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As the intersection between economics and mathematics continues to grow in both
theory and practice, a solid grounding in mathematical concepts is essential for all
serious students of economic theory.

In this clear and entertaining volume, Rakesh V. Vohra sets out the basic concepts
of mathematics as they relate to economics. The book divides the mathematical
problems that arise in economic theory into three types: feasibility problems,
optimality problems and fixed-point problems. Of particular salience to modern
economic thought are sections on lattices, supermodularity, matroids and their
applications. In a departure from the prevailing fashion, much greater attention is
devoted to linear programming and its applications.

Of interest to advanced students of economics as well as those seeking a greater
understanding of the influence of mathematics on ‘the dismal science’. Advanced
Mathematical Economics follows a long and celebrated tradition of the application
of mathematical concepts to the social and physical sciences.

Rakesh V. Vohra is the John L. and Helen Kellogg Professor of Managerial
Economics and Decision Sciences at the Kellogg School of Management at
Northwestern University, Illinois.
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Preface

I wanted to title this book ‘Leisure of the Theory Class’. The publishers demurred.
My second choice was ‘Feasibility, Optimality and Fixed Points’. While accurate,
it did not identify, as the publisher noted, the intended audience. We settled at last
on the anodyne title that now graces this book. As it suggests, the book is about
mathematics. The qualifier ‘advanced’ signifies that the reader should have some
mathematical sophistication. This means linear algebra and basic real analysis.1

Chapter 1 provides a list of cheerful facts from these subjects that the reader is
expected to know. The last word in the title indicates that it is directed to students
of the dismal science.2

Three kinds of mathematical questions are discussed. Given a function f and
a set S,

• Find an x such that f (x) is in S. This is the feasibility question.
• Find an x in S that optimizes f (x). This is the problem of optimality.
• Find an x in S such that f (x) = x; this is the fixed point problem.

These questions arise frequently in Economic Theory, and the applications
described in the book illustrate this.

The topics covered are standard. Exceptions are matroids and lattices. Unusual
for a book such as this is the attention paid to Linear Programming. It is common
amongst cyclopean Economists to dismiss this as a special case of Kuhn–Tucker. A
mistake in my view. I hope to persuade the reader, by example, of the same. Another
unusual feature, I think, are the applications. They are not merely computational,
i.e., this is how one uses Theorem X to compute such and such. They are substantive
pieces of economic theory. The homework problems, as my students will attest,
are not for the faint hearted.

Of the making of books there is no end.3 The remark is particularly true for books
devoted to topics that the present one covers. So, some explanation is required of
how this book differs from others of its ilk.

The voluminous Simon and Blume (1994), ends (with exceptions) where this
book begins. In fact a knowledge of Simon and Blume is a good prerequisite for
this one.
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Preface ix

The thick, square, Mas-Collel et al. (1995) contains an appendix that covers a
subset of what is covered here. The treatment is necessarily brief, omitting many
interesting details and connections between topics.

Sundaram’s excellent ‘First Course in Optimization’(1996) is perhaps closest of
the more recent books. But there are clear differences. Sundaram covers dynamic
optimization while this book does not. On the other hand, this book discusses fixed
points and matroids, while Sundaram does not.

This book is closest in spirit to books of an earlier time when, giants, I am
reliably informed, walked the Earth. Two in particular have inspired me. The
first is Joel Franklin’s ‘Methods of Mathematical Economics’ (1980), a title
that pays homage to Courant and Hilbert’s celebrated ‘Mathematical Methods
of Physics’ (1924). Franklin is a little short on the economic applications of the
mathematics described. However, the informal and direct style convey his delight
in the subject. It is a delight I share and I hope this book will infect the reader with
the same.

The second is Nicholas Rau’s ‘Matrices and Mathematical Programming: An
Introduction for Economists’. Rau is formal, precise and startlingly clear. I have
tried to match this standard, going so far as to follow, in some cases, his exposition
of proofs.

The book before you is the outgrowth of a PhD class that all graduate students
in my department must take in their first year.4 Its roots however go back to my
salad days. I have learnt an enormous amount from teachers and colleagues much
of which infuses this book. In no particular order, they are Ailsa Land, Saul Gass,
Bruce Golden, Jack Edmonds, H. Peyton Young, Dean Foster, Teo Chung Piaw
and James Schummer.

Four cohorts of graduate students at Kellogg and other parts of Northwestern
have patiently endured early versions of this book. Their questions, both
puzzled and pointed have been a constant goad. I hope this book will do them
justice.

Denizens of MEDS, my department, have patiently explained to me the finer
points of auctions, general equilibrium, mechanism design and integrability. In
return I have subjected them to endless speeches about the utility of Linear Pro-
gramming. The book is as much a reflection of my own hobby horses as the spirit
of the department.

This book could not have been written without help from both my parents
(Faqir and Sudesh Vohra) and in-laws (Harish and Krishna Mahajan). They took
it in turns to see the children off to school, made sure that the fridge was full,
dinner on the table and the laundry done. If it continues I’m in clover! My
wife, Sangeeta took care of many things I should have taken care of, including
myself.

Piotr Kuszewski, a graduate student in Economics, played an important role
in preparing the figures, formatting and producing a text that was a pleasure to
look at.

Finally, this book is dedicated to my children Akhil and Sonya, who I hope
will find the same joy in Mathematics as I have. Perhaps, like the pilgrims in
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x Preface

Flecker’s poem, they will go

Always a little further: it may be
Beyond the last blue mountain barred with snow,
Across that angry or that glimmering sea,
White on a throne or guarded in a cave
There lives a prophet who can understand
Why men were born: but surely we are brave,
Who take the Golden Road to Samarkand.

Notes

1 An aside, this book has many. The writer Robert Heinlein, suggested that the ability to
solve a quadratic be a minimal condition to be accorded the right to vote:

. . . step into the polling booth and find that the computer has generated a new
quadratic equation just for you. Solve it, the computer unlocks the voting machine,
you vote. But get a wrong answer and the voting machine fails to unlock, a loud
bell sounds, a red light goes on over that booth – and you slink out, face red, you
having just proved yourself too stupid and/or ignorant to take part in the decisions
of the grownups. Better luck next election! No lower age limit in this system – smart
12-year-old girls vote every election while some of their mothers – and fathers –
decline to be humiliated twice.

2 The term is due to Thomas Carlyle. Oddly, his more scathing description of Eco-
nomics, a pig philosophy, has never caught on. Other nineteenth century scribblers like
John Ruskin called economics the bastard science while Matthew Arnold referred to
economists as a one eyed race.

3 The line is from Ecclesiastes 12:12. It continues with ‘and much reading is a weariness
of the soul’.

4 One can usefully cover the first seven chapters (if one is sparing in the applications) in a 1
quarter class (10 weeks, 3.5 h a week). The entire book could be exhausted in a semester.
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1 Things to know

This chapter summarizes notation and mathematical facts used in the rest of the
book. The most important of these is ‘iff’ which means if and only if.

1.1 Sets

Sets of objects will usually be denoted by capital letters, A, S, T for example,
while their members by lower case letters (English or Greek). The empty set is
denoted ∅. If an object x belongs to a set S we write x ∈ S and if it does not we
write x �∈ S. The set of objects not in a given set S is called the complement of S
and denoted Sc. Frequently our sets will be described by some property shared by
all its elements. We will write this in the form {x: x has property P}.

The elements in common between two sets, S and T , their intersection, is
denoted S ∩T . Elements belonging to one or the other or both sets, their union, is
denoted S∪T . The set of elements belonging to S but not T is denoted S \T . If the
elements of a set S are entirely contained in another set T , we say that S is a subset
of T and write S ⊆ T . If S is strictly contained in T , meaning there is at least
one element of T not in S we write S ⊂ T . In this case we say that S is a proper
subset of T . The number of elements in a set S, its cardinality, is denoted |S|.

The upside down ‘A’, ∀, means ‘for all’ while the backward ‘E’, ∃, means ‘there
exists’.

1.2 The space we work in

This entire book is confined to the space of vectors of real numbers (also called
points) with n components. This space is denoted R

n. The non-negative orthant,
the set of vectors all of whose components are non-negative, is denoted R

n+. The
j th component of a vector x will be denoted xj , while the j th vector from some
set will be denoted xj . If x and y in R

n then:

• x= y iff xi = yi for all i,
• x ≥ y iff xi ≥ yi for all i,
• x >y iff xi ≥ yi for all i with strict inequality for at least one component, and
• x� y iff xi > yi for all i.
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2 Things to know

1.3 Facts from real analysis

Definition 1.1 Given a subset S of real numbers, the supremum of S, written
sup(S), is the smallest number that is larger than every number in S. The infimum
of S, written inf (S), is the biggest number that is smaller than every number in S.

For example, if S = {x ∈ R
1: 0 < x < 1}, then sup(S) = 1 and inf (S) = 0.

Notice that neither the infimum or supremum of S are contained in S.
If x and y are any two vectors in R

n, we will denote by d(x, y) the Euclidean
distance between them, i.e.,

d(x, y) =
√√√√ n∑

j=1

(xj − yj )2.

The length of the vector x is just d(x, 0) and is sometimes written ‖x‖. A unit
vector x is one whose length is 1, i.e., ‖x‖ = 1. The dot product of two vectors
x and y is denoted x · y or xy and is defined thus:

x · y =
n∑

j=1

xjyj = d(x, 0) d(y, 0) cos θ ,

where θ is the angle between x and y. Notice that d(x, 0)2 = x · x. A pair of
vectors x and y is called orthogonal if x · y = 0.

Definition 1.2 The sequence {xk}k≥1 ∈ R
n converges to x0 ∈ R

n if for every
ε > 0 there is an integer K (possibly depending on ε) such that

d(xk , x0) < ε, ∀k ≥ K .

If {xk}k≥1 converges to x0 we write limk→∞ xk = x0.

Example 1 Consider the following sequence of real numbers: xk = 1/k. The
limit of this sequence is 0. To see why, fix an ε > 0. Now, can we choose a k large
enough so that |1/k − 0| < ε? In this case, yes. Simply pick any k > 1/ε.

There are a host of tricks and techniques for establishing when a sequence has
a limit and what that limit is. We mention one, called the Cauchy criterion.1

Theorem 1.3 Let {xm} be a sequence of vectors in R
n. Suppose for any ε > 0

there is a N sufficiently large such that for all p, q > N , d(xp, xq) < ε. Then
{xm} has a limit.

It will often be the case that we will be interested in a sequence {xk}k≥1 all of
whose members are in some set S and will want to know if its limit (should it
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Things to know 3

exist) is in S. As an example, suppose S is the set of real numbers strictly between
0 and 1. Consider the sequence xk = 1/(k + 1), every element of which is in S.
The limit of this sequence is 0, which is not in S.

Definition 1.4 A set S ⊂ R
n is said to be closed if it contains all its limit points.

That is, if {xk}k≥1 is any convergent sequence of points in S, then limk→∞ xk is
in S as well.

Example 2 We prove that the set {x ∈ R
1: 0 ≤ x ≤ 1} = [0, 1] is closed.

Let {xk}k≥1 ∈ [0, 1] be a convergent subsequence with limit x0. Suppose for
a contradiction that x0 �∈ [0, 1]. In fact we may suppose that x0 > 1. Pick
ε = (x0 − 1)/2 > 0. Since limk→∞ xk = x0, for any ε > 0 there is a k suffi-
ciently large such that |xk − x0| ≤ ε. For our choice of ε this implies that xk > 1,
a contradiction.

Definition 1.5 A set S ⊂ R
n is called open if for every x ∈ S there is an ε > 0

such that any y within distance of ε of x, d(x, y) < ε, is in S.

An important class of open and closed sets are called intervals. Given two
numbers a < b, the closed interval [a, b] is the set {x ∈ R

1: a ≤ x ≤ b}. The
open interval (a, b) is the set {x ∈ R: a < x < b}.

A set can be neither open or closed, for example, S = {x ∈ R
1: 0 < x ≤ 1}. The

sequence {1/k}k≥1 has a limit that is not in this set. So, S is not closed. However,
there is no ε > 0 sufficiently small such that every point within distance of 1 is in
S. Thus, S is not open.

A point x ∈ S is called an interior point of S if the set {y: d(y, x)< ε} is
contained in S for all ε > 0 sufficiently small. It is called a boundary point if
{y: d(y, x) < ε} ∩ Sc is non-empty for all ε > 0 sufficiently small. The set of all
boundary points of S is called the boundary of S.

Example 3 Consider the set S = {x ∈R
n: d(x, 0)≤ r}. Its interior is

{x: d(x, 0) < r} while its boundary is {x: d(x, 0) = r}.

Here is a list of important facts about open and closed sets:

1. a set S ⊂ R
n is open if and only if its complement is closed;

2. the union of any number of open sets is open;
3. the intersection of a finite number of open sets is open;
4. the intersection of a any number of closed sets is closed;
5. the union of a finite number of closed sets is closed.

If S ⊂ R
1 is closed, the infimum and supremum of S are in S. In fact, they

coincide with the smallest and largest member of S, respectively.

Definition 1.6 The closure of a set S is the set S combined with all points that
are the limits of sequences of points in S.
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4 Things to know

Definition 1.7 A set S ⊂ R
n is called bounded if there is a finite positive number

r such that ‖x‖ ≤ r for all x ∈ S. It is called compact if it is both closed and
bounded.

Theorem 1.8 (Bolzano–Weierstrass) Let S be a bounded set and {xn} an infi-
nite sequence all of whose elements lie in S. Then the sequence {xn} contains a
convergent subsequence.

A real valued function f on R
n is a rule that assigns to each x ∈ R

n a real
number. We denote this as f : R

n → R. If we write f : R
n → R

m it means the
function assigns to each element of R

n an element of R
m.

Definition 1.9 A real valued function f on R
n is continuous at the point a if

for any ε > 0 we can find a δ > 0 (possibly depending on ε) such that for all
x within distance δ of a, |f (x) − f (a)| < ε. This is sometimes abbreviated as
limx→a f (x) = f (a).

Definition 1.10 A function is said to be continuous on the set S ⊂ R
n if for

every a ∈ S and any ε > 0 we can find a δ > 0 (possibly depending on ε and a)
such that for all x ∈ S within distance δ of a, |f (x)− f (a)| < ε. The main point
is that in limx→a f (x) we require the sequence of points that converge to a to be
entirely in S.

Example 4 We show that the function f (x) = x2 where x ∈ R
1 is continuous.

Choose an ε > 0 that is small and any a ∈ R
1. Set δ = ε/|3a| and notice that

for any x within distance δ of a (i.e. |x − a| ≤ δ) we have that |f (x)− f (a)| =
|x2 − a2| = |(x − a)(x + a)| < δ|x + a| ≤ |3a|δ ≤ ε.

You should be able to verify the following facts about continuous functions:

1. the sum of two continuous functions is a continuous function;
2. the product of two continuous functions is continuous;
3. the quotient of two continuous functions is continuous at any point where the

denominator is not zero.

The following lemma illustrates how the notion of open set and continuous function
are related to each other.

Lemma 1.11 Let S ⊂ R
n and f : S → R be continuous on S. Let K ⊂ R be an

open set and suppose f−1(K) = {x ∈ S: f (x) ∈ K} �= ∅. Then f−1(K) is an
open set.

Proof Pick an a ∈ f−1(K). Since f is continuous, for all ε > 0 sufficiently
small there is a δ > 0 such that for all x within distance δ of a, |f (x)−f (a)| < ε.
Since K is open it follows that f (x) ∈ K , implying that x ∈ f−1(K) proving the
result.
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Things to know 5

Let S ⊂ R
n and M an index set. A collection of open sets {Ki : i ∈ M} is an

open covering of S if S ⊆ ∪i∈MKi .

Theorem 1.12 (Heine–Borel Theorem) A set S ⊂ R
n is compact iff every open

covering of S contains a finite open subcovering.

At various places in the book we will be interested in identifying an x ∈ S

that maximizes some real valued function f defined on S. We will write this
problem as maxx∈S f (x). The set of possible points in S that solve this problem
will be denoted arg maxx∈S f (x). Similarly, arg minx∈S f (x) is the set of points
in S that minimize f (x). The next theorem provides a sufficient condition for the
non-emptiness of arg maxx∈S f (x) as well as arg minx∈S f (x).

Theorem 1.13 (Weierstrass maximum Theorem) Let S ⊂ R
n be compact

and f a continuous real valued function on S. Then arg maxx∈S f (x) and
arg minx∈S f (x) exist and are both in S.

Proof Suppose the set T = {y ∈ R
1: ∃x ∈ S s.t. y = f (x)} is compact. Then

sup(T ) = supx∈S f (x) and inf (T ) = inf x∈S f (x). Since T is closed it follows
that sup(T ) and inf (T ) are contained in T , i.e. there is an x′ ∈ S such that
f (x′) = supx∈S f (x) and an x′′ ∈ S such that f (x′′) = inf s∈S f (x). We now
prove that T is compact.

Let M be an index set and {Ki}i∈M a collection of open sets that cover
T . Since f is continuous, the sets f−1(Ki) = {x ∈ S: s.t.f (x) ∈ Ki} are open.
Furthermore, by Lemma 1.11, the collection {f−1(Ki)}i∈M forms an open cover of
S. Compactness of S allows us to invoke the Heine–Borel theorem to conclude the
existence of a finite subcover, with index set M ′ say. If T ⊆ ∪i∈M ′Ki we are done.
Consider any y∗ ∈ T . Let x∗ be such thatf (x∗) = y∗. Notice that there is a j ∈ M ′
such that x∗ ∈ f−1(Kj ). This implies that y∗ ∈ Kj , i.e. y∗ ∈ ∪i∈M ′Ki .

Definition 1.14 The function f : R → R is differentiable at the point a if
(f (x)− f (a))/(x − a) has a limit as x → a. The derivative of f at a is this
limit and denoted f ′(a) or df

dx

∣∣
x=a .

Every differentiable function is continuous, but the converse is not true.
If f : R

n→ R, the partial derivative of f with respect to xj (when it exists) is
the derivative of f with respect to xj holding all other variables fixed. It is denoted
∂f
∂xj

. The vector of partial derivatives, one for each component of x is called the
gradient of f and denoted ∇f (x).

Theorem 1.15 (Rolle’s Theorem) Let f : R → R be differentiable. For any
x < y there is a θ strictly between x and y such that

f ′(θ) = f (y)− f (x)

y − x
.
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6 Things to know

1.4 Facts from linear algebra

Given a set S = {x1, x2, . . .} of vectors, we will, in an abuse of notation use S to
denote both the set of vectors as well as the index set of the vectors.

Definition 1.16 A vector y can be expressed as a linear combination of vectors
in S = {x1, x2, . . .} if there are real numbers {λj }j∈S such that

y =
∑
j∈S

λjx
j .

The set of all vectors that can be expressed as a linear combination of vectors in
S is called the span of S and denoted span(S).

Definition 1.17 A finite set S = {x1, x2, x3, . . .} of vectors is said to be linearly
independent (LI) if for all sets of real numbers {λj }j∈S

∑
j∈S

λjx
j = 0 ⇒ λj = 0, ∀j ∈ S.

The following are examples of LI sets of vectors:

S = {(1,−2)},
S = {(0, 1, 0), (−2, 2, 0)},
S = {(1, 1), (0,−3)}.

A finite set S of vectors is said to be linearly dependent (LD) if it is not LI. This
implies that there exist real numbers {λj }j∈S not all zero such that

∑
j∈S

λjx
j = 0.

Equivalently, one of the vectors in S can be expressed as a linear combination of
the others. The following are examples of LD sets of vectors:

S = {(1,−2), (2,−4)},
S = {(0, 1, 0), (−2, 2, 0), (−2, 3, 0)},
S = {(1, 1, 0), (0,−3, 1), (2, 5,−1)}.

Definition 1.18 The rank of a (not necessarily finite) set S of vectors is the size
of the largest subset of linearly independent vectors in S.
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Ranks of the various sets of vectors above are listed below:

S = {(1,−2)}, rank = 1;

S = {(0, 1, 0), (−2, 2, 0)}, rank = 2;

S = {(1, 1), (0,−3)}, rank = 2;

S = {(1,−2), (2,−4)}, rank = 1;

S = {(0, 1, 0), (−2, 2, 0), (−2, 3, 0)}, rank = 2;

S = {(1, 1, 0), (0,−3, 1), (2, 4,−1)}, rank = 3.

Definition 1.19 Let S be a set of vectors and B ⊂ S be finite and LI. The set B
of vectors is said to be a maximal LI set if the set B ∪ {x} is LD for all vectors
x ∈ S \ B. A maximal LI subset of S is called a basis of S.

Theorem 1.20 Every S ⊂ R
n has a basis. If B is a basis for S, then span(S) =

span(B).

Theorem 1.21 Let S ⊂ R
n. If B and B ′ are two bases of S, then |B| = |B ′|.

From this theorem we see that if S has a basis B, then the rank of S and |B|
coincide.

Definition 1.22 Let S be a set of vectors. The dimension of span(S) is the
rank of S.

The span of {(1, 0), (0, 1)} is R
2 and so the dimension of R

2 is two. Generalizing
this, we deduce that the dimension of R

n is n.
A rectangular array of numbers consisting of m rows and n columns is called

an m × n matrix. It is usually denoted A and the entry in the ith row and j th
column will be denoted aij . Whenever we use lower case Latin letters to denote
the numbers appearing in the matrix, we use the corresponding upper case letters
to denote the matrix. The ith row will be denoted ai and the j th column will be
denoted aj . It will be useful later on to think of the columns and rows of A as
vectors.

If it is necessary to emphasize the dimensions of a matrixA, we will writeAm×n.
If A is a matrix, its transpose, written AT is the matrix obtained by interchanging
the columns of A with its rows. The n × n matrix A where aij = 0 for all i �= j

and aii = 1 for all i is called the identity matrix and denoted I .
The product of an m×n matrix A with a n× 1 vector x, Ax is the m× 1 vector

whose ith component is
∑n

j=1 aij xj . The ith component can also be written using
dot product notation as ai · x. Similarly the j th component of yA will be y · aj or∑m

i=1 aij yi .
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The inverse of an n × n matrix A, is the matrix B such that BA = I = AB.
The inverse of A is usually written A−1. Not all matrices have inverses, and when
they do, they are called invertible.

Associated with every n × n matrix A is another matrix called its adjoint,
denoted adj(A). The reader may consult any standard text on linear algebra for a
definition. Associated with every n × n matrix A is a real valued function called
its determinant and denoted |A|. Again, the reader should consult a standard text
for a definition. The inverse of a matrix A (when it exists) is related to its adjoint
as follows:

A−1 = adj(A)

|A| .

This relation is known as Cramer’s rule.
In the sequel, we will be interested in the span of the columns (or rows) of a

matrix. If A is a matrix we will write span(A) to denote the span of the columns
of A and span(AT) the span of the rows of A.

Definition 1.23 The kernel or null space of A is the set {x ∈ R
n: Ax = 0}.

The following theorem summarizes the relationship between the span of A and
its kernel.

Theorem 1.24 If A is an m×n matrix then the dimension of the of span(A) plus
the dimension of the kernel of A is n.

This is sometimes written as

dim[span(A)] + dim[ker(A)] = n.

Since the dimension of the span of A and the rank of A coincide we can rewrite
this as:

rank(A)+ dim[ker(A)] = n.

A similar expression holds for AT:

rank(AT)+ dim[ker(AT)] = m.

The column rank of a matrix is the dimension of the span of its columns.
Similarly, the row rank is the dimension of the span of its rows.

Theorem 1.25 Let A be an m × n matrix. Then the column rank of A and AT

are the same.
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Thus the column and row rank of A are equal. This allows us to define the rank
of a matrix A to be the dimension of span(A).

1.5 Facts from graph theory

A graph is a collection of two objects. The first is a finite set V =
{1, . . . , n} called vertices. The second is a set E of (unordered) pairs of
vertices called edges. As an example, suppose V = {1, 2, 3, 4} and E =
{(1, 2), (2, 3), (3, 4), (2, 4)}. A pictorial representation of this graph is shown in
Figure 1.1. A graph is called a complete graph if E consists of every pair of
vertices in V .

1 2

34

Figure 1.1

The end points of an edge e ∈ E are the two vertices i and j that define that
edge. In this case we write e = (i, j). The degree of a vertex is the number of
edges that contain it. In the graph above, the degree of vertex 3 is 2 while the
degree of vertex 2 is 3. A pair i, j ∈ V is called adjacent if (i, j) ∈ E.

Lemma 1.26 The number of vertices of odd degree in a graph is even.

Proof Let O be the set of odd degree vertices in a graph and P the set of even
degree vertices. Let di be the degree of vertex i ∈ V . If we add the degrees of all
vertices we count all edges twice (because each edge has two endpoints), so

∑
i∈V

di = 2|E|.

Hence the sum of degrees is even. Now

∑
i∈V

di =
∑
i∈O

di +
∑
i∈P

di .

The second term on the right is an even number, while the first term is the sum of
odd numbers. Since their sum is even, it follows that |O| is an even number.
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Fix a graph G = (V ,E) and a sequence v1, v2, . . . , vr of vertices in G. Apath is
a sequence of edges e1, e2, . . . , er−1 in E such that ei = (vi , vi+1). The vertex v1

is the initial vertex on the path and vr is the terminal vertex. An example of a path
is the sequence (1, 2), (2, 3), (3, 4) in Figure 1.1. A cycle is a path whose initial
and terminal vertices are the same. The edges (2, 3), (3, 4), (2, 4) form a cycle in
Figure 1.1.

A graph G is called connected if there is a path in G between every pair of
vertices. Figure 1.2(a) shows a connected graph while Figure 1.2(b) shows a dis-
connected one. If G is a connected graph then T ⊂ E is called acyclic or a
forest if (V , T ) contains no cycles. The set {(1, 2), (3, 4)} in Figure 1.1 is a for-
est. If in addition (V , T ) is connected then T is called a spanning tree. The set
{(1, 2), (2, 3), (3, 4)} is a spanning tree in Figure 1.1. It is easy to see that every
connected graph contains a spanning tree.

1 2

34

(a)

1 2

34

(b)

Figure 1.2

Lemma 1.27 Let G = (V ,E) be a connected graph and T ⊆ E a spanning tree
of G. Then, (V , T ) contains at least one vertex of degree 1.

Proof Suppose not. We will select a path in G and show it to be a cycle. Initially
all vertices are classified as unmarked. Select any vertex v ∈ V and mark it
zero. Find an adjacent vertex that is unmarked and mark it 1. Repeat, each time
marking a vertex with a number one higher than the last marked vertex. If there
are no unmarked vertices to choose from, stop. Since there are a finite number of
vertices, this marking procedure must end. Since every vertex has degree at least
2, the last vertex to be marked, with mark k, say is adjacent to at least one vertex
with a mark k − 2 or smaller, say, r . The path determined by the vertices with
marks r , r + 1, . . . , k − 1, k forms a cycle, a contradiction.

Theorem 1.28 Let G = (V ,E) be a connected graph and T ⊆ E a spanning
tree of G. Then |T | = |V | − 1.

Proof The proof is by induction on |T |. If |T | = 1, since (V , T ) is connected it
follows that V must have just two elements, the endpoints of the lone edge in T .
Now suppose the lemma is true whenever |T | ≤ m. Consider an instance where
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|T | = m + 1. Let u ∈ V be the vertex in (V , T ) with degree one. Such a vertex
exists by the previous lemma. Let v ∈ V be such that (u, v) ∈ T . Notice that
T \ (u, v) is a spanning tree for (V \ u,E). By induction, |T \ (u, v)| = |V | − 2,
therefore |T | = |V | − 1.

Since a tree T is connected it contains at least one path between every pair of
vertices. In fact it contains a unique path between every pair of vertices. Suppose
not. Then there will be at least two edge disjoint paths between some pair of
vertices. The union of these two paths would form a cycle, contradicting the fact
that T is a tree.

1.5.1 Directed graphs

If the edges of a graph are oriented, i.e., an edge (i, j) can be traversed from i to
j but not the other way around, the graph is called directed. If a graph is directed,
the edges are sometimes called arcs. Formally, a directed graph consists of a set
V of vertices and set E of ordered pairs of vertices. As an example, suppose
V = {1, 2, 3, 4} and E = {(1, 2), (2, 3), (3, 4), (2, 4), (4, 2), (4, 1)}. A pictorial
representation of this graph is shown in Figure 1.3. A path in a directed graph has
the same definition as in the undirected case except now the orientation of each
edge must be respected. To emphasize this it is common to call a path directed. In
our example above, 1 → 4 → 3 would not be a directed path, but 1 → 2 → 4
would be. Acycle in a directed graph is defined in the same way as in the undirected
case, but again the orientation of the edges must be respected.

1 2

34

Figure 1.3

A directed graph is called strongly connected if there is a directed path between
every ordered pair of vertices. It is easy to see that this is equivalent to requiring
that there be a directed cycle through every pair of vertices.

Problems

1.1 Show that the function f (x) = |x| is continuous for x ∈ R
1. Now show that

g(x) = (1+ |x|)−1 is continuous for x ∈ R
1.

1.2 Show that any polynomial function of x ∈ R
1 is continuous.

1.3 Show that the rank of an m× n matrix is at most min{m, n}.
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1.4 Compute the rank of the following matrix:


2 0 −1 3

1 1 2 2
2 0 −1 1


 .

1.5 Let A be an m × n matrix of rank r and b ∈ R
m. Let r ′ be the rank of the

augmented matrix [A|b] and let F = {x ∈ R
n : Ax = b}. Prove that exactly

one of the following must be true:

1. if r ′ = r + 1, F = ∅;
2. if r ′ = r = n, F is a single vector;
3. if r = r ′ < n, then F contains infinitely many vectors of the form y + z

where Ay = b and z is in the kernel of A.

1.6 A house has many rooms and each room has either 0, 1 or 2 doors. An outside
door is one that leads out of the house. A room with a single door is called a
dead end. Show that the number of dead ends must have the same parity as
the number of outside doors.

Note

1 Named after Augustin Louis Cauchy (1789–1857). Actually it had been discovered four
years earlier by Bernard Bolzano (1781–1848).
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2 Feasibility

Let A be an m × n matrix of real numbers. We will be interested in problems of
the following kind:

Given b ∈ R
m find an x ∈ R

n such that Ax = b or prove that no such x

exists.

Convincing another that Ax = b has a solution (when it does) is easy. One merely
exhibits the solution and they can verify that the solution does indeed satisfy the
equations. What if the system Ax = b does not admit a solution? Is there an easy
way to convince another of this? Stating that one has checked all possible solutions
is not persuasive; there are infinitely many.

By framing the problem in the right way we can bring to bear the machinery of
linear algebra. Specifically, given b ∈ R

m, the problem of finding an x ∈ R
n such

that Ax = b can be stated as: is b ∈ span(A)?

2.1 Fundamental theorem of linear algebra

Suppose we wish to know if the following system has a solution:

[−4 2 −5
2 −1 2.5

]x1
x2
x3


 = [1

1

]
.

For the moment suppose that it does, call it, x∗. Adding a linear multiple of one
equation to the other yields another equation that x∗ must also satisfy. Multiply
the second equation by 2 and add it to the first. This produces

0× x1 + 0× x2 + 0× x3 = 3

which clearly has no solution. Therefore the original system cannot have a solution.
Our manipulation of the equations has produced an inconsistency which certifies
that the given system is insoluble. It suggests that we might be able to decide
the insolvability of a system by deriving, through appropriate linear combinations



RAKE: “chap02” — 2004/9/17 — 06:12 — page 14 — #2

14 Feasibility

of the given equations, an inconsistency. That this is possible was first proved
by Gauss.1

Theorem 2.1 Let A be an m × n matrix, b ∈ R
m and F = {x ∈ R

n: Ax = b}.
Then either F �= ∅ or there exists y ∈ R

m such that yA = 0 and yb �= 0 but
not both.

Remark Suppose F = ∅. Then, b is not in the span of the columns of A. If we
think of the span of the columns of A as a plane, then b is a vector pointing out
of the plane (see Figure 2.1). Thus, any vector, y orthogonal to this plane (and
so to every column of A) must have a non-zero dot product with b. Now for an
algebraic interpretation. Take any linear combination of the equations in the system
Ax = b. This linear combination can be obtained by pre-multiplying each side of
the equation by a suitable vector y, i.e., yAx = yb. Suppose there is a solution
x∗ to the system, i.e., Ax∗ = b. Any linear combination of these equations results
in an equation that x∗ satisfies as well. Consider the linear combination obtained
by multiplying the ith equation through by yi and summing over the row index
i. In particular, x∗ must also be a solution to the resulting equation: yAx = yb.
Suppose we found a vector y such that yAx �= yb then clearly the original system
Ax = b could not have a solution.

y

b

span(A)

Figure 2.1

Proof First we prove the ‘not both’ part. Suppose F �= ∅. Choose any x ∈ F .
Then

yb = yAx = (yA)x = 0

which contradicts the fact that yb �= 0.
If F �= ∅ we are done. Suppose that F = ∅. Hence b cannot be in the span of

the columns of A. Thus the rank of C = [A|b], r ′, is one larger than the rank, r ,
of A. That is, r ′ = r + 1.
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Since C is a m× (n+ 1) matrix,

rank(CT)+ dim[ker(CT)] = m = rank(AT)+ dim[ker(AT)].

Using the fact that the rank of a matrix and its transpose coincide we have

r ′ + dim[ker(CT)] = r + dim[ker(AT)],

i.e. dim[ker(CT)] = dim[ker(AT)] − 1. Since the dimension of ker(CT) is one
smaller than the dimension of ker(AT) we can find a y ∈ ker(AT) that is not in
ker(CT). Hence yA = 0 but yb �= 0.

2.2 Linear inequalities

Now consider the following problem:

Given a b ∈ R
m find an x ∈ R

n such that Ax ≤ b or show that no such x

exists.

The problem differs from the earlier one in that ‘=’ has been replaced by ‘≤’. We
deal first with a special case of this problem and then show how to reduce the
problem above to this special case.

2.3 Non-negative solutions

We focus on finding a non-negative x ∈ R
n such thatAx = b or show that no such

x exists. Observe that if b = 0, the problem is trivial, so we assume that b �= 0.
The problem can be framed as follows: can b be expressed as a non-negative linear
combination of the columns of A?

Definition 2.2 A set C of vectors is called a cone if λx ∈ C whenever x ∈ C

and λ > 0.

For example, the set {(x1, 0): x1 ≥ 0} ∪ {(0, x2): x2 ≥ 0} is a cone. A special
class of cones that will play an important role is defined next. The reader should
verify that the set so defined is a cone.

Definition 2.3 The set of all non-negative linear combinations of the columns of
A is called the finite cone generated by the columns of A. It is denoted cone(A).

Example 5 Suppose A is the following matrix:

[
2 0
1 1

]

The cone generated by the columns of A is the shaded region in Figure 2.2.
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x1

( ) ( )

x2

0
1

2
1

Figure 2.2

The reader should compare the definition of span(A) with cone(A). In particular

span(A) = {y ∈ R
m: s.t. y = Ax for some x ∈ R

n}

and

cone(A) = {y ∈ R
m: s.t. y = Ax for some x ∈ R

n+}.

To see the difference consider the matrix[
1 0
0 1

]
.

The span of the columns of this matrix will be all of R
2, while the cone generated

by its columns is the non-negative orthant.

Theorem 2.4 (Farkas Lemma)2 Let A be an m × n matrix, b ∈ R
m and

F = {x ∈ R
n: Ax = b, x ≥ 0}. Then either F �= ∅ or there exists y ∈ R

m such
that yA ≥ 0 and y · b < 0 but not both.

Remark Like the fundamental theorem of linear algebra, this result is capable
of a geometric interpretation which is deferred to a later chapter. The algebraic
interpretation is this. Take any linear combination of the equations in Ax = b to
get yAx = yb. A non-negative solution to the first system is a solution to the
second. If we can choose y so that yA ≥ 0 and y · b < 0, we find that the left
hand side of the single equation yAx = yb is at least zero while the right hand
side is negative, a contradiction. Thus the first system cannot have a non-negative
solution.

Proof First we prove that both statements cannot hold simultaneously. Suppose
not. Let x∗ ≥ 0 be a solution to Ax = b and y∗ a solution to yA ≥ 0 such that
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y∗b < 0. Notice that x∗ must be a solution to y∗Ax = y∗b. Thus y∗Ax∗ = y∗b.
Then 0 ≤ y∗Ax∗ = y∗b < 0, a contradiction.

If b �∈ span(A), by Theorem 2.1 there is a y ∈ R
m such that yA = 0 and

yb �= 0. If it so happens that the given y has the property that yb > 0 we are
done. If yb < 0, then negate y and again we are done. So, we may suppose that
b ∈ span(A) but b �∈ cone(A), i.e. F = ∅.

Let r be the rank of A. Note that n ≥ r . Since A contains r LI column vectors
and b ∈ span(A), we can express b as a linear combination of an r-subset D of
LI columns of A. Let D = {ai1 , . . . , air } and b =∑r

t=1 λit a
it . Note that D is LI.

Since b �∈ cone(A), at least one of {λit }t≥1 is negative.
Now apply the following four step procedure repeatedly. Subsequently, we show

that the procedure must terminate.

1. Choose the smallest index h amongst {i1, . . . , ir} with λh < 0.
2. Choose y so that y · a = 0 for all a ∈ D \ ah and y · ah �= 0. This can be done

by Theorem 2.1 because ah �∈ span(D \ ah). Normalize y so that y · ah = 1.
Observe that y · b = λh < 0.

3. If y · aj ≥ 0 for all columns aj of A stop, and the proof is complete.
4. Otherwise, choose the smallest index w such that y · aw < 0. Note that

w �∈ D \ ah. Replace D by {D \ ah} ∪ aw, i.e., exchange ah for aw.

To complete the proof, we must show that the procedure terminates (see step 3).3

Let Dk denote the set D at the start of the kth iteration of the four step process
described above. If the procedure does not terminate there is a pair k < l such that
Dk = Dl , i.e., the procedure cycles.

Let s be the largest index for which as has been removed from D at the end of
one of the iterations k, k+1, . . . , l−1, say p. Since Dl = Dk there is a q such that
as is inserted into Dq at the end of iteration q, where k ≤ q < l. No assumption
is made about whether p < q or p > q. Notice that

Dp ∩ {as+1, . . . , an} = Dq ∩ {as+1, . . . , an}.

Let Dp = {ai1 , . . . , air }, b = λi1a
i1 + · · ·+λir a

ir and let y′ be the vector found
in step two of iteration q. Then:

0 > y′ · b = y′(λi1a
i1 + · · · + λir a

ir ) = y′λi1a
i1 + · · · + y′λir a

ir > 0,

a contradiction. To see why the last inequality must be true:

• When ij < s, we have from step 1 of iteration p that λij ≥ 0. From step 4 of
iteration q we have y′ · aij ≥ 0.

• When ij = s, we have from step 1 of iteration p that λij < 0. From step 4 of
iteration q we have y′ · aij < 0.
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• When ij > s, we have from Dp ∩ {as+1, . . . , ar} = Dq ∩ {ar+1, . . . , ar} and
step 2 of iteration q that y′ · aij = 0.

This completes the proof.

This particular proof is a disguised form of the simplex algorithm developed
by George Dantzig (1914–). Dantzig we will meet again. The particular way of
choosing which elements to enter or leave the set D is due to Robert Bland and
called Bland’s anti-cycling rule .

In fact, we have proven more. Suppose b 	∈ cone(A) and A has rank r . Then
there are r LI columns of A, {a1, a2, . . . , ar−1} and y ∈ R

m such that y · aj = 0
for 1 ≤ j ≤ r − 1, y · aj ≥ 0 for all j ≥ r but y · b < 0. This fact will be useful
later. The system yA ≥ 0 and yb < 0 is sometimes referred to as the Farkas
alternative. It is useful to recall that the Farkas lemma can also be stated this way:

Either yA ≥ 0, y · b < 0 has a solution or Ax = b, x ≥ 0 has a solution but
not both.

Example 6 We use the Farkas lemma to decide if the following system has a
non-negative solution:

[
4 1 −5
1 0 2

]x1
x2
x3


 =

[
1
1

]
.

The Farkas alternative is

[
y1 y2

] [4 1 −5
1 0 2

]
≥
[

0
0

]
,

y1 + y2 < 0.

As a system of inequalities the alternative is:

4y1 + y2 ≥ 0,

y1 + 0y2 ≥ 0,

−5y1 + 2y2 ≥ 0,

y1 + y2 < 0.

There can be no solution to this system. The second inequality requires that y1 ≥ 0.
Combining this with the the last inequality we conclude that y2 < 0. But y1 ≥ 0
and y2 < 0 contradict −5y1 +2y2 ≥ 0. So, the original system has a non-negative
solution.



RAKE: “chap02” — 2004/9/17 — 06:12 — page 19 — #7

Feasibility 19

Example 7 We use the Farkas lemma to decide the solvability of the system:




1 1 0
0 1 1
1 0 1
1 1 1




x1
x2
x3


 =




2
2
2
1


 .

We are interested in non-negative solutions of this system. The Farkas alternative is

[
y1 y2 y3 y4

]



1 1 0
0 1 1
1 0 1
1 1 1


 ≥




0
0
0
0


 ,

2y1 + 2y2 + 2y3 + y4 < 0.

One solution is y1 = y2 = y3 = −1/2 and y4 = 1, implying that the given system
has no solution.

In fact, the solution to the alternative provides an ‘explanation’ for why the
given system has no solution. Multiply each of the first three equations by 1/2 and
add them together to yield

x1 + x2 + x3 = 3.

However, this is inconsistent with the fourth equation which reads x1+x2+x3 = 1.

2.4 The general case

The problem of deciding whether the system {x ∈ R
n: Ax ≤ b} has a solution

can be reduced to the problem of deciding if Bz = b, z ≥ 0 has a solution for a
suitable matrix B.

First observe that any inequality of the form
∑

j aij xj ≥ bi can be turned into
an equation by the subtraction of a surplus variable, s. That is, define a new
variable si ≥ 0 such that

∑
j

aij xj − si = bi .

Similarly, an inequality of the form
∑

j aij xj ≤ bi can be converted into an
equation by the addition of a slack variable, si ≥ 0 as follows:

∑
j

aij xj + si = bi .

A variable, xj that is unrestricted in sign can be replaced by two non-negative
variables zj and z′j by setting xj = zj − z′j . In this way any inequality system can
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be converted into an equality system with non-negative variables. We will refer to
this as converting into standard form.

As an example we derive the Farkas alternative for the system {x: Ax ≤ b,
x ≥ 0}. Deciding solvability of Ax ≤ b for x ≥ 0 is equivalent to solvability
of Ax + Is = b where x, s ≥ 0. Set B = [A|I ] and z = (

x
s

)
and we can write

the system as Bz = b, z ≥ 0. Now apply the Farkas lemma to this system:

yB ≥ 0, yb < 0.

Now 0 ≤ yB = y[A|I ] implies yA ≥ 0 and y ≥ 0. So, the Farkas alternative is
{y: yA ≥ 0, y ≥ 0, yb < 0}.

The principle here is that by a judicious use of auxiliary variables one can convert
almost anything into standard form.

2.5 Application: arbitrage

The word arbitrage comes from the French arbitrer and means to trade in stocks in
different markets to take advantage of different prices. H. R. Varian (1987) offers
the following story to illustrate arbitrage:

An economics professor and Yankee farmer were waiting for a bus in New
Hampshire. To pass the time, the farmer suggested that they play a game.
“What kind of game would you like to play?” responded the professor. “Well,”
said the farmer, “how about this: I’ll ask a question, and if you can’t answer
my question, you give me a dollar. Then you ask me a question and if I can’t
answer your question, I’ll give you a dollar.”

“That sounds attractive,” said the professor, “but I do have to warn you of
something: I’m not just an ordinary person. I’m a professor of economics.”

“Oh,” replied the farmer, “In that case we should change the rules. Tell you
what: if you can’t answer my question you still give me a dollar, but if I can’t
answer yours, I only have to give you fifty cents.”

“Yes,” said the professor, “that sounds like a fair arrangement.”

“Okay,” said the farmer, “Here’s my question: what goes up the hill on seven
legs and down on three legs?”

The professor pondered this riddle for a little while and finally replied. “Gosh,
I don’t know ... what does go up the hill on seven legs and down on three legs?”

“Well,” said the farmer, “I don’t know either. But if you give me your dollar,
I’ll give you my fifty cents!”

The absence of arbitrage opportunities is the driving principle of financial
theory.4
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Arguments relying on the absence of arbitrage made their appearance in finance
in the 1970s, but they are much older. In the early 1920s Frank Ramsey5 outlined
a definition of probability based on the absence of arbitrage.6 In 1937, Bruno de
Finetti7 (1906–1985), independently, used the absence of arbitrage as a basis for
defining subjective probability. This paper had the ironic fate to stimulate the very
ideas (subjective expected utility8) that were to outshine it.

de Finetti proposed a definition of probability in terms of prices placed on lottery
tickets. Let p(E) be the unit price at which one would be indifferent between
buying and selling a lottery ticket that paid $1 if event E occurred and 0 otherwise.
Let p(E|F) be the unit price at which one would be indifferent between buying
and selling a ticket paying $1 if E∩F occurs, 0 if F occurs without E and a refund
of the purchase price if F fails to occur. de Finetti showed that such a system of
prices eliminates arbitrage if and only if the prices satisfied the requirements of a
probability measure. That is,

• p(E) ≥ 0,
• p(E)+ p(Ec) = 1,
• p(E ∪ F) = p(E)+ p(F) if E ∩ F = ∅,
• p(E ∩ F) = p(E|F)p(F ).

On this basis de Finetti argued that probabilities should be interpreted as these
prices. Indeed, he argued that probability had no meaning beyond this. In the
preface of his 1974 book entitled ‘Theory of Probability’ he writes:

“PROBABILITY DOES NOT EXIST. The abandonment of superstitious
beliefs about the existence of Phlogiston, the Cosmic Ether, Absolute Space
and Time . . . or Fairies and Witches, was an essential step along the road
to scientific thinking. Probability, too, if regarded as something endowed
with some kind of objective existence, is no less a misleading conception, an
illusory attempt to exteriorize or materialize our true probabilistic beliefs.”

Here we recast de Finetti’s theorem in a form that is useful for Finance applications.
Suppose m assets each of whose payoffs depends on a future state of nature. Let
S be the set of possible future states of nature with n = |S|. Let aij be the payoff
from one share of asset i in state j . A portfolio of assets is represented by a vector
y ∈ R

m where the ith component, yi represents the amount of asset i held. If
yi > 0, one holds a long position in asset i while yi < 0 implies a short position
in asset i.9 Let w ∈ R

n be a vector whose j th component denotes wealth in state
j ∈ S. We assume that wealth (w) in a future state is related to the current portfolio
(y) by

w = yA.

This assumes that assets are infinitely divisible, returns are linear in the quantities
held and the return of the asset is not affected by whether one holds a long or
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short position. Thus, if one can borrow from the bank at 5% one can lend to the
bank at 5%.

The no arbitrage condition asserts that a portfolio that pays off non-negative
amounts in every state must have a non-negative cost. If p > 0 is a vector of asset
prices, we can state the no arbitrage condition algebraically as follows:

yA ≥ 0 ⇒ y · p ≥ 0.

Equivalently, the system yA ≥ 0, y · p < 0 has no solution. From the Farkas
lemma we deduce the existence of a non-negative vector π̂ ∈ R

m such that

p = Aπ̂ .

Since p > 0, it follows that π̂ > 0. Scale π̂ by dividing through by
∑

j π̂j . Let
p∗ = p/

∑
j π̂j and π = π̂/

∑
j π̂j . Notice that π is a probability vector. As long

as relative prices are all that matter, scaling the prices is of no relevance. After the
scaling, p∗ = Aπ . In words, there is a probability distribution under which every
securities expected value is equal to its buying/selling price. Such a distribution is
called a risk neutral probability distribution. A risk-neutral investor using these
probabilities would conclude that the securities are fairly priced.

In this set up, the market is said to be complete if span(A) = R
m. If a market is

complete and has more assets (m) than states of nature (n), some of the assets will
be redundant. The payoffs of the redundant assets can be duplicated by a suitable
portfolio of other assets. In this case it is usual to restrict oneself to a subset of the
securities that form a basis for the row space of A.10 When m < n, the market is
said to be incomplete because there can be a wealth vector w not attainable by
any portfolio y, i.e., given w there is no y such that w = yA.

2.5.1 Black–Scholes formula

The most remarkable application of the arbitrage idea is to the pricing of derivative
securities called options. The idea is due to Fischer Black, Myron Scholes and
Robert Merton. A call option on a stock is a contract giving one the ‘option’ to
buy the stock at a specified price (strike price) at a specified time in the future.11

The advantage of a call option is that it allows one to postpone the purchase of
a stock until after one sees the price. In particular one can wait for the market
price of the stock to rise above the strike price. Then, exercise the option. That is,
buy at the strike price and resell at the higher market price. How much is a call
option worth?

For simplicity, assume a single time period and a market consisting of a stock, a
bond and a call option on the stock. Let K be the strike price of the call option and
suppose that it can be exercised only at the end of the time period.12 Suppose S is
the value of the stock at the end of the time period. If S >K , the option holder will
exercise the call option yielding a profit of S − K dollars. If S ≤ K , the option
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holder will let the call option expire and its value to the holder is zero. In short the
call option has a payoff of max{0, S −K} .

Suppose that there are only two possible future states of the world (good, bad).
The good state is where the stock goes up by a factor u > 1. The bad state is where
the stock declines by a factor d < 1. Investing in the bond is risk free. This means
that in all cases in the future the value of the bond goes up by a factor r > 1. Let
S0 be the initial stock price and B the price of the bond.

We now have an economy with three assets (stock, bond, call option) and two
possible states of the world. Let aij be the value of asset i in state j . For our
example, the matrix A = {aij } will be


 uS0 dS0

rB rB

max{0, uS0 −K} max{0, dS0 −K}


 .

The first column corresponds to the good state, the second to the bad state. The
first row corresponds to the stock, the second to the bond and the third to the call
option. If p is the vector of prices then p1 = S0, p2 = B and p3 is the price of the
call option we wish to determine.

