IN and ζ > 0
such that αI ≤ μ(I ), αI ≤ ν(I ) and

∑

I∈A0

αI ≥ N − ζ. (11.4.4)
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Then
‖μ − ν‖IN ≤ 4ζ + 2|A0|. (11.4.5)

Proof We have

N =
∑

I∈IN

μ(I ) ≥ N − ζ +
∑

I /∈A0

μ(I ),
∑

I /∈A0

μ(I ) ≤ ζ.

Let βI be the largest integer m ≤ αI , then, since mI ≥ 0 and βi ≥ αi − 1,

∑

I∈IN

[μ(I ) − mI ] ≤ ζ +
∑

I∈A0

[μ(I ) − βI ] ≤ ζ + N −
∑

I∈A0

(αI − 1) ≤ 2ζ + |A0|

having used (11.4.4) in the last inequality. An analogous bound holds for ν, hence
(11.4.5). �

We will use in the next subsection the above lemma with ζ = Na , a ∈ (0, 1). We
next state and prove some other elementary properties of the semi-norms where we
are fixing δ > 0 and N , μ stands for the counting measure relative to a configuration
x with N particles and ν(dr) = NSδ,±

t ρ0(r)dr for some t = kδ.

Lemma 11.3 In the above setup there is c > 0 so that for any N,

mI ≤ ν(I ) ≤ cN 1−β; μ(I ) ≤ cN 1−β + ‖μ − ν‖I . (11.4.6)

Proof The first inequality holds by definition, the second one because ν(I ) =
N

∫
I S

δ,±
t ρ0(r)dr with ‖Sδ,±

t ρ0‖L∞ bounded for all t = kδ. The last inequality fol-
lows from (11.4.3). �

Lemma 11.4 Let c be as in Lemma11.3 and let μ′(I ) ≤ μ(I ), ν ′(I ) ≤ ν(I ), then

‖μ′ − ν ′‖I ≤ ‖μ − ν‖I + 2cN 1−β. (11.4.7)

Proof Calling m ′
I ∈ [0,mI ] the quantity associated to μ′(I ) and ν ′(I ),

μ′(I ) − m ′
I + ν ′(I ) − m ′

I ≤ μ(I ) − m ′
I + ν(I ) − m ′

I ≤ ‖μ − ν‖I + 2mI ,

because mI ≥ m ′
I . �

The next lemma bounds the distribution-distance in terms of the semi-norms and
will be used in the proof of Theorem11.1.

Lemma 11.5 Let c be as in Lemma11.3. Then for any r ≥ 0

∣
∣
∣
∣

∫ ∞

r
μ(dr ′) −

∫ ∞

r
ν(dr ′)

∣
∣
∣
∣ ≤ ‖μ − ν‖IN + 2cN 1−β. (11.4.8)
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Proof Given r ≥ 0 let I0 be the interval which contains r and A the set of all I to
the right of I0. Call μ′(dr ′) = 1r ′≥rμ(dr ′) and ν ′(dr ′) = 1r ′≥rν(dr ′). Then

|
∫ ∞

r
μ(dr ′) −

∫ ∞

r
ν(dr ′)| ≤ ‖μ − ν‖A + ‖μ′ − ν ′‖I0 .

By (11.4.7) the right-hand side is bounded by ‖μ − ν‖IN + 2cN 1−β . �

In the next lemmaμ′ is the counting measure relative to x ′ which is obtained from
x by taking away the rightmost N ∗ < N particles. Analogously

ν ′(dr) = ν(dr)1r≤Rν
,

∫ ∞

Rν

ν(dr) = δN .

Lemma 11.6 With the above notation

‖μ′ − ν ′‖IN ≤ ‖μ − ν‖IN + 2cN 1−β + |δN − N ∗|. (11.4.9)

Proof Call Rμ the position of the leftmost particle erased from x and suppose that
Rμ < Rν (the opposite case is similar and its analysis omitted). Call I1 and I2 the
intervals of IN which contain Rμ and, respectively, Rν . We call A1 the intervals (of
IN ) to the left of I1, A3 those to the right of I2 and A2 those in between I1 and I2.
Then

‖μ′ − ν ′‖IN = ‖μ − ν‖A1 + ‖μ′ − ν‖I1 +
∑

I∈A2

ν(I ) + ν ′(I2)

≤ ‖μ − ν‖A1∪I1 + 2cN 1−β +
∑

I∈A2

ν(I ) + ν ′(I2).

On the other hand

N ∗ =
∑

I∈A2∪A3∪I2

{mI + [μ(I ) − mI ]} + [μ(I1) − μ′(I1)],

δN =
∑

I∈A3

{mi + [ν(I ) − mI ]} + [ν(I2) − ν(I ′
2)].

By taking their difference we get

∑

I∈A2

mi ≤ |N ∗ − δN | +
∑

I∈A3

[ν(I ) − mI ] + [ν(I2) − mI2 ] − ν(I ′
2).
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Thus

‖μ′ − ν ′‖IN ≤ ‖μ − ν‖A1∪I1 + 2cN 1−β +
∑

I∈A2∪I2∪A3

[ν(I ) − mI ] + |N ∗ − δN |.

hence (11.4.9). �
We conclude this subsection by bounding ‖μ0 − ν0‖IN , where μ0 is the counting

measure associated to the initial configuration x(0) with N particles and ν0(dr) =
Nu0(r)dr . Let I be an interval which has non-empty intersection with the support
of u0. Since the particles xi (0) are distributed with law u0(r)dr :

μ0(I ) ≥ ν0(I ) −
∣
∣
∣
∣

N∑

i=1

(
1xi (0)∈I − P (N )[xi (0) ∈ I ]

)∣
∣
∣
∣. (11.4.10)

Since the xi (0) are mutually independent,

lim
N→∞ P (N )

[
sup
I

|
N∑

i=1

(
1xi (0)∈I − P (N )[xi (0) ∈ I ]

)
| ≥ Nα0

]
= 0 (11.4.11)

provided that

α0 >
1 − β

2
. (11.4.12)

This yields (recalling that u0 has compact support)

‖μ0 − ν0‖IN ≤ cNβ+α0 (11.4.13)

and since we want Nβ+α0 < N we need

α0 + β < 1,
1 − β

2
< α0 < 1 − β. (11.4.14)

11.4.2 The Key Estimate

We fix δ > 0 and a positive integer K . We call μ±
k , k = 0, . . . , K , the counting

measure associated to xδ,±(kδ) and ν±
k (dr) = Sδ,±

kδ ρ0(r)dr . We call IN the partition
I when � = N−β .