The absence of arbitrage implies the existence of π1, π2 non-negative such that


 uS0 dS0

rB rB

max{0, uS0 −K} max{0, dS0 −K}


[π1

π2

]
=

S0

B

p3


 .

Consider the first two equations:

uS0π1+ dS0π2 = S0,

rBπ2+ rBπ2 = B.

They have the unique solution

π1 = r − d

r(u− d)
, π2 = u− r

r(u− d)
.

This solution is non-negative iff u > r > d. Does it make sense to impose these
conditions at the outset? Observe that if r ≤ d, the bond would be worthless;
i.e., one would always better off investing in the stock. If u ≤ r no one would be
interested in buying the stock.

Using this solution we deduce that

p3 = π1 max{0, uS0 −K} + π2 max{0, dS0 −K}.
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Notice that it does not depend on the probabilities of either the good or bad state
being realized. This option pricing formula is the discrete (one period) analogue
of the famous Black–Scholes formula.

2.6 Application: co-operative games

A co-operative game (with transferable utility) is defined by a set N of players and
a value function v : 2N → R which represents the monetary value or worth of a
subset S of players forming a coalition. The story here is that if the set S of players
were to pool their resources and use them appropriately, they would generate v(S)

dollars to be consumed by themselves. The value of v(S) tells us nothing about
how it is to be divided amongst the players.

It is usual to assume that v(N) ≥ maxS⊂N v(S). That is, the largest possible
value is generated if all players work together. We will be interested in how to
apportion v(N) between the players so as to give each player an incentive to
combine into a whole.

A vector x ∈ R
n is called an imputation if

∑
j∈N xj = v(N) and xj ≥ v(j)

for all j ∈ N . One can think of an imputation as a division of v(N) that gives to
every player at least as much as they could get by themselves. One can require that
the division satisfy a stronger requirement. Specifically, every subset S of agents
should receive in total at least as much as v(S). This leads us to the notion of core.

Definition 2.5 The core of the game (v,N) is the set

C(v,N) =
{
x ∈ R

n :
∑
j∈N

xj = v(N),
∑
j∈S

xj ≥ v(S), ∀S ⊂ N

}
.

Example 8 Suppose N = {1, 2, 3}, v({1}) = v({2}) = v({3}) = 0, v({1, 2}) =
v({2, 3}) = v({1, 3}) = 2 and v(N) = 2.9. The core is the set of solutions to the
following:

x1 + x2 + x3 = 2.9,
x1 + x2 ≥ 2,
x1 + + x3 ≥ 2,

x2 + x3 ≥ 2,
x1, x2, x3 ≥ 0.

If we add up the second, third and fourth inequality we deduce that x1+x2+x3 ≥ 3
which contradicts the first equation. Therefore the core is empty.

Let B(N) be the set of feasible solutions to the following system:

∑
S:i∈S

yS = 1, ∀i ∈ N ,
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yS ≥ 0, ∀S ⊂ N .

The reader should verify that B(N) �= ∅.

Theorem 2.6 (Bondareva–Shapley) C(v,N) �= ∅ iff

v(N) ≥
∑
S⊂N

v(S)yS , ∀y ∈ B(N).

Proof The Farkas alternative for the system that defines C(v,N) is

v(N)−
∑
S⊂N

v(S)ys < 0,

∑
S:i∈S

yS = 1, ∀i ∈ N ,

yS ≥ 0, ∀S ⊂ N .

By the Farkas lemma, C(v,N) �= ∅ iff the alternative is infeasible. Since B(N) �=
∅, infeasibility of the alternative implies that for all y ∈ B(N) we have v(N) −∑

S⊂N v(S)ys ≥ 0 from which the result follows.

2.7 Application: auctions

Auctions are a venerable and popular selling institution. The word auction comes
from the Latin auctus meaning to increase. An even obscurer term for auction is
the Latin word subhastare. It is the conjuction of sub meaning ‘under’ and hasta
meaning ‘spear’. After a military victory a Roman soldier would plant his spear
in the ground to mark the location of his spoils. Later he would put these goods
up for sale by auction.13

Perhaps the most engaging tale about auctions that no writer can decline telling
is the sale of the Roman empire to the highest bidder. It is described in Edward
Gibbon’s account of the decline and fall of the same.14

In 193 A.D. the Praetorian guard15 killed the emperor Pertinax.16 Sulpicanus,
father in law to Pertinax offered the Praetorians 5,000 drachmas per guard to be
emperor. Realizing they were onto a good thing, the guard announced that the
Empire was available for sale to the highest bidder. Didius Julianus outbid all
comers and became the emperor for the price of 6,250 drachmas per Guard.17 He
was beheaded two months later when Septimus Severus conquered Rome.

We illustrate how the Farkas lemma can be used in the design of an auction.18 An
auction can take various forms but for our purposes it consists of two steps. In the
first, bidders announce how much they are willing to pay (bids) for the object. In
the second, the seller chooses, in accordance with a previously announced function
of the bids, who gets the object and how much each bidder must pay. This choice
could be random.19
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The simplest set up involves two risk neutral bidders and one seller. The seller
does not know how much each bidder is willing to pay for the object. Each bidder is
ignorant of the others valuations. It is the uncertainty about valuations that makes
auctions interesting objects of study. If the seller knew the valuations, she would
approach the bidder with the highest valuation and make him a take it or leave it
offer slightly under their valuation and be done with.

The uncertainty in bidder valuations is typically modeled by assuming that their
monetary valuations are drawn from a commonly known distribution over a finite
set W .20

In some contexts it is natural to suppose that the valuations are drawn inde-
pendently. This captures the idea of values being purely subjective. The value
that one bidder enjoys from the consumption of the good does not influence the
value that the other bidders will enjoy. Here we suppose that the valuations are
correlated. One context where such an assumption makes sense is in bidding for
oil leases. The value of the lease depends on the amount of oil under the ground.
Each bidders estimate of that value depends on seismic and other surveys of the
land in question. It is reasonable to suppose that one bidders survey results would
be correlated with anothers because they are surveying the same plot of land.

Denote by vi the value that bidder i places on the object. For any two a, b ∈ W

let pab = Pr[v2 = b|v1 = a] = Pr[v1 = b|v2 = a]. The important assumption
we make is that no row of the matrix {pab} is a non-negative linear combination
of the other rows. We refer to this as the cone assumption. Were the values drawn
independently, the rows of this matrix would be identical.

Each bidder is asked to report their value. Let T 1
ab be the payment that bidder 1

makes if he reports a and bidder 2 reports b. Similarly define T 2
ab. Let Q1

ab be the
probability that the object is assigned to agent 1 when he reports a and bidder 2
reports b. Notice that Q2

ab = 1−Q1
ab.

Two constraints are typically imposed on the auction design. The first is called
incentive compatibility. The expected payoff to each bidder from reporting truth-
fully (assuming the other does so as well) should exceed the expected payoff
from bidding insincerely. Supposing bidder 1’s valuation for the object is a, this
implies that

∑
b∈W

pab[Q1
aba − T 1

ab] ≥
∑
b∈W

pab[Q1
kba − T 1

kb] ∀k ∈ W \ a.

The left-hand side of this inequality is the expected payoff (assuming the other
bidder reports truthfully) to a bidder with value a who reports a. The right hand
side is the expected payoff (assuming the other bidder reports truthfully) to a bidder
with value a who reports k as their value. This constraint must hold for each a ∈ W

and a similar one must hold for bidder 2.
The incentive compatibility constraint does not force any bidder to bid sincerely.

Only if all other bidders bid sincerely, is it the case that one should bid sincerely.
Furthermore, the inequality in the incentive compatibility constraint means that
it is possible for a bidder to be indifferent between bidding sincerely or lying. At
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best the incentive compatibility constraint ensures that bidding sincerely is in a
sense mutually rational. One could demand that the auction design offer greater
incentives to bid sincerely than the ones considered here, but that is a subject for
another book.

The second constraint, called individual rationality, requires that no bidder
should be made worse off by participating in the auction. It is not obvious how to
express this constraint as an inequality, since the act of participation does not tell
us how a bidder will bid. This is where the incentive compatibility constraint is
useful. With it we can argue that if a bidder participates, she will do so by bidding
sincerely. Hence, if bidder 1’s valuation is a ∈ W and he reports this, which
follows from incentive compatibility, we can express individual rationality as:

∑
b∈W

pab[Q1
aba − T 1

ab] ≥ 0.

This constraint must hold for each a ∈ W and for bidder 2 as well.
The goal of the auctioneer is to design the auction so as to maximize her expected

revenue subject to incentive compatibility and individual rationality. Notice that
her expected revenue is maximized when the expected profit to all bidders is 0.
Given incentive compatibility, bidder 1’s expected profit when he values the object
at a is

∑
b∈W

pab[Q1
aba − T 1

ab].

A similar expression holds for bidder 2. So, the auctioneer maximizes expected
revenue if she can choose Qj and T j so that for all a ∈ W bidder 1’s expected
profit is zero, i.e.,

∑
b∈W

pab[Q1
aba − T 1

ab] = 0,

and bidder 2’s expected profit for all b ∈ W is zero, i.e.,

∑
a∈W

pab[Q2
abb − T 2

ab] = 0.

Substituting this into the incentive compatibility and individual rationality
constraints, the auctioneer seeks a solution to:

∑
b∈W

pab[Q1
kba − T 1

kb] ≤ 0, ∀k ∈ W \ a, a ∈ W ,

∑
a∈W

pab[Q2
akb − T 2

ak] ≤ 0, ∀k ∈ W \ b, b ∈ W ,
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b∈W

pab[Q1
aba − T 1

ab] = 0, ∀a ∈ W ,

∑
a∈W

pab[Q2
abb − T 2

ab] = 0, ∀b ∈ W .

Now fix the value of Qj in the inequalities above and ask if there is a feasible
T j . Rewriting the above inequalities by moving terms that are fixed to the right-
hand side (with a change in index on the last two to make the Farkas alternative
easier to write out):

−
∑
b∈W

pabT
1
kb ≤ −

∑
b∈W

pabQ
1
kba, ∀k ∈ W \ a, a ∈ W ,

−
∑
a∈W

pabT
2
ak ≤ −

∑
a∈W

pabQ
2
akb, ∀k ∈ W \ b, b ∈ W ,

∑
b∈W

pkbT
1
kb =

∑
b∈W

pkbQ
1
kbk, ∀k ∈ W ,

∑
a∈W

pakT
2
ak =

∑
k∈W

pakQ
2
akk, ∀k ∈ W .

(2.1)

Let y1
ak be the variable associated with the first inequality, y2

kb be associated with
second inequality, z1

k with the third and z2
k with the fourth set of inequalities.

Before passing to the Farkas alternative it will be useful to write out the matrix
of coefficients associated with the T 1 variables. Assume for this purpose only that
W = {a, b, c}.




T 1
aa T 1

ab T 1
ac T 1

bb T 1
ba T 1

bc T 1
cc T 1

ca T 1
cb

0 0 0 −pab −pab −pac 0 0 0
0 0 0 0 0 0 −pab −paa −pac

−pba −pbb −pbc 0 0 0 0 0 0
0 0 0 0 0 0 −pbc −pba −pbb

−pca −pcb −pcc −pcb −pca −pcc 0 0 0
paa pab pac 0 0 0 0 0 0
0 0 0 pbb pba pbc 0 0 0
0 0 0 0 0 0 pcc pca pcb




Each column of this matrix gives rise to an equation in the alternative. The alter-
native appears below and the reader may find it helpful to compare it with the
columns of the above matrix.
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The Farkas lemma asserts that there is no solution to the system (2.1) if there is
a solution to the system:

−
∑
a �=k

paby
1
ak + pkbz

1
k = 0, ∀k, b ∈ W ,

−
∑
b �=k

paby
2
kb + pakz

2
k = 0, ∀a, k ∈ W ,

y ≥ 0

such that

−
∑
a∈W

∑
k �=a

[∑
b∈W

pabQ
1
kba

]
y1
ak −

∑
b∈W

∑
k �=b

[∑
b∈W

pabQ
2
aka

]
y2
kb

+
∑
k∈W

∑
b∈W

pkbQ
1
kbkz

1
k +

∑
k∈W

∑
b∈W

pkbQ
2
kbkz

2
k < 0.

Using the first equation, non-negativity of the p’s and the y’s we conclude that
the z’s must be non-negative as well. The last inequality which must hold strictly
prevents, all of the y variables being zero. Given this, the first equation contradicts
the cone assumption made earlier. Thus, the Farkas alternative has no solution,
implying that (2.1) has a solution.

Problems

2.1 Sketch the cone generated by the columns of the matrix below:

[
2 0 −1
1 1 2

]

What is the cone generated by just the first and third columns of the matrix?
If A is the matrix above and b = (1, 0) decide if the system Ax = b has a
solution with x ≥ 0.

2.2 Sketch the cone generated by the columns of the matrix below:

[
2 1 −3
−1 3 −2

]
.

2.3 Convert the following system of inequalities/equalities into standard form
and then write down its Farkas alternative:

x1 + 2x2+ 3x3≤ 5,

x1 + 3x2− 2x3≥ 7,

x1+ x2+ x3≤ 2,
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x1 − 2x2− 3x3≥ 3,

x1 ≥ 0.

2.4 Use the Farkas lemma to decide if the following system has a non-negative
solution:[

4 1 −2
1 0 5

]x1
x2
x3


 = [−2

3

]
.

2.5 Let A be an m× n matrix. Prove, using the Farkas lemma, the following:

The system Ax ≥ b has a non-negative solution or there is a non-negative
y ∈ R

m such that yA ≤ 0 and yb > 0, but not both.

2.6 Let A be an m× n matrix. Prove, using the Farkas lemma, the following:

The system Ax = 0,
∑n

j=1 xj = 1 has a non-negative solution or there is a
y ∈ R

m such that yA� 0, but not both.

2.7 Let A be an m× n matrix. Prove the following:

The system Ax = 0, has a non-zero, non-negative solution or there is a
y ∈ R

m such that yA� 0, but not both.

2.8 An n × n matrix A is called a Markov matrix if aij ≥ 0 for all i, j and∑n
i=1 aij = 1 for all j . These matrices arise in the study of Markov chains

and the {ij}th entry is the probability of moving from state j to state i.
A vector x ∈ R

n is called a probability vector if xj ≥ 0 for all j and∑n
j=1 xj = 1. A probability vector x is called a steady state vector of A if

Ax = x. Use the Farkas lemma to show that every Markov matrix has a
steady state vector.

2.9 Let A be an m× n matrix. Prove, using the Farkas lemma, the following:

The system Ax  b has a solution if and only if y = 0 is the only solution
for {yA = 0, yb ≤ 0, y ≥ 0}.

2.10 Let A be an m × n real matrix and F = {x ∈ R
n : Ax ≤ 0}. Let c ∈ R

n

and G = {x ∈ R
n: cx ≤ 0}. Use the Farkas lemma to prove that F ⊆ G iff

there exists y ∈ R
m+ such that c = yA.21

2.11 Let A be an m× n matrix and b ∈ R
n. Use the Farkas lemma to prove that

there exist x ∈ R
n, y ∈ R

m such that:

Ax ≥ 0,ATy = 0, y ≥ 0, a1 · x + y1 > 0.

Here a1 denotes the first row of A.
2.12 Suppose A is an n×n matrix such that xTAx = 0 for all x ∈ R

n. Show that
the system

(I + A)x � 0, Ax ≥ 0, x ≥ 0

has a solution.
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Notes

1 If Mathematics is the Queen of the Sciences, then Carl Friedrich Gauss (1777–1855)
is her Prince. A brief and engaging biography can be found in Eric Temple Bell’s Men
of Mathematics. In a choice between accuracy and spice, Bell prefers spice and is
delightfully liberal with their application.

At the age of seven, Gauss is supposed to have summed the integers from 1 to 100
by observing that the sum could be written as the sum of 50 pairs of numbers each pair
summing to 101.

2 Guyla Farkas (1847–1930) was a Hungarian Theoretical Physicist. The lemma that bears
his name was announced by him in 1894 and has its roots in the problem of specifying
the equilibrium of a system. The associated proof was incomplete. Acomplete proof was
published in Hungarian by Farkas in 1898. It is more common to refer to the German
version that appeared in the J. Reine Angew Math., 124, 1901, 1–27. The title was
Theorie der Einfachen Ungleichungen.

3 This is where carefully specifying the indices in steps 1 and 4 matters.
4 The exposition in this section is based in part on Nau and McCardle (1992).
5 It is said that a genius is one who has two great ideas. Frank Plumpton Ramsey (1903–

1927) had at least three. Ramsey growth model, Ramsey theory, Ramsey pricing.
6 Ramsey (1931); However he gives no formal proofs.
7 Called the ‘incomparable’. De Finetti also introduced the concept of exchangeability.
8 Savage (1954).
9 To hold a long position is to acquire the asset in the hope that its value will increase.

To hold a short position is to make a bet that the asset will decline in value. On the
stock market this is done by selling a stock one does not own now and buying it back
at a later date presumably when its price is lower. In practice, one’s broker will ‘bor-
row’ the stock from another client and sell it in the usual way. At some time after
the sale one tells the broker stop, and buys the stock borrowed at the prevailing price
and returns them to the ‘lender’. The strategy yields a profit if the price of the stock
goes down.

10 The basis set is referred to, for obvious reasons, as a spanning set of securities.
11 The earliest record of a call option is to be found in Aristotle’s Politics. Six months

prior to the olive harvest in spring, the philosopher Thales (62?– 546 B.C.) purchased
the right to lease, at the current low rates, oil presses during the harvest. A bumper crop
of olives in the spring allowed Thales to sublet the presses at premium rates. He used
the resulting profits to support his philosophizing. In his day Thales was remembered
more for his philosophy than for his financial acumen. Diogenes Laertius, biographer
of the ancient Greek philosophers, urges that all discourse should begin with a reference
to Thales.

12 This is called a European option. More elaborate options are available with names like
American, Asian and Exotic.

13 The highest bidder was called the emptor, from whence the term caveat emptor.
14 ‘It was at Rome, on the 15th October 1764’, Gibbon writes, ‘as I sat musing amid the

ruins of the capitol, while the bare-footed friars were singing vespers in the temple
of Jupiter, that the idea of writing the decline and fall of the city first started to my
mind’. 71 chapters, 2,136 paragraphs, a million and a half words, 8,000 footnotes and
one American revolution later, Gibbon produced The Decline and Fall of the Roman
Empire. The incident of the auction is described in chapter V, volume I.

15 Bodyguard of the Emperor.
16 Pertinax himself had secured the empire by promising huge bribes to the Praetorians.

Upon taking the purple, he reneged and the guard took their revenge.
17 The description by Gibbons is worth a read: ‘This infamous offer, the most insolent

excess of military license, diffused an universal grief, shame, and indignation throughout
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the city. It reached at length the ears of Didius Julianus, a wealthy senator, who, regard-
less of the public calamities, was indulging himself in the luxury of the table. His wife
and his daughter, his freedmen and his parasites, easily convinced him that he deserved
the throne, and earnestly conjured him to embrace so fortunate an opportunity. The vain
old man hastened to the Praetorian camp, where Suplicianus was still in treaty with the
guards, and began to bid against him from the foot of the rampart’.

18 This section is based on Cremer and McLean (1988).
19 In other books and courses you will learn about the revelation principle which explains

why this formulation is general enough to encompass all auctions.
20 This is known as the common prior assumption.
21 This was the manner in which Farkas originally stated his lemma.
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3 Convex sets

Definition 3.1 A set C of vectors/points is called convex if for all x, y ∈ C and
λ ∈ [0, 1], λx + (1− λ)y ∈ C.

Geometrically, a set is convex if any two points within it can be joined by a
straight line that lies entirely within the set. Equivalently, the weighted average
of any two points in C is also in C. The quintessential convex set is the region
enclosed by a circle. Figure 3.1 shows two sets. The one on the left is convex
while the one on the right is not. One implication of convexity is the following: if
x1, x2, . . . , xr are a finite collection of vectors in a convex set C, then

∑r
i=1 λix

i

is also in C where
∑r

i=1 λi = 1 and λi ≥ 0 for all i. One could just as well
define convexity of a set C by requiring that the weighted average of any finite
subset of points in C also be in C. Verifying convexity would require checking
this condition for every finite subset of points. The definition given above says
that it suffices to check every pair of points, presumably a less laborious task.

Convex sets have many useful properties. The easiest ones to establish are
summarized below without proof:

1. The set {x:Ax = b, x ≥ 0} is convex.
2. If C is convex then αC = {y: y = αx, x ∈ C} is convex for all real α.
3. IfC andD are convex sets, then the setC+D = {y: y = x+z, x ∈ C, z ∈ D}

is convex.
4. The intersection of any collection of convex sets is convex.

(a) (b)

Figure 3.1
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3.1 Separating hyperplane theorem

One of the most important results about convex sets is the separating hyperplane
theorem. Given a point x and a convex set C not containing x, one should be able
to draw a straight line that separates the two, i.e., the point is on one side and
the set C on the other side. Figure 3.2 illustrates the theorem. The requirement
that the line be straight is what makes it non-trivial. To see why such a statement
should be true, consider Figure 3.3. A portion of the border of our convex set C is
shown, with a dotted line. The point b, conveniently chosen to be at the origin is
not in the set C. The point x∗ is the point in C closest to b, conveniently chosen
to be on the horizontal axes. The figure assumes that b �= x∗. The line labeled L

is perpendicular to the segment [b, x∗] and is chosen to be midway between x∗
and b. The line L is our candidate for the straight line that separates b from C.
For the line L to be our separator, we need to show that no point y ∈ C lies to
the left of L. Suppose not as shown in Figure 3.4. Since y ∈ C, by convexity of

Figure 3.2

L

b x*

C

Figure 3.3

L

b x*

C

y

z

Figure 3.4
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C, every point on the line segment joining y to x∗ is also in C. In particular, the
point z marked on Figure 3.4 is in C. The point z is chosen so that the line joining
b to z is perpendicular to the line joining x∗ to y. Clearly z is closer to b than x∗,
contradicting the choice of x∗.

Lemma 3.2 Let C be a compact set not containing the origin. Then there is an
x0 ∈ C such that d(x0, 0) = inf x∈C d(x, 0) > 0.

Proof Follows from the continuity of the distance function and the Weierstrass
theorem.

Definition 3.3 A hyperplane H = (h,β) where h ∈ R
n and β ∈ R is the set

{x ∈ R
n:hx = β}. A half-space is the set {x ∈ R

n:hx ≤ β}. The set of solutions
to a single equation form a hyperplane. The set of solutions to a single inequality
form a half-space.

Figure 3.5(a) illustrates a hyperplane in R
2 while Figure 3.5(b) illustrates a

half-space.

x1

x2

x1

x2

x1     + x2 = 1

(a)

 

(b)

x1     + x2 ≤ 1

Figure 3.5

It is easy to see that a hyperplane and a half-space are both convex sets.

Theorem 3.4 (Strict separating hyperplane theorem) LetC be a closed convex
set and b �∈ C. Then there is a hyperplane (h,β) such that hb < β < hx for
all x ∈ C.

Proof By a translation of the coordinates we may assume that b = 0. Choose
x0 ∈ C that minimizes d(x, 0) for x ∈ C. By Lemma 3.2, such an x0 exists and
d(x0, 0) > 0. The reader will note that Lemma 3.2 assumes compactness but here
we do not. Here is why. Pick any y ∈ C and let C′ = C ∩ {x ∈ C: d(x, 0) ≤
d(y, 0)}. Notice that C′ is the intersection of two closed sets and so is closed as
well. It is also bounded. It is easy to see that the point in C′ closest to 0 is also the
point in C closest to 0.
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x2

x1

m

hx = �

x 0

Figure 3.6

Letm be the midpoint of the line joining 0 to x0, i.e., m = x0/2. Choose (h,β) to
be the hyperplane that goes throughm and is perpendicular to the line joining 0 to x0

(see Figure 3.6). Formally we choose h to be the vector x0 scaled by d(x0, 0), i.e.,
h = x0/d(x0, 0). Set β = h ·m. Notice hm = x0/2 · x0/d(x0, 0) = d(x0, 0)/2.

Next, we verify that b = 0 is on one side of the hyperplane (h,β) and x0 is on
the other. Observe that hb = 0 < d(x0, 0)/2 = hm. Next,

hx0 = x0 x0

d(x0, 0)
= d(x0, 0) >

d(x0, 0)

2
= hm.

Now we show that all x ∈ C are on the same side of (h,β) as x0, that is
h · x > β for all x ∈ C. Pick any x ∈ C different from x0. By the convexity of C,
(1− λ)x0 + λx ∈ C. From the choice of x0, d(x0, 0)2 ≤ d((1− λ)x0 + λx, 0)2.
Since d(z, 0)2 = z · z we have

d(x0, 0)2 ≤ ((1− λ)x0 + λx, 0)) · ((1− λ)x0 + λx, 0))

≤ d(x0, 0)2 + 2λx0(x − x0)+ λ2d(x − x0, 0)2

which reduces to

0 ≤ 2x0(x − x0)+ λd(x − x0, 0)2.

Since λ can be made arbitrarily small it follows that x0 · (x − x0) ≥ 0 for all
x ∈ C. Using the fact that h = x0/d(x0, 0) and x0 = 2m, we can rewrite this last
inequality as

0 ≤ [d(x0, 0)h](x − 2m),

i.e., hx ≥ 2mh > hm.
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The conclusion of the theorem is usually phrased as follows: a hyperplane H

strictly separates C from b. If one drops the requirement that C be closed, one
obtains a weaker conclusion.

Theorem 3.5 (Weak separating hyperplane theorem) Let C be a convex set
and b �∈ C. Then there is a hyperplane (h,β) such that hb ≤ β ≤ hx for all x ∈ C.

Proof The proof is similar to the previous one. The only difference is in the
choice of the point x0. It is chosen so that d(x0, 0) = inf x∈C d(x, 0). Since it is
possible that x0 = b (e.g., if b were on the boundary of C), the strict inequalities
in the previous theorem must be replaced by weak inequalities.

Theorem 3.6 Let C and D be two non-empty, disjoint, convex sets in R
n. Then

there is a hyperplane (h,β) such that hx ≥ β ≥ hy for all x ∈ C and y ∈ D.

Proof Let K = {z: z = x − y, x ∈ C, y ∈ D}, the set of vectors that can be
expressed as a difference between a vector in C and one in D. The set K is convex
and since C and D are disjoint, does not contain the origin. By the weak separating
hyperplane theorem there is a hyperplane (h,β ′) such that h · 0 ≤ β ≤ h · z for all
z ∈ K . Pick any x ∈ C and y ∈ D then x − y ∈ K . Therefore h · x − h · y ≥ 0
for all x ∈ C and y ∈ D. In particular:

h · x ≥ inf
u∈C h · u ≥ sup

v∈D
h · v ≥ h · y.

Choose β ∈ [inf u∈C h · u, supv∈D h · v] to complete the proof.

Example 9 It is natural to conjecture that Theorem 3.6 can be strengthened to
provide strict separation if we assume C and D to be closed. This is false. Let
C = {(x1, x2): x1 ≥ 0, x2 ≥ 1/x1} and D = {(x1, x2): x2 = 0}. Both sets
are closed, convex and disjoint, see Figure 3.7. However, strict separation is not
possible. To see why not, observe that for all positive numbers n, (n, 1/n) ∈ C

while (n, 0) ∈ D. As n→∞ the point (n, 1/n) approaches (n, 0).

x2

x1

Figure 3.7
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Theorem 3.7 Let C and D be two non-empty, disjoint, closed, convex sets in
R

n withC being bounded. Then there is a hyperplane (h,β) such thathx > β > hy

for all x ∈ C and y ∈ D.

Proof The proof is similar to the proof of the previous theorem. Let K = {z: z =
x − y, x ∈ C, y ∈ D}. The set K is clearly convex. If K is closed we can apply
the strict separating hyperplane theorem to obtain the result.

It remains then to prove that K is closed. Let {zn}n≥1 be a convergent sequence
in K with limit z∗ which may or may not be in K . For each n there is a xn ∈
C, yn ∈ D such that zn = xn − yn. By the Bolzano–Weierstrass theorem the
sequence {xn}n≥1 has a convergent subsequence with limit x∗ ∈ C, say. Since
yn = xn − zn → x∗ − y∗, {yn}n≥1 has a limit, call it y∗ ∈ D. Thus z∗ is the
difference between a vector in C and one in D, i.e., z∗ ∈ K .

The strict separating hyperplane yields the Farkas lemma as a special case as
well as a geometric interpretation of the same. To apply it we need two results.

Lemma 3.8 Let A be an m× n matrix, then cone(A) is a convex set.

Proof Pick any two y, y ′ ∈ cone(A). Then there exist x, x′ ≥ 0 such that

y = Ax, y′ = Ax′.

For any λ ∈ [0, 1] we have

λy + (1− λ)y′ = λAx + (1− λ)Ax ′ = A(λx + (1− λ)x ′).

Since λx + (1− λ)x′ ≥ 0 it follows that λy + (1− λ)y ′ ∈ cone(A).

The proof of the next lemma introduces an argument that will be used again
later.

Lemma 3.9 Let A be an m× n matrix, then cone(A) is a closed set.

Proof First suppose that B is a matrix all of whose columns form a LI set. We
prove that cone(B) is closed. Let {wn} be any convergent sequence in cone(B)

with limit w. We must show that w ∈ cone(B). For each wn there is a xn ≥ 0 such
that wn = Bxn. We use the fact that Bwn converges to show that xn converges.

Since BT B and B have equal rank, BT B is invertible and xn =
(BT B)−1BT (Bxn). Hence, if Bxn → w, xn → (BT B)−1BT w. Therefore
cone(B) is closed.1

Now we show that cone(A) is closed. Let B be any LI subset of columns of A.
By the above cone(B) is closed. The union of all cone(B)’s where B is a LI subset
of columns is cone(A) because every element of cone(A) can be expressed as a
non-negative linear combination of some LI columns of A.
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To see why this last statement is true let b ∈ cone(A). Then there is a vector
λ ≥ 0 such that b = Aλ. Let S = {j : λj > 0} and B the submatrix of A consisting
of the columns in S. Since there may be many ways to express b as a non-negative
linear combination of columns of A, we choose an expression that uses the fewest
columns. Thus b cannot be expressed as a non-negative linear combination of
|S| − 1 or fewer columns of A.

If the columns in S are LI we are done. So, suppose not. Since the columns of B
are LD, ker(B) �= {0}. Since ker(B) �= {0}we can choose a non-zero µ ∈ ker(B).
Consider λ− tµ for any t ∈ R. Notice that b = A(λ− tµ).

Choose t so that λj − tµj ≥ 0 for all j ∈ S and λj − tµj = 0 for at least one
j ∈ S. If such a choice of t exists, it would imply that b is a non-negative linear
combination of |S| − 1 columns of B, a contradiction which proves the claim.

To see that such a t exists suppose first that µj > 0 for all j ∈ S. Then, set
t = minj∈S{λj/µj }. If at least one of µj < 0, set t = −maxµj<0{|λj/µj |}. For
any j such that µj > 0, we have that λj − tµj > 0 since t < 0 and µj , λj ≥ 0.
For any j such that µj < 0 we have that

λj − tµj ≥ λj +
∣∣∣∣ λj

µj

∣∣∣∣µj = 0

by the choice of t .
Now, there are a finite number of such B’s. The union of a finite number of

closed sets is closed, so cone(A) is closed.

Theorem 3.10 (Farkas lemma) Let A be an m × n matrix, b ∈ R
m and F =

{x ∈ R
n: Ax = b, x ≥ 0}. Then either F �= ∅ or there exists y ∈ R

m such that
yA ≥ 0 and yb < 0 but not both.

Proof The ‘not both’part of the result is obvious. Now supposeF = ∅. Then b �∈
cone(A). Since cone(A) is convex and closed we can invoke the strict separating
hyperplane theorem to identify a hyperplane, (h,β) that separates b from cone(A).
Without loss of generality we can suppose that h · b < β and h · z > β for all
z ∈ cone(A). Since the origin is in cone(A) it is easy to see that β < 0.

Let aj be the j th column vector of the matrix A. We show that h · aj ≥ 0.
Suppose not, i.e., h · aj < 0. Notice that λaj ∈ cone(A) for any λ ≥ 0. Thus

h · [λaj ] > β.

Since λ > 0 can be chosen arbitrarily large, h · [λaj ] can be made smaller than β,
a contradiction. Thus h · aj ≥ 0 for all columns j . Hence, y = h is our required
vector.

Unlike our earlier proof of the Farkas lemma we cannot conclude from the
separating hyperplane theorem that when b �∈ cone(A) and A has rank r that there
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are r LI columns of A, {a1, a2, . . . , ar−1} and a y ∈ R
m such that y · aj = 0 for

1 ≤ j ≤ r − 1, y · aj ≥ 0 for all j ≥ r and y · b < 0.

3.2 Polyhedrons and polytopes

This section shows how certain kinds of convex sets can be represented as the
intersection of half spaces or as a weighted average of a finite number of points.

Recall that a set C of vectors is called a cone if λx ∈ C whenever x ∈ C

and λ > 0.

Definition 3.11 A cone C ⊂ R
n is polyhedral if there is a matrix A such that

C = {x ∈ R
n: Ax ≤ 0}.

Geometrically, a polyhedral cone is the intersection of a finite number of half-
spaces through the origin.

Example 10 Figure 3.8 illustrates a polyhedral cone in R
2. The polyhedral cone

is the darker of the regions.

x2

x1

x1 – x2 ≤ 0

– x1 ≤ 0

Figure 3.8

Not every cone is polyhedral. Consider the set in R
2 that is the union of all

vectors of the form (0, z) and (z, 0) where z ≥ 0. This is a cone but is clearly not
polyhedral. In fact it is not even convex.

Returning to Figure 3.8, we see that the polyhedral cone can also be expressed
as the cone generated by the vectors (0, 1) and (1, 1). This is no coincidence.
Given a polyhedral cone, identify the ‘bounding’hyperplanes. The cone generated
by the normal’s to these hyperplanes will coincide with the initial polyhe-
dral cone. In Figure 3.8, the hyperplane −x1= 0 written in dot product form
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is (−1, 0) · (x1, x2) = 0. The normal to this hyperplane is (0, 1). The second
hyperplane is (1,−1) · (x1, x2) = 0 and the corresponding normal is (1, 1).

The converse is also true. Consider a matrix A and the cone, cone(A), generated
by its columns. Then cone(A) will be polyhedral. To see why this is plausible, we
deduce from the Farkas lemma that b ∈ cone(A) iff y · b ≥ 0 for all yA ≥ 0. Let
F = {y: yA ≥ 0}, then a vector a is in cone(A) iff y · a ≥ 0 for every y ∈ F . In
other words,

cone(A) = {a: (−y) · a ≤ 0 ∀y ∈ F }.

Thus cone(A) can be expressed as the intersection of a collection of half spaces
of the form y · a ≤ 0. The next theorem sharpens this conclusion by showing that
cone(A) can be expressed as the intersection of a finite number of half spaces.
This establishes that cone(A) is polyhedral.

Theorem 3.12 (Farkas–Minkowski–Weyl) 2 A cone C is polyhedral iff there is
a finite matrix A such that C = cone(A).

Proof Let A be a m× n matrix with rank r . Let C = cone(A). We prove that C
is polyhedral.

Suppose first that m = r . For each LI subset S of r − 1 columns of A we can
find a non-trivial vector zS such that zS · aj = 0 for all j ∈ S. The system

zS · aj = 0 ∀j ∈ S

consists of r variables and r − 1 LI equations. So, the set of solutions forms
a one-dimensional subspace. In particular every solution can be expressed as a
scalar multiple of just one solution, yS , say. Since there are only a finite number
of choices for S, there are, over all possible choices of LI subsets of columns of
A, a finite number of these yS vectors.

Consider any b �∈ cone(A). By the Farkas lemma, there is an r-set S of LI
columns of A and a vector yb such that yb · aj = 0 for all j ∈ S and yb · aj ≥ 0
for all j �∈ S. Hence yb must be one of the yS vectors identified above. Thus the
set F = ∪b �∈cone(A)y

b is finite.
Any y ∈ F has the property that y · aj ≥ 0 for all columns aj of A. Hence

y · x ≥ 0 for all x ∈ cone(A) because each x is a non-negative linear combination
of columns of A. So, cone(A) ⊆ ∩y∈F {y · x ≥ 0}. If x �∈ cone(A), there is a
y ∈ F such that y · x < 0. Hence cone(A) = ∩y∈F {y · x ≥ 0}.

Now suppose m < r . Without loss of generality we may assume that the first
r rows of A are LI. Let A′ be the matrix of the first r rows of A and b′ the vector
of the first r components of b. By the previous argument we know that cone(A′)
is polyhedral. Let F ′ be the (finite) set of half-spaces in R

r whose intersection
defines cone(A′). We can extend any y ∈ F ′ into a vector in R

m by adding m− r

components all of value zero.
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Consider any b �∈ cone(A). Suppose first that b �∈ span(A). Then there is a
yb ∈ R

m such that ybA = 0 but yb · b < 0. The space of solutions to yA = 0
has dimension m− r . So, we can always choose yb to be one of the bases vectors
of this space. Thus the set F = ∪b �∈span(A)y

b is finite. Observe that for all y ∈ F ,
y · x = 0 for all x ∈ cone(A) and y · b < 0 ∀b �∈ span(A).

We now show that cone(A) = ∩y∈F ′∪F {x: yx ≥ 0}. Clearly cone(A) ⊆
∩y∈F ′∪F {x: yx ≥ 0}. Consider a b �∈ cone(A). If b �∈ span(A), then there is
a y ∈ F such that y · b > 0, i.e., b �∈ ∩y∈F ′∪F {x: yx ≥ 0}. If b ∈ span(A) but
b �∈ cone(A), then b′ �∈ cone(A′). Again, b �∈ ∩y∈F ′∪F {x : yx ≥ 0}.

For the other direction supposeC is a polyhedral cone, i.e. C={x ∈R
n: Ax ≤ 0}

where A is an m× n matrix. By the previous argument the cone generated by the
rows of A, cone(AT ), is polyhedral, i.e. cone(AT ) = {y ∈ R

m: BT y ≤ 0} for
some matrix B. Now the rows of BT (equivalently the columns of B) are in C. To
see why, observe that bj · ak ≤ 0 for any column j of B and row ak of A. Thus
cone(B) ⊆ C. Suppose there is a z ∈ C\cone(B). Since cone(B) is polyhedral,
there is a vector w such that w · bj ≤ 0 for all j and w · z > 0. But this implies
that w ∈ cone(AT ), i.e., w · x ≤ 0 for all x ∈ C a contradiction.

Definition 3.13 A non-empty set P ⊂ R
n is called a polyhedron if there is an

m× n matrix A and vector b ∈ R
m such that P = {x ∈ R

n: Ax ≤ b}.

Thus a polyhedron is the intersection of finitely many half spaces.

Example 11 Figure 3.9 illustrates a polyhedron in R
2.

x2

x1

x1 – x2 ≤ 4
–x1 – x2 ≤ 0

x1 – x2 ≤ 0

Figure 3.9

A set of the form {x ∈ R
n: Ax ≤ b, A′x = b′}, in spite of the equality

constraints, is also called a polyhedron. To see why this is legitimate consider
the set P = {(x1, x2, x3) ∈ R

3: x1 + x2 + x3 ≤ 3, x3 = 1}. We can use the
equality constraint x3 = 1, to eliminate the variable x3 from the system to yield
Q = {(x1, x2) ∈ R

2: x1 + x2 ≤ 2}, which is a polyhedron in R
2. Every point in

P corresponds to a point in Q and vice-versa. Because of this correspondence we
can interpret P to be a polyhedron but one ‘living’ in a lower dimensional space.
In general, the set of feasible solutions to a system of inequalities and equations
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in R
n can always be interpreted to be a polyhedron in a lower dimensional space.

The inequality representation in lower dimensions is obtained by using the equality
constraints to eliminate some of the variables.

Definition 3.14 Let S ⊂ R
n. A vector x can be expressed as a convex com-

bination of vectors in S if there is a finite set {v1, v2, . . . , vm} ⊂ S such that
x =∑m

j=1 λjv
j where

∑m
j=1 λj = 1 and λj ≥ 0 ∀j .

Definition 3.15 Let S ⊂ R
n. The convex hull of S, conv(S), is the set of all

vectors that can be expressed as a convex combination of vectors in S.

Definition 3.16 A set P ⊂ R
n is a called a polytope if there is a finite set S ⊂ R

n

such that P = conv(S).

Example 12 The polyhedron of Figure 3.9 is the convex hull of (0, 0), (0, 1) and
(1, 0) and so is a polytope. Not every polyhedron is a polytope as Figure 3.10
shows.

x2

x1

x1 + x2 ≤ 4

Figure 3.10

Both the Farkas–Minkowski–Weyl theorem and the next result are analogs of
the bases theorem of linear algebra. The set of all linear combinations of a finite
set of vectors is a vector subspace and, every (finite dimensional) vector subspace
can be described as the set of all linear combinations of a finite set of vectors (the
bases).

The Farkas–Minkowski–Weyl theorem says that the set of all non-negative
linear combination of a finite number of vectors is a polyhedral cone. Further, every
polyhedral cone can be described as the set of all non-negative linear combination
of a finite number of vectors.

The next result says that every convex combination of a finite number of vec-
tors is a polyhedron. Further, every polyhedron (provided it is bounded) can be
expressed as the convex hull of a finite set of vectors.

Theorem 3.17 (Resolution theorem) A non-empty P ⊂ R
n is a polyhedron iff

P = Q+ C, where Q is a polytope and C is a polyhedral cone.
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Proof Let P = {x ∈ R
n: Ax ≤ b} be a polyhedron and consider the polyhedral

cone {(x, u): x ∈ R
n, u ≥ 0, Ax − ub ≤ 0}. It can, by the previous theorem,

be generated by finitely many vectors of the form {(xk , uk)}k≥1. By normalizing
we can assume that uk = 0, 1 for all k. Let Q be the convex hull of vectors of the
form (xk , 0) and C be the cone generated by the vectors of the form (xk , 1). It is
easy to see that P = Q+ C.

Now suppose P = Q + C where Q = conv({x1, x2, . . . , xm}) and C =
cone({y1, y2, . . . , yt }). Then x ∈ P iff (x, 1) is in the cone generated by
{(x1, 1), . . . , (xm, 1), (y1, 0), . . . , (yt , 0)}. By the previous theorem such a cone
is polyhedral, i.e., it is equal to {(x, u): x ∈ R

n, u ≥ 0, Ax−ub ≤ 0} for suitable
A and b. Hence x ∈ P iff Ax ≤ b.

Example 13 Let P = {(x1, x2): x1 + x2 ≤ 4}. Choose Q = {(2, 2)} and C

would be the finite cone generated by (−1, 1), (1,−1) and (−1,−1). Any element
of Q+ C will have the form

(2, 2)+ λ1(−1, 1)+ λ2(1,−1)+ λ3(−1,−1)

= (2− λ1 + λ2 − λ3, 2+ λ1 − λ2 − λ3).

To verify that this element is in P we add the two components

2− λ1 + λ2 − λ3 + 2+ λ1 − λ2 − λ3 = 4− 2λ3 ≤ 4.

This establishes thatQ+C⊆P . We leave it to the reader to verify thatP ⊆Q+C.
The example is instructive because it shows that the decomposition implied by the
Resolution theorem need not be unique. We could have chosen Q = {1, 3} for
example.

We will say thatP is generated by the vectors {x1, x2, . . . , xm} and the directions
{y1, y2, . . . , yt } if

P = conv({x1, x2, . . . , xm})+ cone({y1, y2, . . . , yt }).

It is easy to see that P is a polytope iff P is a bounded polyhedron.

Definition 3.18 Let S ⊂ R
n be convex. An extreme point of S is a point that

cannot be expressed as a convex combination of any points in S.

Definition 3.19 Let S ⊂ R
n be convex. A ray of S is a vector r such that

x + λr ∈ S for all x ∈ S and λ ≥ 0. An extreme ray is one that cannot be
expressed as a non-negative linear combination of other rays.

If P has any extreme points, then they must be contained in the polytope Q

identified by the resolution theorem. In fact, in this case we can take Q to be the
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convex hull of extreme points of P and C to be the set of extreme rays of P . If P
has no extreme points then the extreme points of Q will not be extreme points of
P . Consider the polyhedron from example 4, P = {(x1, x2): x1 + x2 ≤ 4}. This
is a polyhedron without extreme points. Nevertheless, P = Q+C where Q �= ∅.
In other words, in the decomposition of P into Q and C, the extreme points of Q
need not be extreme points of P .

If P is a polytope, then in the resolution theorem decomposition, C = ∅. In
this case P can be described as the convex combination of its extreme points or
as the intersection of a finite number of half spaces.

Theorem 3.20 (Caratheodory theorem)3 Let S ⊂ R
n. Then every x ∈ conv(S)

can be expressed as a convex combination of at most n+ 1 points in S.

Proof Suppose thatx =∑m
j=1 λjx

j wherem ≥ n+ 2, {xj }j≥1 ∈ S,
∑m

j=1 λj = 1
and λj ≥ 0 for all j . It suffices to show that x can be written as a convex combi-
nation of m− 1 points in S. We may suppose that λj > 0 for all j , otherwise we
are done.

Let A be a matrix whose columns are the set {xj }j≥1 ∈ S and e the n-vector all
of whose components are equal to 1. Then

[
A

e

]
[λ] =

[
x

1

]
.

Since m ≥ n + 2, the columns of [ Ae ] are LD. Thus ker([ Ae ]) �= ∅. Choose any
non-zero r ∈ ker([ Ae ]) and consider λ− θr where θ ∈ R will be chosen later. Then

x = A(λ− θr).

If we can choose θ so that λj − θrj ≥ 0 ∀j , λj − θrj = 0 for at least one j

and
∑

j∈S λj − θrj = 1 we are done. For then we have expressed x as a convex
combination of m− 1 vectors in S. Repeating this argument completes the proof.

It remains then to show that such a θ can be chosen. Choose θ so that
1/θ = maxi ri/λi and let k be the index where this maximum is achieved. Since∑m

j=1 rj = 0, at least one ri > 0 and so θ > 0. Set qi = λi − θri ≥ 0. Notice that
qk = 0 and

∑m
k=1 qi = 1. However,

x =
m∑

j=1

λjx
j =

m∑
j=1

qjx
j + θ

m∑
j=1

rj x
j =

∑
j �=k

qj x
j .

A consequence of the Caratheodory theorem is that the convex hull of a compact
set is also compact.
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3.3 Dimension of a set

To motivate the definition of dimension of a set, consider the the polyhedron
P = {(x1, x2) ∈ R

2: x1 + x2 = 2}. While P sits in a two dimensional space,
a sketch of P reveals that it is a straight line, the quintessential one dimensional
object. Algebraically, each element ofP can be described by a single number. Once
one has specified x1, x2 is determined. The definition of dimension reconciles the
idea of a low dimensional object living in a higher dimensional space.

Definition 3.21 The collection {x1, x2, . . . , xk} ⊂ R
n is affinely independent

if the collection {x2 − x1, x3 − x1, . . . , xk − x1} is LI.

The cardinality of the largest set of affinely independent vectors in R
n is n+ 1.

Take n LI basis vectors and the zero vector.

Definition 3.22 Let S ⊂ R
n and suppose the cardinality of the largest set of

affinely independent vectors in S is k+ 1. Then, the dimension of S, dim(S), is k.

In other words, the dimension of a set S is the smallest dimensional subspace
that contains the set. A set S ⊂ R

n is called full dimensional if dim(S) = n.

Example 14 LetP = {(x1, x2) ∈ R
2:x1+ x2 = 2}. Consider the following set of

vectors: {(1, 1), (2, 0)} ⊂ P . This is clearly affinely independent. So, dim(P ) ≥ 1.
To show that dim(P ) = 1, it suffices to show that P cannot contain a set of three
affinely independent vectors.

To see why, suppose not. Let y1, y2, y3 be three affinely independent vectors
in P . Then y2 − y1, y3 − y1 are LI. We know that

(y2
1 − y1

1)+ (y2
2 − y1

2) = 0,

(y3
1 − y1

1)+ (y3
2 − y1

3) = 0.

So, the vectors y2 − y1, y3 − y1 are of the form (a,−a) and (b,−b) where
a = y2

1 − y1
1 and b = y3

1 − y1
1 . If the pair (a,−a) and (b,−b) are identical we

are done. If not, one of them is non zero. Suppose then a �= 0. Notice now that

b

a
(a,−a)+ (b,−b) = (0, 0)

contradicting the fact that y2 − y1, y3 − y1 are LI.

If one or more of the inequalities describing a polyhedron hold at equality, then
the polyhedron is not full dimensional. If a polyhedron is not full dimensional,
then at least one of the inequalities describing it hold at equality.

More generally, if we take a set S ⊂ R
n and a half-space, H , then S ∩ H will

have a dimension one less than S.
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3.4 Properties of convex sets

Theorem 3.23 (Krein–Millman theorem) Let S ⊂ R
n be compact, convex and

K the convex hull of its extreme points. Then S = K .

Proof The proof will be by induction on the dimension, n of the space. It is
clearly true for n = 1. Suppose true for n− 1, and S \K �= ∅.

OtherwiseK = S. SinceK is closed, by the strict separating hyperplane theorem
there is a hyperplane (h,β) that separates y from K , i.e., h · y < minx∈K hx.

Let c = minx∈S h ·x. By the Weierstrass theorem c exists and arg minx∈S h ·x ⊂
S. The hyperplane {x: h · x = c} is disjoint from K , contains S in one of its
half-spaces and contains at least one boundary point of S.

Now H is convex and so H ∩ S is convex. Further H is closed so, H ∩ S is
closed and since S is bounded so is H ∩ S. However H ∩ S exists in dimension
n − 1 and the induction hypothesis applies. So, H ∩ S has extreme points and
every point in H ∩ S is in the convex hull of these extreme points.

It remains to prove that every extreme point of H ∩ S is an extreme point of S,
suppose not. Let x be an extreme point of H ∩ S. Since x is not an extreme point
of S exists y, z ∈ S such that x = λy + (1− λ)z for λ ∈ (0, 1). Then

c = h · x = λh · y + (1− λ)h · z ≥ c.

Thus h ·y = h ·z = c, i.e., y, z ∈ H ∩S contradicting the fact that x is an extreme
point of H ∩ S.

Lemma 3.24 (Intersection lemma) Let C1,C2, . . . ,Cm ⊂ R
n be non-empty,

compact, convex sets such that ∪mj=1C
j is convex. If the intersection of any m− 1

of them is non-empty then ∩mj=1C
j �= ∅.

Proof The proof is by induction. Start with the base case of m = 2. If C1∩C2 �=
∅ we are done. Otherwise, by Theorem 3.7 there is a hyperplane, H , that strictly
separates C1 from C2. In particular H ∩ C1 = ∅ and H ∩ C2 = ∅. Pick an
x1 ∈ C1 and x2 ∈ C2. Since x1 and x2 lie on either side of H the line segment
that joins them must pass through H . Since C1 ∪ C2 is convex, this line segment
lies in C1 ∪ C2, contradicting the fact that H separates C1 from C2.

Now suppose the lemma is true for all m ≤ r for some r > 2. We show that
it must be true for m = r + 1. Let K = ∩rj=1C

j . By the induction hypothesis,

K ,Cr+1 �= ∅. If K ∩ Cr+1 �= ∅ we are done. So, for a contradiction, suppose
otherwise. Since K and Cr+1 are compact and convex there is by Theorem 3.7 a
hyperplane H that strictly separates them. In particular Cr+1 ∩H = ∅.

Set Kj = Cj ∩H for all j . We show that K1,K2, . . . ,Kr satisfy the hypothesis
of the lemma. First,

r⋃
j=1

Kj =
r⋃

j=1

[Cj ∩H ] ∪ [Cr+1 ∩H ] =
[ r+1⋃

j=1

Cj

]
∩H .
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Since ∪r+1
j=1C

j and H is convex, their intersection is convex so ∪r
j=1K

j is
convex.

Now the intersection of any r of {C1, C2, . . . , Cr} overlaps with K and Cr+1

and therefore with H . Thus any r − 1 of {K1, K2, . . . , Kr} have non-empty inter-
section. Therefore, by the induction assumption, ∩r

j=1K
r = K ∩ H �= ∅, which

contradicts the fact that H strictly separates K from Cr+1. This contradiction
proves the result.

Theorem 3.25 (Helly’s theorem)4 Let C1, C2, . . . , Cm be non-empty, compact
convex subsets of R

n where m ≥ n + 1. If the intersection of any n + 1 of them is
non-empty then ∩m

j=1C
j �= ∅.

Proof We prove something a little stronger. If every subset of {C1, C2, . . . , Cm}
of size r ≥ n + 1 has non-empty intersection then each collection of size r + 1
has non-empty intersection.

Set K−i = ∩j≤r+1,j �=iC
j for i = 1, 2, . . . , r + 1. By assumption each K−i

is non-empty. For each i = 1, 2, . . . , r + 1 choose a xi ∈ K−i and let S =
conv(x1, x2, . . . , xr+1). Clearly S ⊆ ∪r+1

j=1C
j . Set T j = Cj ∩ S. Notice that each

T j is, non-empty, compact and convex. Furthermore ∪r+1
j=1T

j = S, i.e., the union
of the T j ’s is convex. Therefore the conditions of the intersection lemma are
satisfied by the T j ’s. Hence ∩r+1

j=1T
j �= ∅ which implies that ∩r+1

j=1C
j �= ∅.

Any convex set can be continuously transformed into any other convex set of
the same dimension.

Definition 3.26 A set A is topologically equivalent to a set B if there exists
a continuous function g with continuous inverse such that g(A) = B and
g−1(B) = A.

The closed n-ball of center c in R
n is the set {x ∈ R

n: d(x, c) ≤ 1}. Note that
a closed n-ball is of dimension n.

Theorem 3.27 A non-empty compact convex set S ⊂ Rn of dimension m ≤ n is
topologically equivalent to a closed ball in R

m.

Proof Since S is of dimension m we can find m + 1 affinely independent vectors,
{x0, x1, . . . , xm} in S. Let c = (

∑m
j=0 xj )/(m + 1). By convexity of S, c ∈ S.

Let K = span(x1 −x0, x2 −x0, . . . , xm −x0) and H the hyperplane consisting
of all points that can be written as c + z where z ∈ K . Observe that S ⊂ H .

Let B be a closed m-ball centered at c. Notice that B ⊂ H . Every point in B

can be described in terms of its distance µ and direction u from c. Direction can
always be specified in terms of a unit vector in K and distance from c is a number
in [0, 1]. We show that a similar description is possible for every point in S.
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For each unit vector u in K , let ρ(u) be the largest positive number such that
c + ρ(u)u ∈ S. In words, ρ(u) is the distance from c along u to the boundary of
S. Convexity and compactness of S make this well defined.5

We show that ρ(u) is continuous in u. Suppose a convergent sequence
{ur}r≥1 with limit u∗. We must show that ρ(ur) → ρ(u∗). Suppose not. The
sequence {ρ(ur)} is bounded, so by the Bolzano-Weierstrass theorem, it contains
a convergent subsequence with limit ρ∗ �= ρ(u∗), say.

Consider {c+ ρ∗ur}r≥1 and {c+ ρ(u∗)ur}r≥1. Each is a sequence of boundary
points with a limit that must also be a boundary point of S. The limits are c+ρ∗u∗
and c + ρ(u∗)u∗ respectively. But this implies two boundary points in the same
direction, u∗, from c which cannot be.

Given the ρ function, each point x ∈ S can be expressed as c + µρ(u)u for
some unit vector u and µ ∈ [0, 1]. As in the ball, each point is described by a
direction, u, and a distance as measured by the fraction of the total distance to the
boundary from c in direction u.

We construct the continuous function g and its inverse as follows. To each point
(µ, u) in B we associate a point c+µρ(u)u in S. To each point x = c+µρ(u)u in
S we associate the point (µ, u) in B. Continuity follows from continuity of ρ.

3.5 Application: linear production model

We consider a very simple model of an economy in which all relationships between
input and output are linear. The ingredients of the model are listed below:

• A non-negative input vector x ∈ R
m.

• A non-negative output vector y ∈ R
n.

• Anm×nproduction matrix, P that relates output to inputs as follows: y = xP .
Here pij is the amount of the j th output generated from one unit of the ith
input.

• A non-negative resource/capacity vector b ∈ R
k that lists the amount of raw

materials available for production.
• An m×k non-negative consumption matrix C that relates inputs to resources:

xC ≤ b. Here cij is the amount of resource j consumed to produce one unit
of input i.

The input space is simply X = {x ∈ R
m: xC ≤ b, x ≥ 0} and the output space

is Y = {y ∈ R
n: y = xP , x ∈ X, y ≥ 0}.

Lemma 3.28 There is a matrix D with n rows and a vector r such that Y = {y ∈
R

n: yD ≤ r}.

Proof The set X is a polyhedron. In fact it is a polytope since X has no rays.
This follows from the fact that C is non-negative and that xC ≤ b.

Let x1, x2, . . . , xk be the extreme points of X. Pick any y ∈ Y . Then there is an
x ∈ X such that y = xP . Since x ∈ X, x can be written as a convex combination
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of extreme points of X, i.e.,

x = λ1x
1 + λ2x

2 + · · · + λkx
k .

Thus

y = λ1x
1P + λ2x

2P + · · · + λkx
kP .

In other words, each y ∈Y can be written as a convex combination of
{x1P , x2P , . . . , xkP }. It is easy to see that any convex combination of these points
is also in Y . Hence Y is a convex combination of a finite number of points. Since
Y is a polytope, it is a polyhedron and the lemma follows.

An output vector y∗ is called efficient if there is no other y ∈ Y such that y ≥ y∗.

Theorem 3.29 A vector y∗ ∈Y is efficient iff there exists a non-negative, non-
trivial price vector p such that y∗ · p ≥ y · p for all y ∈ Y .

Proof If y∗ · p ≥ y · p ∀y ∈ Y and some price vector p then y∗ is clearly
efficient. Suppose now that y∗ is efficient.

From Lemma 3.28, we know that there is a matrix D and vector r such that
Y = {y ∈ R

n: yD ≤ r}. Let S = {j : y∗ · dj = rj } where dj is the j th column of
the matrix D. We show that S �= ∅. Suppose not. Then y∗ · dj < rj for all j . Let
w be the vector obtained from y∗ by adding ε > 0 to the first component of y∗.
Then w · dj = y∗ · dj + εd1j . The assumption that S = ∅ allows us to choose ε

sufficiently small so that y∗ · dj + εd1j ≤ rj . Thus w ∈ Y and w ≥ y∗ violating
the efficiency of y∗.

Consider now the system {z · dj ≤ 0}j∈S . We claim that there is no non-trivial
non-negative solution z. If not, there is an ε > 0 sufficiently small such that

(y∗ + εz)dj ≤ rj ∀j ,

implying that (y∗ + εz) ∈ Y , contradicting the efficiency of y∗.
Since the system {z · dj ≤ 0}j∈S does not admit a non-trivial non-negative

solution, we have by the Farkas lemma, non-negative numbers {λj }j∈S such that∑
j∈S λjd

j > 0. Setting p =∑j∈S λjd
j completes the proof.

Problems

3.1 Prove the following facts about convex sets:

1. The set F = {x: Ax = b, x ≥ 0} is convex.
2. If C is convex show that αC = {y: y = αx, x ∈ C} is convex for all

real α.
3. If C and D are convex sets, then the set {y: y = x + z, x ∈ C, z ∈ D}

is convex.
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4. The intersection of any collection of convex sets is convex.
5. Prove or disprove: the union of convex sets is convex.

3.2 Let C be a convex set and b not in the closure of C. Show that there is vector
h such that hb < inf x∈C hx.

3.3 In the plane draw the cone C generated by the infinite sequence of vectors
aj = (j , 1), j = 1, 2, 3, . . .

1. Is C closed?
2. Let b = (1, 0). Is b ∈ C? If not, is there a point in C closest to b?
3. Let A be the 2 × ∞ matrix whose j th column is aj . Does the Farkas

lemma hold for A?

3.4 If S ⊂ R
n is finite, show that conv(S) is a closed set. Is this statement still

true if S is not finite?
3.5 Sketch the convex hull of the following set: {(x1, x2): x2 = x2

1 , 0 ≤ x1 ≤ 1}.
3.6 Let S ⊂ R

n be finite and b �∈ conv(S). Prove that

max
x∈conv(S)

d(x, b) = max
x∈S d(x, b).

Show by example that the following is false:

min
x∈conv(S)

d(x, b) = min
x∈S d(x, b)

3.7 Let A be a m × n matrix K = {y: s.t. y = Ax, ‖x‖ ≤ 1}. Show that K is
convex.

3.8 Let A be a m × n matrix and b ∈ R
m. Show that {x: Ax = b} ∩ {x: ‖x‖ ≤

1} �= ∅ iff for all non-trivial u ∈ R
m,

u · b ≤ max{u · Ax: ‖x‖ ≤ 1}.

3.9 Let P = {(x, y): Ax+By ≤ b}where x ∈ R
n, y ∈ R

k , b ∈ R
m, A is a m×n

matrix and B is a m × k matrix. Assume P �= ∅. Let Q = {x ∈ R
n: ∃y ∈

R
k s.t. (x, y) ∈ P }.

1. Suppose that uB = 0, u ≥ 0 has a non-trivial solution. Use the
Farkas lemma to show that Q is defined by the following collection
of inequalities:

{uAx ≤ ub: u ≥ 0, uB = 0, u �= 0}

2. Suppose that the only solution to uB = 0, u ≥ 0 is the trivial one. Show
that Q = R

n.
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Notes

1 You should convince yourself that the limit of xn is non-negative.
2 Hermann Minkowski (1864–1909) was a teacher of Albert Einstein of whom he wrote:

‘The mathematical education of the young physicist [Albert Einstein] was not very solid,
which I am in a good position to evaluate since he obtained it from me in Zurich some
time ago’.

Einstein once referenced some of Minkowski’s work in a lecture in this way: ‘This
has been done elegantly by Minkowski; but chalk is cheaper than grey matter, and we
will do it as it comes.’

Hermann Klaus Hugo Weyl (1885–1955) is more famous for his contributions to
Quantum Mechanics. Of taxes he once observed, ‘Our federal income tax law defines
the tax y to be paid in terms of the income x; it does so in a clumsy enough way by pasting
several linear functions together, each valid in another interval or bracket of income’.

3 Constantin Caratheodory (1873–1950). Though Greek, he was born in Germany and
raised in Brussels. He did spend a brief portion of his life in Greece, where he was
instrumental in saving the library at the University of Smyrna when Smyrna was burnt
by the Turks in 1922.

4 Eduard Helly (1884–1943). A year into the First World War, 1915, he was shot and
captured by the Russians. Though the war ended in 1918, he was not released. It took
him another two years to get home to Austria via Japan and Egypt. The bullet destroyed
his health while the war did the same for his mathematical career.

5 To see why convexity matters, suppose S were an annulus and c its center.
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4 Linear programming

The problem of optimizing a linear function subject to linear inequality and equality
constraints is called linear programming (LP). Here is an example of an LP:

max x1 + 2x2

s.t. x1 + 8
3x2 ≤ 4,

x1 + x2 ≤ 2,
2x1 ≤ 3,

x1, x2 ≥ 0.

Here ‘s.t.’ is an abbreviation for ‘subject to’. The set of variables that satisfy the
constraints forms a polyhedron. This polyhedron, the shaded part of Figure 4.1, is
called the feasible region of the LP. In this case the feasible region is a polytope.

A geometrical rendition of our optimization problem is to find a point in the
feasible region that maximizes f (x1, x2) = x1 + 2x2. Observe that the optimal
solution cannot be in the interior of the feasible region. Suppose it were. Call
it (a, b). Let ε > 0 be sufficiently small such that (a + ε, b + ε) is feasible.
Such an ε exists because (a, b) is in the interior of the feasible region. Notice that

x2

x1x1 + x2 = 4

x1 + x2 = 4

2x1 = 3

A

B
8 
3

Figure 4.1
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f (a + ε, b + ε) > f (a, b), contradicting the optimality of (a, b). Therefore that
the optimal solution must lie on the boundary of the feasible region. In fact we
can conclude more: one of the extreme points of the feasible region must be an
optimal solution. To illustrate, suppose there is an optimal solution in the interior
of the boundary between the points A and B marked on the figure. Call it (a, b).
Since this point is on the boundary our previous argument does not apply because
(a+ε, b+ε)need not be feasible. The idea is to perturb (a, b) to a new feasible point
that is still on the same boundary segment. Consider the point (a + µ1, b + µ2).
We want this to be on the same boundary segment that (a, b) is on. That boundary
is defined by the equation x1 + x2 = 2. So we need a + µ1 + b + µ2 = 2. Since
a + b = 2 it follows that µ1 + µ2 = 0. We must ensure that the µ1 and µ2 are
chosen so that (a + µ1, b + µ2) is feasible. Given the location of (a, b) we know
that all the other inequalities are satisfied strictly. That is a + 8/3b < 4, 2a < 3
and a, b > 0. So, for |µ1|, |µ2| sufficiently small (a+µ1, b+µ2) will be feasible.

Notice that f (a + µ1, b + µ2) = a + 2b + µ1 + 2µ2 = a + b + µ2 because
µ1=−µ2. If we chooseµ2 > 0 thenf (a+µ1, b+µ2)> f (a, b)which contradicts
the optimality of (a, b).

In this case, the optimal solution is at the point A (which the reader should
verify). It is formed by the intersection of the lines x1+x2 = 2 and x1+8/3x2 = 4.

If an LP has inequality constraints, the constraints that are satisfied at equality
by a feasible solution are said to bind at that solution. In our example, the con-
straints x1 + x2≤ 2 and x1 + 8/3x2≤ 4 bind at an optimal solution. They will be
called (when there is no ambiguity) binding constraints. The function cx being
optimized is called the objective function and the matrix A defining the feasi-
ble region is called the constraint matrix. The vector b is called the vector of
right-hand sides or RHS for short.

Every linear programming problem can be written in the following
standard form:

max cx

s.t. Ax = b

x ≥ 0

To convert any LP into into this form the following modifications listed below are
performed:

• If x is unrestricted then substitute xj = x+j − x−j x+j , x−j ≥ 0.
• If a constraint is in the form

∑n
j=1 aij xj ≤ bi then add a slack variable si ≥ 0

such that
∑n

j=1 aij xj + si = bi .
• If a constraint is in the form

∑n
j=1 aij xj ≥ bi then subtract a surplus variable

si ≤ 0 such that
∑n

j=1 aij xj − si = bi .
• If the objective is min cx then replace it with it: max−cx.
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• To change
∑n

j=1 aij xj = bi to an inequality constraint, replace equa-
lity with these two sets of inequality constraints:

∑n
j=1 aij xj ≤ bi and

−∑n
j=1 aij xj ≤ −bi .

The standard form of the LP above is

max x1 + 2x2

s.t. x1 + 8
3x2 + s1 = 4,

x1 + x2 + s2 = 2,
2x1 + s3 = 3,

x1, x2, s1, s2, s3 ≥ 0.

Exactly one of three things will be true of every LP:

1. It is infeasible, meaning that there is no solution to {x ∈ R
n+: Ax = b}. As an

example consider max{x: s.t. x ≤ 5, x ≥ 6}.
2. The optimal objective function value is unbounded. That is for all positive

real numbers t there is a z ∈ {x ∈ R
n+: Ax = b} such that c · z ≥ t . As an

example consider max{x: s.t. x ≥ 6}. It is important to distinguish between
an LP that is unbounded and one that has an unbounded feasible region. An
LP with unbounded objective function value will have a unbounded feasible
region. The converse is not true. The following LP: min{x: x ≥ 3} has an
unbounded feasible region but does not have an unbounded optimal objective
function value.

3. It has a finite optimal objective function value. As an example consider
max{x: s.t. x ≤ 5}. Note that an LP can have multiple optimal solutions.
For example max{x1 + x2: s.t. x1 + x2 ≤ 1}.

To get a sense of the importance of the subject of this chapter, we recount the
following from Nicholas Hall1 while teaching a class on linear programming. ‘A
student of mine once prefaced his request for a grade change with the observation
that three important things had come out of Second World War. The first was
women in the workforce, the second was the atomic bomb and the third was linear
programming.’

The reader can contact Professor Hall to discover the fate of the students request.
The subject of linear programming is older than the Second World War.

Joseph Fourier (1768–1830), of ‘series’ fame, was amongst the first to inves-
tigate this subject and point outs its importance to mechanics and probability
theory. The problem that attracted his attention was that of finding a least max-
imum deviation fit to a system of linear equations. He reduced the problem
to that of finding the lowest point of a polyhedron.2 His suggested solution to
this problem can be viewed as a precursor to the modern day simplex algo-
rithm devised by George Dantzig in 1947. Dantzig at the time was engaged in
project SCOOP (Scientific Computation of Optimum Programs), an American
research program that resulted from the intensive scientific activity during the
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Second World War, aimed at rationalizing the logistics of the war effort. In the
Soviet Union, Leonid Kantorovitch (1912–1986) had already proposed a sim-
ilar method for the analysis of economic plans, but his contribution remained
unknown to the general scientific community until much later. Kantorovitch
but not Dantzig was awarded the Nobel prize for the development of linear
programming.3

4.1 Basic solutions

Consider the standard form LP, max{cx: Ax= b, x ≥ 0}. Assume it to be fea-
sible. Before proceeding we describe a standard argument that allows us to
suppose that the constraint matrix A has rank m and that n≥m. Suppose
that b∈ span(A), otherwise the LP is infeasible and our story ends. Consider
the augmented matrix [A|b]. Since b ∈ span(A), the rank of A and [A|b]
coincide.

If the rank of [A|b] is less than m, it means that some row of [A|b] is a linear
combination of other rows of [A|b]. In other words one of the equations in the
system Ax = b is implied by a linear combination of the others. This equation is
redundant and can be eliminated without changing the set of solutions.

If m > n+ 1, then [A|b] must have at least one redundant row. This is because
the rows of [A|b] as vectors live in a space of dimension n + 1. Thus any set
of at least n + 2 vectors must be LD. There must be a redundant equation and
we can delete the corresponding row of [A|b]. This process can be repeated
as long as the number of rows of [A|b] exceeds the number of its columns.
Therefore, we may suppose that both the number of rows as well as the rank
of [A|b] coincide and cannot exceed n + 1. Thus the rank of A can be assumed
to be m. Again, thinking of the rows as vectors in R

n, since we have m LI row
vectors, m ≤ n.

In this section we derive an algebraic characterization of the extreme points of
{x: Ax = b, x ≥ 0}.

Definition 4.1 Given Ax = b, where A is an m × n matrix, let B be a m × m

non-singular submatrix of A. B is called a basis of A. Let the rest of the matrix A

be submatrix N ; then Am∗n = [Bm∗m|Nm∗(n−m)].

Variables associated with the columns of B will be called basic, and the others
non-basic.

Definition 4.2 Let B be a basis for A. Set xj = 0 if j ∈ N . For xj s.t.j ∈ B,
choose them so as to solve BxB = b. Notice the choice will be unique because B

is a non-singular square matrix. The resulting solution is called a basic solution.

Definition 4.3 If a basic solution x associated with the basis B, x = [xB |0] =
[B−1b|0], is non-negative then x is a basic feasible solution to the LP.
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Example 15 Consider the system

x1 + x2 + x3 = 1,
2x1 + 3x2 = 1,

x1, x2, x3 ≥ 0.

The constraint matrix is[
1 1 1
2 3 0

]
.

Here is one basis:[
1 1
2 0

]
.

To find the basic solution associated with this basis, we set x2 = 0 and solve

x1+ x3 = 1,

2x1+ 0x3 = 1.

So, the basic solution is x1 = 1/2, x2 = 0 and x3 = 1/2, which also happens to
be a basic feasible solution.

Yet another basis is[
1 1
2 3

]
.

The basic solution associated with this basis is found by setting x3 = 0 and solving

x1+ x2 = 1,

2x1+ 3x2 = 1.

The basic solution is x1 = 2, x2 = −1 and x3 = 0 which is not a basic feasible
solution.

Lemma 4.4 If the set {x: Ax = b, x ≥ 0} is feasible, then it has a basic feasible
solution.

Proof Since the LP is feasible, b ∈ cone(A). From the proof of Lemma 3.8, we
know that b can be expressed as a non-negative linear combination of LI columns
of A, B say. If these columns form a basis we are done. If not, since A is of full
rank, we can augment B with additional columns to form a basis. The x variables
associated with these columns would be set to zero, this completes the proof.
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For the reader who skipped the proof of Lemma 3.8 a proof is provided below.
Let x′ be a feasible solution. Then bi = ∑

j∈S aij x
′
j where S = {j : x′j > 0}.

We ignore terms in {j : x′j = 0} since they are zero. If {aj : j ∈ S} are linearly

independent we are done.4 If the cardinality of this set is less than m, throw in
some additional columns of the A matrix to produce a set of m LI vectors. We can
do this because of the full rank assumption. The variables associated with these
extra columns take the value zero. Then x′ is a basic feasible solution.

Assume {aj : j ∈ S} are not linearly independent. Then there exists {λj } not
all zero s.t.

∑
j∈S λja

j = 0. Let xnew = x′ − θλ ≥ 0 by picking θ as small
as necessary. The columns of A associated with the positive components of xnew

involve one fewer dependent column. Next, we verify that xnew is feasible.

Axnew = A(x′ − θλ) = Ax′ − θAλ

= Ax′ − θ
∑
j∈S

λj ∗ aj = Ax′ − θ ∗ 0 = Ax′ = b.

If the columns associated with the non-zero components of xnew are LD, repeat
the argument above. As there are finite number of columns and the method elim-
inates one column at each iteration, it will terminate after a finite number of
steps.

Lemma 4.5 If x∗ is a basic feasible solution of the set {x: Ax = b, x ≥ 0}, then
x∗ is an extreme point of the set.

Proof If x∗ is not an extreme point there exist y and z feasible, distinct from
x∗, such that x∗ = λy + (1 − λ)z. Let B be the basis associated with x∗ and set
x∗ = [xB |xN ], A = [B|N ], y = [yB |yN ], z = [zB |zN ].

From definitions λyN + (1 − λ)zN = xN = 0 ⇒ yN = zN = 0 = xN .
Feasibility implies

Ay = b⇒ ByB = b

and

Az = b⇒ BzB = b.

But xB is the unique solution to Bx = b, then xB = zB = yB , so x∗ = z = y. As
a result there do not exist z,y different than x∗. Therefore x is an extreme point.

The non-negativity restriction is crucial. The system x1 + x2 = 4 has basic
solutions, but no extreme points.

Lemma 4.6 Every extreme point of the set {x: Ax = b, x ≥ 0} is a basic feasible
solution.
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Proof Let x∗ be an extreme point and let B = {aj : x∗j > 0} and N = {aj : x∗j =
0}. If B is invertible, then we are done. If B is not invertible, there exists yB �= 0
such that ByB = 0. Let y = [yB |yN ] where yN = 0.

Define x1 = x∗ + θy ≥ 0 and x2 = x∗ − θy ≥ 0 by choosing θ small enough.
x1 and x2 are feasible because Ay = 0 and Ax∗ = b. But this contradicts the fact
that x∗ is an extreme point since

x∗ = 1
2x

1 + 1
2x

2.

Theorem 4.7 (Fundamental theorem of linear programming) Let P =
{x: Ax = b, x ≥ 0}. If A is of full row rank and maxx∈P cx has a finite optimal
solution, there is an optimal solution at one of the extreme points of P .

Proof From the Resolution theorem we can express P as Q + C where Q is a
polytope and C a cone. By Lemma 4.4 we know that P has at least one extreme
point. Therefore Q will be the convex hull of the extreme points of P . Every
x ∈ P can be expressed as a convex combination of extreme points of Q and a
non-negative linear combination of the extreme rays of C. Let {et }t≥1 be the set
of extreme points of Q and {rk}k≥1 the extreme rays of C. Let x∗ be an optimal
solution of the LP. Then

x∗ =
∑
t≥1

λte
t +

∑
k≥1

µkr
k ,

where λt ≥ 0 for all t ≥ 1, µk ≥ 0 for all k ≥ 1 and
∑

t≥1 = 1.
We prove that we can choose an optimal solution x∗ such that µk = 0 for all k.

Without loss of generality, suppose that µ1 > 0. We have three cases.

Case 1: If c · r1 > 0, then the solution

x′ =
∑
t

λt e
t + (µ1 + δ)r1 +

∑
k≥2

µkr
k

where δ > 0 has an objective function value c · x′ > c · x∗ which contradicts the
optimality of x∗.

Case 2: If c · r1 < 0 repeat the argument above with δ < 0.

Case 3: If c · r1 = 0, consider the vector x′ = ∑
t≥1 λte

t +∑k≥2 µkr
k . It is

clearly feasible and given the hypothesis of this case, c · x∗ = c · x′, it is optimal.
Now repeat the argument with x∗ replaced by x′. Hence

x∗ =
∑
t≥1

λte
t .
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Therefore,

c · x∗ =
∑
t≥1

λt (c · et ).

Thus c · x∗ is a weighted average of numbers of of the form {c · et }t≥1. However
each c · et ≤ cx∗ which means c · et = c · x∗ for at least one t . Since et is an
extreme point of P , the proof is complete.

4.2 Duality

Associated with each LP is another LP called its dual. The original LP is called the
primal.5 To motivate the dual consider the following non-negative combination
of inequalities in the example from the beginning of this chapter:

3
5 (x1 + 8

3x2 ≤ 4)

+ 2
5 (x1 + x2 ≤ 2)

x1 + 2x2 ≤ 16
5

As a result 16/5 is an upper bound on the objective function value of the example
problem. Such upper bounds on the optimal objective function value can be found
by taking appropriate linear combinations of constraints (yA) that dominate the
objective function c, i.e., c ≤ yA ⇒ cx ≤ yAx since x ≥ 0. Using the fact that
Ax = b allows one to conclude that

cx ≤ yAx = yb ⇒ cx ≤ yb.

Thus yb is an upper bound on the objective function value. The problem of finding
the smallest such upper bound is called the dual.

Primal (P)

ZP = max cx

s.t. Ax = b

x ≥ 0


 =⇒

Dual (D)

ZD = min yb

s.t. yA ≥ c

y unrestricted.

It follows from the way the dual was motivated that ZD ≥ ZP . This is known as
weak duality. As an example, we derive the dual to the example problem above.
First, we introduce slack variables to produce an equality constrained version of
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the problem.

max x1 + 2x2 + + +
s.t. x1 + 8

3x2 + s1 + + = 4
x1 + x2 + + s2 + = 2
2x1 + + + s3 = 3

x1, x2, s1, s2, s3 ≥ 0

The dual of the example problem will be

min 4y1 + 2y2 + 3y3
s.t. y1 + y2 + 2y3 ≥ 1,

8
3y1 + y2 + ≥ 2,
y1 + + ≥ 0,
+ y2 + ≥ 0,
+ + y3 ≥ 0.

Remarkably, under the right conditions, the smallest upper bound on the optimal
objective function value of the primal coincides with the optimal objective function
value. We prove this next. First a preliminary lemma.

Lemma 4.8 If problem (P) is infeasible then (D) is either infeasible or
unbounded. If (D) is unbounded then (P) is infeasible.

Proof Suppose for a contradiction that (D) has a finite optimal solution, y∗, say.
Infeasibility of (P) implies by the Farkas lemma a vector ŷ such that ŷA ≥ 0
and ŷ · b < 0. Let t > 0. The vector y∗ + t ŷ is a feasible solution for (D) since
(y∗ + t ŷ)A ≥ y∗A ≥ c. Its objective function value is (y∗ + t ŷ) · b < y∗ · b,
contradicting the optimality of y∗. Since (D) cannot have a finite optimal, it must
be infeasible or unbounded.

Now suppose (D) is unbounded. By the resolution theorem we can write any
solution of (D) as y + r where y is a feasible solution to the dual and r is a ray,
i.e., yA ≥ c and rA ≥ 0. Furthermore r · b < 0 since (D) is unbounded. By the
Farkas lemma, the existence of r implies the primal is infeasible.

Theorem 4.9 (Duality theorem) If a finite optimal solution for either the primal
or dual exists, then ZP = ZD . Note: We give two proofs.

Proof (First) By the previous lemma if one of ZP and ZD is finite so is the other.
Let x∗ be an optimal solution to the primal. If x is any other feasible solution to the
primal it is easy to see that z = x − x∗ satisfies Az = 0, c · z ≤ 0 and x∗ + z ≥ 0.
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Thus, if x∗ is optimal there is no z that satisfies

Az = 0,

−Iz ≤ x∗,
−c · z < 0.

By the Farkas lemma, the following alternative system is feasible:

yA− tI − c = 0,

t · x∗ < 0,

t ≥ 0.

Let (y∗, t∗) be a feasible solution to the alternative. Since t∗ ≥ 0 it follows that
y∗A = t∗I + c ≥ c, i.e., y∗ is a feasible dual solution. Finally,

(y∗A− t∗I − c)x∗ = 0⇒ y∗Ax∗ − t∗ · x∗ − c · x∗ = 0⇒ y∗b < c · x∗.

Therefore ZD ≤ ZP . However,

ZD = y∗ · b = y∗Ax∗ ≥ c · x∗ = ZP .

Hence ZP = ZD .

Proof (Second) By the previous lemma if one of ZP and ZD is finite so is the
other. Let x∗ be an optimal solution to the primal and y∗ an optimal solution to
the dual. By weak duality

ZD = y∗ · b = y∗Ax∗ ≥ c · x∗ = ZP .

To complete the proof we show that ZD ≤ ZP . Pick an ε > 0 and consider the
system

−cx ≤ −ZP − ε,

Ax = b,

x ≥ 0.

By the definition of ZP this is infeasible. So, by the Farkas lemma there is a
solution to the following system:

−λc + yA ≥ 0,

λ(−ZP − ε)+ yb < 0,

λ ≥ 0.
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Let that solution be (λ∗, y∗). We show that λ∗ > 0. Suppose not. Since λ∗ ≥ 0 it
follows that λ∗ = 0. This implies that

y∗A ≥ 0,

y∗b < 0.

By the Farkas lemma this implies that the system Ax = b with x ≥ 0 is infeasible
which violates the initial assumption.

Let y′ = y∗/λ∗. Since λ∗ > 0 this is well defined. Also

y′A = y∗A
λ∗ ≥ c

making y′ a feasible solution for the dual problem. Further y′b < ZP + ε. Since
y′ is feasible in the dual, it follows that

ZP ≤ ZD ≤ y′b < ZP + ε.

Since ε > 0 is arbitrary it follows that ZP = ZD .

The theorem fails if at least one of the pair of primal and dual programs is
infeasible. Consider max{x: s.t. x = 5, x = 4, x ≥ 0}. This is clearly infeasible.
Its dual is min{5y1 + 4y2: s.t. y1 + y2 ≥ 0}. The dual is feasible but it is also
unbounded.

Suppose that in an optimal solution to the dual, y∗, one of the constraints was
not binding, i.e.,

∑m
i=1 aij y

∗
i > cj for some j . Then eliminating this constraint

from the dual will not affect the optimal objective function of the dual. Eliminating
this constraint would correspond, in the primal, to setting xj = 0. This connection
is formalized below.

Theorem 4.10 (Complementary slackness) If the feasible pair (x∗, y∗) is
optimal for the primal and the dual programs, then

1. x∗
j > 0 ⇒ ∑m

i=1 aij y
∗
i = cj ,

2.
∑m

i=1 aij y
∗
i > cj ⇒x∗

j = 0.

Proof Let (x∗, y∗) be an optimal pair for the primal and dual programs. We will
prove the following equivalent statement:

[ m∑
i=1

aij y
∗
i − cj

]
x∗

j = 0 ∀j .

Stated in vector–matrix notation: (y∗A − c)x∗ = 0.
From the duality theorem, y∗b − cx∗ = 0. However b = Ax∗. So,

y∗Ax∗ − cx∗ = 0, which is the required result.
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4.3 Writing down the dual

The following table provides rules for constructing a dual problem from a primal
problem. If a primal problem has variables x1, x2, . . . , xn, objective function c · x
and constraint matrix A, the dual will have variables y1, y2, . . . , ym, one for each
constraint, objective function y · b and constraint matrix AT .

Primal Dual

max c · x min y · b∑
j aij xj ≤ bi yi ≥ 0∑
j aij xj = bi yi unrestricted∑
j aij xj ≥ bi yi ≤ 0

xj ≥ 0
∑

i aij yi ≥ cj

xj unrestricted
∑

i aij yi = cj

xj ≤ 0
∑

i aij yi ≤ cj

4.4 Interpreting the dual

The Morpheus6 company makes two kinds of liquid soporifics: white soma and
red soma.7 Each gallon of white soma can be sold for $1, while each gallon of red
soma can be sold for $2. The production capacity of the company limits them to
producing a total of 2,000 gallons of soma. Each gallon of white soma requires
1 hour of labor to process and package. Each gallon of red soma requires 8/3 hours
of labor to process and package. The company has a total of 4,000 hours of labor
available. Government regulation rations the production of white soma. Morpheus
has a license that permits it to produce upto 1,500 gallons of white soma. What
mix of white and red soma should be produced to maximize the revenue of the
Morpheus company?

The problem of the Morpheus company can be formulated as a linear program.
Letx1 denote the number of gallons of white soma (measured in units of a thousand)
to be produced and x2 be the number of gallons of red soma produced (measured in
units of a thousand). Since a non-negative amount must be produced, x1, x2 ≥ 0.
Revenue will be x1 + 2x2. The total amount produced x1 + x2 must be at most 2,
i.e., x1 + x2 ≤ 2. Similarly, the limit on labor time means that x1 + (8/3)x2 ≤ 4.
The government constraint requires that x1 ≤ 1.5. Summarizing, the problem of
the Morpheus company is

max x1 + 2x2

s.t. x1 + 8
3x2 ≤ 4,

x1 + x2 ≤ 2,
x1 ≤ 3

2 ,
x1, x2 ≥ 0.
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The optimal solution to Morpheus’ problem is x1 = 4/5, x2 = 6/5 with a revenue
of 16/5. At this solution both the production capacity and labour hour constraint
are binding.

Now suppose that the Narziss8 company wishes to buy the Morpheus company.
It will do so by offering a per unit (a thousand gallons) price for each resource that
Morpheus possesses. So, Narziss must decide on a price per unit, y1 ≥ 0, for the
labor hours, a price per unit y2 ≥ 0 for production capacity and y3 ≥ 0 the price
per unit for the right to produce white soma. Narziss, once it acquires the resources
of Morpheus, will be able to produce white and red soma and sell it for the same
prices as Morpheus does.

If Morpheus sells the ability to produce a single unit of white soma it must give
up one unit of capacity, one unit of labor and one unit of its government approved
quota. It will receive in return y1 + y2 + y3. For this to be a profitable transaction
for Morpheus, y1+ y2+ y3 ≥ 1. Similarly, for red soma 8/3y1+ y2 ≥ 2. Narziss
seeks y1, y2, y3 so as to minimize 4y1 + 2y2 + 1.5y3, its total purchase price.
Therefore Narziss must solve

min 4y1 + 2y2 + 3
2y3

s.t. y1 + y2 + y3 ≥ 1,
8
3y1 + y2 + 0y3 ≥ 2,
y1 + 0y2 + 0y3 ≥ 0,

0y1 + y2 + 0y3 ≥ 0,
0y1 + 0y2 + y3 ≥ 0.

Notice that the problem that Narziss solves is the dual to the problem that Morpheus
must solve. A consequence of the duality theorem is that the minimum total price
Narziss must pay to give a non-negative profit to Morpheus is exactly the maximum
revenue that Morpehus can obtain from the production of soma. This should not
come as a surprise. For Morpheus to part with the capability to produce soma, it
must receive at least as much money as it makes by producing and selling soma.
Narziss on the other hand, should pay no more than the revenue it could generate
by acquiring the ability to produce soma.

Our story of Narziss and Morpheus allows us to interpret the dual variables as
‘prices’ for each of the resources. The interpretation is more than cosmetic. To
illustrate consider the following question: would additional production capacity
be valuable and if so just how much? At first glance the answer seems yes. As
long as each additional amount of soma (of either kind) produced can be sold
revenue should increase. However, the additional capacity could be worthless if
we don’t have the labor hours necessary to produce the additional soma. Notice
that red soma is more labor intensive than white soma. By cutting back on red
soma production we can free up time to expand production of white soma and so
make use of the additional capacity. However, red soma generates more revenue
per unit than white soma, so a trade-off calculation must be made to determine the
additional revenue, if any, from an expansion of production capacity. Remarkably,
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the optimal solution to the dual to the Morpheus problem will provide us with the
answer.

The optimal solution to the dual is y1 = 3/5, y2 = 2/5 and y3 = 0. Each dual
variable represents the per unit increase in objective function value from a ‘small’
increase in the RHS of the corresponding primal constraint other things held fixed.

Consider the variable y3. This says that an increase in the government imposed
limit on white soma production will not increase revenue. To see that this is sensi-
ble, observe that in the current optimal solution this constraint is not binding. Since
it is non-optimal to produce to this limit, raising it will not increase production of
white soma.

What about a decrease in the limit on white soma production? Up to a point
this will not make a difference. The current optimal solution produces 4/5 units
of white soma. As long as the government limit exceeds 4/5, the current solution
is revenue maximizing. So, for slight changes in the value of the relevant RHS,
the value of y3 gives us the change in optimal objective function value.

To see why the dual variable cannot give us the change in optimal objective
function value for any size change, suppose the government limit is set at 1/2. The
current optimal solution is no longer feasible. Figure 4.2 shows the new feasible
region and the original optimal solution (point A) is no longer within it. The new
optimal solution is at point B, x1= 1/2, x2= 9/8. Notice there is now a change
in optimal objective function value. Why does the value of y3 at the old optimal
solution no longer provide a correct forecast of the change in optimal objective
function value? The change in RHS has resulted in a change in the constraints that
bind at the optimal solution. The first dual solution is no longer optimal after the
change in RHS. To summarize, at optimality, each dual variable represents the per
unit change in optimal objective function value for a change in the relevant RHS
within some prescribed range other things held fixed. One can use the optimal
solution to primal and dual to compute this prescribed range. The upper and lower
limits of this range are called the allowable increase and allowable decrease. It
is possible for the range to be zero.

x2

x1x1 + x2 = 2x1 = 3

x1 + x2 = 48 
3

A
B

Figure 4.2
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Now turn to y2. It has a value of 2/5. This means that if we increase production
capacity by B, for sufficiently small B, the optimal objective function value will
increase by (2/5)B. Let us verify this by increasing the RHS of the second primal
constraint (the one associated with productive capacity) by one unit. The new
primal optimal solution is x1 = 12/5, x2 = 3/5 with a revenue of 18/5. This is
an increase in revenue of 18/5− 16/5 = 2/5.

Since the dual variable represents the rate at which the optimal objective function
changes as the relevant RHS changes, it is natural to think of the dual variable
as a slope or derivative. To follow this analogy through, consider the following
problem:

F(b) = max x1 + 2x2

s.t. x1 + 8
3x2 ≤ 4

x1 + x2 ≤ b

x1 ≤ 3
2

x1, x2 ≥ 0

We raise b from zero and compute F(b). For b ∈ [0, 3/2], F(b) = 2b. For
b ∈ [3/2, 39/16] F(b) = (2/5)b + 12/5. For b ≥ 39/16, F(b) = 27/8.
Figure 4.3 shows a graph of F(b). This shows that F is piecewise linear in b

and non-decreasing. The slope or derivative of F between consecutive break-
points is precisely the value of the relevant dual variable at optimality. Break
points correspond to changes in the set of constraints binding at optimality. Con-
sider for example b = 3/2. For b < 3/2, the binding constraints are x1 ≥ 0 and
x1 + x2 ≤ b. For b > 3/2 the binding constraints are x1 + (8/3)x2 ≤ 4 and
x1 + x2 ≤ 2. At b = 3/2, the dual has two optimal solutions. One where y2 = 2
and the other is y2 = 2/5. The first gives the slope of F for b < 3/2 and the
other for b > 3/2. When b = 3/2, there is a choice of values for y2. The larger, 2,

27 
8

3 
2

3 
2

39 
16

b

b   [0,   ]

F(b)

3

3 
2

39 
16

b   [   ,    ]
39 
16

b   [    ,∞]

F (b) = 2b
2b 
3

12 
5

F (b) =     +
27 
8

F (b) = 

Figure 4.3
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gives the reduction in optimal objective function value for a unit reduction in the
relevant RHS. The smaller, 2/5, gives the value of an increase in optimal objective
function value for a unit increase in the relevant RHS.

The next section formalizes and generalizes the lessons of the example.

4.5 Marginal value theorem

If each constraint of a linear program is interpreted as the limitation imposed by the
quantity available of some resource, then the dual variable of that constraint also
has an interpretation. The marginal value of that resource is equal to the change in
the optimal objective function value from an infinitesimal change in the amount
of the resource other things held fixed. The dual variable associated with that
constraint is the marginal value of that resource.

Consider the linear program: max{cx: Ax ≤ b, x ≥ 0} which we will call (P)
and its dual (D) min{yb: yA ≥ c, y ≥ 0}. Assume both have feasible, optimal
solutions. Fix a d ∈ R

m and let

f (ε) = max{cx: Ax ≤ b + εd, x ≥ 0}

for all ε ≥ 0. If the program is infeasible for some value of ε, set f (ε) = −∞.
Observe that

f (0) = max{cx: Ax ≤ b, x ≥ 0} = min{yb: yA ≥ c, y ≥ 0}.

Amongst all optimal solutions to (D), call the one that minimizes dy, y∗. Therefore
y∗ is the solution to

min{dy: yA ≥ c, yb = f (0), y ≥ 0}.

Theorem 4.11 f (ε) ≤ f (0)+εdy∗ for all ε ≥ 0 with equality for all sufficiently
small ε.

Proof If f (ε) = −∞ we are done. So we may suppose that the program that
defines f (ε) is feasible. By the duality theorem

f (ε) = min{y(b + dε): yA ≥ c, y ≥ 0}.

Since y∗ is a feasible solution to this last program it follows that

f (ε) ≤ y∗(b + dε) = f (0)+ εdy∗.

To complete the proof we show that for all ε ≥ 0 sufficiently small that

f (ε) ≥ f (0)+ εdy∗.
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The dual to the program that defines y∗ is

max{cx − f (0)t : Ax − tb ≤ d, (x, t) ≥ 0}.

Let (x∗, t∗) be the optimal solution this program. By the duality theorem

cx∗ − f (0)t∗ = dy∗.

Let x0 be an optimal solution to (P). Choose ε ≤ 1/t∗, when t∗ = 0, take ε to be
any positive number. Consider

x = (1− tε)x0 + εx∗.

Since x ≥ 0 and Ax ≤ b+εd it follows that x is a feasible solution to the program
that defines f (ε). Hence,

f (ε) ≥ cx = (1− tε)cx0 + εcx∗

= (1− tε)f (0)+ ε(dy∗ − f (0)t∗) = f (0)+ εdy∗.

4.6 Application: zero-sum games

Definition 4.12 A zero-sum game is given by an m × n matrix A. The two
players are called Row and Column. The {ij}th entry of A, aij , is the payoff to
Row from Column when Row chooses row i and Column chooses column j .

Rows and columns correspond to what are called pure strategies. Strategy
choices in the game are simultaneous and the matrix A is known to both players.
Players are assumed to care only about expected payoffs (i.e. are risk neutral).

A zero-sum game familiar to many is ‘rock, paper, scissors’.9 Each player
has three pure strategies called rock, paper and scissors respectively. Rock beats
scissors, scissors beats paper and paper beats rock. In all other cases the players
tie. If one player beats the other, the winning player receives one dollar from the
other player. The payoff matrix corresponding to this game is shown below:

Row\Column Rock Paper Scissors

Rock 0 −1 1
Paper 1 0 −1
Scissors −1 1 0

Many will know, from experience, that consistently favoring one strategy over
the other two is never a good idea. One should ‘mix’ among them. We model this
‘mixing’ by allowing players to randomize over their pure strategies. A mixed
strategy is a probability distribution over the set of pure strategies. The mini–max
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theorem of zero-sum games, which we prove here, formalizes the intuition that
playing a mixed strategy is a good idea.

What strategies should a player choose? Suppose the Row player makes a pre-
diction about what the Column player will do (prediction means a probability
distribution over Column’s pure strategies). A prediction is a vector y ∈ R

n, were
yj is the probability that Column chooses column j . Thus yj ≥ 0 and

∑
yj = 1.

Since the Row player is ‘risk neutral’ she will pick the strategy that maximizes her
expected payoff:

arg max
i

n∑
j=1

(aij yj ).

Suppose the Row player is pessimistic; she believes that whatever she does Col-
umn will play in such a way as to minimize her payoff. Equivalently, Column will
choose the vector y so as to minimize maxi

∑n
j=1(aij yj ). Therefore, to identify

this pessimistic choice one needs to solve the following optimization problem:

min
[

max
i

n∑
j=1

(aij yj )

]

n∑
j=1

yj = 1, yj ≥ 0.

This is not a linear program but can be transformed into one (which we call LPC)

min R (the mini–max value)

s.t.
n∑

j=1

(aij yj ) ≤ R,

n∑
j=1

yj = 1, yj ≥ 0.

Now, if we switch Row with Column in the above definitions, the Column player
chooses a pure strategy from the set arg minj

∑m
i=1(aij xi). From Column’s point

of view, the pessimistic prediction of what Row will do is found by solving

max
x

[
min
j

m∑
i=1

(aij xi)

]
.
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This can be formulated as an LP (called LPR)

max C

s.t.
m∑
i=1

(aij xi) ≥ C

m∑
i=1

xi = 1, xi ≥ 0.

The above linear programs are each other’s duals.

min R max C

xi → R −
n∑

j=1

(aij yj )

m∑
i=1

xi = 1

C →
n∑

j=1

yj = 1, yj ≥ 0 −
m∑
i=1

(aij xi)+ C ≤ 0, xi ≥ 0.

Since both programs are feasible, the duality theorem applies, i.e., R = C. What
one expects to win, the other expects to loose. So, if both players are pessimistic,
they will play in a way as to confirm each others beliefs.

A different story now. The Row player, will decide on a randomized strategy,
and inform the Column player of that choice. The Column player will choose her
mixed strategy to minimize Row’s payoff.

In this context a randomized strategy is simply a probability vector of rows
and columns. Let C(R) = {x ∈ R

m:
∑

i = 1, x ≥ 0} and C(C)={y ∈
R

n:
∑

j yj = 1, y ≥ 0} be the space of mixed strategies for Row and Column
respectively.

The expected payoff to Row, if she chooses mixed strategy x and Column
chooses mixed strategy y is:

xAy =
n∑

j=1

m∑
i=1

(aij xiyj ).

Definition 4.13 A pair of mixed strategies x∗, y∗ are an equilibrium if they
satisfy:

x∗Ay∗ ≥ xAy∗, ∀x ∈ C(R)

and

x∗Ay∗ ≤ x∗Ay, ∀y ∈ C(C).
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Theorem 4.14 Let x∗ be the optimal solution to LPR and y∗ the optimal solution
to LPC. Then (x∗, y∗) is an equilibrium.

Proof For the pair x∗, y∗, the expected payoff to row is

x∗Ay∗ =
n∑

j=1

m∑
i=1

(aij x
∗
i y
∗
j ) =

m∑
i=1

x∗i
( n∑

j=1

(aij y
∗
j )

)
.

By complementary slackness

m∑
i=1

x∗i
(
R −

n∑
j=1

(aij y
∗
j )

)
= 0,

i.e.,
∑m

i=1 x
∗
i

(∑n
j=1(aij y

∗
j )
) = R. For any randomized strategy x0 �= x∗,

m∑
i=1

xo
i

( n∑
j=1

(aij y
∗
j )

)
≤

m∑
i=1

(xo
i R) = R = x∗Ay∗.

4.7 Application: Afriat’s theorem

Sydney Afriat’s theorem is an answer to the question of when a sequence of pur-
chase decisions is consistent with the purchaser maximizing a concave utility
function u(·).10

Imagine a purchaser contemplating how much of each of n goods should be
purchased. The quantity can be represented by a vector x ∈ R

n+. The price of each
good can be represented by a vector p ∈ R

n+. Suppose a sequence of purchase
decisions (pi , xi), i = 1, . . . , n, where pi ∈ R

n+ is the price vector and xi ∈ R
n+

the corresponding purchased quantity. Suppose the purchaser makes her purchase
decisions based on utility maximization.