Theorem 11.7 There are α and β in (0, 1) and constants ck so that

lim
N→∞ P (N )

[ K⋂

k=0

{
‖μ±

k − ν±
k ‖IN ≤ ck N

α logk N
]

= 1. (11.4.15)



80 11 The Basic Particle Model and Its Hydrodynamic Limit

Proof In the course of the proof we will introduce several parameters.
Choice of parameters. The main parameters are α and β: all β small enough

will work (in particular β < 1/2) while α should then be α > 1 − β/3. We fix the
parameter α0 in (11.4.12) as α0 = 1/2. Other parameters: α2 = α3 > (1 − β)/2 and
such that α > β + α3. Finally γ = β/3.

As the proofs are similar wewill only check (11.4.15) forμ+
k and ν+

k . Call P
(N )

xδ,+(kδ)

the law of the process after time kδ conditioned on having xδ,+(kδ) at time kδ. We
can then write

P (N )
[ K⋂

k=0

{
‖μ+

k − ν+
k ‖IN ≤ ck N

α logk N
]

= E (N )
[ K−1∏

k=0

1‖μ+
k −ν+

k ‖IN ≤ck Nα logk N

× P (N )

xδ,+((K−1)δ)

[
{‖μ+

K − ν+
K‖IN ≤ cK N

α logK N
]]

. (11.4.16)

We will prove that for any k ≤ K − 1 if xδ,+(kδ) is such that ‖μ+
k − ν+

k ‖IN ≤
ck Nα logk N then

P (N )

xδ,+(kδ)

[
{‖μ+

k+1 − ν+
k+1‖IN ≤ ck+1N

α logk+1 N }
]

≥ 1 − εk,N (11.4.17)

where limN→∞ εk,N = 0 for all k. Applied to (11.4.16) it gives

P (N )
[ K⋂

k=0

{
‖μ+

k − ν+
k ‖IN ≤ ck N

α logk N
}]

≥ P (N )
[ K−1⋂

k=0

{
‖μ+

k − ν+
k ‖IN ≤ ck N

α logk N
}]

− εK ,N (11.4.18)

and by iteration

P (N )
[ K⋂

k=0

{
‖μ+

k − ν+
k ‖IN ≤ ck N

α logk N
}]

≥ P (N )
[{

‖μ+
0 − ν+

0 ‖IN ≤ c0N
α
]

−
K−1∑

k=1

εk,N . (11.4.19)

(11.4.15) follows from (11.4.19) and (11.4.13) choosing α > α0.
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We are thus left with the proof of (11.4.17). The first operation is the cutting. Call
N ∗ the number of events of the Poisson process in the interval [kδ, (k + 1)δ]. Since
Nδ is the intensity of the Poisson process given any α1 ∈ (1/2, α) there are for any
n > 0 constants bn so that

lim
N→∞ P (N )

[
|N ∗ − δN | > Nα1

]
≤ bnN

−n. (11.4.20)

Then by Lemma11.6 calling μ′ and ν ′ the measures μk and νk after the cutting, we
may restrict to the case

‖μ′ − ν ′‖IN ≤ c′
k N

α logk N , (11.4.21)

provided α > 1 − β, α > α1 and with c′
k suitable constants. We start with νk+1 and

using a gaussian bound,

∑

I 	⊂[0,log N ]
νk+1(I ) ≤ e−b log2 N , b > 0. (11.4.22)

We partition the time interval [kδ,∞) into intervals of length N−β , the partition
J obtained in this way is IN shifted by kδ. We denote by J the elements of J .
Let γ ∈ (0, 2β/3) (for the sake of definiteness γ = β/3, see the paragraph Choice
of parameters at the beginning of the proof) and tγ the endpoint of the last J in
[0, δ − N−γ ]. Then for any I ⊂ [0, log N ],

νk+1(I ) =
∑

I ′∈IN

AI,I ′ +
∑

J⊂[0,δ−N−γ ]
BI,J + RI (11.4.23)

where

AI,I ′ =
∫

I
dr

∫

I ′
ν ′(dr ′)Gneum

0,δ (r ′, r), BI,J = N
∫

I
dr

∫

J
dt Gneum

t,δ (0, r),

(11.4.24)

RI = N
∫

I
dr

∫ δ

tγ

dtGneum
t,δ (0, r). (11.4.25)

Call xI and tJ the centers of the intervals I and J , then

|Gneum
0,δ (r ′, r) − Gneum

0,δ (xI ′ , xI )| ≤ cN−β, r ∈ I, r ′ ∈ I ′,

|Gneum
t,δ (0, r) − Gneum

tJ ,δ (0, xI )| ≤ cN−β+3γ /2, t ∈ J,

∑

I

RI ≤ cN 1−γ , (11.4.26)
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where c is a suitable constant. Denoting by m ′
I ′ the left-hand side of (11.4.2) when

μ(I ) → μ′(I ′) and ν(I ) → ν ′(I ′), we get

|νk+1(I ) − MI | ≤ Γ + RI , (11.4.27)

MI =
∑

I ′
m ′

I ′Gneum
0,δ (xI ′ , xI )N

−β +
∑

J⊂[0,δ−N−γ ]
Gneum

tJ ,δ (0, xI )N
−2β,

Γ = cN−β‖μ′ − ν ′‖IN + cN 1−2β + cN 1−2β+3γ /2.

For μk+1 we will only need lower bounds which will be obtained with similar
arguments. The analysis however will require probability estimates involving the
realization of the Poisson process and the motion of the Brownian particles. We start
from the former. Call t the realizations of the process in [kδ, (k + 1)δ] then

lim
N→∞ P (N )

[
sup

J⊂[0,δ−N−γ ]
||t ∩ J | − N 1−β | ≤ Nα2

]
= 1, (11.4.28)

provided α2 > (1 − β)/2. We can thus restrict to t as in (11.4.28). We thus have N
Brownian particles: those in x ′ which start moving at time kδ and N ∗ Brownians
which start from the origin at times t . Call yi the position at time (k + 1)δ of the
particle i and given I call 〈yi 〉 the probability that yi is in I . By the independence of
the motion of the particles we get:

lim
N→∞ P (N )

[
sup

I⊂[0,log N ]
|

N∑

i=1

[1yi∈I − 〈yi 〉]| ≤ Nα3

]
= 1, (11.4.29)

provided α3 > (1 − β)/2. We will thus work in the set where (11.4.28)–(11.4.29)
both hold. If the label i refers to a particle t x ′

i of x
′ then

〈yi 〉 =
∫

I
Gneum

0,δ (x ′
i , r)dr.

Analogously, if the label i refers to a particle created at time ti , then

〈yi 〉 =
∫

I
Gneum

ti ,δ (0, r)dr.