If pi · (xj − xi) ≤ 0, it means that at the vector of prices pi , bundle xi is at
least as expensive as bundle xj . We know that the purchaser chose bundle xi , the
more expensive bundle, over xj . Thus she must assign more utility to bundle xi

than to bundle xj . Therefore the utility function u must satisfy u(xj ) ≤ u(xi).
If we have a sequence of decisions (pi1 , xi2), (pi2 , xi2), (pi3 , xi3), . . . , (pik , xik ),

with

pi1 · (xi2 − xi1) ≤ 0, pi2 · (xi3 − xi2) ≤ 0, . . . , pik · (xi1 − xik ) ≤ 0,

we must by the same reasoning conclude that u(xi1) ≤ u(xi2) ≤ · · · ≤ u(xik ) =
u(xi1), i.e., u(xi1) = u(xi2) = · · · = u(xik ). Since all the bundles in this sequence
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have the same utility, they must cost the same, i.e.,

pi · (xj − xi) = 0, pj · (xk − xj ) = 0, . . . , pr · (xi − xr) = 0.

The above necessary condition can be described in graph theoretic terms. Let
A be a n × n matrix of real numbers with all zero’s on the diagonals. Let aij =
pi · (xj − xi) for all i �= j . We associate with the matrix A a directed graph
D(A) as follows: introduce a vertex for each index and for each ordered pair (i, j)
an edge with length aij . The matrix A will be said to satisfy the Afriat condition
(AC) if every negative length cycle in D(A) contains at least one edge of positive
weight.

Associated with A is an inequality system

yj ≤ yi + siaij , ∀i �= j , 1 ≤ i, j ≤ n,

si > 0, ∀1 ≤ i ≤ n.

We label it L(A). We now state Afriat’s theorem.

Theorem 4.15 L(A) is feasible iff D(A) satisfies AC.

WheneverD(A) satisfiesAC, we use the solution toL(A) to construct a concave
utility function u(·) consistent with the sequence of purchase decisions (pi , xi) by
setting

u(x) = min{y1 + s1p
1(x − x1), y2 + s2p

2(x − x2), . . . , snpn(x − xn)}.

We will use the duality theorem to prove Afriat’s theorem.11

Consider the following linear program:

min 0 · s + 0 · y
s.t. si ≥ 1, ∀i,

aij si + yi − yj ≥ 0, ∀i �= j .

Feasibility of this program yields Afriat’s theorem. We will show that its dual is
feasible and has objective function value zero, from which it will follow that the
primal is feasible.

Let zi be the dual variable associated with the constraint si ≥ 1 and xij the dual
variable associated with the constraint aij si + yi − yj ≥ 0. The dual is

max
∑
i

zi

s.t.
∑
k

xki −
∑
j

xij = 0, ∀i,
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zi +
∑
j

aij xij = 0, ∀i,

zi , xij ≥ 0, ∀i, j .

With every solution (x, z) of this linear program we can associate a directed graph
as follows: one vertex for each index i and an arc directed from i to j if xij > 0.
Call this directed graph D(x). An arc (i, j) of D(x) will be called non-singular
if aij �= 0.

Lemma 4.16 There is an optimal solution, (x∗, z∗), to the dual LP such that
every cycle in D(x∗) contains a non-singular arc.

Proof Suppose (x, z) to be an optimal solution and C a cycle in D(x) with no
non-singular arc. Construct a new solution (x′, z′) as follows:

1. x′ij = xi,j ∀(i, j) �∈ C

2. x′ij = xi,j − ε∀(i, j) ∈ C for ε > 0 sufficiently small.
3. z′ = z.

Since xij > 0 for all (i, j), we can choose ε > 0 sufficiently small so that x′ij ≥ 0
for all (i, j). In fact, choose ε to make at least one of x′ij for (i, j) ∈ C equal to
zero. We now show that (x′, z′) is dual feasible.

Since aij = 0 for all (i, j) ∈ C it follows that for all i,

z′i +
∑
j

aij x
′
ij = zi +

∑
j :(i,j)∈C

0× x′ij +
∑

j :(i,j)�∈C
x′ij = zi +

∑
j

aij xij = 0.

Next, consider the term
∑

k x
′
ki −

∑
j x
′
ij for each i. Suppose first that there is

no index q such that (q, i) or (i, q) is in C. Then x′ki = xki and x′ij = xij for all
k, j �= i. Thus

∑
k x
′
ki −

∑
j x
′
ij =

∑
k xki −

∑
j xij = 0. Now suppose there is

such an index. Since C is a cycle there must be exactly two indices k′, j ′ such that
(k′, i), (i, j ′) ∈ C. In this case

∑
k

x′ki −
∑
j

x′ij = x′k′i +
∑
k �=k′

xki −
∑
j �=j ′

xij − x′ij ′

= xk′i − ε +
∑
k �=k′

xki −
∑
j �=j ′

xij − xij ′ + ε

=
∑
k

xki −
∑
j

xij = 0.
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Thus (x′, z′) is feasible and has the same objective function value as (x, z). Finally,
C is not a cycle present in D(x′). Now repeat the argument with D(x) replaced
by D(x′).

Theorem 4.17 There is an optimal solution to the dual program, (x∗, z∗), such
that x∗ = 0 and z∗ = 0.

Proof Suppose not. Choose (x∗, z∗) to satisfy the conditions of the previous
lemma. Then there is an index i1 such that z∗

i1
> 0, i.e.,

∑
k ai1kx

∗
i1k

< 0. Thus
there is an index, i2 such that ai1i2xi1i2 < 0, i.e., ai1i2 < 0 and xi1i2 > 0. From this
we deduce that

∑
k xi2k > 0 and

∑
k:xi2k>0 ai2kxi2k ≤ 0. So, there is an index i3,

say, such that xi2i3 > 0 and ai2i3 ≤ 0. Now repeat the argument. Since the number
of indices is finite we must eventually repeat an index, i.e., we have identified a
cycle, C, in D(x∗). By construction aij ≤ 0 for every arc (i, j) ∈ C. By AC,
aij = 0 for all (i, j) ∈ C which violates our choice of (x∗, z∗).

4.8 Integer programming

An integer program is a linear program with the additional requirement that the
solution be integral. A full discussion of integer programming deserves a book
by itself.12 Here we limit ourselves to describing one sufficient condition that
guarantees that the extreme points of a linear program are integral.

Before proceeding you should convince yourself that no ‘simple’ scheme based
on solving the underlying linear program and rounding the resulting solution can
find the optimal integer solution.

Definition 4.18 A matrix is called totally unimodular (TUM) iff the determinant
of each of its square submatrices has value 1, −1 or 0.

If a matrix is TUM then so is its transpose. If A and E are TUM, then so is AE.

Example 16 The following matrix:

[
1 0
0 1

]

is obviously TUM. The following is not:


1 1 0

0 1 1
1 0 1


 .

Every proper square submatrix has a determinant with absolute value 0 or 1.
However the determinant of the entire matrix is 2.
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Theorem 4.19 Let A be a m × n TUM matrix all of whose entries are integral.
Let b be a m × 1 integral vector. Then every extreme point of {Ax = b, x ≥ 0} is
integral.

Proof To every extreme point w of {Ax = b, x ≥ 0} there is a basis of A such
that w = B−1b. By Cramer’s rule, we can write B−1 = B∗/ det B where B∗ is
the adjoint of B. Since A has all integral entries, B∗ has all integer entries. Since
A is TUM and B is non-singular, it follows that | det B| = 1. Hence B−1 has all
integer entries. Thus B−1b is integral.

For most applications, the following characterization of TUM matrices for
restricted classes of matrices is the tool of choice.

Theorem 4.20 Let A be a matrix each of whose entries is 0, 1 or −1. Suppose
each subset S of columns of A can be divided into two sets L and R such that

∣∣∣∣ ∑
j∈S∩L

aij −
∑

j∈S∩R

aij

∣∣∣∣ = 0, 1, ∀i.

Then A is TUM and the converse is also true.

Proof First assume that A is TUM. Fix a subset S of columns and define the
vector z by zj = 1 if j ∈ S and zero otherwise. Set b = Az. Define vectors l and
u as follows:

1. li = bi

2 if bi is even,
2. li = bi

2 − 1
2 if bi is odd,

3. ui = bi

2 if bi is even,
4. ui = bi

2 + 1
2 if bi is odd.

Consider the polyhedron:

P = {x ∈ R
m+: l ≤ Ax ≤ u, x ≤ z}.

Since z/2 ∈ P , the polyhedron is non-empty and must have at least one extreme
point. Since A is TUM, the extreme point must be integral, in fact, since 0 ≤ x ≤ z

it is 0–1. Call the extreme point x∗. Observe that x∗
j = zj if j ∈ S and x∗

j = 0 if
j �∈ S. Hence zj −2x∗

j is either 1 or −1 for all j ∈ S. Set L = {j ∈ J : zj −2x∗
j = 1}

and R = {j ∈ J : zj − 2xj = −1}.
Then

∑
j∈L

aij −
∑
j∈R

aij =
∑
j∈J

aij (zj − 2x∗
j ).
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Given li ≤ ∑
j aij x

∗j ≤ ui it follows that the right-hand side of the above sum
is either 0, 1 or −1.

Now suppose the partition property holds, We show that A is TUM. The proof
will be by induction on the size of square submatrices of A. Choose S = {j}. From
the partition property, aij will be 0, 1 or −1. This shows the induction hypothesis
for all square sub-matrices of size 1. Now suppose true for all (k − 1) × (k − 1)

submatrices. Let B be any k × k non-singular submatrix of A. Set � = | det B|.
By the induction hypothesis, each entry of the adjoint of B, B∗ will be 0, 1

or −1. Since B−1 = B∗/� it follows that Bb∗(1) = �e1 where b∗(1) is the
first column of B∗ and e1 is the vector whose first component is 1 and all others
are zero.

Set J = {i: b∗
i1 �= 0} and J ′

1 = {i: b∗
i1 = 1}. Observe that J �= ∅. From

Bb∗(1) = �e1, we have for i = 2, . . . , k that

∑
j∈J ′

1

bij −
∑

j∈J\J ′
1

bij = 0.

Thus |{i ∈ J : bij �= 0}| is even. Hence, for any partition L and R of J it follows
that

∑
j∈L bij −∑

j∈R bij is even for i = 2, . . . , k because

∑
j∈L

bij −
∑
j∈R

bij =
∑
j∈J

bij − 2
∑
j∈R

bij .

By the partition assumption we can choose L and R so that

∣∣∣∣∑
j∈L

bij −
∑
j∈R

bij

∣∣∣∣ ≤ 1.

Hence

∣∣∣∣∑
j∈L

bij −
∑
j∈R

bij

∣∣∣∣ = 0, ∀i = 2, . . . , k.

Consider now t = |∑j∈L b1j −∑
j∈R b1j |. Suppose first that t = 0. Define

the vector z by zj = 1 if j ∈ L, zj = −1 if j ∈ R and zero otherwise. Because
t = 0 we have that

∣∣∣∣∑
j∈L

bij −
∑
j∈R

bij

∣∣∣∣ = 0, ∀i = 1, 2, . . . , k.

Hence Bz = 0. Since B is non-singular this implies that z = 0 and so J =
L ∪ R = ∅ a contradiction. So, we conclude that t = 1. Thus Bz is either e1
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or −e1. Suppose the first ( a similar argument applies to the second possibility).
Then Bb∗(1) = BBz, i.e., b∗(1) = Bz. However both b∗(1) and z are vectors all
of whose entries are 0, 1 or −1. Hence |B| = 1.

A simple consequence of the above theorem is that a matrix satisfying all of the
following conditions is TUM:

1. Each entry is 0, 1 or −1.
2. Each row contains at most two non-zero entries.
3. The entries are of opposite sign.

Since the property of being TUM is preserved under transposition, we can
replace ‘row’ by ‘column’ in the above list.

Example 17 The following matrix is TUM:




1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1


 .

To see why, multiply the first and second columns by−1. Notice that this preserves
the property of TUM. The resulting matrix is:



−1 1 0 0

0 1 −1 0
0 0 −1 1
−1 0 0 1


 .

Notice that it contains at most two non-zero entries in each row and they are of
opposite sign.

4.9 Application: efficient assignment

Consider an economy where the set of agents is denoted N and consisting of
a set of indivisible (not necessarily identical) objects denoted M . Let vij ≥ 0
be the monetary value that agent j ∈ N assigns to object i ∈ M . Each agent is
interested in consuming at most one object. By adding dummy objects of zero
value to all agents, we can always ensure that |M| ≥ |N |.

An assignment of the objects to agents, is an allocation of objects to agents so
that no agent receives more than one object and no object is assigned to more than
one agent. An efficient assignment is one that maximizes the sum of valuations
of the agents. The problem of finding the efficient allocation is sometimes called
the social planner’s problem.
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To formulate the problem of finding an efficient assignment as an integer
program let xij = 1 if agent j is allocated object i and zero otherwise.

max
∑
j∈N

∑
i∈M

vij xij

s.t.
∑
j∈N

xij ≤ 1, ∀i ∈ M ,

∑
i∈M

xij ≤ 1, ∀j ∈ N ,

xij ∈ {0, 1}, ∀i ∈ M , j ∈ N .

This problem is an instance of the assignment problem. First we show that the
polyhedron obtained by dropping the integrality restriction has integral extreme
points. That polyhedron is described:

s.t.
∑
j∈N

xij ≤ 1, ∀i ∈ M ,

∑
i∈M

xij ≤ 1, ∀j ∈ N ,

xij ≥ 0, ∀i ∈ M , j ∈ N .

The first two constraints ensure that xij ≤ 1 for all i and j .
We show that the constraint matrix of this system is TUM. Fix a good i and agent

j . Consider the column associated with the variable xij . The variable appears with
a coefficient of 1 in exactly two rows. One occurs in a row corresponding to
agent j and the other to a row corresponding to object i. Let L consist of all
rows corresponding to objects and R the set of all rows corresponding to agents.
Multiply all the rows in L by −1. We now have a constraint matrix where each
column contains exactly two non-zero entries of opposite sign. Given the TUM
property the problem of finding the efficient assignment reduces to the following
linear program:

max
∑
j∈N

∑
i∈M

vij xij

s.t.
∑
j∈N

xij ≤ 1, ∀i ∈ M ,

∑
i∈M

xij ≤ 1, ∀j ∈ N ,

xij ≥ 0, ∀i ∈ M , j ∈ N .
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Let pi be the dual variable associated with each constraint
∑

j∈N xij ≤ 1 and λj

the dual variable associated with each constraint
∑

i∈M xij ≤ 1. The dual to the
above program is:

min
∑
j∈N

λj +
∑
i∈M

pi

s.t. λj + pi ≥ vij , ∀j ∈ N , ∀i ∈ M ,

λj ,pi ≥ 0, ∀j ∈ N , ∀i ∈ M .

The dual has an interesting interpretation. One can think of each pi as the price
of object i. Given a collection of prices, the optimal solution to the dual is found
by setting each λj to maxi∈M(vij − pi). Thus, each λj represents the maximum
surplus that agent j can receive from the consumption of a single object at prices
{pi}i∈M .

Suppose x∗ is an optimal integral solution to the primal and (λ∗,p∗) an optimal
solution to the dual. Then the prices p∗ ‘support’ the efficient assignment x∗ in
the following sense. Suppose we post a price p∗i for each i ∈ M . Next, ask each
agent to name the set of objects that maximize their surplus at the posted prices.
Then, it is possible to give each agent exactly one of their named objects. To see
why this last statement must be true, recall complementary slackness

(λ∗j + p∗i − vij )x
∗
ij = 0.

So, if x∗ij = 1 it follows that λ∗j = vij − p∗i = maxr∈M(vrj − p∗r ). Hence, in this
economy there is a set of prices that can be posted for each good so as to balance
supply with demand.

One can associate with the problem of finding an efficient assignment a
cooperative game with a non-empty core. This is discussed in Section 7.4.

4.10 Application: Arrow’s theorem

Kenneth Arrow’s impossibility theorem is the most famous theorem of economic
theory. First, it establishes the impossibility of aggregating diverse preferences in
some ‘democratic’ way. Second, it has provided work for many a theorist.13

Arrow’s set up has a collection of voters each with a strict preference ordering
over a finite set A of alternatives (at least two).14 The goal is to identify a single
preference ordering over A, that in some sense best reflects the disparate orderings
of the voters. Just as the mean of a set of numbers summarizes those numbers, so we
seek a preference ordering that summarizes the different orderings of the agents.

One can imagine a variety of schemes for summarizing a collection of preference
orderings. Rather than build a long list of such schemes and compare and contrast
them, Arrow argued that one should identify attractive properties or axioms that
such schemes should satisfy and then deduce which schemes possessed them.
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Arrow advanced two axioms and showed that only one, rather unpalatable scheme
satisfied both.

Let F denote the set of all strict preference orderings over the alternatives in
A.15 Let Fn be the set of all n-tuples of preferences from F. An element of
Fn will be denoted P = (p1, p2, . . . , pn) and called a profile. One should think
of a profile as a list of preference orderings, one for each voter. An n-person social
welfare function (SWF) on F is a function f : Fn→ F.

Three points deserve comment. First, we are interested in a function that will
take as input a profile of preference orderings and return an ordering rather
than a single alternative or subset of alternatives. There is a strand of the liter-
ature that considers these other possibilities. Second, the function must return
an ordering for every possible profile of orderings. Another strand of the liter-
ature examines the consequences of relaxing this requirement on the grounds
that in some contexts, certain profiles of preferences are simply inconceivable.
Third, only information about orderings is used, ‘intensity’ of preference is
ignored.

One example of a SWF is the dictatorial one. Fix an agent i and set f (P) = pi

for all P ∈ F. As the label suggests, this SWF summarizes the profile by simply
picking the preference ordering of a particular agent.

Arrow imposed two conditions on social welfare functions:

1. Unanimity (U) If for every P ∈ Fn and some x, y ∈ A we have xpiy for all
i then xf (P)y.

2. Independence of Irrelevant Alternatives (IIA) For any x, y ∈ A suppose
that exists P, Q ∈ Fn such that xpiy if an only if xqiy for i = 1, . . . , n. Then
xf (P)y if an only if xf (Q)y.

The first is a minimal requirement for any SWF that would claim to summarize
a profile that no one can object to. The second says that only pairwise com-
parisons matter. Thus when a SWF must decide on whether to rank x above
y or vice-versa, only the pattern of preferences with respect to x and y mat-
ter. Whether chicken is to be ranked above or below beef should not depend
on the presence or absence of some third alternative, fish, say. The second is
not so benign and the reader must look elsewhere for the arguments for and
against.

Arrow’s theorem states that the only SWF on Fn that satisfies U and IIA is
the dictatorial one. To save on notation we consider only 2-person SWFs. The
arguments can be extended to the case of n-person SWFs.

Fix an SWF, f that satisfies IIA. Consider a profile P and a pair x, y ∈ A.
Suppose agent 1 ranks x over y in the profile while agent 2 ranks y above x.
If xf (P)y then IIA implies that whenever agent 1 ranks x over y and agent 2
the reverse, the SWF f will rank x above y. In this case we say that agent 1
is decisive over the ordered pair (x, y). The observation allows us to describe
a SWF that satisfies IIA in terms of which ordered pair of alternatives agent 1
is decisive over.
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Denote the set of all ordered pairs of alternatives by A2. For each element
(x, y) ∈ A2 we define a 0 –1 variable as follows:

• d(x, y) = 1 if agent 1 is decisive for x over y,
• d(x, y) = 0 otherwise.

If d(x, y) = 0 it is to be understood that agent 2 will be decisive for x over y.
To ensure that the assignment implied by the d variables satisfies unanimity

as well as produces an ordering of the alternatives we need to impose additional
conditions. They are described below.

Suppose there are p, q ∈ F and three alternatives x, y and z such that xpypz
and yqzqx. Since F is the set of all possible orderings a pair like p and q exist
in F. Suppose agent 1 has the ordering p and agent 2 has the ordering q. Suppose
d(x, y) = 1. Since agent 1 ranks x over y and agent 2 the reverse, the SWF ranks
x above y. Both agents rank y above z, so by U the SWF must rank y above z. To
ensure that an ordering is produced the SWF must rank x over z. Notice, however,
that agent 1 is the only person who ranks x above z. Thus requiring d(x, y) = 1
forced us to set d(x, z) = 1. To summarize,

d(x, y) = 1⇒ d(x, z) = 1 and

d(z, x) = 1⇒ d(y, x) = 1.

The last implication is derived by endowing agent 1 with the ordering q and agent
2 with the ordering p.

These two logical conditions can be formulated as inequalities

d(x, y) ≤ d(x, z) and d(z, x) ≤ d(y, x). (4.1)

Every 2-person ASWF corresponds to a feasible 0 –1 solution to the system (4.1),
but not the reverse. The constraint matrix of the system is TUM. Two obviously
feasible solutions are d(x, y) = 1, ∀(x, y) ∈ A2 and d(x, y) = 0 for all (x, y) ∈
A2. The first corresponds to an ASWF where agent 1 is the dictator and the second,
by default, to where agent 2 is the dictator. We refer to these solutions as the all
1’s and all 0’s solution respectively. We show that these are the only feasible 0 –1
solutions.

With each ordered pair of alternatives we associate a vertex. If there is an
inequality of the form d(a, b) ≤ d(x, y) where (a, b) and (x, y) are ordered pairs
of alternatives insert a directed edge from (a, b) to (x, y). Call the resulting directed
graph DF.

Now we need only verify that between any ordered pair of vertices of DF there
is a directed path from one to the other. So, when d(x, y) is set to 1 for any ordered
pair (x, y), d(u, v) is set to 1 for all ordered pairs (u, v).

Each vertex corresponds to an ordered pair. Let the pairs corresponding to these
two vertices be (x, y) and (u, v). Since F contains all possible orderings, the
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following triples are possible: {x, y, u}, {x, y, v}, {x, u, v}, {y, u, v}. In particular
from inequalities of type (4.1) we get d(x, y) ≤ d(x, u), d(x, u) ≤ d(v, u) and
so there is a path (x, y)→ (x, u)→ (u, v). To see how this is possible consider
the following list of orderings: xp1yp1z, yp2zp2x and zp3xp3y. Applying the
inequalities of type (4.1) to p1 and p2 yields d(x, y) ≤ d(x, z) and d(z, x) ≤
d(y, x). Applying the type (4.1) inequalities to p2 and p3 yields d(y, z) ≤ d(y, x)
and d(x, y) ≤ d(z, y). Now use p3 and p1 to generate d(z, x) ≤ d(z, y) and
d(y, z) ≤ d(x, z). Now consider the orderings zq1yq1x, yq2xq2z and xq3zq3y.
Orderings q1 and q2 produce d(z, y) ≤ d(z, x) and d(x, z) ≤ d(y, z). The pair q2

and q3 give us d(y, x) ≤ d(y, z) and d(z, y) ≤ d(x, y). Finally, the pair q3 and
q1 yield d(x, z) ≤ d(x, y) and d(y, x) ≤ d(z, x). Combining them all together
produces:

d(x, y) ≤ d(x, z) ≤ d(y, z) ≤ d(y, x) ≤ d(z, x) ≤ d(z, y) ≤ d(x, y).

Hence, they are either all ‘1’ or all ‘zero’. The graph for this system of vertices is
shown in Figure 4.4.

zy zx yx

xy xz yz

Figure 4.4

Problems

4.1 Compute all basic solutions to the system

x1 − x2 − x3 = 0,

x1 + 2x2 − 3x3 = 1.

4.2 Write down the dual to the following linear program:

max x1 + 2x2

s.t. x1 + 8
3x2 ≤ 4,

x1 + x2 = 2,
2x1 ≥ 3,
x1 ≥ 0.
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4.3 Find the optimal primal and dual solutions to the following LP:

min x1 + x2 − 3x3
s.t. x1 + 2x2 − 3x3 = 4,

4x1 + 5x2 − 9x3 = 13,
x1, x2, x3 ≥ 0.

4.4 Consider the following LP:

min −x1 + 2x2 + 8x3 + 2x4
s.t. x3 + x4 ≥ x2 + 1,

x1 + 2x2 − 2x3 + x4 ≤ 2,
x1, x2, x3, x4 ≥ 0.

Find its optimal primal and dual solutions.
4.5 Exhibit an example of a linear program such that it and its dual is infeasible.
4.6 Show how the duality theorem of linear programming can be used to prove

the Farkas lemma.
4.7 Write down the duals to the following LPs:

max{cx: Ax = b, x ≥ 0},
min{cx: Ax = b, x ≥ 0},
max{cx: Ax ≤ b, x ≥ 0},
min{cx: Ax ≥ b, x ≥ 0}.

4.8 Convert the following optimization problem into a single linear program:

min |x| + |y| + |z|
s.t. x + y ≤ 1,

2x + z = 3.

4.9 Let

Z = max
n∑

j=1

cj xj

s.t.
n∑

j=1

ajxj ≤ b,

xj ≥ 0, ∀j .
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Assume that {cj }j≥1, {aj }j≥1 are all positive. Show that Z = b maxj cj /aj .
4.10 Consider the LP max{cx: Ax ≤ b, x ≥ 0}. If feasible, show that either it or

its dual has an unbounded feasible region.
4.11 (Challenging) Consider the following LP: min{cx: Ax ≥ b, x ≥ 0}. Let

x and y be an optimal primal dual pair. Complementary slackness tells us
that xj (

∑
i aij yi − cj ) = 0 for all j . Strict complementary slackness says

that for all j either xj = 0 or
∑

i aij yj − cj = 0 but not both. Prove
that every feasible LP admits an optimal primal-dual pair that satisfies strict
complementary slackness.

4.12 Show that for every extreme point of the system P = {x : Ax ≤ b, x ≥ 0},
there is a vector c that attains its maximum at that extreme point of P .

4.13 Consider the following fractional program:

max
cx + α

dx + β
,

s.t. Ax ≤ b,

x ≥ 0.

Here A is an m by n matrix and x ∈ R
n. Assuming that dx + β > 0 for all

feasible x, show how to solve this problem as single linear program.
4.14 Consider the following linear program:

Z = min{cx: Ax = b,M ≥ x ≥ 0}.

Here M is a sufficiently large number such that all solutions, x∗ to Ax = b

satisfy x∗ ≤ M . Suppose this linear program has an optimal solution. Let
µ ∈ R

m and

Zµ = min{cx + µ(Ax − b): M ≥ x ≥ 0}.

Prove that Z = maxµ∈Rm Zµ.
4.15 Given an m × n matrix A (real valued entries) let G = span(A) and F =

{y: y = Ax for some x � 0}. Consider the following procedure to decide
if F = G:

• Choose a p ∈ R
n with all positive entries. If Ap = 0, then F = G,

otherwise go to the next step.
• Solve (here µ is a scalar)

Z = min µ

s.t. Ax = 0,

x + µp ≥ p,

µ ≥ 0.
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If Z = 0 then F = G otherwise F �= G.
Prove that the procedure is correct.

4.16 Compute the equilibrium randomized strategies for Row and Column in the
following zero-sum game:


 3 −2 1

1 3 −2
−2 1 3


 .

Notes

1 Professor of Management Science at the Fisher School of Business, Ohio State
University.

2 Fourier (1827).
3 The (in)justice of this is the subject of occasional dinner table conversation. The reader

interested in an account of such matters should look elsewhere.
4 Recall that aj is the j th column of A.
5 The term ‘dual’ predates linear programming. Having defined the dual it was natural

to ask what one should call the original problem from which the dual was conceived.
Dantzig’s father, suggested ‘primal’ as the natural antonym. Like ‘dual’ it is Greek, and
means original or primitive.

6 The Roman god of sleep or dreams.
7 Soma is a narcotic distributed in Aldous Huxley’s Brave New World that induces

euphoria and hallucinations.
8 From the Greek meaning self-love.
9 A web site devoted entirely to the game can be found at www.worldrps.com.

10 See Chapter 5 for a definition of concavity and discussion of utility functions.
11 The proof is based on Fostel et al. (2004).
12 Three in fact, Schrijver (2003).
13 Morton Kamien asserts that the importance of a paper should be judged by how much

employment it provides for other scholars. By this standard, Arrow’s theorem is the
most important public works project for economic theorists ever.

14 This section is based on joint work with Jay Sethuraman and Teo Chung Piaw (2003).
15 The assumption that preferences are strict is made for simplicity.
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In this chapter we consider the problem of optimizing a non-linear function subject
to a finite collection of non-linear constraints. This is called non-linear program-
ming (NLP). Let M = {1, 2, . . . ,m} be an index set. For each i ∈ M we have
a continuous and differentiable function f i : R

n → R that will give rise to a
constraint. The objective function will be f 0: R

n → R and is assumed to be
continuous and differentiable. The problem (P) we consider is

max{f 0(x): f i(x) ≥ 0, ∀i ∈ M}. (P)

Any NLP can be transformed into the above form, however unlike the LP case,
there are pitfalls for the careless.

For each x ∈ R
n let Nε(x) = {y: d(x, y) < ε} be an ε neighborhood around

x. Let F = {x ∈ R
n: f i(x) ≥ 0, ∀i ∈ M} be the feasible set. Notice that M = ∅

implies that F = R
n.

Definition 5.1 A point x is called a local maximum for problem (P) if there
exists ε > 0 such that f 0(x) ≥ f 0(y) for all y ∈ Nε(x) ∩ F . A point x is called
a global maximum if x is an optimal solution to problem (P).

Every global maximum is a local maximum but not conversely. Later we identify
conditions under which a local maximum is a global maximum. It should be
obvious how to modify the definitions to define local minima and global minima.

Using the fact that f 0 is continuous and differentiable we can approximate f 0

by its Taylor series expansion

f 0(x + εh) = f 0(x)+ εh · ∇f 0(x)+ r(ε).

Here ∇f means the n vector whose ith component is ∂f
∂xi

. r(ε) is the error term

which is quadratic in ε. For ε > 0 sufficiently small, h · ∇f 0(x) > 0⇒ f 0(x +
εh) > f 0(x). This is a fact we will make frequent use of.

To motivate the necessary conditions for optimality, suppose x∗ ∈ F a local
maximum of f 0. Then, in a sufficiently small neighborhood around x∗, x∗ must
be a global maximum of f 0. The Taylor series expansion of f 0 allows us to
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approximate the function by a linear function in a sufficiently small neighborhood
around x∗. So, let δ > 0 be small enough and

f (x∗ + δh)→ f (x∗)+ δh · ∇f (x∗).

Thus, it seems reasonable to suppose that h = 0 must be the optimal solution to
the following linear program (here h is the variable):

max f 0(x∗)+ δh · ∇f 0(x∗)

s.t. f i(x∗)+ δh · ∇f i(x∗) ≥ 0, ∀i ∈ M .

Dropping constant terms from the objective function, we can rewrite this linear
program as:

max δh · ∇f 0(x∗)

s.t. −δh · ∇f i(x∗) ≤ f i(x∗), ∀i ∈ M .

Its dual is:

min
∑
i∈M

f i(x∗)µi

s.t. −
∑
i∈M

µi∇f i(x∗)− µ0∇f 0(x∗) = 0, ∀i ∈ M .

Hence, at a local maximum x∗, if h = 0 is the optimal solution to the primal,
then

∑
i∈M f i(x∗)µi = 0. Since µi and f i(x∗) are non-negative for all i, this

last equation implies that µif
∗(x∗) = 0 for all i ∈ M . Which is, of course,

complementary slackness. Second,

µ0∇f 0(x∗)+
∑
i∈M

µi∇f i(x∗) = 0.

Summarizing we expect the following:
If x∗ is a local maximum of problem (P) then there exist non-negative multipliers
{µi}i∈M such that

µ0∇f 0(x∗)+
∑
i∈M

µi∇f i(x∗) = 0

and µif
∗(x∗) = 0 for all i ∈ M .

In what follows we shall see just how true this hypothesis is.
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5.1 Necessary conditions for local optimality

Here we identify conditions that all local optima must satisfy. However solutions
that are not locally optimal may also satisfy these conditions.

Theorem 5.2 (Unconstrained case) Suppose in problem (P), M = ∅. If x∗ is a
local maximum then ∇f 0(x) = 0.

Proof Suppose not. Let h = ∇f 0(x∗) �= 0. Then h ·h > 0. Hence f 0(x∗ +
εh) > f 0(x∗) + εh · ∇f 0(x∗) > f (x∗) for all ε > 0 sufficiently small. This
contradicts local optimality of x∗.

Example 18 Figure 5.1 shows the graph of a function one variable. The slope
of the curve at the point x∗ is zero, i.e., the derivative of the function at x∗ is zero.
However, x∗ is neither a local maximum or local minimum.

x

f (x)

f (x*)

x*

Figure 5.1

Lemma 5.3 (Constrained case) Suppose M �= ∅ and x∗ is a local maximum
for problem (P). Then there exist non-negative multipliers {µ0,µ1, . . . ,µm} not
all zero such that

µ0∇f 0(x∗)+
∑
i∈M

µi∇f i(x∗) = 0. (5.1)

Proof Let zi = ∇f i(x∗) for i ∈ M ∪ {0}. If the lemma is true we can divide
equation (5.1) through by

∑
i∈M∪{0} µi . Equation (5.1) can then be interpreted

as saying that the origin is in the convex hull of the zi’s. This is what we will
prove. Suppose, for a contradiction that the origin is not in the convex hull of the
zi’s. Recall that the convex hull of a finite number of vectors is closed. By the
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strict separating hyperplane theorem there is a vector h such that h · zi > 0 for
i = 0, 1, . . . ,m.

Therefore, for all ε > 0 sufficiently smallf 0(x∗+εh)>f 0(x∗). Furtherx∗+εh
is feasible for ε sufficiently small because

f i(x∗ + εh) > f i(x∗) ≥ 0, ∀i ∈ M .

This contradicts the local optimality of x∗.

The proof above fails if M is an infinite set because we cannot guarantee to
find an ε > 0 such that f i(x∗ + εh) > f i(x∗) for all i ∈ M . If x∗ is in the strict
interior of the feasible region, the theorem follows from the previous one. So, it is
of interest only when x∗ is on the boundary of the feasible region.

The necessary condition in the previous theorem tells us nothing about the local
maximum if µ0 = 0. In this case equation (5.1) reduces to

∑
i∈M

µi∇f i(x∗) = 0,

an equation that only contains terms from the constraint set and so valueless from
an optimization point of view. Unfortunately there can be NLPs where there is no
choice of µ’s such that µ0 > 0.

Example 19 Let f 0(x1, x2) = x2, f 1(x1, x2) = x1 and f 2(x1, x2) = −x1 − x2
2 .

The feasible region is given by

x1 ≥ 0,

x1 + x2
2 ≤ 0.

The only feasible solution is (0, 0). Thus, no matter what f 0 is, the only optimal
solution is the origin.

Now ∇f 0(x) = (0, 1), ∇f 1(x) = (1, 0) and ∇f 2(x) = (−1,−2x2). Thus
∇f 2(0) = (−1, 0). Substituting into (5.1) at the point x∗ = (0, 0) yields:

µ0(0, 1)+ µ1(1, 0)+ µ2(−1, 0) = 0.

All non-negative solutions to this equation have µ0 = 0. Figure 5.2 illustrates
why ∇f 0(0, 0) cannot lie in the convex hull ∇f 1(0, 0) and ∇f 2(0, 0).

Hence, without additional assumptions we cannot guarantee that µ0 > 0. These
additional assumptions are called constraint qualifications. One is described
below.
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x1 + x2
2 = 0

x2

x1

∇f 0 (0, 0)

∇f 1(0, 0)∇f 2(0, 0)

Figure 5.2

Theorem 5.4 (Kuhn–Tucker–Karush theorem) Suppose M �= ∅ and x∗ is
a local maximum for (P). If the vectors {∇f i(x∗)}i∈M are LI then there exist
non-negative multipliers {λi}i∈M (not all zero) such that

∇f 0(x∗)+
∑
i∈M

λi∇f i(x∗) = 0. (5.2)

Proof Apply Lemma 5.3. If µ0 > 0, divide through by µ0 to obtain the result. If
µ0 = 0 then

∑
i∈M µi∇f i(x∗) = 0. However LI of the set {∇f i(x∗)}i∈M implies

that µi = 0 ∀i ∈ M a contradiction.

Stated componentwise equation (5.2) reads

∂f 0

∂xj
+
∑
i∈M

λi

∂f i

∂xj
= 0, ∀j .

The LI condition is a strong requirement. In some cases it is not needed as the
next result shows. We can interpret the next theorem as saying that all f i(x) being
linear is a constraint qualification.

Theorem 5.5 Let A be an m × n matrix and b ∈ R
m. Let f 0 be a continuous

differentiable function. Let x∗ be a local maximum for max{f 0(x):Ax ≥ b}. Then,
there is a non-zero y ∈ R

m+ such that ∇f 0(x∗)+ ATy = 0 and y(Ax∗ − b) = 0.

Proof Consider problem (P) where each constraint function, f i =∑n
j=1 aij xj − bi

for i ∈ M . Then ∇f i will just be the ith row of A. Hence showing that there are
non-negative, non-zero multipliers y ∈ R

m such that ∇f 0(x∗) + ATy = 0 is
equivalent to showing that there are non-negative, non-zero multipliers y ∈ R

m
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such that

∇f 0(x∗)+
m∑
i=1

∇f i(x∗)yi = 0.

Let s = Ax∗ − b ≥ 0. Without loss of generality suppose that the first r

components of s are 0 and the remaining m− r components are strictly positive.
That is the first r constraints of Ax ≥ b are binding at x∗.

If no constraints were binding we have an interior solution and so are
unconstrained.

If we can show that −∇f 0(x∗) can be expressed as a non-negative linear com-
bination of the ∇f i(x∗) for i = 1, . . . , r (i.e. the first r constraint functions) we
are done.

Suppose not. By the Farkas lemma there is ah ∈ R
n such that−h · ∇f 0(x∗) < 0

and h · ∇f i(x∗) ≥ 0 for i = 1, . . . , r . Note that we can say nothing about the sign
of h · ∇f i(x∗) for i > r . It could be positive or negative.

Choose δ > 0 suitably small. Consider x∗ + δh. We show that it is feasible.
Observe that

A[x∗ + δh] = b + s + δAh.

If we look at any of the first r rows of b + s + δAh:

bi + si + δ

n∑
j=1

aijhj = bi + δh · ∇f i(x∗) ≥ bi .

The last inequality follows from the fact that si = 0 and h · ∇f i(x∗) ≥ 0 for
i = 1, . . . , r . For rows r + 1 and larger, si > 0. So for δ > 0 sufficiently small we
can make si + δh · ∇f i(x∗) ≥ 0. Therefore,

si + bi + δh · ∇f i(x∗) ≥ bi .

Finally, f 0(x∗ + δh) > f 0(x∗) using the Taylor series and the fact that
−h · ∇f 0(x∗) < 0, which contradicts local optimality of x∗.

The LI constraint qualification is sensitive to the representation of the con-
straint set. To see why, consider the problem max{f 0(x): g(x) = 0}. This can
be rewritten as max{f 0(x): g(x) ≥ 0,−g(x) ≥ 0}. Notice that the set of vectors
{∇g(x),−∇g(x)} is not LI so Theorem 5.4 does not apply (at least not directly)
to problems with equality constraints.

Nevertheless, an extension of the Kuhn–Tucker–Karush theorem to equality
constraints is available. Append to the index set M of constraints in problem (P)
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an additional set M= = {i ∈ M: f i(x) = 0}. Let (P′) be the following problem:

max{f 0(x): f i(x) ≥ 0 ∀i ∈ M , f i(x) = 0 ∀i ∈ M=}. (P′)

Theorem 5.6 Let x∗ be a local maximum for problem (P′) (which now has
some equality constraints). Suppose the functions fi for all i ∈ {0} ∪ {M ∪
M=} and their first derivatives are continuous. If the vectors in {∇f i(x∗)}
for i ∈ {M= ∪ {i ∈ M: f i(x∗) = 0}} are LI there exist multipliers {λi}i∈M∪M=

such that

1. ∇f 0(x∗) +∑
i∈M∪M= λi∇f i(x∗) = 0,

2. λi ≥ 0 ∀i ∈ M ,
3. λi unrestricted for i ∈ M=,
4. λif

i(x∗) = 0 ∀i ∈ M ,
5. f i(x∗) ≥ 0 ∀i ∈ M and
6. f i(x∗) = 0 ∀i ∈ M=.

Proof We will prove the existence of multipliers µi for i ∈ {0} ∪ {M ∪ M=} not
all zero such that

µ∗
0∇f 0(x∗) +

∑
i∈M∪M=

µ∗
i ∇f i(x∗) = 0. (5.3)

The remainder of the proof will follow the proof of Theorem 5.4.
Let F ′ = {x ∈ R

n: f i(x) ≥ 0 ∀i ∈ M ∪ M=}, g(x) = ∑
i∈M= f i(x) and

and G = {x ∈ R
n: g(x) ≤ 0} . Problem (P′) can be reformulated as max{f 0(x):

x ∈ F ′ ∩ G}.
Since x∗ is a local maximum for problem (P′) there is an ε > 0 such that x∗

solves

max{f 0(x): x ∈ Nε(x
∗) ∩ G}.

Let f (x) = f 0(x) − f 0(x∗) − ‖x − x∗‖2. Observe that f (x) ≤ 0 for all x ∈
Nε(x

∗) ∩ G with equality iff x = x∗. Since the gradients of f 0 and f coincide at
x∗ it suffices to to prove (5.3) with f 0 replaced by f .

Choose δ < ε and let D = {x: d(x, x∗) < δ}, D′ = {x: d(x, x∗) ≤ δ} and
B = {x: d(x, x∗) = δ} where δ < ε. Subsequently δ will be sent to zero. We
partition F ′ ∩D′ into three sets: F 1 = F ′ ∩D, F 2 = {x ∈ F ′ ∩B: f (x) < 0} and
F 3 = {x ∈ F ′ ∩ B: f (x) ≥ 0}. Since x∗ is not a local maximum for max{f (x):
x ∈ F ′}, F 3 �= ∅.

Since x∗ �∈ B and B ⊂ Nε(x
∗) it follows that g(x) > 0 for all x ∈ F 3. Since

f (x)/g(x) is well defined for all x ∈ F 3 and F 3 is compact, there is a positive
number θ > f (x)/g(x) for all x ∈ F 3. If F 3 is empty, choose any positive θ .

Next, f (x) < 0 ≤ g(x) for all x ∈ F 2. In addition, f (x∗) = 0 = g(x∗) and
x∗ ∈ F 1.

Consider the function f (x) − θg(x). It is strictly negative for all x ∈ F 2 ∪ F 3

and non-negative for at least one x ∈ F 1. By the Weierstrass theorem there is
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a z ∈ F ′ ∩ D′ that maximizes f (x) − θg(x). Since z ∈ F 1, ‖z − x∗‖ < δ.
Also, z is a local maximum for max{f (x) − θg(x): x ∈ F ′}. From Lemma 5.3
we deduce the existence of non-negative multipliers ν0, ν1, ν2, . . . not all zero
such that

ν0∇[f (z)− θg(z)] +
∑

i∈M∪M+
νi∇f i(z) = 0. (5.4)

We can rewrite (5.4) as

µ0∇f (z)+
∑

i∈M∪M+
∇µif

i(z) = 0, (5.5)

where µi = νi for all i ∈ M ∪ {0} and µi = νi − θν0 for all i ∈ M=. Since
the ν’s are not all zero, the µ’s are not all zero. By scaling we can assume that∑

i∈{0}∪M∪M= |µi | = 1.
Now let δ tend to zero. Since z ∈ Nδ(x

∗) it follows that z→ x∗. Since theµ’s are
bounded, by the Bolzano–Weierstrass theorem, there is a convergent subsequence
of them tending to a limit µ∗0,µ∗1,µ∗2, . . .. Finally, continuity of the gradients of
our functions imply that equation (5.5) holds as z→ x∗.

Item (2) follows from the fact that µi = νi ≥ 0 for all i ∈ M . Note that we can
say nothing about the sign of µi for i ∈ M= since µi = νi − θν0 and this could
be negative. Item (4) is complementary slackness. To derive it let M+ = {i ∈M:
f i(x∗) > 0}. Then x∗ is a local maximum for the problem

max{f 0(x): f i(x) ≥ 0 ∀i ∈ M \M+, f i(x) = 0 ∀i ∈ M=}.
In words, problemP ′with the constraints inM+ omitted. Now repeat the argument
for this problem. Since the constraints associated with M+ do not appear, this
is equivalent to setting their multipliers to zero. Items (5) and (6) follow from
feasibility of x∗.

Condition 1 in Theorem 5.6 is usually called a first-order conditions and the
multipliers associated with i ∈ M= are called Lagrange multiplier’s. Theo-
rem 5.6 describes equations that a local maximum must satisfy. It does not follow
that every solution of this system of equations is a local maximum.

Example 20 Consider the following optimization problem:

max x2
1 + x2

2

s.t. x1 + x2 − 1 ≥ 0.

Here f 0 = x2
1 + x2

2 and f 1 = x1 + x2 − 1. The equation

∇f 0(x∗)+
∑

i∈M∪M=
λi∇f i(x∗) = 0,
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and complementary slackness gives rise to

2x1 + λ = 0,
2x2 + λ = 0,
λ(x1 + x2 − 1) = 0.

The first two equations yield x1 = −λ/2 = x2. Substituting this into the comple-
mentary slackness condition gives λ(−λ−1) = 0. There are two solutions: λ = 0
and λ = −1. We can discard the λ = −1 solution since λ must be non-negative;
recall we have an inequality constraint. This leaves x1 = x2 = 0 as the only
solution, which is not a local maximum.

Example 21 Consider the following optimization problem:

max −2x2
1 − 3x2

2
s.t. x1 + x2 − 1 = 0.

Here f 0 = −2x2
1 − 3x2

2 and f 1 = x1 + x2 − 1. The equation

∇f 0(x∗)+
∑

i∈M∪M=
λi∇f i(x∗) = 0,

and feasibility give rise to

−4x1 + λ = 0,
−6x2 + λ = 0,

x1 + x2= 1.

The system has a unique solution; λ = 12/5 and x1 = 3/5 and x2 = 2/5. If our
given optimization problem has a solution, it must be the one we have identified
above. Notice the qualifier ‘if’. One must prove that the problem at hand has an
optimal solution before concluding that x1 = 3/5 and x2 = 2/5 is its optimal
solution.

5.2 Sufficient conditions for optimality

In order for the necessary conditions identified above to be sufficient for global
optimality we must make assumptions about the shape of the objective function f 0.

5.2.1 Concave functions

Definition 5.7 Let C be a convex subset of R
n and f : C → R. The function f is

said to be concave if f (λx + (1− λ)y) ≥ λf (x)+ (1− λ)f (y) for all x, y ∈ C

and λ ∈ [0, 1].
The function f is convex if −f is concave. In the sequel we concentrate on

concavity and leave the reader to make the appropriate changes for the convex
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f (x) f (x)

x
(a) Concave f (x) (b) Convex f (x)

x

Figure 5.3

case. Graphical illustrations of a concave and convex function in one real variable
are shown in Figure 5.3. Concavity is a very strong property as can be seen from
the next result.

Theorem 5.8 Let C ⊂ R
n be an open convex set and f : C → R a con-

cave function such that maxx∈C |f (x)| ≤ M for some constant M . Then f is
continuous on C.

Proof Set g(x) = −f (x). Then g is convex on C. We will show that g is
continuous. Pick any z ∈ C. By a suitable translation we can assume that z = 0
and g(z) = 0. Simply consider x − z and the function g(x)− g(z).

Consider the point 0 and the ball B of radius r around it that is contained in C.
Such a ball exists becauseC is open. Now choose an ε such that 1 > r > ε > 0, and
consider any x whose distance from 0 is at most ε× r . This ensures that x/ε ∈ B

(see Figure 5.4). For any such x we have g(x) = g[(1 − ε) × 0 + ε × (x/ε)] ≤
εg(x/ε) by convexity. Since g(x) ≤ M for all x ∈ C we deduce that g(x) ≤ εM .
Next,

0 = g(0) = g
[
(1+ ε)−1x + ε(1+ ε)−1

(
−x

ε

)]
≤ (1+ ε)−1g(x)+ ε(1+ ε)−1M .

So, g(x) ≥ −εM . Hence for all x ∈ C such that |x − 0| ≤ r < ε, we have
|g(x)− g(0)| ≤ εM .

Concave functions have many useful properties and equivalent definitions.
These are listed below and are easy to prove:

1. Let C ⊂ R
n be convex. f : C → R is concave iff {(x, t) ∈ R

n+1: x ∈ S,
t ≤ f (x)} is convex. The set {(x, t) ∈ R

n+1: x ∈ S, t ≤ f (x)} is called the
hypograph of f .

2. If f is a concave function on a convex set C then h(x) = µf (x) is a concave
function on C for all µ ≥ 0.

3. If f and g are concave functions on a convex set C then h(x) = f (x)+ g(x)

is a concave function on C.
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4. If f and g are concave functions on a convex set C then h(x) =
min{f (x), g(x)} is a concave function on C.

5. If f is a concave function on a convex setC. Let I = {t : ∃x ∈ C s.t. t = f (x)}
and u be a non-decreasing concave function on I . Then h(x) = u[f (x)] is
concave on C.

6. If f is a concave function on a convex set C and {x1, . . . , xn} are points
in C then

f

(
n∑

i=1

λix
i

)
≥

n∑
i=1

λif (xi)

for all {λi}i≥1 ≥ 0 such that
∑n

i=1 λi = 1.

Imposing differentiability on a concave function allows one to characterize them
in simple ways. One example follows.

Definition 5.9 Let f : R
n → R be a continuous twice differentiable function

(meaning all its second derivatives exist). The Hessian of f at x called Hf (x) is

the n× n matrix whose {ij}th entry is ∂2f
∂xi∂xj

.

Theorem 5.10 Let C ⊂ R
n be convex and f a continuous, twice differentiable

function on C. Then f is concave iff uTHf (x)u ≤ 0 for all x ∈ C and u ∈ R
n.