We use (11.4.26) and get a lower bound

μk+1(I ) ≥ MI − Δ, (11.4.30)

Δ = Nα3 + cN−β‖μ′ − ν ′‖IN + cN 1−2β + cN 1−2β+3γ /2.
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To conclude the proof we use Lemma11.2 choosing

αI = MI − Γ − RI − Δ, A0 = {I ⊂ [0, log N ]}.

We have |A0| ≤ Nβ log N . By (11.4.27)

∑

I∈A0

αI ≥
∑

I∈A0

νk+1(I ) −
∑

I

RI − 2(Γ + Δ)Nβ log N .

By (11.4.22), ∑

I∈A0

νk+1(I ) ≥ N − e−b log N 2

so that using (11.4.26)

∑

I∈A0

αI ≥ N − e−b log N 2 − cN 1−γ − 2(Γ + Δ)Nβ log N .

Thus by (11.4.5)

‖μk+1 − νk+1‖IN ≤ 2Nβ log N + 4{e−b log N 2 + cN 1−γ + 2(Γ + Δ)Nβ log N }.

�

11.5 Proof of Theorem11.1

Wefix t > 0 and ε > 0 and choose δ in {2−nt, n ∈ N} such that δ ≤ ε2 and K : K δ =
t . As in the previous section we shorthand by μ

δ,+
K the counting measure associated

to the upper barrier xδ,+
K δ . By (11.2.1)

∫ ∞

r
π

(N )
t (dr ′) ≤

∫ ∞

r
N−1μ

δ,+
K (dr ′). (11.5.1)

In the set ‖μδ,+
K − ν

δ,+
K ‖IN ≤ cK Nα logK N , where ν

δ,+
K (dr) = NSδ,+

K δ ρ0(r)dr , we
have by Theorem11.7,

∫ ∞

r
N−1μ

δ,+
K (dr ′) ≤

∫ ∞

r
Sδ,+
K δ ρ0(r

′)dr ′ + cK N
α−1 logK N . (11.5.2)
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∫ ∞

r
Sδ,+
K δ ρ0(r

′)dr ′ ≤
∫ ∞

r
SK δρ0(r

′)dr ′

+ {
∫ ∞

r
Sδ,+
K δ ρ0(r

′)dr ′ −
∫ ∞

r
SK δρ0(r

′)dr ′}. (11.5.3)

By (3.7.4) the latter is bounded by

∫ ∞

r
Sδ,+
K δ ρ0(r

′)dr ′ −
∫ ∞

r
SK δρ0(r

′)dr ′

≤
∫ ∞

r
Sδ,+
K δ ρ0(r

′)dr ′ −
∫ ∞

r
Sδ,−
K δ ρ0(r

′)dr ′ ≤ 2ε2. (11.5.4)

By taking N large enough, cK Nα−1 logK N ≤ ε2, so that for all r ≥ 0,

∫ ∞

r
π

(N )
t (dr ′) ≤

∫ ∞

r
Stρ0(r

′)dr ′ + 2ε2 ≤
∫ ∞

r
Stρ0(r

′)dr ′ + ε

(for ε small enough) in the set ‖μδ,+
K − ν

δ,+
K ‖IN ≤ cK Nα logK N . By Theorem11.7

this set has full measure in the limit N → ∞ hence the upper bound in Theorem11.1.
The lower bound is proved in an analogous way.

http://dx.doi.org/10.1007/978-3-319-33370-0_3
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Chapter 12
Introduction to Part II

In part I we developed a general approach to study problems with injection and
removal of mass. We showed that such an approach can be applied to the model
in the continuum (using deterministic mass transport inequalities), as well as to
interacting particle systems (where the inequalities hold point-wise for almost all
random trajectories). Indeed, it is precisely this common structure that allowed us
in Chap.11 to prove that—in the hydrodynamic limit—the empirical mass density
of the basic particle model converges to the classical solution of the free boundary
problem defined by (2.0.2) and (2.0.4).

In part II we discuss several problems that can, or possibly could, be studied using
the general approach of part I. We address the following issues.

(i) We start by considering a model of particles that move as continuous-time
independent randomwalkers in the interval [0, N ] ∩ Z (with reflectingboundary
conditions). In addition, there is injection of particles at the origin and removal
of particles at the rightmost occupied site at the event time of two independent
Poissonpoint processes, both of intensity j/N . It iswell know that in the absence
of the injection/removal mechanism the empirical density field converges in
the diffusive scaling limit to the solution of the heat equation on [0, 1] with
Neumann boundary condition. We argue that the scaling limit holds true also
with injection/removal of particles. Namely, in the diffusive scaling the density
field of independent random walkers with current reservoirs converges to the
solution of the free boundary problem (2.0.2) and (2.0.4) now defined in the
interval [0, 1]. The hydrodynamic limit of this process process was considered
in [1]. We discuss in Chap.13 the main differences with respect to the spatial
setting considered in part I (where particles couldmove instead on the half-line).

(ii) Nextwe address the consequences of having two independent Poisson processes
ruling the injection and removal of mass. Obviously in this case mass is no
longer conserved at microscopic level. However, since the intensity of creation
and removal of mass is j/N , one needs to go beyond the diffusive scaling to
see relevant mass fluctuation. We will see that indeed one needs to consider a
super-hydrodynamic limit (where time is speed-up by a factor N 3 and space is

© The Author(s) 2016
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rescaled by a factor N ) to find a meaningful scaling for this second time scale.
For the case of independent random walkers with current reservoirs this was
considered in [2] and it will be discussed in Chap.14.

(iii) The last Chapter is devoted to the discussion of several models with different
mechanisms for creation and annihilation of particles. This includesmodelswith
a diffuse injection of mass (which extends the model with creation of particles
at the origin), the Brunet-Derrida model (which is a model for a population
with Darwinian selection), as well as the Durrett-Remenik model. Next we will
consider models with two species of particles whose macroscopic behavior is
described by systems of free boundary problems. Last we will briefly discuss
models with only mass removal, in which the total particle number decreases
to zero. In this context the edge follows a monotonous trajectory and thus there
is a better control of the solution of the corresponding FBP, in particular the
classical solutions are global in time.
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Chapter 13
Independent Walkers with Current
Reservoirs

In this chapter we consider the model introduced in [1], consisting of independent
particle moving as continuous time random walkers on a finite lattice, including
injection of particles at the origin and removal from the rightmost occupied site. We
discuss similarities and differences with the setting developed in Part I.