An n × n matrix A is said to be negative semi-definite if uTAu ≤ 0 for
all u ∈ R

n. Checking that a matrix is semi-definite is not easy, but there are ways
to do so using the signs of the determinants of various square submatrices
of A.1

Concave functions that map an interval I of the real line into R
1 are also quite

useful.
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Lemma 5.11 Let I be an interval of R
1 and f : I → R. Then f is concave iff

f (x2)− f (x1)

x2 − x1
≥ f (x3)− f (x2)

x3 − x2

for any x1, x2 and x3 ∈ I such that x1 < x2 < x3.

Remark To understand the lemma it is useful to refer to Figure 5.5. The lemma
asserts that the slope of the line segment joining (x1, f (x1)) and (x2, f (x2))

exceeds the slope of the line segment joining (x2, f (x2)) and (x3, f (x3)).

f (x)

f (x3)

f (x2)

f (x1)

x1 x2 x3 x

Figure 5.5

Proof Assume the inequality in the statement of the theorem holds. Fix an x1 ∈ I

and x3 ∈ I with x1 < x3. For any 0 < λ < 1 we can choose x2 so that x2 =
λx1 + (1− λ)x3. Since x1 < x2 < x3:

(x3 − x1)f (x2) ≥ (x3 − x2)f (x1)+ (x2 − x1)f (x3).

Since λ = (x3 − x2)/(x3 − x1) we can rewrite the previous inequality as

f (x2) ≥ λf (x1)+ (1− λ)f (x3).

Thus f is concave.
Now suppose f is concave. Given x1 < x2 < x3 choose λ so that x2 = λx1 +

(1− λ)x3. And work the previous argument in reverse.

Lemma 5.12 Let I be an interval of R and f : I → R be differentiable. Then f

is concave iff f ′(u) ≥ f ′(v) for any u, v ∈ I such that u < v.



RAKE: “chap05” — 2004/9/17 — 06:10 — page 99 — #13

Non-linear programming 99

Proof Suppose f concave and choose δ < (v − u)/2. Applying Lemma 5.11

f (u+ δ)− f (u)

δ
≥ f (v − δ)− f (u+ δ)

v − u− 2δ
≥ f (v)− f (v − δ)

δ
.

Let δ→ 0, and we deduce that f ′(u) ≥ f ′(v). Now suppose that f is not concave.
Then we can choose three numbers x1 < x2 < x3 in I to violate Lemma 5.11. By
Rolle’s theorem we can choose u and v so that

1. x1 < u < x2 < v < x3,
2. (x2 − x1)f

′(u) = f (x2)− f (x1),
3. (x3 − x2)f

′(v) = f (x3)− f (x2).

Hence f ′(u) < f ′(v) a contradiction.

Lemma 5.12 implies:

Theorem 5.13 Let I be an interval of R and f : I → R be twice differentiable.
Then f is concave iff f ′′(x) ≤ 0 for all x ∈ I .

5.2.2 Concave programming

The concave programming problem is problem (P) when f 0 and {f i}i∈M are all
concave. Notice that in this case the feasible region is convex. We denote the
concave programming problem by Pc We consider the unconstrained case first.

Theorem 5.14 (Unconstrained case) Let f be a concave, continuous, differen-
tiable function on an open convex set C. Then f has a maximum at x∗ ∈ C iff
∇f (x∗) = 0.

Proof Since a global maximum is a local maximum, one direction follows from
Theorem 5.2. To prove the other direction let x �= y be such that f (x) > f (y).
We show that ∇f (y) �= 0. Concavity of f implies

f (µx + (1− µ)y) ≥ µf (x)+ (1− µ)f (y),

whenever 0 < µ < 1. Set h = x − y and θ = f (x) − f (y) > 0. Then the
inequality above can be rewritten as

f (y + µh)− f (y) ≥ µθ .

From the Taylor series expansion of f it follows that for all sufficiently small
µ > 0, h · ∇f (y) ≥ θ > 0. Hence ∇f (y) �= 0.

Definition 5.15 A point x∗ is called a Kuhn–Tucker–Karush point for problem
(Pc) if there exist multipliers {λi}i∈M such that:

1. ∇f 0(x∗)+∑i∈M λi∇f i(x∗) = 0
2. λif

i(x∗) = 0, ∀i ∈ M
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3. λi ≥ 0, ∀i ∈ M

4. f i(x∗) ≥ 0, ∀i ∈ M .

Theorem 5.16 (Constrained case) If x∗ is a Kuhn–Tucker–Karush (KTK) point
for (Pc), then x∗ is an optimal solution to (Pc).

Proof Observe first that f 0(x)+∑i∈M λif
i(x) is a non-negative combination

of concave functions and so is concave. By the first condition of being a KTK point
and Theorem 5.14, x∗ maximizes f 0(x) +∑i∈M λif

i(x). The last condition of
being a KTK point implies that x∗ is feasible for problem (Pc). Now pick any
other feasible solution, x to (Pc). Then

f 0(x∗)+
∑
i∈M

λif
i(x∗) ≥ f 0(x)+

∑
i∈M

λif
i(x).

By the second condition of being a KTK point,
∑

i∈M λif
i(x∗) = 0. Hence

f 0(x∗) ≥ f 0(x)+
∑
i∈M

λif
i(x) ≥ f 0(x).

The last inequality follows from the third condition of being a KTK point.

The reader will wonder why we have not considered the case of equality con-
straints. If a constraint function f is concave, the set {x: f (x) ≥ 0} is convex.
If we have an equality constraint f (x) = 0 we can replace it by the inequalities
f (x) ≤ 0 and f (x) ≥ 0. However, the set {x: f (x) ≤ 0} is not convex. So, the
region determined by {x: f (x) ≥ 0} ∩ {f (x) ≤ 0} need not be convex. Notice
also, that this difficulty vanishes when f is linear.

5.2.3 Constraint qualifications

Here we summarize the three most popular constraint qualifications:

1. In problem (P′), the gradients {∇f i(x∗)}i∈M∪M= are linearly independent.
2. In problem (P′) the constraint functions {f i}i∈M∪M+ are linear.
3. In problem (Pc) there exists a feasible x such that f i(x) > 0 for all i ∈ M .

Only the first depends on x∗. The third one, called the Slater condition, does not
apply when equality constraints are present.

5.3 Envelope theorem

Frequently one is interested in the change in optimal objective function value as
one changes some parameter. This parameter can be in the objective function, the
constraints or both. We have already seen an example of this with the marginal
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value theorem. For non-linear optimization problems the tool of choice is the
envelope theorem. This theorem should really be viewed as the generalization of
the marginal value theorem to non-linear optimization problems.

Let f : R
n × [0, 1] → R be a parameterized objective function. Let F be a

feasible set of points and

V (t) = max{f (x, t): x ∈ F }.

Notice that the definition of V (t) assumes that f attains a maximum in F . What
we would like to know is the derivative of V (t) with respect to t . If we fix a value
of t , we can rewrite V (t) as follows:

V (t) = min{y: y ≥ f (x, t), ∀x ∈ F }.

Thus V (t) is the optimal objective function value of a linear program, albeit one
with as many variables as there are points in F . Changing the value of t amounts
to a change in the right hand side of this last program. Thus, from the marginal
value theorem, we would conjecture that V (t + ε)− V (t) should depend on how
f (x, t) changes with t .

To get a sense of what kind of theorems one can expect, suppose that F consists
of a finite number of points and that f is differentiable in t . Recall that

V (t) = min y

s.t. y ≥ f (x, t), ∀x ∈ F .

This is a linear program. If f has a unique maximizer, x∗, in F , there will be
exactly one binding constraint in the optimal solution. Now suppose we would
like, from the solution to this linear program, the value of V (t + ε).

We can approximate f (x, t + ε) in the neighborhood of t by its Taylor series
expansion. So we can replace f (x, t + ε) by f (x, t)+ εft (x, t). Here ft denotes
the derivative of f with respect to t . Hence

V (t + ε) = min y

s.t. y ≥ f (x, t)+ εft (x, t), ∀x ∈ F .

Thus computing V (t + ε) amounts to increasing the right hand side of each con-
straint in the original program by εft (x, t). If ε is small enough, the constraint
associated with x∗ continues to be the only one to bind. So

V (t + ε) = f (x∗, t)+ εft (x
∗, t).

Hence

V (t + ε)− V (t)

ε
= ft (x

∗, t).
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Letting ε → 0 gives Vt (t) = ft (x
∗, t). This is an example of an envelope theorem.

To see how all of this is consistent with the marginal value theorem, return to
the original program:

V (t) = min y

s.t. y ≥ f (x, t), ∀x ∈ F .

The dual is

max
∑
x∈F

f (x, t)µx

s.t.
∑
x∈F

µx ≤ 1,

µx ≥ 0, ∀x ∈ F .

It is easy to see that the optimal solution to the dual is µx∗ = 1 and µx = 0 for all
x �= x∗ and this is unique. When we increase t by ε, the right hand sides of the
original program change by εft (x, t), so, by the marginal value theorem

V (t + ε) = V (t)+
∑
x∈F

µxft (t , x) = V (t)+ ft (x
∗, t).

The whole trick in proving envelope theorems is to invoke conditions that ensure
that the constraint set {y: y ≥ f (x, t) ∀x ∈ F } is well behaved for small changes
in t . Specifically, a constraint that was binding at the optimal solution continues
to be binding when we increase t to t + ε for ε sufficiently small.

We close this section with one instance of the envelope theorem.2 Let t ∈ R
k and

V (t) = max f 0(x, t)

s.t. f i(x, t) = 0, ∀i ∈ M .

All functions are concave. For each t , let x(t) be an optimal solution and suppose
the constraint qualification holds. Associated with each x(t) are a set of multipliers
{λi(t)}i∈M such that

∇f 0(x(t), t)+
∑
i∈M

λi(t)∇f i(x(t), t) = 0.

Theorem 5.17 Suppose x(t) is a differentiable function of t . Then

∇V (t) = ∇t f
0(x(t), t)−

∑
i∈M

λi(t)∇t f
i(x(t), t).
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Proof By the chain rule

∂V (t)

∂ts
= ∂f 0(x(t), t)

∂ts
+

n∑
j=1

(
∂f 0(x(t), t)

∂xj

∂x(t)

∂ts

)
.

From the first order condition we have:

∂f 0(x(t), t)

∂xj
= −

∑
i∈M

λi(t)
∂f i(x(t), t)

∂xj
.

Hence

∂V (t)

∂ts
= ∂f 0(x(t), t)

∂ts
−
∑
i∈M

λi(t)

n∑
j=1

(
∂f i(x(t), t)

∂xj

∂x(t)

∂ts

)
.

However, f i(x(t), t) = 0 for all t . Thus

n∑
j=1

∂f i(x(t), t)

∂xj

∂x(t)

∂ts
= ∂f i(x(t), t)

∂ts

and this proves the theorem.

5.4 An aside on utility functions

Economics starts with the assumption that agents are rational; suggesting that mad
dogs and Englishmen are not the only ones who go out into the noonday sun. Its
an assumption that attracts criticism the way horse shit attracts flies and deserves
discussion, but not here.

There are two parts to the definition of rationality used in Economics. The first
is that agents are defined by their preferences over things or outcomes. Further,
these preferences satisfy consistency conditions described below.

First, for any any two bundles of goods and services, call them x and y, our
agent should be able to say exactly one of the following:

1. She prefers x to y.
2. She prefers y to x.
3. She is indifferent between x and y.

If she can do this, we say she has a preference ordering over the set of all bundles.
We don’t care how she arrives at this ordering, only that she has one. This is how
economics differs from, say, sociology. Preferences are assumed to be fixed and
innate. Why someone’s preferences are the way they are is not, for our purposes,
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relevant.3 Preferences are required to satisfy three conditions:

1. Monotonicity: More of a good thing is better (and certainly no worse) than
less of it.

2. Irreflexivity: Given two identical bundles, you should never prefer one to
the other.

3. Transitivity: If x is preferred to y and y is preferred to z then x is preferred to
z. If I prefer apples to oranges and oranges to grapefruit, then I prefer apples
to grapefruit.

One other requirement, invoked for convenience, is called the law of diminishing
returns.4 The benefit derived from successive units of a particular commodity
diminish as total consumption of that commodity increases, the consumption of all
other commodities being held constant. The more salt you have, the less additional
salt you want.

An agent will be consistent if their preference orderings conform to the above.
The second part of the definition stipulates how a consistent agent chooses between
bundles of goods and services.

Given a set of bundles to choose from, the consistent agent will choose their
most preferred bundle from the set. Writing in 1881, Francis Ysidro Edgeworth
(1845–1926), put it thus: ‘the first principle of Economics is that every agent is
actuated only by self-interest’.5 The rational agent looks only at their preferences
and no one else’s in deciding on the best bundle. This narrow view of human
behavior is mistakenly ascribed to Adam Smith (1723–1790)6 as the following
limerick by Stephen Leacock7 suggests.

Adam, Adam, Adam Smith
Listen what I charge you with!
Didn’t you say
In the class one day
That selfishness was bound to pay?
Of all doctrines that was the Pith,
Wasn’t it, wasn’t it, wasn’t it, Smith?

A preference ordering is awkward to write down. It would be useful to have a
compact representation of it. A numerical representation of a preference ordering
over the set of bundles is a function u such that

x is preferred to y if and only if u(x) ≥ u(y) (5.6)

for all x and y. The function u is called a utility function. Basically, one can assign
a numerical score to each bundle with the property that more preferred bundles
get a higher score. The score that is assigned to a particular bundle represents the
utility to be had from that bundle.
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If the preference ordering satisfies the four conditions listed above, then it can
be represented by a non-decreasing and concave utility function. Given a utility
function, the rational agent chooses the bundle with highest or maximum utility.

It is important to remember that a utility function does nothing more than repre-
sent preferences. It tells us nothing about the intensity of preferences. The fact that
u(x) = 7 and u(y) = 3 tells us nothing about much more an agent with this utility
function prefers x to y. To see why this is the case, observe that if u(·) is a utility
function representing some preference order than λu(·) where λ > 0 represents
the same of preferences.

The utility framework can be extended to choice in an uncertain world by
extending the notion of bundles of commodities to include ‘lotteries’. The word is
interpreted in the broad sense to include any risky choice. For example, a hundred
shares in IBM to be sold two weeks from now is like a lottery ticket. The profit
is uncertain and beyond your control.8 A prospective employee is a lottery ticket.
She may turn out to be wonderful or a real dolt. You may be able to guess which
with some confidence, but you don’t know for certain. We can represent all such
risky prospects as lottery tickets which payoff particular amounts with a particular
probability. We require given any two lottery tickets, that one specify which you
prefer over the other or whether you are indifferent. By imposing consistency con-
ditions on the ordering of lotteries we can derive a utility function representation.
Furthermore, this utility function has the property that the utility of a lottery is just
the expected utility of its different outcomes.

One useful number that we can associate with a lottery is it’s expected payoff.
The expected payoff is a useful benchmark for classifying an individuals attitude
toward risk. Here is how.

Assume you own a lottery ticket which will pay $7 with a probability 1/2 and
zero otherwise. Suppose someone offers to buy it from you. If you are willing to
sell it for $3.50 or less, you are risk averse. If you will only sell it for something
more than $3.50, you are risk seeking. When you think it’s worth exactly $3.50
no more and no less, you are risk neutral.

An agent who is risk averse is modeled using a concave utility function. To
see why, suppose a lottery ticket that pays x with probability λ and pays y with
probability 1− λ. The expected payoff of the ticket is λx + (1− λ)y. Suppose an
agent with a concave utility function, who is offered a choice between the lottery
ticket and a sure payoff of λx+(1−λ)y. The expected utility of the lottery ticket to
the agent is λu(x)+ (1−λ)u(y) which by concavity is at most u(λx+ (1−λ)y).
Thus the utility of the sure thing is at least as large as the utility of the lottery.
In words the agent would prefer the sure thing to the lottery.

5.5 Application: market games

We consider an economy with k divisible goods and a set N of agents. Each agent
is endowed with a non-negative quantity of each good that we represent as a vector
in R

k+. The endowment of agent i is wi ∈ R
k+. Each agent i is also endowed with

a non-negative amount m̂i of money. Agent i’s preferences over a vector of goods
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are represented by a continuous, concave utility function ui : R
k → R. We assume

that utilities for all agents are quasi-linear. Thus the utility assigned by agent
i to a bundle x ∈ R

k+ of goods and an amount m of money is ui(x)+m. The
assumption of quasi-linearity means that the utilities of all agents can be measured
on a common monetary scale. An implication of this is that utility can be transferred
from one agent to another through the medium of money.

The only transactions permitted in this economy are exchanges or trades of
goods. The transactions we expect to see are those that make every participant in
the transaction at least as well as off as before transacting. For example, if one agent
has apples only but prefers oranges, while the other has oranges but prefers apples,
they would both be better of if they were to swap some apples for oranges. Even if
there are gains from trade it does not follow that those gains will be realized. The
agents must still haggle over how those gains are to be divided amongst themselves.
Trade could break down if the agents reach no agreement on the division.

We will assume that when a group S of agents meet to trade amongst themselves
only, they will trade in such a way as to maximize the sum of their utilities. Implicit
is the assumption that the agents will reach an agreement on how the gains are to
be divided. The question we answer is this: what will the resulting distribution of
utilities look like.

Given a subset S of agents we formulate the problem of redistributing their
initial endowment of goods and money so as to maximize their total utility as a
concave programming problem.

Let xi be the vector of goods assigned to agent i ∈ S and mi the change in
monetary position. If mi > 0, agent i receives money, if mi < 0 then agent i
pays out and if mi = 0 agent i’s monetary position is unchanged. For trades to be
feasible the following constraint must hold:

∑
i∈S

xi =
∑
i∈S

wi ,

∑
i∈S

mi = 0.

The last constraint follows from the fact that sum total of money exchanged must
be zero.

The maximum total utility that the players in S can achieve is v(S) and

v(S) = max
∑
i∈S

ui(xi)+
∑
i∈S

(m̂i +mi)

s.t.
∑
i∈S

xi =
∑
i∈S

wi ,

∑
i∈S

mi = 0,

xi ∈ R
k+.
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Because of the last constraint we can ignore the terms involving money and just set

v(S) = max
{∑

i∈S
ui(xi):

∑
i∈S

xi =
∑
i∈S

wi

}
.

The cooperative game defined by this value function v is called a market game.
Notice that v(S) ≤ v(T ) whenever S ⊂ T . Thus the gains from trade (as measured
by total utility) increase with the number of agents involved. The largest possible
gains occurs when all agents inN trade amongst themselves. The core of this game,
if it exists, is a reasonable of prediction of the set of possible utility distributions.
If the result of trading was a distribution of utilities that lay outside the core, there
would be a subset of agents who could get together and do better.

Theorem 5.18 If v is a market game then C(v,N) �= ∅.

Proof For each S ⊂ N let xi
S satisfy v(S) = ∑

i∈S ui(xi
S) and

∑
i∈S xi

s =∑
i∈S wi . We know that such xi

S’s exist because we are maximizing a continuous
function over a compact set, so the set must contain an optimum.

Pick a y ∈ B(N). Let zi = ∑
S"i ysxi

s . We show that {zi}i∈N is a feasible
allocation for all N players, i.e.,

∑
i∈N zi =∑i∈N wi . Now

∑
i∈N

zi =
∑
i∈N

∑
S"i

ySx
i
S =

∑
S⊂N

yS
∑
i∈S

xi
S =

=
∑
S⊂N

yS
∑
i∈S

wi =
∑
i∈N

wi
∑
S"i

yS =
∑
i∈N

wi

since
∑

S"i yS = 1.
Now that we have a feasible solution z for the entire economy we can use the

Bondareva–Shapley theorem to show that the core is non-empty.
We know that

v(N) = max
{∑

i∈N
ui(t i):

∑
i∈N

ti =
∑
i∈N

wi

}
≥
∑
i∈N

ui(zi).

By concavity of the utility functions

v(N) ≥
∑
i∈N

ui

(∑
S"i

ySx
i
S

)
≥
∑
i∈N

∑
S"i

ySu
i(xi

S)

=
∑
S⊂N

yS
∑
i∈S

ui(xi
S) =

∑
S⊂N

ySv(S),

since v(S) = ∑
i∈S ui(xi

S). The theorem now follows from the Bonderava–
Shapley theorem.
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Trades are typically conducted with prices. It is natural to ask if there is a set of
prices that would lead to a reallocation of the endowments that is in the core.

Let p ∈ R
k be a price vector. The price vector is unrestricted in sign. If the

price of a good is negative, it means that someone must be paid to buy it. Given p,
agent i solves the following optimization problem to determine what to ask for.

max ui(xi)+ m̂i +mi

s.t. pxi + m̂i +mi = m̂i + pωi ,

xi ≥ 0.

Dropping constant terms the agents optimization problem can be simplified to

max ui(xi)+mi

s.t. pxi +mi = pωi ,

xi ≥ 0.

The feasible region is compact and the objective function continuous, so by the
Weierstrass theorem an optimal solution exists. Substituting the one constraint into
objective functions yields:

max ui(xi)+ p(ωi − xi)

s.t. xi ≥ 0.

Since pω is constant we can drop it from the optimization problem and reduce it to

max ui(xi)− pxi s.t. xi ≥ 0.

Denote the optimal solution by xi(p). Note the dependence on p.
A price vector p is an equilibrium for the market if demand equals supply, i.e.

n∑
i=1

xi(p) =
n∑

i=1

ωi .

An optimal solution to each agents optimization problem must satisfy the KTK
condition

∂ui

∂xi
j

− pj + µi
j = 0

for each good j . Here µi
j is the multiplier associated with the constraint xi

j ≥ 0.
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If xi
j (p) > 0 then µi

j = 0 by complementary slackness. In this case

∂ui

∂xi
j

− pj = 0.

If xi
j (p) = 0, we know only that µi

j ≥ 0. Hence

∂ui

∂xi
− pi ≤ 0.

Now imagine a benevolent planner that tries to allocate the resources of this econ-
omy so as to maximize the sum of utilities, i.e., the planner computes v(N). The
planners problem is to choose {zi}i∈N so that

∑
i∈N

ui(zi) = max
{∑

i∈N
ui(xi):

∑
i∈N

xi =
∑
i∈N

ωi , xi ≥ 0
}

.

Since this is a concave programming problem, it follows from the KTK condi-
tions that

∂ui

∂xi
j

∣∣∣∣
xi
j=zij
− λj + θij = 0.

If we choose prices p = λ, and µ = θ , the solution to the planners problem
coincides with the solution of each agents problem. Thus, not only is there an
equilibrium price, but at that price the resulting trades lie in the core.

5.6 Application: principal–agent problem

The principal–agent problem involves an individual (Principal) that employs
another (the Agent) to perform a task. The task is onerous, so the agent must
be compensated for doing it. The difficulty is that the principal cannot observe
directly if the agent has performed the task. What the principal can observe is a
signal that is an imperfect indicator of the effort expended by the agent.

A principal who hires another to sell their product faces just this problem. The
number of purchase orders the agent brings in is an imperfect signal of the effort
they have exerted to hawk the principal’s goods. A low volume of orders could
be the result of laziness on the part of the agent or competitive factors beyond the
agents control, for example, a recession or the introduction by a rival firm of a
superior offering. A high volume of orders could be the result of hard work or just
plain luck.

The principals problem is to determine a contract that will give the agent the
incentive to exert the desired level of effort. Since the principal cannot observe
the level of effort directly, the payments (or penalties) in the contract can depend
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only on the observed signal. For the problem to be non-trivial, principal and agent
must have different attitudes to risk.

It is usual to assume that the principal is risk neutral, that is, cares only about
expected monetary payoff. The idea is that the principle is usually large and well
diversified. If the agent is also risk neutral, then the principal can solve the incentive
problem by selling the ‘firm’ to the agent outright. It is usual to assume that the
agent is risk averse. This is modeled by endowing the agent with a concave utility
function.

We set up the principal–agent problem in the following way:

1. A = {a1, a2, . . . , an} a finite set of possible actions that the agent can take.
2. S = {s1, s2, . . . , sm} is the set of possible signals that the principal can observe.
3. Let p(si |aj ) be the probability of observing signal si given action aj was

undertaken by the agent.
4. Assume p(si |aj ) > 0 for each si , aj .
5. The agent’s disutility from undertaking action aj is d(aj ).
6. The agent’s utility as a function of the wage ω and the action a ∈ A is

u(ω)− d(a).
7. Assume u strictly increasing, concave, continuous and differentiable.
8. To model the fact that the agent is not obliged to accept any contract, the agent

obtains a reservation utility of U0.

The principal’s problem is to determine the cheapest contract to induce the agent
to adopt a given action, an, say. A contract is specified by stipulating a wage to be
paid for each possible signal that is realized. Let ω(si) be the wage paid if signal
si is realized.

It is natural to formulate the principals problem with the ω(si)’s as the variables.
However, this leads to an optimization problem with non-linear constraints. To
avoid this we make a change of variables. If signal si is realized, the agent’s utility
will be zi = u(ω(si)). Our variables will be the zi’s. In words we formulate the
problem in terms of the utility delivered to the agent rather than wage.

Given the zi’s we can determine the corresponding wage by inverting u. Since
u is a strictly increasing function of ω it has an inverse v, that is, ω(si) = v(zi),
where v = u−1. In addition, because u is concave, v is convex.

To induce the agent to undertake action an, the zi’s must be chosen so that

m∑
i=1

p(si |an)zi − d(an) ≥
m∑
i=1

p(si |aj )zi − d(aj ) ∀aj �= an.

This is called an incentive compatibility constraint. To induce the agent to accept
the contract

m∑
i=1

p(si |an)zi − d(an) ≥ U0.
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This is called the individual rationality constraint.
The principal’s optimization problem is:

min
m∑
i=1

p(si |an)v(zi)

s.t.
m∑
i=1

p(si |an)zi − d(an) ≥
m∑
i=1

p(si |aj )zi − d(aj ), ∀aj �= an,

∑
1m
i=1p(si |an)zi − d(an) ≥ U0.

The constraints are linear, the objective is to minimize a convex function, so the
problem is an instance of a concave programming problem. For this constrained
minimization problem the Kuhn–Tucker–Karush conditions yield

v′(zi) = λ+
n∑

j=1

µj

(
1− p(si |aj )

p(si |an)
)

.

Here λ is the multiplier associated with the individual rationality constraint and
{µj } the multiplers associated with the incentive compatability constraints. Since
v is a convex function, its first derivative is an increasing function in z. The
right side of the equation is composed of a fixed component λ and terms of the
form p(si |aj )/p(si |an) that depend on the data. This ratio measures the likelihood
action aj was taken rather than an when signal si was observed. When these ratios
are small for all aj �= an, it means that signal si is a strong indicator that action an
was taken. Now compare two signals, si and st and suppose that si is a stronger
indicator than st that action an was taken.9 Then, by the first order condition we
have v′(zi) ≥ v′(zt ). So that wages should be higher for more informative signals
than for less informative ones.

Problems

5.1 Consider the feasible region defined by {x1 ≥ 0, x2 ≥ 0, x2−(x1−1)2 ≤ 0}.
The point (1, 0) is feasible. Would the Kuhn–Tucker theorem apply to this
point?

5.2 Consider the following optimization problem:

max{x2 − y2: x2 + y2 ≤ 1}

Write down the necessary conditions of Theorem 5.6 for a local maxima.
Find all solutions to the system of equations you generate. Is the constraint
qualification satisfied for each of them? Are all of them local maxima?
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5.3 Consider the following optimization problem:

max{x2 − y2: x2 + y2 = 1}

Write down the necessary conditions for a local maxima. Find all four solu-
tions to the system of equations you generate. Is the constraint qualification
satisfied for each of them? Are all of them local maxima?

5.4 Solve the following problem:

max{log x + log y: x2 + y2 = 1}

5.5 Decide which, if any, of the following functions is convex, concave or neither
on the reals:

1. 2x3 − 3x2

2. xy − x2 − y2

3. 3x + 2x2 + 4y + y2 − 2xy
4. x2 + 3xy + 2y2

5. xy

5.6 Let f (x) =∑n
j=1 αjx

θj
j where θj �= 0 for all j , θj ≤ 1 for all j and each αj

has the same sign as θj . Show that f is concave on the non-negative orthant.
5.7 LetA be convex subset of R

n andB ⊂ R
n (not necessarily convex). Suppose

for each c ∈ A, the problem f (c) = min{cx: x ∈ B} has a solution. Show
that f (c) is concave on A.

5.8 Show that a differentiable real valued function on R is concave iff
f (x+ a) ≤ f (x)+ af ′(x) for all x, a.

5.9 Let C be convex and f : C → R. f is called strictly concave if f (λx +
(1− λy)) > λf (x)+ (1− λ)f (y) for all x, y ∈ C. If f is strictly concave
show that arg max{f (x): x ∈ C} is either empty or unique.

5.10 A real valued function f on a convex set C ⊂ R
n is called quasi-concave

if for all x, y ∈ C

f (λx + (1− λ)y) ≥ min[f (x), f (y)].

Prove the following facts about quasi-concave functions:

1. The set Ft = {x ∈ C: f (x) ≥ t} for each real number t is convex.
2. The minimum of two quasi-concave functions is quasi-concave.
3. Any positive multiple of a quasi-concave function is quasi-concave.
4. Is the sum of two quasi-concave functions quasi-concave? Prove or give

a counter-example.
5. Is f (x) = x3 quasi-concave for all real numbers x?
6. Is a local maximum of a quasi-concave function a global maximum?

Prove or give a counter-example.
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7. A real valued function f on a convex set C ⊂ R
n is called strictly

quasi-concave if for all x, y ∈ C

f (λx + (1− λ)y) > min[f (x), f (y)].

Show that every local maximum of a strictly quasi-concave function is
a global maximum.

8. Let f be a continuous and differentiable function on a convex set C.
For all x, y ∈ C with x �= y show that f is quasi-concave iff f (y) ≥
f (x)→ ∇f (x) · (y − x) ≥ 0.

9. Show that the Cobb–Douglas production function xpyq is concave on
the non-negative orthant if p + q ≤ 1 but quasi-concave if p + q > 1.

5.11 Let α and β be positive constants. Show that the function f (x) =
−α√δ2 − x2 is convex for −δ ≤ x ≤ δ. Use this result to prove that
the set

{
(x, y) ∈ R

2:
(x
a

)2 +
(y
b

)2 ≤ 1
}

(where a, b > 0) is convex.
5.12 Let f : R

n → R be convex and g: R
n → R be concave. Suppose g(x) ≤

f (x) for all x ∈ R
n. Use the separating hyperplane theorem to show that

there exists c ∈ R
n and t ∈ R such that

g(x) ≥ c · x + t ≥ f (x), ∀x ∈ R
n.

5.13 Show that the function f (x) = log x is concave. Use this fact to prove that
for any collection {a1, a2, . . . , an} of non-negative numbers

∑n
j=1 aj

n
≥
[ n∏

j=1

aj

]1/n

,

5.14 Show that f (x) = x2 is convex for x ≥ 0. Use that to prove the Cauchy–
Schwarz inequality:

n∑
i=1

xiyi ≤
[ n∑

i=1

x2
i

]1/2[ n∑
i=1

y2
i

]1/2

,

where xi , yi > 0 for all i.
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5.15 Prove the generalization of the Cauchy–Schwarz inequality called Hölders
inequality:

n∑
i=1

xiyi ≤
[ n∑

i=1

x
p

i

]1/p[ n∑
i=1

y
q

i

]1/q

,

where xi , yi > 0 for all i and p > 1, q > 0 and 1/p + 1/q = 1.
5.16 Deduce from Hölder’s inequality, Minkowski’s inequality:

[ n∑
i=1

(xi + yi)
p

]1/p

≤
[ n∑

i=1

x
p

i

]1/p

+
[ n∑

i=1

y
q

i

]1/q

,

where xi , yi > 0 for all i and p ≥ 1.
5.17 Solve max 2x1x2 + 2x2 − x2

1 − 2x2
2 .

5.18 Solve:

max 15x1 + 30x2 + 4x1x2 − 2x2
1 − 4x2

2

s.t. x1 + 2x2 ≤ 30,

x1, x2 ≥ 0.

5.19 Prove using KTK that x = 2/
√

3 and y = 1.5 is an optimal solution to

max 4x + 6y − x3 − 2y2

s.t. x + 3y ≤ 8,

5x + 2y ≤ 14,

x, y ≥ 0.

5.20 Let A be a m× n matrix, C a n× n matrix and x∗ an optimal solution to the
following program:

min
{ 1

2xCx + px: Ax ≥ b
}

.

Denote the ith row of A by ai . Let I = {i: aix∗ = bi}. Show that there must
be numbers wi ≥ 0 for all i ∈ I such that

Cx∗ + p =
∑
i∈I

wia
i .

If C is positive semidefinite, show that the above necessary condition for
optimality is also a sufficient condition.
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5.21 For x ≥ 0 define f (x) as follows.

f (x) =
{
x ln x, x > 0,

0, x = 0.

Show that f is a convex function on R+. Prove that

xy ≤ f (x)+ ey−1

for all x ≥ 0 and y ∈ R.
5.22 Let f be a real valued concave function on a compact convex subset C of

R
n. If f attains a minimum over C prove that it does so at one of the extreme

points of C.
5.23 Consider the following quadratic program.

min xTQx − bx

s.t. Ax = c.

Prove that x∗ is a local minimum iff it is a global minimum. Note that no
convexity or concavity is assumed in the objective function.

5.24 Let M be a m by n matrix and g ∈ R
m. Suppose there is no x such that

Mx = g. Consider the least squares problem: min{|Mx − g|2: x ∈ R
n}.

Show that x∗ is an optimal solution to this problem iff MTMx = MTg.
Prove that if the columns of M are LI, then the optimal solution is unique.
Note |Mx − g| is just the distance between Mx and g.

5.25 Consider the following optimization problem:

min 1
2xQx + 1

2yQy − cx

s.t. Ax +Qy ≥ c,

x ≥ 0.

Q is invertible, symmetric (Q = QT) and positive semi-definite (uTQu ≥ 0
for all u) and A is skew symmetric (AT = −A).10

Prove that the program is feasible, and has an optimal objective function
value is 0.

Notes

1 Those interested in these matters should consult Chiang (1984) or Mas-Colell et al.
(1995).

2 Other instances may be found in Milgrom and Segal (2002).
3 A principle celebrated in latin as ‘de gustibus non est disputandum’.
4 It makes its first appearance in the writings of the 18th century French physiocrat Anne

Robert Jacques Turgot: The earth’s fertility resembles a spring that is being pressed
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downwards by the addition of successive weights. If the weight is small and the spring
is not very flexible, the first attempts will have no results. But when the weight is enough
to overcome the first resistance then it will give to the pressure. After yielding a certain
amount it will again begin to resist the extra force put upon it, and weights that formerly
would have caused a depression of an inch will now scarcely move it by a hair’s breadth.
And so the effect of additional weights will diminish.

5 It’s been said of Edgeworth that he was ‘adept at avoiding conversational English’. He
once asked T. E. Lawrence (of Arabia) :‘Was it very caliginous in the Metropolis?’ Back
came the reply: ‘Somewhat caliginous but not altogether inspissated’.

6 The father of Economics.
7 Leacock (1936).
8 Assuming you have no control over the stock market.
9 One could formalize this by saying thatp(si |aj )/p(si |an) < p(st |aj )/p(st |an) for all j .

10 Skew-symmetry implies that xTAx = 0 for all x.
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6 Fixed points

The fixed point problem is this:

Given a set S ⊂ R
n and a function f : S → S, is there an x ∈ such that

f (x) = x?

The problem of finding the zeros of a function, f , i.e., an x ∈ S such thatf (x) = 0,
can be converted into a fixed point problem. Observe that f (x) = 0 iff. g(x) = x

where g(x) = f (x) + x. Concave programming is also a special case of the
fixed point problem. In the unconstrained case, the optimal solution is found by
solving ∇f (x) = 0. Conversely, the fixed point problem can be converted to the
optimization problem minx∈S(f (x)− x)2, but this is rarely helpful.

6.1 Banach fixed point theorem

The simplest of all fixed point theorems is ascribed to Stefan Banach (1892–1945).1

Definition 6.1 A function f : S → S is called a contraction mapping if
d(f (x), f (y)) ≤ θd(x, y) for all x, y ∈ S, where 0 ≤ θ < 1 is a fixed constant.

In the one-dimensional case, the contraction mapping condition is |f (x) −
f (y)| ≤ θ |x − y|.

Theorem 6.2 Let S ⊂ R
n be closed and f : S → S a contraction mapping. Then

there exists a unique x ∈ S such that f (x) = x.

Proof The proof is provided for the one-dimensional case. Choose any x0 ∈ S

and let xn = f (xn−1). If {xn}n≥1 has a limit x∗ then x∗ ∈ S because S is closed,
and f (x∗) = x∗. Therefore, it suffices to prove that {xn}n≥1 has a limit. We use
the Cauchy criterion.

Pick q > p. Then

|xq − xp| =
∣∣∣∣
q−1∑
n=p

(xn+1 − xn)

∣∣∣∣ ≤
q−1∑
n=p

∣∣xn+1 − xn
∣∣.
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But

|xn+1 − xn| = |f (xn)− f (xn−1)| ≤ θ |xn − xn−1|.

Repeated application of the above yields

|xn+1 − xn| ≤ θn|x1 − x0|.

Hence

|xq − xp| ≤
q−1∑
n=p

θn|x1 − x0|

≤ |x1 − x0|(θp + θp+1 + · · · ) = |x1 − x0| θp

1− θ
.

The last term goes to zero as p, q go to infinity because θ < 1. Thus, {xn}n≥1 has
a limit. We leave the proof of uniqueness as an exercise for the reader.

The Banach Theorem is quite weak. Consider f : [0, 1] → [0, 1], where f (x) =
x. This function barely misses being a contraction since |f (x)− f (y)| = |x − y|
for all x, y ∈ [0, 1]. However, every point in [0, 1] is a fixed point of this function.

The Banach theorem should really be interpreted as a sufficient condition for a
certain simple algorithm to compute a fixed point.

6.2 Brouwer fixed point theorem

The big fixed point theorem is due to L. E. J. Brouwer (1881–1966).2

Theorem 6.3 If S ⊂ Rn is compact and convex and f : S → S is continuous
there exists x ∈ S such that f (x) = x.

All of the assumptions in the theorem are essential. Suppose we drop only
continuity. Consider f : [0, 1] → [0, 1] where f (x) = 1 when x = 0 and zero
otherwise. There is clearly no fixed point in this case.

Now remove compactness alone. Let S = {x: x ≥ 0} and f (x) = x+1. Clearly
f has no fixed point.

Next relax just convexity. Let S be the boundary of the unit circle and f the
function that rotates each point on the circle one degree to the right.

The one dimensional version of Brouwer’s theorem is known as the intermediate
value theorem: if a continuous function can take both positive and negative values
then there must be a value where it is zero.3 Here a proof for the one-dimensional
version that is a little more involved than usual is presented, but has the advantage
that it can be generalized.
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Lemma 6.4 Let f : [0, 1] → [0, 1] be continuous. Then there is an x ∈ [0, 1]
such that f (x) = x.

Proof Each p ∈ [0, 1] can be represented as a convex combination of the end
points of the interval:

p = (1− p)× 0+ p × 1.

The same will be true for f (p). So we express each p ∈ [0, 1] as a pair of non-
negative numbers (p1,p2) = (1 − p,p) that add to one. When expressing f (p)

in this way we will write it as (f1(p), f2(p)) = (1− f (p), f (p)). Suppose for a
contradiction, that f has no fixed point.

Since f : [0, 1] → [0, 1] we can think of the function f as moving each point
p ∈ [0, 1] either to the right (if f (p) > p) or to the left (if f (p) < p). The
assumption that f has no fixed point eliminates the possibility that f leaves the
position of p unchanged.

Given any p ∈ [0, 1] we label it (or color it) with a ‘(+)’ if f1(p) < p1 (move
to the right) and color it ‘(–)’ if f1(p) > p1 (move to the left).4 The assumption of
no fixed point implies f1(p) �= 1− p for all p ∈ [0, 1]. Thus the labeling scheme
is well defined.

Notice that the point 0 will be labeled (+) and the point 1 will be labeled (−).
Now choose any finite partition, C0, of the interval [0, 1] into smaller intervals.

This partition must contain a sub-interval [p0, q0] whose endpoints have different
labels. Here is why. Every endpoint of these subintervals is labeled either (+) or
(−). The point ‘0’, which must be the endpoint of one of the subintervals of C0

has label (+). The point ‘1’ has label (−). As we travel from 0 to 1 (left to right)
we leave a point labeled (+) and arrive at a point labeled (−). At some point, we
must pass through a subinterval which has endpoints with different labels.

Now take the partition C0 and form a new partition C1, finer than the first by
taking all the sub-intervals in C0 and cutting them in half. In C1 there must be at
least one sub-interval, [p1, q1] with endpoints having different labels. Repeat this
procedure indefinitely.

This produces an infinite sequence of sub-intervals {[pn, qn]} shrinking in size
with different labels at the end points. Furthermore we can choose a subsequence
of them so that the left hand end point, pn, is labeled (+) and the right hand
end point, qn is labeled (−). Since these intervals live in [0, 1] their lengths are
bounded. Therefore by the Bolzano-Weierstrass theorem, there is a convergent
subsequence of them, with |pn − qn| → 0. By continuity, f (pn)− f (qn)→ 0.

Let r be the limit of pn and qn. By continuity, f (pn) and f (qn) both converge
to f (r). Since each pn is labeled (+) and each qn is labeled (–), for each n we
have f1(p

n) < pn
1 and in the limit f1(r) ≤ r1. For each n we have f1(q

n) > qn
1

and in the limit f1(r) ≥ r1. Thus f1(r) ≤ r1 and f1(r) ≥ r1. This implies that
f1(r) = r1 i.e., f (r) = r , we have a fixed point, a contradiction.
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6.2.1 Sperner’s lemma

To generalize the proof of Lemma 6.4 to n-dimensions, we need Sperner’s Lemma.
Before stating and proving it we need to discuss triangulations which are the natural
generalization of the partition operation used in the proof of Lemma 6.4.

A triangulation of a triangle is a subdivision of the initial triangle into smaller
triangles. There are many ways to triangulate a triangle, for our purposes one
particular way will suffice.

Suppose we have a triangle, call it the ‘big’ triangle and label its three corners
A, B and C. Now identify the mid-points of the line segments AB, BC and AC. In
the big triangle draw a triangle whose three corners are the midpoints identified
previously. Call this operation a subdivision. Notice that the subdivision divides
the big triangle into 4 smaller triangles. This is illustrated in Figure 6.1. Call this
triangulation the first subdivision of the big triangle. If we apply the subdivision
operation to each of the four smaller triangles we obtain another triangulation, finer
than the first, consisting of 16 smaller triangles. Call this triangulation the second
subdivision. This is shown in Figure 6.2. If we apply the subdivision operation
to each of the smaller triangles in the second subdivision we call the resulting
triangulation the third subdivision and so on.

In the sequel we will apply this subdivision operation repeatedly to generate a
finer and finer triangulation such that the length of the longest side of each of the
small triangles goes to zero. This is not true of every triangulation. However, if
our big triangle is an equilateral one, than it is true for the triangulation produced
by the subdivision process described above.

It is usual to refer to the smaller triangles produced from the subdivision as
cells. A boundary between two cells is called a face. The corners of the triangles
produced by the subdivision are called vertices.

We now state and prove the two dimensional version of Sperner’s Lemma. The
n-dimensional version is essentially identical but consumes more notation.

A B

C

Figure 6.1
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A B

C

Figure 6.2

3 2 2 3 2

3

1 2

1

3 1 2

3 1

1

Figure 6.3

Theorem 6.5 (Sperner’s lemma) Let T be a triangle whose corners are V1,V2
and V3. Let {T 1, T 2, . . . , T k} be any triangulation of T . Suppose Vi gets the color
i; and any vertex on the edge [Vi ,Vj ] gets colored i or j . Then there exists a T i

whose three corners get three distinct colors.

Proof We associate a graph with the triangulation. To each triangle in T ∪
{T 1, T 2, . . . , T k} associate a vertex. If T r and T q share a side one of whose
endpoints is colored 1 and the other 2, put an edge between the corresponding
vertices. In this graph, there will be an even number of odd degree vertices. An
example of such graph is shown in Figure 6.3.
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In particular the vertex associated with T will have odd degree. This is
because the edge between V1 and V2 will have an odd number of color changes
from 1 to 2. Therefore there are an odd number of vertices from {T 1, T 2, . . . , T k}
with odd degree. Each one of the smaller triangles with odd degree
must be tri-colored.

6.2.2 Application: cake cutting

A ‘cake’ corresponding to the interval [0, 1], must be divided amongst n people by
cutting it into n sub-intervals.5 Denote the size of the ith piece by xi . Notice that

n∑
i=1

xi = 1, xi ≥ 0, ∀i.

Call a cut, any feasible solution to the above system. Adivision of the cake consists
of a cut and an assignment of pieces to individuals. A division is envy-free if each
player prefers their assigned piece to any other piece.

Two assumptions on preferences are required:

1. each player prefers something to nothing;
2. any piece that is preferred for a convergent sequence of cuts is preferred at

the limiting cut set. If {xn} is a convergent sequence of cuts with limit x, and
if for each n an agent prefers xn

i to all other pieces, she will prefer xi to all
other pieces.

Do envy-free division’s exist? We use Sperner’s lemma to show they do. The
argument will be carried out for the case n = 3, but can easily be generalized. Call
the three agents A, B and C.

The feasible set of cuts is the set T = {x ∈ R
3: x1 + x2 + x3 = 1, xi ≥ 0}

which is an equilateral triangle in a three dimensional space. The corners of this
triangle have the coordinates (1, 0, 0), (0, 1, 0) and (0, 0, 1). We will triangulate
this set using the subdivision operation described in Section 6.2.1. What will also
matter is how we label each of the endpoints of the cells formed.

First label the endpoints of the triangle T , A = (1, 0, 0), B = (0, 1, 0) and
C = (0, 0, 1). Now form the first subdivision of the triangle ABC. The mid-
point of the segment AB is labeled C, the midpoint of the segment AC is labeled
B and the midpoint of the segment BC is labeled A. The labeling rule we use
is this: the midpoint of a segment is labeled with a letter different from the
labels on the end points that define it. Now form the second subdivision and
apply the labeling rule to the midpoints used to construct the second sub-division
and so on.

Consider the kth subdivision of T . Each labeled point corresponds to a cut of
the cake. If the point is labeled A (B or C), ask player A (B or C) which of the
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three pieces of the cake she would prefer. If she answers piece i, color that labeled
point i. Do this for all labeled points. We show that this coloring satisfies the
conditions of Sperner’s lemma.

Observe that the corners of T will be colored 1, 2 and 3 respectively by the
first assumption about preferences. The labeled points on the edge of T that joins
(1, 0, 0) to (0, 1, 0) can never be labeled 3 by assumption 1. All such points are
convex combinations of (1, 0, 0) and (0, 1, 0) which means that in all of them the
third piece has size zero, so no agent would choose the third piece. Similarly with
the other two edges of T .

Thus, from Sperner’s lemma we conclude that there is a triangle in the kth sub-
division of T that is tri-colored. Pick one of them and call this triangle (ak , bk , ck).
Now let k→∞. Consider the infinite sequence {(ak , bk , ck)}. From this sequence
pick out a subsequence km where akm is colored 1, bkm is colored 2 and ckm is col-
ored 3 for all m. Actually all that matters is a subsequence where corners with the
same label across the sequence have the same color. This is always possible since
the sequence is infinite and there are only three colors.

Now the sequence (akm , bkm , ckm) may not be convergent, but since it resides in
a compact set, it has, by the Bolzano-Weierstrass theorem, a convergent subse-
quence. So we may assume that akm → p as m→ ∞. Since the triangles in the
subdivisions have diameters that shrink, bkm , ckm → p as well.

On the sequence of cuts {akm}, person A always claims the first piece. On the
sequence of cuts {bkm}, person B always claims the second piece. On the sequence
of cuts {ckm}, personC always claims the third piece. So, by the second assumption,
on the cut p, A prefers the first piece, B the second piece and C the third. Thus p

is our envy free allocation.

6.2.3 Proof of Brouwer’s theorem

Definition 6.6 The n-simplex is the setBn = {x ∈ R
n:
∑n

i=1 xi = 1, xi ≥ 0, ∀i}

From the definition we see that Bn is convex and compact. We also can see that
it is an (n− 1)-dimensional object.

Lemma 6.7 Let f :Bn→ Bn be a continuous function. Then there exists x ∈ Bn

such that f (x) = x.

Proof The case n = 2 is covered by Lemma 6.4. Here we provide a proof for
the case n = 3. The case for higher values of n goes in a similar way. As in the
proof of Lemma 6.4, we suppose that f has no fixed point. Let fi(x) denote the
ith coordinate of f (x).

For the case n = 3, B3 is a two-dimensional triangle. Subdivide this triangle
into smaller triangles using the subdivision procedure described in Section 6.2.1.
Consider the mth subdivision. Color those points that are vertices in the mth
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subdivision according to the following rule: c(x) = min{i: fi(x) < xi}. This rule
is well defined as long as f has no fixed point. If not, there must be an x ∈ B3

such that fi(x) ≥ xi for all i. Since x ∈ B3 and f (x) ∈ B3 it follows that∑3
i=1 xi = 1 = ∑3

i=1 fi(x), i.e., fi(x) = xi which is a contradiction since we
assumed that f has no fixed point.

We show that this coloring rule satisfies the assumptions of Sperner’s lemma.
Observe first that c(1, 0, 0) = 1, c(0, 1, 0) = 2 and c(0, 0, 1) = 3. Now examine
a point on the edge of B3. Consider, for example, a point x on the edge joining
(1, 0, 0) to (0, 1, 0). Notice that x = λ(1, 0, 0) + (1 − λ)(0, 1, 0) = (λ, 1 − λ, 0)
for suitable λ. By the coloring rule we deduce that c(λ, 1 − λ, 0) = 1 or 2. So,
points on the boundary of B3 are colored in accordance with the requirements of
Sperner’s lemma.

Invoking Sperner’s lemma we deduce that in the mth subdivision of B3 there
exists a triangle with corners (em:1, em:2, em:3) that is tri-colored. Furthermore,
we may, without loss of generality, assume that c(em:1) = 1, c(em:2) = 2 and
c(em:3) = 3.

Let m → ∞ and consider the sequence {em:1}m≥1. It may not have a limit,
but since it belongs to a compact set, it has, by the Bolzano–Weierstrass theorem,
a convergent subsequence. So, for an appropriate subsequence, we may suppose
em:1 → x ∈ B3. We also have {em:2}, {em:3} → x since as m→∞ the successive
cells shrink in size. By continuity of f , f (em:1) → f (x), f (em:2) → f (x),
f (em:3) → f (x). But f1(e

m:1) < em:1
1 which implies f1(x) ≤ x1. Similarly

f2(x) ≤ x2 and f3(x) ≤ x3. Adding these inequalities yields

1 =
3∑

i=1

fi(x) ≤
3∑

i=1

xi = 1

which is possible only if fi(x) = xi for all possible values of i, i.e., x is a fixed
point, a contradiction.

We are not done yet, since Brouwer’s theorem holds for any compact, convex
set not just simplices. To extend Lemma 6.7 we make use of the topological
equivalence of compact, convex sets.

If S is a compact convex set of dimension n− 1, we know from Theorem 3.27
that there is a g: S → Bn and g−1:Bn → S such that g and g−1 are continuous.
Define h: Bn→ Bn as follows:

h(x) = g[f (g−1(x))].

Since h is continuous, by Lemma 6.7 it has a fixed point x∗. Therefore h(x∗) =
g[f (g−1(x∗))] = x∗. We have f (g−1(x∗)) = g−1(x∗). So g−1(x∗) is a fixed
point for f .
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6.3 Application: Nash equilibrium

An n person (finite) game in strategic form is described by the following:

• The set N of players of cardinality n;
• The finite set Si of strategies of player i ∈ N . Elements of the set Si are called

pure strategies;
• If player i chooses si ∈ Si , the payoff to player k ∈ N is uk(s1, s2, . . . , sn).

Definition 6.8 An n-tuple of pure strategies, si ∈ Si is called a Nash6

equilibrium in pure strategies if for all k ∈ N :

uk(s1, s2, sk−1, sk , sk+1, . . . , sn) ≥ uk(s1, s2, sk−1, x, sk+1, . . . , sn), ∀x ∈ Sk .

The n-tuple (s1, s2, sk−1, x, sk+1, . . . , sn) is frequently abbreviated to (s−k , x).

Example 22 A two person strategic form game with two pure strategies for each
player can be represented using a payoff matrix. One such example is shown
below:

2, 1 −1, −1
−1, −1 1, 2

This game has two pure strategy equilibria. One where the row player chooses
row 1 and the column player chooses column 1. The second is where the players
choose row 2 and column 2, respectively.

Example 23 Not all games have an equilibrium in pure strategies as the following
game illustrates:

1,−1 0, 0
0, 0 1,−1

If we enlarge the notion of strategy to include randomized strategies we can
ensure that every game has an equilibrium. For each Si let Bi be the set of proba-
bility vectors over Si . That is the t th component of p ∈ Si is the probability that
strategy st ∈ Si is played. Thus, when we write pk

i we mean that player k plays
their pure strategy ski with probability pk

i . The elements of Bi are called mixed
strategies. The expected payoff to player k when each player i ∈ N plays the
mixed strategy pi ∈ Bi is denoted uk(p1, . . . ,pn) where

uk(p1, . . . ,pn) =
∑
s1∈S1

· · ·
∑
sn∈Sn

uk(si1 , si2 , . . . , sin )p
1
i1

, . . . ,pn
in

.

Notice that uk(p1, . . . ,pn) is continuous in the p’s.



RAKE: “chap06” — 2004/9/17 — 06:11 — page 126 — #10

126 Fixed points

Definition 6.9 An n-tuple of mixed strategies (p1, . . . ,pn) is called a Nash
equilibrium if for all k ∈ N

uk(p1, . . . ,pn) ≥ uk(p−k , q), ∀q ∈ Bk .

By linearity of expectation, it is enough in the above definition, to consider q
that put probability one on the pure strategies.

Example 24 The game

2, 1 −1,−1
−1,−1 1, 2

has one Nash equilibrium involving mixed strategies. The row player plays row 1
with probability 3/5 and row 2 with probability 2/5. The column player plays
column 1 with probability 2/3 and column 2 with probability 3/5.

Theorem 6.10 Every n person (finite) game in strategic form has a Nash
equilibrium.

Proof Set M = B1 × · · · × Bn. Notice that M is compact and convex. We
define a continuous function f from M into itself. Now each p ∈ M is a vector
with

∑
i∈N |Si | components. The component associated with player k and her pure

strategy ski ∈ Sk will be written pk
i . The corresponding component of f (p) will

be denoted f k
i (p). Define f as follows:

f k
i (p) =

pk
i + [uk(p−k , ski )− uk(p), 0]+∑

skj∈Sk [pk
j + [uk(p−k , skj )− uk(p), 0]+] .

Here [x, 0]+ = max(x, 0).
The choice of denominator in the definition of f ensures that f is well defined.

This is because

∑
skj∈Sk

[pk
j + [uk(p−k , skj )− uk(p), 0]+] ≥

∑
skj∈Sk

pk
j = 1.

In addition,
∑

i f
k
i (p) = 1. Therefore f maps M into itself. Also, as the reader

should verify, f is continuous. Thus by the Brouwer theorem there is a p ∈ M
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such that f (p) = p. Hence

pk
i =

pk
i + [uk(p−k , ski )− uk(p), 0]+∑

skj∈Sk [pk
j + [uk(p−k , skj )− uk(p), 0]+] .

If
∑

skj∈Sk [uk(p−k , skj )− uk(p), 0]+ = 0 for all k ∈ N , then uk(p−k , skj )−
uk(p) ≤ 0 for all skj ∈ Sk and k ∈ N , which is the definition of a Nash
equilibrium and the proof is complete.

Suppose then there is an agent k such that
∑

skj∈Sk [uk(p−k , skj )−uk(p), 0]+ > 0.
We show that

[uk(p−k , ski )− uk(p), 0]+ > 0, ∀ski ∈ Sk s.t. pk
i > 0.

Suppose not. Then, for some ski ∈ Sk with pk
i > 0 we have [uk(p−k , ski ) −

uk(p), 0]+ = 0. From the fixed point property we have

pk
i =

pk
i + [uk(p−k , ski )− uk(p), 0]+∑

skj∈Sk [pk
j + [uk(p−k , skj )− uk(p), 0]+]

= pk
i

1+∑skj∈Sk [uk(p−k , skj )− uk(p), 0]+ < pk
i

a contradiction. Hence

uk(p−k , ski ) > uk(p), ∀ski s.t.pk
i > 0.

Thus

∑
ski ∈Sk

pk
i u

k(p−k , ski ) >
∑
ski ∈Sk

pk
i u

k(p) = uk(p).

But the left-hand side of the above is also uk(p) and so we get a contradiction
which completes the proof.

6.4 Application: equilibrium in exchange economies

There are many different market arrangements one could choose to study, but
perfectly competitive economies hold a special place in the economic imagination.
The economists Kenneth Arrow and Frank Hahn7 explain why:

There is by now a long and fairly imposing line of economists from Adam
Smith to the present who have sought to show that a decentralized economy
motivated by self-interest and guided by price signals would be compatible
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with a coherent disposition of economic resources that could be regarded, in
a well defined sense, as superior to a large class of possible alternative dis-
positions. Moreover the price signals would operate in a way to establish this
degree of coherence. It is important to understand how surprising this claim
must be to anyone not exposed to the tradition. The immediate ‘common
sense’ answer to the question ‘What will an economy motivated by individual
greed and controlled by a very large number of different agents look like?’ is
probably: There will be chaos. That quite a different answer has long been
claimed true and has permeated the economic thinking of a large number of
people who are in no way economists is itself sufficient ground for investigat-
ing it seriously. The proposition having been put forward and very seriously
entertained, it is important to know not only whether it is true, but whether it
could be true.

The usual idealization of competitive markets makes the following assumptions:

1. Afinite number of agents (consumers) specified by their utilities, endowments
and shares in the profit of each firm.

2. Each agent (consumers and firms) is aware of the price of every good.
3. The transaction costs of a sale, purchase, etc. are zero.
4. There is no uncertainty.
5. Agents can buy and sell as much and as little as they want at the going price.

Their transactions do not affect the price. (They are price-takers.)
6. A finite number of commodities.
7. A finite number of firms that are specified by their input-output function.
8. All firms have technologies that exhibit decreasing returns to scale.

The question that motivates what is to come is this: in a perfectly competitive
market is there a set of prices at which the customers’ demands will balance the
firms’outputs? Yes. To see why, imagine a world consisting of just one commodity,
soma. Imagine that an auctioneer were

1. to announce a price p,
2. ask each consumer how much soma they would buy at that price, and
3. ask each firm how much soma they would produce at that price.

If the amounts submitted by the consumers matched the amounts submitted by the
firms, end of story. We have found the price we are looking for. Suppose no match.
Say, the total amount demanded by the consumers is more than what the firms are
willing to supply at the posted price. What should the auctioneer do? As the selling
price of soma rises, we expect the amount of soma demanded by each customer
will decrease. In parallel, each firm will respond by increasing its output of soma.
If we are lucky (and we are), if we raise the price by just enough we will match
demand with supply.

The important point is this: under the right price structure, agents acting inde-
pendently to maximize their utility will specify demands so that supply exactly
balances demand. The equilibrium prices along with the resulting allocation
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is called a Walrasian Equilibrium in honor of Leon Walras (1834–1910)8 who
conceived both the idealization of markets and the notion of equilibrium.

The justification that Walras offered for such a study is eloquent: “How could
these economists’ prove that the results of free competition were beneficial and
advantageous if they did not just what these results were?And how could they know
these results when they had neither framed definitions nor formulated relevant laws
to prove their point?” In response to the criticism that the model was to spare to
be relevant, Walras wrote:

What physicist would deliberately pick cloudy weather for astronomical
observation instead of taking advantage of a cloudless night?

His contemporaries did not share his vision.9

The set up has a finite set A of m agents each with an endowment wi ∈ R
n+. We

assume for simplicity that wi � 0 for all i ∈ A. For each agent i there is a utility
function Ui : R

n+ → R that is continuous, strictly concave and locally insatiable.
A utility function U is called locally insatiable if for any x ∈ R

n+ there is a y in
a neighborhood around x such that U(y) > U(x). Let M ≥ ∑

i∈A wi . Assume
the vector M is known to all agents.10 We assume no production so as to keep the
presentation uncluttered.

Definition 6.11 An equilibrium is a price vector p ∈ R
n+ and an allocation

X = (x1, x2, . . . , xm) such that

1. xi ∈ R
n+,

2.
∑

i∈A xi =∑i∈A wi ,
3. xi ∈ arg max{Ui(x): px ≤ pwi , x ≤ M , x ≥ 0}.

We will use Brouwer’s fixed point theorem to establish the existence of an
equilibrium.

For each i ∈ A let

di(p) = arg max{Ui(x):pxi ≤ pwi , xi ≤ M , xi ≥ 0}.

Imposing the restraint xi ≤ M makes the feasible region of the above optimization
problem compact. The constraint ‘bites’ when one or more components of p is
zero. Continuity and strict concavity of Ui implies that di(p) is well defined and
single valued for each p ≥ 0.11 Further, the constraint xi ≤ M ensures that di(p)

is always bounded. Three observations are useful.

Observation 1: In an optimal solution to max{Ui(x):pxi ≤ pwi , x ≤ M ,
x ≥ 0}, the budget constraint px ≤ pwi will be binding.

Let x∗ be the optimal solution and suppose px∗ < pwi . By the assumption
of local insatiability there is an x′ in a neighborhood of x∗ such thatpx′ ≤ pwi

and Ui(x′) > Ui(x∗) contradicting the optimality of x∗.
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Observation 2: di(µp) = di(p) for all µ > 0.
The feasible region of the optimization problem max{Ui(x): pxi ≤

pwi , x ≤ M , x ≥ 0} does not change when both the left and right hand
side of the only constraint are scaled by the same positive amount.

Observation 3: Ui(x) > Ui(di(p))⇒ px > pdi(p).
A bundle x that generates more utility than the maximum possible subject

to feasibility must be infeasible.

In view of Observation 2, we can restrict p to being in the simplex Bn.
The problem of finding an equilibrium price p and allocation X reduces to

finding a price vector p that solves E(p) = 0 where E(p) = ∑m
i=1 d

i(p) −∑m
i=1 w

i . Recall that such a problem can be solved by identifying a fixed point
of p + E(p). The hurdle that we must overcome is to show that the conditions
of Brouwer’s theorem are satisfied by this function. First we require that E(p) be
continuous. Second, if p ‘lives’ in a compact convex set then so should p+E(p).

Lemma 6.12 Let {pt }t≥1 be a sequence of prices in Bn with limit p. Then
di(pt )→ di(p).

Proof Let x(t) = di(pt ). Since x(t) ∈ {x ∈ R
n+: x ≤ M} we can assume that

that the sequence x(t) has a limit x∗. By Observation 1, px(t) = pwi for all t .
Hence px∗ = pwi . If x∗ = di(p) we are done, so suppose not.

Since x∗ �= di(p) there is a z such that pz = pwi and Ui(z) > Ui(x∗). Set
at = (pt · z)/(pt · wi). The assumption that wi � 0 for all i ensures that at is
well defined for t sufficiently large. Notice that at → 1 as t →∞. By continuity
of Ui we have Ui(at z)→ Ui(z). However, ptat z = ptwi so Ui(at z) < Ui(xt )

for all t sufficiently large which contradicts the fact that Ui(z) > Ui(x).

Lemma 6.13 (Walras’ law) For all p ∈ R
n+, p · [∑i∈A di(p)−∑i∈A wi

] = 0.

Proof By Observation 1, pdi(p) = pwi . Now sum up these equations over
agent i to obtain the result.

To prove the existence of an equilibrium we define f :Bn→ Bn as follows:

fj (p) =
pj + [0,

∑
i∈A(di

j (p)− wi
j )]+∑n

k=1(pk + [0,
∑

i∈A(di
k(p)− wi

k)]+)
.

The numerator is a cousin of p+E(p) modified to ensure non-negativity for all p.
The denominator is a scaling factor to ensure that the modified form of p+E(p)

‘lives’ in a simplex.
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From Lemma 6.12 we see that f is continuous. So, by the Brouwer theorem
there is a p ∈ Bn such that

pj =
pj + [0,

∑
i∈A(di

j (p)− wi
j )]+∑n

k=1(pk + [0,
∑

i∈A(di
k(p)− wi

k)]+)
. (6.1)

We have two cases to consider. First suppose there is a good j such that pj > 0
and [0,

∑
i∈A(di

j (p)− wi
j )]+ = 0. Substituting into 6.1 yields

pj = pj∑n
k=1(pk + [0,

∑
i∈A(di

k(p)− wi
k)]+)

.

This last equation holds only if
∑n

k=1[0,
∑

i∈A(di
k(p) − wi

k)]+) = 0, i.e.,
[0, (di

k(p)−wi
k)]+) = 0 for all goods k. If for any good k we have

∑
i∈A(di

k(p)−
wi

k) < 0, this would violate Walras’ law. So,

∑
i∈A

(di
k(p)− wi

k) = 0

for all goods k which gives us our equilibrium.
Now suppose there is a good j such that pj > 0 and [0,

∑
i∈A(di

j (p)−wi
j )]+ >

0. Substituting this into 6.1 and using the fact that p ∈ Bn, yields

pj =
pj + [0,

∑
i∈A(di

j (p)− wi
j )]+∑n

k=1(pk + [0,
∑

i∈A(di
j (p)− wi

j )]+)
≥ pj + [0,

∑
i∈A

(di
j (p)− wi

j )]+ > pj ,

a contradiction.
We now know that there is a price at which supply equals demand, so what?

One can achieve the same balance by rationing demand and supply. What is
special about the equilibrium allocation of commodities produced by a perfectly
competitive market? To answer this question we need three definitions.

Call an allocation X = (x1, . . . , xm) feasible if xi ∈ R
n+ for all i ∈ A and∑

i∈A xi = ∑
i∈A wi . An allocation X Pareto dominates an allocation Y if

Ui(xi) ≥ Ui(yi) for all i ∈ A with strict inequality for at least one agent. A
feasible allocation X is called Pareto optimal if there is no feasible allocation that
Pareto dominates it.12

The equilibrium allocation is always Pareto optimal. This conclusion goes
under the name of the first welfare theorem of economics and is stated and
proved below.

The first welfare theorem is the basis for statements of the following form:
free markets generate an allocation of goods that cannot be improved upon.
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One has to be careful here. The equilibrium allocation cannot be improved upon in
a Pareto sense. This does not prevent the equilibrium allocation from being wildly
inequitable. For example, consider a cake to be divided between two people. The
allocation where one gets 99% of the cake and the other 1% is Pareto optimal. So
is the 50-50 split. Indeed, all divisions are Pareto optimal.

Theorem 6.14 If (p,X) is an equilibrium, then the allocation X is Pareto
optimal.

Proof Suppose not. Then there is a feasible allocation Z = (z1, z2, . . . , zm) such
that Ui(zi) ≥ Ui(xi) for all i ∈ A with strict inequality for agent k say.

By Observation 3, p · zk > p · xk . Hence
∑

i∈A p · zi >
∑

i∈A p · xi . By
feasibility

∑
i∈A

p · zi =
∑
i∈A

p · wi =
∑
i∈A

p · xi ,

a contradiction.

The next theorem (called the second welfare theorem) shows that any feasible
Pareto optimal allocation is an equilibrium allocation for a suitable price vector.

Theorem 6.15 Let X = (x1, . . . , xm) be a Pareto optimal allocation such that
xi � 0 for all i ∈ A. In an economy where X is the initial endowment there is a
p ∈ R

n+ such that (p,X) is an equilibrium.

Proof Let S be the set of aggregate allocations not Pareto dominated by X, i.e.,

S =
{
y =

∑
i∈A

yi :Ui(yi) ≥ Ui(xi), ∀i ∈ A

}
.

Fix an agent k and let

T k =
{
z: z = y −

∑
i∈A

xi , y ∈ S, Uk(yk) > Uk(xk)

}
.

One can interpret T k to be the set of trades that have to be executed so as to shift
the allocation from X to an allocation Y = (y1, . . . , yn) where agent k is strictly
better off and no other agent is worse off in utility terms.

Concavity of Ui for all i implies that T k is a convex set. Further T k contains no
vector z such that z 0. If it did, there would be an allocation Y = (y1, . . . , ym)

such that y ∈ S and y = z +∑i∈A xi . Since z  0, Y would be a feasible
allocation and violate the Pareto optimality of X.

Since T k is disjoint from the strictly negative orthant, by the weak separating
hyperplane theorem there is a p ∈ R

n such that p · z ≥ 0 for all z ∈ T k . Notice we
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do not have strict inequality because T k is not a closed set, in fact it may contain
the origin.

Sincep (weakly) separatesT k from the negative orthant, this implies thatp ≥ 0.
Hence, for all y ∈ S such that Uk(yk) > Uk(xk) we have p · y ≥ p · x. Now we
show that p · y ≥ p · x for all y ∈ S.

Suppose not. Then there exists v ∈ S such that Uk(vk) = Uk(xk) and p · v <

p · x. Fix a y ∈ S such that Uk(yk) > Uk(xk). Choose a µ ∈ (0, 1) and let
w(µ) = µy + (1− µ)v. Notice w(µ) ∈ S. Strict concavity of U implies

Uk(µyk + (1− µ)vk) > Uk(xk).

Hence p · w(µ) ≥ p · x. Let µ→ 0. Then w(µ)→ v, but for all µ sufficiently
small p · w(µ) ≥ p · x which contradicts p · v < p · x.

To complete the proof let we must show that

xi = arg max{Ui(h):p · h ≤ p · xi , h ∈ R
n+, h ≤ M}, ∀i ∈ A.

Suppose this is not true for some agent t , say. Let

dt = arg max{Ui(h):p · h ≤ p · xi , h ∈ R
n+, h ≤ M}.

By assumption dt �= xt . Sub-optimality of xt implies Ut(dt ) > Ut(xt ) and strict
concavity implies Ut(µdt ) > Ut(xt ) for some µ ∈ (0, 1).

Let X′ be the allocation obtained from X by replacing xt with µdt . Observe
that

∑
i �=t xi + µdt ∈ S and so p · [∑i �=t xi + µdt

] ≥ p · x. However

p ·
[∑

i �=t
xi + µdt

]
=
∑
i �=t

p · xi + µp · dt (p) < p · x

since by Observation 1 p · dt < p · xt . This contradiction proves the theorem.

6.5 Application: Hex

The game of Hex is played on a rhombus shaped board with hexagonal cells.13

The standard size is an 11× 11 board and is shown in Figure 6.4. Two players,
Black and White, are assigned opposite edges of the board. The board is initially
empty. Black and white, move alternately marking a chosen hexagonal cell with
their color. The game is won when one player establishes an unbroken chain of his
pieces connecting his sides of the board. The game was invented by the Danish
poet and architect Piet Hein (1905–1996) in 1942 who called it ‘polygon’. It was
discovered anew by John Nash in 1948. Legend has it that the game was played
on the tiles of one of the bathrooms at Princeton University. There the game was
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White side

White side Black side

Black side

Figure 6.4

W

N

E
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Figure 6.5

called Nash. It was sold commercially by Parker Brothers under the name Hex,
but no longer.

We shall use Brouwer’s theorem to prove that the game Hex can never end in
a draw. We can model a k × k board as a graph with one vertex for each integral
vector in [1, k]× [1, k]. The set of such integral vectors we call Bk . Thus each cell
of the k×k board corresponds to a point/vertex in the set Bk . Figure 6.5 illustrates
B5. Lines between vertices identify the adjacency relationships. Thus, the vertex
(x1, x2) ∈ Bk is adjacent to (x1−1, x2), (x1, x2−1), (x1−1, x2−1), (x1+1, x2),
(x1, x2 + 1) and (x1 + 1, x2 + 1).

Vertices with coordinates (1, ·), (k, ·), (k, ·) and (·, k) are boundary vertices. We
label each set S, N , W and E, respectively. The vertex (1, 1) counts as being on
both the S and W border. The vertex (k, k) counts as being on the N and E border.

The ‘horizontal’ player seeks to mark vertices with an ‘H ’ so that the marked
vertices form a path from a vertex in E to a vertex in W . The ‘vertical’player seeks
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to mark vertices with a ‘V ’, so that the marked vertices form a path from a vertex
in S to a vertex in N .

Theorem 6.16 Suppose each point of Bk is labeled either H ( for horizontal) or
V ( for vertical). Then there is a path of H vertices between N and S or a path of
V vertices between E and W but not both.

Proof The ‘not both’ part of the theorem is left as an exercise. We suppose, for a
contradiction that there is no path of H vertices between N and S and no path of
V vertices between E and W .

In an abuse of notation we useH to denote the set of vertices labeledH , similarly
with V . Let W ′ denote the set of vertices in H connected to a vertex in H ∩W by
a path consisting only of vertices in H . Let E′ = H \W ′. No vertex in W ′ can be
adjacent to a vertex in E′. Similarly let S′ denote the vertices in V connected by
a path consisting only of vertices in V to a vertex in S ∩ V . Let N ′ = V \ S′. No
vertex in S′ can be adjacent to a vertex in N ′. Note that Bk = W ′ ∪E′ ∪ S′ ∪N ′.

Define a function f :Bk → Bk as follows:

1. If z ∈ W ′ then f (z) = z+ (1, 0).
2. If z ∈ E′ then f (z) = z+ (−1, 0).
3. If z ∈ S′ then f (z) = z+ (0, 1).
4. If z ∈ N ′ then f (z) = z+ (0,−1).

We must verify thatf (z) ∈ Bk . Suppose first that z ∈ W ′ and z+(1, 0) �∈ Bk . Then
z ∈ E which contradicts the initial assumption. The other cases follow similarly.

We now extend f in such a way that f : [1, k]× [1, k] → [1, k]× [1, k] and f is
continuous. Pick any x ∈ [1, k] × [1, k]. It is easy to see that there exists at most
three pairwise adjacent vertices z1, z2, z3 ∈ Bk such that x lies in their convex
hull. Hence we can set x = λ1z

1+λ2z
2+λ3z

3 where each λi is non-negative and
λ1 + λ2 + λ3 = 1. We will refer to z1, z2 and z3 as the point x’s defining vertices.
In this case define f (x) to be λ1f (z1)+ λ2f (z2)+ λ3f (z3). It is easy to see that
f defined in this way is continuous.

Since [1, k]×[1, k] is compact and convex, we can invoke the Brouwer theorem
to conclude that there exists x∗ ∈ [1, k] × [1, k] such that f (x∗) = x∗. Let z1, z2

and z3 be the point x∗’s defining vertices. Then:

λ1z
1 + λ2z

2 + λ3z
3 = λ1f (z1)+ λ2f (z2)+ λ3f (z3)

= λ1z
1 + λ2z

2 + λ3z
3 + λ1v

1 + λ2v
2 + λ3v

3

⇒ λ1v
1 + λ2v

2 + λ3v
3 = 0

where v1, v2, v3 ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)}.
Suppose z1 ∈ W ′, a similar argument will apply in the other cases. Then

v1= (1, 0). Since z2 and z3 are adjacent to z1 they cannot be in E′. Since z2

and z3 adjacent, either both are from S′, both are from N ′, both from W ′ or
one is from W ′ and the other from S′ ∪ N ′. If z2, z3 ∈ S′ then v2= v3= (0, 1),
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in which case λ1v
1 + λ2v

2 + λ3v
3= (λ1, λ2 + λ3) �= 0 a contradiction since

λ1 + λ2 + λ3= 1. If z2, z3 ∈ N ′ then v2= v3= (0,−1) in which case λ1v
1 +

λ2v
2 + λ3v

3= (λ1,−λ2,−λ3) �= 0 a contradiction. If z2, z3 ∈ W ′ it is easy to
see that λ1v

1 + λ2v
2 + λ3v

3= (1, 0, 0) �= 0 a contradiction. Similarly with the
other cases.

6.6 Kakutani’s14 fixed point theorem

Definition 6.17 A correspondence C on S ⊂ R
n is a rule that associates with

each x ∈ S a set C(x) ⊂ S.

Definition 6.18 A correspondence C is called upper semi-continuous, abbre-
viated to usc, if the set {(x, y): y ∈ C(x)} is closed. The set {(x, y): y ∈ C(x)} is
called the graph of the correspondence.

An equivalent definition of usc is to say that if xn → x and yn ∈ C(xn) for all
n such that yn→ y then y ∈ C(x).

Example 25 Here is a correspondence defined on [−1, 1]. If x ∈ [−1, 0) then
C(x) = 0.5. If x ∈ (0, 1] then C(x) = −0.5. If x = 0, C(x) = {0.5,−0.5}. It is
easy to check that this correspondence is usc.

The notion of usc generalizes the notion of continuity. It is easy to see that any
continuous real valued function must be usc. The converse is not true. Consider
f (x) = x−1 for all x �= 0 but f (0) = 1. The function is not continuous, but its
graph is a closed set.

Definition 6.19 A correspondence C on S ⊂ R
n is called convex valued if C(x)

is a convex set for all x ∈ S.

The correspondence in the example above is not convex valued.

Theorem 6.20 (Kakutani’s fixed point theorem) Let S ⊂ R
n be a compact and

convex set. Let C be a correspondence from S into itself that is usc and convex
valued. Then, there is an x∗ ∈ S such that x∗ ∈ C(x∗).

Proof As in the case of Brouwer’s theorem, it suffices to prove the theorem for
the case when S = B3.

Consider the mth subdivision of the simplex B3. We associate with C a real
valued function f m in the following way.

If x ∈ B3 is a vertex of the mth subdivision, choose any y ∈ C(x) and set
f m(x) = y. If x ∈ B3 is not a vertex of the mth subdivision of B3, then x

must be in some triangle/cell of the subdivision with corners/vertices e1, e2 and
e3, say. Further, x can be expressed as a convex combination of these three vectors,
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i.e. x = λ1e
1 + λ2e

2 + λ3e
3 where λi ≥ 0 for all i and λ1 + λ2 + λ3 = 1. In this

case, set f m(x) = λ1f
m(e1)+ λ2f

m(e2)+ λ3f
m(e3).

It is easy to see that f m:B3 → B3 is continuous given that C is usc. By
Brouwer’s theorem there exists xm ∈ B3 such that f m(xm) = xm. If xm is a
vertex of the mth subdivision, we are done because xm = f m(xm) ∈ C(xm), by
construction.

Suppose then that xm is interior to one of the cells of the mth subdivision. Let
{em:1, em:2, em:3} be the corners of this triangle. Then xm = λm

1 em:1 + λm
2 em:2 +

λm
3 em:3 where λm

i ≥ 0 for all i and λm
1 + λm

2 + λm
3 = 1. By our definition of f m,

f m(xm) = λm
1 ym:1 + λm

2 ym:2 + λm
3 ym:3,

where ym:j = f m(em:j ). Since the sequences {xm}m≥1, {ym:j }m≥1 and {λm
j }m≥1

for all j are all contained in a bounded set, it follows by the Bolzano-Weierstrass
theorem that they all have a convergent subsequence. Let x∗, yj and λj for all j
be those limits.

Since the triangles of the subdivision are shrinking as m→∞, it follows that
em:j → x∗ for all j as m→∞. Since C is usc it follows that yj ∈ C(x∗). Also

x∗ = λ1y
1 + λ2y

2 + λ3y
3.

Since yj ∈ C(x∗) for all j it follows from the convexity of C that x∗ ∈ C(x∗).
This proves the theorem for the case when S = B3.

Kakutani’s theorem is useful in establishing the existence of equilibrium in
exchange economies when utility functions are concave rather than strictly con-
cave. Using the notation of Section 6.4, under concavity, di(p) becomes a convex
correspondence.

John Nash’s original proof of the existence of equilibrium in games used
Kakutani’s theorem. We illustrate using a two person game and the notation of
Section 6.3. Let Si be the set of pure strategies for player i and let

B1(q) = arg max
{∑

i∈S1

∑
j∈S2

piqju
1(i, j):

∑
i∈S1

pi = 1, pi ≥ 0, ∀i ∈ S1
}

and

B2(p) = arg max
{∑

i∈S1

∑
j∈S2

piqju
2(i, j):

∑
j∈S2

qj = 1, qj ≥ 0, ∀j ∈ S2
}

.

For each fixed q, B1(q) is the set of optimal solutions to a linear program. Similarly
with B2(p). It is easy to see then B1(q) and B2(p) are convex correspondences.
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Now define a correspondence C on B1 ×B2 as follows

C(p, q) = (B1(q),B2(p)).

It is easy to see that C satisfies all the conditions of Kakutani’s theorem and the
fixed point that is produced is a Nash equilibrium.

Problems

6.1 Show that the fixed point produced by the Banach theorem is unique.
6.2 Show that f (x) = 1− x5 is not a contraction mapping over [0, 1] but that it

does have a fixed point.
6.3 Let f (x) = x + e−x for x ≥ 0. Is f a contraction mapping?
6.4 Let f : R → R be defined by f (x) = 1/2(x + a/x) where a is a number

strictly between 1 and 3. Is f a contraction mapping?
6.5 A function f : S → S with S ⊂ R

n closed is called weakly contrac-
tive if d(f (x), f (y)) < d(x, y) ∀x, y ∈ S. Give an example of a weakly
contractive mapping with no fixed point.

6.6 Consider f : [0, 1] → [0, 1] such that f (x) = sin x. Show that f is weakly
contractive but is not a contraction mapping.

6.7 Let f : S → S be weakly contractive and S ⊂ R
n compact. Show that f has

a fixed point.
6.8 Let C ⊂ R

n be a non-empty, compact and convex set. A function f :C → C

is called affine if F(λx+ (1−λ)y) = λf (x)+ (1−λ)f (y) for all x, y ∈ C

and λ ∈ [0, 1]. Without appealing to the Brouwer theorem, give a short proof
that every continuous and affine function f has a fixed point in C.

6.9 Let C be the boundary of a circle in R
2 of finite radius. Let f :C → R

be continuous. Show that there are two points x1 and x2 on the circle C

such that f (x1) = f (x2) and the straight line joining them goes through the
center of the circle.

6.10 Let C ⊂ R
n be a compact convex set and fi :C → C for i = 1, 2, . . . ,m a

collection of continuous functions. Prove that there is an x ∈ C such that

m∑
i=1

fi(x) = mx.

6.11 Let f be a continuous function that maps the letter ‘Y ’ into itself. Show that
there is a point on the letter Y that is fixed under the mapping. What other
letters of the alphabet have such a fixed point property?

6.12 Let A be a n × n matrix with all entries strictly positive. Use Brouwer’s
theorem to show that there is a number λ > 0 and vector x > 0 such that
Ax = λx.

6.13 Let S = {v0, v1v2, . . . , vm} ⊂ R
m+1 and {F0,F1, . . . ,Fm} a collection of

closed subsets of the convex hull of S such that for every A ⊂ {0, 1, . . . ,m}
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we have

conv({vi}i∈A) ⊂
⋃
i∈A

Fi .

Use Brouwer’s fixed point theorem to prove that ∩mi=0Fi is compact and
non-empty.

Hint: Define gi(x) to be the distance from x to the nearest point in Fi and
fi(x) = (xi + gi(x))/(1+∑m

j=0 gj (x)). Apply Brouwer’s theorem to f .
6.14 Let {f1, . . . , fn} be continuous functions from R

n to R with fi(x) > 0 for
all i = 1, . . . , n and all x ∈ R

n. Show that there is an x ∈ R
n and λ ∈ R

such that x ≥ 0,
∑n

j=1 xj = 1 and fi(x) = λxi for all i.
6.15 Find the Nash equilibria of the following games:

1.
4, 4 0, 5
5, 0 1, 1

2.
2, 1 0, 0
0, 0 1, 2

3.
10, 10 10, 6 10, 1
6, 10 14, 14 8, 2
1, 10 2, 8 10, 10

6.16 Let C be a correspondence from [0, 2] into itself defined as

C(x) =
{

1, 0 ≤ x < 1,

[0, 2], 1 ≤ x ≤ 2.

Show that C satisfies all the conditions of Kakutani’s theorem.
6.17 Let C be a correspondence from [0, 1] into itself defined as

C(x) =
{
x, 0 ≤ x < 1,

0, x = 1.

Is C upper-semi continuous?
6.18 For any u, v ∈ R

n with u ≤ v set Q(u, v) = {x ∈ R
n: u ≤ x ≤ v}. Let

C ∈ R
n be compact and convex and h and g continuous functions of C

into itself such that g(x) ≤ h(x) and g(x) �= h(x) for all x ∈ C. Let
f be a correspondence such that f (x) = Q(g(x),h(x)). Show that f

is closed. Show also that f has a fixed point x such that g(x) �= x and
h(x) �= x.

6.19 Complete the proof of Kakutani’s theorem by showing how to extend the
result from a simplex to any compact convex set.
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Notes

1 Part of a celebrated contingent of Polish mathematicians who would meet regularly at the
Scottish Cafe to do mathematics. One of them, Stanislaw Ulam wrote this of Banach: ‘It
was difficult to outlast or outdrink Banach during these sessions. We discussed problems
proposed right there, often with no solution evident even after several hours of thinking.
The next day Banach was likely to appear with several small sheets of paper containing
outlines of proofs he had completed’.

2 Notorious as the founder of the ‘intuitionist’ school in Mathematics. One of its tenets is
the rejection of the proof by contradiction. In lectures Brouwer would never look at the
students, only the blackboard and detested questions during class. The mathematician
Van der Waerden who was a student in one of these classes writes: ‘It seemed that he
was no longer convinced of his results in topology because they were not correct from
the point of view of intuitionism, and he judged everything he had done before, his
greatest output, false according to his philosophy. He was a very strange person, crazy
in love with his philosophy’.

3 Proved first by Bolzano.
4 Equivalently, p is colored (+) if f (p) > p and (−) otherwise.
5 This section is based on Su (1999).
6 John Forbes Nash (1928–). Read the book, see the movie.
7 Arrow and Hahn (1971).
8 Rejected by the Ecole Polytechnique, he was to spend ten years as a mediocre journalist,

bank clerk and railway official. Eventually he was awarded a chair in economics at the
University of Lausanne.

9 ‘Since the world has won a victory over me, I am going to retire to a place of
solitude where the world cannot reach me and where I can remain faithful to my
dream’.

10 Standard treatments do not make this assumption. Dropping the assumption introduces
some technical difficulties which we wish to avoid.

11 Strict concavity can be relaxed to concavity, but existence of equilibrium requires a
different fixed point theorem that we discuss later.

12 The notion is due to Vilfredo Pareto (1848–1923) who succeeded Walras at Lausanne.
Born an aristocrat he was a skilled swordsman and crack shot. Pareto once gave a talk
where he was repeatedly interrupted by a German scholar, Gustav von Schmoller, who
shouted that ‘there are no laws in economics!’ The next day, Pareto, his usual messy
self, spied Schmoller in the streets. Pretending to be a beggar, Pareto approaches von
Schmoller and says, ‘Please, sir, can you tell me where I can find a restaurant where you
can eat for nothing?’ Schmoller replied, ‘My dear man, there are no such restaurants.’
‘Ah’, said Pareto ‘so there are laws in economics!’

13 This section is based on Gale (1979).
14 Shizuo Kakutani (1911–) father of the New York Times book reviewer Michiko Kaku-

tani. A student once asked him if he could come to Kakutani’s office at 4 p.m. that day.
‘Yes’, came the reply. ‘And’, continued the student, ‘will you be there?’. ‘No’, was the
response.
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7 Lattices and supermodularity

Many games of economic significance have the feature that the players have a
continuum of strategies. For such games, existence of equilibrium cannot be
deduced by an appeal to the Nash theorem. In these cases one must rely on
properties of the payoff functions of the players. One such property is called
supermodularity.

Existence of equilibria is not the only reason to be interested in supermodularity.
Frequently one is interested in the behavior of a function as one changes some
parameter. If the function is given explicitly in terms of the parameter this can
be done using derivatives (assuming differentiability). However, in many cases
the function one is studying is given indirectly. As an example, consider a firm
facing a market price of y per unit of output. The cost to the firm of producing
x units of output is C(x). The firms profit as a function of output and market
price is f (x, y) = yx − C(x). Let the maximum possible profit as a function of
price y be g(y) = maxx≥0f (x, y). Let the profit maximizing level of output be
x(y). Two natural questions are how g(y) and x(y) behave as the market price, y,
changes. When the profit function f (x, y) has the supermodularity property, it is
possible to say just how g(y) and x(y) behave as y changes.

Recall the following notation to order vectors x and y in R
n.

• x = y iff xi = yi for all i.
• x ≥ y iff xi ≥ yi for all i.
• x > y iff xi ≥ yi for all i with strict inequality for at least one component.
• x � y iff xi > yi for all i.

We write x∧y to mean the vector whose ith component is min{xi , yi}. The vector
x ∧ y is sometimes called the meet of x and y. The vector x ∨ y, called the join,
is one whose ith component is max{xi , yi}.
Definition 7.1 A set X ⊂ R

n is called a lattice if for all x, y ∈ X we have x ∧ y

and x ∨ y in X.

Example 26 The interval [0, 1] is a lattice, the setH = {(x, y): x = y} is a lattice
as is the set {(1, 3), (4, 3), (3, 1), (1, 1)}. It is depicted in Figure 7.1. However the
set {(x, y): x + y = 1} is not.
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1 4

1

3

(1, 1)

(1, 3)

(4, 1)

(4, 3)

Figure 7.1

Example 27 Let X = {x ∈ R
n+:
∑n

i=1 xi ≤ 1}. Let ei denote the vector with 1
in the ith component and zero elsewhere. Observe that ei and ek are both in X but
ei ∨ ek = ei + ek �∈ X. So, X is not a lattice. However, it is possible to transform
X into a lattice.

Let yk =∑k
i=1 xi for k = 1, . . . , n. Notice, xi = yi − yi−1 for all i = 1, . . . , n.

Let Y = {y ∈ R
n+: y1 ≤ y2 ≤ · · · ≤ yn}. The set Y is a lattice.

Example 28 Let N be a finite set ground set and A a finite set of ordered pairs
of N . For each (i, j) ∈ A we have a real number cij . Let X = {x: xi − xj ≤
cij ∀(i, j) ∈ A}. Assuming X is feasible, then X is a lattice. To see why choose
x, y ∈ X. Consider x ∨ y. Pick an (i, j) ∈ A. Suppose max{xi , yi} = xi . Then

max(xi , yi)−max(xj , yj ) = xi −max(xj , yj ) ≤ xi − xj ≤ cij .

A similar argument applies to x ∧ y.

Definition 7.2 Let X ⊂ R
n be a lattice. An element x∗ ∈X is the greatest

element (least) of X if x∗ ≥ x (x∗ ≤ x) for all x ∈ X .

Not every lattice has a greatest or least element. The set [0,∞) is a lattice and
has no greatest element. The next theorem gives a sufficient condition for the
existence of a greatest or least element.

Theorem 7.3 If X ⊂ R
n is a non-empty compact lattice it has a greatest and

least element.

Proof We prove that X has a greatest element. A similar proof establishes the
existence of a smallest element. For each i ∈ {1, 2, . . . , n} choose a zi ∈ X that
maximizes the ith coordinate, i.e., zi ∈ arg maxx∈X xi . Compactness of X ensures
that a zi exists for each i. Let y = z1 ∨ z2 ∨ z3 ∨ · · · ∨ zn. Since X is a lattice,
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y ∈ X. Further, y = (z1
1, z2

2, . . . , znn) and by the definition of the zi’s, y ≥ x for
all x ∈ X.

Definition 7.4 Let X be a lattice and f : X → R. The function f is called
supermodular if for all z, z′ ∈ X:

f (z)+ f (z′) ≤ f (z ∨ z′)+ f (z ∧ z′).

We defer an interpretation of supermodularity till later. Here are some examples
of supermodular functions.

1. f (x1, x2) = x1x2 is supermodular on R
2.

2. f (x1, x2, . . . , xn) = x
a1
1 x

a2
2 · · · xan

n is supermodular on R
n+ when ai ≥ 0 for

all i.
3. f (x) = mini aixi is supermodular on R

n when ai ≥ 0 for all i.

Example 29 We show that f (x1, x2) = x1x2 is supermodular on R
2. Choose any

two vectors x = (x1, x2) and y = (y1, y2). Now f (x) = x1x2 and f (y) = y1y2.
Alsof (x∨y) = max(x1, y1)max(x2, y2) and f (x∧y) = min(x1, y1)min(x2, y2).
If x ≥ y then it is easy to see that f (x ∨ y) + f (x ∧ y) ≥ f (x) + f (y). Now
suppose that x1 ≥ y1 but x2 ≤ y2. Then

f (x ∨ y)+ f (x ∧ y)− f (x)− f (y) = x1y2 + x2y1 − x1x2 − y1y2

= x1(y2 − x2)− y1(y2 − x2)

= (x1 − y1)(y2 − x2) ≥ 0.

A similar argument applies for the other cases.

The following properties of supermodular functions are easy to prove.

1. If f is supermodular on the lattice X then af when a > 0 is supermodular
on X.

2. If f and g are supermodular on X then f + g is supermodular on X.

One of the most important properties of supermodularity is that it is preserved
under maximization.

Theorem 7.5 Let X ⊂ R
n, Y ⊂ R

m be two lattices and f : X × Y → R

supermodular on X × Y . Let h(y) = maxx∈X f (x, y) be well defined for all
y ∈ Y . Then h is supermodular on Y .
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Proof Choose y1, y2 ∈ Y and let x1, x2 ∈ X be such that h(yi) = f (xi , yi) for
i = 1, 2. Then

h(y1)+ h(y2) = f (x1, y1)+ f (x2, y2)

≤ f (x1 ∧ x2, y1 ∧ y2)+ f (x1 ∨ x2, y1 ∨ y2)

≤ h(y1 ∧ y2)+ h(y1 ∨ y2).

Given a vector z ∈ R
n we will write (z−ij , z′i , z′j ) to mean the vector obtained

from z by replacing components i and j with z′i and z′j , respectively.

Definition 7.6 Let X ⊂ R
n be a lattice and f : X→ R. The function f satisfies

increasing differences in every pair of components if for all z ∈ X, distinct i and
j and z′i ≥ zi , z′j ≥ zj we have

f (z−ij , z′i , z′j )− f (z−ij , z′i , zj ) ≥ f (z−ij , zi , z′j )− f (z−ij , zi , zj ).

The dot product operation, f (x, y) = x · y, satisfies increasing differences
on R

2n.

Theorem 7.7 Let X ⊂ R
n and f : X→ R. The function f is supermodular iff it

satisfies increasing differences on X.

Proof One direction is easy and is left as an exercise. Here we prove that increas-
ing differences implies supermodularity. Choose any x, x′ ∈ X. If x ≤ x′ or x ≥ x′
we are done. So, assume not. By rearranging the coordinates there is a k strictly
between 0 and n such that

x ∧ x′ = (x′1, . . . , x′k , xk+1, . . . , xn)

and

x ∨ x ′ = (x1, . . . , xk , x′k+1, . . . , x′n).

For any i, j between 0 and n with i ≤ j let

x(i, j) = (x1, . . . , xi , x′i+1, . . . , x′j , xj+1, . . . , xn).

Notice that x(0, k) = x ∧ x′, x(k, n) = x ∨ x′, x(0, n) = x′ and x(k, k) = x.
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From the increasing differences property, we have for i < k < j :

f [x(i + 1, j + 1)] − f [x(i, j + 1)] ≥ f [x(i + 1, j)] − f [x(i, j)].

So, for k ≤ j < n we have:

f [x(k, j + 1)] − f [x(0, j + 1)] =
k−1∑
i=0

{
f [x(i + 1, j + 1)] − f [x(i, j + 1)]}.

By increasing differences the last term is greater or equal to

k−1∑
i=0

{f [x(i + 1, j)] − f [x(i, j)]} = f [x(k, j)] − f [x(0, j)].

To summarize

f [x(k, j + 1)] − f [x(0, j + 1)] ≥ f [x(k, j)] − f [x(0, j)].

Repeated application of this inequality tells us that that left hand side is at most
f [x(k, n)]−f [x(0, n)]while the right hand side is at least f [x(k, k)]−f [x(0, k)].
Thus left hand side of this inequality achieves its maximum at j = n − 1 while
the right hand side attains its minimum when j = k. Thus

f [x(k, n)] − f [x(0, n)] ≥ f [x(k, k)] − f [x(0, k)].

That is,

f (x ∧ x′)− f (x) ≥ f (x′)− f (x ∨ x ′),

which is the supermodularity condition.

If the function f is twice differentiable it is easy to show using the theorem
above that f is supermodular iff ∂2f

∂xi∂xj
≥ 0 for all i �= j .

Supermodularity (or increasing differences) is used to model the notion of
complementarity in Economics. Computers and monitors are examples of
complementarity. Suppose an agent has a utility function u(c,m) where c is
the ‘quantity’ of computers and ‘m’ the quantity of monitors. The increasing
differences condition would imply, e.g., that:

u(c + δ,m+ θ)− u(c + δ,m) ≥ u(c,m+ δ)− u(c,m),

where δ, θ > 0. The left hand side we can interpret as the marginal value of a
monitor when the agent has c + δ units of a computer. The right hand side is the
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marginal value of the same when the agent has c units of a computer. Thus the
marginal value of a monitor increases with the number of computers.

It is sometimes the case that one does not need increasing differences to hold
for every pair of components.

Definition 7.8 Let X and Y be lattices and f : X × Y → R. The function f

satisfies increasing differences in (x, y) if for all x, x′ ∈ X, y, y′ ∈ Y such that
x ≥ x′ and y ≥ y′ we have

f (x, y)− f (x′, y) ≥ f (x, y′)− f (x′, y′).

If the inequality holds strictly then we say that f satisfies strictly increasing
differences.

The next theorem is an important tool for performing comparative statics exer-
cises. The set X below will be a set of actions of strategies while the set Y will be
the set of parameters. The theorem tells us how an optimal choice from X changes
as we change the choice of parameter from Y .

Theorem 7.9 (Monotone comparative statics) Let X ⊂ R
n be a compact lat-

tice, Y ⊂ R
m a lattice and f : X × Y → R be a continuous function on X for

each fixed y ∈ Y . Suppose that f satisfies increasing differences in (x, y) and is
supermodular in x for each fixed y.

1. For each fixed y ∈ Y , arg max{f (z, y): z ∈ X} is a non-empty compact lattice
of R

n and admits a greatest element x(y).
2. x(y) ≥ x(y′) whenever y > y′.
3. If f satisfies strictly increasing differences in (x, y), then x ≥ x′ for any

x ∈ arg max{f (z, y): z ∈ X} and x ′ ∈ arg max{f (z, y′): z ∈ X} whenever
y ≥ y′.

Proof Non-emptiness and compactness of arg max{f (x, y): x ∈ X} for each
y ∈ Y follows from compactness of X and continuity of f . Supermodularity
of f implies that arg max{f (x, y): x ∈ X} is a lattice. To see why, suppose not.
Choosex, x′ ∈ arg max{f (z, y): z ∈ X} and assume thatx∨x′ �∈ arg max{f (z, y):
z ∈ X}. Then

f (x ∨ x′, y) < f (x, y) = f (x′, y).

Supermodularity of f for each fixed y implies

f (x ∨ x′, y)+ f (x ∧ x′, y) ≥ f (x, y)+ f (x′, y).

Since f (x ∨ x′, y) < f (x, y) = f (x′, y) it follows that that f (x ∧ x′, y) >

f (x, y), a contradiction. A similar argument applies when we assume that x∧x′ �∈
arg max{f (z, y): z ∈ X}. Existence of a largest element follows from Theorem 7.3.
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To prove the second part observe that for any x ∈ arg max{f (z, y) : z ∈ X} and
x′ ∈ arg max{f (z, y′): z ∈ X} we have

0 ≤ f (x′, y′)− f (x ∧ x ′, y′) ≤ f (x ∨ x′, y′)− f (x′, y′)
≤ f (x ∨ x′, y)− f (x, y) ≤ 0.