13.1 Introduction

The basic problem that was discussed in part I is rooted in non-equilibrium statistical
physics. Indeed the derivation of macroscopic laws of transport from microscopic
models of interacting particles is a central theme in the mathematical physics lit-
erature. For instance the heat equation arises as the hydrodynamic limit of a large
class of models with diffusive behavior. When the microscopic system is open there
are different possibilities to model the interaction with the exterior. Traditionally the
system is coupled to so-called density reservoirs that impose a given density-field
at the boundary of a fixed domain. As explained in the Introduction of Part I it is of
interest to consider the situation in which one would rather like to fix a current-field
at the boundary.

The idea of current reservoirs has been introduced in a series of recent papers
(see e.g. [1–7]). The main difference—compared to the traditional setting of den-
sity reservoirs—lies in the topological nature of the interaction among particles. In
systems with density reservoirs the addition/removal mechanism is of a metric and
local nature (only particles at boundary sites interact with the reservoirs). In the set-
ting of current reservoirs the interaction is topological and highly non-local, indeed
the determination of the particle to be removed requires knowledge of the entire
configuration.

In this chapter we shall investigate another interacting particle model (somewhat
similar to the model in Chap. 11) whose hydrodynamic limit is again related to the
basic problem of part I. The main differences will be the following.

© The Author(s) 2016
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• The microscopic dynamics of each single particle will be given by a continuous
time random walk. A system of independent random walkers is a more detailed
description of the microscopic particle dynamic and thus it better serves the aim
of being a physical model for heat conduction. On the other hand this modification
will require an additional diffusive scaling limit, that was not needed for particles
moving as Brownian motion.

• Furthermore, to model a finite system, we will restrict the dynamics to a finite
interval [0, N ] ∩Z, with N an integer. The creation of particles will always occur
at the origin, whereas the removal of particles will be at N if a particle is present
there, or in the rightmost occupied site if the site N is empty.

• Wewill relax the assumption of particle number conservation at microscopic level,
by using two independent exponential clocks for the creation and annihilation of
particles.As a consequence themacroscopicmasswill be conserved in the diffusive
scaling limit, whilst it will fluctuate on a longer time scale, which will be called
the super-hydrodynamic limit (see Chap.14).

This model has been named in [1] as independent random walkers with current
reservoir. Calling j > 0 the parameter that controls the amount of the imposed
current, the system evolves according to the following simple rules (for a precise
definition see the following section):

(i) particles move as independent, symmetric random walks on a finite interval of
size N with reflections at the boundaries;

(ii) new particles are created at rate j/N at the left boundary while the rightmost
particle is killed also at rate j/N .

See Fig. 13.1 for a pictorial description.
It is worth observing that the replacement of Brownian particles of Chap. 11 with

continuous time random walkers allows us to interpret the system as a queuing
model with a spatial structure [8, 9]. Namely, customers enter the queue at the origin
following a Poisson process, stay in the queue by changing randomly their position
and leave the queue when they reach the rightmost site (being served at the event

0 N

j

N
j

N

Fig. 13.1 Current reservoirs: particles are injected at the origin at rate j/N and also the rightmost
particle is removed with the same rate (two independent clocks are used)
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time of another Poisson process). The load of the queue at any given time is thus
given by the total particle number, whereas the waiting time before being served is
related to the location of the rightmost occupied site.

13.2 Definition of the Model

We consider a Markov process {ξt , t ≥ 0} on the space Ω of particles configurations
ξ = (ξ(x))x∈[0,N ], the component ξ(x) ∈ N is interpreted as the number of particles
at site x . The generator L of the process, working on functions f : Ω → R, is the
sum of three contributions1

L = L0 + Lin + Lout . (13.2.1)

The first term L0 is the generator of the independent random walks process

L0 f (ξ) = 1

2

N−1∑

x=0

L0
x,x+1 f (ξ). (13.2.2)

L0
x,x+1 f (ξ) = ξ(x)

(
f (ξx,x+1) − f (ξ)

) + ξ(x + 1)
(
f (ξx+1,x ) − f (ξ)

)
(13.2.3)

where ξx,y denotes the configuration obtained from ξ by removing one particle from
site x and putting it at site y, i.e.,

ξx,y(z) =
⎧
⎨

⎩

ξ(z) if z �= x, y,
ξ(z) − 1 if z = x,
ξ(z) + 1 if z = y.

L0 describes independent symmetric random walks which jump with equal prob-
ability after an exponential time of mean 1 to the nearest neighbour sites, the jumps
leading outside [0, N ] being suppressed (reflecting boundary conditions).

The term Lin in (13.2.1) is given by

Lin f (ξ) = j

N

(
f (ξ+) − f (ξ)

)
, ξ+(x) = ξ(x) + δx,0 , (13.2.4)

where δx,y denotes the Kronecker delta. For j > 0, it describes the action of throwing
into the system newparticles at rate j

N , which then land at site 0. Instead L
out removes

particles and is defined as

1The three terms above have a volume dependence, however the dependence on N is not made
explicit.
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Lout f (ξ) = j

N

(
f (ξ−) − f (ξ)

)
, ξ−(x) = ξ(x) − δx,R̄ξ

(13.2.5)

where

R̄ξ is such that:

{
ξ(y) > 0 for y = R̄ξ

ξ(y) = 0 for y > R̄ξ .
(13.2.6)

We also impose Lin f (ξ) = 0 if R̄ξ does not exist, i.e. if ξ ≡ 0 is the empty
configuration.

13.3 Hydrodynamic Limit

The paper [1] proves the existence of the hydrodynamic limit for independent random
walkers with current reservoirs on a finite macroscopic volume, i.e. the existence
under diffusive space-time scaling of a well-defined function ρ(r, t) describing the
evolution of an initial profile ρinit(r). In addition, in [1] it is also proved that ρ(r, t)
is the unique separating element of suitably defined barriers.

In this section we recall the main results of [1]. While we refer to the original
paper for the proofs, we provide here the main ideas that are used in the proofs.
We shall denote by P (N )

ξ the law of the process {ξt , t ≥ 0} in the interval [0, N ]
with generator L given in (13.2.1) and started at time 0 from a configuration ξ. We
consider initial macroscopic profiles ρinit(r) that, similarly to part I, belong to the set

Û :=
{

u ∈ L∞([0, 1],R+) ∩ L1([0, 1],R+) :
∫ 1

0
u(r)dr > 0

}

.

The configuration ξ fromwhich the process is started must approximate the initial
macroscopic profile in the sense of local averages. That is, the following assumptions
are made on the initial particle configuration. Fix 0 < a, b < 1 and denote denote
by � the integer part of Nb. Then we assume that for any N the initial configuration
ξ verifies

max
x∈[0,N−�+1]

∣
∣
∣
1

�

x+�−1∑

y=x

ξ(y) − N

�

( ∫ x/N+�/N

x/N
ρinit(r)dr

)∣
∣
∣ ≤ 1

Na
(13.3.7)

where ρinit ∈ Û . Moreover, defining the edge of ρinit as

R(ρinit) = inf{r ∈ [0, 1] :
∫ 1

r
ρinit(r

′)dr ′ = 0} (13.3.8)
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we also suppose that
∣
∣
∣
R̄ξ

N
− R(ρinit)

∣
∣
∣ ≤ 1

Na
(13.3.9)

with R̄ξ the position of the rightmost particle, see (13.2.6).
The first result in [1] is the following:

Theorem 13.1 (Existenceof hydrodynamic limit, [1]) Letρinit ∈ Û and ξ anapprox-
imation in the sense described above. Then there exists a non-negative, continuous
function ρ(r, t) defined on [0, 1] × R+ such that for any t > 0 and ζ > 0,

lim
N→∞ P (N )

ξ

[
max

x∈[0,N ]

∣
∣
∣
1

N

N∑

y=x

ξN 2t (y) −
∫ 1

x/N
ρ(r ′, t)dr ′

∣
∣
∣ ≤ ζ

]
= 1 (13.3.10)

and such that for any r ∈ [0, 1],

lim
t→0

∫ 1

r
ρ(r ′, t)dr ′ =

∫ 1

r
ρinit(r

′)dr ′. (13.3.11)

It is easy to see that the above convergence also implies weak convergence of the
density field against smooth test functions φ, i.e. for all ζ > 0,

lim
N→∞ P (N )

ξ

[∣
∣
∣
1

N

N∑

x=0

φ
( x

N

)
ξN 2t (x) −

∫ 1

0
φ(r)ρ(r, t)dr

∣
∣
∣ ≤ ζ

]

= 1 .

The proof of Theorem13.1 (see Fig. 13.2 for a pictorial representation) follows
closely the path used to prove the hydrodynamic limit of particle basic problem,
Theorem11.1. However, in the present setting there are additional difficulties due
to the fact that one needs also to consider a diffusive scaling for the microscopic
dynamics. We recall the main steps below, commenting on the main differences.

1. The key idea is to define stochastic barriers. These processes, called {ξ(δ,−)
t , t ≥ 0}

and {ξ(δ,+)
t , t ≥ 0}, satisfy inequalities with respect to the partial order induced by

mass transport and they provide lower and upper bounds for the original process.
2. The proof proceeds by considering discrete time intervals of width δN 2. The

stochastic barriers {ξ(δ,±)

kδN 2 , k ∈ N} converge weakly as N → ∞ to macroscopic

Fig. 13.2 Scheme of the
proof of existence and
characterization of the
hydrodynamic limit

ξ
(δ,−)
kN2δ

� ξkN2δ � ξ
(δ,+)
kN2δ

⏐
⏐
⏐
⏐
�

⏐
⏐
⏐
⏐
�

⏐
⏐
⏐
⏐
�

as N → ∞

Ŝ
(δ,−)
kδ � Ŝkδ � Ŝ

(δ,+)
kδ

http://dx.doi.org/10.1007/978-3-319-33370-0_11
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objects given, respectively, by the lower barrier {Ŝ(δ,−)

kδ , k ∈ N} and the upper
barrier {Ŝ(δ,+)

kδ , k ∈ N}. These barriers are defined similarly to those of part I,
however they are slightly different (see below).

3. The proof is concluded by observing that in the limit δ → 0 the upper and lower
barriers converge to the same limit given by the barriers separating element. Thus
also the process {ξt , t ≥ 0}, that is squeezed between the two stochastic barriers,
converges to such limiting object.

The main difference between the barriers Ŝδ,±
kδ considered in [1] and the barriers

Sδ,±
kδ defined in part I are the following:

• In the definition of the free evolution operator the finite volume setting of [1]
required to consider the Green function for the heat equation in [0, 1] with Neu-
mann boundary conditions:

Ĝneum
t (r, r ′) =

∑

k∈Z
Gt (r, r

′
k) (13.3.12)

r ′
k being the images of r ′ under repeated reflections of the interval [0, 1] to its right
and left, Gt (r ′, r) as in (3.5.3).

• Furthermore, in the definition of the barriers Ŝδ,±
kδ the injection of mass occured at

the discrete times. Namely, the free evolution operator was defined as

T̂δu(r) = Ĝneum
t ∗ u(r) (13.3.13)

and the cut operator was defined as

Ĉδu(r) = Cδu(r) + jδD0 (13.3.14)

where Cδ is the same as Definition3.7 and D0 denotes the Dirac delta at zero.

Despite these differences, the same analysis of part I could be carried out. In particular
the existence of a unique separating element of the barriers could be proved. As a
consequence the second result in [1] was the following.

Theorem 13.2 (Characterisation of hydrodynamic limit, [1]) Let ρinit ∈ Û , then
the hydrodynamic limit ρ(r, t) of Theorem13.1 is the unique separating element of
barriers Ŝδ,±

nδ (ρinit), i.e.,
ρ(r, t) = (Ŝtρinit)(r) .

Remark 13.3 By the same arguments of part I, we argue that the hydrodynamic limit
ρ(r, t) is given by the solution of the FBP associated to the basicmodel on the domain
[0, 1]. This would essentially be the “restriction” of the basic FBP of part I (which
was defined on the whole half-line R+) with the additional constraint that the edge
is bounded, i.e. Xt ≤ 1.

http://dx.doi.org/10.1007/978-3-319-33370-0_3
http://dx.doi.org/10.1007/978-3-319-33370-0_3
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Chapter 14
Beyond Diffusive Scaling

In this chapter we analyze the consequences of having two independent Poisson
process for the injection and removal of mass. We use again the model introduced in
[1], for which we describe the super-hydrodynamic limit.

14.1 Introduction

As already remarked in Sect. 3.2, there exist stationary classical solutions of the
basic FBP on R+. Furthermore, we argued at the end of the previous chapter that the
hydrodynamic limit ρ(r, t) = Ŝtρinit(r) of interacting random walkers with current
reservoirs is provided by the solution of the basic FBP restricted to the interval [0, 1].
It is natural then to conjecture that ρ(r, t) converges as t → ∞ to the stationary
solutions of the basic FBP on the interval [0, 1]. However the stationary classical
solutions of the basic FBP is not unique, there exists an entire manifold of stationary
linear profiles labeled by the mass M . As a result, the following questions naturally
arise.

• What is the basin of attraction (i.e. the set of initial conditions that will be attracted
to a given stationary solution in the course of time)?

• Given the existence of infinitely many stationary linear profiles of the FBP, which
one will be selected by the microscopic dynamics?