The first inequality follows from the choice ofx′. The second from supermodularity
and the third by increasing differences. We conclude that all inequalities hold as
equalities. Now choose x = x(y) and x′ = x(y′). From the chain of (in)equalities
we deduce that x ∨ x′ ∈ arg max{f (z, y): z ∈ X}. But, x is the unique greatest
element of arg max{f (z, y): z ∈ X} and so x ≥ x ∨ x′, i.e., x ≥ x′.

The third part is a trivial extension of the second part.

A function on a lattice X ⊂ R
n is called non-decreasing (also called isotone) if

for all x, y ∈ X with x ≤ y we have f (x) ≤ f (y). A non-increasing (also called
anti-tone) function is defined similarly.

Theorem 7.10 (Tarski’s1 fixed point theorem) Let X ⊂ R
n be a compact

lattice. Let f :X → X be a non-decreasing function. Then there is an x∗ ∈ X

such that f (x∗) = x∗.

Proof Let X′ = {x ∈ X: f (x) ≥ x}. Now X′ �= ∅. To see why suppose not.
Then for all x ∈ X we have f (x) < x. Pick x̄ to be the least element of X, such an
element exists since X is compact. Then f (x̄) < x̄ which is a contradiction since
f (x̄) ∈ X.

Consider the set {x ∈ X: x ≥ z∀z ∈ X′}. It is easy to see that this compact and
forms a lattice and hence has a least element which we denote inf {x ∈ X: x ≥
z∀z ∈ X′}.

Let x∗ = inf {x ∈ X: x ≥ z: ∀z ∈ X′}. Since X is a compact lattice this is well
defined. We show that x∗ ∈ X′. Let y∗ = f (x∗). Since f is non-decreasing,

x∗ ≤ inf {x ∈ X: x ≥ f (z): ∀z ∈ X′} ≤ inf {x ∈ X: x ≥ f (x∗)} = y∗.

Here inf {x ∈ X: x ≥ f (x∗)} is the least element of the compact lattice {x ∈
X: x ≥ f (x∗)}.

Since f is non-decreasing, for all x ∈ X′ we have

x ≤ f (x) ≤ f (x∗) = y∗.

Since f is non-decreasing we have f (x∗) ≤ f (y∗) = z∗. As y∗ ≥ x∗ it follows
that z∗ ≥ y∗.

Since f (y∗) = z∗ ≥ y∗ it follows that y∗ ∈ X′. But y∗ ≥ x∗ and x∗ is the
greatest element of X′. Thus f (x∗) = y∗ = x∗, i.e., f has a fixed point.
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A careful reading of the proof suggests an algorithm for computing a fixed point
that resembles the algorithm used to prove the Banach theorem. Let x̄ be the least
element of X. Set x0 = x̄ and xi+1 = f (xi). The limit of this sequence is (under
appropriate conditions) a fixed point. Notice also that we could have set x0 to be
the largest element of X and produced a sequence (under appropriate conditions)
that terminates in a fixed point.

Lemma 7.11 Let X ⊂ R
n be a compact lattice and f : X→ X non-decreasing

and continuous. If x̄ is the least element of X, the sequence xn+1 = f (xn) with
x0 = x̄ converges to a fixed point of f .

Proof Since f is non-decreasing and X compact, the sequence {xn}n≥1 is non-
decreasing and therefore has a limit x∗ ∈ X. Since x2n and x2n+1 both converge
to x∗ and x2n+1 = f (x2n) it follows by the continuity of f that x∗ = f (x∗).

The proof makes no special use of the fact that the sequence begins with x̄. The
role of the least element of X is explained after Corollary 7.16.

7.1 Abstract lattices

Thus far our discussion has focused on lattices with respect to elements of R
n.

Lattices are actually more general than this.
A binary relation, ' on a set X specifies for each pair x, y ∈ X whether x ' y

is true or not. If X is some set of males, an example of a binary relation on X

would be ‘parent of’. Thus x ' y if an only if x is the father of y.

Definition 7.12 A binary relation ' on a set X is a partial order if it satisfies
the following three conditions for all x, y, and z ∈ X

• Transitivity: x ' y and y ' z imply x ' z.
• Reflexivity: x ' x.
• Antisymmetry: x ' y and y ' x imply x = y.

The set of vectors in R
n with the usual inequality relation is a partial order. More

interesting is the set of subsets of a finite set N . If A,B ⊆ N , define A ' B if
B ⊆ A. Then ' defines a partial order. The binary relation ‘parent of’ is not a
partial order since it violates reflexivity.

The set of real numbers with respect to the inequality relationship is a partial
order that differs from the partial order of subsets in an important way. For any
two numbers x and y either x ≤ y or y ≤ x, i.e., any two numbers can be ordered.
This is not true for subsets. If A and B are subsets of N it is not always true that
A ⊆ B or B ⊆ A.

If (X,') is a partial order and S ⊂ X, an upper bound for S will be any x ∈ X

such that x ' s for all s ∈ S. A lower bound is defined similarly. If x ∈ S is
an upper bound (lower bound) for S, then x is called a greatest element (least
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element) of S. A maximal element of S is an element s ∈ S with no x ∈ S

such that x ' s. Every greatest element is a maximal element but the converse is
not true.

As an example, recall from Section 6.4, the set of feasible allocations along with
the relationship of Pareto domination. This forms a partial order. A Pareto optimal
allocation would be a maximal element. If there were at least two Pareto optimal
allocations, there could be no greatest element.

If the set of upper bounds of S has a least element it is called the least upper
bound of S and denoted supX(S). Similarly, the largest element of the set of lower
bounds of S, if it exists, is called the greatest lower bound of S and denoted
infX(S). The dependence on X in the choice of notation is important. To see why
consider X = R

1 and X̄ = [0, 3) ∪ {5}. Both are partial orders with respect to the
inequality relationship. Let S = [0, 3). Then supX(S) = 3 while supX̄(S) = 5.

Definition 7.13 (X,') is a lattice if ' is a partial order on X and every two
element subset of X has a least upper bound and greatest lower bound in X:

x ∨ y = sup
X

{x, y} [join],

x ∧ y = inf
X
{x, y} [meet].

The partial order of subsets is a lattice with A∧B = A∩B and A∨B = A∪B.

Definition 7.14 A lattice (X,') is called compact if supX(S) and infX(S) exists
for all S ⊆ X.

With these definitions the theorems obtained previously hold even in this more
general setting.

Definition 7.15 Suppose a partially ordered set X is a lattice and K ⊂ X. The
set K is a sublattice of X if supX{x, y} and infX{x, y} are in K for all x, y ∈ K .

Given a lattice X and K ⊂ X it is possible for K to be a lattice without
being a sublattice of X. If K is a lattice this means infK{x, y} ∈ K , however
infK{x, y} need not equal infX{x, y}. As an example let X = R

2 and K =
{(0, 0), (2, 1), (1, 2), (3, 3)}. The set K is a lattice but is not a sublattice of X

because:

sup
K

{(2, 1), (1, 2)} = (3, 3) �= (2, 2) = sup
X

{(2, 1), (1, 2)}.

With this distinction in mind we can state the following corollary of Tarski’s
theorem.
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Corollary 7.16 Let (X,') be a compact lattice and f : X → X be non-
decreasing. The set T of fixed points is a compact lattice with least element
supX({x ∈ X: f (x) ' x}) and greatest element infX({x ∈ X: x ' f (x)}).

The fixed point produced by Lemma 7.11 is the least element of the lattice of
fixed points. If the sequence had originated with the greatest element of X, it
would have terminated in the greatest fixed point of the lattice of fixed points.

The lattice of fixed points need not be a sublattice of X. As an example
let X = {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2)}. It is easily
verified that X is a lattice. Define f : X→ X as

f (i, j) =
{
(i, j), (i, j) �∈ {(1, 1), (1, 2), (2, 1)},
(2, 2), (i, j) ∈ {(1, 1), (1, 2), (2, 1)}.

The set T of fixed points is {(0, 0), (0, 1), (1, 0), (2, 1), (1, 2)}. Notice that
supX{(1, 0), (0, 1)} = (1, 1) �∈ T .

The lattice structure and monotonicity allows an analog of Theorem 7.9 for
fixed points.

Theorem 7.17 Let (X,') be a compact lattice and (Y ,'′) a lattice. Let f : X×
Y → X be non-decreasing on X × Y . If x∗(y) is the least fixed point for each
y ∈ Y , then x∗(y) is non-decreasing in y.

Proof By Tarski’s theorem x∗(y) is well defined for each y. Furthermore, by our
proof of Tarski’s theorem x∗(y) = supX{x: f (x, y) ' x}. Choose any y′ '′ y.
Since f is non-decreasing, {x: f (x, y) ' x} ⊆ {x: f (x, y′) ' x} from which the
result follows.

7.2 Application: supermodular games

An n-person game is called supermodular if the strategy set Si of each player i is a
compact lattice and the payoff function ui(si , s−i ) for each player is supermodular
in si ∈ Si for each fixed s−i ∈ Cj �=iSj and satisfies increasing differences
in (si , s−i ).

Theorem 7.18 Every n-person supermodular game has a Nash equilibrium.

Proof For each player i and s ∈ Cn
j=1S

j let

Bi(s−i ) = arg max{ui(t , s−i ): t ∈ Si}.

From Theorem 7.9 it follows that Bi(s) is a lattice and has a greatest element
bi∗(s−i ). From the same Theorem it follows that bi∗(s) is a non-decreasing function
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and so is

b∗(s) = (b1∗(s−1), . . . , bn∗(s−n)).

Since each Si is a compact lattice so is CiS
i and b∗: CiS

i → CiS
i is non-

decreasing. Existence of equilibrium now follows from Tarski’s theorem.

Given a competitive situation modeled by a game one would like to be able to do
‘comparative statics’on the game. For example, if the firms costs change how does
that effect the equilibrium price? This is difficult to do when the game has multiple
equilibria. Which equilibrium does one pick out in making the before and after
comparison? Supermodular games have the property that their Nash equilibria
form a lattice. There is thus a natural way to (partially) order the equilibria of
a game. One can also make comparisons of equilibria after parameter changes
by looking at the maximal or minimal equilibria of the lattice of equilibrium
outcomes.

7.3 Application: transportation problem

Procrustes & Sons2 manufactures soma at a finite set of locations called S (supply
nodes). The maximum amount that a node i ∈ S can supply is si . Buyers are
located at a finite number of locations called D (demand nodes). The total amount
demanded by a buyer j ∈ D is dj . The cost per unit incurred to ship soma from
supply node i to demand node j is cij . The firm must meet the demand of each
buyer and do so at minimum cost. The problem faced by the firm can be formulated
as a linear program.3 To ensure feasibility we assume that

∑
i∈S si ≥ ∑

i∈D di ,
i.e., supply exceeds demand.

Let xij denote the amount of soma shipped from supply node i to demand
node j . Since no more can be supplied from supply node i than is available we
must have

∑
j∈D

xij ≤ si , ∀i ∈ S.

The amount shipped to demand node j must be at least as large the demand at
node j , i.e.,

∑
i∈S

xij ≥ dj , ∀j ∈ D.

We could enforce equality here but is unnecessary since, it will follow automati-
cally from trying to minimize shipping costs.
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Total shipping costs will be
∑

i∈S
∑

j∈D cij xij . The problem facing Pro-
crustes & Co. is

min
∑
i∈S

∑
j∈D

cij xij

s.t. −
∑
j∈D

xij ≥ −si , ∀i ∈ S,

∑
i∈S

xij ≥ dj , ∀j ∈ D,

xij ≥ 0, ∀i ∈ S, j ∈ D.

If s ∈ R
|S|
+ and d ∈ R

|D|
+ are the vectors of supply and demand respectively, denote

the optimal value of the objective function by c(−s, d).
Let pi denote dual variable associated with the ith supply constraint and qj the

dual variable associated with the j th demand constraint. The dual program is

c(−s, d) =max−
∑
i∈S

sipi +
∑
j∈D

djqj

s.t. −pi + qj ≥ cij , ∀i ∈ S, j ∈ D,

pi , qj ≥ 0, ∀i ∈ S, j ∈ D.

Lemma 7.19 The set of feasible solutions to the dual problem is a lattice.

Proof Pick two dual feasible solutions (−p, q) and (−p′, q ′). Consider
(−p, q)∨ (−p′, q ′). The ith component is max(−pi ,−p′i ) and the j th component
will be max(qj , q ′j ). We must show that

max(−pi ,−p′i )+max(qj , q ′j ) ≥ cij .

Without loss of generality suppose that qj ≥ q ′j . Then

max(−pi ,−p′i )+max(qj , q ′j ) = max(−pi ,−p′i )+ qj

≥ max(−pi ,−p′i )+ cij − pi ≥ cij .

Theorem 7.20 c(−s, d) is supermodular in (−s, d).

Proof The objective function of the dual problem is the sum of two dot products
and so is supermodular in (−s, d,p, q). The feasible region is a lattice. For each
choice of (−s, d) an optimal solution to the dual exists. The theorem now follows
from Theorem 7.5.

Part (1) of Theorem 7.9 implies that the set of optimal dual solutions forms a
lattice. The set of optimal dual solutions is not compact, but is bounded below by
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zero. A simple modification of the proof of Theorem 7.3 yields the existence of
a smallest element. Part (2) of Theorem 7.9 implies that the set of optimal dual
solutions is increasing in (−s, d). Thus, if si were to decrease (i.e.,−si increases),
we expect the optimal value of pi to go up. If dj increases, we expect the optimal
value of qj to increase.

7.4 Application: efficient assignment and the core

We revisit the problem of finding the efficient assignment discussed in Section 4.9.
As before M is a set of distinct indivisible goods and N the set of agents.
We denote by V (N) the total value of an efficient assignment. Thus,

V (N) =max
∑
j∈N

∑
i∈M

vij xij

s.t.
∑
j∈N

xij ≤ 1, ∀i ∈ M ,

∑
i∈M

xij ≤ 1, ∀j ∈ N ,

0 ≤ xij ≤ 1, ∀i ∈ M , j ∈ N .

Before continuing, the reader is urged to review Section 4.9 in particular the portion
about supporting prices.

We will also be interested in the value of an efficient assignment when we restrict
attention to a subset S of agents. We call this problem P(S).

V (S) =max
∑
j∈N

∑
i∈M

vij xij

s.t.
∑
j∈N

xij ≤ 1, ∀i ∈ M ,

∑
i∈M

xij ≤ 1, ∀j ∈ S,

∑
i∈M

xij ≤ 0, ∀j �∈ S,

0 ≤ xij ≤ 1, ∀i ∈ M , j ∈ S.

Note that the constraint matrix is still totally unimodular. The dual to problem
P(S), denoted DP(S) is

min
∑
i∈M

pi +
∑
j∈S

λj

s.t. pi + λj ≥ vij , ∀i ∈ M , j ∈ N .



RAKE: “chap07” — 2004/9/17 — 06:11 — page 155 — #14

Lattices and supermodularity 155

Theorem 7.21 V (·) is non-decreasing and submodular.

Proof Let d ∈ R
|N | be a 0–1 vector and let B |N | be the set of all 0–1 vectors in

R
|N |. Let

f (d) =max
∑
j∈N

∑
i∈M

vij xij

s.t.
∑
j∈N

xij ≤ 1, ∀i ∈ M ,

∑
i∈M

xij ≤ dj , ∀j ∈ N ,

0 ≤ xij ≤ 1, ∀i ∈ M , j ∈ N .

By the duality theorem

f (d) =min
∑
i∈M

pi +
∑
j∈N

djλj

s.t. pi + λj ≥ vij , ∀i ∈ M , j ∈ N ,

pi , λj ≥ 0, ∀i ∈ M , j ∈ N .

We make a change of variables: wj = −λj for all j ∈ N . With this change

f (d) =min
∑
i∈M

pi −
∑
j∈N

djwj

s.t. pi − wj ≥ vij , ∀i ∈ M , j ∈ N ,

pi ≥ 0, wj ≤ 0, ∀i ∈ M , j ∈ N .

The set of feasible dual solutions forms a lattice with respect to the partial order
(p,w) ' (p′,w′) if and only if (p,w) ≥ (p,w′).4 The objective function of this
last program is submodular. From Theorem 7.5 we deduce that f (d) is submodular
on the lattice B |N |. If we set dj = 1 for all j ∈ S and zero otherwise, it follows
that V (S) = f (d).

We can associate with the problem of finding an efficient assignment a coopera-
tive game. To define it we introduce a new agent (not in N ) called the seller, s. The
seller is assumed to own all the goods. The characteristic function u is defined as

1. u(S) = 0, ∀S ⊆ N ,
2. u(S ∪ s) = V (S), ∀S ⊆ N .



RAKE: “chap07” — 2004/9/17 — 06:11 — page 156 — #15

156 Lattices and supermodularity

An interpretation is that for a coalition of agents S to generate value, they must
include the seller. The core, C(u,N ∪ {s}), of this game is:

∑
j∈N

µj + µs = u(N ∪ s) = V (N),

∑
j∈{S∪s}

µj + µs ≥ u(S ∪ s) = V (S),

∑
j∈S

µj ≥ u(S) = 0, ∀S ⊂ N .

Recall that an outcome in the core is a division of value that no coalition of agents
can ‘block’.

Lemma 7.22 C(u,N ∪ {s}) is non-empty.

Proof Set µj = 0 for all j ∈ N and µs = V (N). For any S ⊆ N we have∑
i∈S µi = 0 = u(S). For any S∪{s}we have that

∑
i∈S∪{s} µi = V (N) ≥ V (S)

since V (·) is non-decreasing (see Lemma 7.23).

Let (λ∗,p∗) be an optimal dual solution to D(N ). Recall that we interpret p∗ as
a price vector and λ∗ as a vector whose j th component gives the surplus of agent
j at prices p∗.

Lemma 7.23 The efficient assignment produces an outcome that is in C(u,N ∪
{s}) in the sense that µj = λ∗j and µs =∑i∈M p∗i is a point in C(u,N ∪ {s}).

Proof By the definition of the dual

u(N ∪ {s}) = V (N) =
∑
j∈N

λ∗j +
∑
i∈M

p∗i =
∑

j∈N∪{s}
µj .

Furthermore (λ∗,p∗) is a feasible solution to DP(S) for all S ⊆ N . By dual
feasibility we have that

u(S ∪ {s}) = V (S) ≤
∑
j∈S

λ∗j +
∑
i∈M

p∗i =
∑

j∈S∪{s}
µj .

The quantity V (N) − V (N \ j) for all j ∈ N is called the marginal product
of agent j . It represents agent j ’s ‘added value’ to the coalition N ∪ {s}. For
any outcome in the core, no agent can obtain a surplus that exceeds its marginal
product. To see why, consider the following two restraints from the definition of
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C(u,N ∪ {s}):
∑
j∈N

µj + µs = V (N),

∑
j∈N\k

µj + µs ≥ V (N \ k).

Negating the second and adding to the first yieldsµk ≤ V (N)−V (N\k). Remark-
ably there is a point in the core that gives to each agent in N their marginal
product.

Theorem 7.24 There is a point µ ∈ C(u,N ∪ {s}) such that µj = V (N) −
V (N \ j) for all j ∈ N .

Proof Setµj = V (N)−V (N\j) for all j ∈ N andµs = V (N)−∑j∈N [V (N)−
V (N\j ]. With this choice we have

∑
j∈N µj + µs = u(N ∪ {s}). To complete

the proof we show that
∑

j∈S µj + µs ≥ u(S ∪ {s}) for all S ⊂ N .
Observe that∑

j∈S
µj + µs − V (S) = V (N)− V (S)−

∑
j∈N\S

[V (N)− V (N\j)].

We use the submodularity of V (·) to show that the right-hand side of the above is
non-negative. Let N\S = {j1, j2, . . . , jk} and take j0 to be the empty set. Then,
from increasing differences,

V (S ∪ {j1, . . . , jr})− V (S ∪ {j1, . . . , jr−1}) ≥ V (N)− V (N\jr).

Therefore,

V (N)− V (S) =
k∑

r=1

[V (S ∪ {j1, . . . , jr})− V (S ∪ {j1, . . . , jr−1})

≥
∑

j∈N\S
[V (N)− V (N\j)].

Last,
∑

j∈S µj ≥ 0 follows from the non-negativity of marginal products which
in turn follows from V (·) being non-decreasing.

We now establish a converse to Lemma 7.23. We prove that every point in the
core corresponds to an optimal solution to D(N ).

Lemma 7.25 For every µ ∈ C(u,N ∪ {s}) there is a vector p ∈ R
|M| such that

(λ,p) is an optimal solution to D(N) where λj = µj for all j ∈ N .
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Proof Given µ ∈ C(u,N ∪{s}) set λj = µj for all j ∈ N . We show that there is
a p ∈ R

|M| such that
∑

i∈M pi = µs and λj + pi ≥ vij for all i ∈ M and j ∈ N .
For each i set pi = maxj∈N(vij − λj ) for all i ∈ M and let Ni =

arg maxj∈N(vij − λj ). If

∑
j∈N

λj +
∑
i∈M

pi ≤ V (N)

we are done. Simply raise the value of one of the pi’s until equality is reached.
So, suppose not. In this case:

∑
j∈N

λj +
∑
i∈M

pi > V (N).

We now assign each i ∈ M to at most one j ∈ Ni so that no j ∈ N is assigned
more than one good from M . Amongst all such assignments, choose one that
maximizes the number of agents in N who receive a good. Let S be that set of
agents, and G the set of goods assigned to agents in S. Thus |S| = |G| and each
agent in S is assigned exactly one good in G and each good in G is assigned to
exactly one agent in S. Goods in M\G are not assigned and agents in N\S receive
no goods. Notice, if good i is assigned to agent j then j ∈ Ni . We show that (λ,p)
is an optimal solution to D(S).

Let x∗ be a feasible solution to P(S) defined by setting xij = 1 if good i ∈G is
assigned to agent j ∈ S and zero in all other cases. Now we verify the comple-
mentary slackness conditions to establish optimality. Specifically we must prove
that x∗ij (λj + pi − vij ) = 0 for all i ∈ M and j ∈ S. If x∗ij = 0 this clearly true.
When x∗ij = 1, then j ∈ Ni , i.e., pi = vij − λj and so complementary slackness
holds.

Hence

V (S) =
∑
i∈M

pi +
∑
j∈S

λj > V (N)−
∑

j∈N\S
λj

⇒ V (N)− V (S) <
∑

j∈N\S
λj ≤

∑
j∈N\S

[V (N)− V (N\j)]

which violates submodularity of V (·). The last inequality follows from the
observation preceeding Theorem 7.24.

Hence amongst the optimal dual solutions to P(N) is one that gives to each agent
their marginal product. Equivalently, amongst all prices that support an efficient
allocation, there is one that leaves each agent with a surplus equal to their marginal
product.

Using the marginal value theorem of linear programming, we can identify which
optimal dual solution gives each agent their marginal product. Amongst all opti-
mal solutions to D(N ) select the one that minimizes

∑
i∈N pi . Given the lattice
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structure used in Theorem 7.21, this is the least element of the lattice of feasible
dual solutions.

7.5 Application: stable matchings

Let M be a set of men and W a set of women and suppose that |M| = |W |.
Each m ∈ M has a strict preference ordering over the elements of W and each
w ∈ W has a strict preference ordering over the men. The preference ordering
of an individual i will be denoted >i and x >i y will mean that agent i ranks x

above y.
A matching is an assignment of men to women such that each man is assigned

to one woman and vice-versa. A matching is called unstable if there are two men
m,m′ and two women w, w′ such that

1. m is matched to w,
2. m′ is matched to w′,
3. and w′ >m w and m >w′ m′.

The pair (m,w′) is called a blocking pair. A matching that has no blocking pairs
is called stable.

Example 30 Men occupy the rows and women the columns. The first entry in
each cell is the rank that the man corresponding to that row assigns to the woman
corresponding to the relevant column. The second entry is the rank that the woman
corresponding to that column assigns to the man in the corresponding row:

M–W w1 w2 w3

m1 (2, 1) (1, 2) (3, 1)
m2 (1, 3) (3, 3) (2, 3)
m3 (1, 2) (2, 1) (3, 2)

Consider the matching {(m1,w1), (m2,w2), (m3,w3)}. This is an unstable match-
ing since (m1,w2) is a blocking pair. The matching {(m1,w1), (m3,w2), (m2,w3)}
is stable.

Given the preferences of the men and women, is it always possible to find a
stable matching? Remarkably, yes. This was first established by David Gale and
Lloyd Shapley5 using what is now called the deferred proposal algorithm. Here
we give a proof using Tarski’s fixed point theorem.6

Call an assignment of women to men such that each man is assigned to at most
one woman but a woman may be assigned to more than one man a male semi-
matching. Call the analogous object for women a female semi-matching. For
example, assigning each man his first choice would be a male semi-matching.
Assigning each woman her third choice would be an example of a female semi-
matching.
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Apair of male and female semi-matchings will be called a semi-matching which
we will denote by µ, ν etc. An example of a semi-matching would consist of each
man being assigned his first choice and each woman being assigned her last choice.

The woman assigned to the man m under the semi-matching µ will be denoted
µ(m). If man m is assigned to no woman under µ, then µ(m) = m. Similarly
for µ(w). Next we define a partial order over the set of semi-matchings. Write
µ ' ν if

1. µ(m) >m ν(m) or µ(m) = µ(m) for all m ∈ M , and,
2. µ(w) <w ν(w) or µ(w) = ν(w) for all w ∈ W .

Roughly speaking, µ ' ν if all the men are better off under µ than in ν and all the
women are worse off under µ than in ν.

Next we define the meet and join operations. Given two semi-matchings µ and
ν define λ = µ ∨ ν as follows:

1. λ(m) = µ(m) if µ(m) >m ν(m) otherwise λ(m) = ν(m),
2. λ(w) = µ(w) if µ(w) <w ν(w) otherwise λ(w) = ν(w).

Define λ′ = µ ∧ ν as follows:

1. λ′(m) = µ(m) if µ(m) <m ν(m) otherwise λ(m) = ν(m),
2. λ(w) = µ(w) if µ(w) >w ν(w) otherwise λ(w) = ν(w).

With these definitions it is easy to check that the set of semi-matchings form a
compact lattice.

Now define a function f on the set of semi-matchings that is non-decreasing.
Given a semi-matching µ define f (µ) to be the following semi-matching:

1. f (µ)(m) is manm’s most preferred woman from the set {w:m >w µ(w),m =
µ(w)}. If this set is empty set f (µ)(m) = m.

2. f (µ)(w) is womanw’s most preferred man from the set {m:w >m µ(m),w =
µ(m)}. If this set is empty set f (µ)(w) = w.

It is clear that f maps semi-matchings into semi-matchings.

Theorem 7.26 There is a semi-matching µ such that f (µ) = µ. Furthermore µ

is a stable matching.

Proof We use Tarski’s theorem. It suffices to check that f is non-decreasing.
Suppose µ ' ν. Pick any m ∈ M . From the definition of', the women are worse
off under µ than in ν. Thus

{w: m >w ν(w)} ⊆ {w: m >w µ(w)}

and so f (µ)(m) >m f (ν)(m) or f (µ)(m) = f (ν)(m).Asimilar argument applies
for each w ∈ W . Thus f is non-decreasing.
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Since the conditions of Tarski’s theorem hold, it follows that there is a semi-
matching µ such that f (µ) = µ. We show that the semi-matching is a stable
matching.

By the definition of a semi-matching we have for every m ∈ M , µ(m) single
valued as is µ(w) for all w ∈ W . To show that µ is matching, suppose not. Then
there is a pairm1,m2 ∈ M , say, such thatµ(m1) = µ(m2) = w∗. Sincef (µ) = µ

it follows that w∗ is m1’s top ranked choice in {w: m1 >w µ(w),m1 = µ(w)} and
m2’s top ranked choice in {w: m2 >w µ(w),m2 = µ(w)}. From this we deduce
that µ(w∗) = m3 where m1,m2 >w∗ m3. However, m3 = µ(w∗) = f (µ∗)(w∗)
which is woman w∗’s top ranked choice in {m: w∗ >m µ(m),µ(m) = w∗}. Since
m1,m2 are members of this set, we get a contradiction.

To show that the matchingµ is stable suppose not. Then there must be a blocking
pair (m∗,w∗). Let w′ = µ(m∗) and m′ = µ(w∗), m′ �= m∗ and w∗ �= w′. Since
(m∗,w∗) is blocking, m∗ >w∗ m′ andw∗ >m∗ w′. Noww′ = µ(m∗) = f (µ)(m∗)
which is man m∗’s top ranked choice from {w: m∗ >w µ(w),m∗ = µ(w)}. But
this set containsw∗ which is ranked higher by manm∗ thanw′, a contradiction.

Problems

7.1 Show that the set S = {(x, y): x − y = 1} is a lattice in R
2.

7.2 Let S = [0, 1] and in each of the following f (x, y) is a function from S×R+
into R; x ∈ S and y ∈ R+. Decide which of them are supermodular in (x, y).

1. f (x, y) = xy − x2y2

2. f (x, y) = xy − x2

3. f (x, y) = x/(1+ y)

4. f (x, y) = x(1+ y)

5. f (x, y) = x(y − x)

7.3 Show that the product of non-negative, non-decreasing supermodular func-
tions on a lattice X ⊆ R

n is supermodular.
7.4 Let {fk}k≥1 be a sequence of supermodular functions defined on a lattice

X ⊆ R
n. Suppose that limk→∞ fk(x) = f (x) for all x ∈ X. Show that f is

supermodular.
7.5 Let X ⊂ R

n be a compact lattice. Show that there is a supermodular function
on R

n such that X = arg maxx∈Rn f (x).
Hint: Consider g(x, z) = −∑n

i=1 |xi − zi |.
7.6 Prove Corollary 7.16.
7.7 Consider n firms making imperfectly substitutable products. Firm i has a

constant marginal costs of ci , announces a price pi and the demand it faces
as a function of all prices is

di(p1, . . . ,pn) = ai − bipi +
∑
i �=j

gijpj .
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Here bi and gij are strictly positive for all i, j . Firm i’s profit as a func-
tion of everyone else’s price (abbreviated to p−i) and its own price p is
C(p−i ,p) = (p− ci)di(p

−i ,p). For each fixed p−i show that C(p−i ,p) is
supermodular in p.

7.8 Consider two firms making identical products. Firm i has a constant marginal
costs of ci < 1, announces a quantity qi . The price per unit of the good in the
market is given by 1−q1−q2. The profit of firm i will be [(1−q1−q2)qi−cqi].
Consider a game where the firms choose their quantities simultaneously. By
treating one firms strategy as being an element of [0, 1] and the other as [−1, 0]
show that the game is supermodular.

7.9 Consider a two person game where each players strategy set is [0, 1] and
denote by xi the strategy of player i. The payoff function for player 1 is
u1(x1, x2) = −x2

1 + x2 and for player 2 is u2(x1, x2) = −x2
2 + x1. Show that

this game is supermodular and has a unique equilibrium.

Notes

1 Born Alfred Teitlebaum in 1902, died Alfred Tarski in 1983. In between a road to Dam-
ascus conversion to Catholicism. One of the four greatest logicians of all time. In spite
of all temptations to belong to other nations, remained a Pole.

2 On the road to Attica the unsuspecting traveller who accepted Procrustes’ invitation to
lie in his iron bed, would be stretched or shortened, with fatal consequences, to fit the
length of the bed. Procrustes was slain by Theseus of Minotaur fame.

3 This model generalizes the one of Section 4.9.
4 Equivalently, p ≥ p′ and λ ≤ λ′.
5 Gale and Shapley (1962).
6 The approach has its roots in Subramanian (1994). It is fleshed out in Adachi (2000).
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8 Matroids

Matroids, defined below, are an abstraction of the idea of independence from
linear algebra. There are close connections between matroids, optimization and
submodularity which will be described here.

8.1 Introduction

Let E be a finite ground set and I a family of subsets of E.

Definition 8.1 (E, I) is called an independence system if

1. ∅ ∈ I,
2. A ⊂ B ∈ I ⇒ A ∈ I.

Here are five examples:

1. E = {1, 2, 3}, I = {∅, (1), (2), (3), (1, 3)}.
2. Let A be an m× n matrix and E the index set of columns of A. Define I to

be the subsets of E that correspond to linearly independent columns of A.
3. Given m disjoint sets Ei , i = 1, . . . ,m, let E = ∪mi=1Ei . Set I = {F ⊆ E:
|F ∩ Ei | ≤ 1 ∀i = 1, . . . ,m}.

4. Let G = (V ,E) be a graph and I = {F ⊆ E: (V ,F) is acyclic}.
5. Let E be a finite set and t some positive integer that is at most |E|. Let

I = {S ⊆ E: |S| ≤ t}.
Elements of I are called independent sets. Non-elements of I are called
dependent sets.

Definition 8.2 Let (E, I)be an independence system. For anyT ⊆E a setB ⊆ T

is called a basis of T or maximal in T if B ∈ I and B ∪ j �∈ I for all j ∈ T \B.

Definition 8.3 If (E, I) is an independence system, a setC⊆E is called a circuit
if it is minimally dependent. That is C �∈ I but C \ j ∈ I for all j ∈ C.
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Example 31 Let E be the set of columns of the matrix below:

[
2 1 1 1
1 −1 −1 1

]
.

A set of columns will be independent if the corresponding columns are linearly
independent. The first and third columns form a basis for E. The first, third and
fourth columns form a circuit.

Definition 8.4 The independence system (E, I) is called a matroid if for all
T ⊆ E, all basis of T have the same size. That is, if B and B ′ are each a basis for
T then |B| = |B ′|.

In the list of independent systems given previously, only the last four
are matroids. The second is called a matric matroid, the third is called a partition
matroid, the fourth is called the forest matroid and the fifth is called the uniform
matroid. The reader should be able to verify that these independence systems are
all matroids.

We derive some properties of matroids that will be useful later. In reading the
theorems and proofs the reader will find it helpful to keep either the matric or
graphic matroid in mind.

Lemma 8.5 Let (E, I) be an independence system. For any T ⊆E and
independent set S ⊆ T there is a basis B of T such that S ⊆ B.

Proof If there is a j ∈ T \ S such that S ∪ j ∈ I then add it to S. Continue. We
must eventually enlarge S into a set B such that B ∪ k �∈ I for all k ∈ T \ B.

Lemma 8.6 Let (E, I) be an independence system. Every T �∈ I contains at
least one circuit.

Proof If T is a circuit we are done. If not there is a j ∈ T such that T \ j ∈ I.
Delete j from T . Repeat. Eventually we obtain a set C ⊆ T such that C \ k ∈ I
for all k ∈ C.

Theorem 8.7 Let (E, I) be a matroid and A,B ∈ I with |A|< |B|. Then there
exists j ∈ B \ A such that A ∪ j ∈ I.

Proof Suppose not. Then A is a basis for A ∪ B. Since B ⊂ A ∪ B there is
another basis for A∪B with a cardinality of at least |B| > |A|. It can be obtained
by adding elements of (A ∪ B) \ B to B. Thus we get two basis for the same set
of different sizes, a contradiction.

Theorem 8.8 Let (E, I) be a matroid. For any A ∈ I and any j ∈ E, A ∪ j

contains at most one circuit.
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Proof Suppose not. Choose the smallest A that contradicts the theorem. Then
A ∪ j contains two circuits C and C′. By the choice of A, A = (C ∪ C′) \ j .
Choose a ∈ C \ C′ and b ∈ C ′ \ C. Let S = (C ∪ C′) \ {a, b}. If S �∈ I, then S

contains a circuit D. This implies (A\a)∪j contains two circuits, D and C′. Since
A \ a ∈ I and is of cardinality one less than that of A, we have a contradiction.
So, S ∈ I. But S is a basis of C ∪ C′ as is A and |S| �= |A| a contradiction.

Theorem 8.9 A set C of subsets of E are the circuits of a matroid if and only if

1. ∅ �∈ C.
2. If C,C′ ∈ C and C ⊆ C′ then C = C′.
3. If C,C′ ∈ C, C �= C′ and e ∈ C ∩ C′ then there exists D ∈ C such that

D ⊆ (C ∪ C ′) \ e.

Proof Suppose first that C is a collection of circuits for the matroid (E, I). Then
the first two statements are obvious. If the third statement is violated for some
C,C ′ ∈ C then B = (C ∪ C′) \ e ∈ I. Then B ∪ e contains two circuits which
violates Theorem 8.8

Now suppose C is a collection of sets that satisfies (1–3) of the theorem. Let
I = {S: S contains no member of C}. We show that (E, I) is a matroid. In view
of (1) and (2) (E, I) is clearly an independence system.

Pick A ⊆ E and let B and B ′ be two different basis for A. Suppose |B| < |B ′|.
Choose them so that |B ∩B ′| is maximized. Pick e ∈ B ′ \B. Then B ′ ∪ e contains
at least one circuit, C. We will use (3) to argue that the circuit is unique.

Suppose not and let C′ be the other circuit. By (3) (C∪C′)\e contains a circuit.
However, (C ∪ C′) \ e ⊂ B, contradicting the independence of B.

Since C �⊆ B there exists q ∈ C \ B. Then

T = (B ∪ e) \ q ∈ I
since C is the only member of C in B ∪ e. But |T ∩ B| > |B ′ ∩ B|, contradicting
the choice of B and B ′.

8.2 Matroid optimization

We associate with the matroid (E, I) a weight vector w that assigns to each e ∈ E

a weight we. The matroid optimization problem is to find an independent set of
largest total weight: maxS∈I

∑
e∈S we. Subsequently we show how to formulate

this problem as a linear program. For now we give a direct method for solving the
matroid optimization problem.

Greedy algorithm

1. Order elements of E: w1 ≥ w2 · · · ≥ wn.
2. Set S0 = ∅ and t = 1.
3. If wt ≤ 0, stop and output St−1.
4. If wt > 0 and St−1 ∪ t ∈ I set St = St−1 ∪ t .



RAKE: “chap08” — 2004/9/17 — 06:11 — page 166 — #4

166 Matroids

5. If wt > 0 and St−1 ∪ t �∈ I set St = St−1.
6. If t = n stop. If t < n, set t = t + 1 and goto (3).

Example 32 Let (E, I) be the matric matroid associated with the matrix below.
2 1 1 1

1 −1 −1 1
0 0 0 1


 .

The first column will have weight 7, the second weight 5, the third weight 4, the
fourth weight 3. The greedy algorithm will select the first column followed by the
second column. Then it will skip the third column (since the first three columns
are linearly dependent) and select the fourth column.

The greedy algorithm computes a maximum weight basis for a matroid.

Theorem 8.10 Let (E, I) be a matroid. For every weight vector w, the greedy
algorithm finds a maximum weight independent set.

Proof Let G = {e1, e2, . . . , em} be the independent set identified by the greedy
algorithm. Let J = {q1, q2, . . . , qr} be a maximum weight independent set. Order
both sets by non-increasing weight.

Consider the smallest index k such that wqk
>wek . If none exists, it fol-

lows that r >m in which case we choose k=m+ 1. In either case we know
that {q1, q2, . . . , qk} were not selected by the greedy algorithm in its kth iter-
ation. Furthermore, what was selected had a lower weight. This implies that
qi ∈ {e1, . . . , ek−1} or qi ∪ {e1, . . . , ek−1} �∈ I ∀i = 1, . . . , k. Thus {e1, . . . , ek−1}
is a basis for {e1, . . . , ek−1, q1, . . . , qk}. But {q1, . . . , qk} is an independent subset of
the same set but of larger size than {e1, . . . , ek−1}. This contradicts Lemma 8.5.

The theorem is false when (E, I) is not a matroid. Suppose E = {1, 2, 3},
w1 = 1.5,w2= 2,w3= 1.5 and I ={∅, (1), (2), (3), (1, 2)}. The greedy algorithm
returns {2}, but the maximum weight independent set is {1, 3}.

8.3 Rank functions

We will be interested in real valued functions defined on subsets of E. These
functions will have two properties that will be useful.

Definition 8.11 Let f be a real valued function on subsets of E.

• f is non-decreasing if S ⊆ T ⇒ f (S) ≤ f (T ).
• f is submodular if ∀S, T ⊂ E

f (S)+ f (T ) ≥ f (S ∪ T )+ f (S ∩ T ).

• f is supermodular if −f is submodular.
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If we assign to each element i of E a real number ai then f (S) =∑j∈S aj and
f (S) = maxi∈S ai are both submodular.

The definition of submodularity given here is identical to the one given in
Chapter 7. We associate with each set S a characteristic vector χS , i.e., χS(i) = 1
if i ∈ S and zero otherwise. Then submodularity over the characteristic vectors
will be:

f (χS)+ f (χT ) ≥ f (χS ∨ χT )+ f (χS ∧ χT ).

Notice that χS ∨ χT = χS∪T and χS ∧ χT = χS∩T . The following two results are
now trivial.

Theorem 8.12 f is submodular iff

f (S ∪ k)− f (S) ≥ f ([S ∪ k] ∪ j)− f (S ∪ k)

for all j �= k, j , k ∈ E and S ⊆ E \ {j , k}.

Proof See the proof of Theorem 7.7.

Theorem 8.12 can be formulated in the following equivalent way:

f (S)− f (S \ j) ≤ f (T )− f (T \ j), ∀j ∈ T ⊂ S.

Theorem 8.12 allows one to interpret submodularity as a discrete form of concavity.
If one views f (S ∪ j)− f (S) as a derivative, Theorem 8.12 can be interpreted as
saying that the derivative decreases as S ‘increases’.

Corollary 8.13 f is submodular and non-decreasing iff

f (T ) ≤ f (S)+
∑

j∈T \S
[f (S ∪ j)− f (S)], ∀S, T ⊆ E.

Here are some properties of submodular functions.

• If f is submodular then g(S) = f (E \ S) is submodular.
• If f is submodular and k a number, then g(S) = min{f (S), k} is submodular.
• If f and g are submodular then so is f + g.
• If f is submodular then h(S) = min{f (T ): S ⊆ T ⊆ E} is submodular and

non-decreasing.

Definition 8.14 If (E, I) is an independence system, its rank function, r , is

r(S) = max
T⊆S {|T |: T ∈ I}.
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We can describe an independence system by its collection of independent sets,
I, or its rank function because I = {T : r(T ) = |T |}. For this reason we can write
an independence system as (E, r).

Theorem 8.15 (E, I) is a matroid iff its rank function is submodular.

Proof Let r be the rank function of the matroid (E, I). We show first that
r is submodular. Observe first that r(∅) = 0, r is non-decreasing and
r(S ∪ j)− r(S) ≤ 1. To prove submodularity it suffices, by Theorem 8.10, to
show that

r(S ∪ j)− r(S) ≥ r(S ∪ {j , k})− r(S ∪ k).

The inequality holds when r(S∪j)− r(S) = 1. So, suppose r(S∪j) = r(S) = p

and r(S ∪ {j , k})− r(S ∪ k) = 1.
Under these assumptions r(S ∪ {j , k}) = p+ 2,p+ 1. If r(S ∪ {j , k}) =

p+ 2, then r(S ∪ {j , k})− r(S ∪ j) = 2 which contradicts the fact that
r(S ∪ {j , k})− r(S ∪ j) ≤ 1.

If r(S ∪ {j , k}) = p + 1 then r(S ∪ k) = p. Let B be a basis for S. Since
r(S ∪ j) = r(S ∪ k) = p it follows that B ∪ j and B ∪ k are dependent sets. Thus
B is a basis for S ∪ {j , k} which implies that r(S ∪ {j , k}) = |B| = r(S) = p a
contradiction.

Now suppose r , the rank function of the independence system (E, I), is sub-
modular. We show that (E, I) is a matroid. Choose any S ⊆ E and let B and B ′
be two basis of S with different sizes. Suppose |B| < |B ′|.

Since r is non-decreasing and submodular

r(B ′) ≤ r(B)+
∑

j∈B ′\B
[r(B ∪ j)− r(B)].

Hence r(B ∪ j)> r(B) for some j ∈B ′ \B. Hence r(B ∪ j)= |B ∪ j | contradict-
ing the fact that B is a basis.

Definition 8.16 A real valued function f defined on subsets of E is called a
matroid rank function if

1. f (∅) = 0,
2. f is integer valued and non-decreasing,
3. f is submodular,
4. and f (j) ≤ 1 for all j ∈ E.

Theorem 8.17 If r is the rank function of the matroid (E, I) then

rD(S) = |S| + r(E \ S)− r(E)

is a matroid rank function.
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Proof Clearly rD(∅) = 0, and rD is submodular. Also

rD(S ∪ j)− rD(S) = 1− [r(E \ S)− r(E \ {S ∪ j})].

Hence 0 ≤ rD(S ∪ j)− rD(S) ≤ 1.

Definition 8.18 If (E, r) is a matroid, the matroid, (E, rD) is called the matroid
dual to (E, r). In particular B is a basis of (E, rD) iff E \ B is a basis in (E, r).

8.4 Deletion and contraction

Given a matroid one can obtain two other matroids through two operations called
deletion and contraction.

Definition 8.19 Let M = (E, I) be a matroid and S ⊆ E. The matroid
obtained by deleting S has the ground set E \ S and independent set’s I \ S =
{T ⊂ E \ S: T ∈ I} is denoted M \ S.

If rM is the rank function of M and rM\S the rank function of M \ S then
rM\S(T ) = rM(T ) for each T ⊆ E \ S.

Definition 8.20 Let M = (E, I) be a matroid and S ⊆ E. Let B be any basis of
S. Define MS , read M contract S, to be the independence system with ground set
E \ S and independence family IS = {T ⊂ E \ S: T ∪ B ∈ I}.

If rMS
is the rank function of MS then rMS

(T ) = rM(T ∪ S) − rM(S) for all
T ⊆ E \ S.

Theorem 8.21 MS is a matroid and its definition does not depend on the choice
of B.

Proof First we prove that MS is a matroid. Choose any A ⊆ E \S. Let J 1 and J 2

be bases for A with respect to MS . Therefore J 1 ∪B and J 2 ∪B are independent
sets in I. If J i ∪B is a basis for A∪ S with respect to I for all i, then we are done
since |J 1 ∪ B| = |J 2 ∪ B| ⇒ |J 1| = |J 2|.

Suppose not. Then there is an e ∈ A∪S with e �∈ J 1∪J 2∪B and e∪J i ∪B is
in I for all i. However e �∈ S since B is a basis for S with respect to I. Also, e �∈ A

since J i is a basis for A with respect to IS . Therefore e �∈ A ∪ S, a contradiction.
Now we show that MS does not depend on the choice of B. If it does, S must

contain two bases, B1 and B2 with respect to M and a set J ⊆ E \ S such that
J ∪ B1 ∈ I but J ∪ B2 is not.
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Let J ′ ⊆ J be the largest set such that J ′ ∪ B2 ∈ I. Then

|J ′ ∪ B2| < |J ∪ B2| = |J ∪ B1|

because |B1| = |B2|. Thus J ′ ∪B2 ∈ I is not a basis with respect to M of J ∪ S.
Hence there exists e ∈ [J ∪ S] \ [J ′ ∪B2] such that J ′ ∪B2 ∪ e ∈ I. Now follow
the previous argument to show that e �∈ S ∪ J to derive a contradiction.

Example 33 LetM be the matroid defined on the columns of the following matrix:




1 1 1 0 0 0
−1 0 0 1 0 −1

0 −1 0 −1 1 0
0 0 −1 0 −1 1


 .

Choose S to be columns 2 and 4. Now perform the row operations necessary to
convert the submatrix associated with columns 2 and 4 into echelon form:




1 1 1 0 0 0
−1 0 0 1 0 1

0 0 1 0 1 −1
0 0 −1 0 −1 1


 .

The matroid obtained by contracting S is the matroid defined on the following
submatrix:

[
0 1 1 −1
0 −1 −1 1

]
.

8.5 Matroid intersection and partitioning

Here we prove two important theorems about matroids.

Theorem 8.22 (Matroid intersection theorem) Let M1 = (E, I1) and M2 =
(E, I2) be two matroids defined on the same ground set with rank functions r1 and
r2, respectively. Then

max{|J |: J ∈ I1 ∩ I2} = min
T⊆E r1(T )+ r2(E \ T ).

Remark Let J ∈ I1∩I2. Then |J | = |J ∩T | + |J ∩{E\T }| ≤ r1(T )+r2(E\T )

for all T ⊆ E.
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Proof The proof is by induction on |E|. The theorem is trivially true for |E| = 1.
Assume |E| ≥ 2 and let k = minT⊆E r1(T )+ r2(E \T ). Let S1, S2 = E \S1 be a
partition of E such that r1(S

1)+ r2(S
2) = k. The proof is divided into two cases.

Case 1: Exactly one of S1 or S2 is empty.

Without loss of generality suppose S1 = E and S2 = ∅. Let M̂i denote the matroid
obtained from Mi by deleting element j ∈ E. By the induction hypothesis there
is a set Ĵ independent in M̂i for all i = 1, 2 and partition of E \ j into K1 and K2

such that

|Ĵ | = r1(K
1)+ r2(K

2) ≤ r1(E \ j) ≤ r1(E)

≤ min{r1(K
1 ∪ j)+ r2(K

2), r1(K
1)+ r2(K

2 ∪ j)}.

If the right-hand side of the above is r1(K
1)+ r2(K

2) then we have

|Ĵ | = r1(K
1)+ r2(K

2) = r1(K
1 ∪ j)+ r2(K

2).

Since Ĵ ∈ I1 ∩ I2, the theorem is proved. If

min{r1(K
1 ∪ j)+ r2(K

2), r1(K
1)+ r2(K

2 ∪ j)} = r1(K
1)+ r2(K

2)+ 1

it follows that j increases the rank of Ki with respect to ri for all i = 1, 2.
Since Ki ∩ Ĵ ⊆ Ĵ for all i it follows that ri(Ĵ ∪ i) = ri(Ĵ )+ 1 for all i. Hence
Ĵ ∪ j ∈ I1 ∩ I2. Thus

|Ĵ ∪ j | = r1(K
1 ∪ j)+ r2(K

2)

proving the theorem.

Case 2: S1 �= ∅ �= S2.