In this chapter we shall discuss these questions, following the results obtained in [2].
We start by describing in Sect. 14.2 the stationary profiles of the basic FBP on the
interval [0, 1] and then we describe their basin of attraction. The second question
leads to the identification of a multi-scale phenomenon whose origin is explained in
Sect. 14.3 and whose formulation is given in Sect. 14.4.

© The Author(s) 2016
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14.2 Stationary Density Profiles

The stationary solutions of the basic FBP restricted to the interval [0, 1] are similar
to those of the basic FBP onR+ already described in Sect. 3.2. The difference is that,
due to the finite volume, nowwe need to consider the case of linear profiles truncated
at r = 1, i.e. trapezium-shaped profiles. It is immediate to verify that they are given
by

ρ(M)
stat (r) =

{
(−2 jr + 2

√
Mj)10≤r≤√

M/j if M ≤ j,

(−2 jr + M + j)10≤r≤1 if M > j .
(14.2.1)

As in Sect. 3.2 they are labeled by the value of the total mass M via the relation

∫ 1

0
ρ(M)
stat (r)dr = M. (14.2.2)

For later convenience we also define ρ(0)
stat ≡ 0.

The following result is proved in [2]. It identifies the basin of attraction of the
linear profiles through the analysis of their stability.

Theorem 14.1 (Convergence to the stationary profiles, [2]) For r ∈ [0, 1], t > 0 let
ρ(r, t) = Ŝtρinit(r), be the hydrodynamic limit of the process defined in Sect.13.2with
initial configuration ξ approximating the initial profile ρinit such that

∫ 1
0 ρinit(r)dr =

M. Then

lim
t→∞ sup

r∈[0,1]

∣
∣
∣

∫ 1

r
ρ(r ′, t)dr ′ −

∫ 1

r
ρ(M)
stat (r

′)dr ′
∣
∣
∣ = 0 . (14.2.3)

14.3 The Law of the Total Mass

For the system of independent random walkers with current reservoirs defined in
Sect. 13.2, we consider the process {|ξt |, t ≥ 0} yielding the particles’ number at
time t , i.e.,

|ξt | =
N∑

x=0

ξt (x) . (14.3.4)

The next theorem shows that this process is very simple, despite the complexity of
the full process {ξt , t ≥ 0}.
Theorem 14.2 (Number of particles) The process {|ξt |, t ≥ 0} has the law of a
simple symmetric random walk onN which jumps with equal probability by±1 after
an exponential time of parameter 2 j

N , the jumps leading to −1 being suppressed.

http://dx.doi.org/10.1007/978-3-319-33370-0_3
http://dx.doi.org/10.1007/978-3-319-33370-0_3
http://dx.doi.org/10.1007/978-3-319-33370-0_13
http://dx.doi.org/10.1007/978-3-319-33370-0_13


14.3 The Law of the Total Mass 99

Proof From the generator (13.2.1) we deduce the generator of the particle’s number
process {|ξt |, t ≥ 0}:

L f (n) = j

N

{(
f (n + 1) − f (n)

) + (1 − δ|ξ|,0)
(
f (n − 1) − f (n)

)}
(14.3.5)

where f denotes a bounded function f : N → R. This coincides with the generator
of the simple symmetric random walk on N that jumps at rate j

N and is reflected at
the origin. This uniquely characterize the law of {|ξt |, t ≥ 0}. �

An immediate consequence of the previous Theorem is the following

Corollary 14.3 (Scaling limit) Let ρinit ∈ Û and ξ ∈ Ω such that

M := lim
N→∞

|ξ|
N

=
∫ 1

0
ρinit(r)dr. (14.3.6)

Let {ξt , t ≥ 0} be the processis initialized from ξ, then the following scaling limits
hold: |ξN 2t |

N
→ M as N → ∞, (14.3.7)

|ξN 3t |
N

→ Bjt as N → ∞ (14.3.8)

where the converge is in law and {Bt , t ≥ 0} denotes the Brownian motion on R+
with reflections at the origin which starts from B0 = M.

14.4 Super-Hydrodynamic Limit

Hydrodynamics describes the behavior of the system on times N 2t in the limit when
N → ∞. Hydrodynamics predicts convergence to equilibrium as in Theorem14.1.
As a consequence of (14.2.3) we have that for any ζ > 0,

lim
t→∞ lim

N→∞ P (N )

ξ

[
max

x∈[0,N ]

∣
∣
∣
1

N

N∑

y=x

ξN 2t (y) −
∫ 1

x/N
ρ(M)
stat (r

′)dr ′
∣
∣
∣≥ ζ

]
= 0 (14.4.9)

where M = ∫ 1
0 ρinit(r)dr . Equation (14.4.9) shows convergence of the macroscopic

density field to the invariant profiles. Thus, on the hydrodynamic time-scale, the
profile that is selected by the system is dictated by the totalmass, which is a conserved
quantity on the time scale N 2t .

However, if one inverts the order of the two limits in (14.4.9) then a different
result would be obtained. Indeed, due to the result in the previous section, on a
longer time scale over which fluctuations of the total mass are allowed, there is not

http://dx.doi.org/10.1007/978-3-319-33370-0_13
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anymore a privileged profile. The investigation of the long time behavior requires
the study of the process at times N 2tN where tN → ∞ as N → ∞. If in this limit we
obtain something different from (14.4.9) then we can conclude that there are other
significant time-scales beyond the hydrodynamical one. This has been proved in [2],
from which we quote the following

Theorem 14.4 (Super-hydrodynamic limit, [2]) Let ξ be a sequence such that |ξ|
N →

M > 0 as N → ∞. Let tN be an increasing, divergent sequence, then the process
ξN 2tN has two regimes:

• Subcritical. If N tN → 0, then

lim
N→∞ P (N )

ξ

[
max

x∈[0,N ]

∣
∣
∣
1

N

N∑

y=x

ξN 2tN (y) −
∫ 1

x/N
ρ(M)
stat (r

′)dr ′
∣
∣
∣≤ ζ

]
= 1. (14.4.10)

• Critical. Let tN = Nt then

lim
N→∞ P (N )

ξ

[
max

x∈[0,N ]

∣
∣
∣
1

N

N∑

y=x

ξN 3t (y) −
∫ 1

x/N
ρ

(M (N )
t )

stat (r ′)dr ′
∣
∣
∣≤ ζ

]
= 1 (14.4.11)

where M (N )
t := |ξN3 t |

N converges in law as N → ∞ to B jt , where (Bt )t≥0 is the
Brownian motion on R+ with reflections at the origin started from B0 = M.

We refer to [2] for the proof of the theorem. We conclude this section with the
following comment. On a first time scale, i.e. the subcritical regime, the process
behaves deterministically and it is attracted to the invariant linear profile with mass
M (the mass at time zero). However on longer times of the order N 3t it starts moving
stochastically on the manifold of the linear profiles where it performs a Brownian
motion (with reflection at 0 since the mass can not become negative). Thus a random
behavior arises again on the super-hydrodynamic time scale.
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Chapter 15
Other Models

In this chapter we discuss very briefly other models which have several features in
common with our basic model. The interaction at the particle level has in fact in
these models a topological nature as the rightmost and/or the leftmost particles act
differently from the others. At the macroscopic level this is reflected by a PDEwith a
free boundary where the evolution of the edges has to be determined via the outgoing
or incoming flux. The models we present have these features and they can be studied
(or have been studied) using barrier inequalities as in Part I. The strategy is thus the
same but the mathematical problems in its implementation can be quite different.

The models we are going to present have a natural biological motivation. Particles
represent cells, particles positions the states of the cells. The natural order in R is
used to express the fitness of a cell state, for instance the rightmost cell could be
the best fitted in the whole population (of course same analysis would apply when
we exchange right and left). Cells are not clever, they do not know what is best for
them and mutate by exploring all possible nearby states, this is modeled by the cells
performing independent Brownian motions. Cells also duplicate independently of
each other this is modeled by adding a new particle say at rate 1 in the same state
of the duplicating cell (or in one nearby). The body which contains the cells cannot
support any number of cells, we suppose that a saturation point has been reached for
which the number of cells, say N , does not change in time. This means that when
a cell duplicates then another cell must be removed from the system. Here nature
imposes its Darwinian law for which the cell removed is the less fitted, the weakest
one. A model with these features has been introduced by Brunet-Derrida and studied
by several authors as we will discuss in the sequel.

The question we address and partially answer are: (1) hydrodynamic limit, i.e. the
FBP associated to the particle model; (2) validity of barrier inequalities; (3) existence
and features of stationary states (or traveling waves).

© The Author(s) 2016
G. Carinci et al., Free Boundary Problems in PDEs and Particle Systems,
SpringerBriefs in Mathematical Physics 12, DOI 10.1007/978-3-319-33370-0_15
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102 15 Other Models

15.1 Cells Evolution in an Active Environment

Here we consider a variant of the Brunet-Derrida model described above where (1)
cells are Brownian particles in R+ (with reflections at the origin), the cell states (as
in the Brunet-Derrida case) are the positions of the particles, but here their fitness
decreases when moving to the right, so that 0 is the best fitted state; (2) it is the
environment which creates new cells so that we have an a-priori given probability
density f (r), r ∈ R+, with compact support and the state of a new born cell is
randomly distributed with law f (r)dr ; (3) to preserve, as in the Brunet-Derrida
model, the total number N of cells when a new cell is created the rightmost cell (i.e.
the weakest, less fitted) is removed; (4) the rate at which a new cell is added is set
equal to N (which corresponds to the rate in Brunet-Derrida because in that case
each particle duplicates at rate 1 so that the intensity for a new particle to appear
is N ).

If f (r)dr is replaced by a delta function at 0 then this becomes the basic model
we have studied in Part I (with the parameter j set equal to 1). If instead

f (r)dr = 1

N

N∑

i=1

δxi (dr)

where x = (x1, . . . , xN ) is the actual configuration of the cells, then this would be
the Brunet-Derrida model (in R+). In the diffuse case (where f (r) is a fixed true
function) it may happen that the state of a new born cell is to the right of all the
others. In such a case the new cell is also the rightmost one and it is thus removed
right away. This leads to the conjecture that the hydrodynamic limit for this system
is ruled by the following FBP:

∂ρ

∂t
= 1

2

∂2ρ

∂r2
+ f, r ∈ (0, Xt ) (15.1.1)

with an initial datum ρ0, Neumann boundary condition at 0

∂ρ(r, t)

∂r

∣
∣
∣
r=0

= 0 (15.1.2)

while, at the edge Xt , ρ(Xt , t) = 0 and

− 1

2

∂ρ(r, t)

∂r

∣
∣
∣
r=Xt

= φ(Xt ), φ(x) :=
∫ x

0
dr f (r). (15.1.3)

Namely denoting as in Chap.11 by π(N )
t (dr) the empirical particles density we

conjecture that for any ε > 0:

lim
N→∞ P (N )

[
sup
r≥0

∣
∣
∣

∫ ∞

r
π(N )
t (dr ′) −

∫ ∞

r
ρ(r ′, t)dr ′

∣
∣
∣ > ε

]
= 0 (15.1.4)
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where ρ(r, t) is the classical or relaxed solution of (15.1.1)–(15.1.2)–(15.1.3).
The proofs of Part I should extend to this case at least when the edge (of the

approximating barriers) is to the right of the support of f , the analysis of the general
case may be more delicate.

Stationary profiles are analogous to those of (3.2.1) (to which they reduce when
f is a delta)

ρ(st)(r |M) = a(M) − 2 j
∫ r

0
φ(r ′)dr ′1a(M)−2 j

∫ r
0 φ(r ′)dr ′≥0,

∫
dr ρ(st)(r |M) = M

(15.1.5)
and are parameterized by the mass M which is conserved.

15.2 The Brunet-Derrida Evolution-Selection Mechanism

The Brunet-Derrida model is the one described in the beginning of this chapter.
Namely the cell evolution is described by independent Brownian motions onR, each
cell duplicates independently of the others at rate 1 creating a new Brownian particle
in its same state, simultaneously the leftmost particle is deleted. The conjectured
hydrodynamic limit in this system is

∂ρ

∂t
= 1

2

∂2ρ

∂r2
+ ρ, in [Lt ,+∞) (15.2.1)

with initial state ρ0(r) and boundary conditions at the free boundary Lt given by
ρ(Lt , t) = 0 and

1

2

∂ρ(r, t)

∂r

∣
∣
∣
r=Lt

= M, M :=
∫ ∞

Lt

dr ρ(r, t). (15.2.2)

There is a paper in preparation by A. De Masi, P. Ferrari, E. Presutti and N.
Soprano-Loto which goes in this direction, namely that the evolution of the cells in
this model is described in the hydrodynamic limit by the above FBP, the analysis
follows the strategy described in Part I.

On the whole line there are no longer stationary solutions but there are traveling
waves. One can in fact check that ρ(r, t) = ρ(tw)(r − V t) solves (15.2.1)–(15.2.2)
where

ρ(tw)(r) = MV 2re−Vr , V 2 = 2. (15.2.3)

This is not the only travelingwave (withmassM) but it is the onewith theminimal
velocity. We refer the reader for more details and for related models to the review
article [1].