Let k = r1(S
1)+r2(S

2). Define M ′1 to be M1 contract S1 and r ′1 the corresponding
rank functions. Let M ′2 = M2 \ S1 and r ′2 the corresponding rank function. For
any partition T 1, T 2 of S2 we have

r ′1(T 1)+ r ′2(T 2) = r1(T
1 ∪ S1)− r1(S

1)+ r2(T
2) ≥ k − r1(S

1) = r2(S
2).

Since S1 �= ∅, |S2| < |E|. Therefore the induction hypothesis applies to S2. There
is a J 2 ⊆ S2 independent in M1 contract S1 and M2 \ S1 with |J 2| = r2(S

2).
Asimilar argument yields a set J 1 ⊆ S1 independent in M1\S2 and M2 contract

S2 such that |J 1| = r1(S
1). Notice that J 1 ∪ J 2 ∈ I1 ∩ I2 and |J 1 ∪ J 2| = k and

this proves the claim.
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The matroid intersection theorem does not hold for the intersection of 3 or more
matroids. Now we show how the matroid intersection theorem can be used to
derive the Hall marriage theorem.

8.5.1 Application: Hall marriage theorem

Let A be a set of agents and G a set of goods with |A| = |G|. For each agent i ∈ A

there is a non-empty set Di ⊆ G of goods acceptable to agent i. Given {Di}i∈A is
there a way to give every agent i ∈ A exactly one good in Di such that no good
is assigned to more than agent? Call such an assignment feasible. Clearly, not
always. This is impossible, for example, when each Di contains the same single
element. Hall’s theorem gives a necessary and sufficient condition for a feasible
assignment to exist.

If there is a B ⊆ A such that |B| > | ∪i∈B Di |, then there is clearly no feasible
assignment. Thus |B| ≤ | ∪i∈B Di | for all B ⊆ A is a necessary condition for a
feasible assignment. Remarkably it is also a sufficient condition.

Theorem 8.23 A feasible assignment exists iff |B| ≤ | ∪i∈B Di | for all B ⊆ A.

Proof We prove sufficiency. To avoid trivial cases we assume |Di | ≥ 2 ∀i ∈ A

and that for each j ∈ G there exists i, i′ such that j ∈ Di ∩Di ′ .
We construct two matroids, Ma and Mg . The common ground set of both

matroids is E = {(i, j): i ∈ A, j ∈ Di}. A set T ⊆ E will be independent in Ma

iff no agent appears in more than one pair of T . The same set T is independent in
Mg iff no good appears in more than one pair of T . Let ra be the rank function
associated with Ma and rg the rank function associated with Mg .

If T is independent in both matroids, this corresponds to a subset of agents and
goods who are paired to each other in one to one fashion. If T is independent
in both matroids and |T | = n then T corresponds to a feasible assignment. It
suffices to show that there is a set of size n that is independent in both matroids.
To derive this from the matroid intersection theorem, it is enough to show that
minT⊆E[ra(T )+ rg(E \ T )] ≥ n for all T ⊆ E.

In an abuse of notation we writeT ∩A to denote the set of agents who appear in at
least one of the agent–good pairs of T . Similarly with T ∩G. Now ra(T ) = |A∩T |
is the number of distinct agents that appear in T . Also rg(T ) = |A ∩ G| is the
number of distinct goods that appear in T .

Let T ⊆ E. Notice that ra(T ) = |T ∩ A| and

rg(E \ T ) = |{j ∈ G: s.t. (i, j) �∈ T }|
≥ |{j : j ∈ Di , i �∈ T ∩ A}|

=
∣∣∣∣ ⋃
i �∈T∩A

Di

∣∣∣∣
≥ |A| − |T ∩ A|.
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Hence

ra(T ) + rg(E \ T ) ≥ |A| = n.

Definition 8.24 Let Mi = (E, Ii ), i = 1, . . . , k be a collection of matroids. A
set J ⊆ E is partitionable with respect to {Mi}i≥1 if there is a partition of J into
sets {J 1, J 2, . . . , J k} such that J i ∈ Ii for all i.

Theorem 8.25 (Matroid partition theorem) Let Mi = (E, Ii ), i = 1, . . . , k be
a collection of matroids with corresponding rank functions ri . Then

max{|J |: J partitionable} = min
T ⊆E

{
|E \ T | +

k∑
i=1

ri(T )

}
.

Proof First we prove that

max{|J |: J partitionable} ≤ min
T ⊆E

{
|E \ T | +

k∑
i=1

ri(T )

}
.

Choose any J ⊆ E and suppose it to be partitioned into sets F 1, . . . , Fk indepen-
dent in M1, . . . , Mk . Choose any T ⊆ E. Then

|J | = |J ∩ (E \ T )| + |J ∩ T | ≤ |E \ T | +
k∑

i=1

|F i ∩ T |

≤ |E \ T | +
k∑

i=1

ri(T ).

To conclude the proof we use the matroid intersection theorem. First we con-
struct two matroids. The first matroid, M ′, is constructed by making k copies of
E. If E = {e1, e2, . . . , en}, then let Ei = {ei1, e12, . . . , ein} be the ith copy of E.
The ground set of M ′ will be E′ = ∪k

i=1E
i . A set J ⊆ E′ will be independent in

M ′ iff J ∩ Ei ∈ Ii for all i. Let r ′ be the rank function associated with M ′. Thus
r ′(J ) = ∑k

i=1 ri(J ∩ Ei).
To describe the second matroid, let Aj = {e1j , e2j , . . . , ekj } for j = 1, . . . , n.

The second matroid, M̂ , has a ground set E′ and J ⊆ E′ is independent in
M̂ iff |J ∩ Aj | ≤ 1 for all j . Let r̂ be the rank function of this matroid, then
r̂(J ) = |{j : |J ∩ Aj | ≥ 1}|.

From the matroid intersection theorem we deduce the existence of two sets
J ′, T ′ ⊆ E′ such that

r ′(T ′) + r̂(E′ \ T ′) = |J ′|.

where J ′ is independent in both M ′ and M̂ .
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From T ′ we form a new set T̂ by removing some elements. If j ∈ E is such that
Aj �⊆ T ′ butAj∩T ′ �= ∅ deleteAj∩T ′ from T ′. For such a j , 1≤ |E′ \T ′∩Aj | ≤
|(E′ \ T̂ ) ∩ Aj | and so

r̂(E′ \ T ′′) = r̂(E′ \ T ′).

Let T = {j ∈ E: Aj ⊆ T̂ } and J = {j ∈ E: Aj ∩ J ′ �= ∅}. Since J ′ is
independent in both M ′ and M ′′, it follows that |J ′| = |J |. Then,

|E \ T | +
k∑

i=1

ri(T ) ≤ r̂(E′ − T̂ )+ r ′(T ′) ≤ |J ′| = |J |.

One consequence of the partition theorem is that E is partitionable iff

k∑
i=1

ri(T ) ≥ |T |, ∀T ⊆ E.

This can be viewed as a generalization of Hall’s theorem.
What happens if we ask for a partition ofE into bases and not merely independent

sets? If
∑k

i=1 ri(E) > |E| or
∑k

i=1 ri(E) < |E| it cannot be done.

Definition 8.26 Let Mi = (E, Ii ), i = 1, . . . , k be a collection of matroids. The
collection {Mi}i≥1 can be packed into E if there exist disjoint sets B1,B2, . . . ,Bk

such that Bi is a basis in Mi for all i and ∪ki=1Bi ⊆ E.

Theorem 8.27 (Matroid packing) Let Mi = (E, Ii ), i = 1, . . . , k be a
collection of matroids. The collection {Mi}i≥1 can be packed into E iff

|T | ≤ |E| −
k∑

i=1

ri(E)+
k∑

i=1

ri(T ), ∀T ⊆ E.

Proof Suppose first that the collection {Mi}i≥1 can be packed into E. Then
there exist disjoint sets B1,B2, . . . ,Bk such that Bi is a basis in Mi for all i and
∪ki=1Bi ⊆ E. Let B0 = E \ ∪ki=1Bi . Choose any T ⊆ E. Then

|T | = |T ∩ B0| +
k∑

i=1

|T ∩ Bi | ≤ |B0| +
k∑

i=1

ri(T )

=
∣∣∣∣E \

k⋃
i=1

Bi

∣∣∣∣+
k∑

i=1

ri(T ) = |E| −
k∑

i=1

ri(E)+
k∑

i=1

ri(T ).
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Now suppose that

|T | ≤ |E| −
k∑

i=1

ri(E)+
k∑

i=1

ri(T ) ∀T ⊆ E. (8.1)

We show that the collection of matroids {Mi}ki=1 can be packed into E.
If we choose T = ∅ in inequality (8.1) then t = |E|−∑k

i=1 ri(E) ≥ 0. Define
Mk+1 to be a matroid on E with independent sets Ik+1 = {S ⊆ E: |S| ≤ t}. From
the matroid partition theorem, E can be partitioned into independent sets from
{Mi}k+1

i=1 iff

k+1∑
i=1

ri(T ) ≥ |T |, ∀T ⊆ E.

Now

k+1∑
i=1

ri(T ) =
k∑

i=1

ri(T )+ rk+1(T )

=
k∑

i=1

ri(T )+min
{
|T |, |E| −

k∑
i=1

ri(E)

}
≥ |T |.

Assume such a partition, {B1,B2, . . . ,Bk+1}. Each Bi must be a basis in Mi . If
not, |Bi | < ri(E) for one or more i. In this case

|E| =
k+1∑
i=1

|Bi | =
k+1∑
i=1

ri(Bi) <

k+1∑
i=1

ri(E) =
k∑

i=1

ri(E)+ t = |E|

a contradiction. Hence {B1,B2, . . . ,Bk} is the packing we seek.

8.6 Polymatroids

Here we show how to formulate the problem of finding a maximum weight basis
of an independence system as a linear program. As a first step we formulate the
problem as an integer program.

Let (E, I) be the underlying independence system with rank function r . Let
xj = 1 if we select j ∈ E and 0 otherwise. Then:

max
∑
j∈E

cjxj

s.t.
∑
j∈S

xj ≤ r(S), ∀S ⊆ E,

xj ∈ {0, 1}, ∀j ∈ E.
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Next we relax the condition that x ∈ {0, 1} for all j to 0 ≤ xj ≤ 1 for all j to
produce a linear program (called a linear relaxation of the above):

max
∑
j∈E

cjxj

s.t.
∑
j∈S

xj ≤ r(S), ∀S ⊆ E,

0 ≤ xj ≤ 1, ∀j ∈ E.

When r is the rank function of a matroid, the extreme points of the feasible region
of this linear program are all integral.

Definition 8.28 Let f be a submodular function on E. The polytope:

P(f ) =
{
x ∈ R

n+:
∑
j∈S

xj ≤ f (S), ∀S ⊆ E

}

is the polymatroid associated with (E, f ).

Notice that P(f ) �= ∅ iff f (S) ≥ 0 ∀S ⊆ E. If, in the definition of P(f ),
we drop the non-negativity restriction on x, we obtain an extended polymatroid,
P ∗(f ).

Theorem 8.29 Let f be a non-decreasing, integer valued, submodular function
onE with f (∅) = 0. Then all extreme points of the polymatroidP(f ) are integral.

Proof We know that for every extreme point, z of P(f ), there is a weight vector
c such that cz > cx for all x ∈ P(f ). It suffices then to prove that for any choice of
weight vector c there is an optimal solution to max{cx: x ∈ P(f )} that is integral.

Choose a weight vector c and order the elements of E by decreasing weight:

c1 ≥ c2 · · · ck ≥ 0 > ck+1 · · · ≥ cn.

Here we have assumed that k is the largest index for which the corresponding
weight is non-negative. Let S0 = ∅ and Sj = {1, 2, . . . , j} for all j ∈ E. We
show that the vector x defined by x∗j = f (Sj ) − f (Sj−1) for 1 ≤ j ≤ k and
x∗j = 0 for j ≥ k + 1 is an optimal solution to the problem max{cx: x ∈ P(f )}.
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The vector x∗ is clearly integral. It is non-negative because f is non-decreasing.
To show that x∗ ∈ P(f ) we use the submodularity of f . For any T ⊆ E:

∑
j∈T

xj =
∑

j∈T∪Sk

[f (Sj )− f (Sj−1)]

≤
∑

j∈T∪Sk

[f (Sj ∩ T )− f (Sj−1 ∩ T )]

≤ f (Sk ∩ T )− f (∅) ≤ f (T ).

The dual to max{cx: x ∈ P(f )} is:

min
∑
S⊆E

f (S)yS

s.t.
∑
S"j

yS ≥ cj , ∀j ∈ E,

yS ≥ 0, ∀S ⊆ E.

To show that x∗ is a primal optimal solution it suffices to construct a dual feasible
solution with an objective function value of cx∗. To this end set ySj = cj − cj+1
for 1 ≤ j < k. Set ySk = ck and ySj = 0 for j ≥ k + 1.

Notice that yS ≥ 0 for all S ⊆ E and is feasible in the dual because

∑
S"j

yS = ySj + · · · + ySk = cj

for all j ≤ k and
∑

S"j yS ≥ 0 ≥ cj if j ≥ k + 1.
The dual objective function value is

k−1∑
j=1

(cj − cj+1)f (Sj )+ ckf (Sk) =
k∑

j=1

cj [f (Sj )− f (Sj−1)] = cx∗.

If we drop the requirement that f is non-decreasing a similar proof establishes
that P ∗(f ) has all integral extreme points.

The matroid intersection theorem is also capable of a polymatroidal interpre-
tation. If r1 and r2 are the rank functions of two matroids defined on a common



RAKE: “chap08” — 2004/9/17 — 06:11 — page 178 — #16

178 Matroids

ground set E, then the integer solutions to the following:

∑
j∈S

xj ≤ r1(S), ∀S ⊆ E,

∑
j∈S

xj ≤ r2(S), ∀S ⊆ E,

0 ≤ xj ≤ 1, ∀j ∈ E

defines a set that is independent in both matroids. An appropriate generalization
of the matroid intersection theorem (which we do not discuss here) implies that
this polyhedron is integral.

Theorem 8.30 Let f and g be two integer valued submodular functions defined
on the same ground set. Then P(f ) ∩ P(g) and P ∗(f ) ∩ P ∗(g) are integral.

A separation theorem is also possible.

Theorem 8.31 Let f and g be two integer valued functions defined on the same
ground set E. Suppose f is submodular and g is supermodular such that f (∅) =
0 = g(∅) and g(S) ≤ f (S) for all S ⊆ E. Then, there exists an integral vector, z
in R

|E| such that

g(S) ≤
∑
j∈S

zj ≤ f (S), ∀S ⊆ E.

Proof We give a proof for the special case when f (S) and g′(S) = |S| − g(S)

are both matroid rank functions. To prove the theorem it suffices to show that there
is an integral solution to the following system:

∑
j∈S

xj ≤ f (S), ∀S ⊆ E,

∑
j∈S

(1− xj ) ≤ |S| − g(S), ∀S ⊆ E,

0 ≤ xj ≤ 1, ∀j ∈ E.

First, we show that if E is partitionable with respect to the matroid Mf associated
with f , and Mg′ the matroid associated with g′ then there is an integral solution
to the above system. Subsequently we prove that E is partitionable.

If E is partitionable, then we can set E = L ∪ R where L is an independent
set in Mf and R is an independent set in Mg′ . Now set zj = 1 iff j ∈ L and zero
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otherwise. Then for all S ⊆ E we have

∑
j∈S

zj =
∑

j∈S∩L
zj = |S ∩ L| ≤ f (S).

Second,

∑
j∈S

(1− zj ) = |S| − |S ∩ L| = |S ∩ R| ≤ g′(S).

To prove that E is partitionable, we deduce from the matroid partition theorem
that the size of the largest partitionable set is

min
T⊆E{|E \ T | + f (T )+ |T | − g(T )} = min

T⊆E{|E| + f (T )− g(T )} = |E|

since f (T ) ≥ g(T ) for all T ⊆ E and f (∅) = g(∅) = 0.

8.7 Application: efficient allocation with indivisibilities

In this section we generalize the model of Section 4.9. In that model there was a
set M of m distinct indivisible objects, and a set N of agents. In Section 4.9 each
agent was interested in acquiring no more than one good. Here we will relax this
condition.1

For every S ⊆ G, let vj (S) be the monetary value that agent j ∈ N assigns to
acquiring S. We assume that each agents valuations are non-negative and do not
depend on the goods acquired by other agents.

We impose two conditions on agent’s value functions. To describe them we
introduce additional notation. Given object prices p ∈ R

m+, let the collection of
subsets of objects that maximize agent j ’s utility be denoted Dj(p). Therefore,

Dj(p) =
{
S ⊂ M: vj (S)−

∑
i∈S

pi ≥ vj (T )−
∑
i∈T

pi ∀T ⊂ M

}
.

This is agent j ’s demand correspondence. The first condition imposed on value
functions is that they be non-decreasing, i.e., for all j ∈ N and all S ⊂ B ⊂ M ,
vj (S) ≤ vj (B).

The second is the substitutes (S) condition: For all price vectors p,p′ such that
p′ ≥ p, and all S∈Dj(p), there existsB ∈ Dj(p

′) such that {i∈ S:pi = p′i} ⊂ B.

Example 34 We give an example of a value function that satisfies (S). For each
i ∈ M , let v(i) = ai where ai is non-negative. Set v(S) = maxi∈S ai . This is the
valuation function of the agents in the model of Section 4.9. Given any price vector
p ∈ R

m+, the demand correspondence for this value function is arg maxi∈M(ai−
pi). It is easy to verify that v satisfies (S). Notice also that v is submodular.
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Theorem 8.32 Let the value function v be non-decreasing and satisfy (S). Then
v is submodular.

Proof For any j ∈ T ⊂ S ⊂ M we prove that v(S)−v(S\j) ≤ v(T )−v(T \j).
By Theorem 8.12, this implies submodularity.

Let p be a price vector such that pi = 0 for all i ∈ S and pi > v(M) for all
i ∈ M \ S. With this choice of price vector we see that S ∈ D(p). Choose any
j ∈ T and δ ≥ 0 such that

v(S)− δ = v(S \ j).

Since v is non-decreasing, such a δ exists.
Let q be a price vector such that qi = pi for all i ∈ M \ j and qj = pj + δ = δ.

We show that S ∈ D(q). Certainly there is a K ∈ D(q) such that S \ j ⊂ K and
K ∩M \ S = ∅. If S \ j ∈ D(q) but S �∈ D(q) it would mean that

v(S \ j) = V (S \ j)−
∑
i∈S\j

qj > v(S)−
∑
i∈S

qj = v(S)− δ,

which contradicts the definition of δ.
Let p̂ be a price vector such that p̂i = 0 for all i ∈ T \j , p̂j = δ and p̂i > v(M)

for all i ∈ M \ T . Observe first that p̂ ≥ q. Second, T = {i ∈ M: p̂i = qi}.
Therefore, by (S), T ∈ D(p̂). Hence

v(T \ j)−
∑
i∈T \j

p̂i ≤ v(T )−
∑
i∈T

p̂i .

Which simplifies to v(T \ j) ≤ v(T )− δ. Since δ = v(S)− v(S \ j) we conclude
that v(S)− v(S \ j) ≤ v(T )− v(T \ j).

The substitutes property implies the following useful property.

Definition 8.33 A value function, vj , satisfies the single improvement property
(SI) if for all S �∈ Dj(p) there exists B ⊂ M such that

vj (B)−
∑
i∈B

pi > vj (S)−
∑
i∈S

pi

and |S \ B|, |B \ S| ≤ 1.

One can interpret (SI) as a kind of local optimality condition. Two setsA,B ⊆ M

are considered neighbors if |A \ B| ≤ 1 and |B \ A| ≤ 1. If A �∈ D(p), then (SI)
says that there is a neighboring set B that delivers a larger net utility. If A ∈ D(p),
then there is no neighboring set B that delivers strictly more net utility.
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Theorem 8.34 Let v be non-decreasing and satisfy (S). Then v satisfies (SI).

Proof The proof will be by induction on |M|. We leave the reader to verify
the base case of |M| = 2. Now suppose the theorem true for all |M| ≤ m.
Suppose |M| = m + 1. For any price vector p and set K ⊆ M let g(K ,p) =
v(K)−∑i∈K pi . Given any R ⊆ M let D(p,R) = arg maxK⊆R g(K ,p).

Let p be a price vector and S ⊆ M such that S �∈ D(p,M). Since S �∈ D(p,M)

there is a T �= S such that g(T ,p) > g(S,p). If there is a k �∈ S ∪ T then
S �∈ D(p,M \ k) and the induction hypothesis applies. Hence for all T such that
g(T ,p) > g(S,p) we may assume that S ∪ T = M . In particular for any two sets
T and T ′ such that g(T ,p), g(T ′,p) > g(S,p) it must be that T \ S = T ′ \ S.
Furthermore, for all K ⊂ S we have g(K ,p) ≤ g(S,p).

Choose any T ∗ ∈D(p). We show that |T ∗ \ S| ≤ 1. Suppose not and let
e, f ∈ T ∗ \ S. Notice that for any T such that g(T ,p) > g(S,p) we have
e, f ∈ T . Choose ε ≥ 0 to solve

g(T ∗)− 2ε = g(S).

Let q be a price vector such that qi = pi for all i ∈ M \ {e, f } and qi = pi + ε

for all i ∈ {e, f }. Given this choice of ε, g(T , q) = g(T ,p) − 2ε for all T such
that g(T ,p) > g(S,p). Hence S, T ∗ ∈ D(q,M).

Let q ′ be a price vector such that q ′i = qi for all i∈M\{f } and q ′f = qf + θ where
θ > ε is sufficiently large to ensure that T ∗ �∈ D(q ′,M). Notice S ∈ D(q ′,M).
By (S) there is a K ∈ D(q ′,M) such that f �∈ K and T \ f ⊆ K . Hence

g(S, q ′) = g(K , q ′)⇒ g(S,p) = g(K ,p)− ε ⇒ g(S) < g(K).

Therefore K \ S = T ∗ \ S a contradiction. Hence |T ∗ \ S| ≤ 1.
From among all T such that g(T ,p) > g(S,p) choose one that maximizes

|S ∩ T |. Call it T ′. Note that |T ′ \ S| = |T ∗ \ S| ≤ 1.
If |S \ T ′| ≤ 1 we are done. So, suppose for a contradiction, that |S \ T | ≥ 2.

Choose e ∈ arg mini∈S\T ′ pi and ε ≥ 0 to solve

g(S,p) = g(T ′,p)− ε.

Now pe > 0. If not, since v is non-decreasing, it follows that g(T ′ ∪ e,p) ≥
g(T ′,p) > g(S,p) contradicting the choice of T ′. Let p′ be the price vector
defined by p′i = pi for all i �∈ S ∩ T ′ and p′i = 0 for all i ∈ S ∩ T ′. Observe that
g(S,p′) < g(T ′,p′) and g(K ,p′) ≤ g(S,p′) for all K ⊂ S.

Choose δ > 0 to solve

g(S,p∗)+ δ|S \ T ′| = g(T ′,p∗).

Set µ = min{ε, δ}. Let q be the price vector defined by qi = p∗i for all i �∈ S \ T ′
and qi = p∗i − µ for all i ∈ S \ T ′.
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Suppose first that ε < δ. Then

g(S, q) = g(S,p∗)+ µ|S \ T ′| < g(T ′,p∗) = g(T ′, q).

Since v is non-decreasing and qe = 0 it follows that g(T ′ ∪ e, q) ≥ g(T ′, q).
Hence

g(T ′ ∪ e, q) > g(S, q)⇒ g(T ′ ∪ e,p∗) > g(S,p∗)⇒ g(T ′ ∪ e,p) > g(S,p)

contradicting the choice of T ′.
Now suppose that ε ≥ δ. Then g(S, q) = g(T ′, q). Assume first that S �∈

D(q,M). Notice that T ′ �∈ D(q,M). Let K ∈ D(q,M). Since qi = 0 for all
i ∈ S ∩ T ′ we can choose K to contain S ∩ T ′. Now K ∈ D(q,M) implies

v(K)−
∑

i∈K∩{S∩T ′}
qi −

∑
i∈K∩{T ′\S}

qi > v(S)−
∑

i∈{S\T ′}
qi

⇒ v(K)−
∑

i∈K∩{S∩T ′}
pi −

∑
i∈K∩{T ′\S}

pi > v(S)−
∑

i∈{S\T ′}
pi

⇒ g(K ,p) > g(S,p).

ThereforeK\S = T ′\S. However, K �= T ′ and so |K∩S| > |T ′∩S| contradicting
the choice of T ′.

Now suppose that S ∈ D(q,M). Increase the price of e only from qe to pe. Call
the new price vector q∗. Notice S �∈ D(q∗,M). By (S) there is a K ∈ D(q∗,M)

such that S \ e ⊆ K . Hence

v(S)− pe −
∑
i∈S\e

qi = g(S, q∗) < g(K , q∗) = g(K , q)

⇒ v(S)−
∑

e∈S\T ′
pe < v(K)−

∑
i∈K∩{S\T ′}

pi −
∑

i∈K∩{T ′\S}
pi

⇒ g(S,p) < g(K ,p).

Since |K \ S| = 1 this contradicts the choice of T ′ and the proof is complete.

An assignment of goods to agents such that no good is assigned to more than one
agent will be called an allocation. An allocation is efficient if it maximizes the total
realized value. We will show how to formulate the problem of finding an efficient
allocation as a linear program. From the duality theorem of linear programming
and complementary slackness we will identify, as we did in Section 4.9, supporting
prices.

We first formulate the problem problem of finding an efficient allocation as an
integer program. Let yj (S) = 1 if agent j is to be allocated the bundle S ⊆ M ,
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and zero otherwise. The optimization problem, denoted (P), is to solve

V (A) =max
∑
j∈N

∑
S⊆M

vj (S)yj (S)

s.t.
∑
S"i

∑
j∈N

yj (S) ≤ 1, ∀i ∈ M ,

∑
S⊆G

yj (S) ≤ 1, ∀j ∈ N ,

yj (S) ∈ {0, 1}, ∀S ⊆ M , ∀j ∈ N .

The first constraint ensures that overlapping sets of goods are never assigned. The
second ensures that no agent receives more than one subset.

We will relax the constraint yj (S) ∈ {0, 1} to 0 ≤ yj (S) ≤ 1 for all S ⊆ M and
j ∈ N . We will show that this linear relaxation has an integer optimal solution.

Given a value function vj let Kj(p) = min{|A|: A ∈ Dj(p)} and

D∗j (p) = {A ∈ Dj(p): |A| = Kj(p)}.

Lemma 8.35 Let vj be non-decreasing and satisfy (S) and let

φj (T ,p) = min
S∈Dj (p)

|S ∩ T |.

Then

φj (T ,p) = min
S∈D∗j (p)

|S ∩ T |.

Proof Choose any S ∈ Dj(p). We show that there exists a B ∈ D∗j (p) such that
B ⊆ S. Suppose not, then |B \ S| > 0. From amongst all such B choose one that
minimizes |B \ S|. Let r ∈ B \ S.

From p construct a new price vector p′ by raising prices on all elements in
E \ {S ∪B} by some large amount (exceeding the maximum value achievable on
any bundle) and raising the price on r by ε > 0.

Clearly S ∈ Dj(p
′) but B �∈ Dj(p

′). By (SI) there exists C ⊆ A ∪B such that
C ∈ Dj(p

′) and C ∪ B = B \ b and |C \ B| ≤ 1. In particular |C| ≤ |B| and
|C \ S| = |B \ S| − 1. If C ∈ D∗j (p), this would contradict the choice of B.

Now

C ∈ Dj(p
′)⇒ vj (C)−

∑
j∈C

p′j > vj (B)−
∑
j∈B

p′j .
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Therefore,

vj (C)−
∑
j∈C

pj > vj (B)−
∑
j∈B

pj − ε.

Since this inequality holds for all sufficiently small ε it follows that C ∈ Dj(p).
Since |C| ≤ |B| we conclude that C ∈ D∗j (p) yielding the desired contradiction.

This lemma allows us to construct a matroid Mj with M as the ground set. The
bases of this matroid will be all sets in D∗j (p). A set S will be independent iff
S ⊆ B for some B ∈ D∗j (p). It is easy to check that this forms an independence
system. The matroid property is satisfied by definition since all bases have size
Kj(p). The rank function rj , for this matroid is:

rj (S) = max
B∈D∗j (p)

|B ∩ S|.

However, maxB∈D∗j (p) |B ∩ S| = Kj(p) − minB∈D∗j (p) |B ∩ {M \ T }|. Since
Kj(p) = φj (M ,p) and in view of Lemma 8.35 rj (S) = φj (M ,p)−φj (M \S,p).

We show that linear programming relaxation of (P) has an optimal integer
solution. Relaxing the integrality constraint in (P) gives

VLP (A) = max
∑
j∈N

∑
S⊆M

vj (S)yj (S)

s.t.
∑
S"i

∑
j∈N

yj (S) ≤ 1, ∀i ∈ M ,

∑
S⊆M

yj (S) ≤ 1, ∀j ∈ N ,

yj (S) ≥ 0, ∀S ⊆ M , ∀j ∈ N .

Theorem 8.36 If each agent’s value function is monotonic and satisfies (SI),
V (A) = VLP (A).

Proof Let p∗ be an optimal dual solution (here p∗ corresponds to the first set of
constraints) to the linear relaxation of (P). Let

Vp(A) = max
∑
j∈N

∑
S⊆M

vj (S)yj (S)−
∑
i∈M

pi

[∑
S"i

∑
j∈N

yj (S)

]
+
∑
i∈M

pi

s.t.
∑
S⊆M

yj (S) ≤ 1, ∀j ∈ N ,

yj (S) ≥ 0, ∀S ⊆ M , ∀j ∈ N .
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The objective function can be written as

Vp(A) = max
∑
j∈N

∑
S⊆M

[
vj (S)−

∑
i∈S

pi

]
yj (S)+

∑
i∈M

pi .

In this problem, if yj (S) = 1 is part of an optimal solution, then S ∈ Dj(p).
By the duality theorem of linear programming, Vp∗(A) = minp≥0 Vp(A) =

VLP (A). If there is a partition of M so that each agent j receives at most one
element of Dj(p), it would follow that (P) has an optimal integer solution.

Suppose no such partition exists. In particular there is no partition of M that
gives each agent j an element of D∗j (p). In matroid language, there is no partition
of M into sets {B1,B2, . . . ,B|A|} such that each Bi is a basis in Mi . From the
matroid packing theorem we deduce the existence of a M \ T ⊆ M such that

|M \ T | > |M| −
|N |∑
i=1

ri(E)+
|N |∑
i=1

ri(M \ T ),

in other words,

∑
j∈A

φj (T ,p∗) > |T |.

Define a new dual solution p such that pi = p∗i for all i ∈ M \T and pi = p∗i + ε

for all i ∈ T .
For each j ∈ N , let Bj ∈ Dj(p) be such that |Bj ∩ T | = φj (T ,p). If ε > 0

is chosen sufficiently small we claim that
∑

j∈A |Bj ∩ T | > |T |. Suppose for the
moment this is true. Then,

Vp(A) =
∑
j∈N

[
vj (B

j )−
∑
i∈Bj

pi

]
+
∑
i∈M

p∗i + ε|T |

=
∑
j∈N

[
vj (B

j )−
∑
i∈Bj

p∗i
]
− ε

∑
j∈N
|Bj ∩ T | +

∑
i∈M

p∗i + ε|T |

≤
∑
j∈N

[
vj (C

j )−
∑
i∈Cj

p∗i
]
− ε

∑
j∈N
|Bj ∩ T | +

∑
i∈M

p∗i + ε|T |

= Vp∗(N)− ε(|Bj ∩ T | − |T |)
< Vp∗(N) = VLP (N)

which contradicts the optimality of p∗.
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It remains then to prove the claim. Let Cj ∈ Dj(p
∗) be such that |Cj ∩ T | =

φj (T ,p∗). For any S ⊂ E such that |S ∩ T | < |Cj ∩ T | we must have

[
vj (C

j )−
∑
i∈Cj

p∗i
]
−
[
vj (S)−

∑
i∈S

p∗i
]
> 0.

Let εj be the minimum of the left-hand side over all such sets S. Observe that
εj > 0. Now increase the price of all elements in T by εj /|T |. Call the new
price vector p′. We show there is a Bj ∈ Dj(p

′) such that |Bj ∩ T | = |Cj ∩ T |.
Suppose, for a contradiction that |Bj ∩ T | < |Cj ∩ T | for all Bj ∈ Dj(p

′). Then

vj (B
j )−

∑
i∈Bj

p′i = vj (B
j )−

∑
i∈Bj

p∗i −
εj

|T | |B
j ∩ T |

> vj (C
j )−

∑
i∈Cj

p∗i −
εj

|T | |C
j ∩ T |.

Since vj (C
j )−∑i∈Cj p∗i > vj (B

j )−∑i∈Bj p∗i + εj we deduce that

vj (B
j )−

∑
i∈Bj

p∗i −
εj

|T | |B
j ∩ T | > vj (B

j )−
∑
i∈Bj

p∗i + εj − εj

|T | |C
j ∩ T |,

i.e.,

εj

|T | |C
j ∩ T | − εj

|T | |B
j ∩ T | > εj

which is a contradiction. To complete the proof of the claim it suffices to repeat
this argument for each agent j with ε = minj ε

j .

8.8 Application: Shannon switching game

Let G = (V ,E) be a graph (possibly with parallel edges) and e∗ a distinguished
element of E. There are two players, called the cut and short player. The cut
player moves first followed by the short player and thereafter they alternate. On
any one of her moves, the cut player can delete any element from E that has not
previously been ‘tagged’by the short player. On each of his moves, the short player
tags an element not previously deleted or tagged. Element e∗ can never be deleted
or tagged. The goal of the short player is to tag a subset of S of E such that S∪{e∗}
contains a cycle through e∗. The goal of the cut player is to prevent this. Clearly,
one of the two players must win and there are no ties. The game was invented by
Claude Elwood Shannon (1916–2001), of Information Theory fame. The game is
related to Hex discussed earlier in this book.
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Example 35 An instance of the game is depicted in Figure 8.1.2 We show that
the short player has a strategy that guarantees a win. Since the cut player moves
first, she must delete e1. If not, the short player will tag e1 and win the game.
The short player tags e5. The cut player must respond by deleting e6 to prevent
the short player from winning. Next, the short player tags e2. This forces the cut
player to delete e7. The short player tags e3 next. The cut player must now delete
one of e4 or e8. No matter which one the cut player deletes, the short player can
tag the other to win the game.

e1

e3

e5

e4 e2

e8 e7

e6

ex

Figure 8.1

Here is a variant of the game played on a vector space rather than graph. Let E

be a finite set of vectors and e∗ a distinguished element of E. The goal of the short
player is to tag a subset S of E such that e∗ ∈ span(S). The goal of the cut player
is to prevent this.

The game can be played on any matroid by suitably defining what it means for
an element to be contained in the span of a set.

Definition 8.37 Let M = (E, I) be a matroid with rank function r . The span of
S ⊂ E is

span(S) = {j ∈ E: r(A ∪ j) = r(A)}.

If M is a graphic matroid, the span of a set S will be the set of all edges e such
that e ∈ S or S ∪ e contains a cycle.

Lemma 8.38 Let Mi = (E, Ii ), i = 1, . . . , k be k copies of the same matroid
M . Let J be a maximum cardinality partitionable set. Then there are disjoint
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independent sets F1,F2, . . . ,Fk such that

E \ J ⊆ span(F1) = · · · = span(Fk).

Proof If J = E, the lemma follows by setting F1 = F2 = · · · = Fk = ∅. Since
J is a maximum cardinality partitionable set, it follows from the matroid partition
theorem that there is a set T ⊆ E such that

|J | = |E \ T | + kr(T ).

Let P1,P2, . . . ,Pk be the partition of J into independent sets. Then

|J | = |J ∩ (E \ T )| + |J ∩ T | ≤ |E \ T | +
k∑

i=1

|T ∩ Pi |

≤ |E \ T | + kr(T ) = |J |.

Thus all inequalities must hold at equality. The first inequality binding in this chain
implies that |J ∩ {E \ T }| = |E \ T |, i.e., E \ T ⊆ J . The second inequality
binding in this chain implies that

∑k
i=1 |T ∩ Pi | = kr(T ), i.e., r(T ) = |T ∩ Pi |

for all i.
Set Fi = T ∩ Pi for all i. These Fi’s are independent. Since r(T ) = |Fi |

for all i it follows that T ⊆ span(Fi) for all i. As E \ T ⊆ J we deduce that
E \ J ⊆ span(Fi) for all i. Finally, Fj ⊆ T ⊆ span(Fi) for all i �= j . Thus
span(F1) = span(F2) = · · · = span(Fk).

Theorem 8.39 Let M be a matroid with distinguished element e∗. The Shannon
game on (M , e∗) can be won by the short player iff there exist disjoint subsets
F 1,F 2 ⊆ E \ e∗ such that e∗ ∈ span(F 1) = span(F 2).

Proof Suppose first that there exist disjoint subsets F 1,F 2 ⊆ E \ e∗ such that
e∗ ∈ span(F 1) = span(F 2). We exhibit a winning strategy for the short player.

Without loss of generality we can assume that F 1 ∪ F 2 = E \ e∗ and that F 1

and F 2 are bases for E. Set F 1
0 = F 1 and F 2

0 = F 2. Let e1 ∈ F 1
0 be the first

element deleted by the cut player. Since M is a matroid, by Lemma 8.5 there is
a f1 ∈ E such that (F 1

0 \ e1) ∪ f1 is a bases for E. The short player tags f1 and
updates F 1

0 , F 2
0 as follows:

F 1
1 = (F 1

0 \ e1) ∪ f1, F 2
1 = F 2

0 .

After k rounds of play, sets F 1
k and F 2

k have been defined such that

1. F 1
k ,F 2

k are bases of E,
2. F 1

k ∩ F 2
k are the set of elements tagged after k turns, and

3. [F 1
k ∪ F 2

k ] \ [F 1
k ∩ F 2

k ] is the set of unplayed elements.
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By (2) if e∗ ∈ span(F 1
k ∩ F 2

k ), the short player has won. If not, the cut player
selects an ek ∈ [F 1

k ∪ F 2
k ] \ [F 1

k ∩ F 2
k ]. Say, ek ∈ F 1

k . By Lemma 8.5 there is an
fk ∈ F 2

k such that (F 1
k \ ek) ∪ fk is a bases. The short player tags fk and updates

F 1
k , F 2

k as follows:

F 1
k+1 = (F 1

k \ ek) ∪ fk , F 2
k+1 = F 2

k .

Thus after each round, two elements are consumed and F 1
k ∩ F 2

k is increased by
one element.

Since |E| is finite, the process must terminate. If it terminates with
e∗ ∈ span(F 1

k ∩ F 2
k ) the short player wins. If not, by (3) all elements have been

played, i.e., F 1
k = F 2

k . But from (1) e∗ ∈ span(F 1
k ) = span(F 1

k ∩ F 2
k ) and again

the short player wins.
Now suppose the Shannon game can be won by the short player. Let J be a

maximum cardinality subset of E partitionable into two M-independent sets. If
we can choose J so that e∗ �∈ J , the proof is complete because we have identified
disjoint independent sets F 1,F 2 ⊆ E \ e∗ such that e∗ ∈ span(F 1) = span(F 2).
If not, we exhibit a winning strategy for the cut player.

Assume first that J = E. LetS1 andS2 be disjoint independent sets that partition
E. Suppose e∗ ∈ S1. Extend S1 and S2 into bases B1 and B2 with e∗ �∈ B2. Then
B∗i = E \ Bi are disjoint bases in the dual matroid MD . Notice that e∗ ∈ B∗2 .
Since MD is a matroid there is an f ∈ B∗1 such that B∗2 \ e∗ ∪ f is a bases of MD .
Set F1 = B∗1 and F2 = B∗2 \ e∗ ∪ f .

Consider now the matroid MD contract f , i.e., MD
f . This has ground set E \ f .

Observe that F1 and F2 are disjoint bases in MD
f and that e �∈ F1∪F2. Furthermore

e∗ ∈ span(F1) = span(F2) where the span is relative to MD
f .

The cut player now plays as follows. On her first move she deletes f . From
then on she plays as if she was the short player but playing the game on MD

f . Thus
cutting an element in M corresponds to tagging an element in MD

f . Given the sets
F1 and F2 just constructed the cut player has a strategy that will guarantee that she
can cut a set T such that e∗ is in the span of T with respect to MD

f . If rDf is the

rank function of MD
f it follows that

rDf (S) = |S| + r(E \ S)− r(E),

where r is the rank function of M . Since T spans e∗ in MD
f it follows that

rDf (T ∪ e∗) = rDf (T ), i.e.,

|T ∪ e∗| + r(E \ (T ∪ e∗))− r(E) = |T | + r(E \ T )− r(E),

i.e., r(E \ T ) = r(E \ (T ∪ e∗)) + 1. Hence no subset of E \ T spans e∗ which
contradicts the fact that the short player has winning strategy.
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Last suppose J �= E but e∗ ∈ J . Since J was chosen to exclude e∗ if possible
it follows that J \ e∗ is a maximum cardinality partitionable set of the matroid M

delete e∗. By Lemma 8.38 there exist disjoint independent sets, F1, F2 (inM delete
e∗) such that e∗ �∈ span(F1) = span(F2) and E\(J ∪e∗) ⊆ span(F1) = span(F2).

Let M ′ be the matroid M contract span(F1). If the short player has a winning
strategy in M he has a winning strategy in M ′. However E \ span(F1) is par-
titionable in M ′ and so by the previous argument the cut player has a winning
strategy.

Problems

8.1 Let E be a ground set and k a positive integer. Let I = {S ⊆ E: |S| ≤ k}.
Show that (E, I) is a matroid. This is called the uniform matroid.

8.2 Let (E, I) be an independent system. Suppose for any A,B ∈ I with
|A| < |B| exists j ∈ B \ A such that A ∪ j ∈ I. Show that (E, I) is a
matroid.

8.3 Let (E, I) be an independent system. Suppose for any two bases of E, A and
B the following was true:

For all i ∈ A \ B there is a j ∈ B \ A such that {A \ i} ∪ j and {B \ j} ∪ i

are bases of E.

Show that (E, I) is a matroid. Prove the converse as well.
8.4 Let (E, I) be a matroid with weight vector w that assigns to each e ∈ E

a weight we. Let

f (K) = max
S∈I,S⊆K

∑
e∈S

we.

Show that f is submodular.

Notes

1 This section is based on Gul and Stachetti (2000).
2 This example is from Bixby (1982).
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acyclic, 10
adjacent, 9
adjoint, 8
affinely independent, 46
allowable decrease, 66
allowable increase, 66
anti-cycling, 18
anti-tone, 148
arbitrage, 20
arc, 11
Aristotle, 31
Arrow, Kenneth, 80, 127
assignment, 78

efficient, 78
problem, 79

auctus, 25

Banach, Stefan, 117
basic feasible solution, 56
basic solution, 56
basis, 7
basis of set, 163
binary relation, 149
Black, Fischer, 22
Black–Scholes formula, 22
Bland, Robert, 18
blocking pair, 159
Bolzano, 4
Bolzano, Bernard, 140
Borel, 5
boundary, 3
bounded, 4
Brouwer, L. E. J., 118

call option, 22
cardinality, 1
Cauchy criterion, 2
Cauchy–Schwarz inequality, 113
caveat emptor, 31

cell, 120
circuit, 163
closed, 3
closure, 3
column rank, 8
common prior, 32
compact, 4
complement, 1
complementarity, 146
complete graph, 9
complete market, 22
cone, 15, 40

finite, 15
polyhedral, 40

cone assumption, 26
connected, 10
constraint

binding, 54
matrix, 54
qualifications, 90

continuous, 4
continuous at the point, 4
contraction, 169
contraction mapping, 117
convex, 33
convex combination, 43
core, 24
correspondence, 136

convex valued, 136
upper semi-continuous, 136

Cramer’s rule, 8
cut, 122
cycle, 10

Dantzig, George, 18
decisive agent, 81
degree, 9
deletion, 169
demand correspondence, 179
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dependent set, 163
derivative, 5
determinant, 8
Didius Julianus, 25
differentiable, 5
dimension, 7
Diogenes Laertius, 31
directed, 11
division, 122
dot product, 2
dual, 60

edge, 9
Edgeworth, Francis, 104
efficient allocation, 182
Einstein, Albert, 52
emptor, 31
end point, 9
equilibrium, 71
extreme point, 44
extreme ray, 44

face, 120
Farkas alternative, 18
Farkas Lemma, 16
Farkas, Gulya, 52
feasible allocation, 131
feasible region, 53
female semi-matching, 159
de Finetti, Bruno, 21
finite cone, 15
first order condition, 94
forest, 10, 164
full dimensional, 46
function

affine, 138
concave, 95
convex, 95
matroid rank, 168
submodular, 166
supermodular, 144, 166
weakly contractive, 138

game
co-operative, 24
core, 24
zero-sum, 69

Gauss, Carl Friedrich, 14
Gibbon, Edward, 25
global maximum, 87
gradient, 5

graph, 9, 136
non-singular, 74

greatest lower bound, 150

Hölders inequality, 114
Hahn, Frank, 127
half-space, 35
Hein, Piet, 133
Heine, 5
Helly, Eduard, 48
Hessian, 97
Huxley, Aldous, 86
hyperplane, 35
hypograph, 96

identity matrix, 7
imputation, 24
incentive compatibility, 26, 110
incomplete market, 22
increasing differences, 145
increasing differences strictly, 147
Independence of Irrelevant

Alternatives, 81
independence system, 163
independent set, 163
individual rationality, 27, 111
inequality

Cauchy–Schwarz, 113
Hölders, 114
Minkowski’s, 114

infeasible, 55
infimum, 2
input space, 49
integer program, 75
interior, 3
intersection, 1
intervals, 3
inverse, 8
invertible, 8
irreflexivity, 104
isotone, 148

join, 142, 150

Kakutani, Shizuo, 136
kernel, 8
Kuhn–Tucker–Karush (KTK), 91, 99

Lagrange multiplier, 94
lattice, 142, 150

compact, 150
law of diminishing returns, 104
Lawrence (of Arabia), 116
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Leacock, Stephen, 104
least element, 149
least upper bound, 150
lemma

Farkas, 16
Sperner’s, 121

linear combination, 6
linear programming, 53
linearly dependent, 6
linearly independent, 6
local maximum, 87
lower bound, 149
LP, 53

dual, 60
integer, 75
primal, 60

male semi-matching, 159
marginal product, 156
market

complete, 22
incomplete, 22

market equilibrium, 108
market game, 107
Markov matrix, 30
matching, 159

stable, 159
unstable, 159

matric, 164
matrix, 7

identity, 7
negative semi-definite, 97
non-singular, 56
totally unimodular, 75

matroid, 164
dual, 169
uniform, 190

matroid rank function, 168
maximal element, 150
maximal LI, 7
maximum

global, 87
local, 87

meet, 142, 150
Merton, Robert, 22
Minkowski’s inequality, 114
Minkowski, Hermann, 52
monotonicity, 104
Morpheus, 64

Narziss, 65
Nash equilibrium, 126
Nash, John, 125

neighborhood, 87
null space, 8

objective function, 54
finite; unbounded, 55

open, 3
open covering, 5
orthogonal, 2

packed, 174
Pareto domination, 131
Pareto optimality, 131
Pareto, Vilfredo, 140
Parker Brothers, 134
partial derivative, 5
partial order, 149
partitionable, 173
path, 10
Pertinax, 25
polyhedron, 42
polymatroid, 176

extended, 176
Praetorian, 25
preferences, 103

consistent, 104
irreflexivity, 104
monotonicity, 104
numerical representation, 104
transitivity, 104

primal, 60
probability vector, 30
Procrustes, 152
profile, 81

quasi-concavity, 112
quasi-linear utility, 106

Ramsey, Frank P., 31
rank, 6, 9
rank function, 167
Resolution Theorem, 43
RHS, 54
risk seeking, 105
risk aversion, 105
risk neutral probability distribution, 22
risk neutrality, 105
Rolle, 5
row rank, 8

Savage, Leonard J., 31
von Schmoller, Gustav, 140
Scholes, Myron, 22
semi-matching, 160
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Separating Hyperplane Theorem
weak, 37

Separating Hyperplane Theorem, 34
strict, 35

Septimus Severus, 25
Shanon, Claude, 186
single improvement property, 180
slack variable, 19
Slater condition, 100
Smith, Adam, 104
social welfare function, 81

dictatorial, 81
span, 6
spanning tree, 10
Sperner’s lemma, 121
strategy

mixed, 69
pure, 69

strict concavity, 112
strict quasi-concavity, 113
Strict Separating Hyperplane Theorem, 35
strike price, 22
strongly connected, 11
subhastrae, 25
sublattice, 150
subset, 1
substitutes condition, 179
Sulpicanus, 25
supremum, 2
surplus variable, 19

Tarski, Alfred, 148
Thales, 31
theorem

Afriat’s, 72
Arrow’s, 80
Bolzano–Weierstrass, 4
Farkas-Minkowski-Weyl, 52
Hall marriage, 172
Heine–Borel, 5
Helly’s, 48
Kakutani Fixed Point, 136

Kuhn–Tucker–Karush, 91
Resolution, 43
Rolle’s, 5
Separating hyperplane, 34
Weierstrass Maximum, 5

Theseus, 162
topologically equivalent, 48
transitivity, 104
transpose, 7
triangulation, 120
Turgot, Robert, 115

Ulam, Stanislaw, 140
uniform, 164
union, 1
unit vector, 2
upper semi-continuity, 136
upper bound, 149
utility

quasi-linear, 106
utility function, 104

Van der Waerden, 140
variable

basic, 56
slack, 54
surplus, 54

Varian, H.R., 20
vector

efficient, 50
unit, 2

vertex, 9, 120

Walras’ Law, 130
Walras, Leon, 129
Walrasian Equilibrium, 129
weak duality, 60
Weak Separating Hyperplane Theorem, 37
Weierstrass, 4, 5
Weyl, Klaus, 52

zero sum game, 69
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I have, alas, studied philosophy,
Jurisprudence and medicine, too,
And worst of all, theology
With keen endeavor, through and through –
And here I am, for all my lore,
The wretched fool I was before.

(From Goethe’s Faust)
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