An interesting (perhaps basic) question is whether there is a stationary, or in this
case traveling, measure for the particle system when N is fixed and if its velocity

http://dx.doi.org/10.1007/978-3-319-33370-0_3
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(in the case of traveling waves) is close to the one found by solving the analogous
problem for the hydrodynamic equation. This is not at all obvious as the latter describe
the behavior of the system when time is fixed and the number N of particles goes
to infinity while we want first to take t → ∞ and then N → ∞. The analysis of the
motion of the system at finite N has been investigated thoroughly by Maillard, [2],
who has studied the system at times log3 N determining the law of the fluctuations
of the edge.

15.3 The Durrett and Remenik Model

Durrett and Remenik [3], have studied a variant of the Brunet-Derrida model where
cells do not change their states, but they duplicate in a non-local way. Namely each
cell (independently of the others) creates at rate 1 a new cell in a state r ∈ R which
is randomly chosen with probability κ(r − r ′)dr , if r ′ is the state of the generating
cell; κ is a smooth probability kernel. As in Brunet-Derrida simultaneously to the
creation of the new cell the leftmost one is erased.

In [3] it is shown that for suitable initial data there is a hydrodynamic limit
described by the equation

∂

∂t
ρ(r, t) =

∫
κ(r ′ − r)ρ(r ′, t)dr ′ (15.3.1)

with ρ(r, 0) = ρ0(r),
∫

ρ0 =: M , and boundary conditions at the left edge Lt :

ρ(L−
t , t) = 0,

∫ ∞

Lt

dr ρ(r, t) = M. (15.3.2)

The proof uses barriers in a way similar to that in Part I and traveling fronts are
determined.

15.4 Models with Two Species

A natural extension of the previous models is when there are twospecies of cells,
say R and B (red and blue). The cells live both in R whose points give their degree
of fitness (like in the Brunet-Derrida model). However for the red particles fitness
increases to the right while for the blue to the left. We suppose that there are N red
and N blue particles, their number being conserved. As in the previous models the
cells move like independent Brownian motions however at rate N the weakest red
(i.e. the leftmost red particle) becomes blue and the weakest blue (i.e. the rightmost
blue particle) becomes red.
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In [4] for a similar model it has been proved that in the hydrodynamic limit the
system is described by the following FBP:

ut = 1

2
urr + j δVt , r < Ut ; u(r, 0) = u(r), u(Ut , t) = 0, −1

2
ur (U

−
t , t) = j,

(15.4.1)

vt = 1

2
vrr + j δUt , r > Vt ; v(r, 0) = v(r), v(Vt , t) = 0, −1

2
vr (V

+
t , t) = − j,

(under the assumption that this has a classical solution). Equation (15.4.1) is a system
of two free boundary equations as the domains (−∞,Ut ) where u(r, t) is defined
and (Vt ,∞) where v(r, t) is defined are also unknowns to be determined.

So far we have considered models where the particles move independently,
Brownian motions or independent random walks. In the next model there is an inter-
action between particles. This is still a two species model but particles are onZwith a
constraint: at each site there is one particle either red or blue. Their motion is defined
by the “stirring process”, namely at rate 1/2 each pair x, x + 1 of successive points
of Z exchange their content independently of all the other pairs, so that if at x, x + 1
we had R, B after the stirring we have B, R. If instead we had B, B or R, R the
stirring does not produce any effect. Thus the particles are no longer independent,
when a particle jumps from x to x + 1 it forces the opposite jump of another particle.

Allowed configurations are those where there is a rightmost blue and a leftmost
red particle. We may describe the system by giving the positions of only the blue
particles (because if at a site there is not a blue particle then there is a red particle),
we thus introduce a variable η(x, t) equal to 1 when at x, t there is a blue particle
and equal to 0 otherwise. Allowed configurations are therefore those where η(x) = 1
definitively as x → −∞ and η(x) = 0 as x → +∞. The evolution is determined by
the stirring process described earlier and by a “selection mechanism” which here is
defined by saying that at rate ε the leftmost 0 becomes 1 and the rightmost 1 becomes
a 0. In [5] it is proved that under suitable assumptions on the initial distribution of
particles, when space is scaled as ε−1 and time as ε−2 the empirical density of 1’s
converges to a limit which is conjectured to satisfy the FBP:

∂ρ

∂t
= 1

2

∂2ρ

∂r2
, r ∈ (Lt , Rt ), (15.4.2)

L0, R0, ρ(r, 0) given

ρ(Lt , t) = 1, ρ(Rt , t) = 0; ∂ρ

∂r
(Lt , t) = ∂ρ

∂r
(Rt , t) = −2 j.

This is proved using the same strategy as in Part I, actually [5] is the paper where
such a strategy has been introduced. Thus there exist lower and upper barriers which
squeeze in between the actual evolving configuration as described in Part I. To prove
convergence to (15.4.2) we would need to reproduce the analysis of Chap.10.

http://dx.doi.org/10.1007/978-3-319-33370-0_10
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15.5 Interface Models

The particle system described at the end of the previous section has also an inter-
pretation in terms of moving interfaces. The interface is a graph in Z

2 determined
by the particles configuration: if (x, y) belongs to the interface and η(x) = 1 then
(x + 1, y − 1) also belongs to the interface, while if η(x) = 0 then the next point
of the interface is (x + 1, y + 1). The correspondence is one to one if we fix for
instance the height of the interface at 0. The evolution of the particles determines the
motion of the interface.

Lacoin [6] studies the stochastic evolution of interfaces over a “sticky substrate”,
we refer to [6] for the exact definition of the model. The paper contains a full proof
of the hydrodynamic limit for this system, the limit hydrodynamic equation written
in terms of the underlying particle system is the FBP

∂

∂t
ρ(r, t) = 1

2

∂2

∂r2
ρ(r, t), r ∈ (Lt , Rt ) (15.5.1)

with given initial condition ρ(r, 0) = ρ0(r) and boundary conditions at the free
boundaries:

∂

∂r
ρ(r, t)

∣
∣
∣
r=Rt

= −1

2

∂

∂r
ρ(r, t)

∣
∣
∣
r=Lt

= 1

2
. (15.5.2)

Global existence of the classical solution of (15.5.1) (till extinction) is also proved
in [6].

Equation (15.5.2) appears also in the analysis of propagation of fire, see for
instance Caffarelli-Vazquez, [7]. In the d ≥ 1 setup the FBP in its classical for-
mulation is:

∂

∂t
ρ = 1

2
Δρ, r ∈ Ωt (15.5.3)

with boundary conditions ρ = 0 and ∇ρ · n = − 1
2 on ∂Ωt , (n the outward normal

unit vector to Ωt at the boundary ∂Ωt ). We refer to the literature for an analysis of
this FBP and of other related models.
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